code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def logerror(logger: logging.Logger = logging.root): """A decorator that wraps the passed in function and logs exceptions. Parameters ---------- logger: logging.Logger The logger to which to log the error. """ def log_wrapper(function): @functools.wraps(function) def wrapper(*args, **kwargs): try: return function(*args, **kwargs) except Exception as e: # log the exception logger.exception( f'{function.__name__}(args={args}, kwargs={kwargs}) failed:\n{e}.') raise e return wrapper return log_wrapper
A decorator that wraps the passed in function and logs exceptions. Parameters ---------- logger: logging.Logger The logger to which to log the error.
logerror
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def grouper(iterable, n, fillvalue=None): """Collect data into fixed-length chunks or blocks""" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue)
Collect data into fixed-length chunks or blocks
grouper
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def repeat(iterable, count=None): """Repeat a basic iterator for multiple rounds Parameters ---------- iterable The basic iterable count Repeat the basic iterable for "count" times. If it is None, it will be an infinite iterator. Returns ------- new_iterable A new iterable in which the basic iterator has been repeated for multiple rounds. """ if count is None: while True: for sample in iterable: yield sample else: for i in range(count): for sample in iterable: yield sample
Repeat a basic iterator for multiple rounds Parameters ---------- iterable The basic iterable count Repeat the basic iterable for "count" times. If it is None, it will be an infinite iterator. Returns ------- new_iterable A new iterable in which the basic iterator has been repeated for multiple rounds.
repeat
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def load_checksum_stats(path: str) -> dict: """ Parameters ---------- path Path to the stored checksum Returns ------- file_stats """ file_stats = dict() with open(path, 'r', encoding='utf-8') as f: for line in f: name, hex_hash, file_size = line.strip().split() file_stats[name] = hex_hash if name[8:27] == 'gluonnlp-numpy-data': new_name = name.replace('https://gluonnlp-numpy-data.s3-accelerate.amazonaws.com', 's3://gluonnlp-numpy-data') file_stats[new_name] = hex_hash return file_stats
Parameters ---------- path Path to the stored checksum Returns ------- file_stats
load_checksum_stats
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def download_file_from_google_drive(file_id, dest_path, overwrite=False, showsize=False): """Downloads a shared file from google drive into a given folder. Optionally unzips it. Parameters ---------- file_id: str the file identifier. You can obtain it from the sharable link. dest_path: str the destination where to save the downloaded file. Must be a path (for example: './downloaded_file.txt') overwrite: bool optional, if True forces re-download and overwrite. showsize: bool optional, if True print the current download size. """ destination_directory = os.path.dirname(dest_path) if not os.path.exists(destination_directory): os.makedirs(destination_directory) if not os.path.exists(dest_path) or overwrite: session = requests.Session() print('Downloading {} into {}... '.format(file_id, dest_path), end='') sys.stdout.flush() response = session.get(GoogleDriveDownloader.DOWNLOAD_URL, params={'id': file_id}, stream=True) token = GoogleDriveDownloader._get_confirm_token(response) if token: params = {'id': file_id, 'confirm': token} response = session.get(GoogleDriveDownloader.DOWNLOAD_URL, params=params, stream=True) if showsize: print() # Skip to the next line current_download_size = [0] GoogleDriveDownloader._save_response_content(response, dest_path, showsize, current_download_size) print('Done.')
Downloads a shared file from google drive into a given folder. Optionally unzips it. Parameters ---------- file_id: str the file identifier. You can obtain it from the sharable link. dest_path: str the destination where to save the downloaded file. Must be a path (for example: './downloaded_file.txt') overwrite: bool optional, if True forces re-download and overwrite. showsize: bool optional, if True print the current download size.
download_file_from_google_drive
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def download(url: str, path: Optional[str] = None, overwrite: Optional[bool] = False, sha1_hash: Optional[str] = None, retries: Optional[int] = 5, verify_ssl: Optional[bool] = True, anonymous_credential: Optional[bool] = True) -> str: """Download a given URL Parameters ---------- url URL to download path Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite Whether to overwrite destination file if already exists. sha1_hash Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. retries The number of times to attempt the download in case of failure or non 200 return codes verify_ssl Verify SSL certificates. anonymous_credential Whether to force to use anonymous credential if the path is from S3. Returns ------- fname The file path of the downloaded file. """ is_s3 = url.startswith(S3_PREFIX) if is_s3: boto3, botocore = try_import_boto3() s3 = boto3.resource('s3') if boto3.session.Session().get_credentials() is None or anonymous_credential: from botocore.handlers import disable_signing s3.meta.client.meta.events.register('choose-signer.s3.*', disable_signing) components = url[len(S3_PREFIX):].split('/') if len(components) < 2: raise ValueError('Invalid S3 url. Received url={}'.format(url)) s3_bucket_name = components[0] s3_key = '/'.join(components[1:]) if path is None: fname = url.split('/')[-1] # Empty filenames are invalid assert fname, 'Can\'t construct file-name from this URL. ' \ 'Please set the `path` option manually.' else: path = os.path.expanduser(path) if os.path.isdir(path): fname = os.path.join(path, url.split('/')[-1]) else: fname = path assert retries >= 0, "Number of retries should be at least 0, currently it's {}".format( retries) if not verify_ssl: warnings.warn( 'Unverified HTTPS request is being made (verify_ssl=False). ' 'Adding certificate verification is strongly advised.') if overwrite or not os.path.exists(fname) or (sha1_hash and not sha1sum(fname) == sha1_hash): dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname))) if not os.path.exists(dirname): os.makedirs(dirname, exist_ok=True) while retries + 1 > 0: # Disable pyling too broad Exception # pylint: disable=W0703 try: print('Downloading {} from {}...'.format(fname, url)) if is_s3: response = s3.meta.client.head_object(Bucket=s3_bucket_name, Key=s3_key) total_size = int(response.get('ContentLength', 0)) random_uuid = str(uuid.uuid4()) tmp_path = '{}.{}'.format(fname, random_uuid) if tqdm is not None: def hook(t_obj): def inner(bytes_amount): t_obj.update(bytes_amount) return inner with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True) as t: s3.meta.client.download_file(s3_bucket_name, s3_key, tmp_path, Callback=hook(t)) else: s3.meta.client.download_file(s3_bucket_name, s3_key, tmp_path) else: r = requests.get(url, stream=True, verify=verify_ssl) if r.status_code != 200: raise RuntimeError('Failed downloading url {}'.format(url)) # create uuid for temporary files random_uuid = str(uuid.uuid4()) total_size = int(r.headers.get('content-length', 0)) chunk_size = 1024 if tqdm is not None: t = tqdm.tqdm(total=total_size, unit='iB', unit_scale=True) with open('{}.{}'.format(fname, random_uuid), 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if chunk: # filter out keep-alive new chunks if tqdm is not None: t.update(len(chunk)) f.write(chunk) if tqdm is not None: t.close() # if the target file exists(created by other processes) # and have the same hash with target file # delete the temporary file if not os.path.exists(fname) or (sha1_hash and not sha1sum(fname) == sha1_hash): # atomic operation in the same file system replace_file('{}.{}'.format(fname, random_uuid), fname) else: try: os.remove('{}.{}'.format(fname, random_uuid)) except OSError: pass finally: warnings.warn( 'File {} exists in file system so the downloaded file is deleted'.format(fname)) if sha1_hash and not sha1sum(fname) == sha1_hash: raise UserWarning( 'File {} is downloaded but the content hash does not match.' ' The repo may be outdated or download may be incomplete. ' 'If the "repo_url" is overridden, consider switching to ' 'the default repo.'.format(fname)) break except Exception as e: retries -= 1 if retries <= 0: raise e print('download failed due to {}, retrying, {} attempt{} left' .format(repr(e), retries, 's' if retries > 1 else '')) return fname
Download a given URL Parameters ---------- url URL to download path Destination path to store downloaded file. By default stores to the current directory with same name as in url. overwrite Whether to overwrite destination file if already exists. sha1_hash Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified but doesn't match. retries The number of times to attempt the download in case of failure or non 200 return codes verify_ssl Verify SSL certificates. anonymous_credential Whether to force to use anonymous credential if the path is from S3. Returns ------- fname The file path of the downloaded file.
download
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def check_version(min_version: str, warning_only: bool = False, library: Optional[ModuleType] = None): """Check the version of gluonnlp satisfies the provided minimum version. An exception is thrown if the check does not pass. Parameters ---------- min_version Minimum version warning_only Printing a warning instead of throwing an exception. library The target library for version check. Checks gluonnlp by default """ # pylint: disable=import-outside-toplevel from .. import __version__ if library is None: version = __version__ name = 'GluonNLP' else: version = library.__version__ name = library.__name__ from packaging.version import parse bad_version = parse(version.replace('.dev', '')) < parse(min_version) if bad_version: msg = 'Installed {} version {} does not satisfy the ' \ 'minimum required version {}'.format(name, version, min_version) if warning_only: warnings.warn(msg) else: raise AssertionError(msg)
Check the version of gluonnlp satisfies the provided minimum version. An exception is thrown if the check does not pass. Parameters ---------- min_version Minimum version warning_only Printing a warning instead of throwing an exception. library The target library for version check. Checks gluonnlp by default
check_version
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def init_comm(backend, gpus): """Init communication backend Parameters ---------- backend The communication backend gpus Returns ------- store The kvstore num_workers The total number of workers rank local_rank is_master_node ctx_l """ # backend specific implementation import mxnet as mx if backend == 'horovod': try: import horovod.mxnet as hvd # pylint: disable=import-outside-toplevel except ImportError: logging.info('horovod must be installed.') sys.exit(1) hvd.init() store = None num_workers = hvd.size() rank = hvd.rank() local_rank = hvd.local_rank() is_master_node = rank == local_rank ctx_l = [mx.gpu(local_rank)] logging.info('GPU communication supported by horovod') else: store = mx.kv.create(backend) num_workers = store.num_workers rank = store.rank local_rank = 0 is_master_node = rank == local_rank if gpus == '-1' or gpus == '': ctx_l = [mx.cpu()] logging.info('Runing on CPU') else: ctx_l = [mx.gpu(int(x)) for x in gpus.split(',')] logging.info('GPU communication supported by KVStore') return store, num_workers, rank, local_rank, is_master_node, ctx_l
Init communication backend Parameters ---------- backend The communication backend gpus Returns ------- store The kvstore num_workers The total number of workers rank local_rank is_master_node ctx_l
init_comm
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def get_mxnet_visible_ctx(): """Get the visible contexts in MXNet. - If GPU is available it will return all the visible GPUs, which can be controlled via "CUDA_VISIBLE_DEVICES". - If no GPU is available it will return the cpu device. Returns ------- ctx_l The recommended contexts to use for MXNet """ import mxnet as mx num_gpus = mx.context.num_gpus() if num_gpus == 0: ctx_l = [mx.cpu()] else: ctx_l = [mx.gpu(i) for i in range(num_gpus)] return ctx_l
Get the visible contexts in MXNet. - If GPU is available it will return all the visible GPUs, which can be controlled via "CUDA_VISIBLE_DEVICES". - If no GPU is available it will return the cpu device. Returns ------- ctx_l The recommended contexts to use for MXNet
get_mxnet_visible_ctx
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def __init__(self, params=None): """Maintain a set of shadow variables "v" that is calculated by v[:] = (1 - 1/t) v + 1/t \theta The t is the number of training steps. It is also known as "Polyak-Rupert averaging" applied to SGD and was rediscovered in "Towards Optimal One Pass Large Scale Learning withAveraged Stochastic Gradient Descent" Wei Xu (2011). The idea is to average the parameters obtained by stochastic gradient descent. Parameters ---------- params : ParameterDict The parameters that we are going to track. """ self._track_params = None self._average_params = None self._initialized = False self._n_steps = 0 if params is not None: self.apply(params)
Maintain a set of shadow variables "v" that is calculated by v[:] = (1 - 1/t) v + 1/t heta The t is the number of training steps. It is also known as "Polyak-Rupert averaging" applied to SGD and was rediscovered in "Towards Optimal One Pass Large Scale Learning withAveraged Stochastic Gradient Descent" Wei Xu (2011). The idea is to average the parameters obtained by stochastic gradient descent. Parameters ---------- params : ParameterDict The parameters that we are going to track.
