Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2025 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. | |
# LICENSE is in incl_licenses directory. | |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# Adopted from https://github.com/zhuzilin/ring-flash-attention. | |
# Implementation refers to Ring Attention Paper: https://arxiv.org/abs/2310.01889 | |
from typing import Optional, Tuple | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
__all__ = ["update_out_and_lse", "RingComm"] | |
def _update_out_and_lse( | |
out: torch.Tensor, | |
lse: torch.Tensor, | |
block_out: torch.Tensor, | |
block_lse: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
block_out = block_out.to(torch.float32) | |
block_lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1) | |
out = out - F.sigmoid(block_lse - lse) * (out - block_out) | |
lse = lse - F.logsigmoid(lse - block_lse) | |
return out, lse | |
def update_out_and_lse( | |
out: Optional[torch.Tensor], | |
lse: Optional[torch.Tensor], | |
block_out: torch.Tensor, | |
block_lse: torch.Tensor, | |
slice_=None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if out is None: | |
if slice_ is not None: | |
raise RuntimeError("first update_out_and_lse should not pass slice_ args") | |
out = block_out.to(torch.float32) | |
lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1) | |
elif slice_ is not None: | |
slice_out, slice_lse = out[slice_], lse[slice_] | |
slice_out, slice_lse = _update_out_and_lse(slice_out, slice_lse, block_out, block_lse) | |
out[slice_], lse[slice_] = slice_out, slice_lse | |
else: | |
out, lse = _update_out_and_lse(out, lse, block_out, block_lse) | |
return out, lse | |
def flatten_varlen_lse(lse, cu_seqlens): | |
new_lse = [] | |
for i in range(len(cu_seqlens) - 1): | |
start, end = cu_seqlens[i], cu_seqlens[i + 1] | |
new_lse.append(lse[i, :, : end - start]) | |
return torch.cat(new_lse, dim=1) | |
def unflatten_varlen_lse(lse, cu_seqlens, max_seqlen: int): | |
num_seq = len(cu_seqlens) - 1 | |
num_head = lse.shape[-2] | |
new_lse = torch.empty((num_seq, max_seqlen, num_head, 1), dtype=torch.float32, device=lse.device) | |
for i in range(num_seq): | |
start, end = cu_seqlens[i], cu_seqlens[i + 1] | |
new_lse[i, : end - start] = lse[start:end] | |
return new_lse.squeeze(dim=-1).transpose(1, 2).contiguous() | |
class RingComm: | |
def __init__(self, process_group: dist.ProcessGroup): | |
self._process_group = process_group | |
self._ops = [] | |
self.rank = dist.get_rank(self._process_group) | |
self.world_size = dist.get_world_size(self._process_group) | |
self._reqs = None | |
self.send_rank = (self.rank + 1) % self.world_size | |
self.recv_rank = (self.rank - 1) % self.world_size | |
if process_group is not None: | |
self.send_rank = dist.get_global_rank(self._process_group, self.send_rank) | |
self.recv_rank = dist.get_global_rank(self._process_group, self.recv_rank) | |
def send_recv(self, to_send: torch.Tensor, recv_tensor: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if recv_tensor is None: | |
res = torch.empty_like(to_send) | |
else: | |
res = recv_tensor | |
send_op = dist.P2POp(dist.isend, to_send, self.send_rank, group=self._process_group) | |
recv_op = dist.P2POp(dist.irecv, res, self.recv_rank, group=self._process_group) | |
self._ops.append(send_op) | |
self._ops.append(recv_op) | |
return res | |
def commit(self): | |
if self._reqs is not None: | |
raise RuntimeError("commit called twice") | |
self._reqs = dist.batch_isend_irecv(self._ops) | |
def wait(self): | |
if self._reqs is None: | |
raise RuntimeError("wait called before commit") | |
for req in self._reqs: | |
req.wait() | |
self._reqs = None | |
self._ops = [] | |