Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
import os | |
import time | |
from copy import deepcopy | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd.function import Function, InplaceFunction | |
from torch.cuda import amp | |
from .language_model.configuration_quantize import QuantizationConfig | |
from .qfunction import block_cut, block_quant, block_reshape | |
from .qutils import quant_get_local_rank | |
from .realquantize.division_transpose import fp8_division_transpose | |
from .realquantize.linear import fp8_linear_backward, fp8_linear_forward | |
from .realquantize.quantize_and_transpose import fp8_quantize_and_transpose | |
class QLinearTE(nn.Linear): | |
def __init__(self, in_features, out_features, bias=True, device=None, args=None, layer_idx=0): | |
super().__init__(in_features, out_features, bias, device) | |
try: # TODO: remove this try except (llama & qwen2) | |
self.args = QuantizationConfig(**deepcopy(args)) | |
except: | |
self.args = deepcopy(args) | |
self.apply_quantize = min(self.weight.shape[0], self.weight.shape[1]) >= 3584 | |
if quant_get_local_rank() == 0: | |
if self.apply_quantize: | |
print(f"[qlinear debug] Apply QLinear, {layer_idx}") | |
else: | |
print(f"[qlinear debug] Don't QLinear, {layer_idx} since the weight is too small: {self.weight.shape}") | |
self.layer_idx = layer_idx | |
self.layer_name = None | |
def forward(self, Input): | |
# if torch.randn(1) < 0.01: | |
# print(Input.shape, self.weight.shape) | |
if self.training and self.apply_quantize: | |
# if False: | |
output = QuantLinearTE.apply(Input, self.weight, self.bias, self.args, self.layer_name) | |
else: | |
output = F.linear(Input, self.weight, self.bias) | |
return output | |
# if int(os.environ.get("LOCAL_RANK")) == 0: | |
# import IPython | |
# IPython.embed() | |
# else: | |
# import time | |
# time.sleep(1000) | |
# class QuantLinearTE(Function): | |
# @staticmethod | |
# def forward(ctx, input, weight, bias, args, layer_type): | |
# ctx.saved = input, weight, bias, args, layer_type | |
# return F.linear(input, weight, bias) | |
# @staticmethod | |
# def backward(ctx, grad_output): | |
# input, weight, bias, args, layer_type = ctx.saved | |
# C_in = input.shape[-1] | |
# C_out = grad_output.shape[-1] | |
# grad_output_flatten = grad_output.reshape(-1, C_out) | |
# input_flatten = input.reshape(-1, C_in) | |
# if grad_output_flatten.dtype == input_flatten.dtype: | |
# grad_weight = grad_output_flatten.t().mm(input_flatten) | |
# else: | |
# grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
# if grad_output_flatten.dtype == weight.dtype: | |
# grad_input = grad_output_flatten.mm(weight) | |
# else: | |
# grad_input = grad_output_flatten.float().mm(weight) | |
# if bias is not None: | |
# grad_bias = grad_output_flatten.sum(0) | |
# else: | |
# grad_bias = None | |
# grad_input_transform = grad_input.reshape(input.size()) | |
# return grad_input_transform, grad_weight, grad_bias, None, None | |
class QuantLinearTE(Function): | |
def forward(ctx, input, weight, bias, args, layer_name): | |
time_bench = os.getenv("TIME_BENCH") | |
if time_bench: | |
start_1 = torch.cuda.Event(enable_timing=True) | |
start_1.record() | |
# Qinput, Iscale, Qinput_t = fp8_division_transpose(input, 16, args.fabit) | |
Qinput, Iscale, Qinput_t = fp8_quantize_and_transpose(input, 16, args.fabit, transpose_output_2d=True) | |
if time_bench: | |
end_1 = torch.cuda.Event(enable_timing=True) | |
end_1.record() | |
