Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,587 Bytes
51a1e24 0471b1e 51a1e24 0471b1e acea92d 1b38abc 0471b1e 51a1e24 66f5ac6 7d59b84 51a1e24 66f5ac6 7d59b84 22e57cc 51a1e24 0471b1e 51a1e24 2f494b7 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 2f494b7 51a1e24 0471b1e 51a1e24 cc7838f 51a1e24 0471b1e 51a1e24 c239fc5 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 9332ef4 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e c239fc5 0471b1e c239fc5 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 0471b1e 51a1e24 c239fc5 51a1e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
import torch
import math
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
pipe.transformer.__class__ = QwenImageTransformer2DModel
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=120)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=4.0,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}")
# Generate the image
image = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
).images[0]
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
gr.HTML('<h1 style="text-align: center;margin-left: 80px;color: #5b47d1;font-style: italic;">Edit</h1>', elem_id="edit_text")
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
result = gr.Image(label="Result", show_label=False, type="pil")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50,
)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
# negative_prompt is no longer an input from the UI
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |