code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.backbone_model.layout == 'TN': mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) else: mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) intermediate_output = self.mlm_decoder(mlm_features) if self.backbone_model.embed_size != self.backbone_model.units: scores = self.embedding_table( intermediate_output[:, :, :self.backbone_model.embed_size]) extra_scores = self.extra_table( intermediate_output[:, :, self.backbone_model.embed_size:]) mlm_scores = scores + extra_scores else: mlm_scores = self.embedding_table(intermediate_output) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types The type of the token. For example, if the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def __init__(self, backbone_cfg, weight_initializer=None, bias_initializer=None): """ Parameters ---------- backbone_cfg The cfg of the backbone model weight_initializer bias_initializer """ super().__init__() self.backbone_model = MobileBertModel.from_cfg(backbone_cfg) if weight_initializer is None: weight_initializer = self.backbone_model.weight_initializer if bias_initializer is None: bias_initializer = self.backbone_model.bias_initializer # Construct nsp_classifier for next sentence prediction self.nsp_classifier = nn.Dense(units=2, in_units=self.backbone_model.units, weight_initializer=weight_initializer, dtype=self.backbone_model.dtype) self.mlm_decoder = nn.HybridSequential() # Extra non-linear layer self.mlm_decoder.add(nn.Dense(units=self.backbone_model.units, in_units=self.backbone_model.units, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self.backbone_model.dtype)) self.mlm_decoder.add(get_activation(self.backbone_model.activation)) # use basic layer normalization for pretaining self.mlm_decoder.add(nn.LayerNorm(epsilon=self.backbone_model.layer_norm_eps, in_channels=self.backbone_model.units)) # only load the dense weights with a re-initialized bias # parameters are stored in 'word_embed_bias' which is # not used in original embedding self.embedding_table = nn.Dense( units=self.backbone_model.vocab_size, in_units=self.backbone_model.embed_size, flatten=False, bias_initializer=bias_initializer, dtype=self.backbone_model.dtype) self.embedding_table.weight = self.backbone_model.word_embed.weight if self.backbone_model.embed_size != self.backbone_model.units: self.extra_table = nn.Dense( units=self.backbone_model.vocab_size, in_units=self.backbone_model.units - self.backbone_model.embed_size, flatten=False, use_bias=False, bias_initializer=bias_initializer, dtype=self.backbone_model.dtype)
Parameters ---------- backbone_cfg The cfg of the backbone model weight_initializer bias_initializer
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a mobile mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score Shape (batch_size, 2) mlm_scores Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) nsp_score = self.nsp_classifier(pooled_out) if self.backbone_model.layout == 'NT': mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) else: mlm_features = select_vectors_by_position(np.swapaxes(contextual_embeddings, 0, 1), masked_positions) intermediate_output = self.mlm_decoder(mlm_features) if self.backbone_model.embed_size != self.backbone_model.units: scores = self.embedding_table( intermediate_output[:, :, :self.backbone_model.embed_size]) extra_scores = self.extra_table( intermediate_output[:, :, self.backbone_model.embed_size:]) mlm_scores = scores + extra_scores else: mlm_scores = self.embedding_table(intermediate_output) return contextual_embeddings, pooled_out, nsp_score, mlm_scores
Generate the representation given the inputs. This is used in training or fine-tuning a mobile mobile bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score Shape (batch_size, 2) mlm_scores Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def get_pretrained_mobilebert(model_name: str = 'google_uncased_mobilebert', root: str = get_model_zoo_home_dir(), load_backbone: str = True, load_mlm: str = False)\ -> Tuple[CN, HuggingFaceWordPieceTokenizer, str, str]: """Get the pretrained mobile bert weights Parameters ---------- model_name The name of the mobile bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_mobilebert()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceWordPieceTokenizer( vocab_file=local_paths['vocab'], unk_token='[UNK]', pad_token='[PAD]', cls_token='[CLS]', sep_token='[SEP]', mask_token='[MASK]', lowercase=do_lower) if cfg is None: cfg = MobileBertModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained mobile bert weights Parameters ---------- model_name The name of the mobile bert model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceWordPieceTokenizer backbone_params_path Path to the parameter of the backbone network mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_mobilebert
python
dmlc/gluon-nlp
src/gluonnlp/models/mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/mobilebert.py
Apache-2.0
def __init__(self, vocab_size=50265, units=768, hidden_size=3072, num_layers=12, num_heads=12, max_length=512, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, pos_embed_type='learned', activation='gelu', pooler_activation='tanh', layer_norm_eps=1E-5, embed_initializer=TruncNorm(stdev=0.02), weight_initializer=TruncNorm(stdev=0.02), bias_initializer='zeros', dtype='float32', use_pooler=True, classifier_activation=False, encoder_normalize_before=True, output_all_encodings=False, layout='NT', compute_layout='auto'): """ Parameters ---------- vocab_size units hidden_size num_layers num_heads max_length hidden_dropout_prob attention_dropout_prob pos_embed_type activation pooler_activation layer_norm_eps embed_initializer weight_initializer bias_initializer dtype use_pooler Whether to output the CLS hidden state classifier_activation Whether to use classification head encoder_normalize_before Whether to normalize before the output_all_encodings Whether to output all encodings layout The layout compute_layout The computation layout """ super().__init__() self._dtype = dtype self._output_all_encodings = output_all_encodings self.vocab_size = vocab_size self.units = units self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.max_length = max_length self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.pos_embed_type = pos_embed_type self.activation = activation self.pooler_activation = pooler_activation self.layer_norm_eps = layer_norm_eps self.use_pooler = use_pooler self.classifier_activation = classifier_activation self.encoder_normalize_before = encoder_normalize_before self.weight_initializer = weight_initializer self.bias_initializer = bias_initializer self._layout = layout if compute_layout == 'auto' or compute_layout is None: self._compute_layout = layout else: self._compute_layout = compute_layout self.word_embed = nn.Embedding( input_dim=self.vocab_size, output_dim=self.units, weight_initializer=embed_initializer, dtype=self._dtype ) if self.encoder_normalize_before: self.embed_ln = nn.LayerNorm( epsilon=self.layer_norm_eps, in_channels=self.units) self.embed_dropout = nn.Dropout(self.hidden_dropout_prob) self.pos_embed = PositionalEmbedding( units=self.units, max_length=self.max_length, dtype=self._dtype, method=pos_embed_type) self.encoder = RobertaEncoder( units=self.units, hidden_size=self.hidden_size, num_layers=self.num_layers, num_heads=self.num_heads, attention_dropout_prob=self.attention_dropout_prob, hidden_dropout_prob=self.hidden_dropout_prob, layer_norm_eps=self.layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=self.activation, dtype=self._dtype, output_all_encodings=self._output_all_encodings, layout=self._compute_layout, ) if self.use_pooler and self.classifier_activation: # Construct pooler self.pooler = nn.Dense(units=self.units, in_units=self.units, flatten=False, activation=self.pooler_activation, weight_initializer=weight_initializer, bias_initializer=bias_initializer)
Parameters ---------- vocab_size units hidden_size num_layers num_heads max_length hidden_dropout_prob attention_dropout_prob pos_embed_type activation pooler_activation layer_norm_eps embed_initializer weight_initializer bias_initializer dtype use_pooler Whether to output the CLS hidden state classifier_activation Whether to use classification head encoder_normalize_before Whether to normalize before the output_all_encodings Whether to output all encodings layout The layout compute_layout The computation layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def get_initial_embedding(self, inputs): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) """ if self._layout == 'NT': batch_axis, time_axis = 0, 1 else: batch_axis, time_axis = 1, 0 embedding = self.word_embed(inputs) if self.pos_embed_type: positional_embedding = self.pos_embed(npx.arange_like(inputs, axis=time_axis)) positional_embedding = np.expand_dims(positional_embedding, axis=batch_axis) embedding = embedding + positional_embedding if self.encoder_normalize_before: embedding = self.embed_ln(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- ret Shape (batch_size, units) """ if self._layout == 'NT': outputs = sequence[:, 0, :] elif self._layout == 'TN': outputs = sequence[0, :, :] else: raise NotImplementedError if self.classifier_activation: return self.pooler(outputs) else: return outputs
Generate the representation given the inputs. This is used for pre-training or fine-tuning a mobile bert model. Get the first token of the whole sequence which is [CLS] Parameters ---------- sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) Returns ------- ret Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def forward(self, inputs, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ all_encodings_outputs, pooled_out = self.backbone_model(inputs, valid_length) if self.backbone_model._output_all_encodings: contextual_embeddings = all_encodings_outputs[-1] else: contextual_embeddings = all_encodings_outputs if self.backbone_model.layout == 'TN': contextual_embeddings = np.swapaxes(contextual_embeddings, 0, 1) mlm_features = select_vectors_by_position(contextual_embeddings, masked_positions) mlm_scores = self.mlm_decoder(mlm_features) return all_encodings_outputs, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def get_pretrained_roberta(model_name: str = 'fairseq_roberta_base', root: str = get_model_zoo_home_dir(), load_backbone: bool = True, load_mlm: bool = False) \ -> Tuple[CN, HuggingFaceByteBPETokenizer, str, str]: """Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_roberta()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None merges_path = PRETRAINED_URL[model_name]['merges'] vocab_path = PRETRAINED_URL[model_name]['vocab'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('vocab', vocab_path), ('merges', merges_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = HuggingFaceByteBPETokenizer( merges_file=local_paths['merges'], vocab_file=local_paths['vocab'], lowercase=do_lower) if cfg is None: cfg = RobertaModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained RoBERTa weights Parameters ---------- model_name The name of the RoBERTa model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The HuggingFaceByteBPETokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_roberta
python
dmlc/gluon-nlp
src/gluonnlp/models/roberta.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/roberta.py
Apache-2.0
def __init__( self, d_model, d_kv, d_ff, is_decoder, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. is_decoder If is_decoder, apply cross-attention. num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._is_decoder = is_decoder self._num_heads = num_heads self._inner_dim = self._num_heads * self._d_kv self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 self.self_attn_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) # avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 self.self_attn_q = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal((d_model * d_kv) ** -0.5 * init_factor), dtype=dtype ) self.self_attn_k = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.self_attn_v = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.self_attn = MultiHeadAttentionCell( query_units=self._inner_dim, num_heads=num_heads, attention_dropout=dropout_prob, scaled=False, normalized=False, dtype=dtype, layout='NTK' if layout == 'NT' else 'TNK', use_einsum=False ) self.self_attn_proj = nn.Dense( units=d_model, in_units=self._inner_dim, flatten=False, use_bias=False, weight_initializer=Normal(self._inner_dim ** -0.5 * init_factor), dtype=dtype ) if is_decoder: self.cross_attn_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) # avoid scaling before softmax self.cross_attn_q = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal((d_model * d_kv) ** -0.5 * init_factor), dtype=dtype ) self.cross_attn_k = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.cross_attn_v = nn.Dense( units=self._inner_dim, in_units=d_model, flatten=False, use_bias=False, weight_initializer=Normal(d_model ** -0.5 * init_factor), dtype=dtype ) self.cross_attn = MultiHeadAttentionCell( query_units=self._inner_dim, num_heads=num_heads, attention_dropout=dropout_prob, scaled=False, normalized=False, dtype=dtype, layout='NTK' if layout == 'NT' else 'TNK', use_einsum=False ) self.cross_attn_proj = nn.Dense( units=d_model, in_units=self._inner_dim, flatten=False, use_bias=False, weight_initializer=Normal(self._inner_dim ** -0.5 * init_factor), dtype=dtype ) assert activation in ['relu', 'gated-gelu'], \ '{} is not supported. Please choose from "relu" and "gated-gelu"'.format(activation) # the weight_initializer here is equivalent to Normal(in_units ** -0.5 * init_factor) self.ffn = PositionwiseFFN( units=d_model, hidden_size=d_ff, use_bias=False, activation_dropout=dropout_prob, dropout=dropout_prob, weight_initializer=Xavier('gaussian', 'in', np.sqrt(init_factor)), activation='relu' if activation == 'relu' else 'gelu(tanh)', use_gated_activation=False if activation == 'relu' else True, normalization='rms_norm', layer_norm_eps=layer_norm_eps, pre_norm=True, dtype=dtype, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor) ) self.dropout = nn.Dropout(dropout_prob)
Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. is_decoder If is_decoder, apply cross-attention. num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def incremental_decode( self, step_hidden_states, step_position_embeddings, past_key_value, mem_states, step_mem_attn_mask ): """Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) step_position_embeddings Stepwise relative position embeddings. Shape (num_heads, 1, (L_past_seq + 1)) past_key_value A tuple containing past key and past value. Presumably they are of the same shape. - layout = 'NT' Shape (B, L_past_seq, num_heads, d_kv) - layout = 'TN' Shape (L_past_seq, B, num_heads, d_kv) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) step_mem_attn_mask Stepwise attention mask for cross-attention. Shape (B, 1, L_src_seq) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) (self_key, self_value) The updated `past_key_value` tuple. Presumably they are of the same shape. - layout = 'NT' Shape (B, (L_past_seq + 1), num_heads, d_kv) - layout = 'TN' Shape ((L_past_seq + 1), B, num_heads, d_kv) """ # 1. self-attention out = self.self_attn_layer_norm(step_hidden_states) step_self_query, step_self_key, step_self_value = ( self.transpose_for_scores(self.self_attn_q(out)), self.transpose_for_scores(self.self_attn_k(out)), self.transpose_for_scores(self.self_attn_v(out)) ) self_key, self_value = ( np.concatenate([past_key_value[0], step_self_key], axis=self._time_axis), np.concatenate([past_key_value[1], step_self_value], axis=self._time_axis) ) out, _ = self.self_attn( step_self_query, self_key, self_value, None, step_position_embeddings ) out = self.dropout(self.self_attn_proj(out)) step_hidden_states = step_hidden_states + out # 2. cross-attention out = self.cross_attn_layer_norm(step_hidden_states) step_cross_query, cross_key, cross_value = ( self.transpose_for_scores(self.cross_attn_q(out)), self.transpose_for_scores(self.cross_attn_k(mem_states)), self.transpose_for_scores(self.cross_attn_v(mem_states)) ) out, _ = self.cross_attn( step_cross_query, cross_key, cross_value, step_mem_attn_mask ) out = self.dropout(self.cross_attn_proj(out)) step_hidden_states = step_hidden_states + out # 3. feed forward step_hidden_states = self.ffn(step_hidden_states) return step_hidden_states, (self_key, self_value)
Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) step_position_embeddings Stepwise relative position embeddings. Shape (num_heads, 1, (L_past_seq + 1)) past_key_value A tuple containing past key and past value. Presumably they are of the same shape. - layout = 'NT' Shape (B, L_past_seq, num_heads, d_kv) - layout = 'TN' Shape (L_past_seq, B, num_heads, d_kv) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) step_mem_attn_mask Stepwise attention mask for cross-attention. Shape (B, 1, L_src_seq) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) (self_key, self_value) The updated `past_key_value` tuple. Presumably they are of the same shape. - layout = 'NT' Shape (B, (L_past_seq + 1), num_heads, d_kv) - layout = 'TN' Shape ((L_past_seq + 1), B, num_heads, d_kv)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward( self, hidden_states, self_attn_mask, position_embeddings, mem_states=None, mem_attn_mask=None ): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) self_attn_mask if is_decoder, it should be a "causal" attention mask. Shape (B, L_seq, L_seq) position_embeddings Relative position embeddings for self-attention, while cross-attention is free of position encoding. Shape (num_heads, L_seq, L_seq) mem_states Encoded results. Only applicable to decoder layers. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_attn_mask Attention mask ask for cross-attention. Only applicable to decoder layers. Shape (B, L_seq, L_src_seq) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. self-attention out = self.self_attn_layer_norm(hidden_states) self_query, self_key, self_value = ( self.transpose_for_scores(self.self_attn_q(out)), self.transpose_for_scores(self.self_attn_k(out)), self.transpose_for_scores(self.self_attn_v(out)) ) out, _ = self.self_attn( self_query, self_key, self_value, self_attn_mask, position_embeddings ) out = self.dropout(self.self_attn_proj(out)) hidden_states = hidden_states + out # 2. cross-attention, if needed if self._is_decoder: out = self.cross_attn_layer_norm(hidden_states) cross_query, cross_key, cross_value = ( self.transpose_for_scores(self.cross_attn_q(out)), self.transpose_for_scores(self.cross_attn_k(mem_states)), self.transpose_for_scores(self.cross_attn_v(mem_states)) ) out, _ = self.cross_attn( cross_query, cross_key, cross_value, mem_attn_mask ) out = self.dropout(self.cross_attn_proj(out)) hidden_states = hidden_states + out # 3. feed forward hidden_states = self.ffn(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) self_attn_mask if is_decoder, it should be a "causal" attention mask. Shape (B, L_seq, L_seq) position_embeddings Relative position embeddings for self-attention, while cross-attention is free of position encoding. Shape (num_heads, L_seq, L_seq) mem_states Encoded results. Only applicable to decoder layers. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_attn_mask Attention mask ask for cross-attention. Only applicable to decoder layers. Shape (B, L_seq, L_src_seq) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def __init__( self, d_model, d_kv, d_ff, num_layers=12, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._num_layers = num_layers self._num_heads = num_heads self._inner_dim = num_heads * d_kv self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 self.relative_position_encoder = RelAttentionScoreCell( query_units=self._inner_dim, num_heads=num_heads, method='t5', bidirectional=True, embed_initializer=Normal(d_model ** -0.5 * init_factor), layout='NTK' if layout == 'NT' else 'TNK', dtype=dtype ) self.layers = nn.HybridSequential() for _ in range(num_layers): self.layers.add( T5Block( d_model=d_model, d_kv=d_kv, d_ff=d_ff, is_decoder=False, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype ) ) self.final_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) self.dropout = nn.Dropout(dropout_prob)
Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, hidden_states, valid_length): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. relative position embeddings and attention masks position_embeddings = self.relative_position_encoder( gen_rel_position(hidden_states, layout=self.layout) ) self_attn_mask = gen_self_attn_mask( hidden_states, valid_length, dtype=self._dtype, attn_type='full', layout=self.layout ) # 2. encoder blocks and other layers hidden_states = self.dropout(hidden_states) for layer in self.layers: hidden_states = layer( hidden_states, self_attn_mask, position_embeddings ) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def __init__( self, d_model, d_kv, d_ff, num_layers=12, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._num_layers = num_layers self._num_heads = num_heads self._inner_dim = num_heads * d_kv self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 self.relative_position_encoder = RelAttentionScoreCell( query_units=self._inner_dim, num_heads=num_heads, method='t5', bidirectional=False, embed_initializer=Normal(d_model ** -0.5 * init_factor), layout='NTK' if layout == 'NT' else 'TNK', dtype=dtype ) self.layers = nn.HybridSequential() for _ in range(num_layers): self.layers.add( T5Block( d_model=d_model, d_kv=d_kv, d_ff=d_ff, is_decoder=True, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype ) ) self.final_layer_norm = RMSNorm( in_channels=d_model, center=False, scale=True, gamma_initializer=Constant(1.0 * init_factor), variance_epsilon=layer_norm_eps, dtype=dtype ) self.dropout = nn.Dropout(dropout_prob)
Parameters ---------- d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def incremental_decode( self, step_hidden_states, position, past_key_values, mem_states, mem_valid_length ): """Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) position Current position index in incremental decoding. Shape (B,) past_key_values A list of tuples where each one corresponds to the `past_key_value` of a decoder layer. mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) present_key_values A list of tuples containing the updated `past_key_value` for each decoder layer. """ # 1. relative position embeddings and attention mask # step_position_embeddings: Shape (num_heads, 1, L_seq), for self-attention # step_mem_attn_mask: Shape (B, 1, L_src_seq), for cross-attention position_embeddings = self.relative_position_encoder( gen_rel_position( step_hidden_states, past_data=past_key_values[0][0], layout=self.layout ) ) step_position_embeddings = position_embeddings[:, -1:, :] step_mem_attn_mask = gen_mem_attn_mask( mem_states, mem_valid_length, step_hidden_states, dtype=self._dtype, layout=self.layout ) # 2. decoder blocks and other layers step_hidden_states = self.dropout(step_hidden_states) present_key_values = [] for i, layer in enumerate(self.layers): step_hidden_states, present_key_value = layer.incremental_decode( step_hidden_states, step_position_embeddings, past_key_values[i], mem_states, step_mem_attn_mask ) present_key_values.append(present_key_value) step_hidden_states = self.final_layer_norm(step_hidden_states) step_hidden_states = self.dropout(step_hidden_states) return step_hidden_states, present_key_values
Incrementally generate the output given the decoder input. Parameters ---------- step_hidden_states Stepwise hidden states where L_seq = 1 as in `forward` case. - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) position Current position index in incremental decoding. Shape (B,) past_key_values A list of tuples where each one corresponds to the `past_key_value` of a decoder layer. mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- step_hidden_states - layout = 'NT' Shape (B, 1, d_model) - layout = 'TN' Shape (1, B, d_model) present_key_values A list of tuples containing the updated `past_key_value` for each decoder layer.