start_2 = torch.cuda.Event(enable_timing=True) | |
start_2.record() | |
# Qweight, Wscale, Qweight_t = fp8_division_transpose(weight, 16, args.fwbit) | |
Qweight, Wscale, Qweight_t = fp8_quantize_and_transpose(weight, 16, args.fwbit, transpose_output_2d=True) | |
if time_bench: | |
end_2 = torch.cuda.Event(enable_timing=True) | |
end_2.record() | |
start_3 = torch.cuda.Event(enable_timing=True) | |
start_3.record() | |
ctx.saved = Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name | |
fc_output = fp8_linear_forward(Qinput, Iscale, Qweight, Wscale, False, 0, bias) | |
if time_bench: | |
end_3 = torch.cuda.Event(enable_timing=True) | |
end_3.record() | |
start_4 = torch.cuda.Event(enable_timing=True) | |
start_4.record() | |
output = F.linear(input, weight, bias) | |
end_4 = torch.cuda.Event(enable_timing=True) | |
end_4.record() | |
torch.cuda.synchronize() | |
if quant_get_local_rank() == 0: | |
print( | |
f"[Forward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " | |
f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {input.shape} | Weight shape: {weight.shape}" | |
) | |
return fc_output | |
def backward(ctx, grad_output): | |
Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name = ctx.saved | |
time_bench = os.getenv("TIME_BENCH") | |
if time_bench: | |
start_1 = torch.cuda.Event(enable_timing=True) | |
start_1.record() | |
# Qgrad_output, Gscale, Qgrad_output_t = fp8_division_transpose(grad_output, 16, args.bobit, stochastic=False) | |
Qgrad_output, Gscale, Qgrad_output_t = fp8_quantize_and_transpose( | |
grad_output, 16, args.bobit, stochastic=False, transpose_output_2d=True | |
) | |
if time_bench: | |
end_1 = torch.cuda.Event(enable_timing=True) | |
end_1.record() | |
start_2 = torch.cuda.Event(enable_timing=True) | |
start_2.record() | |
grad_input, grad_weight = fp8_linear_backward( | |
Qinput_t, | |
Iscale, | |
Qgrad_output, | |
Gscale, | |
Qgrad_output_t, | |
Qweight_t, | |
Wscale, | |
16, | |
bias, | |
stochastic=False, | |
dgrad_quantize=False, | |
) | |
if time_bench: | |
end_2 = torch.cuda.Event(enable_timing=True) | |
end_2.record() | |
start_3 = torch.cuda.Event(enable_timing=True) | |
start_3.record() | |
if bias is not None: | |
grad_bias = grad_output.reshape(-1, grad_output.shape[-1]).sum(0) | |
else: | |
grad_bias = None | |
if time_bench: | |
end_3 = torch.cuda.Event(enable_timing=True) | |
end_3.record() | |
# ========== BF16 ========== | |
C_in = Qinput_t.shape[0] | |
C_out = grad_output.shape[-1] | |
grad_output_flatten = grad_output.reshape(-1, C_out) | |
input_flatten = Qinput_t.t().reshape(-1, C_in).to(torch.bfloat16) | |
weight = Qweight_t.t().to(torch.bfloat16) | |
start_4 = torch.cuda.Event(enable_timing=True) | |
start_4.record() | |
if grad_output_flatten.dtype == input_flatten.dtype: | |
_grad_weight = grad_output_flatten.t().mm(input_flatten) | |
else: | |
_grad_weight = grad_output_flatten.float().t().mm(input_flatten) | |
if grad_output_flatten.dtype == weight.dtype: | |
_grad_input = grad_output_flatten.mm(weight) | |
else: | |
_grad_input = grad_output_flatten.float().mm(weight) | |
end_4 = torch.cuda.Event(enable_timing=True) | |
end_4.record() | |
torch.cuda.synchronize() | |
if quant_get_local_rank() == 0: | |
print( | |
f"[Backward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " | |
f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {Qinput_t.shape} | Weight shape: {weight.shape}" | |
) | |
return grad_input, grad_weight, grad_bias, None, None | |