__init__
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def apply(self, params): """ Tell the moving average tracker which parameters we are going to track. Parameters ---------- params : ParameterDict The parameters that we are going to track and calculate the moving average. """ assert self._track_params is None, 'The MovingAverageTracker is already initialized and'\ ' is not allowed to be initialized again. ' self._track_params = deduplicate_param_dict(params) self._n_steps = 0
Tell the moving average tracker which parameters we are going to track. Parameters ---------- params : ParameterDict The parameters that we are going to track and calculate the moving average.
apply
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def copy_back(self, params=None): """ Copy the average parameters back to the given parameters Parameters ---------- params : ParameterDict The parameters that we will copy tha average params to. If it is not given, the tracked parameters will be updated """ if params is None: params = self._track_params for k, v in self._average_params.items(): params[k].set_data(v)
Copy the average parameters back to the given parameters Parameters ---------- params : ParameterDict The parameters that we will copy tha average params to. If it is not given, the tracked parameters will be updated
copy_back
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def grad_global_norm(parameters: Iterable[Parameter]) -> float: """Calculate the 2-norm of gradients of parameters, and how much they should be scaled down such that their 2-norm does not exceed `max_norm`, if `max_norm` if provided. If gradients exist for more than one context for a parameter, user needs to explicitly call ``trainer.allreduce_grads`` so that the gradients are summed first before calculating the 2-norm. .. note:: This function is only for use when `update_on_kvstore` is set to False in trainer. Example:: trainer = Trainer(net.collect_params(), update_on_kvstore=False, ...) for x, y in mx.gluon.utils.split_and_load(X, [mx.gpu(0), mx.gpu(1)]): with mx.autograd.record(): y = net(x) loss = loss_fn(y, label) loss.backward() trainer.allreduce_grads() norm = grad_global_norm(net.collect_params().values()) ... Parameters ---------- parameters The list of Parameters Returns ------- total_norm Total norm. It's a numpy scalar. """ # Distribute gradients among contexts, # For example, assume there are 8 weights and four GPUs, we can ask each GPU to # compute the squared sum of two weights and then add the results together idx = 0 arrays = defaultdict(list) sum_norms = [] num_ctx = None param_uuid_set = set() for p in parameters: if p._uuid in param_uuid_set: continue param_uuid_set.add(p._uuid) if p.grad_req != 'null': p_grads = p.list_grad() if num_ctx is None: num_ctx = len(p_grads) else: assert num_ctx == len(p_grads) arrays[idx % num_ctx].append(p_grads[idx % num_ctx]) idx += 1 assert len(arrays) > 0, 'No parameter found available for gradient norm.' # TODO(sxjscience) # Investigate the float16 case. # The inner computation accumulative type of norm should be float32. ctx = arrays[0][0].context for idx, arr_l in enumerate(arrays.values()): sum_norm = mx.np.linalg.norm(mx.np.concatenate([mx.np.ravel(ele) for ele in arr_l])) sum_norms.append(sum_norm.as_in_ctx(ctx)) # Reduce over ctx if num_ctx == 1: total_norm = sum_norms[0] else: total_norm = mx.np.linalg.norm(mx.np.concatenate(sum_norms, axis=None)) total_norm = float(total_norm) return total_norm
Calculate the 2-norm of gradients of parameters, and how much they should be scaled down such that their 2-norm does not exceed `max_norm`, if `max_norm` if provided. If gradients exist for more than one context for a parameter, user needs to explicitly call ``trainer.allreduce_grads`` so that the gradients are summed first before calculating the 2-norm. .. note:: This function is only for use when `update_on_kvstore` is set to False in trainer. Example:: trainer = Trainer(net.collect_params(), update_on_kvstore=False, ...) for x, y in mx.gluon.utils.split_and_load(X, [mx.gpu(0), mx.gpu(1)]): with mx.autograd.record(): y = net(x) loss = loss_fn(y, label) loss.backward() trainer.allreduce_grads() norm = grad_global_norm(net.collect_params().values()) ... Parameters ---------- parameters The list of Parameters Returns ------- total_norm Total norm. It's a numpy scalar.
grad_global_norm
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def clip_grad_global_norm(parameters: Iterable[Parameter], max_norm: float, check_isfinite: bool = True) -> Tuple[float, float, bool]: """Rescales gradients of parameters so that the sum of their 2-norm is smaller than `max_norm`. If gradients exist for more than one context for a parameter, user needs to explicitly call ``trainer.allreduce_grads`` so that the gradients are summed first before calculating the 2-norm. .. note:: This function is only for use when `update_on_kvstore` is set to False in trainer. In cases where training happens on multiple contexts, this method should be used in conjunction with ``trainer.allreduce_grads()`` and ``trainer.update()``. (**not** ``trainer.step()``) Example:: trainer = Trainer(net.collect_params(), update_on_kvstore=False, ...) for x, y in mx.gluon.utils.split_and_load(X, [mx.gpu(0), mx.gpu(1)]): with mx.autograd.record(): y = net(x) loss = loss_fn(y, label) loss.backward() trainer.allreduce_grads() nlp.utils.clip_grad_global_norm(net.collect_params().values(), max_norm) trainer.update(batch_size) ... Parameters ---------- parameters The list of parameters to calculate the norm max_norm If the gradient norm is larger than max_norm, it will be clipped to have max_norm check_isfinite If True, check whether the total_norm is finite (not nan or inf). Returns ------- total_norm The total norm ratio The expected clipping ratio: grad = grad / ratio It will be calculated as max(total_norm / max_norm, 1) is_finite Whether the total norm is finite """ total_norm = grad_global_norm(parameters) is_finite = bool(np.isfinite(total_norm)) ratio = np.maximum(1, total_norm / max_norm) if check_isfinite and not is_finite: warnings.warn( UserWarning('nan or inf is detected. Clipping results will be undefined.' ' Thus, skip clipping'), stacklevel=2) return total_norm, ratio, is_finite scale = 1 / ratio param_uuid_set = set() for p in parameters: if p._uuid in param_uuid_set: continue param_uuid_set.add(p._uuid) if p.grad_req != 'null': for arr in p.list_grad(): arr *= scale return total_norm, ratio, is_finite
Rescales gradients of parameters so that the sum of their 2-norm is smaller than `max_norm`. If gradients exist for more than one context for a parameter, user needs to explicitly call ``trainer.allreduce_grads`` so that the gradients are summed first before calculating the 2-norm. .. note:: This function is only for use when `update_on_kvstore` is set to False in trainer. In cases where training happens on multiple contexts, this method should be used in conjunction with ``trainer.allreduce_grads()`` and ``trainer.update()``. (**not** ``trainer.step()``) Example:: trainer = Trainer(net.collect_params(), update_on_kvstore=False, ...) for x, y in mx.gluon.utils.split_and_load(X, [mx.gpu(0), mx.gpu(1)]): with mx.autograd.record(): y = net(x) loss = loss_fn(y, label) loss.backward() trainer.allreduce_grads() nlp.utils.clip_grad_global_norm(net.collect_params().values(), max_norm) trainer.update(batch_size) ... Parameters ---------- parameters The list of parameters to calculate the norm max_norm If the gradient norm is larger than max_norm, it will be clipped to have max_norm check_isfinite If True, check whether the total_norm is finite (not nan or inf). Returns ------- total_norm The total norm ratio The expected clipping ratio: grad = grad / ratio It will be calculated as max(total_norm / max_norm, 1) is_finite Whether the total norm is finite
clip_grad_global_norm
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def move_to_ctx(arr, ctx): """Move a nested structure of array to the given context Parameters ---------- arr The input array ctx The MXNet context Returns ------- new_arr The array that has been moved to context """ if isinstance(arr, tuple): return tuple(move_to_ctx(ele, ctx) for ele in arr) elif isinstance(arr, list): return [move_to_ctx(ele, ctx) for ele in arr] else: return None if arr is None else arr.as_in_ctx(ctx)
Move a nested structure of array to the given context Parameters ---------- arr The input array ctx The MXNet context Returns ------- new_arr The array that has been moved to context
move_to_ctx
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def deduplicate_param_dict(param_dict): """Get a parameter dict that has been deduplicated Parameters ---------- param_dict The parameter dict returned by `model.collect_params()` Returns ------- dedup_param_dict """ dedup_param_dict = dict() param_uuid_set = set() for k in sorted(param_dict.keys()): v = param_dict[k] if v._uuid in param_uuid_set: continue dedup_param_dict[k] = v param_uuid_set.add(v._uuid) return dedup_param_dict
Get a parameter dict that has been deduplicated Parameters ---------- param_dict The parameter dict returned by `model.collect_params()` Returns ------- dedup_param_dict
deduplicate_param_dict
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def count_parameters(params) -> Tuple[int, int]: """ Parameters ---------- params The input parameter dict Returns ------- num_params The number of parameters that requires gradient num_fixed_params The number of parameters that does not require gradient """ num_params = 0 num_fixed_params = 0 param_uuid_set = set() for k, v in params.items(): if v._uuid in param_uuid_set: continue param_uuid_set.add(v._uuid) if v.grad_req != 'null': if v._data is None: warnings.warn('"{}" is not initialized! The total parameter count ' 'will not be correct.'.format(k)) else: num_params += np.prod(v.shape) else: if v._data is None: warnings.warn('"{}" is not initialized! The total fixed parameter count ' 'will not be correct.'.format(k)) else: num_fixed_params += np.prod(v.shape) return num_params, num_fixed_params
Parameters ---------- params The input parameter dict Returns ------- num_params The number of parameters that requires gradient num_fixed_params The number of parameters that does not require gradient
count_parameters
python
dmlc/gluon-nlp
src/gluonnlp/utils/parameter.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/parameter.py
Apache-2.0
def get_trimmed_lengths(lengths: List[int], max_length: int, do_merge: bool = False) -> np.ndarray: """Get the trimmed lengths of multiple text data. It will make sure that the trimmed length is smaller than or equal to the max_length - do_merge is True Make sure that sum(trimmed_lengths) <= max_length. The strategy is to always try to trim the longer lengths. - do_merge is False Make sure that all(trimmed_lengths <= max_length) Parameters ---------- lengths The original lengths of each sample max_length When do_merge is True, We set the max_length constraint on the total length. When do_merge is False, We set the max_length constraint on individual sentences. do_merge Whether these sentences will be merged Returns ------- trimmed_lengths The trimmed lengths of the sequences. """ lengths = np.array(lengths) if do_merge: total_length = sum(lengths) if total_length <= max_length: return lengths trimmed_lengths = np.zeros_like(lengths) while sum(trimmed_lengths) != max_length: remainder = max_length - sum(trimmed_lengths) budgets = lengths - trimmed_lengths nonzero_idx = (budgets > 0).nonzero()[0] nonzero_budgets = budgets[nonzero_idx] if remainder // len(nonzero_idx) == 0: for i in range(remainder): trimmed_lengths[nonzero_idx[i]] += 1 else: increment = min(min(nonzero_budgets), remainder // len(nonzero_idx)) trimmed_lengths[nonzero_idx] += increment return trimmed_lengths else: return np.minimum(lengths, max_length)
Get the trimmed lengths of multiple text data. It will make sure that the trimmed length is smaller than or equal to the max_length - do_merge is True Make sure that sum(trimmed_lengths) <= max_length. The strategy is to always try to trim the longer lengths. - do_merge is False Make sure that all(trimmed_lengths <= max_length) Parameters ---------- lengths The original lengths of each sample max_length When do_merge is True, We set the max_length constraint on the total length. When do_merge is False, We set the max_length constraint on individual sentences. do_merge Whether these sentences will be merged Returns ------- trimmed_lengths The trimmed lengths of the sequences.
get_trimmed_lengths
python
dmlc/gluon-nlp
src/gluonnlp/utils/preprocessing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/preprocessing.py
Apache-2.0
def match_tokens_with_char_spans(token_offsets: np.ndarray, spans: np.ndarray) -> np.ndarray: """Match the span offsets with the character-level offsets. For each span, we perform the following: 1: Cutoff the boundary span[0] = max(span[0], token_offsets[0, 0]) span[1] = min(span[1], token_offsets[-1, 1]) 2: Find start + end We try to select the smallest number of tokens that cover the entity, i.e., we will find start + end, in which tokens[start:end + 1] covers the span. We will use the following algorithm: For "start", we search for token_offsets[start, 0] <= span[0] < token_offsets[start + 1, 0] For "end", we search for: token_offsets[end - 1, 1] < spans[1] <= token_offsets[end, 1] Parameters ---------- token_offsets The offsets of the input tokens. Must be sorted. That is, it will satisfy 1. token_offsets[i][0] <= token_offsets[i][1] 2. token_offsets[i][0] <= token_offsets[i + 1][0] 3. token_offsets[i][1] <= token_offsets[i + 1][1] Shape (#num_tokens, 2) spans The character-level offsets (begin/end) of the selected spans. Shape (#spans, 2) Returns ------- token_start_ends The token-level starts and ends. The end will also be used. Shape (#spans, 2) """ if not isinstance(token_offsets, np.ndarray): token_offsets = np.array(token_offsets) if not isinstance(spans, np.ndarray): spans = np.array(spans) offsets_starts = token_offsets[:, 0] offsets_ends = token_offsets[:, 1] span_char_starts = spans[:, 0] span_char_ends = spans[:, 1] # Truncate the span span_char_starts = np.maximum(offsets_starts[0], span_char_starts) span_char_ends = np.minimum(offsets_ends[-1], span_char_ends) # Search for valid start + end span_token_starts = np.searchsorted(offsets_starts, span_char_starts, side='right') - 1 span_token_ends = np.searchsorted(offsets_ends, span_char_ends, side='left') return np.concatenate((np.expand_dims(span_token_starts, axis=-1), np.expand_dims(span_token_ends, axis=-1)), axis=-1)
Match the span offsets with the character-level offsets. For each span, we perform the following: 1: Cutoff the boundary span[0] = max(span[0], token_offsets[0, 0]) span[1] = min(span[1], token_offsets[-1, 1]) 2: Find start + end We try to select the smallest number of tokens that cover the entity, i.e., we will find start + end, in which tokens[start:end + 1] covers the span. We will use the following algorithm: For "start", we search for token_offsets[start, 0] <= span[0] < token_offsets[start + 1, 0] For "end", we search for: token_offsets[end - 1, 1] < spans[1] <= token_offsets[end, 1] Parameters ---------- token_offsets The offsets of the input tokens. Must be sorted. That is, it will satisfy 1. token_offsets[i][0] <= token_offsets[i][1] 2. token_offsets[i][0] <= token_offsets[i + 1][0] 3. token_offsets[i][1] <= token_offsets[i + 1][1] Shape (#num_tokens, 2) spans The character-level offsets (begin/end) of the selected spans. Shape (#spans, 2) Returns ------- token_start_ends The token-level starts and ends. The end will also be used. Shape (#spans, 2)
match_tokens_with_char_spans
python
dmlc/gluon-nlp
src/gluonnlp/utils/preprocessing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/preprocessing.py
Apache-2.0
def register(self, *args): """ Register the given object under either the nickname or `obj.__name__`. It can be used as either a decorator or not. See docstring of this class for usage. """ if len(args) == 2: # Register an object with nick name by function call nickname, obj = args self._do_register(nickname, obj) elif len(args) == 1: if isinstance(args[0], str): # Register an object with nick name by decorator nickname = args[0] def deco(func_or_class: object) -> object: self._do_register(nickname, func_or_class) return func_or_class return deco else: # Register an object by function call self._do_register(args[0].__name__, args[0]) elif len(args) == 0: # Register an object by decorator def deco(func_or_class: object) -> object: self._do_register(func_or_class.__name__, func_or_class) return func_or_class return deco else: raise ValueError('Do not support the usage!')
Register the given object under either the nickname or `obj.__name__`. It can be used as either a decorator or not. See docstring of this class for usage.
register
python
dmlc/gluon-nlp
src/gluonnlp/utils/registry.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/registry.py
Apache-2.0
def create(self, name: str, *args, **kwargs) -> object: """Create the class object with the given args and kwargs Parameters ---------- name The name in the registry args kwargs Returns ------- ret The created object """ obj = self.get(name) try: return obj(*args, **kwargs) except Exception as exp: print('Cannot create name="{}" --> {} with the provided arguments!\n' ' args={},\n' ' kwargs={},\n' .format(name, obj, args, kwargs)) raise exp
Create the class object with the given args and kwargs Parameters ---------- name The name in the registry args kwargs Returns ------- ret The created object
create
python
dmlc/gluon-nlp
src/gluonnlp/utils/registry.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/registry.py
Apache-2.0
def serialize(path, tbl): """Serialize tbl with out-of-band data to path for zero-copy shared memory usage. If the object to be serialized itself, or the objects it uses for data storage (such as numpy arrays) implement the the pickle protocol version 5 pickle.PickleBuffer type in __reduce_ex__, then this function can store these buffers out-of-band as files in `path` so that they subsequently be re-used for zero-copy sharing accross processes. Parameters ---------- path : pathlib.Path Empty folder used to save serialized data. Usually a folder /dev/shm tbl : object Object to serialize. For example a PyArrow Table, a Pandas Dataframe or any type that relies on NumPy to store the binary data. """ idx = 0 def buffer_callback(buf): nonlocal idx with open(path / f'{idx}.bin', 'wb') as f: f.write(buf) idx += 1 with open(path / 'meta.pkl', 'wb') as f: pickle.dump(tbl, f, protocol=5, buffer_callback=buffer_callback)
Serialize tbl with out-of-band data to path for zero-copy shared memory usage. If the object to be serialized itself, or the objects it uses for data storage (such as numpy arrays) implement the the pickle protocol version 5 pickle.PickleBuffer type in __reduce_ex__, then this function can store these buffers out-of-band as files in `path` so that they subsequently be re-used for zero-copy sharing accross processes. Parameters ---------- path : pathlib.Path Empty folder used to save serialized data. Usually a folder /dev/shm tbl : object Object to serialize. For example a PyArrow Table, a Pandas Dataframe or any type that relies on NumPy to store the binary data.
serialize
python
dmlc/gluon-nlp
src/gluonnlp/utils/shm.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/shm.py
Apache-2.0
def load(path): """Load serialized object with out-of-band data from path based on zero-copy shared memory. Parameters ---------- path : pathlib.Path Folder used to save serialized data with serialize(). Usually a folder /dev/shm """ num_buffers = len(list(path.iterdir())) - 1 # exclude meta.idx buffers = [] for idx in range(num_buffers): f = open(path / f'{idx}.bin', 'rb') buffers.append(mmap.mmap(f.fileno(), 0, prot=mmap.PROT_READ)) with open(path / 'meta.pkl', 'rb') as f: return pickle.load(f, buffers=buffers)
Load serialized object with out-of-band data from path based on zero-copy shared memory. Parameters ---------- path : pathlib.Path Folder used to save serialized data with serialize(). Usually a folder /dev/shm
load
python
dmlc/gluon-nlp
src/gluonnlp/utils/shm.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/shm.py
Apache-2.0
def is_match_states_batch_size(states, states_batch_axis, batch_size) -> bool: """Test whether the generated states have the specified batch size Parameters ---------- states The states structure states_batch_axis The states batch axis structure batch_size The batch size Returns ------- ret """ if states_batch_axis is None: return True if isinstance(states_batch_axis, int): if states.shape[states_batch_axis] == batch_size: return True for ele_states_batch_axis, ele_states in zip(states_batch_axis, states): ret = is_match_states_batch_size(ele_states, ele_states_batch_axis, batch_size) if ret is False: return False return True
Test whether the generated states have the specified batch size Parameters ---------- states The states structure states_batch_axis The states batch axis structure batch_size The batch size Returns ------- ret
is_match_states_batch_size
python
dmlc/gluon-nlp
src/gluonnlp/utils/testing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/testing.py
Apache-2.0
def verify_nmt_model(model, batch_size: int = 4, src_seq_length: int = 5, tgt_seq_length: int = 10, atol: float = 1E-4, rtol: float = 1E-3): """Verify the correctness of an NMT model. Raise error message if it detects problems. Parameters ---------- model The machine translation model batch_size The batch size to test the nmt model src_seq_length Length of the source sequence tgt_seq_length Length of the target sequence atol Absolute tolerance. rtol Relative tolerance. """ src_word_sequence = mx.np.random.randint(0, model.src_vocab_size, (batch_size, src_seq_length)) tgt_word_sequence = mx.np.random.randint(0, model.tgt_vocab_size, (batch_size, tgt_seq_length)) src_valid_length = mx.np.random.randint(1, src_seq_length, (batch_size,)) min_tgt_seq_length = max(1, tgt_seq_length - 5) tgt_valid_length = mx.np.random.randint(min_tgt_seq_length, tgt_seq_length, (batch_size,)) if model.layout == 'NT': full_out = model(src_word_sequence, src_valid_length, tgt_word_sequence, tgt_valid_length) else: full_out = model(src_word_sequence.T, src_valid_length, tgt_word_sequence.T, tgt_valid_length) full_out = mx.np.swapaxes(full_out, 0, 1) if full_out.shape != (batch_size, tgt_seq_length, model.tgt_vocab_size): raise AssertionError('The output of NMT model does not match the expected output.' ' Model output shape = {}, Expected (B, T, V) = {}' .format(full_out.shape, (batch_size, tgt_seq_length, model.tgt_vocab_size))) for partial_batch_size in range(1, batch_size + 1): for i in range(1, min_tgt_seq_length): if model.layout == 'NT': partial_out = model(src_word_sequence[:partial_batch_size, :], src_valid_length[:partial_batch_size], tgt_word_sequence[:partial_batch_size, :(-i)], tgt_valid_length[:partial_batch_size] - mx.np.array(i, dtype=tgt_valid_length.dtype)) else: partial_out = model(src_word_sequence[:partial_batch_size, :].T, src_valid_length[:partial_batch_size], tgt_word_sequence[:partial_batch_size, :(-i)].T, tgt_valid_length[:partial_batch_size] - mx.np.array(i, dtype=tgt_valid_length.dtype)) partial_out = mx.np.swapaxes(partial_out, 0, 1) # Verify that the partial output matches the full output for b in range(partial_batch_size): partial_vl = tgt_valid_length.asnumpy()[b] - i npt.assert_allclose(full_out[b, :partial_vl].asnumpy(), partial_out[b, :partial_vl].asnumpy(), atol, rtol)
Verify the correctness of an NMT model. Raise error message if it detects problems. Parameters ---------- model The machine translation model batch_size The batch size to test the nmt model src_seq_length Length of the source sequence tgt_seq_length Length of the target sequence atol Absolute tolerance. rtol Relative tolerance.
verify_nmt_model
python
dmlc/gluon-nlp
src/gluonnlp/utils/testing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/testing.py
Apache-2.0
def verify_nmt_inference(train_model, inference_model, batch_size=4, src_seq_length=5, tgt_seq_length=10, atol=1E-4, rtol=1E-3): """Verify the correctness of an NMT inference model. Raise error message if it detects any problems. Parameters ---------- train_model The training model inference_model The inference model batch_size Batch size src_seq_length Length of the source sequence tgt_seq_length Length of the target sequence atol Absolute tolerance rtol Relative tolerance """ if train_model.layout == 'NT': src_word_sequences = mx.np.random.randint(0, train_model.src_vocab_size, (batch_size, src_seq_length)) tgt_word_sequences = mx.np.random.randint(0, train_model.tgt_vocab_size, (batch_size, tgt_seq_length)) else: src_word_sequences = mx.np.random.randint(0, train_model.src_vocab_size, (src_seq_length, batch_size)) tgt_word_sequences = mx.np.random.randint(0, train_model.tgt_vocab_size, (tgt_seq_length, batch_size)) src_valid_length = mx.np.random.randint(1, src_seq_length, (batch_size,)) min_tgt_seq_length = max(1, tgt_seq_length - 5) tgt_valid_length = mx.np.random.randint(min_tgt_seq_length, tgt_seq_length, (batch_size,)) full_out = train_model(src_word_sequences, src_valid_length, tgt_word_sequences, tgt_valid_length) if train_model.layout == 'NT': for partial_batch_size in range(1, batch_size + 1): step_out_l = [] states = inference_model.init_states(src_word_sequences[:partial_batch_size, :], src_valid_length[:partial_batch_size]) assert is_match_states_batch_size(states, inference_model.state_batch_axis, partial_batch_size) for i in range(min_tgt_seq_length): step_out, states = inference_model(tgt_word_sequences[:partial_batch_size, i], states) step_out_l.append(step_out) partial_out = mx.np.stack(step_out_l, axis=1) npt.assert_allclose(full_out[:partial_batch_size, :min_tgt_seq_length].asnumpy(), partial_out[:partial_batch_size, :].asnumpy(), atol, rtol) elif train_model.layout == 'TN': for partial_batch_size in range(1, batch_size + 1): step_out_l = [] states = inference_model.init_states(src_word_sequences[:, :partial_batch_size], src_valid_length[:partial_batch_size]) assert is_match_states_batch_size(states, inference_model.state_batch_axis, partial_batch_size) for i in range(min_tgt_seq_length): step_out, states = inference_model(tgt_word_sequences[i, :partial_batch_size], states) step_out_l.append(step_out) partial_out = mx.np.stack(step_out_l, axis=0) npt.assert_allclose(full_out[:min_tgt_seq_length, :partial_batch_size].asnumpy(), partial_out[:, :partial_batch_size].asnumpy(), atol, rtol) else: raise NotImplementedError
Verify the correctness of an NMT inference model. Raise error message if it detects any problems. Parameters ---------- train_model The training model inference_model The inference model batch_size Batch size src_seq_length Length of the source sequence tgt_seq_length Length of the target sequence atol Absolute tolerance rtol Relative tolerance
verify_nmt_inference
python
dmlc/gluon-nlp
src/gluonnlp/utils/testing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/testing.py
Apache-2.0
def _cast_nested_to_fp16(nested_dat): """Cast the nested input to fp16 Parameters ---------- dat The input nested data structure Returns ------- output The casted output data """ if isinstance(nested_dat, (mx.np.ndarray, np.ndarray)): if nested_dat.dtype == np.float32: return nested_dat.astype(np.float16) else: return nested_dat elif isinstance(nested_dat, list): return [_cast_nested_to_fp16(ele) for ele in nested_dat] elif isinstance(nested_dat, tuple): return tuple([_cast_nested_to_fp16(ele) for ele in nested_dat]) else: raise NotImplementedError('Type is not supported!')
Cast the nested input to fp16 Parameters ---------- dat The input nested data structure Returns ------- output The casted output data
_cast_nested_to_fp16
python
dmlc/gluon-nlp
src/gluonnlp/utils/testing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/testing.py
Apache-2.0
def verify_backbone_fp16(model_cls, cfg, ctx, inputs, atol=1E-2, rtol=1E-2, check_amp=True): """Test whether the backbone model has the comparable parameter gradient + Parameters ---------- model_cls The modeling class cfg The configuration ctx The context inputs The input tensors of the model. We will atol The absolute tolerance rtol The relative tolerance check_amp Whether to check the AMP process. You will need to ensure that there is no randomness in the model when it is turned on. """ model_fp32 = model_cls.from_cfg(cfg, dtype='float32') model_fp32.initialize(ctx=ctx) model_fp32.hybridize() # Check forward fp32_inputs = move_to_ctx(inputs, ctx=ctx) outputs_fp32 = model_fp32(*fp32_inputs) mx.npx.waitall() # Check forward of fp16 model_fp16 = model_cls.from_cfg(cfg, dtype='float16') model_fp16.share_parameters(model_fp32.collect_params()) model_fp16.cast('float16') model_fp16.hybridize() for param in model_fp16.collect_params().values(): assert param.dtype == 'float16' fp16_inputs = move_to_ctx(_cast_nested_to_fp16(inputs), ctx=ctx) outputs_fp16 = model_fp16(*fp16_inputs) mx.npx.waitall() _match_struct_output(outputs_fp16, outputs_fp32, atol=atol, rtol=rtol) if check_amp: from mxnet import amp amp.init() # Reconstruct the fp32 model model_fp32 = model_cls.from_cfg(cfg, dtype='float32') model_fp32.initialize(ctx=ctx) model_fp32.hybridize() trainer = mx.gluon.Trainer(model_fp32.collect_params(), 'adam', {'learning_rate': 1E-3, 'wd': 1E-4, 'multi_precision': True}, update_on_kvstore=False) amp.init_trainer(trainer) with mx.autograd.record(): outputs_amp = model_fp32(*fp32_inputs) if not isinstance(outputs_amp, (tuple, list)): loss = outputs_amp.mean() else: loss = sum([ele.mean() for ele in outputs_amp]) with amp.scale_loss(loss, trainer) as scaled_loss: mx.autograd.backward(scaled_loss) trainer.step(1) mx.npx.waitall()
Test whether the backbone model has the comparable parameter gradient + Parameters ---------- model_cls The modeling class cfg The configuration ctx The context inputs The input tensors of the model. We will atol The absolute tolerance rtol The relative tolerance check_amp Whether to check the AMP process. You will need to ensure that there is no randomness in the model when it is turned on.
