Spaces:
Runtime error
Runtime error
File size: 17,970 Bytes
c54f817 8435838 c575e18 89b9813 8435838 89b9813 e363f86 e62ac65 e8de28c a677593 5a39c97 a2d3df0 b2e55f9 fc0bb07 b916cdf e858976 100405c eb2ddcd e519ed0 100405c b2e55f9 8594846 89b9813 100405c e071c19 100405c a677593 0b874ec 100405c 0b874ec e8de28c 497c0a8 ff78f6c b2e55f9 3208a74 b2e55f9 3208a74 b2e55f9 6ee36ca b2e55f9 6ee36ca fc0bb07 b2e55f9 6466ec0 9725fa4 e519ed0 6466ec0 b2e55f9 6466ec0 b2e55f9 f2aec00 b2e55f9 e24540a e519ed0 b2e55f9 fc0bb07 b2e55f9 fc0bb07 b2e55f9 669c09b e0f0dd9 78ea6a8 4896769 b2e55f9 100405c fc0bb07 f0ce987 fc0bb07 b2e55f9 5754a1c eb2c07e c20bd13 eb2c07e b2e55f9 c575e18 8435838 b2e55f9 1679b8f 8435838 313bb52 8435838 b2e55f9 e858976 2da2765 6454884 e62ac65 0adb69d 2da2765 b2e55f9 e858976 0adb69d e858976 b2e55f9 0adb69d 6454884 b2e55f9 dfecf95 e519ed0 0adb69d eb2c07e 2da2765 eb2c07e e858976 9ced953 e858976 b2e55f9 e62ac65 0adb69d e62ac65 2da2765 6454884 2da2765 016f9e1 6454884 2da2765 6454884 0adb69d 2da2765 0adb69d d20b0fd 6454884 b115af2 0adb69d a2d7c6c 6466ec0 2da2765 0adb69d d20b0fd a2d7c6c d20b0fd 6454884 2da2765 6454884 0adb69d 6454884 2da2765 6454884 0adb69d b953cf8 d20b0fd 0adb69d 8435838 e62ac65 8435838 e62ac65 0adb69d c575e18 8435838 1679b8f 0adb69d e62ac65 e858976 1679b8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import json
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time
from typing import Any, Dict
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler
import concurrent.futures
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DEBUG_MODE = False
DEBUG_MODE_2 = True
SCREEN_WIDTH = 512
SCREEN_HEIGHT = 384
NUM_SAMPLING_STEPS = 32
with open('latent_stats.json', 'r') as f:
latent_stats = json.load(f)
DATA_NORMALIZATION = {'mean': torch.tensor(latent_stats['mean']).to(device), 'std': torch.tensor(latent_stats['std']).to(device)}
LATENT_DIMS = (16, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
# Initialize the model at the start of your application
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
#model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
model = initialize_model("config_final_model.yaml", "yuntian-deng/computer-model")
model = model.to(device)
#model = torch.compile(model)
padding_image = torch.zeros(*LATENT_DIMS).unsqueeze(0).to(device)
padding_image = (padding_image - DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)) / DATA_NORMALIZATION['std'].view(1, -1, 1, 1)
# Valid keyboard inputs
KEYS = ['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(',
')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~',
'accept', 'add', 'alt', 'altleft', 'altright', 'apps', 'backspace',
'browserback', 'browserfavorites', 'browserforward', 'browserhome',
'browserrefresh', 'browsersearch', 'browserstop', 'capslock', 'clear',
'convert', 'ctrl', 'ctrlleft', 'ctrlright', 'decimal', 'del', 'delete',
'divide', 'down', 'end', 'enter', 'esc', 'escape', 'execute', 'f1', 'f10',
