code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def predict(self, repeats=1): ''' Args: repeats (int): repeat number for prediction Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' # model prediction np_heatmap, np_masks = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() heatmap_tensor = self.predictor.get_output_handle(output_names[0]) np_heatmap = heatmap_tensor.copy_to_cpu() if self.pred_config.tagmap: masks_tensor = self.predictor.get_output_handle(output_names[1]) heat_k = self.predictor.get_output_handle(output_names[2]) inds_k = self.predictor.get_output_handle(output_names[3]) np_masks = [ masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(), inds_k.copy_to_cpu() ] result = dict(heatmap=np_heatmap, masks=np_masks) return result
Args: repeats (int): repeat number for prediction Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w]
predict
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_infer.py
Apache-2.0
def create_inputs(imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of image (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.stack(imgs, axis=0).astype('float32') im_shape = [] for e in im_info: im_shape.append(np.array((e['im_shape'])).astype('float32')) inputs['im_shape'] = np.stack(im_shape, axis=0) return inputs
generate input for different model type Args: imgs (list(numpy)): list of image (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model
create_inputs
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_infer.py
Apache-2.0
def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in KEYPOINT_SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], KEYPOINT_SUPPORT_MODELS))
Raises: ValueError: loaded model not in supported model type
check_model
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_infer.py
Apache-2.0
def warp_affine_joints(joints, mat): """Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints. """ joints = np.array(joints) shape = joints.shape joints = joints.reshape(-1, 2) return np.dot(np.concatenate( (joints, joints[:, 0:1] * 0 + 1), axis=1), mat.T).reshape(shape)
Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints.
warp_affine_joints
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
Apache-2.0
def get_max_preds(self, heatmaps): """get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints """ assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals
get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
get_max_preds
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
Apache-2.0
def dark_postprocess(self, hm, coords, kernelsize): """ refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py """ hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
dark_postprocess
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
Apache-2.0
def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals
the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
get_final_preds
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_postprocess.py
Apache-2.0
def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(output_size) == 2 assert len(shift) == 2 if not isinstance(input_size, (np.ndarray, list)): input_size = np.array([input_size, input_size], dtype=np.float32) scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans
Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix.
get_affine_transform
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
Apache-2.0
def get_warp_matrix(theta, size_input, size_dst, size_target): """This code is based on https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation. """ theta = np.deg2rad(theta) matrix = np.zeros((2, 3), dtype=np.float32) scale_x = size_dst[0] / size_target[0] scale_y = size_dst[1] / size_target[1] matrix[0, 0] = np.cos(theta) * scale_x matrix[0, 1] = -np.sin(theta) * scale_x matrix[0, 2] = scale_x * ( -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] * np.sin(theta) + 0.5 * size_target[0]) matrix[1, 0] = np.sin(theta) * scale_y matrix[1, 1] = np.cos(theta) * scale_y matrix[1, 2] = scale_y * ( -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] * np.cos(theta) + 0.5 * size_target[1]) return matrix
This code is based on https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation.
get_warp_matrix
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
Apache-2.0
def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt
Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point.
rotate_point
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
Apache-2.0
def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len(a) == 2 assert len(b) == 2 direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt
To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point.
_get_3rd_point
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/keypoint_preprocess.py
Apache-2.0
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :]
Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes
hard_nms
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/picodet_postprocess.py
Apache-2.0
def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps)
Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values.
iou_of
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/picodet_postprocess.py
Apache-2.0
def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1]
Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area.
area_of
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/picodet_postprocess.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def generate_scale(self, img): """ Args: img (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ limit_side_len = self.limit_side_len h, w, c = img.shape # limit the max side if self.limit_type == 'max': if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'min': if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'resize_long': ratio = float(limit_side_len) / max(h, w) else: raise Exception('not support limit type, image ') resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = max(int(round(resize_h / 32) * 32), 32) resize_w = max(int(round(resize_w / 32) * 32), 32) im_scale_y = resize_h / float(h) im_scale_x = resize_w / float(w) return im_scale_y, im_scale_x
Args: img (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, img): """ Performs resize operations. Args: img (PIL.Image): a PIL.Image. return: resized_img: a PIL.Image after scaling. """ result_img = None if isinstance(img, np.ndarray): h, w, _ = img.shape elif isinstance(img, Image.Image): w, h = img.size else: raise NotImplementedError if w <= h: ow = self.short_size if self.fixed_ratio: # default is True oh = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no oh = self.short_size else: scale_factor = self.short_size / w oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) else: oh = self.short_size if self.fixed_ratio: ow = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no ow = self.short_size else: scale_factor = self.short_size / h oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) if type(img) == np.ndarray: img = Image.fromarray(img, mode='RGB') if self.backend == 'pillow': result_img = img.resize((ow, oh), Image.BILINEAR) elif self.backend == 'cv2' and (self.keep_ratio is not None): result_img = cv2.resize( img, (ow, oh), interpolation=cv2.INTER_LINEAR) else: result_img = Image.fromarray( cv2.resize( np.asarray(img), (ow, oh), interpolation=cv2.INTER_LINEAR)) return result_img
Performs resize operations. Args: img (PIL.Image): a PIL.Image. return: resized_img: a PIL.Image after scaling.
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size
Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size.
__init__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 height, width = self.target_size h, w = im.shape[:2] im, ratio, padw, padh = self.letterbox(im, height=height, width=width) new_shape = [round(h * ratio), round(w * ratio)] im_info['im_shape'] = np.array(new_shape, dtype=np.float32) im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32) return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]): """ Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0) """ super(Pad, self).__init__() if isinstance(size, int): size = [size, size] self.size = size self.fill_value = fill_value
Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
__init__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) h, w = img.shape[:2] if self.keep_res: input_h = (h | self.pad) + 1 input_w = (w | self.pad) + 1 s = np.array([input_w, input_h], dtype=np.float32) c = np.array([w // 2, h // 2], dtype=np.float32) else: s = max(h, w) * 1.0 input_h, input_w = self.input_h, self.input_w c = np.array([w / 2., h / 2.], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [input_w, input_h]) img = cv2.resize(img, (w, h)) inp = cv2.warpAffine( img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) return inp, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/preprocess.py
Apache-2.0
def get_current_memory_mb(): """ It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming. """ import pynvml import psutil import GPUtil gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0)) pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() cpu_mem = info.uss / 1024. / 1024. gpu_mem = 0 gpu_percent = 0 gpus = GPUtil.getGPUs() if gpu_id is not None and len(gpus) > 0: gpu_percent = gpus[gpu_id].load pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem = meminfo.used / 1024. / 1024. return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming.
get_current_memory_mb
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/utils.py
Apache-2.0
def nms(dets, match_threshold=0.6, match_metric='iou'): """ Apply NMS to avoid detecting too many overlapping bounding boxes. Args: dets: shape [N, 5], [score, x1, y1, x2, y2] match_metric: 'iou' or 'ios' match_threshold: overlap thresh for match metric. """ if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h if match_metric == 'iou': union = iarea + areas[j] - inter match_value = inter / union elif match_metric == 'ios': smaller = min(iarea, areas[j]) match_value = inter / smaller else: raise ValueError() if match_value >= match_threshold: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
Apply NMS to avoid detecting too many overlapping bounding boxes. Args: dets: shape [N, 5], [score, x1, y1, x2, y2] match_metric: 'iou' or 'ios' match_threshold: overlap thresh for match metric.
nms
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/utils.py
Apache-2.0
def visualize_box_mask(im, results, labels, threshold=0.5): """ Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image """ if isinstance(im, str): im = Image.open(im).convert('RGB') elif isinstance(im, np.ndarray): im = Image.fromarray(im) if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0: im = draw_mask( im, results['boxes'], results['masks'], labels, threshold=threshold) if 'boxes' in results and len(results['boxes']) > 0: im = draw_box(im, results['boxes'], labels, threshold=threshold) if 'segm' in results: im = draw_segm( im, results['segm'], results['label'], results['score'], labels, threshold=threshold) return im
Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image
visualize_box_mask
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/visualize.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/visualize.py
Apache-2.0
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] np_masks (np.ndarray): shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of mask Returns: im (PIL.Image.Image): visualized image """ color_list = get_color_map_list(len(labels)) w_ratio = 0.4 alpha = 0.7 im = np.array(im).astype('float32') clsid2color = {} expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] np_masks = np_masks[expect_boxes, :, :] im_h, im_w = im.shape[:2] np_masks = np_masks[:, :im_h, :im_w] for i in range(len(np_masks)): clsid, score = int(np_boxes[i][0]), np_boxes[i][1] mask = np_masks[i] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color_mask = clsid2color[clsid] for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) color_mask = np.array(color_mask) im[idx[0], idx[1], :] *= 1.0 - alpha im[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(im.astype('uint8'))
Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] np_masks (np.ndarray): shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of mask Returns: im (PIL.Image.Image): visualized image
draw_mask
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/visualize.py
Apache-2.0
def draw_box(im, np_boxes, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image """ draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) clsid2color = {} color_list = get_color_map_list(len(labels)) expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color = tuple(clsid2color[clsid]) if len(bbox) == 4: xmin, ymin, xmax, ymax = bbox print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' 'right_bottom:[{:.2f},{:.2f}]'.format( int(clsid), score, xmin, ymin, xmax, ymax)) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) # draw label text = "{} {:.4f}".format(labels[clsid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return im
Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image
draw_box
python
PaddlePaddle/models
modelcenter/PP-TinyPose/APP/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-TinyPose/APP/visualize.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's result include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' # model prediction for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() output_tensor = self.predictor.get_output_handle(output_names[0]) np_output = output_tensor.copy_to_cpu() result = dict(output=np_output) return result
Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's result include 'masks': np.ndarray: shape: [N, im_h, im_w]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/attr_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/attr_infer.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('ppdet://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def _move_and_merge_tree(src, dst): """ Move src directory to dst, if dst is already exists, merge src to dst """ if not osp.exists(dst): shutil.move(src, dst) elif osp.isfile(src): shutil.move(src, dst) else: for fp in os.listdir(src): src_fp = osp.join(src, fp) dst_fp = osp.join(dst, fp) if osp.isdir(src_fp): if osp.isdir(dst_fp): _move_and_merge_tree(src_fp, dst_fp) else: shutil.move(src_fp, dst_fp) elif osp.isfile(src_fp) and \ not osp.isfile(dst_fp): shutil.move(src_fp, dst_fp)
Move src directory to dst, if dst is already exists, merge src to dst
_move_and_merge_tree
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def _decompress(fname): """ Decompress for zip and tar file """ # For protecting decompressing interupted, # decompress to fpath_tmp directory firstly, if decompress # successed, move decompress files to fpath and delete # fpath_tmp and remove download compress file. fpath = osp.split(fname)[0] fpath_tmp = osp.join(fpath, 'tmp') if osp.isdir(fpath_tmp): shutil.rmtree(fpath_tmp) os.makedirs(fpath_tmp) if fname.find('tar') >= 0: with tarfile.open(fname) as tf: tf.extractall(path=fpath_tmp) elif fname.find('zip') >= 0: with zipfile.ZipFile(fname) as zf: zf.extractall(path=fpath_tmp) elif fname.find('.txt') >= 0: return else: raise TypeError("Unsupport compress file type {}".format(fname)) for f in os.listdir(fpath_tmp): src_dir = osp.join(fpath_tmp, f) dst_dir = osp.join(fpath, f) _move_and_merge_tree(src_dir, dst_dir) shutil.rmtree(fpath_tmp) os.remove(fname)
Decompress for zip and tar file
_decompress
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def get_path(url, root_dir=WEIGHTS_HOME, md5sum=None, check_exist=True): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url and decompress it, return the path. url (str): download url root_dir (str): root dir for downloading md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath = map_path(url, root_dir) # For same zip file, decompressed directory name different # from zip file name, rename by following map decompress_name_map = {"ppTSM_fight": "ppTSM", } for k, v in decompress_name_map.items(): if fullpath.find(k) >= 0: fullpath = osp.join(osp.split(fullpath)[0], v) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): return fullpath, True else: os.remove(fullpath) fullname = _download_dist(url, root_dir, md5sum) # new weights format which postfix is 'pdparams' not # need to decompress if osp.splitext(fullname)[-1] not in ['.pdparams', '.yml']: _decompress_dist(fullname) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url and decompress it, return the path. url (str): download url root_dir (str): root dir for downloading md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def get_weights_path(url): """Get weights path from WEIGHTS_HOME, if not exists, download it from url. """ url = parse_url(url) md5sum = None if url in MODEL_URL_MD5_DICT.keys(): md5sum = MODEL_URL_MD5_DICT[url] path, _ = get_path(url, WEIGHTS_HOME, md5sum) return path
Get weights path from WEIGHTS_HOME, if not exists, download it from url.
