|
--- |
|
base_model: unsloth/qwen2-7b-instruct-bnb-4bit |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- qwen2 |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- LogicNet-Subnet/Aristole |
|
--- |
|
|
|
# Overview |
|
|
|
This model is a fine-tuned version of **Qwen/Qwen2-7B-Instruct** on the **LogicNet-Subnet/Aristole** dataset. It achieves the following benchmarks on the evaluation set: |
|
|
|
- **Reliability**: 98.53% |
|
- **Correctness**: 0.9739 |
|
|
|
### Key Details: |
|
- **Developed by**: LogicNet Team |
|
- **License**: Apache 2.0 |
|
- **Base Model**: [unsloth/qwen2-7b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-instruct-bnb-4bit) |
|
|
|
This fine-tuned Qwen2 model was trained **2x faster** using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's **TRL** library. |
|
|
|
--- |
|
|
|
## Model and Training Hyperparameters |
|
|
|
### Model Configuration: |
|
- **dtype**: `torch.bfloat16` |
|
- **load_in_4bit**: `True` |
|
|
|
### Prompt Configuration: |
|
- **max_seq_length**: `2048` |
|
|
|
### PEFT Model Parameters: |
|
- **r**: `16` |
|
- **lora_alpha**: `16` |
|
- **lora_dropout**: `0` |
|
- **bias**: `"none"` |
|
- **use_gradient_checkpointing**: `"unsloth"` |
|
- **random_state**: `3407` |
|
- **use_rslora**: `False` |
|
- **loftq_config**: `None` |
|
|
|
### Training Arguments: |
|
- **per_device_train_batch_size**: `2` |
|
- **gradient_accumulation_steps**: `4` |
|
- **warmup_steps**: `5` |
|
- **max_steps**: `70` |
|
- **learning_rate**: `2e-4` |
|
- **fp16**: `not is_bfloat16_supported()` |
|
- **bf16**: `is_bfloat16_supported()` |
|
- **logging_steps**: `1` |
|
- **optim**: `"adamw_8bit"` |
|
- **weight_decay**: `0.01` |
|
- **lr_scheduler_type**: `"linear"` |
|
- **seed**: `3407` |
|
- **output_dir**: `"outputs"` |
|
|
|
--- |
|
|
|
## Training Results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.4764 | 1.0 | 1150 | 1.1850 | |
|
| 1.3102 | 2.0 | 2050 | 1.1091 | |
|
| 1.1571 | 3.0 | 3100 | 1.0813 | |
|
| 1.0922 | 4.0 | 3970 | 0.9906 | |
|
| 0.9809 | 5.0 | 5010 | 0.9021 | |
|
|
|
|
|
## How To Use |
|
You can easily use the model for inference as shown below: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Load the model |
|
tokenizer = AutoTokenizer.from_pretrained("LogicNet-Subnet/LogicNet-7B") |
|
model = AutoModelForCausalLM.from_pretrained("LogicNet-Subnet/LogicNet-7B") |
|
|
|
# Prepare the input |
|
inputs = tokenizer( |
|
[ |
|
"what is odd which is bigger than zero?" # Example prompt |
|
], |
|
return_tensors="pt" |
|
).to("cuda") |
|
|
|
# Generate an output |
|
outputs = model.generate(**inputs) |
|
|
|
# Decode and print the result |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |