Spaces:
Running
Running
File size: 24,964 Bytes
61c89cd bf9773d 2f7410c 4deddd3 e21a983 9c588a7 e21a983 fb14070 ce2ea41 5c223cd 8faa958 5c223cd fb4e2c7 5c223cd 06d3f6e d8abae0 e21a983 77e3da3 70bd56f 9a76642 5c223cd df91595 5c223cd 9a76642 df91595 5c223cd c9d72ad 5c223cd b8266b6 7f44c6b 6db6a8d 61c89cd 9d3a848 302bc3b b32fdcf 302bc3b 9d3a848 6db6a8d e453455 552490f 6db6a8d f00f4c4 b54e3d9 e453455 f3a00bf 562b4d5 6db6a8d 3b90fe5 552490f 3b90fe5 552490f 3b90fe5 7985d5f 552490f fef1dcd a5c674b fef1dcd fb4e2c7 fef1dcd a5c674b fef1dcd 552490f 688d8e9 e7348c9 fe55e41 0cd204f e7348c9 fb14070 98ac56e 5c223cd d4b23f6 df91595 3df19d6 5c223cd bf621da 5c223cd df91595 5c223cd df91595 5c223cd b54e3d9 5c223cd df91595 5c223cd fe177e5 723fc44 fe177e5 bf9773d 9a76642 b1aeecd df91595 fe177e5 4e6fe32 fe177e5 4e6fe32 bf9773d 9a76642 bf9773d 9a76642 966bdcc 4e6fe32 9a76642 df91595 5cb26b4 fc523d1 a99276a b4f9b4b b8d8aa1 7f44c6b df91595 446a991 8a2ea7d b32fdcf 8a2ea7d f1deaa5 7f44c6b e7149a6 8a2ea7d 3aaecd5 446a991 df91595 446a991 c558c3e 446a991 d4b23f6 446a991 c558c3e 446a991 c558c3e f8c89bf 446a991 f8c89bf 446a991 c558c3e f8c89bf 446a991 df91595 4afc319 75961cb bf621da 7f44c6b bf621da 7f44c6b bf621da bf9773d e86b43e bf621da c2185df df91595 bf621da f3a00bf bf621da b06f535 bf9773d fb42270 d349975 6c8ed64 bf9773d b32fdcf 572edec eebdd59 572edec b32fdcf 86f936d bf621da aca79b5 bf621da 9a76642 fb42270 bf621da aca79b5 bf621da 87d9c22 7f44c6b 77e3da3 7320aa5 762a623 f3a00bf 762a623 8ed5555 fd72ef6 f388e18 446a991 f388e18 446a991 f388e18 446a991 bf9773d 446a991 f3a00bf 446a991 bf9773d 446a991 f3a00bf b7b18e5 f388e18 6c8ed64 c558c3e 5c223cd a1f152d bf621da a1f152d 7f44c6b a1f152d 77e3da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
from langdetect import detect as get_language
from collections import namedtuple
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
import math
from pathlib import Path
from functools import partial
from dataclasses import dataclass
from typing import Any
import pillow_heif
import spaces
import numpy as np
import numpy.typing as npt
import torch
from torch import nn
import gradio as gr
from lxml.html import fromstring
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
MultiUpscaler,
UpscalerCheckpoints,
)
from datetime import datetime
model = T5ForConditionalGeneration.from_pretrained("t5-large")
tokenizer = T5Tokenizer.from_pretrained("t5-large")
def log(msg):
print(f'{datetime.now().time()} {msg}')
Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
return nn.Sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
)
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(self, nf: int = 64, gc: int = 32) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.conv1 = conv_block(nf, gc)
self.conv2 = conv_block(nf + gc, gc)
self.conv3 = conv_block(nf + 2 * gc, gc)
self.conv4 = conv_block(nf + 3 * gc, gc)
# Wrapped in Sequential because of key in state dict.
self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(self, nf: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.RDB1 = ResidualDenseBlock_5C(nf)
self.RDB2 = ResidualDenseBlock_5C(nf)
self.RDB3 = ResidualDenseBlock_5C(nf)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class Upsample2x(nn.Module):
"""Upsample 2x."""
