File size: 7,717 Bytes
e29a7a0 13e41c1 84ab83e 7ad3690 13e41c1 e14967b 097fdcb 0071020 13e41c1 0071020 13e41c1 0071020 96bb4b8 0071020 96bb4b8 0071020 96bb4b8 0071020 96bb4b8 097fdcb 0071020 097fdcb 96bb4b8 0071020 96bb4b8 65d6cf3 0071020 96bb4b8 0071020 96bb4b8 0071020 96bb4b8 0071020 96bb4b8 e29a7a0 0071020 097fdcb e29a7a0 0071020 097fdcb 0071020 097fdcb e29a7a0 0071020 097fdcb 0071020 097fdcb 0071020 097fdcb e29a7a0 13e41c1 097fdcb 13e41c1 0071020 e29a7a0 2d17317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import torch
import numpy as np
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
from model import UNet2DConditionModelEx
from pipeline import StableDiffusionControlLoraV3Pipeline
from PIL import Image
import os
from huggingface_hub import login
import spaces
import random
from pathlib import Path
import hashlib
import datetime
import json
from tqdm import tqdm
# Login using the token
login(token=os.environ.get("HF_TOKEN"))
# Setup directories
HF_SPACE_ID = "naonauno/groundbi-factory"
OUTPUT_DIR = "/home/user/outputs"
os.makedirs('outputs', exist_ok=True)
os.makedirs('metadata', exist_ok=True)
metadata_dir = 'metadata'
class AdvancedGenerationTracker:
def __init__(self, total_steps):
self.progress_bar = tqdm(total=total_steps, desc="Image Generation")
self.current_step = 0
self.memory_usage_log = []
def update_progress(self, step_size=1):
self.current_step += step_size
self.progress_bar.update(step_size)
self._log_memory_usage()
def _log_memory_usage(self):
if torch.cuda.is_available():
memory_info = {
'step': self.current_step,
'cuda_allocated': torch.cuda.memory_allocated(),
'cuda_reserved': torch.cuda.memory_reserved(),
'cuda_max_allocated': torch.cuda.max_memory_allocated()
}
self.memory_usage_log.append(memory_info)
def finalize(self):
self.progress_bar.close()
return self.memory_usage_log
def setup_pipeline():
unet = UNet2DConditionModelEx.from_pretrained(
"runwayml/stable-diffusion-v1-5",
subfolder="unet"
)
unet = unet.add_extra_conditions("ow-gbi-control-lora")
pipe = StableDiffusionControlLoraV3Pipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
unet=unet
)
# Performance optimizations
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
pipe.load_lora_weights(
"models",
weight_name="40kHalf.safetensors"
)
return pipe
pipe = setup_pipeline()
def save_to_space(image, filename):
path = os.path.join(OUTPUT_DIR, filename)
os.makedirs(os.path.dirname(path), exist_ok=True)
image.save(path)
return path
def generate_advanced_filename(prompt, seed, style=None):
hash_input = f"{prompt}_{seed}"
filename_hash = hashlib.md5(hash_input.encode()).hexdigest()[:8]
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
style_prefix = f"{style}_" if style else ""
return f"{style_prefix}{timestamp}_{filename_hash}"
def export_generation_metadata(metadata, output_path):
with open(output_path, 'w') as f:
json.dump(metadata, f, indent=2)
return output_path
@spaces.GPU(duration=180)
def generate_image(
image,
prompt,
negative_prompt,
guidance_scale,
steps,
seed,
strength=0.8,
num_images=1,
progress=gr.Progress()
):
if image is None:
raise gr.Error("Please provide an input image!")
try:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_base_dir = os.path.join('outputs', timestamp)
os.makedirs(output_base_dir, exist_ok=True)
if seed is not None and seed != "":
try:
generator = torch.Generator().manual_seed(int(seed))
current_seed = int(seed)
except ValueError:
generator = torch.Generator()
current_seed = random.randint(1, 1000000)
else:
generator = torch.Generator()
current_seed = random.randint(1, 1000000)
tracker = AdvancedGenerationTracker(steps)
def callback_on_step_end(pipeline, step, timestep, callback_kwargs):
tracker.update_progress()
if progress is not None:
progress(step/steps)
return {}
progress(0.3, desc="Generating image...")
with torch.no_grad():
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=float(guidance_scale),
image=image,
strength=strength,
extra_condition_scale=1.0,
generator=generator,
num_images_per_prompt=num_images,
callback_on_step_end=callback_on_step_end
)
generated_image = result.images[0]
# Save the image
filename = generate_advanced_filename(prompt, current_seed)
image_path = os.path.join(output_base_dir, f"{filename}.png")
generated_image.save(image_path)
save_to_space(generated_image, f"{filename}.png")
# Save metadata
generation_metadata = {
"generation_timestamp": timestamp,
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": current_seed,
"generation_parameters": {
"guidance_scale": guidance_scale,
"steps": steps,
"strength": strength,
"num_images": num_images
},
"image_file": os.path.basename(image_path)
}
metadata_path = os.path.join(metadata_dir, f"{filename}_metadata.json")
export_generation_metadata(generation_metadata, metadata_path)
memory_log = tracker.finalize()
progress(1.0, desc="Done!")
return generated_image
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
css = """
.container { max-width: 900px; margin: auto; }
.parameter-hint { font-size: 0.8em; color: #666; margin-top: -5px; }
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Terrain Generator
⚠️ Warning: This is a demo running on ZeroGPU. Generation might take a few minutes.
For best results, use 15-20 steps for generation.
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the terrain..."
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="What to avoid..."
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=20,
value=7.5,
info="Higher = more prompt adherence, Lower = more creativity"
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=50,
value=20,
info="More steps = higher quality but slower"
)
seed = gr.Textbox(
label="Seed (empty for random)",
placeholder="Enter a number for reproducible results",
info="Controls randomness. Same seed = same output."
)
generate = gr.Button("Generate")
with gr.Column():
result = gr.Image(label="Generated Image")
generate.click(
fn=generate_image,
inputs=[
input_image,
prompt,
negative_prompt,
guidance_scale,
steps,
seed
],
outputs=result
)
demo.queue()
demo.launch(share=True) |