Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import inspect | |
import os | |
from typing import List, Optional, Tuple, Union | |
import torch | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import pad_input | |
from transformers.cache_utils import Cache | |
from transformers.modeling_flash_attention_utils import _upad_input | |
from transformers.utils import is_flash_attn_greater_or_equal | |
from llava.model.utils.packing import _get_unpad_data | |
from llava.train.sequence_parallel.globals import get_ring_sp_pg, get_ring_type, get_ulysses_sp_pg | |
from llava.train.sequence_parallel.hybrid_attn import HybridAttention | |
from llava.train.sequence_parallel.ring import ring_flash_attn_varlen_func, zigzag_ring_flash_attn_varlen_func | |
from llava.train.sequence_parallel.ulysses_attn import UlyssesAttention | |
def _ulysses_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
query_length, | |
attention_mask=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
seqlens_in_batch=None, | |
causal=None, | |
): | |
batch_size = query_states.shape[0] | |
# overwrite query_length with the actual length of the sequence after SP communciation | |
query_length = attention_mask.shape[1] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=True, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
return attn_output | |
def _hybrid_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
query_length, | |
attention_mask=None, | |
dropout_p=0.0, | |
softmax_scale=None, | |
seqlens_in_batch=None, | |
causal=None, | |
group=None, | |
): | |
batch_size = query_states.shape[0] | |
# overwrite query_length with the actual length of the sequence after SP communciation | |
query_length = attention_mask.shape[1] | |
_get_unpad_data.seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seq_lens = cu_seq_lens[0] | |
ring_type = get_ring_type() | |
if ring_type == "ring_varlen": | |
attn_output_unpad = ring_flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seq_lens, | |
max_seq_lens[0], | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=True, | |
group=group, | |
) | |
elif ring_type == "zigzag_ring_varlen": | |
attn_output_unpad = zigzag_ring_flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seq_lens, | |
max_seq_lens[0], | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=True, | |
group=group, | |
) | |
else: | |
raise ValueError(f"Invalid ring_type: {ring_type}") | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
return attn_output | |
def _flash_attention_forward( | |
query_states: torch.Tensor, | |
key_states: torch.Tensor, | |
value_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
query_length: int, | |
is_causal: bool, | |
dropout: float = 0.0, | |
position_ids: Optional[torch.Tensor] = None, | |
softmax_scale: Optional[float] = None, | |
sliding_window: Optional[int] = None, | |
use_top_left_mask: bool = False, | |
softcap: Optional[float] = None, | |
deterministic: bool = None, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
use_top_left_mask (`bool`, defaults to `False`): | |
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. | |
softcap (`float`, *optional*): | |
Softcap for the attention logits, used e.g. in gemma2. | |
deterministic (`bool`, *optional*): | |
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled. | |
""" | |
if not use_top_left_mask: | |
causal = is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__. | |
causal = is_causal and query_length != 1 | |
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length). | |
use_sliding_windows = ( | |
"window_size" in list(inspect.signature(flash_attn_func).parameters) | |
and sliding_window is not None | |
and key_states.shape[1] > sliding_window | |
) | |
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} | |
if is_flash_attn_greater_or_equal("2.4.1"): | |
if deterministic is None: | |
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" | |
flash_kwargs["deterministic"] = deterministic | |
if softcap is not None: | |
flash_kwargs["softcap"] = softcap | |
ring_enabled = get_ring_sp_pg() is not None | |
if attention_mask is not None: | |
if ring_enabled: | |
attn_output = HybridAttention(attention_warper=_hybrid_attn_varlen_func)( | |
query_states, | |
key_states, | |
value_states, | |
query_length, | |
attention_mask=attention_mask, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
seqlens_in_batch=_get_unpad_data.seqlens_in_batch, | |
) | |
else: | |
attn_output = UlyssesAttention(_ulysses_attn_varlen_func, get_ulysses_sp_pg())( | |
query_states, | |
key_states, | |
value_states, | |
query_length, | |
attention_mask=attention_mask, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
seqlens_in_batch=_get_unpad_data.seqlens_in_batch, | |
) | |
else: | |
if ring_enabled: | |
attn_output = HybridAttention()( | |
query_states, | |
key_states, | |
value_states, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=is_causal, | |
) | |
else: | |
attn_output = UlyssesAttention(flash_attn_func, get_ulysses_sp_pg())( | |
query_states, | |
key_states, | |
value_states, | |
query_length, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
) | |
return attn_output | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
return attention_mask | |