Spaces:
Runtime error
Runtime error
File size: 25,632 Bytes
c54f817 8435838 c575e18 89b9813 8435838 89b9813 e363f86 e62ac65 e8de28c a677593 5a39c97 a2d3df0 b2e55f9 fc0bb07 b916cdf e858976 100405c 34e3236 f86d0d6 41df862 100405c b2e55f9 bb610d0 4c59739 89b9813 ed50e67 c26dd84 f5a1d14 c26dd84 34b3fb7 f201f64 552b730 f201f64 9df0e98 4013838 31c8397 9df0e98 c26dd84 9309dab 100405c e071c19 100405c a677593 0b874ec 100405c 7c553e5 c26dd84 4013838 c26dd84 e8de28c 497c0a8 ff78f6c b2e55f9 3208a74 b2e55f9 3208a74 b2e55f9 6ee36ca b2e55f9 c0820d5 6ee36ca fc0bb07 b2e55f9 6466ec0 9725fa4 e519ed0 6f44b29 e519ed0 6466ec0 b2e55f9 6466ec0 b2e55f9 f2aec00 3a81ef8 b2e55f9 e24540a e519ed0 6f44b29 e519ed0 8ce373e b2e55f9 fc0bb07 b2e55f9 fc0bb07 b2e55f9 4c59739 e0f0dd9 b21a8cb 4896769 b2e55f9 100405c fc0bb07 f0ce987 fc0bb07 b2e55f9 5754a1c eb2c07e c20bd13 eb2c07e b2e55f9 c575e18 8435838 b2e55f9 c0820d5 1679b8f 8435838 313bb52 8435838 b2e55f9 e858976 2da2765 6454884 274b099 fff0431 274b099 9766588 facfd46 6454884 e62ac65 0adb69d 2da2765 b2e55f9 e858976 0adb69d e858976 021f723 b2e55f9 021f723 b2e55f9 0adb69d 6454884 b2e55f9 dfecf95 9fce44e e519ed0 9fce44e 6f44b29 e519ed0 138b189 e519ed0 9309dab e519ed0 0adb69d eb2c07e 2da2765 eb2c07e e858976 9ced953 e858976 b2e55f9 e62ac65 0adb69d e62ac65 2da2765 c0820d5 6454884 2da2765 016f9e1 6454884 2da2765 6454884 0adb69d 2da2765 0adb69d d20b0fd 6454884 b115af2 0adb69d a2d7c6c 6466ec0 2da2765 0adb69d d20b0fd a2d7c6c d20b0fd 6454884 2da2765 6454884 0adb69d 6454884 274b099 9766588 facfd46 6454884 2da2765 6454884 0adb69d b953cf8 d20b0fd 0adb69d 8435838 e62ac65 8435838 e62ac65 c0820d5 0adb69d c575e18 8435838 1679b8f 0adb69d e62ac65 e858976 1679b8f c0820d5 fff0431 c0820d5 fff0431 c0820d5 fff0431 c0820d5 fff0431 c0820d5 fff0431 c0820d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from typing import List, Tuple
import numpy as np
from PIL import Image, ImageDraw
import base64
import io
import json
import asyncio
from utils import initialize_model, sample_frame
import torch
import os
import time
from typing import Any, Dict
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler
import concurrent.futures
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DEBUG_MODE = False
DEBUG_MODE_2 = False
NUM_MAX_FRAMES = 1
SCREEN_WIDTH = 512
SCREEN_HEIGHT = 384
NUM_SAMPLING_STEPS = 32
USE_RNN = False
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-384k"
MODEL_NAME = "yuntian-deng/computer-model-noss-forsure"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-2k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-10k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-54k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-unfreezernn-160k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-368k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-unfreezernn-198k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-674k"
MODEL_NAME = "yuntian-deng/computer-model-ss005-cont-lr2e5-computecanada-newnewd-freezernn-origunet-nospatial-online-74k"
print (f'setting: DEBUG_MODE: {DEBUG_MODE}, DEBUG_MODE_2: {DEBUG_MODE_2}, NUM_MAX_FRAMES: {NUM_MAX_FRAMES}, NUM_SAMPLING_STEPS: {NUM_SAMPLING_STEPS}, MODEL_NAME: {MODEL_NAME}')
with open('latent_stats.json', 'r') as f:
latent_stats = json.load(f)
DATA_NORMALIZATION = {'mean': torch.tensor(latent_stats['mean']).to(device), 'std': torch.tensor(latent_stats['std']).to(device)}
LATENT_DIMS = (16, SCREEN_HEIGHT // 8, SCREEN_WIDTH // 8)
# Initialize the model at the start of your application
#model = initialize_model("config_csllm.yaml", "yuntian-deng/computer-model")
#model = initialize_model("config_rnn.yaml", "yuntian-deng/computer-model")
#model = initialize_model("config_final_model.yaml", "yuntian-deng/computer-model-noss")
#model = initialize_model("config_final_model.yaml", "yuntian-deng/computer-model")
if 'origunet' in MODEL_NAME:
model = initialize_model("config_final_model_origunet_nospatial.yaml", MODEL_NAME)
else:
model = initialize_model("config_final_model.yaml", MODEL_NAME)
model = model.to(device)
#model = torch.compile(model)
padding_image = torch.zeros(*LATENT_DIMS).unsqueeze(0).to(device)
padding_image = (padding_image - DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)) / DATA_NORMALIZATION['std'].view(1, -1, 1, 1)
# Valid keyboard inputs
KEYS = ['\t', '\n', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(',
')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~',
'accept', 'add', 'alt', 'altleft', 'altright', 'apps', 'backspace',
'browserback', 'browserfavorites', 'browserforward', 'browserhome',
'browserrefresh', 'browsersearch', 'browserstop', 'capslock', 'clear',
'convert', 'ctrl', 'ctrlleft', 'ctrlright', 'decimal', 'del', 'delete',
'divide', 'down', 'end', 'enter', 'esc', 'escape', 'execute', 'f1', 'f10',
'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20',
'f21', 'f22', 'f23', 'f24', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9',
'final', 'fn', 'hanguel', 'hangul', 'hanja', 'help', 'home', 'insert', 'junja',
'kana', 'kanji', 'launchapp1', 'launchapp2', 'launchmail',
'launchmediaselect', 'left', 'modechange', 'multiply', 'nexttrack',
'nonconvert', 'num0', 'num1', 'num2', 'num3', 'num4', 'num5', 'num6',
'num7', 'num8', 'num9', 'numlock', 'pagedown', 'pageup', 'pause', 'pgdn',
'pgup', 'playpause', 'prevtrack', 'print', 'printscreen', 'prntscrn',
'prtsc', 'prtscr', 'return', 'right', 'scrolllock', 'select', 'separator',
'shift', 'shiftleft', 'shiftright', 'sleep', 'space', 'stop', 'subtract', 'tab',
'up', 'volumedown', 'volumemute', 'volumeup', 'win', 'winleft', 'winright', 'yen',
'command', 'option', 'optionleft', 'optionright']
INVALID_KEYS = ['f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f20',
'f21', 'f22', 'f23', 'f24', 'select', 'separator', 'execute']
VALID_KEYS = [key for key in KEYS if key not in INVALID_KEYS]
itos = VALID_KEYS
stoi = {key: i for i, key in enumerate(itos)}
app = FastAPI()
# Mount the static directory to serve HTML, JavaScript, and CSS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Add this at the top with other global variables
connection_counter = 0
# Create a thread pool executor
thread_executor = concurrent.futures.ThreadPoolExecutor(max_workers=1)
def prepare_model_inputs(
previous_frame: torch.Tensor,
hidden_states: Any,
x: int,
y: int,
right_click: bool,
left_click: bool,
keys_down: List[str],
stoi: Dict[str, int],
itos: List[str],
time_step: int
) -> Dict[str, torch.Tensor]:
"""Prepare inputs for the model."""
# Clamp coordinates to valid ranges
x = min(max(0, x), SCREEN_WIDTH - 1) if x is not None else 0
y = min(max(0, y), SCREEN_HEIGHT - 1) if y is not None else 0
if DEBUG_MODE:
print ('DEBUG MODE, SETTING TIME STEP TO 0')
time_step = 0
if DEBUG_MODE_2:
if time_step > NUM_MAX_FRAMES-1:
print ('DEBUG MODE_2, SETTING TIME STEP TO 0')
time_step = 0
inputs = {
'image_features': previous_frame.to(device),
'is_padding': torch.BoolTensor([time_step == 0]).to(device),
'x': torch.LongTensor([x]).unsqueeze(0).to(device),
'y': torch.LongTensor([y]).unsqueeze(0).to(device),
'is_leftclick': torch.BoolTensor([left_click]).unsqueeze(0).to(device),
'is_rightclick': torch.BoolTensor([right_click]).unsqueeze(0).to(device),
'key_events': torch.zeros(len(itos), dtype=torch.long).to(device)
}
for key in keys_down:
key = key.lower()
if key in stoi:
inputs['key_events'][stoi[key]] = 1
else:
print (f'Key {key} not found in stoi')
if hidden_states is not None:
inputs['hidden_states'] = hidden_states
if DEBUG_MODE:
print ('DEBUG MODE, REMOVING INPUTS')
if 'hidden_states' in inputs:
del inputs['hidden_states']
if DEBUG_MODE_2:
if time_step > NUM_MAX_FRAMES-1:
print ('DEBUG MODE_2, REMOVING HIDDEN STATES')
if 'hidden_states' in inputs:
del inputs['hidden_states']
print (f'Time step: {time_step}')
return inputs
@torch.no_grad()
async def process_frame(
model: LatentDiffusion,
inputs: Dict[str, torch.Tensor]
) -> Tuple[torch.Tensor, np.ndarray, Any, Dict[str, float]]:
"""Process a single frame through the model."""
# Run the heavy computation in a separate thread
loop = asyncio.get_running_loop()
return await loop.run_in_executor(
thread_executor,
lambda: _process_frame_sync(model, inputs)
)
def _process_frame_sync(model, inputs):
"""Synchronous version of process_frame that runs in a thread"""
timing = {}
# Temporal encoding
start = time.perf_counter()
output_from_rnn, hidden_states = model.temporal_encoder.forward_step(inputs)
timing['temporal_encoder'] = time.perf_counter() - start
# UNet sampling
start = time.perf_counter()
print (f"USE_RNN: {USE_RNN}, NUM_SAMPLING_STEPS: {NUM_SAMPLING_STEPS}")
if USE_RNN:
sample_latent = output_from_rnn[:, :16]
else:
#NUM_SAMPLING_STEPS = 8
if NUM_SAMPLING_STEPS >= 1000:
sample_latent = model.p_sample_loop(cond={'c_concat': output_from_rnn}, shape=[1, *LATENT_DIMS], return_intermediates=False, verbose=True)
else:
sampler = DDIMSampler(model)
sample_latent, _ = sampler.sample(
S=NUM_SAMPLING_STEPS,
conditioning={'c_concat': output_from_rnn},
batch_size=1,
shape=LATENT_DIMS,
verbose=False
)
timing['unet'] = time.perf_counter() - start
# Decoding
start = time.perf_counter()
sample = sample_latent * DATA_NORMALIZATION['std'].view(1, -1, 1, 1) + DATA_NORMALIZATION['mean'].view(1, -1, 1, 1)
# Use time.sleep(10) here since it's in a separate thread
#time.sleep(10)
sample = model.decode_first_stage(sample)
sample = sample.squeeze(0).clamp(-1, 1)
timing['decode'] = time.perf_counter() - start
# Convert to image
sample_img = ((sample[:3].transpose(0,1).transpose(1,2).cpu().float().numpy() + 1) * 127.5).astype(np.uint8)
timing['total'] = sum(timing.values())
return sample_latent, sample_img, hidden_states, timing
def print_timing_stats(timing_info: Dict[str, float], frame_num: int):
"""Print timing statistics for a frame."""
print(f"\nFrame {frame_num} timing (seconds):")
for key, value in timing_info.items():
print(f" {key.title()}: {value:.4f}")
print(f" FPS: {1.0/timing_info['full_frame']:.2f}")
# Serve the index.html file at the root URL
@app.get("/")
async def get():
return HTMLResponse(open("static/index.html").read())
# WebSocket endpoint for continuous user interaction
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
global connection_counter
connection_counter += 1
client_id = f"{int(time.time())}_{connection_counter}"
print(f"New WebSocket connection: {client_id}")
await websocket.accept()
try:
previous_frame = padding_image
hidden_states = None
keys_down = set() # Initialize as an empty set
frame_num = -1
# Start timing for global FPS calculation
connection_start_time = time.perf_counter()
frame_count = 0
# Input queue management - use asyncio.Queue instead of a list
input_queue = asyncio.Queue()
is_processing = False
# Add a function to reset the simulation
async def reset_simulation():
nonlocal previous_frame, hidden_states, keys_down, frame_num, is_processing, input_queue
# Log the reset action
log_interaction(
client_id,
{"type": "reset"},
is_end_of_session=False,
is_reset=True # Add this parameter to the log_interaction function
)
# Clear the input queue
while not input_queue.empty():
try:
input_queue.get_nowait()
input_queue.task_done()
except asyncio.QueueEmpty:
break
# Reset all state variables
previous_frame = padding_image
hidden_states = None
keys_down = set()
frame_num = -1
is_processing = False
print(f"[{time.perf_counter():.3f}] Simulation reset to initial state")
# Send confirmation to client
await websocket.send_json({"type": "reset_confirmed"})
# Add a function to update sampling steps
async def update_sampling_steps(steps):
global NUM_SAMPLING_STEPS
# Validate the input
if steps < 1:
print(f"[{time.perf_counter():.3f}] Invalid sampling steps value: {steps}")
await websocket.send_json({"type": "error", "message": "Invalid sampling steps value"})
return
# Update the global variable
old_steps = NUM_SAMPLING_STEPS
NUM_SAMPLING_STEPS = steps
print(f"[{time.perf_counter():.3f}] Updated NUM_SAMPLING_STEPS from {old_steps} to {steps}")
# Send confirmation to client
await websocket.send_json({"type": "steps_updated", "steps": steps})
# Add a function to update USE_RNN setting
async def update_use_rnn(use_rnn):
global USE_RNN
# Update the global variable
old_setting = USE_RNN
USE_RNN = use_rnn
print(f"[{time.perf_counter():.3f}] Updated USE_RNN from {old_setting} to {use_rnn}")
# Send confirmation to client
await websocket.send_json({"type": "rnn_updated", "use_rnn": use_rnn})
async def process_input(data):
nonlocal previous_frame, hidden_states, keys_down, frame_num, frame_count, is_processing
try:
process_start_time = time.perf_counter()
queue_size = input_queue.qsize()
print(f"[{process_start_time:.3f}] Starting to process input. Queue size before: {queue_size}")
frame_num += 1
frame_count += 1 # Increment total frame counter
# Calculate global FPS
total_elapsed = process_start_time - connection_start_time
global_fps = frame_count / total_elapsed if total_elapsed > 0 else 0
# change x and y to be between 0 and width/height-1 in data
data['x'] = max(0, min(data['x'], SCREEN_WIDTH - 1))
data['y'] = max(0, min(data['y'], SCREEN_HEIGHT - 1))
x = data.get("x")
y = data.get("y")
assert 0 <= x < SCREEN_WIDTH, f"x: {x} is out of range"
assert 0 <= y < SCREEN_HEIGHT, f"y: {y} is out of range"
is_left_click = data.get("is_left_click")
is_right_click = data.get("is_right_click")
keys_down_list = data.get("keys_down", []) # Get as list
keys_up_list = data.get("keys_up", [])
print(f'[{time.perf_counter():.3f}] Processing: x: {x}, y: {y}, is_left_click: {is_left_click}, is_right_click: {is_right_click}, keys_down_list: {keys_down_list}, keys_up_list: {keys_up_list}')
# Update the set based on the received data
for key in keys_down_list:
keys_down.add(key)
for key in keys_up_list:
if key in keys_down: # Check if key exists to avoid KeyError
keys_down.remove(key)
if DEBUG_MODE:
print (f"DEBUG MODE, REMOVING HIDDEN STATES")
previous_frame = padding_image
if DEBUG_MODE_2:
print (f'dsfdasdf frame_num: {frame_num}')
if frame_num > NUM_MAX_FRAMES-1:
print (f"DEBUG MODE_2, REMOVING HIDDEN STATES")
previous_frame = padding_image
frame_num = 0
inputs = prepare_model_inputs(previous_frame, hidden_states, x, y, is_right_click, is_left_click, list(keys_down), stoi, itos, frame_num)
print(f"[{time.perf_counter():.3f}] Starting model inference...")
previous_frame, sample_img, hidden_states, timing_info = await process_frame(model, inputs)
print (f'aaa setting: DEBUG_MODE: {DEBUG_MODE}, DEBUG_MODE_2: {DEBUG_MODE_2}, NUM_MAX_FRAMES: {NUM_MAX_FRAMES}, NUM_SAMPLING_STEPS: {NUM_SAMPLING_STEPS}')
timing_info['full_frame'] = time.perf_counter() - process_start_time
print(f"[{time.perf_counter():.3f}] Model inference complete. Queue size now: {input_queue.qsize()}")
# Use the provided function to print timing statistics
print_timing_stats(timing_info, frame_num)
# Print global FPS measurement
print(f" Global FPS: {global_fps:.2f} (total: {frame_count} frames in {total_elapsed:.2f}s)")
img = Image.fromarray(sample_img)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
# Send the generated frame back to the client
print(f"[{time.perf_counter():.3f}] Sending image to client...")
await websocket.send_json({"image": img_str})
print(f"[{time.perf_counter():.3f}] Image sent. Queue size before next_input: {input_queue.qsize()}")
# Log the input
log_interaction(client_id, data, generated_frame=sample_img)
finally:
is_processing = False
print(f"[{time.perf_counter():.3f}] Processing complete. Queue size before checking next input: {input_queue.qsize()}")
# Check if we have more inputs to process after this one
if not input_queue.empty():
print(f"[{time.perf_counter():.3f}] Queue not empty, processing next input")
asyncio.create_task(process_next_input())
async def process_next_input():
nonlocal is_processing
current_time = time.perf_counter()
if input_queue.empty():
print(f"[{current_time:.3f}] No inputs to process. Queue is empty.")
is_processing = False
return
#if is_processing:
# print(f"[{current_time:.3f}] Already processing an input. Will check again later.")
# return
# Set is_processing to True before proceeding
is_processing = True
queue_size = input_queue.qsize()
print(f"[{current_time:.3f}] Processing next input. Queue size: {queue_size}")
try:
# Initialize variables to track progress
skipped = 0
latest_input = None
# Process the queue one item at a time
while not input_queue.empty():
current_input = await input_queue.get()
input_queue.task_done()
# Always update the latest input
latest_input = current_input
# Check if this is an interesting event
is_interesting = (current_input.get("is_left_click") or
current_input.get("is_right_click") or
(current_input.get("keys_down") and len(current_input.get("keys_down")) > 0) or
(current_input.get("keys_up") and len(current_input.get("keys_up")) > 0))
# Process immediately if interesting
if is_interesting:
print(f"[{current_time:.3f}] Found interesting input (skipped {skipped} events)")
await process_input(current_input) # AWAIT here instead of creating a task
is_processing = False
return
# Otherwise, continue to the next item
skipped += 1
# If this is the last item and no interesting inputs were found
if input_queue.empty():
print(f"[{current_time:.3f}] No interesting inputs, processing latest movement (skipped {skipped-1} events)")
await process_input(latest_input) # AWAIT here instead of creating a task
is_processing = False
return
except Exception as e:
print(f"[{current_time:.3f}] Error in process_next_input: {e}")
import traceback
traceback.print_exc()
is_processing = False # Make sure to reset on error
while True:
try:
# Receive user input
print(f"[{time.perf_counter():.3f}] Waiting for input... Queue size: {input_queue.qsize()}, is_processing: {is_processing}")
data = await websocket.receive_json()
receive_time = time.perf_counter()
if data.get("type") == "heartbeat":
await websocket.send_json({"type": "heartbeat_response"})
continue
# Handle reset command
if data.get("type") == "reset":
print(f"[{receive_time:.3f}] Received reset command")
await reset_simulation()
continue
# Handle sampling steps update
if data.get("type") == "update_sampling_steps":
print(f"[{receive_time:.3f}] Received request to update sampling steps")
await update_sampling_steps(data.get("steps", 32))
continue
# Handle USE_RNN update
if data.get("type") == "update_use_rnn":
print(f"[{receive_time:.3f}] Received request to update USE_RNN")
await update_use_rnn(data.get("use_rnn", False))
continue
# Add the input to our queue
await input_queue.put(data)
print(f"[{receive_time:.3f}] Received input. Queue size now: {input_queue.qsize()}")
# If we're not currently processing, start processing this input
if not is_processing:
print(f"[{receive_time:.3f}] Not currently processing, will call process_next_input()")
is_processing = True
asyncio.create_task(process_next_input()) # Create task but don't await it
else:
print(f"[{receive_time:.3f}] Currently processing, new input queued for later")
except asyncio.TimeoutError:
print("WebSocket connection timed out")
except WebSocketDisconnect:
# Log final EOS entry
log_interaction(client_id, {}, is_end_of_session=True)
print(f"WebSocket disconnected: {client_id}")
break
except Exception as e:
print(f"Error in WebSocket connection {client_id}: {e}")
import traceback
traceback.print_exc()
finally:
# Print final FPS statistics when connection ends
if frame_num >= 0: # Only if we processed at least one frame
total_time = time.perf_counter() - connection_start_time
print(f"\nConnection {client_id} summary:")
print(f" Total frames processed: {frame_count}")
print(f" Total elapsed time: {total_time:.2f} seconds")
print(f" Average FPS: {frame_count/total_time:.2f}")
print(f"WebSocket connection closed: {client_id}")
def log_interaction(client_id, data, generated_frame=None, is_end_of_session=False, is_reset=False):
"""Log user interaction and optionally the generated frame."""
timestamp = time.time()
# Create directory structure if it doesn't exist
os.makedirs("interaction_logs", exist_ok=True)
# Structure the log entry
log_entry = {
"timestamp": timestamp,
"client_id": client_id,
"is_eos": is_end_of_session,
"is_reset": is_reset
}
# Include type if present (for reset, etc.)
if data.get("type"):
log_entry["type"] = data.get("type")
# Only include input data if this isn't just a control message
if not is_end_of_session and not is_reset:
log_entry["inputs"] = {
"x": data.get("x"),
"y": data.get("y"),
"is_left_click": data.get("is_left_click"),
"is_right_click": data.get("is_right_click"),
"keys_down": data.get("keys_down", []),
"keys_up": data.get("keys_up", [])
}
else:
# For EOS/reset records, just include minimal info
log_entry["inputs"] = None
# Save to a file (one file per session)
session_file = f"interaction_logs/session_{client_id}.jsonl"
with open(session_file, "a") as f:
f.write(json.dumps(log_entry) + "\n")
# Optionally save the frame if provided
if generated_frame is not None and not is_end_of_session and not is_reset:
frame_dir = f"interaction_logs/frames_{client_id}"
os.makedirs(frame_dir, exist_ok=True)
frame_file = f"{frame_dir}/{timestamp:.6f}.png"
# Save the frame as PNG
Image.fromarray(generated_frame).save(frame_file)
|