File size: 20,684 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
3a03273
697d647
772d3fb
a066788
772d3fb
1f5cba5
5f605c3
1f5cba5
 
04bd45b
1f5cba5
e2bc6df
9fb6d05
1f5cba5
e80aab9
3db6293
e80aab9
a59a680
a03e926
31e0eff
0fed708
31e0eff
833b3b5
0eb233d
31e0eff
 
 
 
 
 
 
 
 
0eb233d
cd98238
1bc8bac
 
 
 
 
 
0fed708
cd98238
31e0eff
 
 
 
0eb233d
 
31e0eff
 
0eb233d
31e0eff
 
 
 
 
0eb233d
cd98238
 
0fed708
0eb233d
cd98238
 
04bd45b
 
b8a605f
0e29657
b8a605f
0e29657
729b871
0eb233d
 
 
0e29657
 
 
 
0eb233d
0e29657
 
0eb233d
1bc8bac
 
0eb233d
7dbc634
0eb233d
 
 
 
 
0e29657
 
31e0eff
 
 
 
0fed708
31e0eff
 
 
 
 
 
 
 
 
 
0b873a5
 
 
ad94802
 
31e0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627f983
 
 
 
 
31e0eff
 
 
 
 
 
627f983
 
 
 
 
 
 
 
 
31e0eff
0e29657
627f983
8e1dd81
 
 
 
 
31e0eff
0b873a5
627f983
8e1dd81
31e0eff
8e1dd81
31e0eff
8e1dd81
31e0eff
51b14d9
31e0eff
a59a680
31e0eff
 
627f983
31e0eff
 
 
627f983
31e0eff
 
627f983
31e0eff
 
627f983
31e0eff
 
 
 
 
 
b8a605f
31e0eff
 
51b14d9
 
31e0eff
51b14d9
 
31e0eff
627f983
 
 
 
 
 
 
 
 
31e0eff
 
627f983
 
31e0eff
 
 
ae24cc7
31e0eff
 
627f983
31e0eff
0e29657
d714e29
31e0eff
 
 
 
 
 
 
 
 
 
 
d714e29
 
31e0eff
0e29657
 
31e0eff
0e29657
d714e29
0e29657
d714e29
31e0eff
0e29657
 
31e0eff
0e29657
 
31e0eff
9a37625
31e0eff
 
 
b8a605f
0e29657
 
 
31e0eff
0e29657
 
31e0eff
d714e29
 
31e0eff
d714e29
0e29657
31e0eff
 
 
 
 
 
 
 
 
 
 
 
 
 
0e29657
31e0eff
0e29657
 
99b84e4
d849921
0fed708
31e0eff
627f983
65abbbc
31e0eff
 
65abbbc
4288fbd
31e0eff
 
 
 
 
 
 
 
627f983
31e0eff
 
4288fbd
 
 
0b873a5
4288fbd
0e29657
 
0fed708
 
627f983
31243f4
 
 
5166389
c7a6db7
 
 
2f80942
 
 
 
 
 
a89d475
 
5166389
c7a6db7
4021bf3
1f5cba5
 
 
 
 
b90251f
31243f4
 
 
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
0c482eb
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
5166389
7d65c66
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
77f790c
3c4371f
7d65c66
3c4371f
7d65c66
3a178ff
3f7f23e
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from langgraph.prebuilt import ToolNode


# from typing import Any, Dict
# from typing import TypedDict, Annotated

from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain.schema import HumanMessage, SystemMessage, AIMessage
# Create a ToolNode that knows about your web_search function
import json
from state import AgentState

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

from tools import ocr_image_tool, parse_excel_tool, web_search_tool, run_tools, audio_transcriber_tool, wikipedia_search_tool

llm = ChatOpenAI(model_name="gpt-4o-mini")

# ─── 1) plan_node ───
def plan_node(state: AgentState) -> AgentState:
    """
    Step 1: Ask GPT to draft a concise direct answer (INTERIM_ANSWER),
            then decide if it’s confident enough to stop or if it needs one tool.
    If confident: return {"final_answer": "<answer>"}
    Otherwise:   return exactly one of 
                 {"wiki_query": "..."},
                 {"web_search_query": "..."},
                 {"ocr_path": "..."},
                 {"excel_path": "...", "excel_sheet_name": "..."},
                 {"audio_path": "..."}
    """
    prior_msgs = state.get("messages", [])
    user_input = ""
    for msg in reversed(prior_msgs):
        if isinstance(msg, HumanMessage):
            user_input = msg.content
            break

    system_msg = SystemMessage(
        content=(
            "You are an agent that must do two things in one JSON output:\n\n"
            "  1) Provide a concise, direct answer to the user’s question (no explanation).\n"
            "  2) Judge whether that answer is reliable:\n"
            "     β€’ If you are fully confident, return exactly:\n"
            "         {\"final_answer\":\"<your concise answer>\"}\n"
            "       and nothing else.\n"
            "     β€’ Otherwise, return exactly one of:\n"
            "         {\"wiki_query\":\"<Wikipedia search>\"}\n"
            "         {\"web_search_query\":\"<search terms>\"}\n"
            "         {\"ocr_path\":\"<image path or task_id>\"}\n"
            "         {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
            "         {\"audio_path\":\"<audio path or task_id>\"}\n"
            "       and nothing else.\n"
            "Do NOT wrap in markdownβ€”output only a single JSON object.\n"
            f"User’s question: \"{user_input}\"\n"
        )
    )
    human_msg = HumanMessage(content=user_input)
    llm_response = llm([system_msg, human_msg])
    llm_out = llm_response.content.strip()

