File size: 1,260 Bytes
81a2ae6
56226b9
b746dc4
a0428bd
56226b9
 
a0428bd
b746dc4
a0428bd
 
b746dc4
81a2ae6
 
a0428bd
81a2ae6
 
6b8ac59
81a2ae6
 
 
f3aaa59
a0428bd
f3aaa59
6b8ac59
f3aaa59
81a2ae6
b915000
a0428bd
f3aaa59
 
 
 
 
 
b915000
 
f3aaa59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

# Load chatbot model
chatbot_model = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(chatbot_model)
model = AutoModelForCausalLM.from_pretrained(chatbot_model)

# Load emotion detection model
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")

def generate_response(user_input):
    # Generate chatbot response
    input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
    output = model.generate(input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
    
    # Detect emotion
    emotion_result = emotion_pipeline(user_input)
    emotion = emotion_result[0]["label"]
    score = emotion_result[0]["score"]
    
    return response, emotion, score

# Gradio Interface
iface = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(label="Enter your message"),
    outputs=[
        gr.Textbox(label="Chatbot Response"),
        gr.Textbox(label="Emotion Detected"),
        gr.Textbox(label="Emotion Score")
    ],
    live=False
)

iface.launch()