Spaces:
Running
Running
import gradio as gr | |
from tensorflow.keras.models import load_model | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
# --- 1. Load the Model from your other Hugging Face Repo --- | |
try: | |
model_path = hf_hub_download( | |
repo_id="skibi11/leukolook-eye-detector", | |
filename="MobileNetV1_best.keras" | |
) | |
model = load_model(model_path) | |
print("Model loaded successfully!") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model = None | |
# --- 2. Define the Pre-processing Logic --- | |
def preprocess_image(img_pil): | |
# This MUST match your training pre-processing | |
img = img_pil.resize((224, 224)) | |
img_array = np.array(img) | |
if img_array.ndim == 2: | |
img_array = np.stack((img_array,)*3, axis=-1) | |
img_array = img_array / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
# --- 3. Define the Prediction Function --- | |
def predict(image_array): | |
if model is None: | |
raise gr.Error("Model is not loaded. Please check the Space logs.") | |
pil_image = Image.fromarray(image_array.astype('uint8'), 'RGB') | |
processed_image = preprocess_image(pil_image) | |
prediction = model.predict(processed_image) | |
# Convert prediction to a JSON-friendly format | |
labels = [f"Class_{i}" for i in range(prediction.shape[1])] | |
confidences = {label: float(score) for label, score in zip(labels, prediction[0])} | |
return confidences | |
# --- 4. Create and Launch the Gradio API --- | |
gr.Interface( | |
fn=predict, | |
inputs=gr.Image(), | |
outputs="json", | |
title="LeukoLook Eye Detector API" | |
).launch() |