Spaces:
Sleeping
Sleeping
A newer version of the Streamlit SDK is available:
1.45.1
metadata
title: ๐ Gemstone Price Regression
emoji: ๐ฐ
colorFrom: indigo
colorTo: blue
sdk: streamlit
app_file: app.py
pinned: true
license: mit
tags:
- regression
- machine-learning
- streamlit
- diamonds
- synthetic-data
๐ Gemstone Price Prediction App
This Streamlit app predicts the price of a gemstone using its physical and quality-related features.
๐ง Project Overview
- This project simulates a gemstone pricing system using synthetic tabular data.
- Features include:
carat
,depth
,table
,x
,y
,z
,clarity_score
,color_score
, andcut_score
. - The target variable is price (USD).
- Model: RandomForestRegressor
- Trained on 1000 synthetic samples.
๐ Performance
- RMSE: 605.16
- Rยฒ Score: 0.9549
๐ How to Run Locally
pip install -r requirements.txt
streamlit run app.py
๐ฎ Future Work
Area Improvement
Model Try XGBoost, LightGBM
Feature Engineering Interaction terms, log/carat scaling
Deployment Add API endpoint with FastAPI
Real-world Data Integrate real gemstone datasets
๐ Files
app.py: Streamlit interface
rf_model.pkl: Trained model
model_columns.pkl: List of input features
requirements.txt: Required libraries