code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def linux_find_processes(self, names): """But what if a blacklisted process spawns after we call this? We'd have to call this every time we do anything. """ pids = [] proc_pid_dirs = glob.glob('/proc/[0-9]*/') comm_file = '' for proc_pid_dir in proc_pid_dirs: comm_file = os.path.join(proc_pid_dir, 'comm') try: with open(comm_file, 'r') as f: comm = f.read().strip() if comm in names: pid = int(proc_pid_dir.split('/')[-2], 10) pids.append(pid) except IOError as e: # Silently ignore pass return pids
But what if a blacklisted process spawns after we call this? We'd have to call this every time we do anything.
linux_find_processes
python
mandiant/flare-fakenet-ng
fakenet/diverters/linutil.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linutil.py
Apache-2.0
def _linux_find_sock_by_endpoint_unsafe(self, ipver, proto_name, ip, port, local=True): """Search /proc/net/tcp for a socket whose local (field 1, zero-based) or remote (field 2) address matches ip:port and return the corresponding inode (field 9). Fields referenced above are zero-based. Example contents of /proc/net/tcp (wrapped and double-spaced) sl local_address rem_address st tx_queue rx_queue tr tm->when retrnsmt uid timeout inode 0: 0100007F:0277 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 53320 1 0000000000000000 100 0 0 10 0 1: 00000000:021A 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 11125 1 0000000000000000 100 0 0 10 0 2: 00000000:1A0B 00000000:0000 0A 00000000:00000000 00:00000000 00000000 39 0 11175 1 0000000000000000 100 0 0 10 0 3: 0100007F:8071 0100007F:1F90 01 00000000:00000000 00:00000000 00000000 1000 0 58661 1 0000000000000000 20 0 0 10 -1 4: 0100007F:1F90 0100007F:8071 01 00000000:00000000 00:00000000 00000000 1000 0 58640 1 0000000000000000 20 4 30 10 -1 Returns inode """ INODE_COLUMN = 9 # IPv6 untested suffix = '6' if (ipver == 6) else '' procfs_path = '/proc/net/' + proto_name.lower() + suffix inode = None port_tag = self._port_for_proc_net_tcp(port) match_column = 1 if local else 2 local_column = 1 remote_column = 2 try: with open(procfs_path) as f: f.readline() # Discard header while True: line = f.readline() if not len(line): break fields = line.split() # Local matches can be made based on port only if local and fields[local_column].endswith(port_tag): inode = int(fields[INODE_COLUMN], 10) self.pdebug(DPROCFS, 'MATCHING CONNECTION: %s' % (line.strip())) break # Untested: Remote matches must be more specific and # include the IP address. Hence, an "endpoint tag" is # constructed to match what would appear in # /proc/net/{tcp,udp}{,6} elif not local: endpoint_tag = self._ip_port_for_proc_net_tcp(ipver, ip, port) if fields[remote_column] == endpoint_tag: inode = int(fields[INODE_COLUMN], 10) self.pdebug(DPROCFS, 'MATCHING CONNECTION: %s' % (line.strip())) except IOError as e: self.logger.error('No such protocol/IP ver (%s) or error: %s' % (procfs_path, str(e))) return inode
Search /proc/net/tcp for a socket whose local (field 1, zero-based) or remote (field 2) address matches ip:port and return the corresponding inode (field 9). Fields referenced above are zero-based. Example contents of /proc/net/tcp (wrapped and double-spaced) sl local_address rem_address st tx_queue rx_queue tr tm->when retrnsmt uid timeout inode 0: 0100007F:0277 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 53320 1 0000000000000000 100 0 0 10 0 1: 00000000:021A 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 11125 1 0000000000000000 100 0 0 10 0 2: 00000000:1A0B 00000000:0000 0A 00000000:00000000 00:00000000 00000000 39 0 11175 1 0000000000000000 100 0 0 10 0 3: 0100007F:8071 0100007F:1F90 01 00000000:00000000 00:00000000 00000000 1000 0 58661 1 0000000000000000 20 0 0 10 -1 4: 0100007F:1F90 0100007F:8071 01 00000000:00000000 00:00000000 00000000 1000 0 58640 1 0000000000000000 20 4 30 10 -1 Returns inode
_linux_find_sock_by_endpoint_unsafe
python
mandiant/flare-fakenet-ng
fakenet/diverters/linutil.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linutil.py
Apache-2.0
def linux_get_pid_comm_by_endpoint(self, ipver, proto_name, ip, port): """Obtain a pid and executable name associated with an endpoint. NOTE: procfs does not allow us to answer questions like "who just called send()?"; only questions like "who owns a socket associated with this local port?" Since fork() etc. can result in multiple ownership, the real answer may be that multiple processes actually own the socket. This implementation stops at the first match and hence may not give a perfectly accurate answer in those cases. In practice, this may be adequate, or it may need to be revisited to return a list of (pid,comm) tuples to take into account cases where multiple processes have the same inode open. """ pid, comm = None, None # 1. Find the inode number associated with this socket inode = self.linux_find_sock_by_endpoint(ipver, proto_name, ip, port) if inode: # 2. Search for a /proc/<pid>/fd/<fd> that has this inode open. proc_fds_glob = '/proc/[0-9]*/fd/*' proc_fd_paths = glob.glob(proc_fds_glob) for fd_path in proc_fd_paths: candidate = self._linux_get_sk_ino_for_fd_file(fd_path) if candidate and (candidate == inode): # 3. Record the pid and executable name try: pid = int(fd_path.split('/')[-3], 10) comm = self.linux_get_comm_by_pid(pid) # Not interested in e.g. except ValueError: pass return pid, comm
Obtain a pid and executable name associated with an endpoint. NOTE: procfs does not allow us to answer questions like "who just called send()?"; only questions like "who owns a socket associated with this local port?" Since fork() etc. can result in multiple ownership, the real answer may be that multiple processes actually own the socket. This implementation stops at the first match and hence may not give a perfectly accurate answer in those cases. In practice, this may be adequate, or it may need to be revisited to return a list of (pid,comm) tuples to take into account cases where multiple processes have the same inode open.
linux_get_pid_comm_by_endpoint
python
mandiant/flare-fakenet-ng
fakenet/diverters/linutil.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linutil.py
Apache-2.0
def handle_nonlocal(self, nfqpkt): """Handle comms sent to IP addresses that are not bound to any adapter. This allows analysts to observe when malware is communicating with hard-coded IP addresses in MultiHost mode. """ try: pkt = LinuxPacketCtx('handle_nonlocal', nfqpkt) self.handle_pkt(pkt, self.nonlocal_net_cbs, []) if pkt.mangled: nfqpkt.set_payload(pkt.octets) # Catch-all exceptions are usually bad practice, agreed, but # python-netfilterqueue has a catch-all that will not print enough # information to troubleshoot with, so if there is going to be a # catch-all exception handler anyway, it might as well be mine so that # I can print out the stack trace before I lose access to this valuable # debugging information. except Exception: self.logger.error('Exception: %s' % (traceback.format_exc())) raise nfqpkt.accept()
Handle comms sent to IP addresses that are not bound to any adapter. This allows analysts to observe when malware is communicating with hard-coded IP addresses in MultiHost mode.
handle_nonlocal
python
mandiant/flare-fakenet-ng
fakenet/diverters/linux.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linux.py
Apache-2.0
def handle_incoming(self, nfqpkt): """Incoming packet hook. Specific to incoming packets: 5.) If SingleHost mode: a.) Conditionally fix up source IPs to support IP forwarding for otherwise foreign-destined packets 4.) Conditionally mangle destination ports to implement port forwarding for unbound ports to point to the default listener No return value. """ try: pkt = LinuxPacketCtx('handle_incoming', nfqpkt) self.handle_pkt(pkt, self.incoming_net_cbs, self.incoming_trans_cbs) if pkt.mangled: nfqpkt.set_payload(pkt.octets) except Exception: self.logger.error('Exception: %s' % (traceback.format_exc())) raise nfqpkt.accept()
Incoming packet hook. Specific to incoming packets: 5.) If SingleHost mode: a.) Conditionally fix up source IPs to support IP forwarding for otherwise foreign-destined packets 4.) Conditionally mangle destination ports to implement port forwarding for unbound ports to point to the default listener No return value.
handle_incoming
python
mandiant/flare-fakenet-ng
fakenet/diverters/linux.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linux.py
Apache-2.0
def handle_outgoing(self, nfqpkt): """Outgoing packet hook. Specific to outgoing packets: 4.) If SingleHost mode: a.) Conditionally log packets destined for foreign IP addresses (the corresponding check for MultiHost mode is called by handle_nonlocal()) b.) Conditionally mangle destination IPs for otherwise foreign- destined packets to implement IP forwarding 5.) Conditionally fix up mangled source ports to support port forwarding No return value. """ try: pkt = LinuxPacketCtx('handle_outgoing', nfqpkt) self.handle_pkt(pkt, self.outgoing_net_cbs, self.outgoing_trans_cbs) if pkt.mangled: nfqpkt.set_payload(pkt.octets) except Exception: self.logger.error('Exception: %s' % (traceback.format_exc())) raise nfqpkt.accept()
Outgoing packet hook. Specific to outgoing packets: 4.) If SingleHost mode: a.) Conditionally log packets destined for foreign IP addresses (the corresponding check for MultiHost mode is called by handle_nonlocal()) b.) Conditionally mangle destination IPs for otherwise foreign- destined packets to implement IP forwarding 5.) Conditionally fix up mangled source ports to support port forwarding No return value.
handle_outgoing
python
mandiant/flare-fakenet-ng
fakenet/diverters/linux.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linux.py
Apache-2.0
def check_log_nonlocal(self, crit, pkt): """Conditionally log packets having a foreign destination. Each foreign destination will be logged only once if the Linux Diverter's internal log_nonlocal_only_once flag is set. Otherwise, any foreign destination IP address will be logged each time it is observed. """ if pkt.dst_ip not in self.ip_addrs[pkt.ipver]: self.pdebug(DNONLOC, 'Nonlocal %s' % pkt.hdrToStr()) first_sighting = (pkt.dst_ip not in self.nonlocal_ips_already_seen) if first_sighting: self.nonlocal_ips_already_seen.append(pkt.dst_ip) # Log when a new IP is observed OR if we are not restricted to # logging only the first occurrence of a given nonlocal IP. if first_sighting or (not self.log_nonlocal_only_once): self.logger.info( 'Received nonlocal IPv%d datagram destined for %s' % (pkt.ipver, pkt.dst_ip)) return None
Conditionally log packets having a foreign destination. Each foreign destination will be logged only once if the Linux Diverter's internal log_nonlocal_only_once flag is set. Otherwise, any foreign destination IP address will be logged each time it is observed.
check_log_nonlocal
python
mandiant/flare-fakenet-ng
fakenet/diverters/linux.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/linux.py
Apache-2.0
def redirIcmpIpUnconditionally(self, crit, pkt): """Redirect ICMP to loopback or external IP if necessary. On Windows, we can't conveniently use an iptables REDIRECT rule to get ICMP packets sent back home for free, so here is some code. """ if (pkt.is_icmp and pkt.icmp_id not in self.blacklist_ids["ICMP"] and pkt.dst_ip not in [self.loopback_ip, self.external_ip]): self.logger.info('Modifying ICMP packet (type %d, code %d):' % (pkt.icmp_type, pkt.icmp_code)) self.logger.info(' from: %s' % (pkt.hdrToStr())) pkt.dst_ip = self.getNewDestinationIp(pkt.src_ip) self.logger.info(' to: %s' % (pkt.hdrToStr())) return pkt
Redirect ICMP to loopback or external IP if necessary. On Windows, we can't conveniently use an iptables REDIRECT rule to get ICMP packets sent back home for free, so here is some code.
redirIcmpIpUnconditionally
python
mandiant/flare-fakenet-ng
fakenet/diverters/windows.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/windows.py
Apache-2.0
def fix_gateway(self): """Check if there is a gateway configured on any of the Ethernet interfaces. If that's not the case, then locate configured IP address and set a gateway automatically. This is necessary for VMWare Host-Only DHCP server which leaves default gateway empty. """ fixed = False for adapter in self.get_adapters_info(): # Look for a DHCP interface with a set IP address but no gateway # (Host-Only) if self.check_ipaddresses_interface(adapter) and adapter.DhcpEnabled: (ip_address, netmask) = next(self.get_ipaddresses_netmask(adapter)) # set the gateway ip address to be that of the virtual network adapter # https://docs.vmware.com/en/VMware-Workstation-Pro/17/com.vmware.ws.using.doc/GUID-9831F49E-1A83-4881-BB8A-D4573F2C6D91.html gw_address = ip_address[:ip_address.rfind('.')] + '.1' interface_name = self.get_adapter_friendlyname(adapter.Index) # Don't set gateway on loopback interfaces (e.g. Npcap Loopback # Adapter) if not "loopback" in interface_name.lower(): self.adapters_dhcp_restore.append(interface_name) cmd_set_gw = "netsh interface ip set address name=\"%s\" static %s %s %s" % ( interface_name, ip_address, netmask, gw_address) # Configure gateway try: subprocess.check_call(cmd_set_gw, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: self.logger.error(" Failed to set gateway %s on interface %s." % (gw_address, interface_name)) else: self.logger.info(" Setting gateway %s on interface %s" % (gw_address, interface_name)) fixed = True return fixed
Check if there is a gateway configured on any of the Ethernet interfaces. If that's not the case, then locate configured IP address and set a gateway automatically. This is necessary for VMWare Host-Only DHCP server which leaves default gateway empty.
fix_gateway
python
mandiant/flare-fakenet-ng
fakenet/diverters/winutil.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/winutil.py
Apache-2.0
def fix_dns(self): """Check if there is a DNS server on any of the Ethernet interfaces. If that's not the case, then locate configured IP address and set a DNS server automatically. """ fixed = False for adapter in self.get_adapters_info(): if self.check_ipaddresses_interface(adapter): ip_address = next(self.get_ipaddresses(adapter)) dns_address = ip_address interface_name = self.get_adapter_friendlyname(adapter.Index) # Don't set DNS on loopback interfaces (e.g. Npcap Loopback # Adapter) if not "loopback" in interface_name.lower(): self.adapters_dns_restore.append(interface_name) cmd_set_dns = "netsh interface ip set dns name=\"%s\" static %s" % ( interface_name, dns_address) # Configure DNS server try: subprocess.check_output(cmd_set_dns, shell=True, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: self.logger.error(" Failed to set DNS %s on interface %s." % (dns_address, interface_name)) self.logger.error(" netsh failed with error: %s" % (e.output)) else: self.logger.info(" Setting DNS %s on interface %s" % (dns_address, interface_name)) fixed = True return fixed
Check if there is a DNS server on any of the Ethernet interfaces. If that's not the case, then locate configured IP address and set a DNS server automatically.
fix_dns
python
mandiant/flare-fakenet-ng
fakenet/diverters/winutil.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/diverters/winutil.py
Apache-2.0
def failEarly(self): """Raise exceptions upon construction rather than later.""" # Test generating banner banner_generated = str(self) # Test generating and getting length of banner banner_generated_len = len(self) return banner_generated, banner_generated_len
Raise exceptions upon construction rather than later.
failEarly
python
mandiant/flare-fakenet-ng
fakenet/listeners/BannerFactory.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/BannerFactory.py
Apache-2.0
def __len__(self): """Needed for pyftpdlib. If the length changes between the time when the caller obtains the length and the time when the caller obtains the latest generated string, then there is not much that could reasonably be done. It would be possible to cache the formatted banner with a short expiry so that temporally clustered __len__() and __repr__() call sequences would view consistent and coherent string contents, however this seems like overkill since the use case is really just allowing pyftpdlib to determine which way to send the response (directly versus push() if the length exceeds a threshold of 75 characters). In this case, if the banner string length and contents are inconsistent, it appears that the only effect will be to erroneously send the message differently. Test code has been left in place for easy repro in case this proves to be an issue on some future/other platform. """ # Test path: simulate length of 75 but actual string of length 76 (part # 1/2) to test pyftpdlib/handlers.py:1321 if self.test_pyftpdlib_handler_banner_threshold75: return self.len_75 # Normal path: return the length of the banner generated by self.fmt() return len(self.fmt())
Needed for pyftpdlib. If the length changes between the time when the caller obtains the length and the time when the caller obtains the latest generated string, then there is not much that could reasonably be done. It would be possible to cache the formatted banner with a short expiry so that temporally clustered __len__() and __repr__() call sequences would view consistent and coherent string contents, however this seems like overkill since the use case is really just allowing pyftpdlib to determine which way to send the response (directly versus push() if the length exceeds a threshold of 75 characters). In this case, if the banner string length and contents are inconsistent, it appears that the only effect will be to erroneously send the message differently. Test code has been left in place for easy repro in case this proves to be an issue on some future/other platform.
__len__
python
mandiant/flare-fakenet-ng
fakenet/listeners/BannerFactory.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/BannerFactory.py
Apache-2.0
def genBanner(self, config, bannerdict, defaultbannerkey='!generic'): """Select and initialize a banner. Supported banner escapes: !<key> - Use the banner whose key in bannerdict is <key> !random - Use a random banner from bannerdict !generic - Every listener supporting banners must have a generic Banners can include literal '\n' or '\t' tokens (slash followed by the letter n or t) to indicate that a newline or tab should be inserted. Banners can include {servername} or {tz} to insert the servername or time zone (hard-coded to 'UTC' as of this writing). If the user does not specify a banner, then '!generic' is used by default, resulting in bannerdict['generic'] being used. If the user specifies a bang escape e.g. '!iis-6', then the banner keyed by that name will be used. If the user specifies '!random' then a random banner will be chosen from bannerdict. Because some banners include the servername as an insertion string, this method also retrieves the configuration value for ServerName and incorporates a couple of similar escape sequences: !random - Randomized servername with random length between 1-15 !gethostname - Use the real hostname """ banner = config.get('banner', defaultbannerkey) servername = config.get('servername', 'localhost') if servername.startswith('!'): servername = servername[1:] if servername.lower() == 'random': servername = self.randomizeHostname() elif servername.lower() == 'gethostname': servername = socket.gethostname() else: raise ValueError('ServerName config invalid escape: !%s' % (servername)) if banner.startswith('!'): banner = banner[1:] if banner.lower() == 'random': banner = random.choice(list(bannerdict.keys())) elif banner not in bannerdict: raise ValueError( 'Banner config escape !%s not a valid banner key' % (banner)) banner = bannerdict[banner] insertions = {'servername': servername, 'tz': 'UTC'} return Banner(banner, insertions)
Select and initialize a banner. Supported banner escapes: !<key> - Use the banner whose key in bannerdict is <key> !random - Use a random banner from bannerdict !generic - Every listener supporting banners must have a generic Banners can include literal ' ' or ' ' tokens (slash followed by the letter n or t) to indicate that a newline or tab should be inserted. Banners can include {servername} or {tz} to insert the servername or time zone (hard-coded to 'UTC' as of this writing). If the user does not specify a banner, then '!generic' is used by default, resulting in bannerdict['generic'] being used. If the user specifies a bang escape e.g. '!iis-6', then the banner keyed by that name will be used. If the user specifies '!random' then a random banner will be chosen from bannerdict. Because some banners include the servername as an insertion string, this method also retrieves the configuration value for ServerName and incorporates a couple of similar escape sequences: !random - Randomized servername with random length between 1-15 !gethostname - Use the real hostname
genBanner
python
mandiant/flare-fakenet-ng
fakenet/listeners/BannerFactory.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/BannerFactory.py
Apache-2.0
def log_message(self, log_level, is_process_blacklisted, message, *args): """The primary objective of this method is to control the log messages generated for requests from blacklisted processes. In a case where the DNS server is same as the local machine, the DNS requests from a blacklisted process will reach the DNS listener (which listens on port 53 locally) nevertheless. As a user may not wish to see logs from a blacklisted process, messages are logged with level DEBUG. Executing FakeNet in the verbose mode will print these logs. """ if is_process_blacklisted: self.server.logger.log(logging.DEBUG, message, *args) else: self.server.logger.log(log_level, message, *args)
The primary objective of this method is to control the log messages generated for requests from blacklisted processes. In a case where the DNS server is same as the local machine, the DNS requests from a blacklisted process will reach the DNS listener (which listens on port 53 locally) nevertheless. As a user may not wish to see logs from a blacklisted process, messages are logged with level DEBUG. Executing FakeNet in the verbose mode will print these logs.
log_message
python
mandiant/flare-fakenet-ng
fakenet/listeners/DNSListener.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/DNSListener.py
Apache-2.0
def main(): """ Run from the flare-fakenet-ng root dir with the following command: python2 -m fakenet.listeners.HTTPListener """ logging.basicConfig(format='%(asctime)s [%(name)15s] %(message)s', datefmt='%m/%d/%y %I:%M:%S %p', level=logging.DEBUG) config = {'port': '8443', 'usessl': 'Yes', 'webroot': 'fakenet/defaultFiles' } listener = HTTPListener(config) listener.start() ########################################################################### # Run processing import time try: while True: time.sleep(1) except KeyboardInterrupt: pass ########################################################################### # Run tests test(config)
Run from the flare-fakenet-ng root dir with the following command: python2 -m fakenet.listeners.HTTPListener
main
python
mandiant/flare-fakenet-ng
fakenet/listeners/HTTPListener.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/HTTPListener.py
Apache-2.0
def safe_join(root, path): """ Joins a path to a root path, even if path starts with '/', using os.sep """ # prepending a '/' ensures '..' does not traverse past the root # of the path if not path.startswith('/'): path = '/' + path normpath = os.path.normpath(path) return root + normpath
Joins a path to a root path, even if path starts with '/', using os.sep
safe_join
python
mandiant/flare-fakenet-ng
fakenet/listeners/ListenerBase.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/ListenerBase.py
Apache-2.0
def abs_config_path(path): """ Attempts to return the absolute path of a path from a configuration setting. First tries just to just take the abspath() of the parameter to see if it exists relative to the current working directory. If that does not exist, attempts to find it relative to the 'fakenet' package directory. Returns None if neither exists. """ # Try absolute path first abspath = os.path.abspath(path) if os.path.exists(abspath): return abspath if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): relpath = os.path.join(os.path.dirname(sys.executable), path) else: # Try to locate the location relative to application path relpath = os.path.join(os.path.dirname(os.path.dirname(__file__)), path) if os.path.exists(relpath): return os.path.abspath(relpath) return None
Attempts to return the absolute path of a path from a configuration setting. First tries just to just take the abspath() of the parameter to see if it exists relative to the current working directory. If that does not exist, attempts to find it relative to the 'fakenet' package directory. Returns None if neither exists.
abs_config_path
python
mandiant/flare-fakenet-ng
fakenet/listeners/ListenerBase.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/ListenerBase.py
Apache-2.0
def main(): """ Run from the flare-fakenet-ng root dir with the following command: python2 -m fakenet.listeners.TFTPListener """ logging.basicConfig(format='%(asctime)s [%(name)15s] %(message)s', datefmt='%m/%d/%y %I:%M:%S %p', level=logging.DEBUG) config = {'port': '69', 'protocol': 'udp', 'tftproot': 'defaultFiles'} listener = TFTPListener(config) listener.start() ########################################################################### # Run processing import time try: while True: time.sleep(1) except KeyboardInterrupt: pass ########################################################################### # Run tests #test(config) listener.stop()
Run from the flare-fakenet-ng root dir with the following command: python2 -m fakenet.listeners.TFTPListener
main
python
mandiant/flare-fakenet-ng
fakenet/listeners/TFTPListener.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/TFTPListener.py
Apache-2.0
def create_cert(self, cn, ca_cert=None, ca_key=None, cert_dir=None): """ Create a cert given the common name, a signing CA, CA private key and the directory output. return: tuple(None, None) on error tuple(cert_file_path, key_file_path) on success """ f_selfsign = ca_cert is None or ca_key is None if not cert_dir: cert_dir = self.abs_config_path(self.config.get('cert_dir')) else: cert_dir = os.path.abspath(cert_dir) cert_file = os.path.join(cert_dir, "%s.crt" % (cn)) key_file = os.path.join(cert_dir, "%s.key" % (cn)) if os.path.exists(cert_file) and os.path.exists(key_file): return cert_file, key_file if ca_cert is not None and ca_key is not None: ca_cert_data = self._load_cert(ca_cert) if ca_cert_data is None: return None, None ca_key_data = self._load_private_key(ca_key) if ca_key_data is None: return None, None # generate crypto keys: key = crypto.PKey() key.generate_key(crypto.TYPE_RSA, 2048) # Create a cert cert = crypto.X509() # Setting certificate version to 3. This is required to use certificate # extensions which have proven necessary when working with browsers cert.set_version(2) cert.get_subject().C = "US" cert.get_subject().CN = cn cert.set_serial_number(random.randint(1, 0x31337)) now = time.time() / 1000000 na = int(now + self.NOT_AFTER_DELTA_SECONDS) cert.gmtime_adj_notBefore(0) cert.gmtime_adj_notAfter(na) cert.set_pubkey(key) if f_selfsign: extensions = [ crypto.X509Extension(b'basicConstraints', True, b'CA:TRUE'), ] cert.set_issuer(cert.get_subject()) cert.add_extensions(extensions) cert.sign(key, "sha256") else: alt_name = b'DNS:' + cn.encode() extensions = [ crypto.X509Extension(b'basicConstraints', False, b'CA:FALSE'), crypto.X509Extension(b'subjectAltName', False, alt_name) ] cert.set_issuer(ca_cert_data.get_subject()) cert.add_extensions(extensions) cert.sign(ca_key_data, "sha256") try: with open(cert_file, "wb") as cert_file_input: cert_file_input.write(crypto.dump_certificate( crypto.FILETYPE_PEM, cert) ) with open(key_file, "wb") as key_file_output: key_file_output.write(crypto.dump_privatekey( crypto.FILETYPE_PEM, key) ) except IOError: traceback.print_exc() return None, None return cert_file, key_file
Create a cert given the common name, a signing CA, CA private key and the directory output. return: tuple(None, None) on error tuple(cert_file_path, key_file_path) on success
create_cert
python
mandiant/flare-fakenet-ng
fakenet/listeners/ssl_utils/__init__.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/ssl_utils/__init__.py
Apache-2.0
def abs_config_path(self, path): """ Attempts to return the absolute path of a path from a configuration setting. """ # Try absolute path first abspath = os.path.abspath(path) if os.path.exists(abspath): return abspath if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): abspath = os.path.join(os.getcwd(), path) else: abspath = os.path.join(os.fspath(Path(__file__).parents[2]), path) return abspath
Attempts to return the absolute path of a path from a configuration setting.
abs_config_path
python
mandiant/flare-fakenet-ng
fakenet/listeners/ssl_utils/__init__.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/fakenet/listeners/ssl_utils/__init__.py
Apache-2.0
def HandleRequest(req, method, post_data=None): """Sample dynamic HTTP response handler. Parameters ---------- req : BaseHTTPServer.BaseHTTPRequestHandler The BaseHTTPRequestHandler that recevied the request method: str The HTTP method, either 'HEAD', 'GET', 'POST' as of this writing post_data: str The HTTP post data received by calling `rfile.read()` against the BaseHTTPRequestHandler that received the request. """ response = b'Ahoy\r\n' if method == 'GET': req.send_response(200) req.send_header('Content-Length', len(response)) req.end_headers() req.wfile.write(response) elif method == 'POST': req.send_response(200) req.send_header('Content-Length', len(response)) req.end_headers() req.wfile.write(response) elif method == 'HEAD': req.send_response(200) req.end_headers()
Sample dynamic HTTP response handler. Parameters ---------- req : BaseHTTPServer.BaseHTTPRequestHandler The BaseHTTPRequestHandler that recevied the request method: str The HTTP method, either 'HEAD', 'GET', 'POST' as of this writing post_data: str The HTTP post data received by calling `rfile.read()` against the BaseHTTPRequestHandler that received the request.
HandleRequest
python
mandiant/flare-fakenet-ng
test/CustomProviderExample.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/CustomProviderExample.py
Apache-2.0
def HandleTcp(sock): """Handle a TCP buffer. Parameters ---------- sock : socket The connected socket with which to recv and send data """ while True: try: data = None data = sock.recv(1024) except socket.timeout: pass if not data: break resp = b''.join([chr(c+1).encode() for c in data]) sock.sendall(resp)
Handle a TCP buffer. Parameters ---------- sock : socket The connected socket with which to recv and send data
HandleTcp
python
mandiant/flare-fakenet-ng
test/CustomProviderExample.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/CustomProviderExample.py
Apache-2.0
def HandleUdp(sock, data, addr): """Handle a UDP buffer. Parameters ---------- sock : socket The connected socket with which to recv and send data data : str The data received addr : tuple The host and port of the remote peer """ if data: resp = b''.join([chr(c+1).encode() for c in data]) sock.sendto(resp, addr)
Handle a UDP buffer. Parameters ---------- sock : socket The connected socket with which to recv and send data data : str The data received addr : tuple The host and port of the remote peer
HandleUdp
python
mandiant/flare-fakenet-ng
test/CustomProviderExample.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/CustomProviderExample.py
Apache-2.0
def get_ips(ipvers): """Return IP addresses bound to local interfaces including loopbacks. Parameters ---------- ipvers : list IP versions desired (4, 6, or both); ensures the netifaces semantics (e.g. netiface.AF_INET) are localized to this function. """ specs = [] results = [] for ver in ipvers: if ver == 4: specs.append(netifaces.AF_INET) elif ver == 6: specs.append(netifaces.AF_INET6) else: raise ValueError('get_ips only supports IP versions 4 and 6') for iface in netifaces.interfaces(): for spec in specs: addrs = netifaces.ifaddresses(iface) # If an interface only has an IPv4 or IPv6 address, then 6 or 4 # respectively will be absent from the keys in the interface # addresses dictionary. if spec in addrs: for link in addrs[spec]: if 'addr' in link: results.append(link['addr']) return results
Return IP addresses bound to local interfaces including loopbacks. Parameters ---------- ipvers : list IP versions desired (4, 6, or both); ensures the netifaces semantics (e.g. netiface.AF_INET) are localized to this function.
get_ips
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def _irc_evt_handler(self, srv, evt): """Check for each case and set the corresponding success flag.""" if evt.type == 'join': if evt.target.startswith(self.join_chan): self.join_ok = True elif evt.type == 'welcome': if evt.arguments[0].startswith('Welcome to IRC'): self.welcome_ok = True elif evt.type == 'privmsg': if (evt.arguments[0].startswith(self.safehouse) and evt.source.startswith(self.clouseau)): self.privmsg_ok = True elif evt.type == 'pubmsg': if (evt.arguments[0].startswith(self.black_market) and evt.target == self.pub_chan): self.pubmsg_ok = True
Check for each case and set the corresponding success flag.
_irc_evt_handler
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def _irc_script(self, srv): """Callback manages individual test cases for IRC.""" # Clear success flags self.welcome_ok = False self.join_ok = False self.privmsg_ok = False self.pubmsg_ok = False # This handler should set the success flags in success cases srv.add_global_handler('join', self._irc_evt_handler) srv.add_global_handler('welcome', self._irc_evt_handler) srv.add_global_handler('privmsg', self._irc_evt_handler) srv.add_global_handler('pubmsg', self._irc_evt_handler) # Issue all commands, indirectly invoking the event handler for each # flag srv.join(self.join_chan) srv.process_data() srv.privmsg(self.pub_chan, self.black_market) srv.process_data() srv.privmsg(self.clouseau, self.safehouse) srv.process_data() srv.quit() srv.process_data() if not self.welcome_ok: raise FakeNetTestException('Welcome test failed') if not self.join_ok: raise FakeNetTestException('Join test failed') if not self.privmsg_ok: raise FakeNetTestException('privmsg test failed') if not self.pubmsg_ok: raise FakeNetTestException('pubmsg test failed') return all([ self.welcome_ok, self.join_ok, self.privmsg_ok, self.pubmsg_ok ])
Callback manages individual test cases for IRC.
_irc_script
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def _run_irc_script(self, nm, callback): """Connect to server and give control to callback.""" r = irc.client.Reactor() srv = r.server() srv.connect(self.hostname, self.port, self.nick) retval = callback(srv) srv.close() return retval
Connect to server and give control to callback.
_run_irc_script
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def _filterMatchingTests(self, tests, matchspec): """Remove tests that match negative specifications (regexes preceded by a minus sign) or do not match positive specifications (regexes not preceded by a minus sign). Modifies the contents of the tests dictionary. """ negatives = [] positives = [] if len(matchspec): # If the user specifies a minus sign before a regular expression, # match negatively (exclude any matching tests) for spec in matchspec: if spec.startswith('-'): negatives.append(spec[1:]) else: positives.append(spec) # Iterating over tests first, match specifications second to # preserve the order of the selected tests. Less efficient to # compile every regex several times, but less confusing. for testname, test in list(tests.items()): # First determine if it is to be excluded, in which case, # remove it and do not evaluate further match specifications. exclude = False for spec in negatives: if bool(re.search(spec, testname)): exclude = True if exclude: tests.pop(testname) continue # If the user ONLY specified negative match specifications, # then admit all tests if not len(positives): continue # Otherwise, only admit if it matches a positive spec include = False for spec in positives: if bool(re.search(spec, testname)): include = True break if not include: tests.pop(testname) return
Remove tests that match negative specifications (regexes preceded by a minus sign) or do not match positive specifications (regexes not preceded by a minus sign). Modifies the contents of the tests dictionary.
_filterMatchingTests
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def _test_ftp(self, hostname, port=0): """Note that the FakeNet-NG Proxy listener won't know what to do with this client if you point it at some random port, because the client listens silently for the server 220 welcome message which doesn't give the Proxy listener anything to work with to decide where to forward it. """ fullbuf = '' m = hashlib.md5() def update_hash(buf): m.update(buf) f = ftplib.FTP() f.connect(hostname, port) f.login() f.set_pasv(False) f.retrbinary('RETR FakeNet.gif', update_hash) f.quit() digest = m.digest() expected = binascii.unhexlify('a6b78c4791dc8110dec6c55f8a756395') return (digest == expected)
Note that the FakeNet-NG Proxy listener won't know what to do with this client if you point it at some random port, because the client listens silently for the server 220 welcome message which doesn't give the Proxy listener anything to work with to decide where to forward it.
_test_ftp
python
mandiant/flare-fakenet-ng
test/test.py
https://github.com/mandiant/flare-fakenet-ng/blob/master/test/test.py
Apache-2.0
def preprocess_input(audio_path, dim_ordering='default'): '''Reads an audio file and outputs a Mel-spectrogram. ''' if dim_ordering == 'default': dim_ordering = K.image_dim_ordering() assert dim_ordering in {'tf', 'th'} if librosa_exists(): import librosa else: raise RuntimeError('Librosa is required to process audio files.\n' + 'Install it via `pip install librosa` \nor visit ' + 'http://librosa.github.io/librosa/ for details.') # mel-spectrogram parameters SR = 12000 N_FFT = 512 N_MELS = 96 HOP_LEN = 256 DURA = 29.12 src, sr = librosa.load(audio_path, sr=SR) n_sample = src.shape[0] n_sample_wanted = int(DURA * SR) # trim the signal at the center if n_sample < n_sample_wanted: # if too short src = np.hstack((src, np.zeros((int(DURA * SR) - n_sample,)))) elif n_sample > n_sample_wanted: # if too long src = src[(n_sample - n_sample_wanted) / 2: (n_sample + n_sample_wanted) / 2] logam = librosa.logamplitude melgram = librosa.feature.melspectrogram x = logam(melgram(y=src, sr=SR, hop_length=HOP_LEN, n_fft=N_FFT, n_mels=N_MELS) ** 2, ref_power=1.0) if dim_ordering == 'th': x = np.expand_dims(x, axis=0) elif dim_ordering == 'tf': x = np.expand_dims(x, axis=3) return x
Reads an audio file and outputs a Mel-spectrogram.
preprocess_input
python
fchollet/deep-learning-models
audio_conv_utils.py
https://github.com/fchollet/deep-learning-models/blob/master/audio_conv_utils.py
MIT
def decode_predictions(preds, top_n=5): '''Decode the output of a music tagger model. # Arguments preds: 2-dimensional numpy array top_n: integer in [0, 50], number of items to show ''' assert len(preds.shape) == 2 and preds.shape[1] == 50 results = [] for pred in preds: result = zip(TAGS, pred) result = sorted(result, key=lambda x: x[1], reverse=True) results.append(result[:top_n]) return results
Decode the output of a music tagger model. # Arguments preds: 2-dimensional numpy array top_n: integer in [0, 50], number of items to show
decode_predictions
python
fchollet/deep-learning-models
audio_conv_utils.py
https://github.com/fchollet/deep-learning-models/blob/master/audio_conv_utils.py
MIT
def preprocess_input(x): """Preprocesses a numpy array encoding a batch of images. This function applies the "Inception" preprocessing which converts the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing function is different from `imagenet_utils.preprocess_input()`. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ x /= 255. x -= 0.5 x *= 2. return x
Preprocesses a numpy array encoding a batch of images. This function applies the "Inception" preprocessing which converts the RGB values from [0, 255] to [-1, 1]. Note that this preprocessing function is different from `imagenet_utils.preprocess_input()`. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array.
preprocess_input
python
fchollet/deep-learning-models
inception_resnet_v2.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_resnet_v2.py
MIT
def conv2d_bn(x, filters, kernel_size, strides=1, padding='same', activation='relu', use_bias=False, name=None): """Utility function to apply conv + BN. # Arguments x: input tensor. filters: filters in `Conv2D`. kernel_size: kernel size as in `Conv2D`. padding: padding mode in `Conv2D`. activation: activation in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_ac'` for the activation and `name + '_bn'` for the batch norm layer. # Returns Output tensor after applying `Conv2D` and `BatchNormalization`. """ x = Conv2D(filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name)(x) if not use_bias: bn_axis = 1 if K.image_data_format() == 'channels_first' else 3 bn_name = None if name is None else name + '_bn' x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) if activation is not None: ac_name = None if name is None else name + '_ac' x = Activation(activation, name=ac_name)(x) return x
Utility function to apply conv + BN. # Arguments x: input tensor. filters: filters in `Conv2D`. kernel_size: kernel size as in `Conv2D`. padding: padding mode in `Conv2D`. activation: activation in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_ac'` for the activation and `name + '_bn'` for the batch norm layer. # Returns Output tensor after applying `Conv2D` and `BatchNormalization`.
conv2d_bn
python
fchollet/deep-learning-models
inception_resnet_v2.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_resnet_v2.py
MIT
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'): """Adds a Inception-ResNet block. This function builds 3 types of Inception-ResNet blocks mentioned in the paper, controlled by the `block_type` argument (which is the block name used in the official TF-slim implementation): - Inception-ResNet-A: `block_type='block35'` - Inception-ResNet-B: `block_type='block17'` - Inception-ResNet-C: `block_type='block8'` # Arguments x: input tensor. scale: scaling factor to scale the residuals (i.e., the output of passing `x` through an inception module) before adding them to the shortcut branch. Let `r` be the output from the residual branch, the output of this block will be `x + scale * r`. block_type: `'block35'`, `'block17'` or `'block8'`, determines the network structure in the residual branch. block_idx: an `int` used for generating layer names. The Inception-ResNet blocks are repeated many times in this network. We use `block_idx` to identify each of the repetitions. For example, the first Inception-ResNet-A block will have `block_type='block35', block_idx=0`, ane the layer names will have a common prefix `'block35_0'`. activation: activation function to use at the end of the block (see [activations](keras./activations.md)). When `activation=None`, no activation is applied (i.e., "linear" activation: `a(x) = x`). # Returns Output tensor for the block. # Raises ValueError: if `block_type` is not one of `'block35'`, `'block17'` or `'block8'`. """ if block_type == 'block35': branch_0 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(branch_1, 32, 3) branch_2 = conv2d_bn(x, 32, 1) branch_2 = conv2d_bn(branch_2, 48, 3) branch_2 = conv2d_bn(branch_2, 64, 3) branches = [branch_0, branch_1, branch_2] elif block_type == 'block17': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 128, 1) branch_1 = conv2d_bn(branch_1, 160, [1, 7]) branch_1 = conv2d_bn(branch_1, 192, [7, 1]) branches = [branch_0, branch_1] elif block_type == 'block8': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(branch_1, 224, [1, 3]) branch_1 = conv2d_bn(branch_1, 256, [3, 1]) branches = [branch_0, branch_1] else: raise ValueError('Unknown Inception-ResNet block type. ' 'Expects "block35", "block17" or "block8", ' 'but got: ' + str(block_type)) block_name = block_type + '_' + str(block_idx) channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 mixed = Concatenate(axis=channel_axis, name=block_name + '_mixed')(branches) up = conv2d_bn(mixed, K.int_shape(x)[channel_axis], 1, activation=None, use_bias=True, name=block_name + '_conv') x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale, output_shape=K.int_shape(x)[1:], arguments={'scale': scale}, name=block_name)([x, up]) if activation is not None: x = Activation(activation, name=block_name + '_ac')(x) return x
Adds a Inception-ResNet block. This function builds 3 types of Inception-ResNet blocks mentioned in the paper, controlled by the `block_type` argument (which is the block name used in the official TF-slim implementation): - Inception-ResNet-A: `block_type='block35'` - Inception-ResNet-B: `block_type='block17'` - Inception-ResNet-C: `block_type='block8'` # Arguments x: input tensor. scale: scaling factor to scale the residuals (i.e., the output of passing `x` through an inception module) before adding them to the shortcut branch. Let `r` be the output from the residual branch, the output of this block will be `x + scale * r`. block_type: `'block35'`, `'block17'` or `'block8'`, determines the network structure in the residual branch. block_idx: an `int` used for generating layer names. The Inception-ResNet blocks are repeated many times in this network. We use `block_idx` to identify each of the repetitions. For example, the first Inception-ResNet-A block will have `block_type='block35', block_idx=0`, ane the layer names will have a common prefix `'block35_0'`. activation: activation function to use at the end of the block (see [activations](keras./activations.md)). When `activation=None`, no activation is applied (i.e., "linear" activation: `a(x) = x`). # Returns Output tensor for the block. # Raises ValueError: if `block_type` is not one of `'block35'`, `'block17'` or `'block8'`.
inception_resnet_block
python
fchollet/deep-learning-models
inception_resnet_v2.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_resnet_v2.py
MIT
def InceptionResNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Inception-ResNet v2 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `"image_data_format": "channels_last"` in your Keras config at `~/.keras/keras.json`. The model and the weights are compatible with both TensorFlow and Theano backends (but not CNTK). The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299, instead of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing function is different (i.e., do not use `imagenet_utils.preprocess_input()` with this model. Use `preprocess_input()` defined in this module instead). # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or `'imagenet'` (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(299, 299, 3)` (with `'channels_last'` data format) or `(3, 299, 299)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `'avg'` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `'max'` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. # Returns A Keras `Model` instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with an unsupported backend. """ if K.backend() in {'cntk'}: raise RuntimeError(K.backend() + ' backend is currently unsupported for this model.') if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=299, min_size=139, data_format=K.image_data_format(), require_flatten=False, weights=weights) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Stem block: 35 x 35 x 192 x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid') x = conv2d_bn(x, 32, 3, padding='valid') x = conv2d_bn(x, 64, 3) x = MaxPooling2D(3, strides=2)(x) x = conv2d_bn(x, 80, 1, padding='valid') x = conv2d_bn(x, 192, 3, padding='valid') x = MaxPooling2D(3, strides=2)(x) # Mixed 5b (Inception-A block): 35 x 35 x 320 branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if K.image_data_format() == 'channels_first' else 3 x = Concatenate(axis=channel_axis, name='mixed_5b')(branches) # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320 for block_idx in range(1, 11): x = inception_resnet_block(x, scale=0.17, block_type='block35', block_idx=block_idx) # Mixed 6a (Reduction-A block): 17 x 17 x 1088 branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid') branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_6a')(branches) # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088 for block_idx in range(1, 21): x = inception_resnet_block(x, scale=0.1, block_type='block17', block_idx=block_idx) # Mixed 7a (Reduction-B block): 8 x 8 x 2080 branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid') branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=channel_axis, name='mixed_7a')(branches) # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080 for block_idx in range(1, 10): x = inception_resnet_block(x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block(x, scale=1., activation=None, block_type='block8', block_idx=10) # Final convolution block: 8 x 8 x 1536 x = conv2d_bn(x, 1536, 1, name='conv_7b') if include_top: # Classification block x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor` if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model model = Model(inputs, x, name='inception_resnet_v2') # Load weights if weights == 'imagenet': if K.image_data_format() == 'channels_first': if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') if include_top: weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5' weights_path = get_file(weights_filename, BASE_WEIGHT_URL + weights_filename, cache_subdir='models', md5_hash='e693bd0210a403b3192acc6073ad2e96') else: weights_filename = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5' weights_path = get_file(weights_filename, BASE_WEIGHT_URL + weights_filename, cache_subdir='models', md5_hash='d19885ff4a710c122648d3b5c3b684e4') model.load_weights(weights_path) return model
Instantiates the Inception-ResNet v2 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `"image_data_format": "channels_last"` in your Keras config at `~/.keras/keras.json`. The model and the weights are compatible with both TensorFlow and Theano backends (but not CNTK). The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299, instead of 224x224 as in the VGG16 and ResNet models. Also, the input preprocessing function is different (i.e., do not use `imagenet_utils.preprocess_input()` with this model. Use `preprocess_input()` defined in this module instead). # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or `'imagenet'` (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(299, 299, 3)` (with `'channels_last'` data format) or `(3, 299, 299)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `'avg'` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `'max'` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. # Returns A Keras `Model` instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with an unsupported backend.
