code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def get_electra_pretraining_model(model_name, ctx_l, max_seq_length=128, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, generator_units_scale=None, generator_layers_scale=None, params_path=None): """ A Electra Pretrain Model is built with a generator and a discriminator, in which the generator has the same embedding as the discriminator but different backbone. """ cfg, tokenizer, _, _ = get_pretrained_electra( model_name, load_backbone=False) cfg = ElectraModel.get_cfg().clone_merge(cfg) cfg.defrost() cfg.MODEL.hidden_dropout_prob = hidden_dropout_prob cfg.MODEL.attention_dropout_prob = attention_dropout_prob cfg.MODEL.max_length = max_seq_length # Keep the original generator size if not designated if generator_layers_scale: cfg.MODEL.generator_layers_scale = generator_layers_scale if generator_units_scale: cfg.MODEL.generator_units_scale = generator_units_scale cfg.freeze() model = ElectraForPretrain(cfg, uniform_generator=False, tied_generator=False, tied_embeddings=True, disallow_correct=False, weight_initializer=TruncNorm(stdev=0.02)) if not params_path: model.initialize(ctx=ctx_l) else: model.load_parameters(params_path, ctx=ctx_l) model.hybridize() return cfg, tokenizer, model
A Electra Pretrain Model is built with a generator and a discriminator, in which the generator has the same embedding as the discriminator but different backbone.
get_electra_pretraining_model
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def parameters_option(step_num, model, ckpt_dir, option='Saving'): """Save or load the model parameter, marked by step_num.""" param_path = os.path.join( ckpt_dir, '{}.params'.format(str(step_num).zfill(7))) logging.info('[step {}], {} model params to/from {}.'.format( step_num, option, param_path)) if option == 'Saving': model.save_parameters(param_path) return param_path elif option == 'Loading': model.load_parameters(param_path) return model else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the model parameter, marked by step_num.
parameters_option
python
dmlc/gluon-nlp
scripts/pretraining/run_electra.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/run_electra.py
Apache-2.0
def states_option(step_num, trainer, ckpt_dir, local_rank=0, option='Saving'): """Save or load the trainer states, marked by step_num and local rank.""" state_path = os.path.join(ckpt_dir, '{}.states.{}'.format( str(step_num).zfill(7), str(local_rank).zfill(2))) logging.info('[step {}], {} trainer states to/from {}.'.format( step_num, option, state_path)) if option == 'Saving': trainer.save_states(state_path) return state_path elif option == 'Loading': trainer.load_states(state_path) return trainer else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the trainer states, marked by step_num and local rank.
states_option
python
dmlc/gluon-nlp
scripts/pretraining/run_electra.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/run_electra.py
Apache-2.0
def transform(instance, max_seq_length): """Transform instance to inputs for MLM and NSP.""" input_ids = instance.tokens assert len(input_ids) <= max_seq_length segment_ids = instance.segment_ids masked_lm_positions = instance.masked_lm_positions valid_lengths = len(input_ids) masked_lm_ids = instance.masked_lm_labels masked_lm_weights = [1.0] * len(masked_lm_ids) next_sentence_label = 1 if instance.is_random_next else 0 features = {} features['input_ids'] = input_ids features['segment_ids'] = segment_ids features['masked_lm_positions'] = masked_lm_positions features['masked_lm_ids'] = masked_lm_ids features['masked_lm_weights'] = masked_lm_weights features['next_sentence_labels'] = [next_sentence_label] features['valid_lengths'] = [valid_lengths] return features
Transform instance to inputs for MLM and NSP.
transform
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def write_to_files_np(features, tokenizer, max_seq_length, max_predictions_per_seq, output_files): # pylint: disable=unused-argument """Write to numpy files from `TrainingInstance`s.""" next_sentence_labels = [] valid_lengths = [] assert len(output_files) == 1, 'numpy format only support single output file' output_file = output_files[0] (input_ids, segment_ids, masked_lm_positions, masked_lm_ids, masked_lm_weights, next_sentence_labels, valid_lengths) = features total_written = len(next_sentence_labels) # store variable length numpy array object directly. outputs = collections.OrderedDict() outputs['input_ids'] = np.array(input_ids, dtype=object) outputs['segment_ids'] = np.array(segment_ids, dtype=object) outputs['masked_lm_positions'] = np.array(masked_lm_positions, dtype=object) outputs['masked_lm_ids'] = np.array(masked_lm_ids, dtype=object) outputs['masked_lm_weights'] = np.array(masked_lm_weights, dtype=object) outputs['next_sentence_labels'] = np.array(next_sentence_labels, dtype='int32') outputs['valid_lengths'] = np.array(valid_lengths, dtype='int32') np.savez_compressed(output_file, **outputs) logging.info('Wrote %d total instances', total_written)
Write to numpy files from `TrainingInstance`s.
write_to_files_np
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def tokenize_lines_fn(x): """ Worker function to tokenize lines based on the tokenizer, and perform vocabulary lookup. Parameters ---------- lines Lines to be tokenized of the whole file tokenizer The trained tokenizer Returns ------- results A list storing the valid tokenized lines """ lines, tokenizer = x results = [] for line in lines: if not line: break line = line.strip() # Empty lines are used as document delimiters if not line: results.append([]) else: token_ids = tokenizer.encode(line, int) if token_ids: results.append(token_ids) return results
Worker function to tokenize lines based on the tokenizer, and perform vocabulary lookup. Parameters ---------- lines Lines to be tokenized of the whole file tokenizer The trained tokenizer Returns ------- results A list storing the valid tokenized lines
tokenize_lines_fn
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def convert_to_npz(instances, max_seq_length): """Create masked language model and next sentence prediction samples as numpy arrays.""" input_ids = [] segment_ids = [] masked_lm_positions = [] masked_lm_ids = [] masked_lm_weights = [] next_sentence_labels = [] valid_lengths = [] for inst_index, instance in enumerate(instances): features = transform(instance, max_seq_length) input_id = features['input_ids'] segment_id = features['segment_ids'] masked_lm_position = features['masked_lm_positions'] masked_lm_id = features['masked_lm_ids'] masked_lm_weight = features['masked_lm_weights'] next_sentence_label = features['next_sentence_labels'][0] valid_length = features['valid_lengths'][0] input_ids.append(np.ascontiguousarray(input_id, dtype='int32')) segment_ids.append(np.ascontiguousarray(segment_id, dtype='int32')) masked_lm_positions.append(np.ascontiguousarray(masked_lm_position, dtype='int32')) masked_lm_ids.append(np.ascontiguousarray(masked_lm_id, dtype='int32')) masked_lm_weights.append(np.ascontiguousarray(masked_lm_weight, dtype='float32')) next_sentence_labels.append(next_sentence_label) valid_lengths.append(valid_length) # debugging information if inst_index < 1: print_example(instance, features) return input_ids, masked_lm_ids, masked_lm_positions, masked_lm_weights,\ next_sentence_labels, segment_ids, valid_lengths
Create masked language model and next sentence prediction samples as numpy arrays.
convert_to_npz
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab, tokenizer, _MASK_TOKEN, _CLS_TOKEN, _SEP_TOKEN): """Creates the predictions for the masked LM objective.""" cand_indexes = [] for (i, token) in enumerate(tokens): if token in [_CLS_TOKEN, _SEP_TOKEN]: continue # Whole Word Masking means that if we mask all of the subwords # corresponding to an original word. When a word has been split into # subwords, the first token does not have any marker and any subsequence # tokens are prefixed with ##. So whenever we see the ## token, we # append it to the previous set of word indexes. # # Note that Whole Word Masking does *not* change the training code # at all -- we still predict each subword independently, softmaxed # over the entire vocabulary. if whole_word_mask and len(cand_indexes) >= 1 and \ not tokenizer.is_first_subword(token): cand_indexes[-1].append(i) else: cand_indexes.append([i]) random.shuffle(cand_indexes) output_tokens = list(tokens) num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) masked_lms = [] covered_indexes = set() for index_set in cand_indexes: if len(masked_lms) >= num_to_predict: break # If adding a whole-word mask would exceed the maximum number of # predictions, then just skip this candidate. if len(masked_lms) + len(index_set) > num_to_predict: continue is_any_index_covered = False for index in index_set: if index in covered_indexes: is_any_index_covered = True break if is_any_index_covered: continue for index in index_set: covered_indexes.add(index) masked_token = None # 80% of the time, replace with [MASK] if random.random() < 0.8: masked_token = _MASK_TOKEN else: # 10% of the time, keep original if random.random() < 0.5: masked_token = tokens[index] # 10% of the time, replace with random word else: # generate a random word in [0, vocab_size - 1] masked_token = random.randint(0, len(vocab) - 1) output_tokens[index] = masked_token masked_lms.append(MaskedLmInstance(index=index, label=tokens[index])) assert len(masked_lms) <= num_to_predict masked_lms = sorted(masked_lms, key=lambda x: x.index) masked_lm_positions = [] masked_lm_labels = [] for p in masked_lms: masked_lm_positions.append(p.index) masked_lm_labels.append(p.label) return (output_tokens, masked_lm_positions, masked_lm_labels)
Creates the predictions for the masked LM objective.
create_masked_lm_predictions
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b assert len(trunc_tokens) >= 1 # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if random.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop()
Truncates a pair of sequences to a maximum sequence length.
truncate_seq_pair
python
dmlc/gluon-nlp
scripts/pretraining/bert/create_pretraining_data.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/create_pretraining_data.py
Apache-2.0
def prepare_pretrain_npz_dataset(filename, allow_pickle=False): """Create dataset based on the numpy npz file""" if isinstance(filename, (list, tuple)): assert len(filename) == 1, \ 'When .npy/.npz data file is loaded, len(filename) must be 1.' \ ' Received len(filename)={}.'.format(len(filename)) filename = filename[0] logging.debug('start to load file %s ...', filename) return NumpyDataset(filename, allow_pickle=allow_pickle)
Create dataset based on the numpy npz file
prepare_pretrain_npz_dataset
python
dmlc/gluon-nlp
scripts/pretraining/bert/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/pretraining_utils.py
Apache-2.0
def prepare_pretrain_text_dataset(filename, tokenizer, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, whole_word_mask, random_next_sentence, vocab): """Create dataset based on the raw text files""" dupe_factor = 1 if not isinstance(filename, (list, tuple)): filename = [filename] logging.debug('start to load files %s ...', filename) instances = create_training_instances((filename, tokenizer, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, whole_word_mask, vocab, dupe_factor, 1, None, None, random_next_sentence)) return mx.gluon.data.ArrayDataset(*instances)
Create dataset based on the raw text files
prepare_pretrain_text_dataset
python
dmlc/gluon-nlp
scripts/pretraining/bert/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/pretraining_utils.py
Apache-2.0
def prepare_pretrain_bucket_sampler(dataset, batch_size, shuffle=False, num_buckets=1): """Create data sampler based on the dataset""" if isinstance(dataset, NumpyDataset): lengths = dataset.get_field('valid_lengths') else: lengths = dataset.transform(lambda input_ids, segment_ids, masked_lm_positions, \ masked_lm_ids, masked_lm_weights, \ next_sentence_labels, valid_lengths: \ valid_lengths, lazy=False) sampler = FixedBucketSampler(lengths, batch_size=batch_size, num_buckets=num_buckets, ratio=0, shuffle=shuffle) logging.debug('Sampler created for a new dataset:\n%s', sampler) return sampler
Create data sampler based on the dataset
prepare_pretrain_bucket_sampler
python
dmlc/gluon-nlp
scripts/pretraining/bert/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/pretraining_utils.py
Apache-2.0
def get_pretrain_data_npz(data, batch_size, shuffle, num_buckets, vocab, num_parts=1, part_idx=0, num_dataset_workers=1, num_batch_workers=1, circle_length=1, repeat=1, dataset_cached=False, num_max_dataset_cached=0): """Get a data iterator from pre-processed npz files. Parameters ---------- batch_size : int The batch size per GPU. shuffle : bool Whether to shuffle the data. num_buckets : int The number of buckets for the FixedBucketSampler for training. vocab : Vocab The vocabulary. num_parts : int The number of partitions for the dataset. part_idx : int The index of the partition to read. num_dataset_workers : int The number of worker processes for dataset construction. num_batch_workers : int The number of worker processes for batch contruction. circle_length : int, default is 1 The number of files to be read for a single worker at the same time. When circle_length is larger than 1, we merge circle_length files. repeat : int, default is 1 The number of times that files are repeated. dataset_cached : bool, default is False Whether or not to cache last processed dataset. Each processed dataset can only be cached for once. When there is no new available processed dataset to be fetched, we pop a cached processed dataset. num_max_dataset_cached : int, default is 0 Maximum number of cached datasets. It is valid only if dataset_cached is True """ num_files = len(glob(data)) logging.info('%d files are found.', num_files) assert num_files >= num_parts, \ 'The number of text files must be no less than the number of ' \ 'workers/partitions (%d). Only %d files at %s are found.'%(num_parts, num_files, data) dataset_params = {'allow_pickle': True} sampler_params = {'batch_size': batch_size, 'shuffle': shuffle, 'num_buckets': num_buckets} dataset_fn = prepare_pretrain_npz_dataset sampler_fn = prepare_pretrain_bucket_sampler pad_val = vocab.pad_id batchify_fn = bf.Tuple( bf.Pad(val=pad_val, round_to=8), # input_id bf.Pad(val=pad_val), # masked_id bf.Pad(val=0), # masked_position bf.Pad(val=0), # masked_weight bf.Stack(), # next_sentence_label bf.Pad(val=0, round_to=8), # segment_id bf.Stack()) # valid_lengths split_sampler = SplitSampler(num_files, num_parts=num_parts, part_index=part_idx, repeat=repeat) dataloader = DatasetLoader(data, file_sampler=split_sampler, dataset_fn=dataset_fn, batch_sampler_fn=sampler_fn, dataset_params=dataset_params, batch_sampler_params=sampler_params, batchify_fn=batchify_fn, num_dataset_workers=num_dataset_workers, num_batch_workers=num_batch_workers, pin_memory=False, circle_length=circle_length, dataset_cached=dataset_cached, num_max_dataset_cached=num_max_dataset_cached) return dataloader
Get a data iterator from pre-processed npz files. Parameters ---------- batch_size : int The batch size per GPU. shuffle : bool Whether to shuffle the data. num_buckets : int The number of buckets for the FixedBucketSampler for training. vocab : Vocab The vocabulary. num_parts : int The number of partitions for the dataset. part_idx : int The index of the partition to read. num_dataset_workers : int The number of worker processes for dataset construction. num_batch_workers : int The number of worker processes for batch contruction. circle_length : int, default is 1 The number of files to be read for a single worker at the same time. When circle_length is larger than 1, we merge circle_length files. repeat : int, default is 1 The number of times that files are repeated. dataset_cached : bool, default is False Whether or not to cache last processed dataset. Each processed dataset can only be cached for once. When there is no new available processed dataset to be fetched, we pop a cached processed dataset. num_max_dataset_cached : int, default is 0 Maximum number of cached datasets. It is valid only if dataset_cached is True
get_pretrain_data_npz
python
dmlc/gluon-nlp
scripts/pretraining/bert/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/pretraining_utils.py
Apache-2.0
def parameters_option(step_num, model, ckpt_dir, option='Saving', ctx_l=None): """Save or load the model parameter, marked by step_num.""" param_path = os.path.join( ckpt_dir, '{}.params'.format(str(step_num).zfill(7))) logging.info('[step {}], {} model params to/from {}.'.format( step_num, option, param_path)) if option == 'Saving': model.save_parameters(param_path) elif option == 'Loading': model.load_parameters(param_path, ctx=ctx_l) else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the model parameter, marked by step_num.
parameters_option
python
dmlc/gluon-nlp
scripts/pretraining/bert/run_pretraining.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/run_pretraining.py
Apache-2.0
def states_option(step_num, trainer, ckpt_dir, local_rank=0, option='Saving'): """Save or load the trainer states, marked by step_num and local rank.""" state_path = os.path.join(ckpt_dir, '{}.states.{}'.format( str(step_num).zfill(7), str(local_rank).zfill(2))) logging.info('[step {}], {} trainer states to/from {}.'.format( step_num, option, state_path)) if option == 'Saving': trainer.save_states(state_path) elif option == 'Loading': trainer.load_states(state_path) else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the trainer states, marked by step_num and local rank.
states_option
python
dmlc/gluon-nlp
scripts/pretraining/bert/run_pretraining.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/bert/run_pretraining.py
Apache-2.0
def create_masked_lm_predictions(*, args, tokens, cls_token_id, sep_token_id, mask_token_id, non_special_ids): """Creates the predictions for the masked LM objective.""" cand_indexes = [i for i, tok in enumerate(tokens) if tok not in (cls_token_id, sep_token_id)] output_tokens = list(tokens) random.shuffle(cand_indexes) num_to_predict = min(args.max_predictions_per_seq, max(1, int(round(len(tokens) * args.masked_lm_prob)))) mlm_positions = [] mlm_labels = [] covered_indexes = set() for index in cand_indexes: if len(mlm_positions) >= num_to_predict: break if index in covered_indexes: continue covered_indexes.add(index) masked_token = None # 80% of the time, replace with [MASK] if random.random() < 0.8: masked_token = mask_token_id else: # 10% of the time, keep original if random.random() < 0.5: masked_token = tokens[index] # 10% of the time, replace with random word else: masked_token = random.choice(non_special_ids) output_tokens[index] = masked_token mlm_positions.append(index) mlm_labels.append(tokens[index]) assert len(mlm_positions) <= num_to_predict assert len(mlm_positions) == len(mlm_labels) return output_tokens, mlm_positions, mlm_labels
Creates the predictions for the masked LM objective.
create_masked_lm_predictions
python
dmlc/gluon-nlp
scripts/pretraining/torch/bert/prepare_quickthought.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/torch/bert/prepare_quickthought.py
Apache-2.0
def _initializer(function): """Initialize state of each process in multiprocessing pool. The process local state is stored as an attribute of the function object, which is specified in Pool(..., initargs=(function, )) and by convention refers to the function executed during map. """ # TODO gluonnlp shouldn't provide a slow LegacyHuggingFaceTokenizer here... _, tokenizer, _, _ = nlp.models.bert.get_pretrained_bert(args.model_name, load_backbone=False, load_mlm=False) function.tokenizer = tokenizer function.args = args function.vocab = tokenizer.vocab function.non_special_ids = tokenizer.vocab[tokenizer.vocab.non_special_tokens] function.process_idx = 0 tok_type = pa.uint16() if len(tokenizer.vocab) <= np.iinfo(np.uint16).max else pa.uint32() assert len(tokenizer.vocab) <= np.iinfo(np.uint32).max length_type = pa.uint16() assert args.max_seq_length * 2 <= np.iinfo(np.uint16).max # pa.large_list instead of pa.list_ to use 64bit offsets # See https://issues.apache.org/jira/browse/ARROW-9773 schema = pa.schema({ "quickthought1": pa.large_list(tok_type), "quickthought2": pa.large_list(tok_type), "validlength1": length_type, "validlength2": length_type, "mlmpositions1": pa.large_list(length_type), "mlmpositions2": pa.large_list(length_type), "mlmlabels1": pa.large_list(tok_type), "mlmlabels2": pa.large_list(tok_type), }) function.schema = schema
Initialize state of each process in multiprocessing pool. The process local state is stored as an attribute of the function object, which is specified in Pool(..., initargs=(function, )) and by convention refers to the function executed during map.
_initializer
python
dmlc/gluon-nlp
scripts/pretraining/torch/bert/prepare_quickthought.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/torch/bert/prepare_quickthought.py
Apache-2.0
def parameters_option(step_num, model, args, option='Saving', ctx_l=None): """Save or load the model parameter, marked by step_num.""" param_path = os.path.join(args.ckpt_dir, f'{step_num:07}.params') logging.info(f'[Step {step_num}], {option} model params to/from {param_path}.') if option == 'Saving': th.save(model.state_dict(), param_path) elif option == 'Loading': model.load_state_dict(th.load(param_path, map_location=args.device)) else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the model parameter, marked by step_num.
parameters_option
python
dmlc/gluon-nlp
scripts/pretraining/torch/bert/run_pretraining.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/torch/bert/run_pretraining.py
Apache-2.0
def states_option(step_num, optimizer, args, option='Saving'): """Save or load the trainer states, marked by step_num and local rank.""" state_path = os.path.join(args.ckpt_dir, f'{step_num:07}.states.{args.local_rank:02}') logging.info(f'[Step {step_num}], {option} trainer states to/from {state_path}.') if option == 'Saving': th.save(optimizer.state_dict(), state_path) elif option == 'Loading': optimizer.load_state_dict(th.load(state_path)) else: raise NotImplementedError('Unknown Option: {}'.format(option))
Save or load the trainer states, marked by step_num and local rank.
states_option
python
dmlc/gluon-nlp
scripts/pretraining/torch/bert/run_pretraining.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/torch/bert/run_pretraining.py
Apache-2.0
def check_both_latin1(src_sentence: str, tgt_sentence: str) -> bool: """Check whether the sentence pair can all be encoded in latin1 This is used in https://github.com/mlperf/training/blob/master/rnn_translator/pytorch/scripts/filter_dataset.py The idea is to filter the sentences with rare unicode glyphs and are unlikely to be en-de Returns ------- ret Whether both sentences are latin1 """ try: src_sentence.encode('latin1') tgt_sentence.encode('latin1') except UnicodeEncodeError: return False else: return True
Check whether the sentence pair can all be encoded in latin1 This is used in https://github.com/mlperf/training/blob/master/rnn_translator/pytorch/scripts/filter_dataset.py The idea is to filter the sentences with rare unicode glyphs and are unlikely to be en-de Returns ------- ret Whether both sentences are latin1
check_both_latin1
python
dmlc/gluon-nlp
scripts/processing/clean_tok_corpus.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/processing/clean_tok_corpus.py
Apache-2.0
def check_latin1(sentence: str) -> bool: """Check whether the sentence can be encoded in latin1 This is used in https://github.com/mlperf/training/blob/master/rnn_translator/pytorch/scripts/filter_dataset.py The idea is to filter the sentences with rare unicode glyphs Returns ------- ret Whether sentences are latin1 """ try: sentence.encode('latin1') except UnicodeEncodeError: return False else: return True
Check whether the sentence can be encoded in latin1 This is used in https://github.com/mlperf/training/blob/master/rnn_translator/pytorch/scripts/filter_dataset.py The idea is to filter the sentences with rare unicode glyphs Returns ------- ret Whether sentences are latin1
check_latin1
python
dmlc/gluon-nlp
scripts/processing/clean_tok_corpus.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/processing/clean_tok_corpus.py
Apache-2.0
def get_line_byte_start(corpus_path: str) -> np.ndarray: """Get the start position of each lines in terms of bytes so that we can use seek + read to load an arbitrary line. Parameters ---------- corpus_path The path of the corpus Returns ------- line_pos Shape (#Lens + 1,) """ line_pos = [0] with open(corpus_path, 'rb') as in_f: pos = 0 for line in in_f: pos += len(line) line_pos.append(pos) return np.array(line_pos, dtype=np.int64)
Get the start position of each lines in terms of bytes so that we can use seek + read to load an arbitrary line. Parameters ---------- corpus_path The path of the corpus Returns ------- line_pos Shape (#Lens + 1,)
get_line_byte_start
python
dmlc/gluon-nlp
scripts/processing/clean_tok_corpus.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/processing/clean_tok_corpus.py
Apache-2.0
def process_parallel_corpus(self, src_corpus_paths: List[str], tgt_corpus_paths: List[str], src_out_path: str, tgt_out_path: str, chunk_size: int = 1024 * 1024, num_process: int = 8) -> int: """Preprocess the parallel corpus Parameters ---------- src_corpus_paths Source corpus paths tgt_corpus_paths Target corpus paths src_out_path Write the results to the source output path tgt_out_path Write the results to the target output path chunk_size Approximately split the corpus files into multiple chunks num_process The number of process Returns ------- line_count The number of lines in the final filtered file """ start = time.time() total_line_count = 0 filtered_line_count = 0 def chunk_iterator(step=10): for src_path, tgt_path in zip(src_corpus_paths, tgt_corpus_paths): src_line_pos = get_line_byte_start(src_path) tgt_line_pos = get_line_byte_start(tgt_path) src_line_size = src_line_pos[1:] - src_line_pos[:-1] tgt_line_size = tgt_line_pos[1:] - tgt_line_pos[:-1] num_src_lines = src_line_pos.shape[0] - 1 num_tgt_lines = tgt_line_pos.shape[0] - 1 assert num_src_lines == num_tgt_lines src_budget = chunk_size tgt_budget = chunk_size src_chunk_start = 0 tgt_chunk_start = 0 src_chunk_size = 0 tgt_chunk_size = 0 for i in range(0, num_src_lines, step): line_batch_num = min(num_src_lines - i, step) src_batch_line_size = src_line_size[i:(i + line_batch_num)].sum() tgt_batch_line_size = tgt_line_size[i:(i + line_batch_num)].sum() src_budget -= src_batch_line_size tgt_budget -= tgt_batch_line_size src_chunk_size += src_batch_line_size tgt_chunk_size += tgt_batch_line_size if src_budget <= 0 or tgt_budget <= 0 or i + step >= num_src_lines: yield src_path, src_chunk_start, src_chunk_size,\ tgt_path, tgt_chunk_start, tgt_chunk_size src_chunk_start += src_chunk_size tgt_chunk_start += tgt_chunk_size src_chunk_size = 0 tgt_chunk_size = 0 src_budget = chunk_size tgt_budget = chunk_size with open(src_out_path, 'w', encoding='utf-8', newline='\n') as src_out_f: with open(tgt_out_path, 'w', encoding='utf-8', newline='\n') as tgt_out_f: with multiprocessing.Pool(num_process) as pool: for i, (processed_src_lines, processed_tgt_lines, unfiltered_line_num) in \ enumerate(pool.imap(self.process_chunk, chunk_iterator())): src_out_f.write('\n'.join(processed_src_lines) + '\n') tgt_out_f.write('\n'.join(processed_tgt_lines) + '\n') filtered_line_count += len(processed_src_lines) total_line_count += unfiltered_line_num if (i + 1) % 100 == 0: print('Chunk {}, #Lines Processed: {}, Filtered: {}, Remain: {}' .format(i + 1, total_line_count, total_line_count - filtered_line_count, filtered_line_count)) end = time.time() print('Done, #Lines {}/{}, Time spent {}'.format(filtered_line_count, total_line_count, end - start)) return filtered_line_count
Preprocess the parallel corpus Parameters ---------- src_corpus_paths Source corpus paths tgt_corpus_paths Target corpus paths src_out_path Write the results to the source output path tgt_out_path Write the results to the target output path chunk_size Approximately split the corpus files into multiple chunks num_process The number of process Returns ------- line_count The number of lines in the final filtered file
process_parallel_corpus
python
dmlc/gluon-nlp
scripts/processing/clean_tok_corpus.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/processing/clean_tok_corpus.py
Apache-2.0
def process_mono_corpus(self, corpus_paths: List[str], out_path: str, chunk_size: int = 1024 * 1024, num_process: int = 8) -> int: """Preprocess the mono corpus Parameters ---------- corpus_paths Corpus paths out_path Write the results to the output path chunk_size Approximately split the corpus files into multiple chunks num_process The number of process Returns ------- line_count The number of lines in the final filtered file """ start = time.time() total_line_count = 0 filtered_line_count = 0 def chunk_iterator(step=10): for path in corpus_paths: line_pos = get_line_byte_start(path) line_size = line_pos[1:] - line_pos[:-1] num_lines = line_pos.shape[0] - 1 budget = chunk_size chunk_start = 0 cur_chunk_size = 0 for i in range(0, num_lines, step): line_batch_num = min(num_lines - i, step) batch_line_size = line_size[i:(i + line_batch_num)].sum() budget -= batch_line_size cur_chunk_size += batch_line_size if budget <= 0 or i + step >= num_lines: yield path, chunk_start, cur_chunk_size chunk_start += cur_chunk_size cur_chunk_size = 0 budget = chunk_size with open(out_path, 'w', encoding='utf-8', newline='\n') as out_f: with multiprocessing.Pool(num_process) as pool: for i, (processed_lines, unfiltered_line_num) in \ enumerate(pool.imap(self.process_chunk, chunk_iterator())): out_f.write('\n'.join(processed_lines) + '\n') filtered_line_count += len(processed_lines) total_line_count += unfiltered_line_num if (i + 1) % 100 == 0: print('Chunk {}, #Lines Processed: {}, Filtered: {}, Remain: {}' .format(i + 1, total_line_count, total_line_count - filtered_line_count, filtered_line_count)) end = time.time() print('Done, #Lines {}/{}, Time spent {}'.format(filtered_line_count, total_line_count, end - start)) return filtered_line_count
Preprocess the mono corpus Parameters ---------- corpus_paths Corpus paths out_path Write the results to the output path chunk_size Approximately split the corpus files into multiple chunks num_process The number of process Returns ------- line_count The number of lines in the final filtered file
process_mono_corpus
python
dmlc/gluon-nlp
scripts/processing/clean_tok_corpus.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/processing/clean_tok_corpus.py
Apache-2.0
def calc_approx_error(expected_tensor: np.ndarray, observed_tensor: np.ndarray) -> float: ''' Calculating relative error for one tensor ''' error = observed_tensor - expected_tensor absolute_error = np.abs(error) mean_absolute_error = absolute_error.mean() mean_expected_value = np.abs(expected_tensor).mean() error = mean_absolute_error / mean_expected_value return error
Calculating relative error for one tensor
calc_approx_error
python
dmlc/gluon-nlp
scripts/question_answering/custom_strategy.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/custom_strategy.py
Apache-2.0
def get_approx_errors(expected_tensors, observed_tensors): ''' Calculating relative error for multiple tensors: Dict[tensors_name: str, tensor: np.ndarray] ''' errors = {} for node_name in observed_tensors.keys(): expected_tensor = expected_tensors[node_name][node_name] observed_tensor = observed_tensors[node_name][node_name] errors[node_name] = calc_approx_error(expected_tensor, observed_tensor) return errors
Calculating relative error for multiple tensors: Dict[tensors_name: str, tensor: np.ndarray]
get_approx_errors
python
dmlc/gluon-nlp
scripts/question_answering/custom_strategy.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/custom_strategy.py
Apache-2.0
def get_qtensors(self, quant_cfg, node_list): ''' Generating quantized model based on configuration and capturing intermediate tensors ''' qmodel = self.adaptor.quantize(quant_cfg, self.model, self.calib_dataloader) tensors = self.adaptor.inspect_tensor(qmodel, self.calib_dataloader, node_list, [1]) # 1 is a batch index return tensors['activation'][0] # we need to specify that we want activation (layer output) because INC stores also weight tensors # 0 is the first batch
Generating quantized model based on configuration and capturing intermediate tensors
get_qtensors
python
dmlc/gluon-nlp
scripts/question_answering/custom_strategy.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/custom_strategy.py
Apache-2.0
def bayesian_params_to_tune_configs(self, params): ''' Creating configuration from params - changing configurations' indexes for real configurations ''' node_cfgs = {} for node_key, configs in self.opwise_quant_cfgs.items(): if node_key in params: value = int(params[node_key]) value = min(value, len(configs) - 1) node_cfgs[node_key] = copy.deepcopy(configs[value]) return node_cfgs
Creating configuration from params - changing configurations' indexes for real configurations
bayesian_params_to_tune_configs
python
dmlc/gluon-nlp
scripts/question_answering/custom_strategy.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/custom_strategy.py
Apache-2.0
def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
Lower text and remove punctuation, articles and extra whitespace.
normalize_answer
python
dmlc/gluon-nlp
scripts/question_answering/eval_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/eval_utils.py
Apache-2.0
def compute_f1(a_gold, a_pred): """ Compute the token-level f1 scores in which the common tokens are considered as True Positives. Precision and recall are percentages of the number of common tokens in the prediction and groud truth, respectively. """ gold_toks = get_tokens(a_gold) pred_toks = get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1
Compute the token-level f1 scores in which the common tokens are considered as True Positives. Precision and recall are percentages of the number of common tokens in the prediction and groud truth, respectively.
compute_f1
python
dmlc/gluon-nlp
scripts/question_answering/eval_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/eval_utils.py
Apache-2.0
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): """ Find the best threshold of the raw scores. The initial score is set to the number of unanswerable questions, assuming that each unanswerable question is successfully predicted. In the following traverse, the best threshold is constantly adjusted according to the difference from the assumption ('diff'). """ num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 # Rearrange the na_probs in an ascending order, so that the questions # with higher probability of answerability the sooner will be read. qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): if qid not in scores: continue if qid_to_has_ans[qid]: # For the answerable question diff = scores[qid] else: # For the unanswerable question if preds[qid]: # Falsely predict the answerability diff = -1 else: # Correctly predict the answerability. This is Only true if the # prediction is blank, which is no the case before revision diff = 0 cur_score += diff if cur_score > best_score: # adjust the best thresh over current thresh (na_probs[qid]) best_score = cur_score best_thresh = na_probs[qid] return 100.0 * best_score / len(scores), best_thresh
Find the best threshold of the raw scores. The initial score is set to the number of unanswerable questions, assuming that each unanswerable question is successfully predicted. In the following traverse, the best threshold is constantly adjusted according to the difference from the assumption ('diff').
find_best_thresh
python
dmlc/gluon-nlp
scripts/question_answering/eval_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/eval_utils.py
Apache-2.0
def revise_unanswerable(preds, na_probs, na_prob_thresh): """ Revise the predictions results and return a null string for unanswerable question whose unanswerable probability above the threshold. Parameters ---------- preds: dict A dictionary of full prediction of spans na_probs: dict A dictionary of unanswerable probabilities na_prob_thresh: float threshold of the unanswerable probability Returns ------- revised: dict A dictionary of revised prediction """ revised = copy.deepcopy(preds) for q_id in na_probs.keys(): if na_probs[q_id] > na_prob_thresh: revised[q_id] = "" return revised
Revise the predictions results and return a null string for unanswerable question whose unanswerable probability above the threshold. Parameters ---------- preds: dict A dictionary of full prediction of spans na_probs: dict A dictionary of unanswerable probabilities na_prob_thresh: float threshold of the unanswerable probability Returns ------- revised: dict A dictionary of revised prediction
revise_unanswerable
python
dmlc/gluon-nlp
scripts/question_answering/eval_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/eval_utils.py
Apache-2.0
def squad_eval(data_file, preds, na_probs, na_prob_thresh=0.0, revise=False): """ Parameters ---------- data_file dataset(list) or data_file(str) preds predictions dictionary na_probs probabilities dictionary of unanswerable na_prob_thresh threshold of unanswerable revise Wether to get the final predictions with impossible answers replaced with null string '' Returns ------- out_eval A dictionary of output results (preds_out) A dictionary of final predictions """ if isinstance(data_file, str): with open(data_file) as f: dataset_json = json.load(f) dataset = dataset_json['data'] elif isinstance(data_file, list): dataset = data_file if na_probs is None: na_probs = {k: 0.0 for k in preds} # not necessary to revise results of SQuAD 1.1 revise = False qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, preds) exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, na_prob_thresh) f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, na_prob_thresh) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict( exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, 'HasAns') if no_ans_qids: no_ans_eval = make_eval_dict( exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, 'NoAns') find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans) if revise: thresh = (out_eval['best_exact_thresh'] + out_eval['best_f1_thresh']) * 0.5 preds_out = revise_unanswerable(preds, na_probs, thresh) return out_eval, preds_out else: return out_eval, preds
Parameters ---------- data_file dataset(list) or data_file(str) preds predictions dictionary na_probs probabilities dictionary of unanswerable na_prob_thresh threshold of unanswerable revise Wether to get the final predictions with impossible answers replaced with null string '' Returns ------- out_eval A dictionary of output results (preds_out) A dictionary of final predictions
squad_eval
python
dmlc/gluon-nlp
scripts/question_answering/eval_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/eval_utils.py
Apache-2.0
def forward(self, tokens, token_types, valid_length, p_mask): """ Parameters ---------- tokens Shape (batch_size, seq_length) The merged input tokens token_types Shape (batch_size, seq_length) Token types for the sequences, used to indicate whether the word belongs to the first sentence or the second one. valid_length Shape (batch_size,) Valid length of the sequence. This is used to mask the padded tokens. p_mask The mask that is associated with the tokens. Returns ------- start_logits Shape (batch_size, sequence_length) The log-softmax scores that the position is the start position. end_logits Shape (batch_size, sequence_length) The log-softmax scores that the position is the end position. """ # Get contextual embedding with the shape (batch_size, sequence_length, C) if self.use_segmentation: contextual_embeddings = self.backbone(tokens, token_types, valid_length) else: contextual_embeddings = self.backbone(tokens, valid_length) scores = self.qa_outputs(contextual_embeddings) start_scores = scores[:, :, 0] end_scores = scores[:, :, 1] start_logits = masked_logsoftmax(start_scores, mask=p_mask, axis=-1) end_logits = masked_logsoftmax(end_scores, mask=p_mask, axis=-1) return start_logits, end_logits
Parameters ---------- tokens Shape (batch_size, seq_length) The merged input tokens token_types Shape (batch_size, seq_length) Token types for the sequences, used to indicate whether the word belongs to the first sentence or the second one. valid_length Shape (batch_size,) Valid length of the sequence. This is used to mask the padded tokens. p_mask The mask that is associated with the tokens. Returns ------- start_logits Shape (batch_size, sequence_length) The log-softmax scores that the position is the start position. end_logits Shape (batch_size, sequence_length) The log-softmax scores that the position is the end position.
