Spaces:
Sleeping
Sleeping
File size: 10,748 Bytes
f4e7b4f c832d1c 9590248 c832d1c 9590248 d186b8d 9590248 c832d1c e9f402a 9590248 e9f402a f4e7b4f c832d1c b6cc813 0a4a544 c9d8fa5 e9f402a c832d1c 06b05f8 c832d1c e9f402a c832d1c f4e7b4f c832d1c e9f402a c832d1c 06b05f8 c832d1c e9f402a f4e7b4f 9590248 06b05f8 9590248 e9f402a 06b05f8 e9f402a 9590248 06b05f8 c832d1c 06b05f8 e9f402a 1039466 06b05f8 e9f402a 06b05f8 e9f402a 06b05f8 e9f402a 06b05f8 e9f402a 06b05f8 e9f402a c832d1c 9590248 c832d1c e9f402a 06b05f8 c832d1c e9f402a 9590248 c832d1c e9f402a 362a50b d186b8d 06b05f8 d186b8d 06b05f8 362a50b 9590248 d186b8d 30db2dc 06b05f8 9590248 e9f402a 9590248 21b792e 9590248 06b05f8 8293692 06b05f8 2092360 06b05f8 9ef413c 2092360 0a4a544 06b05f8 0a4a544 e9f402a 06b05f8 3e432a3 06b05f8 3e432a3 fc7ab6b 3b1eb54 3e432a3 0e167eb 3e432a3 06b05f8 2092360 06b05f8 3e432a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import requests
from io import StringIO
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from twilio.base.exceptions import TwilioRestException
import pdfplumber
import datetime
import csv
import json
import re
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
print(f"APP_START_TIME: {APP_START_TIME}")
os.environ["PYTORCH_JIT"] = "0"
# ---------------- PDF & DOCX & JSON Extraction ----------------
def _extract_tables_from_page(page):
tables = page.extract_tables()
formatted_tables = []
for table in tables:
formatted_table = []
for row in table:
formatted_row = [cell if cell is not None else "" for cell in row]
formatted_table.append(formatted_row)
formatted_tables.append(formatted_table)
return formatted_tables
def extract_text_from_pdf(pdf_path):
text_output = StringIO()
all_tables = []
try:
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
all_tables.extend(_extract_tables_from_page(page))
text = page.extract_text()
if text:
text_output.write(text + "\n\n")
except Exception as e:
print(f"pdfplumber error: {e}")
with open(pdf_path, 'rb') as file:
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
return text_output.getvalue(), all_tables
def _format_tables_internal(tables):
formatted_tables_str = []
for table in tables:
with StringIO() as csvfile:
writer = csv.writer(csvfile)
writer.writerows(table)
formatted_tables_str.append(csvfile.getvalue())
return "\n\n".join(formatted_tables_str)
def clean_extracted_text(text):
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return '\n'.join(para.text for para in doc.paragraphs)
except:
return ""
def load_json_data(json_path):
try:
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if isinstance(data, dict):
# Flatten dictionary values (avoiding nested structures as strings)
return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
elif isinstance(data, list):
# Flatten list of dictionaries
all_items = []
for item in data:
if isinstance(item, dict):
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
return "\n\n".join(all_items)
else:
return json.dumps(data, ensure_ascii=False, indent=2)
except Exception as e:
print(f"JSON read error: {e}")
return ""
# ---------------- Chunking ----------------
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
tokens = tokenizer.tokenize(text)
chunks = []
start = 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk = tokens[start:end]
chunks.append(tokenizer.convert_tokens_to_string(chunk))
if end == len(tokens): break
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
q_embedding = embed_model.encode(question)
D, I = index.search(np.array([q_embedding]), k)
return [text_chunks[i] for i in I[0]]
# ---------------- Groq Answer Generator ----------------
def generate_answer_with_groq(question, context):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant information to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent, "
f"addressing the customer by their name if it's available in the context."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
"Help customers with toys, delivery, and returns in a helpful tone. "
"When responding, try to find the customer's name in the provided context "
"and address them directly. If the context contains order details and status, "
"include that information in your response."