InceptionResNetV2
python
fchollet/deep-learning-models
inception_resnet_v2.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_resnet_v2.py
MIT
def conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(1, 1), name=None): """Utility function to apply conv + BN. Arguments: x: input tensor. filters: filters in `Conv2D`. num_row: height of the convolution kernel. num_col: width of the convolution kernel. padding: padding mode in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_conv'` for the convolution and `name + '_bn'` for the batch norm layer. Returns: Output tensor after applying `Conv2D` and `BatchNormalization`. """ if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None if K.image_data_format() == 'channels_first': bn_axis = 1 else: bn_axis = 3 x = Conv2D( filters, (num_row, num_col), strides=strides, padding=padding, use_bias=False, name=conv_name)(x) x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) x = Activation('relu', name=name)(x) return x
Utility function to apply conv + BN. Arguments: x: input tensor. filters: filters in `Conv2D`. num_row: height of the convolution kernel. num_col: width of the convolution kernel. padding: padding mode in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_conv'` for the convolution and `name + '_bn'` for the batch norm layer. Returns: Output tensor after applying `Conv2D` and `BatchNormalization`.
conv2d_bn
python
fchollet/deep-learning-models
inception_v3.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_v3.py
MIT
def InceptionV3(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Inception v3 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)` (with `channels_last` data format) or `(3, 299, 299)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=299, min_size=139, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: img_input = Input(tensor=input_tensor, shape=input_shape) if K.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = 3 x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid') x = conv2d_bn(x, 32, 3, 3, padding='valid') x = conv2d_bn(x, 64, 3, 3) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv2d_bn(x, 80, 1, 1, padding='valid') x = conv2d_bn(x, 192, 3, 3, padding='valid') x = MaxPooling2D((3, 3), strides=(2, 2))(x) # mixed 0, 1, 2: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 32, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed0') # mixed 1: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed1') # mixed 2: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed2') # mixed 3: 17 x 17 x 768 branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid') branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn( branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3') # mixed 4: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 128, 1, 1) branch7x7 = conv2d_bn(branch7x7, 128, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 128, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed4') # mixed 5, 6: 17 x 17 x 768 for i in range(2): branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 160, 1, 1) branch7x7 = conv2d_bn(branch7x7, 160, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 160, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D( (3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed' + str(5 + i)) # mixed 7: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(branch7x7, 192, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 192, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed7') # mixed 8: 8 x 8 x 1280 branch3x3 = conv2d_bn(x, 192, 1, 1) branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid') branch7x7x3 = conv2d_bn(x, 192, 1, 1) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1) branch7x7x3 = conv2d_bn( branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid') branch_pool = MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8') # mixed 9: 8 x 8 x 2048 for i in range(2): branch1x1 = conv2d_bn(x, 320, 1, 1) branch3x3 = conv2d_bn(x, 384, 1, 1) branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3) branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1) branch3x3 = layers.concatenate( [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i)) branch3x3dbl = conv2d_bn(x, 448, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3) branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3) branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1) branch3x3dbl = layers.concatenate( [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis) branch_pool = AveragePooling2D( (3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed' + str(9 + i)) if include_top: # Classification block x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='inception_v3') # load weights if weights == 'imagenet': if K.image_data_format() == 'channels_first': if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') if include_top: weights_path = get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', md5_hash='9a0d58056eeedaa3f26cb7ebd46da564') else: weights_path = get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='bcbd6486424b2319ff4ef7d526e38f63') model.load_weights(weights_path) if K.backend() == 'theano': convert_all_kernels_in_model(model) return model
Instantiates the Inception v3 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. Note that the default input image size for this model is 299x299. Arguments: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)` (with `channels_last` data format) or `(3, 299, 299)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 139. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape.
InceptionV3
python
fchollet/deep-learning-models
inception_v3.py
https://github.com/fchollet/deep-learning-models/blob/master/inception_v3.py
MIT
def MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000): """Instantiates the MobileNet architecture. Note that only TensorFlow is supported for now, therefore it only works with the data format `image_data_format='channels_last'` in your Keras config at `~/.keras/keras.json`. To load a MobileNet model via `load_model`, import the custom objects `relu6` and `DepthwiseConv2D` and pass them to the `custom_objects` parameter. E.g. model = load_model('mobilenet.h5', custom_objects={ 'relu6': mobilenet.relu6, 'DepthwiseConv2D': mobilenet.DepthwiseConv2D}) # Arguments input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or (3, 224, 224) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: depth multiplier for depthwise convolution (also called the resolution multiplier) dropout: dropout rate include_top: whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ if K.backend() != 'tensorflow': raise RuntimeError('Only Tensorflow backend is currently supported, ' 'as other backends do not support ' 'depthwise convolution.') if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as ImageNet with `include_top` ' 'as true, `classes` should be 1000') # Determine proper input shape. input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=32, data_format=K.image_data_format(), include_top=include_top or weights) if K.image_data_format() == 'channels_last': row_axis, col_axis = (0, 1) else: row_axis, col_axis = (1, 2) rows = input_shape[row_axis] cols = input_shape[col_axis] if weights == 'imagenet': if depth_multiplier != 1: raise ValueError('If imagenet weights are being loaded, ' 'depth multiplier must be 1') if alpha not in [0.25, 0.50, 0.75, 1.0]: raise ValueError('If imagenet weights are being loaded, ' 'alpha can be one of' '`0.25`, `0.50`, `0.75` or `1.0` only.') if rows != cols or rows not in [128, 160, 192, 224]: raise ValueError('If imagenet weights are being loaded, ' 'input must have a static square shape (one of ' '(128,128), (160,160), (192,192), or (224, 224)).' ' Input shape provided = %s' % (input_shape,)) if K.image_data_format() != 'channels_last': warnings.warn('The MobileNet family of models is only available ' 'for the input data format "channels_last" ' '(width, height, channels). ' 'However your settings specify the default ' 'data format "channels_first" (channels, width, height).' ' You should set `image_data_format="channels_last"` ' 'in your Keras config located at ~/.keras/keras.json. ' 'The model being returned right now will expect inputs ' 'to follow the "channels_last" data format.') K.set_image_data_format('channels_last') old_data_format = 'channels_first' else: old_data_format = None if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = _conv_block(img_input, 32, alpha, strides=(2, 2)) x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) if include_top: if K.image_data_format() == 'channels_first': shape = (int(1024 * alpha), 1, 1) else: shape = (1, 1, int(1024 * alpha)) x = GlobalAveragePooling2D()(x) x = Reshape(shape, name='reshape_1')(x) x = Dropout(dropout, name='dropout')(x) x = Conv2D(classes, (1, 1), padding='same', name='conv_preds')(x) x = Activation('softmax', name='act_softmax')(x) x = Reshape((classes,), name='reshape_2')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows)) # load weights if weights == 'imagenet': if K.image_data_format() == 'channels_first': raise ValueError('Weights for "channels_last" format ' 'are not available.') if alpha == 1.0: alpha_text = '1_0' elif alpha == 0.75: alpha_text = '7_5' elif alpha == 0.50: alpha_text = '5_0' else: alpha_text = '2_5' if include_top: model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows) weigh_path = BASE_WEIGHT_PATH + model_name weights_path = get_file(model_name, weigh_path, cache_subdir='models') else: model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows) weigh_path = BASE_WEIGHT_PATH + model_name weights_path = get_file(model_name, weigh_path, cache_subdir='models') model.load_weights(weights_path) if old_data_format: K.set_image_data_format(old_data_format) return model
Instantiates the MobileNet architecture. Note that only TensorFlow is supported for now, therefore it only works with the data format `image_data_format='channels_last'` in your Keras config at `~/.keras/keras.json`. To load a MobileNet model via `load_model`, import the custom objects `relu6` and `DepthwiseConv2D` and pass them to the `custom_objects` parameter. E.g. model = load_model('mobilenet.h5', custom_objects={ 'relu6': mobilenet.relu6, 'DepthwiseConv2D': mobilenet.DepthwiseConv2D}) # Arguments input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or (3, 224, 224) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: depth multiplier for depthwise convolution (also called the resolution multiplier) dropout: dropout rate include_top: whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions.
MobileNet
python
fchollet/deep-learning-models
mobilenet.py
https://github.com/fchollet/deep-learning-models/blob/master/mobilenet.py
MIT
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): """Adds an initial convolution layer (with batch normalization and relu6). # Arguments inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block. """ channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 filters = int(filters * alpha) x = Conv2D(filters, kernel, padding='same', use_bias=False, strides=strides, name='conv1')(inputs) x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x) return Activation(relu6, name='conv1_relu')(x)
Adds an initial convolution layer (with batch normalization and relu6). # Arguments inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block.
_conv_block
python
fchollet/deep-learning-models
mobilenet.py
https://github.com/fchollet/deep-learning-models/blob/master/mobilenet.py
MIT
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1): """Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, relu6, pointwise convolution, batch normalization and relu6 activation. # Arguments inputs: Input tensor of shape `(rows, cols, channels)` (with `channels_last` data format) or (channels, rows, cols) (with `channels_first` data format). pointwise_conv_filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the pointwise convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. block_id: Integer, a unique identification designating the block number. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block. """ channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 pointwise_conv_filters = int(pointwise_conv_filters * alpha) x = DepthwiseConv2D((3, 3), padding='same', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)(inputs) x = BatchNormalization(axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x) x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x) x = Conv2D(pointwise_conv_filters, (1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)(x) x = BatchNormalization(axis=channel_axis, name='conv_pw_%d_bn' % block_id)(x) return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)
Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, relu6, pointwise convolution, batch normalization and relu6 activation. # Arguments inputs: Input tensor of shape `(rows, cols, channels)` (with `channels_last` data format) or (channels, rows, cols) (with `channels_first` data format). pointwise_conv_filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the pointwise convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. block_id: Integer, a unique identification designating the block number. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block.
_depthwise_conv_block
python
fchollet/deep-learning-models
mobilenet.py
https://github.com/fchollet/deep-learning-models/blob/master/mobilenet.py
MIT
def MusicTaggerCRNN(weights='msd', input_tensor=None, include_top=True): '''Instantiate the MusicTaggerCRNN architecture, optionally loading weights pre-trained on Million Song Dataset. Note that when using TensorFlow, for best performance you should set `image_dim_ordering="tf"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The dimension ordering convention used by the model is the one specified in your Keras config file. For preparing mel-spectrogram input, see `audio_conv_utils.py` in [applications](https://github.com/fchollet/keras/tree/master/keras/applications). You will need to install [Librosa](http://librosa.github.io/librosa/) to use it. # Arguments weights: one of `None` (random initialization) or "msd" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. include_top: whether to include the 1 fully-connected layer (output layer) at the top of the network. If False, the network outputs 32-dim features. # Returns A Keras model instance. ''' if weights not in {'msd', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `msd` ' '(pre-training on Million Song Dataset).') # Determine proper input shape if K.image_dim_ordering() == 'th': input_shape = (1, 96, 1366) else: input_shape = (96, 1366, 1) if input_tensor is None: melgram_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): melgram_input = Input(tensor=input_tensor, shape=input_shape) else: melgram_input = input_tensor # Determine input axis if K.image_dim_ordering() == 'th': channel_axis = 1 freq_axis = 2 time_axis = 3 else: channel_axis = 3 freq_axis = 1 time_axis = 2 # Input block x = ZeroPadding2D(padding=(0, 37))(melgram_input) x = BatchNormalization(axis=time_axis, name='bn_0_freq')(x) # Conv block 1 x = Convolution2D(64, 3, 3, border_mode='same', name='conv1')(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn1')(x) x = ELU()(x) x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1')(x) # Conv block 2 x = Convolution2D(128, 3, 3, border_mode='same', name='conv2')(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn2')(x) x = ELU()(x) x = MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2')(x) # Conv block 3 x = Convolution2D(128, 3, 3, border_mode='same', name='conv3')(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn3')(x) x = ELU()(x) x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3')(x) # Conv block 4 x = Convolution2D(128, 3, 3, border_mode='same', name='conv4')(x) x = BatchNormalization(axis=channel_axis, mode=0, name='bn4')(x) x = ELU()(x) x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4')(x) # reshaping if K.image_dim_ordering() == 'th': x = Permute((3, 1, 2))(x) x = Reshape((15, 128))(x) # GRU block 1, 2, output x = GRU(32, return_sequences=True, name='gru1')(x) x = GRU(32, return_sequences=False, name='gru2')(x) if include_top: x = Dense(50, activation='sigmoid', name='output')(x) # Create model model = Model(melgram_input, x) if weights is None: return model else: # Load weights if K.image_dim_ordering() == 'tf': weights_path = get_file('music_tagger_crnn_weights_tf_kernels_tf_dim_ordering.h5', TF_WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('music_tagger_crnn_weights_tf_kernels_th_dim_ordering.h5', TH_WEIGHTS_PATH, cache_subdir='models') model.load_weights(weights_path, by_name=True) if K.backend() == 'theano': convert_all_kernels_in_model(model) return model
Instantiate the MusicTaggerCRNN architecture, optionally loading weights pre-trained on Million Song Dataset. Note that when using TensorFlow, for best performance you should set `image_dim_ordering="tf"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The dimension ordering convention used by the model is the one specified in your Keras config file. For preparing mel-spectrogram input, see `audio_conv_utils.py` in [applications](https://github.com/fchollet/keras/tree/master/keras/applications). You will need to install [Librosa](http://librosa.github.io/librosa/) to use it. # Arguments weights: one of `None` (random initialization) or "msd" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. include_top: whether to include the 1 fully-connected layer (output layer) at the top of the network. If False, the network outputs 32-dim features. # Returns A Keras model instance.
MusicTaggerCRNN
python
fchollet/deep-learning-models
music_tagger_crnn.py
https://github.com/fchollet/deep-learning-models/blob/master/music_tagger_crnn.py
MIT
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x
The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block.
identity_block
python
fchollet/deep-learning-models
resnet50.py
https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py
MIT
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well """ filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1), strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x
conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the filterss of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2,2) And the shortcut should have strides=(2,2) as well
conv_block
python
fchollet/deep-learning-models
resnet50.py
https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py
MIT
def ResNet50(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the ResNet50 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 197. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 x = ZeroPadding2D((3, 3))(img_input) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') x = AveragePooling2D((7, 7), name='avg_pool')(x) if include_top: x = Flatten()(x) x = Dense(classes, activation='softmax', name='fc1000')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='resnet50') # load weights if weights == 'imagenet': if include_top: weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', md5_hash='a7b3fe01876f51b976af0dea6bc144eb') else: weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first': if include_top: maxpool = model.get_layer(name='avg_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1000') layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first') if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') return model
Instantiates the ResNet50 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 197. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape.
ResNet50
python
fchollet/deep-learning-models
resnet50.py
https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py
MIT
def VGG16(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the VGG16 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 48. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = Flatten(name='flatten')(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dense(4096, activation='relu', name='fc2')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='vgg16') # load weights if weights == 'imagenet': if include_top: weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first': if include_top: maxpool = model.get_layer(name='block5_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1') layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first') if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') return model
Instantiates the VGG16 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 48. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape.
VGG16
python
fchollet/deep-learning-models
vgg16.py
https://github.com/fchollet/deep-learning-models/blob/master/vgg16.py
MIT
def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the VGG19 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 48. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=48, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) if include_top: # Classification block x = Flatten(name='flatten')(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dense(4096, activation='relu', name='fc2')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='vgg19') # load weights if weights == 'imagenet': if include_top: weights_path = get_file('vgg19_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if K.backend() == 'theano': layer_utils.convert_all_kernels_in_model(model) if K.image_data_format() == 'channels_first': if include_top: maxpool = model.get_layer(name='block5_pool') shape = maxpool.output_shape[1:] dense = model.get_layer(name='fc1') layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first') if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image data format convention ' '(`image_data_format="channels_first"`). ' 'For best performance, set ' '`image_data_format="channels_last"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') return model
Instantiates the VGG19 architecture. Optionally loads weights pre-trained on ImageNet. Note that when using TensorFlow, for best performance you should set `image_data_format="channels_last"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The data format convention used by the model is the one specified in your Keras config file. # Arguments include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 244)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 48. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape.
VGG19
python
fchollet/deep-learning-models
vgg19.py
https://github.com/fchollet/deep-learning-models/blob/master/vgg19.py
MIT
def Xception(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000): """Instantiates the Xception architecture. Optionally loads weights pre-trained on ImageNet. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow data format `(width, height, channels)`. You should set `image_data_format="channels_last"` in your Keras config located at ~/.keras/keras.json. Note that the default input image size for this model is 299x299. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ if weights not in {'imagenet', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `imagenet` ' '(pre-training on ImageNet).') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as imagenet with `include_top`' ' as true, `classes` should be 1000') if K.backend() != 'tensorflow': raise RuntimeError('The Xception model is only available with ' 'the TensorFlow backend.') if K.image_data_format() != 'channels_last': warnings.warn('The Xception model is only available for the ' 'input data format "channels_last" ' '(width, height, channels). ' 'However your settings specify the default ' 'data format "channels_first" (channels, width, height). ' 'You should set `image_data_format="channels_last"` in your Keras ' 'config located at ~/.keras/keras.json. ' 'The model being returned right now will expect inputs ' 'to follow the "channels_last" data format.') K.set_image_data_format('channels_last') old_data_format = 'channels_first' else: old_data_format = None # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=299, min_size=71, data_format=K.image_data_format(), include_top=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input) x = BatchNormalization(name='block1_conv1_bn')(x) x = Activation('relu', name='block1_conv1_act')(x) x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) x = BatchNormalization(name='block1_conv2_bn')(x) x = Activation('relu', name='block1_conv2_act')(x) residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x) x = BatchNormalization(name='block2_sepconv1_bn')(x) x = Activation('relu', name='block2_sepconv2_act')(x) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x) x = BatchNormalization(name='block2_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x) x = layers.add([x, residual]) residual = Conv2D(256, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block3_sepconv1_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x) x = BatchNormalization(name='block3_sepconv1_bn')(x) x = Activation('relu', name='block3_sepconv2_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x) x = BatchNormalization(name='block3_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x) x = layers.add([x, residual]) residual = Conv2D(728, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block4_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x) x = BatchNormalization(name='block4_sepconv1_bn')(x) x = Activation('relu', name='block4_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x) x = BatchNormalization(name='block4_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x) x = layers.add([x, residual]) for i in range(8): residual = x prefix = 'block' + str(i + 5) x = Activation('relu', name=prefix + '_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x) x = BatchNormalization(name=prefix + '_sepconv1_bn')(x) x = Activation('relu', name=prefix + '_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x) x = BatchNormalization(name=prefix + '_sepconv2_bn')(x) x = Activation('relu', name=prefix + '_sepconv3_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x) x = BatchNormalization(name=prefix + '_sepconv3_bn')(x) x = layers.add([x, residual]) residual = Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block13_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x) x = BatchNormalization(name='block13_sepconv1_bn')(x) x = Activation('relu', name='block13_sepconv2_act')(x) x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x) x = BatchNormalization(name='block13_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x) x = layers.add([x, residual]) x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x) x = BatchNormalization(name='block14_sepconv1_bn')(x) x = Activation('relu', name='block14_sepconv1_act')(x) x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x) x = BatchNormalization(name='block14_sepconv2_bn')(x) x = Activation('relu', name='block14_sepconv2_act')(x) if include_top: x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = GlobalAveragePooling2D()(x) elif pooling == 'max': x = GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='xception') # load weights if weights == 'imagenet': if include_top: weights_path = get_file('xception_weights_tf_dim_ordering_tf_kernels.h5', TF_WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('xception_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if old_data_format: K.set_image_data_format(old_data_format) return model
Instantiates the Xception architecture. Optionally loads weights pre-trained on ImageNet. This model is available for TensorFlow only, and can only be used with inputs following the TensorFlow data format `(width, height, channels)`. You should set `image_data_format="channels_last"` in your Keras config located at ~/.keras/keras.json. Note that the default input image size for this model is 299x299. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "imagenet" (pre-training on ImageNet). input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)`. It should have exactly 3 inputs channels, and width and height should be no smaller than 71. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions.
Xception
python
fchollet/deep-learning-models
xception.py
https://github.com/fchollet/deep-learning-models/blob/master/xception.py
MIT
def beam_search_generator(sess, net, initial_state, initial_sample, early_term_token, beam_width, forward_model_fn, forward_args): '''Run beam search! Yield consensus tokens sequentially, as a generator; return when reaching early_term_token (newline). Args: sess: tensorflow session reference net: tensorflow net graph (must be compatible with the forward_net function) initial_state: initial hidden state of the net initial_sample: single token (excluding any seed/priming material) to start the generation early_term_token: stop when the beam reaches consensus on this token (but do not return this token). beam_width: how many beams to track forward_model_fn: function to forward the model, must be of the form: probability_output, beam_state = forward_model_fn(sess, net, beam_state, beam_sample, forward_args) (Note: probability_output has to be a valid probability distribution!) tot_steps: how many tokens to generate before stopping, unless already stopped via early_term_token. Returns: a generator to yield a sequence of beam-sampled tokens.''' # Store state, outputs and probabilities for up to args.beam_width beams. # Initialize with just the one starting entry; it will branch to fill the beam # in the first step. beam_states = [initial_state] # Stores the best activation states beam_outputs = [[initial_sample]] # Stores the best generated output sequences so far. beam_probs = [1.] # Stores the cumulative normalized probabilities of the beams so far. while True: # Keep a running list of the best beam branches for next step. # Don't actually copy any big data structures yet, just keep references # to existing beam state entries, and then clone them as necessary # at the end of the generation step. new_beam_indices = [] new_beam_probs = [] new_beam_samples = [] # Iterate through the beam entries. for beam_index, beam_state in enumerate(beam_states): beam_prob = beam_probs[beam_index] beam_sample = beam_outputs[beam_index][-1] # Forward the model. prediction, beam_states[beam_index] = forward_model_fn( sess, net, beam_state, beam_sample, forward_args) # Sample best_tokens from the probability distribution. # Sample from the scaled probability distribution beam_width choices # (but not more than the number of positive probabilities in scaled_prediction). count = min(beam_width, sum(1 if p > 0. else 0 for p in prediction)) best_tokens = np.random.choice(len(prediction), size=count, replace=False, p=prediction) for token in best_tokens: prob = prediction[token] * beam_prob if len(new_beam_indices) < beam_width: # If we don't have enough new_beam_indices, we automatically qualify. new_beam_indices.append(beam_index) new_beam_probs.append(prob) new_beam_samples.append(token) else: # Sample a low-probability beam to possibly replace. np_new_beam_probs = np.array(new_beam_probs) inverse_probs = -np_new_beam_probs + max(np_new_beam_probs) + min(np_new_beam_probs) inverse_probs = inverse_probs / sum(inverse_probs) sampled_beam_index = np.random.choice(beam_width, p=inverse_probs) if new_beam_probs[sampled_beam_index] <= prob: # Replace it. new_beam_indices[sampled_beam_index] = beam_index new_beam_probs[sampled_beam_index] = prob new_beam_samples[sampled_beam_index] = token # Replace the old states with the new states, first by referencing and then by copying. already_referenced = [False] * beam_width new_beam_states = [] new_beam_outputs = [] for i, new_index in enumerate(new_beam_indices): if already_referenced[new_index]: new_beam = copy.deepcopy(beam_states[new_index]) else: new_beam = beam_states[new_index] already_referenced[new_index] = True new_beam_states.append(new_beam) new_beam_outputs.append(beam_outputs[new_index] + [new_beam_samples[i]]) # Normalize the beam probabilities so they don't drop to zero beam_probs = new_beam_probs / sum(new_beam_probs) beam_states = new_beam_states beam_outputs = new_beam_outputs # Prune the agreed portions of the outputs # and yield the tokens on which the beam has reached consensus. l, early_term = consensus_length(beam_outputs, early_term_token) if l > 0: for token in beam_outputs[0][:l]: yield token beam_outputs = [output[l:] for output in beam_outputs] if early_term: return
Run beam search! Yield consensus tokens sequentially, as a generator; return when reaching early_term_token (newline). Args: sess: tensorflow session reference net: tensorflow net graph (must be compatible with the forward_net function) initial_state: initial hidden state of the net initial_sample: single token (excluding any seed/priming material) to start the generation early_term_token: stop when the beam reaches consensus on this token (but do not return this token). beam_width: how many beams to track forward_model_fn: function to forward the model, must be of the form: probability_output, beam_state = forward_model_fn(sess, net, beam_state, beam_sample, forward_args) (Note: probability_output has to be a valid probability distribution!) tot_steps: how many tokens to generate before stopping, unless already stopped via early_term_token. Returns: a generator to yield a sequence of beam-sampled tokens.
beam_search_generator
python
pender/chatbot-rnn
chatbot.py
https://github.com/pender/chatbot-rnn/blob/master/chatbot.py
MIT
def __init__(self, cell_fn, partition_size=128, partitions=1, layers=2): """Create a RNN cell composed sequentially of a number of RNNCells. Args: cell_fn: reference to RNNCell function to create each partition in each layer. partition_size: how many horizontal cells to include in each partition. partitions: how many horizontal partitions to include in each layer. layers: how many layers to include in the net. """ super(PartitionedMultiRNNCell, self).__init__() self._cells = [] for i in range(layers): self._cells.append([cell_fn(partition_size) for _ in range(partitions)]) self._partitions = partitions
Create a RNN cell composed sequentially of a number of RNNCells. Args: cell_fn: reference to RNNCell function to create each partition in each layer. partition_size: how many horizontal cells to include in each partition. partitions: how many horizontal partitions to include in each layer. layers: how many layers to include in the net.
__init__
python
pender/chatbot-rnn
model.py
https://github.com/pender/chatbot-rnn/blob/master/model.py
MIT
def _rnn_state_placeholders(state): """Convert RNN state tensors to placeholders, reflecting the same nested tuple structure.""" # Adapted from @carlthome's comment: # https://github.com/tensorflow/tensorflow/issues/2838#issuecomment-302019188 if isinstance(state, tf.contrib.rnn.LSTMStateTuple): c, h = state c = tf.placeholder(c.dtype, c.shape, c.op.name) h = tf.placeholder(h.dtype, h.shape, h.op.name) return tf.contrib.rnn.LSTMStateTuple(c, h) elif isinstance(state, tf.Tensor): h = state h = tf.placeholder(h.dtype, h.shape, h.op.name) return h else: structure = [_rnn_state_placeholders(x) for x in state] return tuple(structure)
Convert RNN state tensors to placeholders, reflecting the same nested tuple structure.
_rnn_state_placeholders
python
pender/chatbot-rnn
model.py
https://github.com/pender/chatbot-rnn/blob/master/model.py
MIT
def forward_model(self, sess, state, input_sample): '''Run a forward pass. Return the updated hidden state and the output probabilities.''' shaped_input = np.array([[input_sample]], np.float32) inputs = {self.input_data: shaped_input} self.add_state_to_feed_dict(inputs, state) [probs, state] = sess.run([self.probs, self.final_state], feed_dict=inputs) return probs[0], state
Run a forward pass. Return the updated hidden state and the output probabilities.
forward_model
python
pender/chatbot-rnn
model.py
https://github.com/pender/chatbot-rnn/blob/master/model.py
MIT
def check_container_exec_instances(context, num): """Modern docker versions remove ExecIDs after they finished, but older docker versions leave ExecIDs behind. This test is for asserting that the ExecIDs are cleaned up one way or another""" container_info = context.docker_client.inspect_container( context.running_container_id ) if container_info["ExecIDs"] is None: execs = [] else: execs = container_info["ExecIDs"] print("Container info:\n%s" % container_info) assert len(execs) <= int(num)
Modern docker versions remove ExecIDs after they finished, but older docker versions leave ExecIDs behind. This test is for asserting that the ExecIDs are cleaned up one way or another
check_container_exec_instances
python
Yelp/paasta
general_itests/steps/paasta_execute_docker_command.py
https://github.com/Yelp/paasta/blob/master/general_itests/steps/paasta_execute_docker_command.py
Apache-2.0
def tail_paasta_logs_let_threads_be_threads(context): """This test lets tail_paasta_logs() fire off processes to do work. We verify that the work was done, basically irrespective of how it was done. """ service = "fake_service" context.levels = ["fake_level1", "fake_level2"] context.components = ["deploy", "monitoring"] context.clusters = ["fake_cluster1"] context.instances = ["fake_instance"] context.pods = ["fake_pod"] with mock.patch( "paasta_tools.cli.cmds.logs.ScribeLogReader.determine_scribereader_envs", autospec=True, ) as context.determine_scribereader_envs_patch, mock.patch( "paasta_tools.cli.cmds.logs.ScribeLogReader.scribe_tail", autospec=True ) as scribe_tail_patch, mock.patch( "paasta_tools.cli.cmds.logs.log", autospec=True ), mock.patch( "paasta_tools.cli.cmds.logs.print_log", autospec=True ) as context.print_log_patch, mock.patch( "paasta_tools.cli.cmds.logs.scribereader", autospec=True ): context.determine_scribereader_envs_patch.return_value = ["env1", "env2"] def scribe_tail_side_effect( self, scribe_env, stream_name, service, levels, components, clusters, instances, pods, queue, filter_fn, parse_fn=None, ): # The print here is just for debugging print("fake log line added for %s" % scribe_env) queue.put("fake log line added for %s" % scribe_env) # This sleep() was the straw that broke the camel's back # and forced me to move this test into the integration # suite. The test is flaky without the sleep, and the # sleep make it a lousy unit test. time.sleep(0.05) scribe_tail_patch.side_effect = scribe_tail_side_effect context.scribe_log_reader = logs.ScribeLogReader( cluster_map={"env1": "env1", "env2": "env2"} ) context.scribe_log_reader.tail_logs( service, context.levels, context.components, context.clusters, context.instances, context.pods, )
This test lets tail_paasta_logs() fire off processes to do work. We verify that the work was done, basically irrespective of how it was done.
