File size: 6,058 Bytes
4d6e8c2
 
 
 
 
243d40e
a9f8367
 
 
 
 
4d6e8c2
 
 
296146e
4d6e8c2
 
 
70f5f26
1c33274
70f5f26
2b85173
3b83e0c
 
a9f8367
3b83e0c
 
b562460
3b83e0c
 
 
 
 
 
 
9bcb67c
3b83e0c
 
296146e
 
f5aa578
3b83e0c
 
 
8f462bc
3b83e0c
 
 
 
 
 
9012700
a9f8367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9012700
2b85173
3b83e0c
a9f8367
4d6e8c2
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
243d40e
3b83e0c
 
 
320940c
a9f8367
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
2b85173
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from skops.io import load
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import torch
from torch.utils.data import DataLoader, Dataset
import numpy as np
from accelerate.test_utils.testing import get_backend

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.text_preprocessor import preprocess

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

models_descriptions = {
    "baseline": "random baseline",
    "tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
    "bert_base_pruned": "Pruned BERT base model",
}


def baseline_model(dataset_length: int):
    # Make random predictions (placeholder for actual model inference)
    predictions = [random.randint(0, 7) for _ in range(dataset_length)]

    return predictions

def tree_classifier(test_dataset: dict, model: str):

    texts = test_dataset["quote"]

    texts = preprocess(texts)

    model_path = f"tasks/text_models/{model}.skops"

    model = load(model_path, 
                 trusted=[
                     'scipy.sparse._csr.csr_matrix',
                     'xgboost.core.Booster',
                     'xgboost.sklearn.XGBClassifier'])

    predictions = model.predict(texts)

    return predictions

class TextDataset(Dataset):
    def __init__(self, texts, tokenizer, max_length=256):
        self.texts = texts
        self.tokenized_texts = tokenizer(
            texts,
            truncation=True,
            padding=True,
            max_length=max_length,
            return_tensors="pt",
        )

    def __getitem__(self, idx):
        item = {key: val[idx] for key, val in self.tokenized_texts.items()}
        return item

    def __len__(self) -> int:
        return len(self.texts)
        


def bert_classifier(test_dataset: dict, model: str):
    texts = test_dataset["quote"]

    model_repo = f"theterryzhang/frugal_ai_{model}"

    model = AutoModelForSequenceClassification.from_pretrained(model_repo)
    tokenizer = AutoTokenizer.from_pretrained(model_repo)

    # Use CUDA if available 
    device, _, _ = get_backend()

    model = model.to(device)

    # Prepare dataset
    dataset = TextDataset(texts, tokenizer=tokenizer)
    dataloader = DataLoader(dataset, batch_size=32, shuffle=False)

    model.eval()
    with torch.no_grad():
        predictions = np.array([])
        for batch in dataloader:
            test_input_ids = batch["input_ids"].to(device)
            test_attention_mask = batch["attention_mask"].to(device)
            outputs = model(test_input_ids, test_attention_mask)
            p = torch.argmax(outputs.logits, dim=1)
            predictions = np.append(predictions, p.cpu().numpy())
    
    return predictions


@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(request: TextEvaluationRequest,
                        model: str = "bert_base_pruned"):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]

    if model == "baseline":
        predictions = baseline_model(len(true_labels))
    elif model == "tfidf_xgb":
        predictions = tree_classifier(test_dataset, model='xgb_pipeline')
    elif 'bert' in model:
        predictions = bert_classifier(test_dataset, model)

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": models_descriptions[model],
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results