code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def accumulate(self): """ Accumulate metric results and calculate mAP """ mAP = 0. valid_cnt = 0 eval_results = [] for score_pos, count in zip(self.class_score_poss, self.class_gt_counts): if count == 0: continue if len(score_pos) == 0: valid_cnt += 1 continue accum_tp_list, accum_fp_list = \ self._get_tp_fp_accum(score_pos) precision = [] recall = [] for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list): precision.append(float(ac_tp) / (ac_tp + ac_fp)) recall.append(float(ac_tp) / count) one_class_ap = 0.0 if self.map_type == '11point': max_precisions = [0.] * 11 start_idx = len(precision) - 1 for j in range(10, -1, -1): for i in range(start_idx, -1, -1): if recall[i] < float(j) / 10.: start_idx = i if j > 0: max_precisions[j - 1] = max_precisions[j] break else: if max_precisions[j] < precision[i]: max_precisions[j] = precision[i] one_class_ap = sum(max_precisions) / 11. mAP += one_class_ap valid_cnt += 1 elif self.map_type == 'integral': import math prev_recall = 0. for i in range(len(precision)): recall_gap = math.fabs(recall[i] - prev_recall) if recall_gap > 1e-6: one_class_ap += precision[i] * recall_gap prev_recall = recall[i] mAP += one_class_ap valid_cnt += 1 else: logger.error("Unspported mAP type {}".format(self.map_type)) sys.exit(1) eval_results.append({ 'class': self.classes[valid_cnt - 1], 'ap': one_class_ap, 'precision': precision, 'recall': recall, }) self.eval_results = eval_results self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
Accumulate metric results and calculate mAP
accumulate
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
Apache-2.0
def _get_tp_fp_accum(self, score_pos_list): """ Calculate accumulating true/false positive results from [score, pos] records """ sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True) accum_tp = 0 accum_fp = 0 accum_tp_list = [] accum_fp_list = [] for (score, pos) in sorted_list: accum_tp += int(pos) accum_tp_list.append(accum_tp) accum_fp += 1 - int(pos) accum_fp_list.append(accum_fp) return accum_tp_list, accum_fp_list
Calculate accumulating true/false positive results from [score, pos] records
_get_tp_fp_accum
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
Apache-2.0
def ap_per_class(tp, conf, pred_cls, target_cls): """ Computes the average precision, given the recall and precision curves. Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. Args: tp (list): True positives. conf (list): Objectness value from 0-1. pred_cls (list): Predicted object classes. target_cls (list): Target object classes. """ tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array( pred_cls), np.array(target_cls) # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] for c in unique_classes: i = pred_cls == c n_gt = sum(target_cls == c) # Number of ground truth objects n_p = sum(i) # Number of predicted objects if (n_p == 0) and (n_gt == 0): continue elif (n_p == 0) or (n_gt == 0): ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = np.cumsum(1 - tp[i]) tpc = np.cumsum(tp[i]) # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(tpc[-1] / (n_gt + 1e-16)) # Precision precision_curve = tpc / (tpc + fpc) p.append(tpc[-1] / (tpc[-1] + fpc[-1])) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array( p)
Computes the average precision, given the recall and precision curves. Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. Args: tp (list): True positives. conf (list): Objectness value from 0-1. pred_cls (list): Predicted object classes. target_cls (list): Target object classes.
ap_per_class
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
Apache-2.0
def compute_ap(recall, precision): """ Computes the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. Args: recall (list): The recall curve. precision (list): The precision curve. Returns: The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap
Computes the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. Args: recall (list): The recall curve. precision (list): The precision curve. Returns: The average precision as computed in py-faster-rcnn.
compute_ap
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/metrics/map_utils.py
Apache-2.0
def __init__(self, width, num_joints, backbone='HRNet', loss='KeyPointMSELoss', post_process='HRNetPostProcess', flip_perm=None, flip=True, shift_heatmap=True, use_dark=True): """ HRNet network, see https://arxiv.org/abs/1902.09212 Args: backbone (nn.Layer): backbone instance post_process (object): `HRNetPostProcess` instance flip_perm (list): The left-right joints exchange order list use_dark(bool): Whether to use DARK in post processing """ super(TopDownHRNet, self).__init__() self.backbone = backbone self.post_process = HRNetPostProcess(use_dark) self.loss = loss self.flip_perm = flip_perm self.flip = flip self.final_conv = Conv2d(width, num_joints, 1, 1, 0, bias=True) self.shift_heatmap = shift_heatmap self.deploy = False
HRNet network, see https://arxiv.org/abs/1902.09212 Args: backbone (nn.Layer): backbone instance post_process (object): `HRNetPostProcess` instance flip_perm (list): The left-right joints exchange order list use_dark(bool): Whether to use DARK in post processing
__init__
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
Apache-2.0
def get_max_preds(self, heatmaps): '''get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints ''' assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals
get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
get_max_preds
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
Apache-2.0
def dark_postprocess(self, hm, coords, kernelsize): '''DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). ''' hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords
DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020).
dark_postprocess
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
Apache-2.0
def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals
the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
get_final_preds
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/models/keypoint_hrnet.py
Apache-2.0
def __init__(self, use_target_weight=True, loss_scale=0.5): """ KeyPointMSELoss layer Args: use_target_weight (bool): whether to use target weight """ super(KeyPointMSELoss, self).__init__() self.criterion = nn.MSELoss(reduction='mean') self.use_target_weight = use_target_weight self.loss_scale = loss_scale
KeyPointMSELoss layer Args: use_target_weight (bool): whether to use target weight
__init__
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/models/loss.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/models/loss.py
Apache-2.0
def check_gpu(use_gpu): """ Log error and exit when set use_gpu=true in paddlepaddle cpu version. """ err = "Config use_gpu cannot be set as true while you are " \ "using paddlepaddle cpu version ! \nPlease try: \n" \ "\t1. Install paddlepaddle-gpu to run model on GPU \n" \ "\t2. Set use_gpu as false in config file to run " \ "model on CPU" try: if use_gpu and not paddle.is_compiled_with_cuda(): logger.error(err) sys.exit(1) except Exception as e: pass
Log error and exit when set use_gpu=true in paddlepaddle cpu version.
check_gpu
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
Apache-2.0
def check_version(version='2.0'): """ Log error and exit when the installed version of paddlepaddle is not satisfied. """ err = "PaddlePaddle version {} or higher is required, " \ "or a suitable develop version is satisfied as well. \n" \ "Please make sure the version is good with your code.".format(version) version_installed = [ fluid_version.major, fluid_version.minor, fluid_version.patch, fluid_version.rc ] if version_installed == ['0', '0', '0', '0']: return version_split = version.split('.') length = min(len(version_installed), len(version_split)) for i in six.moves.range(length): if version_installed[i] > version_split[i]: return if version_installed[i] < version_split[i]: raise Exception(err)
Log error and exit when the installed version of paddlepaddle is not satisfied.
check_version
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
Apache-2.0
def check_config(cfg): """ Check the correctness of the configuration file. Log error and exit when Config is not compliant. """ err = "'{}' not specified in config file. Please set it in config file." check_list = ['architecture', 'num_classes'] try: for var in check_list: if not var in cfg: logger.error(err.format(var)) sys.exit(1) except Exception as e: pass if 'log_iter' not in cfg: cfg.log_iter = 20 return cfg
Check the correctness of the configuration file. Log error and exit when Config is not compliant.
check_config
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/check.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('ppdet://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
Apache-2.0
def match_state_dict(model_state_dict, weight_state_dict): """ Match between the model state dict and pretrained weight state dict. Return the matched state dict. The method supposes that all the names in pretrained weight state dict are subclass of the names in models`, if the prefix 'backbone.' in pretrained weight keys is stripped. And we could get the candidates for each model key. Then we select the name with the longest matched size as the final match result. For example, the model state dict has the name of 'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We match the 'res2.res2a.branch2a.conv.weight' to the model key. """ model_keys = sorted(model_state_dict.keys()) weight_keys = sorted(weight_state_dict.keys()) def match(a, b): if a.startswith('backbone.res5'): # In Faster RCNN, res5 pretrained weights have prefix of backbone, # however, the corresponding model weights have difficult prefix, # bbox_head. b = b[9:] return a == b or a.endswith("." + b) match_matrix = np.zeros([len(model_keys), len(weight_keys)]) for i, m_k in enumerate(model_keys): for j, w_k in enumerate(weight_keys): if match(m_k, w_k): match_matrix[i, j] = len(w_k) max_id = match_matrix.argmax(1) max_len = match_matrix.max(1) max_id[max_len == 0] = -1 not_load_weight_name = [] for match_idx in range(len(max_id)): if match_idx < len(weight_keys) and max_id[match_idx] == -1: not_load_weight_name.append(weight_keys[match_idx]) if len(not_load_weight_name) > 0: logger.info('{} in pretrained weight is not used in the model, ' 'and its will not be loaded'.format(not_load_weight_name)) matched_keys = {} result_state_dict = {} for model_id, weight_id in enumerate(max_id): if weight_id == -1: continue model_key = model_keys[model_id] weight_key = weight_keys[weight_id] weight_value = weight_state_dict[weight_key] model_value_shape = list(model_state_dict[model_key].shape) if list(weight_value.shape) != model_value_shape: logger.info( 'The shape {} in pretrained weight {} is unmatched with ' 'the shape {} in model {}. And the weight {} will not be ' 'loaded'.format(weight_value.shape, weight_key, model_value_shape, model_key, weight_key)) continue assert model_key not in result_state_dict result_state_dict[model_key] = weight_value if weight_key in matched_keys: raise ValueError('Ambiguity weight {} loaded, it matches at least ' '{} and {} in the model'.format( weight_key, model_key, matched_keys[ weight_key])) matched_keys[weight_key] = model_key return result_state_dict
Match between the model state dict and pretrained weight state dict. Return the matched state dict. The method supposes that all the names in pretrained weight state dict are subclass of the names in models`, if the prefix 'backbone.' in pretrained weight keys is stripped. And we could get the candidates for each model key. Then we select the name with the longest matched size as the final match result. For example, the model state dict has the name of 'backbone.res2.res2a.branch2a.conv.weight' and the pretrained weight as name of 'res2.res2a.branch2a.conv.weight' and 'branch2a.conv.weight'. We match the 'res2.res2a.branch2a.conv.weight' to the model key.
match_state_dict
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
Apache-2.0
def save_model(model, optimizer, save_dir, save_name, last_epoch): """ save model into disk. Args: model (paddle.nn.Layer): the Layer instalce to save parameters. optimizer (paddle.optimizer.Optimizer): the Optimizer instance to save optimizer states. save_dir (str): the directory to be saved. save_name (str): the path to be saved. last_epoch (int): the epoch index. """ if paddle.distributed.get_rank() != 0: return if not os.path.exists(save_dir): os.makedirs(save_dir) save_path = os.path.join(save_dir, save_name) if isinstance(model, nn.Layer): paddle.save(model.state_dict(), save_path + ".pdparams") else: assert isinstance(model, dict), 'model is not a instance of nn.layer or dict' paddle.save(model, save_path + ".pdparams") state_dict = optimizer.state_dict() state_dict['last_epoch'] = last_epoch paddle.save(state_dict, save_path + ".pdopt") logger.info("Save checkpoint: {}".format(save_dir))
save model into disk. Args: model (paddle.nn.Layer): the Layer instalce to save parameters. optimizer (paddle.optimizer.Optimizer): the Optimizer instance to save optimizer states. save_dir (str): the directory to be saved. save_name (str): the path to be saved. last_epoch (int): the epoch index.
save_model
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/checkpoint.py
Apache-2.0
def get_weights_path(url): """Get weights path from WEIGHTS_HOME, if not exists, download it from url. """ url = parse_url(url) path, _ = get_path(url, WEIGHTS_HOME) return path
Get weights path from WEIGHTS_HOME, if not exists, download it from url.
get_weights_path
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def get_config_path(url): """Get weights path from CONFIGS_HOME, if not exists, download it from url. """ url = parse_url(url) path = map_path(url, CONFIGS_HOME, path_depth=2) if os.path.isfile(path): return path # config file not found, try download # 1. clear configs directory if osp.isdir(CONFIGS_HOME): shutil.rmtree(CONFIGS_HOME) # 2. get url try: from ppdet import __version__ as version except ImportError: version = None cfg_url = "ppdet://configs/{}/configs.tar".format(version) \ if version else "ppdet://configs/configs.tar" cfg_url = parse_url(cfg_url) # 3. download and decompress cfg_fullname = _download_dist(cfg_url, osp.dirname(CONFIGS_HOME)) _decompress_dist(cfg_fullname) # 4. check config file existing if os.path.isfile(path): return path else: logger.error("Get config {} failed after download, please contact us on " \ "https://github.com/PaddlePaddle/PaddleDetection/issues".format(path)) sys.exit(1)
Get weights path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def get_dataset_path(path, annotation, image_dir): """ If path exists, return path. Otherwise, get dataset path from DATASET_HOME, if not exists, download it. """ if _dataset_exists(path, annotation, image_dir): return path logger.info( "Dataset {} is not valid for reason above, try searching {} or " "downloading dataset...".format(osp.realpath(path), DATASET_HOME)) data_name = os.path.split(path.strip().lower())[-1] for name, dataset in DATASETS.items(): if data_name == name: logger.debug("Parse dataset_dir {} as dataset " "{}".format(path, name)) if name == 'objects365': raise NotImplementedError( "Dataset {} is not valid for download automatically. " "Please apply and download the dataset from " "https://www.objects365.org/download.html".format(name)) data_dir = osp.join(DATASET_HOME, name) if name == 'mot': if osp.exists(path) or osp.exists(data_dir): return data_dir else: raise NotImplementedError( "Dataset {} is not valid for download automatically. " "Please apply and download the dataset following docs/tutorials/PrepareMOTDataSet.md". format(name)) if name == "spine_coco": if _dataset_exists(data_dir, annotation, image_dir): return data_dir # For voc, only check dir VOCdevkit/VOC2012, VOCdevkit/VOC2007 if name in ['voc', 'fruit', 'roadsign_voc']: exists = True for sub_dir in dataset[1]: check_dir = osp.join(data_dir, sub_dir) if osp.exists(check_dir): logger.info("Found {}".format(check_dir)) else: exists = False if exists: return data_dir # voc exist is checked above, voc is not exist here check_exist = name != 'voc' and name != 'fruit' and name != 'roadsign_voc' for url, md5sum in dataset[0]: get_path(url, data_dir, md5sum, check_exist) # voc should create list after download if name == 'voc': create_voc_list(data_dir) return data_dir # not match any dataset in DATASETS raise ValueError( "Dataset {} is not valid and cannot parse dataset type " "'{}' for automaticly downloading, which only supports " "'voc' , 'coco', 'wider_face', 'fruit', 'roadsign_voc' and 'mot' currently". format(path, osp.split(path)[-1]))
If path exists, return path. Otherwise, get dataset path from DATASET_HOME, if not exists, download it.