tail_paasta_logs_let_threads_be_threads
python
Yelp/paasta
general_itests/steps/tail_paasta_logs.py
https://github.com/Yelp/paasta/blob/master/general_itests/steps/tail_paasta_logs.py
Apache-2.0
def register_bounce_method(name: str) -> Callable[[BounceMethod], BounceMethod]: """Returns a decorator that registers that bounce function at a given name so get_bounce_method_func can find it.""" def outer(bounce_func: BounceMethod): _bounce_method_funcs[name] = bounce_func return bounce_func return outer
Returns a decorator that registers that bounce function at a given name so get_bounce_method_func can find it.
register_bounce_method
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def brutal_bounce( new_config: BounceMethodConfigDict, new_app_running: bool, happy_new_tasks: Collection, old_non_draining_tasks: Sequence, margin_factor=1.0, ) -> BounceMethodResult: """Pays no regard to safety. Starts the new app if necessary, and kills any old ones. Mostly meant as an example of the simplest working bounce method, but might be tolerable for some services. :param new_config: The configuration dictionary representing the desired new app. :param new_app_running: Whether there is an app in Marathon with the same ID as the new config. :param happy_new_tasks: Set of MarathonTasks belonging to the new application that are considered healthy and up. :param old_non_draining_tasks: A sequence of tasks not belonging to the new version. Tasks should be ordered from most desirable to least desirable. :param margin_factor: the multiplication factor used to calculate the number of instances to be drained when the crossover method is used. :return: A dictionary representing the desired bounce actions and containing the following keys: - create_app: True if we should start the new Marathon app, False otherwise. - tasks_to_drain: a set of task objects which should be drained and killed. May be empty. """ return { "create_app": not new_app_running, "tasks_to_drain": set(old_non_draining_tasks), }
Pays no regard to safety. Starts the new app if necessary, and kills any old ones. Mostly meant as an example of the simplest working bounce method, but might be tolerable for some services. :param new_config: The configuration dictionary representing the desired new app. :param new_app_running: Whether there is an app in Marathon with the same ID as the new config. :param happy_new_tasks: Set of MarathonTasks belonging to the new application that are considered healthy and up. :param old_non_draining_tasks: A sequence of tasks not belonging to the new version. Tasks should be ordered from most desirable to least desirable. :param margin_factor: the multiplication factor used to calculate the number of instances to be drained when the crossover method is used. :return: A dictionary representing the desired bounce actions and containing the following keys: - create_app: True if we should start the new Marathon app, False otherwise. - tasks_to_drain: a set of task objects which should be drained and killed. May be empty.
brutal_bounce
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def upthendown_bounce( new_config: BounceMethodConfigDict, new_app_running: bool, happy_new_tasks: Collection, old_non_draining_tasks: Sequence, margin_factor=1.0, ) -> BounceMethodResult: """Starts a new app if necessary; only kills old apps once all the requested tasks for the new version are running. See the docstring for brutal_bounce() for parameters and return value. """ if new_app_running and len(happy_new_tasks) == new_config["instances"]: return {"create_app": False, "tasks_to_drain": set(old_non_draining_tasks)} else: return {"create_app": not new_app_running, "tasks_to_drain": set()}
Starts a new app if necessary; only kills old apps once all the requested tasks for the new version are running. See the docstring for brutal_bounce() for parameters and return value.
upthendown_bounce
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def crossover_bounce( new_config: BounceMethodConfigDict, new_app_running: bool, happy_new_tasks: Collection, old_non_draining_tasks: Sequence, margin_factor=1.0, ) -> BounceMethodResult: """Starts a new app if necessary; slowly kills old apps as instances of the new app become happy. See the docstring for brutal_bounce() for parameters and return value. """ assert margin_factor > 0 assert margin_factor <= 1 needed_count = max( int(math.ceil(new_config["instances"] * margin_factor)) - len(happy_new_tasks), 0, ) return { "create_app": not new_app_running, "tasks_to_drain": set(old_non_draining_tasks[needed_count:]), }
Starts a new app if necessary; slowly kills old apps as instances of the new app become happy. See the docstring for brutal_bounce() for parameters and return value.
crossover_bounce
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def downthenup_bounce( new_config: BounceMethodConfigDict, new_app_running: bool, happy_new_tasks: Collection, old_non_draining_tasks: Sequence, margin_factor=1.0, ) -> BounceMethodResult: """Stops any old apps and waits for them to die before starting a new one. See the docstring for brutal_bounce() for parameters and return value. """ return { "create_app": not old_non_draining_tasks and not new_app_running, "tasks_to_drain": set(old_non_draining_tasks), }
Stops any old apps and waits for them to die before starting a new one. See the docstring for brutal_bounce() for parameters and return value.
downthenup_bounce
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def down_bounce( new_config: BounceMethodConfigDict, new_app_running: bool, happy_new_tasks: Collection, old_non_draining_tasks: Sequence, margin_factor=1.0, ) -> BounceMethodResult: """ Stops old apps, doesn't start any new apps. Used for the graceful_app_drain script. """ return {"create_app": False, "tasks_to_drain": set(old_non_draining_tasks)}
Stops old apps, doesn't start any new apps. Used for the graceful_app_drain script.
down_bounce
python
Yelp/paasta
paasta_tools/bounce_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/bounce_lib.py
Apache-2.0
def broadcast_log_all_services_running_here(line: str, soa_dir=DEFAULT_SOA_DIR) -> None: """Log a line of text to paasta logs of all services running on this host. :param line: text to log """ system_paasta_config = load_system_paasta_config() cluster = system_paasta_config.get_cluster() services = get_all_services_running_here(cluster, soa_dir) for service, instance, _ in services: _log( line=line, service=service, instance=instance, component="monitoring", cluster=cluster, )
Log a line of text to paasta logs of all services running on this host. :param line: text to log
broadcast_log_all_services_running_here
python
Yelp/paasta
paasta_tools/broadcast_log_to_services.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/broadcast_log_to_services.py
Apache-2.0
def get_registrations(self) -> List[str]: """ To support apollo we always register in cassandra_<cluster>.main """ registrations = self.config_dict.get("registrations", []) for registration in registrations: try: decompose_job_id(registration) except InvalidJobNameError: log.error( "Provided registration {} for service " "{} is invalid".format(registration, self.service) ) return registrations or [ compose_job_id(self.get_service_name_smartstack(), "main") ]
To support apollo we always register in cassandra_<cluster>.main
get_registrations
python
Yelp/paasta
paasta_tools/cassandracluster_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cassandracluster_tools.py
Apache-2.0
def load_cassandracluster_instance_config( service: str, instance: str, cluster: str, load_deployments: bool = True, soa_dir: str = DEFAULT_SOA_DIR, ) -> CassandraClusterDeploymentConfig: """Read a service instance's configuration for CassandraCluster. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param service: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance""" general_config = service_configuration_lib.read_service_configuration( service, soa_dir=soa_dir ) instance_config = load_service_instance_config( service, instance, "cassandracluster", cluster, soa_dir=soa_dir ) general_config = deep_merge_dictionaries( overrides=instance_config, defaults=general_config ) branch_dict: Optional[BranchDictV2] = None if load_deployments: deployments_json = load_v2_deployments_json(service, soa_dir=soa_dir) temp_instance_config = CassandraClusterDeploymentConfig( service=service, cluster=cluster, instance=instance, config_dict=general_config, branch_dict=None, soa_dir=soa_dir, ) branch = temp_instance_config.get_branch() deploy_group = temp_instance_config.get_deploy_group() branch_dict = deployments_json.get_branch_dict(service, branch, deploy_group) return CassandraClusterDeploymentConfig( service=service, cluster=cluster, instance=instance, config_dict=general_config, branch_dict=branch_dict, soa_dir=soa_dir, )
Read a service instance's configuration for CassandraCluster. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param service: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance
load_cassandracluster_instance_config
python
Yelp/paasta
paasta_tools/cassandracluster_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cassandracluster_tools.py
Apache-2.0
def container_lifetime( pod: V1Pod, ) -> datetime.timedelta: """Return a time duration for how long the pod is alive""" st = pod.status.start_time return datetime.datetime.now(st.tzinfo) - st
Return a time duration for how long the pod is alive
container_lifetime
python
Yelp/paasta
paasta_tools/check_flink_services_health.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_flink_services_health.py
Apache-2.0
def healthy_flink_containers_cnt(si_pods: Sequence[V1Pod], container_type: str) -> int: """Return count of healthy Flink containers with given type""" return len( [ pod for pod in si_pods if pod.metadata.labels["flink.yelp.com/container-type"] == container_type and is_pod_ready(pod) and container_lifetime(pod).total_seconds() > 60 ] )
Return count of healthy Flink containers with given type
healthy_flink_containers_cnt
python
Yelp/paasta
paasta_tools/check_flink_services_health.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_flink_services_health.py
Apache-2.0
def check_under_registered_taskmanagers( instance_config: FlinkDeploymentConfig, expected_count: int, cr_name: str, is_eks: bool, ) -> Tuple[bool, str, str]: """Check if not enough taskmanagers have been registered to the jobmanager and returns both the result of the check in the form of a boolean and a human-readable text to be used in logging or monitoring events. """ unhealthy = True if cr_name != "": try: overview = flink_tools.get_flink_jobmanager_overview( cr_name, instance_config.cluster, is_eks ) num_reported = overview.get("taskmanagers", 0) crit_threshold = instance_config.get_replication_crit_percentage() output = ( f"{instance_config.job_id} has {num_reported}/{expected_count} " f"taskmanagers reported by dashboard (threshold: {crit_threshold}%)" ) unhealthy, _ = is_under_replicated( num_reported, expected_count, crit_threshold ) except ValueError as e: output = ( f"Dashboard of service {instance_config.job_id} is not available ({e})" ) else: output = f"Dashboard of service {instance_config.job_id} is not available" if unhealthy: description = f""" This alert means that the Flink dashboard is not reporting the expected number of taskmanagers. Reasons this might be happening: The service may simply be unhealthy. There also may not be enough resources in the cluster to support the requested instance count. Things you can do: * Fix the cause of the unhealthy service. Try running: paasta status -s {instance_config.service} -i {instance_config.instance} -c {instance_config.cluster} -vv """ else: description = f"{instance_config.job_id} taskmanager is available" return unhealthy, output, description
Check if not enough taskmanagers have been registered to the jobmanager and returns both the result of the check in the form of a boolean and a human-readable text to be used in logging or monitoring events.
check_under_registered_taskmanagers
python
Yelp/paasta
paasta_tools/check_flink_services_health.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_flink_services_health.py
Apache-2.0
def get_cr_name(si_pods: Sequence[V1Pod]) -> str: """Returns the flink custom resource name based on the pod name. We are randomly choosing jobmanager pod here. This change is related to FLINK-3129 """ jobmanager_pod = [ pod for pod in si_pods if pod.metadata.labels["flink.yelp.com/container-type"] == "jobmanager" and is_pod_ready(pod) and container_lifetime(pod).total_seconds() > 60 ] if len(jobmanager_pod) == 1: return jobmanager_pod[0].metadata.name.split("-jobmanager-")[0] else: return ""
Returns the flink custom resource name based on the pod name. We are randomly choosing jobmanager pod here. This change is related to FLINK-3129
get_cr_name
python
Yelp/paasta
paasta_tools/check_flink_services_health.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_flink_services_health.py
Apache-2.0
def check_kubernetes_pod_replication( instance_config: Union[KubernetesDeploymentConfig, EksDeploymentConfig], pods_by_service_instance: Dict[str, Dict[str, List[V1Pod]]], replication_checker: KubeSmartstackEnvoyReplicationChecker, dry_run: bool = False, ) -> Optional[bool]: """Checks a service's replication levels based on how the service's replication should be monitored. (smartstack/envoy or k8s) :param instance_config: an instance of KubernetesDeploymentConfig or EksDeploymentConfig :param replication_checker: an instance of KubeSmartstackEnvoyReplicationChecker """ default_alert_after = DEFAULT_ALERT_AFTER expected_count = instance_config.get_instances() log.info( "Expecting %d total tasks for %s" % (expected_count, instance_config.job_id) ) proxy_port = get_proxy_port_for_instance(instance_config) registrations = instance_config.get_registrations() # If this instance does not autoscale and only has 1 instance, set alert after to 20m. # Otherwise, set it to 10 min. if ( not instance_config.is_autoscaling_enabled() and instance_config.get_instances() == 1 ): default_alert_after = "20m" if "monitoring" not in instance_config.config_dict: instance_config.config_dict["monitoring"] = {} instance_config.config_dict["monitoring"][ "alert_after" ] = instance_config.config_dict["monitoring"].get( "alert_after", default_alert_after ) # if the primary registration does not match the service_instance name then # the best we can do is check k8s for replication (for now). if proxy_port is not None and registrations[0] == instance_config.job_id: is_well_replicated = monitoring_tools.check_replication_for_instance( instance_config=instance_config, expected_count=expected_count, replication_checker=replication_checker, dry_run=dry_run, ) return is_well_replicated else: check_healthy_kubernetes_tasks_for_service_instance( instance_config=instance_config, expected_count=expected_count, pods_by_service_instance=pods_by_service_instance, dry_run=dry_run, ) return None
Checks a service's replication levels based on how the service's replication should be monitored. (smartstack/envoy or k8s) :param instance_config: an instance of KubernetesDeploymentConfig or EksDeploymentConfig :param replication_checker: an instance of KubeSmartstackEnvoyReplicationChecker
check_kubernetes_pod_replication
python
Yelp/paasta
paasta_tools/check_kubernetes_services_replication.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_kubernetes_services_replication.py
Apache-2.0
def read_oom_events_from_scribe(cluster, superregion, num_lines=1000): """Read the latest 'num_lines' lines from OOM_EVENTS_STREAM and iterate over them.""" # paasta configs incls a map for cluster -> env that is expected by scribe log_reader_config = load_system_paasta_config().get_log_reader() cluster_map = log_reader_config["options"]["cluster_map"] scribe_env = cluster_map[cluster] # `scribe_env_to_locations` slightly mutates the scribe env based on whether # or not it is in dev or prod host, port = scribereader.get_tail_host_and_port( **scribe_env_to_locations(scribe_env), ) stream = scribereader.get_stream_tailer( stream_name=OOM_EVENTS_STREAM, tailing_host=host, tailing_port=port, lines=num_lines, superregion=superregion, ) try: for line in stream: try: j = json.loads(line) if j.get("cluster", "") == cluster: yield j except json.decoder.JSONDecodeError: pass except StreamTailerSetupError as e: if "No data in stream" in str(e): pass else: raise e
Read the latest 'num_lines' lines from OOM_EVENTS_STREAM and iterate over them.