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()['choices'][0]['message']['content'].strip()
# ---------------- Twilio Integration ----------------
def fetch_latest_incoming_message(client, conversation_sid):
try:
print(f"fetch_latest_incoming_message Twilio SID : {conversation_sid}")
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
for msg in reversed(messages):
if msg.author.startswith("whatsapp:"):
return {
"sid": msg.sid,
"body": msg.body,
"author": msg.author,
"timestamp": msg.date_created,
}
except TwilioRestException as e:
print(f"β Twilio error for SID {conversation_sid}: {e}")
return None
def send_twilio_message(client, conversation_sid, body):
return client.conversations.v1.conversations(conversation_sid).messages.create(
author="system", body=body
)
# ---------------- Knowledge Base Setup ----------------
def setup_knowledge_base():
folder_path = "docs"
all_text = ""
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
if filename.endswith(".pdf"):
text, tables = extract_text_from_pdf(file_path)
all_text += clean_extracted_text(text) + "\n"
all_text += _format_tables_internal(tables) + "\n"
elif filename.endswith(".docx"):
text = extract_text_from_docx(file_path)
all_text += clean_extracted_text(text) + "\n"
elif filename.endswith(".json"):
text = load_json_data(file_path)
all_text += text + "\n"
elif filename.endswith(".csv"):
try:
with open(file_path, newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
line = ' | '.join(f"{k}: {v}" for k, v in row.items())
all_text += line + "\n"
except Exception as e:
print(f"CSV read error: {e}")
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
chunks = chunk_text(all_text, tokenizer)
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(chunks, show_progress_bar=False)
dim = embeddings[0].shape[0]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings).astype('float32'))
return index, model, chunks
# ---------------- Monitor Twilio Conversations ----------------
def start_conversation_monitor(client, index, embed_model, text_chunks):
processed_convos = set()
last_processed_timestamp = {}
def poll_convo(convo_sid):
print(f"π§΅ Started polling for SID: {convo_sid}")
while True:
try:
latest_msg = fetch_latest_incoming_message(client, convo_sid)
if latest_msg:
msg_time = latest_msg["timestamp"]
prev_time = last_processed_timestamp.get(convo_sid)
if prev_time is None or msg_time > prev_time:
last_processed_timestamp[convo_sid] = msg_time
question = latest_msg["body"]
sender = latest_msg["author"]
print(f"π© New message from {sender}: {question}")
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
answer = generate_answer_with_groq(question, context)
send_twilio_message(client, convo_sid, answer)
except Exception as e:
print(f"β οΈ Error in poll_convo: {e}")
time.sleep(120)
# Get all conversations and find the most recent one after APP_START_TIME
conversations = client.conversations.v1.conversations.list(limit=20)
print("Conversations (date_created) sorted in descending order:")
for c in sorted_convos:
print(c.date_created)
sorted_convos = sorted(
[c for c in conversations if c.date_created > APP_START_TIME],
key=lambda c: c.date_created,
reverse=True
)
if not sorted_convos:
print("β No new Twilio conversations found after app startup.")
return
latest_convo = sorted_convos[0]
if latest_convo.sid not in processed_convos:
processed_convos.add(latest_convo.sid)
print(f"β
Monitoring latest conversation SID: {latest_convo.sid}, Created: {latest_convo.date_created}")
threading.Thread(target=poll_convo, args=(latest_convo.sid,), daemon=True).start()
# ---------------- Main Entry ----------------
if __name__ == "__main__":
st.title("π€ ToyBot WhatsApp Assistant")
st.write("Initializing knowledge base...")
index, model, chunks = setup_knowledge_base()
st.success("Knowledge base loaded.")
st.write("Waiting for WhatsApp messages...")
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if not account_sid or not auth_token:
st.error("β Twilio credentials not set.")
else:
client = Client(account_sid, auth_token)
start_conversation_monitor(client, index, model, chunks)
st.info("β
Bot is now monitoring the latest Twilio conversation.") |