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, hidden_states, valid_length, mem_states, mem_valid_length): """ Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ # 1. relative position embeddings and attention masks # position_embeddings: Shape (num_heads, L_seq, L_seq), broadcastable, for self-attention # self_attn_mask: Shape (B, L_seq, L_seq), for self-attention # mem_attn_mask: Shape (B, L_seq, L_src_seq), for cross-attention position_embeddings = self.relative_position_encoder( gen_rel_position(hidden_states, layout=self.layout) ) self_attn_mask = gen_self_attn_mask( hidden_states, valid_length, dtype=self._dtype, attn_type='causal', layout=self.layout ) mem_attn_mask = gen_mem_attn_mask( mem_states, mem_valid_length, hidden_states, valid_length, dtype=self._dtype, layout=self.layout ) # 2. decoder blocks and other layers hidden_states = self.dropout(hidden_states) for layer in self.layers: hidden_states = layer( hidden_states, self_attn_mask, position_embeddings, mem_states, mem_attn_mask ) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
Parameters ---------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states Encoded results. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- hidden_states - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def __init__( self, vocab_size=32128, d_model=768, d_kv=64, d_ff=3072, num_layers=12, num_heads=12, dropout_prob=0.1, layer_norm_eps=1E-6, activation='relu', init_factor=1.0, layout='NT', dtype='float32' ): """ Parameters ---------- vocab_size vocab_size should be no smaller than len(tokenizer._sp_model). d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype """ super().__init__() assert vocab_size > 0, 'Vocab size {} is not valid.'.format(vocab_size) self._vocab_size = vocab_size self._d_model = d_model self._d_kv = d_kv self._d_ff = d_ff self._num_layers = num_layers self._num_heads = num_heads self._inner_dim = num_heads * d_kv self._activation = activation self._init_factor = init_factor self._dtype = dtype assert layout in ['TN', 'NT'], \ 'Invalid layout: {}. Only "TN" and "NT" are supported.'.format(layout) self._layout = layout self._time_axis = 1 if self.layout == 'NT' else 0 # input embedding weights are shared between across encoder and decoder self.input_embedding_layer = nn.Embedding( input_dim=vocab_size, output_dim=d_model, weight_initializer=Normal(1.0 * init_factor), dtype=dtype ) self.encoder = T5Encoder( d_model=d_model, d_kv=d_kv, d_ff=d_ff, num_layers=num_layers, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype ) self.decoder = T5Decoder( d_model=d_model, d_kv=d_kv, d_ff=d_ff, num_layers=num_layers, num_heads=num_heads, dropout_prob=dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, init_factor=init_factor, layout=layout, dtype=dtype )
Parameters ---------- vocab_size vocab_size should be no smaller than len(tokenizer._sp_model). d_model Equivalent to transformer's `units`. d_kv d_kv * num_heads (see below) = inner_dim. d_ff Equivalent to transformer's `hidden_size`. num_layers num_heads dropout_prob We use the same dropout rate for all dropout layers. layer_norm_eps activation Type of feed forward projection. Currently supported are `relu` and `gated-gelu`. init_factor A scalor factor in sd of weight initialization. layout dtype
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def encode(self, src_data, src_valid_length): """Encode the source data to memory states. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) """ src_hidden_states = self.input_embedding_layer(src_data) enc_out = self.encoder( src_hidden_states, src_valid_length ) return enc_out
Encode the source data to memory states. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model)
encode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def decode(self, tgt_data, tgt_valid_length, mem_states, mem_valid_length): """Decode based on target data and memory states. Parameters ---------- tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ tgt_hidden_states = self.input_embedding_layer(tgt_data) dec_out = self.decoder( tgt_hidden_states, tgt_valid_length, mem_states, mem_valid_length ) return dec_out
Decode based on target data and memory states. Parameters ---------- tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) mem_valid_length Valid sequence length for each sample feeded into the encoder: mem_valid_length = src_valid_length. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
decode
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, src_data, src_valid_length, tgt_data, tgt_valid_length): """ Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model) """ enc_out = self.encode(src_data, src_valid_length) dec_out = self.decode(tgt_data, tgt_valid_length, enc_out, src_valid_length) return dec_out
Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) tgt_data Token ids feeded into the decoder. - layout = 'NT' Shape (B, L_seq) - layout = 'TN' Shape (L_seq, B) tgt_valid_length Valid sequence length for each sample feeded into the decoder. Shape (B,) Returns ------- dec_out - layout = 'NT' Shape (B, L_seq, d_model) - layout = 'TN' Shape (L_seq, B, d_model)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def state_batch_axis(self): """The returned 4-tuple corresponds to the batch axes of `init_states()` results. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axes """ if self.model.layout == 'NT': return 0, 0, 0, self.model.decoder.state_batch_axis else: return 1, 0, 0, self.model.decoder.state_batch_axis
The returned 4-tuple corresponds to the batch axes of `init_states()` results. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axes
state_batch_axis
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def init_states(self, src_data, src_valid_length): """Initialize the states required for incremental decoding. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out Encoded results from src_data. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) src_valid_length Shape (B,) position Shape (B,) dec_states A list of `past_key_value` for incremental decoding. """ batch_size = src_data.shape[1 - self.model._time_axis] # NT: 0; TN: 1 ctx = src_data.ctx enc_out = self.model.encode(src_data, src_valid_length) position = np.zeros((batch_size,), dtype=np.int32, ctx=ctx) key_values = self.model.decoder._init_key_values(batch_size, ctx, dtype=enc_out.dtype) return enc_out, src_valid_length, position, key_values
Initialize the states required for incremental decoding. Parameters ---------- src_data Token ids feeded into the encoder. - layout = 'NT' Shape (B, L_src_seq) - layout = 'TN' Shape (L_src_seq, B) src_valid_length Valid sequence length for each sample feeded into the encoder. Shape (B,) Returns ------- enc_out Encoded results from src_data. - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) src_valid_length Shape (B,) position Shape (B,) dec_states A list of `past_key_value` for incremental decoding.
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def forward(self, step_data, past_states): """ Parameters ---------- step_data Stepwise batched token ids for incremental decoding. Shape (B,) past_states A 4-tuple containing states of last incremental decoding step. 1. mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) 2. mem_valid_length Shape (B,) 3. position Shape (B,) 4. dec_states A list of `past_key_value` tuples whose shape depend on layout. Returns ------- step_hidden_states Stepwise hidden states with time axis squeezed out. Shape (B, vocab_size) new_states Similar to past_states, but updated for next incremental decoding step. """ mem_states, mem_valid_length, position, past_key_values = past_states step_hidden_states = self.model.input_embedding_layer(step_data) # NT: (B, d_model) -> (B, 1, d_model); TN: (B, d_model) -> (1, B, d_model) step_hidden_states = np.expand_dims(step_hidden_states, axis=self.model._time_axis) step_hidden_states, present_key_values = self.model.decoder.incremental_decode( step_hidden_states, position, past_key_values, mem_states, mem_valid_length ) step_hidden_states = self.output_layer(step_hidden_states) # NT: (B, 1, vocab_size) -> (B, vocab_size); TN: (1, B, vocab_size) -> (B, vocab_size) step_hidden_states = npx.reshape(step_hidden_states, (-5, -1)) return step_hidden_states, (mem_states, mem_valid_length, position + 1, present_key_values)
Parameters ---------- step_data Stepwise batched token ids for incremental decoding. Shape (B,) past_states A 4-tuple containing states of last incremental decoding step. 1. mem_states - layout = 'NT' Shape (B, L_src_seq, d_model) - layout = 'TN' Shape (L_src_seq, B, d_model) 2. mem_valid_length Shape (B,) 3. position Shape (B,) 4. dec_states A list of `past_key_value` tuples whose shape depend on layout. Returns ------- step_hidden_states Stepwise hidden states with time axis squeezed out. Shape (B, vocab_size) new_states Similar to past_states, but updated for next incremental decoding step.
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/t5.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/t5.py
Apache-2.0
def transformer_base(): """Configuration of Transformer WMT EN-DE Base""" cfg = CN() cfg.MODEL = CN() cfg.MODEL.src_vocab_size = -1 cfg.MODEL.tgt_vocab_size = -1 cfg.MODEL.max_src_length = -1 cfg.MODEL.max_tgt_length = -1 cfg.MODEL.scale_embed = True cfg.MODEL.pos_embed_type = "sinusoidal" cfg.MODEL.shared_embed = True cfg.MODEL.tie_weights = True cfg.MODEL.attention_dropout = 0.0 cfg.MODEL.activation_dropout = 0.0 cfg.MODEL.dropout = 0.1 cfg.MODEL.layout = 'NT' cfg.MODEL.dtype = 'float32' # Parameters for the encoder cfg.MODEL.ENCODER = CN() cfg.MODEL.ENCODER.num_layers = 6 cfg.MODEL.ENCODER.units = 512 cfg.MODEL.ENCODER.num_heads = 8 cfg.MODEL.ENCODER.hidden_size = 2048 cfg.MODEL.ENCODER.recurrent = False cfg.MODEL.ENCODER.activation = 'relu' cfg.MODEL.ENCODER.pre_norm = False cfg.MODEL.ENCODER.use_qkv_bias = True # Parameters for the decoder cfg.MODEL.DECODER = CN() cfg.MODEL.DECODER.num_layers = 6 cfg.MODEL.DECODER.units = 512 cfg.MODEL.DECODER.num_heads = 8 cfg.MODEL.DECODER.hidden_size = 2048 cfg.MODEL.DECODER.recurrent = False cfg.MODEL.DECODER.activation = 'relu' cfg.MODEL.DECODER.pre_norm = False cfg.MODEL.DECODER.use_qkv_bias = False # Parameters for the initializer cfg.INITIALIZER = CN() cfg.INITIALIZER.embed = ['xavier', 'gaussian', 'in', 1.0] cfg.INITIALIZER.weight = ['xavier', 'uniform', 'avg', 3.0] cfg.INITIALIZER.bias = ['zeros'] cfg.VERSION = 1 cfg.freeze() return cfg
Configuration of Transformer WMT EN-DE Base
transformer_base
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, units: int = 512, hidden_size: int = 2048, num_heads: int = 8, attention_dropout_prob: float = 0.1, hidden_dropout_prob: float = 0.1, activation_dropout_prob: float = 0.0, layer_norm_eps: float = 1e-12, pre_norm: bool = False, use_qkv_bias: bool = True, weight_initializer: Optional[InitializerType] = None, bias_initializer: Optional[InitializerType] = 'zeros', activation: str = 'relu', dtype='float32', layout='NT'): """ Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention weight_initializer bias_initializer activation dtype layout """ super().__init__() self._units = units self._hidden_size = hidden_size self._num_heads = num_heads self._attention_dropout_prob = attention_dropout_prob self._hidden_dropout_prob = hidden_dropout_prob self._activation_dropout_prob = activation_dropout_prob self._pre_norm = pre_norm self._dtype = dtype self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) assert self._units % self._num_heads == 0, 'units must be divisive by the number of heads' self.dropout_layer = nn.Dropout(hidden_dropout_prob) self.attn_qkv = nn.Dense(3 * units, flatten=False, use_bias=use_qkv_bias, in_units=units, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) self.attention_proj = nn.Dense(units=units, flatten=False, in_units=units, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=self._dtype) attention_layout = 'NTK' if self._layout == 'NT' else 'TNK' self.attention_cell = \ MultiHeadAttentionCell( query_units=self._units, num_heads=self._num_heads, attention_dropout=self._attention_dropout_prob, scaled=True, dtype=self._dtype, layout=attention_layout ) self.layer_norm = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=hidden_dropout_prob, activation_dropout=activation_dropout_prob, weight_initializer=weight_initializer, bias_initializer=bias_initializer, layer_norm_eps=layer_norm_eps, activation=activation, pre_norm=pre_norm, dtype=self._dtype)
Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention weight_initializer bias_initializer activation dtype layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, attn_mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length) """ if self._pre_norm: data = self.layer_norm(data) query, key, value = np.split(self.attn_qkv(data), 3, axis=-1) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, attn_mask) out = self.attention_proj(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.layer_norm(out) out = self.ffn(out) return out, attn_weight
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) attn_mask Shape (batch_size, seq_length, seq_length) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) attn_weight Shape (batch_size, seq_length, seq_length)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, num_layers=6, recurrent=False, units=512, hidden_size=2048, num_heads=8, activation_dropout=0.0, dropout=0.1, use_qkv_bias=True, attention_dropout=0.1, layer_norm_eps=1E-5, data_norm=False, pre_norm=False, weight_initializer=None, bias_initializer='zeros', activation='relu', dtype='float32', layout='NT'): """ Parameters ---------- num_layers : The number of layers recurrent : bool Whether the layers share weights or not units hidden_size num_heads dropout layer_norm_eps data_norm Whether to apply LayerNorm to the data pre_norm Whether to apply LayerNorm before the attention layer. weight_initializer bias_initializer activation dtype layout """ super().__init__() self._dtype = dtype self.num_layers = num_layers self._recurrent = recurrent self._data_norm = data_norm self._pre_norm = pre_norm self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) self.dropout_layer = nn.Dropout(dropout) if self._pre_norm: self.ln_final = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) if self._data_norm: self.ln_data = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) # Construct the intermediate layers self.layers = nn.HybridSequential() real_num_layers = 1 if recurrent else num_layers for i in range(real_num_layers): self.layers.add(TransformerEncoderLayer( units=units, hidden_size=hidden_size, num_heads=num_heads, hidden_dropout_prob=dropout, attention_dropout_prob=attention_dropout, activation_dropout_prob=activation_dropout, use_qkv_bias=use_qkv_bias, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, pre_norm=pre_norm, activation=activation, layout=self._layout, dtype=dtype))
Parameters ---------- num_layers : The number of layers recurrent : bool Whether the layers share weights or not units hidden_size num_heads dropout layer_norm_eps data_norm Whether to apply LayerNorm to the data pre_norm Whether to apply LayerNorm before the attention layer. weight_initializer bias_initializer activation dtype layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, valid_length): """ Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, layout=self.layout, attn_type='full') out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) for i in range(self.num_layers): if self._recurrent: layer = self.layers[0] else: layer = self.layers[i] out, _ = layer(out, attn_mask) if self._pre_norm: out = self.ln_final(out) return out
Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length : Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, units: int = 512, mem_units: Optional[int] = None, hidden_size: int = 2048, num_heads: int = 8, activation_dropout: float = 0.0, dropout: float = 0.1, attention_dropout: float = 0.1, layer_norm_eps: float = 1E-5, activation: str = 'relu', pre_norm: bool = False, use_qkv_bias: bool = True, weight_initializer=None, bias_initializer='zeros', dtype='float32', layout='NT'): """ Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention weight_initializer bias_initializer dtype Data type layout Layout of the input """ super().__init__() self._dtype = dtype self._units = units if mem_units is None: mem_units = units self._mem_units = mem_units self._pre_norm = pre_norm self._num_heads = num_heads self._attention_dropout = attention_dropout self._dtype = dtype self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) attention_layout = 'NTK' if layout == 'NT' else 'TNK' self.dropout_layer = nn.Dropout(dropout) if units % num_heads: raise ValueError('In Transformer, units should be divided exactly by the number of ' 'heads. Received units={}, num_heads={}'.format(units, num_heads)) self.attn_in_qkv = nn.Dense(3 * units, in_units=units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.self_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, dtype=dtype, layout=attention_layout) self.proj_in = nn.Dense(units=units, in_units=units, flatten=False, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_q = nn.Dense(units, in_units=units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_k = nn.Dense(units, in_units=mem_units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.attn_inter_v = nn.Dense(units, in_units=mem_units, use_bias=use_qkv_bias, flatten=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.inter_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, dtype=dtype, layout=attention_layout) self.proj_inter = nn.Dense(units=units, in_units=units, flatten=False, use_bias=True, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) # TODO(sxjscience) Add DType to LayerNorm self.ln_in = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ln_inter = nn.LayerNorm(epsilon=layer_norm_eps, in_channels=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=dropout, activation_dropout=activation_dropout, weight_initializer=weight_initializer, bias_initializer=bias_initializer, layer_norm_eps=layer_norm_eps, activation=activation, pre_norm=pre_norm, dtype=dtype)
Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention weight_initializer bias_initializer dtype Data type layout Layout of the input
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, mem, self_causal_mask, mem_attn_mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. .. code-block:: none ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Get the causal self-attention value if self._pre_norm: data = self.ln_in(data) self_query, self_key, self_value = np.split(self.attn_in_qkv(data), 3, axis=-1) out, [_, self_attn_weight] = self.self_attention( npx.reshape(self_query, (-2, -2, self._num_heads, -1)), npx.reshape(self_key, (-2, -2, self._num_heads, -1)), npx.reshape(self_value, (-2, -2, self._num_heads, -1)), self_causal_mask) out = self.proj_in(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out if self._pre_norm: data = self.ln_inter(data) out, [_, context_attn_weight] = self.inter_attention( npx.reshape(self.attn_inter_q(data), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_k(mem), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_v(mem), (-2, -2, self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) return out