read_oom_events_from_scribe
python
Yelp/paasta
paasta_tools/check_oom_events.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_oom_events.py
Apache-2.0
def latest_oom_events(cluster, superregion, interval=60): """ :returns: {(service, instance): [OOMEvent, OOMEvent,...] } if the number of events > 0 """ start_timestamp = int(time.time()) - interval res = {} for e in read_oom_events_from_scribe(cluster, superregion): if e["timestamp"] > start_timestamp: key = (e["service"], e["instance"]) res.setdefault(key, set()).add(e.get("container_id", "")) return res
:returns: {(service, instance): [OOMEvent, OOMEvent,...] } if the number of events > 0
latest_oom_events
python
Yelp/paasta
paasta_tools/check_oom_events.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_oom_events.py
Apache-2.0
def compose_sensu_status( instance, oom_events, is_check_enabled, alert_threshold, check_interval ): """ :param instance: InstanceConfig :param oom_events: a list of OOMEvents :param is_check_enabled: boolean to indicate whether the check enabled for the instance """ interval_string = f"{check_interval} minute(s)" instance_name = f"{instance.service}.{instance.instance}" if not is_check_enabled: return (Status.OK, f"This check is disabled for {instance_name}.") if not oom_events: return ( Status.OK, f"No oom events for {instance_name} in the last {interval_string}.", ) elif len(oom_events) >= alert_threshold: return ( Status.CRITICAL, f"The Out Of Memory killer killed processes for {instance_name} " f"in the last {interval_string}.", ) else: # If the number of OOM kills isn't above the alert threshold, # don't send anything. This will keep an alert open if it's already open, # but won't start a new alert if there wasn't one yet return None
:param instance: InstanceConfig :param oom_events: a list of OOMEvents :param is_check_enabled: boolean to indicate whether the check enabled for the instance
compose_sensu_status
python
Yelp/paasta
paasta_tools/check_oom_events.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_oom_events.py
Apache-2.0
def send_sensu_event(instance, oom_events, args): """ :param instance: InstanceConfig :param oom_events: a list of OOMEvents """ check_name = compose_check_name_for_service_instance( "oom-killer", instance.service, instance.instance ) monitoring_overrides = instance.get_monitoring() status = compose_sensu_status( instance=instance, oom_events=oom_events, is_check_enabled=monitoring_overrides.get("check_oom_events", True), alert_threshold=args.alert_threshold, check_interval=args.check_interval, ) if not status: return memory_limit = instance.get_mem() try: memory_limit_str = f"{int(memory_limit)}MB" except ValueError: memory_limit_str = memory_limit monitoring_overrides.update( { "page": False, "alert_after": "0m", "realert_every": args.realert_every, "runbook": "y/check-oom-events", "tip": ( "Follow the runbook to investigate and rightsize memory usage " f"(curr: {memory_limit_str})" ), } ) return monitoring_tools.send_event( service=instance.service, check_name=check_name, overrides=monitoring_overrides, status=status[0], output=status[1], soa_dir=instance.soa_dir, dry_run=args.dry_run, )
:param instance: InstanceConfig :param oom_events: a list of OOMEvents
send_sensu_event
python
Yelp/paasta
paasta_tools/check_oom_events.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_oom_events.py
Apache-2.0
def set_local_vars_configuration_to_none(obj: Any, visited: Set[int] = None) -> None: """ Recursive function to ensure that k8s clientlib objects are pickleable. Without this, k8s clientlib objects can't be used by multiprocessing functions as those pickle data to shuttle between processes. """ if visited is None: visited = set() # Avoid infinite recursion for objects that have already been visited obj_id = id(obj) if obj_id in visited: return visited.add(obj_id) # if the object has the attribute, set it to None to essentially delete it if hasattr(obj, "local_vars_configuration"): setattr(obj, "local_vars_configuration", None) # recursively check attributes of the object if hasattr(obj, "__dict__"): for attr_name, attr_value in obj.__dict__.items(): set_local_vars_configuration_to_none(attr_value, visited) # if the object is iterable/a collection, iterate over its elements elif isinstance(obj, (list, tuple, set)): for item in obj: set_local_vars_configuration_to_none(item, visited) elif isinstance(obj, dict): for value in obj.values(): set_local_vars_configuration_to_none(value, visited)
Recursive function to ensure that k8s clientlib objects are pickleable. Without this, k8s clientlib objects can't be used by multiprocessing functions as those pickle data to shuttle between processes.
set_local_vars_configuration_to_none
python
Yelp/paasta
paasta_tools/check_services_replication_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/check_services_replication_tools.py
Apache-2.0
def instance_is_not_bouncing( instance_config: Union[KubernetesDeploymentConfig, EksDeploymentConfig], applications: List[Application], ) -> bool: """ :param instance_config: a KubernetesDeploymentConfig or an EksDeploymentConfig with the configuration of the instance :param applications: a list of all deployments or stateful sets on the cluster that match the service and instance of provided instance_config """ for application in applications: if isinstance(application, DeploymentWrapper): existing_app = application.item if ( ( existing_app.metadata.namespace != instance_config.get_namespace() and (instance_config.get_bounce_method() == "downthenup") ) or ( existing_app.metadata.namespace == instance_config.get_namespace() and ( instance_config.get_instances() <= (existing_app.status.ready_replicas or 0) ) ) ) or instance_config.get_desired_state() == "stop": return True elif ( isinstance(application, StatefulSetWrapper) and application.item.metadata.namespace != instance_config.get_namespace() ): log.critical( "Paasta detected a StatefulSet that was migrated to a new namespace" "StatefulSet bouncing across namespaces is not supported" ) raise StatefulSetsAreNotSupportedError return False
:param instance_config: a KubernetesDeploymentConfig or an EksDeploymentConfig with the configuration of the instance :param applications: a list of all deployments or stateful sets on the cluster that match the service and instance of provided instance_config
instance_is_not_bouncing
python
Yelp/paasta
paasta_tools/cleanup_kubernetes_jobs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cleanup_kubernetes_jobs.py
Apache-2.0
def get_applications_to_kill( applications_dict: Dict[Tuple[str, str], List[Application]], cluster: str, valid_services: Set[Tuple[str, str]], soa_dir: str, eks: bool = False, ) -> List[Application]: """ :param applications_dict: A dictionary with (service, instance) as keys and a list of applications for each tuple :param cluster: paasta cluster :param valid_services: a set with the valid (service, instance) tuples for this cluster :param soa_dir: The SOA config directory to read from :return: list of applications to kill """ log.info("Determining apps to be killed") applications_to_kill: List[Application] = [] for (service, instance), applications in applications_dict.items(): if len(applications) >= 1: if (service, instance) not in valid_services: applications_to_kill.extend(applications) else: instance_config: Union[KubernetesDeploymentConfig, EksDeploymentConfig] if eks: instance_config = load_eks_service_config( cluster=cluster, service=service, instance=instance, soa_dir=soa_dir, ) else: instance_config = load_kubernetes_service_config( cluster=cluster, service=service, instance=instance, soa_dir=soa_dir, ) try: not_bouncing = instance_is_not_bouncing( instance_config, applications ) except StatefulSetsAreNotSupportedError: overrides = { "page": True, "alert_after": 0, "tip": f"Revert {service}.{instance} in soa-configs to not include the namespace key.", "runbook": "y/rb-paasta-namespace", "ticket": True, } send_event( service=service, check_name=f"statefulset_bounce_{service}.{instance}", overrides=overrides, status=Status.CRITICAL, # type: ignore output=f"Unsupported bounce: {service}.{instance}. PaaSTA managed StatefulSets do not support custom namespace", soa_dir=soa_dir, ) else: for application in applications: if ( application.kube_deployment.namespace != instance_config.get_namespace() and not_bouncing ): applications_to_kill.append(application) return applications_to_kill
:param applications_dict: A dictionary with (service, instance) as keys and a list of applications for each tuple :param cluster: paasta cluster :param valid_services: a set with the valid (service, instance) tuples for this cluster :param soa_dir: The SOA config directory to read from :return: list of applications to kill
get_applications_to_kill
python
Yelp/paasta
paasta_tools/cleanup_kubernetes_jobs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cleanup_kubernetes_jobs.py
Apache-2.0
def cleanup_unused_apps( soa_dir: str, cluster: str, kill_threshold: float = 0.5, force: bool = False, eks: bool = False, ) -> None: """Clean up old or invalid jobs/apps from kubernetes. Retrieves both a list of apps currently in kubernetes and a list of valid app ids in order to determine what to kill. :param soa_dir: The SOA config directory to read from :param cluster: paasta cluster to clean :param kill_threshold: The decimal fraction of apps we think is sane to kill when this job runs. :param force: Force the cleanup if we are above the kill_threshold""" log.info("Creating KubeClient") kube_client = KubeClient() log.info("Loading running Kubernetes apps") applications_dict = list_all_applications(kube_client, APPLICATION_TYPES) log.info("Retrieving valid apps from yelpsoa_configs") valid_services = set( get_services_for_cluster( instance_type="eks" if eks else "kubernetes", soa_dir=soa_dir ) ) applications_to_kill: List[Application] = get_applications_to_kill( applications_dict, cluster, valid_services, soa_dir, eks ) log.debug("Running apps: %s" % list(applications_dict)) log.debug("Valid apps: %s" % valid_services) log.debug("Terminating: %s" % applications_to_kill) if applications_to_kill: above_kill_threshold = float(len(applications_to_kill)) / float( len(applications_dict) ) > float(kill_threshold) if above_kill_threshold and not force: log.critical( "Paasta was about to kill more than %s of the running services, this " "is probably a BAD mistake!, run again with --force if you " "really need to destroy everything" % kill_threshold ) raise DontKillEverythingError for applicaton in applications_to_kill: with alert_state_change(applicaton, cluster): applicaton.deep_delete(kube_client)
Clean up old or invalid jobs/apps from kubernetes. Retrieves both a list of apps currently in kubernetes and a list of valid app ids in order to determine what to kill. :param soa_dir: The SOA config directory to read from :param cluster: paasta cluster to clean :param kill_threshold: The decimal fraction of apps we think is sane to kill when this job runs. :param force: Force the cleanup if we are above the kill_threshold
cleanup_unused_apps
python
Yelp/paasta
paasta_tools/cleanup_kubernetes_jobs.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/cleanup_kubernetes_jobs.py
Apache-2.0
def write_auto_config_data( service: str, extra_info: str, data: Dict[str, Any], soa_dir: str = DEFAULT_SOA_DIR, sub_dir: Optional[str] = None, comment: Optional[str] = None, ) -> Optional[str]: """ Replaces the contents of an automated config file for a service, or creates the file if it does not exist. Returns the filename of the modified file, or None if no file was written. """ yaml.YAML().representer.add_representer(type(None), my_represent_none) service_dir = f"{soa_dir}/{service}" if not os.path.exists(service_dir): log.warning( f"Service {service} does not exist in configs, skipping auto config update" ) return None subdir = f"{service_dir}/{sub_dir}" if sub_dir else service_dir if not os.path.exists(subdir): os.mkdir(subdir) filename = f"{subdir}/{extra_info}.yaml" with open(filename, "w") as f: # TODO: this can be collapsed into one codeblock. It is separated as two # because doing content.update(data) results in losing comments from `data` # we should be able to handle adding a header comment and yaml with comments in it # without this if/else block if comment: content = ( yaml.round_trip_load( comment.format( # this is a bit of a hack, but we've decided to not rename files back to kubernetes-* # files. while we still need to update things to reference the eks files directly, there's # still a couple of places where we still need kubernetes-* files (e.g., unmigrated operators) # so for now let's just assume that autotuned things will always actually have their human-managed # config in eks-* files regular_filename=f"{service}/{extra_info.replace('kubernetes-', 'eks-')}.yaml", ) ) if comment else {} ) content.update(data) else: # avoids content.update to preserve comments in `data` content = data f.write(yaml.round_trip_dump(content)) return filename
Replaces the contents of an automated config file for a service, or creates the file if it does not exist. Returns the filename of the modified file, or None if no file was written.
write_auto_config_data
python
Yelp/paasta
paasta_tools/config_utils.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/config_utils.py
Apache-2.0
def get_currently_deployed_sha(service, deploy_group, soa_dir=DEFAULT_SOA_DIR): """Tries to determine the currently deployed sha for a service and deploy_group, returns None if there isn't one ready yet""" try: deployments = load_v2_deployments_json(service=service, soa_dir=soa_dir) return deployments.get_git_sha_for_deploy_group(deploy_group=deploy_group) except NoDeploymentsAvailable: return None
Tries to determine the currently deployed sha for a service and deploy_group, returns None if there isn't one ready yet
get_currently_deployed_sha
python
Yelp/paasta
paasta_tools/deployment_utils.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/deployment_utils.py
Apache-2.0
def get_currently_deployed_version( service, deploy_group, soa_dir=DEFAULT_SOA_DIR ) -> Optional[DeploymentVersion]: """Tries to determine the currently deployed version for a service and deploy_group, returns None if there isn't one ready yet""" try: deployments = load_v2_deployments_json(service=service, soa_dir=soa_dir) return deployments.get_deployment_version_for_deploy_group( deploy_group=deploy_group ) except NoDeploymentsAvailable: return None
Tries to determine the currently deployed version for a service and deploy_group, returns None if there isn't one ready yet
get_currently_deployed_version
python
Yelp/paasta
paasta_tools/deployment_utils.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/deployment_utils.py
Apache-2.0
def register_drain_method( name: str, ) -> Callable[[_RegisterDrainMethod_T], _RegisterDrainMethod_T]: """Returns a decorator that registers a DrainMethod subclass at a given name so get_drain_method/list_drain_methods can find it.""" def outer(drain_method: _RegisterDrainMethod_T) -> _RegisterDrainMethod_T: _drain_methods[name] = drain_method return drain_method return outer
Returns a decorator that registers a DrainMethod subclass at a given name so get_drain_method/list_drain_methods can find it.
register_drain_method
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
async def drain(self, task: DrainTask) -> None: """Make a task stop receiving new traffic.""" raise NotImplementedError()
Make a task stop receiving new traffic.
drain
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
async def stop_draining(self, task: DrainTask) -> None: """Make a task that has previously been downed start receiving traffic again.""" raise NotImplementedError()
Make a task that has previously been downed start receiving traffic again.
stop_draining
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
async def is_draining(self, task: DrainTask) -> bool: """Return whether a task is being drained.""" raise NotImplementedError()
Return whether a task is being drained.
is_draining
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
async def is_safe_to_kill(self, task: DrainTask) -> bool: """Return True if a task is drained and ready to be killed, or False if we should wait.""" raise NotImplementedError()
Return True if a task is drained and ready to be killed, or False if we should wait.
is_safe_to_kill
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
def parse_success_codes(self, success_codes_str: str) -> Set[int]: """Expand a string like 200-399,407-409,500 to a set containing all the integers in between.""" acceptable_response_codes: Set[int] = set() for series_str in str(success_codes_str).split(","): if "-" in series_str: start, end = series_str.split("-") acceptable_response_codes.update(range(int(start), int(end) + 1)) else: acceptable_response_codes.add(int(series_str)) return acceptable_response_codes
Expand a string like 200-399,407-409,500 to a set containing all the integers in between.
parse_success_codes
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
async def issue_request(self, url_spec: UrlSpec, task: DrainTask) -> None: """Issue a request to the URL specified by url_spec regarding the task given.""" format_params = self.get_format_params(task) urls = [ self.format_url(url_spec["url_format"], param) for param in format_params ] method = url_spec.get("method", "GET").upper() async with aiohttp.ClientSession() as session: reqs = [ session.request( method=method, url=url, headers={"User-Agent": get_user_agent()}, timeout=15, ) for url in urls ] res = await asyncio.gather(*reqs) for response in res: if not self.check_response_code( response.status, url_spec["success_codes"] ): raise StatusCodeNotAcceptableError( f"Unacceptable status code {response.status} not in {url_spec['success_codes']} when hitting {response.url}" )
Issue a request to the URL specified by url_spec regarding the task given.
