File size: 23,885 Bytes
25d2eb7
2827b8a
 
38ed48e
2827b8a
7a1cd7a
b9fcd2c
a81fb12
f5eb405
a81fb12
f5eb405
e49e0e9
3b4c438
f5eb405
3b4c438
 
 
 
f5eb405
3b4c438
f5eb405
 
 
6b0e834
 
 
 
 
c2eeff5
b9fcd2c
 
 
 
c2eeff5
 
 
 
 
 
 
 
d90d4c0
 
 
 
 
 
 
58d8f1a
 
 
 
 
c2eeff5
 
58d8f1a
 
c2eeff5
58d8f1a
 
 
 
 
 
 
 
c2eeff5
58d8f1a
 
 
 
 
 
 
 
 
c2eeff5
58d8f1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1cd7a
 
58d8f1a
7a1cd7a
c2eeff5
4f9641d
c2eeff5
4f9641d
 
4f0286f
2827b8a
 
 
7a1cd7a
7ed3881
 
 
3b4c438
58d8f1a
2827b8a
c2eeff5
f5eb405
 
 
3bd0812
9f13004
c2eeff5
9f13004
f5eb405
3b4c438
b9fcd2c
c2eeff5
58d8f1a
 
 
 
f5eb405
 
 
c2eeff5
3bd0812
4b1ac5a
b9fcd2c
c2eeff5
4b1ac5a
c2eeff5
b9fcd2c
4b1ac5a
b9fcd2c
c2eeff5
 
 
3bd0812
f5eb405
b9fcd2c
c2eeff5
4f0286f
c2eeff5
3b4c438
c2eeff5
3bd0812
5422464
 
 
 
3bd0812
5422464
 
58d8f1a
 
 
3bd0812
5422464
 
 
 
 
 
 
 
 
 
 
 
 
 
3bd0812
c2eeff5
 
 
f5eb405
6b0e834
c2eeff5
6b0e834
 
3b4c438
d90d4c0
 
e49e0e9
4f0286f
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
d90d4c0
 
4f0286f
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
 
 
 
 
 
 
 
 
 
 
 
58d8f1a
4f0286f
58d8f1a
4f0286f
 
 
b9fcd2c
c2eeff5
777bab9
b9fcd2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import gradio as gr
from datasets import load_dataset
import numpy as np
import model2vec
from reach import Reach
from difflib import ndiff
import time

# Load the model at startup
model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")

# Default dataset parameters
default_dataset1_name = "sst2"
default_dataset1_split = "train"
default_dataset2_name = "sst2"
default_dataset2_split = "validation"
default_text_column = "sentence"
default_threshold = 0.9

# Load the default datasets at startup
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)

def batch_iterable(iterable, batch_size):
    """Helper function to create batches from an iterable."""
    for i in range(0, len(iterable), batch_size):
        yield iterable[i:i + batch_size]

def log_time(message, start_time=None, logs=None):
    """Helper function to log the start and end times."""
    current_time = time.time()
    if start_time is not None:
        elapsed = current_time - start_time
        log_message = f"{message} - Took {elapsed:.2f} seconds"
    else:
        log_message = f"{message} - Started"
    
    if logs is not None:
        logs.append(log_message)

def compute_embeddings(texts, batch_size, progress, logs, desc="Computing embeddings"):
    embeddings = []
    total_batches = (len(texts) + batch_size - 1) // batch_size
    for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
        batch_embeddings = model.encode(batch_texts, show_progressbar=False)
        embeddings.append(batch_embeddings)
        progress((i + 1) / total_batches, desc=desc)
    return np.concatenate(embeddings, axis=0)

def deduplicate(
    embedding_matrix: np.ndarray,
    threshold: float,
    batch_size: int = 1024,
    progress=None,
    logs=None
) -> tuple[np.ndarray, dict[int, int]]:
    # Building the index
    log_time("Building search index", logs=logs)
    reach = Reach(
        vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
    )

    deduplicated_indices = set(range(len(embedding_matrix)))
    duplicate_to_original_mapping = {}

    # Finding nearest neighbors
    log_time("Finding nearest neighbors", logs=logs)
    results = reach.nearest_neighbor_threshold(
        embedding_matrix,
        threshold=threshold,
        batch_size=batch_size,
        show_progressbar=False,  # Disable internal progress bar
    )

    # Processing duplicates with a progress bar
    total_items = len(embedding_matrix)
    log_time("Processing duplicates", logs=logs)
    for i, similar_items in enumerate(
        progress.tqdm(results, desc="Processing duplicates", total=total_items)
    ):
        if i not in deduplicated_indices:
            continue

        similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

        for sim_idx in similar_indices:
            if sim_idx in deduplicated_indices:
                deduplicated_indices.remove(sim_idx)
                duplicate_to_original_mapping[sim_idx] = i

    return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

def display_word_differences(x: str, y: str) -> str:
    diff = ndiff(x.split(), y.split())
    return " ".join([word for word in diff if word.startswith(("+", "-"))])

def encode_texts(texts, progress=None, logs=None):
    embedding_matrix = model.encode(texts, show_progressbar=False)
    log_time("Encoding texts completed", logs=logs)
    return embedding_matrix

def perform_deduplication(
    deduplication_type,
    dataset1_name,
    dataset1_split,
    dataset1_text_column,
    dataset2_name="",
    dataset2_split="",
    dataset2_text_column="",
    threshold=default_threshold,
    progress=gr.Progress(track_tqdm=True),
):
    logs = []  # To store log messages
    try:
        # Convert threshold to float
        threshold = float(threshold)

        # Initialize status message
        log_time("Deduplication started", logs=logs)

        if deduplication_type == "Single dataset":
            # Load Dataset 1
            start_time = time.time()
            log_time("Loading Dataset 1", logs=logs)
            if (
                dataset1_name == default_dataset1_name
                and dataset1_split == default_dataset1_split
            ):
                ds = ds_default1
            else:
                ds = load_dataset(dataset1_name, split=dataset1_split)
            log_time("Loading Dataset 1 completed", start_time=start_time, logs=logs)

            # Extract texts
            start_time = time.time()
            log_time("Extracting texts from Dataset 1", logs=logs)
            texts = [example[dataset1_text_column] for example in ds]
            log_time("Extracting texts from Dataset 1 completed", start_time=start_time, logs=logs)

            # Compute embeddings
            start_time = time.time()
            log_time("Computing embeddings for Dataset 1", logs=logs)
            embedding_matrix = encode_texts(texts, progress=progress, logs=logs)
            log_time("Computing embeddings for Dataset 1 completed", start_time=start_time, logs=logs)

            # Deduplicate
            start_time = time.time()
            log_time("Deduplicating embeddings", logs=logs)
            deduplicated_indices, duplicate_to_original_mapping = deduplicate(
                embedding_matrix, threshold, progress=progress, logs=logs
            )
            log_time("Deduplication completed", start_time=start_time, logs=logs)

            # Prepare the results
            num_duplicates = len(duplicate_to_original_mapping)
            num_total = len(texts)
            num_deduplicated = len(deduplicated_indices)

            result_text = f"**Total documents:** {num_total}\n"
            result_text += f"**Number of duplicates found:** {num_duplicates}\n"
            result_text += (
                f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
            )

            # Show deduplicated examples
            if num_duplicates > 0:
                result_text += "**Examples of duplicates found:**\n\n"
                num_examples = min(5, num_duplicates)
                for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
                    original_text = texts[original_idx]
                    duplicate_text = texts[duplicate_idx]
                    differences = display_word_differences(original_text, duplicate_text)
                    result_text += f"**Original text:**\n{original_text}\n\n"
                    result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
                    result_text += f"**Differences:**\n{differences}\n"
                    result_text += "-" * 50 + "\n\n"
            else:
                result_text += "No duplicates found."

            log_time("Deduplication process finished", logs=logs)
            full_log = "\n".join(logs)  # Combine all logs into one output
            yield full_log, result_text

    except Exception as e:
        full_log = "\n".join(logs)  # Combine all logs into one output in case of an error
        yield f"An error occurred: {e}", ""
        raise e

# Adjust the height of the status_output component using custom CSS
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
    gr.Markdown("# Semantic Deduplication")

    deduplication_type = gr.Radio(
        choices=["Single dataset", "Cross-dataset"],
        label="Deduplication Type",
        value="Single dataset",
    )

    with gr.Row():
        dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
        dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
        dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    dataset2_inputs = gr.Column(visible=False)
    with dataset2_inputs:
        gr.Markdown("### Dataset 2")
        with gr.Row():
            dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
            dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
            dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

    threshold = gr.Slider(
        minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
    )

    compute_button = gr.Button("Compute")

    # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
    status_output = gr.Markdown(elem_id="status_output")
    result_output = gr.Markdown()

    # Function to update the visibility of dataset2_inputs
    def update_visibility(deduplication_type_value):
        if deduplication_type_value == "Cross-dataset":
            return gr.update(visible=True)
        else:
            return gr.update(visible=False)

    deduplication_type.change(
        update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
    )

    compute_button.click(
        fn=perform_deduplication,
        inputs=[
            deduplication_type,
            dataset1_name,
            dataset1_split,
            dataset1_text_column,
            dataset2_name,
            dataset2_split,
            dataset2_text_column,
            threshold,
        ],
        outputs=[status_output, result_output],
    )

demo.launch()



# import gradio as gr
# from datasets import load_dataset
# import numpy as np
# #from model2vec import StaticModel
# import model2vec
# from reach import Reach
# from difflib import ndiff


# # Load the model at startup
# model = model2vec.StaticModel.from_pretrained("minishlab/M2V_base_output")

# # Default dataset parameters
# default_dataset1_name = "sst2"
# default_dataset1_split = "train"
# default_dataset2_name = "sst2"
# default_dataset2_split = "validation"
# default_text_column = "sentence"
# default_threshold = 0.9

# # Load the default datasets at startup
# ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split)
# ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split)


# def batch_iterable(iterable, batch_size):
#     """Helper function to create batches from an iterable."""
#     for i in range(0, len(iterable), batch_size):
#         yield iterable[i:i + batch_size]

# def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"):
#     embeddings = []
#     total_batches = (len(texts) + batch_size - 1) // batch_size
#     for i, batch_texts in enumerate(batch_iterable(texts, batch_size)):
#         batch_embeddings = model.encode(batch_texts, show_progressbar=False)
#         embeddings.append(batch_embeddings)
#         progress((i + 1) / total_batches, desc=desc)
#     return np.concatenate(embeddings, axis=0)

# def deduplicate(
#     embedding_matrix: np.ndarray,
#     threshold: float,
#     batch_size: int = 1024,
#     progress=None
# ) -> tuple[np.ndarray, dict[int, int]]:
#     # Building the index
#     progress(0, desc="Building search index...")
#     reach = Reach(
#         vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))]
#     )

#     deduplicated_indices = set(range(len(embedding_matrix)))
#     duplicate_to_original_mapping = {}

#     # Finding nearest neighbors
#     progress(0, desc="Finding nearest neighbors...")
#     results = reach.nearest_neighbor_threshold(
#         embedding_matrix,
#         threshold=threshold,
#         batch_size=batch_size,
#         show_progressbar=False,  # Disable internal progress bar
#     )

#     # Processing duplicates with a progress bar
#     total_items = len(embedding_matrix)
#     for i, similar_items in enumerate(
#         progress.tqdm(results, desc="Processing duplicates", total=total_items)
#     ):
#         if i not in deduplicated_indices:
#             continue

#         similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]

#         for sim_idx in similar_indices:
#             if sim_idx in deduplicated_indices:
#                 deduplicated_indices.remove(sim_idx)
#                 duplicate_to_original_mapping[sim_idx] = i

#     return np.array(list(deduplicated_indices)), duplicate_to_original_mapping

# def display_word_differences(x: str, y: str) -> str:
#     diff = ndiff(x.split(), y.split())
#     return " ".join([word for word in diff if word.startswith(("+", "-"))])


# def encode_texts(texts, progress=None):
#     embedding_matrix = model.encode(texts, show_progressbar=False)
#     return embedding_matrix

