code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def to_tlwh(self): """Get position in format `(top left x, top left y, width, height)`.""" ret = self.mean[:4].copy() ret[2] *= ret[3] ret[:2] -= ret[2:] / 2 return ret
Get position in format `(top left x, top left y, width, height)`.
to_tlwh
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
Apache-2.0
def to_tlbr(self): """Get position in bounding box format `(min x, miny, max x, max y)`.""" ret = self.to_tlwh() ret[2:] = ret[:2] + ret[2:] return ret
Get position in bounding box format `(min x, miny, max x, max y)`.
to_tlbr
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
Apache-2.0
def predict(self, kalman_filter): """ Propagate the state distribution to the current time step using a Kalman filter prediction step. """ self.mean, self.covariance = kalman_filter.predict(self.mean, self.covariance) self.age += 1 self.time_since_update += 1
Propagate the state distribution to the current time step using a Kalman filter prediction step.
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
Apache-2.0
def update(self, kalman_filter, detection): """ Perform Kalman filter measurement update step and update the associated detection feature cache. """ self.mean, self.covariance = kalman_filter.update(self.mean, self.covariance, detection.to_xyah()) self.features.append(detection.feature) self.feat = detection.feature self.cls_id = detection.cls_id self.score = detection.score self.hits += 1 self.time_since_update = 0 if self.state == TrackState.Tentative and self.hits >= self._n_init: self.state = TrackState.Confirmed
Perform Kalman filter measurement update step and update the associated detection feature cache.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
Apache-2.0
def mark_missed(self): """Mark this track as missed (no association at the current time step). """ if self.state == TrackState.Tentative: self.state = TrackState.Deleted elif self.time_since_update > self._max_age: self.state = TrackState.Deleted
Mark this track as missed (no association at the current time step).
mark_missed
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/base_sde_tracker.py
Apache-2.0
def update(self, pred_dets, pred_embs): """ Perform measurement update and track management. Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128], usually pred_embs.shape[1] is a multiple of 128. """ pred_cls_ids = pred_dets[:, 0:1] pred_scores = pred_dets[:, 1:2] pred_xyxys = pred_dets[:, 2:6] pred_tlwhs = np.concatenate( (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1), axis=1) detections = [ Detection(tlwh, score, feat, cls_id) for tlwh, score, feat, cls_id in zip(pred_tlwhs, pred_scores, pred_embs, pred_cls_ids) ] # Run matching cascade. matches, unmatched_tracks, unmatched_detections = \ self._match(detections) # Update track set. for track_idx, detection_idx in matches: self.tracks[track_idx].update(self.motion, detections[detection_idx]) for track_idx in unmatched_tracks: self.tracks[track_idx].mark_missed() for detection_idx in unmatched_detections: self._initiate_track(detections[detection_idx]) self.tracks = [t for t in self.tracks if not t.is_deleted()] # Update distance metric. active_targets = [t.track_id for t in self.tracks if t.is_confirmed()] features, targets = [], [] for track in self.tracks: if not track.is_confirmed(): continue features += track.features targets += [track.track_id for _ in track.features] track.features = [] self.metric.partial_fit( np.asarray(features), np.asarray(targets), active_targets) output_stracks = self.tracks return output_stracks
Perform measurement update and track management. Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128], usually pred_embs.shape[1] is a multiple of 128.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/deepsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/deepsort_tracker.py
Apache-2.0
def update(self, pred_dets, pred_embs=None): """ Processes the image frame and finds bounding box(detections). Associates the detection with corresponding tracklets and also handles lost, removed, refound and active tracklets. Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512]. Return: output_stracks_dict (dict(list)): The list contains information regarding the online_tracklets for the received image tensor. """ self.frame_id += 1 if self.frame_id == 1: STrack.init_count(self.num_classes) activated_tracks_dict = defaultdict(list) refined_tracks_dict = defaultdict(list) lost_tracks_dict = defaultdict(list) removed_tracks_dict = defaultdict(list) output_tracks_dict = defaultdict(list) pred_dets_dict = defaultdict(list) pred_embs_dict = defaultdict(list) # unify single and multi classes detection and embedding results for cls_id in range(self.num_classes): cls_idx = (pred_dets[:, 0:1] == cls_id).squeeze(-1) pred_dets_dict[cls_id] = pred_dets[cls_idx] if pred_embs is not None: pred_embs_dict[cls_id] = pred_embs[cls_idx] else: pred_embs_dict[cls_id] = None for cls_id in range(self.num_classes): """ Step 1: Get detections by class""" pred_dets_cls = pred_dets_dict[cls_id] pred_embs_cls = pred_embs_dict[cls_id] remain_inds = (pred_dets_cls[:, 1:2] > self.conf_thres).squeeze(-1) if remain_inds.sum() > 0: pred_dets_cls = pred_dets_cls[remain_inds] if pred_embs_cls is None: # in original ByteTrack detections = [ STrack( STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id, 30, temp_feat=None) for tlbrs in pred_dets_cls ] else: pred_embs_cls = pred_embs_cls[remain_inds] detections = [ STrack( STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id, 30, temp_feat) for (tlbrs, temp_feat ) in zip(pred_dets_cls, pred_embs_cls) ] else: detections = [] ''' Add newly detected tracklets to tracked_stracks''' unconfirmed_dict = defaultdict(list) tracked_tracks_dict = defaultdict(list) for track in self.tracked_tracks_dict[cls_id]: if not track.is_activated: # previous tracks which are not active in the current frame are added in unconfirmed list unconfirmed_dict[cls_id].append(track) else: # Active tracks are added to the local list 'tracked_stracks' tracked_tracks_dict[cls_id].append(track) """ Step 2: First association, with embedding""" # building tracking pool for the current frame track_pool_dict = defaultdict(list) track_pool_dict[cls_id] = joint_stracks( tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id]) # Predict the current location with KalmanFilter STrack.multi_predict(track_pool_dict[cls_id], self.motion) if pred_embs_cls is None: # in original ByteTrack dists = matching.iou_distance(track_pool_dict[cls_id], detections) matches, u_track, u_detection = matching.linear_assignment( dists, thresh=self.match_thres) # not self.tracked_thresh else: dists = matching.embedding_distance( track_pool_dict[cls_id], detections, metric=self.metric_type) dists = matching.fuse_motion( self.motion, dists, track_pool_dict[cls_id], detections) matches, u_track, u_detection = matching.linear_assignment( dists, thresh=self.tracked_thresh) for i_tracked, idet in matches: # i_tracked is the id of the track and idet is the detection track = track_pool_dict[cls_id][i_tracked] det = detections[idet] if track.state == TrackState.Tracked: # If the track is active, add the detection to the track track.update(detections[idet], self.frame_id) activated_tracks_dict[cls_id].append(track) else: # We have obtained a detection from a track which is not active, # hence put the track in refind_stracks list track.re_activate(det, self.frame_id, new_id=False) refined_tracks_dict[cls_id].append(track) # None of the steps below happen if there are no undetected tracks. """ Step 3: Second association, with IOU""" if self.use_byte: inds_low = pred_dets_dict[cls_id][:, 1:2] > self.low_conf_thres inds_high = pred_dets_dict[cls_id][:, 1:2] < self.conf_thres inds_second = np.logical_and(inds_low, inds_high).squeeze(-1) pred_dets_cls_second = pred_dets_dict[cls_id][inds_second] # association the untrack to the low score detections if len(pred_dets_cls_second) > 0: if pred_embs_dict[cls_id] is None: # in original ByteTrack detections_second = [ STrack( STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id, 30, temp_feat=None) for tlbrs in pred_dets_cls_second ] else: pred_embs_cls_second = pred_embs_dict[cls_id][ inds_second] detections_second = [ STrack( STrack.tlbr_to_tlwh(tlbrs[2:6]), tlbrs[1], cls_id, 30, temp_feat) for (tlbrs, temp_feat) in zip(pred_dets_cls_second, pred_embs_cls_second) ] else: detections_second = [] r_tracked_stracks = [ track_pool_dict[cls_id][i] for i in u_track if track_pool_dict[cls_id][i].state == TrackState.Tracked ] dists = matching.iou_distance(r_tracked_stracks, detections_second) matches, u_track, u_detection_second = matching.linear_assignment( dists, thresh=0.4) # not r_tracked_thresh else: detections = [detections[i] for i in u_detection] r_tracked_stracks = [] for i in u_track: if track_pool_dict[cls_id][i].state == TrackState.Tracked: r_tracked_stracks.append(track_pool_dict[cls_id][i]) dists = matching.iou_distance(r_tracked_stracks, detections) matches, u_track, u_detection = matching.linear_assignment( dists, thresh=self.r_tracked_thresh) for i_tracked, idet in matches: track = r_tracked_stracks[i_tracked] det = detections[ idet] if not self.use_byte else detections_second[idet] if track.state == TrackState.Tracked: track.update(det, self.frame_id) activated_tracks_dict[cls_id].append(track) else: track.re_activate(det, self.frame_id, new_id=False) refined_tracks_dict[cls_id].append(track) for it in u_track: track = r_tracked_stracks[it] if not track.state == TrackState.Lost: track.mark_lost() lost_tracks_dict[cls_id].append(track) '''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' detections = [detections[i] for i in u_detection] dists = matching.iou_distance(unconfirmed_dict[cls_id], detections) matches, u_unconfirmed, u_detection = matching.linear_assignment( dists, thresh=self.unconfirmed_thresh) for i_tracked, idet in matches: unconfirmed_dict[cls_id][i_tracked].update(detections[idet], self.frame_id) activated_tracks_dict[cls_id].append(unconfirmed_dict[cls_id][ i_tracked]) for it in u_unconfirmed: track = unconfirmed_dict[cls_id][it] track.mark_removed() removed_tracks_dict[cls_id].append(track) """ Step 4: Init new stracks""" for inew in u_detection: track = detections[inew] if track.score < self.det_thresh: continue track.activate(self.motion, self.frame_id) activated_tracks_dict[cls_id].append(track) """ Step 5: Update state""" for track in self.lost_tracks_dict[cls_id]: if self.frame_id - track.end_frame > self.max_time_lost: track.mark_removed() removed_tracks_dict[cls_id].append(track) self.tracked_tracks_dict[cls_id] = [ t for t in self.tracked_tracks_dict[cls_id] if t.state == TrackState.Tracked ] self.tracked_tracks_dict[cls_id] = joint_stracks( self.tracked_tracks_dict[cls_id], activated_tracks_dict[cls_id]) self.tracked_tracks_dict[cls_id] = joint_stracks( self.tracked_tracks_dict[cls_id], refined_tracks_dict[cls_id]) self.lost_tracks_dict[cls_id] = sub_stracks( self.lost_tracks_dict[cls_id], self.tracked_tracks_dict[cls_id]) self.lost_tracks_dict[cls_id].extend(lost_tracks_dict[cls_id]) self.lost_tracks_dict[cls_id] = sub_stracks( self.lost_tracks_dict[cls_id], self.removed_tracks_dict[cls_id]) self.removed_tracks_dict[cls_id].extend(removed_tracks_dict[ cls_id]) self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[ cls_id] = remove_duplicate_stracks( self.tracked_tracks_dict[cls_id], self.lost_tracks_dict[cls_id]) # get scores of lost tracks output_tracks_dict[cls_id] = [ track for track in self.tracked_tracks_dict[cls_id] if track.is_activated ] return output_tracks_dict
Processes the image frame and finds bounding box(detections). Associates the detection with corresponding tracklets and also handles lost, removed, refound and active tracklets. Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512]. Return: output_stracks_dict (dict(list)): The list contains information regarding the online_tracklets for the received image tensor.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/jde_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/jde_tracker.py
Apache-2.0
def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h + 1e-6) return np.array([x, y, s, r]).reshape((4, 1))
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio
convert_bbox_to_z
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
Apache-2.0
def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if (score == None): return np.array( [x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) else: score = np.array([score]) return np.array([ x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score ]).reshape((1, 5))
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
convert_x_to_bbox
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
Apache-2.0
def update(self, bbox): """ Updates the state vector with observed bbox. """ if bbox is not None: if self.last_observation.sum() >= 0: # no previous observation previous_box = None for i in range(self.delta_t): dt = self.delta_t - i if self.age - dt in self.observations: previous_box = self.observations[self.age - dt] break if previous_box is None: previous_box = self.last_observation """ Estimate the track speed direction with observations \Delta t steps away """ self.velocity = speed_direction(previous_box, bbox) """ Insert new observations. This is a ugly way to maintain both self.observations and self.history_observations. Bear it for the moment. """ self.last_observation = bbox self.observations[self.age] = bbox self.history_observations.append(bbox) self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) else: self.kf.update(bbox)
Updates the state vector with observed bbox.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
Apache-2.0
def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if ((self.kf.x[6] + self.kf.x[2]) <= 0): self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if (self.time_since_update > 0): self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x, score=self.score)) return self.history[-1]
Advances the state vector and returns the predicted bounding box estimate.
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
Apache-2.0
def update(self, pred_dets, pred_embs=None): """ Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'. """ if pred_dets is None: return np.empty((0, 6)) self.frame_count += 1 bboxes = pred_dets[:, 2:] scores = pred_dets[:, 1:2] dets = np.concatenate((bboxes, scores), axis=1) scores = scores.squeeze(-1) inds_low = scores > 0.1 inds_high = scores < self.det_thresh inds_second = np.logical_and(inds_low, inds_high) # self.det_thresh > score > 0.1, for second matching dets_second = dets[inds_second] # detections for second matching remain_inds = scores > self.det_thresh dets = dets[remain_inds] # get predicted locations from existing trackers. trks = np.zeros((len(self.trackers), 5)) to_del = [] ret = [] for t, trk in enumerate(trks): pos = self.trackers[t].predict()[0] trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] if np.any(np.isnan(pos)): to_del.append(t) trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) for t in reversed(to_del): self.trackers.pop(t) velocities = np.array([ trk.velocity if trk.velocity is not None else np.array((0, 0)) for trk in self.trackers ]) last_boxes = np.array([trk.last_observation for trk in self.trackers]) k_observations = np.array([ k_previous_obs(trk.observations, trk.age, self.delta_t) for trk in self.trackers ]) """ First round of association """ matched, unmatched_dets, unmatched_trks = associate( dets, trks, self.iou_threshold, velocities, k_observations, self.inertia) for m in matched: self.trackers[m[1]].update(dets[m[0], :]) """ Second round of associaton by OCR """ # BYTE association if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[ 0] > 0: u_trks = trks[unmatched_trks] iou_left = iou_batch( dets_second, u_trks) # iou between low score detections and unmatched tracks iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ matched_indices = linear_assignment(-iou_left) to_remove_trk_indices = [] for m in matched_indices: det_ind, trk_ind = m[0], unmatched_trks[m[1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets_second[det_ind, :]) to_remove_trk_indices.append(trk_ind) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0: left_dets = dets[unmatched_dets] left_trks = last_boxes[unmatched_trks] iou_left = iou_batch(left_dets, left_trks) iou_left = np.array(iou_left) if iou_left.max() > self.iou_threshold: """ NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may get a higher performance especially on MOT17/MOT20 datasets. But we keep it uniform here for simplicity """ rematched_indices = linear_assignment(-iou_left) to_remove_det_indices = [] to_remove_trk_indices = [] for m in rematched_indices: det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[ 1]] if iou_left[m[0], m[1]] < self.iou_threshold: continue self.trackers[trk_ind].update(dets[det_ind, :]) to_remove_det_indices.append(det_ind) to_remove_trk_indices.append(trk_ind) unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices)) unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices)) for m in unmatched_trks: self.trackers[m].update(None) # create and initialise new trackers for unmatched detections for i in unmatched_dets: trk = KalmanBoxTracker(dets[i, :], delta_t=self.delta_t) self.trackers.append(trk) i = len(self.trackers) for trk in reversed(self.trackers): if trk.last_observation.sum() < 0: d = trk.get_state()[0] else: d = trk.last_observation # tlbr + score if (trk.time_since_update < 1) and ( trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits): # +1 as MOT benchmark requires positive ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) i -= 1 # remove dead tracklet if (trk.time_since_update > self.max_age): self.trackers.pop(i) if (len(ret) > 0): return np.concatenate(ret) return np.empty((0, 6))
Args: pred_dets (np.array): Detection results of the image, the shape is [N, 6], means 'cls_id, score, x0, y0, x1, y1'. pred_embs (np.array): Embedding results of the image, the shape is [N, 128] or [N, 512], default as None. Return: tracking boxes (np.array): [M, 6], means 'x0, y0, x1, y1, score, id'.
update
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/pptracking/python/mot/tracker/ocsort_tracker.py
Apache-2.0
def __init__(self, config, model_info: dict={}, data_info: dict={}, perf_info: dict={}, resource_info: dict={}, **kwargs): """ Construct PaddleInferBenchmark Class to format logs. args: config(paddle.inference.Config): paddle inference config model_info(dict): basic model info {'model_name': 'resnet50' 'precision': 'fp32'} data_info(dict): input data info {'batch_size': 1 'shape': '3,224,224' 'data_num': 1000} perf_info(dict): performance result {'preprocess_time_s': 1.0 'inference_time_s': 2.0 'postprocess_time_s': 1.0 'total_time_s': 4.0} resource_info(dict): cpu and gpu resources {'cpu_rss': 100 'gpu_rss': 100 'gpu_util': 60} """ # PaddleInferBenchmark Log Version self.log_version = "1.0.3" # Paddle Version self.paddle_version = paddle.__version__ self.paddle_commit = paddle.__git_commit__ paddle_infer_info = paddle_infer.get_version() self.paddle_branch = paddle_infer_info.strip().split(': ')[-1] # model info self.model_info = model_info # data info self.data_info = data_info # perf info self.perf_info = perf_info try: # required value self.model_name = model_info['model_name'] self.precision = model_info['precision'] self.batch_size = data_info['batch_size'] self.shape = data_info['shape'] self.data_num = data_info['data_num'] self.inference_time_s = round(perf_info['inference_time_s'], 4) except: self.print_help() raise ValueError( "Set argument wrong, please check input argument and its type") self.preprocess_time_s = perf_info.get('preprocess_time_s', 0) self.postprocess_time_s = perf_info.get('postprocess_time_s', 0) self.with_tracker = True if 'tracking_time_s' in perf_info else False self.tracking_time_s = perf_info.get('tracking_time_s', 0) self.total_time_s = perf_info.get('total_time_s', 0) self.inference_time_s_90 = perf_info.get("inference_time_s_90", "") self.inference_time_s_99 = perf_info.get("inference_time_s_99", "") self.succ_rate = perf_info.get("succ_rate", "") self.qps = perf_info.get("qps", "") # conf info self.config_status = self.parse_config(config) # mem info if isinstance(resource_info, dict): self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0)) self.cpu_vms_mb = int(resource_info.get('cpu_vms_mb', 0)) self.cpu_shared_mb = int(resource_info.get('cpu_shared_mb', 0)) self.cpu_dirty_mb = int(resource_info.get('cpu_dirty_mb', 0)) self.cpu_util = round(resource_info.get('cpu_util', 0), 2) self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0)) self.gpu_util = round(resource_info.get('gpu_util', 0), 2) self.gpu_mem_util = round(resource_info.get('gpu_mem_util', 0), 2) else: self.cpu_rss_mb = 0 self.cpu_vms_mb = 0 self.cpu_shared_mb = 0 self.cpu_dirty_mb = 0 self.cpu_util = 0 self.gpu_rss_mb = 0 self.gpu_util = 0 self.gpu_mem_util = 0 # init benchmark logger self.benchmark_logger()
Construct PaddleInferBenchmark Class to format logs. args: config(paddle.inference.Config): paddle inference config model_info(dict): basic model info {'model_name': 'resnet50' 'precision': 'fp32'} data_info(dict): input data info {'batch_size': 1 'shape': '3,224,224' 'data_num': 1000} perf_info(dict): performance result {'preprocess_time_s': 1.0 'inference_time_s': 2.0 'postprocess_time_s': 1.0 'total_time_s': 4.0} resource_info(dict): cpu and gpu resources {'cpu_rss': 100 'gpu_rss': 100 'gpu_util': 60}
__init__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
Apache-2.0
def parse_config(self, config) -> dict: """ parse paddle predictor config args: config(paddle.inference.Config): paddle inference config return: config_status(dict): dict style config info """ if isinstance(config, paddle_infer.Config): config_status = {} config_status['runtime_device'] = "gpu" if config.use_gpu( ) else "cpu" config_status['ir_optim'] = config.ir_optim() config_status['enable_tensorrt'] = config.tensorrt_engine_enabled() config_status['precision'] = self.precision config_status['enable_mkldnn'] = config.mkldnn_enabled() config_status[ 'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads( ) elif isinstance(config, dict): config_status['runtime_device'] = config.get('runtime_device', "") config_status['ir_optim'] = config.get('ir_optim', "") config_status['enable_tensorrt'] = config.get('enable_tensorrt', "") config_status['precision'] = config.get('precision', "") config_status['enable_mkldnn'] = config.get('enable_mkldnn', "") config_status['cpu_math_library_num_threads'] = config.get( 'cpu_math_library_num_threads', "") else: self.print_help() raise ValueError( "Set argument config wrong, please check input argument and its type" ) return config_status
parse paddle predictor config args: config(paddle.inference.Config): paddle inference config return: config_status(dict): dict style config info
parse_config
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
Apache-2.0
def report(self, identifier=None): """ print log report args: identifier(string): identify log """ if identifier: identifier = f"[{identifier}]" else: identifier = "" self.logger.info("\n") self.logger.info( "---------------------- Paddle info ----------------------") self.logger.info(f"{identifier} paddle_version: {self.paddle_version}") self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}") self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}") self.logger.info(f"{identifier} log_api_version: {self.log_version}") self.logger.info( "----------------------- Conf info -----------------------") self.logger.info( f"{identifier} runtime_device: {self.config_status['runtime_device']}" ) self.logger.info( f"{identifier} ir_optim: {self.config_status['ir_optim']}") self.logger.info(f"{identifier} enable_memory_optim: {True}") self.logger.info( f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}" ) self.logger.info( f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}" ) self.logger.info( f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}" ) self.logger.info( "----------------------- Model info ----------------------") self.logger.info(f"{identifier} model_name: {self.model_name}") self.logger.info(f"{identifier} precision: {self.precision}") self.logger.info( "----------------------- Data info -----------------------") self.logger.info(f"{identifier} batch_size: {self.batch_size}") self.logger.info(f"{identifier} input_shape: {self.shape}") self.logger.info(f"{identifier} data_num: {self.data_num}") self.logger.info( "----------------------- Perf info -----------------------") self.logger.info( f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, cpu_vms: {self.cpu_vms_mb}, cpu_shared_mb: {self.cpu_shared_mb}, cpu_dirty_mb: {self.cpu_dirty_mb}, cpu_util: {self.cpu_util}%" ) self.logger.info( f"{identifier} gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%, gpu_mem_util: {self.gpu_mem_util}%" ) self.logger.info( f"{identifier} total time spent(s): {self.total_time_s}") if self.with_tracker: self.logger.info( f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, " f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, " f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}, " f"tracking_time(ms): {round(self.tracking_time_s*1000, 1)}") else: self.logger.info( f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, " f"inference_time(ms): {round(self.inference_time_s*1000, 1)}, " f"postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}" ) if self.inference_time_s_90: self.looger.info( f"{identifier} 90%_cost: {self.inference_time_s_90}, 99%_cost: {self.inference_time_s_99}, succ_rate: {self.succ_rate}" ) if self.qps: self.logger.info(f"{identifier} QPS: {self.qps}")
print log report args: identifier(string): identify log
report
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/benchmark_utils.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's result include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' # model prediction np_boxes_num, np_boxes, np_masks = np.array([0]), None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() boxes_num = self.predictor.get_output_handle(output_names[1]) np_boxes_num = boxes_num.copy_to_cpu() if self.pred_config.mask: masks_tensor = self.predictor.get_output_handle(output_names[ 2]) np_masks = masks_tensor.copy_to_cpu() result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num) return result
Args: repeats (int): repeats number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's result include 'masks': np.ndarray: shape: [N, im_h, im_w]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeat number for prediction Returns: result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w] 'cate_label': label of segm, shape:[N] 'cate_score': confidence score of segm, shape:[N] ''' np_label, np_score, np_segms = None, None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() np_boxes_num = self.predictor.get_output_handle(output_names[ 0]).copy_to_cpu() np_label = self.predictor.get_output_handle(output_names[ 1]).copy_to_cpu() np_score = self.predictor.get_output_handle(output_names[ 2]).copy_to_cpu() np_segms = self.predictor.get_output_handle(output_names[ 3]).copy_to_cpu() result = dict( segm=np_segms, label=np_label, score=np_score, boxes_num=np_boxes_num) return result
Args: repeats (int): repeat number for prediction Returns: result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w] 'cate_label': label of segm, shape:[N] 'cate_score': confidence score of segm, shape:[N]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeat number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] ''' np_score_list, np_boxes_list = [], [] for i in range(repeats): self.predictor.run() np_score_list.clear() np_boxes_list.clear() output_names = self.predictor.get_output_names() num_outs = int(len(output_names) / 2) for out_idx in range(num_outs): np_score_list.append( self.predictor.get_output_handle(output_names[out_idx]) .copy_to_cpu()) np_boxes_list.append( self.predictor.get_output_handle(output_names[ out_idx + num_outs]).copy_to_cpu()) result = dict(boxes=np_score_list, boxes_num=np_boxes_list) return result
Args: repeats (int): repeat number for prediction Returns: result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def create_inputs(imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} im_shape = [] scale_factor = [] if len(imgs) == 1: inputs['image'] = np.array((imgs[0], )).astype('float32') inputs['im_shape'] = np.array( (im_info[0]['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info[0]['scale_factor'], )).astype('float32') return inputs for e in im_info: im_shape.append(np.array((e['im_shape'], )).astype('float32')) scale_factor.append(np.array((e['scale_factor'], )).astype('float32')) inputs['im_shape'] = np.concatenate(im_shape, axis=0) inputs['scale_factor'] = np.concatenate(scale_factor, axis=0) imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] max_shape_h = max([e[0] for e in imgs_shape]) max_shape_w = max([e[1] for e in imgs_shape]) padding_imgs = [] for img in imgs: im_c, im_h, im_w = img.shape[:] padding_im = np.zeros( (im_c, max_shape_h, max_shape_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = img padding_imgs.append(padding_im) inputs['image'] = np.stack(padding_imgs, axis=0) return inputs
generate input for different model type Args: imgs (list(numpy)): list of images (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model
create_inputs
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], SUPPORT_MODELS))
Raises: ValueError: loaded model not in supported model type
check_model
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def load_predictor(model_dir, run_mode='paddle', batch_size=1, device='CPU', min_subgraph_size=3, use_dynamic_shape=False, trt_min_shape=1, trt_max_shape=1280, trt_opt_shape=640, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False, enable_mkldnn_bfloat16=False, delete_shuffle_pass=False): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. Used by action model. Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need device == 'GPU'. """ if device != 'GPU' and run_mode != 'paddle': raise ValueError( "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}" .format(run_mode, device)) infer_model = os.path.join(model_dir, 'model.pdmodel') infer_params = os.path.join(model_dir, 'model.pdiparams') if not os.path.exists(infer_model): infer_model = os.path.join(model_dir, 'inference.pdmodel') infer_params = os.path.join(model_dir, 'inference.pdiparams') if not os.path.exists(infer_model): raise ValueError("Cannot find any inference model in dir: {},". format(model_dir)) config = Config(infer_model, infer_params) if device == 'GPU': # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) elif device == 'XPU': config.enable_lite_engine() config.enable_xpu(10 * 1024 * 1024) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_threads) if enable_mkldnn: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() if enable_mkldnn_bfloat16: config.enable_mkldnn_bfloat16() except Exception as e: print( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=(1 << 25) * batch_size, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=trt_calib_mode) if use_dynamic_shape: min_input_shape = { 'image': [batch_size, 3, trt_min_shape, trt_min_shape] } max_input_shape = { 'image': [batch_size, 3, trt_max_shape, trt_max_shape] } opt_input_shape = { 'image': [batch_size, 3, trt_opt_shape, trt_opt_shape] } config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape) print('trt set dynamic shape done!') # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) if delete_shuffle_pass: config.delete_pass("shuffle_channel_detect_pass") predictor = create_predictor(config) return predictor, config
set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8) use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. Used by action model. Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need device == 'GPU'.
load_predictor
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def get_test_images(infer_dir, infer_img): """ Get image path list in TEST mode """ assert infer_img is not None or infer_dir is not None, \ "--image_file or --image_dir should be set" assert infer_img is None or os.path.isfile(infer_img), \ "{} is not a file".format(infer_img) assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) # infer_img has a higher priority if infer_img and os.path.isfile(infer_img): return [infer_img] images = set() infer_dir = os.path.abspath(infer_dir) assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) assert len(images) > 0, "no image found in {}".format(infer_dir) print("Found {} inference images in total.".format(len(images))) return images
Get image path list in TEST mode
get_test_images
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/infer.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeat number for prediction Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w] ''' # model prediction np_heatmap, np_masks = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() heatmap_tensor = self.predictor.get_output_handle(output_names[0]) np_heatmap = heatmap_tensor.copy_to_cpu() if self.pred_config.tagmap: masks_tensor = self.predictor.get_output_handle(output_names[ 1]) heat_k = self.predictor.get_output_handle(output_names[2]) inds_k = self.predictor.get_output_handle(output_names[3]) np_masks = [ masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(), inds_k.copy_to_cpu() ] result = dict(heatmap=np_heatmap, masks=np_masks) return result
Args: repeats (int): repeat number for prediction Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape: [N, im_h, im_w]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
Apache-2.0
def create_inputs(imgs, im_info): """generate input for different model type Args: imgs (list(numpy)): list of image (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.stack(imgs, axis=0).astype('float32') im_shape = [] for e in im_info: im_shape.append(np.array((e['im_shape'])).astype('float32')) inputs['im_shape'] = np.stack(im_shape, axis=0) return inputs
generate input for different model type Args: imgs (list(numpy)): list of image (np.ndarray) im_info (list(dict)): list of image info Returns: inputs (dict): input of model
create_inputs
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
Apache-2.0
def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in KEYPOINT_SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], KEYPOINT_SUPPORT_MODELS))
Raises: ValueError: loaded model not in supported model type
check_model
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_infer.py
Apache-2.0
def warp_affine_joints(joints, mat): """Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints. """ joints = np.array(joints) shape = joints.shape joints = joints.reshape(-1, 2) return np.dot(np.concatenate( (joints, joints[:, 0:1] * 0 + 1), axis=1), mat.T).reshape(shape)
Apply affine transformation defined by the transform matrix on the joints. Args: joints (np.ndarray[..., 2]): Origin coordinate of joints. mat (np.ndarray[3, 2]): The affine matrix. Returns: matrix (np.ndarray[..., 2]): Result coordinate of joints.