issue_request
python
Yelp/paasta
paasta_tools/drain_lib.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/drain_lib.py
Apache-2.0
def load_eks_service_config_no_cache( service: str, instance: str, cluster: str, load_deployments: bool = True, soa_dir: str = DEFAULT_SOA_DIR, ) -> "EksDeploymentConfig": """Read a service instance's configuration for EKS. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param name: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance""" general_config = service_configuration_lib.read_service_configuration( service, soa_dir=soa_dir ) instance_config = load_service_instance_config( service, instance, "eks", cluster, soa_dir=soa_dir ) general_config = deep_merge_dictionaries( overrides=instance_config, defaults=general_config ) branch_dict: Optional[BranchDictV2] = None if load_deployments: deployments_json = load_v2_deployments_json(service, soa_dir=soa_dir) temp_instance_config = EksDeploymentConfig( service=service, cluster=cluster, instance=instance, config_dict=general_config, branch_dict=None, soa_dir=soa_dir, ) branch = temp_instance_config.get_branch() deploy_group = temp_instance_config.get_deploy_group() branch_dict = deployments_json.get_branch_dict(service, branch, deploy_group) return EksDeploymentConfig( service=service, cluster=cluster, instance=instance, config_dict=general_config, branch_dict=branch_dict, soa_dir=soa_dir, )
Read a service instance's configuration for EKS. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param name: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance
load_eks_service_config_no_cache
python
Yelp/paasta
paasta_tools/eks_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/eks_tools.py
Apache-2.0
def load_eks_service_config( service: str, instance: str, cluster: str, load_deployments: bool = True, soa_dir: str = DEFAULT_SOA_DIR, ) -> "EksDeploymentConfig": """Read a service instance's configuration for EKS. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param name: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance""" return load_eks_service_config_no_cache( service=service, instance=instance, cluster=cluster, load_deployments=load_deployments, soa_dir=soa_dir, )
Read a service instance's configuration for EKS. If a branch isn't specified for a config, the 'branch' key defaults to paasta-${cluster}.${instance}. :param name: The service name :param instance: The instance of the service to retrieve :param cluster: The cluster to read the configuration for :param load_deployments: A boolean indicating if the corresponding deployments.json for this service should also be loaded :param soa_dir: The SOA configuration directory to read from :returns: A dictionary of whatever was in the config for the service instance
load_eks_service_config
python
Yelp/paasta
paasta_tools/eks_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/eks_tools.py
Apache-2.0
def are_services_up_in_pod( envoy_host: str, envoy_admin_port: int, envoy_admin_endpoint_format: str, registrations: Collection[str], pod_ip: str, pod_port: int, ) -> bool: """Returns whether a service in a k8s pod is reachable via envoy :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param registrations: The service_name.instance_name of the services :param pod_ip: IP of the pod itself :param pod_port: The port to reach the service in the pod """ for registration in registrations: backends_per_registration = get_backends( registration, envoy_host=envoy_host, envoy_admin_port=envoy_admin_port, envoy_admin_endpoint_format=envoy_admin_endpoint_format, ) healthy_backends = [ backend for backend in backends_per_registration.get(registration, []) if backend[0]["address"] == pod_ip and backend[0]["port_value"] == pod_port and backend[0]["eds_health_status"] == "HEALTHY" ] if not healthy_backends: return False return True
Returns whether a service in a k8s pod is reachable via envoy :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param registrations: The service_name.instance_name of the services :param pod_ip: IP of the pod itself :param pod_port: The port to reach the service in the pod
are_services_up_in_pod
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def are_namespaces_up_in_eds( envoy_eds_path: str, namespaces: Collection[str], pod_ip: str, pod_port: int, ) -> bool: """Returns whether a Pod is registered on Envoy through the EDS :param envoy_eds_path: path where EDS yaml files are stored :param namespaces: list of namespaces to check :param pod_ip: IP of the pod :param pod_port: The port to reach the service in the pod """ for namespace in namespaces: backends_from_eds = get_backends_from_eds(namespace, envoy_eds_path) if (pod_ip, pod_port) not in backends_from_eds: return False return True
Returns whether a Pod is registered on Envoy through the EDS :param envoy_eds_path: path where EDS yaml files are stored :param namespaces: list of namespaces to check :param pod_ip: IP of the pod :param pod_port: The port to reach the service in the pod
are_namespaces_up_in_eds
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def get_casper_endpoints( clusters_info: Mapping[str, Any] ) -> FrozenSet[Tuple[str, int]]: """Filters out and returns casper endpoints from Envoy clusters.""" casper_endpoints: Set[Tuple[str, int]] = set() for cluster_status in clusters_info["cluster_statuses"]: if "host_statuses" in cluster_status: if cluster_status["name"].startswith("spectre.") and cluster_status[ "name" ].endswith(".egress_cluster"): for host_status in cluster_status["host_statuses"]: casper_endpoints.add( ( host_status["address"]["socket_address"]["address"], host_status["address"]["socket_address"]["port_value"], ) ) return frozenset(casper_endpoints)
Filters out and returns casper endpoints from Envoy clusters.
get_casper_endpoints
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def get_backends_from_eds(namespace: str, envoy_eds_path: str) -> List[Tuple[str, int]]: """Returns a list of backends for a given namespace. Casper backends are also returned (if present). :param namespace: return backends for this namespace :param envoy_eds_path: path where EDS yaml files are stored :returns backends: a list of touples representing the backends for the requested service """ backends = [] eds_file_for_namespace = f"{envoy_eds_path}/{namespace}/{namespace}.yaml" if os.access(eds_file_for_namespace, os.R_OK): with open(eds_file_for_namespace) as f: eds_yaml = yaml.safe_load(f) for resource in eds_yaml.get("resources", []): endpoints = resource.get("endpoints") # endpoints could be None if there are no backends listed if endpoints: for endpoint in endpoints: for lb_endpoint in endpoint.get("lb_endpoints", []): address = lb_endpoint["endpoint"]["address"][ "socket_address" ]["address"] port_value = lb_endpoint["endpoint"]["address"][ "socket_address" ]["port_value"] backends.append((address, port_value)) return backends
Returns a list of backends for a given namespace. Casper backends are also returned (if present). :param namespace: return backends for this namespace :param envoy_eds_path: path where EDS yaml files are stored :returns backends: a list of touples representing the backends for the requested service
get_backends_from_eds
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def get_backends( service: str, envoy_host: str, envoy_admin_port: int, envoy_admin_endpoint_format: str, ) -> Dict[str, List[Tuple[EnvoyBackend, bool]]]: """Fetches JSON from Envoy admin's /clusters endpoint and returns a list of backends. :param service: If None, return backends for all services, otherwise only return backends for this particular service. :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns backends: A list of dicts representing the backends of all services or the requested service """ if service: services = [service] else: services = None return get_multiple_backends( services, envoy_host=envoy_host, envoy_admin_port=envoy_admin_port, envoy_admin_endpoint_format=envoy_admin_endpoint_format, )
Fetches JSON from Envoy admin's /clusters endpoint and returns a list of backends. :param service: If None, return backends for all services, otherwise only return backends for this particular service. :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns backends: A list of dicts representing the backends of all services or the requested service
get_backends
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def get_multiple_backends( services: Optional[Sequence[str]], envoy_host: str, envoy_admin_port: int, envoy_admin_endpoint_format: str, resolve_hostnames: bool = True, ) -> Dict[str, List[Tuple[EnvoyBackend, bool]]]: """Fetches JSON from Envoy admin's /clusters endpoint and returns a list of backends. :param services: If None, return backends for all services, otherwise only return backends for these particular services. :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns backends: A list of dicts representing the backends of all services or the requested service """ clusters_info = retrieve_envoy_clusters( envoy_host=envoy_host, envoy_admin_port=envoy_admin_port, envoy_admin_endpoint_format=envoy_admin_endpoint_format, ) casper_endpoints = get_casper_endpoints(clusters_info) backends: DefaultDict[ str, List[Tuple[EnvoyBackend, bool]] ] = collections.defaultdict(list) for cluster_status in clusters_info["cluster_statuses"]: if "host_statuses" in cluster_status: if cluster_status["name"].endswith(".egress_cluster"): service_name = cluster_status["name"][: -len(".egress_cluster")] if services is None or service_name in services: cluster_backends = [] casper_endpoint_found = False for host_status in cluster_status["host_statuses"]: address = host_status["address"]["socket_address"]["address"] port_value = host_status["address"]["socket_address"][ "port_value" ] # Check if this endpoint is actually a casper backend # If so, omit from the service's list of backends if not service_name.startswith("spectre."): if (address, port_value) in casper_endpoints: casper_endpoint_found = True continue hostname = address if resolve_hostnames: try: hostname = socket.gethostbyaddr(address)[0].split(".")[ 0 ] except socket.herror: # Default to the raw IP address if we can't lookup the hostname pass cluster_backends.append( ( EnvoyBackend( address=address, port_value=port_value, hostname=hostname, eds_health_status=host_status["health_status"][ "eds_health_status" ], weight=host_status["weight"], ), casper_endpoint_found, ) ) backends[service_name] += cluster_backends return backends
Fetches JSON from Envoy admin's /clusters endpoint and returns a list of backends. :param services: If None, return backends for all services, otherwise only return backends for these particular services. :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port that Envoy's admin interface is listening on :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns backends: A list of dicts representing the backends of all services or the requested service
get_multiple_backends
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def match_backends_and_pods( backends: Iterable[EnvoyBackend], pods: Iterable[V1Pod], ) -> List[Tuple[Optional[EnvoyBackend], Optional[V1Pod]]]: """Returns tuples of matching (backend, pod) pairs, as matched by IP. Each backend will be listed exactly once. If a backend does not match with a pod, (backend, None) will be included. If a pod's IP does not match with any backends, (None, pod) will be included. :param backends: An iterable of Envoy backend dictionaries, e.g. the list returned by envoy_tools.get_multiple_backends. :param pods: A list of pods """ # { ip : [backend1, backend2], ... } backends_by_ip: DefaultDict[str, List[EnvoyBackend]] = collections.defaultdict(list) backend_pod_pairs = [] for backend in backends: ip = backend["address"] backends_by_ip[ip].append(backend) for pod in pods: ip = pod.status.pod_ip for backend in backends_by_ip.pop(ip, [None]): backend_pod_pairs.append((backend, pod)) # we've been popping in the above loop, so anything left didn't match a k8s pod. for backends in backends_by_ip.values(): for backend in backends: backend_pod_pairs.append((backend, None)) return backend_pod_pairs
Returns tuples of matching (backend, pod) pairs, as matched by IP. Each backend will be listed exactly once. If a backend does not match with a pod, (backend, None) will be included. If a pod's IP does not match with any backends, (None, pod) will be included. :param backends: An iterable of Envoy backend dictionaries, e.g. the list returned by envoy_tools.get_multiple_backends. :param pods: A list of pods
match_backends_and_pods
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def get_replication_for_all_services( envoy_host: str, envoy_admin_port: int, envoy_admin_endpoint_format: str, ) -> Dict[str, int]: """Returns the replication level for all services known to this Envoy :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port number that this check should contact for replication information. :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns available_instance_counts: A dictionary mapping the service names to an integer number of available replicas. """ backends = get_multiple_backends( services=None, envoy_host=envoy_host, envoy_admin_port=envoy_admin_port, envoy_admin_endpoint_format=envoy_admin_endpoint_format, resolve_hostnames=False, # we're not really going to use the hostnames, so skip fetching them to save time ) return collections.Counter( [ service_name for service_name, service_backends in backends.items() for b in service_backends if backend_is_up(b[0]) ] )
Returns the replication level for all services known to this Envoy :param envoy_host: The host that this check should contact for replication information. :param envoy_admin_port: The port number that this check should contact for replication information. :param envoy_admin_endpoint_format: The format of Envoy's admin endpoint :returns available_instance_counts: A dictionary mapping the service names to an integer number of available replicas.
get_replication_for_all_services
python
Yelp/paasta
paasta_tools/envoy_tools.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/envoy_tools.py
Apache-2.0
def _yocalhost_rule(port, comment, protocol="tcp"): """Return an iptables rule allowing access to a yocalhost port.""" return iptables.Rule( protocol=protocol, src="0.0.0.0/0.0.0.0", dst="169.254.255.254/255.255.255.255", target="ACCEPT", matches=( ("comment", (("comment", (comment,)),)), (protocol, (("dport", (str(port),)),)), ), target_parameters=(), )
Return an iptables rule allowing access to a yocalhost port.
_yocalhost_rule
python
Yelp/paasta
paasta_tools/firewall.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/firewall.py
Apache-2.0
def services_running_here(): """Generator helper that yields (service, instance, mac address) of both mesos tasks. """ for container in get_running_mesos_docker_containers(): if container["HostConfig"]["NetworkMode"] != "bridge": continue service = container["Labels"].get("paasta_service") instance = container["Labels"].get("paasta_instance") if service is None or instance is None: continue network_info = container["NetworkSettings"]["Networks"]["bridge"] mac = network_info["MacAddress"] ip = network_info["IPAddress"] yield service, instance, mac, ip
Generator helper that yields (service, instance, mac address) of both mesos tasks.
services_running_here
python
Yelp/paasta
paasta_tools/firewall.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/firewall.py
Apache-2.0
def _ensure_common_chain(): """The common chain allows access for all services to certain resources.""" iptables.ensure_chain( "PAASTA-COMMON", ( # Allow return traffic for incoming connections iptables.Rule( protocol="ip", src="0.0.0.0/0.0.0.0", dst="0.0.0.0/0.0.0.0", target="ACCEPT", matches=(("conntrack", (("ctstate", ("ESTABLISHED",)),)),), target_parameters=(), ), _yocalhost_rule(1463, "scribed"), _yocalhost_rule(8125, "metrics-relay", protocol="udp"), _yocalhost_rule(3030, "sensu"), iptables.Rule( protocol="ip", src="0.0.0.0/0.0.0.0", dst="0.0.0.0/0.0.0.0", target="PAASTA-DNS", matches=(), target_parameters=(), ), ), )
The common chain allows access for all services to certain resources.
_ensure_common_chain
python
Yelp/paasta
paasta_tools/firewall.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/firewall.py
Apache-2.0
def ensure_service_chains(service_groups, soa_dir, synapse_service_dir): """Ensure service chains exist and have the right rules. service_groups is a dict {ServiceGroup: set([mac_address..])} Returns dictionary {[service chain] => [list of mac addresses]}. """ chains = {} for service, macs in service_groups.items(): service.update_rules(soa_dir, synapse_service_dir) chains[service.chain_name] = macs return chains
Ensure service chains exist and have the right rules. service_groups is a dict {ServiceGroup: set([mac_address..])} Returns dictionary {[service chain] => [list of mac addresses]}.
ensure_service_chains
python
Yelp/paasta
paasta_tools/firewall.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/firewall.py
Apache-2.0
def general_update(soa_dir, synapse_service_dir): """Update iptables to match the current PaaSTA state.""" ensure_shared_chains() service_chains = ensure_service_chains( active_service_groups(), soa_dir, synapse_service_dir ) ensure_dispatch_chains(service_chains) garbage_collect_old_service_chains(service_chains)
Update iptables to match the current PaaSTA state.
general_update
python
Yelp/paasta
paasta_tools/firewall.py
https://github.com/Yelp/paasta/blob/master/paasta_tools/firewall.py
Apache-2.0