def __init__(self) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return nn.functional.interpolate(x, scale_factor=2.0) # type: ignore
class ShortcutBlock(nn.Module):
"""Elementwise sum the output of a submodule to its input"""
def __init__(self, submodule: nn.Module) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
self.sub = submodule
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.sub(x)
class RRDBNet(nn.Module):
def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
super().__init__() # type: ignore[reportUnknownMemberType]
assert in_nc % 4 != 0 # in_nc is 3
self.model = nn.Sequential(
nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
ShortcutBlock(
nn.Sequential(
*(RRDB(nf) for _ in range(nb)),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
)
),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
Upsample2x(),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, nf, kernel_size=3, padding=1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.model(x)
def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
# this code is adapted from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
out_nc = 0
nb = 0
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
assert "conv1x1" not in block # no ESRGANPlus
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
scale = 2**scale2x
assert out_nc > 0
assert nb > 0
return in_nc, out_nc, nf, nb, scale # 3, 3, 64, 23, 4
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
w = image.width
h = image.height
non_overlap_width = tile_w - overlap
non_overlap_height = tile_h - overlap
cols = max(1, math.ceil((w - overlap) / non_overlap_width))
rows = max(1, math.ceil((h - overlap) / non_overlap_height))
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
grid = Grid([], tile_w, tile_h, w, h, overlap)
for row in range(rows):
row_images: list[Tile] = []
y1 = max(min(int(row * dy), h - tile_h), 0)
y2 = min(y1 + tile_h, h)
for col in range(cols):
x1 = max(min(int(col * dx), w - tile_w), 0)
x2 = min(x1 + tile_w, w)
tile = image.crop((x1, y1, x2, y2))
row_images.append((x1, tile_w, tile))
grid.tiles.append((y1, tile_h, row_images))
return grid
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
r = r * 255 / grid.overlap
return Image.fromarray(r.astype(np.uint8), "L")
mask_w = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
)
mask_h = make_mask_image(
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
)
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
for y, h, row in grid.tiles:
combined_row = Image.new("RGB", (grid.image_w, h))
for x, w, tile in row:
if x == 0:
combined_row.paste(tile, (0, 0))
continue
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
if y == 0:
combined_image.paste(combined_row, (0, 0))
continue
combined_image.paste(
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
(0, y),
mask=mask_h,
)
combined_image.paste(
combined_row.crop((0, grid.overlap, combined_row.width, h)),
(0, y + grid.overlap),
)
return combined_image
class UpscalerESRGAN:
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
self.model_path = model_path
self.device = device
self.model = self.load_model(model_path)
self.to(device, dtype)
def __call__(self, img: Image.Image) -> Image.Image:
return self.upscale_without_tiling(img)
def to(self, device: torch.device, dtype: torch.dtype):
self.device = device
self.dtype = dtype
self.model.to(device=device, dtype=dtype)
def load_model(self, path: Path) -> RRDBNet:
filename = path
state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device) # type: ignore
in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
assert upscale == 4, "Only 4x upscaling is supported"
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
img_np = np.array(img)
img_np = img_np[:, :, ::-1]
img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
img_t = torch.from_numpy(img_np).float() # type: ignore
img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
with torch.no_grad():
output = self.model(img_t)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255.0 * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
return Image.fromarray(output, "RGB")
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
img = img.convert("RGB")
grid = split_grid(img)
newtiles: Tiles = []
scale_factor: int = 1
for y, h, row in grid.tiles:
newrow: list[Tile] = []