'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20',
'f21', 'f22', 'f23', 'f24', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9',
'final', 'fn', 'hanguel', 'hangul', 'hanja', 'help', 'home', 'insert', 'junja',
'kana', 'kanji', 'launchapp1', 'launchapp2', 'launchmail',
'launchmediaselect', 'left', 'modechange', 'multiply', 'nexttrack',
'nonconvert', 'num0', 'num1', 'num2', 'num3', 'num4', 'num5', 'num6',
'num7', 'num8', 'num9', 'numlock', 'pagedown', 'pageup', 'pause', 'pgdn',
'pgup', 'playpause', 'prevtrack', 'print', 'printscreen', 'prntscrn',
'prtsc', 'prtscr', 'return', 'right', 'scrolllock', 'select', 'separator',
'shift', 'shiftleft', 'shiftright', 'sleep', 'space', 'stop', 'subtract', 'tab',
'up', 'volumedown', 'volumemute', 'volumeup', 'win', 'winleft', 'winright', 'yen',
'command', 'option', 'optionleft', 'optionright']
INVALID_KEYS = ['f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f20',
'f21', 'f22', 'f23', 'f24', 'select', 'separator', 'execute']
VALID_KEYS = [key for key in KEYS if key not in INVALID_KEYS]
itos = VALID_KEYS
stoi = {key: i for i, key in enumerate(itos)}
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Add this at the top with other global variables
# Create a thread pool executor
thread_executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
def prepare_model_inputs(
previous_frame: torch.Tensor,
hidden_states: Any,
x: int,
y: int,
right_click: bool,
left_click: bool,
keys_down: List[str],
stoi: Dict[str, int],
itos: List[str],
time_step: int
) -> Dict[str, torch.Tensor]:
"""Prepare inputs for the model."""
# Clamp coordinates to valid ranges
x = min(max(0, x), SCREEN_WIDTH - 1) if x is not None else 0
y = min(max(0, y), SCREEN_HEIGHT - 1) if y is not None else 0
if DEBUG_MODE:
print ('DEBUG MODE, SETTING TIME STEP TO 0')
time_step = 0
if DEBUG_MODE_2:
if time_step > 1:
print ('DEBUG MODE_2, SETTING TIME STEP TO 0')
time_step = 0
inputs = {
'image_features': previous_frame.to(device),
'is_padding': torch.BoolTensor([time_step == 0]).to(device),
'x': torch.LongTensor([x]).unsqueeze(0).to(device),
'y': torch.LongTensor([y]).unsqueeze(0).to(device),
'is_leftclick': torch.BoolTensor([left_click]).unsqueeze(0).to(device),
'is_rightclick': torch.BoolTensor([right_click]).unsqueeze(0).to(device),
'key_events': torch.zeros(len(itos), dtype=torch.long).to(device)
}
for key in keys_down:
key = key.lower()
inputs['key_events'][stoi[key]] = 1
if hidden_states is not None:
inputs['hidden_states'] = hidden_states
if DEBUG_MODE:
print ('DEBUG MODE, REMOVING INPUTS')
if 'hidden_states' in inputs:
del inputs['hidden_states']
if DEBUG_MODE_2:
if time_step > 1:
print ('DEBUG MODE_2, REMOVING HIDDEN STATES')
if 'hidden_states' in inputs:
del inputs['hidden_states']
return inputs
@torch.no_grad()
async def process_frame(
model: LatentDiffusion,
inputs: Dict[str, torch.Tensor]
) -> Tuple[torch.Tensor, np.ndarray, Any, Dict[str, float]]:
"""Process a single frame through the model."""
# Run the heavy computation in a separate thread
loop = asyncio.get_running_loop()
return await loop.run_in_executor(
thread_executor,
lambda: _process_frame_sync(model, inputs)
)
def _process_frame_sync(model, inputs):
"""Synchronous version of process_frame that runs in a thread"""
timing = {}
# Temporal encoding
start = time.perf_counter()
output_from_rnn, hidden_states = model.temporal_encoder.forward_step(inputs)
timing['temporal_encoder'] = time.perf_counter() - start
# UNet sampling
start = time.perf_counter()
use_rnn = False
print (f"use_rnn: {use_rnn}")
if use_rnn:
sample_latent = output_from_rnn[:, :16]
else:
NUM_SAMPLING_STEPS = 8
if NUM_SAMPLING_STEPS >= 1000:
sample_latent = model.p_sample_loop(cond={'c_concat': output_from_rnn}, shape=[1, *LATENT_DIMS], return_intermediates=False, verbose=True)
else:
sampler = DDIMSampler(model)
sample_latent, _ = sampler.sample(
S=NUM_SAMPLING_STEPS,
conditioning={'c_concat': output_from_rnn},
batch_size=1,
shape=LATENT_DIMS,
verbose=False
)
timing['unet'] = time.perf_counter() - start
# Decoding
start = time.perf_counter()
sample = sample_latent * DATA_NORMALIZATION['std'].view(1, -1, 1, 1) + DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)
# Use time.sleep(10) here since it's in a separate thread
#time.sleep(10)
sample = model.decode_first_stage(sample)
sample = sample.squeeze(0).clamp(-1, 1)
timing['decode'] = time.perf_counter() - start
# Convert to image
sample_img = ((sample[:3].transpose(0,1).transpose(1,2).cpu().float().numpy() + 1) * 127.5).astype(np.uint8)
timing['total'] = sum(timing.values())
return sample_latent, sample_img, hidden_states, timing
def print_timing_stats(timing_info: Dict[str, float], frame_num: int):
"""Print timing statistics for a frame."""
print(f"\nFrame {frame_num} timing (seconds):")
for key, value in timing_info.items():
print(f" {key.title()}: {value:.4f}")
print(f" FPS: {1.0/timing_info['full_frame']:.2f}")
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
client_id = id(websocket) # Use a unique identifier for each connection
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
try:
previous_frame = padding_image
hidden_states = None
keys_down = set() # Initialize as an empty set
frame_num = -1
# Start timing for global FPS calculation
connection_start_time = time.perf_counter()
frame_count = 0
# Input queue management - use asyncio.Queue instead of a list
input_queue = asyncio.Queue()
is_processing = False
async def process_input(data):
nonlocal previous_frame, hidden_states, keys_down, frame_num, frame_count, is_processing
try:
process_start_time = time.perf_counter()
queue_size = input_queue.qsize()
print(f"[{process_start_time:.3f}] Starting to process input. Queue size before: {queue_size}")
frame_num += 1
frame_count += 1 # Increment total frame counter
# Calculate global FPS
total_elapsed = process_start_time - connection_start_time
global_fps = frame_count / total_elapsed if total_elapsed > 0 else 0
x = data.get("x")
y = data.get("y")
is_left_click = data.get("is_left_click")
is_right_click = data.get("is_right_click")
keys_down_list = data.get("keys_down", []) # Get as list
keys_up_list = data.get("keys_up", [])
print(f'[{time.perf_counter():.3f}] Processing: x: {x}, y: {y}, is_left_click: {is_left_click}, is_right_click: {is_right_click}, keys_down_list: {keys_down_list}, keys_up_list: {keys_up_list}')
# Update the set based on the received data
for key in keys_down_list:
keys_down.add(key)
for key in keys_up_list:
if key in keys_down: # Check if key exists to avoid KeyError
keys_down.remove(key)
if DEBUG_MODE:
print (f"DEBUG MODE, REMOVING HIDDEN STATES")
previous_frame = padding_image
if DEBUG_MODE_2:
if frame_num > 1:
print (f"DEBUG MODE_2, REMOVING HIDDEN STATES")
previous_frame = padding_image
inputs = prepare_model_inputs(previous_frame, hidden_states, x, y, is_right_click, is_left_click, list(keys_down), stoi, itos, frame_num)
print(f"[{time.perf_counter():.3f}] Starting model inference...")