get_weights_path
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/download.py
Apache-2.0
def get_model_dir(cfg): """ Auto download inference model if the model_path is a url link. Otherwise it will use the model_path directly. """ for key in cfg.keys(): if type(cfg[key]) == dict and \ ("enable" in cfg[key].keys() and cfg[key]['enable'] or "enable" not in cfg[key].keys()): if "model_dir" in cfg[key].keys(): model_dir = cfg[key]["model_dir"] downloaded_model_dir = auto_download_model(model_dir) if downloaded_model_dir: model_dir = downloaded_model_dir cfg[key]["model_dir"] = model_dir print(key, " model dir: ", model_dir) elif key == "VEHICLE_PLATE": det_model_dir = cfg[key]["det_model_dir"] downloaded_det_model_dir = auto_download_model(det_model_dir) if downloaded_det_model_dir: det_model_dir = downloaded_det_model_dir cfg[key]["det_model_dir"] = det_model_dir print("det_model_dir model dir: ", det_model_dir) rec_model_dir = cfg[key]["rec_model_dir"] downloaded_rec_model_dir = auto_download_model(rec_model_dir) if downloaded_rec_model_dir: rec_model_dir = downloaded_rec_model_dir cfg[key]["rec_model_dir"] = rec_model_dir print("rec_model_dir model dir: ", rec_model_dir) elif key == "MOT": # for idbased and skeletonbased actions model_dir = cfg[key]["model_dir"] downloaded_model_dir = auto_download_model(model_dir) if downloaded_model_dir: model_dir = downloaded_model_dir cfg[key]["model_dir"] = model_dir print("mot_model_dir model_dir: ", model_dir)
Auto download inference model if the model_path is a url link. Otherwise it will use the model_path directly.
get_model_dir
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/pipeline.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/pipeline.py
Apache-2.0
def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--infer_img or --infer_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) print("Found {} inference images in total.".format(len(images))) return images
Get image path list in TEST mode
get_test_images
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/pipe_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/pipe_utils.py
Apache-2.0
def refine_keypoint_coordinary(kpts, bbox, coord_size): """ This function is used to adjust coordinate values to a fixed scale. """ tl = bbox[:, 0:2] wh = bbox[:, 2:] - tl tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3)) wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3)) target_w, target_h = coord_size res = (kpts - tl) / wh * np.expand_dims( np.array([[target_w], [target_h]]), (2, 3)) return res
This function is used to adjust coordinate values to a fixed scale.
refine_keypoint_coordinary
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/pipe_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/pipe_utils.py
Apache-2.0
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height): ''' _bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1} ''' bitmap = _bitmap height, width = bitmap.shape outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(outs) == 3: img, contours, _ = outs[0], outs[1], outs[2] elif len(outs) == 2: contours, _ = outs[0], outs[1] num_contours = min(len(contours), self.max_candidates) boxes = [] scores = [] for index in range(num_contours): contour = contours[index] points, sside = self.get_mini_boxes(contour) if sside < self.min_size: continue points = np.array(points) if self.score_mode == "fast": score = self.box_score_fast(pred, points.reshape(-1, 2)) else: score = self.box_score_slow(pred, contour) if self.box_thresh > score: continue box = self.unclip(points).reshape(-1, 1, 2) box, sside = self.get_mini_boxes(box) if sside < self.min_size + 2: continue box = np.array(box) box[:, 0] = np.clip( np.round(box[:, 0] / width * dest_width), 0, dest_width) box[:, 1] = np.clip( np.round(box[:, 1] / height * dest_height), 0, dest_height) boxes.append(box.astype(np.int16)) scores.append(score) return np.array(boxes, dtype=np.int16), scores
_bitmap: single map with shape (1, H, W), whose values are binarized as {0, 1}
boxes_from_bitmap
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
Apache-2.0
def box_score_fast(self, bitmap, _box): ''' box_score_fast: use bbox mean score as the mean score ''' h, w = bitmap.shape[:2] box = _box.copy() xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1) xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1) ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1) ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) box[:, 0] = box[:, 0] - xmin box[:, 1] = box[:, 1] - ymin cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
box_score_fast: use bbox mean score as the mean score
box_score_fast
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
Apache-2.0
def box_score_slow(self, bitmap, contour): ''' box_score_slow: use polyon mean score as the mean score ''' h, w = bitmap.shape[:2] contour = contour.copy() contour = np.reshape(contour, (-1, 2)) xmin = np.clip(np.min(contour[:, 0]), 0, w - 1) xmax = np.clip(np.max(contour[:, 0]), 0, w - 1) ymin = np.clip(np.min(contour[:, 1]), 0, h - 1) ymax = np.clip(np.max(contour[:, 1]), 0, h - 1) mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8) contour[:, 0] = contour[:, 0] - xmin contour[:, 1] = contour[:, 1] - ymin cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1) return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
box_score_slow: use polyon mean score as the mean score
box_score_slow
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
Apache-2.0
def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): selection = np.ones(len(text_index[batch_idx]), dtype=bool) if is_remove_duplicate: selection[1:] = text_index[batch_idx][1:] != text_index[ batch_idx][:-1] for ignored_token in ignored_tokens: selection &= text_index[batch_idx] != ignored_token char_list = [ self.character[text_id] for text_id in text_index[batch_idx][selection] ] if text_prob is not None: conf_list = text_prob[batch_idx][selection] else: conf_list = [1] * len(selection) if len(conf_list) == 0: conf_list = [0] text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list
convert text-index into text-label.