for tiledata in row:
x, w, tile = tiledata
output = self.upscale_without_tiling(tile)
scale_factor = output.width // tile.width
newrow.append((x * scale_factor, w * scale_factor, output))
newtiles.append((y * scale_factor, h * scale_factor, newrow))
newgrid = Grid(
newtiles,
grid.tile_w * scale_factor,
grid.tile_h * scale_factor,
grid.image_w * scale_factor,
grid.image_h * scale_factor,
grid.overlap * scale_factor,
)
output = combine_grid(newgrid)
return output
@dataclass(kw_only=True)
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
esrgan: Path
class ESRGANUpscaler(MultiUpscaler):
def __init__(
self,
checkpoints: ESRGANUpscalerCheckpoints,
device: torch.device,
dtype: torch.dtype,
) -> None:
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
def to(self, device: torch.device, dtype: torch.dtype):
self.esrgan.to(device=device, dtype=dtype)
self.sd = self.sd.to(device=device, dtype=dtype)
self.device = device
self.dtype = dtype
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
image = self.esrgan.upscale_with_tiling(image)
return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
CHECKPOINTS = ESRGANUpscalerCheckpoints(
unet=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.unet",
filename="model.safetensors",
revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
)
),
clip_text_encoder=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
filename="model.safetensors",
revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
)
),
lda=Path(
hf_hub_download(
repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
filename="model.safetensors",
revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
)
),
controlnet_tile=Path(
hf_hub_download(
repo_id="refiners/controlnet.sd1_5.tile",
filename="model.safetensors",
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
)
),
esrgan=Path(
hf_hub_download(
repo_id="philz1337x/upscaler",
filename="4x-UltraSharp.pth",
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
)
),
negative_embedding=Path(
hf_hub_download(
repo_id="philz1337x/embeddings",
filename="JuggernautNegative-neg.pt",
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
)
),
negative_embedding_key="string_to_param.*",
loras={
"more_details": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="more_details.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
),
"sdxl_render": Path(
hf_hub_download(
repo_id="philz1337x/loras",
filename="SDXLrender_v2.0.safetensors",
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
)
)
}
)
device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE, dtype=DTYPE)
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
base = "black-forest-labs/FLUX.1-schnell"
# precision data
seq=256
width=1536
height=1536
image_steps=8
img_accu=0
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt2 input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
}
"""
# torch pipes
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
image_pipe.enable_model_cpu_offload()
image_pipe.enable_vae_slicing()
image_pipe.enable_vae_tiling()
# functionality
def upscaler(
input_image: Image.Image,
prompt: str = "Photorealistic, Hyperrealistic, Realistic Photography, High-Quality Photography, Natural.",
negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
seed: int = int(str(random.random()).split(".")[1]),
upscale_factor: int = 2,
controlnet_scale: float = 0.6,
controlnet_decay: float = 1.0,
condition_scale: int = 6,
tile_width: int = 112,
tile_height: int = 144,
denoise_strength: float = 0.35,
num_inference_steps: int = 30,
solver: str = "DDIM",
) -> Image.Image:
log(f'CALL upscaler')
manual_seed(seed)
solver_type: type[Solver] = getattr(solvers, solver)
log(f'DBG upscaler 1')
enhanced_image = enhancer.upscale(
image=input_image,
prompt=prompt,
negative_prompt=negative_prompt,
upscale_factor=upscale_factor,
controlnet_scale=controlnet_scale,
controlnet_scale_decay=controlnet_decay,
condition_scale=condition_scale,
tile_size=(tile_height, tile_width),
denoise_strength=denoise_strength,
num_inference_steps=num_inference_steps,
loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
solver_type=solver_type,
)
log(f'RET upscaler')
return enhanced_image
def get_tensor_length(tensor):
nums = list(tensor.size())
ret = 1
for num in nums:
ret = ret * num
return ret
def summarize(
text, max_len=20, min_len=10
):
log(f'CALL summarize_text')
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=float('inf'), truncation=False)
i = 1
while get_tensor_length(inputs) > max_len:
print(f'DBG summarize_text 1 {i}')
outputs = model.generate(
inputs[0][:512],
length_penalty=2.0,
num_beams=max(8,get_tensor_length(inputs)),
early_stopping=True,
max_length=max( get_tensor_length(inputs) // 4 , max_len ),
min_length=min_len
)
inputs = torch.tensor([[*list(outputs[0]), *list(inputs[0][512:])]])
i = i + 1
summary = tokenizer.decode(inputs[0])
log(f'RET summarize_text with summary as {summary}')
return summary
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate_image(p1,p2):
log(f'CALL pipe_generate')
imgs = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=img_accu,
num_images_per_prompt=1,
num_inference_steps=image_steps,
max_sequence_length=seq,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images
log(f'RET pipe_generate')
return imgs
def add_song_cover_text(img,artist,song,height,width):
draw = ImageDraw.Draw(img,mode="RGBA")
rows = 1
labels_distance = 1/3
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(song,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y - (height / 2 * labels_distance))
draw.text((x, y), song, (255,255,255,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(0,0,0,170))
textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(artist,font)
x = math.ceil((width - textwidth) / 2)
y = height - (textheight * rows / 2) - (height / 2)
y = math.ceil(y + (height / 2 * labels_distance))
draw.text((x, y), artist, (0,0,0,85), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(255,255,255,170))
return img
def all_pipes(pos,neg,artist,song):
imgs = pipe_generate_image(pos,neg)
for i in range(len(imgs)):
imgs[i] = upscaler(imgs[i])
return imgs
def translate(txt,to_lang="en",from_lang=False):
log(f'CALL translate')
if not from_lang:
from_lang = get_language(txt)
if(from_lang == to_lang):
log(f'RET translate with txt as {txt}')
return txt
inputs = tokenizer.encode(f"translate {from_lang} to {to_lang}: " + text, return_tensors="pt", max_length=float('inf'), truncation=False)
chunks_length = math.ceil(get_tensor_length(inputs) / 512):
ret = ""
for index in range(chunks_length):
ret = ret + ("" if ret == "" else " ") + tokenizer.decode(
model.generate(
inputs[0][ index*512:index*512+512 ]
)[0]
)
log(f'RET translate with ret as {ret}')
return ret
@spaces.GPU(duration=300)
def handle_generation(artist,song,genre,lyrics):
log(f'CALL handle_generate')
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).upper().strip()
pos_song = re.sub("([ \t\n]){1,}", " ", song).lower().strip()
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip()
pos_genre = ' '.join(word[0].upper() + word[1:] for word in pos_genre.split())
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
pos_lyrics_sum = pos_lyrics if pos_lyrics == "" else summarize(pos_lyrics)
neg = f"Sexuality, Humanity, Textual, Labeled, Distorted, Discontinuous, Blurry, Doll-Like, Overly Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects."
q = "\""
pos = f'HQ Hyper-realistic { translate(pos_genre) } song "{ translate(pos_song) }"{ pos_lyrics_sum if pos_lyrics_sum == "" else ": " + translate(pos_lyrics_sum) }.'
print(f"""
Positive: {pos}
Negative: {neg}
""")
imgs = all_pipes(pos,neg,pos_artist,pos_song)
index = 1
names = []
for img in imgs:
scaled_by = 2
labeled_img = add_song_cover_text(img,artist,song,height*scaled_by,width*scaled_by)
name = f'{artist} - {song} ({index}).png'
labeled_img.save(name)
names.append(name)
index = index + 1
# return names
return names[0]
# entry
if __name__ == "__main__":
with gr.Blocks(theme=gr.themes.Citrus(),css=css) as demo:
gr.Markdown(f"""
# Song Cover Image Generator
""")
with gr.Row():
with gr.Column(scale=4):
artist = gr.Textbox(
placeholder="Artist name",
value="",
container=False,
max_lines=1
)
song = gr.Textbox(
placeholder="Song name",
value="",
container=False,
max_lines=1
)
genre = gr.Textbox(
placeholder="Genre",
value="",
container=False,
max_lines=1
)
lyrics = gr.Textbox(
placeholder="Lyrics",
value="",
container=False,
max_lines=1
)
with gr.Column():
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
run = gr.Button("Generate",elem_classes="btn")
run.click(
fn=handle_generation,
inputs=[artist,song,genre,lyrics],
outputs=[cover]
)
demo.queue().launch()
|