previous_frame, sample_img, hidden_states, timing_info = await process_frame(model, inputs)
timing_info['full_frame'] = time.perf_counter() - process_start_time
print(f"[{time.perf_counter():.3f}] Model inference complete. Queue size now: {input_queue.qsize()}")
# Use the provided function to print timing statistics
print_timing_stats(timing_info, frame_num)
# Print global FPS measurement
print(f" Global FPS: {global_fps:.2f} (total: {frame_count} frames in {total_elapsed:.2f}s)")
img = Image.fromarray(sample_img)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Send the generated frame back to the client
print(f"[{time.perf_counter():.3f}] Sending image to client...")
await websocket.send_json({"image": img_str})
print(f"[{time.perf_counter():.3f}] Image sent. Queue size before next_input: {input_queue.qsize()}")
finally:
is_processing = False
print(f"[{time.perf_counter():.3f}] Processing complete. Queue size before checking next input: {input_queue.qsize()}")
# Check if we have more inputs to process after this one
if not input_queue.empty():
print(f"[{time.perf_counter():.3f}] Queue not empty, processing next input")
asyncio.create_task(process_next_input())
async def process_next_input():
nonlocal is_processing
current_time = time.perf_counter()
if input_queue.empty():
print(f"[{current_time:.3f}] No inputs to process. Queue is empty.")
is_processing = False
return
#if is_processing:
# print(f"[{current_time:.3f}] Already processing an input. Will check again later.")
# return
# Set is_processing to True before proceeding
is_processing = True
queue_size = input_queue.qsize()
print(f"[{current_time:.3f}] Processing next input. Queue size: {queue_size}")
try:
# Initialize variables to track progress
skipped = 0
latest_input = None
# Process the queue one item at a time
while not input_queue.empty():
current_input = await input_queue.get()
input_queue.task_done()
# Always update the latest input
latest_input = current_input
# Check if this is an interesting event
is_interesting = (current_input.get("is_left_click") or
current_input.get("is_right_click") or
(current_input.get("keys_down") and len(current_input.get("keys_down")) > 0) or
(current_input.get("keys_up") and len(current_input.get("keys_up")) > 0))
# Process immediately if interesting
if is_interesting:
print(f"[{current_time:.3f}] Found interesting input (skipped {skipped} events)")
await process_input(current_input) # AWAIT here instead of creating a task
is_processing = False
return
# Otherwise, continue to the next item
skipped += 1
# If this is the last item and no interesting inputs were found
if input_queue.empty():
print(f"[{current_time:.3f}] No interesting inputs, processing latest movement (skipped {skipped-1} events)")
await process_input(latest_input) # AWAIT here instead of creating a task
is_processing = False
return
except Exception as e:
print(f"[{current_time:.3f}] Error in process_next_input: {e}")
import traceback
traceback.print_exc()
is_processing = False # Make sure to reset on error
while True:
try:
# Receive user input
print(f"[{time.perf_counter():.3f}] Waiting for input... Queue size: {input_queue.qsize()}, is_processing: {is_processing}")
data = await websocket.receive_json()
receive_time = time.perf_counter()
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
# Add the input to our queue
await input_queue.put(data)
print(f"[{receive_time:.3f}] Received input. Queue size now: {input_queue.qsize()}")
# If we're not currently processing, start processing this input
if not is_processing:
print(f"[{receive_time:.3f}] Not currently processing, will call process_next_input()")
is_processing = True
asyncio.create_task(process_next_input()) # Create task but don't await it
else:
print(f"[{receive_time:.3f}] Currently processing, new input queued for later")
except asyncio.TimeoutError:
print("WebSocket connection timed out")
except WebSocketDisconnect:
print("WebSocket disconnected")
break
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
import traceback
traceback.print_exc()
finally:
# Print final FPS statistics when connection ends
if frame_num >= 0: # Only if we processed at least one frame
total_time = time.perf_counter() - connection_start_time
print(f"\nConnection {client_id} summary:")
print(f" Total frames processed: {frame_count}")
print(f" Total elapsed time: {total_time:.2f} seconds")
print(f" Average FPS: {frame_count/total_time:.2f}")
print(f"WebSocket connection closed: {client_id}")
|