warp_affine_joints
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
Apache-2.0
def get_max_preds(self, heatmaps): """get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints """ assert isinstance(heatmaps, np.ndarray), 'heatmaps should be numpy.ndarray' assert heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = heatmaps.shape[0] num_joints = heatmaps.shape[1] width = heatmaps.shape[3] heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals
get predictions from score maps Args: heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
get_max_preds
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
Apache-2.0
def dark_postprocess(self, hm, coords, kernelsize): """ refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py """ hm = self.gaussian_blur(hm, kernelsize) hm = np.maximum(hm, 1e-10) hm = np.log(hm) for n in range(coords.shape[0]): for p in range(coords.shape[1]): coords[n, p] = self.dark_parse(hm[n][p], coords[n][p]) return coords
refer to https://github.com/ilovepose/DarkPose/lib/core/inference.py
dark_postprocess
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
Apache-2.0
def get_final_preds(self, heatmaps, center, scale, kernelsize=3): """the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints """ coords, maxvals = self.get_max_preds(heatmaps) heatmap_height = heatmaps.shape[2] heatmap_width = heatmaps.shape[3] if self.use_dark: coords = self.dark_postprocess(heatmaps, coords, kernelsize) else: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array([ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ]) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds(coords[i], center[i], scale[i], [heatmap_width, heatmap_height]) return preds, maxvals
the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response. Args: heatmaps (numpy.ndarray): The predicted heatmaps center (numpy.ndarray): The boxes center scale (numpy.ndarray): The scale factor Returns: preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
get_final_preds
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_postprocess.py
Apache-2.0
def get_affine_transform(center, input_size, rot, output_size, shift=(0., 0.), inv=False): """Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix. """ assert len(center) == 2 assert len(output_size) == 2 assert len(shift) == 2 if not isinstance(input_size, (np.ndarray, list)): input_size = np.array([input_size, input_size], dtype=np.float32) scale_tmp = input_size shift = np.array(shift) src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = rotate_point([0., src_w * -0.5], rot_rad) dst_dir = np.array([0., dst_w * -0.5]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans
Get the affine transform matrix, given the center/scale/rot/output_size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ]): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: The transform matrix.
get_affine_transform
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
Apache-2.0
def get_warp_matrix(theta, size_input, size_dst, size_target): """This code is based on https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation. """ theta = np.deg2rad(theta) matrix = np.zeros((2, 3), dtype=np.float32) scale_x = size_dst[0] / size_target[0] scale_y = size_dst[1] / size_target[1] matrix[0, 0] = np.cos(theta) * scale_x matrix[0, 1] = -np.sin(theta) * scale_x matrix[0, 2] = scale_x * ( -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] * np.sin(theta) + 0.5 * size_target[0]) matrix[1, 0] = np.sin(theta) * scale_y matrix[1, 1] = np.cos(theta) * scale_y matrix[1, 2] = scale_y * ( -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] * np.cos(theta) + 0.5 * size_target[1]) return matrix
This code is based on https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py Calculate the transformation matrix under the constraint of unbiased. Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation (CVPR 2020). Args: theta (float): Rotation angle in degrees. size_input (np.ndarray): Size of input image [w, h]. size_dst (np.ndarray): Size of output image [w, h]. size_target (np.ndarray): Size of ROI in input plane [w, h]. Returns: matrix (np.ndarray): A matrix for transformation.
get_warp_matrix
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
Apache-2.0
def rotate_point(pt, angle_rad): """Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point. """ assert len(pt) == 2 sn, cs = np.sin(angle_rad), np.cos(angle_rad) new_x = pt[0] * cs - pt[1] * sn new_y = pt[0] * sn + pt[1] * cs rotated_pt = [new_x, new_y] return rotated_pt
Rotate a point by an angle. Args: pt (list[float]): 2 dimensional point to be rotated angle_rad (float): rotation angle by radian Returns: list[float]: Rotated point.
rotate_point
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
Apache-2.0
def _get_3rd_point(a, b): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point. """ assert len(a) == 2 assert len(b) == 2 direction = a - b third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32) return third_pt
To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): point(x,y) b (np.ndarray): point(x,y) Returns: np.ndarray: The 3rd point.
_get_3rd_point
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/keypoint_preprocess.py
Apache-2.0
def predict(self, repeats=1): ''' Args: repeats (int): repeats number for prediction Returns: result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] FairMOT(JDE)'s result include 'pred_embs': np.ndarray: shape: [N, 128] ''' # model prediction np_pred_dets, np_pred_embs = None, None for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) np_pred_dets = boxes_tensor.copy_to_cpu() embs_tensor = self.predictor.get_output_handle(output_names[1]) np_pred_embs = embs_tensor.copy_to_cpu() result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs) return result
Args: repeats (int): repeats number for prediction Returns: result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] FairMOT(JDE)'s result include 'pred_embs': np.ndarray: shape: [N, 128]
predict
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/mot_jde_infer.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/mot_jde_infer.py
Apache-2.0
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes """ scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims( current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :]
Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. top_k: keep top_k results. If k <= 0, keep all the results. candidate_size: only consider the candidates with the highest scores. Returns: picked: a list of indexes of the kept boxes
hard_nms
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
Apache-2.0
def iou_of(boxes0, boxes1, eps=1e-5): """Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values. """ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps)
Return intersection-over-union (Jaccard index) of boxes. Args: boxes0 (N, 4): ground truth boxes. boxes1 (N or 1, 4): predicted boxes. eps: a small number to avoid 0 as denominator. Returns: iou (N): IoU values.
iou_of
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
Apache-2.0
def area_of(left_top, right_bottom): """Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area. """ hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1]
Compute the areas of rectangles given two corners. Args: left_top (N, 2): left top corner. right_bottom (N, 2): right bottom corner. Returns: area (N): return the area.
area_of
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/picodet_postprocess.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def generate_scale(self, img): """ Args: img (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ limit_side_len = self.limit_side_len h, w, c = img.shape # limit the max side if self.limit_type == 'max': if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'min': if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w elif self.limit_type == 'resize_long': ratio = float(limit_side_len) / max(h, w) else: raise Exception('not support limit type, image ') resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = max(int(round(resize_h / 32) * 32), 32) resize_w = max(int(round(resize_w / 32) * 32), 32) im_scale_y = resize_h / float(h) im_scale_x = resize_w / float(w) return im_scale_y, im_scale_x
Args: img (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, img): """ Performs resize operations. Args: img (PIL.Image): a PIL.Image. return: resized_img: a PIL.Image after scaling. """ result_img = None if isinstance(img, np.ndarray): h, w, _ = img.shape elif isinstance(img, Image.Image): w, h = img.size else: raise NotImplementedError if w <= h: ow = self.short_size if self.fixed_ratio: # default is True oh = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no oh = self.short_size else: scale_factor = self.short_size / w oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) else: oh = self.short_size if self.fixed_ratio: ow = int(self.short_size * 4.0 / 3.0) elif not self.keep_ratio: # no ow = self.short_size else: scale_factor = self.short_size / h oh = int(h * float(scale_factor) + 0.5) if self.do_round else int(h * self.short_size / w) ow = int(w * float(scale_factor) + 0.5) if self.do_round else int(w * self.short_size / h) if type(img) == np.ndarray: img = Image.fromarray(img, mode='RGB') if self.backend == 'pillow': result_img = img.resize((ow, oh), Image.BILINEAR) elif self.backend == 'cv2' and (self.keep_ratio is not None): result_img = cv2.resize( img, (ow, oh), interpolation=cv2.INTER_LINEAR) else: result_img = Image.fromarray( cv2.resize( np.asarray(img), (ow, oh), interpolation=cv2.INTER_LINEAR)) return result_img
Performs resize operations. Args: img (PIL.Image): a PIL.Image. return: resized_img: a PIL.Image after scaling.
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __init__(self, target_size): """ Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size. """ super(LetterBoxResize, self).__init__() if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size
Resize image to target size, convert normalized xywh to pixel xyxy format ([x_center, y_center, width, height] -> [x0, y0, x1, y1]). Args: target_size (int|list): image target size.
__init__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 height, width = self.target_size h, w = im.shape[:2] im, ratio, padw, padh = self.letterbox(im, height=height, width=width) new_shape = [round(h * ratio), round(w * ratio)] im_info['im_shape'] = np.array(new_shape, dtype=np.float32) im_info['scale_factor'] = np.array([ratio, ratio], dtype=np.float32) return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __init__(self, size, fill_value=[114.0, 114.0, 114.0]): """ Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0) """ super(Pad, self).__init__() if isinstance(size, int): size = [size, size] self.size = size self.fill_value = fill_value
Pad image to a specified size. Args: size (list[int]): image target size fill_value (list[float]): rgb value of pad area, default (114.0, 114.0, 114.0)
__init__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ img = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) h, w = img.shape[:2] if self.keep_res: input_h = (h | self.pad) + 1 input_w = (w | self.pad) + 1 s = np.array([input_w, input_h], dtype=np.float32) c = np.array([w // 2, h // 2], dtype=np.float32) else: s = max(h, w) * 1.0 input_h, input_w = self.input_h, self.input_w c = np.array([w / 2., h / 2.], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [input_w, input_h]) img = cv2.resize(img, (w, h)) inp = cv2.warpAffine( img, trans_input, (input_w, input_h), flags=cv2.INTER_LINEAR) return inp, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/preprocess.py
Apache-2.0
def get_current_memory_mb(): """ It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming. """ import pynvml import psutil import GPUtil gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0)) pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() cpu_mem = info.uss / 1024. / 1024. gpu_mem = 0 gpu_percent = 0 gpus = GPUtil.getGPUs() if gpu_id is not None and len(gpus) > 0: gpu_percent = gpus[gpu_id].load pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem = meminfo.used / 1024. / 1024. return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
It is used to Obtain the memory usage of the CPU and GPU during the running of the program. And this function Current program is time-consuming.
get_current_memory_mb
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/utils.py
Apache-2.0
def nms(dets, match_threshold=0.6, match_metric='iou'): """ Apply NMS to avoid detecting too many overlapping bounding boxes. Args: dets: shape [N, 5], [score, x1, y1, x2, y2] match_metric: 'iou' or 'ios' match_threshold: overlap thresh for match metric. """ if dets.shape[0] == 0: return dets[[], :] scores = dets[:, 0] x1 = dets[:, 1] y1 = dets[:, 2] x2 = dets[:, 3] y2 = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] ndets = dets.shape[0] suppressed = np.zeros((ndets), dtype=np.int) for _i in range(ndets): i = order[_i] if suppressed[i] == 1: continue ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i + 1, ndets): j = order[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2 - xx1 + 1) h = max(0.0, yy2 - yy1 + 1) inter = w * h if match_metric == 'iou': union = iarea + areas[j] - inter match_value = inter / union elif match_metric == 'ios': smaller = min(iarea, areas[j]) match_value = inter / smaller else: raise ValueError() if match_value >= match_threshold: suppressed[j] = 1 keep = np.where(suppressed == 0)[0] dets = dets[keep, :] return dets
Apply NMS to avoid detecting too many overlapping bounding boxes. Args: dets: shape [N, 5], [score, x1, y1, x2, y2] match_metric: 'iou' or 'ios' match_threshold: overlap thresh for match metric.
nms
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/utils.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/utils.py
Apache-2.0
def visualize_box_mask(im, results, labels, threshold=0.5): """ Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image """ if isinstance(im, str): im = Image.open(im).convert('RGB') elif isinstance(im, np.ndarray): im = Image.fromarray(im) if 'masks' in results and 'boxes' in results and len(results['boxes']) > 0: im = draw_mask( im, results['boxes'], results['masks'], labels, threshold=threshold) if 'boxes' in results and len(results['boxes']) > 0: im = draw_box(im, results['boxes'], labels, threshold=threshold) if 'segm' in results: im = draw_segm( im, results['segm'], results['label'], results['score'], labels, threshold=threshold) return im
Args: im (str/np.ndarray): path of image/np.ndarray read by cv2 results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): Threshold of score. Returns: im (PIL.Image.Image): visualized image
visualize_box_mask
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/visualize.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/visualize.py
Apache-2.0
def draw_mask(im, np_boxes, np_masks, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] np_masks (np.ndarray): shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of mask Returns: im (PIL.Image.Image): visualized image """ color_list = get_color_map_list(len(labels)) w_ratio = 0.4 alpha = 0.7 im = np.array(im).astype('float32') clsid2color = {} expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] np_masks = np_masks[expect_boxes, :, :] im_h, im_w = im.shape[:2] np_masks = np_masks[:, :im_h, :im_w] for i in range(len(np_masks)): clsid, score = int(np_boxes[i][0]), np_boxes[i][1] mask = np_masks[i] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color_mask = clsid2color[clsid] for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) color_mask = np.array(color_mask) im[idx[0], idx[1], :] *= 1.0 - alpha im[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(im.astype('uint8'))
Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] np_masks (np.ndarray): shape:[N, im_h, im_w] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of mask Returns: im (PIL.Image.Image): visualized image
draw_mask
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/visualize.py
Apache-2.0
def draw_box(im, np_boxes, labels, threshold=0.5): """ Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image """ draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) clsid2color = {} color_list = get_color_map_list(len(labels)) expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for dt in np_boxes: clsid, bbox, score = int(dt[0]), dt[2:], dt[1] if clsid not in clsid2color: clsid2color[clsid] = color_list[clsid] color = tuple(clsid2color[clsid]) if len(bbox) == 4: xmin, ymin, xmax, ymax = bbox print('class_id:{:d}, confidence:{:.4f}, left_top:[{:.2f},{:.2f}],' 'right_bottom:[{:.2f},{:.2f}]'.format( int(clsid), score, xmin, ymin, xmax, ymax)) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) elif len(bbox) == 8: x1, y1, x2, y2, x3, y3, x4, y4 = bbox draw.line( [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)], width=2, fill=color) xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) # draw label text = "{} {:.4f}".format(labels[clsid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return im
Args: im (PIL.Image.Image): PIL image np_boxes (np.ndarray): shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] labels (list): labels:['class1', ..., 'classn'] threshold (float): threshold of box Returns: im (PIL.Image.Image): visualized image
draw_box
python
PaddlePaddle/models
modelcenter/PP-Vehicle/APP/python/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-Vehicle/APP/python/visualize.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('paddlecv://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def get_model_path(path): """Get model path from WEIGHTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, WEIGHTS_HOME, path_depth=2) return path
Get model path from WEIGHTS_HOME, if not exists, download it from url.
get_model_path
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def get_config_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, CONFIGS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def get_dict_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, DICTS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_dict_path
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True, path_depth=1): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath, dirname = map_path(url, root_dir, path_depth) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): return fullpath, True else: os.remove(fullpath) fullname = _download(url, dirname, md5sum) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/download.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/preprocess.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-YOLO/APP/src/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLO/APP/src/visualize.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('paddlecv://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def get_model_path(path): """Get model path from WEIGHTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, WEIGHTS_HOME, path_depth=2) return path
Get model path from WEIGHTS_HOME, if not exists, download it from url.
get_model_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def get_config_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, CONFIGS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def get_dict_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, DICTS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_dict_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True, path_depth=1): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath, dirname = map_path(url, root_dir, path_depth) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): return fullpath, True else: os.remove(fullpath) fullname = _download(url, dirname, md5sum) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/download.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/preprocess.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-YOLOE/APP/src/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE/APP/src/visualize.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('paddlecv://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def get_model_path(path): """Get model path from WEIGHTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, WEIGHTS_HOME, path_depth=2) return path
Get model path from WEIGHTS_HOME, if not exists, download it from url.
get_model_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def get_config_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, CONFIGS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def get_dict_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, DICTS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_dict_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True, path_depth=1): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath, dirname = map_path(url, root_dir, path_depth) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): return fullpath, True else: os.remove(fullpath) fullname = _download(url, dirname, md5sum) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def _download(url, path, md5sum=None): """ Download from url, save to path. url (str): download url path (str): download to given path """ if not osp.exists(path): os.makedirs(path) fname = osp.split(url)[-1] fullname = osp.join(path, fname) retry_cnt = 0 while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum, url)): if retry_cnt < DOWNLOAD_RETRY_LIMIT: retry_cnt += 1 else: raise RuntimeError("Download from {} failed. " "Retry limit reached".format(url)) # NOTE: windows path join may incur \, which is invalid in url if sys.platform == "win32": url = url.replace('\\', '/') req = requests.get(url, stream=True) if req.status_code != 200: raise RuntimeError("Downloading from {} failed with code " "{}!".format(url, req.status_code)) # For protecting download interupted, download to # tmp_fullname firstly, move tmp_fullname to fullname # after download finished tmp_fullname = fullname + "_tmp" total_size = req.headers.get('content-length') with open(tmp_fullname, 'wb') as f: if total_size: for chunk in tqdm.tqdm( req.iter_content(chunk_size=1024), total=(int(total_size) + 1023) // 1024, unit='KB'): f.write(chunk) else: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) shutil.move(tmp_fullname, fullname) return fullname
Download from url, save to path. url (str): download url path (str): download to given path
_download
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/download.py
Apache-2.0
def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info
read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
decode_image
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x
Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y
generate_scale
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info
Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image
__call__
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/preprocess.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/preprocess.py
Apache-2.0
def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map
Args: num_classes (int): number of class Returns: color_map (list): RGB color list
get_color_map_list
python
PaddlePaddle/models
modelcenter/PP-YOLOE+/APP/src/visualize.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOE+/APP/src/visualize.py
Apache-2.0
def is_url(path): """ Whether path is URL. Args: path (string): URL string or not. """ return path.startswith('http://') \ or path.startswith('https://') \ or path.startswith('paddlecv://')
Whether path is URL. Args: path (string): URL string or not.
is_url
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0
def get_model_path(path): """Get model path from WEIGHTS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, WEIGHTS_HOME, path_depth=2) return path
Get model path from WEIGHTS_HOME, if not exists, download it from url.
get_model_path
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0
def get_config_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, CONFIGS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_config_path
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0
def get_dict_path(path): """Get config path from CONFIGS_HOME, if not exists, download it from url. """ if not is_url(path): return path url = parse_url(path) path, _ = get_path(url, DICTS_HOME) return path
Get config path from CONFIGS_HOME, if not exists, download it from url.
get_dict_path
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0
def get_path(url, root_dir, md5sum=None, check_exist=True, path_depth=1): """ Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package """ # parse path after download to decompress under root_dir fullpath, dirname = map_path(url, root_dir, path_depth) if osp.exists(fullpath) and check_exist: if not osp.isfile(fullpath) or \ _check_exist_file_md5(fullpath, md5sum, url): return fullpath, True else: os.remove(fullpath) fullname = _download(url, dirname, md5sum) return fullpath, False
Download from given url to root_dir. if file or directory specified by url is exists under root_dir, return the path directly, otherwise download from url, return the path. url (str): download url root_dir (str): root dir for downloading, it should be WEIGHTS_HOME md5sum (str): md5 sum of download package
get_path
python
PaddlePaddle/models
modelcenter/PP-YOLOv2/APP/src/download.py
https://github.com/PaddlePaddle/models/blob/master/modelcenter/PP-YOLOv2/APP/src/download.py
Apache-2.0