Spaces:
Sleeping
Sleeping
File size: 10,698 Bytes
6cb50ff a03d512 fc635eb 177b569 486823b 9f0b6e1 a66acdf 9f0b6e1 486823b a66acdf 99d616d a66acdf 99d616d b739bed d552a3c c0cf5bc 99d616d 486823b 9f0b6e1 486823b a66acdf 486823b a66acdf 486823b 6cb50ff 99d616d 486823b d552a3c 99d616d 486823b 7a25fd2 99d616d 7a25fd2 d552a3c 486823b d552a3c 486823b d552a3c 99d616d 486823b d552a3c 486823b d552a3c 486823b a66acdf 486823b a03d512 99d616d 7a25fd2 99d616d d552a3c a66acdf 486823b d552a3c a66acdf 99d616d 486823b d552a3c 9f0b6e1 486823b a66acdf 486823b 99d616d d552a3c 486823b a66acdf 486823b a66acdf 486823b a66acdf 486823b a66acdf 486823b 99d616d 486823b d552a3c 486823b a66acdf 486823b a66acdf 486823b a66acdf d552a3c a66acdf 486823b 99d616d 486823b a66acdf 486823b a66acdf 486823b a66acdf 486823b a66acdf 486823b 99d616d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import cv2
import torch
import gradio as gr
import numpy as np
import os
import json
import logging
import matplotlib.pyplot as plt
from datetime import datetime
from collections import Counter
from typing import List, Dict, Any, Optional
from ultralytics import YOLO
import ultralytics
import time
# Set YOLO config directory
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
# Set up logging
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Directories
CAPTURED_FRAMES_DIR = "captured_frames"
OUTPUT_DIR = "outputs"
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
os.chmod(OUTPUT_DIR, 0o777)
# Global variables
log_entries: List[str] = []
detected_counts: List[int] = []
detected_issues: List[str] = []
gps_coordinates: List[List[float]] = []
last_metrics: Dict[str, Any] = {}
frame_count: int = 0
SAVE_IMAGE_INTERVAL = 1 # Save every frame with detections
# Debug: Check environment
print(f"Torch version: {torch.__version__}")
print(f"Gradio version: {gr.__version__}")
print(f"Ultralytics version: {ultralytics.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Load custom YOLO model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = YOLO('./data/best.pt').to(device)
if device == "cuda":
model.half() # Use half-precision (FP16)
print(f"Model classes: {model.names}")
# Mock service functions
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
map_path = "map_temp.png"
plt.figure(figsize=(4, 4))
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
plt.title("Issue Locations Map")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.legend()
plt.savefig(map_path)
plt.close()
return map_path
def send_to_salesforce(data: Dict[str, Any]) -> None:
pass # Minimal mock
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
counts = Counter([det["label"] for det in detections])
return {
"items": [{"type": k, "count": v} for k, v in counts.items()],
"total_detections": len(detections),
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def generate_line_chart() -> Optional[str]:
if not detected_counts:
return None
plt.figure(figsize=(4, 2))
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
plt.title("Detections Over Time")
plt.xlabel("Frame")
plt.ylabel("Count")
plt.grid(True)
plt.tight_layout()
chart_path = "chart_temp.png"
plt.savefig(chart_path)
plt.close()
return chart_path
def process_video(video, resize_width=320, resize_height=240, frame_skip=5):
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
frame_count = 0
detected_counts.clear()
detected_issues.clear()
gps_coordinates.clear()
log_entries.clear()
last_metrics = {}
if video is None:
log_entries.append("Error: No video uploaded")
logging.error("No video uploaded")
return "processed_output.mp4", json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None
start_time = time.time()
cap = cv2.VideoCapture(video)
if not cap.isOpened():
log_entries.append("Error: Could not open video file")
logging.error("Could not open video file")
return "processed_output.mp4", json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
expected_duration = total_frames / fps
log_entries.append(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
logging.info(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
print(f"Input video: {frame_width}x{frame_height}, {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds")
out_width, out_height = resize_width, resize_height
output_path = "processed_output.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
processed_frames = 0
all_detections = []
frame_times = []
detection_frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % frame_skip != 0:
continue
processed_frames += 1
frame_start = time.time()
frame = cv2.resize(frame, (out_width, out_height))
results = model(frame, verbose=False, conf=0.5, iou=0.7) # Lower thresholds
annotated_frame = results[0].plot()
frame_detections = []
for detection in results[0].boxes:
cls = int(detection.cls)
conf = float(detection.conf)
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
label = model.names[cls]
frame_detections.append({"label": label, "box": box, "conf": conf})
log_entries.append(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
logging.info(f"Frame {frame_count}: Detected {label} with confidence {conf:.2f}")
if frame_detections:
detection_frame_count += 1
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count}.jpg")
if not cv2.imwrite(captured_frame_path, annotated_frame):
log_entries.append(f"Error: Failed to save {captured_frame_path}")
logging.error(f"Failed to save {captured_frame_path}")
else:
detected_issues.append(captured_frame_path)
if len(detected_issues) > 100:
detected_issues.pop(0)
out.write(annotated_frame)
if frame_skip > 1:
for _ in range(frame_skip - 1):
if frame_count + 1 <= total_frames:
out.write(annotated_frame)
frame_count += 1
detected_counts.append(len(frame_detections))
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
gps_coordinates.append(gps_coord)
for det in frame_detections:
det["gps"] = gps_coord
all_detections.extend(frame_detections)
frame_time = (time.time() - frame_start) * 1000
frame_times.append(frame_time)
detection_summary = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame": frame_count,
"cracks": sum(1 for det in frame_detections if det["label"] == "crack"),
"potholes": sum(1 for det in frame_detections if det["label"] == "pothole"),
"gps": gps_coord,
"processing_time_ms": frame_time
}
log_entries.append(json.dumps(detection_summary, indent=2))
if len(log_entries) > 50:
log_entries.pop(0)
last_metrics = update_metrics(all_detections)
send_to_salesforce({
"detections": all_detections,
"metrics": last_metrics,
"timestamp": detection_summary["timestamp"] if all_detections else datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"frame_count": frame_count,
"gps_coordinates": gps_coordinates[-1] if gps_coordinates else [0, 0]
})
cap.release()
out.release()
cap = cv2.VideoCapture(output_path)
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
output_fps = cap.get(cv2.CAP_PROP_FPS)
output_duration = output_frames / output_fps
cap.release()
total_time = time.time() - start_time
avg_frame_time = sum(frame_times) / len(frame_times) if frame_times else 0
log_entries.append(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
log_entries.append(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
logging.info(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
print(f"Output video: {output_frames} frames, {output_fps} FPS, {output_duration:.2f} seconds")
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}")
chart_path = generate_line_chart()
map_path = generate_map(gps_coordinates[-5:], all_detections)
return (
output_path,
json.dumps(last_metrics, indent=2),
"\n".join(log_entries[-10:]),
detected_issues,
chart_path,
map_path
)
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
gr.Markdown("# Crack and Pothole Detection Dashboard")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Video")
width_slider = gr.Slider(320, 640, value=320, label="Output Width", step=1)
height_slider = gr.Slider(240, 480, value=240, label="Output Height", step=1)
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
process_btn = gr.Button("Process Video", variant="primary")
with gr.Column(scale=1):
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
with gr.Row():
video_output = gr.Video(label="Processed Video")
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
with gr.Row():
chart_output = gr.Image(label="Detection Trend")
map_output = gr.Image(label="Issue Locations Map")
with gr.Row():
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
process_btn.click(
process_video,
inputs=[video_input, width_slider, height_slider, skip_slider],
outputs=[video_output, metrics_output, logs_output, issue_gallery, chart_output, map_output]
)
if __name__ == "__main__":
iface.launch() |