Spaces:
Runtime error
Runtime error
File size: 23,654 Bytes
5845270 1492900 e69d279 19bcaa7 aabfbe0 e69d279 07c838c 19bcaa7 47d8bfc 99459b9 19bcaa7 76813dd 19bcaa7 08f5d28 a196f30 e69d279 86467c9 a196f30 67b0366 a196f30 67b0366 a196f30 67b0366 a196f30 e69d279 99459b9 b0c8c02 827b490 d6da646 827b490 99459b9 c220bb2 ac52c1d 4b713ff ac52c1d f58427d 4b713ff 3b49492 c220bb2 827b490 412c4ad 827b490 962f2bc 470ecaf 827b490 16aaa49 827b490 b6b421e b0c8c02 412c4ad 640d399 b0c8c02 98c7793 c4611b8 d6da646 c4611b8 b6b421e 067e31b b0c8c02 8538434 5428aaf 067e31b 5428aaf 8538434 16d258e 69e268f 16d258e 8538434 16d258e 6c80f3e 5e367a0 69e268f 5e367a0 5428aaf 8538434 5e367a0 5428aaf 6894e88 e69d279 008680f a196f30 5428aaf 98c7793 a196f30 3dc3dff 98c7793 5428aaf 16aaa49 5428aaf a196f30 16aaa49 2434ffa 16aaa49 a196f30 16aaa49 47d8bfc a196f30 2434ffa a196f30 640d399 5428aaf 346d9f6 9c9a1f3 e69d279 a196f30 e69d279 67b0366 e69d279 276236e 640d399 a196f30 d6da646 640d399 d6da646 640d399 d6da646 08f5d28 99459b9 346d9f6 99459b9 346d9f6 99459b9 346d9f6 99459b9 346d9f6 008680f f04b403 5e2ea0f f04b403 962f2bc d6da646 962f2bc f04b403 f58427d 962f2bc f04b403 5e2ea0f f04b403 5d67648 f04b403 008680f f04b403 5e2ea0f f04b403 008680f 22645d0 008680f 22645d0 008680f 22645d0 99459b9 412c4ad beab0ef 412c4ad 067e31b 412c4ad 067e31b 412c4ad 6c80f3e 412c4ad beab0ef 6c80f3e 412c4ad 276236e 640d399 52efc32 d6da646 276236e 640d399 276236e 67e2964 640d399 593768d cc9aa28 593768d 276236e cc9aa28 aabfbe0 6c80f3e 276236e b39baa9 276236e 640d399 6c80f3e 4cc6cbe 3b49492 22645d0 c220bb2 99459b9 22645d0 99459b9 6c80f3e 640d399 276236e 640d399 a196f30 640d399 276236e 067e31b 640d399 cc9aa28 640d399 a196f30 276236e a196f30 276236e 99459b9 a1f1dd5 99459b9 a1f1dd5 593768d eb0919b 640d399 276236e cc9aa28 412c4ad cc9aa28 beab0ef 276236e e69d279 276236e 640d399 cc9aa28 6c80f3e 276236e 640d399 008680f cc9aa28 6c80f3e 276236e 6894e88 3b49492 4cc6cbe 3b49492 a1f1dd5 5d67648 a1f1dd5 c4611b8 593768d 008680f 99459b9 67e2964 99459b9 d6da646 99459b9 2b694f3 276236e bd71366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import numpy as np
import random
import os
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from PIL import Image
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
hf_token = os.getenv("hf_token")
login(token=hf_token)
# Global constants and default values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
PRELOAD_MODELS = False
# Default system prompt for text generation
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need.
The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-schnell text-to-image AI.
This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function.
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white.
The prompt should be without narration, can be long but must not exceed 77 tokens."""
# Default Flux parameters
DEFAULT_SEED = 42
DEFAULT_RANDOMIZE_SEED = True
DEFAULT_WIDTH = 512
DEFAULT_HEIGHT = 512
DEFAULT_NUM_INFERENCE_STEPS = 6
DEFAULT_GUIDANCE_SCALE = 0.0
DEFAULT_TEMPERATURE = 0.9
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
_text_gen_pipeline = None
_image_gen_pipeline = None
_trellis_pipeline = None
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image):
trellis = get_trellis_pipeline()
if trellis is None:
# If the pipeline is not loaded, just return the original image
return image
# Check if image is a numpy array and convert to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'))
# trellis.cuda()
processed_image = trellis.preprocess_image(image)
return processed_image
@spaces.GPU()
def get_image_gen_pipeline():
global _image_gen_pipeline
if (_image_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
# "black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
).to(device)
# Comment these out for now to match the working example
# _image_gen_pipeline.enable_model_cpu_offload()
# _image_gen_pipeline.enable_vae_slicing()
except Exception as e:
print(f"Error loading image generation model: {e}")
return None
return _image_gen_pipeline
@spaces.GPU()
def get_text_gen_pipeline():
global _text_gen_pipeline
if (_text_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
use_fast=True
)
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
_text_gen_pipeline = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.3",
tokenizer=tokenizer,
max_new_tokens=2048,
device=device,
pad_token_id=tokenizer.pad_token_id
)
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
return _text_gen_pipeline
# @spaces.GPU()
def get_trellis_pipeline():
global _trellis_pipeline
if _trellis_pipeline is None:
try:
print("Loading Trellis pipeline...")
_trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
except Exception as e:
print(f"Error loading Trellis pipeline: {e}")
return None
return _trellis_pipeline
@spaces.GPU()
def refine_prompt(prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
text_gen = get_text_gen_pipeline()
if text_gen is None:
return "", "Text generation model is unavailable."
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
# Indicate progress started
progress(0, desc="Generating text")
# Generate text
refined_prompt = text_gen(messages)
# Indicate progress complete
progress(1)
# Extract just the assistant's content from the response
try:
messages = refined_prompt[0]['generated_text']
# Find the last message with role 'assistant'
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
if not assistant_messages:
return "", "Error: No assistant response found"
assistant_content = assistant_messages[-1]['content']
# Remove quotation marks at the beginning and end
if assistant_content.startswith('"') and assistant_content.endswith('"'):
assistant_content = assistant_content[1:-1]
return assistant_content, "Prompt refined successfully!"
except (KeyError, IndexError):
return "", "Error: Unexpected response format from the model"
except Exception as e:
print(f"Error in refine_prompt: {str(e)}") # Add debug print
return "", f"Error refining prompt: {str(e)}"
def validate_dimensions(width, height):
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
return False, "Image dimensions too large"
return True, None
@spaces.GPU()
def generate_image(prompt, seed=DEFAULT_SEED,
randomize_seed=DEFAULT_RANDOMIZE_SEED,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
progress=gr.Progress(track_tqdm=True)):
try:
# Validate that prompt is not empty
if not prompt or prompt.strip() == "":
return None, "Please provide a valid prompt."
progress(0.1, desc="Loading model")
pipe = get_image_gen_pipeline()
if pipe is None:
return None, "Image generation model is unavailable."
is_valid, error_msg = validate_dimensions(width, height)
if not is_valid:
return None, error_msg
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Use default torch generator instead of cuda-specific generator
generator = torch.Generator().manual_seed(seed)
progress(0.3, desc="Running inference")
# Match the working example's parameters
output = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=DEFAULT_GUIDANCE_SCALE,
)
progress(0.8, desc="Processing output")
image = output.images[0]
progress(1.0, desc="Complete")
return image, f"Image generated successfully with seed {seed}"
except Exception as e:
print(f"Error in generate_image: {str(e)}")
return None, f"Error generating image: {str(e)}"
examples = [
"a backpack for kids, flower style",
"medieval flip flops",
"cat shaped cake mold",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def preload_models():
print("Preloading models...")
text_success = get_text_gen_pipeline() is not None
image_success = get_image_gen_pipeline() is not None
trellis_success = get_trellis_pipeline() is not None
success = text_success and image_success and trellis_success
status_parts = []
if text_success:
status_parts.append("Mistral β")
else:
status_parts.append("Mistral β")
if image_success:
status_parts.append("Flux β")
else:
status_parts.append("Flux β")
if trellis_success:
status_parts.append("Trellis β")
else:
status_parts.append("Trellis β")
status = f"Models loaded: {', '.join(status_parts)}"
print(status)
return success, status
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
@spaces.GPU
def image_to_3d(
image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
) -> Tuple[dict, str]:
try:
if isinstance(image, dict) and "image" in image:
image = image["image"]
# If user passed multiple images
if isinstance(image, list):
input_image = []
for img in image:
if isinstance(img, dict) and "image" in img:
img = img["image"]
if isinstance(img, np.ndarray):
img = Image.fromarray(img.astype("uint8"))
input_image.append(img)
else:
# Single image
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype("uint8"))
input_image = [image]
pipeline = get_trellis_pipeline()
if pipeline is None:
return None, "Trellis pipeline is unavailable."
