Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
import os | |
from collections import defaultdict | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from llava.model.loss import soft_cross_entropy | |
from llava.model.utils.packing import set_seqlens_in_batch | |
from llava.train.sequence_parallel.globals import get_pg_manager | |
from llava.utils.logging import logger | |
from ...train.utils import calculate_loss_weight | |
from ..configuration_llava import LlavaConfig | |
from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel | |
class LlavaLlamaConfig(LlavaConfig): | |
model_type = "llava_llama" | |
# FIXME we will follow the convention to add a new class for CausalLM in the future | |
class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): | |
config_class = LlavaLlamaConfig | |
main_input_name = "input_embeds" | |
supports_gradient_checkpointing = True | |
_supports_flash_attn_2 = True | |
def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: | |
super().__init__(config) | |
self.init_vlm(config=config, *args, **kwargs) | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
*model_args, | |
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
ignore_mismatched_sizes: bool = False, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
use_safetensors: bool = None, | |
**kwargs, | |
): | |
if hasattr(cls, "load_pretrained"): | |
return cls.load_pretrained( | |
pretrained_model_name_or_path, | |
*model_args, | |
config=config, | |
cache_dir=cache_dir, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
force_download=force_download, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
use_safetensors=use_safetensors, | |
**kwargs, | |
) | |
return super(LlavaLlamaModel).from_pretrained( | |
pretrained_model_name_or_path, | |
*model_args, | |
config=config, | |
cache_dir=cache_dir, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
force_download=force_download, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
use_safetensors=use_safetensors, | |
**kwargs, | |
) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
media: Optional[Dict[str, List[torch.Tensor]]] = None, | |
images: Optional[torch.FloatTensor] = None, | |
media_config: Optional[List] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
media_meta: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
packing: bool = True, | |
force_packing: bool = False, | |
seqlens_in_batch: Optional[torch.LongTensor] = None, | |
dpo_forward: bool = False, | |
**kwargs, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
self.freezed_module_patch() | |
if images is not None: | |
if media is not None: | |
raise ValueError("Both 'media' and 'images' are provided. Please provide only one.") | |
logger.warning("The 'images' argument is deprecated. Please use 'media' instead.") | |
media = {"image": images} | |
if media_config is None: | |
media_config = defaultdict(dict) | |
if inputs_embeds is None: | |
inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask,media_meta) | |
if force_packing or (packing and self.training and not dpo_forward): | |
if seqlens_in_batch is None: | |
seqlens_in_batch = torch.sum(attention_mask, dim=1) | |
set_seqlens_in_batch(seqlens_in_batch) | |
(inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data( | |
inputs_embeds, attention_mask, position_ids, labels | |
) | |
outputs = self.llm( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
labels=labels, | |
**kwargs, | |
) | |
if self.training and getattr(self.config, "time_token_ids", []): | |
outputs.loss = soft_cross_entropy( | |
outputs.logits, | |
labels, | |
soft_tokens=self.config.time_token_ids, | |
std=self.config.soft_ce_std, | |
) | |
# Loss rescale for SP | |
if get_pg_manager() is not None: | |
loss_weight = calculate_loss_weight(labels) | |
outputs.loss = outputs.loss * loss_weight | |
if dpo_forward: | |
return outputs.logits, labels | |
return outputs | |
AutoConfig.register("llava_llama", LlavaLlamaConfig) | |
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel) | |