Spaces:
Sleeping
Sleeping
File size: 8,466 Bytes
0f8ddfb 07a5d20 126fff1 81dbe3d e59d9f1 17836b2 9c1b1da 17836b2 0f8ddfb 17836b2 0f8ddfb 07a5d20 2d22901 07a5d20 181eb38 126fff1 56ff5cb 07a5d20 56ff5cb 126fff1 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 56ff5cb 2d22901 181eb38 17836b2 81f62ec 0f8ddfb 126fff1 17836b2 126fff1 17836b2 126fff1 07a5d20 126fff1 4ba9b2f 126fff1 17836b2 126fff1 17836b2 81dbe3d 07a5d20 126fff1 81dbe3d 126fff1 f59f5c6 126fff1 07a5d20 126fff1 0f8ddfb 17836b2 f37dc6c 7a33ac9 f37dc6c 81f62ec f37dc6c 81f62ec 17836b2 6a96058 17836b2 81f62ec 6a96058 edcca9a 6a96058 17836b2 6a96058 81f62ec 6a96058 17836b2 81f62ec 6a96058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
from PIL import Image, ImageFilter
import numpy as np
import pandas as pd
from streamlit_cropper import st_cropper
# Predefined headers for the 32 mutation sites
mutation_site_headers = [
3244, 3297, 3350, 3399, 3455, 3509, 3562, 3614,
3665, 3720, 3773, 3824, 3879, 3933, 3985, 4039,
4089, 4145, 4190, 4245, 4298, 4349, 4402, 4455,
4510, 4561, 4615, 4668, 4720, 4773, 4828, 4882
]
# Load thresholds from file
thresholds = pd.Series({
3244: 1.094293328,
3297: 0.924916122,
3350: 0.664586629,
3399: 0.91573613,
3455: 1.300869714,
3509: 1.821975901,
3562: 1.178862418,
3614: 0.091557752,
3665: 0.298697327,
3720: 0.58379781,
3773: 0.891088481,
3824: 1.145509641,
3879: 0.81833191,
3933: 2.93084335,
3985: 1.593758847,
4039: 0.966055013,
4089: 1.465671338,
4145: 0.30309335,
4190: 1.321615138,
4245: 1.709752495,
4298: 0.868534701,
4349: 1.222907645,
4402: 0.58873557,
4455: 1.185522985,
4510: 1.266797682,
4561: 1.109913024,
4615: 1.181106084,
4668: 1.408533949,
4720: 0.714151142,
4773: 1.471959437,
4828: 0.95879943,
4882: 1.464503885
})
# -----------------------------------------
# Utility functions
# -----------------------------------------
def string_to_binary_labels(s: str) -> list[int]:
bits = []
for char in s:
ascii_code = ord(char)
char_bits = [(ascii_code >> bit) & 1 for bit in range(7, -1, -1)]
bits.extend(char_bits)
return bits
def clean_image(img: Image.Image, min_size: int = 256) -> Image.Image:
img = img.convert("RGB")
if img.width < min_size or img.height < min_size:
img = img.resize((min_size, min_size))
img = img.filter(ImageFilter.GaussianBlur(radius=1))
return img
def image_to_binary_labels_rgb(img: Image.Image, max_pixels: int = 256) -> list[int]:
img = clean_image(img)
img.thumbnail((int(np.sqrt(max_pixels)), int(np.sqrt(max_pixels))))
img_array = np.array(img)
flat_pixels = img_array.reshape(-1, 3)
bits = []
for pixel in flat_pixels:
for channel in pixel:
channel_bits = [(channel >> bit) & 1 for bit in range(7, -1, -1)]
bits.extend(channel_bits)
return bits
def binary_labels_to_rgb_image(binary_labels: list[int], width: int = None, height: int = None) -> Image.Image:
total_pixels = len(binary_labels) // 24
if width is None or height is None:
side = int(np.ceil(np.sqrt(total_pixels)))
width = height = side
needed_pixels = width * height
needed_bits = needed_pixels * 24
if len(binary_labels) < needed_bits:
binary_labels += [0] * (needed_bits - len(binary_labels))
pixels = []
for i in range(0, needed_bits, 24):
r_bits = binary_labels[i:i+8]
g_bits = binary_labels[i+8:i+16]
b_bits = binary_labels[i+16:i+24]
r = sum(b << (7-j) for j, b in enumerate(r_bits))
g = sum(b << (7-j) for j, b in enumerate(g_bits))
b = sum(b << (7-j) for j, b in enumerate(b_bits))
pixels.append((r, g, b))
array = np.array(pixels, dtype=np.uint8).reshape((height, width, 3))
img = Image.fromarray(array, mode='RGB')
return img
# -----------------------------------------
# Streamlit App
# -----------------------------------------
st.title("ASCII & Binary Label Converter")
tab1, tab2, tab3 = st.tabs(["Text to Binary Labels", "Image to Binary Labels", "EF → Binary"])
# ================= Tab 1 ===================
with tab1:
st.write("Enter text to see its ASCII codes and corresponding binary labels:")
user_input = st.text_input("Text Input", value="DNA")
if user_input:
ascii_codes = [ord(c) for c in user_input]
binary_labels = string_to_binary_labels(user_input)
st.subheader("ASCII Codes")
st.write(ascii_codes)
st.subheader("Binary Labels per Character")
grouped_chars = [binary_labels[i:i+8] for i in range(0, len(binary_labels), 8)]
for idx, bits in enumerate(grouped_chars):
st.write(f"'{user_input[idx]}' → {bits}")
st.subheader("Binary Labels (32-bit groups)")
num_groups = (len(binary_labels) + 31) // 32
table_data = []
for grp_idx in range(num_groups):
start = grp_idx * 32
end = start + 32
group = binary_labels[start:end]
if len(group) < 32:
group += [0] * (32 - len(group))
edited_sites = sum(group)
row = group + [edited_sites]
table_data.append(row)
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.download_button(
label="Download Binary Labels Table as CSV",
data=df.to_csv(index=False),
file_name="binary_labels_table.csv",
mime="text/csv"
)
# ================= Tab 2 ===================
with tab2:
st.write("Upload an image (JPG or PNG) to convert it into binary labels:")
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded Image", use_column_width=True)
st.subheader("Crop the image with drag and select (Free aspect ratio)")
cropped_img = st_cropper(img, realtime_update=True, box_color='blue', aspect_ratio=None)
st.image(cropped_img, caption="Cropped Image", use_column_width=True)
max_pixels = st.slider("Max number of pixels to encode", min_value=32, max_value=1024, value=256, step=32)
binary_labels = image_to_binary_labels_rgb(cropped_img, max_pixels=max_pixels)
st.subheader("Binary Labels from Image")
num_groups = (len(binary_labels) + 31) // 32
table_data = []
for grp_idx in range(num_groups):
start = grp_idx * 32
end = start + 32
group = binary_labels[start:end]
if len(group) < 32:
group += [0] * (32 - len(group))
edited_sites = sum(group)
row = group + [edited_sites]
table_data.append(row)
df = pd.DataFrame(table_data, columns=[str(h) for h in mutation_site_headers] + ["Edited Sites"])
st.dataframe(df)
st.subheader("Reconstructed RGB Image")
reconstructed_img = binary_labels_to_rgb_image(binary_labels)
st.image(reconstructed_img, caption="Reconstructed Image", use_column_width=True)
st.download_button(
label="Download Image Binary Labels Table as CSV",
data=df.to_csv(index=False),
file_name="image_binary_labels_table.csv",
mime="text/csv"
)
# ================= Tab 3 ===================
with tab3:
st.write("Upload an Editing Frequency CSV or fill in manually:")
ef_file = st.file_uploader("Upload Editing Frequency CSV", type=["csv"], key="ef")
if ef_file:
ef_df = pd.read_csv(ef_file)
ef_df = ef_df.loc[:, ~ef_df.columns.str.contains('^Unnamed')]
else:
ef_df = pd.DataFrame(columns=thresholds.index)
edited_df = st.data_editor(ef_df, num_rows="dynamic")
if st.button("Convert to Binary Labels"):
common_cols = list(set(edited_df.columns) & set(thresholds.index))
numeric_cols = edited_df[common_cols].select_dtypes(include=[np.number]).columns.tolist()
binary_part = edited_df[numeric_cols].ge(thresholds[numeric_cols]).astype(int)
non_binary_part = edited_df.drop(columns=numeric_cols, errors='ignore')
binary_df = pd.concat([non_binary_part, binary_part], axis=1)
def highlight_binary(val):
if val == 1:
return 'background-color: lightgreen'
elif val == 0:
return 'background-color: lightcoral'
else:
return ''
styled_binary_df = binary_df.style.applymap(highlight_binary, subset=numeric_cols)
st.subheader("Binary Labels")
st.dataframe(styled_binary_df) # ✅ Display thresholded binary table
st.download_button(
label="Download Binary Labels Table as CSV",
data=binary_df.to_csv(index=False),
file_name="ef_binary_labels_table.csv",
mime="text/csv"
)
|