Spaces:
Restarting
Restarting
File size: 13,849 Bytes
2fc77f5 cefacdb 2fc77f5 06e8556 8b331af 2fc77f5 2817fcb 2fc77f5 2817fcb 2fc77f5 2817fcb 2fc77f5 2817fcb 2fc77f5 06e8556 2fc77f5 2817fcb 06e8556 2817fcb 2fc77f5 2817fcb 2fc77f5 a100ebc 51441a1 a100ebc 51441a1 a100ebc 51441a1 a100ebc 51441a1 a100ebc 202dbe2 53c7136 a100ebc 53c7136 202dbe2 a100ebc 36438b0 53c7136 36438b0 53c7136 202dbe2 53c7136 202dbe2 a100ebc cefacdb a100ebc 29701ab f585ea0 2817fcb 06e8556 e46e945 a100ebc e46e945 02e508b 56d1796 2817fcb 56d1796 e46e945 f585ea0 56d1796 2817fcb f585ea0 0ef3fb1 2fc77f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
import json
import os
import pandas as pd
from typing import List, Dict, Tuple
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, AutoEvalColumnMultimodal, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, get_raw_eval_results_mib_subgraph, get_raw_eval_results_mib_causalgraph
from src.about import TasksMib_Causalgraph
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results(results_path, requests_path)
# print(f"raw_data is {raw_data}")
all_data_json = [v.to_dict() for v in raw_data]
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
all_data_json_filtered = []
for item in all_data_json:
item["Track"] = item["eval_name"].split("_")[-1]
item["ioi"] = 0
item["mcqa"] = 0
if "VQA" in benchmark_cols and "VQA" in item:
all_data_json_filtered.append(item)
if "VQA" not in benchmark_cols and "VQA" not in item:
all_data_json_filtered.append(item)
all_data_json = all_data_json_filtered
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.text_average.name], ascending=False)
# df = df.sort_values(by=[Tasks.task0.value.col_name], ascending=False)
# df = df.sort_values(by=[AutoEvalColumn.track.name], ascending=False)
# print(f"df is {df}")
# df = df[cols].round(decimals=1)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_leaderboard_df_mib_subgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the MIB experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib_subgraph(results_path, requests_path)
# print(f"raw_data is {raw_data}")
# Convert each result to dict format
all_data_json = [v.to_dict() for v in raw_data]
# print(f"all_data_json is {pd.DataFrame.from_records(all_data_json)}")
# Convert to dataframe
df = pd.DataFrame.from_records(all_data_json)
# Sort by Average score descending
if 'Average' in df.columns:
# Convert '-' to NaN for sorting purposes
df['Average'] = pd.to_numeric(df['Average'], errors='coerce')
df = df.sort_values(by=['Average'], ascending=False, na_position='last')
# Convert NaN back to '-'
df['Average'] = df['Average'].fillna('-')
return df
# def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
# """Aggregates rows with the same base method name by taking the max value for each column"""
# df_copy = df.copy()
# # Extract base method names (remove _2, _3, etc. suffixes)
# base_methods = [name.split('_')[0] if '_' in name and name.split('_')[-1].isdigit()
# else name for name in df_copy.index]
# df_copy.index = base_methods
# # Convert scores to numeric values
# numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
# # Group by base method name and take the max
# aggregated_df = numeric_df.groupby(level=0).max().round(3)
# return aggregated_df
def aggregate_methods(df: pd.DataFrame) -> pd.DataFrame:
"""Aggregates rows with the same base method name by taking the max value for each column"""
df_copy = df.copy()
# Set Method as index if it isn't already
if 'Method' in df_copy.columns:
df_copy.set_index('Method', inplace=True)
# Extract base method names (remove _2, _3, etc. suffixes)
base_methods = [name.split('_')[0] if '_' in str(name) and str(name).split('_')[-1].isdigit()
else name for name in df_copy.index]
df_copy.index = base_methods
# Convert scores to numeric values
numeric_df = df_copy.select_dtypes(include=['float64', 'int64'])
# Group by base method name and take the max
aggregated_df = numeric_df.groupby(level=0).max().round(3)
# Reset index to get Method as a column
aggregated_df.reset_index(inplace=True)
aggregated_df.rename(columns={'index': 'Method'}, inplace=True)
return aggregated_df
# def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
# """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
# df_copy = df.copy()
# # Remove the Method column and eval_name if present
# columns_to_drop = ['Method', 'eval_name']
# df_copy = df_copy.drop(columns=[col for col in columns_to_drop if col in df_copy.columns])
# # Group columns by model_task
# model_task_groups = {}
# for col in df_copy.columns:
# model_task = '_'.join(col.split('_')[:2]) # Get model_task part
# if model_task not in model_task_groups:
# model_task_groups[model_task] = []
# model_task_groups[model_task].append(col)
# # Create new DataFrame with averaged intervention scores
# averaged_df = pd.DataFrame({
# model_task: df_copy[cols].mean(axis=1).round(3)
# for model_task, cols in model_task_groups.items()
# })
# return averaged_df
# def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
# """Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
# df_copy = df.copy()
# # Store Method column if it exists
# method_col = None
# if 'Method' in df_copy.columns:
# method_col = df_copy['Method']
# df_copy = df_copy.drop('Method', axis=1)
# # Remove eval_name if present
# if 'eval_name' in df_copy.columns:
# df_copy = df_copy.drop('eval_name', axis=1)
# # Group columns by model_task
# model_task_groups = {}
# for col in df_copy.columns:
# model_task = '_'.join(col.split('_')[:2]) # Get model_task part
# if model_task not in model_task_groups:
# model_task_groups[model_task] = []
# model_task_groups[model_task].append(col)
# # Create new DataFrame with averaged intervention scores
# averaged_df = pd.DataFrame({
# model_task: df_copy[cols].mean(axis=1).round(3)
# for model_task, cols in model_task_groups.items()
# })
# # Add Method column back
# if method_col is not None:
# averaged_df.insert(0, 'Method', method_col)
# return averaged_df
def create_intervention_averaged_df(df: pd.DataFrame) -> pd.DataFrame:
"""Creates a DataFrame where columns are model_task and cells are averaged over interventions"""
df_copy = df.copy()
# Store Method column
method_col = None
if 'Method' in df_copy.columns:
method_col = df_copy['Method']
df_copy = df_copy.drop('Method', axis=1)
if 'eval_name' in df_copy.columns:
df_copy = df_copy.drop('eval_name', axis=1)
# Group columns by model and intervention
result_cols = {}
for task in TasksMib_Causalgraph:
for model in task.value.models: # Will iterate over all three models
for intervention in task.value.interventions:
for counterfactual in task.value.counterfactuals:
col_pattern = f"{model}_layer.*_{intervention}_{counterfactual}"
matching_cols = [c for c in df_copy.columns if pd.Series(c).str.match(col_pattern).any()]
if matching_cols:
col_name = f"{model}_{intervention}_{counterfactual}"
result_cols[col_name] = matching_cols
averaged_df = pd.DataFrame()
if method_col is not None:
averaged_df['Method'] = method_col
for col_name, cols in result_cols.items():
averaged_df[col_name] = df_copy[cols].mean(axis=1).round(3)
return averaged_df
# def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
# """Creates a dataframe from all the MIB causal graph experiment results"""
# print(f"results_path is {results_path}, requests_path is {requests_path}")
# raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
# print(f"raw_data is {raw_data}")
# # Convert each result to dict format for detailed df
# all_data_json = [v.to_dict() for v in raw_data]
# detailed_df = pd.DataFrame.from_records(all_data_json)
# print(f"detailed_df is: {detailed_df}")
# # Create and print other views for debugging/reference
# aggregated_df = aggregate_methods(detailed_df)
# print(f"aggregated_df is: {aggregated_df}")
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
# print(f"intervention_averaged_df is: {intervention_averaged_df}")
# # Only return detailed_df for display
# return detailed_df
# def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
# print(f"results_path is {results_path}, requests_path is {requests_path}")
# raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
# # Convert each result to dict format for detailed df
# all_data_json = [v.to_dict() for v in raw_data]
# detailed_df = pd.DataFrame.from_records(all_data_json)
# print("Columns in detailed_df:", detailed_df.columns.tolist()) # Print actual columns
# # Create aggregated df
# aggregated_df = aggregate_methods(detailed_df)
# print("Columns in aggregated_df:", aggregated_df.columns.tolist())
# # Create intervention-averaged df
# intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
# print("Columns in intervention_averaged_df:", intervention_averaged_df.columns.tolist())
# return detailed_df, aggregated_df, intervention_averaged_df
def get_leaderboard_df_mib_causalgraph(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
# print(f"results_path is {results_path}, requests_path is {requests_path}")
raw_data = get_raw_eval_results_mib_causalgraph(results_path, requests_path)
# Convert each result to dict format for detailed df
all_data_json = [v.to_dict() for v in raw_data]
detailed_df = pd.DataFrame.from_records(all_data_json)
# Print the actual columns for debugging
# print("Original columns:", detailed_df.columns.tolist())
# Rename columns to match schema
column_mapping = {}
for col in detailed_df.columns:
if col in ['eval_name', 'Method']:
continue
# Ensure consistent casing for the column names
new_col = col.replace('Qwen2ForCausalLM', 'qwen2forcausallm') \
.replace('Gemma2ForCausalLM', 'gemma2forcausallm') \
.replace('LlamaForCausalLM', 'llamaforcausallm')
column_mapping[col] = new_col
detailed_df = detailed_df.rename(columns=column_mapping)
# Create aggregated df
aggregated_df = aggregate_methods(detailed_df)
# Create intervention-averaged df
intervention_averaged_df = create_intervention_averaged_df(aggregated_df)
# print("Transformed columns:", detailed_df.columns.tolist())
return detailed_df, aggregated_df, intervention_averaged_df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
if "still_on_hub" in data and data["still_on_hub"]:
data[EvalQueueColumn.model.name] = make_clickable_model(data["hf_repo"], data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
else:
data[EvalQueueColumn.model.name] = data["model"]
data[EvalQueueColumn.revision.name] = "N/A"
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols] |