File size: 5,721 Bytes
eadc82d
5eab736
4611e20
 
 
 
 
31e7c35
 
 
4611e20
 
 
1490129
ecfc393
5d7bc4a
ecfc393
 
4611e20
 
 
 
 
 
eadc82d
ecfc393
4611e20
eadc82d
 
ecfc393
eadc82d
4611e20
 
 
eadc82d
 
 
 
4611e20
eadc82d
4611e20
eadc82d
4611e20
eadc82d
4611e20
 
 
 
 
eadc82d
 
 
 
ecfc393
eadc82d
 
4611e20
 
eadc82d
4611e20
eadc82d
4611e20
 
eadc82d
 
4611e20
eadc82d
 
 
ecfc393
eadc82d
 
 
 
 
 
 
 
ac1b201
dc2c7e9
eadc82d
4611e20
 
eadc82d
 
4611e20
eadc82d
4611e20
 
 
 
eadc82d
 
 
 
4611e20
 
eadc82d
 
 
 
 
 
 
 
 
 
 
 
 
 
afbf135
eadc82d
4611e20
 
 
1490129
31e7c35
 
4611e20
1490129
eadc82d
 
 
 
 
4611e20
 
 
 
 
1490129
4611e20
c676187
1471654
4611e20
31e7c35
 
1471654
31e7c35
1471654
c676187
06db179
 
31e7c35
06db179
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Final, Complete, and Corrected app.py for Hugging Face Space

import os
import cv2
import tempfile
import numpy as np
import uvicorn
import requests
import base64
import io
from PIL import Image
from inference_sdk import InferenceHTTPClient
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import gradio as gr
import tensorflow as tf
from huggingface_hub import hf_hub_download

# --- 1. Configuration and Model Loading ---
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)

leuko_model = None
try:
    model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras")
    leuko_model = tf.keras.models.load_model(model_path)
    print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
    print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---")
    raise RuntimeError(f"Could not load leukocoria model: {e}")

# --- 2. All Helper Functions ---
def enhance_image_unsharp_mask(image, strength=0.5, radius=5):
    blur = cv2.GaussianBlur(image, (radius, radius), 0)
    return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0)

def detect_faces_roboflow(image_path):
    return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])

def detect_eyes_roboflow(image_path, raw_image):
    resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
    crops = []
    for p in resp.get("predictions", []):
        x1 = int(p['x'] - p['width'] / 2)
        y1 = int(p['y'] - p['height'] / 2)
        x2 = int(p['x'] + p['width'] / 2)
        y2 = int(p['y'] + p['height'] / 2)
        crop = raw_image[y1:y2, x1:x2]
        if crop.size > 0:
            crops.append(crop)
    return crops

# --- ADDED MISSING FUNCTION ---
def get_largest_iris_prediction(eye_crop):
    is_success, buffer = cv2.imencode(".jpg", eye_crop)
    if not is_success: return None
    resp = CLIENT_IRIS.infer(data=buffer, model_id="iris_120_set/7")
    preds = resp.get("predictions", [])
    return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None

def run_leukocoria_prediction(iris_crop):
    if leuko_model is None: return {"error": "Leukocoria model not loaded"}
    
    img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
    enh = enhance_image_unsharp_mask(np.array(img_pil))
    enh_rs = cv2.resize(enh, (224, 224))
    img_array = np.array(enh_rs) / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    
    prediction = leuko_model.predict(img_array)
    confidence = float(prediction[0][0])
    has_leuko = confidence > 0.5
    
    return has_leuko, confidence

# --- 3. FastAPI Application ---
app = FastAPI()

@app.post("/detect/")
async def full_detection_pipeline(image: UploadFile = File(...)):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
        contents = await image.read()
        tmp.write(contents)
        temp_image_path = tmp.name
    
    try:
        if not detect_faces_roboflow(temp_image_path):
            return JSONResponse(status_code=400, content={"error": "No face detected."})

        raw_image = cv2.imread(temp_image_path)
        eye_crops = detect_eyes_roboflow(temp_image_path, raw_image)

        if len(eye_crops) != 2:
            return JSONResponse(status_code=400, content={"error": "Exactly two eyes not detected."})
        
        eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])

        flags = {}
        for i, eye_crop in enumerate(eye_crops):
            side = "left" if i == 0 else "right"
            pred = get_largest_iris_prediction(eye_crop)
            if pred:
                x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
                x2, y2 = int(pred['x'] + pred['width'] / 2), int(pred['y'] + pred['height'] / 2)
                iris_crop = eye_crop[y1:y2, x1:x2]
                has_leuko, confidence = run_leukocoria_prediction(iris_crop)
                flags[side] = has_leuko
            else:
                flags[side] = None
        
        return JSONResponse(content={"leukocoria": flags, "warnings": []})

    finally:
        os.remove(temp_image_path)

# --- 4. Create and Mount the Gradio UI for a professional homepage ---
def gradio_wrapper(image_array):
    """A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
    try:
        pil_image = Image.fromarray(image_array)
        with io.BytesIO() as buffer:
            pil_image.save(buffer, format="JPEG")
            files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
            response = requests.post("http://127.0.0.1:7860/detect/", files=files)
        
        if response.status_code == 200:
            return response.json()
        else:
            return {"error": f"API Error {response.status_code}", "details": response.text}
    except Exception as e:
        return {"error": str(e)}

gradio_ui = gr.Interface(
    fn=gradio_wrapper,
    inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"),
    outputs=gr.JSON(label="Analysis Results"),
    title="LeukoLook Eye Detector",
    description="A demonstration of the LeukoLook detection model pipeline."
)

app = gr.mount_gradio_app(app, gradio_ui, path="/")

# --- 5. Run the server ---
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)