verify_backbone_fp16
python
dmlc/gluon-nlp
src/gluonnlp/utils/testing.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/testing.py
Apache-2.0
def get_ec2_tvm_flags() -> Dict[str, Dict]: r"""Return the recommended flags for TVM compilation in AWS EC2 instances. Including C4, C5, G4, P3. For more details about AWS EC2 instances, refer to https://aws.amazon.com/ec2/instance-types/. Returns ------- info_dict A dictionary that contains the mapping between instance type and the corresponding compilation flags. Each element includes: - target The compilation target - use_gpu Whether it's a GPU instance - opt_level The optimization level in compilation - pass Additional graph passes for further improvement. """ instance_info = { 'g4': {'target': "cuda -model=t4 -libs=cublas,cudnn", 'use_gpu': True, 'opt_level': 3, 'required_pass': ["FastMath"]}, 'c4': {'target': 'llvm -mcpu=core-avx2 -libs=cblas', 'use_gpu': False, 'opt_level': 3, 'required_pass': ["FastMath"]}, 'c5': {'target': 'llvm -mcpu=skylake-avx512 -libs=cblas', 'use_gpu': False, 'opt_level': 3, 'required_pass': ["FastMath"]}, 'p3': {'target': 'cuda -model=v100 -libs=cublas,cudnn', 'use_gpu': True, 'opt_level': 3, 'required_pass': ["FastMath"]} } return instance_info
Return the recommended flags for TVM compilation in AWS EC2 instances. Including C4, C5, G4, P3. For more details about AWS EC2 instances, refer to https://aws.amazon.com/ec2/instance-types/. Returns ------- info_dict A dictionary that contains the mapping between instance type and the corresponding compilation flags. Each element includes: - target The compilation target - use_gpu Whether it's a GPU instance - opt_level The optimization level in compilation - pass Additional graph passes for further improvement.
get_ec2_tvm_flags
python
dmlc/gluon-nlp
src/gluonnlp/utils/tvm_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/tvm_utils.py
Apache-2.0
def update_tvm_convert_map() -> None: """A Monkey Patch to update convert map in tvm/relay/frontend/mxnet.py""" op = (('masked_softmax', _mx_masked_softmax),) _convert_map.update({key: value for key, value in op})
A Monkey Patch to update convert map in tvm/relay/frontend/mxnet.py
update_tvm_convert_map
python
dmlc/gluon-nlp
src/gluonnlp/utils/tvm_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/tvm_utils.py
Apache-2.0
def grouper(iterable, n, fillvalue=None): """Collect data into fixed-length chunks or blocks""" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue)
Collect data into fixed-length chunks or blocks
grouper
python
dmlc/gluon-nlp
tests/test_gluon_block.py
https://github.com/dmlc/gluon-nlp/blob/master/tests/test_gluon_block.py
Apache-2.0
def test_test(): """Test that fixing a random seed works.""" py_rnd = random.randint(0, 100) np_rnd = np.random.randint(0, 100) mx_rnd = mx.nd.random_uniform(shape=(1, )).asscalar() random.seed(1) mx.random.seed(1) np.random.seed(1) assert py_rnd == random.randint(0, 100) assert np_rnd == np.random.randint(0, 100) assert mx_rnd == mx.nd.random_uniform(shape=(1, )).asscalar()
Test that fixing a random seed works.
test_test
python
dmlc/gluon-nlp
tests/test_pytest.py
https://github.com/dmlc/gluon-nlp/blob/master/tests/test_pytest.py
Apache-2.0
def is_image_file(filename): """Checks if a file is an image. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ filename_lower = filename.lower() return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
Checks if a file is an image. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension
is_image_file
python
ajbrock/BigGAN-PyTorch
datasets.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/datasets.py
MIT
def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ if self.load_in_mem: img = self.data[index] target = self.labels[index] else: path, target = self.imgs[index] img = self.loader(str(path)) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) # print(img.size(), target) return img, int(target)
Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class.
__getitem__
python
ajbrock/BigGAN-PyTorch
datasets.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/datasets.py
MIT
def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class. """ # If loaded the entire dataset in RAM, get image from memory if self.load_in_mem: img = self.data[index] target = self.labels[index] # Else load it from disk else: with h5.File(self.root,'r') as f: img = f['imgs'][index] target = f['labels'][index] # if self.transform is not None: # img = self.transform(img) # Apply my own transform img = ((torch.from_numpy(img).float() / 255) - 0.5) * 2 if self.target_transform is not None: target = self.target_transform(target) return img, int(target)
Args: index (int): Index Returns: tuple: (image, target) where target is class_index of the target class.
__getitem__
python
ajbrock/BigGAN-PyTorch
datasets.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/datasets.py
MIT
def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target
Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class.
__getitem__
python
ajbrock/BigGAN-PyTorch
datasets.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/datasets.py
MIT
def torch_cov(m, rowvar=False): '''Estimate a covariance matrix given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element `C_{ij}` is the covariance of `x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`. Args: m: A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. rowvar: If `rowvar` is True, then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. Returns: The covariance matrix of the variables. ''' if m.dim() > 2: raise ValueError('m has more than 2 dimensions') if m.dim() < 2: m = m.view(1, -1) if not rowvar and m.size(0) != 1: m = m.t() # m = m.type(torch.double) # uncomment this line if desired fact = 1.0 / (m.size(1) - 1) m -= torch.mean(m, dim=1, keepdim=True) mt = m.t() # if complex: mt = m.t().conj() return fact * m.matmul(mt).squeeze()
Estimate a covariance matrix given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element `C_{ij}` is the covariance of `x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`. Args: m: A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. rowvar: If `rowvar` is True, then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. Returns: The covariance matrix of the variables.
torch_cov
python
ajbrock/BigGAN-PyTorch
inception_utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/inception_utils.py
MIT
def numpy_calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Numpy implementation of the Frechet Distance. Taken from https://github.com/bioinf-jku/TTUR The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representive data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representive data set. Returns: -- : The Frechet Distance. """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ('fid calculation produces singular product; ' 'adding %s to diagonal of cov estimates') % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): print('wat') if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError('Imaginary component {}'.format(m)) covmean = covmean.real tr_covmean = np.trace(covmean) out = diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean return out
Numpy implementation of the Frechet Distance. Taken from https://github.com/bioinf-jku/TTUR The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representive data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representive data set. Returns: -- : The Frechet Distance.
numpy_calculate_frechet_distance
python
ajbrock/BigGAN-PyTorch
inception_utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/inception_utils.py
MIT
def torch_calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """Pytorch implementation of the Frechet Distance. Taken from https://github.com/bioinf-jku/TTUR The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representive data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representive data set. Returns: -- : The Frechet Distance. """ assert mu1.shape == mu2.shape, \ 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, \ 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Run 50 itrs of newton-schulz to get the matrix sqrt of sigma1 dot sigma2 covmean = sqrt_newton_schulz(sigma1.mm(sigma2).unsqueeze(0), 50).squeeze() out = (diff.dot(diff) + torch.trace(sigma1) + torch.trace(sigma2) - 2 * torch.trace(covmean)) return out
Pytorch implementation of the Frechet Distance. Taken from https://github.com/bioinf-jku/TTUR The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). Stable version by Dougal J. Sutherland. Params: -- mu1 : Numpy array containing the activations of a layer of the inception net (like returned by the function 'get_predictions') for generated samples. -- mu2 : The sample mean over activations, precalculated on an representive data set. -- sigma1: The covariance matrix over activations for generated samples. -- sigma2: The covariance matrix over activations, precalculated on an representive data set. Returns: -- : The Frechet Distance.
torch_calculate_frechet_distance
python
ajbrock/BigGAN-PyTorch
inception_utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/inception_utils.py
MIT
def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ size = (min(img.size), min(img.size)) # Only step forward along this edge if it's the long edge i = (0 if size[0] == img.size[0] else np.random.randint(low=0,high=img.size[0] - size[0])) j = (0 if size[1] == img.size[1] else np.random.randint(low=0,high=img.size[1] - size[1])) return transforms.functional.crop(img, i, j, size[0], size[1])
Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image.
__call__
python
ajbrock/BigGAN-PyTorch
utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py
MIT
def log(self, record=None, **kwargs): """ Assumption: no newlines in the input. """ if record is None: record = {} record.update(kwargs) record['_stamp'] = time.time() with open(self.fname, 'a') as f: f.write(json.dumps(record, ensure_ascii=True) + '\n')
Assumption: no newlines in the input.
log
python
ajbrock/BigGAN-PyTorch
utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py
MIT
def progress(items, desc='', total=None, min_delay=0.1, displaytype='s1k'): """ Returns a generator over `items`, printing the number and percentage of items processed and the estimated remaining processing time before yielding the next item. `total` gives the total number of items (required if `items` has no length), and `min_delay` gives the minimum time in seconds between subsequent prints. `desc` gives an optional prefix text (end with a space). """ total = total or len(items) t_start = time.time() t_last = 0 for n, item in enumerate(items): t_now = time.time() if t_now - t_last > min_delay: print("\r%s%d/%d (%6.2f%%)" % ( desc, n+1, total, n / float(total) * 100), end=" ") if n > 0: if displaytype == 's1k': # minutes/seconds for 1000 iters next_1000 = n + (1000 - n%1000) t_done = t_now - t_start t_1k = t_done / n * next_1000 outlist = list(divmod(t_done, 60)) + list(divmod(t_1k - t_done, 60)) print("(TE/ET1k: %d:%02d / %d:%02d)" % tuple(outlist), end=" ") else:# displaytype == 'eta': t_done = t_now - t_start t_total = t_done / n * total outlist = list(divmod(t_done, 60)) + list(divmod(t_total - t_done, 60)) print("(TE/ETA: %d:%02d / %d:%02d)" % tuple(outlist), end=" ") sys.stdout.flush() t_last = t_now yield item t_total = time.time() - t_start print("\r%s%d/%d (100.00%%) (took %d:%02d)" % ((desc, total, total) + divmod(t_total, 60)))
Returns a generator over `items`, printing the number and percentage of items processed and the estimated remaining processing time before yielding the next item. `total` gives the total number of items (required if `items` has no length), and `min_delay` gives the minimum time in seconds between subsequent prints. `desc` gives an optional prefix text (end with a space).
progress
python
ajbrock/BigGAN-PyTorch
utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py
MIT
def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = grad.new().resize_as_(grad).zero_() # Exponential moving average of squared gradient values state['exp_avg_sq'] = grad.new().resize_as_(grad).zero_() # Fp32 copy of the weights state['fp32_p'] = p.data.float() exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], state['fp32_p']) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 state['fp32_p'].addcdiv_(-step_size, exp_avg, denom) p.data = state['fp32_p'].half() return loss
Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss.
step
python
ajbrock/BigGAN-PyTorch
utils.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/utils.py
MIT
def _data_parallel_master(self, intermediates): """Reduce the sum and square-sum, compute the statistics, and broadcast it.""" # Always using same "device order" makes the ReduceAdd operation faster. # Thanks to:: Tete Xiao (http://tetexiao.com/) intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device()) to_reduce = [i[1][:2] for i in intermediates] to_reduce = [j for i in to_reduce for j in i] # flatten target_gpus = [i[1].sum.get_device() for i in intermediates] sum_size = sum([i[1].sum_size for i in intermediates]) sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce) mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size) broadcasted = Broadcast.apply(target_gpus, mean, inv_std) # print('a') # print(type(sum_), type(ssum), type(sum_size), sum_.shape, ssum.shape, sum_size) # broadcasted = Broadcast.apply(target_gpus, sum_, ssum, torch.tensor(sum_size).float().to(sum_.device)) # print('b') outputs = [] for i, rec in enumerate(intermediates): outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2]))) # outputs.append((rec[0], _MasterMessage(*broadcasted[i*3:i*3+3]))) return outputs
Reduce the sum and square-sum, compute the statistics, and broadcast it.
_data_parallel_master
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/batchnorm.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/batchnorm.py
MIT
def _compute_mean_std(self, sum_, ssum, size): """Compute the mean and standard-deviation with sum and square-sum. This method also maintains the moving average on the master device.""" assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.' mean = sum_ / size sumvar = ssum - sum_ * mean unbias_var = sumvar / (size - 1) bias_var = sumvar / size self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data return mean, torch.rsqrt(bias_var + self.eps) # return mean, bias_var.clamp(self.eps) ** -0.5
Compute the mean and standard-deviation with sum and square-sum. This method also maintains the moving average on the master device.
_compute_mean_std
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/batchnorm.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/batchnorm.py
MIT
def __init__(self, master_callback): """ Args: master_callback: a callback to be invoked after having collected messages from slave devices. """ self._master_callback = master_callback self._queue = queue.Queue() self._registry = collections.OrderedDict() self._activated = False
Args: master_callback: a callback to be invoked after having collected messages from slave devices.
__init__
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/comm.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/comm.py
MIT
def register_slave(self, identifier): """ Register an slave device. Args: identifier: an identifier, usually is the device id. Returns: a `SlavePipe` object which can be used to communicate with the master device. """ if self._activated: assert self._queue.empty(), 'Queue is not clean before next initialization.' self._activated = False self._registry.clear() future = FutureResult() self._registry[identifier] = _MasterRegistry(future) return SlavePipe(identifier, self._queue, future)
Register an slave device. Args: identifier: an identifier, usually is the device id. Returns: a `SlavePipe` object which can be used to communicate with the master device.
register_slave
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/comm.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/comm.py
MIT
def run_master(self, master_msg): """ Main entry for the master device in each forward pass. The messages were first collected from each devices (including the master device), and then an callback will be invoked to compute the message to be sent back to each devices (including the master device). Args: master_msg: the message that the master want to send to itself. This will be placed as the first message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example. Returns: the message to be sent back to the master device. """ self._activated = True intermediates = [(0, master_msg)] for i in range(self.nr_slaves): intermediates.append(self._queue.get()) results = self._master_callback(intermediates) assert results[0][0] == 0, 'The first result should belongs to the master.' for i, res in results: if i == 0: continue self._registry[i].result.put(res) for i in range(self.nr_slaves): assert self._queue.get() is True return results[0][1]
Main entry for the master device in each forward pass. The messages were first collected from each devices (including the master device), and then an callback will be invoked to compute the message to be sent back to each devices (including the master device). Args: master_msg: the message that the master want to send to itself. This will be placed as the first message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example. Returns: the message to be sent back to the master device.
run_master
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/comm.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/comm.py
MIT
def execute_replication_callbacks(modules): """ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` Note that, as all modules are isomorphism, we assign each sub-module with a context (shared among multiple copies of this module on different devices). Through this context, different copies can share some information. We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback of any slave copies. """ master_copy = modules[0] nr_modules = len(list(master_copy.modules())) ctxs = [CallbackContext() for _ in range(nr_modules)] for i, module in enumerate(modules): for j, m in enumerate(module.modules()): if hasattr(m, '__data_parallel_replicate__'): m.__data_parallel_replicate__(ctxs[j], i)
Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` Note that, as all modules are isomorphism, we assign each sub-module with a context (shared among multiple copies of this module on different devices). Through this context, different copies can share some information. We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback of any slave copies.
execute_replication_callbacks
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/replicate.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/replicate.py
MIT
def patch_replication_callback(data_parallel): """ Monkey-patch an existing `DataParallel` object. Add the replication callback. Useful when you have customized `DataParallel` implementation. Examples: > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) > patch_replication_callback(sync_bn) # this is equivalent to > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) """ assert isinstance(data_parallel, DataParallel) old_replicate = data_parallel.replicate @functools.wraps(old_replicate) def new_replicate(module, device_ids): modules = old_replicate(module, device_ids) execute_replication_callbacks(modules) return modules data_parallel.replicate = new_replicate
Monkey-patch an existing `DataParallel` object. Add the replication callback. Useful when you have customized `DataParallel` implementation. Examples: > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) > patch_replication_callback(sync_bn) # this is equivalent to > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
patch_replication_callback
python
ajbrock/BigGAN-PyTorch
sync_batchnorm/replicate.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/sync_batchnorm/replicate.py
MIT
def dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=False): """Loads TFHub weights and saves them to intermediate HDF5 file. Args: module_path ([Path-like]): Path to TFHub module. hdf5_path ([Path-like]): Path to output HDF5 file. Returns: [h5py.File]: Loaded hdf5 file containing module weights. """ if os.path.exists(hdf5_path) and (not redownload): print('Loading BigGAN hdf5 file from:', hdf5_path) return h5py.File(hdf5_path, 'r') print('Loading BigGAN module from:', module_path) tf.reset_default_graph() hub.Module(module_path) print('Loaded BigGAN module from:', module_path) initializer = tf.global_variables_initializer() sess = tf.Session() sess.run(initializer) print('Saving BigGAN weights to :', hdf5_path) h5f = h5py.File(hdf5_path, 'w') for var in tf.global_variables(): val = sess.run(var) h5f.create_dataset(var.name, data=val) print(f'Saving {var.name} with shape {val.shape}') h5f.close() return h5py.File(hdf5_path, 'r')
Loads TFHub weights and saves them to intermediate HDF5 file. Args: module_path ([Path-like]): Path to TFHub module. hdf5_path ([Path-like]): Path to output HDF5 file. Returns: [h5py.File]: Loaded hdf5 file containing module weights.
dump_tfhub_to_hdf5
python
ajbrock/BigGAN-PyTorch
TFHub/converter.py
https://github.com/ajbrock/BigGAN-PyTorch/blob/master/TFHub/converter.py
MIT
def read_img(t_imgfname, input_size, img_mean): # optional pre-processing arguments """Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask. """ img_contents = tf.read_file(t_imgfname) # img = tf.image.decode_image(img_contents, channels=3) img = tf.image.decode_png(img_contents, channels=3) img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img) img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32) # Extract mean. img -= img_mean if input_size is not None: h, w = input_size # Randomly scale the images and labels. newshape = tf.squeeze(tf.stack([h, w]), squeeze_dims=[1]) img2 = tf.image.resize_images(img, newshape) else: img2 = tf.image.resize_images(img, tf.shape(img)[0:2,]*2) return img2, img
Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask.
read_img
python
iyah4888/SIGGRAPH18SSS
main_hyper.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/main_hyper.py
MIT
def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="DeepLab-ResNet Network") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Number of images sent to the network in one step.") parser.add_argument("--feat-dir", type=str, default=FEATSAVE_DIR, help="Path to the directory to save the semantic embedding vector map.") parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY, help="Path to the directory containing the PASCAL VOC dataset.") parser.add_argument("--grad-update-every", type=int, default=GRAD_UPDATE_EVERY, help="Number of steps after which gradient update is applied.") parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL, help="The index of the label to ignore during the training.") parser.add_argument("--input-size", type=str, default=INPUT_SIZE, help="Comma-separated string with height and width of images.") # parser.add_argument("--is-training", action="store_true", parser.add_argument("--is-training", action="store_false", help="Whether to update the running means and variances during the training.") parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE, help="Base learning rate for training with polynomial decay.") parser.add_argument("--momentum", type=float, default=MOMENTUM, help="Momentum component of the optimiser.") parser.add_argument("--not-restore-last", action="store_true", help="Whether to not restore last (FC) layers.") parser.add_argument("--num-classes", type=int, default=NUM_CLASSES, help="Number of classes to predict (including background).") parser.add_argument("--num-steps", type=int, default=NUM_STEPS, help="Number of training steps.") parser.add_argument("--power", type=float, default=POWER, help="Decay parameter to compute the learning rate.") parser.add_argument("--random-mirror", action="store_true", help="Whether to randomly mirror the inputs during the training.") parser.add_argument("--random-scale", action="store_true", help="Whether to randomly scale the inputs during the training.") parser.add_argument("--random-seed", type=int, default=RANDOM_SEED, help="Random seed to have reproducible results.") parser.add_argument("--restore-from", type=str, default=RESTORE_FROM, help="Where restore model parameters from.") parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES, help="How many images to save.") parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY, help="Save summaries and checkpoint every often.") parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR, help="Where to save snapshots of the model.") parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY, help="Regularisation parameter for L2-loss.") return parser.parse_args()
Parse all the arguments provided from the CLI. Returns: A list of parsed arguments.
get_arguments
python
iyah4888/SIGGRAPH18SSS
parse_opt.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/parse_opt.py
MIT
def __init__(self, sess, args): """Initialize the parameters. sess: tensorflow session """ self.sess = sess self.batch_size = args.batch_size self.args = args # parameters used to save a checkpoint self.dataset = "Hypcol" self.options = [] self._attrs = ['batch_size', 'dataset'] self.build_model()
Initialize the parameters. sess: tensorflow session
__init__
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/hc_deeplab.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/hc_deeplab.py
MIT
def image_scaling(img, label): """ Randomly scales the images between 0.5 to 1.5 times the original size. Args: img: Training image to scale. label: Segmentation mask to scale. """ scale = tf.random_uniform([1], minval=0.5, maxval=1.5, dtype=tf.float32, seed=None) h_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[0]), scale)) w_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[1]), scale)) new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1]) img = tf.image.resize_images(img, new_shape) label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape) label = tf.squeeze(label, squeeze_dims=[0]) return img, label
Randomly scales the images between 0.5 to 1.5 times the original size. Args: img: Training image to scale. label: Segmentation mask to scale.
image_scaling
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def image_mirroring(img, label): """ Randomly mirrors the images. Args: img: Training image to mirror. label: Segmentation mask to mirror. """ distort_left_right_random = tf.random_uniform([1], 0, 1.0, dtype=tf.float32)[0] mirror = tf.less(tf.stack([1.0, distort_left_right_random, 1.0]), 0.5) mirror = tf.boolean_mask([0, 1, 2], mirror) img = tf.reverse(img, mirror) label = tf.reverse(label, mirror) return img, label
Randomly mirrors the images. Args: img: Training image to mirror. label: Segmentation mask to mirror.
image_mirroring
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def random_crop_and_pad_image_and_labels(image, label, crop_h, crop_w, ignore_label=255): """ Randomly crop and pads the input images. Args: image: Training image to crop/ pad. label: Segmentation mask to crop/ pad. crop_h: Height of cropped segment. crop_w: Width of cropped segment. ignore_label: Label to ignore during the training. """ label = tf.cast(label, dtype=tf.float32) label = label - ignore_label # Needs to be subtracted and later added due to 0 padding. combined = tf.concat(axis=2, values=[image, label]) image_shape = tf.shape(image) combined_pad = tf.image.pad_to_bounding_box(combined, 0, 0, tf.maximum(crop_h, image_shape[0]), tf.maximum(crop_w, image_shape[1])) last_image_dim = tf.shape(image)[-1] last_label_dim = tf.shape(label)[-1] combined_crop = tf.random_crop(combined_pad, [crop_h,crop_w,4]) img_crop = combined_crop[:, :, :last_image_dim] label_crop = combined_crop[:, :, last_image_dim:] label_crop = label_crop + ignore_label label_crop = tf.cast(label_crop, dtype=tf.uint8) # Set static shape so that tensorflow knows shape at compile time. img_crop.set_shape((crop_h, crop_w, 3)) label_crop.set_shape((crop_h,crop_w, 1)) return img_crop, label_crop
Randomly crop and pads the input images. Args: image: Training image to crop/ pad. label: Segmentation mask to crop/ pad. crop_h: Height of cropped segment. crop_w: Width of cropped segment. ignore_label: Label to ignore during the training.
random_crop_and_pad_image_and_labels
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def read_labeled_image_list(data_dir, data_list): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') images = [] masks = [] for line in f: try: image, mask = line.strip("\n").split(' ') except ValueError: # Adhoc for test. image = mask = line.strip("\n") images.append(os.path.join(data_dir, image)) masks.append(os.path.join(data_dir, mask)) return images, masks
Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively.
read_labeled_image_list
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def read_data_list(data_dir, data_list, ext): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') dataflist = [] for line in f: try: dataname = line.strip("\n") except ValueError: # Adhoc for test. dataname = line.strip("\n") dataflist.append(os.path.join(data_dir, dataname+ext)) return dataflist
Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively.
read_data_list
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def read_images_from_disk(input_queue, input_size, random_scale, random_mirror, ignore_label, img_mean): # optional pre-processing arguments """Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask. """ img_contents = tf.read_file(input_queue[0]) label_contents = tf.read_file(input_queue[1]) img = tf.image.decode_jpeg(img_contents, channels=3) img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img) img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32) # Extract mean. img -= img_mean label = tf.image.decode_png(label_contents, channels=1) if input_size is not None: h, w = input_size # Randomly scale the images and labels. if random_scale: img, label = image_scaling(img, label) # Randomly mirror the images and labels. if random_mirror: img, label = image_mirroring(img, label) # Randomly crops the images and labels. img, label = random_crop_and_pad_image_and_labels(img, label, h, w, ignore_label) return img, label
Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask.
read_images_from_disk
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def __init__(self, data_dir, data_list, input_size, random_scale, random_mirror, ignore_label, img_mean, coord): '''Initialise an ImageReader. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. input_size: a tuple with (height, width) values, to which all the images will be resized. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. coord: TensorFlow queue coordinator. ''' self.data_dir = data_dir self.data_list = data_list self.input_size = input_size self.coord = coord self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list) self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string) self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string) self.queue = tf.train.slice_input_producer([self.images, self.labels], shuffle=input_size is not None) # not shuffling if it is val self.image, self.label = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror, ignore_label, img_mean)
Initialise an ImageReader. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. input_size: a tuple with (height, width) values, to which all the images will be resized. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. coord: TensorFlow queue coordinator.
__init__
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def dequeue(self, num_elements): '''Pack images and labels into a batch. Args: num_elements: the batch size. Returns: Two tensors of size (batch_size, h, w, {3, 1}) for images and masks.''' image_batch, label_batch = tf.train.batch([self.image, self.label], num_elements) return image_batch, label_batch
Pack images and labels into a batch. Args: num_elements: the batch size. Returns: Two tensors of size (batch_size, h, w, {3, 1}) for images and masks.
dequeue
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def read_an_image_from_disk(t_imgfname, t_labelfname, input_size, random_scale, random_mirror, ignore_label, img_mean): # optional pre-processing arguments """Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask. """ img_contents = tf.read_file(t_imgfname) lbm_contents = tf.read_file(t_labelfname) img = tf.image.decode_jpeg(img_contents, channels=3) img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img) img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32) # Extract mean. img -= img_mean label = tf.image.decode_png(lbm_contents, channels=1) if input_size is not None: h, w = input_size # Randomly scale the images and labels. if random_scale: img, label = image_scaling(img, label) # Randomly mirror the images and labels. if random_mirror: img, label = image_mirroring(img, label) # Randomly crops the images and labels. img, label = random_crop_and_pad_image_and_labels(img, label, h, w, ignore_label) return img, label
Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. ignore_label: index of label to ignore during the training. img_mean: vector of mean colour values. Returns: Two tensors: the decoded image and its mask.