decode
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicleplate_postprocess.py
Apache-2.0
def draw_ocr(image, boxes, txts=None, scores=None, drop_score=0.5, font_path="./doc/fonts/simfang.ttf"): """ Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img """ if scores is None: scores = [1] * len(boxes) box_num = len(boxes) for i in range(box_num): if scores is not None and (scores[i] < drop_score or math.isnan(scores[i])): continue box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) if txts is not None: img = np.array(resize_img(image, input_size=600)) txt_img = text_visual( txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score, font_path=font_path) img = np.concatenate([np.array(img), np.array(txt_img)], axis=1) return img return image
Visualize the results of OCR detection and recognition args: image(Image|array): RGB image boxes(list): boxes with shape(N, 4, 2) txts(list): the texts scores(list): txxs corresponding scores drop_score(float): only scores greater than drop_threshold will be visualized font_path: the path of font which is used to draw text return(array): the visualized img
draw_ocr
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
Apache-2.0
def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2)
Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters
str_count
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
Apache-2.0
def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img)
create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array):
text_visual
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
Apache-2.0
def get_rotate_crop_image(img, points): ''' img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top ''' assert len(points) == 4, "shape of points must be 4*2" img_crop_width = int( max( np.linalg.norm(points[0] - points[1]), np.linalg.norm(points[2] - points[3]))) img_crop_height = int( max( np.linalg.norm(points[0] - points[3]), np.linalg.norm(points[1] - points[2]))) pts_std = np.float32([[0, 0], [img_crop_width, 0], [img_crop_width, img_crop_height], [0, img_crop_height]]) M = cv2.getPerspectiveTransform(points, pts_std) dst_img = cv2.warpPerspective( img, M, (img_crop_width, img_crop_height), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC) dst_img_height, dst_img_width = dst_img.shape[0:2] if dst_img_height * 1.0 / dst_img_width >= 1.5: dst_img = np.rot90(dst_img) return dst_img
img_height, img_width = img.shape[0:2] left = int(np.min(points[:, 0])) right = int(np.max(points[:, 0])) top = int(np.min(points[:, 1])) bottom = int(np.max(points[:, 1])) img_crop = img[top:bottom, left:right, :].copy() points[:, 0] = points[:, 0] - left points[:, 1] = points[:, 1] - top
get_rotate_crop_image
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pipeline/ppvehicle/vehicle_plateutils.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] ''' # model prediction np_boxes, np_boxes_num = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() boxes_num = self.predictor.get_output_handle(output_names[1]) np_boxes_num = boxes_num.copy_to_cpu() result = dict(boxes=np_boxes, boxes_num=np_boxes_num) return result
Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
Apache-2.0
def create_inputs(imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} im_shape = [] scale_factor = [] if len(imgs) == 1: inputs['image'] = np.array((imgs[0], )).astype('float32') inputs['im_shape'] = np.array( (im_info[0]['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info[0]['scale_factor'], )).astype('float32') return inputs for e in im_info: im_shape.append(np.array((e['im_shape'], )).astype('float32')) scale_factor.append(np.array((e['scale_factor'], )).astype('float32')) inputs['im_shape'] = np.concatenate(im_shape, axis=0) inputs['scale_factor'] = np.concatenate(scale_factor, axis=0) imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] max_shape_h = max([e[0] for e in imgs_shape]) max_shape_w = max([e[1] for e in imgs_shape]) padding_imgs = [] for img in imgs: im_c, im_h, im_w = img.shape[:] padding_im = np.zeros( (im_c, max_shape_h, max_shape_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = img padding_imgs.append(padding_im) inputs['image'] = np.stack(padding_imgs, axis=0) return inputs
generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model
create_inputs
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
Apache-2.0
def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], SUPPORT_MODELS))
Raises: ValueError: loaded model not in supported model type
check_model
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
Apache-2.0
def load_predictor(model_dir, run_mode='paddle', batch_size=1, device='CPU', min_subgraph_size=3, use_dynamic_shape=False, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need device == 'GPU'. """ if device != 'GPU' and run_mode != 'paddle': raise ValueError( "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}" .format(run_mode, device)) infer_model = os.path.join(model_dir, 'model.pdmodel') infer_params = os.path.join(model_dir, 'model.pdiparams') if not os.path.exists(infer_model): infer_model = os.path.join(model_dir, 'inference.pdmodel') infer_params = os.path.join(model_dir, 'inference.pdiparams') if not os.path.exists(infer_model): raise ValueError("Cannot find any inference model in dir: {},". format(model_dir)) config = Config(infer_model, infer_params) if device == 'GPU': # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) elif device == 'XPU': config.enable_lite_engine() config.enable_xpu(10 * 1024 * 1024) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_threads) if enable_mkldnn: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() except Exception as e: print( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=1 << 25, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=trt_calib_mode) if use_dynamic_shape: min_input_shape = { 'image': [batch_size, 3, trt_min_shape, trt_min_shape] } max_input_shape = { 'image': [batch_size, 3, trt_max_shape, trt_max_shape] } opt_input_shape = { 'image': [batch_size, 3, trt_opt_shape, trt_opt_shape] } config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape) print('trt set dynamic shape done!') # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor, config
set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need device == 'GPU'.
load_predictor
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
Apache-2.0
def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--infer_img or --infer_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) print("Found {} inference images in total.".format(len(images))) return images
Get image path list in TEST mode
get_test_images
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/det_infer.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeats number for prediction Returns: result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] FairMOT(JDE)'s result include 'pred_embs': np.ndarray: shape: [N, 128] ''' # model prediction np_pred_dets, np_pred_embs = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_pred_dets = boxes_tensor.copy_to_cpu() embs_tensor = self.predictor.get_output_handle(output_names[1]) np_pred_embs = embs_tensor.copy_to_cpu() result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs) return result
Args: repeats (int): repeats number for prediction Returns: result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] FairMOT(JDE)'s result include 'pred_embs': np.ndarray: shape: [N, 128]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot_jde_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot_jde_infer.py
Apache-2.0
def get_current_memory_mb(): """ It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming. """ import pynvml import psutil import GPUtil gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0)) pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() cpu_mem = info.uss / 1024. / 1024. gpu_mem = 0 gpu_percent = 0 gpus = GPUtil.getGPUs() if gpu_id is not None and len(gpus) > 0: gpu_percent = gpus[gpu_id].load pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem = meminfo.used / 1024. / 1024. return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming.
get_current_memory_mb
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot_utils.py
Apache-2.0
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :]
Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes
hard_nms
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
Apache-2.0
def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps)
Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values.
iou_of
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
Apache-2.0
def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1]
Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area.
area_of
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/picodet_postprocess.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size
Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size.