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. .. code-block:: none ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, batch_size, ctx, dtype='float32'): """Initialize the states required for incremental decoding Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ if self.layout == 'NT': init_key = mx.np.zeros(shape=(batch_size, 0, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) init_value = mx.np.zeros(shape=(batch_size, 0, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) else: init_key = mx.np.zeros(shape=(0, batch_size, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) init_value = mx.np.zeros(shape=(0, batch_size, self._num_heads, self._units // self._num_heads), ctx=ctx, dtype=dtype) return init_key, init_value
Initialize the states required for incremental decoding Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length, mem_attn_mask=None): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value) """ if self._pre_norm: data = self.ln_in(data) if self.layout == 'NT': time_axis = 1 else: time_axis = 0 data = np.expand_dims(data, axis=time_axis) # Shape (B, prev_L, #Head, C_K), (B, prev_L, #Head, C_V) # or (prev_L, B, #Head, C_K), (prev_L, B, #Head, C_V) prev_key, prev_value = states if mem_attn_mask is None: mem_attn_mask = gen_mem_attn_mask(mem, mem_valid_length, data, None, dtype=self._dtype, layout=self.layout) # 1. Get the causal self-attention value, we need to attend to both the current data # and the previous stored key/values # Shape (B, 1, 3 * num_heads * C_key) # or (1, B, 3 * num_heads * C_key) step_qkv = self.attn_in_qkv(data) step_query, step_key, step_value = np.split(step_qkv, 3, axis=-1) step_query = npx.reshape(step_query, (-2, -2, self._num_heads, -1)) step_key = npx.reshape(step_key, (-2, -2, self._num_heads, -1)) step_value = npx.reshape(step_value, (-2, -2, self._num_heads, -1)) new_key = np.concatenate([prev_key, step_key], axis=time_axis) new_value = np.concatenate([prev_value, step_value], axis=time_axis) out, [_, attn_weight] = self.self_attention(step_query, new_key, new_value, None) out = self.proj_in(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out if self._pre_norm: data = self.ln_inter(data) out, _ = self.inter_attention(npx.reshape(self.attn_inter_q(data), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_k(mem), (-2, -2, self._num_heads, -1)), npx.reshape(self.attn_inter_v(mem), (-2, -2, self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + data if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) out = npx.reshape(out, (-5, -1)) return out, (new_key, new_value)
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, valid_length, mem_data, mem_valid_length): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) self_causal_mask = gen_self_attn_mask(data, valid_length, dtype=self._dtype, attn_type='causal', layout=self._layout) mem_attn_mask = gen_mem_attn_mask(mem_data, mem_valid_length, data, valid_length, dtype=self._dtype, layout=self._layout) for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out = layer(out, mem_data, self_causal_mask, mem_attn_mask) if self._pre_norm: out = self.ln_final(out) return out
Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, batch_size, ctx, dtype='float32'): """Initialize the states required for incremental decoding Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] states.append(layer.init_states(batch_size=batch_size, ctx=ctx, dtype=dtype)) return states
Initialize the states required for incremental decoding Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) time_axis = 0 if self.layout == 'TN' else 1 # Generate the mem_attn_mask time_steps = npx.arange_like(mem, axis=time_axis) # (mem_length,) mem_attn_mask = np.reshape(time_steps, (1, 1, -1))\ < np.reshape(mem_valid_length, (-1, 1, 1)) # TODO(sxjscience) Try with boolean masking mem_attn_mask = mem_attn_mask.astype(self._dtype) new_states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out, new_state = layer.incremental_decode(out, states[i], mem, mem_valid_length, mem_attn_mask) new_states.append(new_state) if self._pre_norm: out = self.ln_final(out) return out, new_states
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def __init__(self, src_vocab_size: int, tgt_vocab_size: int, max_src_length: Optional[int] = None, max_tgt_length: Optional[int] = None, scale_embed: bool = True, pos_embed_type="sinusoidal", shared_embed: bool = True, tie_weights: bool = True, activation_dropout: float = 0.0, dropout: float = 0.1, attention_dropout: float = 0.1, layer_norm_eps: float = 1E-5, data_norm: bool = False, enc_units: int = 512, enc_hidden_size: int = 2048, enc_num_heads: int = 8, enc_num_layers: int = 6, enc_recurrent: bool = False, enc_activation='relu', enc_pre_norm: bool = False, enc_use_qkv_bias: bool = True, dec_units: int = 512, dec_hidden_size: int = 2048, dec_num_heads: int = 8, dec_num_layers: int = 6, dec_recurrent: bool = False, dec_activation='relu', dec_pre_norm: bool = False, dec_use_qkv_bias: bool = True, embed_initializer=mx.init.Xavier('gaussian', 'in', 1), weight_initializer=mx.init.Xavier('uniform', 'avg', 3), bias_initializer='zeros', dtype='float32', layout='NT'): """ Parameters ---------- src_vocab_size The vocabulary size of the source language tgt_vocab_size The vocabulary size of the target language max_src_length The maximal length of the source sequence. If it's negative, we will use treat it as not set. max_tgt_length The maximal length of the target sequence. If it's negative, we will use treat it as not set. scale_embed Whether to multiply the src and dst embeddings by sqrt(units) pos_embed_type Type of the positional embedding shared_embed Whether to share the embedding of the src and tgt language tie_weights Whether to tie the weights of input + output. activation_dropout The ratio of the activation dropout in FFN dropout The default dropout ratio attention_dropout The ratio of the attention dropout layer_norm_eps The epsilon of the layer normalization data_norm Whether to add layer normalization layer after the input. enc_units Units of the encoder enc_hidden_size Hidden size of the encoder enc_num_heads Number of heads of the encoder enc_num_layers Number of layers of the encoder enc_recurrent Whether to use recurrent encoder (share weights) enc_activation Activation of the encoder layer enc_pre_norm Whether to add layer_norm before self-attention in the encoder enc_use_qkv_bias Wether to use bias for attention layer in the encoder dec_units Units of the decoder dec_hidden_size Hidden size of the decoder dec_num_heads Number of heads of the decoder dec_num_layers Number of layers of the decoder dec_recurrent Whether to use recurrent decoder (share weights) dec_activation Activation of the decoder layer dec_pre_norm Whether to add layer_norm before self-attention in the decoder dec_use_qkv_bias Wether to use bias for attention layer in the decoder embed_initializer Initializer of the embedding layer weight_initializer Initializer of the weight bias_initializer Initializer of the bias dtype Data type of the weights layout The layout of the input + target """ super().__init__() assert src_vocab_size > 0 and tgt_vocab_size > 0,\ 'Cannot set "src_vocab_size" and "tgt_vocab_size" to negative numbers. ' \ 'Are you creating ' \ 'the model with the config from TransformerModel.get_cfg()? If that is ' \ 'the case, you will need to set the cfg.MODEL.src_vocab_size and ' \ 'cfg.MODEL.tgt_vocab_size manually before passing to ' \ 'TransformerModel.from_cfg().' self._dtype = dtype self._src_vocab_size = src_vocab_size self._tgt_vocab_size = tgt_vocab_size self.tie_weights = tie_weights self.pos_embed_type = pos_embed_type self.scaled_embed = scale_embed self.enc_units = enc_units self.dec_units = dec_units self.weight_initializer = weight_initializer self.bias_initializer = bias_initializer self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) if max_src_length is not None and max_src_length < 0: max_src_length = None if max_tgt_length is not None and max_tgt_length < 0: max_tgt_length = None if enc_units != dec_units: assert shared_embed is False, 'Cannot share embedding when the enc_units and dec_units ' \ 'are different! enc_units={},' \ ' dec_units={}'.format(enc_units, dec_units) self.src_embed_layer = nn.Embedding(input_dim=src_vocab_size, output_dim=enc_units, weight_initializer=embed_initializer, dtype=self._dtype) self.tgt_embed_layer = nn.Embedding(input_dim=tgt_vocab_size, output_dim=dec_units, weight_initializer=embed_initializer, dtype=self._dtype) if shared_embed: self.tgt_embed_layer.weight = self.src_embed_layer.weight if pos_embed_type is not None: self.src_pos_embed_layer = PositionalEmbedding(units=enc_units, max_length=max_src_length, dtype=self._dtype, method=pos_embed_type) self.tgt_pos_embed_layer = PositionalEmbedding(units=dec_units, max_length=max_tgt_length, dtype=self._dtype, method=pos_embed_type) self.encoder = TransformerEncoder(num_layers=enc_num_layers, recurrent=enc_recurrent, units=enc_units, hidden_size=enc_hidden_size, num_heads=enc_num_heads, activation_dropout=activation_dropout, use_qkv_bias=enc_use_qkv_bias, dropout=dropout, attention_dropout=attention_dropout, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=enc_activation, data_norm=data_norm, pre_norm=enc_pre_norm, dtype=self._dtype, layout=layout) self.decoder = TransformerDecoder(num_layers=dec_num_layers, recurrent=dec_recurrent, units=dec_units, mem_units=enc_units, hidden_size=dec_hidden_size, num_heads=dec_num_heads, activation_dropout=activation_dropout, use_qkv_bias=dec_use_qkv_bias, dropout=dropout, attention_dropout=attention_dropout, layer_norm_eps=layer_norm_eps, weight_initializer=weight_initializer, bias_initializer=bias_initializer, activation=dec_activation, data_norm=data_norm, pre_norm=dec_pre_norm, dtype=self._dtype, layout=layout) if tie_weights: self.tgt_final_layer = \ nn.Dense(units=tgt_vocab_size, flatten=False, in_units=self.dec_units, bias_initializer=bias_initializer, use_bias=False, dtype=self._dtype) self.tgt_final_layer.weight = self.tgt_embed_layer.weight else: self.tgt_final_layer = \ nn.Dense(tgt_vocab_size, flatten=False, in_units=self.dec_units, weight_initializer=weight_initializer, bias_initializer=bias_initializer, use_bias=False, dtype=self._dtype)
Parameters ---------- src_vocab_size The vocabulary size of the source language tgt_vocab_size The vocabulary size of the target language max_src_length The maximal length of the source sequence. If it's negative, we will use treat it as not set. max_tgt_length The maximal length of the target sequence. If it's negative, we will use treat it as not set. scale_embed Whether to multiply the src and dst embeddings by sqrt(units) pos_embed_type Type of the positional embedding shared_embed Whether to share the embedding of the src and tgt language tie_weights Whether to tie the weights of input + output. activation_dropout The ratio of the activation dropout in FFN dropout The default dropout ratio attention_dropout The ratio of the attention dropout layer_norm_eps The epsilon of the layer normalization data_norm Whether to add layer normalization layer after the input. enc_units Units of the encoder enc_hidden_size Hidden size of the encoder enc_num_heads Number of heads of the encoder enc_num_layers Number of layers of the encoder enc_recurrent Whether to use recurrent encoder (share weights) enc_activation Activation of the encoder layer enc_pre_norm Whether to add layer_norm before self-attention in the encoder enc_use_qkv_bias Wether to use bias for attention layer in the encoder dec_units Units of the decoder dec_hidden_size Hidden size of the decoder dec_num_heads Number of heads of the decoder dec_num_layers Number of layers of the decoder dec_recurrent Whether to use recurrent decoder (share weights) dec_activation Activation of the decoder layer dec_pre_norm Whether to add layer_norm before self-attention in the decoder dec_use_qkv_bias Wether to use bias for attention layer in the decoder embed_initializer Initializer of the embedding layer weight_initializer Initializer of the weight bias_initializer Initializer of the bias dtype Data type of the weights layout The layout of the input + target
__init__
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def encode(self, src_data, src_valid_length): """Encode the source data to memory Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) """ src_data = self.src_embed_layer(src_data) if self.scaled_embed: src_data = src_data * _np.sqrt(self.enc_units) if self.pos_embed_type is not None: if self.layout == 'NT': src_data = src_data + self.src_pos_embed_layer(npx.arange_like(src_data, axis=1)) else: src_data = src_data + np.expand_dims(self.src_pos_embed_layer( npx.arange_like(src_data, axis=0)), axis=1) enc_out = self.encoder(src_data, src_valid_length) return enc_out
Encode the source data to memory Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out)
encode
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def decode_seq(self, tgt_data, tgt_valid_length, mem_data, mem_valid_length): """Decode a sequence of inputs Parameters ---------- tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) mem_valid_length : Shape (batch_size,) Returns ------- dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size) """ tgt_data = self.tgt_embed_layer(tgt_data) if self.scaled_embed: tgt_data = tgt_data * _np.sqrt(self.dec_units) if self.pos_embed_type is not None: if self.layout == 'NT': tgt_data = tgt_data + self.tgt_pos_embed_layer( npx.arange_like(tgt_data, axis=1)) else: tgt_data = tgt_data + np.expand_dims(self.tgt_pos_embed_layer( npx.arange_like(tgt_data, axis=0)), axis=1) dec_out = self.decoder(tgt_data, tgt_valid_length, mem_data, mem_valid_length) return dec_out
Decode a sequence of inputs Parameters ---------- tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, src_length, C_out) - layout = 'TN' Shape (src_length, batch_size, C_out) mem_valid_length : Shape (batch_size,) Returns ------- dec_out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size)
decode_seq
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, src_data, src_valid_length, tgt_data, tgt_valid_length): """ Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size) """ enc_out = self.encode(src_data, src_valid_length) dec_out = self.decode_seq(tgt_data, tgt_valid_length, enc_out, src_valid_length) dec_out = self.tgt_final_layer(dec_out) return dec_out
Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) tgt_data - layout = 'NT' Shape (batch_size, tgt_length) - layout = 'TN' Shape (tgt_length, batch_size) tgt_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, tgt_length, tgt_vocab_size) - layout = 'TN' Shape (tgt_length, batch_size, tgt_vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def state_batch_axis(self) -> Tuple[int, int, int, List]: """Return a data structure that stores the batch axis of the internal states of the inference model. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axis """ if self.model.layout == 'NT': return 0, 0, 0, self.model.decoder.state_batch_axis else: return 1, 0, 0, self.model.decoder.state_batch_axis
Return a data structure that stores the batch axis of the internal states of the inference model. Returns ------- enc_out_batch_axis src_valid_length_batch_axis position_batch_axis dec_layer_batch_axis
state_batch_axis
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def init_states(self, src_data, src_valid_length): # TODO(sxjscience) Revisit here, support auxiliary states? """Initialize the states required for incremental decoding Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_mem) - layout = 'TN' Shape (src_length, batch_size, C_mem) src_valid_length Shape (batch_size,) position Shape (batch_size,) dec_states: list The states of the decoder """ if self.model.layout == 'NT': batch_size = src_data.shape[0] else: batch_size = src_data.shape[1] ctx = src_data.ctx enc_out = self.model.encode(src_data, src_valid_length) position = mx.np.zeros((batch_size,), dtype=np.int32, ctx=ctx) dtype = enc_out.dtype dec_states = self.model.decoder.init_states(batch_size, ctx, dtype) return enc_out, src_valid_length, position, dec_states
Initialize the states required for incremental decoding Parameters ---------- src_data - layout = 'NT' Shape (batch_size, src_length) - layout = 'TN' Shape (src_length, batch_size) src_valid_length Shape (batch_size,) Returns ------- enc_out - layout = 'NT' Shape (batch_size, src_length, C_mem) - layout = 'TN' Shape (src_length, batch_size, C_mem) src_valid_length Shape (batch_size,) position Shape (batch_size,) dec_states: list The states of the decoder
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, step_data, states): """ Parameters ---------- step_data Shape (batch_size,) states It includes : - layout = 'NT' - mem_data : (batch_size, src_length, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list - layout = 'TN' - mem_data : (src_length, batch_size, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list Returns ------- out Shape (batch_size, C) new_states Has the same structure as the states """ mem_data, mem_valid_length, position, dec_states = states # 1. Get the embedding step_data = self.model.tgt_embed_layer(step_data) if self.model.scaled_embed: step_data = step_data * _np.sqrt(self.model.dec_units) if self.model.pos_embed_type is not None: step_data = step_data + self.model.tgt_pos_embed_layer(position) out, new_states =\ self.model.decoder.incremental_decode(step_data, dec_states, mem_data, mem_valid_length) out = self.model.tgt_final_layer(out) return out, (mem_data, mem_valid_length, position + 1, new_states)
Parameters ---------- step_data Shape (batch_size,) states It includes : - layout = 'NT' - mem_data : (batch_size, src_length, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list - layout = 'TN' - mem_data : (src_length, batch_size, C_mem) - mem_valid_length : (batch_size,) - position : (batch_size,) - dec_states : list Returns ------- out Shape (batch_size, C) new_states Has the same structure as the states
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer.py
Apache-2.0
def forward(self, data, mem, rel_positions, mask, query_r_bias, query_k_bias): """ Parameters ---------- data The input data. - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) mem The memory. - layout = 'NT' Shape (batch_size, mem_length, units) - layout = 'TN' Shape (mem_length, batch_size, units) rel_positions The relative positions between data and concat(mem, data). Shape is (query_length, mem_length + query_length). A positive value means that query is after the memory, i.e., query_location - mem_location. mask Mask between the query and the memory + query. 1--> will be used, 0 --> won't be used Shape (batch_size, query_length, mem_length + query_length) query_r_bias The query bias for calculating the relative scores Shape (num_heads, query_head_units) query_k_bias The key bias for calculating the relative scores. Shape (num_heads, query_head_units) Returns ------- out - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) """ if self._layout == 'NT': context = np.concatenate([mem, data], axis=1) elif self._layout == 'TN': context = np.concatenate([mem, data], axis=0) else: raise NotImplementedError if self._pre_norm: query = self.attn_query(self.layer_norm(data)) key_value = self.attn_kv(self.layer_norm(context)) key, value = np.split(key_value, 2, axis=-1) else: query = self.attn_query(data) key_value = self.attn_kv(context) key, value = np.split(key_value, 2, axis=-1) query = npx.reshape(query, (-2, -2, self._num_heads, -1)) key = npx.reshape(key, (-2, -2, self._num_heads, -1)) value = npx.reshape(value, (-2, -2, self._num_heads, -1)) # Compute attention rel_score = self.rel_pos_score_cell(rel_positions, query + query_r_bias) out, _ = self.attn_cell(query + query_k_bias, key, value, mask, rel_score) out = self.dropout_layer(out) if self._pre_norm: out = data + out else: out = self.layer_norm(data + out) out = self.ffn(out) return out
Parameters ---------- data The input data. - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units) mem The memory. - layout = 'NT' Shape (batch_size, mem_length, units) - layout = 'TN' Shape (mem_length, batch_size, units) rel_positions The relative positions between data and concat(mem, data). Shape is (query_length, mem_length + query_length). A positive value means that query is after the memory, i.e., query_location - mem_location. mask Mask between the query and the memory + query. 1--> will be used, 0 --> won't be used Shape (batch_size, query_length, mem_length + query_length) query_r_bias The query bias for calculating the relative scores Shape (num_heads, query_head_units) query_k_bias The key bias for calculating the relative scores. Shape (num_heads, query_head_units) Returns ------- out - layout = 'NT' Shape (batch_size, query_length, units) - layout = 'TN' Shape (query_length, batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def forward(self, data, mem_l, rel_positions, mask): """ Parameters ---------- data - layout = 'NT' Shape (batch_size, query_length) - layout = 'TN' Shape (query_length, batch_size) mem_l Contains a list of memory objects, each one will contain: - layout = 'NT' Shape (batch_size, mem_length, C_i) - layout = 'TN' Shape (mem_length, batch_size, C_i) rel_positions The relative positions. Shape (query_length, mem_length + query_length) mask Mask between the query and the memory + query. Shape (batch_size, query_length, mem_length + query_length) Returns ------- out_l Contains a list of hidden states, each will contain: - layout = 'NT' Shape (batch_size, query_length, C_o) - layout = 'TN' Shape (query_length, batch_size, C_o) """ query_k_bias = self.query_k_bias.data() query_r_bias = self.query_r_bias.data() out_l = [] out = data for i, layer in enumerate(self.decoder_layers): out = layer(out, mem_l[i], rel_positions, mask, query_r_bias, query_k_bias) out_l.append(out) return out_l
Parameters ---------- data - layout = 'NT' Shape (batch_size, query_length) - layout = 'TN' Shape (query_length, batch_size) mem_l Contains a list of memory objects, each one will contain: - layout = 'NT' Shape (batch_size, mem_length, C_i) - layout = 'TN' Shape (mem_length, batch_size, C_i) rel_positions The relative positions. Shape (query_length, mem_length + query_length) mask Mask between the query and the memory + query. Shape (batch_size, query_length, mem_length + query_length) Returns ------- out_l Contains a list of hidden states, each will contain: - layout = 'NT' Shape (batch_size, query_length, C_o) - layout = 'TN' Shape (query_length, batch_size, C_o)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def init_states(self, batch_size, ctx): """Initialize the states Parameters ---------- batch_size ctx ctx of the initialized Returns ------- mems A list of memory states - layout = 'NT' Shape (B, T, C) - layout = 'TN' Shape (T, B, C) """ if self._layout == 'NT': return [mx.np.zeros((batch_size, 0, self._units), ctx=ctx) for _ in range(self._num_layers)] elif self._layout == 'TN': return [mx.np.zeros((0, batch_size, self._units), ctx=ctx) for _ in range(self._num_layers)] else: raise NotImplementedError
Initialize the states Parameters ---------- batch_size ctx ctx of the initialized Returns ------- mems A list of memory states - layout = 'NT' Shape (B, T, C) - layout = 'TN' Shape (T, B, C)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def set_mem_length(self, mem_length: int): """ Parameters ---------- mem_length The memory length of the model """ self._cfg.defrost() self._cfg.MODEL.mem_length = mem_length self._cfg.freeze()
Parameters ---------- mem_length The memory length of the model
set_mem_length
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def forward(self, data, target, mem_l, rel_positions=None, data_mem_mask=None, causal_only=False, detach_memory=True): """ Parameters ---------- data The input data - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) target The ground truth - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) mem_l A list of memory objects - layout = 'NT' Shape (B, T_mem, units) - layout = 'TN' Shape (T_mem, B, units) rel_positions Shape (query_length, mem_length + query_length) By default, we will use the following relative positions .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'in': 5, 4, 3, 2, 1, 0, -1, -2 'Gluon@@': 6, 5, 4, 3, 2, 1, 0, -1 'NLP': 7, 6, 5, 4, 3, 2, 1, 0 data_mem_mask Shape (B, query_length, mem_length + query_length) Here, 1 --> will be used, 0 --> won't be used. By default, we will mask all locations that have distance > mem_length with the current token. Following is an example in which query_length = 3, mem_length = 4 .. code-block:: none |------- <mem> ----------|--------- <query> ------------| <query> ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 0, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 0, 0, 1, 1, 1, 1, 1, 0 'NLP': 0, 0, 0, 1, 1, 1, 1, 1 Also, we provide the option in which we only mask the future tokens, this is supported by setting `causal_only` to True. However, there will be a discrepancy between training and inference because the effecitve memory length is longer for the later tokens in the query. .. code-block:: none |------- <mem> ----------|--------- <query> ------------| <query> ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 causal_only Whether to ignore the local masking constraint. See the flag above for more information. detach_memory Whether to detach the encoded memory from the graph. Returns ------- logits The selected logits - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) new_mem_l A list of the updated memory - layout = 'NT' Each will have shape (B, T, C) - layout = 'TN' Each will have shape (T, B, C) """ # Note that curr_mem_length will not necessarily be equal to mem_length if self._layout == 'NT': time_axis = 1 batch_axis = 0 elif self._layout == 'TN': time_axis = 0 batch_axis = 1 else: raise NotImplementedError query_length = data.shape[time_axis] curr_mem_length = mem_l[0].shape[time_axis] batch_size = mem_l[0].shape[batch_axis] ctx = data.ctx local_attn_mask = mx.np.ones((batch_size, query_length, curr_mem_length + query_length), dtype=np.int32, ctx=ctx) if not causal_only: # Generate the mask, we mask out the input outside the local self.mem_length window local_attn_mask = mx.np.triu(mx.np.tril(local_attn_mask, curr_mem_length), curr_mem_length - self.mem_length) else: local_attn_mask = mx.np.tril(local_attn_mask, curr_mem_length) if data_mem_mask is None: data_mem_mask = local_attn_mask else: data_mem_mask = data_mem_mask * local_attn_mask if rel_positions is None: query_ids = mx.np.arange(curr_mem_length, curr_mem_length + query_length, dtype=np.int32, ctx=ctx) mem_ids = mx.np.arange(0, curr_mem_length + query_length, dtype=np.int32, ctx=ctx) rel_positions = mx.np.expand_dims(query_ids, axis=1)\ - mx.np.expand_dims(mem_ids, axis=0) # Get word embeddings word_embeddings = self.word_emb(data) word_embeddings = self.dropout_layer(word_embeddings) out_l = self.decoder(word_embeddings, mem_l, rel_positions, data_mem_mask) # Get the output logits logits = self.crit(out_l[-1], target) # Get the new memory new_mem_l = [] for step_out, mem in zip([word_embeddings] + out_l, mem_l): new_mem = mx.np.concatenate([mem, step_out], axis=time_axis) if self._layout == 'NT': new_mem = new_mem[:, -self.mem_length:] elif self._layout == 'TN': new_mem = new_mem[-self.mem_length:, :] else: raise NotImplementedError if detach_memory: new_mem_l.append(new_mem.detach()) else: new_mem_l.append(new_mem) return logits, new_mem_l
Parameters ---------- data The input data - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) target The ground truth - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) mem_l A list of memory objects - layout = 'NT' Shape (B, T_mem, units) - layout = 'TN' Shape (T_mem, B, units) rel_positions Shape (query_length, mem_length + query_length) By default, we will use the following relative positions .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'in': 5, 4, 3, 2, 1, 0, -1, -2 'Gluon@@': 6, 5, 4, 3, 2, 1, 0, -1 'NLP': 7, 6, 5, 4, 3, 2, 1, 0 data_mem_mask Shape (B, query_length, mem_length + query_length) Here, 1 --> will be used, 0 --> won't be used. By default, we will mask all locations that have distance > mem_length with the current token. Following is an example in which query_length = 3, mem_length = 4 .. code-block:: none |------- <mem> ----------|--------- <query> ------------| <query> ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 0, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 0, 0, 1, 1, 1, 1, 1, 0 'NLP': 0, 0, 0, 1, 1, 1, 1, 1 Also, we provide the option in which we only mask the future tokens, this is supported by setting `causal_only` to True. However, there will be a discrepancy between training and inference because the effecitve memory length is longer for the later tokens in the query. .. code-block:: none |------- <mem> ----------|--------- <query> ------------| <query> ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 causal_only Whether to ignore the local masking constraint. See the flag above for more information. detach_memory Whether to detach the encoded memory from the graph. Returns ------- logits The selected logits - layout = 'NT' Shape (B, T) - layout = 'TN' Shape (T, B) new_mem_l A list of the updated memory - layout = 'NT' Each will have shape (B, T, C) - layout = 'TN' Each will have shape (T, B, C)
forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def step_forward(self, step_data, mem_l): """Forward for just one step Parameters ---------- step_data Shape (B,) mem_l A list of memory objects - layout = 'NT' Shape (B, T_mem, units) - layout = 'TN' Shape (T_mem, B, units) Returns ------- logits Shape (B, V) new_mem_l A list of memory objects - layout = 'NT' Shape (B, min(T_mem + 1, memory_length), C) - layout = 'TN' Shape (min(T_mem + 1, memory_length), B, C) """ batch_size = step_data.shape[0] if self._layout == 'NT': curr_mem_length = mem_l[0].shape[1] elif self._layout == 'TN': curr_mem_length = mem_l[0].shape[0] else: raise NotImplementedError ctx = step_data.ctx mask = mx.np.ones((batch_size, 1, curr_mem_length + 1), dtype=np.int32, ctx=ctx) rel_positions = mx.np.expand_dims(mx.np.arange(curr_mem_length, -1, -1, dtype=np.int32, ctx=ctx), axis=0) # Word embedding shape = (B, C) word_embeddings = self.dropout_layer(self.word_emb(step_data)) if self._layout == 'NT': word_embeddings = mx.np.expand_dims(word_embeddings, axis=1) elif self._layout == 'TN': word_embeddings = mx.np.expand_dims(word_embeddings, axis=0) else: raise NotImplementedError out_l = self.decoder(word_embeddings, mem_l, rel_positions, mask) # Get logits if self._layout == 'NT': final_out = out_l[-1][:, 0] elif self._layout == 'TN': final_out = out_l[-1][0, :] else: raise NotImplementedError logits = self.crit.get_logits(final_out) # Update memory new_mem_l = [] for step_out, mem in zip([word_embeddings] + out_l, mem_l): if self._layout == 'NT': new_mem = mx.np.concatenate([mem, step_out], axis=1) new_mem = new_mem[:, -self.mem_length:] elif self._layout == 'TN': new_mem = mx.np.concatenate([mem, step_out], axis=0) new_mem = new_mem[-self.mem_length:, :] else: raise NotImplementedError new_mem_l.append(new_mem) return logits, new_mem_l
Forward for just one step Parameters ---------- step_data Shape (B,) mem_l A list of memory objects - layout = 'NT' Shape (B, T_mem, units) - layout = 'TN' Shape (T_mem, B, units) Returns ------- logits Shape (B, V) new_mem_l A list of memory objects - layout = 'NT' Shape (B, min(T_mem + 1, memory_length), C) - layout = 'TN' Shape (min(T_mem + 1, memory_length), B, C)
step_forward
python
dmlc/gluon-nlp
src/gluonnlp/models/transformer_xl.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/transformer_xl.py
Apache-2.0
def get_pretrained_xlmr(model_name: str = 'fairseq_xlmr_base', root: str = get_model_zoo_home_dir(), load_backbone: bool = True, load_mlm: bool = False) \ -> Tuple[CN, SentencepieceTokenizer, str, str]: """Get the pretrained XLM-R weights Parameters ---------- model_name The name of the xlmr model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The SentencepieceTokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM """ assert model_name in PRETRAINED_URL, '{} is not found. All available are {}'.format( model_name, list_pretrained_xlmr()) cfg_path = PRETRAINED_URL[model_name]['cfg'] if isinstance(cfg_path, CN): cfg = cfg_path else: cfg = None sp_model_path = PRETRAINED_URL[model_name]['sentencepiece.model'] params_path = PRETRAINED_URL[model_name]['params'] mlm_params_path = PRETRAINED_URL[model_name]['mlm_params'] local_paths = dict() download_jobs = [('sentencepiece.model', sp_model_path)] if cfg is None: download_jobs.append(('cfg', cfg_path)) for k, path in download_jobs: local_paths[k] = download(url=get_repo_model_zoo_url() + path, path=os.path.join(root, path), sha1_hash=FILE_STATS[path]) if load_backbone: local_params_path = download(url=get_repo_model_zoo_url() + params_path, path=os.path.join(root, params_path), sha1_hash=FILE_STATS[params_path]) else: local_params_path = None if load_mlm and mlm_params_path is not None: local_mlm_params_path = download(url=get_repo_model_zoo_url() + mlm_params_path, path=os.path.join(root, mlm_params_path), sha1_hash=FILE_STATS[mlm_params_path]) else: local_mlm_params_path = None do_lower = True if 'lowercase' in PRETRAINED_URL[model_name]\ and PRETRAINED_URL[model_name]['lowercase'] else False tokenizer = SentencepieceTokenizer( model_path=local_paths['sentencepiece.model'], lowercase=do_lower) if cfg is None: cfg = XLMRModel.get_cfg().clone_merge(local_paths['cfg']) return cfg, tokenizer, local_params_path, local_mlm_params_path
Get the pretrained XLM-R weights Parameters ---------- model_name The name of the xlmr model. root The downloading root load_backbone Whether to load the weights of the backbone network load_mlm Whether to load the weights of MLM Returns ------- cfg Network configuration tokenizer The SentencepieceTokenizer params_path Path to the parameters mlm_params_path Path to the parameter that includes both the backbone and the MLM
get_pretrained_xlmr
python
dmlc/gluon-nlp
src/gluonnlp/models/xlmr.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/models/xlmr.py
Apache-2.0
def gen_self_attn_mask(data, valid_length=None, attn_type: str = 'full', layout: str = 'NT'): """Generate the mask used for the encoder, i.e, self-attention. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data with two samples: data = [['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP' ], ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>']] valid_length = [8, 6] - attn_type = 'causal' Each token will attend to itself + the tokens before. It will not attend to tokens in the future. For our example, the mask of the first sample is ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 0, 0, 0, 0, 0, 0, 0 'the': 1, 1, 0, 0, 0, 0, 0, 0 'force': 1, 1, 1, 0, 0, 0, 0, 0 'be': 1, 1, 1, 1, 0, 0, 0, 0 'with': 1, 1, 1, 1, 1, 0, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 - attn_type = 'full' Each token will attend to both the tokens before and in the future For our example, the mask of the first sample is ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1, 1, 1, 1, 1 'can': 1, 1, 1, 1, 1, 1, 1, 1 'now': 1, 1, 1, 1, 1, 1, 1, 1 'use': 1, 1, 1, 1, 1, 1, 1, 1 'numpy': 1, 1, 1, 1, 1, 1, 1, 1 'in': 1, 1, 1, 1, 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 1 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 1, 1, 1, 1, 1, 0, 0 'the': 1, 1, 1, 1, 1, 1, 0, 0 'force': 1, 1, 1, 1, 1, 1, 0, 0 'be': 1, 1, 1, 1, 1, 1, 0, 0 'with': 1, 1, 1, 1, 1, 1, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 Parameters ---------- data The data. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) attn_type Can be 'full' or 'causal' layout The layout of the data Returns ------- mask Shape (batch_size, seq_length, seq_length) """ device = data.device if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) if attn_type == 'full': if valid_length is not None: steps = th.arange(data.shape[time_axis], device=device) # (seq_length,) mask1 = (steps.view((1, 1, -1)) < valid_length.view((valid_length.shape[0], 1, 1))) mask2 = (steps.view((1, -1, 1)) < valid_length.view((valid_length.shape[0], 1, 1))) mask = mask1 * mask2 else: seq_len_ones = th.ones((data.shape[time_axis],), device=device) # (seq_length,) batch_ones = th.ones((data.shape[batch_axis],), device=device) # (batch_size,) mask = batch_ones.view((-1, 1, 1)) * seq_len_ones.view((1, -1, 1))\ * seq_len_ones.view((1, 1, -1)) elif attn_type == 'causal': steps = th.arange(data.shape[time_axis], device=device) # mask: (seq_length, seq_length) # batch_mask: (batch_size, seq_length) mask = th.unsqueeze(steps, dim=0) <= th.unsqueeze(steps, dim=1) if valid_length is not None: batch_mask = th.unsqueeze(steps, dim=0) < th.unsqueeze(valid_length, dim=-1) mask = mask * th.unsqueeze(batch_mask, dim=-1) else: batch_ones = th.ones(data.shape[batch_axis], device=device) mask = mask * batch_ones.view((-1, 1, 1)) else: raise NotImplementedError return mask.type(th.bool)
Generate the mask used for the encoder, i.e, self-attention. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data with two samples: data = [['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP' ], ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>']] valid_length = [8, 6] - attn_type = 'causal' Each token will attend to itself + the tokens before. It will not attend to tokens in the future. For our example, the mask of the first sample is ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 0, 0, 0, 0, 0, 0, 0 'the': 1, 1, 0, 0, 0, 0, 0, 0 'force': 1, 1, 1, 0, 0, 0, 0, 0 'be': 1, 1, 1, 1, 0, 0, 0, 0 'with': 1, 1, 1, 1, 1, 0, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 - attn_type = 'full' Each token will attend to both the tokens before and in the future For our example, the mask of the first sample is ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1, 1, 1, 1, 1 'can': 1, 1, 1, 1, 1, 1, 1, 1 'now': 1, 1, 1, 1, 1, 1, 1, 1 'use': 1, 1, 1, 1, 1, 1, 1, 1 'numpy': 1, 1, 1, 1, 1, 1, 1, 1 'in': 1, 1, 1, 1, 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 1 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 1, 1, 1, 1, 1, 0, 0 'the': 1, 1, 1, 1, 1, 1, 0, 0 'force': 1, 1, 1, 1, 1, 1, 0, 0 'be': 1, 1, 1, 1, 1, 1, 0, 0 'with': 1, 1, 1, 1, 1, 1, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 Parameters ---------- data The data. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) attn_type Can be 'full' or 'causal' layout The layout of the data Returns ------- mask Shape (batch_size, seq_length, seq_length)
gen_self_attn_mask
python
dmlc/gluon-nlp
src/gluonnlp/torch/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/attention_cell.py
Apache-2.0
def gen_mem_attn_mask(mem, mem_valid_length, data, data_valid_length=None, layout: str = 'NT'): """Generate the mask used for the decoder. All query slots are attended to the memory slots. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data + mem with a batch of two samples: mem = [['I', 'can', 'now', 'use'], ['May', 'the', 'force', '<PAD>']] mem_valid_length = [4, 3] data = [['numpy', 'in', 'Gluon@@', 'NLP' ], ['be', 'with', 'you', '<PAD>']] data_valid_length = [4, 3] For our example, the mask of the first sample is ['I', 'can', 'now', 'use'] 'numpy': 1, 1, 1, 1 'in': 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1 'NLP': 1, 1, 1, 1 The mask of the second sample is ['be', 'with', 'you', '<PAD>'] 'May': 1, 1, 1, 0 'the': 1, 1, 1, 0 'force': 1, 1, 1, 0 '<PAD>': 0, 0, 0, 0 Parameters ---------- mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length : Shape (batch_size,) data - layout = 'NT' Shape (batch_size, query_length, C_data) - layout = 'TN' Shape (query_length, batch_size, C_data) data_valid_length : Shape (batch_size,) layout Layout of the data + mem tensor Returns ------- mask Shape (batch_size, query_length, mem_length) """ device = mem.device if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) batch_size = mem.shape[batch_axis] mem_length = mem.shape[time_axis] query_length = data[time_axis] mem_steps = th.arange(mem_length, device=device) # (mem_length,) data_steps = th.arange(data.shape[time_axis], device=device) # (query_length,) # mem_mask will have shape (B, 1, mem_length) mem_mask = mem_steps.view((1, 1, mem_length)) < mem_valid_length.view((batch_size, 1, 1)) if data_valid_length is not None: # (B, query_length, 1) data_mask = (data_steps.view((1, -1, 1)) < data_valid_length.view((batch_size, 1, 1))) mask = mem_mask * data_mask else: mask = mem_mask.expand(batch_size, query_length, -1) return mask.type(th.bool)
Generate the mask used for the decoder. All query slots are attended to the memory slots. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data + mem with a batch of two samples: mem = [['I', 'can', 'now', 'use'], ['May', 'the', 'force', '<PAD>']] mem_valid_length = [4, 3] data = [['numpy', 'in', 'Gluon@@', 'NLP' ], ['be', 'with', 'you', '<PAD>']] data_valid_length = [4, 3] For our example, the mask of the first sample is ['I', 'can', 'now', 'use'] 'numpy': 1, 1, 1, 1 'in': 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1 'NLP': 1, 1, 1, 1 The mask of the second sample is ['be', 'with', 'you', '<PAD>'] 'May': 1, 1, 1, 0 'the': 1, 1, 1, 0 'force': 1, 1, 1, 0 '<PAD>': 0, 0, 0, 0 Parameters ---------- mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length : Shape (batch_size,) data - layout = 'NT' Shape (batch_size, query_length, C_data) - layout = 'TN' Shape (query_length, batch_size, C_data) data_valid_length : Shape (batch_size,) layout Layout of the data + mem tensor Returns ------- mask Shape (batch_size, query_length, mem_length)
gen_mem_attn_mask
python
dmlc/gluon-nlp
src/gluonnlp/torch/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/attention_cell.py
Apache-2.0
def masked_softmax(att_score, mask, axis: int = -1): """Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) 1 --> The element is not masked 0 --> The element is masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- att_weights : Symborl or NDArray Shape (..., length, ...) """ if mask is not None: # Fill in the masked scores with a very small value if att_score.dtype == th.float16: att_score = att_score.masked_fill(th.logical_not(mask), -1E4) else: att_score = att_score.masked_fill(th.logical_not(mask), -1E18) att_weights = th.softmax(att_score, dim=axis) * mask else: att_weights = th.softmax(att_score, dim=axis) return att_weights
Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) 1 --> The element is not masked 0 --> The element is masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- att_weights : Symborl or NDArray Shape (..., length, ...)
masked_softmax
python
dmlc/gluon-nlp
src/gluonnlp/torch/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/attention_cell.py
Apache-2.0
def masked_logsoftmax(att_score, mask, axis: int = -1): """Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) mask = 1 --> not masked mask = 0 --> masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- logits : Symborl or NDArray Shape (..., length, ...) The masked values will be all zero """ if mask is not None: # Fill in the masked scores with a very small value inv_mask = th.logical_not(mask) if att_score.dtype == th.float16: att_score = att_score.masked_fill(inv_mask, -1E4) else: att_score = att_score.masked_fill(inv_mask, -1E18) logits = th.log_softmax(att_score, dim=axis) logits.masked_fill(inv_mask, float('-inf')) else: logits = th.log_softmax(att_score, dim=axis) return logits
Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) mask = 1 --> not masked mask = 0 --> masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- logits : Symborl or NDArray Shape (..., length, ...) The masked values will be all zero
masked_logsoftmax
python
dmlc/gluon-nlp
src/gluonnlp/torch/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/attention_cell.py
Apache-2.0
def multi_head_dot_attn(query, key, value, mask=None, edge_scores=None, dropout: float = 0.0, scaled: bool = True, normalized: bool = False, eps: float = 1E-6, layout: str = 'NKT', use_einsum: bool = None, *, training: bool = True): """Multihead dot product attention between the query, key, value. scaled is False, normalized is False: D(h_q, h_k) = <h_q, h_k> scaled is True, normalized is False: D(h_q, h_k) = <h_q, h_k> / sqrt(dim_q) scaled is False, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> scaled is True, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> / sqrt(dim_q) If edge_scores is provided, we will calcualte the attention as scores = D(h_q, h_k) + EdgeScore_{q, k} Parameters ---------- query Query. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, query_length, key_dim) - layout is 'NTK' Shape (batch_size, query_length, num_heads, key_dim) - layout is 'TNK' Shape (query_length, batch_size, num_heads, key_dim) key Key. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, key_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, key_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, key_dim) value Value. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, value_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, value_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, value_dim) mask Mask between query and memory. Shape (batch_size, query_length, mem_length) edge_scores The edge attention score. Shape can be any shape that is broadcastable to (batch_size, num_heads, query_length, mem_length) dropout Dropout rate scaled Whether to divide the attention weights by the sqrt of the query dimension. This is first proposed in "[NIPS2017] Attention is all you need.":: score = <h_q, h_k> / sqrt(dim_q) normalized If turned on, the cosine distance is used, i.e:: score = <h_q / ||h_q||, h_k / ||h_k||> eps The epsilon value used in L2 normalization layout This stands for the layout of the attention cell. The shape of the input/output will depend on the layout. Currently, we support 'NKT', 'NTK' and 'TNK' in which 'N' means the batch_size, 'K' means the head, and 'T' means the length dimension. use_einsum Whether to use einsum for the computation Returns ------- context_vec - layout is 'NKT' or 'NTK' Shape (batch_size, query_length, num_heads * value_units) - layout is 'TNK' Shape (query_length, batch_size, num_heads * value_units) additional_info scores: Shape (batch_size, num_head, query_length, mem_length) attn_weight: Shape (batch_size, num_head, query_length, mem_length) """ if use_einsum is None: use_einsum = use_einsum_optimization() # TODO(sxjscience) Profile layout if normalized: query = F.normalize(query, p=2, dim=-1, eps=eps) key = F.normalize(key, p=2, dim=-1, eps=eps) if scaled: scale = math.sqrt(query.shape[-1]) else: scale = None if layout == 'NKT': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = th.unsqueeze(mask, dim=1) # 2. Calculate the attention weights # Score: (B, N, L_query, C_Q) X (B, N, L_mem, C_Q) --> (B, N, L_query, L_mem) scores = th.matmul(query, th.transpose(key, -2, -1)) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores / scale if scale is not None else scores, mask, axis=-1) attn_weights = th.nn.functional.dropout(attn_weights, p=dropout, training=training) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, N, L_mem, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = th.einsum('bnij,bnjc->binc', attn_weights, value) else: context_vec = th.transpose(th.matmul(attn_weights, value), 1, 2) context_vec = th.reshape(context_vec, (context_vec.shape[0], context_vec.shape[1], -1)) elif layout == 'NTK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = th.unsqueeze(mask, dim=1) # 2. Calculate the attention weights # Score: (B, L_query, N, C_Q) X (B, L_mem, N, C_Q) --> (B, N, L_query, L_mem) if use_einsum: scores = th.einsum('binc,bjnc->bnij', query, key) else: scores = th.matmul(th.transpose(query, 1, 2), key.permute(0, 2, 3, 1)) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores / scale if scale is not None else scores, mask) attn_weights = th.nn.functional.dropout(attn_weights, p=dropout, training=training) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, L_mem, N, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = th.einsum('bnij,bjnc->binc', attn_weights, value) else: context_vec = th.matmul(attn_weights, th.transpose(value, 1, 2)).permute(0, 2, 1, 3) context_vec = th.reshape(context_vec, (context_vec.shape[0], context_vec.shape[1], -1)) elif layout == 'TNK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = th.unsqueeze(mask, dim=1) # 2. Calculate the attention weights # Score: (L_query, B, N, C_Q) X (L_mem, B, N, C_Q) --> (B, N, L_query, L_mem) # This layout structure can be implemented very efficiently because B, N are consecutive # to each other. To have a clear picture of what's happening, we may consider the # (i, j)th element of the output # out[i, j, :, :] = query[:, i, j, :] X key[:, i, j, :].T, which is just one GEMM call # We can thus implement the whole kernel via a single call of batched GEMM with stride. if use_einsum: scores = th.einsum('ibnc,jbnc->bnij', query, key) else: scores = th.matmul(query.permute(1, 2, 0, 3), key.permute(1, 2, 3, 0)) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores / scale if scale is not None else scores, mask) attn_weights = th.nn.functional.dropout(attn_weights, p=dropout, training=training) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (L_mem, B, N, C_V) --> (L_query, B, N * C_V) # Again, we can implement it via a single call to batched GEMM with stride. # Shape (B, N, L_query, C_V) if use_einsum: context_vec = th.einsum('bnij,jbnc->ibnc', attn_weights, value) else: context_vec = th.matmul(attn_weights, value.permute(1, 2, 0, 3)).permute(2, 0, 1, 3) context_vec = th.reshape(context_vec, (context_vec.shape[0], context_vec.shape[1], -1)) else: raise NotImplementedError('layout="{}" is not supported! ' 'We only support layout = "NKT", "NTK", and "TNK".' .format(layout)) return context_vec, [scores, attn_weights]
Multihead dot product attention between the query, key, value. scaled is False, normalized is False: D(h_q, h_k) = <h_q, h_k> scaled is True, normalized is False: D(h_q, h_k) = <h_q, h_k> / sqrt(dim_q) scaled is False, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> scaled is True, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> / sqrt(dim_q) If edge_scores is provided, we will calcualte the attention as scores = D(h_q, h_k) + EdgeScore_{q, k} Parameters ---------- query Query. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, query_length, key_dim) - layout is 'NTK' Shape (batch_size, query_length, num_heads, key_dim) - layout is 'TNK' Shape (query_length, batch_size, num_heads, key_dim) key Key. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, key_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, key_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, key_dim) value Value. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, value_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, value_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, value_dim) mask Mask between query and memory. Shape (batch_size, query_length, mem_length) edge_scores The edge attention score. Shape can be any shape that is broadcastable to (batch_size, num_heads, query_length, mem_length) dropout Dropout rate scaled Whether to divide the attention weights by the sqrt of the query dimension. This is first proposed in "[NIPS2017] Attention is all you need.":: score = <h_q, h_k> / sqrt(dim_q) normalized If turned on, the cosine distance is used, i.e:: score = <h_q / ||h_q||, h_k / ||h_k||> eps The epsilon value used in L2 normalization layout This stands for the layout of the attention cell. The shape of the input/output will depend on the layout. Currently, we support 'NKT', 'NTK' and 'TNK' in which 'N' means the batch_size, 'K' means the head, and 'T' means the length dimension. use_einsum Whether to use einsum for the computation Returns ------- context_vec - layout is 'NKT' or 'NTK' Shape (batch_size, query_length, num_heads * value_units) - layout is 'TNK' Shape (query_length, batch_size, num_heads * value_units) additional_info scores: Shape (batch_size, num_head, query_length, mem_length) attn_weight: Shape (batch_size, num_head, query_length, mem_length)
multi_head_dot_attn
python
dmlc/gluon-nlp
src/gluonnlp/torch/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/attention_cell.py
Apache-2.0
def relative_position_bucket(relative_position, bidirectional: bool = True, num_buckets: int = 32, max_distance: int = 128): """Map the relative position to buckets. The major difference between our implementation and that in [mesh_tensorflow](https://github.com/tensorflow/mesh/blob/c59988047e49b4d2af05603e3170724cdbadc467/mesh_tensorflow/transformer/transformer_layers.py#L595-L637) is that we use 'query_i - mem_j' as the (i, j)-th location in relative_position. Thus, a positive value means that the query slot is in a later timestamp than the memory slot. However, in mesh transformer, it is treated as `mem_i - query_j` (reversed). The implementation uses the first half of the bucket (num_buckets // 2) to store the exact increments in positions and the second half of the bucket (num_buckets - num_buckets // 2) to store the bucketing values in the logarithm order. Parameters ---------- relative_position Shape (...,) bidirectional Whether we are dealing with bidirectional attention. If it's bidirectional, we will use the first half to map the positions of the positive shifts and the second half to map the positions of the negative shifts. num_buckets The number of buckets. max_distance Maximum distance. Positions that fall outside of 'max_distance' will be trimmed. Returns ------- buckets Shape (...,). It has the same shape as the `relative_position`. It will have int32 type. """ ret = 0 if bidirectional: assert num_buckets % 2 == 0, 'When bidirectional is True, the number of buckets must be ' \ 'divisible by 2.' num_buckets //= 2 ret = ret + (relative_position < 0).astype(th.int32) * num_buckets relative_position = th.abs(relative_position) else: # Clip all the negative values to 0 relative_position = th.clip(relative_position, min=0, max=None) # Now, the relative_position is in the range [0, inf) # Half of the buckets deal with the exact increments, # i.e., 0, 1, 2, ..., max_exact - 1, where max_exact = num_buckets // 2 max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to # max_distance val_if_large = max_exact + (th.log(relative_position.type(th.float32) / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).astype(th.int32) val_if_large = th.minimum(val_if_large, th.tensor(num_buckets - 1)) ret = ret + th.where(is_small, relative_position, val_if_large) return ret
Map the relative position to buckets. The major difference between our implementation and that in [mesh_tensorflow](https://github.com/tensorflow/mesh/blob/c59988047e49b4d2af05603e3170724cdbadc467/mesh_tensorflow/transformer/transformer_layers.py#L595-L637) is that we use 'query_i - mem_j' as the (i, j)-th location in relative_position. Thus, a positive value means that the query slot is in a later timestamp than the memory slot. However, in mesh transformer, it is treated as `mem_i - query_j` (reversed). The implementation uses the first half of the bucket (num_buckets // 2) to store the exact increments in positions and the second half of the bucket (num_buckets - num_buckets // 2) to store the bucketing values in the logarithm order. Parameters ---------- relative_position Shape (...,) bidirectional Whether we are dealing with bidirectional attention. If it's bidirectional, we will use the first half to map the positions of the positive shifts and the second half to map the positions of the negative shifts. num_buckets The number of buckets. max_distance Maximum distance. Positions that fall outside of 'max_distance' will be trimmed. Returns ------- buckets Shape (...,). It has the same shape as the `relative_position`. It will have int32 type.
relative_position_bucket
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def get_activation(act, inplace=False): """ Parameters ---------- act Name of the activation inplace Whether to perform inplace activation Returns ------- activation_layer The activation """ if act is None: return lambda x: x if isinstance(act, str): if act == 'leaky': # TODO(sxjscience) Add regex matching here to parse `leaky(0.1)` return nn.LeakyReLU(0.1, inplace=inplace) elif act == 'identity': return nn.Identity() elif act == 'elu': return nn.ELU(inplace=inplace) elif act == 'gelu': return nn.GELU() elif act == 'gelu(tanh)': return GELU_TANH() elif act == 'relu': return nn.ReLU() elif act == 'sigmoid': return nn.Sigmoid() elif act == 'tanh': return nn.Tanh() elif act == 'softrelu' or act == 'softplus': return nn.Softplus() elif act == 'softsign': return nn.Softsign() else: raise NotImplementedError('act="{}" is not supported. ' 'Try to include it if you can find that in ' 'https://pytorch.org/docs/stable/nn.html'.format(act)) else: return act
Parameters ---------- act Name of the activation inplace Whether to perform inplace activation Returns ------- activation_layer The activation
get_activation
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def get_norm_layer(normalization: str = 'layer_norm', axis: int = -1, epsilon: float = 1e-5, in_channels: int = 0, **kwargs): """Get the normalization layer based on the provided type Parameters ---------- normalization The type of the layer normalization from ['layer_norm'] axis The axis to normalize the epsilon The epsilon of the normalization layer in_channels Input channel Returns ------- norm_layer The layer normalization layer """ if isinstance(normalization, str): if normalization == 'layer_norm': assert in_channels > 0 assert axis == -1 norm_layer = nn.LayerNorm(normalized_shape=in_channels, eps=epsilon, **kwargs) else: raise NotImplementedError('normalization={} is not supported'.format(normalization)) return norm_layer else: raise NotImplementedError('The type of normalization must be str')
Get the normalization layer based on the provided type Parameters ---------- normalization The type of the layer normalization from ['layer_norm'] axis The axis to normalize the epsilon The epsilon of the normalization layer in_channels Input channel Returns ------- norm_layer The layer normalization layer
get_norm_layer
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def __init__(self, units: int = 512, hidden_size: int = 2048, activation_dropout: float = 0.0, dropout: float = 0.1, gated_proj: bool = False, activation='relu', normalization: str = 'layer_norm', layer_norm_eps: float = 1E-5, pre_norm: bool = False): """ Parameters ---------- units hidden_size activation_dropout dropout activation normalization layer_norm or no_norm layer_norm_eps pre_norm Pre-layer normalization as proposed in the paper: "[ACL2018] The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation" This will stabilize the training of Transformers. You may also refer to "[Arxiv2020] Understanding the Difficulty of Training Transformers" """ super().__init__() self._pre_norm = pre_norm self._gated_proj = gated_proj self._kwargs = OrderedDict([ ('units', units), ('hidden_size', hidden_size), ('activation_dropout', activation_dropout), ('activation', activation), ('dropout', dropout), ('normalization', normalization), ('layer_norm_eps', layer_norm_eps), ('gated_proj', gated_proj), ('pre_norm', pre_norm), ]) self.dropout_layer = nn.Dropout(dropout) self.activation_dropout_layer = nn.Dropout(activation_dropout) self.ffn_1 = nn.Linear(in_features=units, out_features=hidden_size, bias=True) if self._gated_proj: self.ffn_1_gate = nn.Linear(in_features=units, out_features=hidden_size, bias=True) self.activation = get_activation(activation) self.ffn_2 = nn.Linear(in_features=hidden_size, out_features=units, bias=True) self.layer_norm = get_norm_layer(normalization=normalization, in_channels=units, epsilon=layer_norm_eps) self.init_weights()
Parameters ---------- units hidden_size activation_dropout dropout activation normalization layer_norm or no_norm layer_norm_eps pre_norm Pre-layer normalization as proposed in the paper: "[ACL2018] The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation" This will stabilize the training of Transformers. You may also refer to "[Arxiv2020] Understanding the Difficulty of Training Transformers"
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def forward(self, data): """ Parameters ---------- data : Shape (B, seq_length, C_in) Returns ------- out : Shape (B, seq_length, C_out) """ residual = data if self._pre_norm: data = self.layer_norm(data) if self._gated_proj: out = self.activation(self.ffn_1_gate(data)) * self.ffn_1(data) else: out = self.activation(self.ffn_1(data)) out = self.activation_dropout_layer(out) out = self.ffn_2(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.layer_norm(out) return out
Parameters ---------- data : Shape (B, seq_length, C_in) Returns ------- out : Shape (B, seq_length, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def __init__(self, units: int, learnable=False): """Use a geometric sequence of timescales. It is calculated as [sin(wi x), cos(wi x), sin(wi x), cos(wi x), ...] By default, we initialize wi to be (1 / 10000) ^ (1 / (units//2 - 1)) Parameters ---------- units The number of units for positional embedding learnable Whether to make the Sinusoidal positional embedding learnable. If it is turned on, we will also update the frequency of this layer. See "[ICLR2021] On Position Embeddings in BERT" for more detail. """ super().__init__() def _init_sinusoidal_base(units): half_units = units // 2 val = np.log(10000) / (half_units - 1) val = np.exp(np.arange(half_units, dtype=np.float32) * -val) return val default_sinusoidal_base = _init_sinusoidal_base(units) self.freq = nn.Parameter(data=th.tensor(default_sinusoidal_base), requires_grad=learnable) self._units = units self._learnable = learnable
Use a geometric sequence of timescales. It is calculated as [sin(wi x), cos(wi x), sin(wi x), cos(wi x), ...] By default, we initialize wi to be (1 / 10000) ^ (1 / (units//2 - 1)) Parameters ---------- units The number of units for positional embedding learnable Whether to make the Sinusoidal positional embedding learnable. If it is turned on, we will also update the frequency of this layer. See "[ICLR2021] On Position Embeddings in BERT" for more detail.
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def forward(self, positions): """ Parameters ---------- positions : th.Tensor Shape (..., ) Returns ------- ret : Shape (..., units) """ emb = positions.unsqueeze(-1) * self.freq sin_emb = th.sin(emb) cos_emb = th.cos(emb) if self._units % 2 == 0: return th.cat([sin_emb, cos_emb], dim=-1) else: return th.cat([sin_emb, cos_emb, th.zeros_like(positions).unsqueeze(-1)], dim=-1)
Parameters ---------- positions : th.Tensor Shape (..., ) Returns ------- ret : Shape (..., units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/layers.py
Apache-2.0
def to_torch_dtype(dtype): """Convert the dtype to pytorch data type Parameters ---------- dtype The input dtype Returns ------- ret Converted dtype """ if isinstance(dtype, th.dtype) or dtype is None: return dtype dtype = np.dtype(dtype) if dtype in numpy_to_torch_dtype_dict: return numpy_to_torch_dtype_dict[dtype] else: raise KeyError(f'dtype = {dtype} is not supported for conversion')
Convert the dtype to pytorch data type Parameters ---------- dtype The input dtype Returns ------- ret Converted dtype
to_torch_dtype
python
dmlc/gluon-nlp
src/gluonnlp/torch/utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/utils.py
Apache-2.0
def to_numpy_dtype(dtype): """Convert the dtype to numpy dtype Parameters ---------- dtype Input dtype Returns ------- ret The converted dtype """ if dtype is None: return None if dtype in torch_dtype_to_numpy_dict: return torch_dtype_to_numpy_dict[dtype] else: return np.dtype(dtype)
Convert the dtype to numpy dtype Parameters ---------- dtype Input dtype Returns ------- ret The converted dtype
to_numpy_dtype
python
dmlc/gluon-nlp
src/gluonnlp/torch/utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/utils.py
Apache-2.0
def share_parameters(source, target): """Share parameters recursively from source model to target model. For example, if you want ``dense1`` to share ``dense0``'s weights, you can do:: dense0 = nn.Linear(20) dense1 = nn.Linear(20) share_parameters(dense0, dense) which equals to dense1.weight = dense0.weight dense1.bias = dense0.bias Parameters ---------- source : nn.Module target : nn.Module """ def _named_members(module, get_members_fn, prefix='', recurse=True): r"""Helper method for yielding various names + members of modules. Unlike upstream torch implementation, this implementation returns members that are known under multiple names, such as shared parameters. """ modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] for module_prefix, module in modules: members = get_members_fn(module) for k, v in members: if v is None: continue name = module_prefix + ('.' if module_prefix else '') + k yield name, v source_names = set(n for n, p in _named_members(source, lambda m: m._parameters.items())) target_names = set(n for n, p in _named_members(target, lambda m: m._parameters.items())) if not source_names == target_names: raise ValueError( 'Source and target modules do not have the same set of parameters. ' f'The following parameters are missing from target: "{source_names - target_names}"' f'The following parameters are missing from source: "{target_names - source_names}"') for name in source_names: module_names = name.split('.') weight_name = module_names.pop() tmp_source, tmp_target = source, target for module_name in module_names: tmp_source = tmp_source._modules[module_name] tmp_target = tmp_target._modules[module_name] setattr(tmp_target, weight_name, getattr(tmp_source, weight_name))
Share parameters recursively from source model to target model. For example, if you want ``dense1`` to share ``dense0``'s weights, you can do:: dense0 = nn.Linear(20) dense1 = nn.Linear(20) share_parameters(dense0, dense) which equals to dense1.weight = dense0.weight dense1.bias = dense0.bias Parameters ---------- source : nn.Module target : nn.Module
share_parameters
python
dmlc/gluon-nlp
src/gluonnlp/torch/utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/utils.py
Apache-2.0
def _named_members(module, get_members_fn, prefix='', recurse=True): r"""Helper method for yielding various names + members of modules. Unlike upstream torch implementation, this implementation returns members that are known under multiple names, such as shared parameters. """ modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)] for module_prefix, module in modules: members = get_members_fn(module) for k, v in members: if v is None: continue name = module_prefix + ('.' if module_prefix else '') + k yield name, v
Helper method for yielding various names + members of modules. Unlike upstream torch implementation, this implementation returns members that are known under multiple names, such as shared parameters.
_named_members
python
dmlc/gluon-nlp
src/gluonnlp/torch/utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/utils.py
Apache-2.0
def move_to(obj, device=None): """ Parameters ---------- obj Nested torch object device The target device Returns ------- new_obj The objects that have been moved to device. """ if th.is_tensor(obj): return obj.to(device) elif isinstance(obj, dict): res = {} for k, v in obj.items(): res[k] = move_to(v, device) return res elif isinstance(obj, (list, tuple)): res = [] for v in obj: res.append(move_to(v, device)) if isinstance(obj, tuple): res = tuple(res) return res else: raise TypeError("Invalid type for move_to")
Parameters ---------- obj Nested torch object device The target device Returns ------- new_obj The objects that have been moved to device.
move_to
python
dmlc/gluon-nlp
src/gluonnlp/torch/utils.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/utils.py
Apache-2.0
def _pad_arrs_to_max_length(arrs, pad_val, dtype, batch_dim=0, round_to=None): """Inner Implementation of the Pad batchify Parameters ---------- arrs List of arrays pad_val The padding value dtype The type of the tensor batch_dim The dimension to insert the batch dimension. This controls how we should construct the mini-batch. round_to To round the size of the arrays to the closest multiply of round_to. This helps ensure the shape of the input tensor. Returns ------- ret : th.Tensor The returned tensor """ # First step is to convert the arrays to torch tensor if not isinstance(arrs[0], th.Tensor): arrs = [th.tensor(ele, dtype=dtype) for ele in arrs] dtype = arrs[0].dtype if dtype is None else dtype max_shape = list(arrs[0].shape) assert 0 <= batch_dim <= arrs[0].ndim for pad_axis in range(len(max_shape)): curr_lengths = [ele.shape[pad_axis] for ele in arrs] max_size = max(curr_lengths) if round_to is not None: max_size = round_to * math.ceil(max_size / round_to) max_shape[pad_axis] = max_size ret_shape = tuple(max_shape[:batch_dim]) + (len(arrs), ) + tuple(max_shape[batch_dim:]) # Construct the full output ret = th.full(size=ret_shape, fill_value=pad_val, dtype=dtype) for i, arr in enumerate(arrs): slices = [slice(None) for _ in range(len(max_shape))] for j in range(len(max_shape)): if arr.shape[j] < max_shape[j]: slices[j] = slice(0, arr.shape[j]) slices.insert(batch_dim, i) ret[tuple(slices)] = arr return ret
Inner Implementation of the Pad batchify Parameters ---------- arrs List of arrays pad_val The padding value dtype The type of the tensor batch_dim The dimension to insert the batch dimension. This controls how we should construct the mini-batch. round_to To round the size of the arrays to the closest multiply of round_to. This helps ensure the shape of the input tensor. Returns ------- ret : th.Tensor The returned tensor
_pad_arrs_to_max_length
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def __call__(self, data): """Batchify the input data. The input can be list of numpy.ndarray, list of numbers or list of th.Tensor. The arrays will be padded to the largest dimension at `axis` and then stacked to form the final output. Parameters ---------- data : List[np.ndarray] or List[List[dtype]] or List[th.Tensor] List of samples to pad and stack. Returns ------- batch_data: th.Tensor Data in the minibatch. If batch_dim = 0: Shape (N, ...) Otherwise, the N will be inserted to the location of the batch_dim, which will be Shape (..., N, ...) """ _arr_cls = th.Tensor if isinstance(data[0], (_arr_cls, np.ndarray, list)): padded_arr = _pad_arrs_to_max_length(data, pad_val=self._pad_val, dtype=self._dtype, batch_dim=self._axis, round_to=self._round_to) return padded_arr else: raise NotImplementedError( "Pad() does not support multiple items, use Group(Pad(), Pad(), ...) instead")
Batchify the input data. The input can be list of numpy.ndarray, list of numbers or list of th.Tensor. The arrays will be padded to the largest dimension at `axis` and then stacked to form the final output. Parameters ---------- data : List[np.ndarray] or List[List[dtype]] or List[th.Tensor] List of samples to pad and stack. Returns ------- batch_data: th.Tensor Data in the minibatch. If batch_dim = 0: Shape (N, ...) Otherwise, the N will be inserted to the location of the batch_dim, which will be Shape (..., N, ...)
__call__
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def _stack_arrs(arrs, batch_dim, dtype): """ Parameters ---------- arrs batch_dim The batch dimension dtype torch dtype Returns ------- stacked_arr The resulting stacked array """ if isinstance(arrs[0], np.ndarray): stacked_arr = np.stack(arrs, axis=batch_dim) return th.as_tensor(stacked_arr, dtype=dtype) elif isinstance(arrs[0], th.Tensor): ret = th.stack(arrs, dim=batch_dim) if dtype is None: dtype = ret.dtype if ret.dtype != dtype: return ret.type(dtype) else: return ret else: stacked_arr = np.stack([np.array(arr) for arr in arrs], axis=batch_dim) return th.as_tensor(stacked_arr, dtype=dtype)
Parameters ---------- arrs batch_dim The batch dimension dtype torch dtype Returns ------- stacked_arr The resulting stacked array
_stack_arrs
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def __call__(self, data): """Batchify the input data. Parameters ---------- data : list The samples to batchfy. Each sample should contain N attributes. Returns ------- ret : tuple A tuple of length N. Contains the batchified result of each attribute in the input. """ assert len(data[0]) == len(self._fn),\ 'The number of attributes in each data sample should contains' \ ' {} elements'.format(len(self._fn)) ret = [] for i, ele_fn in enumerate(self._fn): ret.append(ele_fn([ele[i] for ele in data])) return tuple(ret)
Batchify the input data. Parameters ---------- data : list The samples to batchfy. Each sample should contain N attributes. Returns ------- ret : tuple A tuple of length N. Contains the batchified result of each attribute in the input.
__call__
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def __call__(self, data: t_List[t_Dict]) -> t_Dict: """ Parameters ---------- data The samples to batchify. Each sample should be a dictionary Returns ------- ret The resulting dictionary that stores the merged samples. """ ret = dict() for k, ele_fn in self._fn_dict.items(): ret[k] = ele_fn([ele[k] for ele in data]) return ret
Parameters ---------- data The samples to batchify. Each sample should be a dictionary Returns ------- ret The resulting dictionary that stores the merged samples.
__call__
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def __call__(self, data: t_List[t_NamedTuple]) -> t_NamedTuple: """Batchify the input data. Parameters ---------- data The samples to batchfy. Each sample should be a namedtuple. Returns ------- ret A namedtuple of length N. Contains the batchified result of each attribute in the input. """ if not isinstance(data[0], self._container): raise ValueError('The samples should have the same type as the stored namedtuple.' ' data[0]={}, container={}'.format(data[0], self._container)) ret = [] for i, ele_fn in enumerate(self._fn_l): ret.append(ele_fn([ele[i] for ele in data])) return self._container(*ret)
Batchify the input data. Parameters ---------- data The samples to batchfy. Each sample should be a namedtuple. Returns ------- ret A namedtuple of length N. Contains the batchified result of each attribute in the input.
__call__
python
dmlc/gluon-nlp
src/gluonnlp/torch/data/batchify.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/data/batchify.py
Apache-2.0
def forward(self, data, valid_length): """ Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- F data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 # 1. Embed the data attn_mask = gen_self_attn_mask(data, valid_length, attn_type='full', layout=self.layout) out = data all_encodings_outputs = [] additional_outputs = [] for layer_idx in range(self._num_layers): layer = self.all_layers[layer_idx] out, attention_weights = layer(out, attn_mask) # out : [batch_size, seq_len, units] or [seq_len, batch_size, units] # attention_weights : [batch_size, num_heads, seq_len, seq_len] if self._output_all_encodings: out = sequence_mask(out, valid_len=valid_length, axis=time_axis) all_encodings_outputs.append(out) if self._output_attention: additional_outputs.append(attention_weights) if not self._output_all_encodings: # if self._output_all_encodings, SequenceMask is already applied above out = sequence_mask(out, valid_len=valid_length, axis=time_axis) return out, additional_outputs else: return all_encodings_outputs, additional_outputs
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- F data - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length): # pylint: disable=arguments-differ """Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (batch_size, seq_length) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output : This is optional. Shape (batch_size, units) """ if token_types is None: token_types = th.zeros_like(inputs) initial_embedding = self.get_initial_embedding(inputs, token_types) prev_out = initial_embedding outputs = [] if self._compute_layout != self._layout: # Swap the axes if the compute_layout and layout mismatch contextual_embeddings, additional_outputs = self.encoder(th.transpose(prev_out, 0, 1), valid_length) contextual_embeddings = th.transpose(contextual_embeddings, 0, 1) else: contextual_embeddings, additional_outputs = self.encoder(prev_out, valid_length) outputs.append(contextual_embeddings) if self.use_pooler: pooled_out = self.apply_pooling(contextual_embeddings) outputs.append(pooled_out) return tuple(outputs) if len(outputs) > 1 else outputs[0]
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (batch_size, seq_length) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length : The valid length of each sequence Shape (batch_size,) Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_output : This is optional. Shape (batch_size, units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def get_initial_embedding(self, inputs, token_types=None): """Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If None, it will be initialized as all zero Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_emb) - layout = 'TN' Shape (seq_length, batch_size, C_emb) """ if self.layout == 'NT': time_axis, batch_axis = 1, 0 else: time_axis, batch_axis = 0, 1 embedding = self.word_embed(inputs) if token_types is None: token_types = th.zeros_like(inputs) type_embedding = self.token_type_embed(token_types) embedding = embedding + type_embedding if self.pos_embed_type is not None: positional_embedding = self.token_pos_embed( th.arange(end=inputs.shape[time_axis], device=inputs.device)) positional_embedding = th.unsqueeze(positional_embedding, dim=batch_axis) embedding = embedding + positional_embedding # Extra layer normalization plus dropout embedding = self.embed_layer_norm(embedding) embedding = self.embed_dropout(embedding) return embedding
Get the initial token embeddings that considers the token type and positional embeddings Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If None, it will be initialized as all zero Returns ------- embedding The initial embedding that will be fed into the encoder - layout = 'NT' Shape (batch_size, seq_length, C_emb) - layout = 'TN' Shape (seq_length, batch_size, C_emb)
get_initial_embedding
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def apply_pooling(self, sequence): """Generate the representation given the inputs. This is used for pre-training or fine-tuning a bert model. Get the first token of the whole sequence which is [CLS] sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) return: Shape (batch_size, units) """ if self.layout == 'NT': outputs = sequence[:, 0, :] else: outputs = sequence[0, :, :] return th.tanh(self.pooler(outputs))
Generate the representation given the inputs. This is used for pre-training or fine-tuning a bert model. Get the first token of the whole sequence which is [CLS] sequence - layout = 'NT' Shape (batch_size, sequence_length, units) - layout = 'TN' Shape (sequence_length, batch_size, units) return: Shape (batch_size, units)
apply_pooling
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def from_cfg(cls, cfg, use_pooler=True) -> 'BertModel': """ Parameters ---------- cfg Configuration use_pooler Whether to output the pooled feature Returns ------- ret The constructed BertModel """ cfg = BertModel.get_cfg().clone_merge(cfg) assert cfg.VERSION == 1, 'Wrong version!' return cls(vocab_size=cfg.MODEL.vocab_size, units=cfg.MODEL.units, hidden_size=cfg.MODEL.hidden_size, num_layers=cfg.MODEL.num_layers, num_heads=cfg.MODEL.num_heads, max_length=cfg.MODEL.max_length, hidden_dropout_prob=cfg.MODEL.hidden_dropout_prob, attention_dropout_prob=cfg.MODEL.attention_dropout_prob, num_token_types=cfg.MODEL.num_token_types, pos_embed_type=cfg.MODEL.pos_embed_type, activation=cfg.MODEL.activation, layer_norm_eps=cfg.MODEL.layer_norm_eps, use_pooler=use_pooler, layout=cfg.MODEL.layout, compute_layout=cfg.MODEL.compute_layout)
Parameters ---------- cfg Configuration use_pooler Whether to output the pooled feature Returns ------- ret The constructed BertModel
from_cfg
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.layout == 'NT': mlm_features = contextual_embeddings[ th.arange(contextual_embeddings.shape[0]).unsqueeze(1), masked_positions] else: contextual_embeddings_t = th.transpose(contextual_embeddings, 0, 1) mlm_features = contextual_embeddings_t[ th.arange(contextual_embeddings_t.shape[0]).unsqueeze(1), masked_positions] mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, mlm_scores
Getting the scores of the masked positions. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) valid_length : The valid length of each sequence Shape (batch_size,) masked_positions : The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units) pooled_out Shape (batch_size, units) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def __init__(self, backbone_cfg): """ Parameters ---------- backbone_cfg The cfg of the backbone model """ super().__init__() self.backbone_model = BertModel.from_cfg(backbone_cfg) # Construct nsp_classifier for next sentence prediction self.nsp_classifier = th.nn.Linear(out_features=2, in_features=self.backbone_model.units) self.mlm_decoder = th.nn.Sequential( th.nn.Linear(out_features=self.backbone_model.units, in_features=self.backbone_model.units), get_activation(self.backbone_model.activation), th.nn.LayerNorm(self.backbone_model.units, eps=self.backbone_model.layer_norm_eps), th.nn.Linear(out_features=self.backbone_model.vocab_size, in_features=self.backbone_model.units)) # TODO such weight sharing not supported in torchscript self.mlm_decoder[-1].weight = self.backbone_model.word_embed.weight
Parameters ---------- backbone_cfg The cfg of the backbone model
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size) """ contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) nsp_score = self.nsp_classifier(pooled_out) if self.layout == 'NT': mlm_features = contextual_embeddings[ th.arange(contextual_embeddings.shape[0]).unsqueeze(1), masked_positions] else: mlm_features = th.transpose(contextual_embeddings, 0, 1)[th.arange(contextual_embeddings.shape[1]).unsqueeze(1), masked_positions] mlm_scores = self.mlm_decoder(mlm_features) return contextual_embeddings, pooled_out, nsp_score, mlm_scores
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence Shape (batch_size, num_masked_positions). Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) nsp_score : Shape (batch_size, 2) mlm_scores : Shape (batch_size, num_masked_positions, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def __init__(self, backbone_cfg): """ Parameters ---------- backbone_cfg The cfg of the backbone model """ super().__init__() self.backbone_model = BertModel.from_cfg(backbone_cfg) self.quickthought = th.nn.Sequential( th.nn.Linear(out_features=self.backbone_model.units, in_features=self.backbone_model.units), get_activation(self.backbone_model.activation), th.nn.LayerNorm(self.backbone_model.units, eps=self.backbone_model.layer_norm_eps)) self.mlm_decoder = th.nn.Sequential( th.nn.Linear(out_features=self.backbone_model.units, in_features=self.backbone_model.units), get_activation(self.backbone_model.activation), th.nn.LayerNorm(self.backbone_model.units, eps=self.backbone_model.layer_norm_eps), th.nn.Linear(out_features=self.backbone_model.vocab_size, in_features=self.backbone_model.units)) # TODO such weight sharing not supported in torchscript self.mlm_decoder[-1].weight = self.backbone_model.word_embed.weight
Parameters ---------- backbone_cfg The cfg of the backbone model
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def forward(self, inputs, token_types, valid_length, masked_positions): """Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence with respect to flattened batch Shape (N, ) for N masked positions across whole batch. Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (N, vocab_size) """ assert len(inputs) % 2 == 0, 'Model expects QuickThought paired inputs' contextual_embeddings, pooled_out = self.backbone_model(inputs, token_types, valid_length) if self.layout == 'NT': mlm_features = contextual_embeddings.flatten(0, 1)[masked_positions] else: mlm_features = th.transpose(contextual_embeddings, 0, 1).flatten(0, 1)[masked_positions] mlm_scores = self.mlm_decoder(mlm_features) qt_embeddings = self.quickthought(pooled_out) qt_similarity = self._cosine_similarity(qt_embeddings[:len(inputs) // 2], qt_embeddings[len(inputs) // 2:]) return contextual_embeddings, pooled_out, mlm_scores, qt_similarity
Generate the representation given the inputs. This is used in training or fine-tuning a bert model. Parameters ---------- inputs - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) token_types - layout = 'NT' Shape (batch_size, seq_length) - layout = 'TN' Shape (seq_length, batch_size) If the inputs contain two sequences, we will set different token types for the first sentence and the second sentence. valid_length The valid length of each sequence Shape (batch_size,) masked_positions The masked position of the sequence with respect to flattened batch Shape (N, ) for N masked positions across whole batch. Returns ------- contextual_embedding - layout = 'NT' Shape (batch_size, seq_length, units). - layout = 'TN' Shape (seq_length, batch_size, units). pooled_out Shape (batch_size, units) mlm_scores : Shape (N, vocab_size)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/bert.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/bert.py
Apache-2.0
def __init__(self, units: int = 512, hidden_size: int = 2048, num_heads: int = 8, attention_dropout_prob: float = 0.1, hidden_dropout_prob: float = 0.1, activation_dropout_prob: float = 0.0, layer_norm_eps: float = 1e-12, pre_norm: bool = False, use_qkv_bias: bool = True, activation: str = 'relu', layout='NT'): """ Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: data -> norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention activation The activation layout The layout """ super().__init__() self._units = units self._hidden_size = hidden_size self._num_heads = num_heads self._attention_dropout_prob = attention_dropout_prob self._hidden_dropout_prob = hidden_dropout_prob self._activation_dropout_prob = activation_dropout_prob self._pre_norm = pre_norm self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) assert self._units % self._num_heads == 0, 'units must be divisive by the number of heads' self.dropout_layer = nn.Dropout(hidden_dropout_prob) self.attn_qkv = nn.Linear(out_features=3 * units, in_features=units, bias=use_qkv_bias) self.attention_proj = nn.Linear(out_features=units, in_features=units, bias=True) attention_layout = 'NTK' if self._layout == 'NT' else 'TNK' self.attention_cell = \ MultiHeadAttentionCell( query_units=self._units, num_heads=self._num_heads, attention_dropout=self._attention_dropout_prob, scaled=True, layout=attention_layout ) self.layer_norm = nn.LayerNorm(eps=layer_norm_eps, normalized_shape=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=hidden_dropout_prob, activation_dropout=activation_dropout_prob, layer_norm_eps=layer_norm_eps, activation=activation, pre_norm=pre_norm)
Parameters ---------- units hidden_size num_heads attention_dropout_prob hidden_dropout_prob activation_dropout_prob layer_norm_eps pre_norm Whether to attach the normalization layer before attention layer If pre_norm: data -> norm(data) -> attn -> res(+data) -> ffn Else: data -> attn -> norm(res(+data)) -> ffn use_qkv_bias Whether to use bias for self attention activation The activation layout The layout
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def forward(self, data, attn_mask): """ Parameters ---------- data : If layout == 'NT' Shape (batch_size, seq_length, C_in) Else Shape (seq_length, batch_size, C_in) attn_mask : Shape (batch_size, seq_length, seq_length) Returns ------- out : If layout == 'NT' Shape (batch_size, seq_length, C_out) Else Shape (seq_length, batch_size, C_out) attn_weight : Shape (batch_size, seq_length, seq_length) """ residual = data if self._pre_norm: data = self.layer_norm(data) query, key, value = th.split(self.attn_qkv(data), self._units, dim=-1) query = th.reshape(query, query.shape[:2] + (self._num_heads, -1)) key = th.reshape(key, key.shape[:2] + (self._num_heads, -1)) value = th.reshape(value, value.shape[:2] + (self._num_heads, -1)) out, [_, attn_weight] = self.attention_cell(query, key, value, attn_mask) out = self.attention_proj(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.layer_norm(out) out = self.ffn(out) return out, attn_weight
Parameters ---------- data : If layout == 'NT' Shape (batch_size, seq_length, C_in) Else Shape (seq_length, batch_size, C_in) attn_mask : Shape (batch_size, seq_length, seq_length) Returns ------- out : If layout == 'NT' Shape (batch_size, seq_length, C_out) Else Shape (seq_length, batch_size, C_out) attn_weight : Shape (batch_size, seq_length, seq_length)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def __init__(self, units: int = 512, mem_units: Optional[int] = None, hidden_size: int = 2048, num_heads: int = 8, activation_dropout: float = 0.0, dropout: float = 0.1, attention_dropout: float = 0.1, layer_norm_eps: float = 1E-5, activation: str = 'relu', gated_proj: bool = False, pre_norm: bool = False, use_qkv_bias: bool = True, layout='NT'): """ Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation gated_proj pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention layout Layout of the input """ super().__init__() self._units = units if mem_units is None: mem_units = units self._mem_units = mem_units self._pre_norm = pre_norm self._num_heads = num_heads self._attention_dropout = attention_dropout self._layout = layout assert layout in ['TN', 'NT'], 'Invalid layout received = {}. ' \ 'Only "TN" and "NT" are accepted!'.format(layout) attention_layout = 'NTK' if layout == 'NT' else 'TNK' self.dropout_layer = nn.Dropout(dropout) if units % num_heads: raise ValueError('In Transformer, units should be divided exactly by the number of ' 'heads. Received units={}, num_heads={}'.format(units, num_heads)) self.attn_in_qkv = nn.Linear(out_features=3 * units, in_features=units, bias=use_qkv_bias) self.self_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, layout=attention_layout) self.proj_in = nn.Linear(out_features=units, in_features=units, bias=True) self.attn_inter_q = nn.Linear(out_features=units, in_features=units, bias=use_qkv_bias) self.attn_inter_k = nn.Linear(out_features=units, in_features=mem_units, bias=use_qkv_bias) self.attn_inter_v = nn.Linear(out_features=units, in_features=mem_units, bias=use_qkv_bias) self.inter_attention = MultiHeadAttentionCell(query_units=units, num_heads=num_heads, attention_dropout=self._attention_dropout, layout=attention_layout) self.proj_inter = nn.Linear(in_features=units, out_features=units, bias=True) self.ln_in = nn.LayerNorm(eps=layer_norm_eps, normalized_shape=units) self.ln_inter = nn.LayerNorm(eps=layer_norm_eps, normalized_shape=units) self.ffn = PositionwiseFFN(units=units, hidden_size=hidden_size, dropout=dropout, activation_dropout=activation_dropout, layer_norm_eps=layer_norm_eps, activation=activation, gated_proj=gated_proj, pre_norm=pre_norm) self.init_weights()
Parameters ---------- units mem_units The number of units in the memory. By default, it is initialized to be the same as the units. hidden_size num_heads activation_dropout dropout attention_dropout layer_norm_eps activation gated_proj pre_norm Whether to apply normalization before the attention layer use_qkv_bias Whether to use bias for both self attention and contextual attention layout Layout of the input
__init__
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def forward(self, data, mem, self_causal_mask, mem_attn_mask): """ Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem : - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask : Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out : - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Get the causal self-attention value residual = data if self._pre_norm: data = self.ln_in(data) self_query, self_key, self_value = th.split(self.attn_in_qkv(data), self._units, dim=-1) out, [_, self_attn_weight] = self.self_attention( self_query.reshape((self_query.shape[0], self_query.shape[1], self._num_heads, -1)), self_key.reshape((self_key.shape[0], self_key.shape[1], self._num_heads, -1)), self_value.reshape((self_value.shape[0], self_value.shape[1], self._num_heads, -1)), self_causal_mask) out = self.proj_in(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out residual = data if self._pre_norm: data = self.ln_inter(data) out, [_, context_attn_weight] = self.inter_attention( th.reshape(self.attn_inter_q(data), (data.shape[0], data.shape[1], self._num_heads, -1)), th.reshape(self.attn_inter_k(mem), (mem.shape[0], mem.shape[1], self._num_heads, -1)), th.reshape(self.attn_inter_v(mem), (mem.shape[0], mem.shape[1], self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) return out
Parameters ---------- data : - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) mem : - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) self_causal_mask : Shape (batch_size, seq_length, seq_length) Mask for the causal self-attention. self_causal_mask[i, j, :] masks the elements that token `j` attends to. To understand the self-causal attention mask, we can look at the following example: ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 mem_attn_mask : Shape (batch_size, seq_length, mem_length) Mask between the decoding input and the memory. ['numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1 'can': 1, 1, 1, 1 'now': 1, 1, 1, 1 'use': 1, 1, 1, 1 Returns ------- out : - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def init_states(self, batch_size, device=None, dtype='float32'): """Initialize the states required for incremental decoding Parameters ---------- batch_size device dtype Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ dtype = to_torch_dtype(dtype) if self.layout == 'NT': init_key = th.zeros( size=(batch_size, 0, self._num_heads, self._units // self._num_heads), device=device, dtype=dtype) init_value = th.zeros( size=(batch_size, 0, self._num_heads, self._units // self._num_heads), device=device, dtype=dtype) else: init_key = th.zeros( size=(0, batch_size, self._num_heads, self._units // self._num_heads), device=device, dtype=dtype) init_value = th.zeros( size=(0, batch_size, self._num_heads, self._units // self._num_heads), device=device, dtype=dtype) return init_key, init_value
Initialize the states required for incremental decoding Parameters ---------- batch_size device dtype Returns ------- init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length, mem_attn_mask=None): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT': Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value) """ batch_size = data.shape[0] if self.layout == 'NT': time_axis = 1 else: time_axis = 0 data = data.unsqueeze(time_axis) residual = data if self._pre_norm: data = self.ln_in(data) # Shape (B, prev_L, #Head, C_K), (B, prev_L, #Head, C_V) # or (prev_L, B, #Head, C_K), (prev_L, B, #Head, C_V) prev_key, prev_value = states if mem_attn_mask is None: mem_attn_mask = gen_mem_attn_mask(mem, mem_valid_length, data, None, layout=self.layout) # 1. Get the causal self-attention value, we need to attend to both the current data # and the previous stored key/values # Shape (B, 1, 3 * num_heads * C_key) # or (1, B, 3 * num_heads * C_key) step_qkv = self.attn_in_qkv(data) step_query, step_key, step_value = th.split(step_qkv, self._units, dim=-1) step_query = th.reshape( step_query, shape=(step_query.shape[0], step_query.shape[1], self._num_heads, -1)) step_key = th.reshape(step_key, shape=(step_key.shape[0], step_key.shape[1], self._num_heads, -1)) step_value = th.reshape( step_value, shape=(step_value.shape[0], step_value.shape[1], self._num_heads, -1)) new_key = th.cat([prev_key, step_key], dim=time_axis) new_value = th.cat([prev_value, step_value], dim=time_axis) out, [_, attn_weight] = self.self_attention(step_query, new_key, new_value, None) out = self.proj_in(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.ln_in(out) # 2. Attend to the contextual memory data = out residual = data if self._pre_norm: data = self.ln_inter(data) out, _ = self.inter_attention( th.reshape(self.attn_inter_q(data), shape=(data.shape[0], data.shape[1], self._num_heads, -1)), th.reshape(self.attn_inter_k(mem), shape=(mem.shape[0], mem.shape[1], self._num_heads, -1)), th.reshape(self.attn_inter_v(mem), shape=(mem.shape[0], mem.shape[1], self._num_heads, -1)), mem_attn_mask) out = self.proj_inter(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.ln_inter(out) # 3. Encode the output via an FFN layer out = self.ffn(out) out = th.reshape(out, shape=(batch_size, -1)) return out, (new_key, new_value)
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contains 1. layout = 'NT': - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT': Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) mem_attn_mask The attention mask between data and the memory Has shape (batch_size, 1, mem_length) Returns ------- out Shape (batch_size, C_out) updated_states - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (batch_size, prev_seq_length + 1, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def forward(self, data, valid_length, mem_data, mem_valid_length): """Run forward Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) self_causal_mask = gen_self_attn_mask(data, valid_length, attn_type='causal', layout=self._layout) mem_attn_mask = gen_mem_attn_mask(mem_data, mem_valid_length, data, valid_length, layout=self._layout) for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out = layer(out, mem_data, self_causal_mask, mem_attn_mask) if self._pre_norm: out = self.ln_final(out) return out
Run forward Parameters ---------- data - layout = 'NT' Shape (batch_size, seq_length, C_in) - layout = 'TN' Shape (seq_length, batch_size, C_in) valid_length Shape (batch_size,) mem_data - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Shape (batch_size,) Returns ------- out - layout = 'NT' Shape (batch_size, seq_length, C_out) - layout = 'TN' Shape (seq_length, batch_size, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def init_states(self, batch_size, device=None, dtype='float32'): """Initialize the states required for incremental decoding Parameters ---------- batch_size The batch size device The device dtype The data type of the states Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value) """ states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] states.append(layer.init_states(batch_size=batch_size, device=device, dtype=dtype)) return states
Initialize the states required for incremental decoding Parameters ---------- batch_size The batch size device The device dtype The data type of the states Returns ------- states A list of states, each includes: - init_key - layout = 'NT' Shape (batch_size, 0, N, C_key) - layout = 'TN' Shape (0, batch_size, N, C_key) - init_value : - layout = 'NT' Shape (batch_size, 0, N, C_value) - layout = 'TN' Shape (0, batch_size, N, C_value)
init_states
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def incremental_decode(self, data, states, mem, mem_valid_length): """Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) """ # 1. Embed the data out = self.dropout_layer(data) if self._data_norm: out = self.ln_data(out) time_axis = 0 if self.layout == 'TN' else 1 mem_length = mem.shape[time_axis] # Generate the mem_attn_mask time_steps = th.arange(mem_length, device=data.device) # (mem_length,) mem_attn_mask = time_steps.reshape((1, 1, -1)) < mem_valid_length.reshape((-1, 1, 1)) new_states = [] for i in range(self.num_layers): if self.recurrent: layer = self.layers[0] else: layer = self.layers[i] out, new_state = layer.incremental_decode(out, states[i], mem, mem_valid_length, mem_attn_mask) new_states.append(new_state) if self._pre_norm: out = self.ln_final(out) return out, new_states
Incrementally generate the output given the decoder input. Parameters ---------- data Shape (batch_size, C_in) states The previous states, contain a list of 1. layout = 'NT' - prev_multi_key Shape (batch_size, prev_seq_length, num_heads, C_key) - prev_multi_value Shape (batch_size, prev_seq_length, num_heads, C_value) 2. layout = 'TN' - prev_multi_key Shape (prev_seq_length, batch_size, num_heads, C_key) - prev_multi_value Shape (prev_seq_length, batch_size, num_heads, C_value) mem The memory 1. layout = 'NT' Shape (batch_size, mem_length, C_mem) 2. layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length Valid length of the memory Shape (batch_size,) Returns ------- out Shape (batch_size, C_out) new_states The updated states, contain a list of 1. layout = 'NT' - new_key Shape (batch_size, prev_seq_length + 1, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value) 2. layout = 'TN' - new_key Shape (prev_seq_length + 1, batch_size, num_heads, C_key) - new_value Shape (prev_seq_length + 1, batch_size, num_heads, C_value)
incremental_decode
python
dmlc/gluon-nlp
src/gluonnlp/torch/models/transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/models/transformer.py
Apache-2.0
def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] grad_averaging = 1 if group['grad_averaging'] else 0 # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if 'step' in group: group['step'] += 1 else: group['step'] = 1 # create lists for multi-tensor apply g_16, q_16, p_16, m_16, v_16 = [], [], [], [], [] g_32, q_32, p_32, m_32, v_32 = [], [], [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( 'FusedLANS does not support sparse gradients, please consider SparseAdam instead' ) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # Buffer for scaled grad state['scaled_grad'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) q_16.append(state['scaled_grad']) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.float32: g_32.append(p.grad.data) q_32.append(state['scaled_grad']) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedLAMB only support fp16 and fp32.') if (len(g_16) > 0): multi_tensor_applier(self.multi_tensor_lans, self._dummy_overflow_buf, [g_16, q_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, group['normalize_grad']) if (len(g_32) > 0): multi_tensor_applier(self.multi_tensor_lans, self._dummy_overflow_buf, [g_32, q_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, group['normalize_grad']) return loss
Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss.
step
python
dmlc/gluon-nlp
src/gluonnlp/torch/optimizers/fused_lans.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/optimizers/fused_lans.py
Apache-2.0
def get_warmup_linear_const_decay_poly_schedule(optimizer, total_steps, warmup_ratio=0.002, const_ratio=0., degree=1.0, last_epoch=-1): """Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer and a constant period. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. total_steps (:obj:`int`): The total number of training steps. warmup_ratio (:obj:`float`): The number of steps for the warmup phase. constant_ratio (:obj:`float`): The total number of training steps. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(global_step: int): x = global_step / total_steps if warmup_ratio == 0.0: return 1.0 elif x < warmup_ratio: return x / warmup_ratio elif x < warmup_ratio + const_ratio: return 1.0 return ((1.0 - x) / (1.0 - warmup_ratio - const_ratio))**degree return LambdaLR(optimizer, lr_lambda, last_epoch)
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer and a constant period. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. total_steps (:obj:`int`): The total number of training steps. warmup_ratio (:obj:`float`): The number of steps for the warmup phase. constant_ratio (:obj:`float`): The total number of training steps. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
get_warmup_linear_const_decay_poly_schedule
python
dmlc/gluon-nlp
src/gluonnlp/torch/optimizers/schedules.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/torch/optimizers/schedules.py
Apache-2.0
def clone_merge(self, cfg_filename_or_other_cfg): """Create a new cfg by cloning and merging with the given cfg Parameters ---------- cfg_filename_or_other_cfg Returns ------- """ ret = self.clone() if isinstance(cfg_filename_or_other_cfg, str): ret.merge_from_file(cfg_filename_or_other_cfg) return ret elif isinstance(cfg_filename_or_other_cfg, CfgNode): ret.merge_from_other_cfg(cfg_filename_or_other_cfg) return ret elif cfg_filename_or_other_cfg is None: return ret else: raise TypeError('Type of config path is not supported!')
Create a new cfg by cloning and merging with the given cfg Parameters ---------- cfg_filename_or_other_cfg Returns -------
clone_merge
python
dmlc/gluon-nlp
src/gluonnlp/utils/config.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/config.py
Apache-2.0
def glob(url, separator=','): """Return a list of paths matching a pathname pattern. The pattern may contain simple shell-style wildcards. Input may also include multiple patterns, separated by separator. Parameters ---------- url : str The name of the files separator : str, default is ',' The separator in url to allow multiple patterns in the input """ patterns = [url] if separator is None else url.split(separator) result = [] for pattern in patterns: result.extend(_glob.glob(os.path.expanduser(pattern.strip()))) return result
Return a list of paths matching a pathname pattern. The pattern may contain simple shell-style wildcards. Input may also include multiple patterns, separated by separator. Parameters ---------- url : str The name of the files separator : str, default is ',' The separator in url to allow multiple patterns in the input
glob
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def file_line_number(path: str) -> int: """ Parameters ---------- path The path to calculate the number of lines in a file. Returns ------- ret The number of lines """ ret = 0 with open(path, 'rb') as f: for _ in f: ret += 1 return ret
Parameters ---------- path The path to calculate the number of lines in a file. Returns ------- ret The number of lines
file_line_number
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def md5sum(filename): """Calculate the md5sum of a file Parameters ---------- filename Name of the file Returns ------- ret The md5sum """ with open(filename, mode='rb') as f: d = hashlib.md5() for buf in iter(functools.partial(f.read, 1024*100), b''): d.update(buf) return d.hexdigest()
Calculate the md5sum of a file Parameters ---------- filename Name of the file Returns ------- ret The md5sum
md5sum
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def sha1sum(filename): """Calculate the sha1sum of a file Parameters ---------- filename Name of the file Returns ------- ret The sha1sum """ with open(filename, mode='rb') as f: d = hashlib.sha1() for buf in iter(functools.partial(f.read, 1024*100), b''): d.update(buf) return d.hexdigest()
Calculate the sha1sum of a file Parameters ---------- filename Name of the file Returns ------- ret The sha1sum
sha1sum
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0
def logging_config(folder: Optional[str] = None, name: Optional[str] = None, logger: logging.Logger = logging.root, level: int = logging.INFO, console_level: int = logging.INFO, console: bool = True, overwrite_handler: bool = False) -> str: """Config the logging module. It will set the logger to save to the specified file path. Parameters ---------- folder The folder to save the log name Name of the saved logger The logger level Logging level console_level Logging level of the console log console Whether to also log to console overwrite_handler Whether to overwrite the existing handlers in the logger Returns ------- folder The folder to save the log file. """ if name is None: name = inspect.stack()[-1][1].split('.')[0] if folder is None: folder = os.path.join(os.getcwd(), name) if not os.path.exists(folder): os.makedirs(folder, exist_ok=True) need_file_handler = True need_console_handler = True # Check all loggers. if overwrite_handler: logger.handlers = [] else: for handler in logger.handlers: if isinstance(handler, logging.StreamHandler): need_console_handler = False logpath = os.path.join(folder, name + ".log") print("All Logs will be saved to {}".format(logpath)) logger.setLevel(level) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') if need_file_handler: logfile = logging.FileHandler(logpath) logfile.setLevel(level) logfile.setFormatter(formatter) logger.addHandler(logfile) if console and need_console_handler: # Initialze the console logging logconsole = logging.StreamHandler() logconsole.setLevel(console_level) logconsole.setFormatter(formatter) logger.addHandler(logconsole) return folder
Config the logging module. It will set the logger to save to the specified file path. Parameters ---------- folder The folder to save the log name Name of the saved logger The logger level Logging level console_level Logging level of the console log console Whether to also log to console overwrite_handler Whether to overwrite the existing handlers in the logger Returns ------- folder The folder to save the log file.
logging_config
python
dmlc/gluon-nlp
src/gluonnlp/utils/misc.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/utils/misc.py
Apache-2.0