read_an_image_from_disk
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/image_reader.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/image_reader.py
MIT
def setup(self, is_training, num_classes): '''Network definition. Args: is_training: whether to update the running mean and variance of the batch normalisation layer. If the batch size is small, it is better to keep the running mean and variance of the-pretrained model frozen. num_classes: number of classes to predict (including background). ''' (self.feed('data') .conv(7, 7, 64, 2, 2, biased=False, relu=False, name='conv1') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn_conv1') .max_pool(3, 3, 2, 2, name='pool1') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch1') .batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch1')) (self.feed('pool1') .conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2a_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2a') .conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2a_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2a_branch2b') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2a_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn2a_branch2c')) (self.feed('bn2a_branch1', 'bn2a_branch2c') .add(name='res2a') .relu(name='res2a_relu') .conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2b_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2a') .conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2b_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2b_branch2b') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2b_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn2b_branch2c')) (self.feed('res2a_relu', 'bn2b_branch2c') .add(name='res2b') .relu(name='res2b_relu') .conv(1, 1, 64, 1, 1, biased=False, relu=False, name='res2c_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2a') .conv(3, 3, 64, 1, 1, biased=False, relu=False, name='res2c_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn2c_branch2b') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res2c_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn2c_branch2c')) (self.feed('res2b_relu', 'bn2c_branch2c') .add(name='res2c') .relu(name='res2c_relu') .conv(1, 1, 512, 2, 2, biased=False, relu=False, name='res3a_branch1') .batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch1')) (self.feed('res2c_relu') .conv(1, 1, 128, 2, 2, biased=False, relu=False, name='res3a_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2a') .conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3a_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3a_branch2b') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3a_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn3a_branch2c')) (self.feed('bn3a_branch1', 'bn3a_branch2c') .add(name='res3a') .relu(name='res3a_relu') .conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2a') .conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b1_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b1_branch2b') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b1_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b1_branch2c')) (self.feed('res3a_relu', 'bn3b1_branch2c') .add(name='res3b1') .relu(name='res3b1_relu') .conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2a') .conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b2_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b2_branch2b') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b2_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b2_branch2c')) (self.feed('res3b1_relu', 'bn3b2_branch2c') .add(name='res3b2') .relu(name='res3b2_relu') .conv(1, 1, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2a') .conv(3, 3, 128, 1, 1, biased=False, relu=False, name='res3b3_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn3b3_branch2b') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res3b3_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn3b3_branch2c')) (self.feed('res3b2_relu', 'bn3b3_branch2c') .add(name='res3b3') .relu(name='res3b3_relu') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4a_branch1') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch1')) (self.feed('res3b3_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4a_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4a_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4a_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4a_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4a_branch2c')) (self.feed('bn4a_branch1', 'bn4a_branch2c') .add(name='res4a') .relu(name='res4a_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b1_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b1_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b1_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b1_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b1_branch2c')) (self.feed('res4a_relu', 'bn4b1_branch2c') .add(name='res4b1') .relu(name='res4b1_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b2_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b2_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b2_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b2_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b2_branch2c')) (self.feed('res4b1_relu', 'bn4b2_branch2c') .add(name='res4b2') .relu(name='res4b2_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b3_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b3_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b3_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b3_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b3_branch2c')) (self.feed('res4b2_relu', 'bn4b3_branch2c') .add(name='res4b3') .relu(name='res4b3_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b4_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b4_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b4_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b4_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b4_branch2c')) (self.feed('res4b3_relu', 'bn4b4_branch2c') .add(name='res4b4') .relu(name='res4b4_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b5_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b5_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b5_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b5_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b5_branch2c')) (self.feed('res4b4_relu', 'bn4b5_branch2c') .add(name='res4b5') .relu(name='res4b5_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b6_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b6_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b6_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b6_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b6_branch2c')) (self.feed('res4b5_relu', 'bn4b6_branch2c') .add(name='res4b6') .relu(name='res4b6_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b7_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b7_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b7_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b7_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b7_branch2c')) (self.feed('res4b6_relu', 'bn4b7_branch2c') .add(name='res4b7') .relu(name='res4b7_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b8_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b8_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b8_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b8_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b8_branch2c')) (self.feed('res4b7_relu', 'bn4b8_branch2c') .add(name='res4b8') .relu(name='res4b8_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b9_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b9_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b9_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b9_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b9_branch2c')) (self.feed('res4b8_relu', 'bn4b9_branch2c') .add(name='res4b9') .relu(name='res4b9_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b10_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b10_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b10_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b10_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b10_branch2c')) (self.feed('res4b9_relu', 'bn4b10_branch2c') .add(name='res4b10') .relu(name='res4b10_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b11_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b11_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b11_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b11_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b11_branch2c')) (self.feed('res4b10_relu', 'bn4b11_branch2c') .add(name='res4b11') .relu(name='res4b11_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b12_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b12_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b12_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b12_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b12_branch2c')) (self.feed('res4b11_relu', 'bn4b12_branch2c') .add(name='res4b12') .relu(name='res4b12_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b13_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b13_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b13_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b13_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b13_branch2c')) (self.feed('res4b12_relu', 'bn4b13_branch2c') .add(name='res4b13') .relu(name='res4b13_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b14_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b14_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b14_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b14_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b14_branch2c')) (self.feed('res4b13_relu', 'bn4b14_branch2c') .add(name='res4b14') .relu(name='res4b14_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b15_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b15_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b15_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b15_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b15_branch2c')) (self.feed('res4b14_relu', 'bn4b15_branch2c') .add(name='res4b15') .relu(name='res4b15_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b16_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b16_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b16_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b16_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b16_branch2c')) (self.feed('res4b15_relu', 'bn4b16_branch2c') .add(name='res4b16') .relu(name='res4b16_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b17_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b17_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b17_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b17_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b17_branch2c')) (self.feed('res4b16_relu', 'bn4b17_branch2c') .add(name='res4b17') .relu(name='res4b17_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b18_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b18_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b18_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b18_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b18_branch2c')) (self.feed('res4b17_relu', 'bn4b18_branch2c') .add(name='res4b18') .relu(name='res4b18_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b19_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b19_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b19_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b19_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b19_branch2c')) (self.feed('res4b18_relu', 'bn4b19_branch2c') .add(name='res4b19') .relu(name='res4b19_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b20_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b20_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b20_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b20_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b20_branch2c')) (self.feed('res4b19_relu', 'bn4b20_branch2c') .add(name='res4b20') .relu(name='res4b20_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b21_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b21_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b21_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b21_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b21_branch2c')) (self.feed('res4b20_relu', 'bn4b21_branch2c') .add(name='res4b21') .relu(name='res4b21_relu') .conv(1, 1, 256, 1, 1, biased=False, relu=False, name='res4b22_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2a') .atrous_conv(3, 3, 256, 2, padding='SAME', biased=False, relu=False, name='res4b22_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn4b22_branch2b') .conv(1, 1, 1024, 1, 1, biased=False, relu=False, name='res4b22_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn4b22_branch2c')) (self.feed('res4b21_relu', 'bn4b22_branch2c') .add(name='res4b22') .relu(name='res4b22_relu') .conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5a_branch1') .batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch1')) (self.feed('res4b22_relu') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5a_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2a') .atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5a_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5a_branch2b') .conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5a_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn5a_branch2c')) (self.feed('bn5a_branch1', 'bn5a_branch2c') .add(name='res5a') .relu(name='res5a_relu') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5b_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2a') .atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5b_branch2b') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5b_branch2b') .conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5b_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn5b_branch2c')) (self.feed('res5a_relu', 'bn5b_branch2c') .add(name='res5b') .relu(name='res5b_relu') .conv(1, 1, 512, 1, 1, biased=False, relu=False, name='res5c_branch2a') .batch_normalization(is_training=is_training, activation_fn=tf.nn.relu, name='bn5c_branch2a') .atrous_conv(3, 3, 512, 4, padding='SAME', biased=False, relu=False, name='res5c_branch2b') .batch_normalization(activation_fn=tf.nn.relu, name='bn5c_branch2b', is_training=is_training) .conv(1, 1, 2048, 1, 1, biased=False, relu=False, name='res5c_branch2c') .batch_normalization(is_training=is_training, activation_fn=None, name='bn5c_branch2c')) (self.feed('res5b_relu', 'bn5c_branch2c') .add(name='res5c') .relu(name='res5c_relu') .atrous_conv(3, 3, num_classes, 6, padding='SAME', relu=False, name='fc1_voc12_c0')) (self.feed('res5c_relu') .atrous_conv(3, 3, num_classes, 12, padding='SAME', relu=False, name='fc1_voc12_c1')) (self.feed('res5c_relu') .atrous_conv(3, 3, num_classes, 18, padding='SAME', relu=False, name='fc1_voc12_c2')) (self.feed('res5c_relu') .atrous_conv(3, 3, num_classes, 24, padding='SAME', relu=False, name='fc1_voc12_c3')) (self.feed('fc1_voc12_c0', 'fc1_voc12_c1', 'fc1_voc12_c2', 'fc1_voc12_c3') .add(name='fc1_voc12'))
Network definition. Args: is_training: whether to update the running mean and variance of the batch normalisation layer. If the batch size is small, it is better to keep the running mean and variance of the-pretrained model frozen. num_classes: number of classes to predict (including background).
setup
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/model.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/model.py
MIT
def decode_labels(mask, num_images=1, num_classes=21): """Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). Returns: A batch with num_images RGB images of the same size as the input. """ n, h, w, c = mask.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8) for i in range(num_images): img = Image.new('RGB', (len(mask[i, 0]), len(mask[i]))) pixels = img.load() for j_, j in enumerate(mask[i, :, :, 0]): for k_, k in enumerate(j): if k < num_classes: pixels[k_,j_] = label_colours[k] outputs[i] = np.array(img) return outputs
Decode batch of segmentation masks. Args: mask: result of inference after taking argmax. num_images: number of images to decode from the batch. num_classes: number of classes to predict (including background). Returns: A batch with num_images RGB images of the same size as the input.
decode_labels
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/utils.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/utils.py
MIT
def prepare_label(input_batch, new_size, num_classes, one_hot=True): """Resize masks and perform one-hot encoding. Args: input_batch: input tensor of shape [batch_size H W 1]. new_size: a tensor with new height and width. num_classes: number of classes to predict (including background). one_hot: whether perform one-hot encoding. Returns: Outputs a tensor of shape [batch_size h w 21] with last dimension comprised of 0's and 1's only. """ with tf.name_scope('label_encode'): input_batch = tf.image.resize_nearest_neighbor(input_batch, new_size) # as labels are integer numbers, need to use NN interp. input_batch = tf.squeeze(input_batch, squeeze_dims=[3]) # reducing the channel dimension. if one_hot: input_batch = tf.one_hot(input_batch, depth=num_classes) return input_batch
Resize masks and perform one-hot encoding. Args: input_batch: input tensor of shape [batch_size H W 1]. new_size: a tensor with new height and width. num_classes: number of classes to predict (including background). one_hot: whether perform one-hot encoding. Returns: Outputs a tensor of shape [batch_size h w 21] with last dimension comprised of 0's and 1's only.
prepare_label
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/utils.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/utils.py
MIT
def inv_preprocess(imgs, num_images, img_mean): """Inverse preprocessing of the batch of images. Add the mean vector and convert from BGR to RGB. Args: imgs: batch of input images. num_images: number of images to apply the inverse transformations on. img_mean: vector of mean colour values. Returns: The batch of the size num_images with the same spatial dimensions as the input. """ n, h, w, c = imgs.shape assert(n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (n, num_images) outputs = np.zeros((num_images, h, w, c), dtype=np.uint8) for i in range(num_images): outputs[i] = (imgs[i] + img_mean)[:, :, ::-1].astype(np.uint8) return outputs
Inverse preprocessing of the batch of images. Add the mean vector and convert from BGR to RGB. Args: imgs: batch of input images. num_images: number of images to apply the inverse transformations on. img_mean: vector of mean colour values. Returns: The batch of the size num_images with the same spatial dimensions as the input.
inv_preprocess
python
iyah4888/SIGGRAPH18SSS
deeplab_resnet/utils.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/deeplab_resnet/utils.py
MIT
def __init__(self, def_path, phase='test'): ''' def_path: Path to the model definition (.prototxt) data_path: Path to the model data (.caffemodel) phase: Either 'test' or 'train'. Used for filtering phase-specific nodes. ''' self.def_path = def_path self.phase = phase self.load()
def_path: Path to the model definition (.prototxt) data_path: Path to the model data (.caffemodel) phase: Either 'test' or 'train'. Used for filtering phase-specific nodes.
__init__
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def load(self): '''Load the layer definitions from the prototxt.''' self.params = get_caffe_resolver().NetParameter() with open(self.def_path, 'rb') as def_file: text_format.Merge(def_file.read(), self.params)
Load the layer definitions from the prototxt.
load
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def filter_layers(self, layers): '''Filter out layers based on the current phase.''' phase_map = {0: 'train', 1: 'test'} filtered_layer_names = set() filtered_layers = [] for layer in layers: phase = self.phase if len(layer.include): phase = phase_map[layer.include[0].phase] if len(layer.exclude): phase = phase_map[1 - layer.include[0].phase] exclude = (phase != self.phase) # Dropout layers appear in a fair number of Caffe # test-time networks. These are just ignored. We'll # filter them out here. if (not exclude) and (phase == 'test'): exclude = (layer.type == LayerType.Dropout) if not exclude: filtered_layers.append(layer) # Guard against dupes. assert layer.name not in filtered_layer_names filtered_layer_names.add(layer.name) return filtered_layers
Filter out layers based on the current phase.
filter_layers
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def make_node(self, layer): '''Create a graph node for the given layer.''' kind = NodeKind.map_raw_kind(layer.type) if kind is None: raise KaffeError('Unknown layer type encountered: %s' % layer.type) # We want to use the layer's top names (the "output" names), rather than the # name attribute, which is more of readability thing than a functional one. # Other layers will refer to a node by its "top name". return Node(layer.name, kind, layer=layer)
Create a graph node for the given layer.
make_node
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def make_input_nodes(self): ''' Create data input nodes. This method is for old-style inputs, where the input specification was not treated as a first-class layer in the prototext. Newer models use the "Input layer" type. ''' nodes = [Node(name, NodeKind.Data) for name in self.params.input] if len(nodes): input_dim = list(map(int, self.params.input_dim)) if not input_dim: if len(self.params.input_shape) > 0: input_dim = list(map(int, self.params.input_shape[0].dim)) else: raise KaffeError('Dimensions for input not specified.') for node in nodes: node.output_shape = tuple(input_dim) return nodes
Create data input nodes. This method is for old-style inputs, where the input specification was not treated as a first-class layer in the prototext. Newer models use the "Input layer" type.
make_input_nodes
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def build(self): ''' Builds the graph from the Caffe layer definitions. ''' # Get the layers layers = self.params.layers or self.params.layer # Filter out phase-excluded layers layers = self.filter_layers(layers) # Get any separately-specified input layers nodes = self.make_input_nodes() nodes += [self.make_node(layer) for layer in layers] # Initialize the graph graph = Graph(nodes=nodes, name=self.params.name) # Connect the nodes # # A note on layers and outputs: # In Caffe, each layer can produce multiple outputs ("tops") from a set of inputs # ("bottoms"). The bottoms refer to other layers' tops. The top can rewrite a bottom # (in case of in-place operations). Note that the layer's name is not used for establishing # any connectivity. It's only used for data association. By convention, a layer with a # single top will often use the same name (although this is not required). # # The current implementation only supports single-output nodes (note that a node can still # have multiple children, since multiple child nodes can refer to the single top's name). node_outputs = {} for layer in layers: node = graph.get_node(layer.name) for input_name in layer.bottom: assert input_name != layer.name parent_node = node_outputs.get(input_name) if (parent_node is None) or (parent_node == node): parent_node = graph.get_node(input_name) node.add_parent(parent_node) if len(layer.top)>1: raise KaffeError('Multiple top nodes are not supported.') for output_name in layer.top: if output_name == layer.name: # Output is named the same as the node. No further action required. continue # There are two possibilities here: # # Case 1: output_name refers to another node in the graph. # This is an "in-place operation" that overwrites an existing node. # This would create a cycle in the graph. We'll undo the in-placing # by substituting this node wherever the overwritten node is referenced. # # Case 2: output_name violates the convention layer.name == output_name. # Since we are working in the single-output regime, we will can rename it to # match the layer name. # # For both cases, future references to this top re-routes to this node. node_outputs[output_name] = node graph.compute_output_shapes() return graph
Builds the graph from the Caffe layer definitions.
build
python
iyah4888/SIGGRAPH18SSS
kaffe/graph.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/graph.py
MIT
def load(self, data_path, session, ignore_missing=False): '''Load network weights. data_path: The path to the numpy-serialized network weights session: The current TensorFlow session ignore_missing: If true, serialized weights for missing layers are ignored. ''' data_dict = np.load(data_path).item() for op_name in data_dict: with tf.variable_scope(op_name, reuse=True): for param_name, data in data_dict[op_name].items(): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise
Load network weights. data_path: The path to the numpy-serialized network weights session: The current TensorFlow session ignore_missing: If true, serialized weights for missing layers are ignored.
load
python
iyah4888/SIGGRAPH18SSS
kaffe/tensorflow/network.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/tensorflow/network.py
MIT
def feed(self, *args): '''Set the input(s) for the next operation by replacing the terminal nodes. The arguments can be either layer names or the actual layers. ''' assert len(args) != 0 self.terminals = [] for fed_layer in args: if isinstance(fed_layer, str): try: fed_layer = self.layers[fed_layer] except KeyError: raise KeyError('Unknown layer name fed: %s' % fed_layer) self.terminals.append(fed_layer) return self
Set the input(s) for the next operation by replacing the terminal nodes. The arguments can be either layer names or the actual layers.
feed
python
iyah4888/SIGGRAPH18SSS
kaffe/tensorflow/network.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/tensorflow/network.py
MIT
def get_unique_name(self, prefix): '''Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix. ''' ident = sum(t.startswith(prefix) for t, _ in list(self.layers.items())) + 1 return '%s_%d' % (prefix, ident)
Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix.
get_unique_name
python
iyah4888/SIGGRAPH18SSS
kaffe/tensorflow/network.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/tensorflow/network.py
MIT
def get_padding_type(kernel_params, input_shape, output_shape): '''Translates Caffe's numeric padding to one of ('SAME', 'VALID'). Caffe supports arbitrary padding values, while TensorFlow only supports 'SAME' and 'VALID' modes. So, not all Caffe paddings can be translated to TensorFlow. There are some subtleties to how the padding edge-cases are handled. These are described here: https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto ''' k_h, k_w, s_h, s_w, p_h, p_w = kernel_params s_o_h = np.ceil(input_shape.height / float(s_h)) s_o_w = np.ceil(input_shape.width / float(s_w)) if (output_shape.height == s_o_h) and (output_shape.width == s_o_w): return 'SAME' v_o_h = np.ceil((input_shape.height - k_h + 1.0) / float(s_h)) v_o_w = np.ceil((input_shape.width - k_w + 1.0) / float(s_w)) if (output_shape.height == v_o_h) and (output_shape.width == v_o_w): return 'VALID' return None
Translates Caffe's numeric padding to one of ('SAME', 'VALID'). Caffe supports arbitrary padding values, while TensorFlow only supports 'SAME' and 'VALID' modes. So, not all Caffe paddings can be translated to TensorFlow. There are some subtleties to how the padding edge-cases are handled. These are described here: https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto
get_padding_type
python
iyah4888/SIGGRAPH18SSS
kaffe/tensorflow/transformer.py
https://github.com/iyah4888/SIGGRAPH18SSS/blob/master/kaffe/tensorflow/transformer.py
MIT
def run( self, query="What is a lagrangian?", limit_broad_results=1_000, limit_deduped_url_results=50, limit_hierarchical_url_results=50, limit_final_pagerank_results=20, url_contains_filter=None, ): """Run a search query using the WebSearchEngine client""" query_vector = self.client.get_query_vector(query) broad_results = self.client.similarity_search( query_vector=query_vector, limit=limit_broad_results ) if not url_contains_filter: url_contains_filter = [] deduped_url_results = select_top_urls( broad_results, max_urls=limit_deduped_url_results, url_contains=url_contains_filter, ) hierarchical_url_results = ( self.client.hierarchical_similarity_reranking( query_vector=query_vector, urls=deduped_url_results, limit=limit_hierarchical_url_results, ) ) pagerank_reranked_results = self.client.pagerank_reranking( hierarchical_url_results )[:limit_final_pagerank_results] return pagerank_reranked_results
Run a search query using the WebSearchEngine client
run
python
SciPhi-AI/agent-search
agent_search/app/server.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/app/server.py
Apache-2.0
def to_string_dict(self) -> dict: """Returns a dictionary representation with all values as strings.""" return { "score": str(self.score), "url": self.url, "title": self.title, "dataset": self.dataset, "metadata": self.metadata, "text": self.text, }
Returns a dictionary representation with all values as strings.
to_string_dict
python
SciPhi-AI/agent-search
agent_search/core/search_types.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/core/search_types.py
Apache-2.0
def select_top_urls( ordered_points: List[AgentSearchResult], max_urls: int = 10, url_contains: Optional[List[str]] = None, ) -> List[str]: """A function to return the top unique URLs from the given poitns results.""" if not url_contains: url_contains = [] top_urls = set([]) for point in ordered_points: url = point.url if url in top_urls: continue url_contains_match = False if url_contains else True for url_contain in url_contains: if url_contain in url: url_contains_match = True break if not url_contains_match: continue top_urls.add(point.url) if len(top_urls) >= max_urls: break return list(top_urls)
A function to return the top unique URLs from the given poitns results.
select_top_urls
python
SciPhi-AI/agent-search
agent_search/core/utils.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/core/utils.py
Apache-2.0
def cosine_similarity(v1: np.ndarray, v2: np.ndarray) -> float: """Compute the cosine similarity between two vectors.""" dot_product = np.dot(v1, v2) norm_v1 = np.linalg.norm(v1) norm_v2 = np.linalg.norm(v2) return dot_product / (norm_v1 * norm_v2)
Compute the cosine similarity between two vectors.
cosine_similarity
python
SciPhi-AI/agent-search
agent_search/core/utils.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/core/utils.py
Apache-2.0
def __init__( self, api_base: Optional[str] = None, api_key: Optional[str] = None, timeout: int = 30, ) -> None: """ Initializes the SciPhi client. Args: api_base (Optional[str]): Base URL for the SciPhi API. api_key (Optional[str]): API key for authenticating requests. timeout (int): Timeout for API requests in seconds. Raises: ValueError: If `api_key` is not provided. """ self.api_base = ( api_base or os.getenv("SCIPHI_API_BASE") or "https://api.sciphi.ai" ) self.api_key = api_key or os.getenv("SCIPHI_API_KEY") if not self.api_key: raise ValueError( "You must specify an explicit api_key or define `SCIPHI_API_KEY` to initialize a SciPhi client." ) self.timeout = timeout self.client = httpx.Client( base_url=self.api_base, headers=self._auth_headers(), timeout=timeout, )
Initializes the SciPhi client. Args: api_base (Optional[str]): Base URL for the SciPhi API. api_key (Optional[str]): API key for authenticating requests. timeout (int): Timeout for API requests in seconds. Raises: ValueError: If `api_key` is not provided.
__init__
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def _handle_api_response(self, response: httpx.Response) -> Dict: """ Handles the HTTP response from the API. Args: response (httpx.Response): The response from the API request. Returns: Dict: JSON response content. Raises: Exception: If the response indicates an error. """ if response.is_error: # Handle errors appropriately raise Exception( f"API request failed with status {response.status_code}" ) result = response.json() return result
Handles the HTTP response from the API. Args: response (httpx.Response): The response from the API request. Returns: Dict: JSON response content. Raises: Exception: If the response indicates an error.
_handle_api_response
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def _handle_search_response(self, search_results: Dict[str, str]) -> None: """ Handles dictionary search resopnses from the API. Args: search_results (Dict[str, str]): The response from the API request. Returns: Dict: JSON response content. Raises: Exception: If the response indicates an error. """ for result in search_results: if "score" in result: result["score"] = float(result["score"]) if "metadata" in result: try: result["metadata"] = ( json.loads(result["metadata"]) if ( result["metadata"] != None and result["metadata"] != '""' ) else {} ) except Exception as e: result["metadata"] = dict()
Handles dictionary search resopnses from the API. Args: search_results (Dict[str, str]): The response from the API request. Returns: Dict: JSON response content. Raises: Exception: If the response indicates an error.
_handle_search_response
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def _retry_api_request( self, method: str, url: str, payload: Dict, max_retries: int = 3 ): """ Common method for retrying API requests with exponential backoff. Args: method (str): The HTTP method to use ('get' or 'post'). url (str): The API endpoint. payload (Dict): The payload for the request. max_retries (int): Maximum number of retry attempts. Returns: Dict: The JSON response from the API. Raises: Exception: If the maximum number of retries is reached. """ for attempt in range(max_retries): try: response = getattr(self.client, method)(url, json=payload) return self._handle_api_response(response) except httpx.HTTPError as e: logger.info(f"HTTP error on attempt {attempt + 1}: {e}") if attempt < max_retries - 1: time.sleep(0.5 * (2**attempt)) except Exception as e: logger.error(f"Error on attempt {attempt + 1}: {e}") if attempt < max_retries - 1: time.sleep(0.5 * (2**attempt)) raise Exception("Failed to fetch data after maximum retries.")
Common method for retrying API requests with exponential backoff. Args: method (str): The HTTP method to use ('get' or 'post'). url (str): The API endpoint. payload (Dict): The payload for the request. max_retries (int): Maximum number of retry attempts. Returns: Dict: The JSON response from the API. Raises: Exception: If the maximum number of retries is reached.
_retry_api_request
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def search( self, query: str, search_provider: str, max_retries: int = 3 ) -> List[Dict]: """ Performs a search query using the SciPhi API with retry and backoff logic. Args: query (str): The search query string. search_provider (str): The search provider to use. max_retries (int): Maximum number of retry attempts. Returns: List[Dict]: A list of search results. """ url = f"/search" payload = {"provider": search_provider, "query": query} try: handled_response = self._retry_api_request( "post", url, payload, max_retries ) self._handle_search_response(handled_response) return [SearchResult(**ele).dict() for ele in handled_response] except Exception as e: logger.error(f"Search request failed: {e}") return {"error": str(e)}
Performs a search query using the SciPhi API with retry and backoff logic. Args: query (str): The search query string. search_provider (str): The search provider to use. max_retries (int): Maximum number of retry attempts. Returns: List[Dict]: A list of search results.
search
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def get_search_rag_response( self, query: str, search_provider: str, llm_model: str = "SciPhi/Sensei-7B-V1", temperature: int = 0.2, top_p: int = 0.95, ): """ Retrieves a search RAG (Retrieval-Augmented Generation) response from the API. Args: query (str): The search query string. search_provider (str): The search provider to use. llm_model (str): The language model to use. temperature (int): The temperature setting for the query. top_p (int): The top-p setting for the query. Returns: Dict: A dictionary with the search response and related queries. """ if query == "": raise ValueError("Blank query submitted.") if search_provider not in ["bing", "agent-search"]: raise ValueError(f"Unsupported provider, {search_provider}") url = f"/search_rag" payload = { "query": query, "search_provider": search_provider, "llm_model": llm_model, "temperature": temperature, "top_p": top_p, } try: handled_response = self._retry_api_request("post", url, payload) # rename the other queries to `related_queries` until LLM output is re-factored. handled_response["related_queries"] = handled_response.pop( "other_queries" ) self._handle_search_response(handled_response["search_results"]) # Use Pydantic model for parsing and validation search_response = SearchRAGResponse(**handled_response) except Exception as e: logger.error(f"Search request failed: {e}") return {"error": str(e)} return search_response.dict()
Retrieves a search RAG (Retrieval-Augmented Generation) response from the API. Args: query (str): The search query string. search_provider (str): The search provider to use. llm_model (str): The language model to use. temperature (int): The temperature setting for the query. top_p (int): The top-p setting for the query. Returns: Dict: A dictionary with the search response and related queries.
get_search_rag_response
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def completion( self, prompt: str, llm_model_name: str = "SciPhi/Sensei-7B-V1", llm_max_tokens_to_sample: int = 1_024, llm_temperature: float = 0.2, llm_top_p: float = 0.90, ) -> SearchRAGResponse: """ Generates a completion for a given prompt using the SciPhi API. Args: prompt (str): The prompt for generating completion. llm_model_name (str): The language model to use. llm_max_tokens_to_sample (int): Maximum number of tokens for the sample. llm_temperature (float): The temperature setting for the query. llm_top_p (float): The top-p setting for the query. Returns: Dict: A dictionary containing the generated completion. Raises: ImportError: If the `sciphi-synthesizer` package is not installed. """ try: import synthesizer except ImportError as e: raise ImportError( "Please install run `pip install sciphi-synthesizer` before attempting to generate a completion." ) from synthesizer.core import LLMProviderName from synthesizer.interface import LLMInterfaceManager from synthesizer.llm import GenerationConfig try: llm_interface = LLMInterfaceManager.get_interface_from_args( LLMProviderName("sciphi"), ) generation_config = GenerationConfig( model_name=llm_model_name, max_tokens_to_sample=llm_max_tokens_to_sample, temperature=llm_temperature, top_p=llm_top_p, ) completion = llm_interface.get_completion( prompt, generation_config ).replace("</s>", "") return completion except Exception as e: logger.error(f"Completion generation failed: {e}") return {"error": str(e)}
Generates a completion for a given prompt using the SciPhi API. Args: prompt (str): The prompt for generating completion. llm_model_name (str): The language model to use. llm_max_tokens_to_sample (int): Maximum number of tokens for the sample. llm_temperature (float): The temperature setting for the query. llm_top_p (float): The top-p setting for the query. Returns: Dict: A dictionary containing the generated completion. Raises: ImportError: If the `sciphi-synthesizer` package is not installed.
completion
python
SciPhi-AI/agent-search
agent_search/providers/sciphi.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/providers/sciphi.py
Apache-2.0
def process_rows(rows, output_queue): """Process the rows into qdrant point objects.""" qdrant_points = [] for row in rows: _, url, __, text_chunks, embeddings_binary, ___, ____ = row embeddings = np.frombuffer( embeddings_binary, dtype=np.float32 ).reshape(-1, EMBEDDING_VEC_SIZE) text_chunks = json.loads(text_chunks) # Prepare data for Qdrant qdrant_points.append( models.PointStruct( id=str(uuid.uuid3(uuid.NAMESPACE_DNS, url)), vector=[float(ele) for ele in embeddings[0]], payload={"text": text_chunks[0], "url": url}, ) ) output_queue.put(qdrant_points)
Process the rows into qdrant point objects.
process_rows
python
SciPhi-AI/agent-search
agent_search/scripts/populate_qdrant_from_postgres.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/scripts/populate_qdrant_from_postgres.py
Apache-2.0
def qdrant_writer(config, qdrant_queue, delete_existing): """A writer that listens for output events in a separate thread.""" qclient = QdrantClient( config["qdrant_host"], port=config["qdrant_grpc_port"], prefer_grpc=config["qdrant_prefer_grpc"], ) if delete_existing: qclient.delete_collection(config["qdrant_collection_name"]) create_collection(qclient, config["qdrant_collection_name"]) logger.info("Launching Qdrant writer") while True: try: points = qdrant_queue.get() logger.info(f"Starting Qdrant write-out...") if points is None: # Sentinel to end the process break operation_result = qclient.upsert( collection_name=config["qdrant_collection_name"], wait=True, points=points, ) logger.info( f"Finished Qdrant write-out with result {operation_result}..." ) except Exception as e: logger.info(f"Task failed with {e}")
A writer that listens for output events in a separate thread.
qdrant_writer
python
SciPhi-AI/agent-search
agent_search/scripts/populate_qdrant_from_postgres.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/scripts/populate_qdrant_from_postgres.py
Apache-2.0
def process_batches(config, start, end, batch_size, output_queue): """Processes the batches in steps of the given batch_size""" # Connect to the database conn = psycopg2.connect( dbname=config["postgres_db"], user=config["postgres_user"], password=config["postgres_password"], host=config["postgres_host"], options="-c client_encoding=UTF8", ) cur = conn.cursor() # Declare a server-side cursor with offset cur.execute( f"DECLARE proc_cursor CURSOR FOR SELECT * FROM {config['postgres_table_name']} OFFSET {start} LIMIT {end - start}" ) offset = start while True: logger.info( f"Fetching a batch of size {batch_size} at offset {offset}" ) # Fetch a batch of rows cur.execute(f"FETCH {batch_size} FROM proc_cursor") rows = cur.fetchall() if len(rows) == 0: break process_rows(rows, output_queue) offset += batch_size # terminate if offset + batch_size >= end: break cur.close() conn.close()
Processes the batches in steps of the given batch_size
process_batches
python
SciPhi-AI/agent-search
agent_search/scripts/populate_qdrant_from_postgres.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/scripts/populate_qdrant_from_postgres.py
Apache-2.0
def run(self, num_processes=16, batch_size=1_024, delete_existing=False): """Runs the population process for the qdrant database""" qdrant_queue = multiprocessing.Queue() qdrant_writer_thread = multiprocessing.Process( target=qdrant_writer, args=( self.config, qdrant_queue, delete_existing, ), ) qdrant_writer_thread.start() conn = psycopg2.connect( dbname=self.config["postgres_db"], user=self.config["postgres_user"], password=self.config["postgres_password"], host=self.config["postgres_host"], options="-c client_encoding=UTF8", ) cur = conn.cursor() # Count total number of entries cur.execute( f"SELECT COUNT(*) FROM {self.config['postgres_table_name']}" ) total_count = cur.fetchone()[0] logger.info( f"Processing {total_count} entries in {num_processes} processes" ) range_size = total_count // num_processes # Create and start multiprocessing workflow processes = [] for i in range(num_processes): logger.info(f"Starting process {i}...") start = i * range_size end = start + range_size if i < num_processes - 1 else total_count proc = multiprocessing.Process( target=process_batches, args=( self.config, start, end, batch_size, qdrant_queue, ), ) processes.append(proc) proc.start() # Wait for all processes to finish for proc in processes: proc.join() # send termination signal qdrant_queue.put(None) cur.close() conn.close()
Runs the population process for the qdrant database
run
python
SciPhi-AI/agent-search
agent_search/scripts/populate_qdrant_from_postgres.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/scripts/populate_qdrant_from_postgres.py
Apache-2.0
def hierarchical_similarity_reranking( self, query_vector: np.ndarray, urls: List[str], limit: int = 100, ) -> List[AgentSearchResult]: """Hierarchical URL search to find the most similar text chunk for the given query and URLs""" results = self.execute_batch_query(urls) # List to store the results along with their similarity scores similarity_results = [] # Iterate over each result to find the most similar text chunk for result in results: ( url, title, metadata, dataset, text_chunks_str, embeddings_binary, ) = result # deserialize the embeddings and text chunks embeddings = np.frombuffer( embeddings_binary, dtype=np.float32 ).reshape(-1, 768) text_chunks = json.loads(text_chunks_str) max_similarity = -1e9 most_similar_chunk = None # Iterate over each embedding to find the one with maximum cosine similarity for chunk, embedding in zip(text_chunks, embeddings): similarity = cosine_similarity( np.array(query_vector), np.array(embedding) ) if similarity > max_similarity: max_similarity = similarity most_similar_chunk = chunk # Store the most similar chunk and its similarity score similarity_results.append( AgentSearchResult( score=max_similarity, url=url, title=title, metadata=json.loads(metadata), dataset=dataset, text=most_similar_chunk, ), ) # Sort the results based on similarity score in descending order similarity_results.sort(key=lambda x: x.score, reverse=True) return similarity_results[:limit]
Hierarchical URL search to find the most similar text chunk for the given query and URLs
hierarchical_similarity_reranking
python
SciPhi-AI/agent-search
agent_search/search/base.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/search/base.py
Apache-2.0
def pagerank_reranking( self, similarity_results: List[AgentSearchResult], limit: int = 100, ) -> List[AgentSearchResult]: """Reranks the results based on the PageRank score of the domain""" if not self.pagerank_rerank_module: raise Exception( "PageRank reranking module is not enabled. Please set pagerank_rerank_module=True while initializing the WebSearchEngine client." ) # List to store the results along with their PageRank scores pagerank_results = [] # Iterate over each result to find the PageRank score of the domain for result in similarity_results: pagerank_score = 0 try: domain = result.url.split("/")[2] pagerank_score = self.domain_to_rank_map.get(domain, 0) except Exception as e: logger.info(f"Error {e}: Found for URL: {result.url}") reweighted_score = ( self.pagerank_importance * pagerank_score / 10.0 + (1 - self.pagerank_importance) * result.score ) pagerank_results.append( AgentSearchResult( score=reweighted_score, url=result.url, title=result.title, metadata=result.metadata, dataset=result.dataset, text=result.text, ) ) # Sort the results based on PageRank score in descending order pagerank_results.sort(key=lambda x: x.score, reverse=True) return pagerank_results[:limit]
Reranks the results based on the PageRank score of the domain
pagerank_reranking
python
SciPhi-AI/agent-search
agent_search/search/base.py
https://github.com/SciPhi-AI/agent-search/blob/master/agent_search/search/base.py
Apache-2.0
def scrub_str(string): """ The purpose of this function is to scrub the weird template mark-up out of strings that Veekun is using for their pokedex. Example: []{move:dragon-tail} will effect the opponents [HP]{mechanic:hp}. Becomes: dragon tail will effect the opponents HP. If you find this results in weird strings please take a stab at improving or re-writing. """ groups = re.findall(GROUP_RGX, string) for group in groups: if group[0]: sub = group[0] else: sub = group[1].split(":") if len(sub) >= 2: sub = sub[1] else: sub = sub[0] sub = sub.replace("-", " ") string = re.sub(SUB_RGX, sub, string, 1) return string
The purpose of this function is to scrub the weird template mark-up out of strings that Veekun is using for their pokedex. Example: []{move:dragon-tail} will effect the opponents [HP]{mechanic:hp}. Becomes: dragon tail will effect the opponents HP. If you find this results in weird strings please take a stab at improving or re-writing.
scrub_str
python
PokeAPI/pokeapi
data/v2/build.py
https://github.com/PokeAPI/pokeapi/blob/master/data/v2/build.py
BSD-3-Clause
def __SectionLength(this): """(4 bytes) Gets the length of characters the given section is""" offset = this.__SectionDataOffset return struct.unpack_from("<I", this.__data, offset)[0]
(4 bytes) Gets the length of characters the given section is
__SectionLength
python
PokeAPI/pokeapi
Resources/scripts/data/gen8/read_swsh.py
https://github.com/PokeAPI/pokeapi/blob/master/Resources/scripts/data/gen8/read_swsh.py
BSD-3-Clause
def __LineOffsets(this): """Figures out the offset for each entry based on the data section offset""" result = [None] * this.__LineCount sdo = int(this.__SectionDataOffset) for i in range(0, len(result)): result[i] = TextLine() result[i].offset = struct.unpack_from("<i", this.__data, (i * 8) + sdo + 4)[0] + sdo result[i].length = struct.unpack_from("<h", this.__data, (i * 8) + sdo + 8)[0] return result
Figures out the offset for each entry based on the data section offset
__LineOffsets
python
PokeAPI/pokeapi
Resources/scripts/data/gen8/read_swsh.py
https://github.com/PokeAPI/pokeapi/blob/master/Resources/scripts/data/gen8/read_swsh.py
BSD-3-Clause
def HashFNV1_64(this, word): """Fowler-Noll-Vo hash function; 64-bit""" fnvPrime_64 = 0x100000001b3 offsetBasis_64 = 0xCBF29CE484222645 hash = offsetBasis_64 for c in word: hash = hash ^ ord(c) # Cast hash to at 64-bit value hash = (hash * fnvPrime_64) % 2**64 return hash
Fowler-Noll-Vo hash function; 64-bit
HashFNV1_64
python
PokeAPI/pokeapi
Resources/scripts/data/gen8/read_swsh.py
https://github.com/PokeAPI/pokeapi/blob/master/Resources/scripts/data/gen8/read_swsh.py
BSD-3-Clause
def __LineData(this, data): """Loads the file into a list to later decrypt""" key = copy.copy(this.__KEY_BASE) result = [None] * this.__LineCount lines = this.__LineOffsets for i in range(0, len(lines)): # Make a list twice the size of the current text line size encrypted = lines[i].length * 2 # Then copy the encrypted line starting from the given offset for however long the given list is end = lines[i].offset + encrypted encrypted = this.__data[lines[i].offset:end] result[i] = this.__CryptLineData(encrypted, key) # Cast key to a 16-bits (otherwise things break) key = (key + this.__KEY_ADVANCE) % 2**16 return result
Loads the file into a list to later decrypt
__LineData
python
PokeAPI/pokeapi
Resources/scripts/data/gen8/read_swsh.py
https://github.com/PokeAPI/pokeapi/blob/master/Resources/scripts/data/gen8/read_swsh.py
BSD-3-Clause
def __CryptLineData(this, data, key): """Decrypts the given line into a list of bytes""" copied = copy.copy(data) result = [None] * len(copied) for i in range(0, len(copied), 2): result[i] = copied[i] ^ (key % 256) result[i + 1] = copied[i + 1] ^ ((key >> 8) % 256) # Bit-shift and OR key, then cast to 16-bits (otherwise things break) key = (key << 3 | key >> 13) % 2**16 return result
Decrypts the given line into a list of bytes
__CryptLineData
python
PokeAPI/pokeapi
Resources/scripts/data/gen8/read_swsh.py
https://github.com/PokeAPI/pokeapi/blob/master/Resources/scripts/data/gen8/read_swsh.py
BSD-3-Clause