__init__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 height, width = self.target_size h, w = im.shape[:2] im, ratio, padw, padh = self.letterbox(im, height=height, width=width) new_shape = [round(h * ratio), round(w * ratio)] im_info['im_shape'] = np.array(new_shape, dtype=np.float32) im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32) return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]): """ Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0) """ super(Pad, self).__init__() if isinstance(size, int): size = [size, size] self.size = size self.fill_value = fill_value
Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
__init__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/preprocess.py
Apache-2.0
def to_tlbr(self): """ Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`. """ ret = self.tlwh.copy() ret[2:] += ret[:2] return ret
Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`.
to_tlbr
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
Apache-2.0
def to_xyah(self): """ Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`. """ ret = self.tlwh.copy() ret[:2] += ret[2:] / 2 ret[2] /= ret[3] return ret
Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`.
to_xyah
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
Apache-2.0
def update_object_info(object_in_region_info, result, region_type, entrance, fps, illegal_parking_time, distance_threshold_frame=3, distance_threshold_interval=50): ''' For consecutive frames, the distance between two frame is smaller than distance_threshold_frame, regard as parking For parking in general, the move distance should smaller than distance_threshold_interval The moving distance of the vehicle is scaled according to the y, which is inversely proportional to y. ''' assert region_type in [ 'custom' ], "region_type should be 'custom' when do break_in counting." assert len( entrance ) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting." frame_id, tlwhs, tscores, track_ids = result # result from mot im_w, im_h = entrance[-1][:] entrance = np.array(entrance[:-1]) illegal_parking_dict = {} for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh center_x = min(x1 + w / 2., im_w - 1) center_y = min(y1 + h / 2, im_h - 1) if not in_quadrangle([center_x, center_y], entrance, im_h, im_w): continue current_center = (center_x, center_y) if track_id not in object_in_region_info.keys( ): # first time appear in region object_in_region_info[track_id] = {} object_in_region_info[track_id]["start_frame"] = frame_id object_in_region_info[track_id]["end_frame"] = frame_id object_in_region_info[track_id]["prev_center"] = current_center object_in_region_info[track_id]["start_center"] = current_center else: prev_center = object_in_region_info[track_id]["prev_center"] dis = distance(current_center, prev_center) scaled_dis = 200 * dis / ( current_center[1] + 1) # scale distance according to y dis = scaled_dis if dis < distance_threshold_frame: # not move object_in_region_info[track_id]["end_frame"] = frame_id object_in_region_info[track_id]["prev_center"] = current_center else: # move object_in_region_info[track_id]["start_frame"] = frame_id object_in_region_info[track_id]["end_frame"] = frame_id object_in_region_info[track_id]["prev_center"] = current_center object_in_region_info[track_id][ "start_center"] = current_center # whether current object parking distance_from_start = distance( object_in_region_info[track_id]["start_center"], current_center) if distance_from_start > distance_threshold_interval: # moved object_in_region_info[track_id]["start_frame"] = frame_id object_in_region_info[track_id]["end_frame"] = frame_id object_in_region_info[track_id]["prev_center"] = current_center object_in_region_info[track_id]["start_center"] = current_center continue if (object_in_region_info[track_id]["end_frame"]-object_in_region_info[track_id]["start_frame"]) /fps >= illegal_parking_time \ and distance_from_start<distance_threshold_interval: illegal_parking_dict[track_id] = {"bbox": [x1, y1, w, h]} return object_in_region_info, illegal_parking_dict
For consecutive frames, the distance between two frame is smaller than distance_threshold_frame, regard as parking For parking in general, the move distance should smaller than distance_threshold_interval The moving distance of the vehicle is scaled according to the y, which is inversely proportional to y.
update_object_info
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/utils.py
Apache-2.0
def visualize_box_mask(im, results, labels, threshold=0.5): """ Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image """ if isinstance(im, str): im = Image.open(im).convert('RGB') else: im = Image.fromarray(im) if 'boxes' in results and len(results['boxes']) > 0: im = draw_box(im, results['boxes'], labels, threshold=threshold) return im
Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image
visualize_box_mask
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
Apache-2.0
def draw_box(im, np_boxes, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image """ draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) clsid2color = {} color_list = get_color_map_list(len(labels)) expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color = tuple(clsid2color[clsid]) if len(bbox) == 4: xmin, ymin, xmax, ymax = bbox print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' 'right_bottom:[{:.2f},{:.2f}]'.format( int(clsid), score, xmin, ymin, xmax, ymax)) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) # draw label text = "{} {:.4f}".format(labels[clsid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return im
Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image
draw_box
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/visualize.py
Apache-2.0
def iou_1toN(bbox, candidates): """ Computer intersection over union (IoU) by one box to N candidates. Args: bbox (ndarray): A bounding box in format `(top left x, top left y, width, height)`. candidates (ndarray): A matrix of candidate bounding boxes (one per row) in the same format as `bbox`. Returns: ious (ndarray): The intersection over union in [0, 1] between the `bbox` and each candidate. A higher score means a larger fraction of the `bbox` is occluded by the candidate. """ bbox_tl = bbox[:2] bbox_br = bbox[:2] + bbox[2:] candidates_tl = candidates[:, :2] candidates_br = candidates[:, :2] + candidates[:, 2:] tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis], np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]] br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis], np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]] wh = np.maximum(0., br - tl) area_intersection = wh.prod(axis=1) area_bbox = bbox[2:].prod() area_candidates = candidates[:, 2:].prod(axis=1) ious = area_intersection / ( area_bbox + area_candidates - area_intersection) return ious
Computer intersection over union (IoU) by one box to N candidates. Args: bbox (ndarray): A bounding box in format `(top left x, top left y, width, height)`. candidates (ndarray): A matrix of candidate bounding boxes (one per row) in the same format as `bbox`. Returns: ious (ndarray): The intersection over union in [0, 1] between the `bbox` and each candidate. A higher score means a larger fraction of the `bbox` is occluded by the candidate.
