Spaces:
Runtime error
Runtime error
File size: 8,745 Bytes
aa52433 b8a7acb a26ac7e 8505717 1e9e06f cd46f8b 1e9e06f b8a7acb aa52433 3670697 c114fac 1e9e06f c114fac 3670697 c114fac 4855721 c114fac 75ea1cc 445cb9a c114fac aa52433 c114fac aa52433 ac6aba3 1452771 aa52433 1e9e06f aa52433 1e9e06f 41754b5 01e963a 1e9e06f aa52433 1e9e06f aa52433 6d1f344 875db1b e77657a aa52433 67c78b1 1e7c569 aa52433 67c78b1 aa52433 67c78b1 1e7c569 aa52433 cd46f8b f300f75 cd46f8b 6d1f344 aa52433 2078afe 28c881a cb96df1 6d1f344 336fe2c 5daec0b aa52433 5daec0b aa52433 6062e5c 1e9e06f ac6aba3 0e007bd a14dda6 1b7ed19 aa52433 b99be8d aa52433 edf218a a32b89e edf218a 24f04a1 edf218a 24f04a1 edf218a 24f04a1 edf218a 24f04a1 edf218a a32b89e aa52433 a32b89e aa52433 a32b89e aa52433 a32b89e 47f05e5 a32b89e 336fe2c 2f5d69d 6bbaa62 f6b2216 336fe2c b02a7f6 3ad43ca 1e9e06f 8053e2c 3ad43ca 1e9e06f 8053e2c 3ad43ca e541f17 1e9e06f e541f17 466cd11 aa52433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
from llm_loader import load_model
from processing import process_input
from transcription_diarization import diarize_audio
from visualization import create_charts
import time
import re
import cv2
import os
from config import openai_api_key
# Load the model
llm = load_model(openai_api_key)
def analyze_video(video_path, progress=gr.Progress()):
start_time = time.time()
if not video_path:
return [None] * 29 # Return None for all outputs
progress(0, desc="Starting analysis...")
progress(0.2, desc="Starting transcription and diarization")
transcription = diarize_audio(video_path)
progress(0.5, desc="Transcription and diarization complete.")
progress(0.6, desc="Processing transcription")
results = process_input(transcription, llm)
progress(0.7, desc="Transcription processing complete.")
progress(0.9, desc="Generating charts")
charts, explanations, general_impressions = create_charts(results)
progress(1.0, desc="Charts generation complete.")
end_time = time.time()
execution_time = end_time - start_time
output_components = [] # transcript
output_components.append(f"Completed in {int(execution_time)} seconds.")
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
print(speaker_id)
speaker_explanations = explanations[speaker_id]
speaker_general_impression = general_impressions[speaker_id]
with gr.Tab(visible=True):
with gr.TabItem(label=f'General Impression'):
speaker_section1 = [
gr.Markdown(f"### {speaker_id}", visible=True),
gr.Textbox(value=speaker_general_impression, label="General Impression", visible=True, lines=10)
]
with gr.TabItem(label=f'Attachment Styles'):
speaker_section2 = [
gr.Plot(value=speaker_charts.get("attachment", None), visible=True),
gr.Plot(value=speaker_charts.get("dimensions", None), visible=True),
gr.Textbox(value=speaker_explanations.get("attachment", ""), label="Attachment Styles Explanation",
visible=True, lines=2)
]
with gr.TabItem(label=f'Big Five Traits'):
speaker_section3 = [
gr.Plot(value=speaker_charts.get("bigfive", None), visible=True),
gr.Textbox(value=speaker_explanations.get("bigfive", ""), label="Big Five Traits Explanation",
visible=True, lines=2)
]
with gr.TabItem(label=f'Personalities'):
speaker_section4 = [
gr.Plot(value=speaker_charts.get("personality", None), visible=True),
gr.Textbox(value=speaker_explanations.get("personality", ""),
label="Personality Disorders Explanation", visible=True, lines=2)
]
output_components.extend(speaker_section1)
output_components.extend(speaker_section2)
output_components.extend(speaker_section3)
output_components.extend(speaker_section4)
# Pad with None for any missing speakers
while len(output_components) < 28:
output_components.extend([gr.update(visible=False)] * 9)
return output_components
def use_example_1():
return "examples/Scenes.From.A.Marriage.US.mp4"
def use_example_2():
return "examples/Billie Eilish.mp4"
def use_example_3():
return "examples/Elliot Rodger.mp4"
def get_middle_frame(video_path):
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
middle_frame_number = total_frames // 7
cap.set(cv2.CAP_PROP_POS_FRAMES, middle_frame_number)
ret, frame = cap.read()
cap.release()
if ret:
preview_path = video_path.rsplit('.', 1)[0] + '_preview.jpg'
cv2.imwrite(preview_path, frame)
return preview_path
return None
with gr.Blocks() as iface:
gr.Markdown("# Multiple Speakers Personality Analyzer")
gr.Markdown("This project provides an advanced AI system designed for diagnosing and profiling personality attributes from video content based on a single speaker or multiple speakers in a conversation.")
gr.Markdown("""
1. Select input video
2. Click Analyze""")
with gr.Row():
video_input = gr.Video(label="Upload Video")
analyze_button = gr.Button("Analyze")
# Create output components
output_components = []
# Add transcript output near the top
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
output_components.append(execution_box)
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
output_components.append(transcript)
with open('description.txt', 'r') as file:
description_txt = file.read()
for n in range(3): # Assuming maximum of 3 speakers
with gr.Tab(label=f'Speaker {n + 1}', visible=True):
with gr.TabItem(label=f'General Impression'):
column_components1 = [
gr.Markdown(visible=False),
gr.Textbox(label="General Impression")]
with gr.TabItem(label=f'Attachment Styles'):
column_components2 = [
gr.Plot(visible=False),
gr.Plot(visible=False),
gr.Textbox(label="Attachment Styles Explanation")]
with gr.TabItem(label=f'Big Five Traits'):
column_components3 = [
gr.Plot(visible=False),
gr.Textbox(label="Big Five Traits Explanation")]
with gr.TabItem(label=f'Personalities'):
column_components4 = [
gr.Plot(visible=False),
gr.Textbox(label="Personality Disorders Explanation")]
output_components.extend(column_components1)
output_components.extend(column_components2)
output_components.extend(column_components3)
output_components.extend(column_components4)
gr.Markdown("### Example Videos")
with gr.Row():
with gr.Column(scale=1):
example_video_1_path = "examples/Scenes.From.A.Marriage.US.mp4"
preview_1 = get_middle_frame(example_video_1_path)
gr.Image(preview_1, label="Scenes From A Marriage")
example_video_1 = gr.Video(example_video_1_path, label="Example 1", visible=False)
use_example_button_1 = gr.Button("Load Example 1")
with gr.Column(scale=1):
example_video_2_path = "examples/Billie Eilish.mp4"
preview_2 = get_middle_frame(example_video_2_path)
gr.Image(preview_2, label="Billie Eilish")
example_video_2 = gr.Video(example_video_2_path, label="Example 2", visible=False)
use_example_button_2 = gr.Button("Load Example 2")
with gr.Column(scale=1):
example_video_3_path = "examples/Elliot Rodger.mp4"
preview_3 = get_middle_frame(example_video_3_path)
gr.Image(preview_3, label="Elliot Rodger")
example_video_3 = gr.Video(example_video_3_path, label="Example 3", visible=False)
use_example_button_3 = gr.Button("Load Example 3")
gr.HTML("<div style='height: 20px;'></div>")
gr.Markdown(description_txt)
gr.HTML("<div style='height: 20px;'></div>")
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=900)
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=900)
analyze_button.click(
fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
use_example_button_1.click(
fn=use_example_1,
inputs=[],
outputs=[video_input],
).then(fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
use_example_button_2.click(
fn=use_example_2,
inputs=[],
outputs=[video_input],
).then(fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
use_example_button_3.click(
fn=use_example_3,
inputs=[],
outputs=[video_input],
).then(fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
if __name__ == "__main__":
iface.launch()
|