pipeline.cuda()
outputs = pipeline.run(
input_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(temp_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
import traceback
traceback.print_exc() # Print the full stack trace for debugging
return None, f"Error generating 3D model: {str(e)}"
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
temp_dir = os.path.join(TMP_DIR, "temp_output")
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(temp_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
temp_dir = os.path.join(TMP_DIR, "temp_output")
gs, _ = unpack_state(state)
gaussian_path = os.path.join(temp_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
# Create a combined function that handles the whole pipeline from example to image
# This version gets the parameters from the UI components
@spaces.GPU()
def process_example_pipeline(example_prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
# Step 1: Update status
progress(0, desc="Starting example processing")
# Step 2: Refine the prompt
progress(0.1, desc="Refining prompt with Mistral")
refined, status = refine_prompt(example_prompt, system_prompt, progress)
if not refined:
return "", "Failed to refine prompt: " + status
# Return only the refined prompt and status - don't generate image
return refined, "Prompt refined successfully!"
def create_interface():
# Preload models if needed
if PRELOAD_MODELS:
model_success, model_status_details = preload_models()
model_status = f"β
{model_status_details}" if model_success else f"β οΈ {model_status_details}"
else:
model_status = "βΉοΈ Models will be loaded on demand"
with gr.Blocks(css=css) as demo:
# Move session handlers INSIDE the Blocks context
demo.load(fn=start_session)
demo.unload(fn=end_session)
gr.Info(model_status)
# State for storing 3D model data
output_state = gr.State(None)
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text to Product\nUsing Mistral-7B + FLUX.1-dev + Trellis")
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter basic object prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt with Mistral")
refined_prompt = gr.Text(
show_label=False,
max_lines=10,
placeholder="Detailed object prompt",
container=False,
max_length=2048,
)
visual_button = gr.Button("Create visual with Flux")
generated_image = gr.Image(show_label=False)
preprocessed_button = gr.Button("Preprocess image")
preprocessed_image = gr.Image(show_label=False)
gen3d_button = gr.Button("Create 3D visual with Trellis")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
# model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
message_box = gr.Textbox(
label="Status Messages",
interactive=False,
placeholder="Status messages will appear here",
)
# Accordion sections for advanced settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Tab("Mistral"):
# Mistral settings
temperature = gr.Slider(
label="Temperature",
value=DEFAULT_TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
info="Higher values produce more diverse outputs",
)
system_prompt = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=10,
info="Instructions for the Mistral model"
)
with gr.Tab("Flux"):
# Flux settings
flux_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED)
flux_randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=DEFAULT_NUM_INFERENCE_STEPS,
)
with gr.Tab("3D Generation Settings"):
trellis_seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
trellis_randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
with gr.Tab("GLB Extraction Settings"):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
output_buf = gr.State()
gr.Examples(
examples=examples,
fn=process_example_pipeline,
inputs=[prompt],
outputs=[refined_prompt, message_box],
cache_examples=True,
)
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn=refine_prompt,
inputs=[prompt, system_prompt],
outputs=[refined_prompt, message_box]
)
gr.on(
triggers=[visual_button.click],
fn=generate_image,
inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps],
outputs=[generated_image, message_box]
)
gr.on(
triggers=[preprocessed_button.click],
fn=preprocess_image,
inputs=[generated_image],
outputs=[preprocessed_image]
)
gr.on(
triggers=[gen3d_button.click],
fn=image_to_3d,
inputs=[preprocessed_image, trellis_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_state, video_output],
)
# .then(
# # Update button states after successful 3D generation
# lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True), "3D model generated successfully"),
# outputs=[extract_glb_btn, extract_gs_btn, message_box]
# )
# # Add handlers for GLB and Gaussian extraction
# gr.on(
# triggers=[extract_glb_btn.click],
# fn=extract_glb,
# inputs=[output_state, mesh_simplify, texture_size],
# outputs=[model_output, download_glb]
# ).then(
# lambda path: (gr.DownloadButton.update(interactive=True, value=path), "GLB extraction completed"),
# inputs=[model_output],
# outputs=[download_glb, message_box]
# )
# gr.on(
# triggers=[extract_gs_btn.click],
# fn=extract_gaussian,
# inputs=[output_state],
# outputs=[model_output, download_gs]
# ).then(
# lambda path: (gr.DownloadButton.update(interactive=True, value=path), "Gaussian extraction completed"),
# inputs=[model_output],
# outputs=[download_gs, message_box]
# )
# Don't put any demo.* method calls here outside the Blocks context
return demo
if __name__ == "__main__":
# Initialize models if PRELOAD_MODELS is True
if PRELOAD_MODELS:
success, status = preload_models()
print(status)
trellis = get_trellis_pipeline()
trellis.cuda()
demo = create_interface()
demo.launch(debug=True)
|