File size: 22,143 Bytes
5845270
e69d279
 
19bcaa7
aabfbe0
 
e69d279
07c838c
19bcaa7
47d8bfc
99459b9
 
 
 
 
 
 
 
 
 
19bcaa7
76813dd
19bcaa7
08f5d28
a196f30
e69d279
86467c9
a196f30
 
 
67b0366
a196f30
67b0366
a196f30
67b0366
 
 
a196f30
 
 
 
 
 
 
 
 
e69d279
99459b9
 
 
b0c8c02
827b490
d6da646
827b490
99459b9
827b490
 
 
412c4ad
827b490
 
 
 
0d131d4
470ecaf
827b490
16aaa49
 
 
 
827b490
 
 
 
 
b6b421e
b0c8c02
 
412c4ad
640d399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0c8c02
98c7793
d6da646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b421e
067e31b
b0c8c02
 
8538434
5428aaf
 
067e31b
 
5428aaf
8538434
 
 
 
 
 
 
 
 
16d258e
69e268f
 
16d258e
 
 
 
8538434
16d258e
6c80f3e
 
 
 
 
5e367a0
69e268f
5e367a0
5428aaf
8538434
5e367a0
5428aaf
 
 
 
 
6894e88
e69d279
008680f
a196f30
 
 
 
 
5428aaf
98c7793
 
 
 
a196f30
3dc3dff
 
 
 
98c7793
 
 
 
5428aaf
 
 
16aaa49
 
5428aaf
a196f30
16aaa49
2434ffa
16aaa49
 
 
 
 
a196f30
16aaa49
47d8bfc
a196f30
2434ffa
a196f30
640d399
5428aaf
346d9f6
9c9a1f3
e69d279
a196f30
e69d279
67b0366
 
 
e69d279
 
 
 
 
 
 
 
 
276236e
640d399
a196f30
 
d6da646
 
 
640d399
d6da646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640d399
d6da646
08f5d28
99459b9
346d9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99459b9
 
346d9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
99459b9
346d9f6
 
 
 
99459b9
346d9f6
008680f
 
f04b403
 
 
 
 
 
 
 
 
 
 
 
 
d6da646
f04b403
 
 
 
d6da646
f04b403
 
 
 
 
 
 
 
 
 
 
 
 
 
008680f
f04b403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
008680f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99459b9
 
412c4ad
beab0ef
412c4ad
067e31b
412c4ad
 
 
 
 
067e31b
412c4ad
 
6c80f3e
412c4ad
beab0ef
6c80f3e
412c4ad
276236e
640d399
52efc32
d6da646
 
276236e
640d399
276236e
 
640d399
593768d
cc9aa28
593768d
276236e
 
cc9aa28
aabfbe0
6c80f3e
 
 
 
 
 
 
276236e
 
 
 
b39baa9
276236e
 
640d399
 
6c80f3e
640d399
008680f
6c80f3e
008680f
 
99459b9
008680f
 
 
99459b9
6c80f3e
640d399
 
 
 
276236e
640d399
 
 
 
 
 
a196f30
640d399
 
 
 
276236e
 
067e31b
 
 
 
 
 
 
640d399
 
cc9aa28
 
640d399
 
a196f30
 
276236e
 
 
 
 
 
a196f30
276236e
99459b9
008680f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99459b9
008680f
 
 
 
 
 
593768d
eb0919b
640d399
276236e
cc9aa28
412c4ad
cc9aa28
 
beab0ef
276236e
e69d279
276236e
 
640d399
cc9aa28
6c80f3e
276236e
 
 
640d399
008680f
cc9aa28
6c80f3e
276236e
6894e88
008680f
 
 
 
 
 
 
 
 
 
593768d
008680f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99459b9
73911dd
99459b9
 
d6da646
 
 
 
99459b9
276236e
bd71366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import gradio as gr
import numpy as np
import random
import os
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from PIL import Image
from gradio_litmodel3d import LitModel3D
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


hf_token = os.getenv("hf_token")
login(token=hf_token)

# Global constants and default values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
PRELOAD_MODELS = False

# Default system prompt for text generation
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need.

The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-schnell text-to-image AI.

This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function.
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white.
The prompt should be without narration, can be long but must not exceed 77 tokens."""

# Default Flux parameters
DEFAULT_SEED = 42
DEFAULT_RANDOMIZE_SEED = True
DEFAULT_WIDTH = 512
DEFAULT_HEIGHT = 512
DEFAULT_NUM_INFERENCE_STEPS = 6
DEFAULT_GUIDANCE_SCALE = 0.0
DEFAULT_TEMPERATURE = 0.9

TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

_text_gen_pipeline = None
_image_gen_pipeline = None
_trellis_pipeline = None


@spaces.GPU()
def get_image_gen_pipeline():
    global _image_gen_pipeline
    if (_image_gen_pipeline is None):
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            dtype = torch.bfloat16
            _image_gen_pipeline = DiffusionPipeline.from_pretrained(
                "black-forest-labs/FLUX.1-schnell",
                torch_dtype=dtype,
            ).to(device)
            
            # Comment these out for now to match the working example
            # _image_gen_pipeline.enable_model_cpu_offload()
            # _image_gen_pipeline.enable_vae_slicing()
        except Exception as e:
            print(f"Error loading image generation model: {e}")
            return None
    return _image_gen_pipeline

@spaces.GPU()
def get_text_gen_pipeline():
    global _text_gen_pipeline
    if (_text_gen_pipeline is None):
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            tokenizer = AutoTokenizer.from_pretrained(
                "mistralai/Mistral-7B-Instruct-v0.3",
                use_fast=True
            )
            tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
            
            _text_gen_pipeline = pipeline(
                "text-generation",
                model="mistralai/Mistral-7B-Instruct-v0.3",
                tokenizer=tokenizer,
                max_new_tokens=2048,
                device=device,
                pad_token_id=tokenizer.pad_token_id
            )
        except Exception as e:
            print(f"Error loading text generation model: {e}")
            return None
    return _text_gen_pipeline

@spaces.GPU()
def get_trellis_pipeline():
    global _trellis_pipeline
    if _trellis_pipeline is None:
        try:
            print("Loading Trellis pipeline...")
            _trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
            _trellis_pipeline.cuda()
            
            # Preload rembg by processing a small test image
            try:
                _trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
            except Exception as e:
                print(f"Warning when preloading rembg: {e}")
        except Exception as e:
            print(f"Error loading Trellis pipeline: {e}")
            return None
    return _trellis_pipeline

@spaces.GPU()
def refine_prompt(prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
    text_gen = get_text_gen_pipeline()
    if text_gen is None:
        return "", "Text generation model is unavailable."
    try:
        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": prompt},
        ]
        
        # Indicate progress started
        progress(0, desc="Generating text")
        
        # Generate text
        refined_prompt = text_gen(messages)
        
        # Indicate progress complete
        progress(1)
        
        # Extract just the assistant's content from the response
        try:
            messages = refined_prompt[0]['generated_text']
            # Find the last message with role 'assistant'
            assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
            if not assistant_messages:
                return "", "Error: No assistant response found"
            assistant_content = assistant_messages[-1]['content']
            
            # Remove quotation marks at the beginning and end
            if assistant_content.startswith('"') and assistant_content.endswith('"'):
                assistant_content = assistant_content[1:-1]
                
            return assistant_content, "Prompt refined successfully!"
        except (KeyError, IndexError):
            return "", "Error: Unexpected response format from the model"
    except Exception as e:
        print(f"Error in refine_prompt: {str(e)}")  # Add debug print
        return "", f"Error refining prompt: {str(e)}"

def validate_dimensions(width, height):
    if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
        return False, "Image dimensions too large"
    return True, None

@spaces.GPU()
def generate_image(prompt, seed=DEFAULT_SEED, 
          randomize_seed=DEFAULT_RANDOMIZE_SEED, 
          width=DEFAULT_WIDTH, 
          height=DEFAULT_HEIGHT, 
          num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS, 
          progress=gr.Progress(track_tqdm=True)): 
    try:
        # Validate that prompt is not empty
        if not prompt or prompt.strip() == "":
            return None, "Please provide a valid prompt."

        progress(0.1, desc="Loading model")
        pipe = get_image_gen_pipeline()
        if pipe is None:
            return None, "Image generation model is unavailable."
        
