File size: 6,960 Bytes
f4e7b4f
30db2dc
c832d1c
 
30db2dc
 
 
c832d1c
30db2dc
c832d1c
d186b8d
30db2dc
c832d1c
 
30db2dc
 
 
 
d765f67
f4e7b4f
c832d1c
 
 
b089ae9
 
30db2dc
c832d1c
 
 
 
30db2dc
 
c832d1c
d765f67
c832d1c
 
f4e7b4f
c832d1c
 
 
d765f67
c832d1c
 
 
 
30db2dc
c832d1c
d765f67
 
f4e7b4f
c832d1c
 
 
30db2dc
 
 
c832d1c
 
c99b5df
 
 
 
30db2dc
 
c99b5df
30db2dc
 
c99b5df
30db2dc
c99b5df
 
30db2dc
 
 
 
d765f67
c832d1c
30db2dc
c832d1c
 
d765f67
 
 
c832d1c
 
 
 
d765f67
 
30db2dc
c832d1c
30db2dc
d186b8d
 
 
 
 
 
 
30db2dc
d186b8d
 
30db2dc
 
d186b8d
30db2dc
d186b8d
 
 
 
 
30db2dc
d186b8d
30db2dc
 
d186b8d
c832d1c
30db2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b089ae9
30db2dc
 
c832d1c
b089ae9
 
 
30db2dc
b089ae9
30db2dc
 
b089ae9
30db2dc
b089ae9
30db2dc
b089ae9
 
 
 
 
30db2dc
b089ae9
 
 
 
30db2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
b089ae9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import json
import time
import threading
import datetime
import csv
import docx
import streamlit as st
from io import StringIO
import numpy as np
import requests
import pdfplumber
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
from twilio.rest import Client
from twilio.base.exceptions import TwilioRestException

APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
os.environ["PYTORCH_JIT"] = "0"

DOCS_FOLDER = "./docs"

# ---------------- PDF / DOCX / JSON LOADERS ----------------
def _extract_tables_from_page(page):
    tables = page.extract_tables()
    formatted_tables = []
    for table in tables:
        formatted_row = [[cell if cell else "" for cell in row] for row in table]
        formatted_tables.append(formatted_row)
    return formatted_tables

def extract_text_from_pdf(pdf_path):
    text_output = StringIO()
    all_tables = []
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                all_tables.extend(_extract_tables_from_page(page))
                text = page.extract_text()
                if text:
                    text_output.write(text + "\n\n")
    except Exception as e:
        print(f"[pdfplumber error] Falling back: {e}")
        with open(pdf_path, 'rb') as file:
            extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
    return text_output.getvalue(), all_tables

def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return "\n".join(para.text for para in doc.paragraphs)
    except Exception as e:
        print(f"[DOCX error] {e}")
        return ""

def load_json_data(json_path):
    try:
        with open(json_path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        if isinstance(data, list):
            return "\n\n".join("\n".join(f"{k}: {v}" for k, v in d.items()) for d in data if isinstance(d, dict))
        if isinstance(data, dict):
            return "\n".join(f"{k}: {v}" for k, v in data.items())
        return str(data)
    except Exception as e:
        print(f"[JSON error] {e}")
        return ""

def clean_extracted_text(text):
    return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())

# ---------------- CHUNKING ----------------
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
    tokens = tokenizer.tokenize(text)
    chunks, start = [], 0
    while start < len(tokens):
        end = min(start + chunk_size, len(tokens))
        chunk = tokens[start:end]
        chunks.append(tokenizer.convert_tokens_to_string(chunk))
        if end == len(tokens): break
        start += chunk_size - chunk_overlap
    return chunks

def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    q_embedding = embed_model.encode(question)
    D, I = index.search(np.array([q_embedding]), k)
    return [text_chunks[i] for i in I[0] if i < len(text_chunks)]

# ---------------- GROQ ANSWER GENERATOR ----------------
def generate_answer_with_groq(question, context):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }

    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant information:\n{context}\n\n"
        "Reply as a friendly toy shop assistant, include customer name from the context if possible."
    )

    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": "You are ToyBot, a helpful assistant for an online toy shop."
            },
            {"role": "user", "content": prompt}
        ]
    }

    response = requests.post(url, headers=headers, json=payload)
    return response.json()["choices"][0]["message"]["content"]

# ---------------- TWILIO MONITOR ----------------
def handle_incoming_messages(index, embed_model, tokenizer, text_chunks):
    client = Client(os.environ["TWILIO_ACCOUNT_SID"], os.environ["TWILIO_AUTH_TOKEN"])
    conversation_sid = os.environ.get("TWILIO_CONVERSATION_SID")

    if not conversation_sid:
        print("❌ TWILIO_CONVERSATION_SID not set")
        return

    last_check_time = APP_START_TIME

    while True:
        try:
            messages = client.conversations.conversations(conversation_sid).messages.list(order="asc")
            for msg in messages:
                msg_time = msg.date_created.replace(tzinfo=datetime.timezone.utc)
                if msg_time > last_check_time:
                    print(f"πŸ“© New message from {msg.author}: {msg.body}")
                    answer = generate_answer_with_groq(msg.body, "\n".join(retrieve_chunks(msg.body, index, embed_model, text_chunks)))
                    client.conversations.conversations(conversation_sid).messages.create(author="ToyBot", body=answer)
            last_check_time = datetime.datetime.now(datetime.timezone.utc)
        except TwilioRestException as e:
            print(f"[Twilio error] {e}")
        time.sleep(10)

# ---------------- STREAMLIT UI ----------------
st.title("🎁 ToyShop Assistant – RAG WhatsApp Bot")

def load_all_documents(folder_path):
    full_text = ""
    all_tables = []

    for filename in os.listdir(folder_path):
        filepath = os.path.join(folder_path, filename)
        ext = filename.lower().split(".")[-1]
        if ext == "pdf":
            text, tables = extract_text_from_pdf(filepath)
            all_tables.extend(tables)
        elif ext == "docx":
            text = extract_text_from_docx(filepath)
        elif ext == "json":
            text = load_json_data(filepath)
        else:
            try:
                with open(filepath, "r", encoding="utf-8") as f:
                    text = f.read()
            except Exception:
                continue
        full_text += clean_extracted_text(text) + "\n\n"
    return full_text, all_tables

with st.spinner("Loading documents..."):
    full_text, tables = load_all_documents(DOCS_FOLDER)

    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
    chunks = chunk_text(full_text, tokenizer)
    embeddings = embed_model.encode(chunks)
    
    index = faiss.IndexFlatL2(embeddings.shape[1])
    index.add(np.array(embeddings))

    if "listener_started" not in st.session_state:
        threading.Thread(target=handle_incoming_messages, args=(index, embed_model, tokenizer, chunks), daemon=True).start()
        st.session_state.listener_started = True
        st.success("βœ… WhatsApp listener started.")

    st.success(f"πŸ“š Loaded {len(chunks)} text chunks from docs/ folder")