Spaces:
Runtime error
Runtime error
File size: 17,523 Bytes
00c6275 7731d94 00c6275 7731d94 6943d4d 7731d94 00c6275 7731d94 84845c0 7731d94 00c6275 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 bdd4371 84845c0 7731d94 84845c0 6943d4d 7731d94 6943d4d 7731d94 6943d4d 84845c0 7731d94 84845c0 7731d94 6943d4d 00c6275 84845c0 7731d94 84845c0 00c6275 7731d94 6943d4d 00c6275 6943d4d 00c6275 a2ab6d7 00c6275 6943d4d 7731d94 6943d4d 7731d94 6943d4d 7731d94 00c6275 7731d94 6943d4d 7731d94 6943d4d 7731d94 84845c0 7731d94 6943d4d 7731d94 6943d4d 7731d94 00c6275 7731d94 6943d4d 7731d94 00c6275 6943d4d 00c6275 7731d94 00c6275 7731d94 6943d4d 7731d94 00c6275 a2ab6d7 00c6275 84845c0 00c6275 7731d94 a2ab6d7 7731d94 a2ab6d7 7731d94 a2ab6d7 7731d94 a2ab6d7 bdd4371 00c6275 7731d94 84845c0 6943d4d 7731d94 6943d4d a2ab6d7 6943d4d bdd4371 6943d4d 7731d94 bdd4371 7731d94 bdd4371 7731d94 bdd4371 6943d4d 00c6275 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 bdd4371 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 bdd4371 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 7731d94 84845c0 6943d4d 7731d94 84845c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import os
import shutil
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, random_split
from PIL import Image
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
import tempfile
import warnings
warnings.filterwarnings("ignore")
print("🖥️ Iniciando sistema...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
# Modelos disponíveis
MODELS = {
'ResNet18': models.resnet18,
'ResNet34': models.resnet34,
'ResNet50': models.resnet50,
'MobileNetV2': models.mobilenet_v2
}
# Estado global
class AppState:
def __init__(self):
self.model = None
self.train_loader = None
self.val_loader = None
self.test_loader = None
self.dataset_path = None
self.class_dirs = []
self.class_labels = ['classe_0', 'classe_1']
self.num_classes = 2
self.image_queue = []
state = AppState()
def setup_classes(num_classes_value):
"""Configura número de classes"""
try:
state.num_classes = max(2, min(5, int(num_classes_value)))
state.dataset_path = tempfile.mkdtemp()
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)]
# Criar diretórios
state.class_dirs = []
for i in range(state.num_classes):
class_dir = os.path.join(state.dataset_path, f'classe_{i}')
os.makedirs(class_dir, exist_ok=True)
state.class_dirs.append(class_dir)
return f"✅ Sistema configurado para {state.num_classes} classes"
except Exception as e:
return f"❌ Erro: {str(e)}"
def set_class_labels(labels_text):
"""Define rótulos das classes"""
try:
labels = [label.strip() for label in labels_text.split(',')]
if len(labels) != state.num_classes:
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula"
state.class_labels = labels
return f"✅ Rótulos definidos: {', '.join(state.class_labels)}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def add_images_to_queue(images):
"""Adiciona múltiplas imagens à fila"""
if not images:
return "❌ Nenhuma imagem selecionada", len(state.image_queue)
count = 0
for image_file in images:
try:
if image_file is not None:
# Carregar imagem
img = Image.open(image_file.name).convert('RGB')
state.image_queue.append(img)
count += 1
except Exception as e:
print(f"Erro processando imagem: {e}")
return f"✅ {count} imagens adicionadas. Total na fila: {len(state.image_queue)}", len(state.image_queue)
def save_queue_to_class(class_id):
"""Salva fila de imagens para uma classe"""
try:
if not state.image_queue:
return "❌ Nenhuma imagem na fila"
if not state.class_dirs:
return "❌ Configure as classes primeiro"
class_idx = max(0, min(int(class_id), len(state.class_dirs) - 1))
class_dir = state.class_dirs[class_idx]
count = 0
for i, image in enumerate(state.image_queue):
try:
import time
filename = f"img_{int(time.time())}_{i}.jpg"
filepath = os.path.join(class_dir, filename)
image.save(filepath)
count += 1
except Exception as e:
print(f"Erro salvando imagem {i}: {e}")
state.image_queue = [] # Limpar fila
class_name = state.class_labels[class_idx]
return f"✅ {count} imagens salvas em '{class_name}'"
except Exception as e:
return f"❌ Erro: {str(e)}"
def clear_queue():
"""Limpa a fila"""
state.image_queue = []
return "✅ Fila limpa", 0
def prepare_data(batch_size):
"""Prepara dados"""
try:
if not state.dataset_path:
return "❌ Configure as classes primeiro"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataset = datasets.ImageFolder(state.dataset_path, transform=transform)
if len(dataset) < 6:
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6"
# Divisão: 70% treino, 20% val, 10% teste
train_size = int(0.7 * len(dataset))
val_size = int(0.2 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(
dataset, [train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
batch_size = max(1, min(int(batch_size), 32))
state.train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
state.val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
state.test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}\n• Batch size: {batch_size}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def train_model(model_name, epochs, lr):
"""Treina modelo"""
try:
if state.train_loader is None:
return "❌ Prepare os dados primeiro"
# Carregar modelo
state.model = MODELS[model_name](pretrained=True)
# Adaptar última camada
if hasattr(state.model, 'fc'):
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes)
elif hasattr(state.model, 'classifier'):
if isinstance(state.model.classifier, nn.Sequential):
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes)
state.model = state.model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(state.model.parameters(), lr=float(lr))
results = [f"🚀 Treinando {model_name}"]
state.model.train()
for epoch in range(int(epochs)):
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in state.train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = state.model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(state.train_loader)
epoch_acc = 100. * correct / total
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
results.append("✅ Treinamento concluído!")
return "\n".join(results)
except Exception as e:
return f"❌ Erro: {str(e)}"
def evaluate_model():
"""Avalia modelo"""
try:
if state.model is None or state.test_loader is None:
return "❌ Modelo/dados não disponíveis"
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
report = classification_report(all_labels, all_preds, target_names=state.class_labels, zero_division=0)
return f"📊 RELATÓRIO DE AVALIAÇÃO:\n\n{report}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def generate_confusion_matrix():
"""Gera matriz de confusão"""
try:
if state.model is None or state.test_loader is None:
return None
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
xticklabels=state.class_labels,
yticklabels=state.class_labels)
plt.xlabel('Predições')
plt.ylabel('Valores Reais')
plt.title('Matriz de Confusão')
plt.tight_layout()
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
plt.close()
return temp_path
except Exception as e:
return None
def predict_image(image):
"""Prediz imagem"""
try:
if state.model is None:
return "❌ Treine o modelo primeiro"
if image is None:
return "❌ Selecione uma imagem"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img_tensor = transform(image).unsqueeze(0).to(device)
state.model.eval()
with torch.no_grad():
outputs = state.model(img_tensor)
probs = torch.nn.functional.softmax(outputs[0], dim=0)
_, predicted = torch.max(outputs, 1)
class_id = predicted.item()
confidence = probs[class_id].item() * 100
class_name = state.class_labels[class_id]
return f"🎯 Predição: {class_name}\n📊 Confiança: {confidence:.2f}%"
except Exception as e:
return f"❌ Erro: {str(e)}"
# Interface usando Gradio 3.x (sintaxe correta)
def create_interface():
# Interface com abas usando Gradio 3.x
with gr.Blocks() as demo:
gr.Markdown("# 🖼️ Sistema de Classificação de Imagens Completo")
gr.Markdown("**Versão estável sem bugs - Funcionalidade completa mantida**")
with gr.Tab("1️⃣ Configuração"):
gr.Markdown("### 🎯 Configurar Classes")
num_classes_input = gr.Number(value=2, label="Número de Classes (2-5)")
setup_btn = gr.Button("🔧 Configurar Classes", variant="primary")
setup_output = gr.Textbox(label="Status da Configuração")
gr.Markdown("### 🏷️ Definir Rótulos")
labels_input = gr.Textbox(value="gato,cachorro", label="Rótulos (separados por vírgula)")
labels_btn = gr.Button("🏷️ Definir Rótulos")
labels_output = gr.Textbox(label="Status dos Rótulos")
# Conectar eventos
setup_btn.click(setup_classes, inputs=[num_classes_input], outputs=[setup_output])
labels_btn.click(set_class_labels, inputs=[labels_input], outputs=[labels_output])
with gr.Tab("2️⃣ Upload de Imagens"):
gr.Markdown("### 📤 Upload Múltiplo via Fila")
images_upload = gr.File(file_count="multiple", label="Selecionar Múltiplas Imagens", file_types=["image"])
add_btn = gr.Button("➕ Adicionar à Fila")
with gr.Row():
queue_output = gr.Textbox(label="Status da Fila")
queue_count_output = gr.Number(label="Total na Fila", value=0)
gr.Markdown("### 💾 Salvar por Classe")
with gr.Row():
class_id_input = gr.Number(value=0, label="Classe de Destino (0, 1, 2...)")
save_btn = gr.Button("💾 Salvar Fila na Classe", variant="primary")
clear_btn = gr.Button("🗑️ Limpar Fila")
save_output = gr.Textbox(label="Status do Upload")
# Conectar eventos
add_btn.click(add_images_to_queue, inputs=[images_upload], outputs=[queue_output, queue_count_output])
save_btn.click(save_queue_to_class, inputs=[class_id_input], outputs=[save_output])
clear_btn.click(clear_queue, outputs=[queue_output, queue_count_output])
with gr.Tab("3️⃣ Preparação e Treinamento"):
gr.Markdown("### ⚙️ Preparar Dados")
batch_size_input = gr.Number(value=8, label="Batch Size")
prepare_btn = gr.Button("⚙️ Preparar Dados", variant="primary")
prepare_output = gr.Textbox(label="Status da Preparação", lines=4)
gr.Markdown("### 🚀 Configurar e Treinar Modelo")
with gr.Row():
model_input = gr.Dropdown(choices=list(MODELS.keys()), value="MobileNetV2", label="Modelo")
epochs_input = gr.Number(value=5, label="Épocas")
lr_input = gr.Number(value=0.001, label="Learning Rate")
train_btn = gr.Button("🚀 Iniciar Treinamento", variant="primary")
train_output = gr.Textbox(label="Status do Treinamento", lines=8)
# Conectar eventos
prepare_btn.click(prepare_data, inputs=[batch_size_input], outputs=[prepare_output])
train_btn.click(train_model, inputs=[model_input, epochs_input, lr_input], outputs=[train_output])
with gr.Tab("4️⃣ Avaliação do Modelo"):
gr.Markdown("### 📊 Avaliar Desempenho")
with gr.Row():
eval_btn = gr.Button("📊 Avaliar Modelo", variant="primary")
matrix_btn = gr.Button("📈 Gerar Matriz de Confusão")
eval_output = gr.Textbox(label="Relatório de Avaliação", lines=12)
matrix_output = gr.Image(label="Matriz de Confusão")
# Conectar eventos
eval_btn.click(evaluate_model, outputs=[eval_output])
matrix_btn.click(generate_confusion_matrix, outputs=[matrix_output])
with gr.Tab("5️⃣ Predição"):
gr.Markdown("### 🔮 Predizer Novas Imagens")
predict_image_input = gr.Image(type="pil", label="Imagem para Predição")
predict_btn = gr.Button("🔮 Fazer Predição", variant="primary")
predict_output = gr.Textbox(label="Resultado da Predição", lines=3)
# Conectar eventos
predict_btn.click(predict_image, inputs=[predict_image_input], outputs=[predict_output])
# Informações adicionais
with gr.Tab("ℹ️ Informações"):
gr.Markdown("""
## 📋 Como Usar Este Sistema
### 1️⃣ **Configuração Inicial**
- Defina o número de classes (2-5)
- Configure rótulos personalizados separados por vírgula
### 2️⃣ **Upload de Imagens**
- Selecione múltiplas imagens
- Adicione à fila
- Escolha a classe de destino (0, 1, 2...)
- Salve a fila na classe escolhida
- Repita para todas as classes
### 3️⃣ **Treinamento**
- Configure batch size (recomendado: 8-16)
- Prepare os dados
- Escolha modelo (MobileNetV2 = mais rápido)
- Configure épocas (recomendado: 3-10)
- Inicie o treinamento
### 4️⃣ **Avaliação**
- Avalie o modelo para ver métricas
- Gere matriz de confusão para análise visual
### 5️⃣ **Predição**
- Teste com novas imagens
- Veja predições com níveis de confiança
## 🎯 **Dicas para Melhores Resultados**
- Use pelo menos 10-20 imagens por classe
- Imagens bem balanceadas entre classes
- Imagens claras e bem iluminadas
- Varie poses, ângulos e ambientes
## 🔧 **Modelos Disponíveis**
- **MobileNetV2**: Rápido, ideal para prototipagem
- **ResNet18**: Bom equilíbrio velocidade/precisão
- **ResNet34/50**: Maior precisão, mais lento
""")
return demo
if __name__ == "__main__":
print("🎯 Criando interface...")
demo = create_interface()
print("🚀 Iniciando aplicação...")
demo.launch(server_name="0.0.0.0", server_port=7860) |