    ai_msg = AIMessage(content=llm_out)
    new_msgs = prior_msgs.copy() + [ai_msg]

    try:
        parsed = json.loads(llm_out)
        if isinstance(parsed, dict):
            partial: AgentState = {"messages": new_msgs, "tool_counter": state.get("tool_counter", 0)}
            allowed_keys = {
                "final_answer",
                "wiki_query",
                "web_search_query",
                "ocr_path",
                "excel_path",
                "excel_sheet_name",
                "audio_path"
            }
            for k, v in parsed.items():
                if k in allowed_keys:
                    partial[k] = v
            return partial
    except json.JSONDecodeError:
        pass

    return {
        "messages": new_msgs,
        "final_answer": "Sorry, I could not parse your intent."
    }


# ─── 2) store_prev_state ───
def store_prev_state(state: AgentState) -> AgentState:
    return {**state, "prev_state": state.copy()}


# ─── 3) tools_node ───
def tool_node(state: AgentState) -> AgentState:
    """
    Dispatch exactly one tool based on which key was set:
      - wiki_query β†’ wikipedia_search_tool
      - web_search_query β†’ web_search_tool
      - ocr_path β†’ ocr_image_tool
      - excel_path β†’ parse_excel_tool
      - audio_path β†’ audio_transcriber_tool
    """
    tool_counter = state.get("tool_counter", 0)
    if tool_counter > 5:
        return {}
    tool_counter += 1
    state["tool_counter"] = tool_counter
    if state.get("wiki_query"):
        return wikipedia_search_tool(state)
    if state.get("web_search_query"):
        return web_search_tool(state)
    if state.get("ocr_path"):
        return ocr_image_tool(state)
    if state.get("excel_path"):
        return parse_excel_tool(state)
    if state.get("audio_path"):
        return audio_transcriber_tool(state)
    return {}


# ─── 4) merge_tool_output ───
def merge_tool_output(state: AgentState) -> AgentState:
    """
    Combine previous state and tool output into one:
    """
    prev = state.get("prev_state", {})
    merged = {**prev, **state}
    merged.pop("prev_state", None)
    return merged


# ─── 5) inspect_node ───
def inspect_node(state: AgentState) -> AgentState:
    """
    After running a tool, show GPT:
      - ORIGINAL user question
      - Any tool results (web_search_result, ocr_result, excel_result, transcript, wiki_result)
      - The INTERIM_ANSWER (what plan_node initially provided under 'final_answer')
    Then ask GPT to either:
      β€’ Return {"final_answer": "<final>"} if done, OR
      β€’ Return exactly one tool key to run next (wiki_query / web_search_query / ocr_path / excel_path & excel_sheet_name / audio_path).
    """
    messages_for_llm = []

    # 1) Re‐insert original user question
    question = ""
    for msg in reversed(state.get("messages", [])):
        if isinstance(msg, HumanMessage):
            question = msg.content
            break
    messages_for_llm.append(SystemMessage(content=f"USER_QUESTION: {question}"))
    
    # 2) Add any tool results
    if sr := state.get("web_search_result"):
        messages_for_llm.append(SystemMessage(content=f"WEB_SEARCH_RESULT: {sr}"))
    if orc := state.get("ocr_result"):
        messages_for_llm.append(SystemMessage(content=f"OCR_RESULT: {orc}"))
    if exr := state.get("excel_result"):
        messages_for_llm.append(SystemMessage(content=f"EXCEL_RESULT: {exr}"))
    if tr := state.get("transcript"):
        messages_for_llm.append(SystemMessage(content=f"AUDIO_TRANSCRIPT: {tr}"))
    if wr := state.get("wiki_result"):
        messages_for_llm.append(SystemMessage(content=f"WIKIPEDIA_RESULT: {wr}"))

    # 3) Add the interim answer under INTERIM_ANSWER
    if ia := state.get("final_answer"):
        messages_for_llm.append(SystemMessage(content=f"INTERIM_ANSWER: {ia}"))

    # 4) Prompt GPT to decide final or another tool
    prompt = (
        "You have a current draft answer (INTERIM_ANSWER) and possibly some tool results above.\n"
        "If you are confident it’s correct, return exactly:\n"
        "  {\"final_answer\":\"<your final answer>\"}\n"
        "and nothing else.\n"
        "Otherwise, return exactly one of these JSON literals to fetch another tool:\n"
        "  {\"wiki_query\":\"<query for Wikipedia>\"}\n"
        "  {\"web_search_query\":\"<search terms>\"}\n"
        "  {\"ocr_path\":\"<image path or task_id>\"}\n"
        "  {\"excel_path\":\"<xls path>\", \"excel_sheet_name\":\"<sheet name>\"}\n"
        "  {\"audio_path\":\"<audio path or task_id>\"}\n"
        "Do NOT wrap in markdownβ€”return only the JSON object.\n"
    )
    messages_for_llm.append(SystemMessage(content=prompt))
    llm_response = llm(messages_for_llm)
    raw = llm_response.content.strip()

    new_msgs = state["messages"] + [AIMessage(content=raw)]
    try:
        parsed = json.loads(raw)
        if isinstance(parsed, dict):
            partial: AgentState = {"messages": new_msgs}
            allowed = {
                "final_answer",
                "wiki_query",
                "web_search_query",
                "ocr_path",
                "excel_path",
                "excel_sheet_name",
                "audio_path"
            }
            for k, v in parsed.items():
                if k in allowed:
                    partial[k] = v
            return partial
    except json.JSONDecodeError:
        pass

    return {
        "messages": new_msgs,
        "final_answer": "ERROR: could not parse inspect decision."
    }


# ─── 6) finalize_node ───
def finalize_node(state: AgentState) -> AgentState:
    """
    If state already has "final_answer", return it. Otherwise, gather all tool outputs
    and ask GPT for a final answer. But in our cyclic design, finalize_node is only called
    after plan_node or inspect_node returned "final_answer".
    """
    if fa := state.get("final_answer"):
        return {"final_answer": fa}
    # (In practice, we never reach here because we always pick finalize only when "final_answer" exists.)
    return {"final_answer": "ERROR: finalize called without a final_answer."}


# ─── 7) Build the graph and wire edges ───
graph = StateGraph(AgentState)

# Register nodes
graph.add_node("plan", plan_node)
graph.add_node("store_prev_state", store_prev_state)
graph.add_node("tools", tool_node)
graph.add_node("merge_tool_output", merge_tool_output)
graph.add_node("inspect", inspect_node)
graph.add_node("finalize", finalize_node)

# START β†’ plan
graph.add_edge(START, "plan")

# plan β†’ either finalize (if plan set final_answer) or store_prev_state (if plan wants a tool)
def route_plan(plan_out: AgentState) -> str:
    if plan_out.get("final_answer") is not None:
        return "finalize"
    return "store_prev_state"

graph.add_conditional_edges(
    "plan",
    route_plan,
    {"store_prev_state": "store_prev_state", "finalize": "finalize"}
)

# store_prev_state β†’ tools
graph.add_edge("store_prev_state", "tools")

# tools β†’ merge_tool_output
graph.add_edge("tools", "merge_tool_output")

# merge_tool_output β†’ inspect
graph.add_edge("merge_tool_output", "inspect")

# inspect β†’ either finalize (if inspect set final_answer) or store_prev_state (if inspect wants another tool)
def route_inspect(inspect_out: AgentState) -> str:
    if inspect_out.get("final_answer") is not None:
        return "finalize"
    return "store_prev_state"

graph.add_conditional_edges(
    "inspect",
    route_inspect,
    {"store_prev_state": "store_prev_state", "finalize": "finalize"}
)

# finalize β†’ END
graph.add_edge("finalize", END)

compiled_graph = graph.compile()


# ─── 8) respond_to_input ───
def respond_to_input(user_input: str, task_id) -> str:
    """
    Seed state['messages'] with a SystemMessage + HumanMessage(user_input),
    then invoke the cyclic graph. Return the final_answer from the resulting state.
    """
    system_msg = SystemMessage(
        content=(
            "You are an agent orchestrator. Decide whether to use a tool or answer directly.\n"
            "Tools available:\n"
            "  β€’ Wikipedia: set {\"wiki_query\":\"<search terms>\"}\n"
            "  β€’ Web search: set {\"web_search_query\":\"<search terms>\"}\n"
            "  β€’ OCR: set {\"ocr_path\":\"<image path or task_id>\"}\n"
            "  β€’ Excel: set {\"excel_path\":\"<xlsx path>\", \"excel_sheet_name\":\"<sheet>\"}\n"
            "  β€’ Audio transcription: set {\"audio_path\":\"<audio path or task_id>\"}\n"
            "If you can answer immediately, set {\"final_answer\":\"<answer>\"}. "
            "Respond with only one JSON object and no extra formatting."
        )
    )
    human_msg = HumanMessage(content=user_input)

    initial_state: AgentState = {"messages": [system_msg, human_msg], "task_id": task_id, "tool_counter": 0} 
    final_state = compiled_graph.invoke(initial_state)
    return final_state.get("final_answer", "Error: No final answer generated.")




class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
    def __call__(self, question: str, task_id) -> str:
        # print(f"Agent received question (first 50 chars): {question[:50]}...")
        # fixed_answer = "This is a default answer."
        # print(f"Agent returning fixed answer: {fixed_answer}")
        print()
        print()
        print()
        print()
        
        
        print(f"Agent received question: {question}")
        print()
        return respond_to_input(question, task_id)
        # return fixed_answer






def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text, task_id)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    # print("LangGraph version:", langgraph.__version__) 
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
    # import langgraph
    # print("β–ΆοΈŽ LangGraph version:", langgraph.__version__)
    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)