forward
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def inference(self, tokens, token_types, valid_length, p_mask, start_top_n: int = 5, end_top_n: int = 5): """Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, end_top_n) end_top_index Index of the top end logits Shape (batch_size, end_top_n) """ # Shape (batch_size, sequence_length, C) if self.use_segmentation: contextual_embeddings = self.backbone(tokens, token_types, valid_length) else: contextual_embeddings = self.backbone(tokens, valid_length) scores = self.qa_outputs(contextual_embeddings) start_scores = scores[:, :, 0] end_scores = scores[:, :, 1] start_logits = masked_logsoftmax(start_scores, mask=p_mask, axis=-1) end_logits = masked_logsoftmax(end_scores, mask=p_mask, axis=-1) # The shape of start_top_index will be (..., start_top_n) start_top_logits, start_top_index = mx.npx.topk(start_logits, k=start_top_n, axis=-1, ret_typ='both') # Note that end_top_index and end_top_log_probs have shape (bsz, start_n_top, end_n_top) # So that for each start position, there are end_n_top end positions on the third dim. end_top_logits, end_top_index = mx.npx.topk(end_logits, k=end_top_n, axis=-1, ret_typ='both') return start_top_logits, start_top_index, end_top_logits, end_top_index
Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, end_top_n) end_top_index Index of the top end logits Shape (batch_size, end_top_n)
inference
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def get_end_logits(self, contextual_embedding, start_positions, p_mask): """ Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) start_positions Shape (batch_size, N) We process multiple candidates simultaneously p_mask Shape (batch_size, sequence_length) Returns ------- end_logits Shape (batch_size, N, sequence_length) """ # Select the features at the start_positions # start_feature will have shape (batch_size, N, C) start_features = select_vectors_by_position(contextual_embedding, start_positions) # Concatenate the start_feature and the contextual_embedding contextual_embedding = np.expand_dims(contextual_embedding, axis=1) # (B, 1, T, C) start_features = np.expand_dims(start_features, axis=2) # (B, N, 1, C) concat_features = np.concatenate([npx.broadcast_like(start_features, contextual_embedding, 2, 2), npx.broadcast_like(contextual_embedding, start_features, 1, 1)], axis=-1) # (B, N, T, 2C) end_scores = self.end_scores(concat_features) end_scores = np.squeeze(end_scores, -1) end_logits = masked_logsoftmax(end_scores, mask=np.expand_dims(p_mask, axis=1), axis=-1) return end_logits
Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) start_positions Shape (batch_size, N) We process multiple candidates simultaneously p_mask Shape (batch_size, sequence_length) Returns ------- end_logits Shape (batch_size, N, sequence_length)
get_end_logits
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def get_answerable_logits(self, contextual_embedding, p_mask): """Get the answerable logits. Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) p_mask Shape (batch_size, sequence_length) Mask the sequence. 0 --> Denote that the element is masked, 1 --> Denote that the element is not masked Returns ------- answerable_logits Shape (batch_size, 2) """ # Shape (batch_size, sequence_length) start_scores = np.squeeze(self.start_scores(contextual_embedding), -1) start_score_weights = masked_softmax(start_scores, p_mask, axis=-1) start_agg_feature = npx.batch_dot(np.expand_dims(start_score_weights, axis=1), contextual_embedding) start_agg_feature = np.squeeze(start_agg_feature, 1) cls_feature = contextual_embedding[:, 0, :] answerable_scores = self.answerable_scores(np.concatenate([start_agg_feature, cls_feature], axis=-1)) answerable_logits = npx.log_softmax(answerable_scores, axis=-1) return answerable_logits
Get the answerable logits. Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) p_mask Shape (batch_size, sequence_length) Mask the sequence. 0 --> Denote that the element is masked, 1 --> Denote that the element is not masked Returns ------- answerable_logits Shape (batch_size, 2)
get_answerable_logits
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def forward(self, tokens, token_types, valid_length, p_mask, start_position): """ Parameters ---------- tokens Shape (batch_size, sequence_length) token_types Shape (batch_size, sequence_length) valid_length Shape (batch_size,) p_mask Shape (batch_size, sequence_length) start_position Shape (batch_size,) Returns ------- start_logits Shape (batch_size, sequence_length) end_logits Shape (batch_size, sequence_length) answerable_logits """ backbone_net = self.backbone if self.quantized_backbone != None: backbone_net = self.quantized_backbone if self.use_segmentation: contextual_embeddings = backbone_net(tokens, token_types, valid_length) else: contextual_embeddings = backbone_net(tokens, valid_length) start_logits = self.get_start_logits(contextual_embeddings, p_mask) end_logits = self.get_end_logits(contextual_embeddings, np.expand_dims(start_position, axis=1), p_mask) end_logits = np.squeeze(end_logits, axis=1) answerable_logits = self.get_answerable_logits(contextual_embeddings, p_mask) return start_logits, end_logits, answerable_logits
Parameters ---------- tokens Shape (batch_size, sequence_length) token_types Shape (batch_size, sequence_length) valid_length Shape (batch_size,) p_mask Shape (batch_size, sequence_length) start_position Shape (batch_size,) Returns ------- start_logits Shape (batch_size, sequence_length) end_logits Shape (batch_size, sequence_length) answerable_logits
forward
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def inference(self, tokens, token_types, valid_length, p_mask, start_top_n: int = 5, end_top_n: int = 5): """Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, start_top_n, end_top_n) end_top_index Index of the top end logits Shape (batch_size, start_top_n, end_top_n) answerable_logits The answerable logits. Here 0 --> answerable and 1 --> not answerable. Shape (batch_size, sequence_length, 2) """ backbone_net = self.backbone if self.quantized_backbone != None: backbone_net = self.quantized_backbone # Shape (batch_size, sequence_length, C) if self.use_segmentation: contextual_embeddings = backbone_net(tokens, token_types, valid_length) else: contextual_embeddings = backbone_net(tokens, valid_length) start_logits = self.get_start_logits(contextual_embeddings, p_mask) # The shape of start_top_index will be (..., start_top_n) start_top_logits, start_top_index = mx.npx.topk(start_logits, k=start_top_n, axis=-1, ret_typ='both') end_logits = self.get_end_logits(contextual_embeddings, start_top_index, p_mask) # Note that end_top_index and end_top_log_probs have shape (bsz, start_n_top, end_n_top) # So that for each start position, there are end_n_top end positions on the third dim. end_top_logits, end_top_index = mx.npx.topk(end_logits, k=end_top_n, axis=-1, ret_typ='both') answerable_logits = self.get_answerable_logits(contextual_embeddings, p_mask) return start_top_logits, start_top_index, end_top_logits, end_top_index, \ answerable_logits
Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, start_top_n, end_top_n) end_top_index Index of the top end logits Shape (batch_size, start_top_n, end_top_n) answerable_logits The answerable logits. Here 0 --> answerable and 1 --> not answerable. Shape (batch_size, sequence_length, 2)
inference
python
dmlc/gluon-nlp
scripts/question_answering/models.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/models.py
Apache-2.0
def __init__(self, tokenizer, doc_stride, max_seq_length, max_query_length): """ Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length """ self._tokenizer = tokenizer self._doc_stride = doc_stride self._max_seq_length = max_seq_length self._max_query_length = max_query_length vocab = tokenizer.vocab self.pad_id = vocab.pad_id # For roberta model, taking sepecial token <s> as [CLS] and </s> as [SEP] self.cls_id = vocab.bos_id if 'cls_token' not in vocab.special_token_keys else vocab.cls_id self.sep_id = vocab.eos_id if 'sep_token' not in vocab.special_token_keys else vocab.sep_id # TODO(sxjscience) Consider to combine the NamedTuple and batchify functionality. self.BatchifyFunction = bf.NamedTuple(ChunkFeature, {'qas_id': bf.List(), 'data': bf.Pad(val=self.pad_id, round_to=args.round_to), 'valid_length': bf.Stack(), 'segment_ids': bf.Pad(round_to=args.round_to), 'masks': bf.Pad(val=1, round_to=args.round_to), 'is_impossible': bf.Stack(), 'gt_start': bf.Stack(), 'gt_end': bf.Stack(), 'context_offset': bf.Stack(), 'chunk_start': bf.Stack(), 'chunk_length': bf.Stack()})
Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length
__init__
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def process_sample(self, feature: SquadFeature): """Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk """ ret = [] truncated_query_ids = feature.query_token_ids[:self._max_query_length] chunks = feature.get_chunks( doc_stride=self._doc_stride, max_chunk_length=self._max_seq_length - len(truncated_query_ids) - 3) for chunk in chunks: data = np.array([self.cls_id] + truncated_query_ids + [self.sep_id] + feature.context_token_ids[chunk.start:(chunk.start + chunk.length)] + [self.sep_id], dtype=np.int32) valid_length = len(data) segment_ids = np.array([0] + [0] * len(truncated_query_ids) + [0] + [1] * chunk.length + [1], dtype=np.int32) masks = np.array([0] + [1] * len(truncated_query_ids) + [1] + [0] * chunk.length + [1], dtype=np.int32) context_offset = len(truncated_query_ids) + 2 if chunk.gt_start_pos is None and chunk.gt_end_pos is None: start_pos = 0 end_pos = 0 else: # Here, we increase the start and end because we put query before context start_pos = chunk.gt_start_pos + context_offset end_pos = chunk.gt_end_pos + context_offset chunk_feature = ChunkFeature(qas_id=feature.qas_id, data=data, valid_length=valid_length, segment_ids=segment_ids, masks=masks, is_impossible=chunk.is_impossible, gt_start=start_pos, gt_end=end_pos, context_offset=context_offset, chunk_start=chunk.start, chunk_length=chunk.length) ret.append(chunk_feature) return ret
Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk
process_sample
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def get_train(self, features, skip_unreliable=True): """Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable """ train_dataset = [] num_token_answer_mismatch = 0 num_unreliable = 0 for feature in features: if feature.token_answer_mismatch: num_token_answer_mismatch += 1 if feature.unreliable_span: num_unreliable += 1 if skip_unreliable and feature.unreliable_span: # Skip when not reliable continue # Process the feature chunk_features = self.process_sample(feature) train_dataset.extend(chunk_features) return train_dataset, num_token_answer_mismatch, num_unreliable
Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable
get_train
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def get_squad_features(args, tokenizer, segment): """ Get processed data features of SQuADExampls Parameters ---------- args : argparse.Namespace tokenizer: Tokenizer instance segment: str train or dev Returns ------- data_features The list of processed data features """ data_cache_path = os.path.join(CACHE_PATH, '{}_{}_squad_{}.ndjson'.format( segment, args.model_name, args.version)) is_training = (segment == 'train') if os.path.exists(data_cache_path) and not args.overwrite_cache: data_features = [] with open(data_cache_path, 'r') as f: for line in f: data_features.append(SquadFeature.from_json(line)) logging.info('Found cached data features, load from {}'.format(data_cache_path)) else: data_examples = get_squad_examples(args.data_dir, segment=segment, version=args.version) start = time.time() num_process = min(cpu_count(), 8) logging.info('Tokenize Data:') with Pool(num_process) as pool: data_features = pool.map(functools.partial(convert_squad_example_to_feature, tokenizer=tokenizer, is_training=is_training), data_examples) logging.info('Done! Time spent:{:.2f} seconds'.format(time.time() - start)) with open(data_cache_path, 'w', encoding='utf-8') as f: for feature in data_features: f.write(feature.to_json() + '\n') return data_features
Get processed data features of SQuADExampls Parameters ---------- args : argparse.Namespace tokenizer: Tokenizer instance segment: str train or dev Returns ------- data_features The list of processed data features
get_squad_features
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def get_network(model_name, ctx_l, dropout=0.1, checkpoint_path=None, backbone_path=None, dtype='float32'): """ Get the network that fine-tune the Question Answering Task Parameters ---------- model_name : str The model name of the backbone model ctx_l : Context list of training device like [mx.gpu(0), mx.gpu(1)] dropout : float Dropout probability of the task specified layer checkpoint_path: str Path to a Fine-tuned checkpoint backbone_path: str Path to the backbone model to be loaded in qa_net Returns ------- cfg tokenizer qa_net use_segmentation """ # Create the network use_segmentation = 'roberta' not in model_name and 'xlmr' not in model_name Model, cfg, tokenizer, download_params_path, _ = \ get_backbone(model_name, load_backbone=not backbone_path) backbone = Model.from_cfg(cfg, use_pooler=False, dtype=dtype) # Load local backbone parameters if backbone_path provided. # Otherwise, download backbone parameters from gluon zoo. backbone_params_path = backbone_path if backbone_path else download_params_path if checkpoint_path is None: backbone.load_parameters(backbone_params_path, ignore_extra=True, ctx=ctx_l, cast_dtype=True) num_params, num_fixed_params\ = count_parameters(deduplicate_param_dict(backbone.collect_params())) logging.info( 'Loading Backbone Model from {}, with total/fixd parameters={}/{}'.format( backbone_params_path, num_params, num_fixed_params)) qa_net = ModelForQAConditionalV1(backbone=backbone, dropout_prob=dropout, use_segmentation=use_segmentation, weight_initializer=TruncNorm(stdev=0.02)) if checkpoint_path is None: # Ignore the UserWarning during initialization, # There is no need to re-initialize the parameters of backbone qa_net.initialize(ctx=ctx_l) else: qa_net.load_parameters(checkpoint_path, ctx=ctx_l, cast_dtype=True) qa_net.hybridize() return cfg, tokenizer, qa_net, use_segmentation
Get the network that fine-tune the Question Answering Task Parameters ---------- model_name : str The model name of the backbone model ctx_l : Context list of training device like [mx.gpu(0), mx.gpu(1)] dropout : float Dropout probability of the task specified layer checkpoint_path: str Path to a Fine-tuned checkpoint backbone_path: str Path to the backbone model to be loaded in qa_net Returns ------- cfg tokenizer qa_net use_segmentation
get_network
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def setup_logging(args, local_rank): """ Setup logging configuration as well as random seed """ logging_config(args.output_dir, name='finetune_squad{}'.format(args.version),# avoid race overwrite_handler=True, console=(local_rank == 0)) logging.info(args) set_seed(args.seed) logging.debug('Random seed set to {}'.format(args.seed))
Setup logging configuration as well as random seed
setup_logging
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def predict_extended(original_feature, chunked_features, results, n_best_size, max_answer_length=64, start_top_n=5, end_top_n=5): """Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities. """ not_answerable_score = 1000000 # Score for not-answerable. We set it to be a large and positive # If one chunk votes for answerable, we will treat the context as answerable, # Thus, the overall not_answerable_score = min(chunk_not_answerable_score) all_start_idx = [] all_end_idx = [] all_pred_score = [] context_length = len(original_feature.context_token_ids) token_max_context_score = np.full((len(chunked_features), context_length), -np.inf, dtype=np.float32) for i, chunked_feature in enumerate(chunked_features): chunk_start = chunked_feature.chunk_start chunk_length = chunked_feature.chunk_length for j in range(chunk_start, chunk_start + chunk_length): # This is a heuristic score # TODO investigate the impact token_max_context_score[i, j] = min(j - chunk_start, chunk_start + chunk_length - 1 - j) \ + 0.01 * chunk_length token_max_chunk_id = token_max_context_score.argmax(axis=0) for chunk_id, (result, chunk_feature) in enumerate(zip(results, chunked_features)): # We use the log-likelihood as the not answerable score. # Thus, a high score indicates that the answer is not answerable cur_not_answerable_score = float(result.answerable_logits[1]) not_answerable_score = min(not_answerable_score, cur_not_answerable_score) # Calculate the start_logits + end_logits as the overall score context_offset = chunk_feature.context_offset chunk_start = chunk_feature.chunk_start chunk_length = chunk_feature.chunk_length for i in range(start_top_n): for j in range(end_top_n): pred_score = result.start_top_logits[i] + result.end_top_logits[i, j] start_index = result.start_top_index[i] end_index = result.end_top_index[i, j] # We could hypothetically create invalid predictions, e.g., predict # that the start of the answer span is in the query tokens or out of # the chunk. We throw out all invalid predictions. if not (context_offset <= start_index < context_offset + chunk_length) or \ not (context_offset <= end_index < context_offset + chunk_length) or \ end_index < start_index: continue pred_answer_length = end_index - start_index + 1 if pred_answer_length > max_answer_length: continue start_idx = int(start_index - context_offset + chunk_start) end_idx = int(end_index - context_offset + chunk_start) if token_max_chunk_id[start_idx] != chunk_id: continue all_start_idx.append(start_idx) all_end_idx.append(end_idx) all_pred_score.append(pred_score) sorted_start_end_score = sorted(zip(all_start_idx, all_end_idx, all_pred_score), key=lambda args: args[-1], reverse=True) nbest = [] context_text = original_feature.context_text context_token_offsets = original_feature.context_token_offsets seen_predictions = set() for start_idx, end_idx, pred_score in sorted_start_end_score: if len(seen_predictions) >= n_best_size: break pred_answer = context_text[context_token_offsets[start_idx][0]: context_token_offsets[end_idx][1]] seen_predictions.add(pred_answer) nbest.append((pred_answer, pred_score)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if len(nbest) == 0: nbest.append(('', float('-inf'))) all_scores = np.array([ele[1] for ele in nbest], dtype=np.float32) probs = np.exp(all_scores) / np.sum(np.exp(all_scores)) nbest_json = [] for i, (entry, prob) in enumerate(zip(nbest, probs)): output = collections.OrderedDict() output['text'] = entry[0] output['probability'] = float(prob) nbest_json.append(output) assert len(nbest_json) >= 1 return not_answerable_score, nbest[0][0], nbest_json
Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities.
predict_extended
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def collect(self, name, op_name, arr): """Callback function for collecting min and max values from an NDArray.""" if name not in self.include_layers: return arr = arr.copyto(mx.cpu()).asnumpy() min_range = np.min(arr) max_range = np.max(arr) if (name.find("sg_onednn_fully_connected_eltwise") != -1 or op_name.find("LayerNorm") != -1) \ and max_range > self.clip_max: max_range = self.clip_max elif name.find('sg_onednn_fully_connected') != -1 and min_range < self.clip_min: min_range = self.clip_min if name in self.min_max_dict: cur_min_max = self.min_max_dict[name] self.min_max_dict[name] = (min(cur_min_max[0], min_range), max(cur_min_max[1], max_range)) else: self.min_max_dict[name] = (min_range, max_range)
Callback function for collecting min and max values from an NDArray.
collect
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def eval_validation(ckpt_name, best_eval): """ Model inference during validation or final evaluation. """ dev_dataloader = mx.gluon.data.DataLoader( dev_all_chunk_features, batchify_fn=dataset_processor.BatchifyFunction, batch_size=args.eval_batch_size, num_workers=0, shuffle=False) if args.dtype == 'int8': quantize_and_calibrate(qa_net, dev_dataloader) log_interval = args.eval_log_interval all_results = [] epoch_tic = time.time() tic = time.time() epoch_size = len(dev_features) total_num = 0 log_num = 0 for batch_idx, dev_batch in enumerate(grouper(dev_dataloader, len(ctx_l))): # Predict for each chunk for sample, ctx in zip(dev_batch, ctx_l): if sample is None: continue # Copy the data to device tokens = sample.data.as_in_ctx(ctx) total_num += len(tokens) log_num += len(tokens) segment_ids = sample.segment_ids.as_in_ctx(ctx) if use_segmentation else None valid_length = sample.valid_length.as_in_ctx(ctx) p_mask = sample.masks.as_in_ctx(ctx) p_mask = 1 - p_mask # In the network, we use 1 --> no_mask, 0 --> mask start_top_logits, start_top_index, end_top_logits, end_top_index, answerable_logits \ = qa_net.inference(tokens, segment_ids, valid_length, p_mask, args.start_top_n, args.end_top_n) for i, qas_id in enumerate(sample.qas_id): result = RawResultExtended(qas_id=qas_id, start_top_logits=start_top_logits[i].asnumpy(), start_top_index=start_top_index[i].asnumpy(), end_top_logits=end_top_logits[i].asnumpy(), end_top_index=end_top_index[i].asnumpy(), answerable_logits=answerable_logits[i].asnumpy()) all_results.append(result) # logging if (batch_idx + 1) % log_interval == 0: # Output the loss of per step toc = time.time() logging.info( '[batch {}], Time cost={:.2f},' ' Throughput={:.2f} samples/s, ETA={:.2f}h'.format( batch_idx + 1, toc - tic, log_num / (toc - tic), (epoch_size - total_num) / (total_num / (toc - epoch_tic)) / 3600)) tic = time.time() log_num = 0 epoch_toc = time.time() logging.info('Time cost=%2f s, Thoughput=%.2f samples/s', epoch_toc - epoch_tic, total_num / (epoch_toc - epoch_tic)) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() no_answer_score_json = collections.OrderedDict() for index, (left_index, right_index) in enumerate(zip(dev_chunk_feature_ptr[:-1], dev_chunk_feature_ptr[1:])): chunked_features = dev_all_chunk_features[left_index:right_index] results = all_results[left_index:right_index] original_feature = dev_features[index] qas_ids = set([result.qas_id for result in results] + [feature.qas_id for feature in chunked_features]) assert len(qas_ids) == 1, 'Mismatch Occured between features and results' example_qas_id = list(qas_ids)[0] assert example_qas_id == original_feature.qas_id, \ 'Mismatch Occured between original feature and chunked features' not_answerable_score, best_pred, nbest_json = predict_extended( original_feature=original_feature, chunked_features=chunked_features, results=results, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, start_top_n=args.start_top_n, end_top_n=args.end_top_n) no_answer_score_json[example_qas_id] = not_answerable_score all_predictions[example_qas_id] = best_pred all_nbest_json[example_qas_id] = nbest_json if args.version == '2.0': exact = 'best_exact' f1 = 'best_f1' na_prob = no_answer_score_json else: exact = 'exact' f1 = 'f1' na_prob = None cur_eval, revised_predictions = squad_eval( dev_data_path, all_predictions, na_prob, revise=na_prob is not None) logging.info('The evaluated results are {}'.format(json.dumps(cur_eval))) cur_metrics = 0.5 * (cur_eval[exact] + cur_eval[f1]) if best_eval: best_metrics = 0.5 * (best_eval[exact] + best_eval[f1]) else: best_metrics = 0. if cur_metrics > best_metrics: logging.info('The evaluated files are saved in {}'.format(args.output_dir)) output_prediction_file = os.path.join(args.output_dir, 'predictions.json') output_nbest_file = os.path.join(args.output_dir, 'nbest_predictions.json') na_prob_file = os.path.join(args.output_dir, 'na_prob.json') revised_prediction_file = os.path.join(args.output_dir, 'revised_predictions.json') with open(output_prediction_file, 'w') as of: of.write(json.dumps(all_predictions, indent=4) + '\n') with open(output_nbest_file, 'w') as of: of.write(json.dumps(all_nbest_json, indent=4) + '\n') with open(na_prob_file, 'w') as of: of.write(json.dumps(no_answer_score_json, indent=4) + '\n') with open(revised_prediction_file, 'w') as of: of.write(json.dumps(revised_predictions, indent=4) + '\n') best_eval = cur_eval best_eval.update({'best_ckpt': ckpt_name}) return best_eval
Model inference during validation or final evaluation.
eval_validation
python
dmlc/gluon-nlp
scripts/question_answering/run_squad.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad.py
Apache-2.0
def __init__(self, tokenizer, doc_stride, max_seq_length, max_query_length): """ Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length """ self._tokenizer = tokenizer self._doc_stride = doc_stride self._max_seq_length = max_seq_length self._max_query_length = max_query_length vocab = tokenizer.vocab self.pad_id = vocab.pad_id # For roberta model, taking sepecial token <s> as [CLS] and </s> as [SEP] self.cls_id = vocab.bos_id if 'cls_token' not in vocab.special_token_keys else vocab.cls_id self.sep_id = vocab.eos_id if 'sep_token' not in vocab.special_token_keys else vocab.sep_id # TODO(sxjscience) Consider to combine the NamedTuple and batchify functionality. # Here, we use round_to=8 to improve the throughput. self.BatchifyFunction = bf.NamedTuple(ChunkFeature, {'qas_id': bf.List(), 'data': bf.Pad(val=self.pad_id, round_to=8), 'valid_length': bf.Stack(), 'segment_ids': bf.Pad(round_to=8), 'masks': bf.Pad(val=1, round_to=8), 'is_impossible': bf.Stack(), 'gt_start': bf.Stack(), 'gt_end': bf.Stack(), 'context_offset': bf.Stack(), 'chunk_start': bf.Stack(), 'chunk_length': bf.Stack()})
Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length
__init__
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def process_sample(self, feature: SquadFeature): """Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk """ ret = [] truncated_query_ids = feature.query_token_ids[:self._max_query_length] chunks = feature.get_chunks( doc_stride=self._doc_stride, max_chunk_length=self._max_seq_length - len(truncated_query_ids) - 3) for chunk in chunks: data = np.array([self.cls_id] + truncated_query_ids + [self.sep_id] + feature.context_token_ids[chunk.start:(chunk.start + chunk.length)] + [self.sep_id], dtype=np.int32) valid_length = len(data) segment_ids = np.array([0] + [0] * len(truncated_query_ids) + [0] + [1] * chunk.length + [1], dtype=np.int32) masks = np.array([0] + [1] * len(truncated_query_ids) + [1] + [0] * chunk.length + [1], dtype=np.int32) context_offset = len(truncated_query_ids) + 2 if chunk.gt_start_pos is None and chunk.gt_end_pos is None: start_pos = 0 end_pos = 0 else: # Here, we increase the start and end because we put query before context start_pos = chunk.gt_start_pos + context_offset end_pos = chunk.gt_end_pos + context_offset chunk_feature = ChunkFeature(qas_id=feature.qas_id, data=data, valid_length=valid_length, segment_ids=segment_ids, masks=masks, is_impossible=chunk.is_impossible, gt_start=start_pos, gt_end=end_pos, context_offset=context_offset, chunk_start=chunk.start, chunk_length=chunk.length) ret.append(chunk_feature) return ret
Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk
process_sample
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def get_train(self, features, skip_unreliable=True): """Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable """ train_dataset = [] num_token_answer_mismatch = 0 num_unreliable = 0 for feature in features: if feature.token_answer_mismatch: num_token_answer_mismatch += 1 if feature.unreliable_span: num_unreliable += 1 if skip_unreliable and feature.unreliable_span: # Skip when not reliable continue # Process the feature chunk_features = self.process_sample(feature) train_dataset.extend(chunk_features) return train_dataset, num_token_answer_mismatch, num_unreliable
Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable
get_train
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def get_squad_features(args, tokenizer, segment): """ Get processed data features of SQuADExampls Parameters ---------- args : argparse.Namespace tokenizer: Tokenizer instance segment: str train or dev Returns ------- data_features The list of processed data features """ data_cache_path = os.path.join(CACHE_PATH, '{}_{}_squad_{}.ndjson'.format( segment, args.model_name, args.version)) is_training = (segment == 'train') if os.path.exists(data_cache_path) and not args.overwrite_cache: data_features = [] with open(data_cache_path, 'r') as f: for line in f: data_features.append(SquadFeature.from_json(line)) logging.info('Found cached data features, load from {}'.format(data_cache_path)) else: data_examples = get_squad_examples(args.data_dir, segment=segment, version=args.version) start = time.time() num_process = min(cpu_count(), 8) logging.info('Tokenize Data:') with Pool(num_process) as pool: data_features = pool.map(functools.partial(convert_squad_example_to_feature, tokenizer=tokenizer, is_training=is_training), data_examples) logging.info('Done! Time spent:{:.2f} seconds'.format(time.time() - start)) with open(data_cache_path, 'w') as f: for feature in data_features: f.write(feature.to_json() + '\n') return data_features
Get processed data features of SQuADExampls Parameters ---------- args : argparse.Namespace tokenizer: Tokenizer instance segment: str train or dev Returns ------- data_features The list of processed data features
get_squad_features
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def get_network(model_name, ctx_l, dropout=0.1, checkpoint_path=None, backbone_path=None, dtype='float32'): """ Get the network that fine-tune the Question Answering Task Parameters ---------- model_name : str The model name of the backbone model ctx_l : Context list of training device like [mx.gpu(0), mx.gpu(1)] dropout : float Dropout probability of the task specified layer checkpoint_path: str Path to a Fine-tuned checkpoint backbone_path: str Path to the backbone model to be loaded in qa_net Returns ------- cfg tokenizer qa_net use_segmentation """ # Create the network use_segmentation = 'roberta' not in model_name and 'xlmr' not in model_name Model, cfg, tokenizer, download_params_path, _ = \ get_backbone(model_name, load_backbone=not backbone_path) backbone = Model.from_cfg(cfg, use_pooler=False, dtype=dtype) # Load local backbone parameters if backbone_path provided. # Otherwise, download backbone parameters from gluon zoo. backbone_params_path = backbone_path if backbone_path else download_params_path if checkpoint_path is None: backbone.load_parameters(backbone_params_path, ignore_extra=True, ctx=ctx_l, cast_dtype=True) num_params, num_fixed_params\ = count_parameters(deduplicate_param_dict(backbone.collect_params())) logging.info( 'Loading Backbone Model from {}, with total/fixd parameters={}/{}'.format( backbone_params_path, num_params, num_fixed_params)) qa_net = ModelForQAConditionalV1(backbone=backbone, dropout_prob=dropout, use_segmentation=use_segmentation, weight_initializer=TruncNorm(stdev=0.02)) if checkpoint_path is None: # Ignore the UserWarning during initialization, # There is no need to re-initialize the parameters of backbone qa_net.initialize(ctx=ctx_l) else: qa_net.load_parameters(checkpoint_path, ctx=ctx_l, cast_dtype=True) qa_net.hybridize() return cfg, tokenizer, qa_net, use_segmentation
Get the network that fine-tune the Question Answering Task Parameters ---------- model_name : str The model name of the backbone model ctx_l : Context list of training device like [mx.gpu(0), mx.gpu(1)] dropout : float Dropout probability of the task specified layer checkpoint_path: str Path to a Fine-tuned checkpoint backbone_path: str Path to the backbone model to be loaded in qa_net Returns ------- cfg tokenizer qa_net use_segmentation
get_network
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def setup_logging(args, local_rank): """ Setup logging configuration as well as random seed """ logging_config(args.output_dir, name='finetune_squad{}'.format(args.version), # avoid race overwrite_handler=True, console=(local_rank == 0)) logging.info(args) set_seed(args.seed) logging.debug('Random seed set to {}'.format(args.seed))
Setup logging configuration as well as random seed
setup_logging
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def predict_extended(original_feature, chunked_features, results, n_best_size, max_answer_length=64, start_top_n=5, end_top_n=5): """Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities. """ not_answerable_score = 1000000 # Score for not-answerable. We set it to be a large and positive # If one chunk votes for answerable, we will treat the context as answerable, # Thus, the overall not_answerable_score = min(chunk_not_answerable_score) all_start_idx = [] all_end_idx = [] all_pred_score = [] context_length = len(original_feature.context_token_ids) token_max_context_score = np.full((len(chunked_features), context_length), -np.inf, dtype=np.float32) for i, chunked_feature in enumerate(chunked_features): chunk_start = chunked_feature.chunk_start chunk_length = chunked_feature.chunk_length for j in range(chunk_start, chunk_start + chunk_length): # This is a heuristic score # TODO investigate the impact token_max_context_score[i, j] = min(j - chunk_start, chunk_start + chunk_length - 1 - j) \ + 0.01 * chunk_length token_max_chunk_id = token_max_context_score.argmax(axis=0) for chunk_id, (result, chunk_feature) in enumerate(zip(results, chunked_features)): # We use the log-likelihood as the not answerable score. # Thus, a high score indicates that the answer is not answerable cur_not_answerable_score = float(result.answerable_logits[1]) not_answerable_score = min(not_answerable_score, cur_not_answerable_score) # Calculate the start_logits + end_logits as the overall score context_offset = chunk_feature.context_offset chunk_start = chunk_feature.chunk_start chunk_length = chunk_feature.chunk_length for i in range(start_top_n): for j in range(end_top_n): pred_score = result.start_top_logits[i] + result.end_top_logits[i, j] start_index = result.start_top_index[i] end_index = result.end_top_index[i, j] # We could hypothetically create invalid predictions, e.g., predict # that the start of the answer span is in the query tokens or out of # the chunk. We throw out all invalid predictions. if not (context_offset <= start_index < context_offset + chunk_length) or \ not (context_offset <= end_index < context_offset + chunk_length) or \ end_index < start_index: continue pred_answer_length = end_index - start_index + 1 if pred_answer_length > max_answer_length: continue start_idx = int(start_index - context_offset + chunk_start) end_idx = int(end_index - context_offset + chunk_start) if token_max_chunk_id[start_idx] != chunk_id: continue all_start_idx.append(start_idx) all_end_idx.append(end_idx) all_pred_score.append(pred_score) sorted_start_end_score = sorted(zip(all_start_idx, all_end_idx, all_pred_score), key=lambda args: args[-1], reverse=True) nbest = [] context_text = original_feature.context_text context_token_offsets = original_feature.context_token_offsets seen_predictions = set() for start_idx, end_idx, pred_score in sorted_start_end_score: if len(seen_predictions) >= n_best_size: break pred_answer = context_text[context_token_offsets[start_idx][0]: context_token_offsets[end_idx][1]] seen_predictions.add(pred_answer) nbest.append((pred_answer, pred_score)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if len(nbest) == 0: nbest.append(('', float('-inf'))) all_scores = np.array([ele[1] for ele in nbest], dtype=np.float32) probs = np.exp(all_scores) / np.sum(np.exp(all_scores)) nbest_json = [] for i, (entry, prob) in enumerate(zip(nbest, probs)): output = collections.OrderedDict() output['text'] = entry[0] output['probability'] = float(prob) nbest_json.append(output) assert len(nbest_json) >= 1 return not_answerable_score, nbest[0][0], nbest_json
Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities.
predict_extended
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def eval_validation(backbone): """ Model inference during validation or final evaluation. """ del qa_net.quantized_backbone qa_net.quantized_backbone = backbone dev_dataloader = mx.gluon.data.DataLoader( dev_all_chunk_features, batchify_fn=dataset_processor.BatchifyFunction, batch_size=args.eval_batch_size, num_workers=0, shuffle=False) log_interval = args.eval_log_interval all_results = [] epoch_tic = time.time() tic = time.time() epoch_size = len(dev_features) total_num = 0 log_num = 0 best_eval = {} for batch_idx, dev_batch in enumerate(grouper(dev_dataloader, len(ctx_l))): # Predict for each chunk for sample, ctx in zip(dev_batch, ctx_l): if sample is None: continue # Copy the data to device tokens = sample.data.as_in_ctx(ctx) total_num += len(tokens) log_num += len(tokens) segment_ids = sample.segment_ids.as_in_ctx(ctx) if use_segmentation else None valid_length = sample.valid_length.as_in_ctx(ctx) p_mask = sample.masks.as_in_ctx(ctx) p_mask = 1 - p_mask # In the network, we use 1 --> no_mask, 0 --> mask start_top_logits, start_top_index, end_top_logits, end_top_index, answerable_logits \ = qa_net.inference(tokens, segment_ids, valid_length, p_mask, args.start_top_n, args.end_top_n) for i, qas_id in enumerate(sample.qas_id): result = RawResultExtended(qas_id=qas_id, start_top_logits=start_top_logits[i].asnumpy(), start_top_index=start_top_index[i].asnumpy(), end_top_logits=end_top_logits[i].asnumpy(), end_top_index=end_top_index[i].asnumpy(), answerable_logits=answerable_logits[i].asnumpy()) all_results.append(result) # logging if (batch_idx + 1) % log_interval == 0: # Output the loss of per step toc = time.time() logging.info( '[batch {}], Time cost={:.2f},' ' Throughput={:.2f} samples/s, ETA={:.2f}h'.format( batch_idx + 1, toc - tic, log_num / (toc - tic), (epoch_size - total_num) / (total_num / (toc - epoch_tic)) / 3600)) tic = time.time() log_num = 0 epoch_toc = time.time() logging.info('Time cost=%2f s, Thoughput=%.2f samples/s', epoch_toc - epoch_tic, total_num / (epoch_toc - epoch_tic)) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() no_answer_score_json = collections.OrderedDict() for index, (left_index, right_index) in enumerate(zip(dev_chunk_feature_ptr[:-1], dev_chunk_feature_ptr[1:])): chunked_features = dev_all_chunk_features[left_index:right_index] results = all_results[left_index:right_index] original_feature = dev_features[index] qas_ids = set([result.qas_id for result in results] + [feature.qas_id for feature in chunked_features]) assert len(qas_ids) == 1, 'Mismatch Occured between features and results' example_qas_id = list(qas_ids)[0] assert example_qas_id == original_feature.qas_id, \ 'Mismatch Occured between original feature and chunked features' not_answerable_score, best_pred, nbest_json = predict_extended( original_feature=original_feature, chunked_features=chunked_features, results=results, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, start_top_n=args.start_top_n, end_top_n=args.end_top_n) no_answer_score_json[example_qas_id] = not_answerable_score all_predictions[example_qas_id] = best_pred all_nbest_json[example_qas_id] = nbest_json if args.version == '2.0': exact = 'best_exact' f1 = 'best_f1' na_prob = no_answer_score_json else: exact = 'exact' f1 = 'f1' na_prob = None cur_eval, revised_predictions = squad_eval( dev_dataset, all_predictions, na_prob, revise=na_prob is not None) logging.info('The evaluated results are {}'.format(json.dumps(cur_eval))) cur_metrics = 0.5 * (cur_eval[exact] + cur_eval[f1]) if best_eval: best_metrics = 0.5 * (best_eval[exact] + best_eval[f1]) else: best_metrics = 0. if cur_metrics > best_metrics: logging.info('The evaluated files are saved in {}'.format(args.output_dir)) output_prediction_file = os.path.join(args.output_dir, 'predictions.json') output_nbest_file = os.path.join(args.output_dir, 'nbest_predictions.json') na_prob_file = os.path.join(args.output_dir, 'na_prob.json') revised_prediction_file = os.path.join(args.output_dir, 'revised_predictions.json') with open(output_prediction_file, 'w') as of: of.write(json.dumps(all_predictions, indent=4) + '\n') with open(output_nbest_file, 'w') as of: of.write(json.dumps(all_nbest_json, indent=4) + '\n') with open(na_prob_file, 'w') as of: of.write(json.dumps(no_answer_score_json, indent=4) + '\n') with open(revised_prediction_file, 'w') as of: of.write(json.dumps(revised_predictions, indent=4) + '\n') best_eval = cur_eval best_eval.update({'best_ckpt': 'mybest'}) return best_eval['best_f1']/100
Model inference during validation or final evaluation.
eval_validation
python
dmlc/gluon-nlp
scripts/question_answering/run_squad_albert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/run_squad_albert.py
Apache-2.0
def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace. This is from the official evaluate-v2.0.py in SQuAD. """ def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
Lower text and remove punctuation, articles and extra whitespace. This is from the official evaluate-v2.0.py in SQuAD.
normalize_answer
python
dmlc/gluon-nlp
scripts/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/squad_utils.py
Apache-2.0
def get_chunks(self, doc_stride, max_chunk_length=None): """Get a sequence of chunks for the squad feature. In reality, the document will be too long for the NLP model, and we will split it into multiple chunks. For example, consider the following Doc: the man went to the store and bought a gallon of milk We may divide it into four chunks: Chunk 1: the man went to the Chunk 2: to the store and bought Chunk 3: and bought a gallon of Chunk 4: gallon of milk We will use our network to extract features for each chunk, and do the aggregation afterwards. Here, one token may appear in multiple chunks. We can vote the output based on some heuristic score functions. Parameters ---------- doc_stride The stride used when the context is too large and is split across several features. max_chunk_length The maximum size of the chunk Returns ------- ret List of DocChunk objects """ doc_ptr = 0 max_chunk_length = max_chunk_length if max_chunk_length is not None else \ len(self.context_token_ids) ret = [] while doc_ptr < len(self.context_token_ids): chunk_length = min(max_chunk_length, len(self.context_token_ids) - doc_ptr) if self.gt_answer_text is None: chunk_gt_start_pos = None chunk_gt_end_pos = None chunk_is_impossible = True else: if self.gt_start_pos is not None and self.gt_end_pos is not None and\ self.gt_start_pos >= doc_ptr and self.gt_end_pos < doc_ptr + chunk_length: # The chunk contains the ground-truth annotation chunk_gt_start_pos = self.gt_start_pos - doc_ptr chunk_gt_end_pos = self.gt_end_pos - doc_ptr chunk_is_impossible = False else: chunk_gt_start_pos = None chunk_gt_end_pos = None chunk_is_impossible = True ret.append(DocChunk(start=doc_ptr, length=chunk_length, is_impossible=chunk_is_impossible, gt_start_pos=chunk_gt_start_pos, gt_end_pos=chunk_gt_end_pos)) if doc_ptr + chunk_length == len(self.context_token_ids): break doc_ptr += doc_stride return ret
Get a sequence of chunks for the squad feature. In reality, the document will be too long for the NLP model, and we will split it into multiple chunks. For example, consider the following Doc: the man went to the store and bought a gallon of milk We may divide it into four chunks: Chunk 1: the man went to the Chunk 2: to the store and bought Chunk 3: and bought a gallon of Chunk 4: gallon of milk We will use our network to extract features for each chunk, and do the aggregation afterwards. Here, one token may appear in multiple chunks. We can vote the output based on some heuristic score functions. Parameters ---------- doc_stride The stride used when the context is too large and is split across several features. max_chunk_length The maximum size of the chunk Returns ------- ret List of DocChunk objects
get_chunks
python
dmlc/gluon-nlp
scripts/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/squad_utils.py
Apache-2.0
def get_squad_examples_from_json(json_file: str, is_training: bool) -> List[SquadExample]: """ Read the whole entry of raw json file and convert it to examples. Parameters ---------- json_file The path to the json file is_training Whether or not training Returns ------- ret List of SquadExample objects """ with open(json_file, 'r') as f: data = json.load(f) examples = [] for entry in tqdm(data['data']): title = entry['title'] for paragraph in entry['paragraphs']: context_text = paragraph['context'] for qa in paragraph['qas']: qas_id = qa['id'] query_text = qa['question'] start_position = None end_position = None answer_text = None answers = None if "is_impossible" in qa: is_impossible = qa["is_impossible"] else: is_impossible = False if not is_impossible: if is_training: answer = qa["answers"][0] answer_text = answer["text"] start_position = answer["answer_start"] end_position = start_position + len(answer_text) if context_text[start_position:end_position] != answer_text: warnings.warn( 'Mismatch start/end and answer_text, start/end={}/{},' ' answer text={}. qas={}' .format(start_position, end_position, answer_text, qas_id)) else: answers = qa["answers"] example = SquadExample( qas_id=qas_id, query_text=query_text, context_text=context_text, answer_text=answer_text, start_position=start_position, end_position=end_position, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) return examples
Read the whole entry of raw json file and convert it to examples. Parameters ---------- json_file The path to the json file is_training Whether or not training Returns ------- ret List of SquadExample objects
get_squad_examples_from_json
python
dmlc/gluon-nlp
scripts/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/squad_utils.py
Apache-2.0
def get_squad_examples(data_dir, segment='train', version='1.1'): """ Parameters ---------- data_dir The directory of the data segment The segment version Version of the SQuAD Returns ------- examples A list of SquadExampls objects """ if version == '1.1': train_path = os.path.join(data_dir, 'train-v1.1.json') dev_path = os.path.join(data_dir, 'dev-v1.1.json') elif version == '2.0': train_path = os.path.join(data_dir, 'train-v2.0.json') dev_path = os.path.join(data_dir, 'dev-v2.0.json') else: raise NotImplementedError if segment == 'train': examples = get_squad_examples_from_json(train_path, is_training=True) elif segment == 'dev': examples = get_squad_examples_from_json(dev_path, is_training=False) else: raise NotImplementedError return examples
Parameters ---------- data_dir The directory of the data segment The segment version Version of the SQuAD Returns ------- examples A list of SquadExampls objects
get_squad_examples
python
dmlc/gluon-nlp
scripts/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/squad_utils.py
Apache-2.0
def convert_squad_example_to_feature(example: SquadExample, tokenizer: BaseTokenizerWithVocab, is_training: bool): """ Convert a SquadExample object to a SquadFeature object with the designated tokenizer. There are accually few examples can not be converted properly with token level tokenization, due to the ground-truth are given by the start position and the answer text, and some examples are annotated with wrong labels. Thus, attribute unreliable_span and token_answer_mismatch are used to indicate these senarios. Parameters ---------- example A single squad example tokenizer The trained tokenizer is_training Whether to deal with the training case Returns ------- feature A SquadFeature """ context_text = example.context_text answer_text = example.answer_text query_text = example.query_text context_token_ids, offsets = tokenizer.encode_with_offsets(context_text, int) query_token_ids = tokenizer.encode(query_text, int) gt_answer_text = answer_text gt_span_start_pos, gt_span_end_pos = None, None token_answer_mismatch = False unreliable_span = False np_offsets = np.array(offsets) if is_training and not example.is_impossible: assert example.start_position >= 0 and example.end_position >= 0 # We convert the character-level offsets to token-level offsets # Also, if the answer after tokenization + detokenization is not the same as the original # answer, we try to localize the answer text and do a rematch candidates = [(example.start_position, example.end_position)] all_possible_start_pos = {example.start_position} find_all_candidates = False lower_idx, upper_idx = None, None first_lower_idx, first_upper_idx = None, None while len(candidates) > 0: start_position, end_position = candidates.pop() # Match the token offsets token_start_ends = match_tokens_with_char_spans(np_offsets, np.array([[start_position, end_position]])) lower_idx = int(token_start_ends[0][0]) upper_idx = int(token_start_ends[0][1]) if not find_all_candidates: first_lower_idx = lower_idx first_upper_idx = upper_idx # The new start pos and end_pos are the lower_idx and upper_idx sliced_answer = context_text[offsets[lower_idx][0]:offsets[upper_idx][1]] norm_sliced_answer = normalize_answer(sliced_answer) norm_answer = normalize_answer(answer_text) if norm_sliced_answer != norm_answer: if not find_all_candidates: # Try to find a better start+end of the answer and insert all positions to the # candidates find_all_candidates = True pos = context_text.find(answer_text) while pos != -1: if pos not in all_possible_start_pos: all_possible_start_pos.add(pos) candidates.append((pos, pos + len(answer_text))) pos = context_text.find(answer_text, pos + 1) elif len(candidates) == 0: token_answer_mismatch = True lower_idx = first_lower_idx upper_idx = first_upper_idx if int_float_regex.match(answer_text): # Find an integer/float and the sample won't be reliable. # The span-based approach is not suitable for this scenario and we will # set the unreliable span flag. unreliable_span = True else: break gt_span_start_pos = lower_idx gt_span_end_pos = upper_idx feature = SquadFeature(qas_id=example.qas_id, query_token_ids=query_token_ids, context_text=context_text, context_token_ids=context_token_ids, context_token_offsets=offsets, is_impossible=example.is_impossible, token_answer_mismatch=token_answer_mismatch, unreliable_span=unreliable_span, gt_answer_text=gt_answer_text, gt_start_pos=gt_span_start_pos, gt_end_pos=gt_span_end_pos) return feature
Convert a SquadExample object to a SquadFeature object with the designated tokenizer. There are accually few examples can not be converted properly with token level tokenization, due to the ground-truth are given by the start position and the answer text, and some examples are annotated with wrong labels. Thus, attribute unreliable_span and token_answer_mismatch are used to indicate these senarios. Parameters ---------- example A single squad example tokenizer The trained tokenizer is_training Whether to deal with the training case Returns ------- feature A SquadFeature
convert_squad_example_to_feature
python
dmlc/gluon-nlp
scripts/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/question_answering/squad_utils.py
Apache-2.0
def gen_self_attn_mask(data, valid_length=None, dtype: type = np.float32, attn_type: str = 'full', layout: str = 'NT'): """Generate the mask used for the encoder, i.e, self-attention. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data with two samples: .. code-block:: none data = [['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP' ], ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>']] valid_length = [8, 6] - attn_type = 'causal' Each token will attend to itself + the tokens before. It will not attend to tokens in the future. For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 0, 0, 0, 0, 0, 0, 0 'the': 1, 1, 0, 0, 0, 0, 0, 0 'force': 1, 1, 1, 0, 0, 0, 0, 0 'be': 1, 1, 1, 1, 0, 0, 0, 0 'with': 1, 1, 1, 1, 1, 0, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 - attn_type = 'full' Each token will attend to both the tokens before and in the future For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1, 1, 1, 1, 1 'can': 1, 1, 1, 1, 1, 1, 1, 1 'now': 1, 1, 1, 1, 1, 1, 1, 1 'use': 1, 1, 1, 1, 1, 1, 1, 1 'numpy': 1, 1, 1, 1, 1, 1, 1, 1 'in': 1, 1, 1, 1, 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 1 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 1, 1, 1, 1, 1, 0, 0 'the': 1, 1, 1, 1, 1, 1, 0, 0 'force': 1, 1, 1, 1, 1, 1, 0, 0 'be': 1, 1, 1, 1, 1, 1, 0, 0 'with': 1, 1, 1, 1, 1, 1, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 Parameters ---------- data The data. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) dtype Data type of the mask attn_type Can be 'full' or 'causal' layout The layout of the data Returns ------- mask Shape (batch_size, seq_length, seq_length) """ if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) if attn_type == 'full': if valid_length is not None: valid_length = valid_length.astype(dtype) steps = npx.arange_like(data, axis=time_axis) # (seq_length,) mask1 = (npx.reshape(steps, (1, 1, -1)) < npx.reshape(valid_length, (-2, 1, 1))) mask2 = (npx.reshape(steps, (1, -1, 1)) < npx.reshape(valid_length, (-2, 1, 1))) mask = mask1 * mask2 else: # TODO(sxjscience) optimize seq_len_ones = np.ones_like(npx.arange_like(data, axis=time_axis)) # (seq_length,) batch_ones = np.ones_like(npx.arange_like(data, axis=batch_axis)) # (batch_size,) mask = batch_ones.reshape((-1, 1, 1)) * seq_len_ones.reshape((1, -1, 1))\ * seq_len_ones.reshape((1, 1, -1)) elif attn_type == 'causal': steps = npx.arange_like(data, axis=time_axis) # mask: (seq_length, seq_length) # batch_mask: (batch_size, seq_length) mask = (np.expand_dims(steps, axis=0) <= np.expand_dims(steps, axis=1)).astype(dtype) if valid_length is not None: valid_length = valid_length.astype(dtype) batch_mask = (np.expand_dims(steps, axis=0) < np.expand_dims(valid_length, axis=-1)).astype(dtype) mask = mask * np.expand_dims(batch_mask, axis=-1) else: batch_ones = np.ones_like(npx.arange_like(data, axis=batch_axis), dtype=dtype) # (batch_size,) mask = mask * batch_ones.reshape((-1, 1, 1)) else: raise NotImplementedError return mask.astype(np.bool)
Generate the mask used for the encoder, i.e, self-attention. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data with two samples: .. code-block:: none data = [['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP' ], ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>']] valid_length = [8, 6] - attn_type = 'causal' Each token will attend to itself + the tokens before. It will not attend to tokens in the future. For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 0, 0, 0, 0, 0, 0, 0 'can': 1, 1, 0, 0, 0, 0, 0, 0 'now': 1, 1, 1, 0, 0, 0, 0, 0 'use': 1, 1, 1, 1, 0, 0, 0, 0 'numpy': 1, 1, 1, 1, 1, 0, 0, 0 'in': 1, 1, 1, 1, 1, 1, 0, 0 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 0 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 0, 0, 0, 0, 0, 0, 0 'the': 1, 1, 0, 0, 0, 0, 0, 0 'force': 1, 1, 1, 0, 0, 0, 0, 0 'be': 1, 1, 1, 1, 0, 0, 0, 0 'with': 1, 1, 1, 1, 1, 0, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 - attn_type = 'full' Each token will attend to both the tokens before and in the future For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use', 'numpy', 'in', 'Gluon@@', 'NLP'] 'I': 1, 1, 1, 1, 1, 1, 1, 1 'can': 1, 1, 1, 1, 1, 1, 1, 1 'now': 1, 1, 1, 1, 1, 1, 1, 1 'use': 1, 1, 1, 1, 1, 1, 1, 1 'numpy': 1, 1, 1, 1, 1, 1, 1, 1 'in': 1, 1, 1, 1, 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1, 1, 1, 1, 1 'NLP': 1, 1, 1, 1, 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['May', 'the', 'force', 'be', 'with', 'you', '<PAD>', '<PAD>'] 'May': 1, 1, 1, 1, 1, 1, 0, 0 'the': 1, 1, 1, 1, 1, 1, 0, 0 'force': 1, 1, 1, 1, 1, 1, 0, 0 'be': 1, 1, 1, 1, 1, 1, 0, 0 'with': 1, 1, 1, 1, 1, 1, 0, 0 'you': 1, 1, 1, 1, 1, 1, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 '<PAD>': 0, 0, 0, 0, 0, 0, 0, 0 Parameters ---------- data The data. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) valid_length Shape (batch_size,) dtype Data type of the mask attn_type Can be 'full' or 'causal' layout The layout of the data Returns ------- mask Shape (batch_size, seq_length, seq_length)
gen_self_attn_mask
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def gen_mem_attn_mask(mem, mem_valid_length, data, data_valid_length=None, dtype=np.float32, layout: str = 'NT'): """Generate the mask used for the decoder. All query slots are attended to the memory slots. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data + mem with a batch of two samples: .. code-block:: none mem = [['I', 'can', 'now', 'use'], ['May', 'the', 'force', '<PAD>']] mem_valid_length = [4, 3] data = [['numpy', 'in', 'Gluon@@', 'NLP' ], ['be', 'with', 'you', '<PAD>']] data_valid_length = [4, 3] For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use'] 'numpy': 1, 1, 1, 1 'in': 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1 'NLP': 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['be', 'with', 'you', '<PAD>'] 'May': 1, 1, 1, 0 'the': 1, 1, 1, 0 'force': 1, 1, 1, 0 '<PAD>': 0, 0, 0, 0 Parameters ---------- mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length : Shape (batch_size,) data - layout = 'NT' Shape (batch_size, query_length, C_data) - layout = 'TN' Shape (query_length, batch_size, C_data) data_valid_length : Shape (batch_size,) dtype Data type of the mask layout Layout of the data + mem tensor Returns ------- mask : Shape (batch_size, query_length, mem_length) """ if layout == 'NT': batch_axis, time_axis = 0, 1 elif layout == 'TN': batch_axis, time_axis = 1, 0 else: raise NotImplementedError('Unsupported layout={}'.format(layout)) mem_valid_length = mem_valid_length.astype(dtype) mem_steps = npx.arange_like(mem, axis=time_axis) # (mem_length,) data_steps = npx.arange_like(data, axis=time_axis) # (query_length,) mem_mask = (npx.reshape(mem_steps, (1, 1, -1)) < npx.reshape(mem_valid_length, (-2, 1, 1))).astype(dtype) # (B, 1, mem_length) if data_valid_length is not None: data_valid_length = data_valid_length.astype(dtype) data_mask = (npx.reshape(data_steps, (1, -1, 1)) < npx.reshape(data_valid_length, (-2, 1, 1))).astype(dtype) # (B, query_length, 1) mask = mem_mask * data_mask else: query_length_ones = np.ones_like(data_steps) mask = query_length_ones.reshape((1, -1, 1)) * mem_mask return mask.astype(np.bool)
Generate the mask used for the decoder. All query slots are attended to the memory slots. In our implementation, 1 --> not masked, 0 --> masked Let's consider the data + mem with a batch of two samples: .. code-block:: none mem = [['I', 'can', 'now', 'use'], ['May', 'the', 'force', '<PAD>']] mem_valid_length = [4, 3] data = [['numpy', 'in', 'Gluon@@', 'NLP' ], ['be', 'with', 'you', '<PAD>']] data_valid_length = [4, 3] For our example, the mask of the first sample is .. code-block:: none ['I', 'can', 'now', 'use'] 'numpy': 1, 1, 1, 1 'in': 1, 1, 1, 1 'Gluon@@': 1, 1, 1, 1 'NLP': 1, 1, 1, 1 The mask of the second sample is .. code-block:: none ['be', 'with', 'you', '<PAD>'] 'May': 1, 1, 1, 0 'the': 1, 1, 1, 0 'force': 1, 1, 1, 0 '<PAD>': 0, 0, 0, 0 Parameters ---------- mem - layout = 'NT' Shape (batch_size, mem_length, C_mem) - layout = 'TN' Shape (mem_length, batch_size, C_mem) mem_valid_length : Shape (batch_size,) data - layout = 'NT' Shape (batch_size, query_length, C_data) - layout = 'TN' Shape (query_length, batch_size, C_data) data_valid_length : Shape (batch_size,) dtype Data type of the mask layout Layout of the data + mem tensor Returns ------- mask : Shape (batch_size, query_length, mem_length)
gen_mem_attn_mask
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def masked_softmax(att_score, mask, axis: int = -1, temperature=None): """Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symbol or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) 1 --> The element is not masked 0 --> The element is masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] temperature The temperature. It scales down the scores before applying the softmax. Returns ------- att_weights : Symborl or NDArray Shape (..., length, ...) """ if mask is None: return npx.softmax(att_score, axis=axis, temperature=temperature) else: return npx.masked_softmax(att_score, mask=mask.astype(np.bool), axis=axis, temperature=temperature)
Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symbol or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) 1 --> The element is not masked 0 --> The element is masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] temperature The temperature. It scales down the scores before applying the softmax. Returns ------- att_weights : Symborl or NDArray Shape (..., length, ...)
masked_softmax
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def masked_logsoftmax(att_score, mask, axis: int = -1): """Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) mask = 1 --> not masked mask = 0 --> masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- logits : Symborl or NDArray Shape (..., length, ...) The masked values will be all zero """ if mask is None: return npx.log_softmax(att_score, axis=axis) else: mask = mask.astype(np.bool) return np.where(mask, npx.masked_log_softmax(att_score, mask, axis=axis), -np.inf)
Ignore the masked elements when calculating the softmax. The mask can be broadcastable. Parameters ---------- att_score : Symborl or NDArray Shape (..., length, ...) mask : Symbol or NDArray or None Shape (..., length, ...) mask = 1 --> not masked mask = 0 --> masked axis The axis to calculate the softmax. att_score.shape[axis] must be the same as mask.shape[axis] Returns ------- logits : Symborl or NDArray Shape (..., length, ...) The masked values will be all zero
masked_logsoftmax
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def multi_head_dot_attn(query, key, value, mask=None, edge_scores=None, dropout: float = 0.0, scaled: bool = True, normalized: bool = False, eps: float = 1E-6, query_head_units: Optional[int] = None, layout: str = 'NKT', use_einsum: bool = False): """Multihead dot product attention between the query, key, value. scaled is False, normalized is False: D(h_q, h_k) = <h_q, h_k> scaled is True, normalized is False: D(h_q, h_k) = <h_q, h_k> / sqrt(dim_q) scaled is False, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> scaled is True, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> / sqrt(dim_q) If edge_scores is provided, we will calcualte the attention as scores = D(h_q, h_k) + EdgeScore_{q, k} Parameters ---------- query Query. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, query_length, key_dim) - layout is 'NTK' Shape (batch_size, query_length, num_heads, key_dim) - layout is 'TNK' Shape (query_length, batch_size, num_heads, key_dim) key Key. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, key_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, key_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, key_dim) value Value. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, value_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, value_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, value_dim) mask Mask between query and memory. Shape (batch_size, query_length, mem_length) edge_scores The edge attention score. Shape can be any shape that is broadcastable to (batch_size, num_heads, query_length, mem_length) dropout Dropout rate scaled Whether to divide the attention weights by the sqrt of the query dimension. This is first proposed in "[NIPS2017] Attention is all you need.":: .. code-block:: none score = <h_q, h_k> / sqrt(dim_q) normalized If turned on, the cosine distance is used, i.e:: .. code-block:: none score = <h_q / ||h_q||, h_k / ||h_k||> eps The epsilon value used in L2 normalization query_head_units The units of each query head. If it's empty, we will estimate it via the shape_array of the query. layout This stands for the layout of the attention cell. The shape of the input/output will depend on the layout. Currently, we support 'NKT', 'NTK' and 'TNK' in which 'N' means the batch_size, 'K' means the head, and 'T' means the length dimension. use_einsum Whether to use einsum for the computation Returns ------- context_vec - layout is 'NKT' or 'NTK' Shape (batch_size, query_length, num_heads * value_units) - layout is 'TNK' Shape (query_length, batch_size, num_heads * value_units) additional_info scores: Shape (batch_size, num_head, query_length, mem_length) attn_weight: Shape (batch_size, num_head, query_length, mem_length) """ # TODO(sxjscience) Profile layout if normalized: query = l2_normalize(query, axis=-1, eps=eps) key = l2_normalize(key, axis=-1, eps=eps) if scaled: if query_head_units is None: raise NotImplementedError('You will need to specify query_head_units!') else: scale = math.sqrt(query_head_units) else: scale = None if layout == 'NKT': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (B, N, L_query, C_Q) X (B, N, L_mem, C_Q) --> (B, N, L_query, L_mem) scores = npx.batch_dot(query, key, transpose_b=True) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, N, L_mem, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = np.einsum('bnij,bnjc->binc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, value).transpose((0, 2, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) elif layout == 'NTK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (B, L_query, N, C_Q) X (B, L_mem, N, C_Q) --> (B, N, L_query, L_mem) if use_einsum: scores = np.einsum('binc,bjnc->bnij', query, key) else: scores = npx.batch_dot(np.swapaxes(query, 1, 2), np.swapaxes(key, 1, 2), transpose_b=True) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (B, L_mem, N, C_V) --> (B, L_query, N * C_V) if use_einsum: context_vec = np.einsum('bnij,bjnc->binc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, np.swapaxes(value, 1, 2)).transpose((0, 2, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) elif layout == 'TNK': # 1. Expand the dimension of the mask: # (B, L_query, L_mem) --> (B, 1, L_query, L_mem) if mask is not None: mask = np.expand_dims(mask, axis=1).astype(np.bool) # 2. Calculate the attention weights # Score: (L_query, B, N, C_Q) X (L_mem, B, N, C_Q) --> (B, N, L_query, L_mem) # This layout structure can be implemented very efficiently because B, N are consecutive # to each other. To have a clear picture of what's happening, we may consider the # (i, j)th element of the output # out[i, j, :, :] = query[:, i, j, :] X key[:, i, j, :].T, which is just one GEMM call # We can thus implement the whole kernel via a single call of batched GEMM with stride. if use_einsum: scores = np.einsum('ibnc,jbnc->bnij', query, key) else: scores = npx.batch_dot(query.transpose((1, 2, 0, 3)), key.transpose((1, 2, 3, 0))) if edge_scores is not None: scores = scores + edge_scores attn_weights = masked_softmax(scores, mask, axis=-1, temperature=scale) attn_weights = npx.dropout(attn_weights, p=dropout) # 3. Calculate the context vector # (B, N, L_query, L_mem) X (L_mem, B, N, C_V) --> (L_query, B, N * C_V) # Again, we can implement it via a single call to batched GEMM with stride. # Shape (B, N, L_query, C_V) if use_einsum: context_vec = np.einsum('bnij,jbnc->ibnc', attn_weights, value) else: context_vec = npx.batch_dot(attn_weights, value.transpose((1, 2, 0, 3))).transpose((2, 0, 1, 3)) context_vec = npx.reshape(context_vec, (-2, -2, -1)) else: raise NotImplementedError('layout="{}" is not supported! ' 'We only support layout = "NKT", "NTK", and "TNK".' .format(layout)) return context_vec, [scores, attn_weights]
Multihead dot product attention between the query, key, value. scaled is False, normalized is False: D(h_q, h_k) = <h_q, h_k> scaled is True, normalized is False: D(h_q, h_k) = <h_q, h_k> / sqrt(dim_q) scaled is False, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> scaled is True, normalized is True: D(h_q, h_k) = <h_q / ||h_q||, h_k / ||h_k||> / sqrt(dim_q) If edge_scores is provided, we will calcualte the attention as scores = D(h_q, h_k) + EdgeScore_{q, k} Parameters ---------- query Query. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, query_length, key_dim) - layout is 'NTK' Shape (batch_size, query_length, num_heads, key_dim) - layout is 'TNK' Shape (query_length, batch_size, num_heads, key_dim) key Key. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, key_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, key_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, key_dim) value Value. The shape depends on the layout - layout is 'NKT' Shape (batch_size, num_heads, mem_length, value_dim) - layout is 'NTK' Shape (batch_size, mem_length, num_heads, value_dim) - layout is 'TNK' Shape (mem_length, batch_size, num_heads, value_dim) mask Mask between query and memory. Shape (batch_size, query_length, mem_length) edge_scores The edge attention score. Shape can be any shape that is broadcastable to (batch_size, num_heads, query_length, mem_length) dropout Dropout rate scaled Whether to divide the attention weights by the sqrt of the query dimension. This is first proposed in "[NIPS2017] Attention is all you need.":: .. code-block:: none score = <h_q, h_k> / sqrt(dim_q) normalized If turned on, the cosine distance is used, i.e:: .. code-block:: none score = <h_q / ||h_q||, h_k / ||h_k||> eps The epsilon value used in L2 normalization query_head_units The units of each query head. If it's empty, we will estimate it via the shape_array of the query. layout This stands for the layout of the attention cell. The shape of the input/output will depend on the layout. Currently, we support 'NKT', 'NTK' and 'TNK' in which 'N' means the batch_size, 'K' means the head, and 'T' means the length dimension. use_einsum Whether to use einsum for the computation Returns ------- context_vec - layout is 'NKT' or 'NTK' Shape (batch_size, query_length, num_heads * value_units) - layout is 'TNK' Shape (query_length, batch_size, num_heads * value_units) additional_info scores: Shape (batch_size, num_head, query_length, mem_length) attn_weight: Shape (batch_size, num_head, query_length, mem_length)
multi_head_dot_attn
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def gen_rel_position(data, past_data=None, dtype=np.int32, layout='NT'): """Create a matrix of relative position for RelAttentionScoreCell. The relative position is defined as the index difference: `mem_i` - `query_j`. Note, though, that the implementation here makes sense in self-attention's setting, but not in cross-attention's. Hence, both `mem_i` and `query_j` are time indices from `data` (or, in incremental decoding's case, the concatenated sequence from the current stepwise `data` and the previous steps `past_data`). Parameters ---------- data The data. Under incremental decoding, seq_length = 1. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) past_data This is only used under incremental decoding. Stacked data from previous steps. dtype Data type of the mask layout Layout of the data + past_data Returns ------- relative_position : Shape (query_length, mem_length) where query_length = mem_length = seq_length """ time_axis = 1 if layout == 'NT' else 0 if past_data is None: position = npx.arange_like(data, axis=time_axis) else: # for incremental decoding only, where past data is of the shape: # NT(NTK): (B, L_seq, num_heads, n_kv) -> (B, L_seq, inner_dim) # TN(TNK): (L_seq, B, num_heads, n_kv) -> (L_seq, B, inner_dim) past_data = npx.reshape(past_data, (-2, -2, -5)) position = npx.arange_like( np.concatenate([past_data, data], axis=time_axis), axis=time_axis ) query_position = np.expand_dims(position, axis=-1) mem_position = np.expand_dims(position, axis=0) relative_position = mem_position - query_position return relative_position.astype(np.int32) # shape (L_seq, L_seq)
Create a matrix of relative position for RelAttentionScoreCell. The relative position is defined as the index difference: `mem_i` - `query_j`. Note, though, that the implementation here makes sense in self-attention's setting, but not in cross-attention's. Hence, both `mem_i` and `query_j` are time indices from `data` (or, in incremental decoding's case, the concatenated sequence from the current stepwise `data` and the previous steps `past_data`). Parameters ---------- data The data. Under incremental decoding, seq_length = 1. - layout = 'NT' Shape (batch_size, seq_length, C) - layout = 'TN' Shape (seq_length, batch_size, C) past_data This is only used under incremental decoding. Stacked data from previous steps. dtype Data type of the mask layout Layout of the data + past_data Returns ------- relative_position : Shape (query_length, mem_length) where query_length = mem_length = seq_length
gen_rel_position
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def __init__(self, query_units, num_heads, pos_embed_units: Optional[int] = None, max_distance=None, bidirectional=False, num_buckets=None, method='transformer_xl', dropout: float = 0.0, dtype='float32', layout='NTK', use_einsum=False, embed_initializer=None): """ Parameters ---------- query_units num_heads pos_embed_units max_distance bidirectional num_buckets method dropout dtype layout use_einsum """ super().__init__() self._dropout = dropout self._method = method self._query_units = query_units self._num_heads = num_heads self._bidirectional = bidirectional self._num_buckets = num_buckets assert query_units % num_heads == 0, 'The units must be divisible by the number of heads.' self._head_query_units = query_units // num_heads self._max_distance = max_distance self._pos_embed_units = pos_embed_units self._dtype = dtype self._use_einsum = use_einsum self._layout = layout if self._layout not in ['NKT', 'NTK', 'TNK']: raise ValueError('layout="{}" is not supported'.format(self._layout)) if method == 'transformer_xl': if pos_embed_units is None: pos_embed_units = self._num_heads * self._head_query_units self._rel_pos_embed = SinusoidalPositionalEmbedding(units=pos_embed_units, dtype=self._dtype) self._rel_proj = nn.Dense(units=query_units, in_units=pos_embed_units, flatten=False, use_bias=False, dtype=self._dtype) self._dropout_layer = nn.Dropout(dropout) elif method == 'shaw': assert self._max_distance is not None, 'Must set max_distance when method="shaw".' if self._bidirectional: vocab_size = self._max_distance * 2 + 1 else: vocab_size = self._max_distance + 1 self._rel_pos_embed = LearnedPositionalEmbedding( units=self._num_heads * self._head_query_units, max_length=vocab_size, weight_initializer=mx.init.Xavier(rnd_type="gaussian", factor_type="in", magnitude=1), mode='wrap' if self._bidirectional else 'raise', dtype=self._dtype) elif method == 't5': if self._num_buckets is None: self._num_buckets = 32 if self._max_distance is None: self._max_distance = 128 self._rel_pos_embed = BucketPositionalEmbedding( units=num_heads, num_buckets=self._num_buckets, max_distance=self._max_distance, bidirectional=self._bidirectional, embed_initializer=embed_initializer, dtype=self._dtype) else: raise NotImplementedError('method="{}" is currently not supported!'.format(method))
Parameters ---------- query_units num_heads pos_embed_units max_distance bidirectional num_buckets method dropout dtype layout use_einsum
__init__
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def forward(self, rel_positions, query=None): """Forward function Parameters ---------- rel_positions The relative shifts. Shape (query_length, mem_length). Each element represents the shift between the :math:`i-th` element of query and the :math:`j-th` element of memory. query The query for computing the relative scores. The shape depends on the layout. If we use T5 attention, the query will not be used. Returns ------- rel_scores The relative attention scores Can have shape (batch_size, num_heads, query_length, mem_length) or (num_heads, query_length, mem_length) """ if self._method == 'transformer_xl' or self._method == 'shaw': assert query is not None, 'Must specify query if method={}'.format(self._method) if self._bidirectional: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=-self._max_distance, a_max=self._max_distance) else: if self._max_distance is not None: rel_positions = np.clip(rel_positions, a_min=0, a_max=self._max_distance) # uniq_rel.shape = (#uniq,), rev_index.shape = (L_q, L_m) uniq_rel, rev_index = np.unique(rel_positions, return_inverse=True) uniq_rel_pos_embed = self._rel_pos_embed(uniq_rel) if self._method == 'transformer_xl': uniq_rel_pos_embed = self._rel_proj(self._dropout_layer(uniq_rel_pos_embed)) # Shape (#uniq, K, C_q) uniq_rel_pos_embed = npx.reshape(uniq_rel_pos_embed, (-2, self._num_heads, self._head_query_units)) # Calculate the dot-product between query and the relative positional embeddings. # After the calculation, rel_score.shape = (L_q, #uniq, N, K) if self._layout == 'NKT': # query_for_rel: (N, K, L_q, C_q) if self._use_einsum: rel_score = np.einsum('bnid,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(query, np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'NTK': # query_for_rel: (N, L_q, K, C_q) if self._use_einsum: rel_score = np.einsum('bind,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.swapaxes(query, 1, 2), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) elif self._layout == 'TNK': # query_for_rel: (L_q, N, K, C_q) if self._use_einsum: rel_score = np.einsum('ibnd,jnd->ijbn', query, uniq_rel_pos_embed) else: rel_score = np.transpose( np.matmul(np.transpose(query, (1, 2, 0, 3)), np.transpose(uniq_rel_pos_embed, (1, 2, 0))), (2, 3, 0, 1) ) else: raise NotImplementedError # We use gather_nd to select the elements # TODO(sxjscience) Use advanced indexing once available rev_index = npx.reshape_like(rev_index, rel_positions).astype(np.int32) query_idx = np.expand_dims(npx.arange_like(rel_positions, axis=0).astype(np.int32), axis=-1) + np.zeros_like(rev_index) rel_score = npx.gather_nd(rel_score, np.stack([query_idx, rev_index])) rel_score = np.transpose(rel_score, (2, 3, 0, 1)) elif self._method == 't5': # shape is (K, L_q, L_m) rel_score = self._rel_pos_embed(rel_positions).transpose((2, 0, 1)) else: raise NotImplementedError return rel_score
Forward function Parameters ---------- rel_positions The relative shifts. Shape (query_length, mem_length). Each element represents the shift between the :math:`i-th` element of query and the :math:`j-th` element of memory. query The query for computing the relative scores. The shape depends on the layout. If we use T5 attention, the query will not be used. Returns ------- rel_scores The relative attention scores Can have shape (batch_size, num_heads, query_length, mem_length) or (num_heads, query_length, mem_length)
forward
python
dmlc/gluon-nlp
src/gluonnlp/attention_cell.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/attention_cell.py
Apache-2.0
def get_home_dir(): """Get home directory for storing datasets/models/pre-trained word embeddings""" _home_dir = os.environ.get('GLUONNLP_HOME', os.path.join('~', '.gluonnlp')) # expand ~ to actual path _home_dir = os.path.expanduser(_home_dir) return _home_dir
Get home directory for storing datasets/models/pre-trained word embeddings
get_home_dir
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_data_home_dir(): """Get home directory for storing the datasets""" home_dir = get_home_dir() return os.path.join(home_dir, 'datasets')
Get home directory for storing the datasets
get_data_home_dir
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_model_zoo_home_dir(): """Get the local directory for storing pretrained models""" home_dir = get_home_dir() return os.path.join(home_dir, 'models')
Get the local directory for storing pretrained models
get_model_zoo_home_dir
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_model_zoo_checksum_dir(): """Get the directory that stores the checksums of the artifacts in the model zoo """ curr_dir = os.path.realpath(os.path.dirname(os.path.realpath(__file__))) check_sum_dir = os.path.join(curr_dir, 'models', 'model_zoo_checksums') return check_sum_dir
Get the directory that stores the checksums of the artifacts in the model zoo
get_model_zoo_checksum_dir
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_repo_url(): """Return the base URL for Gluon dataset and model repository """ default_repo = 's3://gluonnlp-numpy-data' repo_url = os.environ.get('GLUONNLP_REPO_URL', default_repo) if repo_url[-1] != '/': repo_url = repo_url + '/' return repo_url
Return the base URL for Gluon dataset and model repository
get_repo_url
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_repo_model_zoo_url(): """Return the base URL for GluonNLP Model Zoo""" repo_url = get_repo_url() model_zoo_url = repo_url + 'models/' return model_zoo_url
Return the base URL for GluonNLP Model Zoo
get_repo_model_zoo_url
python
dmlc/gluon-nlp
src/gluonnlp/base.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/base.py
Apache-2.0
def get_norm_layer(normalization: str = 'layer_norm', axis: int = -1, epsilon: float = 1e-5, in_channels: int = 0, **kwargs): """ Get the normalization layer based on the type Parameters ---------- normalization The type of the layer normalization from ['layer_norm', 'no_norm', 'batch_norm'] axis The axis to normalize the epsilon The epsilon of the normalization layer in_channels Input channel Returns ------- norm_layer The layer normalization layer """ if isinstance(normalization, str): if normalization == 'layer_norm': norm_layer = nn.LayerNorm(axis=axis, epsilon=epsilon, in_channels=in_channels, **kwargs) elif normalization == 'no_norm': norm_layer = NoNorm(in_channels=in_channels, **kwargs) elif normalization == 'rms_norm': norm_layer = RMSNorm(in_channels=in_channels, **kwargs) elif normalization == 'identity': norm_layer = IdentityActivation() elif normalization == 'batch_norm': norm_layer = nn.BatchNorm(axis=axis, epsilon=epsilon, in_channels=in_channels, **kwargs) else: raise NotImplementedError('normalization={} is not supported'.format(normalization)) return norm_layer else: raise NotImplementedError('The type of normalization must be str')