get_dataset_path
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url and decompress it, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME or DATASET_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath = map_path(url, root_dir) # For same zip file, decompressed directory name different # from zip file name, rename by following map decompress_name_map = { "VOCtrainval_11-May-2012": "VOCdevkit/VOC2012", "VOCtrainval_06-Nov-2007": "VOCdevkit/VOC2007", "VOCtest_06-Nov-2007": "VOCdevkit/VOC2007", "annotations_trainval": "annotations" } for k, v in decompress_name_map.items(): if fullpath.find(k) >= 0: fullpath = osp.join(osp.split(fullpath)[0], v) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): logger.debug("Found {}".format(fullpath)) return fullpath, True else: os.remove(fullpath) fullname = _download_dist(url, root_dir, md5sum) # new weights format which postfix is 'pdparams' not # need to decompress if osp.splitext(fullname)[-1] not in ['.pdparams', '.yml']: _decompress_dist(fullname) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url and decompress it, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME or DATASET_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def _dataset_exists(path, annotation, image_dir): """ Check if user define dataset exists """ if not osp.exists(path): logger.warning("Config dataset_dir {} is not exits, " "dataset config is not valid".format(path)) return False if annotation: annotation_path = osp.join(path, annotation) if not osp.isfile(annotation_path): logger.warning("Config annotation {} is not a " "file, dataset config is not " "valid".format(annotation_path)) return False if image_dir: image_path = osp.join(path, image_dir) if not osp.isdir(image_path): logger.warning("Config image_dir {} is not a " "directory, dataset config is not " "valid".format(image_path)) return False return True
Check if user define dataset exists
_dataset_exists
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) logger.info("Downloading {} from {}".format(fname, url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def _decompress(fname): """ Decompress for zip and tar file """ logger.info("Decompressing {}...".format(fname)) # For protecting decompressing interupted, # decompress to fpath_tmp directory firstly, if decompress # successed, move decompress files to fpath and delete # fpath_tmp and remove download compress file. fpath = osp.split(fname)[0] fpath_tmp = osp.join(fpath, 'tmp') if osp.isdir(fpath_tmp): shutil.rmtree(fpath_tmp) os.makedirs(fpath_tmp) if fname.find('tar') >= 0: with tarfile.open(fname) as tf: tf.extractall(path=fpath_tmp) elif fname.find('zip') >= 0: with zipfile.ZipFile(fname) as zf: zf.extractall(path=fpath_tmp) elif fname.find('.txt') >= 0: return else: raise TypeError("Unsupport compress file type {}".format(fname)) for f in os.listdir(fpath_tmp): src_dir = osp.join(fpath_tmp, f) dst_dir = osp.join(fpath, f) _move_and_merge_tree(src_dir, dst_dir) shutil.rmtree(fpath_tmp) os.remove(fname)
Decompress for zip and tar file
_decompress
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def _move_and_merge_tree(src, dst): """ Move src directory to dst, if dst is already exists, merge src to dst """ if not osp.exists(dst): shutil.move(src, dst) elif osp.isfile(src): shutil.move(src, dst) else: for fp in os.listdir(src): src_fp = osp.join(src, fp) dst_fp = osp.join(dst, fp) if osp.isdir(src_fp): if osp.isdir(dst_fp): _move_and_merge_tree(src_fp, dst_fp) else: shutil.move(src_fp, dst_fp) elif osp.isfile(src_fp) and \ not osp.isfile(dst_fp): shutil.move(src_fp, dst_fp)
Move src directory to dst, if dst is already exists, merge src to dst
_move_and_merge_tree
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/download.py
Apache-2.0
def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). input_size (np.ndarray[2, ]): Size of input feature (width, height). rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(output_size) == 2 assert len(shift) == 2 if not isinstance(input_size, (np.ndarray, list)): input_size = np.array([input_size, input_size], dtype=np.float32) scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans
Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). input_size (np.ndarray[2, ]): Size of input feature (width, height). rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix.
get_affine_transform
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def get_warp_matrix(theta, size_input, size_dst, size_target): """Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation. """ theta = np.deg2rad(theta) matrix = np.zeros((2, 3), dtype=np.float32) scale_x = size_dst[0] / size_target[0] scale_y = size_dst[1] / size_target[1] matrix[0, 0] = np.cos(theta) * scale_x matrix[0, 1] = -np.sin(theta) * scale_x matrix[0, 2] = scale_x * ( -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] * np.sin(theta) + 0.5 * size_target[0]) matrix[1, 0] = np.sin(theta) * scale_y matrix[1, 1] = np.cos(theta) * scale_y matrix[1, 2] = scale_y * ( -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] * np.cos(theta) + 0.5 * size_target[1]) return matrix
Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation.
get_warp_matrix
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len( a) == 2, 'input of _get_3rd_point should be point with length of 2' assert len( b) == 2, 'input of _get_3rd_point should be point with length of 2' direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt
To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point.
_get_3rd_point
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt
Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point.
rotate_point
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def warp_affine_joints(joints, mat): """Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints. """ joints = np.array(joints) shape = joints.shape joints = joints.reshape(-1, 2) return np.dot(np.concatenate( (joints, joints[:, 0:1] * 0 + 1), axis=1), mat.T).reshape(shape)
Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints.
warp_affine_joints
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None): """greedily select boxes with high confidence and overlap with current maximum <= thresh rule out overlap >= thresh Args: kpts_db (list): The predicted keypoints within the image thresh (float): The threshold to select the boxes sigmas (np.array): The variance to calculate the oks iou Default: None in_vis_thre (float): The threshold to select the high confidence boxes Default: None Return: keep (list): indexes to keep """ if len(kpts_db) == 0: return [] scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))]) kpts = np.array( [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))]) areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))]) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, in_vis_thre) inds = np.where(oks_ovr <= thresh)[0] order = order[inds + 1] return keep
greedily select boxes with high confidence and overlap with current maximum <= thresh rule out overlap >= thresh Args: kpts_db (list): The predicted keypoints within the image thresh (float): The threshold to select the boxes sigmas (np.array): The variance to calculate the oks iou Default: None in_vis_thre (float): The threshold to select the high confidence boxes Default: None Return: keep (list): indexes to keep
oks_nms
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def soft_oks_nms(kpts_db, thresh, sigmas=None, in_vis_thre=None): """greedily select boxes with high confidence and overlap with current maximum <= thresh rule out overlap >= thresh Args: kpts_db (list): The predicted keypoints within the image thresh (float): The threshold to select the boxes sigmas (np.array): The variance to calculate the oks iou Default: None in_vis_thre (float): The threshold to select the high confidence boxes Default: None Return: keep (list): indexes to keep """ if len(kpts_db) == 0: return [] scores = np.array([kpts_db[i]['score'] for i in range(len(kpts_db))]) kpts = np.array( [kpts_db[i]['keypoints'].flatten() for i in range(len(kpts_db))]) areas = np.array([kpts_db[i]['area'] for i in range(len(kpts_db))]) order = scores.argsort()[::-1] scores = scores[order] # max_dets = order.size max_dets = 20 keep = np.zeros(max_dets, dtype=np.intp) keep_cnt = 0 while order.size > 0 and keep_cnt < max_dets: i = order[0] oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, in_vis_thre) order = order[1:] scores = rescore(oks_ovr, scores[1:], thresh) tmp = scores.argsort()[::-1] order = order[tmp] scores = scores[tmp] keep[keep_cnt] = i keep_cnt += 1 keep = keep[:keep_cnt] return keep
greedily select boxes with high confidence and overlap with current maximum <= thresh rule out overlap >= thresh Args: kpts_db (list): The predicted keypoints within the image thresh (float): The threshold to select the boxes sigmas (np.array): The variance to calculate the oks iou Default: None in_vis_thre (float): The threshold to select the high confidence boxes Default: None Return: keep (list): indexes to keep
soft_oks_nms
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/keypoint_utils.py
Apache-2.0
def setup_logger(name="ppdet", output=None): """ Initialize logger and set its verbosity level to INFO. Args: output (str): a file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. name (str): the root module name of this logger Returns: logging.Logger: a logger """ logger = logging.getLogger(name) if name in logger_initialized: return logger logger.setLevel(logging.INFO) logger.propagate = False formatter = logging.Formatter( "[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S") # stdout logging: master only local_rank = dist.get_rank() if local_rank == 0: ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) # file logging: all workers if output is not None: if output.endswith(".txt") or output.endswith(".log"): filename = output else: filename = os.path.join(output, "log.txt") if local_rank > 0: filename = filename + ".rank{}".format(local_rank) os.makedirs(os.path.dirname(filename)) fh = logging.FileHandler(filename, mode='a') fh.setLevel(logging.DEBUG) fh.setFormatter(logging.Formatter()) logger.addHandler(fh) logger_initialized.append(name) return logger
Initialize logger and set its verbosity level to INFO. Args: output (str): a file name or a directory to save log. If None, will not save log file. If ends with ".txt" or ".log", assumed to be a file name. Otherwise, logs will be saved to `output/log.txt`. name (str): the root module name of this logger Returns: logging.Logger: a logger
setup_logger
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/logger.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/logger.py
Apache-2.0
def colormap(rgb=False): """ Get colormap The code of this function is copied from https://github.com/facebookresearch/Detectron/blob/main/detectron/utils/colormap.py """ color_list = np.array([ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286, 0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714, 0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000 ]).astype(np.float32) color_list = color_list.reshape((-1, 3)) * 255 if not rgb: color_list = color_list[:, ::-1] return color_list
Get colormap The code of this function is copied from https://github.com/facebookresearch/Detectron/blob/main/detectron/utils/colormap.py
colormap
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/visualizer.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/visualizer.py
Apache-2.0
def load_config(file_path): """ Load config from file. Args: file_path (str): Path of the config file to be loaded. Returns: global config """ _, ext = os.path.splitext(file_path) assert ext in ['.yml', '.yaml'], "only support yaml files for now" # load config from file and merge into global config with open(file_path) as f: cfg = yaml.load(f, Loader=yaml.Loader) cfg['filename'] = os.path.splitext(os.path.split(file_path)[-1])[0] merge_config(cfg) return global_config
Load config from file. Args: file_path (str): Path of the config file to be loaded. Returns: global config
load_config
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
Apache-2.0
def dict_merge(dct, merge_dct): """ Recursive dict merge. Inspired by :meth:``dict.update()``, instead of updating only top-level keys, dict_merge recurses down into dicts nested to an arbitrary depth, updating keys. The ``merge_dct`` is merged into ``dct``. Args: dct: dict onto which the merge is executed merge_dct: dct merged into dct Returns: dct """ for k, v in merge_dct.items(): if (k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], collectionsAbc.Mapping)): dict_merge(dct[k], merge_dct[k]) else: dct[k] = merge_dct[k] return dct
Recursive dict merge. Inspired by :meth:``dict.update()``, instead of updating only top-level keys, dict_merge recurses down into dicts nested to an arbitrary depth, updating keys. The ``merge_dct`` is merged into ``dct``. Args: dct: dict onto which the merge is executed merge_dct: dct merged into dct Returns: dct
dict_merge
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
Apache-2.0
def merge_config(config, another_cfg=None): """ Merge config into global config or another_cfg. Args: config (dict): Config to be merged. Returns: global config """ global global_config dct = another_cfg or global_config return dict_merge(dct, config)
Merge config into global config or another_cfg. Args: config (dict): Config to be merged. Returns: global config
merge_config
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
Apache-2.0
def register(cls): """ Register a given module class. Args: cls (type): Module class to be registered. Returns: cls """ if cls.__name__ in global_config: raise ValueError("Module class already registered: {}".format( cls.__name__)) if hasattr(cls, '__op__'): cls = make_partial(cls) global_config[cls.__name__] = extract_schema(cls) return cls
Register a given module class. Args: cls (type): Module class to be registered. Returns: cls
register
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
Apache-2.0
def create(cls_or_name, **kwargs): """ Create an instance of given module class. Args: cls_or_name (type or str): Class of which to create instance. Returns: instance of type `cls_or_name` """ assert type(cls_or_name) in [type, str ], "should be a class or name of a class" name = type(cls_or_name) == str and cls_or_name or cls_or_name.__name__ assert name in global_config and \ isinstance(global_config[name], SchemaDict), \ "the module {} is not registered".format(name) config = global_config[name] cls = getattr(config.pymodule, name) cls_kwargs = {} cls_kwargs.update(global_config[name]) # parse `shared` annoation of registered modules if getattr(config, 'shared', None): for k in config.shared: target_key = config[k] shared_conf = config.schema[k].default assert isinstance(shared_conf, SharedConfig) if target_key is not None and not isinstance(target_key, SharedConfig): continue # value is given for the module elif shared_conf.key in global_config: # `key` is present in config cls_kwargs[k] = global_config[shared_conf.key] else: cls_kwargs[k] = shared_conf.default_value # parse `inject` annoation of registered modules if getattr(cls, 'from_config', None): cls_kwargs.update(cls.from_config(config, **kwargs)) if getattr(config, 'inject', None): for k in config.inject: target_key = config[k] # optional dependency if target_key is None: continue if isinstance(target_key, dict) or hasattr(target_key, '__dict__'): if 'name' not in target_key.keys(): continue inject_name = str(target_key['name']) if inject_name not in global_config: raise ValueError( "Missing injection name {} and check it's name in cfg file". format(k)) target = global_config[inject_name] for i, v in target_key.items(): if i == 'name': continue target[i] = v if isinstance(target, SchemaDict): cls_kwargs[k] = create(inject_name) elif isinstance(target_key, str): if target_key not in global_config: raise ValueError("Missing injection config:", target_key) target = global_config[target_key] if isinstance(target, SchemaDict): cls_kwargs[k] = create(target_key) elif hasattr(target, '__dict__'): # serialized object cls_kwargs[k] = target else: raise ValueError("Unsupported injection type:", target_key) # prevent modification of global config values of reference types # (e.g., list, dict) from within the created module instances #kwargs = copy.deepcopy(kwargs) return cls(**cls_kwargs)
Create an instance of given module class. Args: cls_or_name (type or str): Class of which to create instance. Returns: instance of type `cls_or_name`
create
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/workspace.py
Apache-2.0
def extract_schema(cls): """ Extract schema from a given class Args: cls (type): Class from which to extract. Returns: schema (SchemaDict): Extracted schema. """ ctor = cls.__init__ # python 2 compatibility if hasattr(inspect, 'getfullargspec'): argspec = inspect.getfullargspec(ctor) annotations = argspec.annotations has_kwargs = argspec.varkw is not None else: argspec = inspect.getfullargspec(ctor) # python 2 type hinting workaround, see pep-3107 # however, since `typeguard` does not support python 2, type checking # is still python 3 only for now annotations = getattr(ctor, '__annotations__', {}) has_kwargs = argspec.varkw is not None names = [arg for arg in argspec.args if arg != 'self'] defaults = argspec.defaults num_defaults = argspec.defaults is not None and len(argspec.defaults) or 0 num_required = len(names) - num_defaults docs = cls.__doc__ if docs is None and getattr(cls, '__category__', None) == 'op': docs = cls.__call__.__doc__ try: docstring = doc_parse(docs) except Exception: docstring = None if docstring is None: comments = {} else: comments = {} for p in docstring.params: match_obj = re.match('^([a-zA-Z_]+[a-zA-Z_0-9]*).*', p.arg_name) if match_obj is not None: comments[match_obj.group(1)] = p.description schema = SchemaDict() schema.name = cls.__name__ schema.doc = "" if docs is not None: start_pos = docs[0] == '\n' and 1 or 0 schema.doc = docs[start_pos:].split("\n")[0].strip() # XXX handle paddle's weird doc convention if '**' == schema.doc[:2] and '**' == schema.doc[-2:]: schema.doc = schema.doc[2:-2].strip() schema.category = hasattr(cls, '__category__') and getattr( cls, '__category__') or 'module' schema.strict = not has_kwargs schema.pymodule = importlib.import_module(cls.__module__) schema.inject = getattr(cls, '__inject__', []) schema.shared = getattr(cls, '__shared__', []) for idx, name in enumerate(names): comment = name in comments and comments[name] or name if name in schema.inject: type_ = None else: type_ = name in annotations and annotations[name] or None value_schema = SchemaValue(name, comment, type_) if name in schema.shared: assert idx >= num_required, "shared config must have default value" default = defaults[idx - num_required] value_schema.set_default(SharedConfig(name, default)) elif idx >= num_required: default = defaults[idx - num_required] value_schema.set_default(default) schema.set_schema(name, value_schema) return schema
Extract schema from a given class Args: cls (type): Class from which to extract. Returns: schema (SchemaDict): Extracted schema.
extract_schema
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/config/schema.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/config/schema.py
Apache-2.0
def serializable(cls): """ Add loader and dumper for given class, which must be "trivially serializable" Args: cls: class to be serialized Returns: cls """ yaml.add_constructor(u'!{}'.format(cls.__name__), _make_python_constructor(cls)) yaml.add_representer(cls, _make_python_representer(cls)) return cls
Add loader and dumper for given class, which must be "trivially serializable" Args: cls: class to be serialized Returns: cls
serializable
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/lib/utils/config/yaml_helpers.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/lib/utils/config/yaml_helpers.py
Apache-2.0
def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--infer_img or --infer_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) logger.info("Found {} inference images in total.".format(len(images))) return images
Get image path list in TEST mode
get_test_images
python
PaddlePaddle/models
tutorials/pp-series/HRNet-Keypoint/tools/infer.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/pp-series/HRNet-Keypoint/tools/infer.py
Apache-2.0
def get_args(add_help=True): """get_args Parse all args using argparse lib Args: add_help: Whether to add -h option on args Returns: An object which contains many parameters used for inference. """ import argparse parser = argparse.ArgumentParser( description='PaddlePaddle Args', add_help=add_help) args = parser.parse_args() return args
get_args Parse all args using argparse lib Args: add_help: Whether to add -h option on args Returns: An object which contains many parameters used for inference.
get_args
python
PaddlePaddle/models
tutorials/tipc/train_infer_python/template/code/export_model.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/tipc/train_infer_python/template/code/export_model.py
Apache-2.0
def export(args): """export export inference model using jit.save Args: args: Parameters generated using argparser. Returns: None """ model = build_model(args) # decorate model with jit.save model = paddle.jit.to_static( model, input_spec=[ InputSpec( shape=[None, 3, args.img_size, args.img_size], dtype='float32') ]) # save inference model paddle.jit.save(model, os.path.join(args.save_inference_dir, "inference")) print(f"inference model is saved in {args.save_inference_dir}")
export export inference model using jit.save Args: args: Parameters generated using argparser. Returns: None
export
python
PaddlePaddle/models
tutorials/tipc/train_infer_python/template/code/export_model.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/tipc/train_infer_python/template/code/export_model.py
Apache-2.0
def infer_main(args): """infer_main Main inference function. Args: args: Parameters generated using argparser. Returns: class_id: Class index of the input. prob: : Probability of the input. """ # init inference engine inference_engine = InferenceEngine(args) # init benchmark log if args.benchmark: import auto_log autolog = auto_log.AutoLogger( model_name="example", batch_size=args.batch_size, inference_config=inference_engine.config, gpu_ids="auto" if args.use_gpu else None) # enable benchmark if args.benchmark: autolog.times.start() # preprocess img = inference_engine.preprocess(args.img_path) if args.benchmark: autolog.times.stamp() output = inference_engine.run(img) if args.benchmark: autolog.times.stamp() # postprocess class_id, prob = inference_engine.postprocess(output) if args.benchmark: autolog.times.stamp() autolog.times.end(stamp=True) autolog.report() return class_id, prob
infer_main Main inference function. Args: args: Parameters generated using argparser. Returns: class_id: Class index of the input. prob: : Probability of the input.
infer_main
python
PaddlePaddle/models
tutorials/tipc/train_infer_python/template/code/infer.py
https://github.com/PaddlePaddle/models/blob/master/tutorials/tipc/train_infer_python/template/code/infer.py
Apache-2.0
def pytest_configure(config): """Pytest configuration hook to help reproduce test segfaults Sets and outputs rng seeds. The segfault-debug procedure on a module called test_module.py is: 1. run "pytest --verbose test_module.py". A seg-faulting output might be: [INFO] np, mx and python random seeds = 4018804151 test_module.test1 ... ok test_module.test2 ... Illegal instruction (core dumped) 2. Copy the module-starting seed into the next command, then run: MXNET_MODULE_SEED=4018804151 pytest --log-level=DEBUG --verbose test_module.py Output might be: [WARNING] **** module-level seed is set: all tests running deterministically **** [INFO] np, mx and python random seeds = 4018804151 test_module.test1 ... [DEBUG] np and mx random seeds = 3935862516 ok test_module.test2 ... [DEBUG] np and mx random seeds = 1435005594 Illegal instruction (core dumped) 3. Copy the segfaulting-test seed into the command: MXNET_TEST_SEED=1435005594 pytest --log-level=DEBUG --verbose test_module.py:test2 Output might be: [INFO] np, mx and python random seeds = 2481884723 test_module.test2 ... [DEBUG] np and mx random seeds = 1435005594 Illegal instruction (core dumped) 3. Finally reproduce the segfault directly under gdb (might need additional os packages) by editing the bottom of test_module.py to be if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) test2() MXNET_TEST_SEED=1435005594 gdb -ex r --args python test_module.py 4. When finished debugging the segfault, remember to unset any exported MXNET_ seed variables in the environment to return to non-deterministic testing (a good thing). """ config.addinivalue_line("markers", "slow: mark test as slow to run") module_seed_str = os.getenv('MXNET_MODULE_SEED') if module_seed_str is None: seed = np.random.randint(0, np.iinfo(np.int32).max) else: seed = int(module_seed_str) logging.warning('*** module-level seed is set: ' 'all tests running deterministically ***') print('Setting module np/mx/python random seeds, ' 'use MXNET_MODULE_SEED={} to reproduce.'.format(seed)) np.random.seed(seed) mx.npx.random.seed(seed) random.seed(seed) # The MXNET_TEST_SEED environment variable will override MXNET_MODULE_SEED for tests with # the 'with_seed()' decoration. Inform the user of this once here at the module level. if os.getenv('MXNET_TEST_SEED') is not None: logging.warning('*** test-level seed set: all "@with_seed()" ' 'tests run deterministically ***')
Pytest configuration hook to help reproduce test segfaults Sets and outputs rng seeds. The segfault-debug procedure on a module called test_module.py is: 1. run "pytest --verbose test_module.py". A seg-faulting output might be: [INFO] np, mx and python random seeds = 4018804151 test_module.test1 ... ok test_module.test2 ... Illegal instruction (core dumped) 2. Copy the module-starting seed into the next command, then run: MXNET_MODULE_SEED=4018804151 pytest --log-level=DEBUG --verbose test_module.py Output might be: [WARNING] **** module-level seed is set: all tests running deterministically **** [INFO] np, mx and python random seeds = 4018804151 test_module.test1 ... [DEBUG] np and mx random seeds = 3935862516 ok test_module.test2 ... [DEBUG] np and mx random seeds = 1435005594 Illegal instruction (core dumped) 3. Copy the segfaulting-test seed into the command: MXNET_TEST_SEED=1435005594 pytest --log-level=DEBUG --verbose test_module.py:test2 Output might be: [INFO] np, mx and python random seeds = 2481884723 test_module.test2 ... [DEBUG] np and mx random seeds = 1435005594 Illegal instruction (core dumped) 3. Finally reproduce the segfault directly under gdb (might need additional os packages) by editing the bottom of test_module.py to be if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) test2() MXNET_TEST_SEED=1435005594 gdb -ex r --args python test_module.py 4. When finished debugging the segfault, remember to unset any exported MXNET_ seed variables in the environment to return to non-deterministic testing (a good thing).
pytest_configure
python
dmlc/gluon-nlp
conftest.py
https://github.com/dmlc/gluon-nlp/blob/master/conftest.py
Apache-2.0
def pytest_runtest_makereport(item, call): """Make test outcome available to fixture. https://docs.pytest.org/en/latest/example/simple.html#making-test-result-information-available-in-fixtures """ # execute all other hooks to obtain the report object outcome = yield rep = outcome.get_result() # set a report attribute for each phase of a call, which can # be "setup", "call", "teardown" setattr(item, "rep_" + rep.when, rep)
Make test outcome available to fixture. https://docs.pytest.org/en/latest/example/simple.html#making-test-result-information-available-in-fixtures
pytest_runtest_makereport
python
dmlc/gluon-nlp
conftest.py
https://github.com/dmlc/gluon-nlp/blob/master/conftest.py
Apache-2.0
def function_scope_seed(request): """A function scope fixture that manages rng seeds. This fixture automatically initializes the python, numpy and mxnet random number generators randomly on every test run. def test_ok_with_random_data(): ... To fix the seed used for a test case mark the test function with the desired seed: @pytest.mark.seed(1) def test_not_ok_with_random_data(): '''This testcase actually works.''' assert 17 == random.randint(0, 100) When a test fails, the fixture outputs the seed used. The user can then set the environment variable MXNET_TEST_SEED to the value reported, then rerun the test with: pytest --verbose -s <test_module_name.py> -k <failing_test> To run a test repeatedly, install pytest-repeat and add the --count argument: pip install pytest-repeat pytest --verbose -s <test_module_name.py> -k <failing_test> --count 1000 """ seed = request.node.get_closest_marker('seed') env_seed_str = os.getenv('MXNET_TEST_SEED') if seed is not None: seed = seed.args[0] assert isinstance(seed, int) elif env_seed_str is not None: seed = int(env_seed_str) else: seed = np.random.randint(0, np.iinfo(np.int32).max) post_test_state = np.random.get_state() np.random.seed(seed) mx.random.seed(seed) random.seed(seed) seed_message = ('np/mx/python random seeds are set to ' '{}, use MXNET_TEST_SEED={} to reproduce.') seed_message = seed_message.format(seed, seed) # Always log seed on DEBUG log level. This makes sure we can find out the # value of the seed even if the test case causes a segfault and subsequent # teardown code is not run. logging.debug(seed_message) yield # run the test if request.node.rep_setup.failed: logging.info("Setting up a test failed: {}", request.node.nodeid) elif request.node.rep_call.outcome == 'failed': # Either request.node.rep_setup.failed or request.node.rep_setup.passed # should be True assert request.node.rep_setup.passed # On failure also log seed on INFO log level logging.info(seed_message) np.random.set_state(post_test_state)
A function scope fixture that manages rng seeds. This fixture automatically initializes the python, numpy and mxnet random number generators randomly on every test run. def test_ok_with_random_data(): ... To fix the seed used for a test case mark the test function with the desired seed: @pytest.mark.seed(1) def test_not_ok_with_random_data(): '''This testcase actually works.''' assert 17 == random.randint(0, 100) When a test fails, the fixture outputs the seed used. The user can then set the environment variable MXNET_TEST_SEED to the value reported, then rerun the test with: pytest --verbose -s <test_module_name.py> -k <failing_test> To run a test repeatedly, install pytest-repeat and add the --count argument: pip install pytest-repeat pytest --verbose -s <test_module_name.py> -k <failing_test> --count 1000
function_scope_seed
python
dmlc/gluon-nlp
conftest.py
https://github.com/dmlc/gluon-nlp/blob/master/conftest.py
Apache-2.0
def predict_extended(original_feature, chunked_features, results, n_best_size, max_answer_length=64, start_top_n=5, end_top_n=5): """Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities. """ not_answerable_score = 1000000 # Score for not-answerable. We set it to be a large and positive # If one chunk votes for answerable, we will treat the context as answerable, # Thus, the overall not_answerable_score = min(chunk_not_answerable_score) all_start_idx = [] all_end_idx = [] all_pred_score = [] context_length = len(original_feature.context_token_ids) token_max_context_score = _np.full((len(chunked_features), context_length), -_np.inf, dtype=_np.float32) for i, chunked_feature in enumerate(chunked_features): chunk_start = chunked_feature.chunk_start chunk_length = chunked_feature.chunk_length for j in range(chunk_start, chunk_start + chunk_length): # This is a heuristic score # TODO investigate the impact token_max_context_score[i, j] = min(j - chunk_start, chunk_start + chunk_length - 1 - j) \ + 0.01 * chunk_length token_max_chunk_id = token_max_context_score.argmax(axis=0) for chunk_id, (result, chunk_feature) in enumerate(zip(results, chunked_features)): # We use the log-likelihood as the not answerable score. # Thus, a high score indicates that the answer is not answerable cur_not_answerable_score = float(result.answerable_logits[1]) not_answerable_score = min(not_answerable_score, cur_not_answerable_score) # Calculate the start_logits + end_logits as the overall score context_offset = chunk_feature.context_offset chunk_start = chunk_feature.chunk_start chunk_length = chunk_feature.chunk_length for i in range(start_top_n): for j in range(end_top_n): pred_score = result.start_top_logits[i] + result.end_top_logits[i, j] start_index = result.start_top_index[i] end_index = result.end_top_index[i, j] # We could hypothetically create invalid predictions, e.g., predict # that the start of the answer span is in the query tokens or out of # the chunk. We throw out all invalid predictions. if not (context_offset <= start_index < context_offset + chunk_length) or \ not (context_offset <= end_index < context_offset + chunk_length) or \ end_index < start_index: continue pred_answer_length = end_index - start_index + 1 if pred_answer_length > max_answer_length: continue start_idx = int(start_index - context_offset + chunk_start) end_idx = int(end_index - context_offset + chunk_start) if token_max_chunk_id[start_idx] != chunk_id: continue all_start_idx.append(start_idx) all_end_idx.append(end_idx) all_pred_score.append(pred_score) sorted_start_end_score = sorted(zip(all_start_idx, all_end_idx, all_pred_score), key=lambda args: args[-1], reverse=True) nbest = [] context_text = original_feature.context_text context_token_offsets = original_feature.context_token_offsets seen_predictions = set() for start_idx, end_idx, pred_score in sorted_start_end_score: if len(seen_predictions) >= n_best_size: break pred_answer = context_text[context_token_offsets[start_idx][0]: context_token_offsets[end_idx][1]] seen_predictions.add(pred_answer) nbest.append((pred_answer, pred_score)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if len(nbest) == 0: nbest.append(('', float('-inf'))) all_scores = _np.array([ele[1] for ele in nbest], dtype=_np.float32) probs = _np.exp(all_scores) / _np.sum(_np.exp(all_scores)) nbest_json = [] for i, (entry, prob) in enumerate(zip(nbest, probs)): output = collections.OrderedDict() output['text'] = entry[0] output['probability'] = float(prob) nbest_json.append(output) assert len(nbest_json) >= 1 return not_answerable_score, nbest[0][0], nbest_json
Get prediction results for SQuAD. Start Logits: (B, N_start) End Logits: (B, N_start, N_end) Parameters ---------- original_feature: The original SquadFeature before chunked chunked_features List of ChunkFeatures results List of model predictions for span start and span end. n_best_size Best N results written to file max_answer_length Maximum length of the answer tokens. start_top_n Number of start-position candidates end_top_n Number of end-position candidates Returns ------- not_answerable_score Model's estimate that the question is not answerable. prediction The final prediction. nbest_json n-best predictions with their probabilities.
predict_extended
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def get_end_logits(self, contextual_embedding, start_positions, p_mask): """ Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) start_positions Shape (batch_size, N) We process multiple candidates simultaneously p_mask Shape (batch_size, sequence_length) Returns ------- end_logits Shape (batch_size, N, sequence_length) """ # Select the features at the start_positions # start_feature will have shape (batch_size, N, C) start_features = select_vectors_by_position(contextual_embedding, start_positions) # Concatenate the start_feature and the contextual_embedding contextual_embedding = np.expand_dims(contextual_embedding, axis=1) # (B, 1, T, C) start_features = np.expand_dims(start_features, axis=2) # (B, N, 1, C) concat_features = np.concatenate([npx.broadcast_like(start_features, contextual_embedding, 2, 2), npx.broadcast_like(contextual_embedding, start_features, 1, 1)], axis=-1) # (B, N, T, 2C) end_scores = self.end_scores(concat_features) end_scores = np.squeeze(end_scores, -1) end_logits = masked_logsoftmax(end_scores, mask=np.expand_dims(p_mask, axis=1), axis=-1) return end_logits
Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) start_positions Shape (batch_size, N) We process multiple candidates simultaneously p_mask Shape (batch_size, sequence_length) Returns ------- end_logits Shape (batch_size, N, sequence_length)
get_end_logits
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def get_answerable_logits(self, contextual_embedding, p_mask): """Get the answerable logits. Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) p_mask Shape (batch_size, sequence_length) Mask the sequence. 0 --> Denote that the element is masked, 1 --> Denote that the element is not masked Returns ------- answerable_logits Shape (batch_size, 2) """ # Shape (batch_size, sequence_length) start_scores = np.squeeze(self.start_scores(contextual_embedding), -1) start_score_weights = masked_softmax(start_scores, p_mask, axis=-1) start_agg_feature = npx.batch_dot(np.expand_dims(start_score_weights, axis=1), contextual_embedding) start_agg_feature = np.squeeze(start_agg_feature, 1) cls_feature = contextual_embedding[:, 0, :] answerable_scores = self.answerable_scores(np.concatenate([start_agg_feature, cls_feature], axis=-1)) answerable_logits = npx.log_softmax(answerable_scores, axis=-1) return answerable_logits
Get the answerable logits. Parameters ---------- contextual_embedding Shape (batch_size, sequence_length, C) p_mask Shape (batch_size, sequence_length) Mask the sequence. 0 --> Denote that the element is masked, 1 --> Denote that the element is not masked Returns ------- answerable_logits Shape (batch_size, 2)
get_answerable_logits
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def forward(self, tokens, token_types, valid_length, p_mask, start_position): """ Parameters ---------- tokens Shape (batch_size, sequence_length) token_types Shape (batch_size, sequence_length) valid_length Shape (batch_size,) p_mask Shape (batch_size, sequence_length) start_position Shape (batch_size,) Returns ------- start_logits Shape (batch_size, sequence_length) end_logits Shape (batch_size, sequence_length) answerable_logits """ if self.use_segmentation: contextual_embeddings = self.backbone(tokens, token_types, valid_length) else: contextual_embeddings = self.backbone(tokens, valid_length) start_logits = self.get_start_logits(contextual_embeddings, p_mask) end_logits = self.get_end_logits(contextual_embeddings, np.expand_dims(start_position, axis=1), p_mask) end_logits = np.squeeze(end_logits, axis=1) answerable_logits = self.get_answerable_logits(contextual_embeddings, p_mask) return start_logits, end_logits, answerable_logits
Parameters ---------- tokens Shape (batch_size, sequence_length) token_types Shape (batch_size, sequence_length) valid_length Shape (batch_size,) p_mask Shape (batch_size, sequence_length) start_position Shape (batch_size,) Returns ------- start_logits Shape (batch_size, sequence_length) end_logits Shape (batch_size, sequence_length) answerable_logits
forward
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def inference(self, tokens, token_types, valid_length, p_mask, start_top_n: int = 5, end_top_n: int = 5): """Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, start_top_n, end_top_n) end_top_index Index of the top end logits Shape (batch_size, start_top_n, end_top_n) answerable_logits The answerable logits. Here 0 --> answerable and 1 --> not answerable. Shape (batch_size, sequence_length, 2) """ # Shape (batch_size, sequence_length, C) if self.use_segmentation: contextual_embeddings = self.backbone(tokens, token_types, valid_length) else: contextual_embeddings = self.backbone(tokens, valid_length) start_logits = self.get_start_logits(contextual_embeddings, p_mask) # The shape of start_top_index will be (..., start_top_n) start_top_logits, start_top_index = npx.topk(start_logits, k=start_top_n, axis=-1, ret_typ='both') end_logits = self.get_end_logits(contextual_embeddings, start_top_index, p_mask) # Note that end_top_index and end_top_log_probs have shape (bsz, start_n_top, end_n_top) # So that for each start position, there are end_n_top end positions on the third dim. end_top_logits, end_top_index = npx.topk(end_logits, k=end_top_n, axis=-1, ret_typ='both') answerable_logits = self.get_answerable_logits(contextual_embeddings, p_mask) return start_top_logits, start_top_index, end_top_logits, end_top_index, \ answerable_logits
Get the inference result with beam search Parameters ---------- tokens The input tokens. Shape (batch_size, sequence_length) token_types The input token types. Shape (batch_size, sequence_length) valid_length The valid length of the tokens. Shape (batch_size,) p_mask The mask which indicates that some tokens won't be used in the calculation. Shape (batch_size, sequence_length) start_top_n The number of candidates to select for the start position. end_top_n The number of candidates to select for the end position. Returns ------- start_top_logits The top start logits Shape (batch_size, start_top_n) start_top_index Index of the top start logits Shape (batch_size, start_top_n) end_top_logits The top end logits. Shape (batch_size, start_top_n, end_top_n) end_top_index Index of the top end logits Shape (batch_size, start_top_n, end_top_n) answerable_logits The answerable logits. Here 0 --> answerable and 1 --> not answerable. Shape (batch_size, sequence_length, 2)
inference
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def get_chunks(self, doc_stride, max_chunk_length=None): """Get a sequence of chunks for the squad feature. In reality, the document will be too long for the NLP model, and we will split it into multiple chunks. For example, consider the following Doc: the man went to the store and bought a gallon of milk We may divide it into four chunks: Chunk 1: the man went to the Chunk 2: to the store and bought Chunk 3: and bought a gallon of Chunk 4: gallon of milk We will use our network to extract features for each chunk, and do the aggregation afterwards. Here, one token may appear in multiple chunks. We can vote the output based on some heuristic score functions. Parameters ---------- doc_stride The stride used when the context is too large and is split across several features. max_chunk_length The maximum size of the chunk Returns ------- ret List of DocChunk objects """ doc_ptr = 0 max_chunk_length = max_chunk_length if max_chunk_length is not None else \ len(self.context_token_ids) ret = [] while doc_ptr < len(self.context_token_ids): chunk_length = min(max_chunk_length, len(self.context_token_ids) - doc_ptr) if self.gt_answer_text is None: chunk_gt_start_pos = None chunk_gt_end_pos = None chunk_is_impossible = True else: if self.gt_start_pos is not None and self.gt_end_pos is not None and\ self.gt_start_pos >= doc_ptr and self.gt_end_pos < doc_ptr + chunk_length: # The chunk contains the ground-truth annotation chunk_gt_start_pos = self.gt_start_pos - doc_ptr chunk_gt_end_pos = self.gt_end_pos - doc_ptr chunk_is_impossible = False else: chunk_gt_start_pos = None chunk_gt_end_pos = None chunk_is_impossible = True ret.append(DocChunk(start=doc_ptr, length=chunk_length, is_impossible=chunk_is_impossible, gt_start_pos=chunk_gt_start_pos, gt_end_pos=chunk_gt_end_pos)) if doc_ptr + chunk_length == len(self.context_token_ids): break doc_ptr += doc_stride return ret
Get a sequence of chunks for the squad feature. In reality, the document will be too long for the NLP model, and we will split it into multiple chunks. For example, consider the following Doc: the man went to the store and bought a gallon of milk We may divide it into four chunks: Chunk 1: the man went to the Chunk 2: to the store and bought Chunk 3: and bought a gallon of Chunk 4: gallon of milk We will use our network to extract features for each chunk, and do the aggregation afterwards. Here, one token may appear in multiple chunks. We can vote the output based on some heuristic score functions. Parameters ---------- doc_stride The stride used when the context is too large and is split across several features. max_chunk_length The maximum size of the chunk Returns ------- ret List of DocChunk objects
get_chunks
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace. This is from the official evaluate-v2.0.py in SQuAD. """ def remove_articles(text): regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s))))
Lower text and remove punctuation, articles and extra whitespace. This is from the official evaluate-v2.0.py in SQuAD.
normalize_answer
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def get_squad_examples_from_json(json_file: str, is_training: bool) -> List[SquadExample]: """ Read the whole entry of raw json file and convert it to examples. Parameters ---------- json_file The path to the json file is_training Whether or not training Returns ------- ret List of SquadExample objects """ with open(json_file, 'r') as f: data = json.load(f) examples = [] for entry in tqdm(data['data']): title = entry['title'] for paragraph in entry['paragraphs']: context_text = paragraph['context'] for qa in paragraph['qas']: qas_id = qa['id'] query_text = qa['question'] start_position = None end_position = None answer_text = None answers = None if "is_impossible" in qa: is_impossible = qa["is_impossible"] else: is_impossible = False if not is_impossible: if is_training: answer = qa["answers"][0] answer_text = answer["text"] start_position = answer["answer_start"] end_position = start_position + len(answer_text) if context_text[start_position:end_position] != answer_text: warnings.warn( 'Mismatch start/end and answer_text, start/end={}/{},' ' answer text={}. qas={}' .format(start_position, end_position, answer_text, qas_id)) else: answers = qa["answers"] example = SquadExample( qas_id=qas_id, query_text=query_text, context_text=context_text, answer_text=answer_text, start_position=start_position, end_position=end_position, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) return examples
Read the whole entry of raw json file and convert it to examples. Parameters ---------- json_file The path to the json file is_training Whether or not training Returns ------- ret List of SquadExample objects
get_squad_examples_from_json
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def convert_squad_example_to_feature(example: SquadExample, tokenizer: BaseTokenizerWithVocab, is_training: bool): """ Convert a SquadExample object to a SquadFeature object with the designated tokenizer. There are accually few examples can not be converted properly with token level tokenization, due to the ground-truth are given by the start position and the answer text, and some examples are annotated with wrong labels. Thus, attribute unreliable_span and token_answer_mismatch are used to indicate these senarios. Parameters ---------- example A single squad example tokenizer The trained tokenizer is_training Whether to deal with the training case Returns ------- feature A SquadFeature """ context_text = example.context_text answer_text = example.answer_text query_text = example.query_text context_token_ids, offsets = tokenizer.encode_with_offsets(context_text, int) query_token_ids = tokenizer.encode(query_text, int) gt_answer_text = answer_text gt_span_start_pos, gt_span_end_pos = None, None token_answer_mismatch = False unreliable_span = False np_offsets = _np.array(offsets) if is_training and not example.is_impossible: assert example.start_position >= 0 and example.end_position >= 0 # We convert the character-level offsets to token-level offsets # Also, if the answer after tokenization + detokenization is not the same as the original # answer, we try to localize the answer text and do a rematch candidates = [(example.start_position, example.end_position)] all_possible_start_pos = {example.start_position} find_all_candidates = False lower_idx, upper_idx = None, None first_lower_idx, first_upper_idx = None, None while len(candidates) > 0: start_position, end_position = candidates.pop() # Match the token offsets token_start_ends = match_tokens_with_char_spans(np_offsets, _np.array([[start_position, end_position]])) lower_idx = int(token_start_ends[0][0]) upper_idx = int(token_start_ends[0][1]) if not find_all_candidates: first_lower_idx = lower_idx first_upper_idx = upper_idx # The new start pos and end_pos are the lower_idx and upper_idx sliced_answer = context_text[offsets[lower_idx][0]:offsets[upper_idx][1]] norm_sliced_answer = normalize_answer(sliced_answer) norm_answer = normalize_answer(answer_text) if norm_sliced_answer != norm_answer: if not find_all_candidates: # Try to find a better start+end of the answer and insert all positions to the # candidates find_all_candidates = True pos = context_text.find(answer_text) while pos != -1: if pos not in all_possible_start_pos: all_possible_start_pos.add(pos) candidates.append((pos, pos + len(answer_text))) pos = context_text.find(answer_text, pos + 1) elif len(candidates) == 0: token_answer_mismatch = True lower_idx = first_lower_idx upper_idx = first_upper_idx if int_float_regex.match(answer_text): # Find an integer/float and the sample won't be reliable. # The span-based approach is not suitable for this scenario and we will # set the unreliable span flag. unreliable_span = True else: break gt_span_start_pos = lower_idx gt_span_end_pos = upper_idx feature = SquadFeature(qas_id=example.qas_id, query_token_ids=query_token_ids, context_text=context_text, context_token_ids=context_token_ids, context_token_offsets=offsets, is_impossible=example.is_impossible, token_answer_mismatch=token_answer_mismatch, unreliable_span=unreliable_span, gt_answer_text=gt_answer_text, gt_start_pos=gt_span_start_pos, gt_end_pos=gt_span_end_pos) return feature
Convert a SquadExample object to a SquadFeature object with the designated tokenizer. There are accually few examples can not be converted properly with token level tokenization, due to the ground-truth are given by the start position and the answer text, and some examples are annotated with wrong labels. Thus, attribute unreliable_span and token_answer_mismatch are used to indicate these senarios. Parameters ---------- example A single squad example tokenizer The trained tokenizer is_training Whether to deal with the training case Returns ------- feature A SquadFeature
convert_squad_example_to_feature
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def __init__(self, tokenizer, doc_stride, max_seq_length, max_query_length): """ Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length """ self._tokenizer = tokenizer self._doc_stride = doc_stride self._max_seq_length = max_seq_length self._max_query_length = max_query_length vocab = tokenizer.vocab self.pad_id = vocab.pad_id # For roberta model, taking sepecial token <s> as [CLS] and </s> as [SEP] self.cls_id = vocab.bos_id if 'cls_token' not in vocab.special_token_keys else vocab.cls_id self.sep_id = vocab.eos_id if 'sep_token' not in vocab.special_token_keys else vocab.sep_id # TODO(sxjscience) Consider to combine the NamedTuple and batchify functionality. self.ChunkFeature = collections.namedtuple('ChunkFeature', ['qas_id', 'data', 'valid_length', 'segment_ids', 'masks', 'is_impossible', 'gt_start', 'gt_end', 'context_offset', 'chunk_start', 'chunk_length']) self.BatchifyFunction = bf.NamedTuple(self.ChunkFeature, {'qas_id': bf.List(), 'data': bf.Pad(val=self.pad_id), 'valid_length': bf.Stack(), 'segment_ids': bf.Pad(), 'masks': bf.Pad(val=1), 'is_impossible': bf.Stack(), 'gt_start': bf.Stack(), 'gt_end': bf.Stack(), 'context_offset': bf.Stack(), 'chunk_start': bf.Stack(), 'chunk_length': bf.Stack()})
Parameters ---------- tokenizer The tokenizer doc_stride The stride to chunk the document max_seq_length Maximum length of the merged data max_query_length Maximum query length
__init__
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def process_sample(self, feature: SquadFeature): """Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk """ ret = [] truncated_query_ids = feature.query_token_ids[:self._max_query_length] chunks = feature.get_chunks( doc_stride=self._doc_stride, max_chunk_length=self._max_seq_length - len(truncated_query_ids) - 3) for chunk in chunks: data = _np.array([self.cls_id] + truncated_query_ids + [self.sep_id] + feature.context_token_ids[chunk.start:(chunk.start + chunk.length)] + [self.sep_id], dtype=_np.int32) valid_length = len(data) segment_ids = _np.array([0] + [0] * len(truncated_query_ids) + [0] + [1] * chunk.length + [1], dtype=_np.int32) masks = _np.array([0] + [1] * len(truncated_query_ids) + [1] + [0] * chunk.length + [1], dtype=_np.int32) context_offset = len(truncated_query_ids) + 2 if chunk.gt_start_pos is None and chunk.gt_end_pos is None: start_pos = 0 end_pos = 0 else: # Here, we increase the start and end because we put query before context start_pos = chunk.gt_start_pos + context_offset end_pos = chunk.gt_end_pos + context_offset chunk_feature = self.ChunkFeature(qas_id=feature.qas_id, data=data, valid_length=valid_length, segment_ids=segment_ids, masks=masks, is_impossible=chunk.is_impossible, gt_start=start_pos, gt_end=end_pos, context_offset=context_offset, chunk_start=chunk.start, chunk_length=chunk.length) ret.append(chunk_feature) return ret
Process the data to the following format. Note that we mask all the special tokens except the CLS token. The reason for not masking the CLS token is that if the question is not answerable, we will set the start and end to be 0. Merged: <CLS> Question <SEP> Context <SEP> Segment IDs: 0 0 0 1 1 Mask: 0 1 1 0 1 Here, we need to emphasize that when mask = 1, the data are actually not masked! Parameters ---------- feature Tokenized SQuAD feature Returns ------- ret Divide the feature into multiple chunks and extract the feature which contains the following: - data The data that concatenates the query and the context + special tokens - valid_length The valid_length of the data - segment_ids We assign the query part as segment 0 and the context part as segment 1. - masks We mask all the special tokens. 1 --> not masked, 0 --> masked. - is_impossible Whether the provided context is impossible to answer or not. - gt_start The ground-truth start location of the span - gt_end The ground-truth end location of the span - chunk_start The start of the chunk - chunk_length The length of the chunk
process_sample
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def get_train(self, features, skip_unreliable=True): """Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable """ train_dataset = [] num_token_answer_mismatch = 0 num_unreliable = 0 for feature in features: if feature.token_answer_mismatch: num_token_answer_mismatch += 1 if feature.unreliable_span: num_unreliable += 1 if skip_unreliable and feature.unreliable_span: # Skip when not reliable continue # Process the feature chunk_features = self.process_sample(feature) train_dataset.extend(chunk_features) return train_dataset, num_token_answer_mismatch, num_unreliable
Get the training dataset Parameters ---------- features skip_unreliable Whether to skip the unreliable spans in the training set Returns ------- train_dataset num_token_answer_mismatch num_unreliable
get_train
python
dmlc/gluon-nlp
docs/tutorials/question_answering/squad_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/docs/tutorials/question_answering/squad_utils.py
Apache-2.0
def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: bool) -> Callable[[], None]: """ This function wraps another function into its own separated process. In order to ensure accurate memory measurements it is important that the function is executed in a separate process Args: - `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process - `do_multi_processing`: (`bool`) Whether to run function on separate process or not """ def multi_process_func(*args, **kwargs): # run function in an individual # process to get correct memory def wrapper_func(queue: Queue, *args): try: result = func(*args) except Exception as e: logger.error(e) print(e) result = "N/A" queue.put(result) queue = Queue() p = Process(target=wrapper_func, args=[queue] + list(args)) p.start() result = queue.get() p.join() return result if do_multi_processing: logging.info("fFunction {func} is executed in its own process...") return multi_process_func else: return func
This function wraps another function into its own separated process. In order to ensure accurate memory measurements it is important that the function is executed in a separate process Args: - `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process - `do_multi_processing`: (`bool`) Whether to run function on separate process or not
separate_process_wrapper_fn
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def get_cpu_memory(process_id: int) -> int: """ measures current cpu memory usage of a given `process_id` Args: - `process_id`: (`int`) process_id for which to measure memory Returns - `memory`: (`int`) cosumed memory in Bytes """ process = psutil.Process(process_id) try: meminfo_attr = "memory_info" if hasattr(process, "memory_info") else "get_memory_info" memory = getattr(process, meminfo_attr)()[0] except psutil.AccessDenied: raise ValueError("Error with Psutil.") return memory
measures current cpu memory usage of a given `process_id` Args: - `process_id`: (`int`) process_id for which to measure memory Returns - `memory`: (`int`) cosumed memory in Bytes
get_cpu_memory
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_idx=None) -> int: """ measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package `memory_profiler`: https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239 Args: - `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure the peak memory - `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage - `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage Returns: - `max_memory`: (`int`) cosumed memory peak in Bytes """ if not is_psutil_available(): logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install Psutil (pip install psutil) to use CPU memory tracing." ) max_memory = "N/A" else: while True: # create child, parent connection child_connection, parent_connection = Pipe() # instantiate process mem_process = MemoryMeasureProcess(os.getpid(), child_connection, interval) mem_process.start() # wait until we get memory parent_connection.recv() try: # execute function function() # start parent connection parent_connection.send(0) # receive memory and num measurements max_memory = parent_connection.recv() num_measurements = parent_connection.recv() except Exception: # kill process in a clean way parent = psutil.Process(os.getpid()) for child in parent.children(recursive=True): os.kill(child.pid, SIGKILL) mem_process.join(0) raise RuntimeError("Process killed. Error in Process") # run process at least 20 * interval or until it finishes mem_process.join(20 * interval) if (num_measurements > 4) or (interval < 1e-6): break # reduce interval interval /= 10 return max_memory
measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package `memory_profiler`: https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239 Args: - `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure the peak memory - `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage - `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage Returns: - `max_memory`: (`int`) cosumed memory peak in Bytes
measure_peak_memory_cpu
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def traceit(frame, event, args): """ Tracing method executed before running each line in a module or sub-module Record memory allocated in a list with debugging information """ global _is_memory_tracing_enabled if not _is_memory_tracing_enabled: return traceit # Filter events if events_to_trace is not None: if isinstance(events_to_trace, str) and event != events_to_trace: return traceit elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace: return traceit if "__name__" not in frame.f_globals: return traceit # Filter modules name = frame.f_globals["__name__"] if not isinstance(name, str): return traceit else: # Filter whitelist of modules to trace if modules_to_trace is not None: if isinstance(modules_to_trace, str) and modules_to_trace not in name: return traceit elif isinstance(modules_to_trace, (list, tuple)) and all(m not in name for m in modules_to_trace): return traceit # Filter blacklist of modules not to trace if modules_not_to_trace is not None: if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name: return traceit elif isinstance(modules_not_to_trace, (list, tuple)) and any(m in name for m in modules_not_to_trace): return traceit # Record current tracing state (file, location in file...) lineno = frame.f_lineno filename = frame.f_globals["__file__"] if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] line = linecache.getline(filename, lineno).rstrip() traced_state = Frame(filename, name, lineno, event, line) # Record current memory state (rss memory) and compute difference with previous memory state cpu_mem = 0 if process is not None: mem = process.memory_info() cpu_mem = mem.rss gpu_mem = 0 if log_gpu: # Clear GPU caches if is_mxnet_available(): for ctx in mx_all_contexts: ctx.empty_cache() if is_torch_available(): torch_empty_cache() if is_tf_available(): tf_context.context()._clear_caches() # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802 # Sum used memory for all GPUs nvml.nvmlInit() for i in devices: handle = nvml.nvmlDeviceGetHandleByIndex(i) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem += meminfo.used nvml.nvmlShutdown() mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem) memory_trace.append(mem_state) return traceit
Tracing method executed before running each line in a module or sub-module Record memory allocated in a list with debugging information
traceit
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def stop_memory_tracing( memory_trace: Optional[MemoryTrace] = None, ignore_released_memory: bool = True ) -> Optional[MemorySummary]: """ Stop memory tracing cleanly and return a summary of the memory trace if a trace is given. Args: - `memory_trace` (optional output of start_memory_tracing, default: None): memory trace to convert in summary - `ignore_released_memory` (boolean, default: None): if True we only sum memory increase to compute total memory Return: - None if `memory_trace` is None - `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by substracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). `Memory` named tuple have fields - `byte` (integer): number of bytes, - `string` (string): same as human readable string (ex: "3.5MB") `Frame` are namedtuple used to list the current frame state and have the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple """ global _is_memory_tracing_enabled _is_memory_tracing_enabled = False if memory_trace is not None and len(memory_trace) > 1: memory_diff_trace = [] memory_curr_trace = [] cumulative_memory_dict = defaultdict(lambda: [0, 0, 0]) for ((frame, cpu_mem, gpu_mem), (next_frame, next_cpu_mem, next_gpu_mem),) in zip( memory_trace[:-1], memory_trace[1:] ): cpu_mem_inc = next_cpu_mem - cpu_mem gpu_mem_inc = next_gpu_mem - gpu_mem cpu_gpu_mem_inc = cpu_mem_inc + gpu_mem_inc memory_diff_trace.append( MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) ) memory_curr_trace.append( MemoryState( frame=frame, cpu=Memory(next_cpu_mem), gpu=Memory(next_gpu_mem), cpu_gpu=Memory(next_gpu_mem + next_cpu_mem), ) ) cumulative_memory_dict[frame][0] += cpu_mem_inc cumulative_memory_dict[frame][1] += gpu_mem_inc cumulative_memory_dict[frame][2] += cpu_gpu_mem_inc cumulative_memory = sorted( list(cumulative_memory_dict.items()), key=lambda x: x[1][2], reverse=True ) # order by the total CPU + GPU memory increase cumulative_memory = list( MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) for frame, (cpu_mem_inc, gpu_mem_inc, cpu_gpu_mem_inc) in cumulative_memory ) memory_curr_trace = sorted(memory_curr_trace, key=lambda x: x.cpu_gpu.bytes, reverse=True) if ignore_released_memory: total_memory = sum(max(0, step_trace.cpu_gpu.bytes) for step_trace in memory_diff_trace) else: total_memory = sum(step_trace.cpu_gpu.bytes for step_trace in memory_diff_trace) total_memory = Memory(total_memory) return MemorySummary( sequential=memory_diff_trace, cumulative=cumulative_memory, current=memory_curr_trace, total=total_memory, ) return None
Stop memory tracing cleanly and return a summary of the memory trace if a trace is given. Args: - `memory_trace` (optional output of start_memory_tracing, default: None): memory trace to convert in summary - `ignore_released_memory` (boolean, default: None): if True we only sum memory increase to compute total memory Return: - None if `memory_trace` is None - `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by substracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). `Memory` named tuple have fields - `byte` (integer): number of bytes, - `string` (string): same as human readable string (ex: "3.5MB") `Frame` are namedtuple used to list the current frame state and have the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
stop_memory_tracing
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def __init__(self, workloads, model_names, use_fp16=False, repeat=3, use_gpu=True, device_idx=0, profile_inference=True, profile_train=True, env_print=True, to_csv=False, use_tvm=False, instance_type=None, layout='NT', compute_layout='auto', inference_out_csv_file='inference_time_memory.csv', train_out_csv_file='train_time_memory.csv', env_info_file='env_info.csv'): """ Parameters ---------- workloads List of workloads to profile model_names List of model names to profile use_fp16 Whether to use fp16 repeat The number of repeat use_gpu Whether to use GPU device_idx The GPU ID profile_inference Whether to profile inference profile_train Whether to profile training env_print Whether to print the environment to_csv Whether to dump to csv file use_tvm Whether to use TVM to accelerate the instance_type Type of the instance. This will only be used to set the layout The input + output layout compute_layout The computation layout inference_out_csv_file train_out_csv_file env_info_file """ self._workloads = workloads if not isinstance(workloads, list): workloads = [workloads] if not isinstance(model_names, (list, tuple)): model_names = [model_names] self._workloads = workloads self._model_names = model_names self._use_fp16 = use_fp16 self._repeat = repeat self._use_gpu = use_gpu self._device_idx = device_idx self._environment_info = None self._profile_inference = profile_inference self._profile_train = profile_train self._env_print = env_print self._to_csv = to_csv self._use_tvm = use_tvm self._instance_type = instance_type self._layout = layout self._compute_layout = compute_layout self._inference_out_csv_file = inference_out_csv_file self._train_out_csv_file = train_out_csv_file self._env_info_file = env_info_file
Parameters ---------- workloads List of workloads to profile model_names List of model names to profile use_fp16 Whether to use fp16 repeat The number of repeat use_gpu Whether to use GPU device_idx The GPU ID profile_inference Whether to profile inference profile_train Whether to profile training env_print Whether to print the environment to_csv Whether to dump to csv file use_tvm Whether to use TVM to accelerate the instance_type Type of the instance. This will only be used to set the layout The input + output layout compute_layout The computation layout inference_out_csv_file train_out_csv_file env_info_file
__init__
python
dmlc/gluon-nlp
scripts/benchmarks/benchmark_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/benchmarks/benchmark_utils.py
Apache-2.0
def get_network(model_name, ctx_l, checkpoint_path=None, backbone_path=None, task=None): """ Get the network that fine-tune the Question Answering Task """ use_segmentation = 'roberta' not in model_name and 'xlmr' not in model_name Model, cfg, tokenizer, download_params_path, _ = \ get_backbone(model_name, load_backbone=not backbone_path) backbone = Model.from_cfg(cfg) # Load local backbone parameters if backbone_path provided. # Otherwise, download backbone parameters from gluon zoo. backbone_params_path = backbone_path if backbone_path else download_params_path if checkpoint_path is None: backbone.load_parameters(backbone_params_path, ignore_extra=True, ctx=ctx_l, cast_dtype=True) num_params, num_fixed_params \ = count_parameters(deduplicate_param_dict(backbone.collect_params())) logging.info( 'Loading Backbone Model from {}, with total/fixd parameters={}/{}'.format( backbone_params_path, num_params, num_fixed_params)) classify_net = TextPredictionNet(backbone, task.class_num) if checkpoint_path is None: # Ignore the UserWarning during initialization, # There is no need to re-initialize the parameters of backbone classify_net.initialize(ctx=ctx_l) else: classify_net.load_parameters(checkpoint_path, ctx=ctx_l, cast_dtype=True) classify_net.hybridize() return cfg, tokenizer, classify_net, use_segmentation
Get the network that fine-tune the Question Answering Task
get_network
python
dmlc/gluon-nlp
scripts/classification/train_classification.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/classification/train_classification.py
Apache-2.0
def convert_tf_assets(tf_assets_dir, model_size, electra_path): """Convert the assets file including config, vocab and tokenizer model""" file_names = os.listdir(tf_assets_dir) vocab_path = None for ele in file_names: if ele.endswith('.txt'): assert vocab_path is None vocab_path = ele assert vocab_path is not None if vocab_path: vocab_path = os.path.join(tf_assets_dir, vocab_path) vocab_size = len(open(vocab_path, 'r', encoding='utf-8').readlines()) config_dict = get_dict_config(model_size, electra_path) cfg = convert_tf_config(config_dict, vocab_size) return cfg, vocab_path
Convert the assets file including config, vocab and tokenizer model
convert_tf_assets
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_electra.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_electra.py
Apache-2.0
def get_name_map(tf_names, convert_type='backbone'): """ Get the converting mapping between tensor names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some sepecial variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model convert_type choices=['backbone', 'disc', 'gen'] Returns ------- A dictionary with the following format: {tf_names : mx_names} """ name_map = {} for source_name in tf_names: target_name = source_name if convert_type == 'backbone': if 'electra' not in source_name: continue elif convert_type == 'disc': target_name = 'backbone_model.' + target_name if 'generator' in source_name: continue elif convert_type == 'gen': target_name = 'backbone_model.' + target_name if 'generator' not in source_name: continue else: raise NotImplementedError # skip the qkv weights if 'self/' in source_name: name_map[source_name] = None continue for old, new in CONVERT_MAP: target_name = target_name.replace(old, new) name_map[source_name] = target_name return name_map
Get the converting mapping between tensor names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some sepecial variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model convert_type choices=['backbone', 'disc', 'gen'] Returns ------- A dictionary with the following format: {tf_names : mx_names}
get_name_map
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_electra.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_electra.py
Apache-2.0
def convert_qkv_weights(tf_prefix, mx_prefix): """ To convert the qkv weights with different prefix. In tensorflow framework, the prefix of query/key/value for the albert model is 'bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel', and that for the bert model is 'bert/encoder/layer_{}/attention/self/key/bias'. In gluonnlp framework, the prefix is slightly different as 'encoder.all_encoder_groups.0.attn_qkv.weight' for albert model and 'encoder.all_layers.{}.attn_qkv.weight' for bert model, as the curly braces {} can be filled with the layer number. """ # Merge query_weight, key_weight, value_weight to mx_params query_weight = tf_params[ '{}/query/kernel'.format(tf_prefix)] key_weight = tf_params[ '{}/key/kernel'.format(tf_prefix)] value_weight = tf_params[ '{}/value/kernel'.format(tf_prefix)] mx_params['{}.attn_qkv.weight'.format(mx_prefix)].set_data( np.concatenate([query_weight, key_weight, value_weight], axis=1).T) # Merge query_bias, key_bias, value_bias to mx_params query_bias = tf_params[ '{}/query/bias'.format(tf_prefix)] key_bias = tf_params[ '{}/key/bias'.format(tf_prefix)] value_bias = tf_params[ '{}/value/bias'.format(tf_prefix)] mx_params['{}.attn_qkv.bias'.format(mx_prefix)].set_data( np.concatenate([query_bias, key_bias, value_bias], axis=0))
To convert the qkv weights with different prefix. In tensorflow framework, the prefix of query/key/value for the albert model is 'bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel', and that for the bert model is 'bert/encoder/layer_{}/attention/self/key/bias'. In gluonnlp framework, the prefix is slightly different as 'encoder.all_encoder_groups.0.attn_qkv.weight' for albert model and 'encoder.all_layers.{}.attn_qkv.weight' for bert model, as the curly braces {} can be filled with the layer number.
convert_qkv_weights
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_electra.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_electra.py
Apache-2.0
def convert_tf_assets(tf_assets_dir): """Convert the assets file including config, vocab and tokenizer model""" file_names = os.listdir(tf_assets_dir) vocab_path = None json_cfg_path = None for ele in file_names: if ele.endswith('.txt'): assert vocab_path is None vocab_path = ele elif ele.endswith('.json'): assert json_cfg_path is None json_cfg_path = ele assert vocab_path is not None and json_cfg_path is not None vocab_path = os.path.join(tf_assets_dir, vocab_path) vocab_size = len(open(vocab_path, 'r', encoding='utf-8').readlines()) json_cfg_path = os.path.join(tf_assets_dir, json_cfg_path) cfg = convert_tf_config(json_cfg_path, vocab_size) return cfg, json_cfg_path, vocab_path
Convert the assets file including config, vocab and tokenizer model
convert_tf_assets
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_mobilebert.py
Apache-2.0
def get_name_map(tf_names, num_stacked_ffn): """ Get the converting mapping between tensor names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some sepecial variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model Returns ------- A dictionary with the following format: {tf_names : mx_names} """ name_map = {} for source_name in tf_names: target_name = source_name ffn_idx = re.findall(r'ffn_layer_\d+', target_name) if ffn_idx: target_name = target_name.replace(ffn_idx[0], 'ffn_layers_xxx') for old, new in CONVERT_MAP: target_name = target_name.replace(old, new) if ffn_idx: target_name = target_name.replace('stacked_ffn.xxx', 'stacked_ffn.' + ffn_idx[0][10:]) if 'stacked_ffn.xxy' in target_name: target_name = target_name.replace( 'stacked_ffn.xxy', 'stacked_ffn.' + str(num_stacked_ffn - 1)) name_map[source_name] = target_name return name_map
Get the converting mapping between tensor names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some sepecial variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model Returns ------- A dictionary with the following format: {tf_names : mx_names}
get_name_map
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_mobilebert.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_mobilebert.py
Apache-2.0
def convert_tf_assets(tf_assets_dir, model_type): """Convert the assets file including config, vocab and tokenizer model""" file_names = os.listdir(tf_assets_dir) json_cfg_path = None spm_model_path = None vocab_path = None for ele in file_names: if ele.endswith('.model'): assert spm_model_path is None spm_model_path = ele elif ele.endswith('.json'): assert json_cfg_path is None json_cfg_path = ele elif ele.endswith('.txt'): assert vocab_path is None vocab_path = ele assert json_cfg_path is not None and \ (spm_model_path is not None or vocab_path is not None), "The file to be" \ "converted is missing and at least one word segmentation tool or dictionary exists" json_cfg_path = os.path.join(tf_assets_dir, json_cfg_path) if spm_model_path: spm_model_path = os.path.join(tf_assets_dir, spm_model_path) tokenizer = SentencepieceTokenizer(spm_model_path) vocab_size = len(tokenizer.vocab) elif vocab_path: vocab_path = os.path.join(tf_assets_dir, vocab_path) vocab_size = len(open(vocab_path, 'r', encoding='utf-8').readlines()) cfg = convert_tf_config(json_cfg_path, vocab_size, model_type) return cfg, vocab_path, spm_model_path
Convert the assets file including config, vocab and tokenizer model
convert_tf_assets
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_tf_hub_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_tf_hub_model.py
Apache-2.0
def get_name_map(tf_names, is_TF1=True): """ Get the converting mapping between TF names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some special variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model is_TF1 whether load from TF1 Hub Modules Returns ------- A dictionary with the following format: {tf_names : mx_names} or {tf_names : th_names} """ convert_map = CONVERT_MAP_TF1 if is_TF1 else CONVERT_MAP_TF2 if args.torch and is_TF1: CONVERT_MAP_TF1.insert(10, ('embeddings/position_embeddings', 'token_pos_embed.weight')) CONVERT_MAP_TF1.insert(-1, ('beta', 'bias')) CONVERT_MAP_TF1.insert(-1, ('gamma', 'weight')) elif is_TF1: CONVERT_MAP_TF1.insert(10, ('embeddings/position_embeddings', 'token_pos_embed._embed.weight')) elif args.torch: CONVERT_MAP_TF2.insert(10, ('position_embedding/embeddings', 'token_pos_embed.weight')) else: CONVERT_MAP_TF2.insert(10, ('position_embedding/embeddings', 'token_pos_embed._embed.weight')) name_map = {} for source_name in tf_names: target_name = source_name # skip the qkv weights if 'self/' in source_name: name_map[source_name] = None continue if re.match(r'^transformer\/layer_[\d]+\/self_attention\/(key|value|query)\/(kernel|bias)$', source_name) is not None: name_map[source_name] = None continue for old, new in convert_map: target_name = target_name.replace(old, new) name_map[source_name] = target_name return name_map
Get the converting mapping between TF names and mxnet names. The above mapping CONVERT_MAP is effectively adaptive to Bert and Albert, but there is no guarantee that it can match to other tf models in case of some special variable_scope (tensorflow) and prefix (mxnet). Redefined mapping is encouraged to adapt the personalization model. Parameters ---------- tf_names the parameters names of tensorflow model is_TF1 whether load from TF1 Hub Modules Returns ------- A dictionary with the following format: {tf_names : mx_names} or {tf_names : th_names}
get_name_map
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_tf_hub_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_tf_hub_model.py
Apache-2.0
def convert_qkv_weights(tf_prefix, prefix, is_mlm): """ To convert the qkv weights with different prefix. In tensorflow framework, the prefix of query/key/value for the albert model is 'bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel', and that for the bert model is 'bert/encoder/layer_{}/attention/self/key/bias'. In gluonnlp framework, the prefix is slightly different as 'encoder.all_encoder_groups.0.attn_qkv.weight' for albert model and 'encoder.all_layers.{}.attn_qkv.weight' for bert model, as the curly braces {} can be filled with the layer number. """ query_weight = tf_params['{}/query/kernel'.format(tf_prefix)] key_weight = tf_params['{}/key/kernel'.format(tf_prefix)] value_weight = tf_params['{}/value/kernel'.format(tf_prefix)] query_bias = tf_params['{}/query/bias'.format(tf_prefix)] key_bias = tf_params['{}/key/bias'.format(tf_prefix)] value_bias = tf_params['{}/value/bias'.format(tf_prefix)] if 'self_attention' in tf_prefix: query_weight = query_weight.reshape((cfg.MODEL.units, -1)) key_weight = key_weight.reshape((cfg.MODEL.units, -1)) value_weight = value_weight.reshape((cfg.MODEL.units, -1)) query_bias = query_bias.reshape((-1, )) key_bias = key_bias.reshape((-1, )) value_bias = value_bias.reshape((-1, )) # Merge query_weight, key_weight, value_weight to params weight_name = 'encoder.{}.attn_qkv.weight'.format(prefix) bias_name = 'encoder.{}.attn_qkv.bias'.format(prefix) if is_mlm: weight_name = 'backbone_model.' + weight_name bias_name = 'backbone_model.' + bias_name if args.torch: params[weight_name].data = th.from_numpy(np.concatenate( [query_weight, key_weight, value_weight], axis=1).T).contiguous() else: params[weight_name].set_data( np.concatenate([query_weight, key_weight, value_weight], axis=1).T) all_keys.remove(weight_name) # Merge query_bias, key_bias, value_bias to params if args.torch: params[bias_name].data = th.from_numpy( np.concatenate([query_bias, key_bias, value_bias], axis=0)).contiguous() else: params[bias_name].set_data( np.concatenate([query_bias, key_bias, value_bias], axis=0)) all_keys.remove(bias_name)
To convert the qkv weights with different prefix. In tensorflow framework, the prefix of query/key/value for the albert model is 'bert/encoder/transformer/group_0/inner_group_0/attention_1/self/query/kernel', and that for the bert model is 'bert/encoder/layer_{}/attention/self/key/bias'. In gluonnlp framework, the prefix is slightly different as 'encoder.all_encoder_groups.0.attn_qkv.weight' for albert model and 'encoder.all_layers.{}.attn_qkv.weight' for bert model, as the curly braces {} can be filled with the layer number.
convert_qkv_weights
python
dmlc/gluon-nlp
scripts/conversion_toolkits/convert_tf_hub_model.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/conversion_toolkits/convert_tf_hub_model.py
Apache-2.0
def get_hash_and_size(obj, retries=5, algorithm='sha1', cache=None, save_path=None, verify_ssl=True): """Fetch sha1 hash of all urls in the input obj""" def _get_hash_and_size(obj, retries, algorithm, cache=None, save_path=None): if isinstance(obj, str): if obj.startswith('http://') or obj.startswith('https://'): url = obj hex_hash = None file_size = None if cache is not None and obj in cache: return obj, cache[obj] while retries + 1 > 0: # Disable pyling too broad Exception # pylint: disable=W0703 try: if algorithm == 'sha1': m = hashlib.sha1() elif algorithm == 'sha256': m = hashlib.sha256() elif algorithm == 'md5': m = hashlib.md5() else: raise NotImplementedError print('Calculating hash of the file downloaded from {}...'.format(url)) start = time.time() r = requests.get(url, stream=True, verify=verify_ssl) if r.status_code != 200: raise RuntimeError('Failed downloading url {}'.format(url)) f_size = 0 for chunk in r.iter_content(chunk_size=10240): if chunk: # filter out keep-alive new chunks m.update(chunk) f_size += len(chunk) hex_hash = m.hexdigest() file_size = f_size end = time.time() print('{}={}, size={}, Time spent={}'.format(algorithm, hex_hash, file_size, end - start)) if cache is None: cache = OrderedDict() cache[url] = (hex_hash, file_size) if save_path is not None: with open(save_path, 'a', encoding='utf-8') as of: of.write('{} {} {}\n'.format(url, hex_hash, file_size)) break except Exception as e: retries -= 1 if retries <= 0: raise e print('download failed due to {}, retrying, {} attempt{} left' .format(repr(e), retries, 's' if retries > 1 else '')) return obj, (hex_hash, file_size) else: return obj elif isinstance(obj, tuple): return tuple((_get_hash_and_size(ele, retries, algorithm, cache, save_path) for ele in obj)) elif isinstance(obj, list): return [_get_hash_and_size(ele, retries, algorithm, cache, save_path) for ele in obj] elif isinstance(obj, dict): return {k: _get_hash_and_size(v, retries, algorithm, cache, save_path) for k, v in obj.items()} else: return obj if cache is None: cache = OrderedDict() else: cache = copy.deepcopy(cache) if save_path is not None and os.path.exists(save_path): with open(save_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip() url, hex_hash, file_size = line.split() cache[url] = (hex_hash, file_size) _get_hash_and_size(obj, retries, algorithm, cache, save_path) return obj, cache
Fetch sha1 hash of all urls in the input obj
get_hash_and_size
python
dmlc/gluon-nlp
scripts/datasets/update_download_stats.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/update_download_stats.py
Apache-2.0
def build_vocab(corpus_path_l: List, eos_token: Optional[str] = '<eos>') -> Vocab: """Build the default vocabulary used in datasets like - wikitext2 - wikitext103 - text8 - enwiki8 The strategy is to split with white-space and store all appeared tokens. Also, the tokens will be sorted with a descending order of their frequency. Parameters ---------- corpus_path_l The corpus path eos_token If it is not None, the eos_token will be added to the vocabulary. Returns ------- vocab The vocabulary """ counter = Counter() ntokens = 0 print('Build the default vocabulary used in benchmarks:') for corpus_path in corpus_path_l: with open(corpus_path, 'r', encoding='utf-8') as f: for idx, line in enumerate(f): if idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) line = line.strip() tokens = line.split() counter.update(tokens) ntokens += len(tokens) if eos_token is not None and eos_token in counter: raise ValueError('eos_token is set to be "{}", which appears in the text. ' 'Is it intended? You may choose another token as the eos_token.' .format(eos_token)) vocab = Vocab(counter, unk_token=None, eos_token=eos_token) print('Processed {} tokens, vocab={}'.format(ntokens, vocab)) return vocab
Build the default vocabulary used in datasets like - wikitext2 - wikitext103 - text8 - enwiki8 The strategy is to split with white-space and store all appeared tokens. Also, the tokens will be sorted with a descending order of their frequency. Parameters ---------- corpus_path_l The corpus path eos_token If it is not None, the eos_token will be added to the vocabulary. Returns ------- vocab The vocabulary
build_vocab
python
dmlc/gluon-nlp
scripts/datasets/language_modeling/prepare_lm.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/language_modeling/prepare_lm.py
Apache-2.0
def parse_sgm(path_or_buffer: Union[str, IO[AnyStr]], out_path_or_buffer: Optional[Union[str, IO[AnyStr]]] = None, return_sentences=False, clean_space=True) -> Optional[List[str]]: """Returns sentences from a single SGML file. This is compatible to the behavior of `input-from-sgm.perl` in https://github.com/moses-smt/mosesdecoder/blob/a89691fee395bb7eb6dfd51e368825f0578f437d/scripts/ems/support/input-from-sgm.perl Parameters ---------- path_or_buffer The source path to parse the file out_path_or_buffer The output path return_sentences Whether to return the parsed sentences clean_space Whether to clean the spaces in the sentence with the similar strategy in input-from-sgm.perl. Returns ------- sentences The list contains the parsed sentences in the input file. If the return_sentences is False, return None. """ if out_path_or_buffer is None: assert return_sentences, 'Must return sentences if the output path is not specified!' if return_sentences: sentences = [] else: sentences = None f_buffer = _get_buffer(path_or_buffer, 'r') of_buffer = _get_buffer(out_path_or_buffer, 'w') seg_re = re.compile(r'<seg.*?>(.*)</seg>.*?') for line in f_buffer: if isinstance(line, bytes): line = line.decode('utf-8') seg_match = re.match(seg_re, line) if seg_match: assert len(seg_match.groups()) == 1,\ 'File content is not supported, unmatched line: {}'.format(line) line = seg_match.groups()[0] if clean_space: line = _clean_space(line) if of_buffer is not None: of_buffer.write(line + '\n') if sentences is not None: sentences.append(line) if of_buffer is not None: of_buffer.close() return sentences
Returns sentences from a single SGML file. This is compatible to the behavior of `input-from-sgm.perl` in https://github.com/moses-smt/mosesdecoder/blob/a89691fee395bb7eb6dfd51e368825f0578f437d/scripts/ems/support/input-from-sgm.perl Parameters ---------- path_or_buffer The source path to parse the file out_path_or_buffer The output path return_sentences Whether to return the parsed sentences clean_space Whether to clean the spaces in the sentence with the similar strategy in input-from-sgm.perl. Returns ------- sentences The list contains the parsed sentences in the input file. If the return_sentences is False, return None.