iou_1toN
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def iou_cost(tracks, detections, track_indices=None, detection_indices=None): """ IoU distance metric. Args: tracks (list[Track]): A list of tracks. detections (list[Detection]): A list of detections. track_indices (Optional[list[int]]): A list of indices to tracks that should be matched. Defaults to all `tracks`. detection_indices (Optional[list[int]]): A list of indices to detections that should be matched. Defaults to all `detections`. Returns: cost_matrix (ndarray): A cost matrix of shape len(track_indices), len(detection_indices) where entry (i, j) is `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`. """ if track_indices is None: track_indices = np.arange(len(tracks)) if detection_indices is None: detection_indices = np.arange(len(detections)) cost_matrix = np.zeros((len(track_indices), len(detection_indices))) for row, track_idx in enumerate(track_indices): if tracks[track_idx].time_since_update > 1: cost_matrix[row, :] = 1e+5 continue bbox = tracks[track_idx].to_tlwh() candidates = np.asarray( [detections[i].tlwh for i in detection_indices]) cost_matrix[row, :] = 1. - iou_1toN(bbox, candidates) return cost_matrix
IoU distance metric. Args: tracks (list[Track]): A list of tracks. detections (list[Detection]): A list of detections. track_indices (Optional[list[int]]): A list of indices to tracks that should be matched. Defaults to all `tracks`. detection_indices (Optional[list[int]]): A list of indices to detections that should be matched. Defaults to all `detections`. Returns: cost_matrix (ndarray): A cost matrix of shape len(track_indices), len(detection_indices) where entry (i, j) is `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
iou_cost
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def _nn_euclidean_distance(s, q): """ Compute pair-wise squared (Euclidean) distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`. """ s, q = np.asarray(s), np.asarray(q) if len(s) == 0 or len(q) == 0: return np.zeros((len(s), len(q))) s2, q2 = np.square(s).sum(axis=1), np.square(q).sum(axis=1) distances = -2. * np.dot(s, q.T) + s2[:, None] + q2[None, :] distances = np.clip(distances, 0., float(np.inf)) return np.maximum(0.0, distances.min(axis=0))
Compute pair-wise squared (Euclidean) distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`.
_nn_euclidean_distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def _nn_cosine_distance(s, q): """ Compute pair-wise cosine distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`. """ s = np.asarray(s) / np.linalg.norm(s, axis=1, keepdims=True) q = np.asarray(q) / np.linalg.norm(q, axis=1, keepdims=True) distances = 1. - np.dot(s, q.T) return distances.min(axis=0)
Compute pair-wise cosine distance between points in `s` and `q`. Args: s (ndarray): Sample points: an NxM matrix of N samples of dimensionality M. q (ndarray): Query points: an LxM matrix of L samples of dimensionality M. Returns: distances (ndarray): A vector of length M that contains for each entry in `q` the smallest Euclidean distance to a sample in `s`.
_nn_cosine_distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def partial_fit(self, features, targets, active_targets): """ Update the distance metric with new data. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (ndarray): An integer array of associated target identities. active_targets (List[int]): A list of targets that are currently present in the scene. """ for feature, target in zip(features, targets): self.samples.setdefault(target, []).append(feature) if self.budget is not None: self.samples[target] = self.samples[target][-self.budget:] self.samples = {k: self.samples[k] for k in active_targets}
Update the distance metric with new data. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (ndarray): An integer array of associated target identities. active_targets (List[int]): A list of targets that are currently present in the scene.
partial_fit
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def distance(self, features, targets): """ Compute distance between features and targets. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (list[int]): A list of targets to match the given `features` against. Returns: cost_matrix (ndarray): a cost matrix of shape len(targets), len(features), where element (i, j) contains the closest squared distance between `targets[i]` and `features[j]`. """ cost_matrix = np.zeros((len(targets), len(features))) for i, target in enumerate(targets): cost_matrix[i, :] = self._metric(self.samples[target], features) return cost_matrix
Compute distance between features and targets. Args: features (ndarray): An NxM matrix of N features of dimensionality M. targets (list[int]): A list of targets to match the given `features` against. Returns: cost_matrix (ndarray): a cost matrix of shape len(targets), len(features), where element (i, j) contains the closest squared distance between `targets[i]` and `features[j]`.
distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def min_cost_matching(distance_metric, max_distance, tracks, detections, track_indices=None, detection_indices=None): """ Solve linear assignment problem. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices. """ if track_indices is None: track_indices = np.arange(len(tracks)) if detection_indices is None: detection_indices = np.arange(len(detections)) if len(detection_indices) == 0 or len(track_indices) == 0: return [], track_indices, detection_indices # Nothing to match. cost_matrix = distance_metric(tracks, detections, track_indices, detection_indices) cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5 indices = linear_sum_assignment(cost_matrix) matches, unmatched_tracks, unmatched_detections = [], [], [] for col, detection_idx in enumerate(detection_indices): if col not in indices[1]: unmatched_detections.append(detection_idx) for row, track_idx in enumerate(track_indices): if row not in indices[0]: unmatched_tracks.append(track_idx) for row, col in zip(indices[0], indices[1]): track_idx = track_indices[row] detection_idx = detection_indices[col] if cost_matrix[row, col] > max_distance: unmatched_tracks.append(track_idx) unmatched_detections.append(detection_idx) else: matches.append((track_idx, detection_idx)) return matches, unmatched_tracks, unmatched_detections
Solve linear assignment problem. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices.
min_cost_matching
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def matching_cascade(distance_metric, max_distance, cascade_depth, tracks, detections, track_indices=None, detection_indices=None): """ Run matching cascade. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. cascade_depth (int): The cascade depth, should be se to the maximum track age. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices. """ if track_indices is None: track_indices = list(range(len(tracks))) if detection_indices is None: detection_indices = list(range(len(detections))) unmatched_detections = detection_indices matches = [] for level in range(cascade_depth): if len(unmatched_detections) == 0: # No detections left break track_indices_l = [ k for k in track_indices if tracks[k].time_since_update == 1 + level ] if len(track_indices_l) == 0: # Nothing to match at this level continue matches_l, _, unmatched_detections = \ min_cost_matching( distance_metric, max_distance, tracks, detections, track_indices_l, unmatched_detections) matches += matches_l unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches)) return matches, unmatched_tracks, unmatched_detections
Run matching cascade. Args: distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray The distance metric is given a list of tracks and detections as well as a list of N track indices and M detection indices. The metric should return the NxM dimensional cost matrix, where element (i, j) is the association cost between the i-th track in the given track indices and the j-th detection in the given detection_indices. max_distance (float): Gating threshold. Associations with cost larger than this value are disregarded. cascade_depth (int): The cascade depth, should be se to the maximum track age. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (list[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. Returns: A tuple (List[(int, int)], List[int], List[int]) with the following three entries: * A list of matched track and detection indices. * A list of unmatched track indices. * A list of unmatched detection indices.
