vumichien's picture
Create app.py
e88b390
import gradio as gr
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn import datasets
from sklearn.model_selection import train_test_split
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
model_card = f"""
## Description
**Gradient boosting** is a machine learning technique that combines several regression trees to create a powerful model in an iterative manner.
**Early stopping** is a technique used in **gradient boosting** to determine the least number of iterations required to create a model that generalizes well to new data.
It involves specifying a validation set and using it to evaluate the model after each stage of tree building.
The process is continued until the model's scores do not improve for a specified number of stages.
Using early stopping can significantly reduce training time, memory usage, and prediction latency while achieving almost the same accuracy as a model built without early stopping using many more estimators.
You can play around with different ``number of samples`` and ``number of new estimators`` to see the effect
## Dataset
Iris dataset, Classification dataset, Hastie dataset
"""
def do_train(n_samples, n_estimators, progress=gr.Progress()):
data_list = [
datasets.load_iris(return_X_y=True),
datasets.make_classification(n_samples=n_samples, random_state=0),
datasets.make_hastie_10_2(n_samples=n_samples, random_state=0),
]
names = ["Iris Data", "Classification Data", "Hastie Data"]
n_gb = []
score_gb = []
time_gb = []
n_gbes = []
score_gbes = []
time_gbes = []
for X, y in progress.tqdm(data_list):
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0
)
# We specify that if the scores don't improve by at least 0.01 for the last
# 10 stages, stop fitting additional stages
gbes = ensemble.GradientBoostingClassifier(
n_estimators=n_estimators,
validation_fraction=0.2,
n_iter_no_change=5,
tol=0.01,
random_state=0,
)
gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)
start = time.time()
gb.fit(X_train, y_train)
time_gb.append(time.time() - start)
start = time.time()
gbes.fit(X_train, y_train)
time_gbes.append(time.time() - start)
score_gb.append(gb.score(X_test, y_test))
score_gbes.append(gbes.score(X_test, y_test))
n_gb.append(gb.n_estimators_)
n_gbes.append(gbes.n_estimators_)
bar_width = 0.2
n = len(data_list)
index = np.arange(0, n * bar_width, bar_width) * 2.5
index = index[0:n]
fig1, axes1 = plt.subplots(figsize=(9, 5))
bar1 = axes1.bar(
index, score_gb, bar_width, label="Without early stopping", color="crimson"
)
bar2 = axes1.bar(
index + bar_width, score_gbes, bar_width, label="With early stopping", color="coral"
)
axes1.set_xticks(index + bar_width, names);
axes1.set_yticks(np.arange(0, 1.3, 0.1));
def autolabel(ax, rects, n_estimators):
"""
Attach a text label above each bar displaying n_estimators of each model
"""
for i, rect in enumerate(rects):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
1.05 * rect.get_height(),
"n_est=%d" % n_estimators[i],
ha="center",
va="bottom",
)
autolabel(axes1, bar1, n_gb)
autolabel(axes1, bar2, n_gbes)
plt.xlabel("Datasets")
plt.ylabel("Test score")
axes1.set_xlabel("Datasets")
axes1.set_ylabel("Test score")
axes1.set_ylim([0, 1.3])
axes1.legend(loc="best")
axes1.grid(True)
fig2, axes2 = plt.subplots(figsize=(9, 5))
bar1 = axes2.bar(
index, time_gb, bar_width, label="Without early stopping", color="crimson"
)
bar2 = axes2.bar(
index + bar_width, time_gbes, bar_width, label="With early stopping", color="coral"
)
max_y = np.amax(np.maximum(time_gb, time_gbes))
axes2.set_xticks(index + bar_width, names)
axes2.set_yticks(np.linspace(0, 1.3 * max_y, 13))
autolabel(axes2, bar1, n_gb)
autolabel(axes2, bar2, n_gbes)
axes2.set_ylim([0, 1.3 * max_y])
axes2.legend(loc="best")
axes2.grid(True)
axes2.set_xlabel("Datasets")
axes2.set_ylabel("Fit Time")
return fig1, fig2
with gr.Blocks(theme=theme) as demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Early stopping of Gradient Boosting</h1>
</div>
''')
gr.Markdown(model_card)
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-early-stopping-py\">scikit-learn</a>")
n_samples = gr.Slider(minimum=500, maximum=10000, step=500, value=1000, label="Number of samples")
n_estimators = gr.Slider(minimum=50, maximum=300, step=50, value=100, label="Number of estimators")
with gr.Row():
with gr.Column():
plot1 = gr.Plot(label="Test score")
with gr.Column():
plot2 = gr.Plot(label="Running time")
n_samples.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
n_estimators.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
demo.launch(enable_queue=True)