parse_sgm
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def concatenate_files(fname_l: List[str], out_fname: Optional[str] = None, chunk_size: int = 128 * 1024) -> str: """Concatenate multiple files into a single file. This is used to recover a large file that has been split into multiple parts. E.g., UNv1.0.en-zh.tar.gz.00, UNv1.0.en-zh.tar.gz.01 --> UNv1.0.en-zh.tar.gz Parameters ---------- fname_l out_fname chunk_size Returns ------- ret """ assert len(fname_l) > 1 ext_l = [] base_prefix, ext = os.path.splitext(fname_l[0]) ext_l.append(ext) for i in range(1, len(fname_l)): prefix, ext = os.path.splitext(fname_l[i]) ext_l.append(ext) if prefix != base_prefix: raise ValueError('Cannot concatenate the input files! The prefix does not match! ' 'Find prefix={}, Expected prefix={}'.format(prefix, base_prefix)) fname_ext_l = sorted(zip(fname_l, ext_l), key=lambda ele: ele[1]) if out_fname is None: out_fname = base_prefix with open(out_fname, 'wb') as of: for fname, _ in fname_ext_l: with open(fname, 'rb') as infile: for block in iter(functools.partial(infile.read, chunk_size), b''): of.write(block) return out_fname
Concatenate multiple files into a single file. This is used to recover a large file that has been split into multiple parts. E.g., UNv1.0.en-zh.tar.gz.00, UNv1.0.en-zh.tar.gz.01 --> UNv1.0.en-zh.tar.gz Parameters ---------- fname_l out_fname chunk_size Returns ------- ret
concatenate_files
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def fetch_mono_dataset(selection: Union[str, List[str], List[List[str]]], lang: str = 'de', path: Optional[str] = _BASE_DATASET_PATH, overwrite: bool = False) -> List[str]: """Fetch the monolingual dataset provided by WMT Parameters ---------- selection The selected datasets lang Language of the monolingual corpus path overwrite Whether to overwrite the downloaded dataset Returns ------- src_corpus_paths """ base_url_info = _MONOLINGUAL_URLS if isinstance(selection, str): selection = [selection] elif isinstance(selection, list): if isinstance(selection[0], list): corpus_paths = [] for ele in selection: ele_corpus_paths =\ fetch_mono_dataset(ele, lang, path, overwrite) corpus_paths.extend(ele_corpus_paths) return corpus_paths else: raise NotImplementedError for sel in selection: base_url_info = base_url_info[sel] # Check the pair is valid available_lang = set(base_url_info.keys()) if 'url' in available_lang: available_lang.remove('url') if lang in available_lang: matched_lang = '{}'.format(lang) else: raise ValueError('Unsupported lang, lang={}. All supported: {}' .format(lang, available_lang)) save_dir_path = os.path.join(path, *(selection + [matched_lang])) if not os.path.exists(save_dir_path): os.makedirs(save_dir_path) out_path = os.path.join(save_dir_path, lang + '.txt') # Check for whether we can load the cached version if os.path.exists(out_path) and not overwrite: print('Found data in {}, skip:\n' '\tSource: {}\n'.format(selection + [lang], out_path)) return [out_path] lang_data_info = base_url_info[matched_lang] if 'url' in lang_data_info: url_l = lang_data_info['url'] else: url_l = base_url_info['url'] # Download the data + Concatenate the file-parts (if necessary) download_fname_l = [] if isinstance(url_l, str): url_l = [url_l] for url in url_l: original_filename = url[url.rfind("/") + 1:] sha1_hash = _URL_FILE_STATS[url] if 'url' in lang_data_info: save_path_l = [path] + selection + [matched_lang, original_filename] else: save_path_l = [path] + selection + [original_filename] download_fname = _download_with_mirror( url, path=os.path.join(*save_path_l), sha1_hash=sha1_hash ) download_fname_l.append(download_fname) if len(download_fname_l) > 1: data_path = concatenate_files(download_fname_l) else: data_path = download_fname_l[0] src_name = lang_data_info[lang] print('Prepare data for {}\n' '\tCompressed File: {}\n' '\t{}: {}\n'.format(selection + [lang], data_path, lang, out_path)) extract_mono_corpus(data_path, lang=lang, name=src_name, out_src_path=out_path) return [out_path]
Fetch the monolingual dataset provided by WMT Parameters ---------- selection The selected datasets lang Language of the monolingual corpus path overwrite Whether to overwrite the downloaded dataset Returns ------- src_corpus_paths
fetch_mono_dataset
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def download_mono_newscrawl(lang: str = 'de', path: str = _BASE_DATASET_PATH)\ -> List[str]: """Download the train dataset used for WMT2014 Parameters ---------- lang path Returns ------- train_src_paths """ if lang == 'de': train_src_paths =\ fetch_mono_dataset([['newscrawl', '2017'], ['newscrawl', '2018']], lang=lang, path=path) else: raise NotImplementedError return train_src_paths
Download the train dataset used for WMT2014 Parameters ---------- lang path Returns ------- train_src_paths
download_mono_newscrawl
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def download_wmt14_train(lang_pair: str = 'en-de', path: str = _BASE_DATASET_PATH)\ -> Tuple[List[str], List[str]]: """Download the train dataset used for WMT2014 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths """ if lang_pair == 'en-de' or lang_pair == 'de-en': train_src_paths, train_tgt_paths =\ fetch_wmt_parallel_dataset([['europarl', 'v7'], ['commoncrawl', 'wmt13'], ['newscommentary', 'v9']], lang_pair, path=path) else: raise NotImplementedError return train_src_paths, train_tgt_paths
Download the train dataset used for WMT2014 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths
download_wmt14_train
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def download_wmt16_train(lang_pair: str = 'en-de', path: str = _BASE_DATASET_PATH)\ -> Tuple[List[str], List[str]]: """Download the train dataset used for WMT2016 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths """ if lang_pair == 'en-de' or lang_pair == 'de-en': train_src_paths, train_tgt_paths = \ fetch_wmt_parallel_dataset([['europarl', 'v7'], ['commoncrawl', 'wmt13'], ['newscommentary', 'v11']], lang_pair, path=path) else: raise NotImplementedError return train_src_paths, train_tgt_paths
Download the train dataset used for WMT2016 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths
download_wmt16_train
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def download_wmt17_train(lang_pair: str = 'en-de', path: str = _BASE_DATASET_PATH)\ -> Tuple[List[str], List[str]]: """Download the train dataset used for WMT2017 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths """ if lang_pair == 'en-de' or lang_pair == 'de-en': train_src_paths, train_tgt_paths = \ fetch_wmt_parallel_dataset([['europarl', 'v7'], ['commoncrawl', 'wmt13'], ['newscommentary', 'v12'], ['rapid', '2016']], lang_pair, path=path) elif lang_pair == 'zh-en' or lang_pair == 'en-zh': train_src_paths, train_tgt_paths = \ fetch_wmt_parallel_dataset([['newscommentary', 'v13'], ['uncorpus', 'v1'], ['cwmt']], lang_pair, path=path) else: raise NotImplementedError return train_src_paths, train_tgt_paths
Download the train dataset used for WMT2017 Parameters ---------- lang_pair path Returns ------- train_src_paths train_tgt_paths
download_wmt17_train
python
dmlc/gluon-nlp
scripts/datasets/machine_translation/prepare_wmt.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/machine_translation/prepare_wmt.py
Apache-2.0
def extract_files(full_name, output_dir, shuffle=False): """ Extract the file and concatenate all the TXT files it archives """ if not full_name.endswith(".xz"): return file_prefix = re.split(r'\.|/', full_name)[-2] file_prefix = file_prefix.replace('urlsf_subset', 'openwebtext-prepared-') with open("{}.txt".format(os.path.join(output_dir, file_prefix)), "w") as fp: with tarfile.open(full_name) as t: txt_names = t.getnames() if shuffle: random.shuffle(txt_names) for txt_name in txt_names: f = t.extractfile(txt_name) for line in f.readlines(): # skip empty line line = line.strip() if line: fp.write(line.decode() + '\n') # Two extra line break to mark the document separation fp.write('\n')
Extract the file and concatenate all the TXT files it archives
extract_files
python
dmlc/gluon-nlp
scripts/datasets/pretrain_corpus/prepare_openwebtext.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/pretrain_corpus/prepare_openwebtext.py
Apache-2.0
def get_formatting_list(wiki_path, recursive=False): """ get formatting list of file names from extracted content """ filenames = [] for dirname in glob.glob(os.path.join(wiki_path, '*'), recursive=False): for filename in glob.glob(os.path.join(dirname, 'wiki_*'), recursive=recursive): filenames.append(filename) return filenames
get formatting list of file names from extracted content
get_formatting_list
python
dmlc/gluon-nlp
scripts/datasets/pretrain_corpus/prepare_wikipedia.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/pretrain_corpus/prepare_wikipedia.py
Apache-2.0
def download_wikicorpus(lang, date, output): """ lang: the language code such as en, zh date: string, the date of the Wikipedia with format of YYYYMMDD, or 'latest'. """ if not os.path.exists(output): os.makedirs(output) if lang not in __LANGUAGES_BANK: raise ValueError('Unsupported language code') language = lang.replace('-', '_') output_file = os.path.join(output, 'download', language, date, 'wikicorpus.xml.bz2') download(get_url(language, date), output_file) return output_file
lang: the language code such as en, zh date: string, the date of the Wikipedia with format of YYYYMMDD, or 'latest'.
download_wikicorpus
python
dmlc/gluon-nlp
scripts/datasets/pretrain_corpus/prepare_wikipedia.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/datasets/pretrain_corpus/prepare_wikipedia.py
Apache-2.0
def calculate_self_bleu4(sample_strs, num_bleu_samples): """Self-BLEU is calculated by computing the BLEU score of each generated document using all other generations in the evaluation set as references. """ pool = Pool(processes=os.cpu_count()) return sum(tqdm( pool.imap_unordered( partial(bleu, sample_strs), random.sample(range(len(sample_strs)), num_bleu_samples)), total=num_bleu_samples)) / num_bleu_samples
Self-BLEU is calculated by computing the BLEU score of each generated document using all other generations in the evaluation set as references.
calculate_self_bleu4
python
dmlc/gluon-nlp
scripts/generation/calculate_metrics.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/generation/calculate_metrics.py
Apache-2.0
def calculate_zipf_coefficient(sample_ids, tokenizer): """The Zipfian coefficient (R-squared) can be used to compare the distribution in a given text to a theoretically perfect exponential curve. """ cnt = Counter() for sample_id in sample_ids: cnt.update(sample_id) xs = np.arange(1, min(len(cnt), len(tokenizer.vocab)) + 1) ys = np.array(sorted(cnt.values(), key=operator.neg)[:len(tokenizer.vocab)]) _, _, r, _, _ = stats.linregress(np.log(xs), np.log(ys)) return r ** 2
The Zipfian coefficient (R-squared) can be used to compare the distribution in a given text to a theoretically perfect exponential curve.
calculate_zipf_coefficient
python
dmlc/gluon-nlp
scripts/generation/calculate_metrics.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/generation/calculate_metrics.py
Apache-2.0
def calculate_repetition(sample_ids): """The repetition rate in generated samples. """ max_n = 90 n_repeated_examples = 0 for sample_id in sample_ids: rev = list(reversed(sample_id)) last_n_repeats = [0 for _ in range(max_n)] for n in range(1, max_n + 1): n_repeat = 1 while len(rev[n*n_repeat:n*(n_repeat+1)]) == n and \ rev[n*n_repeat:n*(n_repeat+1)] == rev[:n]: n_repeat += 1 last_n_repeats[n-1] = n_repeat max_repeated_n = max(range(max_n), key=lambda x: last_n_repeats[x]) if last_n_repeats[max_repeated_n] > 1 and \ (max_repeated_n+1 >= 3 or last_n_repeats[max_repeated_n] > 50): n_repeated_examples += 1 return n_repeated_examples / len(sample_ids)
The repetition rate in generated samples.
calculate_repetition
python
dmlc/gluon-nlp
scripts/generation/calculate_metrics.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/generation/calculate_metrics.py
Apache-2.0
def get_base_tokenizer(method, lang): """The base tokenization method Parameters ---------- method lang Returns ------- """ if method == 'moses': return tokenizers.create('moses', lang) elif method == 'whitespace': return tokenizers.create('whitespace') elif method == 'no': return None else: raise NotImplementedError
The base tokenization method Parameters ---------- method lang Returns -------
get_base_tokenizer
python
dmlc/gluon-nlp
scripts/machine_translation/evaluate_transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/machine_translation/evaluate_transformer.py
Apache-2.0
def validation(model, data_loader, inference_model, sequence_sampler, tgt_tokenizer, ctx_l): """Validate the model on the dataset Parameters ---------- model : TransformerModel The transformer model data_loader : DataLoader DataLoader inference_model The model for inference sequence_sampler: The sequence sampler for doing beam search tgt_tokenizer The target tokenizer ctx_l : list List of mx.ctx.Context Returns ------- avg_nll_loss : float The average negative log-likelihood loss ntokens : int The total number of tokens pred_sentences The predicted sentences. Each element will be a numpy array. pred_lengths The length of the predicted sentences. sentence_ids IDs of the predicted sentences. """ avg_nll_loss = mx.np.array(0, dtype=np.float32, ctx=mx.cpu()) ntokens = 0 pred_sentences = [] sentence_ids = [] pred_lengths = [] for sample_data_l in grouper(data_loader, len(ctx_l)): loss_l = [] ntokens += sum([ele[3].sum().asnumpy() - ele[0].shape[0] for ele in sample_data_l if ele is not None]) for sample_data, ctx in zip(sample_data_l, ctx_l): if sample_data is None: continue src_token_ids, tgt_token_ids, src_valid_length, tgt_valid_length, sample_ids = sample_data src_token_ids = src_token_ids.as_in_ctx(ctx) tgt_token_ids = tgt_token_ids.as_in_ctx(ctx) src_valid_length = src_valid_length.as_in_ctx(ctx) tgt_valid_length = tgt_valid_length.as_in_ctx(ctx) if model.layout == 'NT': tgt_pred = model(src_token_ids, src_valid_length, tgt_token_ids[:, :-1], tgt_valid_length - 1) tgt_labels = tgt_token_ids[:, 1:] tgt_pred_logits = mx.npx.log_softmax(tgt_pred, axis=-1) nll_loss = - mx.npx.pick(tgt_pred_logits, tgt_labels, axis=-1) loss = mx.npx.sequence_mask(nll_loss, sequence_length=tgt_valid_length - 1, use_sequence_length=True, axis=1) loss_l.append(loss.sum()) elif model.layout == 'TN': tgt_pred = model(src_token_ids.T, src_valid_length, tgt_token_ids.T[:-1, :], tgt_valid_length - 1) tgt_labels = tgt_token_ids.T[1:, :] tgt_pred_logits = mx.npx.log_softmax(tgt_pred, axis=-1) nll_loss = - mx.npx.pick(tgt_pred_logits, tgt_labels, axis=-1) loss = mx.npx.sequence_mask(nll_loss, sequence_length=tgt_valid_length - 1, use_sequence_length=True, axis=0) loss_l.append(loss.sum()) init_input = mx.np.array( [tgt_tokenizer.vocab.bos_id for _ in range(src_token_ids.shape[0])], ctx=ctx) # Perform beam search if model.layout == 'NT': states = inference_model.init_states(src_token_ids, src_valid_length) elif model.layout == 'TN': states = inference_model.init_states(src_token_ids.T, src_valid_length) samples, scores, sample_valid_length = sequence_sampler(init_input, states, src_valid_length) samples = samples.asnumpy() sample_valid_length = sample_valid_length.asnumpy() for j in range(samples.shape[0]): valid_length = sample_valid_length[j, 0] # Ignore the BOS + EOS tokens pred_sentences.append(samples[j, 0, 1:(valid_length - 1)]) pred_lengths.append(valid_length - 2) sentence_ids.append(sample_ids.asnumpy()) avg_nll_loss += sum([loss.as_in_ctx(mx.cpu()) for loss in loss_l]) mx.npx.waitall() avg_loss = avg_nll_loss.asnumpy() / ntokens pred_lengths = np.array(pred_lengths) sentence_ids = np.concatenate(sentence_ids, axis=0) return avg_loss, ntokens, pred_sentences, pred_lengths, sentence_ids
Validate the model on the dataset Parameters ---------- model : TransformerModel The transformer model data_loader : DataLoader DataLoader inference_model The model for inference sequence_sampler: The sequence sampler for doing beam search tgt_tokenizer The target tokenizer ctx_l : list List of mx.ctx.Context Returns ------- avg_nll_loss : float The average negative log-likelihood loss ntokens : int The total number of tokens pred_sentences The predicted sentences. Each element will be a numpy array. pred_lengths The length of the predicted sentences. sentence_ids IDs of the predicted sentences.
validation
python
dmlc/gluon-nlp
scripts/machine_translation/train_transformer.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/machine_translation/train_transformer.py
Apache-2.0
def tokenize_lines_to_ids(lines, tokenizer): """ Worker function to tokenize lines based on the tokenizer, and perform vocabulary lookup. Parameters ---------- lines Lines to be tokenized of the whole file tokenizer The trained tokenizer Returns ------- results A list storing the valid tokenized lines """ results = [] # tag line delimiters or doc delimiters for line in lines: if not line: break line = line.strip() # Single empty lines are used as line delimiters # Double empty lines are used as document delimiters if not line: results.append([]) else: token_ids = tokenizer.encode(line, int) if token_ids: results.append(token_ids) return results
Worker function to tokenize lines based on the tokenizer, and perform vocabulary lookup. Parameters ---------- lines Lines to be tokenized of the whole file tokenizer The trained tokenizer Returns ------- results A list storing the valid tokenized lines
tokenize_lines_to_ids
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def get_all_features(x): """ Get the feature data in numpy form. Parameters ---------- x List/tuple that contains: - file_list A list of text files - output_file The path to a output file that store the np_features - tokenizer The trained tokenizer - max_seq_length Maximum sequence length of the training features - short_seq_prob The probability of sampling sequences shorter than the max_seq_length. Returns ------- np_features A tuple of (input_ids, segment_ids, valid_lengths), in which each item is a list of numpy arrays. """ file_list, output_file, tokenizer, max_seq_length, short_seq_prob = x all_features = [] for text_file in file_list: features = process_a_text(text_file, tokenizer, max_seq_length, short_seq_prob) all_features.extend(features) np_features = convert_to_npz(all_features, output_file) return np_features
Get the feature data in numpy form. Parameters ---------- x List/tuple that contains: - file_list A list of text files - output_file The path to a output file that store the np_features - tokenizer The trained tokenizer - max_seq_length Maximum sequence length of the training features - short_seq_prob The probability of sampling sequences shorter than the max_seq_length. Returns ------- np_features A tuple of (input_ids, segment_ids, valid_lengths), in which each item is a list of numpy arrays.
get_all_features
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def process_a_text(text_file, tokenizer, max_seq_length, short_seq_prob=0.05): """ Create features from a single raw text file, in which one line is treated as a sentence, and double blank lines represent document separators. In this process, mxnet-unrelated features are generated, to easily convert to features of a particular deep learning framework in subsequent steps Parameters ---------- text_file The path to a single text file tokenizer The trained tokenizer max_seq_length Maximum sequence length of the training features short_seq_prob The probability of sampling sequences shorter than the max_seq_length. Returns ------- features A list of processed features from a single text file """ vocab = tokenizer.vocab features = [] # TODO(zheyuye), support whole word masking with io.open(text_file, 'r', encoding='utf-8') as reader: lines = reader.readlines() tokenized_lines = tokenize_lines_to_ids(lines, tokenizer) target_seq_length = max_seq_length current_sentences = [] current_length = 0 for tokenized_line in tokenized_lines: current_sentences.append(tokenized_line) current_length += len(tokenized_line) # Create feature when meets the empty line or reaches the target length if (not tokenized_line and current_length != 0) or ( current_length >= target_seq_length): first_segment, second_segment = \ sentenceize(current_sentences, max_seq_length, target_seq_length) input_id = [vocab.cls_id] + first_segment + [vocab.sep_id] segment_id = [0] * len(input_id) if second_segment: input_id += second_segment + [vocab.sep_id] segment_id += [1] * (len(second_segment) + 1) # Padding with zeros for parallel storage valid_length = len(input_id) input_id += [0] * (max_seq_length - len(input_id)) segment_id += [0] * (max_seq_length - len(segment_id)) feature = PretrainFeature(input_id=input_id, segment_id=segment_id, valid_length=valid_length) features.append(feature) current_sentences = [] current_length = 0 # small chance for random-length instead of max_length-length feature if random.random() < short_seq_prob: target_seq_length = random.randint(5, max_seq_length) else: target_seq_length = max_seq_length return features
Create features from a single raw text file, in which one line is treated as a sentence, and double blank lines represent document separators. In this process, mxnet-unrelated features are generated, to easily convert to features of a particular deep learning framework in subsequent steps Parameters ---------- text_file The path to a single text file tokenizer The trained tokenizer max_seq_length Maximum sequence length of the training features short_seq_prob The probability of sampling sequences shorter than the max_seq_length. Returns ------- features A list of processed features from a single text file
process_a_text
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def convert_to_npz(all_features, output_file=None): """ Convert features to numpy array and store if output_file provided Parameters ---------- all_features A list of processed features. output_file The path to a output file that store the np_features. Returns ------- input_ids A tuple of features segment_ids The segment ids valid_lengths The valid lengths """ input_ids = [] segment_ids = [] valid_lengths = [] for fea_index, feature in enumerate(all_features): input_ids.append(np.ascontiguousarray(feature.input_id, dtype='int32')) segment_ids.append(np.ascontiguousarray(feature.segment_id, dtype='int32')) valid_lengths.append(feature.valid_length) if fea_index < 1: logging.debug('*** Example Feature ***') logging.debug('Generated {}'.format(feature)) if output_file: # The length numpy array are fixed to max_seq_length with zero padding npz_outputs = collections.OrderedDict() npz_outputs['input_ids'] = np.array(input_ids, dtype='int32') npz_outputs['segment_ids'] = np.array(segment_ids, dtype='int32') npz_outputs['valid_lengths'] = np.array(valid_lengths, dtype='int32') np.savez_compressed(output_file, **npz_outputs) logging.info("Saved {} features in {} ".format(len(all_features), output_file)) return input_ids, segment_ids, valid_lengths
Convert features to numpy array and store if output_file provided Parameters ---------- all_features A list of processed features. output_file The path to a output file that store the np_features. Returns ------- input_ids A tuple of features segment_ids The segment ids valid_lengths The valid lengths
convert_to_npz
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def sentenceize(current_sentences, max_seq_length, target_seq_length): """ Generate a pair of sentences based on a segmentation strategy cloned from official electra model. Parameters ---------- current_sentences max_seq_length Maximum sequence length of the training features target_seq_length Target sequence length of the training features Returns ------- first_segment The first sentence of the pretraining sequence second_segment The second sentence of the pretraining sequence. Could be None for diversity of training instances. """ # 10% chance to only produce one segment if random.random() < 0.1: first_segment_target_length = 100000 else: # The reserved space for [CLS] and [SEP] tokens first_segment_target_length = (target_seq_length - 3) // 2 first_segment = [] second_segment = [] for sentence in current_sentences: if sentence: # the sentence goes to the first segment if (1) the first segment is # empty, (2) the sentence doesn't put the first segment over length or # (3) 50% of the time when it does put the first segment over length if (len(first_segment) == 0 or len(first_segment) + len(sentence) < first_segment_target_length or (len(second_segment) == 0 and len(first_segment) < first_segment_target_length and random.random() < 0.5)): first_segment += sentence else: second_segment += sentence # trim to max_length while accounting for not-yet-added [CLS]/[SEP] tokens first_segment = first_segment[:max_seq_length - 2] second_segment = second_segment[:max(0, max_seq_length - len(first_segment) - 3)] return first_segment, second_segment
Generate a pair of sentences based on a segmentation strategy cloned from official electra model. Parameters ---------- current_sentences max_seq_length Maximum sequence length of the training features target_seq_length Target sequence length of the training features Returns ------- first_segment The first sentence of the pretraining sequence second_segment The second sentence of the pretraining sequence. Could be None for diversity of training instances.
sentenceize
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def prepare_pretrain_npz_dataset(filename, allow_pickle=False): """Create dataset based on the numpy npz file""" if isinstance(filename, (list, tuple)): assert len(filename) == 1, \ 'When .npy/.npz data file is loaded, len(filename) must be 1.' \ ' Received len(filename)={}.'.format(len(filename)) filename = filename[0] logging.debug('start to load file %s ...', filename) return NumpyDataset(filename, allow_pickle=allow_pickle)
Create dataset based on the numpy npz file
prepare_pretrain_npz_dataset
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def prepare_pretrain_text_dataset( filenames, tokenizer, max_seq_length, short_seq_prob, cached_file_path): """Create dataset based on the raw text files""" if not isinstance(filenames, (list, tuple)): filenames = [filenames] if cached_file_path: # generate a filename based on the input filename ensuring no crash. # filename example: urlsf_subset00-130_data.txt suffix = re.split(r'\.|/', filenames[0])[-2] output_file = os.path.join(cached_file_path, "{}-pretrain-record.npz".format(suffix)) else: output_file = None np_features = get_all_features( (filenames, output_file, tokenizer, max_seq_length, short_seq_prob)) return ArrayDataset(*np_features)
Create dataset based on the raw text files
prepare_pretrain_text_dataset
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def prepare_pretrain_bucket_sampler(dataset, batch_size, shuffle=False, num_buckets=1): """Create data sampler based on the dataset""" if isinstance(dataset, NumpyDataset): lengths = dataset.get_field('valid_lengths') else: lengths = dataset.transform(lambda input_ids, segment_ids, valid_lengths: valid_lengths, lazy=False) sampler = FixedBucketSampler(lengths, batch_size=batch_size, num_buckets=num_buckets, ratio=0, shuffle=shuffle) logging.debug('Sampler created for a new dataset:\n {}'.format(sampler)) return sampler
Create data sampler based on the dataset
prepare_pretrain_bucket_sampler
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def get_pretrain_data_npz(data, batch_size, shuffle, num_buckets, vocab, num_parts=1, part_idx=0, num_dataset_workers=1, num_batch_workers=1, circle_length=1, repeat=1, dataset_cached=False, num_max_dataset_cached=0): """Get a data iterator from pre-processed npz files. Parameters ---------- data: str The path to the dataset directory batch_size : int The batch size per GPU. shuffle : bool Whether to shuffle the data. num_buckets : int The number of buckets for the FixedBucketSampler for training. vocab : Vocab The vocabulary. num_parts : int The number of partitions for the dataset. part_idx : int The index of the partition to read. num_dataset_workers : int The number of worker processes for dataset construction. num_batch_workers : int The number of worker processes for batch contruction. circle_length : int, default is 1 The number of files to be read for a single worker at the same time. When circle_length is larger than 1, we merge circle_length files. repeat : int, default is 1 The number of times that files are repeated. dataset_cached : bool, default is False Whether or not to cache last processed dataset. Each processed dataset can only be cached for once. When there is no new available processed dataset to be fetched, we pop a cached processed dataset. num_max_dataset_cached : int, default is 0 Maximum number of cached datasets. It is valid only if dataset_cached is True """ num_files = len(glob(data)) logging.info('%d files are found.', num_files) assert num_files >= num_parts, \ 'The number of text files must be no less than the number of ' \ 'workers/partitions (%d). Only %d files at %s are found.' % (num_parts, num_files, data) split_sampler = SplitSampler(num_files, num_parts=num_parts, part_index=part_idx, repeat=repeat) dataset_fn = prepare_pretrain_npz_dataset sampler_fn = prepare_pretrain_bucket_sampler dataset_params = {'allow_pickle': True} sampler_params = {'batch_size': batch_size, 'shuffle': shuffle, 'num_buckets': num_buckets} batchify_fn = bf.Tuple( bf.Pad(val=vocab.pad_id), # input_ids bf.Pad(val=0), # segment_ids bf.Stack(), # valid_lengths ) dataloader = DatasetLoader(data, file_sampler=split_sampler, dataset_fn=dataset_fn, batch_sampler_fn=sampler_fn, dataset_params=dataset_params, batch_sampler_params=sampler_params, batchify_fn=batchify_fn, num_dataset_workers=num_dataset_workers, num_batch_workers=num_batch_workers, pin_memory=False, circle_length=circle_length) return dataloader
Get a data iterator from pre-processed npz files. Parameters ---------- data: str The path to the dataset directory batch_size : int The batch size per GPU. shuffle : bool Whether to shuffle the data. num_buckets : int The number of buckets for the FixedBucketSampler for training. vocab : Vocab The vocabulary. num_parts : int The number of partitions for the dataset. part_idx : int The index of the partition to read. num_dataset_workers : int The number of worker processes for dataset construction. num_batch_workers : int The number of worker processes for batch contruction. circle_length : int, default is 1 The number of files to be read for a single worker at the same time. When circle_length is larger than 1, we merge circle_length files. repeat : int, default is 1 The number of times that files are repeated. dataset_cached : bool, default is False Whether or not to cache last processed dataset. Each processed dataset can only be cached for once. When there is no new available processed dataset to be fetched, we pop a cached processed dataset. num_max_dataset_cached : int, default is 0 Maximum number of cached datasets. It is valid only if dataset_cached is True
get_pretrain_data_npz
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0
def dynamic_masking(self, input_ids, valid_lengths): # TODO(zheyuye), two additional flag `disallow_from_mask` and `already_masked` # that control the masking status for each positions in the sequence. """ Generate masking positions on-the-fly instead of during preprocessing Parameters ---------- input_ids The batchified input_ids with shape (batch_size, max_seq_length) valid_lengths The batchified valid_lengths with shape (batch_size, ) Returns ------ masked_input_ids The masked input sequence with 15% tokens are masked with [MASK] shape (batch_size, max_seq_length) length_masks The masking matrix for the whole sequence that indicates the positions are greater than valid_length. shape (batch_size, max_seq_length) unmasked_tokens The original tokens that appear in the unmasked input sequence shape (batch_size, num_masked_positions) masked_positions The masking positions in mx.np.ndarray with shape (batch_size, num_masked_positions) shape (batch_size, num_masked_positions) masked_lm_weights The weight matrix containing 0 or 1 to mark the actual effect of masked positions shape (batch_size, num_masked_positions) """ N = self._max_num_masked_position # Only valid token without special token are allowed to mask valid_candidates = np.ones_like(input_ids, dtype=np.bool) ignore_tokens = [self.vocab.cls_id, self.vocab.sep_id, self.vocab.pad_id] for ignore_token in ignore_tokens: # TODO(zheyuye), Update when operation += supported valid_candidates = valid_candidates * \ np.not_equal(input_ids, ignore_token) valid_lengths = valid_lengths.astype(np.float32) valid_candidates = valid_candidates.astype(np.float32) num_masked_position = mxnp.maximum( 1, np.minimum(N, round(valid_lengths * self._mask_prob))) # Get the masking probability of each position sample_probs = self._proposal_distribution * valid_candidates sample_probs /= mxnp.sum(sample_probs, axis=-1, keepdims=True) sample_probs = npx.stop_gradient(sample_probs) gumbels = mxnp.random.gumbel(np.zeros_like(sample_probs)) # Following the instruction of official repo to avoid deduplicate postions # with Top_k Sampling as https://github.com/google-research/electra/issues/41 masked_positions = npx.topk( mxnp.log(sample_probs) + gumbels, k=N, axis=-1, ret_typ='indices', dtype=np.int32) masked_weights = npx.sequence_mask( mxnp.ones_like(masked_positions), sequence_length=num_masked_position, use_sequence_length=True, axis=1, value=0) masked_positions = masked_positions * masked_weights length_masks = npx.sequence_mask( mxnp.ones_like(input_ids, dtype=np.float32), sequence_length=valid_lengths, use_sequence_length=True, axis=1, value=0) unmasked_tokens = select_vectors_by_position( input_ids, masked_positions) * masked_weights masked_weights = masked_weights.astype(np.float32) replaced_positions = ( mxnp.random.uniform( mxnp.zeros_like(masked_positions), mxnp.ones_like(masked_positions)) < self._replace_prob) * masked_positions # dealing with multiple zero values in replaced_positions which causes # the [CLS] being replaced filled = mxnp.where( replaced_positions, self.vocab.mask_id, self.vocab.cls_id).astype( np.int32) # Masking token by replacing with [MASK] masked_input_ids = update_vectors_by_position(input_ids, filled, replaced_positions) # Note: It is likely have multiple zero values in masked_positions if number of masked of # positions not reached the maximum. However, this example hardly exists since valid_length # is almost always equal to max_seq_length masked_input = self.MaskedInput(input_ids=masked_input_ids, masks=length_masks, unmasked_tokens=unmasked_tokens, masked_positions=masked_positions, masked_weights=masked_weights) return masked_input
Generate masking positions on-the-fly instead of during preprocessing Parameters ---------- input_ids The batchified input_ids with shape (batch_size, max_seq_length) valid_lengths The batchified valid_lengths with shape (batch_size, ) Returns ------ masked_input_ids The masked input sequence with 15% tokens are masked with [MASK] shape (batch_size, max_seq_length) length_masks The masking matrix for the whole sequence that indicates the positions are greater than valid_length. shape (batch_size, max_seq_length) unmasked_tokens The original tokens that appear in the unmasked input sequence shape (batch_size, num_masked_positions) masked_positions The masking positions in mx.np.ndarray with shape (batch_size, num_masked_positions) shape (batch_size, num_masked_positions) masked_lm_weights The weight matrix containing 0 or 1 to mark the actual effect of masked positions shape (batch_size, num_masked_positions)
dynamic_masking
python
dmlc/gluon-nlp
scripts/pretraining/pretraining_utils.py
https://github.com/dmlc/gluon-nlp/blob/master/scripts/pretraining/pretraining_utils.py
Apache-2.0