# def perform_deduplication(
#     deduplication_type,
#     dataset1_name,
#     dataset1_split,
#     dataset1_text_column,
#     dataset2_name="",
#     dataset2_split="",
#     dataset2_text_column="",
#     threshold=default_threshold,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     try:
#         # Convert threshold to float
#         threshold = float(threshold)

#         # Initialize status message
#         status = ""

#         if deduplication_type == "Single dataset":
#             # Load Dataset 1
#             status = "Loading Dataset 1..."
#             yield status, ""
#             if (
#                 dataset1_name == default_dataset1_name
#                 and dataset1_split == default_dataset1_split
#             ):
#                 ds = ds_default1
#             else:
#                 ds = load_dataset(dataset1_name, split=dataset1_split)

#             # Extract texts
#             status = "Extracting texts from Dataset 1..."
#             yield status, ""
#             texts = [example[dataset1_text_column] for example in ds]
#             # Compute embeddings
#             status = "Computing embeddings for Dataset 1..."
#             yield status, ""
#             embedding_matrix = encode_texts(texts, progress=progress)
#             #embedding_matrix = model.encode(texts, show_progressbar=True)
#             # embedding_matrix = compute_embeddings(
#             #     texts,
#             #     batch_size=64,
#             #     progress=progress,
#             #     desc="Computing embeddings for Dataset 1",
#             # )

#             # Deduplicate
#             status = "Deduplicating embeddings..."
#             yield status, ""
#             deduplicated_indices, duplicate_to_original_mapping = deduplicate(
#                 embedding_matrix, threshold, progress=progress
#             )

#             # Prepare the results
#             num_duplicates = len(duplicate_to_original_mapping)
#             num_total = len(texts)
#             num_deduplicated = len(deduplicated_indices)

#             result_text = f"**Total documents:** {num_total}\n"
#             result_text += f"**Number of duplicates found:** {num_duplicates}\n"
#             result_text += (
#                 f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
#             )

#             # Show deduplicated examples
#             if num_duplicates > 0:
#                 result_text += "**Examples of duplicates found:**\n\n"
#                 num_examples = min(5, num_duplicates)
#                 for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
#                     original_text = texts[original_idx]
#                     duplicate_text = texts[duplicate_idx]
#                     differences = display_word_differences(original_text, duplicate_text)
#                     result_text += f"**Original text:**\n{original_text}\n\n"
#                     result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
#                     result_text += f"**Differences:**\n{differences}\n"
#                     result_text += "-" * 50 + "\n\n"
#             else:
#                 result_text += "No duplicates found."

#             # Final status
#             status = "Deduplication completed."
#             yield status, result_text

#         elif deduplication_type == "Cross-dataset":
#             # Similar code for cross-dataset deduplication
#             # Load Dataset 1
#             status = "Loading Dataset 1..."
#             yield status, ""
#             if (
#                 dataset1_name == default_dataset1_name
#                 and dataset1_split == default_dataset1_split
#             ):
#                 ds1 = ds_default1
#             else:
#                 ds1 = load_dataset(dataset1_name, split=dataset1_split)

#             # Load Dataset 2
#             status = "Loading Dataset 2..."
#             yield status, ""
#             if (
#                 dataset2_name == default_dataset2_name
#                 and dataset2_split == default_dataset2_split
#             ):
#                 ds2 = ds_default2
#             else:
#                 ds2 = load_dataset(dataset2_name, split=dataset2_split)

#             # Extract texts from Dataset 1
#             status = "Extracting texts from Dataset 1..."
#             yield status, ""
#             texts1 = [example[dataset1_text_column] for example in ds1]

#             # Extract texts from Dataset 2
#             status = "Extracting texts from Dataset 2..."
#             yield status, ""
#             texts2 = [example[dataset2_text_column] for example in ds2]

#             # Compute embeddings for Dataset 1
#             status = "Computing embeddings for Dataset 1..."
#             yield status, ""
#             embedding_matrix1 = compute_embeddings(
#                 texts1,
#                 batch_size=64,
#                 progress=progress,
#                 desc="Computing embeddings for Dataset 1",
#             )

#             # Compute embeddings for Dataset 2
#             status = "Computing embeddings for Dataset 2..."
#             yield status, ""
#             embedding_matrix2 = compute_embeddings(
#                 texts2,
#                 batch_size=64,
#                 progress=progress,
#                 desc="Computing embeddings for Dataset 2",
#             )

#             # Deduplicate across datasets
#             status = "Deduplicating embeddings across datasets..."
#             yield status, ""
#             duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(
#                 embedding_matrix1, embedding_matrix2, threshold, progress=progress
#             )

#             num_duplicates = len(duplicate_indices_in_ds2)
#             num_total_ds2 = len(texts2)
#             num_unique_ds2 = num_total_ds2 - num_duplicates

#             result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
#             result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
#             result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"

#             # Show deduplicated examples
#             if num_duplicates > 0:
#                 result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
#                 num_examples = min(5, num_duplicates)
#                 for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
#                     original_idx = duplicate_to_original_mapping[duplicate_idx]
#                     original_text = texts1[original_idx]
#                     duplicate_text = texts2[duplicate_idx]
#                     differences = display_word_differences(original_text, duplicate_text)
#                     result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
#                     result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
#                     result_text += f"**Differences:**\n{differences}\n"
#                     result_text += "-" * 50 + "\n\n"
#             else:
#                 result_text += "No duplicates found."

#             # Final status
#             status = "Deduplication completed."
#             yield status, result_text

#     except Exception as e:
#         yield f"An error occurred: {e}", ""
#         raise e

# def deduplicate_across_datasets(
#     embedding_matrix_1: np.ndarray,
#     embedding_matrix_2: np.ndarray,
#     threshold: float,
#     batch_size: int = 1024,
#     progress=None
# ) -> tuple[list[int], dict[int, int]]:
#     # Building the index from Dataset 1
#     progress(0, desc="Building search index from Dataset 1...")
#     reach = Reach(
#         vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))]
#     )

#     duplicate_indices_in_test = []
#     duplicate_to_original_mapping = {}

#     # Finding nearest neighbors between datasets
#     progress(0, desc="Finding nearest neighbors between datasets...")
#     results = reach.nearest_neighbor_threshold(
#         embedding_matrix_2,
#         threshold=threshold,
#         batch_size=batch_size,
#         show_progressbar=False,  # Disable internal progress bar
#     )

#     total_items = len(embedding_matrix_2)
#     # Processing duplicates with a progress bar
#     for i, similar_items in enumerate(
#         progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items)
#     ):
#         similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold]

#         if similar_indices:
#             duplicate_indices_in_test.append(i)
#             duplicate_to_original_mapping[i] = similar_indices[0]

#     return duplicate_indices_in_test, duplicate_to_original_mapping

# # Adjust the height of the status_output component using custom CSS
# with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo:
#     gr.Markdown("# Semantic Deduplication")

#     deduplication_type = gr.Radio(
#         choices=["Single dataset", "Cross-dataset"],
#         label="Deduplication Type",
#         value="Single dataset",
#     )

#     with gr.Row():
#         dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name")
#         dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split")
#         dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

#     dataset2_inputs = gr.Column(visible=False)
#     with dataset2_inputs:
#         gr.Markdown("### Dataset 2")
#         with gr.Row():
#             dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name")
#             dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split")
#             dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name")

#     threshold = gr.Slider(
#         minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold"
#     )

#     compute_button = gr.Button("Compute")

#     # Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height
#     status_output = gr.Markdown(elem_id="status_output")
#     result_output = gr.Markdown()

#     # Function to update the visibility of dataset2_inputs
#     def update_visibility(deduplication_type_value):
#         if deduplication_type_value == "Cross-dataset":
#             return gr.update(visible=True)
#         else:
#             return gr.update(visible=False)

#     deduplication_type.change(
#         update_visibility, inputs=deduplication_type, outputs=dataset2_inputs
#     )

#     compute_button.click(
#         fn=perform_deduplication,
#         inputs=[
#             deduplication_type,
#             dataset1_name,
#             dataset1_split,
#             dataset1_text_column,
#             dataset2_name,
#             dataset2_split,
#             dataset2_text_column,
#             threshold,
#         ],
#         outputs=[status_output, result_output],
#     )

# demo.launch()