Spaces:
Running
Running
# Technical Skills and Expertise | |
## Deep Learning and Machine Learning | |
### Core Frameworks | |
- **PyTorch**: Advanced proficiency in model development, custom layers, and distributed training | |
- **TensorFlow**: Experience with TensorFlow 2.x, Keras, and TensorFlow Serving | |
- **Hugging Face Transformers**: Fine-tuning, model deployment, and custom tokenizers | |
- **scikit-learn**: Classical ML algorithms, preprocessing, and model evaluation | |
### Specialized Techniques | |
- **Transfer Learning**: Pre-trained model adaptation, domain adaptation | |
- **Attention Mechanisms**: Self-attention, cross-attention, multi-head attention | |
- **Adversarial Training**: GANs, adversarial autoencoders, robust training | |
- **Multi-task Learning**: Joint optimization, task balancing, shared representations | |
- **Meta-Learning**: Few-shot learning, model-agnostic meta-learning | |
## Large Language Models and NLP | |
### LLM Technologies | |
- **Parameter-Efficient Fine-tuning**: LoRA, QLoRA, AdaLoRA, Prefix tuning | |
- **Quantization**: GPTQ, GGUF, 8-bit and 4-bit quantization | |
- **Model Optimization**: Pruning, distillation, efficient architectures | |
- **Prompt Engineering**: Chain-of-thought, few-shot prompting, instruction tuning | |
### NLP Applications | |
- **Text Generation**: Controlled generation, style transfer, summarization | |
- **Information Extraction**: Named entity recognition, relation extraction | |
- **Question Answering**: Reading comprehension, open-domain QA | |
- **Sentiment Analysis**: Aspect-based sentiment, emotion detection | |
## Computer Vision and Medical Imaging | |
### Vision Architectures | |
- **Convolutional Networks**: ResNet, DenseNet, EfficientNet, Vision Transformers | |
- **Object Detection**: YOLO, R-CNN family, DETR | |
- **Segmentation**: U-Net, Mask R-CNN, Segment Anything Model (SAM) | |
- **Medical Imaging**: Specialized architectures for histopathology, radiology | |
### Image Processing | |
- **Preprocessing**: Normalization, augmentation, color space conversion | |
- **Feature Extraction**: SIFT, HOG, deep features | |
- **Registration**: Image alignment, geometric transformations | |
- **Quality Assessment**: Blur detection, artifact identification | |
## Multimodal AI and Fusion | |
### Multimodal Architectures | |
- **Vision-Language Models**: CLIP, BLIP, LLaVA, DALL-E | |
- **Fusion Strategies**: Early fusion, late fusion, attention-based fusion | |
- **Cross-modal Retrieval**: Image-text matching, semantic search | |
- **Multimodal Generation**: Text-to-image, image captioning | |
### Data Integration | |
- **Heterogeneous Data**: Combining images, text, tabular data | |
- **Temporal Fusion**: Time-series integration, sequential modeling | |
- **Graph Neural Networks**: Relational data modeling, knowledge graphs | |
## Retrieval-Augmented Generation (RAG) | |
### Vector Databases | |
- **FAISS**: Efficient similarity search, index optimization | |
- **ChromaDB**: Document storage and retrieval | |
- **Weaviate**: Vector search with filtering | |
- **Milvus**: Scalable vector database management | |
### Retrieval Techniques | |
- **Dense Retrieval**: Bi-encoder architectures, contrastive learning | |
- **Sparse Retrieval**: BM25, TF-IDF, keyword matching | |
- **Hybrid Search**: Combining dense and sparse methods | |
- **Re-ranking**: Cross-encoder models, relevance scoring | |
### RAG Optimization | |
- **Chunk Strategies**: Document segmentation, overlap handling | |
- **Embedding Models**: Sentence transformers, domain-specific embeddings | |
- **Query Enhancement**: Query expansion, reformulation | |
- **Context Management**: Relevance filtering, context compression | |
## Bioinformatics and Computational Biology | |
### Genomics | |
- **Sequence Analysis**: Alignment algorithms, variant calling | |
- **Gene Expression**: RNA-seq analysis, differential expression | |
- **Pathway Analysis**: Enrichment analysis, network biology | |
- **Population Genetics**: GWAS, linkage analysis | |
### Proteomics | |
- **Protein Structure**: Structure prediction, folding analysis | |
- **Mass Spectrometry**: Data processing, protein identification | |
- **Protein-Protein Interactions**: Network analysis, functional prediction | |
### Systems Biology | |
- **Network Analysis**: Graph theory, centrality measures | |
- **Mathematical Modeling**: Differential equations, stochastic models | |
- **Multi-omics Integration**: Data fusion, pathway reconstruction | |
## Cloud Computing and MLOps | |
### Cloud Platforms | |
- **AWS**: EC2, S3, SageMaker, Lambda, ECS | |
- **Google Cloud**: Compute Engine, Cloud Storage, Vertex AI | |
- **Azure**: Virtual Machines, Blob Storage, Machine Learning Studio | |
### MLOps Tools | |
- **Model Versioning**: MLflow, DVC, Weights & Biases | |
- **Containerization**: Docker, Kubernetes, container orchestration | |
- **CI/CD**: GitHub Actions, Jenkins, automated testing | |
- **Monitoring**: Model drift detection, performance monitoring | |
### Distributed Computing | |
- **Parallel Processing**: Multi-GPU training, data parallelism | |
- **Cluster Computing**: Spark, Dask, distributed training | |
- **Resource Management**: SLURM, job scheduling, resource optimization | |
## Programming and Software Development | |
### Programming Languages | |
- **Python**: Advanced proficiency, scientific computing, web development | |
- **R**: Statistical analysis, bioinformatics packages, visualization | |
- **SQL**: Database design, query optimization, data warehousing | |
- **JavaScript/TypeScript**: Web development, Node.js, React | |
- **Bash/Shell**: System administration, automation scripts | |
### Development Tools | |
- **Version Control**: Git, GitHub, collaborative development | |
- **IDEs**: VS Code, PyCharm, Jupyter notebooks | |
- **Documentation**: Sphinx, MkDocs, technical writing | |
- **Testing**: Unit testing, integration testing, test-driven development | |
## Research and Academic Skills | |
### Research Methodology | |
- **Experimental Design**: Hypothesis testing, statistical power analysis | |
- **Literature Review**: Systematic reviews, meta-analysis | |
- **Peer Review**: Journal reviewing, conference reviewing | |
- **Grant Writing**: Research proposals, funding applications | |
### Communication | |
- **Technical Writing**: Research papers, documentation, tutorials | |
- **Presentations**: Conference talks, poster presentations | |
- **Teaching**: Course development, student mentoring | |
- **Collaboration**: Interdisciplinary research, team leadership |