|
from langchain.chains import RetrievalQA
|
|
from langchain.llms import HuggingFacePipeline
|
|
from transformers import pipeline
|
|
from modules import parser, vectorizer
|
|
|
|
def run_analysis(uploaded_files, text_input, query, quick_action, temperature, start_time, end_time):
|
|
"""
|
|
Main logic that runs when the user clicks 'Analyze Logs'.
|
|
It combines file and text inputs, applies embeddings,
|
|
and performs question answering using a language model.
|
|
"""
|
|
logs_text = ""
|
|
|
|
|
|
if uploaded_files:
|
|
logs_text += parser.parse_uploaded_files(uploaded_files)
|
|
|
|
|
|
if text_input:
|
|
logs_text += "\n" + text_input
|
|
|
|
|
|
if not logs_text.strip():
|
|
return "❌ No logs provided.", None, None, None
|
|
|
|
|
|
query_text = query if query else quick_action
|
|
if not query_text:
|
|
return "❌ No query provided.", None, None, None
|
|
|
|
|
|
docs = vectorizer.prepare_documents(logs_text)
|
|
vectordb = vectorizer.create_vectorstore(docs)
|
|
|
|
|
|
pipe = pipeline("text-generation", model="gpt2", max_length=512, temperature=temperature)
|
|
llm = HuggingFacePipeline(pipeline=pipe)
|
|
|
|
|
|
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
|
|
|
|
|
|
result = qa.run(query_text)
|
|
|
|
|
|
bar_data = {"Hour": ["14:00", "15:00"], "Count": [8, 4]}
|
|
pie_data = {"Event Type": ["Blocked", "Scan"], "Count": [8, 4]}
|
|
alerts = [("CRITICAL", "8 blocked SSH attempts from 192.168.1.5"),
|
|
("WARNING", "4 port scanning alerts from 10.0.0.8")]
|
|
|
|
|
|
return result, bar_data, pie_data, alerts
|
|
|