        is_valid, error_msg = validate_dimensions(width, height)
        if not is_valid:
            return None, error_msg

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        
        # Use default torch generator instead of cuda-specific generator
        generator = torch.Generator().manual_seed(seed)
        
        progress(0.3, desc="Running inference")
        # Match the working example's parameters
        output = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=DEFAULT_GUIDANCE_SCALE,
        )
            
        progress(0.8, desc="Processing output")
        image = output.images[0]
        progress(1.0, desc="Complete")
        return image, f"Image generated successfully with seed {seed}"
    except Exception as e:
        print(f"Error in generate_image: {str(e)}")  
        return None, f"Error generating image: {str(e)}"
 
 
examples = [
    "a backpack for kids, flower style",
    "medieval flip flops",
    "cat shaped cake mold",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

def preload_models():
    print("Preloading models...")
    text_success = get_text_gen_pipeline() is not None
    image_success = get_image_gen_pipeline() is not None
    trellis_success = get_trellis_pipeline() is not None
    
    success = text_success and image_success and trellis_success
    
    status_parts = []
    if text_success:
        status_parts.append("Mistral βœ“")
    else:
        status_parts.append("Mistral βœ—")
        
    if image_success:
        status_parts.append("Flux βœ“")
    else:
        status_parts.append("Flux βœ—")
        
    if trellis_success:
        status_parts.append("Trellis βœ“")
    else:
        status_parts.append("Trellis βœ—")
        
    status = f"Models loaded: {', '.join(status_parts)}"
    print(status)
    return success, status


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
) -> Tuple[dict, str]:
    try:
        # Use a fixed temp directory instead of user-specific
        temp_dir = os.path.join(TMP_DIR, "temp_output")
        os.makedirs(temp_dir, exist_ok=True)
        
        # Get the pipeline using the getter function
        pipeline = get_trellis_pipeline()
        if pipeline is None:
            return None, "Trellis pipeline is unavailable."
        
        outputs = pipeline.run(
            image,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )

        video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
        video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
        video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
        video_path = os.path.join(temp_dir, 'sample.mp4')
        imageio.mimsave(video_path, video, fps=15)
        state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
        torch.cuda.empty_cache()
        return state, video_path
    except Exception as e:
        print(f"Error in image_to_3d: {str(e)}")
        return None, f"Error generating 3D model: {str(e)}"


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    temp_dir = os.path.join(TMP_DIR, "temp_output")
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(temp_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


# @spaces.GPU
# def extract_gaussian(state: dict) -> Tuple[str, str]:
#     """
#     Extract a Gaussian file from the 3D model.

#     Args:
#         state (dict): The state of the generated 3D model.

#     Returns:
#         str: The path to the extracted Gaussian file.
#     """
#     temp_dir = os.path.join(TMP_DIR, "temp_output")
#     gs, _ = unpack_state(state)
#     gaussian_path = os.path.join(temp_dir, 'sample.ply')
#     gs.save_ply(gaussian_path)
#     torch.cuda.empty_cache()
#     return gaussian_path, gaussian_path


# Create a combined function that handles the whole pipeline from example to image
# This version gets the parameters from the UI components
@spaces.GPU()
def process_example_pipeline(example_prompt, system_prompt=DEFAULT_SYSTEM_PROMPT, progress=gr.Progress()):
    # Step 1: Update status
    progress(0, desc="Starting example processing")
    
    # Step 2: Refine the prompt
    progress(0.1, desc="Refining prompt with Mistral")
    refined, status = refine_prompt(example_prompt, system_prompt, progress)
    
    if not refined:
        return "", "Failed to refine prompt: " + status
    
    # Return only the refined prompt and status - don't generate image
    return refined, "Prompt refined successfully!"

def create_interface():
    # Preload models if needed
    if PRELOAD_MODELS:
        model_success, model_status_details = preload_models()
        model_status = f"βœ… {model_status_details}" if model_success else f"⚠️ {model_status_details}"
    else:
        model_status = "ℹ️ Models will be loaded on demand"

    with gr.Blocks(css=css) as demo:
        gr.Info(model_status)
        
        # State for storing 3D model data
        output_state = gr.State(None)

        with gr.Column(elem_id="col-container"):
            gr.Markdown("# Text to Product\nUsing Mistral-7B + FLUX.1-dev + Trellis")
            
            prompt = gr.Text(
                show_label=False,
                max_lines=1,
                placeholder="Enter basic object prompt",
                container=False,
            )
            prompt_button = gr.Button("Refine prompt with Mistral")
            
            refined_prompt = gr.Text(
                show_label=False,
                max_lines=10, 
                placeholder="Detailed object prompt", 
                container=False,
                max_length=2048,
            )
            visual_button = gr.Button("Create visual with Flux")

            generated_image = gr.Image(show_label=False)
            # gen3d_button = gr.Button("Create 3D visual with Trellis")

            # video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            # model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            # with gr.Row():
            #     download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
            #     download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
            message_box = gr.Textbox(
                label="Status Messages", 
                interactive=False,
                placeholder="Status messages will appear here",
            )
            
            # Accordion sections for advanced settings
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Tab("Mistral"):
                    # Mistral settings
                    temperature = gr.Slider(
                        label="Temperature",
                        value=DEFAULT_TEMPERATURE,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        info="Higher values produce more diverse outputs",
                    )
                    
                    system_prompt = gr.Textbox(
                        label="System Prompt",
                        value=DEFAULT_SYSTEM_PROMPT,
                        lines=10,
                        info="Instructions for the Mistral model"
                    )
                    
                with gr.Tab("Flux"):
                    # Flux settings
                    flux_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED)
                    flux_randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED)
                    
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
                        height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
                    
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=DEFAULT_NUM_INFERENCE_STEPS,
                    )
                
                # with gr.Tab("3D Generation Settings"):
                #     trellis_seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                #     trellis_randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                #     gr.Markdown("Stage 1: Sparse Structure Generation")
                #     with gr.Row():
                #         ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                #         ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                #     gr.Markdown("Stage 2: Structured Latent Generation")
                #     with gr.Row():
                #         slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                #         slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)

                # with gr.Tab("GLB Extraction Settings"):
                #     mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                #     texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            # with gr.Row():
            #     extract_glb_btn = gr.Button("Extract GLB", interactive=False)
            #     extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            # gr.Markdown("""
            #             *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
            #             """)

            output_buf = gr.State()

            gr.Examples(
                examples=examples,
                fn=process_example_pipeline,
                inputs=[prompt],
                outputs=[refined_prompt, message_box],
                cache_examples=True,
            )

        gr.on(
            triggers=[prompt_button.click, prompt.submit],
            fn=refine_prompt,
            inputs=[prompt, system_prompt],
            outputs=[refined_prompt, message_box]
        )

        gr.on(
            triggers=[visual_button.click],
            fn=generate_image,
            inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps],
            outputs=[generated_image, message_box]
        )

        # gr.on(
        #     triggers=[gen3d_button.click],
        #     fn=image_to_3d,
        #     inputs=[generated_image, trellis_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        #     outputs=[output_state, video_output],
        # ).then(
        #     # Update button states after successful 3D generation
        #     lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True), "3D model generated successfully"),
        #     outputs=[extract_glb_btn, extract_gs_btn, message_box]
        # )
        
        # # Add handlers for GLB and Gaussian extraction
        # gr.on(
        #     triggers=[extract_glb_btn.click],
        #     fn=extract_glb,
        #     inputs=[output_state, mesh_simplify, texture_size],
        #     outputs=[model_output, download_glb]
        # ).then(
        #     lambda path: (gr.DownloadButton.update(interactive=True, value=path), "GLB extraction completed"),
        #     inputs=[model_output],
        #     outputs=[download_glb, message_box]
        # )

        # gr.on(
        #     triggers=[extract_gs_btn.click],
        #     fn=extract_gaussian,
        #     inputs=[output_state],
        #     outputs=[model_output, download_gs]
        # ).then(
        #     lambda path: (gr.DownloadButton.update(interactive=True, value=path), "Gaussian extraction completed"),
        #     inputs=[model_output],
        #     outputs=[download_gs, message_box]
        # )

    return demo 

if __name__ == "__main__":
    # Initialize models if PRELOAD_MODELS is True
    if PRELOAD_MODELS:
        success, status = preload_models()
        print(status)
        
    demo = create_interface()
    demo.launch(debug=True)