Spaces:
Sleeping
Sleeping
File size: 6,960 Bytes
f4e7b4f 30db2dc c832d1c 30db2dc c832d1c 30db2dc c832d1c d186b8d 30db2dc c832d1c 30db2dc d765f67 f4e7b4f c832d1c b089ae9 30db2dc c832d1c 30db2dc c832d1c d765f67 c832d1c f4e7b4f c832d1c d765f67 c832d1c 30db2dc c832d1c d765f67 f4e7b4f c832d1c 30db2dc c832d1c c99b5df 30db2dc c99b5df 30db2dc c99b5df 30db2dc c99b5df 30db2dc d765f67 c832d1c 30db2dc c832d1c d765f67 c832d1c d765f67 30db2dc c832d1c 30db2dc d186b8d 30db2dc d186b8d 30db2dc d186b8d 30db2dc d186b8d 30db2dc d186b8d 30db2dc d186b8d c832d1c 30db2dc b089ae9 30db2dc c832d1c b089ae9 30db2dc b089ae9 30db2dc b089ae9 30db2dc b089ae9 30db2dc b089ae9 30db2dc b089ae9 30db2dc b089ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import json
import time
import threading
import datetime
import csv
import docx
import streamlit as st
from io import StringIO
import numpy as np
import requests
import pdfplumber
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
from twilio.rest import Client
from twilio.base.exceptions import TwilioRestException
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
os.environ["PYTORCH_JIT"] = "0"
DOCS_FOLDER = "./docs"
# ---------------- PDF / DOCX / JSON LOADERS ----------------
def _extract_tables_from_page(page):
tables = page.extract_tables()
formatted_tables = []
for table in tables:
formatted_row = [[cell if cell else "" for cell in row] for row in table]
formatted_tables.append(formatted_row)
return formatted_tables
def extract_text_from_pdf(pdf_path):
text_output = StringIO()
all_tables = []
try:
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
all_tables.extend(_extract_tables_from_page(page))
text = page.extract_text()
if text:
text_output.write(text + "\n\n")
except Exception as e:
print(f"[pdfplumber error] Falling back: {e}")
with open(pdf_path, 'rb') as file:
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
return text_output.getvalue(), all_tables
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return "\n".join(para.text for para in doc.paragraphs)
except Exception as e:
print(f"[DOCX error] {e}")
return ""
def load_json_data(json_path):
try:
with open(json_path, 'r', encoding='utf-8') as f:
data = json.load(f)
if isinstance(data, list):
return "\n\n".join("\n".join(f"{k}: {v}" for k, v in d.items()) for d in data if isinstance(d, dict))
if isinstance(data, dict):
return "\n".join(f"{k}: {v}" for k, v in data.items())
return str(data)
except Exception as e:
print(f"[JSON error] {e}")
return ""
def clean_extracted_text(text):
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
# ---------------- CHUNKING ----------------
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
tokens = tokenizer.tokenize(text)
chunks, start = [], 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk = tokens[start:end]
chunks.append(tokenizer.convert_tokens_to_string(chunk))
if end == len(tokens): break
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
q_embedding = embed_model.encode(question)
D, I = index.search(np.array([q_embedding]), k)
return [text_chunks[i] for i in I[0] if i < len(text_chunks)]
# ---------------- GROQ ANSWER GENERATOR ----------------
def generate_answer_with_groq(question, context):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant information:\n{context}\n\n"
"Reply as a friendly toy shop assistant, include customer name from the context if possible."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": "You are ToyBot, a helpful assistant for an online toy shop."
},
{"role": "user", "content": prompt}
]
}
response = requests.post(url, headers=headers, json=payload)
return response.json()["choices"][0]["message"]["content"]
# ---------------- TWILIO MONITOR ----------------
def handle_incoming_messages(index, embed_model, tokenizer, text_chunks):
client = Client(os.environ["TWILIO_ACCOUNT_SID"], os.environ["TWILIO_AUTH_TOKEN"])
conversation_sid = os.environ.get("TWILIO_CONVERSATION_SID")
if not conversation_sid:
print("β TWILIO_CONVERSATION_SID not set")
return
last_check_time = APP_START_TIME
while True:
try:
messages = client.conversations.conversations(conversation_sid).messages.list(order="asc")
for msg in messages:
msg_time = msg.date_created.replace(tzinfo=datetime.timezone.utc)
if msg_time > last_check_time:
print(f"π© New message from {msg.author}: {msg.body}")
answer = generate_answer_with_groq(msg.body, "\n".join(retrieve_chunks(msg.body, index, embed_model, text_chunks)))
client.conversations.conversations(conversation_sid).messages.create(author="ToyBot", body=answer)
last_check_time = datetime.datetime.now(datetime.timezone.utc)
except TwilioRestException as e:
print(f"[Twilio error] {e}")
time.sleep(10)
# ---------------- STREAMLIT UI ----------------
st.title("π ToyShop Assistant β RAG WhatsApp Bot")
def load_all_documents(folder_path):
full_text = ""
all_tables = []
for filename in os.listdir(folder_path):
filepath = os.path.join(folder_path, filename)
ext = filename.lower().split(".")[-1]
if ext == "pdf":
text, tables = extract_text_from_pdf(filepath)
all_tables.extend(tables)
elif ext == "docx":
text = extract_text_from_docx(filepath)
elif ext == "json":
text = load_json_data(filepath)
else:
try:
with open(filepath, "r", encoding="utf-8") as f:
text = f.read()
except Exception:
continue
full_text += clean_extracted_text(text) + "\n\n"
return full_text, all_tables
with st.spinner("Loading documents..."):
full_text, tables = load_all_documents(DOCS_FOLDER)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
chunks = chunk_text(full_text, tokenizer)
embeddings = embed_model.encode(chunks)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
if "listener_started" not in st.session_state:
threading.Thread(target=handle_incoming_messages, args=(index, embed_model, tokenizer, chunks), daemon=True).start()
st.session_state.listener_started = True
st.success("β
WhatsApp listener started.")
st.success(f"π Loaded {len(chunks)} text chunks from docs/ folder")
|