Get the normalization layer based on the type Parameters ---------- normalization The type of the layer normalization from ['layer_norm', 'no_norm', 'batch_norm'] axis The axis to normalize the epsilon The epsilon of the normalization layer in_channels Input channel Returns ------- norm_layer The layer normalization layer
get_norm_layer
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def _fmt_and_check_cutoffs(cutoffs, vocab_size): """Parse and get the cutoffs used in adaptive embedding + adaptive softmax Parameters ---------- cutoffs The cutoffs of the vocab_size Size of the vocabulary Returns ------- cutoffs The parsed cutoffs, will be [0, c0, c1, ..., c_{k-1}, V] If the original cutoffs is empty or is None, return None """ # Sanity checks if cutoffs is None: return None if isinstance(cutoffs, int): cutoffs = [cutoffs] else: cutoffs = list(cutoffs) if len(cutoffs) == 0: return None if cutoffs != sorted(cutoffs): raise ValueError('cutoffs must be a sorted list of cutoff values. ' 'Got {}, but expected {}'.format(cutoffs, sorted(cutoffs))) if len(set(cutoffs)) != len(cutoffs): raise ValueError('cutoffs cannot contain duplicates! cutoffs={}'.format(cutoffs)) if not cutoffs: raise ValueError('cutoffs must not be empty. Got {}'.format(cutoffs)) if cutoffs[0] <= 0: raise ValueError('The first cutoff value ({}) must be greater 0.'.format(cutoffs[0])) if cutoffs[-1] >= vocab_size: raise ValueError( 'The last cutoff value ({}) must be smaller than vocab_size ({}).'.format( cutoffs[-1], vocab_size)) return cutoffs
Parse and get the cutoffs used in adaptive embedding + adaptive softmax Parameters ---------- cutoffs The cutoffs of the vocab_size Size of the vocabulary Returns ------- cutoffs The parsed cutoffs, will be [0, c0, c1, ..., c_{k-1}, V] If the original cutoffs is empty or is None, return None
_fmt_and_check_cutoffs
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def get_activation(act: Optional[Union[str, HybridBlock]]) -> HybridBlock: """Get the activation based on the string Parameters ---------- act The activation Returns ------- ret The activation layer """ if act is None: return lambda x: x if isinstance(act, str): if act == 'leaky': # TODO(sxjscience) Add regex matching here to parse `leaky(0.1)` return nn.LeakyReLU(0.1) elif act == 'identity': return IdentityActivation() elif act == 'elu': return ELU() elif act == 'gelu': return GELU(mode='erf') elif act == 'gelu(tanh)': return GELU(mode='tanh') elif act == 'gelu(sigmoid)': return GELU(mode='sigmoid') elif act in ['relu', 'sigmoid', 'tanh', 'softrelu', 'softsign']: return nn.Activation(act) else: raise NotImplementedError('act={} is not supported'.format(act)) else: return act
Get the activation based on the string Parameters ---------- act The activation Returns ------- ret The activation layer
get_activation
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def __init__(self, units: int, dtype: Union[str, type] = 'float32'): """Use a geometric sequence of timescales. Parameters ---------- units The number of units for positional embedding dtype The dtype of the inner positional embeddings """ super().__init__() def _init_sinusoidal_base(units): half_units = units // 2 val = np.log(10000) / (half_units - 1) val = np.exp(np.arange(half_units, dtype=np.float32) * -val) return val self._units = units self._dtype = dtype sinusoidal_base = _init_sinusoidal_base(units) self.base_mult = Constant(sinusoidal_base)
Use a geometric sequence of timescales. Parameters ---------- units The number of units for positional embedding dtype The dtype of the inner positional embeddings
__init__
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def forward(self, positions): """ Parameters ---------- positions : NDArray Shape (..., ) Returns ------- ret : Shape (..., units) """ emb = np.expand_dims(positions.astype(self._dtype), axis=-1) * self.base_mult.data() sin_emb = np.sin(emb) cos_emb = np.cos(emb) if self._units % 2 == 0: return np.concatenate([sin_emb, cos_emb], axis=-1) else: return np.concatenate( [sin_emb, cos_emb, np.expand_dims(np.zeros_like(positions).astype(self._dtype), axis=-1)], axis=-1)
Parameters ---------- positions : NDArray Shape (..., ) Returns ------- ret : Shape (..., units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def __init__(self, units: int = 512, hidden_size: int = 2048, use_bias=True, activation_dropout: float = 0.0, dropout: float = 0.1, weight_initializer=None, bias_initializer='zeros', activation='relu', use_gated_activation=False, normalization: str = 'layer_norm', layer_norm_eps: float = 1E-5, pre_norm: bool = False, dtype='float32', **kwargs): """ Parameters ---------- units hidden_size activation_dropout dropout weight_initializer bias_initializer activation normalization layer_norm or no_norm layer_norm_eps pre_norm Pre-layer normalization as proposed in the paper: "[ACL2018] The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation" This will stabilize the training of Transformers. You may also refer to "[Arxiv2020] Understanding the Difficulty of Training Transformers" """ super().__init__() self._dtype = dtype self._pre_norm = pre_norm self._use_gated_activation = use_gated_activation self._kwargs = OrderedDict([ ('units', units), ('hidden_size', hidden_size), ('activation_dropout', activation_dropout), ('activation', activation), ('dropout', dropout), ('normalization', normalization), ('layer_norm_eps', layer_norm_eps), ('pre_norm', pre_norm), ('dtype', self._dtype) ]) self.dropout_layer = nn.Dropout(dropout) self.activation_dropout_layer = nn.Dropout(activation_dropout) self.ffn_1 = nn.Dense(units=hidden_size, in_units=units, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) if use_gated_activation: self.gated_ffn_1 = nn.Dense(units=hidden_size, in_units=units, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) self.activation = get_activation(activation) self.ffn_2 = nn.Dense(units=units, in_units=hidden_size, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer, dtype=dtype) # TODO(sxjscience) We may need to set the dtype flag in LayerNorm, need to double check self.layer_norm = get_norm_layer(in_channels=units, normalization=normalization, epsilon=layer_norm_eps, **kwargs)
Parameters ---------- units hidden_size activation_dropout dropout weight_initializer bias_initializer activation normalization layer_norm or no_norm layer_norm_eps pre_norm Pre-layer normalization as proposed in the paper: "[ACL2018] The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation" This will stabilize the training of Transformers. You may also refer to "[Arxiv2020] Understanding the Difficulty of Training Transformers"
__init__
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def forward(self, data): """ Parameters ---------- F data : Shape (B, seq_length, C_in) Returns ------- out : Shape (B, seq_length, C_out) """ residual = data if self._pre_norm: data = self.layer_norm(data) if self._use_gated_activation: gated_out = self.activation(self.gated_ffn_1(data)) out = gated_out * self.ffn_1(data) else: out = self.activation(self.ffn_1(data)) out = self.activation_dropout_layer(out) out = self.ffn_2(out) out = self.dropout_layer(out) out = out + residual if not self._pre_norm: out = self.layer_norm(out) return out
Parameters ---------- F data : Shape (B, seq_length, C_in) Returns ------- out : Shape (B, seq_length, C_out)
forward
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def __init__(self, vocab_size: int, embed_size: int, units: int, cutoffs: Optional[Union[int, List]] = None, div_val: float = 1.0, dtype='float32', scaled=True, embedding_initializer: InitializerType = None, weight_initializer: InitializerType = None): """ Parameters ---------- vocab_size The size of the vocabulary embed_size The base size of the embedding vectors. The embedding size of each cluster will be [embed_size / div_val**0, embed_size / div_val**1, embed_size / div_val**2, ...] units The number of units after the mapping cutoffs The cutoffs to slice the vocab to multiple clusters. It should be a sorted list. Each value should be between 1 --> vocab_size - 1. div_val The base denominator for computing the size of the embedding vector in each cluster. dtype The data type of layer scaled Whether to scale the embedding by sqrt(units) embedding_initializer Initializer of the embedding vectors weight_initializer Initializer of projection layers bias_initializer Initializer of the bias """ super().__init__() cutoffs = _fmt_and_check_cutoffs(cutoffs, vocab_size) if cutoffs is None: assert div_val == 1.0 self._dtype = dtype self._kwargs = OrderedDict([ ('cutoffs', cutoffs), ('vocab_size', vocab_size), ('embed_size', embed_size), ('units', units), ('div_val', div_val), ('dtype', dtype), ('scaled', scaled) ]) self._vocab_size = vocab_size self._cutoffs = cutoffs self._units = units self._embed_size = embed_size self._div_val = div_val self._scaled = scaled if self._scaled: self._emb_scale = units**0.5 if div_val == 1.0: self.embed0_weight = Parameter('embed0_weight', shape=(vocab_size, embed_size), init=embedding_initializer, allow_deferred_init=True) if units != embed_size: self.inter_proj0_weight = Parameter('inter_proj0_weight', shape=(embed_size, units), init=weight_initializer, allow_deferred_init=True) else: self.proj_layers = None else: self.proj_layers = nn.HybridSequential() for i, (l_idx, r_idx) in enumerate(zip([0] + cutoffs, cutoffs + [vocab_size])): inner_embed_size = int(embed_size / div_val**i) if inner_embed_size == 0: raise ValueError('div_val = {} is too large for the layer. Currently, the ' 'cutoffs are {} and the embed_size is {}. Using the ' 'div_val = {} will cause some clusters to have ' 'embed_size=0.'.format(div_val, cutoffs, embed_size, div_val)) setattr( self, 'embed{}_weight'.format(i), Parameter('embed{}_weight'.format(i), shape=(r_idx - l_idx, inner_embed_size), init=embedding_initializer, allow_deferred_init=True)) setattr(self, 'inter_proj{}_weight'.format(i), Parameter('inter_proj{}_weight'.format(i), shape=(inner_embed_size, units), init=weight_initializer, allow_deferred_init=True))
Parameters ---------- vocab_size The size of the vocabulary embed_size The base size of the embedding vectors. The embedding size of each cluster will be [embed_size / div_val**0, embed_size / div_val**1, embed_size / div_val**2, ...] units The number of units after the mapping cutoffs The cutoffs to slice the vocab to multiple clusters. It should be a sorted list. Each value should be between 1 --> vocab_size - 1. div_val The base denominator for computing the size of the embedding vector in each cluster. dtype The data type of layer scaled Whether to scale the embedding by sqrt(units) embedding_initializer Initializer of the embedding vectors weight_initializer Initializer of projection layers bias_initializer Initializer of the bias
__init__
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def forward(self, inp): # pylint: disable=arguments-differ """ Parameters ---------- inp Shape (...,) Returns ------- out Shape (..., units) """ if self._div_val == 1.0: emb = np.take(getattr(self, 'embed0_weight').data(), inp, axis=0) if self._units != self._embed_size: emb = np.dot(emb, getattr(self, 'inter_proj0_weight').data()) else: emb = None for i, (l_idx, r_idx) in enumerate(zip([0] + self._cutoffs, self._cutoffs + [self._vocab_size])): emb_i = np.take(getattr(self, 'embed{}_weight'.format(i)).data(), inp - l_idx, axis=0, mode='clip') emb_i = np.dot(emb_i, getattr(self, 'inter_proj{}_weight'.format(i)).data()) if emb is None: emb = emb_i else: emb = np.where(np.expand_dims((inp >= l_idx) * (inp < r_idx), axis=-1), emb_i, emb) if self._scaled: emb = emb * self._emb_scale return emb
Parameters ---------- inp Shape (...,) Returns ------- out Shape (..., units)
forward
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def __init__(self, vocab_size: int, embed_size: int, in_units: int, cutoffs: Optional[Union[int, List]] = None, div_val: float = 1.0, dtype='float32', use_bias=True, weight_initializer: InitializerType = None, bias_initializer: InitializerType = None): """ Parameters ---------- vocab_size Size of the vocabulary embed_size Base embedding size. The hidden will be first projected to embed_size and then project to vocab_size in_units The number of input units cutoffs The cutoff values div_val The base denominator for computing the size of the embedding vector in each cluster. dtype Data type use_bias Whether to use bias when computing the scores for the tokens weight_initializer bias_initializer """ super().__init__() cutoffs = _fmt_and_check_cutoffs(cutoffs, vocab_size) if cutoffs is None: assert div_val == 1.0 self._vocab_size = vocab_size self._embed_size = embed_size self._in_units = in_units self._cutoffs = cutoffs self._div_val = div_val if cutoffs is not None: self._num_tail_clusters = len(self._cutoffs) self._dtype = dtype self._kwargs = OrderedDict([ ('cutoffs', cutoffs), ('vocab_size', vocab_size), ('embed_size', embed_size), ('in_units', in_units), ('div_val', div_val), ('dtype', dtype), ('use_bias', use_bias) ]) if cutoffs is not None: self.tail_cluster_score_proj = nn.Dense(units=self._num_tail_clusters, in_units=embed_size, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer) self.inter_proj_l = nn.HybridSequential() self.out_proj_l = nn.HybridSequential() if div_val == 1.0: if in_units != embed_size: self.inter_proj_l.add(nn.Dense(in_units=in_units, units=embed_size, flatten=False, use_bias=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer)) self.out_proj_l.add(nn.Dense(in_units=embed_size, units=vocab_size, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer)) else: for i, (l_idx, r_idx) in enumerate(zip([0] + self._cutoffs, self._cutoffs + [vocab_size])): ele_embed_size = int(embed_size / (div_val ** i)) self.inter_proj_l.add(nn.Dense(in_units=in_units, units=ele_embed_size, flatten=False, use_bias=False, weight_initializer=weight_initializer, bias_initializer=bias_initializer)) self.out_proj_l.add(nn.Dense(in_units=ele_embed_size, units=r_idx - l_idx, flatten=False, use_bias=use_bias, weight_initializer=weight_initializer, bias_initializer=bias_initializer))
Parameters ---------- vocab_size Size of the vocabulary embed_size Base embedding size. The hidden will be first projected to embed_size and then project to vocab_size in_units The number of input units cutoffs The cutoff values div_val The base denominator for computing the size of the embedding vector in each cluster. dtype Data type use_bias Whether to use bias when computing the scores for the tokens weight_initializer bias_initializer
__init__
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def get_logits(self, hidden): """Get all the logits. Parameters ---------- hidden The hidden representation/ Shape (..., in_units) Returns ------- logits Shape (..., :math:`|V|`) """ if self._cutoffs is None: if self._in_units != self._embed_size: hidden = self.inter_proj_l[0](hidden) logits = self.out_proj_l[0](hidden) return logits else: all_logits = [] if self._div_val == 1.0: if self._in_units == self._embed_size: all_scores = self.out_proj_l[0](hidden) tail_cluster_scores = self.tail_cluster_score_proj(hidden) else: inter_hidden = self.inter_proj_l[0](hidden) all_scores = self.out_proj_l[0](inter_hidden) tail_cluster_scores = self.tail_cluster_score_proj(inter_hidden) all_scores_l = np.split(all_scores, self._cutoffs, axis=-1) head_scores = all_scores_l[0] else: inter_hidden = self.inter_proj_l[0](hidden) head_scores = self.out_proj_l[0](inter_hidden) tail_cluster_scores = self.tail_cluster_score_proj(inter_hidden) head_tail_cluster_logits = \ npx.log_softmax(np.concatenate([head_scores, tail_cluster_scores], axis=-1), axis=-1) head_logits, tail_cluster_logits = \ np.split(head_tail_cluster_logits, [self._cutoffs[0]], axis=-1) tail_cluster_logits = np.split(tail_cluster_logits, self._num_tail_clusters, axis=-1) all_logits.append(head_logits) for i in range(1, len(self._cutoffs) + 1): if self._div_val == 1.0: ele_scores = all_scores_l[i] else: ele_scores = self.out_proj_l[i](self.inter_proj_l[i](hidden)) ele_logits = npx.log_softmax(ele_scores, axis=-1) ele_logits = tail_cluster_logits[-i] + ele_logits all_logits.append(ele_logits) return np.concatenate(all_logits, axis=-1)
Get all the logits. Parameters ---------- hidden The hidden representation/ Shape (..., in_units) Returns ------- logits Shape (..., :math:`|V|`)
get_logits
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def forward(self, hidden, target): """ Parameters ---------- hidden The hidden representation Shape (..., in_units) target The target representation Shape (...,) Returns ------- sel_logits The log probability that each hidden has when label == target """ # TODO(sxjscience) The computation here can be greatly accelerated! Due to the # missing feature of index_update, we are not able to do this here. logits = self.get_logits(hidden) sel_logits = npx.pick(logits, target, axis=-1) return sel_logits
Parameters ---------- hidden The hidden representation Shape (..., in_units) target The target representation Shape (...,) Returns ------- sel_logits The log probability that each hidden has when label == target
forward
python
dmlc/gluon-nlp
src/gluonnlp/layers.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/layers.py
Apache-2.0
def forward(self, pred, label): """ Parameters ---------- pred : The predictions of the network. Shape (..., V) label : The labels. Shape (..., ) Returns ------- loss : Shape (..., ) """ if not self._from_logits: pred = npx.log_softmax(pred, axis=-1) log_likelihood = npx.pick(pred, label, axis=-1) all_scores = pred.sum(axis=-1) loss = - (1 - self._alpha) * log_likelihood\ - self._alpha / float(self._num_labels) * all_scores return loss
Parameters ---------- pred : The predictions of the network. Shape (..., V) label : The labels. Shape (..., ) Returns ------- loss : Shape (..., )
forward
python
dmlc/gluon-nlp
src/gluonnlp/loss.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/loss.py
Apache-2.0
def select_vectors_by_position(data, positions): """Select each batch with the given positions. Once advanced indexing can be hybridized, we can revise the implementation. out[i, j, ...] = data[i, positions[i, j], ...] Parameters ---------- data Input tensor of contextualized token embeddings Shape (batch_size, seq_length, ...) positions Input tensor of the positions. Shape (batch_size, num_sel_positions). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The selection result. Shape (batch_size, num_sel_positions, ...) """ # Here, we use gather_nd to select the output from data: # Need to compute # out[i, j, :] = in[i, masked_position[i, j], :] # Thus, construct a indices with shape [2, batch_size, num_masked_position], where # indices[0, i, j] = i # indices[1, i, j] = masked_position[i, j] # Then, out = gather_nd(in, indices) positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx, positions]) # TODO(sxjscience) We can revise the implementation to advanced indexing # once the bug in MXNet is solved: # https://github.com/apache/incubator-mxnet/issues/18919 out = npx.gather_nd(data, indices) return out
Select each batch with the given positions. Once advanced indexing can be hybridized, we can revise the implementation. out[i, j, ...] = data[i, positions[i, j], ...] Parameters ---------- data Input tensor of contextualized token embeddings Shape (batch_size, seq_length, ...) positions Input tensor of the positions. Shape (batch_size, num_sel_positions). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The selection result. Shape (batch_size, num_sel_positions, ...)
select_vectors_by_position
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def add_vectors_by_position(data, increment, positions): """Scatter each batch with the given positions. data[i, positions[i, j], ...] += increment[i, j, ...] Parameters ---------- data Input tensor of the array to be updated. Shape (batch_size, seq_length, ...) increment Input tensor of token ids Shape (batch_size, num_disp_position, ...) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length, ...) """ # Here, we use index_add to disperse the output from data: # Need to compute # out[i, masked_position[i, j], :] = in[i, j, :] # Thus, construct an indices with shape [2, batch_size * num_masked_position], where # indices[0, i * num_masked_position + j] = i # indices[1, i * num_masked_position + j] = masked_position[i, j] # And convert data to the shape of the (batch_size * num_masked_position, ) # Then, out = npx.index_add(data, indices, increment) positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx.reshape((-1,)), positions.reshape((-1,))]) out = npx.index_add(data, indices, npx.reshape(increment, (-5, -4))) return out
Scatter each batch with the given positions. data[i, positions[i, j], ...] += increment[i, j, ...] Parameters ---------- data Input tensor of the array to be updated. Shape (batch_size, seq_length, ...) increment Input tensor of token ids Shape (batch_size, num_disp_position, ...) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length, ...)
add_vectors_by_position
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def update_vectors_by_position(data, val, positions): """ Update each batch with the given positions. Considered as a reversed process of "select_vectors_by_position", this is an operator similar to "add_vectors_by_position" that updates the results instead of adding. data[i, positions[i, j], :] = val[i, j, :] Parameters ---------- data Input tensor of the array to be updated. Shape (batch_size, seq_length) val Input tensor of token ids Shape (batch_size, num_disp_position) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length) """ positions = positions.astype(np.int32) # batch_idx.shape = (batch_size, 1) as [[0], [1], [2], ...] batch_idx = np.expand_dims(npx.arange_like(positions, axis=0), axis=1).astype(np.int32) batch_idx = batch_idx + np.zeros_like(positions) indices = np.stack([batch_idx.reshape((-1,)), positions.reshape((-1,))]) out = npx.index_update(data, indices, npx.reshape(val, (-5, -4))) return out
Update each batch with the given positions. Considered as a reversed process of "select_vectors_by_position", this is an operator similar to "add_vectors_by_position" that updates the results instead of adding. data[i, positions[i, j], :] = val[i, j, :] Parameters ---------- data Input tensor of the array to be updated. Shape (batch_size, seq_length) val Input tensor of token ids Shape (batch_size, num_disp_position) positions Input tensor of the positions. Shape (batch_size, num_disp_position). For each sample in the batch, the values in this tensor must not exceed the length of the sequence. Returns ------- out The updated result. Shape (batch_size, seq_length)
update_vectors_by_position
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def gumbel_softmax(logits, temperature: float = 1.0, eps: float = 1E-10, hard=True, use_np_gumbel: bool = True): r"""Perform the gumbel-softmax trick to generate differentiable one-hot vectors from the input logits. Here, the gumbel distribution is Gumbel(\alpha) = -log (-log U) + \log \alpha, in which U is the uniform(0, 1) distribution. A nice property of Gumbel is: \argmax({Gumbel(\alpha_i)}) \sim multinomial(\alpha_i) The Gumbel-Softmax trick is to use the softmax + straight-through estimator to produce one-hot vectors that represent the sampling result. References: 1. https://en.wikipedia.org/wiki/Gumbel_distribution 2. [ICLR2017] Categorical Reparameterization with Gumbel-Softmax Parameters ---------- logits Logits. Shape (..., V) temperature The temperature that controls the eps The eps for stability of gradient hard Whether to use the straight-through estimator to produce one-hot vectors. use_np_gumbel Whether to use the random.gumble operator Returns ------- ret The returned output. Shape (..., V) """ # TODO(sxjscience) Investigate the impact of random.gumbel: # Actually, random.gumble has no eps and may have problem in calculating the gradient. if use_np_gumbel: gumbels = np.random.gumbel(np.zeros_like(logits)) else: u = np.random.uniform(np.zeros_like(logits), 1) gumbels = -np.log(-np.log(u + eps) + eps) y = npx.softmax((gumbels + logits) / temperature, axis=-1) if hard: y_hard = np.max(y, axis=-1, keepdims=True) == y y_hard = npx.stop_gradient(y_hard - y) + y return y_hard else: return y
Perform the gumbel-softmax trick to generate differentiable one-hot vectors from the input logits. Here, the gumbel distribution is Gumbel(\alpha) = -log (-log U) + \log \alpha, in which U is the uniform(0, 1) distribution. A nice property of Gumbel is: \argmax({Gumbel(\alpha_i)}) \sim multinomial(\alpha_i) The Gumbel-Softmax trick is to use the softmax + straight-through estimator to produce one-hot vectors that represent the sampling result. References: 1. https://en.wikipedia.org/wiki/Gumbel_distribution 2. [ICLR2017] Categorical Reparameterization with Gumbel-Softmax Parameters ---------- logits Logits. Shape (..., V) temperature The temperature that controls the eps The eps for stability of gradient hard Whether to use the straight-through estimator to produce one-hot vectors. use_np_gumbel Whether to use the random.gumble operator Returns ------- ret The returned output. Shape (..., V)
gumbel_softmax
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def trunc_gumbel(logits, truncation): """Sample from the TruncGumbel distribution. The cumulative density function (CDF) of the Truncated Gumbel distribution is defined as TruncGumbel(\alpha, truncation) \prop max(Gumbel(\alpha), truncation) To sample from the distribution, we can use the CDF inversion technique. References: 1. [NIPS2014] A* Sampling, https://papers.nips.cc/paper/5449-a-sampling.pdf 2. https://cmaddis.github.io/gumbel-machinery Parameters ---------- logits The logits. Shape (...,) truncation The truncation. Shape (...,) Returns ------- samples Samples from the TruncGumbel(logits, truncation) Shape (...,) """ gumbels = np.random.gumbel(np.zeros_like(logits)) + logits return -np.log(np.exp(-gumbels) + np.exp(-truncation))
Sample from the TruncGumbel distribution. The cumulative density function (CDF) of the Truncated Gumbel distribution is defined as TruncGumbel(lpha, truncation) \prop max(Gumbel(lpha), truncation) To sample from the distribution, we can use the CDF inversion technique. References: 1. [NIPS2014] A* Sampling, https://papers.nips.cc/paper/5449-a-sampling.pdf 2. https://cmaddis.github.io/gumbel-machinery Parameters ---------- logits The logits. Shape (...,) truncation The truncation. Shape (...,) Returns ------- samples Samples from the TruncGumbel(logits, truncation) Shape (...,)
trunc_gumbel
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def relative_position_bucket(relative_position, bidirectional: bool = True, num_buckets: int = 32, max_distance: int = 128): """Map the relative position to buckets. The implementation is consistent with that in [mesh_tensorflow](https://github.com/tensorflow/mesh/blob/c59988047e49b4d2af05603e3170724cdbadc467/mesh_tensorflow/transformer/transformer_layers.py#L595-L637) where relative position is defined as `mem_i - query_j`. Thus, a positive value indicates that the memory slot is in a later timestamp than the query slot. After handling the bidirectional case (see below), the implementation uses the first half of buckets to store exact differences and the second half to store the differences after a logrithmic transformation. Parameters ---------- relative_position Shape (...,) bidirectional Whether we are dealing with bidirectional attention. If it's bidirectional, positive shifts are mapped to [0, num_buckets // 2), and negative shifts are mapped to [num_buckets // 2, num_buckets). num_buckets The number of buckets. max_distance Maximum distance. Positions that fall outside of 'max_distance' will be trimmed. Returns ------- buckets Shape (...,). It has the same shape as the `relative_position`. It will have int32 type. """ ret = 0 relative_position = -relative_position if bidirectional: assert num_buckets % 2 == 0, 'When bidirectional is True, the number of buckets must be ' \ 'divisible by 2.' num_buckets //= 2 ret = ret + (relative_position < 0).astype(np.int32) * num_buckets relative_position = np.abs(relative_position) else: # Clip all the negative values to 0 relative_position = np.clip(relative_position, a_min=0, a_max=None) # Now, the relative_position is in the range [0, inf) # Half of the buckets deal with the exact increments, # i.e., 0, 1, 2, ..., max_exact - 1, where max_exact = num_buckets // 2 max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to # max_distance val_if_large = max_exact + ( np.log(relative_position.astype(np.float32) / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).astype(np.int32) val_if_large = np.minimum(val_if_large, num_buckets - 1) ret = ret + np.where(is_small, relative_position, val_if_large) return ret
Map the relative position to buckets. The implementation is consistent with that in [mesh_tensorflow](https://github.com/tensorflow/mesh/blob/c59988047e49b4d2af05603e3170724cdbadc467/mesh_tensorflow/transformer/transformer_layers.py#L595-L637) where relative position is defined as `mem_i - query_j`. Thus, a positive value indicates that the memory slot is in a later timestamp than the query slot. After handling the bidirectional case (see below), the implementation uses the first half of buckets to store exact differences and the second half to store the differences after a logrithmic transformation. Parameters ---------- relative_position Shape (...,) bidirectional Whether we are dealing with bidirectional attention. If it's bidirectional, positive shifts are mapped to [0, num_buckets // 2), and negative shifts are mapped to [num_buckets // 2, num_buckets). num_buckets The number of buckets. max_distance Maximum distance. Positions that fall outside of 'max_distance' will be trimmed. Returns ------- buckets Shape (...,). It has the same shape as the `relative_position`. It will have int32 type.
relative_position_bucket
python
dmlc/gluon-nlp
src/gluonnlp/op.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/op.py
Apache-2.0
def _expand_to_beam_size(data, beam_size, batch_size, state_batch_axis=None): """Tile all the states to have batch_size * beam_size on the batch axis. Parameters ---------- data : A single mx.np.ndarray or nested container with mx.np.ndarray Each mx.np.ndarray should have shape (N, ...) when state_info is None, or same as the layout in state_info when it's not None. beam_size : int Beam size batch_size : int Batch size state_batch_axis : Nested structure of dictionary, default None. Descriptors for states, usually from decoder's ``state_batch_axis()``. When None, this method assumes that the batch axis is the first dimension. Returns ------- new_states : Object that contains mx.np.ndarray Each mx.np.ndarray should have shape batch_size * beam_size on the batch axis. """ if isinstance(data, (list, tuple)): if state_batch_axis is not None: # TODO(sxjscience) Better Exception Handling return [_expand_to_beam_size(d, beam_size, batch_size, batch_axis) for d, batch_axis in zip(data, state_batch_axis)] else: return [_expand_to_beam_size(d, beam_size, batch_size, None) for d in data] elif isinstance(data, dict): if state_batch_axis is not None: return {k: _expand_to_beam_size(v, beam_size, batch_size, state_batch_axis[k]) for k, v in data.items()} else: return {k: _expand_to_beam_size(v, beam_size, batch_size, None) for k, v in data.items()} elif isinstance(data, mx.np.ndarray): if state_batch_axis is None: batch_axis = 0 else: batch_axis = state_batch_axis if data.shape[batch_axis] != batch_size: raise ValueError('The batch size of all the inner elements in states must be ' '{}, Found shape={}, inferred batch axis={}'.format(batch_size, data.shape, batch_axis)) new_shape = list(data.shape) new_shape[batch_axis] = batch_size * beam_size new_shape = tuple(new_shape) bcast_new_shape = new_shape[:batch_axis] + (batch_size, beam_size) + new_shape[(batch_axis + 1):] return mx.np.expand_dims(data, batch_axis + 1).broadcast_to(bcast_new_shape).reshape(new_shape) elif data is None: return None else: raise NotImplementedError
Tile all the states to have batch_size * beam_size on the batch axis. Parameters ---------- data : A single mx.np.ndarray or nested container with mx.np.ndarray Each mx.np.ndarray should have shape (N, ...) when state_info is None, or same as the layout in state_info when it's not None. beam_size : int Beam size batch_size : int Batch size state_batch_axis : Nested structure of dictionary, default None. Descriptors for states, usually from decoder's ``state_batch_axis()``. When None, this method assumes that the batch axis is the first dimension. Returns ------- new_states : Object that contains mx.np.ndarray Each mx.np.ndarray should have shape batch_size * beam_size on the batch axis.
_expand_to_beam_size
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0
def _choose_states(states, indices, state_batch_axis=None): """ Parameters ---------- states : Object contains mx.np.ndarray indices : mx.np.ndarray Indices of the states to take. Shape (N,). state_batch_axis Descriptors for states, it is generated from decoder's ``state_batch_axis``. When None, this method assumes that the batch axis is the first dimension. Returns ------- new_states : Object contains mx.np.ndarray Each mx.np.ndarray should have shape (..., N, ...). """ if isinstance(states, (list, tuple)): if state_batch_axis is not None: return [_choose_states(d, indices, b_axis) for d, b_axis in zip(states, state_batch_axis)] else: return [_choose_states(d, indices, None) for d in states] elif isinstance(states, dict): if state_batch_axis is not None: return {k: _choose_states(v, indices, state_batch_axis[k]) for k, v in states.items()} else: return {k: _choose_states(v, indices, None) for k, v in states.items()} elif isinstance(states, mx.np.ndarray): if state_batch_axis is None: batch_axis = 0 else: batch_axis = state_batch_axis states = mx.np.take(states, indices, axis=batch_axis) return states else: raise TypeError('The type of the states is not supported, type(states) = {}'.format(type(states)))
Parameters ---------- states : Object contains mx.np.ndarray indices : mx.np.ndarray Indices of the states to take. Shape (N,). state_batch_axis Descriptors for states, it is generated from decoder's ``state_batch_axis``. When None, this method assumes that the batch axis is the first dimension. Returns ------- new_states : Object contains mx.np.ndarray Each mx.np.ndarray should have shape (..., N, ...).
_choose_states
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0
def __init__(self, beam_size, vocab_size, eos_id, scorer, state_batch_axis, stochastic=False): """ Parameters ---------- beam_size : int vocab_size : int eos_id : int scorer : BeamSearchScorer state_batch_axis : stochastic: bool prefix : None params : None """ super().__init__() self._beam_size = beam_size self._vocab_size = vocab_size self._eos_id = eos_id self._scorer = scorer self._state_batch_axis = state_batch_axis self.stochastic = stochastic assert eos_id is None or eos_id >= 0, 'eos_id cannot be negative! Received eos_id={}'.format(eos_id)
Parameters ---------- beam_size : int vocab_size : int eos_id : int scorer : BeamSearchScorer state_batch_axis : stochastic: bool prefix : None params : None
__init__
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0
def gumbel_with_maximum(self, phi, T, dim=-1): """Calculate the Gumbel with maximum. Parameters ---------- phi : mx.np.ndarray Shape (batch_size, beam_size, L). T : mx.np.ndarray The previous scores. Shape (batch_size, beam_size) """ g_phi = phi + mx.np.random.gumbel(mx.np.zeros_like(phi)) Z = g_phi.max(dim) g = self.shift_gumbel_maximum(g_phi, T, dim, Z=Z) return g
Calculate the Gumbel with maximum. Parameters ---------- phi : mx.np.ndarray Shape (batch_size, beam_size, L). T : mx.np.ndarray The previous scores. Shape (batch_size, beam_size)
gumbel_with_maximum
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0
def shift_gumbel_maximum(self, g_phi, T, axis=-1, Z=None): """ Parameters ---------- g_phi : mx.np.ndarray Shape (batch_size, beam_size, L). T : mx.np.ndarray The previous scores. Shape (batch_size, beam_size) axis The axis Z The Z value """ if Z is None: Z = g_phi.max(axis=axis) T_ = mx.npx.reshape(T, (-4, 1)) Z_ = mx.npx.reshape(Z, (-4, 1)) u = T_ - g_phi + mx.np.log1p(-mx.np.exp(g_phi - Z_) + 1e-5) return T_ - mx.npx.relu(u) - mx.np.log1p(mx.np.exp(-mx.np.abs(u)))
Parameters ---------- g_phi : mx.np.ndarray Shape (batch_size, beam_size, L). T : mx.np.ndarray The previous scores. Shape (batch_size, beam_size) axis The axis Z The Z value
shift_gumbel_maximum
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0
def forward(self, samples, valid_length, outputs, scores, step, beam_alive_mask, # pylint: disable=arguments-differ states, batch_shift): """ Parameters ---------- samples : mx.np.ndarray The current samples generated by beam search. Shape (batch_size, beam_size, L). valid_length : mx.np.ndarray The current valid lengths of the samples outputs : mx.np.ndarray Outputs from predictor. If from_logits was set to True in scorer, then it's the log probability of the current step. Else, it's the unnormalized outputs before softmax or log_softmax. Shape (batch_size * beam_size, V). scores : mx.np.ndarray The previous scores. Shape (batch_size, beam_size) step : mx.np.ndarray The current step for doing beam search. Begins from 1. Shape () beam_alive_mask : mx.np.ndarray Shape (batch_size, beam_size) states : nested structure of mx.np.ndarray Each mx.np.ndarray should have shape (N, ...) when state_info is None, or same as the layout in state_info when it's not None. batch_shift : mx.np.ndarray Contains [0, beam_size, 2 * beam_size, ..., (batch_size - 1) * beam_size]. Shape (batch_size,) Returns ------- new_samples : mx.np.ndarray or an empty list The updated samples. When single_step is False, shape (batch_size, beam_size, L + 1) new_valid_length : mx.np.ndarray Valid lengths of the samples. Shape (batch_size, beam_size) new_scores : mx.np.ndarray Shape (batch_size, beam_size) chosen_word_ids : mx.np.ndarray The chosen word ids of the step. Shape (batch_size, beam_size). If it's negative, no word will be appended to the beam. beam_alive_mask : mx.np.ndarray Shape (batch_size, beam_size) new_states : nested structure of mx.np.ndarray Inner mx.np.ndarrays have shape (batch_size * beam_size, ...) """ beam_size = self._beam_size vocab_size = self._vocab_size beam_alive_mask_bcast = mx.np.expand_dims(beam_alive_mask, axis=2) candidate_scores = self._scorer(mx.npx.reshape(outputs, (-6, -1, beam_size, -2)), scores, step) if self.stochastic: if step == 1: candidate_scores_gumbel\ = candidate_scores[:1]\ + mx.np.random.gumbel(mx.np.zeros_like(candidate_scores[:1])) candidate_scores_residual = candidate_scores[1:] candidate_scores = mx.np.concatenate((candidate_scores_gumbel, candidate_scores_residual), axis=0) else: candidate_scores = self.gumbel_with_maximum(candidate_scores, scores, -1) # Concat the candidate scores and the scores of the finished beams # The resulting candidate score will have shape (batch_size, beam_size * |V| + beam_size) candidate_scores = mx.np.where(beam_alive_mask_bcast, candidate_scores, mx.np.full_like(candidate_scores, LARGE_NEGATIVE_FLOAT)) finished_scores = mx.np.where(beam_alive_mask, mx.np.full_like(scores, LARGE_NEGATIVE_FLOAT), scores) candidate_scores = mx.np.concatenate([mx.npx.reshape(candidate_scores, (-2, -1)), finished_scores], axis=1) # Get the top K scores # new_scores and indices will have shape (batch_size, beam_size) new_scores, indices = mx.npx.topk(candidate_scores, axis=1, k=beam_size, ret_typ='both') indices = indices.astype(mx.np.int32) use_prev = (indices >= (beam_size * vocab_size)).astype(mx.np.int32) chosen_word_ids = mx.np.mod(indices, vocab_size) beam_ids = mx.np.where(use_prev, indices - beam_size * vocab_size, mx.np.floor(indices / vocab_size).astype(mx.np.int32)) batch_beam_indices = beam_ids + mx.np.expand_dims(batch_shift, axis=1) chosen_word_ids = mx.np.where(use_prev, - mx.np.ones_like(indices), chosen_word_ids) # Update the samples and vaild_length # TODO(sxjscience) The current implementation is quite tricky # We should wait for hybridizable advanced indexing to avoid this selected_samples = mx.np.take(mx.npx.reshape(samples, (-5, -2)), batch_beam_indices.reshape((-1,)), axis=0) new_samples = mx.npx.reshape(mx.np.concatenate([selected_samples, chosen_word_ids.reshape((-1, 1))], axis=1), (-6, -1, beam_size, -2)) new_valid_length = mx.np.take(valid_length.reshape((-1,)), batch_beam_indices.reshape((-1,)), axis=0).reshape((-1, beam_size)) + 1 - use_prev # Update the states new_states = _choose_states(states, batch_beam_indices.reshape((-1,)), self._state_batch_axis) # Update the alive mask. beam_alive_mask = mx.np.take(beam_alive_mask.reshape((-1,)), batch_beam_indices.reshape((-1,)), axis=0)\ .reshape((-1, beam_size)) if self._eos_id is not None: beam_alive_mask = beam_alive_mask * (chosen_word_ids != self._eos_id).astype(mx.np.float32) return new_samples, new_valid_length, new_scores, chosen_word_ids,\ beam_alive_mask, new_states
Parameters ---------- samples : mx.np.ndarray The current samples generated by beam search. Shape (batch_size, beam_size, L). valid_length : mx.np.ndarray The current valid lengths of the samples outputs : mx.np.ndarray Outputs from predictor. If from_logits was set to True in scorer, then it's the log probability of the current step. Else, it's the unnormalized outputs before softmax or log_softmax. Shape (batch_size * beam_size, V). scores : mx.np.ndarray The previous scores. Shape (batch_size, beam_size) step : mx.np.ndarray The current step for doing beam search. Begins from 1. Shape () beam_alive_mask : mx.np.ndarray Shape (batch_size, beam_size) states : nested structure of mx.np.ndarray Each mx.np.ndarray should have shape (N, ...) when state_info is None, or same as the layout in state_info when it's not None. batch_shift : mx.np.ndarray Contains [0, beam_size, 2 * beam_size, ..., (batch_size - 1) * beam_size]. Shape (batch_size,) Returns ------- new_samples : mx.np.ndarray or an empty list The updated samples. When single_step is False, shape (batch_size, beam_size, L + 1) new_valid_length : mx.np.ndarray Valid lengths of the samples. Shape (batch_size, beam_size) new_scores : mx.np.ndarray Shape (batch_size, beam_size) chosen_word_ids : mx.np.ndarray The chosen word ids of the step. Shape (batch_size, beam_size). If it's negative, no word will be appended to the beam. beam_alive_mask : mx.np.ndarray Shape (batch_size, beam_size) new_states : nested structure of mx.np.ndarray Inner mx.np.ndarrays have shape (batch_size * beam_size, ...)
forward
python
dmlc/gluon-nlp
src/gluonnlp/sequence_sampler.py
https://github.com/dmlc/gluon-nlp/blob/master/src/gluonnlp/sequence_sampler.py
Apache-2.0