matching_cascade
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def gate_cost_matrix(kf, cost_matrix, tracks, detections, track_indices, detection_indices, gated_cost=INFTY_COST, only_position=False): """ Invalidate infeasible entries in cost matrix based on the state distributions obtained by Kalman filtering. Args: kf (object): The Kalman filter. cost_matrix (ndarray): The NxM dimensional cost matrix, where N is the number of track indices and M is the number of detection indices, such that entry (i, j) is the association cost between `tracks[track_indices[i]]` and `detections[detection_indices[j]]`. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (List[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. gated_cost (Optional[float]): Entries in the cost matrix corresponding to infeasible associations are set this value. Defaults to a very large value. only_position (Optional[bool]): If True, only the x, y position of the state distribution is considered during gating. Default False. """ gating_dim = 2 if only_position else 4 gating_threshold = kalman_filter.chi2inv95[gating_dim] measurements = np.asarray( [detections[i].to_xyah() for i in detection_indices]) for row, track_idx in enumerate(track_indices): track = tracks[track_idx] gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position) cost_matrix[row, gating_distance > gating_threshold] = gated_cost return cost_matrix
Invalidate infeasible entries in cost matrix based on the state distributions obtained by Kalman filtering. Args: kf (object): The Kalman filter. cost_matrix (ndarray): The NxM dimensional cost matrix, where N is the number of track indices and M is the number of detection indices, such that entry (i, j) is the association cost between `tracks[track_indices[i]]` and `detections[detection_indices[j]]`. tracks (list[Track]): A list of predicted tracks at the current time step. detections (list[Detection]): A list of detections at the current time step. track_indices (List[int]): List of track indices that maps rows in `cost_matrix` to tracks in `tracks`. detection_indices (List[int]): List of detection indices that maps columns in `cost_matrix` to detections in `detections`. gated_cost (Optional[float]): Entries in the cost matrix corresponding to infeasible associations are set this value. Defaults to a very large value. only_position (Optional[bool]): If True, only the x, y position of the state distribution is considered during gating. Default False.
gate_cost_matrix
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/deepsort_matching.py
Apache-2.0
def iou_distance(atracks, btracks): """ Compute cost based on IoU between two list[STrack]. """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) or ( len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] _ious = bbox_ious(atlbrs, btlbrs) cost_matrix = 1 - _ious return cost_matrix
Compute cost based on IoU between two list[STrack].
iou_distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/jde_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/jde_matching.py
Apache-2.0
def embedding_distance(tracks, detections, metric='euclidean'): """ Compute cost based on features between two list[STrack]. """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray( [track.curr_feat for track in detections], dtype=np.float) track_features = np.asarray( [track.smooth_feat for track in tracks], dtype=np.float) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features return cost_matrix
Compute cost based on features between two list[STrack].
embedding_distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/jde_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/jde_matching.py
Apache-2.0
def iou_batch(bboxes1, bboxes2): """ From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] """ bboxes2 = np.expand_dims(bboxes2, 0) bboxes1 = np.expand_dims(bboxes1, 1) xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0]) yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1]) xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2]) yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3]) w = np.maximum(0., xx2 - xx1) h = np.maximum(0., yy2 - yy1) wh = w * h o = wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) + (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh) return (o)
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2]
iou_batch
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/ocsort_matching.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/matching/ocsort_matching.py
Apache-2.0
def initiate(self, measurement): """ Create track from unassociated measurement. Args: measurement (ndarray): Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. Returns: The mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean. """ mean_pos = measurement mean_vel = np.zeros_like(mean_pos) mean = np.r_[mean_pos, mean_vel] std = [ 2 * self._std_weight_position * measurement[3], 2 * self._std_weight_position * measurement[3], 1e-2, 2 * self._std_weight_position * measurement[3], 10 * self._std_weight_velocity * measurement[3], 10 * self._std_weight_velocity * measurement[3], 1e-5, 10 * self._std_weight_velocity * measurement[3] ] covariance = np.diag(np.square(std)) return mean, covariance
Create track from unassociated measurement. Args: measurement (ndarray): Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a, and height h. Returns: The mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of the new track. Unobserved velocities are initialized to 0 mean.
initiate
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def predict(self, mean, covariance): """ Run Kalman filter prediction step. Args: mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step. covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns: The mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-2, self._std_weight_position * mean[3] ] std_vel = [ self._std_weight_velocity * mean[3], self._std_weight_velocity * mean[3], 1e-5, self._std_weight_velocity * mean[3] ] motion_cov = np.diag(np.square(np.r_[std_pos, std_vel])) #mean = np.dot(self._motion_mat, mean) mean = np.dot(mean, self._motion_mat.T) covariance = np.linalg.multi_dot( (self._motion_mat, covariance, self._motion_mat.T)) + motion_cov return mean, covariance
Run Kalman filter prediction step. Args: mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step. covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step. Returns: The mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean.
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def project(self, mean, covariance): """ Project state distribution to measurement space. Args mean (ndarray): The state's mean vector (8 dimensional array). covariance (ndarray): The state's covariance matrix (8x8 dimensional). Returns: The projected mean and covariance matrix of the given state estimate. """ std = [ self._std_weight_position * mean[3], self._std_weight_position * mean[3], 1e-1, self._std_weight_position * mean[3] ] innovation_cov = np.diag(np.square(std)) mean = np.dot(self._update_mat, mean) covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T)) return mean, covariance + innovation_cov
Project state distribution to measurement space. Args mean (ndarray): The state's mean vector (8 dimensional array). covariance (ndarray): The state's covariance matrix (8x8 dimensional). Returns: The projected mean and covariance matrix of the given state estimate.
project
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def multi_predict(self, mean, covariance): """ Run Kalman filter prediction step (Vectorized version). Args: mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step. covariance (ndarray): The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns: The mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean. """ std_pos = [ self._std_weight_position * mean[:, 3], self._std_weight_position * mean[:, 3], 1e-2 * np.ones_like(mean[:, 3]), self._std_weight_position * mean[:, 3] ] std_vel = [ self._std_weight_velocity * mean[:, 3], self._std_weight_velocity * mean[:, 3], 1e-5 * np.ones_like(mean[:, 3]), self._std_weight_velocity * mean[:, 3] ] sqr = np.square(np.r_[std_pos, std_vel]).T motion_cov = [] for i in range(len(mean)): motion_cov.append(np.diag(sqr[i])) motion_cov = np.asarray(motion_cov) mean = np.dot(mean, self._motion_mat.T) left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2)) covariance = np.dot(left, self._motion_mat.T) + motion_cov return mean, covariance
Run Kalman filter prediction step (Vectorized version). Args: mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step. covariance (ndarray): The Nx8x8 dimensional covariance matrics of the object states at the previous time step. Returns: The mean vector and covariance matrix of the predicted state. Unobserved velocities are initialized to 0 mean.
multi_predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def update(self, mean, covariance, measurement): """ Run Kalman filter correction step. Args: mean (ndarray): The predicted state's mean vector (8 dimensional). covariance (ndarray): The state's covariance matrix (8x8 dimensional). measurement (ndarray): The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. Returns: The measurement-corrected state distribution. """ projected_mean, projected_cov = self.project(mean, covariance) chol_factor, lower = scipy.linalg.cho_factor( projected_cov, lower=True, check_finite=False) kalman_gain = scipy.linalg.cho_solve( (chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False).T innovation = measurement - projected_mean new_mean = mean + np.dot(innovation, kalman_gain.T) new_covariance = covariance - np.linalg.multi_dot( (kalman_gain, projected_cov, kalman_gain.T)) return new_mean, new_covariance
Run Kalman filter correction step. Args: mean (ndarray): The predicted state's mean vector (8 dimensional). covariance (ndarray): The state's covariance matrix (8x8 dimensional). measurement (ndarray): The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center position, a the aspect ratio, and h the height of the bounding box. Returns: The measurement-corrected state distribution.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def gating_distance(self, mean, covariance, measurements, only_position=False, metric='maha'): """ Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Args: mean (ndarray): Mean vector over the state distribution (8 dimensional). covariance (ndarray): Covariance of the state distribution (8x8 dimensional). measurements (ndarray): An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position (Optional[bool]): If True, distance computation is done with respect to the bounding box center position only. metric (str): Metric type, 'gaussian' or 'maha'. Returns An array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`. """ mean, covariance = self.project(mean, covariance) if only_position: mean, covariance = mean[:2], covariance[:2, :2] measurements = measurements[:, :2] d = measurements - mean if metric == 'gaussian': return np.sum(d * d, axis=1) elif metric == 'maha': cholesky_factor = np.linalg.cholesky(covariance) z = scipy.linalg.solve_triangular( cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True) squared_maha = np.sum(z * z, axis=0) return squared_maha else: raise ValueError('invalid distance metric')
Compute gating distance between state distribution and measurements. A suitable distance threshold can be obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom, otherwise 2. Args: mean (ndarray): Mean vector over the state distribution (8 dimensional). covariance (ndarray): Covariance of the state distribution (8x8 dimensional). measurements (ndarray): An Nx4 dimensional matrix of N measurements, each in format (x, y, a, h) where (x, y) is the bounding box center position, a the aspect ratio, and h the height. only_position (Optional[bool]): If True, distance computation is done with respect to the bounding box center position only. metric (str): Metric type, 'gaussian' or 'maha'. Returns An array of length N, where the i-th element contains the squared Mahalanobis distance between (mean, covariance) and `measurements[i]`.
gating_distance
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/motion/kalman_filter.py
Apache-2.0
def sub_cluster(cid_tid_dict, scene_cluster, use_ff=True, use_rerank=True, use_camera=False, use_st_filter=False): ''' cid_tid_dict: all camera_id and track_id scene_cluster: like [41, 42, 43, 44, 45, 46] in AIC21 MTMCT S06 test videos ''' assert (len(scene_cluster) != 0), "Error: scene_cluster length equals 0" cid_tids = sorted( [key for key in cid_tid_dict.keys() if key[0] in scene_cluster]) if use_camera: clu = get_labels_with_camera( cid_tid_dict, cid_tids, use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) else: clu = get_labels( cid_tid_dict, cid_tids, use_ff=use_ff, use_rerank=use_rerank, use_st_filter=use_st_filter) new_clu = list() for c_list in clu: if len(c_list) <= 1: continue cam_list = [cid_tids[c][0] for c in c_list] if len(cam_list) != len(set(cam_list)): continue new_clu.append([cid_tids[c] for c in c_list]) all_clu = new_clu cid_tid_label = dict() for i, c_list in enumerate(all_clu): for c in c_list: cid_tid_label[c] = i + 1 return cid_tid_label
cid_tid_dict: all camera_id and track_id scene_cluster: like [41, 42, 43, 44, 45, 46] in AIC21 MTMCT S06 test videos
sub_cluster
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/mtmct/postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/mtmct/postprocess.py
Apache-2.0
def getData(fpath, names=None, sep='\s+|\t+|,'): """ Get the necessary track data from a file handle. Args: fpath (str) : Original path of file reading from. names (list[str]): List of column names for the data. sep (str): Allowed separators regular expression string. Return: df (pandas.DataFrame): Data frame containing the data loaded from the stream with optionally assigned column names. No index is set on the data. """ try: df = pd.read_csv( fpath, sep=sep, index_col=None, skipinitialspace=True, header=None, names=names, engine='python') return df except Exception as e: raise ValueError("Could not read input from %s. Error: %s" % (fpath, repr(e)))
Get the necessary track data from a file handle. Args: fpath (str) : Original path of file reading from. names (list[str]): List of column names for the data. sep (str): Allowed separators regular expression string. Return: df (pandas.DataFrame): Data frame containing the data loaded from the stream with optionally assigned column names. No index is set on the data.
getData
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/mtmct/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/mtmct/utils.py
Apache-2.0
def init_count(num_classes): """ Initiate _count for all object classes :param num_classes: """ for cls_id in range(num_classes): BaseTrack._count_dict[cls_id] = 0
Initiate _count for all object classes :param num_classes:
init_count
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
Apache-2.0
def tlwh(self): """Get current position in bounding box format `(top left x, top left y, width, height)`. """ if self.mean is None: return self._tlwh.copy() ret = self.mean[:4].copy() ret[2] *= ret[3] ret[:2] -= ret[2:] / 2 return ret
Get current position in bounding box format `(top left x, top left y, width, height)`.
tlwh
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
Apache-2.0
def tlbr(self): """Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`. """ ret = self.tlwh.copy() ret[2:] += ret[:2] return ret
Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`.
tlbr
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
Apache-2.0
def tlwh_to_xyah(tlwh): """Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`. """ ret = np.asarray(tlwh).copy() ret[:2] += ret[2:] / 2 ret[2] /= ret[3] return ret
Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`.
tlwh_to_xyah
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_jde_tracker.py
Apache-2.0