File size: 8,209 Bytes
4d6e8c2 df46342 a9f8367 df46342 a9f8367 df46342 4d6e8c2 296146e df46342 d878add 4d6e8c2 70f5f26 1c33274 70f5f26 4f1a07f c422e81 4f1a07f 3b83e0c b562460 3b83e0c 7688055 9bcb67c 3b83e0c 296146e f5aa578 3b83e0c 8f462bc 3b83e0c 7688055 3b83e0c 9012700 a9f8367 c0a2424 a9f8367 7688055 a9f8367 5225d97 df46342 a9f8367 af86903 a9f8367 7688055 a9f8367 03a22c3 f7c276d 6737c70 03a22c3 f7c276d 56d7bf2 03a22c3 6737c70 03a22c3 af86903 03a22c3 9012700 2b85173 3b83e0c 76b5c0d 4d6e8c2 70f5f26 4d6e8c2 70f5f26 4d6e8c2 243d40e 3b83e0c 320940c a9f8367 03a22c3 70f5f26 4d6e8c2 4f1a07f 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from datetime import datetime
import random
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer
from fastapi import APIRouter
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from skops.io import load
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.text_preprocessor import preprocess
from accelerate.test_utils.testing import get_backend
from .custom_classifiers import SentenceBERTClassifier, MoEClassifier
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
MODEL_DESCRIPTIONS = {
"baseline": "random baseline", # Baseline
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier", # Submitted
"bert_base_pruned": "Pruned BERT base model", # Submitted
# 'climate_bert_pruned': "Fine-tuned and pruned DistilRoBERTa pre-trained on climate texts", # Not working
"sbert_distilroberta": "Fine-tuned sentence transformer DistilRoBERTa", # working, not submitted
"embedding_moe": "Mixture of expert classifier with DistilBERT Embeddings" # working, not submitted
}
def baseline_model(dataset_length: int):
# Make random predictions (placeholder for actual model inference)
predictions = [random.randint(0, 7) for _ in range(dataset_length)]
return predictions
def tree_classifier(test_dataset: dict, model: str):
print("Starting tree model run")
texts = test_dataset["quote"]
texts = preprocess(texts)
model_path = f"tasks/text_models/{model}.skops"
model = load(model_path,
trusted=[
'scipy.sparse._csr.csr_matrix',
'xgboost.core.Booster',
'xgboost.sklearn.XGBClassifier'])
predictions = model.predict(texts)
print("Finished tree model run")
return predictions
class TextDataset(Dataset):
def __init__(self, texts, tokenizer, max_length=512):
self.texts = texts
self.tokenized_texts = tokenizer(
texts,
truncation=True,
padding=True,
max_length=max_length,
return_tensors="pt",
)
def __getitem__(self, idx):
item = {key: val[idx] for key, val in self.tokenized_texts.items()}
return item
def __len__(self) -> int:
return len(self.texts)
def bert_classifier(test_dataset: dict, model: str):
print("Starting BERT model run")
texts = test_dataset["quote"]
model_repo = f"theterryzhang/frugal_ai_{model}"
tokenizer = AutoTokenizer.from_pretrained(model_repo)
if model in ["bert_base_pruned"]:
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
elif model in ["sbert_distilroberta"]:
model = SentenceBERTClassifier.from_pretrained(model_repo)
else:
raise(ValueError)
device, _, _ = get_backend()
model = model.to(device)
# Prepare dataset
dataset = TextDataset(texts, tokenizer=tokenizer)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
model.eval()
with torch.no_grad():
predictions = np.array([])
for batch in dataloader:
test_input_ids = batch["input_ids"].to(device)
test_attention_mask = batch["attention_mask"].to(device)
outputs = model(test_input_ids, test_attention_mask)
p = torch.argmax(outputs.logits, dim=1)
predictions = np.append(predictions, p.cpu().numpy())
print("Finished BERT model run")
return predictions
def moe_classifier(test_dataset: dict, model: str):
print("Starting MoE run")
device, _, _ = get_backend()
texts = test_dataset["quote"]
model_path = f"tasks/text_models/0131_MoE_final.pt"
embedding_model = AutoModel.from_pretrained("sentence-transformers/all-distilroberta-v1")
embedding_model = embedding_model.to(device)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-distilroberta-v1")
dataset = TextDataset(texts, tokenizer=tokenizer, max_length=512)
dataloader = DataLoader(dataset, batch_size=64, shuffle=False)
model = MoEClassifier(3, 0.05)
model.load_state_dict(torch.load(model_path))
model = model.to(device)
print("Starting MoE Classifier")
model.eval()
with torch.no_grad():
predictions = np.array([])
for batch in dataloader:
input_ids = batch['input_ids'].to(device)
attn_mask = batch['attention_mask'].to(device)
embedding_outputs = embedding_model(input_ids, attn_mask)
embeddings = embedding_outputs.last_hidden_state[:, 0, :]
outputs = model(embeddings)
p = torch.argmax(outputs, dim=1)
predictions = np.append(predictions, p.cpu().numpy())
print("Finished running MoE Classifier")
return predictions
@router.post(ROUTE, tags=["Text Task"])
async def evaluate_text(request: TextEvaluationRequest,
model: str = "embedding_moe"):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
if model == "baseline":
predictions = baseline_model(len(true_labels))
elif model == "tfidf_xgb":
predictions = tree_classifier(test_dataset, model='xgb_pipeline')
elif 'bert' in model:
predictions = bert_classifier(test_dataset, model)
elif 'moe' in model:
predictions = moe_classifier(test_dataset, model)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": MODEL_DESCRIPTIONS[model],
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |