code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
"""Main module
"""
# Standard library imports
import string
# Third party imports
import numpy as np
import justpy as jp
import pandas as pd
START_INDEX: int = 1
END_INDEX: int = 20
GRID_OPTIONS = """
{
class: 'ag-theme-alpine',
defaultColDef: {
filter: true,
sortable: false,
resizable: true,
headerClass: 'font-bold',
editable: true
},
rowSelection: 'single',
}
"""
def on_input_key(self, msg):
"""On input key event.
Update the clicked cell with the new value from the input field.
Args:
msg (object): Event data object.
"""
if self.last_cell is not None:
self.grid.options['rowData'][self.last_cell['row']
][self.last_cell['col']] = msg.value
def on_cell_clicked(self, msg):
"""On cell clicked event.
Update the cell label value with the coordinates of the cell and set
the value of the cell in the input field.
Args:
msg (object): Event data object.
"""
self.cell_label.value = msg.colId + str(msg.rowIndex)
self.input_field.value = msg.data[msg.colId]
self.input_field.last_cell = {"row": msg.rowIndex, "col": msg.colId}
self.last_row = msg.row
def on_cell_value_changed(self, msg):
"""On input key event.
Update the input field value to match the cell value.
Args:
msg (object): Event data object.
"""
self.input_field.value = msg.data[msg.colId]
def grid_test():
"""Grid test app.
"""
headings = list(string.ascii_uppercase)
index = np.arange(START_INDEX, END_INDEX)
data_frame = pd.DataFrame(index=index, columns=headings)
data_frame = data_frame.fillna('')
# data = np.array([np.arange(10)]*3).T
# css_values = """
# .ag-theme-alpine .ag-ltr .ag-cell {
# border-right: 1px solid #aaa;
# }
# .ag-theme-balham .ag-ltr .ag-cell {
# border-right: 1px solid #aaa;
# }
# """
web_page = jp.WebPage()
root_div = jp.Div(classes='q-pa-md', a=web_page)
in_root_div = jp.Div(classes='q-gutter-md', a=root_div)
cell_label = jp.Input(
a=in_root_div, style='width: 32px; margin-left: 16px', disabled=True)
input_field = jp.Input(classes=jp.Styles.input_classes,
a=in_root_div, width='32px')
input_field.on("input", on_input_key)
input_field.last_cell = None
grid = jp.AgGrid(a=web_page, options=GRID_OPTIONS)
grid.load_pandas_frame(data_frame)
grid.options.pagination = True
grid.options.paginationAutoPageSize = True
grid.cell_label = cell_label
grid.input_field = input_field
grid.on('cellClicked', on_cell_clicked)
grid.on('cellValueChanged', on_cell_value_changed)
input_field.grid = grid
return web_page
def main():
"""Main app.
"""
jp.justpy(grid_test)
if __name__ == "__main__":
main()
|
[
"justpy.WebPage",
"justpy.justpy",
"justpy.Input",
"justpy.Div",
"pandas.DataFrame",
"justpy.AgGrid",
"numpy.arange"
] |
[((1576, 1609), 'numpy.arange', 'np.arange', (['START_INDEX', 'END_INDEX'], {}), '(START_INDEX, END_INDEX)\n', (1585, 1609), True, 'import numpy as np\n'), ((1628, 1671), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'index', 'columns': 'headings'}), '(index=index, columns=headings)\n', (1640, 1671), True, 'import pandas as pd\n'), ((1985, 1997), 'justpy.WebPage', 'jp.WebPage', ([], {}), '()\n', (1995, 1997), True, 'import justpy as jp\n'), ((2014, 2051), 'justpy.Div', 'jp.Div', ([], {'classes': '"""q-pa-md"""', 'a': 'web_page'}), "(classes='q-pa-md', a=web_page)\n", (2020, 2051), True, 'import justpy as jp\n'), ((2070, 2111), 'justpy.Div', 'jp.Div', ([], {'classes': '"""q-gutter-md"""', 'a': 'root_div'}), "(classes='q-gutter-md', a=root_div)\n", (2076, 2111), True, 'import justpy as jp\n'), ((2129, 2207), 'justpy.Input', 'jp.Input', ([], {'a': 'in_root_div', 'style': '"""width: 32px; margin-left: 16px"""', 'disabled': '(True)'}), "(a=in_root_div, style='width: 32px; margin-left: 16px', disabled=True)\n", (2137, 2207), True, 'import justpy as jp\n'), ((2235, 2305), 'justpy.Input', 'jp.Input', ([], {'classes': 'jp.Styles.input_classes', 'a': 'in_root_div', 'width': '"""32px"""'}), "(classes=jp.Styles.input_classes, a=in_root_div, width='32px')\n", (2243, 2305), True, 'import justpy as jp\n'), ((2420, 2463), 'justpy.AgGrid', 'jp.AgGrid', ([], {'a': 'web_page', 'options': 'GRID_OPTIONS'}), '(a=web_page, options=GRID_OPTIONS)\n', (2429, 2463), True, 'import justpy as jp\n'), ((2845, 2865), 'justpy.justpy', 'jp.justpy', (['grid_test'], {}), '(grid_test)\n', (2854, 2865), True, 'import justpy as jp\n')]
|
import logging
import json
import glob
import pandas as pd
import multiprocessing
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV, KFold
from sklearn.model_selection import cross_val_predict
from sklearn.decomposition import IncrementalPCA
from scipy.stats import spearmanr
import config
from util import *
np.random.seed(config.RANDOM_SEED)
repo_lang = Repository_language()
def store_classification_result(model_name, language, model_classification_report, classification_results):
"""
Stores the result of the classifier
:param model_name: the classification type
:param language: programming language
:param model_classification_report: results
:param classification_results: results
"""
open('{}classification_result_raw_{}_{}.txt'.format(config.PREDICTION_RESULT_PATH, model_name, language), 'w')\
.write(model_classification_report)
open('{}classification_result_json_{}_{}.json'.format(config.PREDICTION_RESULT_PATH, model_name, language), 'w')\
.write(json.dumps(classification_results))
def data_classification_wo_cv(language, repo, data_train, label_train, data_test, label_test, random_seed=config.RANDOM_SEED, job_num=multiprocessing.cpu_count()):
"""
Trains the classifier
:param language: programming language
:param data: input data
:param label: input labels
:param random_seed: the random_seed
:param job_num: the number of cores to use
"""
# CV
inner_cv = KFold(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)
outer_cv = KFold(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)
# Hyper-parameters
tree_param = {'min_samples_leaf': config.MIN_SAMPLE_LEAVES, 'min_samples_split': config.MIN_SAMPLE_SPLIT,
'max_depth': config.TREE_MAX_DEPTH}
forest_param = {'n_estimators': config.ESTIMATOR_NUM, 'min_samples_leaf': config.MIN_SAMPLE_LEAVES,
'min_samples_split': config.MIN_SAMPLE_SPLIT}
boosting_param = {'n_estimators': config.ESTIMATOR_NUM, 'learning_rate': config.LEARNING_RATE}
# Grid search definition
grid_searches = [
GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state = random_seed),
tree_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION)
, GridSearchCV(RandomForestClassifier(class_weight='balanced', n_jobs=job_num, random_state=random_seed),
forest_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION)
, GridSearchCV(ExtraTreesClassifier(n_jobs=job_num, class_weight='balanced', random_state=random_seed),
forest_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION),
GridSearchCV(AdaBoostClassifier(base_estimator=DecisionTreeClassifier(class_weight = 'balanced',
random_state=random_seed,
max_depth=2),
algorithm='SAMME.R', random_state=random_seed),
boosting_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION)
]
# Fitting the classifiers
classification_results = {}
res = []
for model in grid_searches:
# Model training/testing
model.score_sample_weight = True
model.fit(data_train, label_train)
model_name = str(type(model.best_estimator_)).replace('<class \'', '').replace('\'>', '').split('.')[-1]
model_best_param = model.best_params_
predicted_label = model.best_estimator_.predict(data_test)
t = get_metrics(label_test, predicted_label)
t['model_name'] = model_name
t['language'] = language
t['repository'] = repo
res.append(t)
return res
def data_classification(language, data, label, random_seed=config.RANDOM_SEED, job_num=multiprocessing.cpu_count()):
"""
Trains the classifier
:param language: programming language
:param data: input data
:param label: input labels
:param random_seed: the random_seed
:param job_num: the number of cores to use
"""
# CV
inner_cv = KFold(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)
outer_cv = KFold(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)
# Hyper-parameters
tree_param = {'min_samples_leaf': config.MIN_SAMPLE_LEAVES, 'min_samples_split': config.MIN_SAMPLE_SPLIT,
'max_depth': config.TREE_MAX_DEPTH}
forest_param = {'n_estimators': config.ESTIMATOR_NUM, 'min_samples_leaf': config.MIN_SAMPLE_LEAVES,
'min_samples_split': config.MIN_SAMPLE_SPLIT}
boosting_param = {'n_estimators': config.ESTIMATOR_NUM, 'learning_rate': config.LEARNING_RATE}
# Grid search definition
grid_searches = [
GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state = random_seed),
tree_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION),
GridSearchCV(RandomForestClassifier(class_weight='balanced', n_jobs=job_num, random_state = random_seed),
forest_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION),
GridSearchCV(ExtraTreesClassifier(n_jobs=job_num, class_weight='balanced', random_state = random_seed),
forest_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION),
GridSearchCV(AdaBoostClassifier(base_estimator=DecisionTreeClassifier(class_weight = 'balanced',
random_state = random_seed,
max_depth=2),
algorithm='SAMME.R', random_state=random_seed),
boosting_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION)
]
# Fitting the classifiers
classification_results = {}
for model in grid_searches:
# Model training/testing
model.score_sample_weight = True
model.fit(data, label)
model_name = str(type(model.best_estimator_)).replace('<class \'', '').replace('\'>', '').split('.')[-1]
model_best_param = model.best_params_
predicted_label = cross_val_predict(model.best_estimator_, X=data, y=label, cv=outer_cv, n_jobs=job_num)
model_accuracy = accuracy_score(label, predicted_label)
model_confusion_matrix = confusion_matrix(label, predicted_label)
model_classification_report = classification_report(label, predicted_label)
classification_results[model_name] = {}
classification_results[model_name]['best_params'] = model_best_param
classification_results[model_name]['accuracy'] = model_accuracy
classification_results[model_name]['confusion_matrix'] = model_confusion_matrix.tolist()
classification_results[model_name]['classification_report'] = model_classification_report
print(model_classification_report)
## Save the classification result
#store_classification_result(model_name, language, model_classification_report, classification_results)
def get_best_decision_tree(data, label, random_seed=config.RANDOM_SEED, job_num=multiprocessing.cpu_count()):
"""
Trains the best decision tree
:param data: the data
:param label: the labels
:param random_seed: the random seed
:param job_num:
:return: the number of cores to use
"""
# CV
inner_cv = KFold(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)
# Train/test
tree_param = {'min_samples_leaf': config.MIN_SAMPLE_LEAVES, 'min_samples_split': config.MIN_SAMPLE_SPLIT,
'max_depth': config.TREE_MAX_DEPTH}
grid_search = GridSearchCV(DecisionTreeClassifier(class_weight='balanced', random_state=random_seed),
tree_param, cv=inner_cv, n_jobs=job_num, scoring=config.SCORING_FUNCTION)
grid_search.score_sample_weight = True
grid_search.fit(data, label)
return grid_search.best_estimator_
def get_feature_importance_by_model(model):
"""
Returns the features importance of a model
:param model: the classifier
:return: The list of feature importance
"""
return model.feature_importances_
def get_feature_set(data):
"""
Returns the feature sets separately
:param data: The input data
"""
# Data separation of feature sets
parallel_changes = data[:, 0].reshape(-1, 1)
commit_num = data[:, 1].reshape(-1, 1)
commit_density = data[:, 2].reshape(-1, 1)
file_edits = IncrementalPCA(n_components=1).fit_transform(data[:, 3:8])
line_edits = IncrementalPCA(n_components=1).fit_transform(data[:, 8:10])
dev_num = data[:, 10].reshape(-1, 1)
keywords = IncrementalPCA(n_components=1).fit_transform(data[:, 11:23])
message = IncrementalPCA(n_components=1).fit_transform(data[:, 23:27])
duration = data[:, 27].reshape(-1, 1)
feature_sets = ['prl_changes', 'commit_num', 'commit_density', 'file_edits', 'line_edits', 'dev_num',
'keywords', 'message', 'duration']
return feature_sets, parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords\
, message, duration
def save_feature_correlation(language, data, label):
"""
Store the feature correlation of the data with the label
:param language: the programming language
:param data: the data
:param label: the label
"""
feature_sets, parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message\
, duration = get_feature_set(data)
features = [parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message
, duration]
for i, feature in enumerate(features):
corr, p_value = spearmanr(feature, label)
open('{}feature_correlation_{}.txt'.format(config.PREDICTION_RESULT_PATH, language), 'a') \
.write('{}:\t\t{} \t {}\n'.format(feature_sets[i], round(corr, 2), round(p_value, 2)))
def save_feature_correlation_dict(data, label):
"""
Store the feature correlation of the data with the label
:param data: the data
:param label: the label
"""
feature_sets = ['prl_changes', 'commit_num', 'commit_density', 'file_edits', 'line_edits', 'dev_num',
'keywords', 'message', 'duration']
feature_sets, parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message\
, duration = get_feature_set(data)
features = [parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message
, duration]
correlation = {}
try:
for i, feature in enumerate(features):
corr, p_value = spearmanr(feature, label)
correlation[feature_sets[i] + '_corr'] = corr
correlation[feature_sets[i] + '_p_value'] = p_value
except:
pass
finally:
return correlation
def save_feature_importance(repo_name, data, label):
"""
Store the feature importance
:param language: the programming language
:param data: the data
:param label: the label
"""
data = data.values
feature_sets, parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message, duration \
= get_feature_set(data)
feature_data = np.concatenate((parallel_changes, commit_num, commit_density, file_edits, line_edits,
dev_num, keywords, message, duration), axis=1)
return get_feature_importance_by_model(get_best_decision_tree(feature_data, label))
def baseline_classification(language, data, label):
"""
Classify the baseline data (parallel changed files)
:param language: The programming language
:param data: The data
:param label: The labels
"""
feature_sets, parallel_changes, commit_num, commit_density, file_edits, line_edits, dev_num, keywords, message \
, duration = get_feature_set(data)
language = language + '__baseline'
data_classification(language, parallel_changes, label)
############################################
############################################
from sklearn import metrics
import autosklearn.classification
from sklearn.svm import SVC
def get_metrics(label_test, predicted_labels):
result = {}
result['roc_curve'] = metrics.roc_curve(label_test, predicted_labels)
result['confusion_matrix'] = metrics.confusion_matrix(label_test, predicted_labels)
result['classification_report'] = metrics.classification_report(label_test, predicted_labels)
result['accuracy_score'] = metrics.accuracy_score(label_test, predicted_labels)
result['roc_auc_score'] = metrics.roc_auc_score(label_test, predicted_labels)
result['precision_score_conflict'] = metrics.precision_score(label_test, predicted_labels)
result['precision_score_not_conflict'] = metrics.precision_score(label_test, predicted_labels,pos_label=0)
result['precision_score_average'] = metrics.precision_score(label_test, predicted_labels, average='weighted')
result['recall_score_conflict'] = metrics.recall_score(label_test, predicted_labels)
result['recall_score_not_conflict'] = metrics.recall_score(label_test, predicted_labels,pos_label=0)
result['recall_score_average'] = metrics.recall_score(label_test, predicted_labels, average='weighted')
result['f1_score_conflict'] = metrics.f1_score(label_test, predicted_labels)
result['f1_score_not_conflict'] = metrics.f1_score(label_test, predicted_labels,pos_label=0)
result['f1_score_average'] = metrics.f1_score(label_test, predicted_labels, average='weighted')
result['conflict_rate'] = len([i for i in label_test if i == 1]) / len(label_test)
return result
def get_decision_tree_result(data_train, label_train, data_test, label_test):
clf = DecisionTreeClassifier(class_weight='balanced').fit(data_train, label_train)
predicted_labels = clf.predict(data_test)
return get_metrics(label_test, predicted_labels)
def get_random_forest_result(data_train, label_train, data_test, label_test):
clf = RandomForestClassifier(class_weight='balanced').fit(data_train, label_train)
predicted_labels = clf.predict(data_test)
return get_metrics(label_test, predicted_labels)
def get_svm_result(data_train, label_train, data_test, label_test):
clf = SVC(C=1.0, kernel='linear', class_weight='balanced').fit(data_train, label_train)
predicted_labels = clf.predict(data_test)
return get_metrics(label_test, predicted_labels)
def get_auto_scikit_result(data_train, label_train, data_test, label_test):
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task= 60 * 60,
per_run_time_limit=300,
tmp_folder='/tmp/autosklearn_sequential_example_tmp1111',
output_folder='/tmp/autosklearn_sequential_example_out1111',
)
automl.fit(data_train, label_train, metric=autosklearn.metrics.roc_auc)
predicted_labels = automl.predict(data_test)
result = get_metrics(label_test, predicted_labels)
result['show_models'] = automl.show_models()
result['sprint_statistics'] = automl.sprint_statistics()
return result
if __name__ == "__main__":
# Logging
logging.basicConfig(level=logging.INFO,
format='%(levelname)s in %(threadName)s - %(asctime)s by %(name)-12s : %(message)s',
datefmt='%y-%m-%d %H:%M:%S')
logging.info('Train/test of merge conflict prediction')
# Data classification
data_files = glob.glob(config.PREDICTION_CSV_PATH + 'data_*')
label_files = glob.glob(config.PREDICTION_CSV_PATH + 'label_*')
repos_set = [files.split('/')[-1].split('_')[3].replace('.csv', '') for files in data_files]
classification_result = []
feature_importance = []
languages = []
corr = []
for ind, data_path in enumerate(data_files):
data_tmp = pd.read_csv(data_path).sort_values(by=['merge_commit_date'])
label_tmp = pd.read_csv(data_path.replace('data_prediction', 'label_prediction')).sort_values(by=['merge_commit_date'])
data_tmp = data_tmp.drop('merge_commit_date', axis=1)
label_tmp = label_tmp.drop('merge_commit_date', axis=1)
# Correlation
try:
tmp_corr = save_feature_correlation_dict(data_tmp.to_numpy(), label_tmp.to_numpy())
if len(tmp_corr) > 0:
tmp_corr['langugae'] = repo_lang.get_lang(repos_set[ind].lower())
tmp_corr['repository'] = repos_set[ind]
corr.append(tmp_corr)
except:
pass
continue
train_ind = int(data_tmp.shape[0] * config.TRAIN_RATE)
data_train = data_tmp.iloc[0:train_ind, :]
data_test = data_tmp.iloc[train_ind:-1, :]
label_train = label_tmp.iloc[0:train_ind, :]['is_conflict'].tolist()
label_test = label_tmp.iloc[train_ind:-1, :]['is_conflict'].tolist()
if len(label_test) != data_test.shape[0]:
print('Inconsistent data: {}'.format(repos_set[ind]))
continue
if data_test.shape[0] < 50:
print('Not enough merge scenarios: {}'.format(repos_set[ind]))
continue
if len(set(label_test)) != 2 or len(set(label_train)) != 2:
print('One class is missed: {}'.format(repos_set[ind]))
continue
if len([i for i in label_test if i == 1]) < 10:
print('Nor enough conflicting merge in the test batch for evaluation: {}'.format(repos_set[ind]))
continue
# k = k + data_tmp.shape[0]
try:
res = data_classification_wo_cv(repo_lang.get_lang(repos_set[ind].lower()), repos_set[ind] ,data_train, label_train, data_test, label_test)
classification_result = classification_result + res
feature_importance.append(save_feature_importance(repos_set[ind], data_train, label_train))
languages.append(repo_lang.get_lang(repos_set[ind].lower()))
except Exception as e:
print('Error - {}'.format(e))
continue
corr_df = pd.DataFrame(corr)
corr_df.to_csv(f'corr_{config.RANDOM_SEED}.csv')
exit()
# Feature importance
feature_importance = pd.DataFrame(feature_importance, columns=['prl_changes', 'commit_num', 'commit_density', 'file_edits', 'line_edits', 'dev_num',
'keywords', 'message', 'duration'])
feature_importance['language'] = pd.Series(languages)
feature_importance['repository'] = pd.Series(repos_set)
feature_importance.dropna()
feature_importance.to_csv(f'feature_importance_{config.RANDOM_SEED}.csv')
feature_importance_summery = feature_importance.drop('repository', axis=1).groupby('language').agg('median')
feature_importance_summery.to_csv(f'feature_importance_summery_{config.RANDOM_SEED}.csv')
# Classification result
classification_result_df = pd.DataFrame(classification_result)
classification_result_df.to_csv(f'res_{config.RANDOM_SEED}.csv')
|
[
"sklearn.ensemble.ExtraTreesClassifier",
"pandas.read_csv",
"sklearn.metrics.classification_report",
"multiprocessing.cpu_count",
"sklearn.metrics.roc_auc_score",
"sklearn.metrics.precision_score",
"sklearn.metrics.recall_score",
"sklearn.metrics.roc_curve",
"sklearn.model_selection.KFold",
"logging.info",
"json.dumps",
"sklearn.tree.DecisionTreeClassifier",
"numpy.random.seed",
"numpy.concatenate",
"pandas.DataFrame",
"scipy.stats.spearmanr",
"sklearn.decomposition.IncrementalPCA",
"glob.glob",
"sklearn.metrics.confusion_matrix",
"sklearn.ensemble.RandomForestClassifier",
"sklearn.model_selection.cross_val_predict",
"sklearn.metrics.accuracy_score",
"sklearn.svm.SVC",
"logging.basicConfig",
"pandas.Series",
"sklearn.metrics.f1_score"
] |
[((666, 700), 'numpy.random.seed', 'np.random.seed', (['config.RANDOM_SEED'], {}), '(config.RANDOM_SEED)\n', (680, 700), True, 'import numpy as np\n'), ((1547, 1574), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1572, 1574), False, 'import multiprocessing\n'), ((1832, 1903), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'config.FOLD_NUM', 'shuffle': '(True)', 'random_state': 'random_seed'}), '(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)\n', (1837, 1903), False, 'from sklearn.model_selection import GridSearchCV, KFold\n'), ((1919, 1990), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'config.FOLD_NUM', 'shuffle': '(True)', 'random_state': 'random_seed'}), '(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)\n', (1924, 1990), False, 'from sklearn.model_selection import GridSearchCV, KFold\n'), ((4362, 4389), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (4387, 4389), False, 'import multiprocessing\n'), ((4647, 4718), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'config.FOLD_NUM', 'shuffle': '(True)', 'random_state': 'random_seed'}), '(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)\n', (4652, 4718), False, 'from sklearn.model_selection import GridSearchCV, KFold\n'), ((4734, 4805), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'config.FOLD_NUM', 'shuffle': '(True)', 'random_state': 'random_seed'}), '(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)\n', (4739, 4805), False, 'from sklearn.model_selection import GridSearchCV, KFold\n'), ((7800, 7827), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (7825, 7827), False, 'import multiprocessing\n'), ((8059, 8130), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'config.FOLD_NUM', 'shuffle': '(True)', 'random_state': 'random_seed'}), '(n_splits=config.FOLD_NUM, shuffle=True, random_state=random_seed)\n', (8064, 8130), False, 'from sklearn.model_selection import GridSearchCV, KFold\n'), ((12024, 12160), 'numpy.concatenate', 'np.concatenate', (['(parallel_changes, commit_num, commit_density, file_edits, line_edits,\n dev_num, keywords, message, duration)'], {'axis': '(1)'}), '((parallel_changes, commit_num, commit_density, file_edits,\n line_edits, dev_num, keywords, message, duration), axis=1)\n', (12038, 12160), True, 'import numpy as np\n'), ((13043, 13090), 'sklearn.metrics.roc_curve', 'metrics.roc_curve', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13060, 13090), False, 'from sklearn import metrics\n'), ((13124, 13178), 'sklearn.metrics.confusion_matrix', 'metrics.confusion_matrix', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13148, 13178), False, 'from sklearn import metrics\n'), ((13217, 13276), 'sklearn.metrics.classification_report', 'metrics.classification_report', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13246, 13276), False, 'from sklearn import metrics\n'), ((13309, 13361), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13331, 13361), False, 'from sklearn import metrics\n'), ((13392, 13443), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13413, 13443), False, 'from sklearn import metrics\n'), ((13486, 13539), 'sklearn.metrics.precision_score', 'metrics.precision_score', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13509, 13539), False, 'from sklearn import metrics\n'), ((13585, 13651), 'sklearn.metrics.precision_score', 'metrics.precision_score', (['label_test', 'predicted_labels'], {'pos_label': '(0)'}), '(label_test, predicted_labels, pos_label=0)\n', (13608, 13651), False, 'from sklearn import metrics\n'), ((13691, 13764), 'sklearn.metrics.precision_score', 'metrics.precision_score', (['label_test', 'predicted_labels'], {'average': '"""weighted"""'}), "(label_test, predicted_labels, average='weighted')\n", (13714, 13764), False, 'from sklearn import metrics\n'), ((13804, 13854), 'sklearn.metrics.recall_score', 'metrics.recall_score', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (13824, 13854), False, 'from sklearn import metrics\n'), ((13897, 13960), 'sklearn.metrics.recall_score', 'metrics.recall_score', (['label_test', 'predicted_labels'], {'pos_label': '(0)'}), '(label_test, predicted_labels, pos_label=0)\n', (13917, 13960), False, 'from sklearn import metrics\n'), ((13997, 14067), 'sklearn.metrics.recall_score', 'metrics.recall_score', (['label_test', 'predicted_labels'], {'average': '"""weighted"""'}), "(label_test, predicted_labels, average='weighted')\n", (14017, 14067), False, 'from sklearn import metrics\n'), ((14103, 14149), 'sklearn.metrics.f1_score', 'metrics.f1_score', (['label_test', 'predicted_labels'], {}), '(label_test, predicted_labels)\n', (14119, 14149), False, 'from sklearn import metrics\n'), ((14188, 14247), 'sklearn.metrics.f1_score', 'metrics.f1_score', (['label_test', 'predicted_labels'], {'pos_label': '(0)'}), '(label_test, predicted_labels, pos_label=0)\n', (14204, 14247), False, 'from sklearn import metrics\n'), ((14280, 14346), 'sklearn.metrics.f1_score', 'metrics.f1_score', (['label_test', 'predicted_labels'], {'average': '"""weighted"""'}), "(label_test, predicted_labels, average='weighted')\n", (14296, 14346), False, 'from sklearn import metrics\n'), ((15967, 16131), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(levelname)s in %(threadName)s - %(asctime)s by %(name)-12s : %(message)s"""', 'datefmt': '"""%y-%m-%d %H:%M:%S"""'}), "(level=logging.INFO, format=\n '%(levelname)s in %(threadName)s - %(asctime)s by %(name)-12s : %(message)s'\n , datefmt='%y-%m-%d %H:%M:%S')\n", (15986, 16131), False, 'import logging\n'), ((16174, 16229), 'logging.info', 'logging.info', (['"""Train/test of merge conflict prediction"""'], {}), "('Train/test of merge conflict prediction')\n", (16186, 16229), False, 'import logging\n'), ((16275, 16323), 'glob.glob', 'glob.glob', (["(config.PREDICTION_CSV_PATH + 'data_*')"], {}), "(config.PREDICTION_CSV_PATH + 'data_*')\n", (16284, 16323), False, 'import glob\n'), ((16342, 16391), 'glob.glob', 'glob.glob', (["(config.PREDICTION_CSV_PATH + 'label_*')"], {}), "(config.PREDICTION_CSV_PATH + 'label_*')\n", (16351, 16391), False, 'import glob\n'), ((18853, 18871), 'pandas.DataFrame', 'pd.DataFrame', (['corr'], {}), '(corr)\n', (18865, 18871), True, 'import pandas as pd\n'), ((18987, 19158), 'pandas.DataFrame', 'pd.DataFrame', (['feature_importance'], {'columns': "['prl_changes', 'commit_num', 'commit_density', 'file_edits', 'line_edits',\n 'dev_num', 'keywords', 'message', 'duration']"}), "(feature_importance, columns=['prl_changes', 'commit_num',\n 'commit_density', 'file_edits', 'line_edits', 'dev_num', 'keywords',\n 'message', 'duration'])\n", (18999, 19158), True, 'import pandas as pd\n'), ((19208, 19228), 'pandas.Series', 'pd.Series', (['languages'], {}), '(languages)\n', (19217, 19228), True, 'import pandas as pd\n'), ((19268, 19288), 'pandas.Series', 'pd.Series', (['repos_set'], {}), '(repos_set)\n', (19277, 19288), True, 'import pandas as pd\n'), ((19666, 19701), 'pandas.DataFrame', 'pd.DataFrame', (['classification_result'], {}), '(classification_result)\n', (19678, 19701), True, 'import pandas as pd\n'), ((1375, 1409), 'json.dumps', 'json.dumps', (['classification_results'], {}), '(classification_results)\n', (1385, 1409), False, 'import json\n'), ((6818, 6908), 'sklearn.model_selection.cross_val_predict', 'cross_val_predict', (['model.best_estimator_'], {'X': 'data', 'y': 'label', 'cv': 'outer_cv', 'n_jobs': 'job_num'}), '(model.best_estimator_, X=data, y=label, cv=outer_cv,\n n_jobs=job_num)\n', (6835, 6908), False, 'from sklearn.model_selection import cross_val_predict\n'), ((6930, 6968), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['label', 'predicted_label'], {}), '(label, predicted_label)\n', (6944, 6968), False, 'from sklearn.metrics import accuracy_score\n'), ((7002, 7042), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['label', 'predicted_label'], {}), '(label, predicted_label)\n', (7018, 7042), False, 'from sklearn.metrics import confusion_matrix\n'), ((7081, 7126), 'sklearn.metrics.classification_report', 'classification_report', (['label', 'predicted_label'], {}), '(label, predicted_label)\n', (7102, 7126), False, 'from sklearn.metrics import classification_report\n'), ((8344, 8417), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""', 'random_state': 'random_seed'}), "(class_weight='balanced', random_state=random_seed)\n", (8366, 8417), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((10440, 10465), 'scipy.stats.spearmanr', 'spearmanr', (['feature', 'label'], {}), '(feature, label)\n', (10449, 10465), False, 'from scipy.stats import spearmanr\n'), ((2521, 2594), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""', 'random_state': 'random_seed'}), "(class_weight='balanced', random_state=random_seed)\n", (2543, 2594), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2713, 2806), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'class_weight': '"""balanced"""', 'n_jobs': 'job_num', 'random_state': 'random_seed'}), "(class_weight='balanced', n_jobs=job_num,\n random_state=random_seed)\n", (2735, 2806), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((2924, 3016), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'n_jobs': 'job_num', 'class_weight': '"""balanced"""', 'random_state': 'random_seed'}), "(n_jobs=job_num, class_weight='balanced', random_state=\n random_seed)\n", (2944, 3016), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((5336, 5409), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""', 'random_state': 'random_seed'}), "(class_weight='balanced', random_state=random_seed)\n", (5358, 5409), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((5527, 5620), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'class_weight': '"""balanced"""', 'n_jobs': 'job_num', 'random_state': 'random_seed'}), "(class_weight='balanced', n_jobs=job_num,\n random_state=random_seed)\n", (5549, 5620), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((5739, 5831), 'sklearn.ensemble.ExtraTreesClassifier', 'ExtraTreesClassifier', ([], {'n_jobs': 'job_num', 'class_weight': '"""balanced"""', 'random_state': 'random_seed'}), "(n_jobs=job_num, class_weight='balanced', random_state=\n random_seed)\n", (5759, 5831), False, 'from sklearn.ensemble import ExtraTreesClassifier\n'), ((9174, 9204), 'sklearn.decomposition.IncrementalPCA', 'IncrementalPCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (9188, 9204), False, 'from sklearn.decomposition import IncrementalPCA\n'), ((9250, 9280), 'sklearn.decomposition.IncrementalPCA', 'IncrementalPCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (9264, 9280), False, 'from sklearn.decomposition import IncrementalPCA\n'), ((9366, 9396), 'sklearn.decomposition.IncrementalPCA', 'IncrementalPCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (9380, 9396), False, 'from sklearn.decomposition import IncrementalPCA\n'), ((9441, 9471), 'sklearn.decomposition.IncrementalPCA', 'IncrementalPCA', ([], {'n_components': '(1)'}), '(n_components=1)\n', (9455, 9471), False, 'from sklearn.decomposition import IncrementalPCA\n'), ((11405, 11430), 'scipy.stats.spearmanr', 'spearmanr', (['feature', 'label'], {}), '(feature, label)\n', (11414, 11430), False, 'from scipy.stats import spearmanr\n'), ((14546, 14593), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""'}), "(class_weight='balanced')\n", (14568, 14593), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((14813, 14860), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'class_weight': '"""balanced"""'}), "(class_weight='balanced')\n", (14835, 14860), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((15069, 15121), 'sklearn.svm.SVC', 'SVC', ([], {'C': '(1.0)', 'kernel': '"""linear"""', 'class_weight': '"""balanced"""'}), "(C=1.0, kernel='linear', class_weight='balanced')\n", (15072, 15121), False, 'from sklearn.svm import SVC\n'), ((16656, 16678), 'pandas.read_csv', 'pd.read_csv', (['data_path'], {}), '(data_path)\n', (16667, 16678), True, 'import pandas as pd\n'), ((3166, 3256), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""', 'random_state': 'random_seed', 'max_depth': '(2)'}), "(class_weight='balanced', random_state=random_seed,\n max_depth=2)\n", (3188, 3256), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((5983, 6073), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {'class_weight': '"""balanced"""', 'random_state': 'random_seed', 'max_depth': '(2)'}), "(class_weight='balanced', random_state=random_seed,\n max_depth=2)\n", (6005, 6073), False, 'from sklearn.tree import DecisionTreeClassifier\n')]
|
import numpy as np
import tensorflow as tf
from tensorflow.contrib import gan as tfgan
from GeneralTools.graph_funcs.my_session import MySession
from GeneralTools.math_funcs.graph_func_support import mean_cov_np, trace_sqrt_product_np
from GeneralTools.misc_fun import FLAGS
class GenerativeModelMetric(object):
def __init__(self, image_format=None, model='v1', model_path=None):
""" This class defines several metrics using pre-trained classifier inception v1.
:param image_format:
"""
if model_path is None:
self.model = model
if model == 'v1':
self.inception_graph_def = tfgan.eval.get_graph_def_from_disk(FLAGS.INCEPTION_V1)
elif model == 'v3':
self.inception_graph_def = tfgan.eval.get_graph_def_from_disk(FLAGS.INCEPTION_V3)
elif model in {'swd', 'ms_ssim', 'ssim'}:
pass
else:
raise NotImplementedError('Model {} not implemented.'.format(model))
else:
self.model = 'custom'
self.inception_graph_def = tfgan.eval.get_graph_def_from_disk(model_path)
if image_format is None:
self.image_format = FLAGS.IMAGE_FORMAT
else:
self.image_format = image_format
# preserved for inception v3
self._pool3_v3_ = None
self._logits_v3_ = None
def inception_v1_one_batch(self, image, output_tensor=None):
""" This function runs the inception v1 model on images and give logits output.
Note: if other layers of inception model is needed, change the output_tensor option in tfgan.eval.run_inception
:param image:
:param output_tensor:
:return:
"""
if output_tensor is None:
output_tensor = ['logits:0', 'pool_3:0']
image_size = tfgan.eval.INCEPTION_DEFAULT_IMAGE_SIZE
if self.image_format in {'channels_first', 'NCHW'}:
image = tf.transpose(image, perm=(0, 2, 3, 1))
if image.get_shape().as_list()[1] != image_size:
image = tf.compat.v1.image.resize_bilinear(image, [image_size, image_size])
# inception score uses the logits:0 while FID uses pool_3:0.
return tfgan.eval.run_inception(
image, graph_def=self.inception_graph_def, input_tensor='Mul:0', output_tensor=output_tensor)
def inception_v1(self, images):
""" This function runs the inception v1 model on images and give logits output.
Note: if other layers of inception model is needed, change the output_tensor option in tfgan.eval.run_inception.
Note: for large inputs, e.g. [10000, 64, 64, 3], it is better to run iterations containing this function.
:param images:
:return:
"""
num_images = images.get_shape().as_list()[0]
if num_images > 2500:
raise MemoryError('The input is too big to possibly fit into memory. Consider using multiple runs.')
if num_images >= 400:
print(num_images)
# Note: need to validate the code below
# somehow tfgan.eval.classifier_score does not work properly when splitting the datasets.
# The following code is inspired by:
# https://github.com/tensorflow/tensorflow/blob/r1.7/tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py
if num_images % 100 == 0:
generated_images_list = tf.split(images, num_or_size_splits=num_images // 100, axis=0)
logits, pool3 = tf.map_fn(
fn=self.inception_v1_one_batch,
elems=tf.stack(generated_images_list),
dtype=(tf.float32, tf.float32),
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
logits = tf.concat(tf.unstack(logits), 0)
pool3 = tf.concat(tf.unstack(pool3), 0)
else:
generated_images_list = tf.split(
images, num_or_size_splits=[100] * (num_images // 100) + [num_images % 100], axis=0)
# tf.stack requires the dimension of tensor in list to be the same
logits, pool3 = tf.map_fn(
fn=self.inception_v1_one_batch,
elems=tf.stack(generated_images_list[0:-1]),
dtype=(tf.float32, tf.float32),
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
logits_last, pool3_last = self.inception_v1_one_batch(generated_images_list[-1])
logits = tf.concat(tf.unstack(logits) + [logits_last], 0)
pool3 = tf.concat(tf.unstack(pool3) + [pool3_last], 0)
else:
logits, pool3 = self.inception_v1_one_batch(images)
return logits, pool3
@staticmethod
def inception_score_from_logits(logits):
""" This function estimates the inception score from logits output by inception_v1
:param logits:
:return:
"""
if type(logits) == np.ndarray:
logits = tf.constant(logits, dtype=tf.float32)
return tfgan.eval.classifier_score_from_logits(logits)
@staticmethod
def fid_from_pool3(x_pool3, y_pool3):
""" This function estimates Fréchet inception distance from pool3 of inception model
:param x_pool3:
:param y_pool3:
:return:
"""
if type(x_pool3) == np.ndarray:
x_pool3 = tf.constant(x_pool3, dtype=tf.float32)
if type(y_pool3) == np.ndarray:
y_pool3 = tf.constant(y_pool3, dtype=tf.float32)
return tfgan.eval.frechet_classifier_distance_from_activations(x_pool3, y_pool3)
@ staticmethod
def my_fid_from_pool3(x_pool3_np, y_pool3_np):
""" This function estimates Fréchet inception distance from pool3 of inception model.
Different from fid_from_pool3, here pool3_np could be a list [mean, cov]
:param x_pool3_np:
:param y_pool3_np:
:return:
"""
# from scipy.linalg import sqrtm
x_mean, x_cov = x_pool3_np if isinstance(x_pool3_np, (list, tuple)) else mean_cov_np(x_pool3_np)
y_mean, y_cov = y_pool3_np if isinstance(y_pool3_np, (list, tuple)) else mean_cov_np(y_pool3_np)
fid = np.sum((x_mean-y_mean) ** 2)+np.trace(x_cov)+np.trace(y_cov)-2.0*trace_sqrt_product_np(x_cov, y_cov)
return fid
# return np.sum((x_mean - y_mean) ** 2) + np.trace(x_cov + y_cov - 2.0 * sqrtm(np.dot(x_cov, y_cov)))
def inception_score_and_fid_v1(self, x_batch, y_batch, num_batch=10, ckpt_folder=None, ckpt_file=None):
""" This function calculates inception scores and FID based on inception v1.
Note: batch_size * num_batch needs to be larger than 2048, otherwise the convariance matrix will be
ill-conditioned.
According to TensorFlow v1.7 (below), this is actually inception v3 model.
Somehow the downloaded file says it's v1.
code link: https://github.com/tensorflow/tensorflow/blob/r1.7/tensorflow/contrib \
/gan/python/eval/python/classifier_metrics_impl.py
Steps:
1, the pool3 and logits are calculated for x_batch and y_batch with sess
2, the pool3 and logits are passed to corresponding metrics
:param ckpt_file:
:param x_batch: tensor, one batch of x in range [-1, 1]
:param y_batch: tensor, one batch of y in range [-1, 1]
:param num_batch:
:param ckpt_folder: check point folder
:param ckpt_file: in case an older ckpt file is needed, provide it here, e.g. 'cifar.ckpt-6284'
:return:
"""
assert self.model == 'v1', 'GenerativeModelMetric is not initialized with model="v1".'
assert ckpt_folder is not None, 'ckpt_folder must be provided.'
x_logits, x_pool3 = self.inception_v1(x_batch)
y_logits, y_pool3 = self.inception_v1(y_batch)
with MySession(load_ckpt=True) as sess:
inception_outputs = sess.run_m_times(
[x_logits, y_logits, x_pool3, y_pool3],
ckpt_folder=ckpt_folder, ckpt_file=ckpt_file,
max_iter=num_batch, trace=True)
# get logits and pool3
x_logits_np = np.concatenate([inc[0] for inc in inception_outputs], axis=0)
y_logits_np = np.concatenate([inc[1] for inc in inception_outputs], axis=0)
x_pool3_np = np.concatenate([inc[2] for inc in inception_outputs], axis=0)
y_pool3_np = np.concatenate([inc[3] for inc in inception_outputs], axis=0)
FLAGS.print('logits calculated. Shape = {}.'.format(x_logits_np.shape))
FLAGS.print('pool3 calculated. Shape = {}.'.format(x_pool3_np.shape))
# calculate scores
inc_x = self.inception_score_from_logits(x_logits_np)
inc_y = self.inception_score_from_logits(y_logits_np)
xp3_1, xp3_2 = np.split(x_pool3_np, indices_or_sections=2, axis=0)
fid_xx = self.fid_from_pool3(xp3_1, xp3_2)
fid_xy = self.fid_from_pool3(x_pool3_np, y_pool3_np)
with MySession() as sess:
scores = sess.run_once([inc_x, inc_y, fid_xx, fid_xy])
return scores
def sliced_wasserstein_distance(self, x_batch, y_batch, num_batch=128, ckpt_folder=None, ckpt_file=None):
""" This function calculates the sliced wasserstein distance between real and fake images.
This function does not work as expected, swd gives nan
:param x_batch:
:param y_batch:
:param num_batch:
:param ckpt_folder:
:param ckpt_file:
:return:
"""
with MySession(load_ckpt=True) as sess:
batches = sess.run_m_times(
[x_batch, y_batch],
ckpt_folder=ckpt_folder, ckpt_file=ckpt_file,
max_iter=num_batch, trace=True)
# get x_images and y_images
x_images = (tf.constant(np.concatenate([batch[0] for batch in batches], axis=0)) + 1.0) * 128.5
y_images = (tf.constant(np.concatenate([batch[1] for batch in batches], axis=0)) + 1.0) * 128.5
if self.image_format in {'channels_first', 'NCHW'}:
x_images = tf.transpose(x_images, perm=(0, 2, 3, 1))
y_images = tf.transpose(y_images, perm=(0, 2, 3, 1))
print('images obtained, shape: {}'.format(x_images.shape))
# sliced_wasserstein_distance returns a list of tuples (distance_real, distance_fake)
# for each level of the Laplacian pyramid from the highest resolution to the lowest
swd = tfgan.eval.sliced_wasserstein_distance(
x_images, y_images, patches_per_image=64, random_sampling_count=4, use_svd=True)
with MySession() as sess:
swd = sess.run_once(swd)
return swd
def ms_ssim(self, x_batch, y_batch, num_batch=128, ckpt_folder=None, ckpt_file=None, image_size=256):
""" This function calculates the multiscale structural similarity between a pair of images.
The image is downscaled four times; at each scale, a 11x11 filter is applied to extract patches.
USE WITH CAUTION !!!
1. This code was lost once and redone. Need to test on real datasets to verify it.
2. This code can be improved to calculate pairwise ms-ssim using tf.image.ssim. tf.image.ssim_multicale is just
tf.image.ssim with pool downsampling.
:param x_batch:
:param y_batch:
:param num_batch:
:param ckpt_folder:
:param ckpt_file:
:param image_size: ssim is defined on images of size at least 176
:return:
"""
# get x_images and y_images
x_images = (x_batch + 1.0) * 128.5
y_images = (y_batch + 1.0) * 128.5
if self.image_format in {'channels_first', 'NCHW'}:
x_images = tf.transpose(x_images, perm=(0, 2, 3, 1))
y_images = tf.transpose(y_images, perm=(0, 2, 3, 1))
if x_images.get_shape().as_list()[1] != 256:
x_images = tf.compat.v1.image.resize_bilinear(x_images, [image_size, image_size])
y_images = tf.compat.v1.image.resize_bilinear(y_images, [image_size, image_size])
scores = tf.image.ssim_multiscale(x_images, y_images, max_val=255) # scores in range [0, 1]
with MySession(load_ckpt=True) as sess:
scores = sess.run_m_times(
scores,
ckpt_folder=ckpt_folder, ckpt_file=ckpt_file,
max_iter=num_batch, trace=True)
ssim_score = np.mean(np.concatenate(scores, axis=0), axis=0)
return ssim_score
|
[
"tensorflow.unstack",
"numpy.trace",
"tensorflow.transpose",
"tensorflow.contrib.gan.eval.run_inception",
"tensorflow.split",
"tensorflow.contrib.gan.eval.get_graph_def_from_disk",
"tensorflow.contrib.gan.eval.sliced_wasserstein_distance",
"tensorflow.image.ssim_multiscale",
"numpy.concatenate",
"GeneralTools.graph_funcs.my_session.MySession",
"tensorflow.stack",
"GeneralTools.math_funcs.graph_func_support.trace_sqrt_product_np",
"tensorflow.compat.v1.image.resize_bilinear",
"tensorflow.contrib.gan.eval.frechet_classifier_distance_from_activations",
"tensorflow.contrib.gan.eval.classifier_score_from_logits",
"numpy.sum",
"numpy.split",
"tensorflow.constant",
"GeneralTools.math_funcs.graph_func_support.mean_cov_np"
] |
[((2250, 2372), 'tensorflow.contrib.gan.eval.run_inception', 'tfgan.eval.run_inception', (['image'], {'graph_def': 'self.inception_graph_def', 'input_tensor': '"""Mul:0"""', 'output_tensor': 'output_tensor'}), "(image, graph_def=self.inception_graph_def,\n input_tensor='Mul:0', output_tensor=output_tensor)\n", (2274, 2372), True, 'from tensorflow.contrib import gan as tfgan\n'), ((5310, 5357), 'tensorflow.contrib.gan.eval.classifier_score_from_logits', 'tfgan.eval.classifier_score_from_logits', (['logits'], {}), '(logits)\n', (5349, 5357), True, 'from tensorflow.contrib import gan as tfgan\n'), ((5807, 5880), 'tensorflow.contrib.gan.eval.frechet_classifier_distance_from_activations', 'tfgan.eval.frechet_classifier_distance_from_activations', (['x_pool3', 'y_pool3'], {}), '(x_pool3, y_pool3)\n', (5862, 5880), True, 'from tensorflow.contrib import gan as tfgan\n'), ((8440, 8501), 'numpy.concatenate', 'np.concatenate', (['[inc[0] for inc in inception_outputs]'], {'axis': '(0)'}), '([inc[0] for inc in inception_outputs], axis=0)\n', (8454, 8501), True, 'import numpy as np\n'), ((8524, 8585), 'numpy.concatenate', 'np.concatenate', (['[inc[1] for inc in inception_outputs]'], {'axis': '(0)'}), '([inc[1] for inc in inception_outputs], axis=0)\n', (8538, 8585), True, 'import numpy as np\n'), ((8607, 8668), 'numpy.concatenate', 'np.concatenate', (['[inc[2] for inc in inception_outputs]'], {'axis': '(0)'}), '([inc[2] for inc in inception_outputs], axis=0)\n', (8621, 8668), True, 'import numpy as np\n'), ((8690, 8751), 'numpy.concatenate', 'np.concatenate', (['[inc[3] for inc in inception_outputs]'], {'axis': '(0)'}), '([inc[3] for inc in inception_outputs], axis=0)\n', (8704, 8751), True, 'import numpy as np\n'), ((9084, 9135), 'numpy.split', 'np.split', (['x_pool3_np'], {'indices_or_sections': '(2)', 'axis': '(0)'}), '(x_pool3_np, indices_or_sections=2, axis=0)\n', (9092, 9135), True, 'import numpy as np\n'), ((10744, 10867), 'tensorflow.contrib.gan.eval.sliced_wasserstein_distance', 'tfgan.eval.sliced_wasserstein_distance', (['x_images', 'y_images'], {'patches_per_image': '(64)', 'random_sampling_count': '(4)', 'use_svd': '(True)'}), '(x_images, y_images,\n patches_per_image=64, random_sampling_count=4, use_svd=True)\n', (10782, 10867), True, 'from tensorflow.contrib import gan as tfgan\n'), ((12372, 12429), 'tensorflow.image.ssim_multiscale', 'tf.image.ssim_multiscale', (['x_images', 'y_images'], {'max_val': '(255)'}), '(x_images, y_images, max_val=255)\n', (12396, 12429), True, 'import tensorflow as tf\n'), ((1104, 1150), 'tensorflow.contrib.gan.eval.get_graph_def_from_disk', 'tfgan.eval.get_graph_def_from_disk', (['model_path'], {}), '(model_path)\n', (1138, 1150), True, 'from tensorflow.contrib import gan as tfgan\n'), ((1981, 2019), 'tensorflow.transpose', 'tf.transpose', (['image'], {'perm': '(0, 2, 3, 1)'}), '(image, perm=(0, 2, 3, 1))\n', (1993, 2019), True, 'import tensorflow as tf\n'), ((2097, 2164), 'tensorflow.compat.v1.image.resize_bilinear', 'tf.compat.v1.image.resize_bilinear', (['image', '[image_size, image_size]'], {}), '(image, [image_size, image_size])\n', (2131, 2164), True, 'import tensorflow as tf\n'), ((5257, 5294), 'tensorflow.constant', 'tf.constant', (['logits'], {'dtype': 'tf.float32'}), '(logits, dtype=tf.float32)\n', (5268, 5294), True, 'import tensorflow as tf\n'), ((5652, 5690), 'tensorflow.constant', 'tf.constant', (['x_pool3'], {'dtype': 'tf.float32'}), '(x_pool3, dtype=tf.float32)\n', (5663, 5690), True, 'import tensorflow as tf\n'), ((5753, 5791), 'tensorflow.constant', 'tf.constant', (['y_pool3'], {'dtype': 'tf.float32'}), '(y_pool3, dtype=tf.float32)\n', (5764, 5791), True, 'import tensorflow as tf\n'), ((6333, 6356), 'GeneralTools.math_funcs.graph_func_support.mean_cov_np', 'mean_cov_np', (['x_pool3_np'], {}), '(x_pool3_np)\n', (6344, 6356), False, 'from GeneralTools.math_funcs.graph_func_support import mean_cov_np, trace_sqrt_product_np\n'), ((6438, 6461), 'GeneralTools.math_funcs.graph_func_support.mean_cov_np', 'mean_cov_np', (['y_pool3_np'], {}), '(y_pool3_np)\n', (6449, 6461), False, 'from GeneralTools.math_funcs.graph_func_support import mean_cov_np, trace_sqrt_product_np\n'), ((8135, 8160), 'GeneralTools.graph_funcs.my_session.MySession', 'MySession', ([], {'load_ckpt': '(True)'}), '(load_ckpt=True)\n', (8144, 8160), False, 'from GeneralTools.graph_funcs.my_session import MySession\n'), ((9262, 9273), 'GeneralTools.graph_funcs.my_session.MySession', 'MySession', ([], {}), '()\n', (9271, 9273), False, 'from GeneralTools.graph_funcs.my_session import MySession\n'), ((9819, 9844), 'GeneralTools.graph_funcs.my_session.MySession', 'MySession', ([], {'load_ckpt': '(True)'}), '(load_ckpt=True)\n', (9828, 9844), False, 'from GeneralTools.graph_funcs.my_session import MySession\n'), ((10369, 10410), 'tensorflow.transpose', 'tf.transpose', (['x_images'], {'perm': '(0, 2, 3, 1)'}), '(x_images, perm=(0, 2, 3, 1))\n', (10381, 10410), True, 'import tensorflow as tf\n'), ((10434, 10475), 'tensorflow.transpose', 'tf.transpose', (['y_images'], {'perm': '(0, 2, 3, 1)'}), '(y_images, perm=(0, 2, 3, 1))\n', (10446, 10475), True, 'import tensorflow as tf\n'), ((10890, 10901), 'GeneralTools.graph_funcs.my_session.MySession', 'MySession', ([], {}), '()\n', (10899, 10901), False, 'from GeneralTools.graph_funcs.my_session import MySession\n'), ((12006, 12047), 'tensorflow.transpose', 'tf.transpose', (['x_images'], {'perm': '(0, 2, 3, 1)'}), '(x_images, perm=(0, 2, 3, 1))\n', (12018, 12047), True, 'import tensorflow as tf\n'), ((12071, 12112), 'tensorflow.transpose', 'tf.transpose', (['y_images'], {'perm': '(0, 2, 3, 1)'}), '(y_images, perm=(0, 2, 3, 1))\n', (12083, 12112), True, 'import tensorflow as tf\n'), ((12189, 12259), 'tensorflow.compat.v1.image.resize_bilinear', 'tf.compat.v1.image.resize_bilinear', (['x_images', '[image_size, image_size]'], {}), '(x_images, [image_size, image_size])\n', (12223, 12259), True, 'import tensorflow as tf\n'), ((12283, 12353), 'tensorflow.compat.v1.image.resize_bilinear', 'tf.compat.v1.image.resize_bilinear', (['y_images', '[image_size, image_size]'], {}), '(y_images, [image_size, image_size])\n', (12317, 12353), True, 'import tensorflow as tf\n'), ((12470, 12495), 'GeneralTools.graph_funcs.my_session.MySession', 'MySession', ([], {'load_ckpt': '(True)'}), '(load_ckpt=True)\n', (12479, 12495), False, 'from GeneralTools.graph_funcs.my_session import MySession\n'), ((12708, 12738), 'numpy.concatenate', 'np.concatenate', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (12722, 12738), True, 'import numpy as np\n'), ((654, 708), 'tensorflow.contrib.gan.eval.get_graph_def_from_disk', 'tfgan.eval.get_graph_def_from_disk', (['FLAGS.INCEPTION_V1'], {}), '(FLAGS.INCEPTION_V1)\n', (688, 708), True, 'from tensorflow.contrib import gan as tfgan\n'), ((3468, 3530), 'tensorflow.split', 'tf.split', (['images'], {'num_or_size_splits': '(num_images // 100)', 'axis': '(0)'}), '(images, num_or_size_splits=num_images // 100, axis=0)\n', (3476, 3530), True, 'import tensorflow as tf\n'), ((4069, 4167), 'tensorflow.split', 'tf.split', (['images'], {'num_or_size_splits': '([100] * (num_images // 100) + [num_images % 100])', 'axis': '(0)'}), '(images, num_or_size_splits=[100] * (num_images // 100) + [\n num_images % 100], axis=0)\n', (4077, 4167), True, 'import tensorflow as tf\n'), ((6521, 6536), 'numpy.trace', 'np.trace', (['y_cov'], {}), '(y_cov)\n', (6529, 6536), True, 'import numpy as np\n'), ((6541, 6576), 'GeneralTools.math_funcs.graph_func_support.trace_sqrt_product_np', 'trace_sqrt_product_np', (['x_cov', 'y_cov'], {}), '(x_cov, y_cov)\n', (6562, 6576), False, 'from GeneralTools.math_funcs.graph_func_support import mean_cov_np, trace_sqrt_product_np\n'), ((784, 838), 'tensorflow.contrib.gan.eval.get_graph_def_from_disk', 'tfgan.eval.get_graph_def_from_disk', (['FLAGS.INCEPTION_V3'], {}), '(FLAGS.INCEPTION_V3)\n', (818, 838), True, 'from tensorflow.contrib import gan as tfgan\n'), ((3932, 3950), 'tensorflow.unstack', 'tf.unstack', (['logits'], {}), '(logits)\n', (3942, 3950), True, 'import tensorflow as tf\n'), ((3989, 4006), 'tensorflow.unstack', 'tf.unstack', (['pool3'], {}), '(pool3)\n', (3999, 4006), True, 'import tensorflow as tf\n'), ((6476, 6506), 'numpy.sum', 'np.sum', (['((x_mean - y_mean) ** 2)'], {}), '((x_mean - y_mean) ** 2)\n', (6482, 6506), True, 'import numpy as np\n'), ((6505, 6520), 'numpy.trace', 'np.trace', (['x_cov'], {}), '(x_cov)\n', (6513, 6520), True, 'import numpy as np\n'), ((10109, 10164), 'numpy.concatenate', 'np.concatenate', (['[batch[0] for batch in batches]'], {'axis': '(0)'}), '([batch[0] for batch in batches], axis=0)\n', (10123, 10164), True, 'import numpy as np\n'), ((10213, 10268), 'numpy.concatenate', 'np.concatenate', (['[batch[1] for batch in batches]'], {'axis': '(0)'}), '([batch[1] for batch in batches], axis=0)\n', (10227, 10268), True, 'import numpy as np\n'), ((3652, 3683), 'tensorflow.stack', 'tf.stack', (['generated_images_list'], {}), '(generated_images_list)\n', (3660, 3683), True, 'import tensorflow as tf\n'), ((4388, 4425), 'tensorflow.stack', 'tf.stack', (['generated_images_list[0:-1]'], {}), '(generated_images_list[0:-1])\n', (4396, 4425), True, 'import tensorflow as tf\n'), ((4771, 4789), 'tensorflow.unstack', 'tf.unstack', (['logits'], {}), '(logits)\n', (4781, 4789), True, 'import tensorflow as tf\n'), ((4844, 4861), 'tensorflow.unstack', 'tf.unstack', (['pool3'], {}), '(pool3)\n', (4854, 4861), True, 'import tensorflow as tf\n')]
|
from typing import Any, Callable
import matplotlib.pyplot as plt
from numpy import arange
from .membership import Membership
class BaseSet:
def __init__(
self,
name: str,
membership: Membership,
aggregation: Callable[[Any, Any], Any],
):
self.name = name
self.membership = membership
self.aggregation = aggregation
def __add__(self, arg: "BaseSet"):
memb = Membership(
lambda x: self.aggregation(
self.membership(x),
arg.membership(x),
),
self.membership.items + arg.membership.items,
)
return BaseSet(
f"({self.name})_union_({arg.name})",
memb,
aggregation=self.aggregation,
)
def domain(self, step=0.05):
start = self.membership.items[0]
end = self.membership.items[-1]
result = list(arange(start, end, step))
result += self.membership.items
result.sort()
return result
def __iter__(self):
return iter(self.domain())
def __len__(self):
return len(self.domain())
def __str__(self) -> str:
return self.name
def graph(self, step: float = 0.05):
x_data = self.domain(step=step)
y_data = [self.membership(x) for x in x_data]
plt.figure()
plt.title(self.name)
plt.xlabel("Domain values")
plt.ylabel("Membership grade")
plt.plot(x_data, y_data)
plt.savefig(f"set_{self.name}.png")
|
[
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.title",
"numpy.arange"
] |
[((1352, 1364), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1362, 1364), True, 'import matplotlib.pyplot as plt\n'), ((1373, 1393), 'matplotlib.pyplot.title', 'plt.title', (['self.name'], {}), '(self.name)\n', (1382, 1393), True, 'import matplotlib.pyplot as plt\n'), ((1402, 1429), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Domain values"""'], {}), "('Domain values')\n", (1412, 1429), True, 'import matplotlib.pyplot as plt\n'), ((1438, 1468), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Membership grade"""'], {}), "('Membership grade')\n", (1448, 1468), True, 'import matplotlib.pyplot as plt\n'), ((1477, 1501), 'matplotlib.pyplot.plot', 'plt.plot', (['x_data', 'y_data'], {}), '(x_data, y_data)\n', (1485, 1501), True, 'import matplotlib.pyplot as plt\n'), ((1510, 1545), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""set_{self.name}.png"""'], {}), "(f'set_{self.name}.png')\n", (1521, 1545), True, 'import matplotlib.pyplot as plt\n'), ((924, 948), 'numpy.arange', 'arange', (['start', 'end', 'step'], {}), '(start, end, step)\n', (930, 948), False, 'from numpy import arange\n')]
|
import numpy as np
import chess
import chess.engine
from tkinter.filedialog import asksaveasfilename
from parsing.math_encode import tensor_encode, tensor_decode
from inference.infer_action import get_action
class PlayLoop:
__doc__ = '''
An interactive REPL environment for play with a trained chess AI
'''
TRACE_FORMAT = '{:<7}{:<18}{:<42}{:<45}{:<7}{:<18}{:<42}{}'
TRACE_HEADER = ('move', 'WHITE', 'source', 'target', 'move', 'BLACK', 'source', 'target')
def __init__(self, policy, secondary_policy=None, engine_path='../engine/stockfish.exe'):
'''
Constructs a PlayLoop instance
:param policy: PolicyModel - primary AI agent to simulate
:param secondary_policy: None/PolicyModel/'same'/'stockfish' - Agent used to replace player moves
(if None, human is playing; if 'same', secondary_policy=policy)
'''
self.policy = policy
self.player_white = None
self.board = None
self.keep_trace = False
self.trace = None
self.engine = None
if secondary_policy is not None:
if secondary_policy == 'same':
self.player_move_func = lambda: self._get_action_from_policy(policy)
elif secondary_policy == 'stockfish':
self.player_move_func = self._get_stockfish
self.engine = chess.engine.SimpleEngine.popen_uci(engine_path)
else:
self.player_move_func = lambda: self._get_action_from_policy(secondary_policy)
else:
self.player_move_func = self._get_player_move
def init_game(self, player_side, keep_trace=True):
'''
Sets up a game and indicating the side to play as by the player
:param player_side: 'w'/'b' - side to play as
:param keep_trace: bool - if True, accumulates the trace for the entire game
:return: None
'''
if self.board is not None:
raise RuntimeWarning('Board already initiatized, set force_new=True to force override')
if player_side == 'w':
self.player_white = True
elif player_side == 'b':
self.player_white = False
else:
raise ValueError(f'Expected "w" or "b" for player_side but given {player_side}')
self.board = chess.Board()
self.keep_trace = keep_trace
if keep_trace:
self.trace = list()
def reset(self):
'''
Resets the PlayLoop state (except the trace)
:return: None
'''
self.board = None
self.keep_trace = False
def loop(self, verbose=True):
'''
Runs the loop until the termination of a game
:param verbose: bool - prints messages if True
:return: None
'''
if self.board is None:
raise RuntimeError('init_game was not called to configure game settings!')
if self.board.is_game_over():
raise RuntimeError('Game has already ended. Call reset and init_gram before calling loop')
trace_collector = list()
if not self.player_white:
move, policy = self._get_action_from_policy()
if self.keep_trace: self._store_trace(move, trace_collector, policy=policy)
if verbose: print(f'\nAI made {move} move\n')
while not self.board.is_game_over():
if verbose: print(self.board)
# player/secondary_policy move
move, policy = self.player_move_func()
if self.keep_trace: self._store_trace(move, trace_collector, policy=policy)
if verbose: print(f'\nPlayer made {move} move\n')
if self.board.is_game_over():
break
# policy move
move, policy = self._get_action_from_policy()
if self.keep_trace: self._store_trace(move, trace_collector, policy=policy)
if verbose: print(f'\nAI made {move} move\n')
if len(trace_collector) != 0:
self._store_trace(move, trace_collector, policy=policy, force_flush=True)
if verbose: print('Game completed')
def get_trace(self, printable=True):
'''
Returns the trace
:param printable: bool - If True, returns a printable and formamted string of the trace
:return: str/list(str)
'''
if printable:
return '\n'.join(self.trace)
return self.trace
def save_trace(self, file_path=None, interactive=True):
'''
Saves trace in a text file
Automatically appends ".txt" at the end of the file_path if the suffix is not found
:param file_path: None/str - file path to save to
:param interactive: bool - if True, using Tkinter GUI to select file path
:return: None
'''
if interactive:
file_path = asksaveasfilename(filetypes=[('Text file', '*.txt')])
if file_path[-4:] != '.txt':
file_path = file_path + '.txt'
with open(file_path, 'w') as f:
f.write(self.get_trace(printable=True))
def _get_action_from_policy(self, external_policy=None):
'''
Gets UCI representation of the move using the policy loaded and pushes the move on the board
:param external_policy - None/PolicyModel - policy to use (if None, defaults to loaded policy)
:return: str
'''
policy = self.policy
flip = self.player_white
if external_policy: # player is an AI
policy = external_policy
flip = not flip
src, tgt, _ = policy.infer(tensor_encode(self.board, mirror=flip))
if flip: # perform mirror flips
src = np.flip(src[0, ...], 0)
tgt = np.flip(tgt[0, ...], 0)
else:
src = src[0, ...]
tgt = tgt[0, ...]
move = get_action(self.board, src, tgt)
self.board.push(chess.Move.from_uci(move))
return move, (src, tgt)
def _get_player_move(self):
'''
Obtains the move from the player by command line and pushes the move on the board
:return: str, None
'''
while True: # handles invalid player moves
try:
move_input = input('Enter your move: ')
move = chess.Move.from_uci(move_input)
if move in self.board.legal_moves:
self.board.push(move)
else:
raise AssertionError(f'{move_input} is not a valid move')
except AssertionError as e:
print(f'ERROR: {e}')
else:
break
return move_input, None
def _get_stockfish(self, time=0.001, depth=1):
'''
Obtains the move from the Stockfish engine with the lowest ELO ratings
:param time: float - time limit for the engine
:param depth: int - maximum search depth
:return: str, None
'''
move = self.engine.play(self.board, chess.engine.Limit(time=time, depth=depth),
ponder=False, options={'uci_elo': 1350}).move
self.board.push(move)
return move.uci(), None
def _store_trace(self, move, trace_collector, policy=None, force_flush=False):
'''
Collects the trace onto trace_collector and once white and black has made the move,
append to the main trace list
:param move: str - UCI representation of the move
:param trace_collector: list(str) - string accumulator
:param policy: None/tuple(np.ndarray, np.ndarray) - policy output
:param force_flush: bool - if True, appends incomplete trace
:return: None
'''
trace_collector.append(str(self.board))
trace_collector.append(move)
if policy is None:
trace_collector.append('N/A\n\n\n\n\n\n\n')
trace_collector.append('N/A\n\n\n\n\n\n\n')
else:
trace_collector.append(str(np.around(policy[0], 2)).replace('[[', '')
.replace(' [ ', '').replace(' [', '').replace(']', ''))
trace_collector.append(str(np.around(policy[1], 2)).replace('[[', '')
.replace(' [ ', '').replace(' [', '').replace(']', ''))
if len(trace_collector) == 8: # two half-moves has been made
self.trace.append(PlayLoop.TRACE_FORMAT.format(*PlayLoop.TRACE_HEADER))
for b1, src1, tgt1, b2, src2, tgt2 in zip(trace_collector[0].split('\n'),
trace_collector[2].split('\n'),
trace_collector[3].split('\n'),
trace_collector[4].split('\n'),
trace_collector[6].split('\n'),
trace_collector[7].split('\n')):
self.trace.append(PlayLoop.TRACE_FORMAT.format(trace_collector[1], b1, src1, tgt1,
trace_collector[5], b2, src2, tgt2))
trace_collector[1] = ''
trace_collector[5] = ''
self.trace.append('\n')
trace_collector.clear()
elif force_flush:
self.trace.append(PlayLoop.TRACE_FORMAT.format(*PlayLoop.TRACE_HEADER))
for b1, src1, tgt1 in zip(trace_collector[0].split('\n'),
trace_collector[2].split('\n'),
trace_collector[3].split('\n')):
self.trace.append(PlayLoop.TRACE_FORMAT.format(trace_collector[1], b1, src1, tgt1,
'', '', '', ''))
trace_collector[1] = ''
self.trace.append('\n')
|
[
"numpy.flip",
"inference.infer_action.get_action",
"chess.Move.from_uci",
"chess.engine.SimpleEngine.popen_uci",
"tkinter.filedialog.asksaveasfilename",
"chess.Board",
"chess.engine.Limit",
"parsing.math_encode.tensor_encode",
"numpy.around"
] |
[((2322, 2335), 'chess.Board', 'chess.Board', ([], {}), '()\n', (2333, 2335), False, 'import chess\n'), ((5869, 5901), 'inference.infer_action.get_action', 'get_action', (['self.board', 'src', 'tgt'], {}), '(self.board, src, tgt)\n', (5879, 5901), False, 'from inference.infer_action import get_action\n'), ((4863, 4916), 'tkinter.filedialog.asksaveasfilename', 'asksaveasfilename', ([], {'filetypes': "[('Text file', '*.txt')]"}), "(filetypes=[('Text file', '*.txt')])\n", (4880, 4916), False, 'from tkinter.filedialog import asksaveasfilename\n'), ((5613, 5651), 'parsing.math_encode.tensor_encode', 'tensor_encode', (['self.board'], {'mirror': 'flip'}), '(self.board, mirror=flip)\n', (5626, 5651), False, 'from parsing.math_encode import tensor_encode, tensor_decode\n'), ((5713, 5736), 'numpy.flip', 'np.flip', (['src[0, ...]', '(0)'], {}), '(src[0, ...], 0)\n', (5720, 5736), True, 'import numpy as np\n'), ((5755, 5778), 'numpy.flip', 'np.flip', (['tgt[0, ...]', '(0)'], {}), '(tgt[0, ...], 0)\n', (5762, 5778), True, 'import numpy as np\n'), ((5926, 5951), 'chess.Move.from_uci', 'chess.Move.from_uci', (['move'], {}), '(move)\n', (5945, 5951), False, 'import chess\n'), ((6309, 6340), 'chess.Move.from_uci', 'chess.Move.from_uci', (['move_input'], {}), '(move_input)\n', (6328, 6340), False, 'import chess\n'), ((7014, 7056), 'chess.engine.Limit', 'chess.engine.Limit', ([], {'time': 'time', 'depth': 'depth'}), '(time=time, depth=depth)\n', (7032, 7056), False, 'import chess\n'), ((1370, 1418), 'chess.engine.SimpleEngine.popen_uci', 'chess.engine.SimpleEngine.popen_uci', (['engine_path'], {}), '(engine_path)\n', (1405, 1418), False, 'import chess\n'), ((8005, 8028), 'numpy.around', 'np.around', (['policy[0]', '(2)'], {}), '(policy[0], 2)\n', (8014, 8028), True, 'import numpy as np\n'), ((8178, 8201), 'numpy.around', 'np.around', (['policy[1]', '(2)'], {}), '(policy[1], 2)\n', (8187, 8201), True, 'import numpy as np\n')]
|
import bpy
from aiohttp import web
import numpy as np
from mathutils import Matrix, Vector
import asyncio
from cinebot_mini_render_server.blender_timer_executor import EXECUTOR
routes = web.RouteTableDef()
def delete_animation_helper(obj):
if not obj.animation_data:
return False
if not obj.animation_data.action:
return False
if not obj.animation_data.action.fcurves:
return False
action = obj.animation_data.action
remove_types = ["location", "scale", "rotation"]
fcurves = [fc for fc in action.fcurves
for type in remove_types
if fc.data_path.startswith(type)]
while fcurves:
fc = fcurves.pop()
action.fcurves.remove(fc)
return True
def handle_object_animation_get_helper(obj_name):
scene = bpy.context.scene
obj = bpy.data.objects[obj_name]
fc = obj.animation_data.action.fcurves[0]
start, end = fc.range()
transforms = []
for t in range(int(start), int(end)):
scene.frame_set(t)
matrix_world = np.array(obj.matrix_world)
tf_data = {
"frame_number": t,
"matrix_world": matrix_world.tolist()
}
transforms.append(tf_data)
return transforms
@routes.get('/api/object/{obj_name}/animation')
async def handle_object_animation_get(request):
obj_name = request.match_info.get('obj_name', "None")
if obj_name not in bpy.data.objects:
raise web.HTTPBadRequest()
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(EXECUTOR,
handle_object_animation_get_helper, obj_name)
data = {
"result": result,
"url": '/api/object/{}/animation'.format(obj_name),
"method": "GET"
}
return web.json_response(data)
def handle_object_animation_put_helper(input_data, obj_name):
scene = bpy.context.scene
obj = bpy.data.objects[obj_name]
print("before delete")
delete_animation_helper(obj)
print("after delete")
if not obj.animation_data:
obj.animation_data_create()
if not obj.animation_data.action:
obj.animation_data.action = bpy.data.actions.new(name=obj_name + "_action")
f_curves_loc = [obj.animation_data.action.fcurves.new(data_path="location", index=i) for i in range(3)]
f_curves_rot = [obj.animation_data.action.fcurves.new(data_path="rotation_euler", index=i) for i in range(3)]
[x.keyframe_points.add(len(input_data["transforms"])) for x in f_curves_loc]
[x.keyframe_points.add(len(input_data["transforms"])) for x in f_curves_rot]
for i, frame in enumerate(input_data["transforms"]):
frame_number = frame["frame_number"]
location = None
rotation_euler = None
if "matrix_world" in frame:
matrix_world = frame["matrix_world"]
m = Matrix(matrix_world)
location = m.to_translation()
rotation_euler = m.to_euler()
elif "location" in frame and "rotation_euler" in frame:
location = frame["location"]
rotation_euler = frame["rotation_euler"]
else:
return False
for j in range(3):
f_curves_loc[j].keyframe_points[i].co = [float(frame_number), location[j]]
f_curves_rot[j].keyframe_points[i].co = [float(frame_number), rotation_euler[j]]
return True
@routes.put('/api/object/{obj_name}/animation')
async def handle_object_animation_put(request):
input_data = await request.json()
obj_name = request.match_info.get('obj_name', "None")
if obj_name not in bpy.data.objects:
raise web.HTTPBadRequest()
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(EXECUTOR,
handle_object_animation_put_helper, input_data, obj_name)
data = {
"result": "SUCCESS" if result else "FAILED",
"url": '/api/object/{}/animation'.format(obj_name),
"method": "PUT"
}
return web.json_response(data=data)
def handle_object_animation_delete_helper(obj_name):
scene = bpy.context.scene
obj = bpy.data.objects[obj_name]
result = delete_animation_helper(obj)
return result
@routes.delete('/api/object/{obj_name}/animation')
async def handle_object_animation_delete(request):
obj_name = request.match_info.get('obj_name', "None")
if obj_name not in bpy.data.objects:
raise web.HTTPBadRequest()
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(EXECUTOR,
handle_object_animation_delete_helper, obj_name)
data = {
"result": "SUCCESS" if result else "FAILED",
"url": '/api/object/{}/animation'.format(obj_name),
"method": "DELETE"
}
return web.json_response(data=data)
|
[
"numpy.array",
"aiohttp.web.RouteTableDef",
"aiohttp.web.json_response",
"mathutils.Matrix",
"aiohttp.web.HTTPBadRequest",
"asyncio.get_event_loop",
"bpy.data.actions.new"
] |
[((187, 206), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (204, 206), False, 'from aiohttp import web\n'), ((1489, 1513), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1511, 1513), False, 'import asyncio\n'), ((1791, 1814), 'aiohttp.web.json_response', 'web.json_response', (['data'], {}), '(data)\n', (1808, 1814), False, 'from aiohttp import web\n'), ((3685, 3709), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (3707, 3709), False, 'import asyncio\n'), ((3991, 4019), 'aiohttp.web.json_response', 'web.json_response', ([], {'data': 'data'}), '(data=data)\n', (4008, 4019), False, 'from aiohttp import web\n'), ((4452, 4476), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (4474, 4476), False, 'import asyncio\n'), ((4752, 4780), 'aiohttp.web.json_response', 'web.json_response', ([], {'data': 'data'}), '(data=data)\n', (4769, 4780), False, 'from aiohttp import web\n'), ((1049, 1075), 'numpy.array', 'np.array', (['obj.matrix_world'], {}), '(obj.matrix_world)\n', (1057, 1075), True, 'import numpy as np\n'), ((1456, 1476), 'aiohttp.web.HTTPBadRequest', 'web.HTTPBadRequest', ([], {}), '()\n', (1474, 1476), False, 'from aiohttp import web\n'), ((2176, 2223), 'bpy.data.actions.new', 'bpy.data.actions.new', ([], {'name': "(obj_name + '_action')"}), "(name=obj_name + '_action')\n", (2196, 2223), False, 'import bpy\n'), ((3652, 3672), 'aiohttp.web.HTTPBadRequest', 'web.HTTPBadRequest', ([], {}), '()\n', (3670, 3672), False, 'from aiohttp import web\n'), ((4419, 4439), 'aiohttp.web.HTTPBadRequest', 'web.HTTPBadRequest', ([], {}), '()\n', (4437, 4439), False, 'from aiohttp import web\n'), ((2875, 2895), 'mathutils.Matrix', 'Matrix', (['matrix_world'], {}), '(matrix_world)\n', (2881, 2895), False, 'from mathutils import Matrix, Vector\n')]
|
from copy import deepcopy
from numba import jit,njit
import numpy as np
import pymctdh.opfactory as opfactory
from pymctdh.cy.sparsemat import CSRmat#,matvec
@njit(fastmath=True)
def matvec(nrows,IA,JA,data,vec,outvec):
"""
"""
d_ind = 0
for i in range(nrows):
ncol = IA[i+1]-IA[i]
for j in range(ncol):
col_ind = JA[d_ind]
outvec[i] = outvec[i] + data[d_ind]*vec[col_ind]
d_ind += 1
return outvec
def matadd(nrows,op1,a,op2,b):
"""
"""
if op1 is None:
opout = deepcopy(op2)
opout.data *= b
else:
data = []
JA = []
IA = [0]
ind1 = 0
ind2 = 0
for i in range(nrows):
op1_col = op1.JA[op1.IA[i]:op1.IA[i+1]]
op2_col = op2.JA[op2.IA[i]:op2.IA[i+1]]
inds = np.union1d(op1_col,op2_col)
IA.append( IA[i]+len(inds) )
for ind in inds:
JA.append( ind )
dat = 0.0
if ind in op1_col:
dat += a*op1.data[ind1]
ind1 +=1
if ind in op2_col:
dat += b*op2.data[ind2]
ind2 +=1
data.append( dat )
data = np.array(data)
IA = np.array(IA, dtype=np.intc)
JA = np.array(JA, dtype=np.intc)
opout = CSRmat(data, IA, JA)
return opout
#@njit(fastmath=True)
def kron(nrows1,IA1,JA1,data1,nrows2,IA2,JA2,data2):
"""
"""
data = []
JA = []
IA = [0]
d_ind1 = 0
for i in range(nrows1):
ncol1 = IA1[i+1]-IA1[i]
for j in range(ncol1):
col_ind1 = JA1[d_ind1]
d_ind2 = 0
for k in range(nrows2):
ncol2 = IA2[i+1]-IA2[i]
IA.append( IA[-1] + ncol2 )
for l in range(ncol2):
data.append( data1[d_ind1]*data2[d_ind2] )
JA.append( JA1[d_ind1]*nrows2 + JA2[d_ind2] )
d_ind2 += 1
d_ind += 1
return CSRmat(np.array(data), np.array(IA, dtype=int), np.array(JA, dtype=int))
class PBasis:
"""
"""
def __init__(self, args, sparse=False):
"""
"""
self.params = {}
self.params['basis'] = args[0].lower()
self.sparse = sparse
# set up parameters for basis
if self.params['basis'] == 'ho':
self.params['npbf'] = args[1]
self.params['mass'] = args[2]
self.params['omega'] = args[3]
if len(args) == 5:
self.combined = args[4]
else:
self.combined = False
if self.combined:
self.npbfs = 1
for n in self.params['npbf']:
self.npbfs *= n
self.make_ops = opfactory.make_ho_ops_combined
if not isinstance(self.params['mass'], list):
mlist = [args[2] for i in range(len(args[1]))]
self.params['mass'] = mlist
if not isinstance(self.params['omega'], list):
omlist = [args[2] for i in range(len(args[1]))]
self.params['omega'] = omlist
else:
self.npbfs = self.params['npbf']
self.make_ops = opfactory.make_ho_ops
#self.grid = make_ho_grid(self.params['npbf'])
elif self.params['basis'] == 'sinc':
self.params['npbf'] = args[1]
self.params['qmin'] = args[2]
self.params['qmax'] = args[3]
self.params['dq'] = args[4]
self.params['mass'] = args[5]
if isinstance(self.params['npbf'], list):
self.make_ops = opfactory.make_sinc_ops_combined
else:
self.make_ops = opfactory.make_sinc_ops
self.grid = np.arange(qmin,qmax+dq,dq)
elif self.params['basis'] == 'plane wave':
if args[1]%2 == 0:
self.params['npbf'] = args[1]+1
else:
self.params['npbf'] = args[1]
self.params['nm'] = int((args[1]-1)/2)
self.params['mass'] = args[2]
if len(args) == 4:
self.combined = args[3]
else:
self.combined = False
if self.combined:
raise NotImplementedError
else:
self.make_ops = opfactory.make_planewave_ops
elif self.params['basis'] == 'plane wave dvr':
raise NotImplementedError
#if args[1]%2 == 0:
# self.params['npbf'] = args[1]+1
#else:
# self.params['npbf'] = args[1]
#self.params['nm'] = int((args[1]-1)/2)
#self.params['mass'] = args[2]
#if len(args) == 4:
# self.combined = args[3]
#else:
# self.combined = False
#if self.combined:
# raise NotImplementedError
#else:
# self.make_ops = opfactory.make_planewave_ops
# #self.grid = np.arange(qmin,qmax+dq,dq)
elif self.params['basis'] == 'radial':
raise NotImplementedError
#self.params['npbf'] = args[1]
#self.params['dq'] = args[2]
#self.params['mass'] = args[3]
else:
raise ValueError("Not a valid basis.")
def make_operators(self, ops, matrix=None):
"""Creates matrices for all the relevant operators used in the
calculation. These matrices are then stored in a dictionary called
self.ops.
Input
-----
ops - list of strings, all the operators that are used for this pbf
"""
try:
self.ops
except:
self.ops = {}
if matrix is None:
matrix = [None for i in range(len(ops))]
for i,op in enumerate(ops):
if not op in self.ops:
if matrix[i] is None:
self.ops[op] = self.make_ops(self.params,op,sparse=self.sparse)
else:
self.ops[op] = matrix[i]
## TODO make this for custom operators
#if isinstance(op,str):
# self.ops[op] = self.make_ops(params,op)
#else:
# ind = 'c%d'%(count)
# count += 1
# self.ops[op] = op.copy()
def make_1b_ham(self, nel, terms):
"""Make the 1-body hamiltonians that act on the spfs with this pbf.
"""
op1b = []
for alpha in range(nel):
if self.sparse:
op = None
else:
#op = np.zeros((self.params['npbf'],)*2)
op = np.zeros((self.npbfs,)*2)
for term in terms[alpha]:
opstr = term['ops'][0]
coeff = term['coeff']
if self.sparse:
#op = matadd(self.params['npbf'],op,1.0,self.ops[opstr],coeff)
op = matadd(self.npbfs,op,1.0,self.ops[opstr],coeff)
else:
#print(type(coeff))
op = op.astype(type(coeff))
op += coeff*self.ops[opstr]
op1b.append( op )
self.ops['1b'] = op1b
return
def operate1b(self, spf, alpha):
"""Operate the single-body hamiltonian on a single spf.
"""
if self.sparse:
op = self.ops['1b'][alpha]
outvec = np.zeros(op.nrows, dtype=complex)
return matvec(op.nrows,op.IA,op.JA,op.data,spf,outvec)
#return matvec(op,spf)
else:
return np.dot(self.ops['1b'][alpha], spf)
def operate(self, spf, term):
"""Operate a single-body term on a single spf.
"""
#return self.ops[term]@spf
if self.sparse:
op = self.ops[term]
outvec = np.zeros(op.nrows, dtype=complex)
return matvec(op.nrows,op.IA,op.JA,op.data,spf,outvec)
#return matvec(self.ops[term], spf)
else:
return np.dot(self.ops[term], spf)
if __name__ == "__main__":
# no mode combination
pbf = PBasis(['ho',22,1.0,1.0])
pbf.make_operators(['q','KE','q^2'])
print(pbf.params['basis'])
print(pbf.params['npbf'])
print(pbf.params['mass'])
print(pbf.params['omega'])
opkeys = pbf.ops.keys()
for op in opkeys:
print(op)
print(pbf.ops[op].shape)
print('')
print('')
# mode combination
pbf = PBasis(['ho',[6,6],1.0,1.0,True])
pbf.make_operators(['(q)*(1)','(1)*(q)'])
print(pbf.params['basis'])
print(pbf.params['npbf'])
print(pbf.params['mass'])
print(pbf.params['omega'])
opkeys = pbf.ops.keys()
for op in opkeys:
print(op)
print(pbf.ops[op].shape)
print('')
print('')
# mode combination
pbf = PBasis(['ho',[6,6],[1.0,2.0],[1.0,2.0],True])
pbf.make_operators(['(q)*(1)','(1)*(q)'])
print(pbf.params['basis'])
print(pbf.params['npbf'])
print(pbf.params['mass'])
print(pbf.params['omega'])
opkeys = pbf.ops.keys()
for op in opkeys:
print(op)
print(pbf.ops[op].shape)
print('')
print('')
|
[
"numpy.union1d",
"numba.njit",
"pymctdh.cy.sparsemat.CSRmat",
"numpy.array",
"numpy.zeros",
"numpy.dot",
"copy.deepcopy",
"numpy.arange"
] |
[((162, 181), 'numba.njit', 'njit', ([], {'fastmath': '(True)'}), '(fastmath=True)\n', (166, 181), False, 'from numba import jit, njit\n'), ((557, 570), 'copy.deepcopy', 'deepcopy', (['op2'], {}), '(op2)\n', (565, 570), False, 'from copy import deepcopy\n'), ((1268, 1282), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (1276, 1282), True, 'import numpy as np\n'), ((1299, 1326), 'numpy.array', 'np.array', (['IA'], {'dtype': 'np.intc'}), '(IA, dtype=np.intc)\n', (1307, 1326), True, 'import numpy as np\n'), ((1343, 1370), 'numpy.array', 'np.array', (['JA'], {'dtype': 'np.intc'}), '(JA, dtype=np.intc)\n', (1351, 1370), True, 'import numpy as np\n'), ((1387, 1407), 'pymctdh.cy.sparsemat.CSRmat', 'CSRmat', (['data', 'IA', 'JA'], {}), '(data, IA, JA)\n', (1393, 1407), False, 'from pymctdh.cy.sparsemat import CSRmat\n'), ((2081, 2095), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2089, 2095), True, 'import numpy as np\n'), ((2097, 2120), 'numpy.array', 'np.array', (['IA'], {'dtype': 'int'}), '(IA, dtype=int)\n', (2105, 2120), True, 'import numpy as np\n'), ((2122, 2145), 'numpy.array', 'np.array', (['JA'], {'dtype': 'int'}), '(JA, dtype=int)\n', (2130, 2145), True, 'import numpy as np\n'), ((844, 872), 'numpy.union1d', 'np.union1d', (['op1_col', 'op2_col'], {}), '(op1_col, op2_col)\n', (854, 872), True, 'import numpy as np\n'), ((7567, 7600), 'numpy.zeros', 'np.zeros', (['op.nrows'], {'dtype': 'complex'}), '(op.nrows, dtype=complex)\n', (7575, 7600), True, 'import numpy as np\n'), ((7736, 7770), 'numpy.dot', 'np.dot', (["self.ops['1b'][alpha]", 'spf'], {}), "(self.ops['1b'][alpha], spf)\n", (7742, 7770), True, 'import numpy as np\n'), ((7985, 8018), 'numpy.zeros', 'np.zeros', (['op.nrows'], {'dtype': 'complex'}), '(op.nrows, dtype=complex)\n', (7993, 8018), True, 'import numpy as np\n'), ((8167, 8194), 'numpy.dot', 'np.dot', (['self.ops[term]', 'spf'], {}), '(self.ops[term], spf)\n', (8173, 8194), True, 'import numpy as np\n'), ((3908, 3938), 'numpy.arange', 'np.arange', (['qmin', '(qmax + dq)', 'dq'], {}), '(qmin, qmax + dq, dq)\n', (3917, 3938), True, 'import numpy as np\n'), ((6807, 6834), 'numpy.zeros', 'np.zeros', (['((self.npbfs,) * 2)'], {}), '((self.npbfs,) * 2)\n', (6815, 6834), True, 'import numpy as np\n')]
|
# Copyright (c) 2020 DeNA Co., Ltd.
# Licensed under The MIT License [see LICENSE for details]
# kaggle_environments licensed under Copyright 2020 Kaggle Inc. and the Apache License, Version 2.0
# (see https://github.com/Kaggle/kaggle-environments/blob/master/LICENSE for details)
# wrapper of Hungry Geese environment from kaggle
import random
import itertools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import handyrl.envs.kaggle.public_flood_goose as pfg
# You need to install kaggle_environments, requests
from kaggle_environments import make
from kaggle_environments.envs.hungry_geese.hungry_geese import Observation, Configuration, Action, GreedyAgent
from ...environment import BaseEnvironment
class TorusConv2d(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, bn):
super().__init__()
self.edge_size = (kernel_size[0] // 2, kernel_size[1] // 2)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size=kernel_size, padding = self.edge_size, padding_mode = 'circular')
self.bn = nn.BatchNorm2d(output_dim) if bn else None
def forward(self, x):
h = self.conv(x)
h = self.bn(h) if self.bn is not None else h
return h
'''
class GeeseNet(nn.Module):
def __init__(self):
super().__init__()
layers, filters = 12, 32
self.conv0 = TorusConv2d(53, filters, (3, 3), True) # TBD
self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)])
self.head_p = nn.Linear(filters, 4, bias=False)
self.head_v = nn.Linear(filters * 2, 1, bias=False)
def forward(self, x, _=None):
h = F.relu_(self.conv0(x))
for block in self.blocks:
h = F.relu_(h + block(h))
h_head = (h * x[:,:1]).view(h.size(0), h.size(1), -1).sum(-1)
h_avg = h.view(h.size(0), h.size(1), -1).mean(-1)
p = self.head_p(h_head)
v = torch.tanh(self.head_v(torch.cat([h_head, h_avg], 1)))
return {'policy': p, 'value': v}
'''
class GeeseNet(nn.Module):
def __init__(self):
super().__init__()
layers, filters = 14, 32
self.conv0 = TorusConv2d(53, filters, (3, 3), True) # TBD
self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)])
self.head_p = nn.Linear(filters, 4, bias=False)
self.head_v = nn.Linear(filters * 2, 1, bias=False)
def forward(self, x, _=None):
h = F.relu_(self.conv0(x))
for block in self.blocks:
h = F.relu_(h + block(h))
h_head = (h * x[:,:1]).view(h.size(0), h.size(1), -1).sum(-1)
h_avg = h.view(h.size(0), h.size(1), -1).mean(-1)
p = self.head_p(h_head)
v = torch.tanh(self.head_v(torch.cat([h_head, h_avg], 1)))
return {'policy': p, 'value': v}
class Environment(BaseEnvironment):
ACTION = ['NORTH', 'SOUTH', 'WEST', 'EAST']
DIRECTION = [[-1, 0], [1, 0], [0, -1], [0, 1]]
NUM_AGENTS = 4
ACTION_MAP = {'N': Action.NORTH, 'S': Action.SOUTH, 'W': Action.WEST, 'E': Action.EAST}
pfg_action_map = { Action.NORTH: 'NORTH', Action.SOUTH: 'SOUTH', Action.WEST: 'WEST', Action.EAST: 'EAST'}
def __init__(self, args={}):
super().__init__()
self.env = make("hungry_geese")
self.reset()
def reset(self, args={}):
obs = self.env.reset(num_agents=self.NUM_AGENTS)
self.update((obs, {}), True)
def update(self, info, reset):
obs, last_actions = info
if reset:
self.obs_list = []
self.obs_list.append(obs)
self.last_actions = last_actions
def action2str(self, a, player=None):
return self.ACTION[a]
def str2action(self, s, player=None):
return self.ACTION.index(s)
def direction(self, pos_from, pos_to):
if pos_from is None or pos_to is None:
return None
x, y = pos_from // 11, pos_from % 11
for i, d in enumerate(self.DIRECTION):
nx, ny = (x + d[0]) % 7, (y + d[1]) % 11
if nx * 11 + ny == pos_to:
return i
return None
def __str__(self):
# output state
obs = self.obs_list[-1][0]['observation']
colors = ['\033[33m', '\033[34m', '\033[32m', '\033[31m']
color_end = '\033[0m'
def check_cell(pos):
for i, geese in enumerate(obs['geese']):
if pos in geese:
if pos == geese[0]:
return i, 'h'
if pos == geese[-1]:
return i, 't'
index = geese.index(pos)
pos_prev = geese[index - 1] if index > 0 else None
pos_next = geese[index + 1] if index < len(geese) - 1 else None
directions = [self.direction(pos, pos_prev), self.direction(pos, pos_next)]
return i, directions
if pos in obs['food']:
return 'f'
return None
def cell_string(cell):
if cell is None:
return '.'
elif cell == 'f':
return 'f'
else:
index, directions = cell
if directions == 'h':
return colors[index] + '@' + color_end
elif directions == 't':
return colors[index] + '*' + color_end
elif max(directions) < 2:
return colors[index] + '|' + color_end
elif min(directions) >= 2:
return colors[index] + '-' + color_end
else:
return colors[index] + '+' + color_end
cell_status = [check_cell(pos) for pos in range(7 * 11)]
s = 'turn %d\n' % len(self.obs_list)
for x in range(7):
for y in range(11):
pos = x * 11 + y
s += cell_string(cell_status[pos])
s += '\n'
for i, geese in enumerate(obs['geese']):
s += colors[i] + str(len(geese) or '-') + color_end + ' '
return s
def step(self, actions):
# state transition
obs = self.env.step([self.action2str(actions.get(p, None) or 0) for p in self.players()])
self.update((obs, actions), False)
def diff_info(self, _):
return self.obs_list[-1], self.last_actions
def turns(self):
# players to move
return [p for p in self.players() if self.obs_list[-1][p]['status'] == 'ACTIVE']
def terminal(self):
# check whether terminal state or not
for obs in self.obs_list[-1]:
if obs['status'] == 'ACTIVE':
return False
return True
def outcome(self):
# return terminal outcomes
# 1st: 1.0 2nd: 0.33 3rd: -0.33 4th: -1.00
rewards = {o['observation']['index']: o['reward'] for o in self.obs_list[-1]}
outcomes = {p: 0 for p in self.players()}
for p, r in rewards.items():
for pp, rr in rewards.items():
if p != pp:
if r > rr:
outcomes[p] += 1 / (self.NUM_AGENTS - 1)
elif r < rr:
outcomes[p] -= 1 / (self.NUM_AGENTS - 1)
return outcomes
def legal_actions(self, player):
# return legal action list
return list(range(len(self.ACTION)))
def action_length(self):
# maximum action label (it determines output size of policy function)
return len(self.ACTION)
def players(self):
return list(range(self.NUM_AGENTS))
def rule_based_action(self, player):
agent = GreedyAgent(Configuration({'rows': 7, 'columns': 11}))
agent.last_action = self.ACTION_MAP[self.ACTION[self.last_actions[player]][0]] if player in self.last_actions else None
obs = {**self.obs_list[-1][0]['observation'], **self.obs_list[-1][player]['observation']}
action = agent(Observation(obs))
return self.ACTION.index(action)
def public_flood_goose_based_action(self, player):
obs = {**self.obs_list[-1][0]['observation'], **self.obs_list[-1][player]['observation']}
conf = {'rows': 7, 'columns': 11}
if player in self.last_actions and len(self.obs_list) > 1:
prev_obs = {**self.obs_list[-2][0]['observation'], **self.obs_list[-2][player]['observation']}
pos_int = prev_obs['geese'][prev_obs['index']][0]
pfg.public_flood_agent_goose.last_pos = pfg.Pos(pos_int//11, pos_int%11)
else:
pfg.public_flood_agent_goose.last_pos = None
# print("prev action = ", pfg.public_flood_agent_goose.last_action)
state = pfg.State.from_obs_conf(obs, conf)
action = pfg.public_flood_agent_goose.step(state)
action = state.geo.action_to(state.my_goose.head, action)
# print("action = ", action)
# print("action = ",self.ACTION.index(self.pfg_action_map[action]))
return self.ACTION.index(self.pfg_action_map[action])
def net(self):
return GeeseNet
def observation(self, player): # = None
# if player is None:
# player = 0
b = np.zeros((self.NUM_AGENTS * 13 + 1, 7 * 11), dtype=np.float32) # TBD
obs = self.obs_list[-1][0]['observation']
for p, geese in enumerate(obs['geese']):
# head position
for pos in geese[:1]:
b[0 + (p - player) % self.NUM_AGENTS, pos] = 1
# whole position
for pos in geese:
b[4 + (p - player) % self.NUM_AGENTS, pos] = 1
# body position
for pos in geese[1:-1]:
b[8 + (p - player) % self.NUM_AGENTS, pos] = 1
# tip position
for pos in geese[-1:]:
b[12 + (p - player) % self.NUM_AGENTS, pos] = 1
# previous head positon: see below
# code attached below: line 16,17,18,19
# potential next move
for pos in geese[:1]:
b[20 + (p - player) % self.NUM_AGENTS, (pos - 1)%77] = 1
b[20 + (p - player) % self.NUM_AGENTS, (pos + 1)%77] = 1
b[20 + (p - player) % self.NUM_AGENTS, (pos - 11)%77] = 1
b[20 + (p - player) % self.NUM_AGENTS, (pos + 11)%77] = 1
# the impossible part will be removed in the previous head positions
# snake length for each player
b[24 + (p - player) % self.NUM_AGENTS, :] = len(geese)/77
# snake last second grid
for pos in geese[-2:-1]:
b[28 + (p - player) % self.NUM_AGENTS, pos] = 1
# snake last third grid
for pos in geese[-3:-2]:
b[32 + (p - player) % self.NUM_AGENTS, pos] = 1
# ordered grid snake
for gridi, gridpos in enumerate(geese):
b[36 + (p - player) % self.NUM_AGENTS, gridpos] = (len(geese) - gridi)/20
# previous head position
if len(self.obs_list) > 1:
obs_prev = self.obs_list[-2][0]['observation']
for p, geese in enumerate(obs_prev['geese']):
for pos in geese[:1]:
b[16 + (p - player) % self.NUM_AGENTS, pos] = 1
b[20 + (p - player) % self.NUM_AGENTS, pos] = 0
b[40, :] = b[0:4, :].sum(axis = 0) # all heads
b[41, ] = b[4:8, :].sum(axis = 0) # all wholes
b[42, ] = b[8:12, :].sum(axis = 0) # all bodies
b[43, ] = b[12:16, :].sum(axis = 0) # all tails
b[44, ] = b[16:20, :].sum(axis = 0) # all previous heads
b[45, ] = b[20:24, :].max(axis = 0) # all potential steps
b[46, ] = b[28:32, :].sum(axis = 0) # all last second grid
b[47, ] = b[32:36, :].sum(axis = 0) # all last third grid
b[48, ] = b[36:40, :].sum(axis = 0) # all ordered grid
# food
for pos in obs['food']:
b[49, pos] = 1
# step, distance to next starving
b[50, :] = obs['step']%40 / 40
# step, wether next turn will be starving
b[51, :] = (obs['step']+1)% 40 == 0
b[52, :] = obs['step']/200
# TBD: centralizing
player_head = obs['geese'][player][0]
player_head_x = player_head//11
player_head_y = player_head%11
return b.reshape(-1, 7, 11)
if __name__ == '__main__':
e = Environment()
for _ in range(100):
e.reset()
while not e.terminal():
print(e)
actions = {p: e.legal_actions(p) for p in e.turns()}
print([[e.action2str(a, p) for a in alist] for p, alist in actions.items()])
e.step({p: random.choice(alist) for p, alist in actions.items()})
print(e)
print(e.outcome())
|
[
"torch.nn.BatchNorm2d",
"random.choice",
"kaggle_environments.envs.hungry_geese.hungry_geese.Observation",
"handyrl.envs.kaggle.public_flood_goose.public_flood_agent_goose.step",
"torch.nn.Conv2d",
"torch.cat",
"numpy.zeros",
"torch.nn.Linear",
"handyrl.envs.kaggle.public_flood_goose.State.from_obs_conf",
"handyrl.envs.kaggle.public_flood_goose.Pos",
"kaggle_environments.envs.hungry_geese.hungry_geese.Configuration",
"kaggle_environments.make"
] |
[((962, 1073), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_dim', 'output_dim'], {'kernel_size': 'kernel_size', 'padding': 'self.edge_size', 'padding_mode': '"""circular"""'}), "(input_dim, output_dim, kernel_size=kernel_size, padding=self.\n edge_size, padding_mode='circular')\n", (971, 1073), True, 'import torch.nn as nn\n'), ((2383, 2416), 'torch.nn.Linear', 'nn.Linear', (['filters', '(4)'], {'bias': '(False)'}), '(filters, 4, bias=False)\n', (2392, 2416), True, 'import torch.nn as nn\n'), ((2439, 2476), 'torch.nn.Linear', 'nn.Linear', (['(filters * 2)', '(1)'], {'bias': '(False)'}), '(filters * 2, 1, bias=False)\n', (2448, 2476), True, 'import torch.nn as nn\n'), ((3336, 3356), 'kaggle_environments.make', 'make', (['"""hungry_geese"""'], {}), "('hungry_geese')\n", (3340, 3356), False, 'from kaggle_environments import make\n'), ((8813, 8847), 'handyrl.envs.kaggle.public_flood_goose.State.from_obs_conf', 'pfg.State.from_obs_conf', (['obs', 'conf'], {}), '(obs, conf)\n', (8836, 8847), True, 'import handyrl.envs.kaggle.public_flood_goose as pfg\n'), ((8865, 8905), 'handyrl.envs.kaggle.public_flood_goose.public_flood_agent_goose.step', 'pfg.public_flood_agent_goose.step', (['state'], {}), '(state)\n', (8898, 8905), True, 'import handyrl.envs.kaggle.public_flood_goose as pfg\n'), ((9303, 9365), 'numpy.zeros', 'np.zeros', (['(self.NUM_AGENTS * 13 + 1, 7 * 11)'], {'dtype': 'np.float32'}), '((self.NUM_AGENTS * 13 + 1, 7 * 11), dtype=np.float32)\n', (9311, 9365), True, 'import numpy as np\n'), ((1091, 1117), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['output_dim'], {}), '(output_dim)\n', (1105, 1117), True, 'import torch.nn as nn\n'), ((7762, 7803), 'kaggle_environments.envs.hungry_geese.hungry_geese.Configuration', 'Configuration', (["{'rows': 7, 'columns': 11}"], {}), "({'rows': 7, 'columns': 11})\n", (7775, 7803), False, 'from kaggle_environments.envs.hungry_geese.hungry_geese import Observation, Configuration, Action, GreedyAgent\n'), ((8054, 8070), 'kaggle_environments.envs.hungry_geese.hungry_geese.Observation', 'Observation', (['obs'], {}), '(obs)\n', (8065, 8070), False, 'from kaggle_environments.envs.hungry_geese.hungry_geese import Observation, Configuration, Action, GreedyAgent\n'), ((8617, 8653), 'handyrl.envs.kaggle.public_flood_goose.Pos', 'pfg.Pos', (['(pos_int // 11)', '(pos_int % 11)'], {}), '(pos_int // 11, pos_int % 11)\n', (8624, 8653), True, 'import handyrl.envs.kaggle.public_flood_goose as pfg\n'), ((2814, 2843), 'torch.cat', 'torch.cat', (['[h_head, h_avg]', '(1)'], {}), '([h_head, h_avg], 1)\n', (2823, 2843), False, 'import torch\n'), ((12919, 12939), 'random.choice', 'random.choice', (['alist'], {}), '(alist)\n', (12932, 12939), False, 'import random\n')]
|
"""Utilities for approximating gradients."""
import numpy as np
from utils.misc import process_inputs
from utils.simrunners import SimulationRunner
def local_linear_gradients(X, f, p=None, weights=None):
"""Estimate a collection of gradients from input/output pairs.
Given a set of input/output pairs, choose subsets of neighboring points and
build a local linear model for each subset. The gradients of these local
linear models comprise estimates of sampled gradients.
Parameters
----------
X : ndarray
M-by-m matrix that contains the m-dimensional inputs
f : ndarray
M-by-1 matrix that contains scalar outputs
p : int, optional
how many nearest neighbors to use when constructing the local linear
model (default 1)
weights : ndarray, optional
M-by-1 matrix that contains the weights for each observation (default
None)
Returns
-------
df : ndarray
M-by-m matrix that contains estimated partial derivatives approximated
by the local linear models
Notes
-----
If `p` is not specified, the default value is floor(1.7*m).
"""
X, M, m = process_inputs(X)
if M<=m: raise Exception('Not enough samples for local linear models.')
if p is None:
p = int(np.minimum(np.floor(1.7*m), M))
elif not isinstance(p, int):
raise TypeError('p must be an integer.')
if p < m+1 or p > M:
raise Exception('p must be between m+1 and M')
if weights is None:
weights = np.ones((M, 1)) / M
MM = np.minimum(int(np.ceil(10*m*np.log(m))), M-1)
df = np.zeros((MM, m))
for i in range(MM):
ii = np.random.randint(M)
x = X[ii,:]
D2 = np.sum((X - x)**2, axis=1)
ind = np.argsort(D2)
ind = ind[D2 != 0]
A = np.hstack((np.ones((p,1)), X[ind[:p],:])) * np.sqrt(weights[ii])
b = f[ind[:p]] * np.sqrt(weights[ii])
u = np.linalg.lstsq(A, b)[0]
df[i,:] = u[1:].T
return df
def finite_difference_gradients(X, fun, h=1e-6):
"""Compute finite difference gradients with a given interface.
Parameters
----------
X : ndarray
M-by-m matrix that contains the points to estimate the gradients with
finite differences
fun : function
function that returns the simulation's quantity of interest given inputs
h : float, optional
the finite difference step size (default 1e-6)
Returns
-------
df : ndarray
M-by-m matrix that contains estimated partial derivatives approximated
by finite differences
"""
X, M, m = process_inputs(X)
# points to run simulations including the perturbed inputs
XX = np.kron(np.ones((m+1, 1)),X) + \
h*np.kron(np.vstack((np.zeros((1, m)), np.eye(m))), np.ones((M, 1)))
# run the simulation
if isinstance(fun, SimulationRunner):
F = fun.run(XX)
else:
F = SimulationRunner(fun).run(XX)
df = (F[M:].reshape((m, M)).transpose() - F[:M]) / h
return df.reshape((M,m))
|
[
"numpy.eye",
"numpy.sqrt",
"numpy.ones",
"numpy.log",
"numpy.floor",
"numpy.argsort",
"numpy.sum",
"numpy.zeros",
"numpy.random.randint",
"utils.simrunners.SimulationRunner",
"numpy.linalg.lstsq",
"utils.misc.process_inputs"
] |
[((1186, 1203), 'utils.misc.process_inputs', 'process_inputs', (['X'], {}), '(X)\n', (1200, 1203), False, 'from utils.misc import process_inputs\n'), ((1646, 1663), 'numpy.zeros', 'np.zeros', (['(MM, m)'], {}), '((MM, m))\n', (1654, 1663), True, 'import numpy as np\n'), ((2664, 2681), 'utils.misc.process_inputs', 'process_inputs', (['X'], {}), '(X)\n', (2678, 2681), False, 'from utils.misc import process_inputs\n'), ((1701, 1721), 'numpy.random.randint', 'np.random.randint', (['M'], {}), '(M)\n', (1718, 1721), True, 'import numpy as np\n'), ((1755, 1783), 'numpy.sum', 'np.sum', (['((X - x) ** 2)'], {'axis': '(1)'}), '((X - x) ** 2, axis=1)\n', (1761, 1783), True, 'import numpy as np\n'), ((1796, 1810), 'numpy.argsort', 'np.argsort', (['D2'], {}), '(D2)\n', (1806, 1810), True, 'import numpy as np\n'), ((1561, 1576), 'numpy.ones', 'np.ones', (['(M, 1)'], {}), '((M, 1))\n', (1568, 1576), True, 'import numpy as np\n'), ((1894, 1914), 'numpy.sqrt', 'np.sqrt', (['weights[ii]'], {}), '(weights[ii])\n', (1901, 1914), True, 'import numpy as np\n'), ((1940, 1960), 'numpy.sqrt', 'np.sqrt', (['weights[ii]'], {}), '(weights[ii])\n', (1947, 1960), True, 'import numpy as np\n'), ((1973, 1994), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'b'], {}), '(A, b)\n', (1988, 1994), True, 'import numpy as np\n'), ((2763, 2782), 'numpy.ones', 'np.ones', (['(m + 1, 1)'], {}), '((m + 1, 1))\n', (2770, 2782), True, 'import numpy as np\n'), ((1326, 1343), 'numpy.floor', 'np.floor', (['(1.7 * m)'], {}), '(1.7 * m)\n', (1334, 1343), True, 'import numpy as np\n'), ((2848, 2863), 'numpy.ones', 'np.ones', (['(M, 1)'], {}), '((M, 1))\n', (2855, 2863), True, 'import numpy as np\n'), ((2979, 3000), 'utils.simrunners.SimulationRunner', 'SimulationRunner', (['fun'], {}), '(fun)\n', (2995, 3000), False, 'from utils.simrunners import SimulationRunner\n'), ((1619, 1628), 'numpy.log', 'np.log', (['m'], {}), '(m)\n', (1625, 1628), True, 'import numpy as np\n'), ((1861, 1876), 'numpy.ones', 'np.ones', (['(p, 1)'], {}), '((p, 1))\n', (1868, 1876), True, 'import numpy as np\n'), ((2817, 2833), 'numpy.zeros', 'np.zeros', (['(1, m)'], {}), '((1, m))\n', (2825, 2833), True, 'import numpy as np\n'), ((2835, 2844), 'numpy.eye', 'np.eye', (['m'], {}), '(m)\n', (2841, 2844), True, 'import numpy as np\n')]
|
import numpy as np
import pandas as pd
from os.path import join as oj
import os
import pygsheets
import pandas as pd
import sys
import inspect
from datetime import datetime, timedelta
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
sys.path.append(parentdir + '/modeling')
import load_data
from fit_and_predict import fit_and_predict_ensemble
from functions import merge_data
from viz import viz_interactive
import matplotlib.pyplot as plt
import plotly.express as px
import plotly
def predictions_plot(df_county, NUM_DAYS_LIST, num_days_in_past, output_key):
today = datetime.today().strftime("%B %d")
day_past = (datetime.now() - timedelta(days=num_days_in_past)).strftime("%B %d")
pred_key = f'Predicted deaths by {today}\n(predicted on {day_past})'
deaths_key = f'Actual deaths by {today}'
d = df_county.rename(columns={
output_key: pred_key,
'tot_deaths': deaths_key,
})
minn = min(min(d[pred_key]), min(d[deaths_key])) + 1
maxx = max(max(d[pred_key]), max(d[deaths_key]))
px.colors.DEFAULT_PLOTLY_COLORS[:3] = ['rgb(239,138,98)','rgb(247,247,247)','rgb(103,169,207)']
fig = px.scatter(d,
x=deaths_key,
y=pred_key,
size='PopulationEstimate2018',
hover_name="CountyName",
hover_data=["CountyName", 'StateName'],
log_x=True, log_y=True)
fig.update_layout(shapes=[
dict(
type= 'line',
yref= 'y', y0=minn, y1=maxx,
xref= 'x', x0=minn, x1=maxx,
opacity=0.2
)
])
fig.update_layout(
paper_bgcolor='rgba(0,0,0,255)',
plot_bgcolor='rgba(0,0,0,255)',
template='plotly_dark',
title='County-level predictions'
)
plotly.offline.plot(fig, filename=oj(parentdir, 'results', 'predictions.html'), auto_open=False)
if __name__ == '__main__':
print('loading data...')
NUM_DAYS_LIST = [1, 2, 3, 4, 5, 6, 7]
df_county = load_data.load_county_level(data_dir=oj(parentdir, 'data'))
num_days_in_past = 3
output_key = f'<PASSWORD>ed Deaths {num_days_in_past}-day'
df_county = fit_and_predict_ensemble(df_county,
outcome='deaths',
mode='eval_mode',
target_day=np.array([num_days_in_past]),
output_key=output_key)
df_county[output_key] = [v[0] for v in df_county[output_key].values]
predictions_plot(df_county, NUM_DAYS_LIST, num_days_in_past, output_key)
|
[
"plotly.express.scatter",
"inspect.currentframe",
"os.path.join",
"os.path.dirname",
"numpy.array",
"datetime.datetime.now",
"datetime.datetime.today",
"datetime.timedelta",
"sys.path.append"
] |
[((284, 311), 'os.path.dirname', 'os.path.dirname', (['currentdir'], {}), '(currentdir)\n', (299, 311), False, 'import os\n'), ((312, 338), 'sys.path.append', 'sys.path.append', (['parentdir'], {}), '(parentdir)\n', (327, 338), False, 'import sys\n'), ((339, 379), 'sys.path.append', 'sys.path.append', (["(parentdir + '/modeling')"], {}), "(parentdir + '/modeling')\n", (354, 379), False, 'import sys\n'), ((1248, 1416), 'plotly.express.scatter', 'px.scatter', (['d'], {'x': 'deaths_key', 'y': 'pred_key', 'size': '"""PopulationEstimate2018"""', 'hover_name': '"""CountyName"""', 'hover_data': "['CountyName', 'StateName']", 'log_x': '(True)', 'log_y': '(True)'}), "(d, x=deaths_key, y=pred_key, size='PopulationEstimate2018',\n hover_name='CountyName', hover_data=['CountyName', 'StateName'], log_x=\n True, log_y=True)\n", (1258, 1416), True, 'import plotly.express as px\n'), ((246, 268), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (266, 268), False, 'import inspect\n'), ((681, 697), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (695, 697), False, 'from datetime import datetime, timedelta\n'), ((1969, 2013), 'os.path.join', 'oj', (['parentdir', '"""results"""', '"""predictions.html"""'], {}), "(parentdir, 'results', 'predictions.html')\n", (1971, 2013), True, 'from os.path import join as oj\n'), ((2188, 2209), 'os.path.join', 'oj', (['parentdir', '"""data"""'], {}), "(parentdir, 'data')\n", (2190, 2209), True, 'from os.path import join as oj\n'), ((2501, 2529), 'numpy.array', 'np.array', (['[num_days_in_past]'], {}), '([num_days_in_past])\n', (2509, 2529), True, 'import numpy as np\n'), ((732, 746), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (744, 746), False, 'from datetime import datetime, timedelta\n'), ((749, 781), 'datetime.timedelta', 'timedelta', ([], {'days': 'num_days_in_past'}), '(days=num_days_in_past)\n', (758, 781), False, 'from datetime import datetime, timedelta\n')]
|
"""
.. module:: cnn_train
:synopsis: Example nuts-ml pipeline for training a MLP on MNIST
"""
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import nutsflow as nf
import nutsml as nm
import numpy as np
from nutsml.network import PytorchNetwork
from utils import download_mnist, load_mnist
class Model(nn.Module):
"""Pytorch model"""
def __init__(self, device):
"""Construct model on given device, e.g. 'cpu' or 'cuda'"""
super(Model, self).__init__()
self.fc1 = nn.Linear(28 * 28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
self.to(device) # set device before constructing optimizer
# required properties of a model to be wrapped as PytorchNetwork!
self.device = device # 'cuda', 'cuda:0' or 'gpu'
self.losses = nn.CrossEntropyLoss() # can be list of loss functions
self.optimizer = optim.Adam(self.parameters())
def forward(self, x):
"""Forward pass through network for input x"""
x = x.view(-1, 28 * 28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def accuracy(y_true, y_pred):
"""Compute accuracy"""
from sklearn.metrics import accuracy_score
y_pred = [yp.argmax() for yp in y_pred]
return 100 * accuracy_score(y_true, y_pred)
def evaluate(network, x, y):
"""Evaluate network performance (here accuracy)"""
metrics = [accuracy]
build_batch = (nm.BuildBatch(64)
.input(0, 'vector', 'float32')
.output(1, 'number', 'int64'))
acc = zip(x, y) >> build_batch >> network.evaluate(metrics)
return acc
def train(network, epochs=3):
"""Train network for given number of epochs"""
print('loading data...')
filepath = download_mnist()
x_train, y_train, x_test, y_test = load_mnist(filepath)
plot = nm.PlotLines(None, every_sec=0.2)
build_batch = (nm.BuildBatch(128)
.input(0, 'vector', 'float32')
.output(1, 'number', 'int64'))
for epoch in range(epochs):
print('epoch', epoch + 1)
losses = (zip(x_train, y_train) >> nf.PrintProgress(x_train) >>
nf.Shuffle(1000) >> build_batch >>
network.train() >> plot >> nf.Collect())
acc_test = evaluate(network, x_test, y_test)
acc_train = evaluate(network, x_train, y_train)
print('train loss : {:.6f}'.format(np.mean(losses)))
print('train acc : {:.1f}'.format(acc_train))
print('test acc : {:.1f}'.format(acc_test))
if __name__ == '__main__':
print('creating model...')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = Model(device)
network = PytorchNetwork(model)
# network.load_weights()
network.print_layers((28 * 28,))
print('training network...')
train(network, epochs=3)
|
[
"numpy.mean",
"utils.load_mnist",
"torch.nn.CrossEntropyLoss",
"nutsml.network.PytorchNetwork",
"nutsflow.Collect",
"nutsml.PlotLines",
"utils.download_mnist",
"torch.cuda.is_available",
"nutsflow.Shuffle",
"nutsflow.PrintProgress",
"torch.nn.Linear",
"nutsml.BuildBatch",
"sklearn.metrics.accuracy_score"
] |
[((1856, 1872), 'utils.download_mnist', 'download_mnist', ([], {}), '()\n', (1870, 1872), False, 'from utils import download_mnist, load_mnist\n'), ((1912, 1932), 'utils.load_mnist', 'load_mnist', (['filepath'], {}), '(filepath)\n', (1922, 1932), False, 'from utils import download_mnist, load_mnist\n'), ((1945, 1978), 'nutsml.PlotLines', 'nm.PlotLines', (['None'], {'every_sec': '(0.2)'}), '(None, every_sec=0.2)\n', (1957, 1978), True, 'import nutsml as nm\n'), ((2807, 2828), 'nutsml.network.PytorchNetwork', 'PytorchNetwork', (['model'], {}), '(model)\n', (2821, 2828), False, 'from nutsml.network import PytorchNetwork\n'), ((550, 573), 'torch.nn.Linear', 'nn.Linear', (['(28 * 28)', '(500)'], {}), '(28 * 28, 500)\n', (559, 573), True, 'import torch.nn as nn\n'), ((593, 612), 'torch.nn.Linear', 'nn.Linear', (['(500)', '(256)'], {}), '(500, 256)\n', (602, 612), True, 'import torch.nn as nn\n'), ((632, 650), 'torch.nn.Linear', 'nn.Linear', (['(256)', '(10)'], {}), '(256, 10)\n', (641, 650), True, 'import torch.nn as nn\n'), ((875, 896), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (894, 896), True, 'import torch.nn as nn\n'), ((1371, 1401), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (1385, 1401), False, 'from sklearn.metrics import accuracy_score\n'), ((2730, 2755), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2753, 2755), False, 'import torch\n'), ((2354, 2366), 'nutsflow.Collect', 'nf.Collect', ([], {}), '()\n', (2364, 2366), True, 'import nutsflow as nf\n'), ((2520, 2535), 'numpy.mean', 'np.mean', (['losses'], {}), '(losses)\n', (2527, 2535), True, 'import numpy as np\n'), ((1532, 1549), 'nutsml.BuildBatch', 'nm.BuildBatch', (['(64)'], {}), '(64)\n', (1545, 1549), True, 'import nutsml as nm\n'), ((1998, 2016), 'nutsml.BuildBatch', 'nm.BuildBatch', (['(128)'], {}), '(128)\n', (2011, 2016), True, 'import nutsml as nm\n'), ((2274, 2290), 'nutsflow.Shuffle', 'nf.Shuffle', (['(1000)'], {}), '(1000)\n', (2284, 2290), True, 'import nutsflow as nf\n'), ((2227, 2252), 'nutsflow.PrintProgress', 'nf.PrintProgress', (['x_train'], {}), '(x_train)\n', (2243, 2252), True, 'import nutsflow as nf\n')]
|
"""
All the data sources are scattered around the D drive, this script
organizes it and consolidates it into the "Data" subfolder in the
"Chapter 2 Dune Aspect Ratio" folder.
<NAME>, 5/6/2020
"""
import shutil as sh
import pandas as pd
import numpy as np
import os
# Set the data directory to save files into
DATA_DIR = os.path.join('..', 'Data')
# Set the directory with most of the XBeach data
XB_DIR = os.path.join('..', '..', 'XBeach Modelling', 'Dune Complexity Experiments')
def bogue_lidar_data():
"""
Load all Bogue Banks morphometrics from 1997-2016
and return a dataframe of aspect ratios and natural
dune volumes
"""
# Set a list of years
years = [1997, 1998, 1999, 2000, 2004, 2005, 2010, 2011, 2014, 2016]
# Set an empty dataframe
morpho = pd.DataFrame()
# Loop through the years and load the data
for year in years:
# Set a path to the data and load
path = os.path.join('..', '..', 'Chapter 1 Sand Fences', 'Data', f'Morphometrics for Bogue {year}.csv')
temp = pd.read_csv(path, delimiter=',', header=0)
# Add a column for the year
temp['Year'] = year
# Append the data to the main dataframe
morpho = pd.concat([morpho, temp])
# Make a new dataframe with just aspect ratios and volumes
data = pd.DataFrame()
data['Year'] = morpho['Year']
data['Ratio'] = (morpho['y_crest'] - morpho['y_toe']) / (morpho['x_heel'] - morpho['x_toe'])
data['Volume'] = morpho['Natural Dune Volume']
# Save the Dataframe to the data folder
save_name = os.path.join(DATA_DIR, 'Bogue Banks Volumes and Aspect Ratios.csv')
data.to_csv(save_name, index=False)
print(f'File Saved: {save_name}')
def initial_profiles():
"""
Take all the initial profiles and place them
into a Dataframe to save as a .csv
Make a column for the experiment names, a column for
the X-grids, and columns for the profiles
"""
# Set the experiment names. The initial profiles are the same regardless of
# the surge level so just take from the half surge simulations
experiments = ['Toes Joined', 'Crests Joined', 'Heels Joined', 'Fenced']
# Set an empty dataframe
profiles = pd.DataFrame()
# Loop through the experiments
for experiment in experiments:
# Set a path to the profiles
PROFILE_DIR = os.path.join(XB_DIR, f'{experiment} Half Surge')
# Load the x-grid
x_grid_fname = os.path.join(PROFILE_DIR, 'Dune Complexity 1 1', 'x.grd')
x_grid = np.loadtxt(x_grid_fname)
# Load the dunes
dune_1 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity 1 1', 'bed.dep'))
dune_2 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity 20 1', 'bed.dep'))
dune_3 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity 40 1', 'bed.dep'))
dune_4 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity 60 1', 'bed.dep'))
dune_5 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity -20 1', 'bed.dep'))
dune_6 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity -40 1', 'bed.dep'))
dune_7 = np.loadtxt(fname=os.path.join(PROFILE_DIR, 'Dune Complexity -60 1', 'bed.dep'))
# Put all of the stretched dunes into a dataframe
dune_dict = {
'Experiment': experiment.replace('Joined', 'Aligned'),
'X': x_grid,
'1 pct': dune_1,
'20 pct': dune_2,
'40 pct': dune_3,
'60 pct': dune_4,
'-20 pct': dune_5,
'-40 pct': dune_6,
'-60 pct': dune_7,
}
dune_data = pd.DataFrame(data=dune_dict)
# Concatenate the Dataframes
profiles = pd.concat([profiles, dune_data])
# Save the Dataframe to the data folder
save_name = os.path.join(DATA_DIR, 'Initial Profiles.csv')
profiles.to_csv(save_name, index=False)
print(f'File Saved: {save_name}')
def initial_ratios():
"""
Make a .csv file with the initial dune aspect ratios and
dune volumes for the profiles used in the simulations
"""
# Set the experiment names. The initial profiles are the same regardless of
# the surge level so just take from the half surge simulations
experiments = ['Toes Joined', 'Crests Joined', 'Heels Joined', 'Fenced']
# Set an empty dataframe
ratios = pd.DataFrame()
# Loop through the experiments
for experiment in experiments:
# Load the initial dune ratios
init_ratio_fname = os.path.join(XB_DIR, f'{experiment} Half Surge', 'Setup Data', 'Initial Dune Ratios.csv')
init_ratios = pd.read_csv(init_ratio_fname, delimiter=',', header=None, names=['Stretch', 'Ratio', 'Volume'])
# Add a column for the experiment name
init_ratios['Experiment'] = experiment.replace('Joined', 'Aligned')
# Concatenate the data
ratios = pd.concat([ratios, init_ratios])
# Save the Dataframe to the data folder
save_name = os.path.join(DATA_DIR, 'Initial Dune Ratios.csv')
ratios.to_csv(save_name, index=False)
print(f'File Saved: {save_name}')
def joaquin_and_florence():
"""
Load the storm surge time series' from
Tropical Storm Joaquin and Hurricane
Florence, put them in a .csv file
"""
# Loop through the storms
for storm in ['Joaquin', 'Florence']:
# Load the tide predictions and observations as a Pandas dataframe
filename = os.path.join(XB_DIR, 'Setup Data', f'{storm}.csv')
if storm == 'Joaquin':
parse_dates_cols = ['Date', 'Time']
data_columns = ['Time', 'Predicted', 'Observed']
else:
parse_dates_cols = ['Date', 'Time (GMT)']
data_columns = ['Time', 'Predicted', 'Preliminary', 'Observed']
data = pd.read_csv(filename, delimiter=',', parse_dates=[parse_dates_cols], header=0)
data.columns = data_columns
# Calculate the non-tidal residual
data['NTR'] = data['Observed'] - data['Predicted']
# Load the time data
times = data['Time'].tolist()
data['String Times'] = [t.strftime('%Y-%m-%d %H') for t in times]
# Save the DataFrame as a .csv
save_name = os.path.join(DATA_DIR, f'{storm}.csv')
data.to_csv(save_name, index=False)
def move_csv_output():
"""
Take the .csv files and move them into the "Data" folder,
then rename them from "xboutput.nc" to the name of the simulation
"""
# Set lists with the dune configurations, storm surge
# modifications, storm duration increases, and dune aspect
# ratio stretches
dunes = ['Toes Joined', 'Crests Joined', 'Heels Joined', 'Fenced']
surges = ['Half', 'Normal', 'One Half']
durations = [1, 12, 18, 24, 36, 48]
stretches = [-60, -40, -20, 1, 20, 40, 60]
# Loop through the dunes and surges
for dune in dunes:
for surge in surges:
# Set the experiment folder name
experiment_name = f'{dune} {surge} Surge'
experiment_folder = os.path.join(XB_DIR, experiment_name)
# Make a target folder to move the runs into
save_folder = os.path.join(DATA_DIR, 'XBeach Morphometrics', experiment_name)
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# Loop through the dunes and durations within the experiment
for stretch in stretches:
for duration in durations:
# Set the simulation folder
run_name = f'Dune Complexity {stretch} {duration}'
simulation_folder = os.path.join(experiment_folder, run_name)
# Set the XBeach output file as the source. Set the destination
# name. Then copy the file over
source = os.path.join(simulation_folder, f'{run_name} Morphometrics.csv')
if os.path.exists(source):
destination = os.path.join(save_folder, f'{run_name} Morphometrics.csv')
if not os.path.exists(destination):
sh.copy(source, destination)
print(f'File Successfully Copied: {destination}')
else:
print(f'File already exists: {destination}')
else:
print(f'FILE DOES NOT EXIST: {source}')
def move_field_data():
"""
Move the field data morphometrics from 2017
and 2018 into the data folder
"""
# Set the years
years = [2017, 2018]
# Set a path to the field data
field_dir = os.path.join('..', '..', 'Bogue Banks Field Data')
# Loop through the years
for year in years:
# Identify the source file
source = os.path.join(field_dir, str(year), f'Morphometrics for Bogue Banks {year}.csv')
# Set the target
destination = os.path.join(DATA_DIR, f'Morphometrics for Bogue Banks {year}.csv')
# Copy the file
sh.copy(source, destination)
def move_netcdf_output():
"""
Take the netCDF files and move them into the "Data" folder,
then rename them from "xboutput.nc" to the name of the simulation
"""
# Set lists with the dune configurations, storm surge
# modifications, storm duration increases, and dune aspect
# ratio stretches
dunes = ['Toes Joined', 'Crests Joined', 'Heels Joined', 'Fenced']
surges = ['Half', 'Normal', 'One Half']
durations = [1, 12, 18, 24, 36, 48]
stretches = [-60, -40, -20, 1, 20, 40, 60]
# Loop through the dunes and surges
for dune in dunes:
for surge in surges:
# Set the experiment folder name
experiment_name = f'{dune} {surge} Surge'
experiment_folder = os.path.join(XB_DIR, experiment_name)
# Make a target folder to move the runs into
save_folder = os.path.join(DATA_DIR, 'XBeach Output', experiment_name)
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# Loop through the dunes and durations within the experiment
for stretch in stretches:
for duration in durations:
# Set the simulation folder
run_name = f'Dune Complexity {stretch} {duration}'
simulation_folder = os.path.join(experiment_folder, run_name)
# Set the XBeach output file as the source. Set the destination
# name. Then copy the file over
source = os.path.join(simulation_folder, 'xboutput.nc')
if os.path.exists(source):
destination = os.path.join(save_folder, f'{run_name}.nc')
if not os.path.exists(destination):
sh.copy(source, destination)
print(f'File Successfully Copied: {destination}')
else:
print(f'File already exists: {destination}')
else:
print(f'FILE DOES NOT EXIST: {source}')
def surge_time_series():
"""
Put all the storm time series' into
a .csv file that can be loaded as a
DataFrame
"""
# Set a list of storm surge modifiers
# and storm duration increases
surges, surge_labels = [0.5, 1.0, 1.5], ['Half', 'Normal', 'One Half']
durations = [1, 12, 18, 24, 36, 48]
# Make an empty DataFrame to loop into
surge_df = pd.DataFrame()
# Loop through the surges
for surge, label in zip(surges, surge_labels):
# Loop through the durations
for duration in durations:
# The DataFrame won't work if the columns are different
# lengths so place them all in a preset 125 "hour" long
# array so that they'll fit in the DataFrame
time_series = np.full((1, 125), fill_value=np.nan)[0]
# Load the data and place it in the time series NaN array
filename = os.path.join(XB_DIR, f'Toes Joined {label} Surge', f'Dune Complexity 1 {duration}', 'ntr.txt')
ntr = np.genfromtxt(filename, dtype=np.float32)
time_series[:len(ntr)] = ntr
# Place the time series in the dict
surge_df[f'{label} {duration}'] = time_series
# Save the DataFrame as a .csv file
save_name = os.path.join(DATA_DIR, 'Storm Surge Time Series.csv')
surge_df.to_csv(save_name, index=False)
def main():
"""
Main program function to consolidate all the
data sources
"""
# Make a .csv file with the initial profiles used
# initial_profiles()
# Make a .csv file with the initial dune ratios
# initial_ratios()
# Make a .csv file with all the natural dune volumes
# and aspect ratios measured from Bogue Banks LiDAR
# bogue_lidar_data()
# Make a .csv file with the storm surge time
# series' for all the model runs
# surge_time_series()
# Make a .csv file with storm surge data
# for Tropical Storm Joaquin and <NAME>
# joaquin_and_florence()
# Move the netCDF output files into the Data folder
# and rename them for the run name. Move the .csv
# files with the morphometrics from the runs too
# move_csv_output()
# move_netcdf_output()
# Move the Bogue Banks field data morphometrics
# from 2017 and 2018 into the data folder
move_field_data()
if __name__ == '__main__':
main()
|
[
"os.path.exists",
"numpy.genfromtxt",
"pandas.read_csv",
"os.path.join",
"os.mkdir",
"shutil.copy",
"pandas.DataFrame",
"numpy.full",
"numpy.loadtxt",
"pandas.concat"
] |
[((337, 363), 'os.path.join', 'os.path.join', (['""".."""', '"""Data"""'], {}), "('..', 'Data')\n", (349, 363), False, 'import os\n'), ((426, 501), 'os.path.join', 'os.path.join', (['""".."""', '""".."""', '"""XBeach Modelling"""', '"""Dune Complexity Experiments"""'], {}), "('..', '..', 'XBeach Modelling', 'Dune Complexity Experiments')\n", (438, 501), False, 'import os\n'), ((828, 842), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (840, 842), True, 'import pandas as pd\n'), ((1375, 1389), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1387, 1389), True, 'import pandas as pd\n'), ((1639, 1706), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""Bogue Banks Volumes and Aspect Ratios.csv"""'], {}), "(DATA_DIR, 'Bogue Banks Volumes and Aspect Ratios.csv')\n", (1651, 1706), False, 'import os\n'), ((2308, 2322), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2320, 2322), True, 'import pandas as pd\n'), ((3987, 4033), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""Initial Profiles.csv"""'], {}), "(DATA_DIR, 'Initial Profiles.csv')\n", (3999, 4033), False, 'import os\n'), ((4559, 4573), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (4571, 4573), True, 'import pandas as pd\n'), ((5203, 5252), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""Initial Dune Ratios.csv"""'], {}), "(DATA_DIR, 'Initial Dune Ratios.csv')\n", (5215, 5252), False, 'import os\n'), ((8976, 9026), 'os.path.join', 'os.path.join', (['""".."""', '""".."""', '"""Bogue Banks Field Data"""'], {}), "('..', '..', 'Bogue Banks Field Data')\n", (8988, 9026), False, 'import os\n'), ((11958, 11972), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (11970, 11972), True, 'import pandas as pd\n'), ((12864, 12917), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""Storm Surge Time Series.csv"""'], {}), "(DATA_DIR, 'Storm Surge Time Series.csv')\n", (12876, 12917), False, 'import os\n'), ((978, 1078), 'os.path.join', 'os.path.join', (['""".."""', '""".."""', '"""Chapter 1 Sand Fences"""', '"""Data"""', 'f"""Morphometrics for Bogue {year}.csv"""'], {}), "('..', '..', 'Chapter 1 Sand Fences', 'Data',\n f'Morphometrics for Bogue {year}.csv')\n", (990, 1078), False, 'import os\n'), ((1091, 1133), 'pandas.read_csv', 'pd.read_csv', (['path'], {'delimiter': '""","""', 'header': '(0)'}), "(path, delimiter=',', header=0)\n", (1102, 1133), True, 'import pandas as pd\n'), ((1271, 1296), 'pandas.concat', 'pd.concat', (['[morpho, temp]'], {}), '([morpho, temp])\n', (1280, 1296), True, 'import pandas as pd\n'), ((2460, 2508), 'os.path.join', 'os.path.join', (['XB_DIR', 'f"""{experiment} Half Surge"""'], {}), "(XB_DIR, f'{experiment} Half Surge')\n", (2472, 2508), False, 'import os\n'), ((2562, 2619), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity 1 1"""', '"""x.grd"""'], {}), "(PROFILE_DIR, 'Dune Complexity 1 1', 'x.grd')\n", (2574, 2619), False, 'import os\n'), ((2638, 2662), 'numpy.loadtxt', 'np.loadtxt', (['x_grid_fname'], {}), '(x_grid_fname)\n', (2648, 2662), True, 'import numpy as np\n'), ((3801, 3829), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'dune_dict'}), '(data=dune_dict)\n', (3813, 3829), True, 'import pandas as pd\n'), ((3890, 3922), 'pandas.concat', 'pd.concat', (['[profiles, dune_data]'], {}), '([profiles, dune_data])\n', (3899, 3922), True, 'import pandas as pd\n'), ((4718, 4811), 'os.path.join', 'os.path.join', (['XB_DIR', 'f"""{experiment} Half Surge"""', '"""Setup Data"""', '"""Initial Dune Ratios.csv"""'], {}), "(XB_DIR, f'{experiment} Half Surge', 'Setup Data',\n 'Initial Dune Ratios.csv')\n", (4730, 4811), False, 'import os\n'), ((4831, 4930), 'pandas.read_csv', 'pd.read_csv', (['init_ratio_fname'], {'delimiter': '""","""', 'header': 'None', 'names': "['Stretch', 'Ratio', 'Volume']"}), "(init_ratio_fname, delimiter=',', header=None, names=['Stretch',\n 'Ratio', 'Volume'])\n", (4842, 4930), True, 'import pandas as pd\n'), ((5106, 5138), 'pandas.concat', 'pd.concat', (['[ratios, init_ratios]'], {}), '([ratios, init_ratios])\n', (5115, 5138), True, 'import pandas as pd\n'), ((5685, 5735), 'os.path.join', 'os.path.join', (['XB_DIR', '"""Setup Data"""', 'f"""{storm}.csv"""'], {}), "(XB_DIR, 'Setup Data', f'{storm}.csv')\n", (5697, 5735), False, 'import os\n'), ((6042, 6120), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'delimiter': '""","""', 'parse_dates': '[parse_dates_cols]', 'header': '(0)'}), "(filename, delimiter=',', parse_dates=[parse_dates_cols], header=0)\n", (6053, 6120), True, 'import pandas as pd\n'), ((6473, 6511), 'os.path.join', 'os.path.join', (['DATA_DIR', 'f"""{storm}.csv"""'], {}), "(DATA_DIR, f'{storm}.csv')\n", (6485, 6511), False, 'import os\n'), ((9270, 9337), 'os.path.join', 'os.path.join', (['DATA_DIR', 'f"""Morphometrics for Bogue Banks {year}.csv"""'], {}), "(DATA_DIR, f'Morphometrics for Bogue Banks {year}.csv')\n", (9282, 9337), False, 'import os\n'), ((9374, 9402), 'shutil.copy', 'sh.copy', (['source', 'destination'], {}), '(source, destination)\n', (9381, 9402), True, 'import shutil as sh\n'), ((7324, 7361), 'os.path.join', 'os.path.join', (['XB_DIR', 'experiment_name'], {}), '(XB_DIR, experiment_name)\n', (7336, 7361), False, 'import os\n'), ((7449, 7512), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""XBeach Morphometrics"""', 'experiment_name'], {}), "(DATA_DIR, 'XBeach Morphometrics', experiment_name)\n", (7461, 7512), False, 'import os\n'), ((10175, 10212), 'os.path.join', 'os.path.join', (['XB_DIR', 'experiment_name'], {}), '(XB_DIR, experiment_name)\n', (10187, 10212), False, 'import os\n'), ((10300, 10356), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""XBeach Output"""', 'experiment_name'], {}), "(DATA_DIR, 'XBeach Output', experiment_name)\n", (10312, 10356), False, 'import os\n'), ((12496, 12594), 'os.path.join', 'os.path.join', (['XB_DIR', 'f"""Toes Joined {label} Surge"""', 'f"""Dune Complexity 1 {duration}"""', '"""ntr.txt"""'], {}), "(XB_DIR, f'Toes Joined {label} Surge',\n f'Dune Complexity 1 {duration}', 'ntr.txt')\n", (12508, 12594), False, 'import os\n'), ((12610, 12651), 'numpy.genfromtxt', 'np.genfromtxt', (['filename'], {'dtype': 'np.float32'}), '(filename, dtype=np.float32)\n', (12623, 12651), True, 'import numpy as np\n'), ((2726, 2785), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity 1 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity 1 1', 'bed.dep')\n", (2738, 2785), False, 'import os\n'), ((2822, 2882), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity 20 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity 20 1', 'bed.dep')\n", (2834, 2882), False, 'import os\n'), ((2919, 2979), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity 40 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity 40 1', 'bed.dep')\n", (2931, 2979), False, 'import os\n'), ((3016, 3076), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity 60 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity 60 1', 'bed.dep')\n", (3028, 3076), False, 'import os\n'), ((3113, 3174), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity -20 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity -20 1', 'bed.dep')\n", (3125, 3174), False, 'import os\n'), ((3211, 3272), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity -40 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity -40 1', 'bed.dep')\n", (3223, 3272), False, 'import os\n'), ((3309, 3370), 'os.path.join', 'os.path.join', (['PROFILE_DIR', '"""Dune Complexity -60 1"""', '"""bed.dep"""'], {}), "(PROFILE_DIR, 'Dune Complexity -60 1', 'bed.dep')\n", (3321, 3370), False, 'import os\n'), ((7533, 7560), 'os.path.exists', 'os.path.exists', (['save_folder'], {}), '(save_folder)\n', (7547, 7560), False, 'import os\n'), ((7579, 7600), 'os.mkdir', 'os.mkdir', (['save_folder'], {}), '(save_folder)\n', (7587, 7600), False, 'import os\n'), ((10377, 10404), 'os.path.exists', 'os.path.exists', (['save_folder'], {}), '(save_folder)\n', (10391, 10404), False, 'import os\n'), ((10423, 10444), 'os.mkdir', 'os.mkdir', (['save_folder'], {}), '(save_folder)\n', (10431, 10444), False, 'import os\n'), ((12359, 12395), 'numpy.full', 'np.full', (['(1, 125)'], {'fill_value': 'np.nan'}), '((1, 125), fill_value=np.nan)\n', (12366, 12395), True, 'import numpy as np\n'), ((7924, 7965), 'os.path.join', 'os.path.join', (['experiment_folder', 'run_name'], {}), '(experiment_folder, run_name)\n', (7936, 7965), False, 'import os\n'), ((8136, 8200), 'os.path.join', 'os.path.join', (['simulation_folder', 'f"""{run_name} Morphometrics.csv"""'], {}), "(simulation_folder, f'{run_name} Morphometrics.csv')\n", (8148, 8200), False, 'import os\n'), ((8225, 8247), 'os.path.exists', 'os.path.exists', (['source'], {}), '(source)\n', (8239, 8247), False, 'import os\n'), ((10768, 10809), 'os.path.join', 'os.path.join', (['experiment_folder', 'run_name'], {}), '(experiment_folder, run_name)\n', (10780, 10809), False, 'import os\n'), ((10980, 11026), 'os.path.join', 'os.path.join', (['simulation_folder', '"""xboutput.nc"""'], {}), "(simulation_folder, 'xboutput.nc')\n", (10992, 11026), False, 'import os\n'), ((11051, 11073), 'os.path.exists', 'os.path.exists', (['source'], {}), '(source)\n', (11065, 11073), False, 'import os\n'), ((8288, 8346), 'os.path.join', 'os.path.join', (['save_folder', 'f"""{run_name} Morphometrics.csv"""'], {}), "(save_folder, f'{run_name} Morphometrics.csv')\n", (8300, 8346), False, 'import os\n'), ((11114, 11157), 'os.path.join', 'os.path.join', (['save_folder', 'f"""{run_name}.nc"""'], {}), "(save_folder, f'{run_name}.nc')\n", (11126, 11157), False, 'import os\n'), ((8379, 8406), 'os.path.exists', 'os.path.exists', (['destination'], {}), '(destination)\n', (8393, 8406), False, 'import os\n'), ((8437, 8465), 'shutil.copy', 'sh.copy', (['source', 'destination'], {}), '(source, destination)\n', (8444, 8465), True, 'import shutil as sh\n'), ((11190, 11217), 'os.path.exists', 'os.path.exists', (['destination'], {}), '(destination)\n', (11204, 11217), False, 'import os\n'), ((11248, 11276), 'shutil.copy', 'sh.copy', (['source', 'destination'], {}), '(source, destination)\n', (11255, 11276), True, 'import shutil as sh\n')]
|
def end_of_import():
return 0
def end_of_init():
return 0
def end_of_computing():
return 0
import numpy as np
from sklearn.linear_model import LinearRegression
end_of_import()
X = np.array(range(0,100000)).reshape(-1, 1)
# y = 2x + 3
y = np.dot(X, 2) + 3
end_of_init()
reg = LinearRegression().fit(X, y)
end_of_computing()
|
[
"numpy.dot",
"sklearn.linear_model.LinearRegression"
] |
[((254, 266), 'numpy.dot', 'np.dot', (['X', '(2)'], {}), '(X, 2)\n', (260, 266), True, 'import numpy as np\n'), ((292, 310), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (308, 310), False, 'from sklearn.linear_model import LinearRegression\n')]
|
#
#
# Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the License); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from sympy.ntheory import factorint
import numpy as np
from sympy.combinatorics import Permutation
import io
import math
from config.strtools import *
import itertools
import struct
import config.formats
# Conversion of double to fixed point values
#
# - 8000 gives 8000 in C (int16)
# So when it is multiplied it will give the wrong sign for the result
# of the multiplication except if DSPE instructions with saturation are used
# to compute the negate (and we should get 7FFF).
#
# So for cortex-m without DSP extension, we should try to use 8001
# It is done but not yet tested.
def to_q63(v,dspe):
r = int(round(v * 2**63))
if (r > 0x07FFFFFFFFFFFFFFF):
r = 0x07FFFFFFFFFFFFFFF
if (r < -0x08000000000000000):
if dspe:
r = -0x08000000000000000
else:
r = -0x07FFFFFFFFFFFFFFF
return ("0x%s" % format(struct.unpack('<Q', struct.pack('<q', r))[0],'016X'))
def to_q31(v,dspe):
r = int(round(v * 2**31))
if (r > 0x07FFFFFFF):
r = 0x07FFFFFFF
if (r < -0x080000000):
if dspe:
r = -0x080000000
else:
r = -0x07FFFFFFF
return ("0x%s" % format(struct.unpack('<I', struct.pack('<i', r))[0],'08X'))
def to_q15(v,dspe):
r = int(round(v * 2**15))
if (r > 0x07FFF):
r = 0x07FFF
if (r < -0x08000):
if dspe:
r = -0x08000
else:
r = -0x07FFF
return ("0x%s" % format(struct.unpack('<H', struct.pack('<h', r))[0],'04X'))
def to_q7(v,dspe):
r = int(round(v * 2**7))
if (r > 0x07F):
r = 0x07F
if (r < -0x080):#
if dspe:
r = -0x080
else:
r = -0x07F
return ("0x%s" % format(struct.unpack('<B', struct.pack('<b', r))[0],'02X'))
Q7=1
Q15=2
Q31=3
F16=4
F32=5
F64=6
# In the final C++ code, we have a loop for a given radix.
# The input list here has not grouped the factors.
# The list need to be transformed into a list of pair.
# The pair being (radix,exponent)
def groupFactors(factors):
n = 0
current=-1
result=[]
for f in factors:
if f != current:
if current != -1:
result = result + [current,n]
current=f
n=1
else:
n=n+1
result = result + [current,n]
return(result)
# Compute the grouped factors for the the FFT length originaln
# where the only possible radix are in primitiveFactors list.
def getFactors(primitiveFactors,originaln):
factors=[]
length=[]
primitiveFactors.sort(reverse=True)
n = originaln
while (n > 1) and primitiveFactors:
if (n % primitiveFactors[0] == 0):
factors.append(primitiveFactors[0])
n = n // primitiveFactors[0]
else:
primitiveFactors=primitiveFactors[1:]
# When lowest factors are at the beginning (like 2)
# we use a special implementation of the loopcore template
# and it is removing some cycles.
# So, we will get (for instance) 2x8x8x8 instead of 8x8x8x2
factors.reverse()
for f in factors:
originaln = originaln // f
length.append(originaln)
groupedfactors=groupFactors(factors)
return(groupedfactors,factors,length)
# Apply the radix decomposition to compute the input -> output permutation
# computed by the FFT.
def radixReverse(f,n):
a=np.array(range(0,n)).reshape(f)
r = list(range(0,len(f)))
r.reverse()
r = tuple(r)
a = np.transpose(a,r)
return(a.reshape(n))
def radixPermutation(factors,n):
a = radixReverse(factors,n)
tps = []
vectorizable=True
for c in Permutation.from_sequence(a).cyclic_form:
if (len(c)>2):
vectorizable = False
for i in range(len(c)-1,0,-1):
# 2 because those are indexes in an array of complex numbers but
# with a real type.
tps.append([2*c[i], 2*c[i-1]])
return(np.array(tps,dtype=int).flatten(),vectorizable)
# CFFT Twiddle table
def cfft_twiddle(n):
a=2.0*math.pi*np.linspace(0,n,num=n,endpoint=False)/n
c=np.cos(-a)
s=np.sin(-a)
r = np.empty((c.size + s.size,), dtype=c.dtype)
r[0::2] = c
r[1::2] = s
return(r)
# RFFT twiddle for the merge and split steps.
def rfft_twiddle(n):
a=2.0j*math.pi*np.linspace(0,n//2,num=n // 2,endpoint=False)/n
z=-1.0j * np.exp(-a)
r = z.view(dtype=np.float64)
return(r)
# Compute the twiddle tables
def twiddle(transform,n):
if transform=="CFFT":
return(cfft_twiddle(n))
if transform=="RFFT":
return(rfft_twiddle(n))
return(None)
NB_ELEMS_PER_LINE=3
# Generate C array content for a given datatype
def printFloat64Array(f,n):
nb=0
for s in n:
print("%.20f, " % s,end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
def printFloat32Array(f,n):
nb=0
for s in n:
print("%.20ff, " % s,end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
def printFloat16Array(f,n):
nb=0
for s in n:
print("%.8ff16, " % s,end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
def printQ31Array(f,mode,n):
DSPE=False
if mode == "DSP":
DSPE=True
nb=0
for s in n:
print(to_q31(s,DSPE) + ", ",end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
def printQ15Array(f,mode,n):
DSPE=False
if mode == "DSP":
DSPE=True
nb=0
for s in n:
print(to_q15(s,DSPE) + ", ",end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
def printQ7Array(f,mode,n):
DSPE=False
if mode == "DSP":
DSPE=True
nb=0
for s in n:
print(to_q7(s,DSPE) + ", ",end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
# Print a C array
# Using the type, dpse mode, name
# (dpse mode is for knowing if 0x8000 must be generated as 8000 or 8001
# to avoid sign issues when multiplying with the twiddles)
def printArray(f,ctype,mode,name,a):
nbSamples = len(a)
define = "NB_" + name.upper()
n = a.reshape(len(a))
print("__ALIGNED(8) const %s %s[%s]={" % (ctype,name,define),file=f)
if ctype == "float64_t":
printFloat64Array(f,n)
if ctype == "float32_t":
printFloat32Array(f,n)
if ctype == "float16_t":
printFloat16Array(f,n)
if ctype == "Q31":
printQ31Array(f,mode,n)
if ctype == "Q15":
printQ15Array(f,mode,n)
if ctype == "Q7":
printQ7Array(f,mode,n)
print("};",file=f)
# Convert a float value to a given datatype.
def convertToDatatype(r,ctype,mode):
DSPE=False
if mode == "DSP":
DSPE=True
if ctype == "float64_t":
result = "%.20f" % r
if ctype == "float32_t":
result = "%.20ff" % r
if ctype == "float16_t":
result = "%.20ff16" % r
if ctype == "Q31":
result = "Q31(%s)" % to_q31(r,DSPE)
if ctype == "Q15":
result = "Q15(%s)" % to_q15(r,DSPE)
if ctype == "Q7":
result = "Q7(%s)" % to_q7(r,DSPE)
return(result)
def printArrayHeader(f,ctype,name,nbSamples):
define = "NB_" + name.upper()
print("#define %s %d" % (define, nbSamples),file=f)
print("extern __ALIGNED(8) const %s %s[%s];\n" % (ctype,name,define),file=f)
# Print UINT arrays for permutations.
def printUInt32Array(f,name,a):
nbSamples = len(a)
define = "NB_" + name.upper()
n = a.reshape(len(a))
print("__ALIGNED(8) const uint32_t %s[%s]={" % (name,define),file=f)
nb=0
for s in n:
print("%d, " % s,end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
print("};",file=f)
def printUInt16Array(f,name,a):
nbSamples = len(a)
define = "NB_" + name.upper()
n = a.reshape(len(a))
print("__ALIGNED(8) const uint16_t %s[%s]={" % (name,define),file=f)
nb=0
for s in n:
print("%d, " % s,end="",file=f)
nb = nb + 1
if nb == NB_ELEMS_PER_LINE:
nb=0
print("",file=f)
print("};",file=f)
def printUInt32ArrayHeader(f,name,a):
nbSamples = len(a)
define = "NB_" + name.upper()
n = a.reshape(len(a))
print("#define %s %d" % (define, nbSamples),file=f)
print("extern __ALIGNED(8) const uint32_t %s[%s];\n" % (name,define),file=f)
def printUInt16ArrayHeader(f,name,a):
nbSamples = len(a)
define = "NB_" + name.upper()
n = a.reshape(len(a))
print("#define %s %d" % (define, nbSamples),file=f)
print("extern __ALIGNED(8) const uint16_t %s[%s];\n" % (name,define),file=f)
def getCtype(t):
if t == 'f64':
return("float64_t")
if t == 'f32':
return("float32_t")
if t == 'f16':
return("float16_t")
if t == 'q31':
return("Q31")
if t == 'q15':
return("Q15")
if t == 'q7':
return("Q7")
return("void")
# Configuration structures for CFFT and RFFT
cfftconfig = """cfftconfig<%s> config%d={
.normalization=%s,
.nbPerms=%s,
.perms=perm%d,
.nbTwiddle=%s,
.twiddle=twiddle%d,
.nbGroupedFactors=%d,
.nbFactors=%d,
.factors=factors%d,
.lengths=lengths%d,
.format=%d,
.reversalVectorizable=%d
};"""
rfftconfig = """rfftconfig<%s> config%d={
.nbTwiddle=%s,
.twiddle=twiddle%d
};"""
fftconfigHeader = """extern %sconfig<%s> config%d;"""
fftFactorArray = """const uint16_t factors%d[%d]=%s;\n"""
fftLengthArray = """const uint16_t lengths%d[%d]=%s;\n"""
# Descriptino of a permutation
class Perm:
PermID = 0
# Grouped factors and factors.
def getFactors(core,nb,datatype):
_groupedFactors,_factors,_lens=getFactors(core.radix(datatype,nb),nb)
return(_factors)
def __init__(self,core,nb,datatype):
Perm.PermID = Perm.PermID + 1
self._nb=nb
self._id = Perm.PermID
self._radixUsed=set([])
self._groupedFactors,self._factors,self._lens=getFactors(core.radix(datatype,nb),nb)
self._perms = None
self._core=core
self._isvectorizable=False
def permutations(self):
_permFactors=list(itertools.chain(*[self._core.getPermFactor(x) for x in self._factors]))
#print(_permFactors)
self._perms,self._isvectorizable = radixPermutation(_permFactors[::-1],self._nb)
@property
def isVectorizable(self):
return(self._isvectorizable)
@property
def permID(self):
return(self._id)
@property
def perms(self):
if self._perms is not None:
return(self._perms)
else:
self.permutations()
return(self._perms)
@property
def factors(self):
return(self._factors)
@property
def nbGroupedFactors(self):
return(int(len(self._groupedFactors)/2))
@property
def nbFactors(self):
return(len(self._factors))
def writePermHeader(self,h):
printUInt16ArrayHeader(h,"perm%d" % self.permID,self.perms)
def writePermCode(self,c):
printUInt16Array(c,"perm%d" % self.permID,self.perms)
def writeFactorDesc(self,c):
radixList="{%s}" % joinStr([str(x) for x in self._groupedFactors])
lengthList="{%s}" % joinStr([str(x) for x in self._lens])
print(fftFactorArray % (self.permID,2*self.nbGroupedFactors,radixList),file=c);
print(fftLengthArray % (self.permID,len(self._lens),lengthList),file=c);
class Twiddle:
TwiddleId = 0
def __init__(self,transform,nb,datatype,mode):
Twiddle.TwiddleId = Twiddle.TwiddleId + 1
self._id = Twiddle.TwiddleId
self._datatype = datatype
self._nb=nb
self._twiddle = None
self._transform=transform
self._mode=mode
@property
def twiddleID(self):
return(self._id)
@property
def datatype(self):
return(self._datatype)
@property
def samples(self):
if self._twiddle is None:
self._twiddle=twiddle(self._transform,self._nb)
return(self._twiddle)
@property
def nbSamples(self):
return(self._nb)
@property
def nbTwiddles(self):
if self._transform=="RFFT":
return(self._nb // 2)
else:
return(self._nb)
def writeTwidHeader(self,h):
ctype=getCtype(self.datatype)
# Twiddle is a complex array so 2*nbSamples must be used
printArrayHeader(h,ctype,"twiddle%d" % self.twiddleID,2*self.nbTwiddles)
def writeTwidCode(self,c):
ctype=getCtype(self.datatype)
printArray(c,ctype,self._mode,"twiddle%d" % self.twiddleID,self.samples)
class Config:
ConfigID = 0
def __init__(self,transform,twiddle,perms,coreMode):
Config.ConfigID = Config.ConfigID + 1
self._id = Config.ConfigID
self._twiddle=twiddle
self._perms=perms
self._transform=transform
self._coreMode=coreMode
@property
def transform(self):
return(self._transform)
@property
def configID(self):
return(self._id)
@property
def perms(self):
return(self._perms)
@property
def twiddle(self):
return(self._twiddle)
@property
def nbSamples(self):
return(self.twiddle.nbSamples)
def writeConfigHeader(self,c):
ctype=getCtype(self.twiddle.datatype)
print(fftconfigHeader % (self.transform.lower(),ctype,self.configID),file=c)
def writeConfigCode(self,c):
ctype=getCtype(self.twiddle.datatype)
twiddleLen = "NB_" + ("twiddle%d"% self.twiddle.twiddleID).upper()
if self.transform == "RFFT":
print(rfftconfig % (ctype,self.configID,twiddleLen,self.twiddle.twiddleID),file=c)
else:
normfactor = 1.0 / self.twiddle.nbSamples
normFactorStr = convertToDatatype(normfactor,ctype,self._coreMode)
permsLen = "NB_" + ("perm%d"% self.perms.permID).upper()
outputFormat = 0
#print(self.twiddle.datatype)
#print(self.twiddle.nbSamples)
#print(self.perms.factors)
# For fixed point, each stage will change the output format.
# We need to cmpute the final format of the FFT
# and record it in the initialization structure
# so that the user can easily know how to recover the
# input format (q31, q15). It is encoded as a shift value.
# The shift to apply to recover the input format
# But applying this shift will saturate the result in general.
if self.twiddle.datatype == "q15" or self.twiddle.datatype == "q31":
for f in self.perms.factors:
#print(f,self.twiddle.datatype,self._coreMode)
# The file "formats.py" is decribing the format of each radix
# and is used to compute the format of the FFT based
# on the decomposition of its length.
#
# Currently (since there is no vector version for fixed point)
# this is not taking into account the format change that may
# be implied by the vectorization in case it may be different
# from the scalar version.
formatForSize = config.formats.formats[f][self._coreMode]
outputFormat += formatForSize[self.twiddle.datatype]
vectorizable=0
if self.perms.isVectorizable:
vectorizable = 1
print(cfftconfig % (ctype,self.configID,normFactorStr,permsLen,self.perms.permID,
twiddleLen,self.twiddle.twiddleID,self.perms.nbGroupedFactors,self.perms.nbFactors,
self.perms.permID,self.perms.permID,outputFormat,vectorizable
),file=c)
|
[
"struct.pack",
"numpy.exp",
"numpy.array",
"numpy.linspace",
"numpy.empty",
"numpy.cos",
"numpy.sin",
"numpy.transpose",
"sympy.combinatorics.Permutation.from_sequence"
] |
[((4077, 4095), 'numpy.transpose', 'np.transpose', (['a', 'r'], {}), '(a, r)\n', (4089, 4095), True, 'import numpy as np\n'), ((4688, 4698), 'numpy.cos', 'np.cos', (['(-a)'], {}), '(-a)\n', (4694, 4698), True, 'import numpy as np\n'), ((4705, 4715), 'numpy.sin', 'np.sin', (['(-a)'], {}), '(-a)\n', (4711, 4715), True, 'import numpy as np\n'), ((4725, 4768), 'numpy.empty', 'np.empty', (['(c.size + s.size,)'], {'dtype': 'c.dtype'}), '((c.size + s.size,), dtype=c.dtype)\n', (4733, 4768), True, 'import numpy as np\n'), ((4234, 4262), 'sympy.combinatorics.Permutation.from_sequence', 'Permutation.from_sequence', (['a'], {}), '(a)\n', (4259, 4262), False, 'from sympy.combinatorics import Permutation\n'), ((4964, 4974), 'numpy.exp', 'np.exp', (['(-a)'], {}), '(-a)\n', (4970, 4974), True, 'import numpy as np\n'), ((4642, 4682), 'numpy.linspace', 'np.linspace', (['(0)', 'n'], {'num': 'n', 'endpoint': '(False)'}), '(0, n, num=n, endpoint=False)\n', (4653, 4682), True, 'import numpy as np\n'), ((4902, 4952), 'numpy.linspace', 'np.linspace', (['(0)', '(n // 2)'], {'num': '(n // 2)', 'endpoint': '(False)'}), '(0, n // 2, num=n // 2, endpoint=False)\n', (4913, 4952), True, 'import numpy as np\n'), ((4528, 4552), 'numpy.array', 'np.array', (['tps'], {'dtype': 'int'}), '(tps, dtype=int)\n', (4536, 4552), True, 'import numpy as np\n'), ((1534, 1554), 'struct.pack', 'struct.pack', (['"""<q"""', 'r'], {}), "('<q', r)\n", (1545, 1554), False, 'import struct\n'), ((1819, 1839), 'struct.pack', 'struct.pack', (['"""<i"""', 'r'], {}), "('<i', r)\n", (1830, 1839), False, 'import struct\n'), ((2085, 2105), 'struct.pack', 'struct.pack', (['"""<h"""', 'r'], {}), "('<h', r)\n", (2096, 2105), False, 'import struct\n'), ((2340, 2360), 'struct.pack', 'struct.pack', (['"""<b"""', 'r'], {}), "('<b', r)\n", (2351, 2360), False, 'import struct\n')]
|
'''
This inference script takes in images of dynamic size
Runs inference in batch
** In this images have been resized but not need for this script
'''
import onnx
import onnxruntime as ort
import numpy as np
import cv2
from imagenet_classlist import get_class
import os
model_path = 'resnet18.onnx'
model = onnx.load(model_path)
image_path = "../sample_images"
try:
print("Checking model...")
onnx.checker.check_model(model)
onnx.helper.printable_graph(model.graph)
print("Model checked...")
print("Running inference...")
ort_session = ort.InferenceSession(model_path)
img_list = []
for image in os.listdir(image_path):
img = cv2.imread(os.path.join(image_path, image), cv2.IMREAD_COLOR)
img = cv2.resize(img, ((224, 224)))
img = np.moveaxis(img, -1, 0) # (Batch_size, channels, width, heigth)
img_list.append(img/255.0) # Normalize the image
outputs = ort_session.run(None, {"input":img_list})
out = np.array(outputs)
for image_num, image_name in zip(range(out.shape[1]), os.listdir(image_path)):
index = out[0][image_num]
print("Image : {0}, Class : {1}".format(image_name, get_class(np.argmax(index))))
except Exception as e:
print("Exception occured : ", e)
|
[
"os.listdir",
"onnx.helper.printable_graph",
"onnxruntime.InferenceSession",
"os.path.join",
"numpy.argmax",
"numpy.array",
"onnx.load",
"numpy.moveaxis",
"cv2.resize",
"onnx.checker.check_model"
] |
[((310, 331), 'onnx.load', 'onnx.load', (['model_path'], {}), '(model_path)\n', (319, 331), False, 'import onnx\n'), ((405, 436), 'onnx.checker.check_model', 'onnx.checker.check_model', (['model'], {}), '(model)\n', (429, 436), False, 'import onnx\n'), ((441, 481), 'onnx.helper.printable_graph', 'onnx.helper.printable_graph', (['model.graph'], {}), '(model.graph)\n', (468, 481), False, 'import onnx\n'), ((574, 606), 'onnxruntime.InferenceSession', 'ort.InferenceSession', (['model_path'], {}), '(model_path)\n', (594, 606), True, 'import onnxruntime as ort\n'), ((643, 665), 'os.listdir', 'os.listdir', (['image_path'], {}), '(image_path)\n', (653, 665), False, 'import os\n'), ((989, 1006), 'numpy.array', 'np.array', (['outputs'], {}), '(outputs)\n', (997, 1006), True, 'import numpy as np\n'), ((757, 784), 'cv2.resize', 'cv2.resize', (['img', '(224, 224)'], {}), '(img, (224, 224))\n', (767, 784), False, 'import cv2\n'), ((801, 824), 'numpy.moveaxis', 'np.moveaxis', (['img', '(-1)', '(0)'], {}), '(img, -1, 0)\n', (812, 824), True, 'import numpy as np\n'), ((1066, 1088), 'os.listdir', 'os.listdir', (['image_path'], {}), '(image_path)\n', (1076, 1088), False, 'import os\n'), ((692, 723), 'os.path.join', 'os.path.join', (['image_path', 'image'], {}), '(image_path, image)\n', (704, 723), False, 'import os\n'), ((1195, 1211), 'numpy.argmax', 'np.argmax', (['index'], {}), '(index)\n', (1204, 1211), True, 'import numpy as np\n')]
|
import numpy as np
import tensorflow as tf
from tqdm import trange
from fedsimul.utils.model_utils import batch_data
from fedsimul.utils.tf_utils import graph_size
from fedsimul.utils.tf_utils import process_grad
class Model(object):
'''
This is the tf model for the MNIST dataset with multiple class learner regression.
Images are 28px by 28px.
'''
def __init__(self, num_classes, optimizer, gpu_id=0, seed=1):
""" Initialize the learner.
Args:
num_classes: int
optimizer: tf.train.Optimizer
gpu_id: int, default 0
seed: int, default 1
"""
# params
self.num_classes = num_classes
# create computation graph
self.graph = tf.Graph()
with self.graph.as_default():
tf.set_random_seed(123 + seed)
_created = self.create_model(optimizer)
self.features = _created[0]
self.labels = _created[1]
self.train_op = _created[2]
self.grads = _created[3]
self.eval_metric_ops = _created[4]
self.loss = _created[5]
self.saver = tf.train.Saver()
# set the gpu resources
gpu_options = tf.compat.v1.GPUOptions(visible_device_list="{}".format(gpu_id), allow_growth=True)
config = tf.compat.v1.ConfigProto(gpu_options=gpu_options)
self.sess = tf.Session(graph=self.graph, config=config)
# self.sess = tf.Session(graph=self.graph)
# REVIEW: find memory footprint and compute cost of the model
self.size = graph_size(self.graph)
with self.graph.as_default():
self.sess.run(tf.global_variables_initializer())
metadata = tf.RunMetadata()
opts = tf.profiler.ProfileOptionBuilder.float_operation()
self.flops = tf.profiler.profile(self.graph, run_meta=metadata, cmd='scope', options=opts).total_float_ops
def create_model(self, optimizer):
""" Model function for Logistic Regression.
Args:
optimizer: tf.train.Optimizer
Returns:
tuple: (features, labels, train_op, grads, eval_metric_ops, loss)
"""
features = tf.placeholder(tf.float32, shape=[None, 784], name='features')
labels = tf.placeholder(tf.int64, shape=[None, ], name='labels')
logits = tf.layers.dense(inputs=features,
units=self.num_classes,
kernel_regularizer=tf.contrib.layers.l2_regularizer(0.001))
predictions = {
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
grads_and_vars = optimizer.compute_gradients(loss)
grads, _ = zip(*grads_and_vars)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=tf.train.get_global_step())
eval_metric_ops = tf.count_nonzero(tf.equal(labels, predictions["classes"]))
return features, labels, train_op, grads, eval_metric_ops, loss
def set_params(self, latest_params=None, momentum=False, gamma=0.9):
""" Set parameters from server
Args:
latest_params: list
list of tf.Variables
momentum: boolean
gamma: float
TODO: update variable with its local variable and the value from
latest_params
TODO: DO NOT set_params from the global, instead, use the global gradient to update
"""
if latest_params is not None:
with self.graph.as_default():
# previous gradient
all_vars = tf.trainable_variables()
for variable, value in zip(all_vars, latest_params):
if momentum:
curr_val = self.sess.run(variable)
new_val = gamma * curr_val + (1 - gamma) * value
# TODO: use `assign` function instead of `load`
variable.load(new_val, self.sess)
else:
variable.load(value, self.sess)
def get_params(self):
""" Get model parameters.
Returns:
model_params: list
list of tf.Variables
"""
with self.graph.as_default():
model_params = self.sess.run(tf.trainable_variables())
return model_params
def get_gradients(self, data, model_len):
""" Access gradients of a given dataset.
Args:
data: dict
model_len: int
Returns:
num_samples: int
grads: tuple
"""
grads = np.zeros(model_len)
num_samples = len(data['y'])
with self.graph.as_default():
model_grads = self.sess.run(self.grads, feed_dict={self.features: data['x'],
self.labels: data['y']})
grads = process_grad(model_grads)
return num_samples, grads
def solve_inner(self, data, num_epochs=1, batch_size=32):
'''Solves local optimization problem.
Args:
data: dict with format {'x':[], 'y':[]}
num_epochs: int
batch_size: int
Returns:
soln: list
comp: float
'''
for _ in trange(num_epochs, desc='Epoch: ', leave=False, ncols=120):
for X, y in batch_data(data, batch_size):
with self.graph.as_default():
self.sess.run(self.train_op, feed_dict={self.features: X, self.labels: y})
soln = self.get_params()
comp = num_epochs * (len(data['y']) // batch_size) * batch_size * self.flops
return soln, comp
def test(self, data):
'''
Args:
data: dict of the form {'x': [], 'y': []}
Returns:
tot_correct: int
loss: float
'''
with self.graph.as_default():
tot_correct, loss = self.sess.run([self.eval_metric_ops, self.loss],
feed_dict={self.features: data['x'], self.labels: data['y']})
return tot_correct, loss
def close(self):
self.sess.close()
|
[
"tensorflow.equal",
"tensorflow.contrib.layers.l2_regularizer",
"tensorflow.nn.softmax",
"tensorflow.set_random_seed",
"tensorflow.RunMetadata",
"tensorflow.Graph",
"tensorflow.Session",
"tensorflow.placeholder",
"fedsimul.utils.model_utils.batch_data",
"tensorflow.train.get_global_step",
"tensorflow.trainable_variables",
"fedsimul.utils.tf_utils.process_grad",
"tqdm.trange",
"tensorflow.compat.v1.ConfigProto",
"tensorflow.profiler.profile",
"tensorflow.profiler.ProfileOptionBuilder.float_operation",
"fedsimul.utils.tf_utils.graph_size",
"tensorflow.train.Saver",
"tensorflow.global_variables_initializer",
"numpy.zeros",
"tensorflow.argmax",
"tensorflow.losses.sparse_softmax_cross_entropy"
] |
[((751, 761), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (759, 761), True, 'import tensorflow as tf\n'), ((1331, 1380), 'tensorflow.compat.v1.ConfigProto', 'tf.compat.v1.ConfigProto', ([], {'gpu_options': 'gpu_options'}), '(gpu_options=gpu_options)\n', (1355, 1380), True, 'import tensorflow as tf\n'), ((1401, 1444), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.graph', 'config': 'config'}), '(graph=self.graph, config=config)\n', (1411, 1444), True, 'import tensorflow as tf\n'), ((1587, 1609), 'fedsimul.utils.tf_utils.graph_size', 'graph_size', (['self.graph'], {}), '(self.graph)\n', (1597, 1609), False, 'from fedsimul.utils.tf_utils import graph_size\n'), ((2214, 2276), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 784]', 'name': '"""features"""'}), "(tf.float32, shape=[None, 784], name='features')\n", (2228, 2276), True, 'import tensorflow as tf\n'), ((2294, 2347), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int64'], {'shape': '[None]', 'name': '"""labels"""'}), "(tf.int64, shape=[None], name='labels')\n", (2308, 2347), True, 'import tensorflow as tf\n'), ((2729, 2797), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'labels': 'labels', 'logits': 'logits'}), '(labels=labels, logits=logits)\n', (2767, 2797), True, 'import tensorflow as tf\n'), ((4781, 4800), 'numpy.zeros', 'np.zeros', (['model_len'], {}), '(model_len)\n', (4789, 4800), True, 'import numpy as np\n'), ((5461, 5519), 'tqdm.trange', 'trange', (['num_epochs'], {'desc': '"""Epoch: """', 'leave': '(False)', 'ncols': '(120)'}), "(num_epochs, desc='Epoch: ', leave=False, ncols=120)\n", (5467, 5519), False, 'from tqdm import trange\n'), ((812, 842), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(123 + seed)'], {}), '(123 + seed)\n', (830, 842), True, 'import tensorflow as tf\n'), ((1158, 1174), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1172, 1174), True, 'import tensorflow as tf\n'), ((1732, 1748), 'tensorflow.RunMetadata', 'tf.RunMetadata', ([], {}), '()\n', (1746, 1748), True, 'import tensorflow as tf\n'), ((1768, 1818), 'tensorflow.profiler.ProfileOptionBuilder.float_operation', 'tf.profiler.ProfileOptionBuilder.float_operation', ([], {}), '()\n', (1816, 1818), True, 'import tensorflow as tf\n'), ((2597, 2628), 'tensorflow.argmax', 'tf.argmax', ([], {'input': 'logits', 'axis': '(1)'}), '(input=logits, axis=1)\n', (2606, 2628), True, 'import tensorflow as tf\n'), ((2659, 2703), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {'name': '"""softmax_tensor"""'}), "(logits, name='softmax_tensor')\n", (2672, 2703), True, 'import tensorflow as tf\n'), ((3042, 3082), 'tensorflow.equal', 'tf.equal', (['labels', "predictions['classes']"], {}), "(labels, predictions['classes'])\n", (3050, 3082), True, 'import tensorflow as tf\n'), ((5074, 5099), 'fedsimul.utils.tf_utils.process_grad', 'process_grad', (['model_grads'], {}), '(model_grads)\n', (5086, 5099), False, 'from fedsimul.utils.tf_utils import process_grad\n'), ((5545, 5573), 'fedsimul.utils.model_utils.batch_data', 'batch_data', (['data', 'batch_size'], {}), '(data, batch_size)\n', (5555, 5573), False, 'from fedsimul.utils.model_utils import batch_data\n'), ((1674, 1707), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1705, 1707), True, 'import tensorflow as tf\n'), ((1844, 1921), 'tensorflow.profiler.profile', 'tf.profiler.profile', (['self.graph'], {'run_meta': 'metadata', 'cmd': '"""scope"""', 'options': 'opts'}), "(self.graph, run_meta=metadata, cmd='scope', options=opts)\n", (1863, 1921), True, 'import tensorflow as tf\n'), ((2509, 2548), 'tensorflow.contrib.layers.l2_regularizer', 'tf.contrib.layers.l2_regularizer', (['(0.001)'], {}), '(0.001)\n', (2541, 2548), True, 'import tensorflow as tf\n'), ((2971, 2997), 'tensorflow.train.get_global_step', 'tf.train.get_global_step', ([], {}), '()\n', (2995, 2997), True, 'import tensorflow as tf\n'), ((3757, 3781), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (3779, 3781), True, 'import tensorflow as tf\n'), ((4466, 4490), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (4488, 4490), True, 'import tensorflow as tf\n')]
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import math
import networkx as nx
import functools
import scipy.stats
import random
import sys
import copy
import numpy as np
import torch
import utils
try:
sys.path.append('/opt/MatterSim/build/') # local docker or Philly
import MatterSim
except:
# local conda env only
sys.path.append('/home/hoyeung/Documents/vnla/code/build')
import MatterSim
class ShortestPathOracle(object):
''' Shortest navigation teacher '''
def __init__(self, agent_nav_actions, env_nav_actions=None):
self.scans = set()
self.graph = {}
self.paths = {}
self.distances = {}
self.agent_nav_actions = agent_nav_actions
if env_nav_actions is not None:
self.env_nav_actions = env_nav_actions
def add_scans(self, scans, path=None):
new_scans = set.difference(scans, self.scans)
if new_scans:
print('Loading navigation graphs for %d scans' % len(new_scans))
for scan in new_scans:
graph, paths, distances = self._compute_shortest_paths(scan, path=path)
self.graph[scan] = graph
self.paths[scan] = paths
self.distances[scan] = distances
self.scans.update(new_scans)
def _compute_shortest_paths(self, scan, path=None):
''' Load connectivity graph for each scan, useful for reasoning about shortest paths '''
graph = utils.load_nav_graphs(scan, path=path)
paths = dict(nx.all_pairs_dijkstra_path(graph))
distances = dict(nx.all_pairs_dijkstra_path_length(graph))
return graph, paths, distances
def _find_nearest_point(self, scan, start_point, end_points):
best_d = 1e9
best_point = None
for end_point in end_points:
d = self.distances[scan][start_point][end_point]
if d < best_d:
best_d = d
best_point = end_point
return best_d, best_point
def _find_nearest_point_on_a_path(self, scan, current_point, start_point, goal_point):
path = self.paths[scan][start_point][goal_point]
return self._find_nearest_point(scan, current_point, path)
def _shortest_path_action(self, ob):
''' Determine next action on the shortest path to goals. '''
scan = ob['scan']
start_point = ob['viewpoint']
# Find nearest goal
_, goal_point = self._find_nearest_point(scan, start_point, ob['goal_viewpoints'])
# Stop if a goal is reached
if start_point == goal_point:
return (0, 0, 0)
path = self.paths[scan][start_point][goal_point]
next_point = path[1]
# Can we see the next viewpoint?
for i, loc in enumerate(ob['navigableLocations']):
if loc.viewpointId == next_point:
# Look directly at the viewpoint before moving
if loc.rel_heading > math.pi/6.0:
return (0, 1, 0) # Turn right
elif loc.rel_heading < -math.pi/6.0:
return (0,-1, 0) # Turn left
elif loc.rel_elevation > math.pi/6.0 and ob['viewIndex'] // 12 < 2:
return (0, 0, 1) # Look up
elif loc.rel_elevation < -math.pi/6.0 and ob['viewIndex'] // 12 > 0:
return (0, 0,-1) # Look down
else:
return (i, 0, 0) # Move
# Can't see it - first neutralize camera elevation
if ob['viewIndex'] // 12 == 0:
return (0, 0, 1) # Look up
elif ob['viewIndex'] // 12 == 2:
return (0, 0,-1) # Look down
# If camera is already neutralized, decide which way to turn
target_rel = self.graph[ob['scan']].node[next_point]['position'] - ob['point'] # state.location.point
# 180deg -
target_heading = math.pi / 2.0 - math.atan2(target_rel[1], target_rel[0])
if target_heading < 0:
target_heading += 2.0 * math.pi
if ob['heading'] > target_heading and ob['heading'] - target_heading < math.pi:
return (0, -1, 0) # Turn left
if target_heading > ob['heading'] and target_heading - ob['heading'] > math.pi:
return (0, -1, 0) # Turn left
return (0, 1, 0) # Turn right
def _map_env_action_to_agent_action(self, action, ob):
ix, heading_chg, elevation_chg = action
if heading_chg > 0:
return self.agent_nav_actions.index('right')
if heading_chg < 0:
return self.agent_nav_actions.index('left')
if elevation_chg > 0:
return self.agent_nav_actions.index('up')
if elevation_chg < 0:
return self.agent_nav_actions.index('down')
if ix > 0:
return self.agent_nav_actions.index('forward')
if ob['ended']:
return self.agent_nav_actions.index('<ignore>')
return self.agent_nav_actions.index('<end>')
def interpret_agent_action(self, action_idx, ob):
'''Translate action index back to env action for simulator to take'''
# If the action is not `forward`, simply map it to the simulator's
# action space
if action_idx != self.agent_nav_actions.index('forward'):
return self.env_nav_actions[action_idx]
# If the action is forward, more complicated
scan = ob['scan']
start_point = ob['viewpoint']
# Find nearest goal view point
_, goal_point = self._find_nearest_point(scan, start_point, ob['goal_viewpoints'])
optimal_path = self.paths[scan][start_point][goal_point]
# If the goal is right in front of us, go to it.
# The dataset guarantees that the goal is always reachable.
if len(optimal_path) < 2:
return (1, 0, 0)
next_optimal_point = optimal_path[1]
# If the next optimal viewpoint is within 30 degrees of
# the center of the view, go to it.
for i, loc in enumerate(ob['navigableLocations']):
if loc.viewpointId == next_optimal_point:
if loc.rel_heading > math.pi/6.0 or loc.rel_heading < -math.pi/6.0 or \
(loc.rel_elevation > math.pi/6.0 and ob['viewIndex'] // 12 < 2) or \
(loc.rel_elevation < -math.pi/6.0 and ob['viewIndex'] // 12 > 0):
continue
else:
return (i, 0, 0)
# Otherwise, go the navigable (seeable) viewpt that has the least angular distance from the center of the current image (viewpt).
return (1, 0, 0)
def __call__(self, obs):
self.actions = list(map(self._shortest_path_action, obs))
return list(map(self._map_env_action_to_agent_action, self.actions, obs))
class FrontierShortestPathsOracle(ShortestPathOracle):
def __init__(self, agent_nav_actions, env_nav_actions=None):
super(FrontierShortestPathsOracle, self).__init__(agent_nav_actions, env_nav_actions)
# self.env_nav_actions = env_nav_actions
self.valid_rotation_action_indices = [self.agent_nav_actions.index(r) for r in ('left', 'right', 'up', 'down', '<ignore>')]
# inherit parent add_scans() function
def interpret_agent_rotations(self, rotation_action_indices, ob):
'''
rotation_action_indices : a list of int action indices
Returns:
list of fixed length agent.max_macro_action_seq_len (e.g. 8)
e.g. [(0, 1, 0), (0, 1, -1), ..... (0,0,0)]
e.g. [(0,0,0), ... (0,0,0)] if ob has ended.
'''
max_macro_action_seq_len = len(rotation_action_indices)
# [(0,0,0)] * 8
macro_rotations = [self.env_nav_actions[self.agent_nav_actions.index('<ignore>')]] * max_macro_action_seq_len
if not ob['ended']:
for i, action_idx in enumerate(rotation_action_indices):
assert action_idx in self.valid_rotation_action_indices
macro_rotations[i] = self.env_nav_actions[action_idx]
return macro_rotations
def interpret_agent_forward(self, ob):
'''
Returns:
(0, 0, 0) to ignore if trajectory has already ended
or
(1, 0, 0) to step forward to the direct facing vertex
'''
if ob['ended']:
return self.env_nav_actions[self.agent_nav_actions.index('<ignore>')]
else:
return self.env_nav_actions[self.agent_nav_actions.index('forward')]
def make_explore_instructions(self, obs):
'''
Make env level rotation instructions of each ob to explore its own panoramic sphere. The output should be informative enough for agent to collect information from all 36 facets of its panoramic sphere.
Returns:
heading_adjusts: list len=batch_size, each an env action tuple.
elevation_adjusts_1: same.
elevation_adjusts_2: list len=batch_size, each either a single action tuple e.g.(0,1,0), or double action tuple e.g.((0,0,-1), (0,0,-1)).
'''
batch_size = len(obs)
# How agent explore the entire pano sphere
# Right*11, Up/Down, Right*11, Up/Down (*2), Right*11
heading_adjusts = [()] * batch_size
elevation_adjusts_1 = [()] * batch_size
elevation_adjusts_2 = [()] * batch_size
# (0,0,1)
up_tup = self.env_nav_actions[self.agent_nav_actions.index('up')]
# (0,0,-1)
down_tup = self.env_nav_actions[self.agent_nav_actions.index('down')]
# (0,1,0)
right_tup = self.env_nav_actions[self.agent_nav_actions.index('right')]
# (0,0,0)
ignore_tup = self.env_nav_actions[self.agent_nav_actions.index('<ignore>')]
# Loop through each ob in the batch
for i, ob in enumerate(obs):
if ob['ended']:
# don't move at all.
heading_adjusts[i] = ignore_tup
elevation_adjusts_1[i] = ignore_tup
elevation_adjusts_2[i] = ignore_tup
else:
# turn right for 11 times at every elevation level.
heading_adjusts[i] = right_tup
# check agent elevation
if ob['viewIndex'] // 12 == 0:
# facing down, so need to look up twice.
elevation_adjusts_1[i] = up_tup
elevation_adjusts_2[i] = up_tup
elif ob['viewIndex'] // 12 == 2:
# facing up, so need to look down twice.
elevation_adjusts_1[i] = down_tup
elevation_adjusts_2[i] = down_tup
else:
# neutral, so need to look up once, and then look down twice
elevation_adjusts_1[i] = up_tup
elevation_adjusts_2[i] = (down_tup, down_tup)
return heading_adjusts, elevation_adjusts_1, elevation_adjusts_2
def compute_frontier_cost_single(self, ob, next_viewpoint_index_str):
'''
next_viewpoint_index_str: single str indicating viewpoint index.
e.g. '1e6b606b44df4a6086c0f97e826d4d15'
'''
# current point to next point
cost_stepping = self.distances[ob['scan']][ob['viewpoint']][next_viewpoint_index_str]
# next point to the closest goal
cost_togo, _ = self._find_nearest_point(ob['scan'], next_viewpoint_index_str, ob['goal_viewpoints'])
assert cost_stepping > 0 and cost_togo >= 0
return cost_togo , cost_stepping
def compute_frontier_costs(self, obs, viewix_next_vertex_map, timestep=None):
'''
For each ob, compute:
cost = cost-to-go + cost-stepping for all reachable vertices
'''
assert len(obs) == len(viewix_next_vertex_map)
# arr shape (batch_size, 36)
q_values_target_batch = np.ones((len(obs), len(viewix_next_vertex_map[0]))) * 1e9
# arr shape (batch_size, 36)
cost_togos_batch = np.ones((len(obs), len(viewix_next_vertex_map[0]))) * 1e9
# arr shape (batch_size, 36)
cost_stepping_batch = np.ones((len(obs), len(viewix_next_vertex_map[0]))) * 1e9
# arr shape (batch_size, )
end_target_batch = np.array([False for _ in range(len(obs))])
# Loop through batch
for i, ob in enumerate(obs):
# NOTE ended ob won't be added to hist buffer for training
if not ob['ended']:
costs = []
cost_togos = []
cost_steppings = []
for proposed_vertex in viewix_next_vertex_map[i]:
if proposed_vertex == '':
costs.append(1e9)
cost_togos.append(1e9)
cost_steppings.append(1e9)
else:
# add up cost-togo + cost-stepping
cost_togo , cost_stepping = self.compute_frontier_cost_single(ob, proposed_vertex)
costs.append(cost_togo + cost_stepping)
# keep tab cost-togo to determine ending later
cost_togos.append(cost_togo)
cost_steppings.append(cost_stepping)
assert len(cost_togos) == len(viewix_next_vertex_map[0]) # 36
assert len(cost_steppings) == len(viewix_next_vertex_map[0]) # 36
assert len(costs) == len(viewix_next_vertex_map[0]) # 36
q_values_target_batch[i, :] = costs
# get min costs for each row
# if the min index of costs also has a cost-togo = 0, then mark end for this row in end_target
end_target_batch[i] = cost_togos[costs.index(min(costs))] == 0
# for results logging
cost_togos_batch[i] = cost_togos
cost_stepping_batch[i] = cost_steppings
return q_values_target_batch, end_target_batch, cost_togos_batch, cost_stepping_batch
def _map_env_action_to_agent_action(self, action):
'''
Translate rotation env action seq into agent action index seq.
'''
ix, heading_chg, elevation_chg = action
assert ix == 0, 'Accept only rotation or ignore actions'
assert heading_chg == 0 or elevation_chg == 0, 'Accept only one rotation action at a time'
if heading_chg > 0:
return self.agent_nav_actions.index('right')
if heading_chg < 0:
return self.agent_nav_actions.index('left')
if elevation_chg > 0:
return self.agent_nav_actions.index('up')
if elevation_chg < 0:
return self.agent_nav_actions.index('down')
else:
return self.agent_nav_actions.index('<ignore>')
def translate_env_actions(self, obs, viewix_env_actions_map, max_macro_action_seq_len, sphere_size):
'''
viewix_env_actions_map : list (batch_size, 36, varies). Each [(0,1,0), (0,0,-1), ...]
Returns:
viewix_actions_map : array shape(36, batch_size, self.max_macro_action_seq_len)
'''
# tensor shape(36, batch_size, self.max_macro_action_seq_len)
viewix_actions_map = np.ones((sphere_size, len(obs), max_macro_action_seq_len), dtype='int') * \
self.agent_nav_actions.index('<ignore>')
for i, ob in enumerate(obs): # 1-100
if not ob['ended']:
for j, env_action_tup_seq in enumerate(viewix_env_actions_map[i]): # 1-36
assert len(env_action_tup_seq) <= 8
# map seq, length varies
agent_action_seq = list(map(self._map_env_action_to_agent_action, env_action_tup_seq))
assert len(agent_action_seq) <= 8
# assign action index, seq is already padded to 8 during initialization
viewix_actions_map[j, i, :len(agent_action_seq)] = agent_action_seq
return viewix_actions_map
class AskOracle(object):
DONT_ASK = 0
ASK = 1
def __init__(self, hparams, agent_ask_actions):
self.deviate_threshold = hparams.deviate_threshold
self.uncertain_threshold = hparams.uncertain_threshold
self.unmoved_threshold = hparams.unmoved_threshold
self.agent_ask_actions = agent_ask_actions
self.rule_a_e = hasattr(hparams, 'rule_a_e') and hparams.rule_a_e
self.rule_b_d = hasattr(hparams, 'rule_b_d') and hparams.rule_b_d
def _should_ask_rule_a_e(self, ob, nav_oracle=None):
if ob['queries_unused'] <= 0:
return self.DONT_ASK, 'exceed'
scan = ob['scan']
current_point = ob['viewpoint']
_, goal_point = nav_oracle._find_nearest_point(scan, current_point, ob['goal_viewpoints'])
agent_decision = int(np.argmax(ob['nav_dist']))
if current_point == goal_point and \
agent_decision == nav_oracle.agent_nav_actions.index('forward'):
return self.ASK, 'arrive'
start_point = ob['init_viewpoint']
d, _ = nav_oracle._find_nearest_point_on_a_path(scan, current_point, start_point, goal_point)
if d > self.deviate_threshold:
return self.ASK, 'deviate'
return self.DONT_ASK, 'pass'
def _should_ask_rule_b_d(self, ob, nav_oracle=None):
if ob['queries_unused'] <= 0:
return self.DONT_ASK, 'exceed'
agent_dist = ob['nav_dist']
uniform = [1. / len(agent_dist)] * len(agent_dist)
entropy_gap = scipy.stats.entropy(uniform) - scipy.stats.entropy(agent_dist)
if entropy_gap < self.uncertain_threshold - 1e-9:
return self.ASK, 'uncertain'
if len(ob['agent_path']) >= self.unmoved_threshold:
last_nodes = [t[0] for t in ob['agent_path']][-self.unmoved_threshold:]
if all(node == last_nodes[0] for node in last_nodes):
return self.ASK, 'unmoved'
if ob['queries_unused'] >= ob['traj_len'] - ob['time_step']:
return self.ASK, 'why_not'
return self.DONT_ASK, 'pass'
def _should_ask(self, ob, nav_oracle=None):
if self.rule_a_e:
return self._should_ask_rule_a_e(ob, nav_oracle=nav_oracle)
if self.rule_b_d:
return self._should_ask_rule_b_d(ob, nav_oracle=nav_oracle)
if ob['queries_unused'] <= 0:
return self.DONT_ASK, 'exceed'
# Find nearest point on the current shortest path
scan = ob['scan']
current_point = ob['viewpoint']
# Find nearest goal to current point
_, goal_point = nav_oracle._find_nearest_point(scan, current_point, ob['goal_viewpoints'])
# Rule (e): ask if the goal has been reached but the agent decides to
# go forward
agent_decision = int(np.argmax(ob['nav_dist']))
if current_point == goal_point and \
agent_decision == nav_oracle.agent_nav_actions.index('forward'):
return self.ASK, 'arrive'
start_point = ob['init_viewpoint']
# Find closest point to the current point on the path from start point
# to goal point
d, _ = nav_oracle._find_nearest_point_on_a_path(scan, current_point,
start_point, goal_point)
# Rule (a): ask if the agent deviates too far from the optimal path
if d > self.deviate_threshold:
return self.ASK, 'deviate'
# Rule (b): ask if uncertain
agent_dist = ob['nav_dist']
uniform = [1. / len(agent_dist)] * len(agent_dist)
entropy_gap = scipy.stats.entropy(uniform) - scipy.stats.entropy(agent_dist)
if entropy_gap < self.uncertain_threshold - 1e-9:
return self.ASK, 'uncertain'
# Rule (c): ask if not moving for too long
if len(ob['agent_path']) >= self.unmoved_threshold:
last_nodes = [t[0] for t in ob['agent_path']][-self.unmoved_threshold:]
if all(node == last_nodes[0] for node in last_nodes):
return self.ASK, 'unmoved'
# Rule (d): ask to spend all budget at the end
if ob['queries_unused'] >= ob['traj_len'] - ob['time_step']:
return self.ASK, 'why_not'
return self.DONT_ASK, 'pass'
def _map_env_action_to_agent_action(self, action, ob):
if ob['ended']:
return self.agent_ask_actions.index('<ignore>')
if action == self.DONT_ASK:
return self.agent_ask_actions.index('dont_ask')
return self.agent_ask_actions.index('ask')
def __call__(self, obs, nav_oracle):
should_ask_fn = functools.partial(self._should_ask, nav_oracle=nav_oracle)
actions, reasons = zip(*list(map(should_ask_fn, obs)))
actions = list(map(self._map_env_action_to_agent_action, actions, obs))
return actions, reasons
class MultistepShortestPathOracle(ShortestPathOracle):
'''For Ask Agents with direct advisors'''
def __init__(self, n_steps, agent_nav_actions, env_nav_actions):
super(MultistepShortestPathOracle, self).__init__(agent_nav_actions)
self.sim = MatterSim.Simulator()
self.sim.setRenderingEnabled(False)
self.sim.setDiscretizedViewingAngles(True)
self.sim.setCameraResolution(640, 480)
self.sim.setCameraVFOV(math.radians(60))
self.sim.setNavGraphPath(
os.path.join(os.getenv('PT_DATA_DIR'), 'connectivity'))
self.sim.init()
self.n_steps = n_steps
self.env_nav_actions = env_nav_actions
def _shortest_path_actions(self, ob):
actions = []
self.sim.newEpisode(ob['scan'], ob['viewpoint'], ob['heading'], ob['elevation'])
assert not ob['ended']
for _ in range(self.n_steps):
# Query oracle for next action
action = self._shortest_path_action(ob)
# Convert to agent action
agent_action = self._map_env_action_to_agent_action(action, ob)
actions.append(agent_action)
# Take action
self.sim.makeAction(*action)
if action == (0, 0, 0):
break
state = self.sim.getState()
ob = {
'viewpoint': state.location.viewpointId,
'viewIndex': state.viewIndex,
'heading' : state.heading,
'elevation': state.elevation,
'navigableLocations': state.navigableLocations,
'point' : state.location.point,
'ended' : ob['ended'] or action == (0, 0, 0),
'goal_viewpoints': ob['goal_viewpoints'],
'scan' : ob['scan']
}
return actions
def __call__(self, ob):
return self._shortest_path_actions(ob)
class NextOptimalOracle(object):
def __init__(self, hparams, agent_nav_actions, env_nav_actions,
agent_ask_actions):
self.type = 'next_optimal'
self.ask_oracle = make_oracle('ask', hparams, agent_ask_actions)
self.nav_oracle = make_oracle('shortest', agent_nav_actions, env_nav_actions)
def __call__(self, obs):
ask_actions, ask_reasons = self.ask_oracle(obs, self.nav_oracle)
self.nav_oracle.add_scans(set(ob['scan'] for ob in obs))
nav_actions = self.nav_oracle(obs)
return nav_actions, ask_actions, ask_reasons
def add_scans(self, scans):
self.nav_oracle.add_scans(scans)
def next_ask(self, obs):
return self.ask_oracle(obs, self.nav_oracle)
def next_nav(self, obs):
return self.nav_oracle(obs)
def interpret_agent_action(self, *args, **kwargs):
return self.nav_oracle.interpret_agent_action(*args, **kwargs)
class StepByStepSubgoalOracle(object):
def __init__(self, n_steps, agent_nav_actions, env_nav_actions, mode=None):
self.type = 'step_by_step'
self.nav_oracle = make_oracle('direct', n_steps, agent_nav_actions, env_nav_actions)
self.agent_nav_actions = agent_nav_actions
if mode == 'easy':
self._map_actions_to_instruction = self._map_actions_to_instruction_easy
elif mode == 'hard':
self._map_actions_to_instruction = self._map_actions_to_instruction_hard
else:
sys.exit('unknown step by step mode!')
def add_scans(self, scans):
self.nav_oracle.add_scans(scans)
def _make_action_name(self, a):
action_name = self.agent_nav_actions[a]
if action_name in ['up', 'down']:
return 'look ' + action_name
elif action_name in ['left', 'right']:
return 'turn ' + action_name
elif action_name == 'forward':
return 'go ' + action_name
elif action_name == '<end>':
return 'stop'
elif action_name == '<ignore>':
return ''
return None
def _map_actions_to_instruction_hard(self, actions):
agg_actions = []
cnt = 1
for i in range(1, len(actions)):
if actions[i] != actions[i - 1]:
agg_actions.append((actions[i - 1], cnt))
cnt = 1
else:
cnt += 1
agg_actions.append((actions[-1], cnt))
instruction = []
for a, c in agg_actions:
action_name = self._make_action_name(a)
if c > 1:
if 'turn' in action_name:
degree = 30 * c
if 'left' in action_name:
instruction.append('turn %d degrees left' % degree)
elif 'right' in action_name:
instruction.append('turn %d degrees right' % degree)
else:
raise ValueError('action name {} error'.format(action_name))
elif 'go' in action_name:
instruction.append('%s %d steps' % (action_name, c))
elif action_name != '':
instruction.append(action_name)
return ' , '.join(instruction)
def _map_actions_to_instruction_easy(self, actions):
instruction = []
for a in actions:
instruction.append(self._make_action_name(a))
return ' , '.join(instruction)
def __call__(self, ob):
action_seq = self.nav_oracle(ob)
verbal_instruction = self._map_actions_to_instruction(action_seq)
return action_seq, verbal_instruction
def make_oracle(oracle_type, *args, **kwargs):
if oracle_type == 'shortest':
return ShortestPathOracle(*args, **kwargs)
if oracle_type == 'next_optimal':
return NextOptimalOracle(*args, **kwargs)
if oracle_type == 'ask':
return AskOracle(*args, **kwargs)
if oracle_type == 'direct':
return MultistepShortestPathOracle(*args, **kwargs)
if oracle_type == 'verbal':
return StepByStepSubgoalOracle(*args, **kwargs)
if oracle_type == 'frontier_shortest':
return FrontierShortestPathsOracle(*args, **kwargs)
# TODO implement next
# if oracle_type == 'diverse_shortest':
# return DiverseShortestPathsOracle(*args, **kwargs)
return None
|
[
"networkx.all_pairs_dijkstra_path",
"os.getenv",
"MatterSim.Simulator",
"utils.load_nav_graphs",
"numpy.argmax",
"math.radians",
"functools.partial",
"math.atan2",
"sys.exit",
"networkx.all_pairs_dijkstra_path_length",
"sys.path.append"
] |
[((247, 287), 'sys.path.append', 'sys.path.append', (['"""/opt/MatterSim/build/"""'], {}), "('/opt/MatterSim/build/')\n", (262, 287), False, 'import sys\n'), ((375, 433), 'sys.path.append', 'sys.path.append', (['"""/home/hoyeung/Documents/vnla/code/build"""'], {}), "('/home/hoyeung/Documents/vnla/code/build')\n", (390, 433), False, 'import sys\n'), ((1506, 1544), 'utils.load_nav_graphs', 'utils.load_nav_graphs', (['scan'], {'path': 'path'}), '(scan, path=path)\n', (1527, 1544), False, 'import utils\n'), ((20699, 20757), 'functools.partial', 'functools.partial', (['self._should_ask'], {'nav_oracle': 'nav_oracle'}), '(self._should_ask, nav_oracle=nav_oracle)\n', (20716, 20757), False, 'import functools\n'), ((21202, 21223), 'MatterSim.Simulator', 'MatterSim.Simulator', ([], {}), '()\n', (21221, 21223), False, 'import MatterSim\n'), ((1566, 1599), 'networkx.all_pairs_dijkstra_path', 'nx.all_pairs_dijkstra_path', (['graph'], {}), '(graph)\n', (1592, 1599), True, 'import networkx as nx\n'), ((1626, 1666), 'networkx.all_pairs_dijkstra_path_length', 'nx.all_pairs_dijkstra_path_length', (['graph'], {}), '(graph)\n', (1659, 1666), True, 'import networkx as nx\n'), ((3965, 4005), 'math.atan2', 'math.atan2', (['target_rel[1]', 'target_rel[0]'], {}), '(target_rel[1], target_rel[0])\n', (3975, 4005), False, 'import math\n'), ((16921, 16946), 'numpy.argmax', 'np.argmax', (["ob['nav_dist']"], {}), "(ob['nav_dist'])\n", (16930, 16946), True, 'import numpy as np\n'), ((18917, 18942), 'numpy.argmax', 'np.argmax', (["ob['nav_dist']"], {}), "(ob['nav_dist'])\n", (18926, 18942), True, 'import numpy as np\n'), ((21397, 21413), 'math.radians', 'math.radians', (['(60)'], {}), '(60)\n', (21409, 21413), False, 'import math\n'), ((21474, 21498), 'os.getenv', 'os.getenv', (['"""PT_DATA_DIR"""'], {}), "('PT_DATA_DIR')\n", (21483, 21498), False, 'import os\n'), ((24408, 24446), 'sys.exit', 'sys.exit', (['"""unknown step by step mode!"""'], {}), "('unknown step by step mode!')\n", (24416, 24446), False, 'import sys\n')]
|
import tensorflow as tf
import numpy as np
import unittest
from dnc.controller import BaseController
class DummyController(BaseController):
def network_vars(self):
self.W = tf.Variable(tf.truncated_normal([self.nn_input_size, 64]))
self.b = tf.Variable(tf.zeros([64]))
def network_op(self, X):
return tf.matmul(X, self.W) + self.b
class DummyRecurrentController(BaseController):
def network_vars(self):
self.lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(64)
self.state = tf.Variable(tf.zeros([self.batch_size, 64]), trainable=False)
self.output = tf.Variable(tf.zeros([self.batch_size, 64]), trainable=False)
def network_op(self, X, state):
X = tf.convert_to_tensor(X)
return self.lstm_cell(X, state)
def update_state(self, new_state):
return tf.group(
self.output.assign(new_state[0]),
self.state.assign(new_state[1])
)
def get_state(self):
return (self.output, self.state)
class DNCControllerTest(unittest.TestCase):
def test_construction(self):
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph) as session:
controller = DummyController(10, 10, 2, 5)
rcontroller = DummyRecurrentController(10, 10, 2, 5, 1)
self.assertFalse(controller.has_recurrent_nn)
self.assertEqual(controller.nn_input_size, 20)
self.assertEqual(controller.interface_vector_size, 38)
self.assertEqual(controller.interface_weights.get_shape().as_list(), [64, 38])
self.assertEqual(controller.nn_output_weights.get_shape().as_list(), [64, 10])
self.assertEqual(controller.mem_output_weights.get_shape().as_list(), [10, 10])
self.assertTrue(rcontroller.has_recurrent_nn)
self.assertEqual(rcontroller.nn_input_size, 20)
self.assertEqual(rcontroller.interface_vector_size, 38)
self.assertEqual(rcontroller.interface_weights.get_shape().as_list(), [64, 38])
self.assertEqual(rcontroller.nn_output_weights.get_shape().as_list(), [64, 10])
self.assertEqual(rcontroller.mem_output_weights.get_shape().as_list(), [10, 10])
def test_get_nn_output_size(self):
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph) as Session:
controller = DummyController(10, 10, 2, 5)
rcontroller = DummyRecurrentController(10, 10, 2, 5, 1)
self.assertEqual(controller.get_nn_output_size(), 64)
self.assertEqual(rcontroller.get_nn_output_size(), 64)
def test_parse_interface_vector(self):
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph) as session:
controller = DummyController(10, 10, 2, 5)
zeta = np.random.uniform(-2, 2, (2, 38)).astype(np.float32)
read_keys = np.reshape(zeta[:, :10], (-1, 5, 2))
read_strengths = 1 + np.log(np.exp(np.reshape(zeta[:, 10:12], (-1, 2, ))) + 1)
write_key = np.reshape(zeta[:, 12:17], (-1, 5, 1))
write_strength = 1 + np.log(np.exp(np.reshape(zeta[:, 17], (-1, 1))) + 1)
erase_vector = 1.0 / (1 + np.exp(-1 * np.reshape(zeta[:, 18:23], (-1, 5))))
write_vector = np.reshape(zeta[:, 23:28], (-1, 5))
free_gates = 1.0 / (1 + np.exp(-1 * np.reshape(zeta[:, 28:30], (-1, 2))))
allocation_gate = 1.0 / (1 + np.exp(-1 * zeta[:, 30, np.newaxis]))
write_gate = 1.0 / (1 + np.exp(-1 * zeta[:, 31, np.newaxis]))
read_modes = np.reshape(zeta[:, 32:], (-1, 3, 2))
read_modes = np.transpose(read_modes, [0, 2, 1])
read_modes = np.reshape(read_modes, (-1, 3))
read_modes = np.exp(read_modes) / np.sum(np.exp(read_modes), axis=-1, keepdims=True)
read_modes = np.reshape(read_modes, (2, 2, 3))
read_modes = np.transpose(read_modes, [0, 2, 1])
op = controller.parse_interface_vector(zeta)
session.run(tf.initialize_all_variables())
parsed = session.run(op)
self.assertTrue(np.allclose(parsed['read_keys'], read_keys))
self.assertTrue(np.allclose(parsed['read_strengths'], read_strengths))
self.assertTrue(np.allclose(parsed['write_key'], write_key))
self.assertTrue(np.allclose(parsed['write_strength'], write_strength))
self.assertTrue(np.allclose(parsed['erase_vector'], erase_vector))
self.assertTrue(np.allclose(parsed['write_vector'], write_vector))
self.assertTrue(np.allclose(parsed['free_gates'], free_gates))
self.assertTrue(np.allclose(parsed['allocation_gate'], allocation_gate))
self.assertTrue(np.allclose(parsed['write_gate'], write_gate))
self.assertTrue(np.allclose(parsed['read_modes'], read_modes))
def test_process_input(self):
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph) as session:
controller = DummyController(10, 10, 2, 5)
rcontroller = DummyRecurrentController(10, 10, 2, 5, 2)
input_batch = np.random.uniform(0, 1, (2, 10)).astype(np.float32)
last_read_vectors = np.random.uniform(-1, 1, (2, 5, 2)).astype(np.float32)
v_op, zeta_op = controller.process_input(input_batch, last_read_vectors)
rv_op, rzeta_op, rs_op = rcontroller.process_input(input_batch, last_read_vectors, rcontroller.get_state())
session.run(tf.initialize_all_variables())
v, zeta = session.run([v_op, zeta_op])
rv, rzeta, rs = session.run([rv_op, rzeta_op, rs_op])
self.assertEqual(v.shape, (2, 10))
self.assertEqual(np.concatenate([np.reshape(val, (2, -1)) for _, val in zeta.items()], axis=1).shape, (2, 38))
self.assertEqual(rv.shape, (2, 10))
self.assertEqual(np.concatenate([np.reshape(val, (2, -1)) for _, val in rzeta.items()], axis=1).shape, (2, 38))
self.assertEqual([_s.shape for _s in rs], [(2, 64), (2, 64)])
def test_final_output(self):
graph = tf.Graph()
with graph.as_default():
with tf.Session(graph=graph) as session:
controller = DummyController(10, 10, 2, 5)
output_batch = np.random.uniform(0, 1, (2, 10)).astype(np.float32)
new_read_vectors = np.random.uniform(-1, 1, (2, 5, 2)).astype(np.float32)
op = controller.final_output(output_batch, new_read_vectors)
session.run(tf.initialize_all_variables())
y = session.run(op)
self.assertEqual(y.shape, (2, 10))
if __name__ == '__main__':
unittest.main(verbosity=2)
|
[
"tensorflow.Graph",
"tensorflow.initialize_all_variables",
"numpy.reshape",
"numpy.allclose",
"tensorflow.nn.rnn_cell.BasicLSTMCell",
"tensorflow.convert_to_tensor",
"tensorflow.Session",
"numpy.exp",
"tensorflow.matmul",
"numpy.random.uniform",
"unittest.main",
"numpy.transpose",
"tensorflow.zeros",
"tensorflow.truncated_normal"
] |
[((7097, 7123), 'unittest.main', 'unittest.main', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (7110, 7123), False, 'import unittest\n'), ((469, 501), 'tensorflow.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicLSTMCell', (['(64)'], {}), '(64)\n', (497, 501), True, 'import tensorflow as tf\n'), ((718, 741), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['X'], {}), '(X)\n', (738, 741), True, 'import tensorflow as tf\n'), ((1110, 1120), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1118, 1120), True, 'import tensorflow as tf\n'), ((2368, 2378), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2376, 2378), True, 'import tensorflow as tf\n'), ((2800, 2810), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2808, 2810), True, 'import tensorflow as tf\n'), ((5218, 5228), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (5226, 5228), True, 'import tensorflow as tf\n'), ((6509, 6519), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (6517, 6519), True, 'import tensorflow as tf\n'), ((199, 244), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[self.nn_input_size, 64]'], {}), '([self.nn_input_size, 64])\n', (218, 244), True, 'import tensorflow as tf\n'), ((275, 289), 'tensorflow.zeros', 'tf.zeros', (['[64]'], {}), '([64])\n', (283, 289), True, 'import tensorflow as tf\n'), ((336, 356), 'tensorflow.matmul', 'tf.matmul', (['X', 'self.W'], {}), '(X, self.W)\n', (345, 356), True, 'import tensorflow as tf\n'), ((535, 566), 'tensorflow.zeros', 'tf.zeros', (['[self.batch_size, 64]'], {}), '([self.batch_size, 64])\n', (543, 566), True, 'import tensorflow as tf\n'), ((619, 650), 'tensorflow.zeros', 'tf.zeros', (['[self.batch_size, 64]'], {}), '([self.batch_size, 64])\n', (627, 650), True, 'import tensorflow as tf\n'), ((1171, 1194), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (1181, 1194), True, 'import tensorflow as tf\n'), ((2429, 2452), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (2439, 2452), True, 'import tensorflow as tf\n'), ((2861, 2884), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (2871, 2884), True, 'import tensorflow as tf\n'), ((3062, 3098), 'numpy.reshape', 'np.reshape', (['zeta[:, :10]', '(-1, 5, 2)'], {}), '(zeta[:, :10], (-1, 5, 2))\n', (3072, 3098), True, 'import numpy as np\n'), ((3222, 3260), 'numpy.reshape', 'np.reshape', (['zeta[:, 12:17]', '(-1, 5, 1)'], {}), '(zeta[:, 12:17], (-1, 5, 1))\n', (3232, 3260), True, 'import numpy as np\n'), ((3474, 3509), 'numpy.reshape', 'np.reshape', (['zeta[:, 23:28]', '(-1, 5)'], {}), '(zeta[:, 23:28], (-1, 5))\n', (3484, 3509), True, 'import numpy as np\n'), ((3790, 3826), 'numpy.reshape', 'np.reshape', (['zeta[:, 32:]', '(-1, 3, 2)'], {}), '(zeta[:, 32:], (-1, 3, 2))\n', (3800, 3826), True, 'import numpy as np\n'), ((3857, 3892), 'numpy.transpose', 'np.transpose', (['read_modes', '[0, 2, 1]'], {}), '(read_modes, [0, 2, 1])\n', (3869, 3892), True, 'import numpy as np\n'), ((3922, 3953), 'numpy.reshape', 'np.reshape', (['read_modes', '(-1, 3)'], {}), '(read_modes, (-1, 3))\n', (3932, 3953), True, 'import numpy as np\n'), ((4084, 4117), 'numpy.reshape', 'np.reshape', (['read_modes', '(2, 2, 3)'], {}), '(read_modes, (2, 2, 3))\n', (4094, 4117), True, 'import numpy as np\n'), ((4147, 4182), 'numpy.transpose', 'np.transpose', (['read_modes', '[0, 2, 1]'], {}), '(read_modes, [0, 2, 1])\n', (4159, 4182), True, 'import numpy as np\n'), ((5279, 5302), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (5289, 5302), True, 'import tensorflow as tf\n'), ((6570, 6593), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (6580, 6593), True, 'import tensorflow as tf\n'), ((3983, 4001), 'numpy.exp', 'np.exp', (['read_modes'], {}), '(read_modes)\n', (3989, 4001), True, 'import numpy as np\n'), ((4273, 4302), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (4300, 4302), True, 'import tensorflow as tf\n'), ((4378, 4421), 'numpy.allclose', 'np.allclose', (["parsed['read_keys']", 'read_keys'], {}), "(parsed['read_keys'], read_keys)\n", (4389, 4421), True, 'import numpy as np\n'), ((4455, 4508), 'numpy.allclose', 'np.allclose', (["parsed['read_strengths']", 'read_strengths'], {}), "(parsed['read_strengths'], read_strengths)\n", (4466, 4508), True, 'import numpy as np\n'), ((4542, 4585), 'numpy.allclose', 'np.allclose', (["parsed['write_key']", 'write_key'], {}), "(parsed['write_key'], write_key)\n", (4553, 4585), True, 'import numpy as np\n'), ((4619, 4672), 'numpy.allclose', 'np.allclose', (["parsed['write_strength']", 'write_strength'], {}), "(parsed['write_strength'], write_strength)\n", (4630, 4672), True, 'import numpy as np\n'), ((4706, 4755), 'numpy.allclose', 'np.allclose', (["parsed['erase_vector']", 'erase_vector'], {}), "(parsed['erase_vector'], erase_vector)\n", (4717, 4755), True, 'import numpy as np\n'), ((4789, 4838), 'numpy.allclose', 'np.allclose', (["parsed['write_vector']", 'write_vector'], {}), "(parsed['write_vector'], write_vector)\n", (4800, 4838), True, 'import numpy as np\n'), ((4872, 4917), 'numpy.allclose', 'np.allclose', (["parsed['free_gates']", 'free_gates'], {}), "(parsed['free_gates'], free_gates)\n", (4883, 4917), True, 'import numpy as np\n'), ((4951, 5006), 'numpy.allclose', 'np.allclose', (["parsed['allocation_gate']", 'allocation_gate'], {}), "(parsed['allocation_gate'], allocation_gate)\n", (4962, 5006), True, 'import numpy as np\n'), ((5040, 5085), 'numpy.allclose', 'np.allclose', (["parsed['write_gate']", 'write_gate'], {}), "(parsed['write_gate'], write_gate)\n", (5051, 5085), True, 'import numpy as np\n'), ((5119, 5164), 'numpy.allclose', 'np.allclose', (["parsed['read_modes']", 'read_modes'], {}), "(parsed['read_modes'], read_modes)\n", (5130, 5164), True, 'import numpy as np\n'), ((5864, 5893), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (5891, 5893), True, 'import tensorflow as tf\n'), ((6945, 6974), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (6972, 6974), True, 'import tensorflow as tf\n'), ((2980, 3013), 'numpy.random.uniform', 'np.random.uniform', (['(-2)', '(2)', '(2, 38)'], {}), '(-2, 2, (2, 38))\n', (2997, 3013), True, 'import numpy as np\n'), ((3645, 3681), 'numpy.exp', 'np.exp', (['(-1 * zeta[:, 30, np.newaxis])'], {}), '(-1 * zeta[:, 30, np.newaxis])\n', (3651, 3681), True, 'import numpy as np\n'), ((3723, 3759), 'numpy.exp', 'np.exp', (['(-1 * zeta[:, 31, np.newaxis])'], {}), '(-1 * zeta[:, 31, np.newaxis])\n', (3729, 3759), True, 'import numpy as np\n'), ((4011, 4029), 'numpy.exp', 'np.exp', (['read_modes'], {}), '(read_modes)\n', (4017, 4029), True, 'import numpy as np\n'), ((5478, 5510), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '(2, 10)'], {}), '(0, 1, (2, 10))\n', (5495, 5510), True, 'import numpy as np\n'), ((5566, 5601), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', '(2, 5, 2)'], {}), '(-1, 1, (2, 5, 2))\n', (5583, 5601), True, 'import numpy as np\n'), ((6697, 6729), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(1)', '(2, 10)'], {}), '(0, 1, (2, 10))\n', (6714, 6729), True, 'import numpy as np\n'), ((6784, 6819), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)', '(2, 5, 2)'], {}), '(-1, 1, (2, 5, 2))\n', (6801, 6819), True, 'import numpy as np\n'), ((3150, 3185), 'numpy.reshape', 'np.reshape', (['zeta[:, 10:12]', '(-1, 2)'], {}), '(zeta[:, 10:12], (-1, 2))\n', (3160, 3185), True, 'import numpy as np\n'), ((3312, 3344), 'numpy.reshape', 'np.reshape', (['zeta[:, 17]', '(-1, 1)'], {}), '(zeta[:, 17], (-1, 1))\n', (3322, 3344), True, 'import numpy as np\n'), ((3405, 3440), 'numpy.reshape', 'np.reshape', (['zeta[:, 18:23]', '(-1, 5)'], {}), '(zeta[:, 18:23], (-1, 5))\n', (3415, 3440), True, 'import numpy as np\n'), ((3562, 3597), 'numpy.reshape', 'np.reshape', (['zeta[:, 28:30]', '(-1, 2)'], {}), '(zeta[:, 28:30], (-1, 2))\n', (3572, 3597), True, 'import numpy as np\n'), ((6121, 6145), 'numpy.reshape', 'np.reshape', (['val', '(2, -1)'], {}), '(val, (2, -1))\n', (6131, 6145), True, 'import numpy as np\n'), ((6301, 6325), 'numpy.reshape', 'np.reshape', (['val', '(2, -1)'], {}), '(val, (2, -1))\n', (6311, 6325), True, 'import numpy as np\n')]
|
import inspect
import pytest
import numpy as np
from datar.core.backends.pandas import Categorical, DataFrame, Series
from datar.core.backends.pandas.testing import assert_frame_equal
from datar.core.backends.pandas.core.groupby import SeriesGroupBy
from datar.core.factory import func_factory
from datar.core.tibble import (
SeriesCategorical,
SeriesRowwise,
TibbleGrouped,
TibbleRowwise,
)
from datar.tibble import tibble
from ..conftest import assert_iterable_equal
def test_transform_default():
@func_factory("transform", "x")
def double(x):
return x * 2
# scalar
out = double(3)
assert out[0] == 6
out = double(np.array([1, 2], dtype=int))
assert_iterable_equal(out, [2, 4])
@func_factory("transform", "x")
def double(x):
return x * 2
out = double([1, 2])
assert_iterable_equal(out, [2, 4])
# default on series
x = Series([2, 3], index=["a", "b"])
out = double(x)
assert isinstance(out, Series)
assert_iterable_equal(out.index, ["a", "b"])
assert_iterable_equal(out, [4, 6])
# default on dataframe
x = DataFrame({"a": [3, 4]})
out = double(x)
assert isinstance(out, DataFrame)
assert_iterable_equal(out.a, [6, 8])
# default on seriesgroupby
x = Series([1, 2, 1, 2]).groupby([1, 1, 2, 2])
out = double(x)
assert isinstance(out, SeriesGroupBy)
assert_iterable_equal(out.obj, [2, 4, 2, 4])
assert out.grouper.ngroups == 2
# on tibble grouped
x = tibble(x=[1, 2, 1, 2], g=[1, 1, 2, 2]).group_by("g")
out = double(x)
# grouping variables not included
assert_iterable_equal(out.x.obj, [2, 4, 2, 4])
x = tibble(x=[1, 2, 1, 2], g=[1, 1, 2, 2]).rowwise("g")
out = double(x)
assert isinstance(out, TibbleRowwise)
assert_frame_equal(out, out._datar["grouped"].obj)
assert_iterable_equal(out.x.obj, [2, 4, 2, 4])
assert_iterable_equal(out.group_vars, ["g"])
def test_transform_register():
@func_factory(kind="transform", data_args="x")
def double(x):
return x * 2
@double.register(DataFrame)
def _(x):
return x * 3
x = Series([2, 3])
out = double(x)
assert_iterable_equal(out, [4, 6])
double.register(Series, lambda x: x * 4)
out = double(x)
assert_iterable_equal(out, [8, 12])
x = tibble(a=[1, 3])
out = double(x)
assert_iterable_equal(out.a, [3, 9])
out = double([1, 4])
assert_iterable_equal(out, [4, 16])
# register an available string func for tranform
double.register(SeriesGroupBy, "sum")
x = Series([1, -2]).groupby([1, 2])
out = double(x)
assert_iterable_equal(out.obj, [1, -2])
# seriesrowwise
double.register(SeriesRowwise, lambda x: x + 1)
x.is_rowwise = True
out = double(x)
assert_iterable_equal(out.obj, [2, -1])
assert out.is_rowwise
def test_transform_hooks():
@func_factory(kind="transform", data_args="x")
def times(x, t):
return x * t
with pytest.raises(ValueError):
times.register(Series, meta=False, pre=1, func=None)
times.register(
Series,
func=None,
pre=lambda x, t: (x, (-t,), {}),
post=lambda out, x, t: out + t,
)
x = Series([1, 2])
out = times(x, -1)
assert_iterable_equal(out, [2, 3])
@times.register(Series, meta=False)
def _(x, t):
return x + t
out = times(x, 10)
assert_iterable_equal(out, [11, 12])
@times.register(SeriesGroupBy, meta=True)
def _(x, t):
return x + 10
x = Series([1, 2, 1, 2]).groupby([1, 1, 2, 2])
out = times(x, 1)
assert_iterable_equal(out.obj, [11, 12, 11, 12])
times.register(
SeriesGroupBy,
func=None,
pre=lambda x, t: (x, (t + 1,), {}),
post=lambda out, x, *args, **kwargs: out,
)
out = times(x, 1)
assert_iterable_equal(out, [2, 4, 2, 4])
times.register(
Series,
func=None,
pre=lambda *args, **kwargs: None,
post=lambda out, x, t: out + t,
)
x = Series([1, 2])
out = times(x, 3)
assert_iterable_equal(out, [4, 5])
@times.register(DataFrame, meta=True)
def _(x, t):
return x ** t
x = tibble(a=[1, 2], b=[2, 3])
out = times(x, 3)
assert_iterable_equal(out.a, [1, 8])
assert_iterable_equal(out.b, [8, 27])
# TibbleGrouped
times.register(
TibbleGrouped,
func=None,
pre=lambda x, t: (x, (t - 1,), {}),
post=lambda out, x, t: out.reindex([1, 0]),
)
x = x.group_by("a")
out = times(x, 3)
assert_iterable_equal(out.b, [6, 4])
@times.register(
TibbleGrouped,
meta=False,
)
def _(x, t):
out = x.transform(lambda d, t: d * t, 0, t - 1)
out.iloc[0, 1] = 10
return out
# x = tibble(a=[1, 2], b=[2, 3]) # grouped by a
out = times(x, 3)
assert isinstance(out, TibbleGrouped)
assert_iterable_equal(out.group_vars, ["a"])
assert_iterable_equal(out.b.obj, [10, 6])
def test_agg():
men = func_factory(
"agg",
"a",
name="men",
func=np.mean,
signature=inspect.signature(lambda a: None),
)
x = [1, 2, 3]
out = men(x)
assert out == 2.0
x = Series([1, 2, 3])
out = men(x)
assert out == 2.0
# SeriesGroupBy
men.register(SeriesGroupBy, func="mean")
x = Series([1, 2, 4]).groupby([1, 2, 2])
out = men(x)
assert_iterable_equal(out.index, [1, 2])
assert_iterable_equal(out, [1.0, 3.0])
# SeriesRowwise
df = tibble(x=[1, 2, 4]).rowwise()
out = men(df.x)
assert_iterable_equal(out, df.x.obj)
men.register(SeriesRowwise, func="sum")
out = men(df.x)
assert_iterable_equal(out.index, [0, 1, 2])
assert_iterable_equal(out, [1.0, 2.0, 4.0])
# TibbleRowwise
x = tibble(a=[1, 2, 3], b=[4, 5, 6]).rowwise()
out = men(x)
assert_iterable_equal(out, [2.5, 3.5, 4.5])
# TibbleGrouped
x = tibble(a=[1, 2, 3], b=[4, 5, 5]).group_by("b")
out = men(x)
assert_iterable_equal(out.a, [1.0, 2.5])
def test_varargs_data_args():
@func_factory("agg", {"x", "args[0]"})
def mulsum(x, *args):
return (x + args[0]) * args[1]
out = mulsum([1, 2], 2, 3)
assert_iterable_equal(out, [9, 12])
@func_factory("agg", {"x", "args"})
def mulsum(x, *args):
return x + args[0] + args[1]
out = mulsum([1, 2], [1, 2], [2, 3])
assert_iterable_equal(out, [4, 7])
def test_dataargs_not_exist():
fun = func_factory("agg", "y")(lambda x: None)
with pytest.raises(ValueError):
fun(1)
def test_args_frame():
@func_factory("agg", {"x", "y"})
def frame(x, y, __args_frame=None):
return __args_frame
out = frame(1, 2)
assert_iterable_equal(sorted(out.columns), ["x", "y"])
def test_args_raw():
@func_factory("agg", {"x"})
def raw(x, __args_raw=None):
return x, __args_raw["x"]
outx, rawx = raw(1)
assert isinstance(outx, Series)
assert rawx == 1
def test_apply():
@func_factory("apply", "x")
def rn(x):
return tibble(x=[1, 2, 3])
x = tibble(a=[1, 2], b=[2, 3]).rowwise()
out = rn(x)
assert out.shape == (2,)
assert out.iloc[0].shape == (3, 1)
def test_no_func_registered():
fun = func_factory("agg", "x", func=lambda x: None)
with pytest.raises(ValueError):
fun.register(SeriesGroupBy, func=None, meta=False)
def test_run_error():
@func_factory("agg", "x")
def error(x):
raise RuntimeError
with pytest.raises(ValueError, match="registered function"):
error(1)
def test_series_cat():
@func_factory("agg", "x")
def sum1(x):
return x.sum()
@sum1.register(SeriesCategorical)
def _(x):
return x[0]
out = sum1([1, 2])
assert out == 3
out = sum1(Categorical([1, 2]))
assert out == 1
def test_str_fun():
sum2 = func_factory(
"agg",
"x",
name="sum2",
qualname="sum2",
func="sum",
signature=inspect.signature(lambda x: None),
)
assert sum2([1, 2, 3]) == 6
|
[
"datar.tibble.tibble",
"inspect.signature",
"datar.core.backends.pandas.testing.assert_frame_equal",
"datar.core.backends.pandas.DataFrame",
"numpy.array",
"datar.core.backends.pandas.Categorical",
"pytest.raises",
"datar.core.backends.pandas.Series",
"datar.core.factory.func_factory"
] |
[((524, 554), 'datar.core.factory.func_factory', 'func_factory', (['"""transform"""', '"""x"""'], {}), "('transform', 'x')\n", (536, 554), False, 'from datar.core.factory import func_factory\n'), ((744, 774), 'datar.core.factory.func_factory', 'func_factory', (['"""transform"""', '"""x"""'], {}), "('transform', 'x')\n", (756, 774), False, 'from datar.core.factory import func_factory\n'), ((913, 945), 'datar.core.backends.pandas.Series', 'Series', (['[2, 3]'], {'index': "['a', 'b']"}), "([2, 3], index=['a', 'b'])\n", (919, 945), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((1125, 1149), 'datar.core.backends.pandas.DataFrame', 'DataFrame', (["{'a': [3, 4]}"], {}), "({'a': [3, 4]})\n", (1134, 1149), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((1801, 1851), 'datar.core.backends.pandas.testing.assert_frame_equal', 'assert_frame_equal', (['out', "out._datar['grouped'].obj"], {}), "(out, out._datar['grouped'].obj)\n", (1819, 1851), False, 'from datar.core.backends.pandas.testing import assert_frame_equal\n'), ((1990, 2035), 'datar.core.factory.func_factory', 'func_factory', ([], {'kind': '"""transform"""', 'data_args': '"""x"""'}), "(kind='transform', data_args='x')\n", (2002, 2035), False, 'from datar.core.factory import func_factory\n'), ((2153, 2167), 'datar.core.backends.pandas.Series', 'Series', (['[2, 3]'], {}), '([2, 3])\n', (2159, 2167), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((2343, 2359), 'datar.tibble.tibble', 'tibble', ([], {'a': '[1, 3]'}), '(a=[1, 3])\n', (2349, 2359), False, 'from datar.tibble import tibble\n'), ((2909, 2954), 'datar.core.factory.func_factory', 'func_factory', ([], {'kind': '"""transform"""', 'data_args': '"""x"""'}), "(kind='transform', data_args='x')\n", (2921, 2954), False, 'from datar.core.factory import func_factory\n'), ((3247, 3261), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2]'], {}), '([1, 2])\n', (3253, 3261), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((4063, 4077), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2]'], {}), '([1, 2])\n', (4069, 4077), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((4230, 4256), 'datar.tibble.tibble', 'tibble', ([], {'a': '[1, 2]', 'b': '[2, 3]'}), '(a=[1, 2], b=[2, 3])\n', (4236, 4256), False, 'from datar.tibble import tibble\n'), ((5276, 5293), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (5282, 5293), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((6143, 6180), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', "{'x', 'args[0]'}"], {}), "('agg', {'x', 'args[0]'})\n", (6155, 6180), False, 'from datar.core.factory import func_factory\n'), ((6324, 6358), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', "{'x', 'args'}"], {}), "('agg', {'x', 'args'})\n", (6336, 6358), False, 'from datar.core.factory import func_factory\n'), ((6668, 6699), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', "{'x', 'y'}"], {}), "('agg', {'x', 'y'})\n", (6680, 6699), False, 'from datar.core.factory import func_factory\n'), ((6878, 6904), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', "{'x'}"], {}), "('agg', {'x'})\n", (6890, 6904), False, 'from datar.core.factory import func_factory\n'), ((7079, 7105), 'datar.core.factory.func_factory', 'func_factory', (['"""apply"""', '"""x"""'], {}), "('apply', 'x')\n", (7091, 7105), False, 'from datar.core.factory import func_factory\n'), ((7329, 7374), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', '"""x"""'], {'func': '(lambda x: None)'}), "('agg', 'x', func=lambda x: None)\n", (7341, 7374), False, 'from datar.core.factory import func_factory\n'), ((7499, 7523), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', '"""x"""'], {}), "('agg', 'x')\n", (7511, 7523), False, 'from datar.core.factory import func_factory\n'), ((7682, 7706), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', '"""x"""'], {}), "('agg', 'x')\n", (7694, 7706), False, 'from datar.core.factory import func_factory\n'), ((670, 697), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'int'}), '([1, 2], dtype=int)\n', (678, 697), True, 'import numpy as np\n'), ((3007, 3032), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3020, 3032), False, 'import pytest\n'), ((6546, 6570), 'datar.core.factory.func_factory', 'func_factory', (['"""agg"""', '"""y"""'], {}), "('agg', 'y')\n", (6558, 6570), False, 'from datar.core.factory import func_factory\n'), ((6596, 6621), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6609, 6621), False, 'import pytest\n'), ((7136, 7155), 'datar.tibble.tibble', 'tibble', ([], {'x': '[1, 2, 3]'}), '(x=[1, 2, 3])\n', (7142, 7155), False, 'from datar.tibble import tibble\n'), ((7384, 7409), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7397, 7409), False, 'import pytest\n'), ((7579, 7633), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""registered function"""'}), "(ValueError, match='registered function')\n", (7592, 7633), False, 'import pytest\n'), ((7880, 7899), 'datar.core.backends.pandas.Categorical', 'Categorical', (['[1, 2]'], {}), '([1, 2])\n', (7891, 7899), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((1289, 1309), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2, 1, 2]'], {}), '([1, 2, 1, 2])\n', (1295, 1309), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((1512, 1550), 'datar.tibble.tibble', 'tibble', ([], {'x': '[1, 2, 1, 2]', 'g': '[1, 1, 2, 2]'}), '(x=[1, 2, 1, 2], g=[1, 1, 2, 2])\n', (1518, 1550), False, 'from datar.tibble import tibble\n'), ((1683, 1721), 'datar.tibble.tibble', 'tibble', ([], {'x': '[1, 2, 1, 2]', 'g': '[1, 1, 2, 2]'}), '(x=[1, 2, 1, 2], g=[1, 1, 2, 2])\n', (1689, 1721), False, 'from datar.tibble import tibble\n'), ((2591, 2606), 'datar.core.backends.pandas.Series', 'Series', (['[1, -2]'], {}), '([1, -2])\n', (2597, 2606), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((3563, 3583), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2, 1, 2]'], {}), '([1, 2, 1, 2])\n', (3569, 3583), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((5168, 5201), 'inspect.signature', 'inspect.signature', (['(lambda a: None)'], {}), '(lambda a: None)\n', (5185, 5201), False, 'import inspect\n'), ((5407, 5424), 'datar.core.backends.pandas.Series', 'Series', (['[1, 2, 4]'], {}), '([1, 2, 4])\n', (5413, 5424), False, 'from datar.core.backends.pandas import Categorical, DataFrame, Series\n'), ((5579, 5598), 'datar.tibble.tibble', 'tibble', ([], {'x': '[1, 2, 4]'}), '(x=[1, 2, 4])\n', (5585, 5598), False, 'from datar.tibble import tibble\n'), ((5860, 5892), 'datar.tibble.tibble', 'tibble', ([], {'a': '[1, 2, 3]', 'b': '[4, 5, 6]'}), '(a=[1, 2, 3], b=[4, 5, 6])\n', (5866, 5892), False, 'from datar.tibble import tibble\n'), ((5997, 6029), 'datar.tibble.tibble', 'tibble', ([], {'a': '[1, 2, 3]', 'b': '[4, 5, 5]'}), '(a=[1, 2, 3], b=[4, 5, 5])\n', (6003, 6029), False, 'from datar.tibble import tibble\n'), ((7165, 7191), 'datar.tibble.tibble', 'tibble', ([], {'a': '[1, 2]', 'b': '[2, 3]'}), '(a=[1, 2], b=[2, 3])\n', (7171, 7191), False, 'from datar.tibble import tibble\n'), ((8080, 8113), 'inspect.signature', 'inspect.signature', (['(lambda x: None)'], {}), '(lambda x: None)\n', (8097, 8113), False, 'import inspect\n')]
|
#!/usr/bin/env python3
"""
Created on Tue Sep 1 2020
@author: kstoreyf
"""
import numpy as np
import nbodykit
import pandas as pd
import pickle
from nbodykit import cosmology
def main():
save_fn = '../data/cosmology_train.pickle'
x = generate_training_parameters(n_train=1000)
y, extra_input = generate_data(x)
input_data, output_data = format_data(x, y,
objs_id=None)
data_to_save = make_data_to_save(input_data, output_data,
extra_input)
save_data(data_to_save, save_fn)
save_fn = '../data/cosmology_test.pickle'
x = generate_testing_parameters(n_test=100)
y, extra_input = generate_data(x)
input_data, output_data = format_data(x, y,
objs_id=None)
data_to_save = make_data_to_save(input_data, output_data,
extra_input)
save_data(data_to_save, save_fn)
# Generate the parameters that govern the output training set data
def generate_training_parameters(n_train=1000):
n_params = 3
n_points = n_train**(1./float(n_params))
assert abs(round(n_points) - n_points) < 1e-12, f"n_train must be a power of {n_params} because we're making a high-dimensional grid."
n_points = round(n_points)
omega_m = np.linspace(0.26, 0.34, n_points)
sigma_8 = np.linspace(0.7, 0.95, n_points)
omega_b = np.linspace(0.038, 0.058, n_points)
grid = np.meshgrid(omega_m, sigma_8, omega_b)
# x has shape (n_params, n_train), where n_train = n_points**n_params
x = np.array([grid[p].flatten() for p in range(n_params)])
return x
# Generate the parameters that govern the output testing set data
def generate_testing_parameters(n_test=100):
omega_m = random_between(0.26, 0.34, n_test)
sigma_8 = random_between(0.7, 0.95, n_test)
omega_b = random_between(0.038, 0.058, n_test)
# x has shape (n_params, n_test)
x = np.array([omega_m, sigma_8, omega_b])
return x
def random_between(xmin, xmax, n):
return np.random.rand(n)*(xmax-xmin)+xmin
# Generate the output data that we're interested in emulating
def generate_data(x):
redshift = 0.0
r_vals = np.linspace(50, 140, 10)
extra_input = {'redshift': redshift, 'r_vals': r_vals}
n_data = x.shape[1]
y = np.empty((len(r_vals), n_data))
for i in range(n_data):
print(i)
om, s8, ob = x[:,i]
ocdm = om - ob
m_ncdm = [] #no massive neutrinos
cosmo = cosmology.Cosmology(Omega0_b=ob, Omega0_cdm=ocdm, m_ncdm=m_ncdm)
cosmo = cosmo.match(sigma8=s8)
plin = cosmology.LinearPower(cosmo, redshift, transfer='EisensteinHu')
cf = cosmology.correlation.CorrelationFunction(plin)
y[:,i] = cf(r_vals)
return y, extra_input
# Format data into pandas data frames
def format_data(x_input, y_output, objs_id=None):
number_objs = len(x_input[0,:])
number_outputs = len(y_output[:,0])
if objs_id is None:
objs_id = [f'obj_{i}'for i in np.arange(number_objs)]
input_data = pd.DataFrame()
input_data['object_id'] = objs_id
input_data[r'$\Omega_m$'] = x_input[0,:]
input_data[r'$\sigma_8$'] = x_input[1,:]
input_data[r'$\Omega_b$'] = x_input[2,:]
output_data = pd.DataFrame()
output_data['object_id'] = objs_id
for i in np.arange(number_outputs):
output_data[r'$\xi(r_{})$'.format(i)] = y_output[i, :]
return input_data, output_data
# Format the data to save it
def make_data_to_save(input_data, output_data, extra_input=None):
data_to_save = {'input_data': input_data,
'output_data': output_data}
if extra_input is not None:
data_to_save['extra_input'] = extra_input
return data_to_save
# Save the data to a file
def save_data(data, save_fn):
with open(save_fn, 'wb') as f:
pickle.dump(data, f, protocol=3)
if __name__=='__main__':
main()
|
[
"nbodykit.cosmology.correlation.CorrelationFunction",
"pickle.dump",
"numpy.random.rand",
"nbodykit.cosmology.Cosmology",
"numpy.array",
"numpy.linspace",
"nbodykit.cosmology.LinearPower",
"pandas.DataFrame",
"numpy.meshgrid",
"numpy.arange"
] |
[((1335, 1368), 'numpy.linspace', 'np.linspace', (['(0.26)', '(0.34)', 'n_points'], {}), '(0.26, 0.34, n_points)\n', (1346, 1368), True, 'import numpy as np\n'), ((1383, 1415), 'numpy.linspace', 'np.linspace', (['(0.7)', '(0.95)', 'n_points'], {}), '(0.7, 0.95, n_points)\n', (1394, 1415), True, 'import numpy as np\n'), ((1430, 1465), 'numpy.linspace', 'np.linspace', (['(0.038)', '(0.058)', 'n_points'], {}), '(0.038, 0.058, n_points)\n', (1441, 1465), True, 'import numpy as np\n'), ((1477, 1515), 'numpy.meshgrid', 'np.meshgrid', (['omega_m', 'sigma_8', 'omega_b'], {}), '(omega_m, sigma_8, omega_b)\n', (1488, 1515), True, 'import numpy as np\n'), ((1972, 2009), 'numpy.array', 'np.array', (['[omega_m, sigma_8, omega_b]'], {}), '([omega_m, sigma_8, omega_b])\n', (1980, 2009), True, 'import numpy as np\n'), ((2224, 2248), 'numpy.linspace', 'np.linspace', (['(50)', '(140)', '(10)'], {}), '(50, 140, 10)\n', (2235, 2248), True, 'import numpy as np\n'), ((3099, 3113), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3111, 3113), True, 'import pandas as pd\n'), ((3310, 3324), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3322, 3324), True, 'import pandas as pd\n'), ((3377, 3402), 'numpy.arange', 'np.arange', (['number_outputs'], {}), '(number_outputs)\n', (3386, 3402), True, 'import numpy as np\n'), ((2527, 2591), 'nbodykit.cosmology.Cosmology', 'cosmology.Cosmology', ([], {'Omega0_b': 'ob', 'Omega0_cdm': 'ocdm', 'm_ncdm': 'm_ncdm'}), '(Omega0_b=ob, Omega0_cdm=ocdm, m_ncdm=m_ncdm)\n', (2546, 2591), False, 'from nbodykit import cosmology\n'), ((2646, 2709), 'nbodykit.cosmology.LinearPower', 'cosmology.LinearPower', (['cosmo', 'redshift'], {'transfer': '"""EisensteinHu"""'}), "(cosmo, redshift, transfer='EisensteinHu')\n", (2667, 2709), False, 'from nbodykit import cosmology\n'), ((2723, 2770), 'nbodykit.cosmology.correlation.CorrelationFunction', 'cosmology.correlation.CorrelationFunction', (['plin'], {}), '(plin)\n', (2764, 2770), False, 'from nbodykit import cosmology\n'), ((3901, 3933), 'pickle.dump', 'pickle.dump', (['data', 'f'], {'protocol': '(3)'}), '(data, f, protocol=3)\n', (3912, 3933), False, 'import pickle\n'), ((2071, 2088), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (2085, 2088), True, 'import numpy as np\n'), ((3053, 3075), 'numpy.arange', 'np.arange', (['number_objs'], {}), '(number_objs)\n', (3062, 3075), True, 'import numpy as np\n')]
|
#from data_loader import *
from scipy import signal
import matplotlib.pyplot as plt
import copy
import os
import shutil
import numpy as np
def data_filter(exp_path, probe_type='point', Xtype='loc',ytype='f',num_point=0):
shutil.rmtree(exp_path+probe_type+'_expand', ignore_errors=True)
os.mkdir(exp_path+probe_type+'_expand')
for i in range(num_point):
#load force/torque data
force_path = exp_path+probe_type+'/force_'+str(i)+'.txt'
new_force_path = exp_path+probe_type+'_expand'+'/force_'+str(i)+'.txt'
force=[]
torque=[]
force_normal=[]
torque_normal=[]
displacement=[]
dataFile=open(force_path,'r')
for line in dataFile:
line=line.rstrip()
l=[num for num in line.split(' ')]
l2=[float(num) for num in l]
force.append(l2[0:3])
force_normal.append(l2[3])
displacement.append(l2[4])
dataFile.close()
if probe_type == 'line':
torque_path = exp_path+probe_type+'/torque_'+str(i)+'.txt'
dataFile=open(torque_path,'r')
for line in dataFile:
line=line.rstrip()
l=[num for num in line.split(' ')]
l2=[float(num) for num in l]
torque.append(l2[0:3])
torque_normal.append(l2[3])
dataFile.close()
elif probe_type == 'ellipse':
torque_path = exp_path+probe_type+'/torque_'+str(i)+'.txt'
dataFile=open(torque_path,'r')
for line in dataFile:
line=line.rstrip()
l=[num for num in line.split(' ')]
l2=[float(num) for num in l]
torque.append(l2[0:3])
displacement.append(l2[3])
dataFile.close()
force_normal_1d =np.array(force_normal)
#to np
force=np.array(force,ndmin=2)
torque=np.array(torque,ndmin=2)
force_normal=np.array(force_normal,ndmin=2).T
torque_normal=np.array(torque_normal,ndmin=2).T
displacement=np.array(displacement)
#filter
Wn=0.01
[b,a]=signal.butter(5,Wn,'low')
for i in range(3):
tmp_filteredForces=signal.filtfilt(b,a,force[:,i].T,padlen=150)
if i == 0:
filteredForces = np.array(tmp_filteredForces,ndmin=2).T
print(filteredForces.shape)
else:
filteredForces = np.hstack((filteredForces,np.array(tmp_filteredForces,ndmin=2).T))
if probe_type == 'line' or probe_type == 'ellipse':
for i in range(3):
tmp_filteredTorques=signal.filtfilt(b,a,torque[:,i].T,padlen=150)
if i == 0:
filteredTorques = tmp_filteredTorques.T
else:
filteredTorques = np.hstack((filteredTorques,tmp_filteredTorques.T))
filtered_force_normal=signal.filtfilt(b,a,force_normal.T,padlen=150)
if probe_type == 'line':
filtered_torque_normal=signal.filtfilt(b,a,torque_normal.T,padlen=150)
#filtered_force_normal = filtered_force_normal.T
print(filtered_force_normal.shape)
new_dataFile=open(new_force_path,'w+')
num_data = len(displacement)
#delta_d = (displacement[num_data-1]-displacement[num_data-101])/1
delta_d = 0.0002
d_expand_start = displacement[num_data-1] + delta_d
d_expand_end = 0.020
d_expand = np.arange(d_expand_start,d_expand_end,delta_d)
num_expand = d_expand.shape[0]
print('[*]',num_expand)
slope = (force_normal[num_data-1] - force_normal[num_data-301])/(displacement[num_data-1]-displacement[num_data-301])
sd = slope*delta_d
fn_expand_start = force_normal[num_data-1] + sd*1
fn_expand_end = force_normal[num_data-1] + sd*(num_expand+1)
force_normal_expand = np.arange(fn_expand_start,fn_expand_end,sd)
print('[*]',len(d_expand))
d_all = displacement.tolist()+d_expand.tolist()
fn_all = force_normal_1d.tolist()+force_normal_expand.tolist()
num_all = len(d_all) - 2
print(num_all)
d_all = d_all[0:num_all]
fn_all = fn_all[0:num_all]
for i in range(num_all):
new_dataFile.write(str(0)+' '+str(0)+' '+str(0)+' ')
new_dataFile.write(str(fn_all[i])+' '+str(d_all[i])+'\n')
new_dataFile.close()
'''
for i in range(displacement.shape[0]):
new_dataFile.write(str(filteredForces[i,0])+' '+str(filteredForces[i,1])+' '+str(filteredForces[i,2])+' ')
new_dataFile.write(str(filtered_force_normal[0,i])+' '+str(displacement[i])+'\n')
new_dataFile.close()
'''
return d_all, fn_all
d,fn = data_filter('./', probe_type='point', Xtype='loc',ytype='fn',num_point=94)
print(len(d),len(fn))
plt.plot(np.array(d),np.array(fn),color='b',marker='o',markersize=1)
plt.show()
|
[
"numpy.hstack",
"scipy.signal.filtfilt",
"scipy.signal.butter",
"numpy.array",
"os.mkdir",
"shutil.rmtree",
"numpy.arange",
"matplotlib.pyplot.show"
] |
[((5134, 5144), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5142, 5144), True, 'import matplotlib.pyplot as plt\n'), ((226, 294), 'shutil.rmtree', 'shutil.rmtree', (["(exp_path + probe_type + '_expand')"], {'ignore_errors': '(True)'}), "(exp_path + probe_type + '_expand', ignore_errors=True)\n", (239, 294), False, 'import shutil\n'), ((295, 338), 'os.mkdir', 'os.mkdir', (["(exp_path + probe_type + '_expand')"], {}), "(exp_path + probe_type + '_expand')\n", (303, 338), False, 'import os\n'), ((5074, 5085), 'numpy.array', 'np.array', (['d'], {}), '(d)\n', (5082, 5085), True, 'import numpy as np\n'), ((5086, 5098), 'numpy.array', 'np.array', (['fn'], {}), '(fn)\n', (5094, 5098), True, 'import numpy as np\n'), ((1898, 1920), 'numpy.array', 'np.array', (['force_normal'], {}), '(force_normal)\n', (1906, 1920), True, 'import numpy as np\n'), ((1950, 1974), 'numpy.array', 'np.array', (['force'], {'ndmin': '(2)'}), '(force, ndmin=2)\n', (1958, 1974), True, 'import numpy as np\n'), ((1989, 2014), 'numpy.array', 'np.array', (['torque'], {'ndmin': '(2)'}), '(torque, ndmin=2)\n', (1997, 2014), True, 'import numpy as np\n'), ((2145, 2167), 'numpy.array', 'np.array', (['displacement'], {}), '(displacement)\n', (2153, 2167), True, 'import numpy as np\n'), ((2223, 2250), 'scipy.signal.butter', 'signal.butter', (['(5)', 'Wn', '"""low"""'], {}), "(5, Wn, 'low')\n", (2236, 2250), False, 'from scipy import signal\n'), ((3037, 3086), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'force_normal.T'], {'padlen': '(150)'}), '(b, a, force_normal.T, padlen=150)\n', (3052, 3086), False, 'from scipy import signal\n'), ((3637, 3685), 'numpy.arange', 'np.arange', (['d_expand_start', 'd_expand_end', 'delta_d'], {}), '(d_expand_start, d_expand_end, delta_d)\n', (3646, 3685), True, 'import numpy as np\n'), ((4083, 4128), 'numpy.arange', 'np.arange', (['fn_expand_start', 'fn_expand_end', 'sd'], {}), '(fn_expand_start, fn_expand_end, sd)\n', (4092, 4128), True, 'import numpy as np\n'), ((2035, 2066), 'numpy.array', 'np.array', (['force_normal'], {'ndmin': '(2)'}), '(force_normal, ndmin=2)\n', (2043, 2066), True, 'import numpy as np\n'), ((2090, 2122), 'numpy.array', 'np.array', (['torque_normal'], {'ndmin': '(2)'}), '(torque_normal, ndmin=2)\n', (2098, 2122), True, 'import numpy as np\n'), ((2316, 2364), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'force[:, i].T'], {'padlen': '(150)'}), '(b, a, force[:, i].T, padlen=150)\n', (2331, 2364), False, 'from scipy import signal\n'), ((3161, 3211), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'torque_normal.T'], {'padlen': '(150)'}), '(b, a, torque_normal.T, padlen=150)\n', (3176, 3211), False, 'from scipy import signal\n'), ((2754, 2803), 'scipy.signal.filtfilt', 'signal.filtfilt', (['b', 'a', 'torque[:, i].T'], {'padlen': '(150)'}), '(b, a, torque[:, i].T, padlen=150)\n', (2769, 2803), False, 'from scipy import signal\n'), ((2417, 2454), 'numpy.array', 'np.array', (['tmp_filteredForces'], {'ndmin': '(2)'}), '(tmp_filteredForces, ndmin=2)\n', (2425, 2454), True, 'import numpy as np\n'), ((2947, 2998), 'numpy.hstack', 'np.hstack', (['(filteredTorques, tmp_filteredTorques.T)'], {}), '((filteredTorques, tmp_filteredTorques.T))\n', (2956, 2998), True, 'import numpy as np\n'), ((2577, 2614), 'numpy.array', 'np.array', (['tmp_filteredForces'], {'ndmin': '(2)'}), '(tmp_filteredForces, ndmin=2)\n', (2585, 2614), True, 'import numpy as np\n')]
|
import numpy as np
import cv2
import argparse
from collections import deque
import keyboard as kb
import time
from pynput.keyboard import Key, Controller, Listener
class points(object):
def __init__(self, x, y):
self.x = x
self.y = y
sm_threshold = 100
lg_threshold = 200
guiding = True
keyboard = Controller()
cap = cv2.VideoCapture(0)
pts = deque(maxlen=64)
Lower_green = np.array([110, 50, 50])
Upper_green = np.array([130, 255, 255])
startPoint =endPoint = points(0,0)
recentPoints = deque()
# counter = 0
# prev_x = 0
# prev_y = 0
while True:
if kb.is_pressed('q'):
guiding = False
if kb.is_pressed('w'):
guiding = True
ret, img = cap.read()
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
kernel = np.ones((5, 5), np.uint8)
mask = cv2.inRange(hsv, Lower_green, Upper_green)
mask = cv2.erode(mask, kernel, iterations=2)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# mask=cv2.morphologyEx(mask,cv2.MORPH_CLOSE,kernel)
mask = cv2.dilate(mask, kernel, iterations=1)
res = cv2.bitwise_and(img, img, mask=mask)
cnts, heir = cv2.findContours(
mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:]
center = None
if len(cnts) > 0:
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
# Added code
recentPoints.append(points(x,y))
if len(recentPoints)>16:
recentPoints.popleft()
if len(recentPoints) == 16:
min_X = min([p.x for p in recentPoints])
max_X = max([p.x for p in recentPoints])
min_Y = min([p.y for p in recentPoints])
max_Y = max([p.y for p in recentPoints])
if max_X-min_X <= sm_threshold or max_Y-min_Y<=sm_threshold:
# EndPoint as average of recentPoints
# endPoint_X = sum([p.x for p in recentPoints])/len(recentPoints)
# endPoint_Y = sum([p.y for p in recentPoints])/ len(recentPoints)
# endPoint = points(endPoint_X, endPoint_Y)
endPoint = points(x,y)
if abs(startPoint.x-endPoint.x)*0.625 > abs(startPoint.y- endPoint.y):
if startPoint.x - endPoint.x > lg_threshold:
print('right')
keyboard.press(Key.right)
keyboard.release(Key.right)
startPoint = endPoint
recentPoints = deque()
elif startPoint.x - endPoint.x < -lg_threshold:
print('left')
keyboard.press(Key.left)
keyboard.release(Key.left)
startPoint = endPoint
recentPoints = deque()
else:
if startPoint.y - endPoint.y > lg_threshold*0.625 :
print('up')
keyboard.press(Key.up)
keyboard.release(Key.up)
startPoint = endPoint
recentPoints = deque()
elif startPoint.y - endPoint.y < -lg_threshold*0.625:
print('down')
keyboard.press(Key.down)
keyboard.release(Key.down)
startPoint = endPoint
recentPoints = deque()
#print(x, y)
# time.sleep(0.1)
# counter += 1
# if counter == 32:
# prev_x = x
# prev_y = y
# if counter > 32:
# if abs(x - prev_x) > abs(y - prev_y):
# if x - prev_x > 100:
# print('left')
# keyboard.press(Key.left)
# keyboard.release(Key.left)
# # time.sleep(0.7)
# counter = 0
# elif x - prev_x < -100:
# print('right')
# keyboard.press(Key.right)
# keyboard.release(Key.right)
# counter = 0
# else:
# if y - prev_y > 100:
# print('down')
# keyboard.press(Key.down)
# keyboard.release(Key.down)
# counter = 0
# # time.sleep(0.7)
# elif y - prev_y < -100:
# print('up')
# keyboard.press(Key.up)
# keyboard.release(Key.up)
# counter = 0
# # time.sleep(0.7)
if radius > 5:
cv2.circle(img, (int(x), int(y)), int(radius), (0, 255, 255), 2)
cv2.circle(img, center, 5, (0, 0, 255), -1)
pts.appendleft(center)
for i in range(1, len(pts)):
if pts[i - 1]is None or pts[i] is None:
continue
thick = int(np.sqrt(len(pts) / float(i + 1)) * 2.5)
cv2.line(img, pts[i - 1], pts[i], (0, 0, 225), thick)
cv2.imshow("Frame", img)
# cv2.imshow("mask",mask)
# cv2.imshow("res",res)
k = cv2.waitKey(1) & 0xFF
if k == ord("p"):
break
# cleanup the camera and close any open windows
cap.release()
cv2.destroyAllWindows()
|
[
"cv2.imshow",
"numpy.array",
"cv2.destroyAllWindows",
"collections.deque",
"cv2.erode",
"cv2.line",
"cv2.waitKey",
"numpy.ones",
"cv2.minEnclosingCircle",
"keyboard.is_pressed",
"cv2.morphologyEx",
"cv2.circle",
"cv2.cvtColor",
"cv2.moments",
"pynput.keyboard.Controller",
"cv2.inRange",
"cv2.bitwise_and",
"cv2.VideoCapture",
"cv2.dilate"
] |
[((324, 336), 'pynput.keyboard.Controller', 'Controller', ([], {}), '()\n', (334, 336), False, 'from pynput.keyboard import Key, Controller, Listener\n'), ((344, 363), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (360, 363), False, 'import cv2\n'), ((371, 387), 'collections.deque', 'deque', ([], {'maxlen': '(64)'}), '(maxlen=64)\n', (376, 387), False, 'from collections import deque\n'), ((403, 426), 'numpy.array', 'np.array', (['[110, 50, 50]'], {}), '([110, 50, 50])\n', (411, 426), True, 'import numpy as np\n'), ((441, 466), 'numpy.array', 'np.array', (['[130, 255, 255]'], {}), '([130, 255, 255])\n', (449, 466), True, 'import numpy as np\n'), ((520, 527), 'collections.deque', 'deque', ([], {}), '()\n', (525, 527), False, 'from collections import deque\n'), ((5289, 5312), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5310, 5312), False, 'import cv2\n'), ((588, 606), 'keyboard.is_pressed', 'kb.is_pressed', (['"""q"""'], {}), "('q')\n", (601, 606), True, 'import keyboard as kb\n'), ((639, 657), 'keyboard.is_pressed', 'kb.is_pressed', (['"""w"""'], {}), "('w')\n", (652, 657), True, 'import keyboard as kb\n'), ((718, 754), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2HSV'], {}), '(img, cv2.COLOR_BGR2HSV)\n', (730, 754), False, 'import cv2\n'), ((768, 793), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.uint8'], {}), '((5, 5), np.uint8)\n', (775, 793), True, 'import numpy as np\n'), ((805, 847), 'cv2.inRange', 'cv2.inRange', (['hsv', 'Lower_green', 'Upper_green'], {}), '(hsv, Lower_green, Upper_green)\n', (816, 847), False, 'import cv2\n'), ((859, 896), 'cv2.erode', 'cv2.erode', (['mask', 'kernel'], {'iterations': '(2)'}), '(mask, kernel, iterations=2)\n', (868, 896), False, 'import cv2\n'), ((908, 954), 'cv2.morphologyEx', 'cv2.morphologyEx', (['mask', 'cv2.MORPH_OPEN', 'kernel'], {}), '(mask, cv2.MORPH_OPEN, kernel)\n', (924, 954), False, 'import cv2\n'), ((1023, 1061), 'cv2.dilate', 'cv2.dilate', (['mask', 'kernel'], {'iterations': '(1)'}), '(mask, kernel, iterations=1)\n', (1033, 1061), False, 'import cv2\n'), ((1072, 1108), 'cv2.bitwise_and', 'cv2.bitwise_and', (['img', 'img'], {'mask': 'mask'}), '(img, img, mask=mask)\n', (1087, 1108), False, 'import cv2\n'), ((5077, 5101), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'img'], {}), "('Frame', img)\n", (5087, 5101), False, 'import cv2\n'), ((1325, 1350), 'cv2.minEnclosingCircle', 'cv2.minEnclosingCircle', (['c'], {}), '(c)\n', (1347, 1350), False, 'import cv2\n'), ((1363, 1377), 'cv2.moments', 'cv2.moments', (['c'], {}), '(c)\n', (1374, 1377), False, 'import cv2\n'), ((5018, 5071), 'cv2.line', 'cv2.line', (['img', 'pts[i - 1]', 'pts[i]', '(0, 0, 225)', 'thick'], {}), '(img, pts[i - 1], pts[i], (0, 0, 225), thick)\n', (5026, 5071), False, 'import cv2\n'), ((5169, 5183), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5180, 5183), False, 'import cv2\n'), ((4776, 4819), 'cv2.circle', 'cv2.circle', (['img', 'center', '(5)', '(0, 0, 255)', '(-1)'], {}), '(img, center, 5, (0, 0, 255), -1)\n', (4786, 4819), False, 'import cv2\n'), ((2574, 2581), 'collections.deque', 'deque', ([], {}), '()\n', (2579, 2581), False, 'from collections import deque\n'), ((3145, 3152), 'collections.deque', 'deque', ([], {}), '()\n', (3150, 3152), False, 'from collections import deque\n'), ((2851, 2858), 'collections.deque', 'deque', ([], {}), '()\n', (2856, 2858), False, 'from collections import deque\n'), ((3461, 3468), 'collections.deque', 'deque', ([], {}), '()\n', (3466, 3468), False, 'from collections import deque\n')]
|
import os
import shutil
import tensorflow as tf
from tensorflow import keras
from logs import logDecorator as lD
import jsonref
import numpy as np
import pickle
import warnings
from tqdm import tqdm
from modules.data import getData
config = jsonref.load(open('../config/config.json'))
logBase = config['logging']['logBase'] + '.modules.model.getPretrained'
### turn off tensorflow info/warning/error or all python warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
warnings.filterwarnings("ignore")
@lD.log(logBase + '.model')
def modelImageNet(logger, modelName, weightsFile=None, input_shape=(224, 224, 3)):
try:
if weightsFile is not None:
weights = weightsFile
else:
weights = 'imagenet'
if modelName == 'Xception':
base_model = keras.applications.xception.Xception(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'VGG16':
base_model = keras.applications.vgg16.VGG16(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'VGG16_includeTop':
base_model = keras.applications.vgg16.VGG16(input_shape=input_shape, include_top=True, weights=weights)
elif modelName == 'VGG19':
base_model = keras.applications.vgg19.VGG19(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'ResNet50':
base_model = keras.applications.resnet50.ResNet50(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'InceptionV3':
base_model = keras.applications.inception_v3.InceptionV3(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'InceptionResNetV2':
base_model = keras.applications.inception_resnet_v2.InceptionResNetV2(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'MobileNet':
base_model = keras.applications.mobilenet.MobileNet(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'DenseNet':
base_model = keras.applications.densenet.DenseNet121(input_shape=input_shape, include_top=False, weights=weights)
elif modelName == 'NASNet':
base_model = keras.applications.nasnet.NASNetMobile(input_shape=input_shape, include_top=False, weights=weights)
return base_model
except Exception as e:
logger.error('Unable to get model: {} \n{}'.format(modelName, str(e)))
@lD.log(logBase + '.outputTensorBoard')
def outputTensorBoard(logger, subfolder=None):
try:
tfboardFolder = '../notebooks/tensorlog/'
if subfolder is not None:
tfboardFolder = os.path.join(tfboardFolder, subfolder)
if os.path.exists(tfboardFolder):
shutil.rmtree(tfboardFolder)
os.makedirs(tfboardFolder)
with tf.Session() as sess:
tfWriter = tf.summary.FileWriter(tfboardFolder, sess.graph)
tfWriter.close()
except Exception as e:
logger.error('Unable to output tensorboard \n{}'.format(str(e)))
@lD.log(logBase + '.visualise_graph')
def visualise_graph(logger, modelName, subfolder=None):
try:
tf.keras.backend.clear_session()
tfboardFolder = '../notebooks/tensorlog/'
if subfolder is not None:
tfboardFolder = os.path.join(tfboardFolder, subfolder)
if os.path.exists(tfboardFolder):
shutil.rmtree(tfboardFolder)
os.makedirs(tfboardFolder)
img = np.random.randint(0, 5, (1, 224, 224, 3))
modelDict = getModelFileDict()
modelLoaded = modelImageNet(modelName, modelDict[modelName])
with tf.Session() as sess:
tfWriter = tf.summary.FileWriter(tfboardFolder, sess.graph)
tfWriter.close()
except Exception as e:
logger.error('Unable to write graph into tensorboard\n{}'.format(str(e)))
@lD.log(logBase + '.visualise_layers')
def visualise_layers(logger, sess, listOfTensorNodes, inputData):
try:
outputResults = sess.run( listOfTensorNodes,
feed_dict={
'input_1:0' : inputData
})
for res, tf_node in zip(outputResults, listOfTensorNodes):
print('-'*50)
print('node: {}; shape: {}'.format(tf_node, res[0].shape))
getData.visualiseStackedArray(res[0], cmap=None)
except Exception as e:
logger.error('Unable to visualise layers \n{}'.format(str(e)))
@lD.log(logBase + '.getModelFileDict')
def getModelFileDict(logger):
try:
modelDict = {
'Xception' : '../models/xception_weights_tf_dim_ordering_tf_kernels_notop.h5',
'VGG16' : '../models/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
'VGG16_includeTop' : '../models/vgg16_weights_tf_dim_ordering_tf_kernels.h5',
'VGG19' : '../models/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
'InceptionV3' : '../models/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
'MobileNet' : '../models/mobilenet_1_0_224_tf_no_top.h5',
'DenseNet' : '../models/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
'NASNet' : '../models/nasnet_mobile_no_top.h5',
'ResNet50' : '../models/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
'InceptionResNetV2' : '../models/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'
}
return modelDict
except Exception as e:
logger.error('Unable to get model file dictionary \n{}'.format(str(e)))
@lD.log(logBase + '.checkReady')
def checkReady(logger):
try:
modelString = ['Xception', 'VGG16', 'VGG19', 'InceptionV3', 'MobileNet', 'DenseNet', 'NASNet',
'ResNet50', 'InceptionResNetV2', 'VGG16_includeTop']
modelDict = getModelFileDict()
for m in modelString:
try:
print('{} loading from {}...'.format(m, modelDict[m]), end='', flush=True)
modelLoaded = modelImageNet(modelName=m, weightsFile=modelDict[m])
print('sucessfully! '.format(m), end='', flush=True)
print('type: {}'.format(type(modelLoaded)))
except Exception as e:
print('failed. --> {}'.format(m, str(e)))
except Exception as e:
logger.error('Unable to check ready \n{}'.format(str(e)))
@lD.log(logBase + '.main')
def main(logger, resultsDict):
try:
checkReady()
except Exception as e:
logger.error('Unable to run main \n{}'.format(str(e)))
if __name__ == '__main__':
print('tf.__version__ :', tf.__version__)
print('keras.__version__:', keras.__version__)
|
[
"logs.logDecorator.log",
"modules.data.getData.visualiseStackedArray",
"tensorflow.keras.applications.xception.Xception",
"tensorflow.keras.applications.nasnet.NASNetMobile",
"os.path.exists",
"tensorflow.Session",
"tensorflow.keras.applications.mobilenet.MobileNet",
"tensorflow.keras.applications.vgg19.VGG19",
"tensorflow.keras.applications.densenet.DenseNet121",
"tensorflow.keras.applications.vgg16.VGG16",
"tensorflow.summary.FileWriter",
"tensorflow.keras.applications.inception_resnet_v2.InceptionResNetV2",
"warnings.filterwarnings",
"tensorflow.keras.applications.resnet50.ResNet50",
"os.makedirs",
"os.path.join",
"tensorflow.keras.applications.inception_v3.InceptionV3",
"numpy.random.randint",
"shutil.rmtree",
"tensorflow.keras.backend.clear_session"
] |
[((479, 512), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (502, 512), False, 'import warnings\n'), ((515, 541), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.model')"], {}), "(logBase + '.model')\n", (521, 541), True, 'from logs import logDecorator as lD\n'), ((2539, 2577), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.outputTensorBoard')"], {}), "(logBase + '.outputTensorBoard')\n", (2545, 2577), True, 'from logs import logDecorator as lD\n'), ((3149, 3185), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.visualise_graph')"], {}), "(logBase + '.visualise_graph')\n", (3155, 3185), True, 'from logs import logDecorator as lD\n'), ((4000, 4037), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.visualise_layers')"], {}), "(logBase + '.visualise_layers')\n", (4006, 4037), True, 'from logs import logDecorator as lD\n'), ((4668, 4705), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.getModelFileDict')"], {}), "(logBase + '.getModelFileDict')\n", (4674, 4705), True, 'from logs import logDecorator as lD\n'), ((5867, 5898), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.checkReady')"], {}), "(logBase + '.checkReady')\n", (5873, 5898), True, 'from logs import logDecorator as lD\n'), ((6702, 6727), 'logs.logDecorator.log', 'lD.log', (["(logBase + '.main')"], {}), "(logBase + '.main')\n", (6708, 6727), True, 'from logs import logDecorator as lD\n'), ((2800, 2829), 'os.path.exists', 'os.path.exists', (['tfboardFolder'], {}), '(tfboardFolder)\n', (2814, 2829), False, 'import os\n'), ((2881, 2907), 'os.makedirs', 'os.makedirs', (['tfboardFolder'], {}), '(tfboardFolder)\n', (2892, 2907), False, 'import os\n'), ((3260, 3292), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (3290, 3292), True, 'import tensorflow as tf\n'), ((3458, 3487), 'os.path.exists', 'os.path.exists', (['tfboardFolder'], {}), '(tfboardFolder)\n', (3472, 3487), False, 'import os\n'), ((3539, 3565), 'os.makedirs', 'os.makedirs', (['tfboardFolder'], {}), '(tfboardFolder)\n', (3550, 3565), False, 'import os\n'), ((3591, 3632), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)', '(1, 224, 224, 3)'], {}), '(0, 5, (1, 224, 224, 3))\n', (3608, 3632), True, 'import numpy as np\n'), ((818, 920), 'tensorflow.keras.applications.xception.Xception', 'keras.applications.xception.Xception', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top=\n False, weights=weights)\n', (854, 920), False, 'from tensorflow import keras\n'), ((2749, 2787), 'os.path.join', 'os.path.join', (['tfboardFolder', 'subfolder'], {}), '(tfboardFolder, subfolder)\n', (2761, 2787), False, 'import os\n'), ((2843, 2871), 'shutil.rmtree', 'shutil.rmtree', (['tfboardFolder'], {}), '(tfboardFolder)\n', (2856, 2871), False, 'import shutil\n'), ((2922, 2934), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2932, 2934), True, 'import tensorflow as tf\n'), ((2967, 3015), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['tfboardFolder', 'sess.graph'], {}), '(tfboardFolder, sess.graph)\n', (2988, 3015), True, 'import tensorflow as tf\n'), ((3407, 3445), 'os.path.join', 'os.path.join', (['tfboardFolder', 'subfolder'], {}), '(tfboardFolder, subfolder)\n', (3419, 3445), False, 'import os\n'), ((3501, 3529), 'shutil.rmtree', 'shutil.rmtree', (['tfboardFolder'], {}), '(tfboardFolder)\n', (3514, 3529), False, 'import shutil\n'), ((3762, 3774), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3772, 3774), True, 'import tensorflow as tf\n'), ((3809, 3857), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['tfboardFolder', 'sess.graph'], {}), '(tfboardFolder, sess.graph)\n', (3830, 3857), True, 'import tensorflow as tf\n'), ((4517, 4565), 'modules.data.getData.visualiseStackedArray', 'getData.visualiseStackedArray', (['res[0]'], {'cmap': 'None'}), '(res[0], cmap=None)\n', (4546, 4565), False, 'from modules.data import getData\n'), ((977, 1072), 'tensorflow.keras.applications.vgg16.VGG16', 'keras.applications.vgg16.VGG16', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top=False,\n weights=weights)\n', (1007, 1072), False, 'from tensorflow import keras\n'), ((1141, 1235), 'tensorflow.keras.applications.vgg16.VGG16', 'keras.applications.vgg16.VGG16', ([], {'input_shape': 'input_shape', 'include_top': '(True)', 'weights': 'weights'}), '(input_shape=input_shape, include_top=True,\n weights=weights)\n', (1171, 1235), False, 'from tensorflow import keras\n'), ((1293, 1388), 'tensorflow.keras.applications.vgg19.VGG19', 'keras.applications.vgg19.VGG19', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top=False,\n weights=weights)\n', (1323, 1388), False, 'from tensorflow import keras\n'), ((1449, 1551), 'tensorflow.keras.applications.resnet50.ResNet50', 'keras.applications.resnet50.ResNet50', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top=\n False, weights=weights)\n', (1485, 1551), False, 'from tensorflow import keras\n'), ((1614, 1722), 'tensorflow.keras.applications.inception_v3.InceptionV3', 'keras.applications.inception_v3.InceptionV3', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape,\n include_top=False, weights=weights)\n', (1657, 1722), False, 'from tensorflow import keras\n'), ((1792, 1914), 'tensorflow.keras.applications.inception_resnet_v2.InceptionResNetV2', 'keras.applications.inception_resnet_v2.InceptionResNetV2', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=\n input_shape, include_top=False, weights=weights)\n', (1848, 1914), False, 'from tensorflow import keras\n'), ((1975, 2079), 'tensorflow.keras.applications.mobilenet.MobileNet', 'keras.applications.mobilenet.MobileNet', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top\n =False, weights=weights)\n', (2013, 2079), False, 'from tensorflow import keras\n'), ((2139, 2243), 'tensorflow.keras.applications.densenet.DenseNet121', 'keras.applications.densenet.DenseNet121', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape,\n include_top=False, weights=weights)\n', (2178, 2243), False, 'from tensorflow import keras\n'), ((2302, 2406), 'tensorflow.keras.applications.nasnet.NASNetMobile', 'keras.applications.nasnet.NASNetMobile', ([], {'input_shape': 'input_shape', 'include_top': '(False)', 'weights': 'weights'}), '(input_shape=input_shape, include_top\n =False, weights=weights)\n', (2340, 2406), False, 'from tensorflow import keras\n')]
|
import glob, os
import numpy as np
import tensorflow as tf
import tensorflow.contrib.graph_editor as ge
class Flownet2:
def __init__(self, bilinear_warping_module):
self.weights = dict()
for key, shape in self.all_variables():
self.weights[key] = tf.get_variable(key, shape=shape)
self.bilinear_warping_module = bilinear_warping_module
def leaky_relu(self, x, s):
assert s > 0 and s < 1, "Wrong s"
return tf.maximum(x, s*x)
def warp(self, x, flow):
return self.bilinear_warping_module.bilinear_warping(x, tf.stack([flow[:,:,:,1], flow[:,:,:,0]], axis=3))
# flip true -> [:,:,:,0] y axis downwards
# [:,:,:,1] x axis
# as in matrix indexing
#
# false returns 0->x, 1->y
def __call__(self, im0, im1, flip=True):
f = self.get_blobs(im0, im1)['predict_flow_final']
if flip:
f = tf.stack([f[:,:,:,1], f[:,:,:,0]], axis=3)
return f
def get_optimizer(self, flow, target, learning_rate=1e-4):
#flow = self.__call__(im0, im1)
loss = tf.reduce_sum(flow * target) # target holding the gradients!
opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.95, beta2=0.99, epsilon=1e-8)
opt = opt.minimize(loss, var_list=
# [v for k,v in self.weights.iteritems() if (k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_'))])
[v for k,v in self.weights.iteritems() if ((k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_')) and not ('upsample' in k or 'deconv' in k))])
return opt, loss
# If I run the network with large images (1024x2048) it crashes due to memory
# constraints on a 12Gb titan X.
# See https://github.com/tensorflow/tensorflow/issues/5816#issuecomment-268710077
# for a possible explanation. I fix it by adding run_after in the section with
# the correlation layer so that 441 large tensors are not allocated at the same time
def run_after(self, a_tensor, b_tensor):
"""Force a to run after b"""
ge.reroute.add_control_inputs(a_tensor.op, [b_tensor.op])
# without epsilon I get nan-errors when I backpropagate
def l2_norm(self, x):
return tf.sqrt(tf.maximum(1e-5, tf.reduce_sum(x**2, axis=3, keep_dims=True)))
def get_blobs(self, im0, im1):
blobs = dict()
batch_size = tf.to_int32(tf.shape(im0)[0])
width = tf.to_int32(tf.shape(im0)[2])
height = tf.to_int32(tf.shape(im0)[1])
TARGET_WIDTH = width
TARGET_HEIGHT = height
divisor = 64.
ADAPTED_WIDTH = tf.to_int32(tf.ceil(tf.to_float(width)/divisor) * divisor)
ADAPTED_HEIGHT = tf.to_int32(tf.ceil(tf.to_float(height)/divisor) * divisor)
SCALE_WIDTH = tf.to_float(width) / tf.to_float(ADAPTED_WIDTH);
SCALE_HEIGHT = tf.to_float(height) / tf.to_float(ADAPTED_HEIGHT);
blobs['img0'] = im0
blobs['img1'] = im1
blobs['img0s'] = blobs['img0']*0.00392156862745098
blobs['img1s'] = blobs['img1']*0.00392156862745098
#mean = np.array([0.411451, 0.432060, 0.450141])
mean = np.array([0.37655231, 0.39534855, 0.40119368])
blobs['img0_nomean'] = blobs['img0s'] - mean
blobs['img1_nomean'] = blobs['img1s'] - mean
blobs['img0_nomean_resize'] = tf.image.resize_bilinear(blobs['img0_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True)
blobs['img1_nomean_resize'] = tf.image.resize_bilinear(blobs['img1_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True)
blobs['conv1a'] = tf.pad(blobs['img0_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]])
blobs['conv1a'] = tf.nn.conv2d(blobs['conv1a'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b']
blobs['conv1a'] = self.leaky_relu(blobs['conv1a'], 0.1)
blobs['conv1b'] = tf.pad(blobs['img1_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]])
blobs['conv1b'] = tf.nn.conv2d(blobs['conv1b'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b']
blobs['conv1b'] = self.leaky_relu(blobs['conv1b'], 0.1)
blobs['conv2a'] = tf.pad(blobs['conv1a'], [[0,0], [2,2], [2,2], [0,0]])
blobs['conv2a'] = tf.nn.conv2d(blobs['conv2a'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b']
blobs['conv2a'] = self.leaky_relu(blobs['conv2a'], 0.1)
blobs['conv2b'] = tf.pad(blobs['conv1b'], [[0,0], [2,2], [2,2], [0,0]])
blobs['conv2b'] = tf.nn.conv2d(blobs['conv2b'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b']
blobs['conv2b'] = self.leaky_relu(blobs['conv2b'], 0.1)
blobs['conv3a'] = tf.pad(blobs['conv2a'], [[0,0], [2,2], [2,2], [0,0]])
blobs['conv3a'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b']
blobs['conv3a'] = self.leaky_relu(blobs['conv3a'], 0.1)
blobs['conv3b'] = tf.pad(blobs['conv2b'], [[0,0], [2,2], [2,2], [0,0]])
blobs['conv3b'] = tf.nn.conv2d(blobs['conv3b'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b']
blobs['conv3b'] = self.leaky_relu(blobs['conv3b'], 0.1)
# this might be considered a bit hacky
tmp = []
x1_l = []
x2_l = []
for di in range(-20, 21, 2):
for dj in range(-20, 21, 2):
x1 = tf.pad(blobs['conv3a'], [[0,0], [20,20], [20,20], [0,0]])
x2 = tf.pad(blobs['conv3b'], [[0,0], [20-di,20+di], [20-dj,20+dj], [0,0]])
x1_l.append(x1)
x2_l.append(x2)
c = tf.nn.conv2d(x1*x2, tf.ones([1, 1, 256, 1])/256., strides=[1,1,1,1], padding='VALID')
tmp.append(c[:,20:-20,20:-20,:])
for i in range(len(tmp)-1):
#self.run_after(tmp[i], tmp[i+1])
self.run_after(x1_l[i], tmp[i+1])
self.run_after(x2_l[i], tmp[i+1])
blobs['corr'] = tf.concat(tmp, axis=3)
blobs['corr'] = self.leaky_relu(blobs['corr'], 0.1)
blobs['conv_redir'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv_redir_w'], strides=[1,1,1,1], padding="VALID") + self.weights['conv_redir_b']
blobs['conv_redir'] = self.leaky_relu(blobs['conv_redir'], 0.1)
blobs['blob16'] = tf.concat([blobs['conv_redir'], blobs['corr']], axis=3)
blobs['conv3_1'] = tf.nn.conv2d(blobs['blob16'], self.weights['conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv3_1_b']
blobs['conv3_1'] = self.leaky_relu(blobs['conv3_1'], 0.1)
blobs['conv4'] = tf.pad(blobs['conv3_1'], [[0,0], [1,1], [1,1], [0,0]])
blobs['conv4'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv4_b']
blobs['conv4'] = self.leaky_relu(blobs['conv4'], 0.1)
blobs['conv4_1'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv4_1_b']
blobs['conv4_1'] = self.leaky_relu(blobs['conv4_1'], 0.1)
blobs['conv5'] = tf.pad(blobs['conv4_1'], [[0,0], [1,1], [1,1], [0,0]])
blobs['conv5'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv5_b']
blobs['conv5'] = self.leaky_relu(blobs['conv5'], 0.1)
blobs['conv5_1'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv5_1_b']
blobs['conv5_1'] = self.leaky_relu(blobs['conv5_1'], 0.1)
blobs['conv6'] = tf.pad(blobs['conv5_1'], [[0,0], [1,1], [1,1], [0,0]])
blobs['conv6'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv6_b']
blobs['conv6'] = self.leaky_relu(blobs['conv6'], 0.1)
blobs['conv6_1'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv6_1_b']
blobs['conv6_1'] = self.leaky_relu(blobs['conv6_1'], 0.1)
blobs['predict_flow6'] = tf.nn.conv2d(blobs['conv6_1'], self.weights['Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution1_b']
blobs['deconv5'] = tf.nn.conv2d_transpose(blobs['conv6_1'], self.weights['deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['deconv5_b']
blobs['deconv5'] = self.leaky_relu(blobs['deconv5'], 0.1)
blobs['upsampled_flow6_to_5'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['upsample_flow6to5_b']
blobs['concat5'] = tf.concat([blobs['conv5_1'], blobs['deconv5'], blobs['upsampled_flow6_to_5']], axis=3)
blobs['predict_flow5'] = tf.pad(blobs['concat5'], [[0,0], [1,1], [1,1], [0,0]])
blobs['predict_flow5'] = tf.nn.conv2d(blobs['predict_flow5'], self.weights['Convolution2_w'], strides=[1,1,1,1], padding="VALID") + self.weights['Convolution2_b']
blobs['deconv4'] = tf.nn.conv2d_transpose(blobs['concat5'], self.weights['deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['deconv4_b']
blobs['deconv4'] = self.leaky_relu(blobs['deconv4'], 0.1)
blobs['upsampled_flow5_to_4'] = tf.nn.conv2d_transpose(blobs['predict_flow5'], self.weights['upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['upsample_flow5to4_b']
blobs['concat4'] = tf.concat([blobs['conv4_1'], blobs['deconv4'], blobs['upsampled_flow5_to_4']], axis=3)
blobs['predict_flow4'] = tf.nn.conv2d(blobs['concat4'], self.weights['Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution3_b']
blobs['deconv3'] = tf.nn.conv2d_transpose(blobs['concat4'], self.weights['deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['deconv3_b']
blobs['deconv3'] = self.leaky_relu(blobs['deconv3'], 0.1)
blobs['upsampled_flow4_to_3'] = tf.nn.conv2d_transpose(blobs['predict_flow4'], self.weights['upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['upsample_flow4to3_b']
blobs['concat3'] = tf.concat([blobs['conv3_1'], blobs['deconv3'], blobs['upsampled_flow4_to_3']], axis=3)
blobs['predict_flow3'] = tf.nn.conv2d(blobs['concat3'], self.weights['Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution4_b']
blobs['deconv2'] = tf.nn.conv2d_transpose(blobs['concat3'], self.weights['deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['deconv2_b']
blobs['deconv2'] = self.leaky_relu(blobs['deconv2'], 0.1)
blobs['upsampled_flow3_to_2'] = tf.nn.conv2d_transpose(blobs['predict_flow3'], self.weights['upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['upsample_flow3to2_b']
blobs['concat2'] = tf.concat([blobs['conv2a'], blobs['deconv2'], blobs['upsampled_flow3_to_2']], axis=3)
blobs['predict_flow2'] = tf.nn.conv2d(blobs['concat2'], self.weights['Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution5_b']
blobs['blob41'] = blobs['predict_flow2'] * 20.
blobs['blob42'] = tf.image.resize_bilinear(blobs['blob41'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True)
blobs['blob43'] = self.warp(blobs['img1_nomean_resize'], blobs['blob42'])
blobs['blob44'] = blobs['img0_nomean_resize'] - blobs['blob43']
#blobs['blob45'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob44']**2, axis=3, keep_dims=True))
blobs['blob45'] = self.l2_norm(blobs['blob44'])
blobs['blob46'] = 0.05*blobs['blob42']
blobs['blob47'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob43'], blobs['blob46'], blobs['blob45']], axis=3)
####################################################################################
####################################################################################
####################################################################################
###################### END OF THE FIRST BRANCH #####################################
####################################################################################
####################################################################################
####################################################################################
blobs['blob48'] = tf.pad(blobs['blob47'], [[0,0], [3,3], [3,3], [0,0]])
blobs['blob48'] = tf.nn.conv2d(blobs['blob48'], self.weights['net2_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv1_b']
blobs['blob48'] = self.leaky_relu(blobs['blob48'], 0.1)
blobs['blob49'] = tf.pad(blobs['blob48'], [[0,0], [2,2], [2, 2], [0,0]])
blobs['blob49'] = tf.nn.conv2d(blobs['blob49'], self.weights['net2_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv2_b']
blobs['blob49'] = self.leaky_relu(blobs['blob49'], 0.1)
blobs['blob50'] = tf.pad(blobs['blob49'], [[0,0], [2,2], [2,2], [0,0]])
blobs['blob50'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv3_b']
blobs['blob50'] = self.leaky_relu(blobs['blob50'], 0.1)
blobs['blob51'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv3_1_b']
blobs['blob51'] = self.leaky_relu(blobs['blob51'], 0.1)
blobs['blob52'] = tf.pad(blobs['blob51'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob52'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv4_b']
blobs['blob52'] = self.leaky_relu(blobs['blob52'], 0.1)
blobs['blob53'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv4_1_b']
blobs['blob53'] = self.leaky_relu(blobs['blob53'], 0.1)
blobs['blob54'] = tf.pad(blobs['blob53'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob54'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv5_b']
blobs['blob54'] = self.leaky_relu(blobs['blob54'], 0.1)
blobs['blob55'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv5_1_b']
blobs['blob55'] = self.leaky_relu(blobs['blob55'], 0.1)
blobs['blob56'] = tf.pad(blobs['blob55'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob56'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv6_b']
blobs['blob56'] = self.leaky_relu(blobs['blob56'], 0.1)
blobs['blob57'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv6_1_b']
blobs['blob57'] = self.leaky_relu(blobs['blob57'], 0.1)
blobs['blob58'] = tf.nn.conv2d(blobs['blob57'], self.weights['net2_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv6_b']
blobs['blob59'] = tf.nn.conv2d_transpose(blobs['blob57'], self.weights['net2_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net2_deconv5_b']
blobs['blob59'] = self.leaky_relu(blobs['blob59'], 0.1)
blobs['blob60'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['net2_net2_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow6to5_b']
blobs['blob61'] = tf.concat([blobs['blob55'], blobs['blob59'], blobs['blob60']], axis=3)
blobs['blob62'] = tf.nn.conv2d(blobs['blob61'], self.weights['net2_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv5_b']
blobs['blob63'] = tf.nn.conv2d_transpose(blobs['blob61'], self.weights['net2_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net2_deconv4_b']
blobs['blob63'] = self.leaky_relu(blobs['blob63'], 0.1)
blobs['blob64'] = tf.nn.conv2d_transpose(blobs['blob62'], self.weights['net2_net2_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow5to4_b']
blobs['blob65'] = tf.concat([blobs['blob53'], blobs['blob63'], blobs['blob64']], axis=3)
blobs['blob66'] = tf.nn.conv2d(blobs['blob65'], self.weights['net2_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv4_b']
blobs['blob67'] = tf.nn.conv2d_transpose(blobs['blob65'], self.weights['net2_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net2_deconv3_b']
blobs['blob67'] = self.leaky_relu(blobs['blob67'], 0.1)
blobs['blob68'] = tf.nn.conv2d_transpose(blobs['blob66'], self.weights['net2_net2_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow4to3_b']
blobs['blob69'] = tf.concat([blobs['blob51'], blobs['blob67'], blobs['blob68']], axis=3)
blobs['blob70'] = tf.nn.conv2d(blobs['blob69'], self.weights['net2_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv3_b']
blobs['blob71'] = tf.nn.conv2d_transpose(blobs['blob69'], self.weights['net2_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net2_deconv2_b']
blobs['blob71'] = self.leaky_relu(blobs['blob71'], 0.1)
blobs['blob72'] = tf.nn.conv2d_transpose(blobs['blob70'], self.weights['net2_net2_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow3to2_b']
blobs['blob73'] = tf.concat([blobs['blob49'], blobs['blob71'], blobs['blob72']], axis=3)
blobs['blob74'] = tf.nn.conv2d(blobs['blob73'], self.weights['net2_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv2_b']
blobs['blob75'] = blobs['blob74'] * 20.
blobs['blob76'] = tf.image.resize_bilinear(blobs['blob75'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True)
blobs['blob77'] = self.warp(blobs['img1_nomean_resize'], blobs['blob76'])
blobs['blob78'] = blobs['img0_nomean_resize'] - blobs['blob77']
#blobs['blob79'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob78']**2, axis=3, keep_dims=True))
blobs['blob79'] = self.l2_norm(blobs['blob78'])
blobs['blob80'] = 0.05*blobs['blob76']
blobs['blob81'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob77'], blobs['blob80'], blobs['blob79']], axis=3)
####################################################################################
####################################################################################
####################################################################################
###################### END OF THE SECOND BRANCH ####################################
####################################################################################
####################################################################################
####################################################################################
blobs['blob82'] = tf.pad(blobs['blob81'], [[0,0], [3,3], [3,3], [0,0]])
blobs['blob82'] = tf.nn.conv2d(blobs['blob82'], self.weights['net3_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv1_b']
blobs['blob82'] = self.leaky_relu(blobs['blob82'], 0.1)
blobs['blob83'] = tf.pad(blobs['blob82'], [[0,0], [2,2], [2, 2], [0,0]])
blobs['blob83'] = tf.nn.conv2d(blobs['blob83'], self.weights['net3_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv2_b']
blobs['blob83'] = self.leaky_relu(blobs['blob83'], 0.1)
blobs['blob84'] = tf.pad(blobs['blob83'], [[0,0], [2,2], [2,2], [0,0]])
blobs['blob84'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv3_b']
blobs['blob84'] = self.leaky_relu(blobs['blob84'], 0.1)
blobs['blob85'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv3_1_b']
blobs['blob85'] = self.leaky_relu(blobs['blob85'], 0.1)
blobs['blob86'] = tf.pad(blobs['blob85'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob86'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv4_b']
blobs['blob86'] = self.leaky_relu(blobs['blob86'], 0.1)
blobs['blob87'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv4_1_b']
blobs['blob87'] = self.leaky_relu(blobs['blob87'], 0.1)
blobs['blob88'] = tf.pad(blobs['blob87'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob88'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv5_b']
blobs['blob88'] = self.leaky_relu(blobs['blob88'], 0.1)
blobs['blob89'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv5_1_b']
blobs['blob89'] = self.leaky_relu(blobs['blob89'], 0.1)
blobs['blob90'] = tf.pad(blobs['blob89'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob90'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv6_b']
blobs['blob90'] = self.leaky_relu(blobs['blob90'], 0.1)
blobs['blob91'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv6_1_b']
blobs['blob91'] = self.leaky_relu(blobs['blob91'], 0.1)
blobs['blob92'] = tf.nn.conv2d(blobs['blob91'], self.weights['net3_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv6_b']
blobs['blob93'] = tf.nn.conv2d_transpose(blobs['blob91'], self.weights['net3_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net3_deconv5_b']
blobs['blob93'] = self.leaky_relu(blobs['blob93'], 0.1)
blobs['blob94'] = tf.nn.conv2d_transpose(blobs['blob92'], self.weights['net3_net3_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow6to5_b']
blobs['blob95'] = tf.concat([blobs['blob89'], blobs['blob93'], blobs['blob94']], axis=3)
blobs['blob96'] = tf.nn.conv2d(blobs['blob95'], self.weights['net3_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv5_b']
blobs['blob97'] = tf.nn.conv2d_transpose(blobs['blob95'], self.weights['net3_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net3_deconv4_b']
blobs['blob97'] = self.leaky_relu(blobs['blob97'], 0.1)
blobs['blob98'] = tf.nn.conv2d_transpose(blobs['blob96'], self.weights['net3_net3_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow5to4_b']
blobs['blob99'] = tf.concat([blobs['blob87'], blobs['blob97'], blobs['blob98']], axis=3)
blobs['blob100'] = tf.nn.conv2d(blobs['blob99'], self.weights['net3_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv4_b']
blobs['blob101'] = tf.nn.conv2d_transpose(blobs['blob99'], self.weights['net3_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net3_deconv3_b']
blobs['blob101'] = self.leaky_relu(blobs['blob101'], 0.1)
blobs['blob102'] = tf.nn.conv2d_transpose(blobs['blob100'], self.weights['net3_net3_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow4to3_b']
blobs['blob103'] = tf.concat([blobs['blob85'], blobs['blob101'], blobs['blob102']], axis=3)
blobs['blob104'] = tf.nn.conv2d(blobs['blob103'], self.weights['net3_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv3_b']
blobs['blob105'] = tf.nn.conv2d_transpose(blobs['blob103'], self.weights['net3_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net3_deconv2_b']
blobs['blob105'] = self.leaky_relu(blobs['blob105'], 0.1)
blobs['blob106'] = tf.nn.conv2d_transpose(blobs['blob104'], self.weights['net3_net3_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow3to2_b']
blobs['blob107'] = tf.concat([blobs['blob83'], blobs['blob105'], blobs['blob106']], axis=3)
blobs['blob108'] = tf.nn.conv2d(blobs['blob107'], self.weights['net3_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv2_b']
blobs['blob109'] = blobs['blob108'] * 20.
####################################################################################
####################################################################################
####################################################################################
###################### END OF THE THIRD BRANCH ####################################
####################################################################################
####################################################################################
####################################################################################
blobs['blob110'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize']], axis=3)
#self.run_after(blobs['blob110'], blobs['blob109'])
blobs['blob111'] = tf.nn.conv2d(blobs['blob110'], self.weights['netsd_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv0_b']
blobs['blob111'] = self.leaky_relu(blobs['blob111'], 0.1)
blobs['blob112'] = tf.pad(blobs['blob111'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob112'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv1_b']
blobs['blob112'] = self.leaky_relu(blobs['blob112'], 0.1)
blobs['blob113'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv1_1_b']
blobs['blob113'] = self.leaky_relu(blobs['blob113'], 0.1)
blobs['blob114'] = tf.pad(blobs['blob113'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob114'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv2_b']
blobs['blob114'] = self.leaky_relu(blobs['blob114'], 0.1)
blobs['blob115'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv2_1_b']
blobs['blob115'] = self.leaky_relu(blobs['blob115'], 0.1)
blobs['blob116'] = tf.pad(blobs['blob115'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob116'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv3_b']
blobs['blob116'] = self.leaky_relu(blobs['blob116'], 0.1)
blobs['blob117'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv3_1_b']
blobs['blob117'] = self.leaky_relu(blobs['blob117'], 0.1)
blobs['blob118'] = tf.pad(blobs['blob117'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob118'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv4_b']
blobs['blob118'] = self.leaky_relu(blobs['blob118'], 0.1)
blobs['blob119'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv4_1_b']
blobs['blob119'] = self.leaky_relu(blobs['blob119'], 0.1)
blobs['blob120'] = tf.pad(blobs['blob119'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob120'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv5_b']
blobs['blob120'] = self.leaky_relu(blobs['blob120'], 0.1)
blobs['blob121'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv5_1_b']
blobs['blob121'] = self.leaky_relu(blobs['blob121'], 0.1)
blobs['blob122'] = tf.pad(blobs['blob121'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob122'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv6_b']
blobs['blob122'] = self.leaky_relu(blobs['blob122'], 0.1)
blobs['blob123'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv6_1_b']
blobs['blob123'] = self.leaky_relu(blobs['blob123'], 0.1)
blobs['blob124'] = tf.nn.conv2d(blobs['blob123'], self.weights['netsd_Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution1_b']
blobs['blob125'] = tf.nn.conv2d_transpose(blobs['blob123'], self.weights['netsd_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['netsd_deconv5_b']
blobs['blob125'] = self.leaky_relu(blobs['blob125'], 0.1)
blobs['blob126'] = tf.nn.conv2d_transpose(blobs['blob124'], self.weights['netsd_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow6to5_b']
blobs['blob127'] = tf.concat([blobs['blob121'], blobs['blob125'], blobs['blob126']], axis=3)
blobs['blob128'] = tf.nn.conv2d(blobs['blob127'], self.weights['netsd_interconv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv5_b']
blobs['blob129'] = tf.nn.conv2d(blobs['blob128'], self.weights['netsd_Convolution2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution2_b']
blobs['blob130'] = tf.nn.conv2d_transpose(blobs['blob127'], self.weights['netsd_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['netsd_deconv4_b']
blobs['blob130'] = self.leaky_relu(blobs['blob130'], 0.1)
blobs['blob131'] = tf.nn.conv2d_transpose(blobs['blob129'], self.weights['netsd_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow5to4_b']
blobs['blob132'] = tf.concat([blobs['blob119'], blobs['blob130'], blobs['blob131']], axis=3)
blobs['blob133'] = tf.nn.conv2d(blobs['blob132'], self.weights['netsd_interconv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv4_b']
blobs['blob134'] = tf.nn.conv2d(blobs['blob133'], self.weights['netsd_Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution3_b']
blobs['blob135'] = tf.nn.conv2d_transpose(blobs['blob132'], self.weights['netsd_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['netsd_deconv3_b']
blobs['blob135'] = self.leaky_relu(blobs['blob135'], 0.1)
blobs['blob136'] = tf.nn.conv2d_transpose(blobs['blob134'], self.weights['netsd_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow4to3_b']
blobs['blob137'] = tf.concat([blobs['blob117'], blobs['blob135'], blobs['blob136']], axis=3)
blobs['blob138'] = tf.nn.conv2d(blobs['blob137'], self.weights['netsd_interconv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv3_b']
blobs['blob139'] = tf.nn.conv2d(blobs['blob138'], self.weights['netsd_Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution4_b']
blobs['blob140'] = tf.nn.conv2d_transpose(blobs['blob137'], self.weights['netsd_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['netsd_deconv2_b']
blobs['blob140'] = self.leaky_relu(blobs['blob140'], 0.1)
blobs['blob141'] = tf.nn.conv2d_transpose(blobs['blob139'], self.weights['netsd_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow3to2_b']
blobs['blob142'] = tf.concat([blobs['blob115'], blobs['blob140'], blobs['blob141']], axis=3)
blobs['blob143'] = tf.nn.conv2d(blobs['blob142'], self.weights['netsd_interconv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv2_b']
blobs['blob144'] = tf.nn.conv2d(blobs['blob143'], self.weights['netsd_Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution5_b']
blobs['blob145'] = 0.05*blobs['blob144']
blobs['blob146'] = tf.image.resize_nearest_neighbor(blobs['blob145'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False)
blobs['blob147'] = tf.image.resize_nearest_neighbor(blobs['blob109'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False)
#blobs['blob148'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob146']**2, axis=3, keep_dims=True))
blobs['blob148'] = self.l2_norm(blobs['blob146'])
#blobs['blob149'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob147']**2, axis=3, keep_dims=True))
blobs['blob149'] = self.l2_norm(blobs['blob147'])
blobs['blob150'] = self.warp(blobs['img1_nomean_resize'], blobs['blob146'])
blobs['blob151'] = blobs['img0_nomean_resize'] - blobs['blob150']
#blobs['blob152'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob151']**2, axis=3, keep_dims=True))
blobs['blob152'] = self.l2_norm(blobs['blob151'])
blobs['blob153'] = self.warp(blobs['img1_nomean_resize'], blobs['blob147'])
blobs['blob154'] = blobs['img0_nomean_resize'] - blobs['blob153']
#blobs['blob155'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob154']**2, axis=3, keep_dims=True))
blobs['blob155'] = self.l2_norm(blobs['blob154'])
blobs['blob156'] = tf.concat([blobs['img0_nomean_resize'], blobs['blob146'], blobs['blob147'], blobs['blob148'], blobs['blob149'], blobs['blob152'], blobs['blob155']], axis=3)
blobs['blob157'] = tf.nn.conv2d(blobs['blob156'], self.weights['fuse_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv0_b']
blobs['blob157'] = self.leaky_relu(blobs['blob157'], 0.1)
blobs['blob158'] = tf.pad(blobs['blob157'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob158'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv1_b']
blobs['blob158'] = self.leaky_relu(blobs['blob158'], 0.1)
blobs['blob159'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv1_1_b']
blobs['blob159'] = self.leaky_relu(blobs['blob159'], 0.1)
blobs['blob160'] = tf.pad(blobs['blob159'], [[0,0], [1,1], [1,1], [0,0]])
blobs['blob160'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv2_b']
blobs['blob160'] = self.leaky_relu(blobs['blob160'], 0.1)
blobs['blob161'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv2_1_b']
blobs['blob161'] = self.leaky_relu(blobs['blob161'], 0.1)
blobs['blob162'] = tf.nn.conv2d(blobs['blob161'], self.weights['fuse__Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution5_b']
blobs['blob163'] = tf.nn.conv2d_transpose(blobs['blob161'], self.weights['fuse_deconv1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 32], strides=[1,2,2,1]) + self.weights['fuse_deconv1_b']
blobs['blob163'] = self.leaky_relu(blobs['blob163'], 0.1)
blobs['blob164'] = tf.nn.conv2d_transpose(blobs['blob162'], self.weights['fuse_upsample_flow2to1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow2to1_b']
blobs['blob165'] = tf.concat([blobs['blob159'], blobs['blob163'], blobs['blob164']], axis=3)
blobs['blob166'] = tf.nn.conv2d(blobs['blob165'], self.weights['fuse_interconv1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv1_b']
blobs['blob167'] = tf.nn.conv2d(blobs['blob166'], self.weights['fuse__Convolution6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution6_b']
blobs['blob168'] = tf.nn.conv2d_transpose(blobs['blob165'], self.weights['fuse_deconv0_w'], output_shape=[batch_size, ADAPTED_HEIGHT/1, ADAPTED_WIDTH/1, 16], strides=[1,2,2,1]) + self.weights['fuse_deconv0_b']
blobs['blob168'] = self.leaky_relu(blobs['blob168'], 0.1)
blobs['blob169'] = tf.nn.conv2d_transpose(blobs['blob167'], self.weights['fuse_upsample_flow1to0_w'], output_shape=[batch_size, ADAPTED_HEIGHT, ADAPTED_WIDTH, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow1to0_b']
blobs['blob170'] = tf.concat([blobs['blob157'], blobs['blob168'], blobs['blob169']], axis=3)
blobs['blob171'] = tf.nn.conv2d(blobs['blob170'], self.weights['fuse_interconv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv0_b']
blobs['blob172'] = tf.nn.conv2d(blobs['blob171'], self.weights['fuse__Convolution7_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution7_b']
blobs['predict_flow_resize'] = tf.image.resize_bilinear(blobs['blob172'], size=[TARGET_HEIGHT, TARGET_WIDTH], align_corners=True)
scale = tf.stack([SCALE_WIDTH, SCALE_HEIGHT])
scale = tf.reshape(scale, [1,1,1,2])
blobs['predict_flow_final'] = scale*blobs['predict_flow_resize']
self.blobs = blobs
return blobs
def all_variables(self):
return [('netsd_deconv5_w', (4, 4, 512, 1024)),
('netsd_conv1_b', (64,)),
('netsd_upsample_flow5to4_w', (4, 4, 2, 2)),
('conv2_b', (128,)),
('fuse__Convolution5_w', (3, 3, 128, 2)),
('netsd_conv4_1_w', (3, 3, 512, 512)),
('netsd_interconv3_w', (3, 3, 386, 128)),
('netsd_deconv4_w', (4, 4, 256, 1026)),
('deconv4_b', (256,)),
('fuse_interconv0_w', (3, 3, 82, 16)),
('netsd_Convolution2_b', (2,)),
('net3_conv4_b', (512,)),
('net3_conv3_b', (256,)),
('net3_predict_conv2_w', (3, 3, 194, 2)),
('net3_predict_conv3_b', (2,)),
('conv6_1_w', (3, 3, 1024, 1024)),
('fuse_upsample_flow2to1_b', (2,)),
('Convolution1_w', (3, 3, 1024, 2)),
('net3_deconv3_w', (4, 4, 128, 770)),
('net2_deconv3_b', (128,)),
('fuse_conv1_w', (3, 3, 64, 64)),
('conv5_w', (3, 3, 512, 512)),
('Convolution4_w', (3, 3, 386, 2)),
('fuse_conv0_b', (64,)),
('net2_conv3_w', (5, 5, 128, 256)),
('upsample_flow4to3_b', (2,)),
('netsd_conv4_1_b', (512,)),
('fuse_upsample_flow2to1_w', (4, 4, 2, 2)),
('netsd_conv4_b', (512,)),
('net2_net2_upsample_flow3to2_b', (2,)),
('net3_predict_conv4_b', (2,)),
('fuse_upsample_flow1to0_b', (2,)),
('conv4_1_w', (3, 3, 512, 512)),
('deconv2_b', (64,)),
('net2_conv4_1_w', (3, 3, 512, 512)),
('net3_deconv4_w', (4, 4, 256, 1026)),
('net2_deconv5_b', (512,)),
('netsd_deconv5_b', (512,)),
('net2_deconv2_b', (64,)),
('net3_conv2_b', (128,)),
('conv_redir_w', (1, 1, 256, 32)),
('fuse_conv1_1_b', (128,)),
('net2_deconv5_w', (4, 4, 512, 1024)),
('net2_conv5_b', (512,)),
('net2_conv4_w', (3, 3, 256, 512)),
('net2_predict_conv6_w', (3, 3, 1024, 2)),
('netsd_conv5_b', (512,)),
('deconv4_w', (4, 4, 256, 1026)),
('net2_net2_upsample_flow4to3_b', (2,)),
('fuse__Convolution6_w', (3, 3, 32, 2)),
('net3_deconv2_w', (4, 4, 64, 386)),
('net2_conv6_1_w', (3, 3, 1024, 1024)),
('netsd_conv0_b', (64,)),
('netsd_conv5_1_w', (3, 3, 512, 512)),
('net2_conv6_1_b', (1024,)),
('net3_conv2_w', (5, 5, 64, 128)),
('net3_predict_conv6_w', (3, 3, 1024, 2)),
('net3_conv4_1_b', (512,)),
('net3_net3_upsample_flow4to3_w', (4, 4, 2, 2)),
('net2_deconv2_w', (4, 4, 64, 386)),
('deconv3_b', (128,)),
('netsd_interconv5_b', (512,)),
('net2_conv3_1_w', (3, 3, 256, 256)),
('netsd_interconv4_w', (3, 3, 770, 256)),
('net3_deconv3_b', (128,)),
('fuse_conv0_w', (3, 3, 11, 64)),
('net3_predict_conv6_b', (2,)),
('fuse_upsample_flow1to0_w', (4, 4, 2, 2)),
('netsd_deconv3_b', (128,)),
('net3_predict_conv5_w', (3, 3, 1026, 2)),
('netsd_conv5_w', (3, 3, 512, 512)),
('netsd_interconv5_w', (3, 3, 1026, 512)),
('netsd_Convolution3_w', (3, 3, 256, 2)),
('net2_predict_conv4_w', (3, 3, 770, 2)),
('deconv2_w', (4, 4, 64, 386)),
('net3_predict_conv5_b', (2,)),
('fuse__Convolution5_b', (2,)),
('fuse__Convolution7_w', (3, 3, 16, 2)),
('net2_net2_upsample_flow6to5_w', (4, 4, 2, 2)),
('netsd_conv3_b', (256,)),
('net3_conv6_w', (3, 3, 512, 1024)),
('net3_conv1_b', (64,)),
('netsd_Convolution4_b', (2,)),
('net3_conv3_w', (5, 5, 128, 256)),
('netsd_conv0_w', (3, 3, 6, 64)),
('net2_conv4_b', (512,)),
('net2_predict_conv3_w', (3, 3, 386, 2)),
('net3_net3_upsample_flow3to2_w', (4, 4, 2, 2)),
('fuse_conv1_1_w', (3, 3, 64, 128)),
('deconv5_b', (512,)),
('fuse__Convolution7_b', (2,)),
('net3_conv6_1_w', (3, 3, 1024, 1024)),
('net3_net3_upsample_flow5to4_w', (4, 4, 2, 2)),
('net3_conv4_w', (3, 3, 256, 512)),
('upsample_flow5to4_w', (4, 4, 2, 2)),
('conv4_1_b', (512,)),
('img0s_aug_b', (320, 448, 3, 1)),
('conv5_1_b', (512,)),
('net3_conv4_1_w', (3, 3, 512, 512)),
('upsample_flow5to4_b', (2,)),
('net3_conv3_1_b', (256,)),
('Convolution1_b', (2,)),
('upsample_flow4to3_w', (4, 4, 2, 2)),
('conv5_1_w', (3, 3, 512, 512)),
('conv3_1_b', (256,)),
('conv3_w', (5, 5, 128, 256)),
('net2_conv2_b', (128,)),
('net3_net3_upsample_flow6to5_w', (4, 4, 2, 2)),
('upsample_flow3to2_b', (2,)),
('netsd_Convolution5_w', (3, 3, 64, 2)),
('netsd_interconv2_w', (3, 3, 194, 64)),
('net2_predict_conv6_b', (2,)),
('net2_deconv4_w', (4, 4, 256, 1026)),
('scale_conv1_b', (2,)),
('net2_net2_upsample_flow5to4_w', (4, 4, 2, 2)),
('netsd_conv2_b', (128,)),
('netsd_conv2_1_b', (128,)),
('netsd_upsample_flow6to5_w', (4, 4, 2, 2)),
('net2_predict_conv5_b', (2,)),
('net3_conv6_1_b', (1024,)),
('netsd_conv6_w', (3, 3, 512, 1024)),
('Convolution4_b', (2,)),
('net2_predict_conv4_b', (2,)),
('fuse_deconv1_b', (32,)),
('conv3_1_w', (3, 3, 473, 256)),
('net3_deconv2_b', (64,)),
('netsd_conv6_b', (1024,)),
('net2_conv5_1_w', (3, 3, 512, 512)),
('net3_conv5_1_w', (3, 3, 512, 512)),
('deconv5_w', (4, 4, 512, 1024)),
('fuse_conv2_b', (128,)),
('netsd_conv1_1_b', (128,)),
('netsd_upsample_flow6to5_b', (2,)),
('Convolution5_w', (3, 3, 194, 2)),
('scale_conv1_w', (1, 1, 2, 2)),
('net2_net2_upsample_flow5to4_b', (2,)),
('conv6_1_b', (1024,)),
('fuse_conv2_1_b', (128,)),
('netsd_Convolution5_b', (2,)),
('netsd_conv3_1_b', (256,)),
('conv2_w', (5, 5, 64, 128)),
('fuse_conv2_w', (3, 3, 128, 128)),
('net2_conv2_w', (5, 5, 64, 128)),
('conv3_b', (256,)),
('net3_deconv5_w', (4, 4, 512, 1024)),
('img1s_aug_w', (1, 1, 1, 1)),
('netsd_conv2_w', (3, 3, 128, 128)),
('conv6_w', (3, 3, 512, 1024)),
('netsd_conv4_w', (3, 3, 256, 512)),
('net2_conv1_w', (7, 7, 12, 64)),
('netsd_Convolution1_w', (3, 3, 1024, 2)),
('netsd_conv1_w', (3, 3, 64, 64)),
('netsd_deconv4_b', (256,)),
('conv4_w', (3, 3, 256, 512)),
('conv5_b', (512,)),
('net3_deconv5_b', (512,)),
('netsd_interconv3_b', (128,)),
('net3_conv3_1_w', (3, 3, 256, 256)),
('net2_predict_conv5_w', (3, 3, 1026, 2)),
('Convolution3_b', (2,)),
('netsd_conv5_1_b', (512,)),
('netsd_interconv4_b', (256,)),
('conv4_b', (512,)),
('net3_net3_upsample_flow6to5_b', (2,)),
('Convolution5_b', (2,)),
('fuse_conv2_1_w', (3, 3, 128, 128)),
('net3_net3_upsample_flow4to3_b', (2,)),
('conv1_w', (7, 7, 3, 64)),
('upsample_flow6to5_b', (2,)),
('conv6_b', (1024,)),
('netsd_upsample_flow3to2_w', (4, 4, 2, 2)),
('net2_deconv3_w', (4, 4, 128, 770)),
('netsd_conv2_1_w', (3, 3, 128, 128)),
('netsd_Convolution3_b', (2,)),
('netsd_upsample_flow4to3_w', (4, 4, 2, 2)),
('fuse_interconv1_w', (3, 3, 162, 32)),
('netsd_upsample_flow4to3_b', (2,)),
('netsd_conv3_1_w', (3, 3, 256, 256)),
('netsd_deconv3_w', (4, 4, 128, 770)),
('net3_conv5_b', (512,)),
('net3_conv5_1_b', (512,)),
('net2_net2_upsample_flow4to3_w', (4, 4, 2, 2)),
('net2_net2_upsample_flow3to2_w', (4, 4, 2, 2)),
('net2_conv3_b', (256,)),
('netsd_conv6_1_w', (3, 3, 1024, 1024)),
('fuse_deconv0_b', (16,)),
('net2_predict_conv2_w', (3, 3, 194, 2)),
('net2_conv1_b', (64,)),
('net2_conv6_b', (1024,)),
('net3_predict_conv2_b', (2,)),
('net2_conv4_1_b', (512,)),
('netsd_Convolution4_w', (3, 3, 128, 2)),
('deconv3_w', (4, 4, 128, 770)),
('fuse_deconv1_w', (4, 4, 32, 128)),
('netsd_Convolution2_w', (3, 3, 512, 2)),
('netsd_Convolution1_b', (2,)),
('net2_conv3_1_b', (256,)),
('fuse_conv1_b', (64,)),
('net2_deconv4_b', (256,)),
('net3_predict_conv4_w', (3, 3, 770, 2)),
('Convolution3_w', (3, 3, 770, 2)),
('netsd_upsample_flow3to2_b', (2,)),
('net3_net3_upsample_flow3to2_b', (2,)),
('fuse_interconv0_b', (16,)),
('Convolution2_w', (3, 3, 1026, 2)),
('net2_conv6_w', (3, 3, 512, 1024)),
('netsd_conv3_w', (3, 3, 128, 256)),
('netsd_upsample_flow5to4_b', (2,)),
('net3_predict_conv3_w', (3, 3, 386, 2)),
('conv_redir_b', (32,)),
('net2_conv5_1_b', (512,)),
('upsample_flow6to5_w', (4, 4, 2, 2)),
('net2_net2_upsample_flow6to5_b', (2,)),
('net3_conv6_b', (1024,)),
('fuse__Convolution6_b', (2,)),
('Convolution2_b', (2,)),
('upsample_flow3to2_w', (4, 4, 2, 2)),
('net3_conv1_w', (7, 7, 12, 64)),
('fuse_deconv0_w', (4, 4, 16, 162)),
('img0s_aug_w', (1, 1, 1, 1)),
('netsd_conv1_1_w', (3, 3, 64, 128)),
('netsd_deconv2_b', (64,)),
('net2_conv5_w', (3, 3, 512, 512)),
('fuse_interconv1_b', (32,)),
('netsd_conv6_1_b', (1024,)),
('netsd_interconv2_b', (64,)),
('img1s_aug_b', (320, 448, 3, 1)),
('netsd_deconv2_w', (4, 4, 64, 386)),
('net2_predict_conv3_b', (2,)),
('net2_predict_conv2_b', (2,)),
('net3_deconv4_b', (256,)),
('net3_net3_upsample_flow5to4_b', (2,)),
('conv1_b', (64,)),
('net3_conv5_w', (3, 3, 512, 512))]
|
[
"tensorflow.nn.conv2d",
"tensorflow.contrib.graph_editor.reroute.add_control_inputs",
"tensorflow.image.resize_nearest_neighbor",
"tensorflow.shape",
"tensorflow.pad",
"tensorflow.reshape",
"tensorflow.get_variable",
"tensorflow.to_float",
"tensorflow.reduce_sum",
"tensorflow.ones",
"tensorflow.image.resize_bilinear",
"numpy.array",
"tensorflow.concat",
"tensorflow.nn.conv2d_transpose",
"tensorflow.maximum",
"tensorflow.train.AdamOptimizer",
"tensorflow.stack"
] |
[((469, 489), 'tensorflow.maximum', 'tf.maximum', (['x', '(s * x)'], {}), '(x, s * x)\n', (479, 489), True, 'import tensorflow as tf\n'), ((1098, 1126), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(flow * target)'], {}), '(flow * target)\n', (1111, 1126), True, 'import tensorflow as tf\n'), ((1173, 1267), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate', 'beta1': '(0.95)', 'beta2': '(0.99)', 'epsilon': '(1e-08)'}), '(learning_rate=learning_rate, beta1=0.95, beta2=0.99,\n epsilon=1e-08)\n', (1195, 1267), True, 'import tensorflow as tf\n'), ((2109, 2166), 'tensorflow.contrib.graph_editor.reroute.add_control_inputs', 'ge.reroute.add_control_inputs', (['a_tensor.op', '[b_tensor.op]'], {}), '(a_tensor.op, [b_tensor.op])\n', (2138, 2166), True, 'import tensorflow.contrib.graph_editor as ge\n'), ((3190, 3236), 'numpy.array', 'np.array', (['[0.37655231, 0.39534855, 0.40119368]'], {}), '([0.37655231, 0.39534855, 0.40119368])\n', (3198, 3236), True, 'import numpy as np\n'), ((3382, 3490), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (["blobs['img0_nomean']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(True)'}), "(blobs['img0_nomean'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=True)\n", (3406, 3490), True, 'import tensorflow as tf\n'), ((3525, 3633), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (["blobs['img1_nomean']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(True)'}), "(blobs['img1_nomean'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=True)\n", (3549, 3633), True, 'import tensorflow as tf\n'), ((3665, 3734), 'tensorflow.pad', 'tf.pad', (["blobs['img0_nomean_resize']", '[[0, 0], [3, 3], [3, 3], [0, 0]]'], {}), "(blobs['img0_nomean_resize'], [[0, 0], [3, 3], [3, 3], [0, 0]])\n", (3671, 3734), True, 'import tensorflow as tf\n'), ((3965, 4034), 'tensorflow.pad', 'tf.pad', (["blobs['img1_nomean_resize']", '[[0, 0], [3, 3], [3, 3], [0, 0]]'], {}), "(blobs['img1_nomean_resize'], [[0, 0], [3, 3], [3, 3], [0, 0]])\n", (3971, 4034), True, 'import tensorflow as tf\n'), ((4265, 4322), 'tensorflow.pad', 'tf.pad', (["blobs['conv1a']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['conv1a'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (4271, 4322), True, 'import tensorflow as tf\n'), ((4553, 4610), 'tensorflow.pad', 'tf.pad', (["blobs['conv1b']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['conv1b'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (4559, 4610), True, 'import tensorflow as tf\n'), ((4841, 4898), 'tensorflow.pad', 'tf.pad', (["blobs['conv2a']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['conv2a'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (4847, 4898), True, 'import tensorflow as tf\n'), ((5129, 5186), 'tensorflow.pad', 'tf.pad', (["blobs['conv2b']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['conv2b'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (5135, 5186), True, 'import tensorflow as tf\n'), ((6156, 6178), 'tensorflow.concat', 'tf.concat', (['tmp'], {'axis': '(3)'}), '(tmp, axis=3)\n', (6165, 6178), True, 'import tensorflow as tf\n'), ((6497, 6552), 'tensorflow.concat', 'tf.concat', (["[blobs['conv_redir'], blobs['corr']]"], {'axis': '(3)'}), "([blobs['conv_redir'], blobs['corr']], axis=3)\n", (6506, 6552), True, 'import tensorflow as tf\n'), ((6793, 6851), 'tensorflow.pad', 'tf.pad', (["blobs['conv3_1']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['conv3_1'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (6799, 6851), True, 'import tensorflow as tf\n'), ((7290, 7348), 'tensorflow.pad', 'tf.pad', (["blobs['conv4_1']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['conv4_1'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (7296, 7348), True, 'import tensorflow as tf\n'), ((7787, 7845), 'tensorflow.pad', 'tf.pad', (["blobs['conv5_1']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['conv5_1'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (7793, 7845), True, 'import tensorflow as tf\n'), ((8994, 9085), 'tensorflow.concat', 'tf.concat', (["[blobs['conv5_1'], blobs['deconv5'], blobs['upsampled_flow6_to_5']]"], {'axis': '(3)'}), "([blobs['conv5_1'], blobs['deconv5'], blobs['upsampled_flow6_to_5'\n ]], axis=3)\n", (9003, 9085), True, 'import tensorflow as tf\n'), ((9115, 9173), 'tensorflow.pad', 'tf.pad', (["blobs['concat5']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['concat5'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (9121, 9173), True, 'import tensorflow as tf\n'), ((9920, 10011), 'tensorflow.concat', 'tf.concat', (["[blobs['conv4_1'], blobs['deconv4'], blobs['upsampled_flow5_to_4']]"], {'axis': '(3)'}), "([blobs['conv4_1'], blobs['deconv4'], blobs['upsampled_flow5_to_4'\n ]], axis=3)\n", (9929, 10011), True, 'import tensorflow as tf\n'), ((10747, 10838), 'tensorflow.concat', 'tf.concat', (["[blobs['conv3_1'], blobs['deconv3'], blobs['upsampled_flow4_to_3']]"], {'axis': '(3)'}), "([blobs['conv3_1'], blobs['deconv3'], blobs['upsampled_flow4_to_3'\n ]], axis=3)\n", (10756, 10838), True, 'import tensorflow as tf\n'), ((11557, 11647), 'tensorflow.concat', 'tf.concat', (["[blobs['conv2a'], blobs['deconv2'], blobs['upsampled_flow3_to_2']]"], {'axis': '(3)'}), "([blobs['conv2a'], blobs['deconv2'], blobs['upsampled_flow3_to_2']\n ], axis=3)\n", (11566, 11647), True, 'import tensorflow as tf\n'), ((11899, 12002), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (["blobs['blob41']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(True)'}), "(blobs['blob41'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=True)\n", (11923, 12002), True, 'import tensorflow as tf\n'), ((12394, 12527), 'tensorflow.concat', 'tf.concat', (["[blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob43'],\n blobs['blob46'], blobs['blob45']]"], {'axis': '(3)'}), "([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs[\n 'blob43'], blobs['blob46'], blobs['blob45']], axis=3)\n", (12403, 12527), True, 'import tensorflow as tf\n'), ((13203, 13260), 'tensorflow.pad', 'tf.pad', (["blobs['blob47']", '[[0, 0], [3, 3], [3, 3], [0, 0]]'], {}), "(blobs['blob47'], [[0, 0], [3, 3], [3, 3], [0, 0]])\n", (13209, 13260), True, 'import tensorflow as tf\n'), ((13501, 13558), 'tensorflow.pad', 'tf.pad', (["blobs['blob48']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['blob48'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (13507, 13558), True, 'import tensorflow as tf\n'), ((13800, 13857), 'tensorflow.pad', 'tf.pad', (["blobs['blob49']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['blob49'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (13806, 13857), True, 'import tensorflow as tf\n'), ((14319, 14376), 'tensorflow.pad', 'tf.pad', (["blobs['blob51']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob51'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (14325, 14376), True, 'import tensorflow as tf\n'), ((14838, 14895), 'tensorflow.pad', 'tf.pad', (["blobs['blob53']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob53'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (14844, 14895), True, 'import tensorflow as tf\n'), ((15357, 15414), 'tensorflow.pad', 'tf.pad', (["blobs['blob55']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob55'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (15363, 15414), True, 'import tensorflow as tf\n'), ((16616, 16686), 'tensorflow.concat', 'tf.concat', (["[blobs['blob55'], blobs['blob59'], blobs['blob60']]"], {'axis': '(3)'}), "([blobs['blob55'], blobs['blob59'], blobs['blob60']], axis=3)\n", (16625, 16686), True, 'import tensorflow as tf\n'), ((17439, 17509), 'tensorflow.concat', 'tf.concat', (["[blobs['blob53'], blobs['blob63'], blobs['blob64']]"], {'axis': '(3)'}), "([blobs['blob53'], blobs['blob63'], blobs['blob64']], axis=3)\n", (17448, 17509), True, 'import tensorflow as tf\n'), ((18266, 18336), 'tensorflow.concat', 'tf.concat', (["[blobs['blob51'], blobs['blob67'], blobs['blob68']]"], {'axis': '(3)'}), "([blobs['blob51'], blobs['blob67'], blobs['blob68']], axis=3)\n", (18275, 18336), True, 'import tensorflow as tf\n'), ((19068, 19138), 'tensorflow.concat', 'tf.concat', (["[blobs['blob49'], blobs['blob71'], blobs['blob72']]"], {'axis': '(3)'}), "([blobs['blob49'], blobs['blob71'], blobs['blob72']], axis=3)\n", (19077, 19138), True, 'import tensorflow as tf\n'), ((19392, 19495), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (["blobs['blob75']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(True)'}), "(blobs['blob75'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=True)\n", (19416, 19495), True, 'import tensorflow as tf\n'), ((19887, 20020), 'tensorflow.concat', 'tf.concat', (["[blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob77'],\n blobs['blob80'], blobs['blob79']]"], {'axis': '(3)'}), "([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs[\n 'blob77'], blobs['blob80'], blobs['blob79']], axis=3)\n", (19896, 20020), True, 'import tensorflow as tf\n'), ((20696, 20753), 'tensorflow.pad', 'tf.pad', (["blobs['blob81']", '[[0, 0], [3, 3], [3, 3], [0, 0]]'], {}), "(blobs['blob81'], [[0, 0], [3, 3], [3, 3], [0, 0]])\n", (20702, 20753), True, 'import tensorflow as tf\n'), ((20994, 21051), 'tensorflow.pad', 'tf.pad', (["blobs['blob82']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['blob82'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (21000, 21051), True, 'import tensorflow as tf\n'), ((21293, 21350), 'tensorflow.pad', 'tf.pad', (["blobs['blob83']", '[[0, 0], [2, 2], [2, 2], [0, 0]]'], {}), "(blobs['blob83'], [[0, 0], [2, 2], [2, 2], [0, 0]])\n", (21299, 21350), True, 'import tensorflow as tf\n'), ((21812, 21869), 'tensorflow.pad', 'tf.pad', (["blobs['blob85']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob85'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (21818, 21869), True, 'import tensorflow as tf\n'), ((22331, 22388), 'tensorflow.pad', 'tf.pad', (["blobs['blob87']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob87'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (22337, 22388), True, 'import tensorflow as tf\n'), ((22850, 22907), 'tensorflow.pad', 'tf.pad', (["blobs['blob89']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob89'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (22856, 22907), True, 'import tensorflow as tf\n'), ((24102, 24172), 'tensorflow.concat', 'tf.concat', (["[blobs['blob89'], blobs['blob93'], blobs['blob94']]"], {'axis': '(3)'}), "([blobs['blob89'], blobs['blob93'], blobs['blob94']], axis=3)\n", (24111, 24172), True, 'import tensorflow as tf\n'), ((24925, 24995), 'tensorflow.concat', 'tf.concat', (["[blobs['blob87'], blobs['blob97'], blobs['blob98']]"], {'axis': '(3)'}), "([blobs['blob87'], blobs['blob97'], blobs['blob98']], axis=3)\n", (24934, 24995), True, 'import tensorflow as tf\n'), ((25759, 25831), 'tensorflow.concat', 'tf.concat', (["[blobs['blob85'], blobs['blob101'], blobs['blob102']]"], {'axis': '(3)'}), "([blobs['blob85'], blobs['blob101'], blobs['blob102']], axis=3)\n", (25768, 25831), True, 'import tensorflow as tf\n'), ((26572, 26644), 'tensorflow.concat', 'tf.concat', (["[blobs['blob83'], blobs['blob105'], blobs['blob106']]"], {'axis': '(3)'}), "([blobs['blob83'], blobs['blob105'], blobs['blob106']], axis=3)\n", (26581, 26644), True, 'import tensorflow as tf\n'), ((27555, 27632), 'tensorflow.concat', 'tf.concat', (["[blobs['img0_nomean_resize'], blobs['img1_nomean_resize']]"], {'axis': '(3)'}), "([blobs['img0_nomean_resize'], blobs['img1_nomean_resize']], axis=3)\n", (27564, 27632), True, 'import tensorflow as tf\n'), ((27952, 28010), 'tensorflow.pad', 'tf.pad', (["blobs['blob111']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob111'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (27958, 28010), True, 'import tensorflow as tf\n'), ((28493, 28551), 'tensorflow.pad', 'tf.pad', (["blobs['blob113']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob113'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (28499, 28551), True, 'import tensorflow as tf\n'), ((29034, 29092), 'tensorflow.pad', 'tf.pad', (["blobs['blob115']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob115'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (29040, 29092), True, 'import tensorflow as tf\n'), ((29575, 29633), 'tensorflow.pad', 'tf.pad', (["blobs['blob117']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob117'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (29581, 29633), True, 'import tensorflow as tf\n'), ((30116, 30174), 'tensorflow.pad', 'tf.pad', (["blobs['blob119']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob119'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (30122, 30174), True, 'import tensorflow as tf\n'), ((30657, 30715), 'tensorflow.pad', 'tf.pad', (["blobs['blob121']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob121'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (30663, 30715), True, 'import tensorflow as tf\n'), ((31917, 31990), 'tensorflow.concat', 'tf.concat', (["[blobs['blob121'], blobs['blob125'], blobs['blob126']]"], {'axis': '(3)'}), "([blobs['blob121'], blobs['blob125'], blobs['blob126']], axis=3)\n", (31926, 31990), True, 'import tensorflow as tf\n'), ((32913, 32986), 'tensorflow.concat', 'tf.concat', (["[blobs['blob119'], blobs['blob130'], blobs['blob131']]"], {'axis': '(3)'}), "([blobs['blob119'], blobs['blob130'], blobs['blob131']], axis=3)\n", (32922, 32986), True, 'import tensorflow as tf\n'), ((33913, 33986), 'tensorflow.concat', 'tf.concat', (["[blobs['blob117'], blobs['blob135'], blobs['blob136']]"], {'axis': '(3)'}), "([blobs['blob117'], blobs['blob135'], blobs['blob136']], axis=3)\n", (33922, 33986), True, 'import tensorflow as tf\n'), ((34888, 34961), 'tensorflow.concat', 'tf.concat', (["[blobs['blob115'], blobs['blob140'], blobs['blob141']]"], {'axis': '(3)'}), "([blobs['blob115'], blobs['blob140'], blobs['blob141']], axis=3)\n", (34897, 34961), True, 'import tensorflow as tf\n'), ((35386, 35499), 'tensorflow.image.resize_nearest_neighbor', 'tf.image.resize_nearest_neighbor', (["blobs['blob145']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(False)'}), "(blobs['blob145'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=False)\n", (35418, 35499), True, 'import tensorflow as tf\n'), ((35532, 35645), 'tensorflow.image.resize_nearest_neighbor', 'tf.image.resize_nearest_neighbor', (["blobs['blob109']"], {'size': '[ADAPTED_HEIGHT, ADAPTED_WIDTH]', 'align_corners': '(False)'}), "(blobs['blob109'], size=[ADAPTED_HEIGHT,\n ADAPTED_WIDTH], align_corners=False)\n", (35564, 35645), True, 'import tensorflow as tf\n'), ((36630, 36794), 'tensorflow.concat', 'tf.concat', (["[blobs['img0_nomean_resize'], blobs['blob146'], blobs['blob147'], blobs[\n 'blob148'], blobs['blob149'], blobs['blob152'], blobs['blob155']]"], {'axis': '(3)'}), "([blobs['img0_nomean_resize'], blobs['blob146'], blobs['blob147'],\n blobs['blob148'], blobs['blob149'], blobs['blob152'], blobs['blob155']],\n axis=3)\n", (36639, 36794), True, 'import tensorflow as tf\n'), ((37036, 37094), 'tensorflow.pad', 'tf.pad', (["blobs['blob157']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob157'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (37042, 37094), True, 'import tensorflow as tf\n'), ((37573, 37631), 'tensorflow.pad', 'tf.pad', (["blobs['blob159']", '[[0, 0], [1, 1], [1, 1], [0, 0]]'], {}), "(blobs['blob159'], [[0, 0], [1, 1], [1, 1], [0, 0]])\n", (37579, 37631), True, 'import tensorflow as tf\n'), ((38812, 38885), 'tensorflow.concat', 'tf.concat', (["[blobs['blob159'], blobs['blob163'], blobs['blob164']]"], {'axis': '(3)'}), "([blobs['blob159'], blobs['blob163'], blobs['blob164']], axis=3)\n", (38821, 38885), True, 'import tensorflow as tf\n'), ((39777, 39850), 'tensorflow.concat', 'tf.concat', (["[blobs['blob157'], blobs['blob168'], blobs['blob169']]"], {'axis': '(3)'}), "([blobs['blob157'], blobs['blob168'], blobs['blob169']], axis=3)\n", (39786, 39850), True, 'import tensorflow as tf\n'), ((40235, 40337), 'tensorflow.image.resize_bilinear', 'tf.image.resize_bilinear', (["blobs['blob172']"], {'size': '[TARGET_HEIGHT, TARGET_WIDTH]', 'align_corners': '(True)'}), "(blobs['blob172'], size=[TARGET_HEIGHT,\n TARGET_WIDTH], align_corners=True)\n", (40259, 40337), True, 'import tensorflow as tf\n'), ((40351, 40388), 'tensorflow.stack', 'tf.stack', (['[SCALE_WIDTH, SCALE_HEIGHT]'], {}), '([SCALE_WIDTH, SCALE_HEIGHT])\n', (40359, 40388), True, 'import tensorflow as tf\n'), ((40405, 40436), 'tensorflow.reshape', 'tf.reshape', (['scale', '[1, 1, 1, 2]'], {}), '(scale, [1, 1, 1, 2])\n', (40415, 40436), True, 'import tensorflow as tf\n'), ((281, 314), 'tensorflow.get_variable', 'tf.get_variable', (['key'], {'shape': 'shape'}), '(key, shape=shape)\n', (296, 314), True, 'import tensorflow as tf\n'), ((582, 636), 'tensorflow.stack', 'tf.stack', (['[flow[:, :, :, 1], flow[:, :, :, 0]]'], {'axis': '(3)'}), '([flow[:, :, :, 1], flow[:, :, :, 0]], axis=3)\n', (590, 636), True, 'import tensorflow as tf\n'), ((919, 967), 'tensorflow.stack', 'tf.stack', (['[f[:, :, :, 1], f[:, :, :, 0]]'], {'axis': '(3)'}), '([f[:, :, :, 1], f[:, :, :, 0]], axis=3)\n', (927, 967), True, 'import tensorflow as tf\n'), ((2818, 2836), 'tensorflow.to_float', 'tf.to_float', (['width'], {}), '(width)\n', (2829, 2836), True, 'import tensorflow as tf\n'), ((2839, 2865), 'tensorflow.to_float', 'tf.to_float', (['ADAPTED_WIDTH'], {}), '(ADAPTED_WIDTH)\n', (2850, 2865), True, 'import tensorflow as tf\n'), ((2890, 2909), 'tensorflow.to_float', 'tf.to_float', (['height'], {}), '(height)\n', (2901, 2909), True, 'import tensorflow as tf\n'), ((2912, 2939), 'tensorflow.to_float', 'tf.to_float', (['ADAPTED_HEIGHT'], {}), '(ADAPTED_HEIGHT)\n', (2923, 2939), True, 'import tensorflow as tf\n'), ((3757, 3854), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv1a']", "self.weights['conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv1a'], self.weights['conv1_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (3769, 3854), True, 'import tensorflow as tf\n'), ((4057, 4154), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv1b']", "self.weights['conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv1b'], self.weights['conv1_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (4069, 4154), True, 'import tensorflow as tf\n'), ((4345, 4442), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv2a']", "self.weights['conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv2a'], self.weights['conv2_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (4357, 4442), True, 'import tensorflow as tf\n'), ((4633, 4730), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv2b']", "self.weights['conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv2b'], self.weights['conv2_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (4645, 4730), True, 'import tensorflow as tf\n'), ((4921, 5018), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv3a']", "self.weights['conv3_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv3a'], self.weights['conv3_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (4933, 5018), True, 'import tensorflow as tf\n'), ((5209, 5306), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv3b']", "self.weights['conv3_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv3b'], self.weights['conv3_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (5221, 5306), True, 'import tensorflow as tf\n'), ((6271, 6374), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv3a']", "self.weights['conv_redir_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""VALID"""'}), "(blobs['conv3a'], self.weights['conv_redir_w'], strides=[1, 1, \n 1, 1], padding='VALID')\n", (6283, 6374), True, 'import tensorflow as tf\n'), ((6581, 6680), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob16']", "self.weights['conv3_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob16'], self.weights['conv3_1_w'], strides=[1, 1, 1, \n 1], padding='SAME')\n", (6593, 6680), True, 'import tensorflow as tf\n'), ((6873, 6969), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv4']", "self.weights['conv4_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv4'], self.weights['conv4_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (6885, 6969), True, 'import tensorflow as tf\n'), ((7079, 7177), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv4']", "self.weights['conv4_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['conv4'], self.weights['conv4_1_w'], strides=[1, 1, 1, 1\n ], padding='SAME')\n", (7091, 7177), True, 'import tensorflow as tf\n'), ((7370, 7466), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv5']", "self.weights['conv5_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv5'], self.weights['conv5_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (7382, 7466), True, 'import tensorflow as tf\n'), ((7576, 7674), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv5']", "self.weights['conv5_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['conv5'], self.weights['conv5_1_w'], strides=[1, 1, 1, 1\n ], padding='SAME')\n", (7588, 7674), True, 'import tensorflow as tf\n'), ((7867, 7963), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv6']", "self.weights['conv6_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['conv6'], self.weights['conv6_w'], strides=[1, 2, 2, 1],\n padding='VALID')\n", (7879, 7963), True, 'import tensorflow as tf\n'), ((8073, 8171), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv6']", "self.weights['conv6_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['conv6'], self.weights['conv6_1_w'], strides=[1, 1, 1, 1\n ], padding='SAME')\n", (8085, 8171), True, 'import tensorflow as tf\n'), ((8292, 8397), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['conv6_1']", "self.weights['Convolution1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['conv6_1'], self.weights['Convolution1_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (8304, 8397), True, 'import tensorflow as tf\n'), ((8451, 8621), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['conv6_1']", "self.weights['deconv5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512]', 'strides': '[1, 2, 2, 1]'}), "(blobs['conv6_1'], self.weights['deconv5_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512],\n strides=[1, 2, 2, 1])\n", (8473, 8621), True, 'import tensorflow as tf\n'), ((8750, 8936), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['predict_flow6']", "self.weights['upsample_flow6to5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['predict_flow6'], self.weights[\n 'upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT / 32, \n ADAPTED_WIDTH / 32, 2], strides=[1, 2, 2, 1])\n", (8772, 8936), True, 'import tensorflow as tf\n'), ((9203, 9314), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['predict_flow5']", "self.weights['Convolution2_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""VALID"""'}), "(blobs['predict_flow5'], self.weights['Convolution2_w'],\n strides=[1, 1, 1, 1], padding='VALID')\n", (9215, 9314), True, 'import tensorflow as tf\n'), ((9377, 9547), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['concat5']", "self.weights['deconv4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256]', 'strides': '[1, 2, 2, 1]'}), "(blobs['concat5'], self.weights['deconv4_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256],\n strides=[1, 2, 2, 1])\n", (9399, 9547), True, 'import tensorflow as tf\n'), ((9676, 9862), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['predict_flow5']", "self.weights['upsample_flow5to4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['predict_flow5'], self.weights[\n 'upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT / 16, \n ADAPTED_WIDTH / 16, 2], strides=[1, 2, 2, 1])\n", (9698, 9862), True, 'import tensorflow as tf\n'), ((10041, 10146), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['concat4']", "self.weights['Convolution3_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['concat4'], self.weights['Convolution3_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (10053, 10146), True, 'import tensorflow as tf\n'), ((10208, 10376), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['concat4']", "self.weights['deconv3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128]', 'strides': '[1, 2, 2, 1]'}), "(blobs['concat4'], self.weights['deconv3_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128],\n strides=[1, 2, 2, 1])\n", (10230, 10376), True, 'import tensorflow as tf\n'), ((10505, 10689), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['predict_flow4']", "self.weights['upsample_flow4to3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['predict_flow4'], self.weights[\n 'upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT / 8, \n ADAPTED_WIDTH / 8, 2], strides=[1, 2, 2, 1])\n", (10527, 10689), True, 'import tensorflow as tf\n'), ((10868, 10973), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['concat3']", "self.weights['Convolution4_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['concat3'], self.weights['Convolution4_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (10880, 10973), True, 'import tensorflow as tf\n'), ((11035, 11202), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['concat3']", "self.weights['deconv2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64]', 'strides': '[1, 2, 2, 1]'}), "(blobs['concat3'], self.weights['deconv2_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64],\n strides=[1, 2, 2, 1])\n", (11057, 11202), True, 'import tensorflow as tf\n'), ((11323, 11507), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['predict_flow3']", "self.weights['upsample_flow3to2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['predict_flow3'], self.weights[\n 'upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT / 4, \n ADAPTED_WIDTH / 4, 2], strides=[1, 2, 2, 1])\n", (11345, 11507), True, 'import tensorflow as tf\n'), ((11677, 11782), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['concat2']", "self.weights['Convolution5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['concat2'], self.weights['Convolution5_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (11689, 11782), True, 'import tensorflow as tf\n'), ((13283, 13386), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob48']", "self.weights['net2_conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob48'], self.weights['net2_conv1_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (13295, 13386), True, 'import tensorflow as tf\n'), ((13582, 13685), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob49']", "self.weights['net2_conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob49'], self.weights['net2_conv2_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (13594, 13685), True, 'import tensorflow as tf\n'), ((13880, 13983), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob50']", "self.weights['net2_conv3_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob50'], self.weights['net2_conv3_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (13892, 13983), True, 'import tensorflow as tf\n'), ((14098, 14201), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob50']", "self.weights['net2_conv3_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob50'], self.weights['net2_conv3_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (14110, 14201), True, 'import tensorflow as tf\n'), ((14399, 14502), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob52']", "self.weights['net2_conv4_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob52'], self.weights['net2_conv4_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (14411, 14502), True, 'import tensorflow as tf\n'), ((14617, 14720), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob52']", "self.weights['net2_conv4_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob52'], self.weights['net2_conv4_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (14629, 14720), True, 'import tensorflow as tf\n'), ((14918, 15021), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob54']", "self.weights['net2_conv5_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob54'], self.weights['net2_conv5_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (14930, 15021), True, 'import tensorflow as tf\n'), ((15136, 15239), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob54']", "self.weights['net2_conv5_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob54'], self.weights['net2_conv5_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (15148, 15239), True, 'import tensorflow as tf\n'), ((15437, 15540), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob56']", "self.weights['net2_conv6_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob56'], self.weights['net2_conv6_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (15449, 15540), True, 'import tensorflow as tf\n'), ((15655, 15758), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob56']", "self.weights['net2_conv6_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob56'], self.weights['net2_conv6_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (15667, 15758), True, 'import tensorflow as tf\n'), ((15884, 15994), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob57']", "self.weights['net2_predict_conv6_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob57'], self.weights['net2_predict_conv6_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (15896, 15994), True, 'import tensorflow as tf\n'), ((16061, 16235), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob57']", "self.weights['net2_deconv5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob57'], self.weights['net2_deconv5_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512],\n strides=[1, 2, 2, 1])\n", (16083, 16235), True, 'import tensorflow as tf\n'), ((16353, 16549), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['predict_flow6']", "self.weights['net2_net2_upsample_flow6to5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['predict_flow6'], self.weights[\n 'net2_net2_upsample_flow6to5_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2], strides=[1, 2, 2, 1])\n", (16375, 16549), True, 'import tensorflow as tf\n'), ((16714, 16824), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob61']", "self.weights['net2_predict_conv5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob61'], self.weights['net2_predict_conv5_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (16726, 16824), True, 'import tensorflow as tf\n'), ((16891, 17065), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob61']", "self.weights['net2_deconv4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob61'], self.weights['net2_deconv4_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256],\n strides=[1, 2, 2, 1])\n", (16913, 17065), True, 'import tensorflow as tf\n'), ((17183, 17372), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob62']", "self.weights['net2_net2_upsample_flow5to4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob62'], self.weights[\n 'net2_net2_upsample_flow5to4_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2], strides=[1, 2, 2, 1])\n", (17205, 17372), True, 'import tensorflow as tf\n'), ((17545, 17655), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob65']", "self.weights['net2_predict_conv4_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob65'], self.weights['net2_predict_conv4_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (17557, 17655), True, 'import tensorflow as tf\n'), ((17722, 17894), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob65']", "self.weights['net2_deconv3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob65'], self.weights['net2_deconv3_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128],\n strides=[1, 2, 2, 1])\n", (17744, 17894), True, 'import tensorflow as tf\n'), ((18012, 18199), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob66']", "self.weights['net2_net2_upsample_flow4to3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob66'], self.weights[\n 'net2_net2_upsample_flow4to3_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2], strides=[1, 2, 2, 1])\n", (18034, 18199), True, 'import tensorflow as tf\n'), ((18364, 18474), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob69']", "self.weights['net2_predict_conv3_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob69'], self.weights['net2_predict_conv3_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (18376, 18474), True, 'import tensorflow as tf\n'), ((18541, 18712), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob69']", "self.weights['net2_deconv2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob69'], self.weights['net2_deconv2_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64],\n strides=[1, 2, 2, 1])\n", (18563, 18712), True, 'import tensorflow as tf\n'), ((18822, 19009), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob70']", "self.weights['net2_net2_upsample_flow3to2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob70'], self.weights[\n 'net2_net2_upsample_flow3to2_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2], strides=[1, 2, 2, 1])\n", (18844, 19009), True, 'import tensorflow as tf\n'), ((19166, 19276), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob73']", "self.weights['net2_predict_conv2_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob73'], self.weights['net2_predict_conv2_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (19178, 19276), True, 'import tensorflow as tf\n'), ((20776, 20879), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob82']", "self.weights['net3_conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob82'], self.weights['net3_conv1_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (20788, 20879), True, 'import tensorflow as tf\n'), ((21075, 21178), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob83']", "self.weights['net3_conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob83'], self.weights['net3_conv2_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (21087, 21178), True, 'import tensorflow as tf\n'), ((21373, 21476), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob84']", "self.weights['net3_conv3_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob84'], self.weights['net3_conv3_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (21385, 21476), True, 'import tensorflow as tf\n'), ((21591, 21694), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob84']", "self.weights['net3_conv3_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob84'], self.weights['net3_conv3_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (21603, 21694), True, 'import tensorflow as tf\n'), ((21892, 21995), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob86']", "self.weights['net3_conv4_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob86'], self.weights['net3_conv4_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (21904, 21995), True, 'import tensorflow as tf\n'), ((22110, 22213), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob86']", "self.weights['net3_conv4_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob86'], self.weights['net3_conv4_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (22122, 22213), True, 'import tensorflow as tf\n'), ((22411, 22514), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob88']", "self.weights['net3_conv5_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob88'], self.weights['net3_conv5_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (22423, 22514), True, 'import tensorflow as tf\n'), ((22629, 22732), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob88']", "self.weights['net3_conv5_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob88'], self.weights['net3_conv5_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (22641, 22732), True, 'import tensorflow as tf\n'), ((22930, 23033), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob90']", "self.weights['net3_conv6_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob90'], self.weights['net3_conv6_w'], strides=[1, 2, \n 2, 1], padding='VALID')\n", (22942, 23033), True, 'import tensorflow as tf\n'), ((23148, 23251), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob90']", "self.weights['net3_conv6_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob90'], self.weights['net3_conv6_1_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (23160, 23251), True, 'import tensorflow as tf\n'), ((23377, 23487), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob91']", "self.weights['net3_predict_conv6_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob91'], self.weights['net3_predict_conv6_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (23389, 23487), True, 'import tensorflow as tf\n'), ((23554, 23728), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob91']", "self.weights['net3_deconv5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob91'], self.weights['net3_deconv5_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512],\n strides=[1, 2, 2, 1])\n", (23576, 23728), True, 'import tensorflow as tf\n'), ((23846, 24035), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob92']", "self.weights['net3_net3_upsample_flow6to5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob92'], self.weights[\n 'net3_net3_upsample_flow6to5_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2], strides=[1, 2, 2, 1])\n", (23868, 24035), True, 'import tensorflow as tf\n'), ((24200, 24310), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob95']", "self.weights['net3_predict_conv5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob95'], self.weights['net3_predict_conv5_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (24212, 24310), True, 'import tensorflow as tf\n'), ((24377, 24551), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob95']", "self.weights['net3_deconv4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob95'], self.weights['net3_deconv4_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256],\n strides=[1, 2, 2, 1])\n", (24399, 24551), True, 'import tensorflow as tf\n'), ((24669, 24858), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob96']", "self.weights['net3_net3_upsample_flow5to4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob96'], self.weights[\n 'net3_net3_upsample_flow5to4_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2], strides=[1, 2, 2, 1])\n", (24691, 24858), True, 'import tensorflow as tf\n'), ((25032, 25142), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob99']", "self.weights['net3_predict_conv4_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob99'], self.weights['net3_predict_conv4_w'], strides\n =[1, 1, 1, 1], padding='SAME')\n", (25044, 25142), True, 'import tensorflow as tf\n'), ((25210, 25382), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob99']", "self.weights['net3_deconv3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob99'], self.weights['net3_deconv3_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128],\n strides=[1, 2, 2, 1])\n", (25232, 25382), True, 'import tensorflow as tf\n'), ((25503, 25691), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob100']", "self.weights['net3_net3_upsample_flow4to3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob100'], self.weights[\n 'net3_net3_upsample_flow4to3_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2], strides=[1, 2, 2, 1])\n", (25525, 25691), True, 'import tensorflow as tf\n'), ((25860, 25970), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob103']", "self.weights['net3_predict_conv3_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob103'], self.weights['net3_predict_conv3_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (25872, 25970), True, 'import tensorflow as tf\n'), ((26039, 26211), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob103']", "self.weights['net3_deconv2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob103'], self.weights['net3_deconv2_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64],\n strides=[1, 2, 2, 1])\n", (26061, 26211), True, 'import tensorflow as tf\n'), ((26324, 26512), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob104']", "self.weights['net3_net3_upsample_flow3to2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob104'], self.weights[\n 'net3_net3_upsample_flow3to2_w'], output_shape=[batch_size, \n ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2], strides=[1, 2, 2, 1])\n", (26346, 26512), True, 'import tensorflow as tf\n'), ((26673, 26783), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob107']", "self.weights['net3_predict_conv2_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob107'], self.weights['net3_predict_conv2_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (26685, 26783), True, 'import tensorflow as tf\n'), ((27729, 27832), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob110']", "self.weights['netsd_conv0_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob110'], self.weights['netsd_conv0_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (27741, 27832), True, 'import tensorflow as tf\n'), ((28034, 28138), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob112']", "self.weights['netsd_conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob112'], self.weights['netsd_conv1_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (28046, 28138), True, 'import tensorflow as tf\n'), ((28258, 28363), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob112']", "self.weights['netsd_conv1_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob112'], self.weights['netsd_conv1_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (28270, 28363), True, 'import tensorflow as tf\n'), ((28575, 28679), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob114']", "self.weights['netsd_conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob114'], self.weights['netsd_conv2_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (28587, 28679), True, 'import tensorflow as tf\n'), ((28799, 28904), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob114']", "self.weights['netsd_conv2_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob114'], self.weights['netsd_conv2_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (28811, 28904), True, 'import tensorflow as tf\n'), ((29116, 29220), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob116']", "self.weights['netsd_conv3_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob116'], self.weights['netsd_conv3_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (29128, 29220), True, 'import tensorflow as tf\n'), ((29340, 29445), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob116']", "self.weights['netsd_conv3_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob116'], self.weights['netsd_conv3_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (29352, 29445), True, 'import tensorflow as tf\n'), ((29657, 29761), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob118']", "self.weights['netsd_conv4_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob118'], self.weights['netsd_conv4_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (29669, 29761), True, 'import tensorflow as tf\n'), ((29881, 29986), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob118']", "self.weights['netsd_conv4_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob118'], self.weights['netsd_conv4_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (29893, 29986), True, 'import tensorflow as tf\n'), ((30198, 30302), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob120']", "self.weights['netsd_conv5_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob120'], self.weights['netsd_conv5_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (30210, 30302), True, 'import tensorflow as tf\n'), ((30422, 30527), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob120']", "self.weights['netsd_conv5_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob120'], self.weights['netsd_conv5_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (30434, 30527), True, 'import tensorflow as tf\n'), ((30739, 30843), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob122']", "self.weights['netsd_conv6_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob122'], self.weights['netsd_conv6_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (30751, 30843), True, 'import tensorflow as tf\n'), ((30963, 31068), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob122']", "self.weights['netsd_conv6_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob122'], self.weights['netsd_conv6_1_w'], strides=[1,\n 1, 1, 1], padding='SAME')\n", (30975, 31068), True, 'import tensorflow as tf\n'), ((31190, 31300), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob123']", "self.weights['netsd_Convolution1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob123'], self.weights['netsd_Convolution1_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (31202, 31300), True, 'import tensorflow as tf\n'), ((31369, 31545), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob123']", "self.weights['netsd_deconv5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob123'], self.weights['netsd_deconv5_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 512],\n strides=[1, 2, 2, 1])\n", (31391, 31545), True, 'import tensorflow as tf\n'), ((31667, 31852), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob124']", "self.weights['netsd_upsample_flow6to5_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 32, ADAPTED_WIDTH / 32, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob124'], self.weights[\n 'netsd_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT /\n 32, ADAPTED_WIDTH / 32, 2], strides=[1, 2, 2, 1])\n", (31689, 31852), True, 'import tensorflow as tf\n'), ((32019, 32128), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob127']", "self.weights['netsd_interconv5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob127'], self.weights['netsd_interconv5_w'], strides=\n [1, 1, 1, 1], padding='SAME')\n", (32031, 32128), True, 'import tensorflow as tf\n'), ((32194, 32304), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob128']", "self.weights['netsd_Convolution2_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob128'], self.weights['netsd_Convolution2_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (32206, 32304), True, 'import tensorflow as tf\n'), ((32365, 32541), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob127']", "self.weights['netsd_deconv4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob127'], self.weights['netsd_deconv4_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 256],\n strides=[1, 2, 2, 1])\n", (32387, 32541), True, 'import tensorflow as tf\n'), ((32663, 32848), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob129']", "self.weights['netsd_upsample_flow5to4_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 16, ADAPTED_WIDTH / 16, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob129'], self.weights[\n 'netsd_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT /\n 16, ADAPTED_WIDTH / 16, 2], strides=[1, 2, 2, 1])\n", (32685, 32848), True, 'import tensorflow as tf\n'), ((33023, 33132), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob132']", "self.weights['netsd_interconv4_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob132'], self.weights['netsd_interconv4_w'], strides=\n [1, 1, 1, 1], padding='SAME')\n", (33035, 33132), True, 'import tensorflow as tf\n'), ((33198, 33308), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob133']", "self.weights['netsd_Convolution3_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob133'], self.weights['netsd_Convolution3_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (33210, 33308), True, 'import tensorflow as tf\n'), ((33369, 33543), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob132']", "self.weights['netsd_deconv3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob132'], self.weights['netsd_deconv3_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 128],\n strides=[1, 2, 2, 1])\n", (33391, 33543), True, 'import tensorflow as tf\n'), ((33665, 33848), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob134']", "self.weights['netsd_upsample_flow4to3_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 8, ADAPTED_WIDTH / 8, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob134'], self.weights[\n 'netsd_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT /\n 8, ADAPTED_WIDTH / 8, 2], strides=[1, 2, 2, 1])\n", (33687, 33848), True, 'import tensorflow as tf\n'), ((34015, 34124), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob137']", "self.weights['netsd_interconv3_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob137'], self.weights['netsd_interconv3_w'], strides=\n [1, 1, 1, 1], padding='SAME')\n", (34027, 34124), True, 'import tensorflow as tf\n'), ((34190, 34300), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob138']", "self.weights['netsd_Convolution4_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob138'], self.weights['netsd_Convolution4_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (34202, 34300), True, 'import tensorflow as tf\n'), ((34361, 34534), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob137']", "self.weights['netsd_deconv2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob137'], self.weights['netsd_deconv2_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 64],\n strides=[1, 2, 2, 1])\n", (34383, 34534), True, 'import tensorflow as tf\n'), ((34648, 34831), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob139']", "self.weights['netsd_upsample_flow3to2_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 4, ADAPTED_WIDTH / 4, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob139'], self.weights[\n 'netsd_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT /\n 4, ADAPTED_WIDTH / 4, 2], strides=[1, 2, 2, 1])\n", (34670, 34831), True, 'import tensorflow as tf\n'), ((34990, 35099), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob142']", "self.weights['netsd_interconv2_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob142'], self.weights['netsd_interconv2_w'], strides=\n [1, 1, 1, 1], padding='SAME')\n", (35002, 35099), True, 'import tensorflow as tf\n'), ((35165, 35275), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob143']", "self.weights['netsd_Convolution5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob143'], self.weights['netsd_Convolution5_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (35177, 35275), True, 'import tensorflow as tf\n'), ((36815, 36917), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob156']", "self.weights['fuse_conv0_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob156'], self.weights['fuse_conv0_w'], strides=[1, 1,\n 1, 1], padding='SAME')\n", (36827, 36917), True, 'import tensorflow as tf\n'), ((37118, 37221), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob158']", "self.weights['fuse_conv1_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob158'], self.weights['fuse_conv1_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (37130, 37221), True, 'import tensorflow as tf\n'), ((37340, 37445), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob158']", "self.weights['fuse_conv1_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob158'], self.weights['fuse_conv1_1_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (37352, 37445), True, 'import tensorflow as tf\n'), ((37655, 37758), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob160']", "self.weights['fuse_conv2_w']"], {'strides': '[1, 2, 2, 1]', 'padding': '"""VALID"""'}), "(blobs['blob160'], self.weights['fuse_conv2_w'], strides=[1, 2,\n 2, 1], padding='VALID')\n", (37667, 37758), True, 'import tensorflow as tf\n'), ((37877, 37982), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob160']", "self.weights['fuse_conv2_1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob160'], self.weights['fuse_conv2_1_w'], strides=[1, \n 1, 1, 1], padding='SAME')\n", (37889, 37982), True, 'import tensorflow as tf\n'), ((38110, 38220), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob161']", "self.weights['fuse__Convolution5_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob161'], self.weights['fuse__Convolution5_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (38122, 38220), True, 'import tensorflow as tf\n'), ((38289, 38461), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob161']", "self.weights['fuse_deconv1_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 2, ADAPTED_WIDTH / 2, 32]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob161'], self.weights['fuse_deconv1_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 2, ADAPTED_WIDTH / 2, 32],\n strides=[1, 2, 2, 1])\n", (38311, 38461), True, 'import tensorflow as tf\n'), ((38574, 38756), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob162']", "self.weights['fuse_upsample_flow2to1_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 2, ADAPTED_WIDTH / 2, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob162'], self.weights[\n 'fuse_upsample_flow2to1_w'], output_shape=[batch_size, ADAPTED_HEIGHT /\n 2, ADAPTED_WIDTH / 2, 2], strides=[1, 2, 2, 1])\n", (38596, 38756), True, 'import tensorflow as tf\n'), ((38914, 39022), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob165']", "self.weights['fuse_interconv1_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob165'], self.weights['fuse_interconv1_w'], strides=[\n 1, 1, 1, 1], padding='SAME')\n", (38926, 39022), True, 'import tensorflow as tf\n'), ((39087, 39197), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob166']", "self.weights['fuse__Convolution6_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob166'], self.weights['fuse__Convolution6_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (39099, 39197), True, 'import tensorflow as tf\n'), ((39258, 39430), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob165']", "self.weights['fuse_deconv0_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT / 1, ADAPTED_WIDTH / 1, 16]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob165'], self.weights['fuse_deconv0_w'],\n output_shape=[batch_size, ADAPTED_HEIGHT / 1, ADAPTED_WIDTH / 1, 16],\n strides=[1, 2, 2, 1])\n", (39280, 39430), True, 'import tensorflow as tf\n'), ((39543, 39717), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (["blobs['blob167']", "self.weights['fuse_upsample_flow1to0_w']"], {'output_shape': '[batch_size, ADAPTED_HEIGHT, ADAPTED_WIDTH, 2]', 'strides': '[1, 2, 2, 1]'}), "(blobs['blob167'], self.weights[\n 'fuse_upsample_flow1to0_w'], output_shape=[batch_size, ADAPTED_HEIGHT,\n ADAPTED_WIDTH, 2], strides=[1, 2, 2, 1])\n", (39565, 39717), True, 'import tensorflow as tf\n'), ((39879, 39987), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob170']", "self.weights['fuse_interconv0_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob170'], self.weights['fuse_interconv0_w'], strides=[\n 1, 1, 1, 1], padding='SAME')\n", (39891, 39987), True, 'import tensorflow as tf\n'), ((40052, 40162), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (["blobs['blob171']", "self.weights['fuse__Convolution7_w']"], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(blobs['blob171'], self.weights['fuse__Convolution7_w'],\n strides=[1, 1, 1, 1], padding='SAME')\n", (40064, 40162), True, 'import tensorflow as tf\n'), ((2294, 2339), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(x ** 2)'], {'axis': '(3)', 'keep_dims': '(True)'}), '(x ** 2, axis=3, keep_dims=True)\n', (2307, 2339), True, 'import tensorflow as tf\n'), ((2433, 2446), 'tensorflow.shape', 'tf.shape', (['im0'], {}), '(im0)\n', (2441, 2446), True, 'import tensorflow as tf\n'), ((2479, 2492), 'tensorflow.shape', 'tf.shape', (['im0'], {}), '(im0)\n', (2487, 2492), True, 'import tensorflow as tf\n'), ((2526, 2539), 'tensorflow.shape', 'tf.shape', (['im0'], {}), '(im0)\n', (2534, 2539), True, 'import tensorflow as tf\n'), ((5590, 5651), 'tensorflow.pad', 'tf.pad', (["blobs['conv3a']", '[[0, 0], [20, 20], [20, 20], [0, 0]]'], {}), "(blobs['conv3a'], [[0, 0], [20, 20], [20, 20], [0, 0]])\n", (5596, 5651), True, 'import tensorflow as tf\n'), ((5669, 5754), 'tensorflow.pad', 'tf.pad', (["blobs['conv3b']", '[[0, 0], [20 - di, 20 + di], [20 - dj, 20 + dj], [0, 0]]'], {}), "(blobs['conv3b'], [[0, 0], [20 - di, 20 + di], [20 - dj, 20 + dj], [0,\n 0]])\n", (5675, 5754), True, 'import tensorflow as tf\n'), ((2671, 2689), 'tensorflow.to_float', 'tf.to_float', (['width'], {}), '(width)\n', (2682, 2689), True, 'import tensorflow as tf\n'), ((2755, 2774), 'tensorflow.to_float', 'tf.to_float', (['height'], {}), '(height)\n', (2766, 2774), True, 'import tensorflow as tf\n'), ((5843, 5866), 'tensorflow.ones', 'tf.ones', (['[1, 1, 256, 1]'], {}), '([1, 1, 256, 1])\n', (5850, 5866), True, 'import tensorflow as tf\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 7 14:40:40 2021
@author: victorsellemi
"""
import numpy as np
def filter_MA(Y,q = 2):
"""
DESCRIPTION:
Decompose a time series into a trend and stationary component
using the moving average (MA) filter (i.e., low pass filter)
INPUT:
Y = (T x 1) vector of time series data
q = scalar value of moving average (half) window: default = 2
OUTPUT:
trend = (T x 1) vector of trend component of the time series, i.e., low frequency component
error = (T x 1) vector of stationary part of the time series
"""
# length of time series
T = Y.shape[0]
# window width
Q = 2*q
# border of the series is preserved
p1 = np.concatenate((np.eye(q), np.zeros((q,T-q))), axis = 1)
p2 = np.zeros((T-Q,T))
p3 = np.concatenate((np.zeros((q,T-q)), np.eye(q)), axis = 1)
P = np.concatenate((p1,p2,p3), axis = 0)
# part of the series to be averaged
X = np.eye(T-Q)
Z = np.zeros((T-Q,1))
for i in range(Q):
# update X
X = np.concatenate((X, np.zeros((T-Q,1))), axis = 1) + np.concatenate((Z, np.eye(T-Q)), axis = 1)
# update Z
Z = np.concatenate((Z, np.zeros((T-Q,1))), axis = 1)
X = np.concatenate((np.zeros((q,T)), X, np.zeros((q,T))), axis = 0)
# construct linear filter
L = P + (1/(Q+1)) * X
# construct the trend
trend = L.dot(Y)
# construct stationary component
signal = Y - trend
return trend,signal
|
[
"numpy.eye",
"numpy.zeros",
"numpy.concatenate"
] |
[((877, 897), 'numpy.zeros', 'np.zeros', (['(T - Q, T)'], {}), '((T - Q, T))\n', (885, 897), True, 'import numpy as np\n'), ((970, 1006), 'numpy.concatenate', 'np.concatenate', (['(p1, p2, p3)'], {'axis': '(0)'}), '((p1, p2, p3), axis=0)\n', (984, 1006), True, 'import numpy as np\n'), ((1060, 1073), 'numpy.eye', 'np.eye', (['(T - Q)'], {}), '(T - Q)\n', (1066, 1073), True, 'import numpy as np\n'), ((1080, 1100), 'numpy.zeros', 'np.zeros', (['(T - Q, 1)'], {}), '((T - Q, 1))\n', (1088, 1100), True, 'import numpy as np\n'), ((827, 836), 'numpy.eye', 'np.eye', (['q'], {}), '(q)\n', (833, 836), True, 'import numpy as np\n'), ((838, 858), 'numpy.zeros', 'np.zeros', (['(q, T - q)'], {}), '((q, T - q))\n', (846, 858), True, 'import numpy as np\n'), ((920, 940), 'numpy.zeros', 'np.zeros', (['(q, T - q)'], {}), '((q, T - q))\n', (928, 940), True, 'import numpy as np\n'), ((939, 948), 'numpy.eye', 'np.eye', (['q'], {}), '(q)\n', (945, 948), True, 'import numpy as np\n'), ((1387, 1403), 'numpy.zeros', 'np.zeros', (['(q, T)'], {}), '((q, T))\n', (1395, 1403), True, 'import numpy as np\n'), ((1407, 1423), 'numpy.zeros', 'np.zeros', (['(q, T)'], {}), '((q, T))\n', (1415, 1423), True, 'import numpy as np\n'), ((1319, 1339), 'numpy.zeros', 'np.zeros', (['(T - Q, 1)'], {}), '((T - Q, 1))\n', (1327, 1339), True, 'import numpy as np\n'), ((1185, 1205), 'numpy.zeros', 'np.zeros', (['(T - Q, 1)'], {}), '((T - Q, 1))\n', (1193, 1205), True, 'import numpy as np\n'), ((1236, 1249), 'numpy.eye', 'np.eye', (['(T - Q)'], {}), '(T - Q)\n', (1242, 1249), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 19 18:08:01 2020
@author: <NAME>
Implementação do ajuste do modelo SEIIHURD com separação de grupos. Necessita
de mais verificações e funções para simplificar o input. Baseado nas classes
disponíveis no modelos.py
"""
import numpy as np
from functools import reduce
import scipy.integrate as spi
from scipy.optimize import least_squares
from platypus import NSGAII, Problem, Real
from pyswarms.single.global_best import GlobalBestPSO
import pyswarms as ps
from pyswarms.backend.topology import Star
from pyswarms.utils.plotters import plot_cost_history
from itertools import repeat
import multiprocessing as mp
import copy
import joblib
'''
Social contact matrices from
PREM, Kiesha; COOK, <NAME>.; <NAME>. Projecting social contact matrices in
152 countries using contact surveys and demographic data. PLoS computational
biology, v. 13, n. 9, p. e1005697, 2017.
'''
ages_Mu_min = 5 * np.arange(16)
Mu_house = np.array([[0.47868515, 0.50507561, 0.29848922, 0.15763748, 0.26276959,
0.40185462, 0.46855027, 0.42581354, 0.2150961 , 0.0856771 ,
0.08705463, 0.07551931, 0.05129175, 0.02344832, 0.00793644,
0.01072846],
[0.35580205, 0.77874482, 0.51392686, 0.21151069, 0.08597966,
0.28306027, 0.49982218, 0.52854893, 0.41220947, 0.15848728,
0.07491245, 0.07658339, 0.04772343, 0.02588962, 0.01125956,
0.01073152],
[0.25903114, 0.63488713, 1.36175618, 0.50016515, 0.11748191,
0.10264613, 0.24113458, 0.47274372, 0.54026417, 0.26708819,
0.11007723, 0.04406045, 0.02746409, 0.02825033, 0.02044872,
0.01214665],
[0.14223192, 0.24383932, 0.53761638, 1.05325205, 0.28778496,
0.10925453, 0.0651564 , 0.2432454 , 0.39011334, 0.41381277,
0.23194909, 0.07541471, 0.03428398, 0.02122257, 0.01033573,
0.00864859],
[0.27381886, 0.15430529, 0.16053062, 0.5104134 , 0.95175366,
0.3586594 , 0.09248672, 0.04774269, 0.15814197, 0.36581739,
0.25544811, 0.13338965, 0.03461345, 0.01062458, 0.00844199,
0.00868782],
[0.59409802, 0.26971847, 0.10669146, 0.18330524, 0.39561893,
0.81955947, 0.26376865, 0.06604084, 0.03824556, 0.11560004,
0.23218163, 0.15331788, 0.07336147, 0.02312255, 0.00412646,
0.01025778],
[0.63860889, 0.75760606, 0.43109156, 0.09913293, 0.13935789,
0.32056062, 0.65710277, 0.25488454, 0.1062129 , 0.0430932 ,
0.06880784, 0.09938458, 0.09010691, 0.02233902, 0.01155556,
0.00695246],
[0.56209348, 0.87334544, 0.75598244, 0.33199136, 0.07233271,
0.08674171, 0.20243583, 0.60062714, 0.17793601, 0.06307045,
0.04445926, 0.04082447, 0.06275133, 0.04051762, 0.01712777,
0.00598721],
[0.35751289, 0.66234582, 0.77180208, 0.54993616, 0.17368099,
0.07361914, 0.13016852, 0.19937327, 0.46551558, 0.15412263,
0.06123041, 0.0182514 , 0.04234381, 0.04312892, 0.01656267,
0.01175358],
[0.208131 , 0.41591452, 0.56510014, 0.67760241, 0.38146504,
0.14185001, 0.06160354, 0.12945701, 0.16470166, 0.41150841,
0.14596804, 0.04404807, 0.02395316, 0.01731295, 0.01469059,
0.02275339],
[0.30472548, 0.26744442, 0.41631962, 0.46516888, 0.41751365,
0.28520772, 0.13931619, 0.07682945, 0.11404965, 0.16122096,
0.33813266, 0.1349378 , 0.03755396, 0.01429426, 0.01356763,
0.02551792],
[0.52762004, 0.52787011, 0.33622117, 0.43037934, 0.36416323,
0.42655672, 0.33780201, 0.13492044, 0.0798784 , 0.15795568,
0.20367727, 0.33176385, 0.12256126, 0.05573807, 0.0124446 ,
0.02190564],
[0.53741472, 0.50750067, 0.3229994 , 0.30706704, 0.21340314,
0.27424513, 0.32838657, 0.26023515, 0.13222548, 0.07284901,
0.11950584, 0.16376401, 0.25560123, 0.09269703, 0.02451284,
0.00631762],
[0.37949376, 0.55324102, 0.47449156, 0.24796638, 0.19276924,
0.20675484, 0.3267867 , 0.39525729, 0.3070043 , 0.10088992,
0.10256839, 0.13016641, 0.1231421 , 0.24067708, 0.05475668,
0.01401368],
[0.16359554, 0.48536065, 0.40533723, 0.31542539, 0.06890518,
0.15670328, 0.12884062, 0.27912381, 0.25685832, 0.20143856,
0.12497647, 0.07565566, 0.10331686, 0.08830789, 0.15657321,
0.05744065],
[0.29555039, 0.39898035, 0.60257982, 0.5009724 , 0.13799378,
0.11716593, 0.14366306, 0.31602298, 0.34691652, 0.30960511,
0.31253708, 0.14557295, 0.06065554, 0.10654772, 0.06390924,
0.09827735]])
Mu_school = np.array([[3.21885854e-001, 4.31659966e-002, 7.88269419e-003,
8.09548363e-003, 5.35038146e-003, 2.18201974e-002,
4.01633514e-002, 2.99376002e-002, 1.40680283e-002,
1.66587853e-002, 9.47774696e-003, 7.41041622e-003,
1.28200661e-003, 7.79120405e-004, 8.23608272e-066,
6.37926405e-120],
[5.40133328e-002, 4.84870697e+000, 2.70046494e-001,
3.14778450e-002, 3.11206331e-002, 8.56826951e-002,
1.08251879e-001, 9.46101139e-002, 8.63528188e-002,
5.51141159e-002, 4.19385198e-002, 1.20958942e-002,
4.77242219e-003, 1.39787217e-003, 3.47452943e-004,
8.08973738e-039],
[4.56461982e-004, 1.04840235e+000, 6.09152459e+000,
1.98915822e-001, 1.99709921e-002, 6.68319525e-002,
6.58949586e-002, 9.70851505e-002, 9.54147078e-002,
6.70538232e-002, 4.24864096e-002, 1.98701346e-002,
5.11869429e-003, 7.27320438e-004, 4.93746124e-025,
1.82153965e-004],
[2.59613205e-003, 4.73315233e-002, 1.99337834e+000,
7.20040500e+000, 8.57326037e-002, 7.90668822e-002,
8.54208542e-002, 1.10816964e-001, 8.76955236e-002,
9.22975521e-002, 4.58035025e-002, 2.51130956e-002,
5.71391798e-003, 1.07818752e-003, 6.21174558e-033,
1.70710246e-070],
[7.19158720e-003, 2.48833195e-002, 9.89727235e-003,
8.76815025e-001, 4.33963352e-001, 5.05185217e-002,
3.30594492e-002, 3.81384107e-002, 2.34709676e-002,
2.67235372e-002, 1.32913985e-002, 9.00655556e-003,
6.94913059e-004, 1.25675951e-003, 1.77164197e-004,
1.21957619e-047],
[7.04119204e-003, 1.19412206e-001, 3.75016980e-002,
2.02193056e-001, 2.79822908e-001, 1.68610223e-001,
2.86939363e-002, 3.56961469e-002, 4.09234494e-002,
3.32290896e-002, 8.12074348e-003, 1.26152144e-002,
4.27869081e-003, 2.41737477e-003, 4.63116893e-004,
1.28597237e-003],
[1.41486320e-002, 3.86561429e-001, 2.55902236e-001,
1.69973534e-001, 4.98104010e-002, 8.98122446e-002,
7.95333394e-002, 5.19274611e-002, 5.46612930e-002,
2.64567137e-002, 2.03241595e-002, 2.96263220e-003,
5.42888613e-003, 4.47585970e-004, 1.65440335e-048,
3.11189454e-055],
[2.40945305e-002, 2.11030046e-001, 1.54767246e-001,
8.17929897e-002, 1.84061608e-002, 5.43009779e-002,
7.39351186e-002, 5.21677009e-002, 5.63267084e-002,
2.51807147e-002, 3.53972554e-003, 7.96646343e-003,
5.56929776e-004, 2.08530461e-003, 1.84428290e-123,
9.69555083e-067],
[7.81313905e-003, 1.14371898e-001, 9.09011945e-002,
3.80212104e-001, 8.54533192e-003, 2.62430162e-002,
2.51880009e-002, 3.22563508e-002, 6.73506045e-002,
2.24997143e-002, 2.39241043e-002, 6.50627191e-003,
5.50892674e-003, 4.78308850e-004, 4.81213215e-068,
2.40231425e-092],
[6.55265016e-002, 2.31163536e-001, 1.49970765e-001,
5.53563093e-001, 5.74032526e-003, 3.02865481e-002,
5.72506883e-002, 4.70559232e-002, 4.28736553e-002,
2.42614518e-002, 2.86665377e-002, 1.29570473e-002,
3.24362518e-003, 1.67930318e-003, 6.20916950e-134,
3.27297624e-072],
[1.72765646e-002, 3.43744913e-001, 4.30902785e-001,
4.74293073e-001, 5.39328187e-003, 1.44128740e-002,
3.95545363e-002, 3.73781860e-002, 4.56834488e-002,
5.92135906e-002, 2.91473801e-002, 1.54857502e-002,
4.53105390e-003, 8.87272668e-024, 1.23797452e-117,
5.64262349e-078],
[6.14363036e-002, 2.98367348e-001, 2.59092700e-001,
3.00800812e-001, 5.92454596e-003, 5.26458862e-002,
2.02188672e-002, 3.27897605e-002, 4.07753741e-002,
2.83422407e-002, 2.43657809e-002, 2.73993226e-002,
8.87990718e-003, 1.13279180e-031, 7.81960493e-004,
7.62467510e-004],
[3.63695643e-002, 5.96870355e-002, 3.05072624e-002,
1.45523978e-001, 1.26062984e-002, 1.69458169e-003,
1.55127292e-002, 4.22097670e-002, 9.21792425e-003,
1.42200652e-002, 1.10967529e-002, 5.77020348e-003,
2.04474044e-002, 1.11075734e-002, 4.42271199e-067,
2.12068625e-037],
[1.67937029e-003, 2.72971001e-002, 1.05886266e-002,
7.61087735e-032, 1.97191559e-003, 1.92885006e-003,
1.24343737e-002, 5.39297787e-003, 5.41684968e-003,
8.63502071e-003, 1.94554498e-003, 1.49082274e-002,
8.11781100e-003, 1.74395489e-002, 1.11239023e-002,
3.45693088e-126],
[1.28088348e-028, 5.11065200e-026, 1.93019797e-040,
7.60476035e-003, 2.63586947e-022, 1.69749024e-024,
1.25875005e-026, 7.62109877e-003, 7.84979948e-003,
2.11516023e-002, 3.52117832e-002, 2.14360383e-002,
7.73902109e-003, 8.01328325e-003, 7.91285055e-003,
2.13825814e-002],
[2.81655586e-094, 2.11305187e-002, 8.46562506e-042,
2.12592841e-002, 4.89802057e-036, 7.59232387e-003,
9.77247001e-069, 2.23108239e-060, 1.43715978e-048,
8.56015694e-060, 4.69469043e-042, 1.59822047e-046,
2.20978550e-083, 8.85861277e-107, 1.02042815e-080,
6.61413913e-113]])
Mu_work = np.array([[0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
0.00000000e+000, 0.00000000e+000, 0.00000000e+000,
0.00000000e+000, 8.20604524e-092, 1.20585150e-005,
3.16436834e-125],
[0.00000000e+000, 1.16840561e-003, 9.90713236e-072,
4.42646396e-059, 2.91874286e-006, 9.98773031e-003,
2.58779981e-002, 5.66104376e-003, 2.12699812e-002,
5.72117462e-003, 1.48212306e-003, 1.23926126e-003,
1.28212945e-056, 1.34955578e-005, 7.64591325e-079,
2.38392073e-065],
[0.00000000e+000, 2.56552144e-003, 1.12756182e-001,
2.40351143e-002, 2.62981485e-002, 7.56512432e-003,
6.19587609e-002, 1.73269871e-002, 5.87405128e-002,
3.26749742e-002, 1.24709193e-002, 2.93054408e-008,
3.71596993e-017, 2.79780317e-053, 4.95800770e-006,
3.77718083e-102],
[0.00000000e+000, 1.07213881e-002, 4.28390448e-002,
7.22769090e-001, 5.93479736e-001, 3.39341952e-001,
3.17013715e-001, 2.89168861e-001, 3.11143180e-001,
2.34889238e-001, 1.32953769e-001, 6.01944097e-002,
1.47306181e-002, 8.34699602e-006, 2.85972822e-006,
1.88926122e-031],
[0.00000000e+000, 9.14252587e-003, 5.74508682e-002,
4.00000235e-001, 7.93386618e-001, 7.55975146e-001,
6.32277283e-001, 6.83601459e-001, 4.98506972e-001,
3.82309992e-001, 2.81363576e-001, 1.23338103e-001,
4.15708021e-002, 9.86113407e-006, 1.32609387e-005,
3.74318048e-006],
[0.00000000e+000, 1.04243481e-002, 7.34587492e-002,
3.49556755e-001, 7.50680101e-001, 1.25683393e+000,
9.01245714e-001, 8.63446835e-001, 7.70443641e-001,
5.17237071e-001, 4.09810981e-001, 1.80645400e-001,
5.51284783e-002, 1.60674627e-005, 1.01182608e-005,
3.01442534e-006],
[0.00000000e+000, 1.65842404e-002, 8.34076781e-002,
1.89301935e-001, 5.21246906e-001, 8.54460001e-001,
1.12054931e+000, 9.64310078e-001, 8.34675180e-001,
6.52534012e-001, 3.79383514e-001, 2.11198205e-001,
5.17285688e-002, 1.63795563e-005, 4.10100851e-006,
3.49478980e-006],
[0.00000000e+000, 1.11666639e-002, 5.03319748e-002,
3.70510313e-001, 4.24294782e-001, 7.87535547e-001,
8.45085693e-001, 1.14590365e+000, 1.07673077e+000,
7.13492115e-001, 5.00740004e-001, 1.90102207e-001,
3.59740115e-002, 1.22988530e-005, 9.13512833e-006,
6.02097416e-006],
[0.00000000e+000, 6.07792440e-003, 5.49337607e-002,
2.23499535e-001, 4.82353827e-001, 7.52291991e-001,
8.89187601e-001, 9.33765370e-001, 1.10492283e+000,
8.50124391e-001, 5.88941528e-001, 1.94947085e-001,
5.09477228e-002, 1.43626161e-005, 1.02721567e-005,
1.29503893e-005],
[0.00000000e+000, 3.31622551e-003, 7.01829848e-002,
2.67512972e-001, 3.14796392e-001, 5.41516885e-001,
6.95769048e-001, 7.50620518e-001, 7.50038547e-001,
7.00954088e-001, 4.35197983e-001, 2.11283335e-001,
3.88576200e-002, 1.62810370e-005, 1.08243610e-005,
6.09172339e-006],
[0.00000000e+000, 4.39576425e-004, 7.17737968e-002,
1.89254612e-001, 2.47832532e-001, 5.16027731e-001,
6.02783971e-001, 6.15949277e-001, 8.05581107e-001,
7.44063535e-001, 5.44855374e-001, 2.52198706e-001,
4.39235685e-002, 1.18079721e-005, 1.18226645e-005,
1.01613165e-005],
[0.00000000e+000, 4.91737561e-003, 1.08686672e-001,
1.24987806e-001, 1.64110983e-001, 3.00118829e-001,
4.18159745e-001, 3.86897613e-001, 4.77718241e-001,
3.60854250e-001, 3.22466456e-001, 1.92516925e-001,
4.07209694e-002, 1.34978304e-005, 6.58739925e-006,
6.65716756e-006],
[0.00000000e+000, 6.35447018e-004, 3.96329620e-002,
1.83072502e-002, 7.04596701e-002, 1.24861117e-001,
1.37834574e-001, 1.59845720e-001, 1.66933479e-001,
1.56084857e-001, 1.14949158e-001, 8.46570798e-002,
1.50879843e-002, 2.03019580e-005, 8.26102156e-006,
1.48398182e-005],
[7.60299521e-006, 3.36326754e-006, 7.64855296e-006,
2.27621532e-005, 3.14933351e-005, 7.89308410e-005,
7.24212842e-005, 2.91748203e-005, 6.61873732e-005,
5.95693238e-005, 7.70713500e-005, 5.30687748e-005,
4.66030117e-005, 1.41633235e-005, 2.49066205e-005,
1.19109038e-005],
[5.78863840e-055, 7.88785149e-042, 2.54830412e-006,
2.60648191e-005, 1.68036205e-005, 2.12446739e-005,
3.57267603e-005, 4.02377033e-005, 3.56401935e-005,
3.09769252e-005, 2.13053382e-005, 4.49709414e-005,
2.61368373e-005, 1.68266203e-005, 1.66514322e-005,
2.60822813e-005],
[2.35721271e-141, 9.06871674e-097, 1.18637122e-089,
9.39934076e-022, 4.66000452e-005, 4.69664011e-005,
4.69316082e-005, 8.42184044e-005, 2.77788168e-005,
1.03294378e-005, 1.06803618e-005, 7.26341826e-075,
1.10073971e-065, 1.02831671e-005, 5.16902994e-049,
8.28040509e-043]])
Mu_other = np.array([[0.95537734, 0.46860132, 0.27110607, 0.19447667, 0.32135073,
0.48782072, 0.54963024, 0.42195593, 0.27152038, 0.17864251,
0.20155642, 0.16358271, 0.1040159 , 0.0874149 , 0.05129938,
0.02153823],
[0.51023519, 2.17757364, 0.9022516 , 0.24304235, 0.20119518,
0.39689588, 0.47242431, 0.46949918, 0.37741651, 0.16843746,
0.12590504, 0.12682331, 0.11282247, 0.08222718, 0.03648526,
0.02404257],
[0.18585796, 1.11958124, 4.47729443, 0.67959759, 0.43936317,
0.36934142, 0.41566744, 0.44467286, 0.48797422, 0.28795385,
0.17659191, 0.10674831, 0.07175567, 0.07249261, 0.04815305,
0.03697862],
[0.09854482, 0.3514869 , 1.84902386, 5.38491613, 1.27425161,
0.59242579, 0.36578735, 0.39181798, 0.38131832, 0.31501028,
0.13275648, 0.06408612, 0.04499218, 0.04000664, 0.02232326,
0.01322698],
[0.13674436, 0.1973461 , 0.33264088, 2.08016394, 3.28810184,
1.29198125, 0.74642201, 0.44357051, 0.32781391, 0.35511243,
0.20132011, 0.12961 , 0.04994553, 0.03748657, 0.03841073,
0.02700581],
[0.23495203, 0.13839031, 0.14085679, 0.5347385 , 1.46021275,
1.85222022, 1.02681162, 0.61513602, 0.39086271, 0.32871844,
0.25938947, 0.13520412, 0.05101963, 0.03714278, 0.02177751,
0.00979745],
[0.23139098, 0.18634831, 0.32002214, 0.2477269 , 0.64111274,
0.93691022, 1.14560725, 0.73176025, 0.43760432, 0.31057135,
0.29406937, 0.20632155, 0.09044896, 0.06448983, 0.03041877,
0.02522842],
[0.18786196, 0.25090485, 0.21366969, 0.15358412, 0.35761286,
0.62390736, 0.76125666, 0.82975354, 0.54980593, 0.32778339,
0.20858991, 0.1607099 , 0.13218526, 0.09042909, 0.04990491,
0.01762718],
[0.12220241, 0.17968132, 0.31826246, 0.19846971, 0.34823183,
0.41563737, 0.55930999, 0.54070187, 0.5573184 , 0.31526474,
0.20194048, 0.09234293, 0.08377534, 0.05819374, 0.0414762 ,
0.01563101],
[0.03429527, 0.06388018, 0.09407867, 0.17418896, 0.23404519,
0.28879108, 0.34528852, 0.34507961, 0.31461973, 0.29954426,
0.21759668, 0.09684718, 0.06596679, 0.04274337, 0.0356891 ,
0.02459849],
[0.05092152, 0.10829561, 0.13898902, 0.2005828 , 0.35807132,
0.45181815, 0.32281821, 0.28014803, 0.30125545, 0.31260137,
0.22923948, 0.17657382, 0.10276889, 0.05555467, 0.03430327,
0.02064256],
[0.06739051, 0.06795035, 0.0826437 , 0.09522087, 0.23309189,
0.39055444, 0.39458465, 0.29290532, 0.27204846, 0.17810118,
0.24399007, 0.22146653, 0.13732849, 0.07585801, 0.03938794,
0.0190908 ],
[0.04337917, 0.05375367, 0.05230119, 0.08066901, 0.16619572,
0.25423056, 0.25580913, 0.27430323, 0.22478799, 0.16909017,
0.14284879, 0.17211604, 0.14336033, 0.10344522, 0.06797049,
0.02546014],
[0.04080687, 0.06113728, 0.04392062, 0.04488748, 0.12808591,
0.19886058, 0.24542711, 0.19678011, 0.17800136, 0.13147441,
0.13564091, 0.14280335, 0.12969805, 0.11181631, 0.05550193,
0.02956066],
[0.01432324, 0.03441212, 0.05604694, 0.10154456, 0.09204 ,
0.13341443, 0.13396901, 0.16682638, 0.18562675, 0.1299677 ,
0.09922375, 0.09634331, 0.15184583, 0.13541738, 0.1169359 ,
0.03805293],
[0.01972631, 0.02274412, 0.03797545, 0.02036785, 0.04357298,
0.05783639, 0.10706321, 0.07688271, 0.06969759, 0.08029393,
0.05466604, 0.05129046, 0.04648653, 0.06132882, 0.05004289,
0.03030569]])
def generate_reduced_matrices(age_sep, Ni):
'''
Receives the age_separation and populations to generate the average contact
matrices, returns a (4, len(age_sep)+1, len(age_sep)+1) with the 4 partial
contact matrices: house, school, work and other
Ni is the population for each population component (16 5-years age groups)
'''
nMat = len(age_sep) + 1
Ms = np.empty((4, nMat, nMat))
age_indexes = list()
age_indexes.append(np.flatnonzero(ages_Mu_min <= age_sep[0]))
for i in range(1, len(age_sep)):
age_indexes.append(np.flatnonzero((ages_Mu_min > age_sep[i-1]) *
(ages_Mu_min <= age_sep[i])))
age_indexes.append(np.flatnonzero(ages_Mu_min > age_sep[-1]))
for i in range(nMat):
Nia = Ni[age_indexes[i]]
Na = Nia.sum()
for j in range(nMat):
Ms[0,i,j] = (Nia * ((Mu_house[age_indexes[i]][:,age_indexes[j]]).sum(axis=1))).sum()/Na
Ms[1,i,j] = (Nia * ((Mu_school[age_indexes[i]][:,age_indexes[j]]).sum(axis=1))).sum()/Na
Ms[2,i,j] = (Nia * ((Mu_work[age_indexes[i]][:,age_indexes[j]]).sum(axis=1))).sum()/Na
Ms[3,i,j] = (Nia * ((Mu_other[age_indexes[i]][:,age_indexes[j]]).sum(axis=1))).sum()/Na
return Ms
class SEIIHURD_age:
''' SEIIHURD Model'''
def __init__(self,tamanhoPop,numeroProcessadores=None):
self.N = tamanhoPop
self.numeroProcessadores = numeroProcessadores
self.pos = None
#pars dict betas, delta, kappa, p, gammaA, gammaS, h, epsilon, gammaH, gammaU, muU, muH, wU, wH
# seguindo a notação beta_12 é 2 infectando 1, onde 1 é a linha e 2 a coluna.
def _SEIIHURD_age_eq(self, X, t, pars):
S, E, Ia, Is, H, U, R, D, Nw = np.split(X, 9)
StE = S * (pars['beta'] @ ((Ia * pars['delta'] + Is).reshape((-1,1)))).flatten()
dS = - StE
dE = StE - pars['kappa'] * E
dIa = (1. - pars['p']) * pars['kappa'] * E - pars['gammaA'] * Ia
dIs = pars['p'] * pars['kappa'] * E - pars['gammaS'] * Is
dH = pars['h'] * pars['xi'] * pars['gammaS'] * Is + (1 - pars['muU'] +\
pars['wU'] * pars['muU']) * pars['gammaU'] * U - pars['gammaH'] * H
dU = pars['h'] * (1 - pars['xi']) * pars['gammaS'] * Is + pars['wH'] *\
pars['gammaH'] * H - pars['gammaU'] * U
dR = pars['gammaA'] * Ia + (1. - pars['h']) * pars['gammaS'] * Is + \
(1 - pars['muH']) * (1 - pars['wH']) * pars['gammaH'] * H
dD = (1 - pars['wH']) * pars['muH'] * pars['gammaH'] * H + \
(1 - pars['wU']) * pars['muU'] * pars['gammaU'] * U
dNw = pars['p'] * pars['kappa'] * E
return np.r_[dS, dE, dIa, dIs, dH, dU, dR, dD, dNw]
def _call_ODE(self, ts, ppars):
betas = ppars['beta'].copy()
pars = copy.deepcopy(ppars)
if 'tcut' not in ppars.keys():
tcorte = None
else:
tcorte = pars['tcut']
if type(ts) in [int, float]:
ts = np.arange(ts)
if tcorte == None:
tcorte = [ts[-1]]
if type(betas) != list:
betas = [betas]
if tcorte[-1] < ts[-1]:
tcorte.append(ts[-1])
tcorte = [ts[0]] + tcorte
tcorte.sort()
Is0 = pars['x0'].reshape((3,-1)).sum(axis=0)
x0 = np.r_[1. - Is0, pars['x0'], np.zeros(4*len(Is0)), pars['x0'][2*len(Is0):]]
saida = x0.reshape((1,-1))
Y = saida.copy()
for i in range(1, len(tcorte)):
cut_last = False
pars['beta'] = betas[i-1]
t = ts[(ts >= tcorte[i-1]) * (ts<= tcorte[i])]
if len(t) > 0:
if t[0] > tcorte[i-1]:
t = np.r_[tcorte[i-1], t]
if t[-1] < tcorte[i]:
t = np.r_[t, tcorte[i]]
cut_last = True
Y = spi.odeint(self._SEIIHURD_age_eq, Y[-1], t, args=(pars,))
if cut_last:
saida = np.r_[saida, Y[1:-1]]
else:
saida = np.r_[saida, Y[1:]]
else:
Y = spi.odeint(self._SEIIHURD_age_eq, Y[-1], tcorte[i-1:i+1], args=(pars,))
return ts, saida
def _fill_paramPSO(self, paramPSO):
if 'options' not in paramPSO.keys():
paramPSO['options'] = {'c1': 0.1, 'c2': 0.3, 'w': 0.9,'k':5,'p':2}
if 'n_particles' not in paramPSO.keys():
paramPSO['n_particles'] = 300
if 'iter' not in paramPSO.keys():
paramPSO['iter'] = 1000
return paramPSO
def _prepare_input(self, data):
list_states = ['S', 'E', 'Ia', 'Is', 'H', 'U', 'R', 'D', 'Nw']
i_integ = list()
Y = list()
for ke in data.keys():
if ke == 't':
t = data[ke]
else:
Y.append(data[ke])
simb, num = ke.split("_")
n0 = self.nages * list_states.index(simb)
if '_ALL' in ke:
i_integ.append(list(range(n0,n0 + self.nages)))
else:
i_integ.append(int(num) + n0)
return i_integ, Y, t
def _prepare_conversor(self, p2f, pothers, bound):
padjus = list()
if bound != None:
bound_new = [[], []]
for i, par in enumerate(p2f):
if 'beta' in par:
if '_ALL' in par:
for l in range(len(pothers['beta'])):
for j in range(pothers['beta'][i].shape[0]):
for k in range(pothers['beta'][i].shape[1]):
padjus.append('beta_{}_{}_{}'.format(l,j,k))
if bound != None:
bound_new[0].append(bound[0][i])
bound_new[1].append(bound[1][i])
else:
padjus.append(par)
if bound != None:
bound_new[0].append(bound[0][i])
bound_new[1].append(bound[1][i])
elif '_ALL' in par:
name = par.split('_')[0]
for j in range(len(pothers[name])):
padjus.append('{}_{}'.format(name, j))
if bound != None:
bound_new[0].append(bound[0][i])
bound_new[1].append(bound[1][i])
else:
padjus.append(par)
if bound != None:
bound_new[0].append(bound[0][i])
bound_new[1].append(bound[1][i])
if bound != None:
bound_new[0] = np.array(bound_new[0])
bound_new[1] = np.array(bound_new[1])
return bound_new, padjus
def _conversor(self, coefs, pars0, padjus):
pars = copy.deepcopy(pars0)
for i, coef in enumerate(coefs):
if 'beta' in padjus[i]:
if '_M_' in padjus[i]:
indx = int(padjus[i].split('_')[-1])
pars['beta'][indx] = coef * pars['beta'][indx]
else:
indx = padjus[i].split('_')
pars['beta'][int(indx[1])][int(indx[2]), int(indx[3])] = coef
elif '_' in padjus[i]:
name, indx = padjus[i].split('_')
pars[name][int(indx)] = coef
else:
pars[padjus[i]] = coef
return pars
def objectiveFunction(self, coefs_list, stand_error=False, weights=None):
errsq = np.zeros(coefs_list.shape[0])
for i, coefs in enumerate(coefs_list):
errs = self._residuals(coefs, stand_error, weights)
errsq[i] = (errs*errs).mean()
return errsq
def _residuals(self, coefs, stand_error=False, weights=None):
if type(weights) == type(None):
weights = np.ones(len(self.Y))
error_func = (lambda x: np.sqrt(x+1)) if stand_error else (lambda x:np.ones_like(x))
errs = np.empty((0,))
ts, mY = self._call_ODE(self.t, self._conversor(coefs, self.pars_init, self.padjus))
for indY, indODE in enumerate(self.i_integ):
if type(indODE) == list:
temp = (self.N.reshape((1,-1)) * mY[:,indODE]).sum(axis=1)
errs = np.r_[errs, weights[indY] * ((self.Y[indY] - temp) / error_func(temp)) ]
else:
try:
errs = np.r_[errs, weights[indY] * ((self.Y[indY] - self.N[indODE%self.nages] * mY[:,indODE]) / error_func(mY[:,indODE])) ]
except:
print(self.t, self._conversor(coefs, self.pars_init, self.padjus))
raise
errs = errs[~np.isnan(errs)]
return errs
def prepare_to_fit(self, data, pars, pars_to_fit, bound=None, nages=1, stand_error=False):
self.pars_init = copy.deepcopy(pars)
self.nages = nages
self.i_integ, self.Y, self.t = self._prepare_input(data)
self.bound, self.padjus = self._prepare_conversor(pars_to_fit, pars, bound)
self.n_to_fit = len(self.padjus)
def fit(self, data, pars, pars_to_fit, bound=None, nages=2, paramPSO=dict(), stand_error=False):
'''
data: dictionary:
t -> times
X_N -> variable:
X is the simbol of the parameter: S, E, Ia, Is, H, U, R, D, Nw
N is the index of the age-group, starting on 0
pars: dictionary, with the variable names as keys.
pars_to_fit: the name of the parameters to fits, if the parameter is a list,
add _N with the index you want to if or _ALL to fit all
the 'beta' parameter has 3 indexes: beta_I_J_K, with I indicating the
which tcut it belongs and J_K indicating the position in the matrix.
the beta also has a option 'beta_M_I' that fits a multiplicative
constant of the infection matrix, without changing the relative weights
(the _M_ and _ALL_ options are incompatible by now, and _M_ requires
testing)
bound = intervalo de limite para procura de cada parametro, onde None = sem limite
bound => (lista_min_bound, lista_max_bound)
'''
paramPSO = self._fill_paramPSO(paramPSO)
self.prepare_to_fit(data, pars, pars_to_fit, bound=bound, nages=nages, stand_error=stand_error)
optimizer = ps.single.LocalBestPSO(n_particles=paramPSO['n_particles'], dimensions=self.n_to_fit, options=paramPSO['options'],bounds=self.bound)
cost = pos = None
cost, pos = optimizer.optimize(self.objectiveFunction,paramPSO['iter'], stand_error=stand_error, n_processes=self.numeroProcessadores)
self.pos = pos
self.pars_opt = self._conversor(pos, self.pars_init, self.padjus )
self.rmse = cost
self.optimize = optimizer
def fit_lsquares(self, data, pars, pars_to_fit, bound=None, nages=2, stand_error=False, init=None, nrand=10):
self.prepare_to_fit(data, pars, pars_to_fit, bound=bound, nages=nages, stand_error=stand_error)
if init == None:
cost_best = np.inf
res_best = None
#BUG: the parallel code does not work if PSO code had run previously
if type(self.pos) != type(None) or self.numeroProcessadores == None or self.numeroProcessadores <= 1:
for i in range(nrand):
print("{} / {}".format(i, nrand))
par0 = np.random.rand(self.n_to_fit)
par0 = self.bound[0] + par0 * (self.bound[1] - self.bound[0])
res = least_squares(self._residuals, par0, bounds=self.bound)
if res.cost < cost_best:
cost_best = res.cost
res_best = res
else:
par0 = np.random.rand(nrand, self.n_to_fit)
par0 = self.bound[0].reshape((1,-1)) + par0 * (self.bound[1] - self.bound[0]).reshape((1,-1))
f = lambda p0: least_squares(self._residuals, p0, bounds=self.bound)
all_res = joblib.Parallel(n_jobs=self.numeroProcessadores)(joblib.delayed(f)(p0,) for p0 in par0)
costs = np.array([res.cost for res in all_res])
cost_best = all_res[costs.argmin()].cost
res_best = all_res[costs.argmin()]
else:
res_best = least_squares(self._residuals, init, bounds=bound )
self.pos_ls = res_best.x
self.pars_opt_ls = self._conversor(res_best.x, self.pars_init, self.padjus )
self.rmse_ls = (res_best.fun**2).mean()
self.result_ls = res_best
def predict(self, t=None, coefs=None, model_output=False):
if type(t) == type(None):
t = self.t
if type(coefs) == type(None):
coefs = self.pos
elif type(coefs) == str and coefs == 'LS':
coefs = self.pos_ls
ts, mY = self._call_ODE(t, self._conversor(coefs, self.pars_init, self.padjus))
saida = np.zeros((len(ts), 0))
for i in self.i_integ:
if type(i) == list:
ytemp = (mY[:,i] *self.N.reshape((1,-1))).sum(axis=1)
else:
ytemp = mY[:,i] * self.N[i%self.nages]
saida = np.c_[saida, ytemp.reshape((-1,1))]
if model_output:
return ts, saida, mY
else:
return ts, saida
#ts, X = call_ODE(X0, tmax, betas, param, tcorte=tcorte)
#plt.plot(ts, X[:,:2], '.-')
|
[
"numpy.ones_like",
"scipy.optimize.least_squares",
"numpy.sqrt",
"numpy.random.rand",
"scipy.integrate.odeint",
"numpy.flatnonzero",
"pyswarms.single.LocalBestPSO",
"joblib.Parallel",
"numpy.array",
"numpy.split",
"numpy.zeros",
"numpy.empty",
"numpy.isnan",
"copy.deepcopy",
"joblib.delayed",
"numpy.arange"
] |
[((987, 4278), 'numpy.array', 'np.array', (['[[0.47868515, 0.50507561, 0.29848922, 0.15763748, 0.26276959, 0.40185462, \n 0.46855027, 0.42581354, 0.2150961, 0.0856771, 0.08705463, 0.07551931, \n 0.05129175, 0.02344832, 0.00793644, 0.01072846], [0.35580205, \n 0.77874482, 0.51392686, 0.21151069, 0.08597966, 0.28306027, 0.49982218,\n 0.52854893, 0.41220947, 0.15848728, 0.07491245, 0.07658339, 0.04772343,\n 0.02588962, 0.01125956, 0.01073152], [0.25903114, 0.63488713, \n 1.36175618, 0.50016515, 0.11748191, 0.10264613, 0.24113458, 0.47274372,\n 0.54026417, 0.26708819, 0.11007723, 0.04406045, 0.02746409, 0.02825033,\n 0.02044872, 0.01214665], [0.14223192, 0.24383932, 0.53761638, \n 1.05325205, 0.28778496, 0.10925453, 0.0651564, 0.2432454, 0.39011334, \n 0.41381277, 0.23194909, 0.07541471, 0.03428398, 0.02122257, 0.01033573,\n 0.00864859], [0.27381886, 0.15430529, 0.16053062, 0.5104134, 0.95175366,\n 0.3586594, 0.09248672, 0.04774269, 0.15814197, 0.36581739, 0.25544811, \n 0.13338965, 0.03461345, 0.01062458, 0.00844199, 0.00868782], [\n 0.59409802, 0.26971847, 0.10669146, 0.18330524, 0.39561893, 0.81955947,\n 0.26376865, 0.06604084, 0.03824556, 0.11560004, 0.23218163, 0.15331788,\n 0.07336147, 0.02312255, 0.00412646, 0.01025778], [0.63860889, \n 0.75760606, 0.43109156, 0.09913293, 0.13935789, 0.32056062, 0.65710277,\n 0.25488454, 0.1062129, 0.0430932, 0.06880784, 0.09938458, 0.09010691, \n 0.02233902, 0.01155556, 0.00695246], [0.56209348, 0.87334544, \n 0.75598244, 0.33199136, 0.07233271, 0.08674171, 0.20243583, 0.60062714,\n 0.17793601, 0.06307045, 0.04445926, 0.04082447, 0.06275133, 0.04051762,\n 0.01712777, 0.00598721], [0.35751289, 0.66234582, 0.77180208, \n 0.54993616, 0.17368099, 0.07361914, 0.13016852, 0.19937327, 0.46551558,\n 0.15412263, 0.06123041, 0.0182514, 0.04234381, 0.04312892, 0.01656267, \n 0.01175358], [0.208131, 0.41591452, 0.56510014, 0.67760241, 0.38146504,\n 0.14185001, 0.06160354, 0.12945701, 0.16470166, 0.41150841, 0.14596804,\n 0.04404807, 0.02395316, 0.01731295, 0.01469059, 0.02275339], [\n 0.30472548, 0.26744442, 0.41631962, 0.46516888, 0.41751365, 0.28520772,\n 0.13931619, 0.07682945, 0.11404965, 0.16122096, 0.33813266, 0.1349378, \n 0.03755396, 0.01429426, 0.01356763, 0.02551792], [0.52762004, \n 0.52787011, 0.33622117, 0.43037934, 0.36416323, 0.42655672, 0.33780201,\n 0.13492044, 0.0798784, 0.15795568, 0.20367727, 0.33176385, 0.12256126, \n 0.05573807, 0.0124446, 0.02190564], [0.53741472, 0.50750067, 0.3229994,\n 0.30706704, 0.21340314, 0.27424513, 0.32838657, 0.26023515, 0.13222548,\n 0.07284901, 0.11950584, 0.16376401, 0.25560123, 0.09269703, 0.02451284,\n 0.00631762], [0.37949376, 0.55324102, 0.47449156, 0.24796638, \n 0.19276924, 0.20675484, 0.3267867, 0.39525729, 0.3070043, 0.10088992, \n 0.10256839, 0.13016641, 0.1231421, 0.24067708, 0.05475668, 0.01401368],\n [0.16359554, 0.48536065, 0.40533723, 0.31542539, 0.06890518, 0.15670328,\n 0.12884062, 0.27912381, 0.25685832, 0.20143856, 0.12497647, 0.07565566,\n 0.10331686, 0.08830789, 0.15657321, 0.05744065], [0.29555039, \n 0.39898035, 0.60257982, 0.5009724, 0.13799378, 0.11716593, 0.14366306, \n 0.31602298, 0.34691652, 0.30960511, 0.31253708, 0.14557295, 0.06065554,\n 0.10654772, 0.06390924, 0.09827735]]'], {}), '([[0.47868515, 0.50507561, 0.29848922, 0.15763748, 0.26276959, \n 0.40185462, 0.46855027, 0.42581354, 0.2150961, 0.0856771, 0.08705463, \n 0.07551931, 0.05129175, 0.02344832, 0.00793644, 0.01072846], [\n 0.35580205, 0.77874482, 0.51392686, 0.21151069, 0.08597966, 0.28306027,\n 0.49982218, 0.52854893, 0.41220947, 0.15848728, 0.07491245, 0.07658339,\n 0.04772343, 0.02588962, 0.01125956, 0.01073152], [0.25903114, \n 0.63488713, 1.36175618, 0.50016515, 0.11748191, 0.10264613, 0.24113458,\n 0.47274372, 0.54026417, 0.26708819, 0.11007723, 0.04406045, 0.02746409,\n 0.02825033, 0.02044872, 0.01214665], [0.14223192, 0.24383932, \n 0.53761638, 1.05325205, 0.28778496, 0.10925453, 0.0651564, 0.2432454, \n 0.39011334, 0.41381277, 0.23194909, 0.07541471, 0.03428398, 0.02122257,\n 0.01033573, 0.00864859], [0.27381886, 0.15430529, 0.16053062, 0.5104134,\n 0.95175366, 0.3586594, 0.09248672, 0.04774269, 0.15814197, 0.36581739, \n 0.25544811, 0.13338965, 0.03461345, 0.01062458, 0.00844199, 0.00868782],\n [0.59409802, 0.26971847, 0.10669146, 0.18330524, 0.39561893, 0.81955947,\n 0.26376865, 0.06604084, 0.03824556, 0.11560004, 0.23218163, 0.15331788,\n 0.07336147, 0.02312255, 0.00412646, 0.01025778], [0.63860889, \n 0.75760606, 0.43109156, 0.09913293, 0.13935789, 0.32056062, 0.65710277,\n 0.25488454, 0.1062129, 0.0430932, 0.06880784, 0.09938458, 0.09010691, \n 0.02233902, 0.01155556, 0.00695246], [0.56209348, 0.87334544, \n 0.75598244, 0.33199136, 0.07233271, 0.08674171, 0.20243583, 0.60062714,\n 0.17793601, 0.06307045, 0.04445926, 0.04082447, 0.06275133, 0.04051762,\n 0.01712777, 0.00598721], [0.35751289, 0.66234582, 0.77180208, \n 0.54993616, 0.17368099, 0.07361914, 0.13016852, 0.19937327, 0.46551558,\n 0.15412263, 0.06123041, 0.0182514, 0.04234381, 0.04312892, 0.01656267, \n 0.01175358], [0.208131, 0.41591452, 0.56510014, 0.67760241, 0.38146504,\n 0.14185001, 0.06160354, 0.12945701, 0.16470166, 0.41150841, 0.14596804,\n 0.04404807, 0.02395316, 0.01731295, 0.01469059, 0.02275339], [\n 0.30472548, 0.26744442, 0.41631962, 0.46516888, 0.41751365, 0.28520772,\n 0.13931619, 0.07682945, 0.11404965, 0.16122096, 0.33813266, 0.1349378, \n 0.03755396, 0.01429426, 0.01356763, 0.02551792], [0.52762004, \n 0.52787011, 0.33622117, 0.43037934, 0.36416323, 0.42655672, 0.33780201,\n 0.13492044, 0.0798784, 0.15795568, 0.20367727, 0.33176385, 0.12256126, \n 0.05573807, 0.0124446, 0.02190564], [0.53741472, 0.50750067, 0.3229994,\n 0.30706704, 0.21340314, 0.27424513, 0.32838657, 0.26023515, 0.13222548,\n 0.07284901, 0.11950584, 0.16376401, 0.25560123, 0.09269703, 0.02451284,\n 0.00631762], [0.37949376, 0.55324102, 0.47449156, 0.24796638, \n 0.19276924, 0.20675484, 0.3267867, 0.39525729, 0.3070043, 0.10088992, \n 0.10256839, 0.13016641, 0.1231421, 0.24067708, 0.05475668, 0.01401368],\n [0.16359554, 0.48536065, 0.40533723, 0.31542539, 0.06890518, 0.15670328,\n 0.12884062, 0.27912381, 0.25685832, 0.20143856, 0.12497647, 0.07565566,\n 0.10331686, 0.08830789, 0.15657321, 0.05744065], [0.29555039, \n 0.39898035, 0.60257982, 0.5009724, 0.13799378, 0.11716593, 0.14366306, \n 0.31602298, 0.34691652, 0.30960511, 0.31253708, 0.14557295, 0.06065554,\n 0.10654772, 0.06390924, 0.09827735]])\n', (995, 4278), True, 'import numpy as np\n'), ((4604, 8613), 'numpy.array', 'np.array', (['[[0.321885854, 0.0431659966, 0.00788269419, 0.00809548363, 0.00535038146, \n 0.0218201974, 0.0401633514, 0.0299376002, 0.0140680283, 0.0166587853, \n 0.00947774696, 0.00741041622, 0.00128200661, 0.000779120405, \n 8.23608272e-66, 6.37926405e-120], [0.0540133328, 4.84870697, \n 0.270046494, 0.031477845, 0.0311206331, 0.0856826951, 0.108251879, \n 0.0946101139, 0.0863528188, 0.0551141159, 0.0419385198, 0.0120958942, \n 0.00477242219, 0.00139787217, 0.000347452943, 8.08973738e-39], [\n 0.000456461982, 1.04840235, 6.09152459, 0.198915822, 0.0199709921, \n 0.0668319525, 0.0658949586, 0.0970851505, 0.0954147078, 0.0670538232, \n 0.0424864096, 0.0198701346, 0.00511869429, 0.000727320438, \n 4.93746124e-25, 0.000182153965], [0.00259613205, 0.0473315233, \n 1.99337834, 7.200405, 0.0857326037, 0.0790668822, 0.0854208542, \n 0.110816964, 0.0876955236, 0.0922975521, 0.0458035025, 0.0251130956, \n 0.00571391798, 0.00107818752, 6.21174558e-33, 1.70710246e-70], [\n 0.0071915872, 0.0248833195, 0.00989727235, 0.876815025, 0.433963352, \n 0.0505185217, 0.0330594492, 0.0381384107, 0.0234709676, 0.0267235372, \n 0.0132913985, 0.00900655556, 0.000694913059, 0.00125675951, \n 0.000177164197, 1.21957619e-47], [0.00704119204, 0.119412206, \n 0.037501698, 0.202193056, 0.279822908, 0.168610223, 0.0286939363, \n 0.0356961469, 0.0409234494, 0.0332290896, 0.00812074348, 0.0126152144, \n 0.00427869081, 0.00241737477, 0.000463116893, 0.00128597237], [\n 0.014148632, 0.386561429, 0.255902236, 0.169973534, 0.049810401, \n 0.0898122446, 0.0795333394, 0.0519274611, 0.054661293, 0.0264567137, \n 0.0203241595, 0.0029626322, 0.00542888613, 0.00044758597, \n 1.65440335e-48, 3.11189454e-55], [0.0240945305, 0.211030046, \n 0.154767246, 0.0817929897, 0.0184061608, 0.0543009779, 0.0739351186, \n 0.0521677009, 0.0563267084, 0.0251807147, 0.00353972554, 0.00796646343,\n 0.000556929776, 0.00208530461, 1.8442829e-123, 9.69555083e-67], [\n 0.00781313905, 0.114371898, 0.0909011945, 0.380212104, 0.00854533192, \n 0.0262430162, 0.0251880009, 0.0322563508, 0.0673506045, 0.0224997143, \n 0.0239241043, 0.00650627191, 0.00550892674, 0.00047830885, \n 4.81213215e-68, 2.40231425e-92], [0.0655265016, 0.231163536, \n 0.149970765, 0.553563093, 0.00574032526, 0.0302865481, 0.0572506883, \n 0.0470559232, 0.0428736553, 0.0242614518, 0.0286665377, 0.0129570473, \n 0.00324362518, 0.00167930318, 6.2091695e-134, 3.27297624e-72], [\n 0.0172765646, 0.343744913, 0.430902785, 0.474293073, 0.00539328187, \n 0.014412874, 0.0395545363, 0.037378186, 0.0456834488, 0.0592135906, \n 0.0291473801, 0.0154857502, 0.0045310539, 8.87272668e-24, \n 1.23797452e-117, 5.64262349e-78], [0.0614363036, 0.298367348, 0.2590927,\n 0.300800812, 0.00592454596, 0.0526458862, 0.0202188672, 0.0327897605, \n 0.0407753741, 0.0283422407, 0.0243657809, 0.0273993226, 0.00887990718, \n 1.1327918e-31, 0.000781960493, 0.00076246751], [0.0363695643, \n 0.0596870355, 0.0305072624, 0.145523978, 0.0126062984, 0.00169458169, \n 0.0155127292, 0.042209767, 0.00921792425, 0.0142200652, 0.0110967529, \n 0.00577020348, 0.0204474044, 0.0111075734, 4.42271199e-67, \n 2.12068625e-37], [0.00167937029, 0.0272971001, 0.0105886266, \n 7.61087735e-32, 0.00197191559, 0.00192885006, 0.0124343737, \n 0.00539297787, 0.00541684968, 0.00863502071, 0.00194554498, \n 0.0149082274, 0.008117811, 0.0174395489, 0.0111239023, 3.45693088e-126],\n [1.28088348e-28, 5.110652e-26, 1.93019797e-40, 0.00760476035, \n 2.63586947e-22, 1.69749024e-24, 1.25875005e-26, 0.00762109877, \n 0.00784979948, 0.0211516023, 0.0352117832, 0.0214360383, 0.00773902109,\n 0.00801328325, 0.00791285055, 0.0213825814], [2.81655586e-94, \n 0.0211305187, 8.46562506e-42, 0.0212592841, 4.89802057e-36, \n 0.00759232387, 9.77247001e-69, 2.23108239e-60, 1.43715978e-48, \n 8.56015694e-60, 4.69469043e-42, 1.59822047e-46, 2.2097855e-83, \n 8.85861277e-107, 1.02042815e-80, 6.61413913e-113]]'], {}), '([[0.321885854, 0.0431659966, 0.00788269419, 0.00809548363, \n 0.00535038146, 0.0218201974, 0.0401633514, 0.0299376002, 0.0140680283, \n 0.0166587853, 0.00947774696, 0.00741041622, 0.00128200661, \n 0.000779120405, 8.23608272e-66, 6.37926405e-120], [0.0540133328, \n 4.84870697, 0.270046494, 0.031477845, 0.0311206331, 0.0856826951, \n 0.108251879, 0.0946101139, 0.0863528188, 0.0551141159, 0.0419385198, \n 0.0120958942, 0.00477242219, 0.00139787217, 0.000347452943, \n 8.08973738e-39], [0.000456461982, 1.04840235, 6.09152459, 0.198915822, \n 0.0199709921, 0.0668319525, 0.0658949586, 0.0970851505, 0.0954147078, \n 0.0670538232, 0.0424864096, 0.0198701346, 0.00511869429, 0.000727320438,\n 4.93746124e-25, 0.000182153965], [0.00259613205, 0.0473315233, \n 1.99337834, 7.200405, 0.0857326037, 0.0790668822, 0.0854208542, \n 0.110816964, 0.0876955236, 0.0922975521, 0.0458035025, 0.0251130956, \n 0.00571391798, 0.00107818752, 6.21174558e-33, 1.70710246e-70], [\n 0.0071915872, 0.0248833195, 0.00989727235, 0.876815025, 0.433963352, \n 0.0505185217, 0.0330594492, 0.0381384107, 0.0234709676, 0.0267235372, \n 0.0132913985, 0.00900655556, 0.000694913059, 0.00125675951, \n 0.000177164197, 1.21957619e-47], [0.00704119204, 0.119412206, \n 0.037501698, 0.202193056, 0.279822908, 0.168610223, 0.0286939363, \n 0.0356961469, 0.0409234494, 0.0332290896, 0.00812074348, 0.0126152144, \n 0.00427869081, 0.00241737477, 0.000463116893, 0.00128597237], [\n 0.014148632, 0.386561429, 0.255902236, 0.169973534, 0.049810401, \n 0.0898122446, 0.0795333394, 0.0519274611, 0.054661293, 0.0264567137, \n 0.0203241595, 0.0029626322, 0.00542888613, 0.00044758597, \n 1.65440335e-48, 3.11189454e-55], [0.0240945305, 0.211030046, \n 0.154767246, 0.0817929897, 0.0184061608, 0.0543009779, 0.0739351186, \n 0.0521677009, 0.0563267084, 0.0251807147, 0.00353972554, 0.00796646343,\n 0.000556929776, 0.00208530461, 1.8442829e-123, 9.69555083e-67], [\n 0.00781313905, 0.114371898, 0.0909011945, 0.380212104, 0.00854533192, \n 0.0262430162, 0.0251880009, 0.0322563508, 0.0673506045, 0.0224997143, \n 0.0239241043, 0.00650627191, 0.00550892674, 0.00047830885, \n 4.81213215e-68, 2.40231425e-92], [0.0655265016, 0.231163536, \n 0.149970765, 0.553563093, 0.00574032526, 0.0302865481, 0.0572506883, \n 0.0470559232, 0.0428736553, 0.0242614518, 0.0286665377, 0.0129570473, \n 0.00324362518, 0.00167930318, 6.2091695e-134, 3.27297624e-72], [\n 0.0172765646, 0.343744913, 0.430902785, 0.474293073, 0.00539328187, \n 0.014412874, 0.0395545363, 0.037378186, 0.0456834488, 0.0592135906, \n 0.0291473801, 0.0154857502, 0.0045310539, 8.87272668e-24, \n 1.23797452e-117, 5.64262349e-78], [0.0614363036, 0.298367348, 0.2590927,\n 0.300800812, 0.00592454596, 0.0526458862, 0.0202188672, 0.0327897605, \n 0.0407753741, 0.0283422407, 0.0243657809, 0.0273993226, 0.00887990718, \n 1.1327918e-31, 0.000781960493, 0.00076246751], [0.0363695643, \n 0.0596870355, 0.0305072624, 0.145523978, 0.0126062984, 0.00169458169, \n 0.0155127292, 0.042209767, 0.00921792425, 0.0142200652, 0.0110967529, \n 0.00577020348, 0.0204474044, 0.0111075734, 4.42271199e-67, \n 2.12068625e-37], [0.00167937029, 0.0272971001, 0.0105886266, \n 7.61087735e-32, 0.00197191559, 0.00192885006, 0.0124343737, \n 0.00539297787, 0.00541684968, 0.00863502071, 0.00194554498, \n 0.0149082274, 0.008117811, 0.0174395489, 0.0111239023, 3.45693088e-126],\n [1.28088348e-28, 5.110652e-26, 1.93019797e-40, 0.00760476035, \n 2.63586947e-22, 1.69749024e-24, 1.25875005e-26, 0.00762109877, \n 0.00784979948, 0.0211516023, 0.0352117832, 0.0214360383, 0.00773902109,\n 0.00801328325, 0.00791285055, 0.0213825814], [2.81655586e-94, \n 0.0211305187, 8.46562506e-42, 0.0212592841, 4.89802057e-36, \n 0.00759232387, 9.77247001e-69, 2.23108239e-60, 1.43715978e-48, \n 8.56015694e-60, 4.69469043e-42, 1.59822047e-46, 2.2097855e-83, \n 8.85861277e-107, 1.02042815e-80, 6.61413913e-113]])\n', (4612, 8613), True, 'import numpy as np\n'), ((9755, 13508), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 8.20604524e-92, 1.2058515e-05, 3.16436834e-125], [0.0, 0.00116840561, \n 9.90713236e-72, 4.42646396e-59, 2.91874286e-06, 0.00998773031, \n 0.0258779981, 0.00566104376, 0.0212699812, 0.00572117462, 0.00148212306,\n 0.00123926126, 1.28212945e-56, 1.34955578e-05, 7.64591325e-79, \n 2.38392073e-65], [0.0, 0.00256552144, 0.112756182, 0.0240351143, \n 0.0262981485, 0.00756512432, 0.0619587609, 0.0173269871, 0.0587405128, \n 0.0326749742, 0.0124709193, 2.93054408e-08, 3.71596993e-17, \n 2.79780317e-53, 4.9580077e-06, 3.77718083e-102], [0.0, 0.0107213881, \n 0.0428390448, 0.72276909, 0.593479736, 0.339341952, 0.317013715, \n 0.289168861, 0.31114318, 0.234889238, 0.132953769, 0.0601944097, \n 0.0147306181, 8.34699602e-06, 2.85972822e-06, 1.88926122e-31], [0.0, \n 0.00914252587, 0.0574508682, 0.400000235, 0.793386618, 0.755975146, \n 0.632277283, 0.683601459, 0.498506972, 0.382309992, 0.281363576, \n 0.123338103, 0.0415708021, 9.86113407e-06, 1.32609387e-05, \n 3.74318048e-06], [0.0, 0.0104243481, 0.0734587492, 0.349556755, \n 0.750680101, 1.25683393, 0.901245714, 0.863446835, 0.770443641, \n 0.517237071, 0.409810981, 0.1806454, 0.0551284783, 1.60674627e-05, \n 1.01182608e-05, 3.01442534e-06], [0.0, 0.0165842404, 0.0834076781, \n 0.189301935, 0.521246906, 0.854460001, 1.12054931, 0.964310078, \n 0.83467518, 0.652534012, 0.379383514, 0.211198205, 0.0517285688, \n 1.63795563e-05, 4.10100851e-06, 3.4947898e-06], [0.0, 0.0111666639, \n 0.0503319748, 0.370510313, 0.424294782, 0.787535547, 0.845085693, \n 1.14590365, 1.07673077, 0.713492115, 0.500740004, 0.190102207, \n 0.0359740115, 1.2298853e-05, 9.13512833e-06, 6.02097416e-06], [0.0, \n 0.0060779244, 0.0549337607, 0.223499535, 0.482353827, 0.752291991, \n 0.889187601, 0.93376537, 1.10492283, 0.850124391, 0.588941528, \n 0.194947085, 0.0509477228, 1.43626161e-05, 1.02721567e-05, \n 1.29503893e-05], [0.0, 0.00331622551, 0.0701829848, 0.267512972, \n 0.314796392, 0.541516885, 0.695769048, 0.750620518, 0.750038547, \n 0.700954088, 0.435197983, 0.211283335, 0.03885762, 1.6281037e-05, \n 1.0824361e-05, 6.09172339e-06], [0.0, 0.000439576425, 0.0717737968, \n 0.189254612, 0.247832532, 0.516027731, 0.602783971, 0.615949277, \n 0.805581107, 0.744063535, 0.544855374, 0.252198706, 0.0439235685, \n 1.18079721e-05, 1.18226645e-05, 1.01613165e-05], [0.0, 0.00491737561, \n 0.108686672, 0.124987806, 0.164110983, 0.300118829, 0.418159745, \n 0.386897613, 0.477718241, 0.36085425, 0.322466456, 0.192516925, \n 0.0407209694, 1.34978304e-05, 6.58739925e-06, 6.65716756e-06], [0.0, \n 0.000635447018, 0.039632962, 0.0183072502, 0.0704596701, 0.124861117, \n 0.137834574, 0.15984572, 0.166933479, 0.156084857, 0.114949158, \n 0.0846570798, 0.0150879843, 2.0301958e-05, 8.26102156e-06, \n 1.48398182e-05], [7.60299521e-06, 3.36326754e-06, 7.64855296e-06, \n 2.27621532e-05, 3.14933351e-05, 7.8930841e-05, 7.24212842e-05, \n 2.91748203e-05, 6.61873732e-05, 5.95693238e-05, 7.707135e-05, \n 5.30687748e-05, 4.66030117e-05, 1.41633235e-05, 2.49066205e-05, \n 1.19109038e-05], [5.7886384e-55, 7.88785149e-42, 2.54830412e-06, \n 2.60648191e-05, 1.68036205e-05, 2.12446739e-05, 3.57267603e-05, \n 4.02377033e-05, 3.56401935e-05, 3.09769252e-05, 2.13053382e-05, \n 4.49709414e-05, 2.61368373e-05, 1.68266203e-05, 1.66514322e-05, \n 2.60822813e-05], [2.35721271e-141, 9.06871674e-97, 1.18637122e-89, \n 9.39934076e-22, 4.66000452e-05, 4.69664011e-05, 4.69316082e-05, \n 8.42184044e-05, 2.77788168e-05, 1.03294378e-05, 1.06803618e-05, \n 7.26341826e-75, 1.10073971e-65, 1.02831671e-05, 5.16902994e-49, \n 8.28040509e-43]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 8.20604524e-92, 1.2058515e-05, 3.16436834e-125], [0.0, 0.00116840561, \n 9.90713236e-72, 4.42646396e-59, 2.91874286e-06, 0.00998773031, \n 0.0258779981, 0.00566104376, 0.0212699812, 0.00572117462, 0.00148212306,\n 0.00123926126, 1.28212945e-56, 1.34955578e-05, 7.64591325e-79, \n 2.38392073e-65], [0.0, 0.00256552144, 0.112756182, 0.0240351143, \n 0.0262981485, 0.00756512432, 0.0619587609, 0.0173269871, 0.0587405128, \n 0.0326749742, 0.0124709193, 2.93054408e-08, 3.71596993e-17, \n 2.79780317e-53, 4.9580077e-06, 3.77718083e-102], [0.0, 0.0107213881, \n 0.0428390448, 0.72276909, 0.593479736, 0.339341952, 0.317013715, \n 0.289168861, 0.31114318, 0.234889238, 0.132953769, 0.0601944097, \n 0.0147306181, 8.34699602e-06, 2.85972822e-06, 1.88926122e-31], [0.0, \n 0.00914252587, 0.0574508682, 0.400000235, 0.793386618, 0.755975146, \n 0.632277283, 0.683601459, 0.498506972, 0.382309992, 0.281363576, \n 0.123338103, 0.0415708021, 9.86113407e-06, 1.32609387e-05, \n 3.74318048e-06], [0.0, 0.0104243481, 0.0734587492, 0.349556755, \n 0.750680101, 1.25683393, 0.901245714, 0.863446835, 0.770443641, \n 0.517237071, 0.409810981, 0.1806454, 0.0551284783, 1.60674627e-05, \n 1.01182608e-05, 3.01442534e-06], [0.0, 0.0165842404, 0.0834076781, \n 0.189301935, 0.521246906, 0.854460001, 1.12054931, 0.964310078, \n 0.83467518, 0.652534012, 0.379383514, 0.211198205, 0.0517285688, \n 1.63795563e-05, 4.10100851e-06, 3.4947898e-06], [0.0, 0.0111666639, \n 0.0503319748, 0.370510313, 0.424294782, 0.787535547, 0.845085693, \n 1.14590365, 1.07673077, 0.713492115, 0.500740004, 0.190102207, \n 0.0359740115, 1.2298853e-05, 9.13512833e-06, 6.02097416e-06], [0.0, \n 0.0060779244, 0.0549337607, 0.223499535, 0.482353827, 0.752291991, \n 0.889187601, 0.93376537, 1.10492283, 0.850124391, 0.588941528, \n 0.194947085, 0.0509477228, 1.43626161e-05, 1.02721567e-05, \n 1.29503893e-05], [0.0, 0.00331622551, 0.0701829848, 0.267512972, \n 0.314796392, 0.541516885, 0.695769048, 0.750620518, 0.750038547, \n 0.700954088, 0.435197983, 0.211283335, 0.03885762, 1.6281037e-05, \n 1.0824361e-05, 6.09172339e-06], [0.0, 0.000439576425, 0.0717737968, \n 0.189254612, 0.247832532, 0.516027731, 0.602783971, 0.615949277, \n 0.805581107, 0.744063535, 0.544855374, 0.252198706, 0.0439235685, \n 1.18079721e-05, 1.18226645e-05, 1.01613165e-05], [0.0, 0.00491737561, \n 0.108686672, 0.124987806, 0.164110983, 0.300118829, 0.418159745, \n 0.386897613, 0.477718241, 0.36085425, 0.322466456, 0.192516925, \n 0.0407209694, 1.34978304e-05, 6.58739925e-06, 6.65716756e-06], [0.0, \n 0.000635447018, 0.039632962, 0.0183072502, 0.0704596701, 0.124861117, \n 0.137834574, 0.15984572, 0.166933479, 0.156084857, 0.114949158, \n 0.0846570798, 0.0150879843, 2.0301958e-05, 8.26102156e-06, \n 1.48398182e-05], [7.60299521e-06, 3.36326754e-06, 7.64855296e-06, \n 2.27621532e-05, 3.14933351e-05, 7.8930841e-05, 7.24212842e-05, \n 2.91748203e-05, 6.61873732e-05, 5.95693238e-05, 7.707135e-05, \n 5.30687748e-05, 4.66030117e-05, 1.41633235e-05, 2.49066205e-05, \n 1.19109038e-05], [5.7886384e-55, 7.88785149e-42, 2.54830412e-06, \n 2.60648191e-05, 1.68036205e-05, 2.12446739e-05, 3.57267603e-05, \n 4.02377033e-05, 3.56401935e-05, 3.09769252e-05, 2.13053382e-05, \n 4.49709414e-05, 2.61368373e-05, 1.68266203e-05, 1.66514322e-05, \n 2.60822813e-05], [2.35721271e-141, 9.06871674e-97, 1.18637122e-89, \n 9.39934076e-22, 4.66000452e-05, 4.69664011e-05, 4.69316082e-05, \n 8.42184044e-05, 2.77788168e-05, 1.03294378e-05, 1.06803618e-05, \n 7.26341826e-75, 1.10073971e-65, 1.02831671e-05, 5.16902994e-49, \n 8.28040509e-43]])\n', (9763, 13508), True, 'import numpy as np\n'), ((14907, 18188), 'numpy.array', 'np.array', (['[[0.95537734, 0.46860132, 0.27110607, 0.19447667, 0.32135073, 0.48782072, \n 0.54963024, 0.42195593, 0.27152038, 0.17864251, 0.20155642, 0.16358271,\n 0.1040159, 0.0874149, 0.05129938, 0.02153823], [0.51023519, 2.17757364,\n 0.9022516, 0.24304235, 0.20119518, 0.39689588, 0.47242431, 0.46949918, \n 0.37741651, 0.16843746, 0.12590504, 0.12682331, 0.11282247, 0.08222718,\n 0.03648526, 0.02404257], [0.18585796, 1.11958124, 4.47729443, \n 0.67959759, 0.43936317, 0.36934142, 0.41566744, 0.44467286, 0.48797422,\n 0.28795385, 0.17659191, 0.10674831, 0.07175567, 0.07249261, 0.04815305,\n 0.03697862], [0.09854482, 0.3514869, 1.84902386, 5.38491613, 1.27425161,\n 0.59242579, 0.36578735, 0.39181798, 0.38131832, 0.31501028, 0.13275648,\n 0.06408612, 0.04499218, 0.04000664, 0.02232326, 0.01322698], [\n 0.13674436, 0.1973461, 0.33264088, 2.08016394, 3.28810184, 1.29198125, \n 0.74642201, 0.44357051, 0.32781391, 0.35511243, 0.20132011, 0.12961, \n 0.04994553, 0.03748657, 0.03841073, 0.02700581], [0.23495203, \n 0.13839031, 0.14085679, 0.5347385, 1.46021275, 1.85222022, 1.02681162, \n 0.61513602, 0.39086271, 0.32871844, 0.25938947, 0.13520412, 0.05101963,\n 0.03714278, 0.02177751, 0.00979745], [0.23139098, 0.18634831, \n 0.32002214, 0.2477269, 0.64111274, 0.93691022, 1.14560725, 0.73176025, \n 0.43760432, 0.31057135, 0.29406937, 0.20632155, 0.09044896, 0.06448983,\n 0.03041877, 0.02522842], [0.18786196, 0.25090485, 0.21366969, \n 0.15358412, 0.35761286, 0.62390736, 0.76125666, 0.82975354, 0.54980593,\n 0.32778339, 0.20858991, 0.1607099, 0.13218526, 0.09042909, 0.04990491, \n 0.01762718], [0.12220241, 0.17968132, 0.31826246, 0.19846971, \n 0.34823183, 0.41563737, 0.55930999, 0.54070187, 0.5573184, 0.31526474, \n 0.20194048, 0.09234293, 0.08377534, 0.05819374, 0.0414762, 0.01563101],\n [0.03429527, 0.06388018, 0.09407867, 0.17418896, 0.23404519, 0.28879108,\n 0.34528852, 0.34507961, 0.31461973, 0.29954426, 0.21759668, 0.09684718,\n 0.06596679, 0.04274337, 0.0356891, 0.02459849], [0.05092152, 0.10829561,\n 0.13898902, 0.2005828, 0.35807132, 0.45181815, 0.32281821, 0.28014803, \n 0.30125545, 0.31260137, 0.22923948, 0.17657382, 0.10276889, 0.05555467,\n 0.03430327, 0.02064256], [0.06739051, 0.06795035, 0.0826437, 0.09522087,\n 0.23309189, 0.39055444, 0.39458465, 0.29290532, 0.27204846, 0.17810118,\n 0.24399007, 0.22146653, 0.13732849, 0.07585801, 0.03938794, 0.0190908],\n [0.04337917, 0.05375367, 0.05230119, 0.08066901, 0.16619572, 0.25423056,\n 0.25580913, 0.27430323, 0.22478799, 0.16909017, 0.14284879, 0.17211604,\n 0.14336033, 0.10344522, 0.06797049, 0.02546014], [0.04080687, \n 0.06113728, 0.04392062, 0.04488748, 0.12808591, 0.19886058, 0.24542711,\n 0.19678011, 0.17800136, 0.13147441, 0.13564091, 0.14280335, 0.12969805,\n 0.11181631, 0.05550193, 0.02956066], [0.01432324, 0.03441212, \n 0.05604694, 0.10154456, 0.09204, 0.13341443, 0.13396901, 0.16682638, \n 0.18562675, 0.1299677, 0.09922375, 0.09634331, 0.15184583, 0.13541738, \n 0.1169359, 0.03805293], [0.01972631, 0.02274412, 0.03797545, 0.02036785,\n 0.04357298, 0.05783639, 0.10706321, 0.07688271, 0.06969759, 0.08029393,\n 0.05466604, 0.05129046, 0.04648653, 0.06132882, 0.05004289, 0.03030569]]'], {}), '([[0.95537734, 0.46860132, 0.27110607, 0.19447667, 0.32135073, \n 0.48782072, 0.54963024, 0.42195593, 0.27152038, 0.17864251, 0.20155642,\n 0.16358271, 0.1040159, 0.0874149, 0.05129938, 0.02153823], [0.51023519,\n 2.17757364, 0.9022516, 0.24304235, 0.20119518, 0.39689588, 0.47242431, \n 0.46949918, 0.37741651, 0.16843746, 0.12590504, 0.12682331, 0.11282247,\n 0.08222718, 0.03648526, 0.02404257], [0.18585796, 1.11958124, \n 4.47729443, 0.67959759, 0.43936317, 0.36934142, 0.41566744, 0.44467286,\n 0.48797422, 0.28795385, 0.17659191, 0.10674831, 0.07175567, 0.07249261,\n 0.04815305, 0.03697862], [0.09854482, 0.3514869, 1.84902386, 5.38491613,\n 1.27425161, 0.59242579, 0.36578735, 0.39181798, 0.38131832, 0.31501028,\n 0.13275648, 0.06408612, 0.04499218, 0.04000664, 0.02232326, 0.01322698],\n [0.13674436, 0.1973461, 0.33264088, 2.08016394, 3.28810184, 1.29198125,\n 0.74642201, 0.44357051, 0.32781391, 0.35511243, 0.20132011, 0.12961, \n 0.04994553, 0.03748657, 0.03841073, 0.02700581], [0.23495203, \n 0.13839031, 0.14085679, 0.5347385, 1.46021275, 1.85222022, 1.02681162, \n 0.61513602, 0.39086271, 0.32871844, 0.25938947, 0.13520412, 0.05101963,\n 0.03714278, 0.02177751, 0.00979745], [0.23139098, 0.18634831, \n 0.32002214, 0.2477269, 0.64111274, 0.93691022, 1.14560725, 0.73176025, \n 0.43760432, 0.31057135, 0.29406937, 0.20632155, 0.09044896, 0.06448983,\n 0.03041877, 0.02522842], [0.18786196, 0.25090485, 0.21366969, \n 0.15358412, 0.35761286, 0.62390736, 0.76125666, 0.82975354, 0.54980593,\n 0.32778339, 0.20858991, 0.1607099, 0.13218526, 0.09042909, 0.04990491, \n 0.01762718], [0.12220241, 0.17968132, 0.31826246, 0.19846971, \n 0.34823183, 0.41563737, 0.55930999, 0.54070187, 0.5573184, 0.31526474, \n 0.20194048, 0.09234293, 0.08377534, 0.05819374, 0.0414762, 0.01563101],\n [0.03429527, 0.06388018, 0.09407867, 0.17418896, 0.23404519, 0.28879108,\n 0.34528852, 0.34507961, 0.31461973, 0.29954426, 0.21759668, 0.09684718,\n 0.06596679, 0.04274337, 0.0356891, 0.02459849], [0.05092152, 0.10829561,\n 0.13898902, 0.2005828, 0.35807132, 0.45181815, 0.32281821, 0.28014803, \n 0.30125545, 0.31260137, 0.22923948, 0.17657382, 0.10276889, 0.05555467,\n 0.03430327, 0.02064256], [0.06739051, 0.06795035, 0.0826437, 0.09522087,\n 0.23309189, 0.39055444, 0.39458465, 0.29290532, 0.27204846, 0.17810118,\n 0.24399007, 0.22146653, 0.13732849, 0.07585801, 0.03938794, 0.0190908],\n [0.04337917, 0.05375367, 0.05230119, 0.08066901, 0.16619572, 0.25423056,\n 0.25580913, 0.27430323, 0.22478799, 0.16909017, 0.14284879, 0.17211604,\n 0.14336033, 0.10344522, 0.06797049, 0.02546014], [0.04080687, \n 0.06113728, 0.04392062, 0.04488748, 0.12808591, 0.19886058, 0.24542711,\n 0.19678011, 0.17800136, 0.13147441, 0.13564091, 0.14280335, 0.12969805,\n 0.11181631, 0.05550193, 0.02956066], [0.01432324, 0.03441212, \n 0.05604694, 0.10154456, 0.09204, 0.13341443, 0.13396901, 0.16682638, \n 0.18562675, 0.1299677, 0.09922375, 0.09634331, 0.15184583, 0.13541738, \n 0.1169359, 0.03805293], [0.01972631, 0.02274412, 0.03797545, 0.02036785,\n 0.04357298, 0.05783639, 0.10706321, 0.07688271, 0.06969759, 0.08029393,\n 0.05466604, 0.05129046, 0.04648653, 0.06132882, 0.05004289, 0.03030569]])\n', (14915, 18188), True, 'import numpy as np\n'), ((961, 974), 'numpy.arange', 'np.arange', (['(16)'], {}), '(16)\n', (970, 974), True, 'import numpy as np\n'), ((18899, 18924), 'numpy.empty', 'np.empty', (['(4, nMat, nMat)'], {}), '((4, nMat, nMat))\n', (18907, 18924), True, 'import numpy as np\n'), ((18973, 19014), 'numpy.flatnonzero', 'np.flatnonzero', (['(ages_Mu_min <= age_sep[0])'], {}), '(ages_Mu_min <= age_sep[0])\n', (18987, 19014), True, 'import numpy as np\n'), ((19222, 19263), 'numpy.flatnonzero', 'np.flatnonzero', (['(ages_Mu_min > age_sep[-1])'], {}), '(ages_Mu_min > age_sep[-1])\n', (19236, 19263), True, 'import numpy as np\n'), ((20264, 20278), 'numpy.split', 'np.split', (['X', '(9)'], {}), '(X, 9)\n', (20272, 20278), True, 'import numpy as np\n'), ((21344, 21364), 'copy.deepcopy', 'copy.deepcopy', (['ppars'], {}), '(ppars)\n', (21357, 21364), False, 'import copy\n'), ((25461, 25481), 'copy.deepcopy', 'copy.deepcopy', (['pars0'], {}), '(pars0)\n', (25474, 25481), False, 'import copy\n'), ((26209, 26238), 'numpy.zeros', 'np.zeros', (['coefs_list.shape[0]'], {}), '(coefs_list.shape[0])\n', (26217, 26238), True, 'import numpy as np\n'), ((26671, 26685), 'numpy.empty', 'np.empty', (['(0,)'], {}), '((0,))\n', (26679, 26685), True, 'import numpy as np\n'), ((27548, 27567), 'copy.deepcopy', 'copy.deepcopy', (['pars'], {}), '(pars)\n', (27561, 27567), False, 'import copy\n'), ((29108, 29246), 'pyswarms.single.LocalBestPSO', 'ps.single.LocalBestPSO', ([], {'n_particles': "paramPSO['n_particles']", 'dimensions': 'self.n_to_fit', 'options': "paramPSO['options']", 'bounds': 'self.bound'}), "(n_particles=paramPSO['n_particles'], dimensions=self\n .n_to_fit, options=paramPSO['options'], bounds=self.bound)\n", (29130, 29246), True, 'import pyswarms as ps\n'), ((19080, 19156), 'numpy.flatnonzero', 'np.flatnonzero', (['((ages_Mu_min > age_sep[i - 1]) * (ages_Mu_min <= age_sep[i]))'], {}), '((ages_Mu_min > age_sep[i - 1]) * (ages_Mu_min <= age_sep[i]))\n', (19094, 19156), True, 'import numpy as np\n'), ((21532, 21545), 'numpy.arange', 'np.arange', (['ts'], {}), '(ts)\n', (21541, 21545), True, 'import numpy as np\n'), ((25287, 25309), 'numpy.array', 'np.array', (['bound_new[0]'], {}), '(bound_new[0])\n', (25295, 25309), True, 'import numpy as np\n'), ((25337, 25359), 'numpy.array', 'np.array', (['bound_new[1]'], {}), '(bound_new[1])\n', (25345, 25359), True, 'import numpy as np\n'), ((31106, 31156), 'scipy.optimize.least_squares', 'least_squares', (['self._residuals', 'init'], {'bounds': 'bound'}), '(self._residuals, init, bounds=bound)\n', (31119, 31156), False, 'from scipy.optimize import least_squares\n'), ((22410, 22467), 'scipy.integrate.odeint', 'spi.odeint', (['self._SEIIHURD_age_eq', 'Y[-1]', 't'], {'args': '(pars,)'}), '(self._SEIIHURD_age_eq, Y[-1], t, args=(pars,))\n', (22420, 22467), True, 'import scipy.integrate as spi\n'), ((22655, 22730), 'scipy.integrate.odeint', 'spi.odeint', (['self._SEIIHURD_age_eq', 'Y[-1]', 'tcorte[i - 1:i + 1]'], {'args': '(pars,)'}), '(self._SEIIHURD_age_eq, Y[-1], tcorte[i - 1:i + 1], args=(pars,))\n', (22665, 22730), True, 'import scipy.integrate as spi\n'), ((26595, 26609), 'numpy.sqrt', 'np.sqrt', (['(x + 1)'], {}), '(x + 1)\n', (26602, 26609), True, 'import numpy as np\n'), ((26639, 26654), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (26651, 26654), True, 'import numpy as np\n'), ((27383, 27397), 'numpy.isnan', 'np.isnan', (['errs'], {}), '(errs)\n', (27391, 27397), True, 'import numpy as np\n'), ((30551, 30587), 'numpy.random.rand', 'np.random.rand', (['nrand', 'self.n_to_fit'], {}), '(nrand, self.n_to_fit)\n', (30565, 30587), True, 'import numpy as np\n'), ((30921, 30960), 'numpy.array', 'np.array', (['[res.cost for res in all_res]'], {}), '([res.cost for res in all_res])\n', (30929, 30960), True, 'import numpy as np\n'), ((30187, 30216), 'numpy.random.rand', 'np.random.rand', (['self.n_to_fit'], {}), '(self.n_to_fit)\n', (30201, 30216), True, 'import numpy as np\n'), ((30325, 30380), 'scipy.optimize.least_squares', 'least_squares', (['self._residuals', 'par0'], {'bounds': 'self.bound'}), '(self._residuals, par0, bounds=self.bound)\n', (30338, 30380), False, 'from scipy.optimize import least_squares\n'), ((30729, 30782), 'scipy.optimize.least_squares', 'least_squares', (['self._residuals', 'p0'], {'bounds': 'self.bound'}), '(self._residuals, p0, bounds=self.bound)\n', (30742, 30782), False, 'from scipy.optimize import least_squares\n'), ((30809, 30857), 'joblib.Parallel', 'joblib.Parallel', ([], {'n_jobs': 'self.numeroProcessadores'}), '(n_jobs=self.numeroProcessadores)\n', (30824, 30857), False, 'import joblib\n'), ((30858, 30875), 'joblib.delayed', 'joblib.delayed', (['f'], {}), '(f)\n', (30872, 30875), False, 'import joblib\n')]
|
import random
import numpy as np
import tensorflow as tf
from collections import deque
class PrioritizedReplayBuffer():
""" Class implements Prioritized Experience Replay (PER)
"""
def __init__(self, maxlen):
""" PER constructor
Args:
maxlen (int): buffer length
"""
self.maxlen = None if maxlen == "none" else maxlen
self.buffer = deque(maxlen=self.maxlen)
self.priorities = deque(maxlen=self.maxlen)
def add(self, experience):
""" Add experiences to buffer
Args:
experience (list): state, action, reward, next_state, done
Returns:
full_buffer (done): True if buffer is full
"""
full_buffer = len(self.buffer) == self.maxlen
self.buffer.append(experience)
self.priorities.append(max(self.priorities, default=1))
return full_buffer
def get_probabilities(self, priority_scale):
""" Get probabilities for experiences
Args:
priority_scale (float64): range [0, 1]
Returns:
sample_probabilities (numpy array): probabilities assigned to experiences based on weighting factor (scale)
"""
scaled_priorities = np.array(self.priorities) ** priority_scale
sample_probabilities = scaled_priorities / sum(scaled_priorities)
return sample_probabilities
def get_importance(self, probabilities):
""" Compute importance
Args:
probabilities (numpy array): experience probabilities
Returns:
importance_normalized (numpy array): normalized importance
"""
importance = 1 / len(self.buffer) * 1 / probabilities
importance_normalized = importance / max(importance)
return importance_normalized
def sample(self, batch_size, priority_scale=1.0):
""" Sample experiences
Args:
batch_size (int): size of batch
priority_scale (float, optional): range = [0, 1]. Defaults to 1.0.
Returns:
samples (list): sampled based on probabilities
importance (numpy array): Importance of samples
sample_indices (array): Indices of samples
"""
sample_size = min(len(self.buffer), batch_size)
sample_probs = self.get_probabilities(priority_scale)
sample_indices = random.choices(range(len(self.buffer)), k=sample_size, weights=sample_probs)
samples = np.array(self.buffer, dtype=object)[sample_indices]
importance = self.get_importance(sample_probs[sample_indices])
return samples, importance, sample_indices
def set_priorities(self, indices, errors, offset=0.1):
""" Set priorities to experiences
Args:
indices (array): sample indices
errors (array): corresponding losses
offset (float, optional): Small offset. Defaults to 0.1.
"""
for i, e in zip(indices, errors):
self.priorities[int(i)] = abs(e) + offset
def get_buffer_length(self):
""" Get buffer length
Returns:
(int): buffer length
"""
return len(self.buffer)
|
[
"numpy.array",
"collections.deque"
] |
[((400, 425), 'collections.deque', 'deque', ([], {'maxlen': 'self.maxlen'}), '(maxlen=self.maxlen)\n', (405, 425), False, 'from collections import deque\n'), ((452, 477), 'collections.deque', 'deque', ([], {'maxlen': 'self.maxlen'}), '(maxlen=self.maxlen)\n', (457, 477), False, 'from collections import deque\n'), ((1243, 1268), 'numpy.array', 'np.array', (['self.priorities'], {}), '(self.priorities)\n', (1251, 1268), True, 'import numpy as np\n'), ((2482, 2517), 'numpy.array', 'np.array', (['self.buffer'], {'dtype': 'object'}), '(self.buffer, dtype=object)\n', (2490, 2517), True, 'import numpy as np\n')]
|
#!/usr/bin/python3
# coding=utf-8
# 环境准备:pip install opencv_contrib_python
# 输入话题:tianbot_mini/image_raw/compressed
# 输出话题:roi
import sys
import os
import rospy
import sensor_msgs.msg
from cv_bridge import CvBridge
import cv2
import numpy as np
from sensor_msgs.msg import RegionOfInterest as ROI
from sensor_msgs.msg import CompressedImage
br = CvBridge()
class MessageItem(object):
# 用于封装信息的类,包含图片和其他信息
def __init__(self,frame,message):
self._frame = frame
self._message = message
def getFrame(self):
# 图片信息
return self._frame
def getMessage(self):
#文字信息,json格式
return self._message
class Tracker(object):
'''
追踪者模块,用于追踪指定目标
'''
def __init__(self, tracker_type="TLD", draw_coord=True):
'''
初始化追踪器种类
'''
# 获得opencv版本
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
self.tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', "CSRT"]
self.tracker_type = tracker_type
self.isWorking = False
self.draw_coord = draw_coord
# 构造追踪器
if int(major_ver) < 3:
self.tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
self.tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
self.tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
self.tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
self.tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
self.tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
self.tracker = cv2.TrackerGOTURN_create()
if tracker_type == "CSRT":
self.tracker = cv2.TrackerCSRT_create()
def initWorking(self, frame, box):
'''
追踪器工作初始化
frame:初始化追踪画面
box:追踪的区域
'''
if not self.tracker:
raise Exception("追踪器未初始化")
status = self.tracker.init(frame, box)
if not status:
raise Exception("追踪器工作初始化失败")
self.coord = box
self.isWorking = True
def track(self, frame):
'''
开启追踪
'''
message = None
if self.isWorking:
status, self.coord = self.tracker.update(frame)
if status:
message = {"coord": [((int(self.coord[0]), int(self.coord[1])),
(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
if self.draw_coord:
p1 = (int(self.coord[0]), int(self.coord[1]))
p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1)
message['msg'] = self.tracker_type + " is tracking"
# 更新ROI
if (int(self.coord[0]) <0 or int(self.coord[1]) <0):
tld_roi.x_offset = 0
tld_roi.y_offset = 0
tld_roi.width = 0
tld_roi.height = 0
else:
tld_roi.x_offset = int(self.coord[0])
tld_roi.y_offset = int(self.coord[1])
tld_roi.width = int(self.coord[2])
tld_roi.height = int(self.coord[3])
# 发布ROI
pub.publish(tld_roi)
return MessageItem(frame, message)
def compressed_detect_and_draw(compressed_imgmsg):
global br,gFrame,gCapStatus,getFrame,loopGetFrame
if ((getFrame == True) or (loopGetFrame == True)):
gFrame = br.compressed_imgmsg_to_cv2(compressed_imgmsg, "bgr8")
gCapStatus = True
getFrame = True
gFrame = np.zeros((640,640,3), np.uint8)
gCapStatus = False
getFrame = True
loopGetFrame = False
if __name__ == '__main__':
rospy.init_node('tbm_tld_tracker_node')
rospy.Subscriber("/image_raw", sensor_msgs.msg.CompressedImage, compressed_detect_and_draw)
pub = rospy.Publisher("roi",ROI,queue_size=10)
tld_roi = ROI()
# rate = rospy.Rate(10)
# rate.sleep()
# 选择 框选帧
print("按 n 渲染下一帧,按 y 设定当前帧作为ROI区域选择帧")
while True:
_key = cv2.waitKey(0) & 0xFF
if(_key == ord('n')):
# gCapStatus,gFrame = gVideoDevice.read()
getFrame = True
if(_key == ord('y')):
break
cv2.imshow("Pick frame",gFrame)
# 框选感兴趣区域region of interest
cv2.destroyWindow("Pick frame")
gROI = cv2.selectROI("ROI frame",gFrame,False)
if (not gROI):
print("空框选,退出")
quit()
# 初始化追踪器
gTracker = Tracker(tracker_type="TLD")
gTracker.initWorking(gFrame,gROI)
# 循环帧读取,开始跟踪
while not rospy.is_shutdown():
# gCapStatus, gFrame = gVideoDevice.read()
loopGetFrame = True
if(gCapStatus):
# 展示跟踪图片
_item = gTracker.track(gFrame)
cv2.imshow("Track result",_item.getFrame())
if _item.getMessage():
# 打印跟踪数据
print(_item.getMessage())
_key = cv2.waitKey(1) & 0xFF
if (_key == ord('q')) | (_key == 27):
break
if (_key == ord('r')) :
# 用户请求用初始ROI
print("用户请求用初始ROI")
gTracker = Tracker(tracker_type="TLD")
gTracker.initWorking(gFrame, gROI)
else:
print("捕获帧失败")
quit()
|
[
"cv2.rectangle",
"cv2.TrackerGOTURN_create",
"rospy.init_node",
"cv2.TrackerKCF_create",
"cv2.imshow",
"cv2.TrackerMedianFlow_create",
"cv2.__version__.split",
"cv2.TrackerMIL_create",
"cv2.Tracker_create",
"cv_bridge.CvBridge",
"rospy.Subscriber",
"cv2.waitKey",
"sensor_msgs.msg.RegionOfInterest",
"cv2.TrackerTLD_create",
"rospy.Publisher",
"cv2.selectROI",
"rospy.is_shutdown",
"cv2.destroyWindow",
"numpy.zeros",
"cv2.TrackerBoosting_create",
"cv2.TrackerCSRT_create"
] |
[((350, 360), 'cv_bridge.CvBridge', 'CvBridge', ([], {}), '()\n', (358, 360), False, 'from cv_bridge import CvBridge\n'), ((4002, 4035), 'numpy.zeros', 'np.zeros', (['(640, 640, 3)', 'np.uint8'], {}), '((640, 640, 3), np.uint8)\n', (4010, 4035), True, 'import numpy as np\n'), ((4124, 4163), 'rospy.init_node', 'rospy.init_node', (['"""tbm_tld_tracker_node"""'], {}), "('tbm_tld_tracker_node')\n", (4139, 4163), False, 'import rospy\n'), ((4168, 4263), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/image_raw"""', 'sensor_msgs.msg.CompressedImage', 'compressed_detect_and_draw'], {}), "('/image_raw', sensor_msgs.msg.CompressedImage,\n compressed_detect_and_draw)\n", (4184, 4263), False, 'import rospy\n'), ((4270, 4312), 'rospy.Publisher', 'rospy.Publisher', (['"""roi"""', 'ROI'], {'queue_size': '(10)'}), "('roi', ROI, queue_size=10)\n", (4285, 4312), False, 'import rospy\n'), ((4325, 4330), 'sensor_msgs.msg.RegionOfInterest', 'ROI', ([], {}), '()\n', (4328, 4330), True, 'from sensor_msgs.msg import RegionOfInterest as ROI\n'), ((4725, 4756), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""Pick frame"""'], {}), "('Pick frame')\n", (4742, 4756), False, 'import cv2\n'), ((4768, 4809), 'cv2.selectROI', 'cv2.selectROI', (['"""ROI frame"""', 'gFrame', '(False)'], {}), "('ROI frame', gFrame, False)\n", (4781, 4809), False, 'import cv2\n'), ((892, 918), 'cv2.__version__.split', 'cv2.__version__.split', (['"""."""'], {}), "('.')\n", (913, 918), False, 'import cv2\n'), ((4656, 4688), 'cv2.imshow', 'cv2.imshow', (['"""Pick frame"""', 'gFrame'], {}), "('Pick frame', gFrame)\n", (4666, 4688), False, 'import cv2\n'), ((4993, 5012), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (5010, 5012), False, 'import rospy\n'), ((1199, 1231), 'cv2.Tracker_create', 'cv2.Tracker_create', (['tracker_type'], {}), '(tracker_type)\n', (1217, 1231), False, 'import cv2\n'), ((4465, 4479), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4476, 4479), False, 'import cv2\n'), ((1320, 1348), 'cv2.TrackerBoosting_create', 'cv2.TrackerBoosting_create', ([], {}), '()\n', (1346, 1348), False, 'import cv2\n'), ((1418, 1441), 'cv2.TrackerMIL_create', 'cv2.TrackerMIL_create', ([], {}), '()\n', (1439, 1441), False, 'import cv2\n'), ((1511, 1534), 'cv2.TrackerKCF_create', 'cv2.TrackerKCF_create', ([], {}), '()\n', (1532, 1534), False, 'import cv2\n'), ((1604, 1627), 'cv2.TrackerTLD_create', 'cv2.TrackerTLD_create', ([], {}), '()\n', (1625, 1627), False, 'import cv2\n'), ((1704, 1734), 'cv2.TrackerMedianFlow_create', 'cv2.TrackerMedianFlow_create', ([], {}), '()\n', (1732, 1734), False, 'import cv2\n'), ((1807, 1833), 'cv2.TrackerGOTURN_create', 'cv2.TrackerGOTURN_create', ([], {}), '()\n', (1831, 1833), False, 'import cv2\n'), ((1904, 1928), 'cv2.TrackerCSRT_create', 'cv2.TrackerCSRT_create', ([], {}), '()\n', (1926, 1928), False, 'import cv2\n'), ((5360, 5374), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5371, 5374), False, 'import cv2\n'), ((2900, 2947), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'p1', 'p2', '(255, 0, 0)', '(2)', '(1)'], {}), '(frame, p1, p2, (255, 0, 0), 2, 1)\n', (2913, 2947), False, 'import cv2\n')]
|
from __future__ import print_function
import warnings
import numpy as np
C4 = 261.6 # Hz
piano_max = 4186.01 # Hz
piano_min = 27.5000 # Hz - not audible
__all__ = ['cent_per_value','get_f_min','get_f_max','FrequencyScale']
def cent_per_value(f_min, f_max, v_min, v_max):
"""
This function takes in a frequency max and min, and y value max and min and returns a y scale parameter in units of cents/y value.
Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)).
Parameters
----------
f_min : float
Minimum frequency.
f_max : float
Maximum frequency.
v_min : float
Minimum y value.
v_max : float
Maximum y value.
Returns
-------
float
A y-scale parameter in units of cents/y value.
"""
step = 1200 * np.log2(f_max / f_min) / (v_max - v_min)
return step
def get_f_min(f_max, cents_per_value, v_min, v_max):
"""
This function takes in a y value max and min, a maximum frequency and a y scale parameter in units of cents/y value, and returns the minimum frequency that fits to such a scale.
Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)).
Parameters
----------
f_max : float
Maximum frequency.
cents_per_value : float
A y scale parameter in units of cents/y value.
v_min : float
Minimum y value.
v_max : float
Maximum y value.
Returns
-------
float
Minimum frequency.
"""
f_min = f_max / (2 ** ((v_max - v_min) * cents_per_value / 1200))
return f_min
def get_f_max(f_min, cents_per_value, v_min, v_max):
"""
This function takes in a y value max and min, a minimum frequency and a y scale parameter in units of cents/y value, and returns the maximum frequency that fits to such a scale.
Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)).
Parameters
----------
f_min : float
Minimum frequency.
cents_per_value : float
A y scale parameter in units of cents/y value.
v_min : float
Minimum y value.
v_max : float
Maximum y value.
Returns
-------
float
Maximum frequency.
"""
f_max = f_min * (2 ** ((v_max - v_min) * cents_per_value / 1200))
return f_max
class FrequencyScale(object):
"""
This class builds a frequency scale and populates the namespace of frequency objects based on the given inputs from the following combos:
- frequency_min, frequency_max, y value min and y value max
- frequency_max, cents_per_value, y value min and y value max
- frequency_min, cents_per_value, y value min and y value max
Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)).
Parameters
----------
frequency_min : float
Minimum frequency.
frequency_max : float
Maximum frequency.
cents_per_value : float
A y scale parameter in units of cents/y value.
value_min : float
Description of parameter `value_min`.
value_max : float
Description of parameter `value_max`.
verbose : bool
Flag to toggle printing functions.
"""
def __init__(self, value_min, value_max,
frequency_min=None, frequency_max=None, cents_per_value=None,
verbose=False):
if verbose:
print('initial vals (fmin, fmax, vmin, vmax):',
frequency_min, frequency_max, value_min, value_max)
# checking for which inputs were given
self.y_inputs = []
if frequency_min != None:
self.y_inputs.append('frequency_min')
if frequency_max != None:
self.y_inputs.append('frequency_max')
if cents_per_value != None:
self.y_inputs.append('cents_per_value')
self.y_n_inputs = len(self.y_inputs)
# raising exception if anything other than two inputs were given
if self.y_n_inputs != 2:
raise Exception('Frequency takes 2 of the frequency_min, frequency_max, and cents_per_value inputs. You inputted {} inputs, which were {}.'.format(
self.y_n_inputs, self.y_inputs))
# frequency_min and frequency_max input case
if (cents_per_value == None):
cents_per_value = cent_per_value(frequency_min, frequency_max,
value_min, value_max)
# cents_per_value and frequency_max input case
if (frequency_min == None):
frequency_min = get_f_min(frequency_max, cents_per_value,
value_min, value_max)
# cents_per_value and frequency_min input case
if (frequency_max == None):
frequency_max = get_f_max(frequency_min, cents_per_value,
value_min, value_max)
self.y_value_min = value_min
self.y_value_max = value_max
self.y_frequency_max = frequency_max
self.y_frequency_min = frequency_min
self.y_cents_per_value = cents_per_value
if self.y_frequency_max > piano_max:
warnings.warn('Your maximum frequency of {} Hz is above a pianos maximum of {} Hz.'.format(
np.round(self.y_frequency_max, 2), piano_max))
if self.y_frequency_min < piano_min:
warnings.warn('Your minimum frequency of {} Hz is below a pianos minimum of {} Hz.'.format(
np.round(self.y_frequency_min, 2), piano_min))
if self.y_value_min > self.y_value_max:
warnings.warn('Min y value is greater than max y value.')
if verbose:
print('initial vals (f_min, f_max, y_min, y_max):', self.y_frequency_min,
self.y_frequency_max, self.y_value_min, self.y_value_max)
def freq(v): return self.y_frequency_min * \
2 ** ((v - self.y_value_min) * self.y_cents_per_value / 1200)
self.y_freq_translate_to_range = lambda array: list(map(freq, array))
if verbose:
print('Frequency Scale Built')
|
[
"warnings.warn",
"numpy.log2",
"numpy.round"
] |
[((841, 863), 'numpy.log2', 'np.log2', (['(f_max / f_min)'], {}), '(f_max / f_min)\n', (848, 863), True, 'import numpy as np\n'), ((5680, 5737), 'warnings.warn', 'warnings.warn', (['"""Min y value is greater than max y value."""'], {}), "('Min y value is greater than max y value.')\n", (5693, 5737), False, 'import warnings\n'), ((5361, 5394), 'numpy.round', 'np.round', (['self.y_frequency_max', '(2)'], {}), '(self.y_frequency_max, 2)\n', (5369, 5394), True, 'import numpy as np\n'), ((5573, 5606), 'numpy.round', 'np.round', (['self.y_frequency_min', '(2)'], {}), '(self.y_frequency_min, 2)\n', (5581, 5606), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue May 30 16:43:10 2017
☜☜☜☜☜☜★☆★☆★☆★☆ provided code ★☆★☆★☆★☆☞☞☞☞☞☞
@author: Minsooyeo
"""
import os
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
from PIL import Image as im
import numpy as np
import utills as ut
import tensorflow as tf
sess = tf.InteractiveSession()
train_epoch = 5000
#
FLAG_FINGER = 0
FLAG_FACE = 1
FLAG_ANGLE = 2
flag = FLAG_ANGLE
#
if flag is FLAG_FINGER:
class_num = 5
additional_path = '\\finger\\'
elif flag is FLAG_FACE:
class_num = 6
additional_path = '\\face\\'
elif flag is FLAG_ANGLE:
class_num = 4
additional_path = '\\angle\\'
else:
raise Exception("Unknown flag %d" %flag)
# define parameter
data_length = []
dir_image = []
data = []
label = []
data_shape = [298, 298]
current_pwd = os.getcwd()
for i in range(class_num):
dir_image.append(ut.search(current_pwd + additional_path + str(i + 1)))
data_length.append(len(dir_image[i]))
data.append(np.zeros([data_length[i], data_shape[1], data_shape[0]]))
label.append(np.zeros([data_length[i], class_num]))
label[i][:, i] = 1
# load data
for q in range(class_num):
for i in range(data_length[q]):
if i % 100 == 0:
print("%dth data is opening" %i)
data[q][i, :, :] = np.mean(im.open(current_pwd + additional_path + str(q + 1) + '\\' + dir_image[q][i]), -1)
if flag is FLAG_FINGER:
rawdata = np.concatenate((data[0], data[1], data[2], data[3], data[4]), axis=0)
raw_label = np.concatenate((label[0], label[1], label[2], label[3], label[4]), axis=0)
elif flag is FLAG_FACE:
rawdata = np.concatenate((data[0], data[1], data[2], data[3], data[4], data[5]), axis=0)
raw_label = np.concatenate((label[0], label[1], label[2], label[3], label[4], label[5]), axis=0)
elif flag is FLAG_ANGLE:
rawdata = np.concatenate((data[0], data[1], data[2], data[3]), axis=0)
raw_label = np.concatenate((label[0], label[1], label[2], label[3]), axis=0)
else:
raise Exception("Unknown class number %d" %class_num)
del data
del label
total_data_poin = rawdata.shape[0]
permutation = np.random.permutation(total_data_poin)
rawdata = rawdata[permutation, :, :]
raw_label = raw_label[permutation, :]
rawdata = np.reshape(rawdata, [rawdata.shape[0], data_shape[0] * data_shape[1]])
########################################################################################################
#
img_width = data_shape[0]
img_height = data_shape[1]
if flag is FLAG_FINGER:
train_count = 5000 # 손가락 인식을 테스트하려는 경우 이 부분을 수정하십시오. (2000 또는 5000으로 테스트함)
test_count = 490
elif flag is FLAG_FACE:
train_count = 2000 # train data 수가 5000개가 안 돼서 또는 overfitting에 의해 NaN 문제가 발생합니다. 값을 바꾸지 마십시오!
test_count = 490
elif flag is FLAG_ANGLE:
train_count = 6000 # train data 수가 5000개가 안 돼서 또는 overfitting에 의해 NaN 문제가 발생합니다. 값을 바꾸지 마십시오!
test_count = 1000
else:
raise Exception("unknown flag %d" %flag)
#
train_epoch = train_count
#
TrainX = rawdata[:train_count] # mnist.train.images
TrainY = raw_label[:train_count] # mnist.train.labels
testX = rawdata[train_count:train_count+test_count] # mnist.test.images
testY = raw_label[train_count:train_count+test_count] # mnist.test.labels
# 손가락 구분을 테스트하기 위해 층의 수를 바꾸는 경우 else 부분을 수정하십시오.
if flag is FLAG_FINGER: # 손가락 구분의 경우 층에 따라 경우를 테스트하려면 이 부분을 수정하십시오.
CNNModel, x = ut._CNNModel(img_width=img_width, img_height=img_height,
kernel_info=[
[3, 2, 32, True],
[3, 2, 64, True],
[3, 2, 128, True],
[3, 2, 64, True],
[3, 2, 128, True],
# [3, 2, 128, True],
])
elif flag is FLAG_FACE: # 얼굴 인식의 경우 2개의 층만으로도 구분이 완전히 잘 됩니다. 층의 수를 수정하지 마십시오.
CNNModel, x = ut._CNNModel(img_width=img_width, img_height=img_height,
kernel_info=[
[3, 2, 32, True],
[3, 2, 64, True],
# [3, 2, 128, True],
# [3, 2, 64, True],
# [3, 2, 128, True],
# [3, 2, 128, True],
])
elif flag is FLAG_ANGLE: #
CNNModel, x = ut._CNNModel(img_width=img_width, img_height=img_height,
kernel_info=[
[1, 1, 32, True],
# [1, 1, 64, True],
# [1, 1, 128, True],
# [1, 1, 64, True],
# [1, 1, 128, True],
# [3, 2, 128, True],
])
else:
raise Exception("Unknown flag %d" %flag)
FlatModel = ut._FlatModel(CNNModel, fc_outlayer_count=128)
DropOut, keep_prob = ut._DropOut(FlatModel)
SoftMaxModel = ut._SoftMax(DropOut, label_count=class_num, fc_outlayer_count=128)
TrainStep, Accuracy, y_, correct_prediction = ut._SetAccuracy(SoftMaxModel, label_count=class_num)
sess.run(tf.global_variables_initializer())
for i in range(train_epoch):
tmp_trainX, tmp_trainY = ut.Nextbatch(TrainX, TrainY, 50)
if i%100 == 0:
train_accuracy = Accuracy.eval(feed_dict={x: tmp_trainX, y_: tmp_trainY, keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
TrainStep.run(feed_dict={x: tmp_trainX, y_: tmp_trainY, keep_prob: 0.7})
print("test accuracy %g" %Accuracy.eval(feed_dict={x: testX[1:1000, :], y_: testY[1:1000], keep_prob: 1.0}))
|
[
"tensorflow.InteractiveSession",
"numpy.reshape",
"utills._FlatModel",
"utills._DropOut",
"utills._SoftMax",
"os.getcwd",
"tensorflow.global_variables_initializer",
"utills._CNNModel",
"numpy.zeros",
"numpy.concatenate",
"utills.Nextbatch",
"utills._SetAccuracy",
"numpy.random.permutation"
] |
[((305, 328), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {}), '()\n', (326, 328), True, 'import tensorflow as tf\n'), ((809, 820), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (818, 820), False, 'import os\n'), ((2117, 2155), 'numpy.random.permutation', 'np.random.permutation', (['total_data_poin'], {}), '(total_data_poin)\n', (2138, 2155), True, 'import numpy as np\n'), ((2242, 2312), 'numpy.reshape', 'np.reshape', (['rawdata', '[rawdata.shape[0], data_shape[0] * data_shape[1]]'], {}), '(rawdata, [rawdata.shape[0], data_shape[0] * data_shape[1]])\n', (2252, 2312), True, 'import numpy as np\n'), ((4957, 5003), 'utills._FlatModel', 'ut._FlatModel', (['CNNModel'], {'fc_outlayer_count': '(128)'}), '(CNNModel, fc_outlayer_count=128)\n', (4970, 5003), True, 'import utills as ut\n'), ((5025, 5047), 'utills._DropOut', 'ut._DropOut', (['FlatModel'], {}), '(FlatModel)\n', (5036, 5047), True, 'import utills as ut\n'), ((5063, 5129), 'utills._SoftMax', 'ut._SoftMax', (['DropOut'], {'label_count': 'class_num', 'fc_outlayer_count': '(128)'}), '(DropOut, label_count=class_num, fc_outlayer_count=128)\n', (5074, 5129), True, 'import utills as ut\n'), ((5176, 5228), 'utills._SetAccuracy', 'ut._SetAccuracy', (['SoftMaxModel'], {'label_count': 'class_num'}), '(SoftMaxModel, label_count=class_num)\n', (5191, 5228), True, 'import utills as ut\n'), ((1423, 1492), 'numpy.concatenate', 'np.concatenate', (['(data[0], data[1], data[2], data[3], data[4])'], {'axis': '(0)'}), '((data[0], data[1], data[2], data[3], data[4]), axis=0)\n', (1437, 1492), True, 'import numpy as np\n'), ((1509, 1583), 'numpy.concatenate', 'np.concatenate', (['(label[0], label[1], label[2], label[3], label[4])'], {'axis': '(0)'}), '((label[0], label[1], label[2], label[3], label[4]), axis=0)\n', (1523, 1583), True, 'import numpy as np\n'), ((3361, 3531), 'utills._CNNModel', 'ut._CNNModel', ([], {'img_width': 'img_width', 'img_height': 'img_height', 'kernel_info': '[[3, 2, 32, True], [3, 2, 64, True], [3, 2, 128, True], [3, 2, 64, True], [\n 3, 2, 128, True]]'}), '(img_width=img_width, img_height=img_height, kernel_info=[[3, 2,\n 32, True], [3, 2, 64, True], [3, 2, 128, True], [3, 2, 64, True], [3, 2,\n 128, True]])\n', (3373, 3531), True, 'import utills as ut\n'), ((5239, 5272), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5270, 5272), True, 'import tensorflow as tf\n'), ((5333, 5365), 'utills.Nextbatch', 'ut.Nextbatch', (['TrainX', 'TrainY', '(50)'], {}), '(TrainX, TrainY, 50)\n', (5345, 5365), True, 'import utills as ut\n'), ((982, 1038), 'numpy.zeros', 'np.zeros', (['[data_length[i], data_shape[1], data_shape[0]]'], {}), '([data_length[i], data_shape[1], data_shape[0]])\n', (990, 1038), True, 'import numpy as np\n'), ((1057, 1094), 'numpy.zeros', 'np.zeros', (['[data_length[i], class_num]'], {}), '([data_length[i], class_num])\n', (1065, 1094), True, 'import numpy as np\n'), ((1622, 1700), 'numpy.concatenate', 'np.concatenate', (['(data[0], data[1], data[2], data[3], data[4], data[5])'], {'axis': '(0)'}), '((data[0], data[1], data[2], data[3], data[4], data[5]), axis=0)\n', (1636, 1700), True, 'import numpy as np\n'), ((1717, 1805), 'numpy.concatenate', 'np.concatenate', (['(label[0], label[1], label[2], label[3], label[4], label[5])'], {'axis': '(0)'}), '((label[0], label[1], label[2], label[3], label[4], label[5]),\n axis=0)\n', (1731, 1805), True, 'import numpy as np\n'), ((3916, 4026), 'utills._CNNModel', 'ut._CNNModel', ([], {'img_width': 'img_width', 'img_height': 'img_height', 'kernel_info': '[[3, 2, 32, True], [3, 2, 64, True]]'}), '(img_width=img_width, img_height=img_height, kernel_info=[[3, 2,\n 32, True], [3, 2, 64, True]])\n', (3928, 4026), True, 'import utills as ut\n'), ((1841, 1901), 'numpy.concatenate', 'np.concatenate', (['(data[0], data[1], data[2], data[3])'], {'axis': '(0)'}), '((data[0], data[1], data[2], data[3]), axis=0)\n', (1855, 1901), True, 'import numpy as np\n'), ((1918, 1982), 'numpy.concatenate', 'np.concatenate', (['(label[0], label[1], label[2], label[3])'], {'axis': '(0)'}), '((label[0], label[1], label[2], label[3]), axis=0)\n', (1932, 1982), True, 'import numpy as np\n'), ((4426, 4518), 'utills._CNNModel', 'ut._CNNModel', ([], {'img_width': 'img_width', 'img_height': 'img_height', 'kernel_info': '[[1, 1, 32, True]]'}), '(img_width=img_width, img_height=img_height, kernel_info=[[1, 1,\n 32, True]])\n', (4438, 4518), True, 'import utills as ut\n')]
|
import numpy as np
from common import projection_back
EPS = 1e-9
def ilrma(mix, n_iter, n_basis=2, proj_back=True):
"""Implementation of ILRMA (Independent Low-Rank Matrix Analysis).
This algorithm is called ILRMA1 in http://d-kitamura.net/pdf/misc/AlgorithmsForIndependentLowRankMatrixAnalysis.pdf
It only works in determined case (n_sources == n_channels).
Args:
mix (numpy.ndarray): (n_frequencies, n_channels, n_frames)
STFT representation of the observed signal.
n_iter (int): Number of iterations.
n_basis (int): Number of basis in the NMF model.
proj_back (bool): If use back-projection technique.
Returns:
tuple[numpy.ndarray, numpy.ndarray]: Tuple of separated signal and
separation matrix. The shapes of separated signal and separation
matrix are (n_frequencies, n_sources, n_frames) and
(n_sources, n_channels), respectively.
"""
n_freq, n_src, n_frame = mix.shape
sep_mat = np.stack([np.eye(n_src, dtype=mix.dtype) for _ in range(n_freq)])
basis = np.abs(np.random.randn(n_src, n_freq, n_basis))
act = np.abs(np.random.randn(n_src, n_basis, n_frame))
sep = sep_mat @ mix
sep_pow = np.power(np.abs(sep), 2) # (n_freq, n_src, n_frame)
model = basis @ act # (n_src, n_freq, n_frame)
m_reci = 1 / model
eye = np.tile(np.eye(n_src), (n_freq, 1, 1))
for _ in range(n_iter):
for src in range(n_src):
h = (sep_pow[:, src, :] * m_reci[src]**2) @ act[src].T
h /= m_reci[src] @ act[src].T
h = np.sqrt(h, out=h)
basis[src] *= h
np.clip(basis[src], a_min=EPS, a_max=None, out=basis[src])
model[src] = basis[src] @ act[src]
m_reci[src] = 1 / model[src]
h = basis[src].T @ (sep_pow[:, src, :] * m_reci[src]**2)
h /= basis[src].T @ m_reci[src]
h = np.sqrt(h, out=h)
act[src] *= h
np.clip(act[src], a_min=EPS, a_max=None, out=act[src])
model[src] = basis[src] @ act[src]
m_reci[src] = 1 / model[src]
h = m_reci[src, :, :, None] @ np.ones((1, n_src))
h = mix.conj() @ (mix.swapaxes(1, 2) * h)
u_mat = h.swapaxes(1, 2) / n_frame
h = sep_mat @ u_mat + EPS * eye
sep_mat[:, src, :] = np.linalg.solve(h, eye[:, :, src]).conj()
h = sep_mat[:, src, None, :] @ u_mat
h = (h @ sep_mat[:, src, :, None].conj()).squeeze(2)
sep_mat[:, src, :] = (sep_mat[:, src, :] / np.sqrt(h).conj())
np.matmul(sep_mat, mix, out=sep)
np.power(np.abs(sep), 2, out=sep_pow)
np.clip(sep_pow, a_min=EPS, a_max=None, out=sep_pow)
for src in range(n_src):
lbd = np.sqrt(np.sum(sep_pow[:, src, :]) / n_freq / n_frame)
sep_mat[:, src, :] /= lbd
sep_pow[:, src, :] /= lbd ** 2
model[src] /= lbd ** 2
basis[src] /= lbd ** 2
# Back-projection technique
if proj_back:
z = projection_back(sep, mix[:, 0, :])
sep *= np.conj(z[:, :, None])
return sep, sep_mat
|
[
"numpy.clip",
"numpy.abs",
"numpy.eye",
"numpy.linalg.solve",
"numpy.sqrt",
"numpy.ones",
"numpy.conj",
"numpy.sum",
"numpy.matmul",
"common.projection_back",
"numpy.random.randn"
] |
[((1098, 1137), 'numpy.random.randn', 'np.random.randn', (['n_src', 'n_freq', 'n_basis'], {}), '(n_src, n_freq, n_basis)\n', (1113, 1137), True, 'import numpy as np\n'), ((1156, 1196), 'numpy.random.randn', 'np.random.randn', (['n_src', 'n_basis', 'n_frame'], {}), '(n_src, n_basis, n_frame)\n', (1171, 1196), True, 'import numpy as np\n'), ((1245, 1256), 'numpy.abs', 'np.abs', (['sep'], {}), '(sep)\n', (1251, 1256), True, 'import numpy as np\n'), ((1383, 1396), 'numpy.eye', 'np.eye', (['n_src'], {}), '(n_src)\n', (1389, 1396), True, 'import numpy as np\n'), ((2617, 2649), 'numpy.matmul', 'np.matmul', (['sep_mat', 'mix'], {'out': 'sep'}), '(sep_mat, mix, out=sep)\n', (2626, 2649), True, 'import numpy as np\n'), ((2704, 2756), 'numpy.clip', 'np.clip', (['sep_pow'], {'a_min': 'EPS', 'a_max': 'None', 'out': 'sep_pow'}), '(sep_pow, a_min=EPS, a_max=None, out=sep_pow)\n', (2711, 2756), True, 'import numpy as np\n'), ((3078, 3112), 'common.projection_back', 'projection_back', (['sep', 'mix[:, 0, :]'], {}), '(sep, mix[:, 0, :])\n', (3093, 3112), False, 'from common import projection_back\n'), ((3128, 3150), 'numpy.conj', 'np.conj', (['z[:, :, None]'], {}), '(z[:, :, None])\n', (3135, 3150), True, 'import numpy as np\n'), ((1023, 1053), 'numpy.eye', 'np.eye', (['n_src'], {'dtype': 'mix.dtype'}), '(n_src, dtype=mix.dtype)\n', (1029, 1053), True, 'import numpy as np\n'), ((1601, 1618), 'numpy.sqrt', 'np.sqrt', (['h'], {'out': 'h'}), '(h, out=h)\n', (1608, 1618), True, 'import numpy as np\n'), ((1659, 1717), 'numpy.clip', 'np.clip', (['basis[src]'], {'a_min': 'EPS', 'a_max': 'None', 'out': 'basis[src]'}), '(basis[src], a_min=EPS, a_max=None, out=basis[src])\n', (1666, 1717), True, 'import numpy as np\n'), ((1937, 1954), 'numpy.sqrt', 'np.sqrt', (['h'], {'out': 'h'}), '(h, out=h)\n', (1944, 1954), True, 'import numpy as np\n'), ((1993, 2047), 'numpy.clip', 'np.clip', (['act[src]'], {'a_min': 'EPS', 'a_max': 'None', 'out': 'act[src]'}), '(act[src], a_min=EPS, a_max=None, out=act[src])\n', (2000, 2047), True, 'import numpy as np\n'), ((2667, 2678), 'numpy.abs', 'np.abs', (['sep'], {}), '(sep)\n', (2673, 2678), True, 'import numpy as np\n'), ((2180, 2199), 'numpy.ones', 'np.ones', (['(1, n_src)'], {}), '((1, n_src))\n', (2187, 2199), True, 'import numpy as np\n'), ((2378, 2412), 'numpy.linalg.solve', 'np.linalg.solve', (['h', 'eye[:, :, src]'], {}), '(h, eye[:, :, src])\n', (2393, 2412), True, 'import numpy as np\n'), ((2589, 2599), 'numpy.sqrt', 'np.sqrt', (['h'], {}), '(h)\n', (2596, 2599), True, 'import numpy as np\n'), ((2817, 2843), 'numpy.sum', 'np.sum', (['sep_pow[:, src, :]'], {}), '(sep_pow[:, src, :])\n', (2823, 2843), True, 'import numpy as np\n')]
|
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# [0,0] = TN
# [1,1] = TP
# [0,1] = FP
# [1,0] = FN
# cm is a confusion matrix
# Accuracy: (TP + TN) / Total
def accuracy(cm: pd.DataFrame) -> float:
return (cm[0,0] + cm[1,1]) / cm.sum()
# Precision: TP / (TP + FP)
def precision(cm: pd.DataFrame) -> float:
return cm[1,1] / (cm[1,1] + cm[0,1])
# False positive rate: FP / N = FP / (FP + TN)
def false_positive(cm: pd.DataFrame) -> float:
return cm[0,1] / (cm[0,0] + cm[0,1])
# True positive rate: TP / P = TP / (TP + FN)
# Equivalent to sensitivity/recall
def true_positive(cm: pd.DataFrame) -> float:
return cm[1,1] / (cm[1,0] + cm[1,1])
# F1 score: 2 * precision * recall / (precision + recall)
def f_score(cm: pd.DataFrame) -> float:
return 2 * precision(cm) * true_positive(cm) / (precision(cm) + true_positive(cm))
# Returns a confusion matrix for labels and predictions
# [[TN, FP],
# [FN, TP]]
def confusion_matrix(y, y_hat):
cm = np.zeros((2, 2))
np.add.at(cm, [y.astype(int), y_hat.astype(int)], 1)
return cm
def visualize_cm(cm):
df_cm = pd.DataFrame(cm, columns=['0', '1'], index=['0', '1'])
df_cm.index.name = 'Actual'
df_cm.columns.name = 'Predicted'
plt.figure(figsize=(5, 3))
sns.heatmap(df_cm, cmap='Blues', annot=True, annot_kws={'size': 16}, fmt='g')
# Function to return two shuffled arrays, is a deep copy
def shuffle(x, y):
x_copy = x.copy()
y_copy = y.copy()
rand = np.random.randint(0, 10000)
np.random.seed(rand)
np.random.shuffle(x_copy)
np.random.seed(rand)
np.random.shuffle(y_copy)
return x_copy, y_copy
# Shuffles and splits data into two sets
# test split will be 1/size of the data
def split(x, y, size):
x1, y1, = shuffle(x, y)
x1_test = x1[0:int(x1.shape[0] / size)]
x1_train = x1[int(x1.shape[0] / size):]
y1_test = y1[0:int(y1.shape[0] / size)]
y1_train = y1[int(y1.shape[0] / size):]
return x1_train, x1_test, y1_train, y1_test
def cross_validation(k, X, Y, model, lr=0.5, regularization=0, eps=1e-2, verbose=True):
# randomize X and Y by shuffling
x, y = shuffle(X, Y)
# split into k folds
x_folds = np.array_split(x, k)
y_folds = np.array_split(y, k)
acc = 0
f1 = 0
prec = 0
rec = 0
cms = []
for i in range(k):
validation_features = x_folds[i]
validation_labels = np.squeeze(y_folds[i])
train_features = np.delete(x_folds, i, axis=0)
train_features = np.concatenate(train_features)
train_labels = np.delete(y_folds, i, axis=0)
train_labels = np.concatenate(train_labels)
m = model(train_features, train_labels)
m.fit(lr, verbose=False, regularization=regularization, eps=eps)
predicted_labels = m.predict(validation_features)
cm = confusion_matrix(validation_labels, predicted_labels)
acc += accuracy(cm)
f1 += f_score(cm)
prec += precision(cm)
rec += true_positive(cm)
cms.append(cm)
if verbose:
print("Accuracy:", acc/k, "Precision:", prec/k, "Recall:", rec/k, "F1:", f1/k)
# Return the accuracy and array of confusion matrices
return acc/k, np.array(cms)
# assume 5 fold for now
def cross_validation_naive(k, df, model, label, cont=[], cat=[], bin=[]):
df = df.copy(deep=True)
np.random.shuffle(df.values)
df = df.reset_index(drop=True)
indices = np.arange(df.shape[0])
indices = np.array_split(indices, k)
acc = 0
f1 = 0
prec = 0
rec = 0
cms = []
for i in range(k):
val = df.loc[indices[i]]
train = df.loc[np.concatenate(np.delete(indices, i, axis=0))]
m = model(train, label, cont, cat, bin)
pred = val.apply(m.predict, axis=1)
cm = confusion_matrix(val[label], pred)
acc += accuracy(cm)
f1 += f_score(cm)
prec += precision(cm)
rec += true_positive(cm)
cms.append(cm)
print("Accuracy:", acc / k, "Precision:", prec / k, "Recall:", rec / k, "F1:", f1 / k)
# Return the accuracy and array of confusion matrices
return acc / k, np.array(cms)
def cv_task_2(k, X, Y, model, lr = 0.5, regularization=0, eps = 1e-2, iterations=200):
# randomize X and Y by shuffling
x, y = shuffle(X, Y)
# split into k folds
x_folds = np.array_split(x, k)
y_folds = np.array_split(y, k)
train_acc_history = np.empty([k, iterations])
val_acc_history = np.empty([k, iterations])
for i in range(k):
val_features = x_folds[i]
val_labels = np.squeeze(y_folds[i])
train_features = np.delete(x_folds, i)
train_features = np.concatenate(train_features)
train_labels = np.delete(y_folds, i, axis=0)
train_labels = np.concatenate(train_labels)
m = model(train_features, train_labels)
costs = []
train_accuracies = []
val_accuracies = []
# Keep on training until difference reached threshold
for j in range(iterations):
# fit model for 1 iteration
cost = m.fit(lr=lr, verbose=False, regularization=regularization, eps=None, epochs=1)
costs.append(cost)
# predict the labels and eval accuracy for train and val split
val_pred_labels = m.predict(val_features)
train_pred_labels = m.predict(train_features)
cm_val = confusion_matrix(val_labels, val_pred_labels)
cm_train = confusion_matrix(train_labels, train_pred_labels)
val_accuracies.append(accuracy(cm_val))
train_accuracies.append(accuracy(cm_train))
# store the costs and accuracies
train_acc_history[i] = np.array(train_accuracies)
val_acc_history[i] = np.array(val_accuracies)
return train_acc_history, val_acc_history
def grid_search(learning_rates, epsilons, lambdas, x, y, model):
max_acc = 0
arg_max = [0,0,0]
for lr in learning_rates:
for eps in epsilons:
for regularization in lambdas:
#print(lr, eps, regularization)
acc, cm = cross_validation(5, x, y, lr=lr, eps=eps, regularization=regularization, model=model, verbose=False)
if acc > max_acc:
max_acc = acc
arg_max = [lr, eps, regularization]
max_cm = cm
f1 = []
prec = []
rec = []
for cm in max_cm:
f1.append(f_score(cm))
prec.append(precision(cm))
rec.append(true_positive(cm))
f1 = np.mean(f1)
prec = np.mean(prec)
rec = np.mean(rec)
print(arg_max)
print("Accuracy:", max_acc, "Precision:", prec, "Recall:", rec, "F1:", f1)
return max_acc, arg_max
|
[
"numpy.mean",
"numpy.delete",
"seaborn.heatmap",
"numpy.squeeze",
"numpy.array_split",
"numpy.array",
"numpy.random.randint",
"numpy.zeros",
"matplotlib.pyplot.figure",
"numpy.random.seed",
"numpy.empty",
"numpy.concatenate",
"pandas.DataFrame",
"numpy.arange",
"numpy.random.shuffle"
] |
[((1018, 1034), 'numpy.zeros', 'np.zeros', (['(2, 2)'], {}), '((2, 2))\n', (1026, 1034), True, 'import numpy as np\n'), ((1142, 1196), 'pandas.DataFrame', 'pd.DataFrame', (['cm'], {'columns': "['0', '1']", 'index': "['0', '1']"}), "(cm, columns=['0', '1'], index=['0', '1'])\n", (1154, 1196), True, 'import pandas as pd\n'), ((1270, 1296), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 3)'}), '(figsize=(5, 3))\n', (1280, 1296), True, 'import matplotlib.pyplot as plt\n'), ((1301, 1378), 'seaborn.heatmap', 'sns.heatmap', (['df_cm'], {'cmap': '"""Blues"""', 'annot': '(True)', 'annot_kws': "{'size': 16}", 'fmt': '"""g"""'}), "(df_cm, cmap='Blues', annot=True, annot_kws={'size': 16}, fmt='g')\n", (1312, 1378), True, 'import seaborn as sns\n'), ((1512, 1539), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10000)'], {}), '(0, 10000)\n', (1529, 1539), True, 'import numpy as np\n'), ((1544, 1564), 'numpy.random.seed', 'np.random.seed', (['rand'], {}), '(rand)\n', (1558, 1564), True, 'import numpy as np\n'), ((1569, 1594), 'numpy.random.shuffle', 'np.random.shuffle', (['x_copy'], {}), '(x_copy)\n', (1586, 1594), True, 'import numpy as np\n'), ((1599, 1619), 'numpy.random.seed', 'np.random.seed', (['rand'], {}), '(rand)\n', (1613, 1619), True, 'import numpy as np\n'), ((1624, 1649), 'numpy.random.shuffle', 'np.random.shuffle', (['y_copy'], {}), '(y_copy)\n', (1641, 1649), True, 'import numpy as np\n'), ((2225, 2245), 'numpy.array_split', 'np.array_split', (['x', 'k'], {}), '(x, k)\n', (2239, 2245), True, 'import numpy as np\n'), ((2260, 2280), 'numpy.array_split', 'np.array_split', (['y', 'k'], {}), '(y, k)\n', (2274, 2280), True, 'import numpy as np\n'), ((3390, 3418), 'numpy.random.shuffle', 'np.random.shuffle', (['df.values'], {}), '(df.values)\n', (3407, 3418), True, 'import numpy as np\n'), ((3469, 3491), 'numpy.arange', 'np.arange', (['df.shape[0]'], {}), '(df.shape[0])\n', (3478, 3491), True, 'import numpy as np\n'), ((3506, 3532), 'numpy.array_split', 'np.array_split', (['indices', 'k'], {}), '(indices, k)\n', (3520, 3532), True, 'import numpy as np\n'), ((4387, 4407), 'numpy.array_split', 'np.array_split', (['x', 'k'], {}), '(x, k)\n', (4401, 4407), True, 'import numpy as np\n'), ((4422, 4442), 'numpy.array_split', 'np.array_split', (['y', 'k'], {}), '(y, k)\n', (4436, 4442), True, 'import numpy as np\n'), ((4468, 4493), 'numpy.empty', 'np.empty', (['[k, iterations]'], {}), '([k, iterations])\n', (4476, 4493), True, 'import numpy as np\n'), ((4516, 4541), 'numpy.empty', 'np.empty', (['[k, iterations]'], {}), '([k, iterations])\n', (4524, 4541), True, 'import numpy as np\n'), ((6602, 6613), 'numpy.mean', 'np.mean', (['f1'], {}), '(f1)\n', (6609, 6613), True, 'import numpy as np\n'), ((6625, 6638), 'numpy.mean', 'np.mean', (['prec'], {}), '(prec)\n', (6632, 6638), True, 'import numpy as np\n'), ((6649, 6661), 'numpy.mean', 'np.mean', (['rec'], {}), '(rec)\n', (6656, 6661), True, 'import numpy as np\n'), ((2436, 2458), 'numpy.squeeze', 'np.squeeze', (['y_folds[i]'], {}), '(y_folds[i])\n', (2446, 2458), True, 'import numpy as np\n'), ((2485, 2514), 'numpy.delete', 'np.delete', (['x_folds', 'i'], {'axis': '(0)'}), '(x_folds, i, axis=0)\n', (2494, 2514), True, 'import numpy as np\n'), ((2540, 2570), 'numpy.concatenate', 'np.concatenate', (['train_features'], {}), '(train_features)\n', (2554, 2570), True, 'import numpy as np\n'), ((2594, 2623), 'numpy.delete', 'np.delete', (['y_folds', 'i'], {'axis': '(0)'}), '(y_folds, i, axis=0)\n', (2603, 2623), True, 'import numpy as np\n'), ((2647, 2675), 'numpy.concatenate', 'np.concatenate', (['train_labels'], {}), '(train_labels)\n', (2661, 2675), True, 'import numpy as np\n'), ((3245, 3258), 'numpy.array', 'np.array', (['cms'], {}), '(cms)\n', (3253, 3258), True, 'import numpy as np\n'), ((4181, 4194), 'numpy.array', 'np.array', (['cms'], {}), '(cms)\n', (4189, 4194), True, 'import numpy as np\n'), ((4622, 4644), 'numpy.squeeze', 'np.squeeze', (['y_folds[i]'], {}), '(y_folds[i])\n', (4632, 4644), True, 'import numpy as np\n'), ((4671, 4692), 'numpy.delete', 'np.delete', (['x_folds', 'i'], {}), '(x_folds, i)\n', (4680, 4692), True, 'import numpy as np\n'), ((4718, 4748), 'numpy.concatenate', 'np.concatenate', (['train_features'], {}), '(train_features)\n', (4732, 4748), True, 'import numpy as np\n'), ((4772, 4801), 'numpy.delete', 'np.delete', (['y_folds', 'i'], {'axis': '(0)'}), '(y_folds, i, axis=0)\n', (4781, 4801), True, 'import numpy as np\n'), ((4825, 4853), 'numpy.concatenate', 'np.concatenate', (['train_labels'], {}), '(train_labels)\n', (4839, 4853), True, 'import numpy as np\n'), ((5760, 5786), 'numpy.array', 'np.array', (['train_accuracies'], {}), '(train_accuracies)\n', (5768, 5786), True, 'import numpy as np\n'), ((5816, 5840), 'numpy.array', 'np.array', (['val_accuracies'], {}), '(val_accuracies)\n', (5824, 5840), True, 'import numpy as np\n'), ((3691, 3720), 'numpy.delete', 'np.delete', (['indices', 'i'], {'axis': '(0)'}), '(indices, i, axis=0)\n', (3700, 3720), True, 'import numpy as np\n')]
|
import math
import random
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from fmt.pythonfmt.doubleintegrator import filter_reachable, gen_trajectory, show_trajectory
from fmt.pythonfmt.world import World
def dist2(p, q):
return math.sqrt((p[1] - q[1]) ** 2 + (p[2] - q[2]) ** 2)
# FMTree class
class FMTree:
# s_init::Vec4f
# s_goal::Vec4f
# N #number of samples
# Pset::Vector{Vec4f} # Point set
# cost::Vector{Float64} #cost
# time::Vector{Float64} #optimal time to connect one node to its parent node
# parent::Vector{Int64} #parent node
# bool_unvisit::BitVector #logical value for Vunvisit
# bool_open::BitVector #logical value for Open
# bool_closed::BitVector #logical value for Closed
# world::World # simulation world config
# itr::Int64 # iteration num
def __init__(self, s_init, s_goal, N, world):
# constructer: sampling valid point from the configurationspace
print("initializing fmt ...")
self.s_init = s_init
self.s_goal = s_goal
self.N = N
self.world = world
self.Pset = np.zeros((N, 4))
self.Pset[0, :] = np.array(s_init)
def myrn(min, max):
return min + (max - min) * random.random()
# 采样N个点
n = 1
while True:
num_ran = 2*N
rp = np.empty((4, num_ran))
rp[0, :] = np.random.default_rng().uniform(self.world.x_min[0], self.world.x_max[0], num_ran)
rp[1, :] = np.random.default_rng().uniform(self.world.x_min[1], self.world.x_max[1], num_ran)
rp[2, :] = np.random.default_rng().uniform(self.world.v_min[0], self.world.v_max[0], num_ran)
rp[3, :] = np.random.default_rng().uniform(self.world.v_min[1], self.world.v_max[1], num_ran)
# p = np.array([myrn(world.x_min[0], world.x_max[0]),
# myrn(world.x_min[1], world.x_max[1]),
# myrn(world.v_min[0], world.v_max[0]),
# myrn(world.v_min[1], world.v_max[1])])
for i_rp in range(0, num_ran):
if self.world.isValid(rp[:, i_rp]):
self.Pset[n, :] = rp[:, i_rp]
n = n + 1
if n == N-1:
break
if n == N-1:
break
self.Pset[-1, :] = np.array(s_goal) # inply idx_goal = N [last] ? 修改為最後一個是終點
self.cost = np.zeros(N)
self.time = np.zeros(N)
self.parent = np.zeros(N, dtype=int)
self.bool_unvisit = np.ones(N, dtype=np.bool_)
self.bool_unvisit[0] = False
self.bool_closed = np.zeros(N, dtype=np.bool_)
self.bool_open = np.zeros(N, dtype=np.bool_)
self.bool_open[0] = True
self.itr = 0
print("finish initializing")
# new(s_init, s_goal,
# N, Pset, cost, time, parent, bool_unvisit, bool_open, bool_closed, world, 0)
def show(self, ax):
print("drawing...")
# 先画障碍物
N = len(self.Pset)
mat = np.zeros((2, N))
for idx in range(0, N):
mat[:, idx] = self.Pset[idx, 0:2]
idxset_open = np.nonzero(self.bool_open)[0]
idxset_closed = np.nonzero(self.bool_closed)[0]
idxset_unvisit = np.nonzero(self.bool_unvisit)[0]
# idxset_tree = setdiff(union(idxset_open, idxset_closed), [1])
idxset_tree = np.concatenate((idxset_closed, idxset_open)) # 没有和原来一样去除 id 1
# 起点,重点,open, close
ax.scatter(mat[0, 0], mat[1, 0], c='blue', s=20, zorder=100)
ax.scatter(mat[0, -1], mat[1, -1], c='blue', s=20, zorder=101)
ax.scatter(mat[0, idxset_open], mat[1, idxset_open], c='orange', s=5)
ax.scatter(mat[0, idxset_closed], mat[1, idxset_closed], c='red', s=5)
# ax.scatter(mat[0, idxset_unvisit], mat[1, idxset_unvisit], c='khaki', s=2)
for idx in idxset_tree:
s0 = self.Pset[self.parent[idx]]
s1 = self.Pset[idx]
tau = self.time[idx]
show_trajectory(s0, s1, tau, N_split=5, ax=ax)
# 起点重点画了第二次?
# ax.scatter(mat[0, 1], mat[1, 1], c='blue', s=20, zorder=100)
# ax.scatter(mat[0, -1], mat[1, -1], c='blue', s=20, zorder=101)
# plt.xlim(this.world.x_min[1]-0.05, this.world.x_max[1]+0.05)
# plt.ylim(this.world.x_min[2]-0.05, this.world.x_max[2]+0.05)
print("finish drawing")
def solve(self, ax=None, show=False, save=False):
# keep extending the node until the tree reaches the goal
print("please set with_savefig=false if you want to measure the computation time")
print("start solving")
while True:
if not self.extend(): # 擴展失敗
break
# if ((self.itr < 100) and (self.itr % 20 == 1)) or (self.itr % 200 == 1):
if self.itr % 40 == 1:
print("itr: ", self.itr)
if ax and show:
# close()
self.show(ax)
plt.pause(1)
if ax and save:
plt.savefig("./fig/" + str(self.itr) + ".png")
# 这里需要通过传递fig解决
if not self.bool_unvisit[-1]:
break
# 無法連接到終點的情況處理待定
idx = -1
idx_solution = [idx]
while True:
idx = self.parent[idx]
idx_solution.append(idx)
if idx == 0:
break
print("finish solving")
return np.array(idx_solution)
def extend(self):
# extend node
self.itr += 1
r = 1.0 # 这是什么参数?
# 此處數據結構可以優化, idxset_open和idxset_unvisit不用每次檢索
idxset_open = np.nonzero(self.bool_open)[0] #這裡莫名返回一個tuple,需要取第一個
if idxset_open.size == 0: #無法再繼續擴展
return False
idxset_unvisit = np.nonzero(self.bool_unvisit)[0]
idx_lowest = idxset_open[np.argmin(self.cost[idxset_open])]
# idx_lowest = idxset_open[findmin(this.cost[idxset_open])[2]]
s_c = self.Pset[idx_lowest, :]
idxset_near, _, _ = filter_reachable(self.Pset, idxset_unvisit,
self.Pset[idx_lowest], r, "F")
for idx_near in idxset_near:
idxset_cand, distset_cand, timeset_cand = filter_reachable(self.Pset, idxset_open,
self.Pset[idx_near], r, "B")
if len(idxset_cand) == 0:
return
idx_costmin = np.argmin(self.cost[idxset_cand] + distset_cand)
cost_new = self.cost[idxset_cand[idx_costmin]] + distset_cand[idx_costmin]
# cost_new, idx_costmin = findmin(this.cost[idxset_cand] + distset_cand)
# optimal time for new connection
time_new = timeset_cand[idx_costmin]
idx_parent = idxset_cand[idx_costmin]
waypoints = gen_trajectory(self.Pset[idx_parent], self.Pset[idx_near], time_new, 10)
if self.world.isValid(waypoints):
self.bool_unvisit[idx_near] = False
self.bool_open[idx_near] = True
self.cost[idx_near] = cost_new
self.time[idx_near] = time_new
self.parent[idx_near] = idx_parent
# print("nonzero cost idx: ", np.nonzero(self.cost))
self.bool_open[idx_lowest] = False
self.bool_closed[idx_lowest] = True
return True
|
[
"numpy.ones",
"numpy.random.default_rng",
"fmt.pythonfmt.doubleintegrator.gen_trajectory",
"fmt.pythonfmt.doubleintegrator.show_trajectory",
"math.sqrt",
"numpy.array",
"numpy.zeros",
"numpy.empty",
"numpy.concatenate",
"numpy.nonzero",
"numpy.argmin",
"random.random",
"matplotlib.pyplot.pause",
"fmt.pythonfmt.doubleintegrator.filter_reachable"
] |
[((263, 313), 'math.sqrt', 'math.sqrt', (['((p[1] - q[1]) ** 2 + (p[2] - q[2]) ** 2)'], {}), '((p[1] - q[1]) ** 2 + (p[2] - q[2]) ** 2)\n', (272, 313), False, 'import math\n'), ((1135, 1151), 'numpy.zeros', 'np.zeros', (['(N, 4)'], {}), '((N, 4))\n', (1143, 1151), True, 'import numpy as np\n'), ((1178, 1194), 'numpy.array', 'np.array', (['s_init'], {}), '(s_init)\n', (1186, 1194), True, 'import numpy as np\n'), ((2399, 2415), 'numpy.array', 'np.array', (['s_goal'], {}), '(s_goal)\n', (2407, 2415), True, 'import numpy as np\n'), ((2478, 2489), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2486, 2489), True, 'import numpy as np\n'), ((2510, 2521), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2518, 2521), True, 'import numpy as np\n'), ((2544, 2566), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'int'}), '(N, dtype=int)\n', (2552, 2566), True, 'import numpy as np\n'), ((2595, 2621), 'numpy.ones', 'np.ones', (['N'], {'dtype': 'np.bool_'}), '(N, dtype=np.bool_)\n', (2602, 2621), True, 'import numpy as np\n'), ((2686, 2713), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'np.bool_'}), '(N, dtype=np.bool_)\n', (2694, 2713), True, 'import numpy as np\n'), ((2739, 2766), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'np.bool_'}), '(N, dtype=np.bool_)\n', (2747, 2766), True, 'import numpy as np\n'), ((3089, 3105), 'numpy.zeros', 'np.zeros', (['(2, N)'], {}), '((2, N))\n', (3097, 3105), True, 'import numpy as np\n'), ((3445, 3489), 'numpy.concatenate', 'np.concatenate', (['(idxset_closed, idxset_open)'], {}), '((idxset_closed, idxset_open))\n', (3459, 3489), True, 'import numpy as np\n'), ((5546, 5568), 'numpy.array', 'np.array', (['idx_solution'], {}), '(idx_solution)\n', (5554, 5568), True, 'import numpy as np\n'), ((6125, 6199), 'fmt.pythonfmt.doubleintegrator.filter_reachable', 'filter_reachable', (['self.Pset', 'idxset_unvisit', 'self.Pset[idx_lowest]', 'r', '"""F"""'], {}), "(self.Pset, idxset_unvisit, self.Pset[idx_lowest], r, 'F')\n", (6141, 6199), False, 'from fmt.pythonfmt.doubleintegrator import filter_reachable, gen_trajectory, show_trajectory\n'), ((1373, 1395), 'numpy.empty', 'np.empty', (['(4, num_ran)'], {}), '((4, num_ran))\n', (1381, 1395), True, 'import numpy as np\n'), ((3207, 3233), 'numpy.nonzero', 'np.nonzero', (['self.bool_open'], {}), '(self.bool_open)\n', (3217, 3233), True, 'import numpy as np\n'), ((3261, 3289), 'numpy.nonzero', 'np.nonzero', (['self.bool_closed'], {}), '(self.bool_closed)\n', (3271, 3289), True, 'import numpy as np\n'), ((3318, 3347), 'numpy.nonzero', 'np.nonzero', (['self.bool_unvisit'], {}), '(self.bool_unvisit)\n', (3328, 3347), True, 'import numpy as np\n'), ((4072, 4118), 'fmt.pythonfmt.doubleintegrator.show_trajectory', 'show_trajectory', (['s0', 's1', 'tau'], {'N_split': '(5)', 'ax': 'ax'}), '(s0, s1, tau, N_split=5, ax=ax)\n', (4087, 4118), False, 'from fmt.pythonfmt.doubleintegrator import filter_reachable, gen_trajectory, show_trajectory\n'), ((5741, 5767), 'numpy.nonzero', 'np.nonzero', (['self.bool_open'], {}), '(self.bool_open)\n', (5751, 5767), True, 'import numpy as np\n'), ((5886, 5915), 'numpy.nonzero', 'np.nonzero', (['self.bool_unvisit'], {}), '(self.bool_unvisit)\n', (5896, 5915), True, 'import numpy as np\n'), ((5952, 5985), 'numpy.argmin', 'np.argmin', (['self.cost[idxset_open]'], {}), '(self.cost[idxset_open])\n', (5961, 5985), True, 'import numpy as np\n'), ((6337, 6406), 'fmt.pythonfmt.doubleintegrator.filter_reachable', 'filter_reachable', (['self.Pset', 'idxset_open', 'self.Pset[idx_near]', 'r', '"""B"""'], {}), "(self.Pset, idxset_open, self.Pset[idx_near], r, 'B')\n", (6353, 6406), False, 'from fmt.pythonfmt.doubleintegrator import filter_reachable, gen_trajectory, show_trajectory\n'), ((6565, 6613), 'numpy.argmin', 'np.argmin', (['(self.cost[idxset_cand] + distset_cand)'], {}), '(self.cost[idxset_cand] + distset_cand)\n', (6574, 6613), True, 'import numpy as np\n'), ((6955, 7027), 'fmt.pythonfmt.doubleintegrator.gen_trajectory', 'gen_trajectory', (['self.Pset[idx_parent]', 'self.Pset[idx_near]', 'time_new', '(10)'], {}), '(self.Pset[idx_parent], self.Pset[idx_near], time_new, 10)\n', (6969, 7027), False, 'from fmt.pythonfmt.doubleintegrator import filter_reachable, gen_trajectory, show_trajectory\n'), ((1263, 1278), 'random.random', 'random.random', ([], {}), '()\n', (1276, 1278), False, 'import random\n'), ((1419, 1442), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (1440, 1442), True, 'import numpy as np\n'), ((1525, 1548), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (1546, 1548), True, 'import numpy as np\n'), ((1631, 1654), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (1652, 1654), True, 'import numpy as np\n'), ((1737, 1760), 'numpy.random.default_rng', 'np.random.default_rng', ([], {}), '()\n', (1758, 1760), True, 'import numpy as np\n'), ((5077, 5089), 'matplotlib.pyplot.pause', 'plt.pause', (['(1)'], {}), '(1)\n', (5086, 5089), True, 'import matplotlib.pyplot as plt\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 27 23:58:37 2020
@author: manal
"""
import numpy as np
import GPy
from GPy.kern.src.stationary import Stationary
class Cosine_prod(Stationary):
"""
Cosine kernel:
Product of 1D Cosine kernels
.. math::
&k(x,x')_i = \sigma^2 \prod_{j=1}^{dimension} \cos(x_{i,j}-x_{i,j}')
&x,x' \in \mathcal{M}_{n,dimension}
&k \in \mathcal{M}_{n,n}
"""
def __init__(self, input_dim, variance=1., lengthscale=None, ARD=False, active_dims=None, name='Cosine_prod'):
super(Cosine_prod, self).__init__(input_dim, variance, lengthscale, ARD, active_dims, name)
def K_of_r(self, dist):
n = dist.shape[2]
p = 1
# l = self.lengthscale
for k in range(n):
p*= np.cos(dist[:,:,k])#/l)
return self.variance * p
def K(self, X, X2):
dist = X[:,None,:]-X2[None,:,:]
return self.K_of_r(dist)
def dK_dr(self,dist,dimX):
n = dist.shape[2]
m = dist.shape[0]
# l = self.lengthscale
dK = np.zeros((m,m,n))
for i in range(n):
dK[:,:,i]= np.cos(dist[:,:,i])#/l)
dK[:,:,dimX] = -np.sin(dist[:,:,dimX])#/l)
return self.variance * np.prod(dK,2)#/l
def dK_dX(self, X, X2, dimX):
dist = X[:,None,:]-X2[None,:,:]
dK_dr = self.dK_dr(dist,dimX)
return dK_dr
def dK_dX2(self,X,X2,dimX2):
return -self.dK_dX(X,X2, dimX2)
def dK2_dXdX2(self, X, X2, dimX, dimX2):
dist = X[:,None,:]-X2[None,:,:]
K = self.K_of_r(dist)
n = dist.shape[2]
m = dist.shape[0]
# l = self.lengthscale
dK = np.zeros((m,m,n))
for i in range(n):
dK[:,:,i]= np.cos(dist[:,:,i])#/l)
dK[:,:,dimX] = np.sin(dist[:,:,dimX])#/l)
dK[:,:,dimX2] = np.sin(dist[:,:,dimX2])#/l)
return ((dimX==dimX2)*K - (dimX!=dimX2)*np.prod(dK,2))#/(l**2)
|
[
"numpy.sin",
"numpy.prod",
"numpy.zeros",
"numpy.cos"
] |
[((1126, 1145), 'numpy.zeros', 'np.zeros', (['(m, m, n)'], {}), '((m, m, n))\n', (1134, 1145), True, 'import numpy as np\n'), ((1749, 1768), 'numpy.zeros', 'np.zeros', (['(m, m, n)'], {}), '((m, m, n))\n', (1757, 1768), True, 'import numpy as np\n'), ((1864, 1888), 'numpy.sin', 'np.sin', (['dist[:, :, dimX]'], {}), '(dist[:, :, dimX])\n', (1870, 1888), True, 'import numpy as np\n'), ((1915, 1940), 'numpy.sin', 'np.sin', (['dist[:, :, dimX2]'], {}), '(dist[:, :, dimX2])\n', (1921, 1940), True, 'import numpy as np\n'), ((839, 860), 'numpy.cos', 'np.cos', (['dist[:, :, k]'], {}), '(dist[:, :, k])\n', (845, 860), True, 'import numpy as np\n'), ((1194, 1215), 'numpy.cos', 'np.cos', (['dist[:, :, i]'], {}), '(dist[:, :, i])\n', (1200, 1215), True, 'import numpy as np\n'), ((1242, 1266), 'numpy.sin', 'np.sin', (['dist[:, :, dimX]'], {}), '(dist[:, :, dimX])\n', (1248, 1266), True, 'import numpy as np\n'), ((1300, 1314), 'numpy.prod', 'np.prod', (['dK', '(2)'], {}), '(dK, 2)\n', (1307, 1314), True, 'import numpy as np\n'), ((1817, 1838), 'numpy.cos', 'np.cos', (['dist[:, :, i]'], {}), '(dist[:, :, i])\n', (1823, 1838), True, 'import numpy as np\n'), ((1991, 2005), 'numpy.prod', 'np.prod', (['dK', '(2)'], {}), '(dK, 2)\n', (1998, 2005), True, 'import numpy as np\n')]
|
import numpy as np
import sys
import cv2
sys.path.append("../")
from utils.config import config
class TestLoader:
def __init__(self, imdb, batch_size=1, shuffle=False):
self.imdb = imdb
self.batch_size = batch_size
self.shuffle = shuffle
self.size = len(imdb)#num of data
self.cur = 0
self.data = None
self.label = None
self.reset()
self.get_batch()
def reset(self):
self.cur = 0
if self.shuffle:
np.random.shuffle(self.imdb)
def iter_next(self):
return self.cur + self.batch_size <= self.size
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
if self.iter_next():
self.get_batch()
self.cur += self.batch_size
return self.data
else:
raise StopIteration
def getindex(self):
return self.cur / self.batch_size
def getpad(self):
if self.cur + self.batch_size > self.size:
return self.cur + self.batch_size - self.size
else:
return 0
def get_batch(self):
imdb = self.imdb[self.cur]
im = cv2.imread(imdb)
self.data = im
|
[
"numpy.random.shuffle",
"sys.path.append",
"cv2.imread"
] |
[((41, 63), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (56, 63), False, 'import sys\n'), ((1226, 1242), 'cv2.imread', 'cv2.imread', (['imdb'], {}), '(imdb)\n', (1236, 1242), False, 'import cv2\n'), ((516, 544), 'numpy.random.shuffle', 'np.random.shuffle', (['self.imdb'], {}), '(self.imdb)\n', (533, 544), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""Nowruz at SemEval 2022: Tackling Cloze Tests with Transformers and Ordinal Regression
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1RXkjBpzNJtc0WhhrKMjU-50rd5uSviX3
"""
import torch
import torch.nn as nn
from torch.functional import F
from datasets import Dataset
import transformers as ts
from transformers import AutoTokenizer , AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
from transformers import DataCollatorWithPadding
from transformers import create_optimizer
from transformers.file_utils import ModelOutput
from transformers.modeling_outputs import SequenceClassifierOutput
from coral_pytorch.layers import CoralLayer
from coral_pytorch.losses import coral_loss
from coral_pytorch.dataset import levels_from_labelbatch
from coral_pytorch.dataset import proba_to_label
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import pandas as pd
from scipy import stats
import sys
from data_loader import (
retrieve_instances_from_dataset,
retrieve_labels_from_dataset_for_classification,
retrieve_labels_from_dataset_for_ranking,
write_predictions_to_file,
)
"""#Preparing Data"""
def loadDataset(dataPath , labelPath=None , scoresPath=None):
dataset = pd.read_csv(dataPath, sep="\t", quoting=3)
ids , sentences , fillers = retrieve_instances_from_dataset(dataset)
#Creating dictionaries to convert datas to Huggingface Dataset
datasetDict = {
"id": ids,
"sentence": sentences,
"filler": fillers,
}
labels = None
if labelPath != None:
labels = pd.read_csv(labelPath, sep="\t", header=None, names=["Id", "Label"])
labels = retrieve_labels_from_dataset_for_classification(labels)
datasetDict["labels"] = labels
scores = None
if scoresPath != None:
scores = pd.read_csv(scoresPath, sep="\t", header=None, names=["Id", "Label"])
scores = retrieve_labels_from_dataset_for_ranking(scores)
datasetDict["scores"] = scores
#Removing Periods if fillers appear at the end of the sentence (because if we don't period will be considered last word piece of the filler)
for index , _ in enumerate(fillers):
fillers[index].replace("." , "")
#Creating Huggingface Datasets from Dictionaries
dataset = Dataset.from_dict(datasetDict)
return dataset
"""#Preprocessing"""
def preprocessDataset(dataset , tokenizer):
def addToDict(dict_1 , dict_2 , columns_1=[] , columns_2=["input_ids" , "attention_mask"]):
for item_1 , item_2 in zip(columns_1 , columns_2):
dict_1[item_1] = dict_2.pop(item_2)
def mappingFunction(dataset):
outputDict = {}
cleanedSentence = dataset["sentence"].replace("\n" , " ").replace("(...)" , "").strip()
sentenceWithFiller = cleanedSentence.replace("[MASK]" , dataset["filler"].strip()).strip()
tokenized_sentence = tokenizer(sentenceWithFiller)
addToDict(outputDict , tokenized_sentence , ["input_ids" , "attention_mask"])
#Getting the index of the last word piece of the filler
if "cls_token" in tokenizer.special_tokens_map.keys():
filler_indecies = len(tokenizer(tokenizer.special_tokens_map["cls_token"] + " " + cleanedSentence.split("[MASK]")[0].strip() + " " + dataset["filler"].strip() , add_special_tokens=False)["input_ids"]) - 1
elif "bos_token" in tokenizer.special_tokens_map.keys():
filler_indecies = len(tokenizer(tokenizer.special_tokens_map["bos_token"] + " " + cleanedSentence.split("[MASK]")[0].strip() + " " + dataset["filler"].strip() , add_special_tokens=False)["input_ids"]) - 1
else:
filler_indecies = len(tokenizer(cleanedSentence.split("[MASK]")[0].strip() + " " + dataset["filler"].strip() , add_special_tokens=False)["input_ids"]) - 1
outputDict["filler_indecies"] = filler_indecies
return outputDict
return dataset.map(mappingFunction , batched=False)
"""#Model Definition"""
@dataclass
class CustomOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
classificationOutput: torch.FloatTensor = None
regressionOutput: torch.FloatTensor = None
class SequenceClassificationModel(nn.Module):
def __init__(self,
encoder,
dim,
use_coral=False,
use_cls=True,
supportPooledRepresentation=False,
mode="both",
num_labels=3,
num_ranks=5,
lambda_c=0.5,
lambda_r=0.5,
dropout_rate=0.2):
super().__init__()
#mode can be one of these: ["both" , "classification" , "regression"]
self.encoder = encoder
self.dim = dim
self.use_coral = use_coral
self.use_cls = use_cls
self.supportPooledRepresentation = supportPooledRepresentation
self.mode = mode
self.num_labels = num_labels
self.num_ranks = num_ranks
self.lambda_c = lambda_c
self.lambda_r = lambda_r
self.dropout_rate = dropout_rate
if self.use_cls:
self.pre_classifier = nn.Linear(self.dim*2 , self.dim , bias=True)
else:
self.pre_classifier = nn.Linear(self.dim , self.dim , bias=True)
self.dropout = nn.Dropout(p=self.dropout_rate , inplace=False)
self.regressionHead = CoralLayer(self.dim , self.num_ranks)
if use_coral:
self.classificationHead = CoralLayer(self.dim , self.num_labels)
else:
self.classificationHead = nn.Linear(self.dim , self.num_labels , bias=True)
def forward(
self,
input_ids,
attention_mask,
filler_indecies,
labels=None,
scores=None,
**args):
device = self.encoder.device
# Getting fillers representation from pre-trained transformer (encoder)
sentence_embedding = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
)
#Getting Fillers Representation
filler_tokens = sentence_embedding[0][filler_indecies[0] , filler_indecies[1]]
fillers = filler_tokens[: , 0 , :]
#Concatenating [CLS] output with Filler output if the model supports [CLS]
pooled_output = None
if self.use_cls:
if self.supportPooledRepresentation:
pooled_output = torch.concat((sentence_embedding[1] , fillers) , dim=-1)
else:
pooled_output = torch.concat((sentence_embedding[0][: , 0 , :] , fillers) , dim=-1)
else:
pooled_output = fillers
#Passing Pooled Output to another dense layer followed by activation function and dropout
pooled_output = self.pre_classifier(pooled_output)
pooled_output = nn.GELU()(pooled_output)
pooled_output = self.dropout(pooled_output)
#Passing the final output to the classificationHead and RegressionHead
classificationOutput = self.classificationHead(pooled_output)
regressionOutput = self.regressionHead(pooled_output)
totalLoss = None
classification_loss = None
regression_loss = None
#Computing classification loss
if labels != None and (self.mode.lower() == "both" or self.mode.lower() == "classification"):
if self.use_coral:
levels = levels_from_labelbatch(labels.view(-1) , self.num_labels).to(device)
classification_loss = coral_loss(classificationOutput.view(-1 , self.num_labels - 1) , levels.view(-1 , self.num_labels - 1))
else:
loss_fct = nn.CrossEntropyLoss()
classification_loss = loss_fct(classificationOutput.view(-1 , self.num_labels) , labels.view(-1))
#Computing regression loss
if scores != None and (self.mode.lower() == "both" or self.mode.lower() == "regression"):
levels = levels_from_labelbatch(scores.view(-1) , self.num_ranks).to(device)
regression_loss = coral_loss(regressionOutput.view(-1 , self.num_ranks - 1) , levels.view(-1 , self.num_ranks - 1))
if self.mode.lower() == "both" and (labels != None and scores != None):
totalLoss = (self.lambda_c * classification_loss) + (self.lambda_r * regression_loss)
elif self.mode.lower() == "classification" and labels != None:
totalLoss = classification_loss
elif self.mode.lower() == "regression" and scores != None:
totalLoss = regression_loss
outputs = torch.concat((classificationOutput , regressionOutput) , dim=-1)
finalClassificationOutput = torch.sigmoid(classificationOutput)
finalRegressionOutput = torch.sigmoid(regressionOutput)
finalClassificationOutput = proba_to_label(finalClassificationOutput.cpu().detach()).numpy()
finalRegressionOutput = torch.sum(finalRegressionOutput.cpu().detach() , dim=-1).numpy() + 1
return CustomOutput(
loss=totalLoss,
logits=outputs,
classificationOutput=finalClassificationOutput,
regressionOutput=finalRegressionOutput,
)
def model_init(encoderPath=None,
dimKey=None,
customEncoder=None,
customDim=None,
mode="both",
use_coral=True,
use_cls=True,
supportPooledRepresentation=False,
freezeEmbedding=True,
num_labels=3,
num_ranks=5,
lambda_c=0.5,
lambda_r=0.5,
dropout_rate=0.2,):
encoder = ts.AutoModel.from_pretrained(encoderPath) if encoderPath != None else customEncoder
dim = encoder.config.to_dict()[dimKey] if dimKey != None else customDim
model = SequenceClassificationModel(
encoder,
dim,
use_coral=use_coral,
use_cls=use_cls,
supportPooledRepresentation=supportPooledRepresentation,
mode=mode,
num_labels=num_labels,
num_ranks=num_ranks,
lambda_c=lambda_c,
lambda_r=lambda_r,
dropout_rate=dropout_rate,
)
try:
if freezeEmbedding:
for param in model.encoder.embeddings.parameters():
param.requires_grad = False
except:
print("The embedding layer name is different in this model, try to find the name of the emebdding layer and freeze it manually")
return model
def makeTrainer(model,
trainDataset,
data_collator,
tokenizer,
outputsPath,
learning_rate=1.90323e-05,
scheduler="cosine",
save_steps=5000,
batch_size=8,
num_epochs=5,
weight_decay=0.00123974,
roundingType="F"):
def data_collator_fn(items , columns=[]):
data_collator_input = {
"input_ids": items[columns[0]],
"attention_mask": items[columns[1]]
}
result = data_collator(data_collator_input)
items[columns[0]] = result["input_ids"]
items[columns[1]] = result["attention_mask"]
def collate_function(items):
outputDict = {
key: [] for key in items[0].keys()
}
for item in items:
for key in item.keys():
outputDict[key].append(item[key])
data_collator_fn(outputDict , ["input_ids" , "attention_mask"])
#Removing unnecessary Items from outputDict
columns = ["sentence" , "filler" , "id"]
for item in columns:
try:
outputDict.pop(item)
except:
pass
#Adding New Columns
if "labels" in outputDict.keys():
outputDict["labels"] = torch.tensor(outputDict.pop("labels"))
if "scores" in outputDict.keys():
if roundingType == "F":
outputDict["scores"] = torch.tensor(outputDict.pop("scores") , dtype=torch.int32) - 1
elif roundingType == "R":
outputDict["scores"] = torch.tensor([round(score) for score in outputDict.pop("scores")] , dtype=torch.int32) - 1
filler_indecies = torch.tensor(outputDict.pop("filler_indecies")).view(-1 , 1)
outputDict["filler_indecies"] = (torch.arange(filler_indecies.shape[0]).view(-1 , 1) , filler_indecies)
return outputDict
training_args = TrainingArguments(
outputsPath,
learning_rate= learning_rate,
lr_scheduler_type=scheduler,
save_steps=save_steps,
per_device_train_batch_size=batch_size,
num_train_epochs=num_epochs,
weight_decay=weight_decay,
remove_unused_columns=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=trainDataset,
tokenizer=tokenizer,
data_collator=collate_function,
)
return trainer , collate_function
"""#Evaluating on Val Dataset"""
def evaluateModel(
model,
dataset,
collate_function,
):
model.eval()
#Passing the inputs through model
labels = []
scores = []
for item in dataset:
sample_input = collate_function([item])
outputs = model(input_ids=sample_input["input_ids"].to(model.encoder.device),
attention_mask=sample_input["attention_mask"].to(model.encoder.device),
filler_indecies=sample_input["filler_indecies"],
scores=None)
labels.append(outputs["classificationOutput"][0])
scores.append(outputs["regressionOutput"][0])
#Computing Accuracy
count = 0
correctCount = 0
for prediction , target in zip(labels , dataset["labels"]):
count += 1
correctCount += 1 if prediction == target else 0
accuracy = (correctCount / count)
#Computing Spearman
scores = np.array(scores , dtype=np.float32)
valScores = np.array(dataset["scores"] , dtype=np.float32)
spearman = stats.spearmanr(scores.reshape(-1 , 1) , valScores.reshape(-1 , 1))
return (labels , scores) , accuracy , spearman
"""#Making Predictions on Test Dataset"""
def predictOnTestDataset(
model,
dataset,
collate_function,
labelsPath=None,
scoresPath=None,
):
model.eval()
ids = []
classification_predictions = []
ranking_predictions = []
for item in dataset:
sample_input = collate_function([item])
outputs = model(input_ids=sample_input["input_ids"].to(model.encoder.device),
attention_mask=sample_input["attention_mask"].to(model.encoder.device),
filler_indecies=sample_input["filler_indecies"],
scores=None,
labels=None)
ids.append(item["id"])
classification_predictions.append(outputs["classificationOutput"][0])
ranking_predictions.append(outputs["regressionOutput"][0])
if labelsPath != None:
open(labelsPath , mode="wb")
write_predictions_to_file(labelsPath , ids , classification_predictions , "classification")
if scoresPath != None:
open(scoresPath , mode="wb")
write_predictions_to_file(scoresPath , ids , ranking_predictions , "ranking")
return ids , classification_predictions , ranking_predictions
"""#Inference"""
def inference(
model,
sentences,
fillers,
tokenizer,
collate_function
):
model.eval()
datasetDict = {
"sentence": sentences,
"filler": fillers,
}
dataset = Dataset.from_dict(datasetDict)
tokenizedDataset = preprocessDataset(dataset , tokenizer)
finalInput = collate_function(tokenizedDataset)
outputs = model(
input_ids=finalInput["input_ids"].to(model.encoder.device),
attention_mask=finalInput["attention_mask"].to(model.encoder.device),
filler_indecies=finalInput["filler_indecies"],
)
finalLabels = []
for item in outputs["classificationOutput"].reshape(-1):
if item == 0:
finalLabels.append("Implausible")
elif item == 1:
finalLabels.append("Neutral")
elif item == 2:
finalLabels.append("Plausible")
finalLabels = np.array(finalLabels)
return {
"labels": finalLabels,
"scores": outputs["regressionOutput"],
}
|
[
"transformers.AutoModel.from_pretrained",
"torch.nn.Dropout",
"torch.nn.GELU",
"transformers.TrainingArguments",
"pandas.read_csv",
"torch.nn.CrossEntropyLoss",
"datasets.Dataset.from_dict",
"torch.sigmoid",
"data_loader.retrieve_labels_from_dataset_for_classification",
"numpy.array",
"data_loader.retrieve_instances_from_dataset",
"coral_pytorch.layers.CoralLayer",
"data_loader.retrieve_labels_from_dataset_for_ranking",
"torch.concat",
"torch.nn.Linear",
"transformers.Trainer",
"torch.arange",
"data_loader.write_predictions_to_file"
] |
[((1360, 1402), 'pandas.read_csv', 'pd.read_csv', (['dataPath'], {'sep': '"""\t"""', 'quoting': '(3)'}), "(dataPath, sep='\\t', quoting=3)\n", (1371, 1402), True, 'import pandas as pd\n'), ((1436, 1476), 'data_loader.retrieve_instances_from_dataset', 'retrieve_instances_from_dataset', (['dataset'], {}), '(dataset)\n', (1467, 1476), False, 'from data_loader import retrieve_instances_from_dataset, retrieve_labels_from_dataset_for_classification, retrieve_labels_from_dataset_for_ranking, write_predictions_to_file\n'), ((2373, 2403), 'datasets.Dataset.from_dict', 'Dataset.from_dict', (['datasetDict'], {}), '(datasetDict)\n', (2390, 2403), False, 'from datasets import Dataset\n'), ((12310, 12558), 'transformers.TrainingArguments', 'TrainingArguments', (['outputsPath'], {'learning_rate': 'learning_rate', 'lr_scheduler_type': 'scheduler', 'save_steps': 'save_steps', 'per_device_train_batch_size': 'batch_size', 'num_train_epochs': 'num_epochs', 'weight_decay': 'weight_decay', 'remove_unused_columns': '(False)'}), '(outputsPath, learning_rate=learning_rate,\n lr_scheduler_type=scheduler, save_steps=save_steps,\n per_device_train_batch_size=batch_size, num_train_epochs=num_epochs,\n weight_decay=weight_decay, remove_unused_columns=False)\n', (12327, 12558), False, 'from transformers import TrainingArguments, Trainer\n'), ((12615, 12740), 'transformers.Trainer', 'Trainer', ([], {'model': 'model', 'args': 'training_args', 'train_dataset': 'trainDataset', 'tokenizer': 'tokenizer', 'data_collator': 'collate_function'}), '(model=model, args=training_args, train_dataset=trainDataset,\n tokenizer=tokenizer, data_collator=collate_function)\n', (12622, 12740), False, 'from transformers import TrainingArguments, Trainer\n'), ((13701, 13735), 'numpy.array', 'np.array', (['scores'], {'dtype': 'np.float32'}), '(scores, dtype=np.float32)\n', (13709, 13735), True, 'import numpy as np\n'), ((13751, 13796), 'numpy.array', 'np.array', (["dataset['scores']"], {'dtype': 'np.float32'}), "(dataset['scores'], dtype=np.float32)\n", (13759, 13796), True, 'import numpy as np\n'), ((15307, 15337), 'datasets.Dataset.from_dict', 'Dataset.from_dict', (['datasetDict'], {}), '(datasetDict)\n', (15324, 15337), False, 'from datasets import Dataset\n'), ((15936, 15957), 'numpy.array', 'np.array', (['finalLabels'], {}), '(finalLabels)\n', (15944, 15957), True, 'import numpy as np\n'), ((1693, 1761), 'pandas.read_csv', 'pd.read_csv', (['labelPath'], {'sep': '"""\t"""', 'header': 'None', 'names': "['Id', 'Label']"}), "(labelPath, sep='\\t', header=None, names=['Id', 'Label'])\n", (1704, 1761), True, 'import pandas as pd\n'), ((1775, 1830), 'data_loader.retrieve_labels_from_dataset_for_classification', 'retrieve_labels_from_dataset_for_classification', (['labels'], {}), '(labels)\n', (1822, 1830), False, 'from data_loader import retrieve_instances_from_dataset, retrieve_labels_from_dataset_for_classification, retrieve_labels_from_dataset_for_ranking, write_predictions_to_file\n'), ((1922, 1991), 'pandas.read_csv', 'pd.read_csv', (['scoresPath'], {'sep': '"""\t"""', 'header': 'None', 'names': "['Id', 'Label']"}), "(scoresPath, sep='\\t', header=None, names=['Id', 'Label'])\n", (1933, 1991), True, 'import pandas as pd\n'), ((2005, 2053), 'data_loader.retrieve_labels_from_dataset_for_ranking', 'retrieve_labels_from_dataset_for_ranking', (['scores'], {}), '(scores)\n', (2045, 2053), False, 'from data_loader import retrieve_instances_from_dataset, retrieve_labels_from_dataset_for_classification, retrieve_labels_from_dataset_for_ranking, write_predictions_to_file\n'), ((5273, 5319), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'self.dropout_rate', 'inplace': '(False)'}), '(p=self.dropout_rate, inplace=False)\n', (5283, 5319), True, 'import torch.nn as nn\n'), ((5348, 5384), 'coral_pytorch.layers.CoralLayer', 'CoralLayer', (['self.dim', 'self.num_ranks'], {}), '(self.dim, self.num_ranks)\n', (5358, 5384), False, 'from coral_pytorch.layers import CoralLayer\n'), ((8287, 8349), 'torch.concat', 'torch.concat', (['(classificationOutput, regressionOutput)'], {'dim': '(-1)'}), '((classificationOutput, regressionOutput), dim=-1)\n', (8299, 8349), False, 'import torch\n'), ((8385, 8420), 'torch.sigmoid', 'torch.sigmoid', (['classificationOutput'], {}), '(classificationOutput)\n', (8398, 8420), False, 'import torch\n'), ((8449, 8480), 'torch.sigmoid', 'torch.sigmoid', (['regressionOutput'], {}), '(regressionOutput)\n', (8462, 8480), False, 'import torch\n'), ((9335, 9376), 'transformers.AutoModel.from_pretrained', 'ts.AutoModel.from_pretrained', (['encoderPath'], {}), '(encoderPath)\n', (9363, 9376), True, 'import transformers as ts\n'), ((14787, 14879), 'data_loader.write_predictions_to_file', 'write_predictions_to_file', (['labelsPath', 'ids', 'classification_predictions', '"""classification"""'], {}), "(labelsPath, ids, classification_predictions,\n 'classification')\n", (14812, 14879), False, 'from data_loader import retrieve_instances_from_dataset, retrieve_labels_from_dataset_for_classification, retrieve_labels_from_dataset_for_ranking, write_predictions_to_file\n'), ((14944, 15018), 'data_loader.write_predictions_to_file', 'write_predictions_to_file', (['scoresPath', 'ids', 'ranking_predictions', '"""ranking"""'], {}), "(scoresPath, ids, ranking_predictions, 'ranking')\n", (14969, 15018), False, 'from data_loader import retrieve_instances_from_dataset, retrieve_labels_from_dataset_for_classification, retrieve_labels_from_dataset_for_ranking, write_predictions_to_file\n'), ((5127, 5171), 'torch.nn.Linear', 'nn.Linear', (['(self.dim * 2)', 'self.dim'], {'bias': '(True)'}), '(self.dim * 2, self.dim, bias=True)\n', (5136, 5171), True, 'import torch.nn as nn\n'), ((5210, 5250), 'torch.nn.Linear', 'nn.Linear', (['self.dim', 'self.dim'], {'bias': '(True)'}), '(self.dim, self.dim, bias=True)\n', (5219, 5250), True, 'import torch.nn as nn\n'), ((5437, 5474), 'coral_pytorch.layers.CoralLayer', 'CoralLayer', (['self.dim', 'self.num_labels'], {}), '(self.dim, self.num_labels)\n', (5447, 5474), False, 'from coral_pytorch.layers import CoralLayer\n'), ((5518, 5565), 'torch.nn.Linear', 'nn.Linear', (['self.dim', 'self.num_labels'], {'bias': '(True)'}), '(self.dim, self.num_labels, bias=True)\n', (5527, 5565), True, 'import torch.nn as nn\n'), ((6673, 6682), 'torch.nn.GELU', 'nn.GELU', ([], {}), '()\n', (6680, 6682), True, 'import torch.nn as nn\n'), ((6296, 6350), 'torch.concat', 'torch.concat', (['(sentence_embedding[1], fillers)'], {'dim': '(-1)'}), '((sentence_embedding[1], fillers), dim=-1)\n', (6308, 6350), False, 'import torch\n'), ((6389, 6452), 'torch.concat', 'torch.concat', (['(sentence_embedding[0][:, 0, :], fillers)'], {'dim': '(-1)'}), '((sentence_embedding[0][:, 0, :], fillers), dim=-1)\n', (6401, 6452), False, 'import torch\n'), ((7442, 7463), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (7461, 7463), True, 'import torch.nn as nn\n'), ((12196, 12234), 'torch.arange', 'torch.arange', (['filler_indecies.shape[0]'], {}), '(filler_indecies.shape[0])\n', (12208, 12234), False, 'import torch\n')]
|
"""Tests for the bradley_terry module"""
# Copyright 2019 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import unittest
from ..bradley_terry import get_bt_summation_terms, get_bt_derivatives, sum
from .assertions import assert_close
class TestBradleyTerryFunctions(unittest.TestCase):
"""Tests for functions in the bradley_terry module"""
def setUp(self):
np.seterr(all="raise")
self.assert_close = assert_close.__get__(self, self.__class__)
def test_get_bt_summation_terms(self):
"""Test get_bt_summation_terms()"""
gamma = np.array([1.0, 2.0])
adversary_gamma = np.array([1.0, 2.0])
d1, d2 = get_bt_summation_terms(gamma, adversary_gamma)
self.assert_close([0.5, 0.5], d1, "d1")
self.assert_close([0.25, 0.25], d2, "d2")
def test_sum(self):
"""Test sum()"""
x = np.array([1.0, 2.0, 4.0, 8.0])
self.assertEqual(15.0, sum(x, 0, 4))
self.assertEqual(0.0, sum(x, 0, 0))
self.assertEqual(6.0, sum(x, 1, 3))
self.assertEqual(7.0, sum(x, 0, 3))
def test_sum(self):
"""Test sum() error compensation"""
x = np.full([10], 0.1)
self.assertEqual(1.0, sum(x, 0, 10))
x = np.array([1e100, -1.0, -1e100, 1.0])
self.assertEqual(0.0, sum(x, 0, 4))
x = np.array([1e100, 1.0, -1e100, 1.0])
self.assertEqual(2.0, sum(x, 0, 4))
def test_get_bt_derivatives_single_win(self):
"""Test get_bt_derivatives() with a single win"""
slices = [(0, 1)]
wins = np.array([1.0])
gamma = np.array([1.0])
adversary_gamma = np.array([1.0])
d1, d2 = get_bt_derivatives(slices, wins, gamma, adversary_gamma)
self.assert_close([0.5], d1, "d1")
self.assert_close([-0.25], d2, "d2")
def test_get_bt_derivatives_single_loss(self):
"""Test get_bt_derivatives() with a single loss"""
slices = [(0, 1)]
wins = np.array([0.0])
gamma = np.array([1.0])
adversary_gamma = np.array([1.0])
d1, d2 = get_bt_derivatives(slices, wins, gamma, adversary_gamma)
self.assert_close([-0.5], d1, "d1")
self.assert_close([-0.25], d2, "d2")
def test_get_bt_derivatives_four_losses(self):
"""Test get_bt_derivatives() with four losses"""
slices = [(0, 4)]
wins = np.array([0.0])
gamma = np.array([4.0, 4.0, 4.0, 4.0])
adversary_gamma = np.array([1.0, 1.0, 1.0, 1.0])
d1, d2 = get_bt_derivatives(slices, wins, gamma, adversary_gamma)
self.assert_close([-3.2], d1, "d1")
self.assert_close([-0.64], d2, "d2")
def test_get_bt_derivatives_no_ascents(self):
"""Test get_bt_derivatives() with no ascents"""
slices = [(0, 0)]
wins = np.array([])
gamma = np.array([])
adversary_gamma = np.array([])
d1, d2 = get_bt_derivatives(slices, wins, gamma, adversary_gamma)
self.assert_close([0.0], d1, "d1")
self.assert_close([0.0], d2, "d2")
def test_get_bt_derivatives(self):
"""Test get_bt_derivatives() with multiple slices"""
slices = [(0, 1), (1, 4)]
wins = np.array([1.0, 2.0])
gamma = np.array([6.0, 4.0, 4.0, 4.0])
adversary_gamma = np.array([6.0, 4.0, 12.0, 12.0])
d1, d2 = get_bt_derivatives(slices, wins, gamma, adversary_gamma)
self.assert_close([0.5, 1.0], d1, "d1")
self.assert_close([-0.25, -0.625], d2, "d2")
|
[
"numpy.array",
"numpy.seterr",
"numpy.full"
] |
[((903, 925), 'numpy.seterr', 'np.seterr', ([], {'all': '"""raise"""'}), "(all='raise')\n", (912, 925), True, 'import numpy as np\n'), ((1101, 1121), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (1109, 1121), True, 'import numpy as np\n'), ((1148, 1168), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (1156, 1168), True, 'import numpy as np\n'), ((1393, 1423), 'numpy.array', 'np.array', (['[1.0, 2.0, 4.0, 8.0]'], {}), '([1.0, 2.0, 4.0, 8.0])\n', (1401, 1423), True, 'import numpy as np\n'), ((1682, 1700), 'numpy.full', 'np.full', (['[10]', '(0.1)'], {}), '([10], 0.1)\n', (1689, 1700), True, 'import numpy as np\n'), ((1758, 1796), 'numpy.array', 'np.array', (['[1e+100, -1.0, -1e+100, 1.0]'], {}), '([1e+100, -1.0, -1e+100, 1.0])\n', (1766, 1796), True, 'import numpy as np\n'), ((1851, 1888), 'numpy.array', 'np.array', (['[1e+100, 1.0, -1e+100, 1.0]'], {}), '([1e+100, 1.0, -1e+100, 1.0])\n', (1859, 1888), True, 'import numpy as np\n'), ((2081, 2096), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2089, 2096), True, 'import numpy as np\n'), ((2113, 2128), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2121, 2128), True, 'import numpy as np\n'), ((2155, 2170), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2163, 2170), True, 'import numpy as np\n'), ((2485, 2500), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (2493, 2500), True, 'import numpy as np\n'), ((2517, 2532), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2525, 2532), True, 'import numpy as np\n'), ((2559, 2574), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2567, 2574), True, 'import numpy as np\n'), ((2888, 2903), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (2896, 2903), True, 'import numpy as np\n'), ((2920, 2950), 'numpy.array', 'np.array', (['[4.0, 4.0, 4.0, 4.0]'], {}), '([4.0, 4.0, 4.0, 4.0])\n', (2928, 2950), True, 'import numpy as np\n'), ((2977, 3007), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (2985, 3007), True, 'import numpy as np\n'), ((3319, 3331), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3327, 3331), True, 'import numpy as np\n'), ((3348, 3360), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3356, 3360), True, 'import numpy as np\n'), ((3387, 3399), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (3395, 3399), True, 'import numpy as np\n'), ((3710, 3730), 'numpy.array', 'np.array', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (3718, 3730), True, 'import numpy as np\n'), ((3747, 3777), 'numpy.array', 'np.array', (['[6.0, 4.0, 4.0, 4.0]'], {}), '([6.0, 4.0, 4.0, 4.0])\n', (3755, 3777), True, 'import numpy as np\n'), ((3804, 3836), 'numpy.array', 'np.array', (['[6.0, 4.0, 12.0, 12.0]'], {}), '([6.0, 4.0, 12.0, 12.0])\n', (3812, 3836), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import numpy as np
from PyQt5 import QtWidgets as QtWid
import pyqtgraph as pg
from dvg_pyqtgraph_threadsafe import PlotCurve
USE_OPENGL = True
if USE_OPENGL:
print("OpenGL acceleration: Enabled")
pg.setConfigOptions(useOpenGL=True)
pg.setConfigOptions(antialias=True)
pg.setConfigOptions(enableExperimental=True)
# ------------------------------------------------------------------------------
# MainWindow
# ------------------------------------------------------------------------------
class MainWindow(QtWid.QWidget):
def __init__(self, parent=None, **kwargs):
super().__init__(parent, **kwargs)
self.setGeometry(350, 50, 800, 660)
self.setWindowTitle("Demo: dvg_pyqtgraph_threadsafe")
# GraphicsLayoutWidget
self.gw = pg.GraphicsLayoutWidget()
self.plot_1 = self.gw.addPlot()
self.plot_1.showGrid(x=1, y=1)
self.plot_1.setRange(
xRange=[0, 5], yRange=[0, 4], disableAutoRange=True,
)
self.tscurve = PlotCurve(
linked_curve=self.plot_1.plot(
pen=pg.mkPen(color=[255, 255, 0], width=3)
),
)
x = np.array([0, 1, 2, 3, 4])
y = np.array([0, 1, np.nan, 3, 3])
# x = np.array([np.nan] * 5)
# y = np.array([np.nan] * 5)
self.tscurve.setData(x, y)
self.tscurve.update()
# Round up full window
hbox = QtWid.QHBoxLayout(self)
hbox.addWidget(self.gw, 1)
# ------------------------------------------------------------------------------
# Main
# ------------------------------------------------------------------------------
if __name__ == "__main__":
app = QtWid.QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
|
[
"PyQt5.QtWidgets.QHBoxLayout",
"pyqtgraph.setConfigOptions",
"numpy.array",
"PyQt5.QtWidgets.QApplication",
"pyqtgraph.GraphicsLayoutWidget",
"pyqtgraph.mkPen"
] |
[((267, 302), 'pyqtgraph.setConfigOptions', 'pg.setConfigOptions', ([], {'useOpenGL': '(True)'}), '(useOpenGL=True)\n', (286, 302), True, 'import pyqtgraph as pg\n'), ((307, 342), 'pyqtgraph.setConfigOptions', 'pg.setConfigOptions', ([], {'antialias': '(True)'}), '(antialias=True)\n', (326, 342), True, 'import pyqtgraph as pg\n'), ((347, 391), 'pyqtgraph.setConfigOptions', 'pg.setConfigOptions', ([], {'enableExperimental': '(True)'}), '(enableExperimental=True)\n', (366, 391), True, 'import pyqtgraph as pg\n'), ((1764, 1792), 'PyQt5.QtWidgets.QApplication', 'QtWid.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (1782, 1792), True, 'from PyQt5 import QtWidgets as QtWid\n'), ((852, 877), 'pyqtgraph.GraphicsLayoutWidget', 'pg.GraphicsLayoutWidget', ([], {}), '()\n', (875, 877), True, 'import pyqtgraph as pg\n'), ((1238, 1263), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (1246, 1263), True, 'import numpy as np\n'), ((1276, 1306), 'numpy.array', 'np.array', (['[0, 1, np.nan, 3, 3]'], {}), '([0, 1, np.nan, 3, 3])\n', (1284, 1306), True, 'import numpy as np\n'), ((1494, 1517), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWid.QHBoxLayout', (['self'], {}), '(self)\n', (1511, 1517), True, 'from PyQt5 import QtWidgets as QtWid\n'), ((1161, 1199), 'pyqtgraph.mkPen', 'pg.mkPen', ([], {'color': '[255, 255, 0]', 'width': '(3)'}), '(color=[255, 255, 0], width=3)\n', (1169, 1199), True, 'import pyqtgraph as pg\n')]
|
import numpy as np
import itertools
from .contrib import compress_filter, smooth, residual_model
from .contrib import reduce_interferences
def expectation_maximization(y, x, iterations=2, verbose=0, eps=None):
r"""Expectation maximization algorithm, for refining source separation
estimates.
This algorithm allows to make source separation results better by
enforcing multichannel consistency for the estimates. This usually means
a better perceptual quality in terms of spatial artifacts.
The implementation follows the details presented in [1]_, taking
inspiration from the original EM algorithm proposed in [2]_ and its
weighted refinement proposed in [3]_, [4]_.
It works by iteratively:
* Re-estimate source parameters (power spectral densities and spatial
covariance matrices) through :func:`get_local_gaussian_model`.
* Separate again the mixture with the new parameters by first computing
the new modelled mixture covariance matrices with :func:`get_mix_model`,
prepare the Wiener filters through :func:`wiener_gain` and apply them
with :func:`apply_filter``.
References
----------
.. [1] <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and
<NAME> and <NAME>, "Improving music source separation based
on deep neural networks through data augmentation and network
blending." 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017.
.. [2] <NAME> and <NAME> and R.Gribonval. "Under-determined
reverberant audio source separation using a full-rank spatial
covariance model." IEEE Transactions on Audio, Speech, and Language
Processing 18.7 (2010): 1830-1840.
.. [3] <NAME> and <NAME> and <NAME>. "Multichannel audio source
separation with deep neural networks." IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24.9 (2016): 1652-1664.
.. [4] <NAME> and <NAME> and <NAME>. "Multichannel music
separation with deep neural networks." 2016 24th European Signal
Processing Conference (EUSIPCO). IEEE, 2016.
.. [5] <NAME> and <NAME> and <NAME> "Kernel additive models for
source separation." IEEE Transactions on Signal Processing
62.16 (2014): 4298-4310.
Parameters
----------
y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)]
initial estimates for the sources
x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
complex STFT of the mixture signal
iterations: int [scalar]
number of iterations for the EM algorithm.
verbose: boolean
display some information if True
eps: float or None [scalar]
The epsilon value to use for regularization and filters.
If None, the default will use the epsilon of np.real(x) dtype.
Returns
-------
y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)]
estimated sources after iterations
v: np.ndarray [shape=(nb_frames, nb_bins, nb_sources)]
estimated power spectral densities
R: np.ndarray [shape=(nb_bins, nb_channels, nb_channels, nb_sources)]
estimated spatial covariance matrices
Note
-----
* You need an initial estimate for the sources to apply this
algorithm. This is precisely what the :func:`wiener` function does.
* This algorithm *is not* an implementation of the "exact" EM
proposed in [1]_. In particular, it does compute the posterior
covariance matrices the same (exact) way. Instead, it uses the
simplified approximate scheme initially proposed in [5]_ and further
refined in [3]_, [4]_, that boils down to just take the empirical
covariance of the recent source estimates, followed by a weighted
average for the update of the spatial covariance matrix. It has been
empirically demonstrated that this simplified algorithm is more
robust for music separation.
Warning
-------
It is *very* important to make sure `x.dtype` is `np.complex`
if you want double precision, because this function will **not**
do such conversion for you from `np.complex64`, in case you want the
smaller RAM usage on purpose.
It is usually always better in terms of quality to have double
precision, by e.g. calling :func:`expectation_maximization`
with ``x.astype(np.complex)``.
This is notably needed if you let common deep learning frameworks like
PyTorch or TensorFlow do the STFT, because this usually happens in
single precision.
"""
# to avoid dividing by zero
if eps is None:
eps = np.finfo(np.real(x[0]).dtype).eps
# dimensions
(nb_frames, nb_bins, nb_channels) = x.shape
nb_sources = y.shape[-1]
# allocate the spatial covariance matrices and PSD
R = np.zeros((nb_bins, nb_channels, nb_channels, nb_sources), x.dtype)
v = np.zeros((nb_frames, nb_bins, nb_sources))
if verbose:
print('Number of iterations: ', iterations)
regularization = np.sqrt(eps) * (
np.tile(np.eye(nb_channels, dtype=np.complex64),
(1, nb_bins, 1, 1)))
for it in range(iterations):
# constructing the mixture covariance matrix. Doing it with a loop
# to avoid storing anytime in RAM the whole 6D tensor
if verbose:
print('EM, iteration %d' % (it+1))
for j in range(nb_sources):
# update the spectrogram model for source j
v[..., j], R[..., j] = get_local_gaussian_model(
y[..., j],
eps)
for t in range(nb_frames):
Cxx = get_mix_model(v[None, t, ...], R)
Cxx += regularization
inv_Cxx = _invert(Cxx, eps)
# separate the sources
for j in range(nb_sources):
W_j = wiener_gain(v[None, t, ..., j], R[..., j], inv_Cxx)
y[t, ..., j] = apply_filter(x[None, t, ...], W_j)[0]
return y, v, R
def wiener(v, x, iterations=1, use_softmask=True, eps=None):
"""Wiener-based separation for multichannel audio.
The method uses the (possibly multichannel) spectrograms `v` of the
sources to separate the (complex) Short Term Fourier Transform `x` of the
mix. Separation is done in a sequential way by:
* Getting an initial estimate. This can be done in two ways: either by
directly using the spectrograms with the mixture phase, or
by using :func:`softmask`.
* Refinining these initial estimates through a call to
:func:`expectation_maximization`.
This implementation also allows to specify the epsilon value used for
regularization. It is based on [1]_, [2]_, [3]_, [4]_.
References
----------
.. [1] <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and
<NAME> and <NAME>, "Improving music source separation based
on deep neural networks through data augmentation and network
blending." 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017.
.. [2] <NAME> and <NAME> and <NAME>. "Multichannel audio source
separation with deep neural networks." IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24.9 (2016): 1652-1664.
.. [3] <NAME> and <NAME> and <NAME>. "Multichannel music
separation with deep neural networks." 2016 24th European Signal
Processing Conference (EUSIPCO). IEEE, 2016.
.. [4] <NAME> and <NAME> and <NAME> "Kernel additive models for
source separation." IEEE Transactions on Signal Processing
62.16 (2014): 4298-4310.
Parameters
----------
v: np.ndarray [shape=(nb_frames, nb_bins, {1,nb_channels}, nb_sources)]
spectrograms of the sources. This is a nonnegative tensor that is
usually the output of the actual separation method of the user. The
spectrograms may be mono, but they need to be 4-dimensional in all
cases.
x: np.ndarray [complex, shape=(nb_frames, nb_bins, nb_channels)]
STFT of the mixture signal.
iterations: int [scalar]
number of iterations for the EM algorithm
use_softmask: boolean
* if `False`, then the mixture phase will directly be used with the
spectrogram as initial estimates.
* if `True`, a softmasking strategy will be used as described in
:func:`softmask`.
eps: {None, float}
Epsilon value to use for computing the separations. This is used
whenever division with a model energy is performed, i.e. when
softmasking and when iterating the EM.
It can be understood as the energy of the additional white noise
that is taken out when separating.
If `None`, the default value is taken as `np.finfo(np.real(x[0])).eps`.
Returns
-------
y: np.ndarray
[complex, shape=(nb_frames, nb_bins, nb_channels, nb_sources)]
STFT of estimated sources
Note
----
* Be careful that you need *magnitude spectrogram estimates* for the
case `softmask==False`.
* We recommand to use `softmask=False` only if your spectrogram model is
pretty good, e.g. when the output of a deep neural net. In the case
it is not so great, opt for an initial softmasking strategy.
* The epsilon value will have a huge impact on performance. If it's large,
only the parts of the signal with a significant energy will be kept in
the sources. This epsilon then directly controls the energy of the
reconstruction error.
Warning
-------
As in :func:`expectation_maximization`, we recommend converting the
mixture `x` to double precision `np.complex` *before* calling
:func:`wiener`.
"""
if use_softmask:
y = softmask(v, x, eps=eps)
else:
y = v * np.exp(1j*np.angle(x[..., None]))
if not iterations:
return y
# we need to refine the estimates. Scales down the estimates for
# numerical stability
max_abs = max(1, np.abs(x).max()/10.)
x /= max_abs
y = expectation_maximization(y/max_abs, x, iterations, eps=eps)[0]
return y*max_abs
def softmask(v, x, logit=None, eps=None):
"""Separates a mixture with a ratio mask, using the provided sources
spectrograms estimates. Additionally allows compressing the mask with
a logit function for soft binarization.
The filter does *not* take multichannel correlations into account.
The masking strategy can be traced back to the work of <NAME> in the
case of *power* spectrograms [1]_. In the case of *fractional* spectrograms
like magnitude, this filter is often referred to a "ratio mask", and
has been shown to be the optimal separation procedure under alpha-stable
assumptions [2]_.
References
----------
.. [1] <NAME>,"Extrapolation, Inerpolation, and Smoothing of Stationary
Time Series." 1949.
.. [2] <NAME> and <NAME>. "Generalized Wiener filtering with
fractional power spectrograms." 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015.
Parameters
----------
v: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)]
spectrograms of the sources
x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
mixture signal
logit: {None, float between 0 and 1}
enable a compression of the filter. If not None, it is the threshold
value for the logit function: a softmask above this threshold is
brought closer to 1, and a softmask below is brought closer to 0.
Returns
-------
ndarray, shape=(nb_frames, nb_bins, nb_channels, nb_sources)
estimated sources
"""
# to avoid dividing by zero
if eps is None:
eps = np.finfo(np.real(x[0]).dtype).eps
total_energy = np.sum(v, axis=-1, keepdims=True)
filter = v/(eps + total_energy.astype(x.dtype))
if logit is not None:
filter = compress_filter(filter, eps, thresh=logit, multichannel=False)
return filter * x[..., None]
def _invert(M, eps):
"""
Invert matrices, with special fast handling of the 1x1 and 2x2 cases.
Will generate errors if the matrices are singular: user must handle this
through his own regularization schemes.
Parameters
----------
M: np.ndarray [shape=(..., nb_channels, nb_channels)]
matrices to invert: must be square along the last two dimensions
eps: [scalar]
regularization parameter to use _only in the case of matrices
bigger than 2x2
Returns
-------
invM: np.ndarray, [shape=M.shape]
inverses of M
"""
nb_channels = M.shape[-1]
if nb_channels == 1:
# scalar case
invM = 1.0/(M+eps)
elif nb_channels == 2:
# two channels case: analytical expression
det = (
M[..., 0, 0]*M[..., 1, 1] -
M[..., 0, 1]*M[..., 1, 0])
invDet = 1.0/(det)
invM = np.empty_like(M)
invM[..., 0, 0] = invDet*M[..., 1, 1]
invM[..., 1, 0] = -invDet*M[..., 1, 0]
invM[..., 0, 1] = -invDet*M[..., 0, 1]
invM[..., 1, 1] = invDet*M[..., 0, 0]
else:
# general case : no use of analytical expression (slow!)
invM = np.linalg.pinv(M, eps)
return invM
def wiener_gain(v_j, R_j, inv_Cxx):
"""
Compute the wiener gain for separating one source, given all parameters.
It is the matrix applied to the mix to get the posterior mean of the source
as in [1]_
References
----------
.. [1] <NAME> and <NAME> and R.Gribonval. "Under-determined
reverberant audio source separation using a full-rank spatial
covariance model." IEEE Transactions on Audio, Speech, and Language
Processing 18.7 (2010): 1830-1840.
Parameters
----------
v_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
power spectral density of the target source.
R_j: np.ndarray [shape=(nb_bins, nb_channels, nb_channels)]
spatial covariance matrix of the target source
inv_Cxx: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)]
inverse of the mixture covariance matrices
Returns
-------
G: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)]
wiener filtering matrices, to apply to the mix, e.g. through
:func:`apply_filter` to get the target source estimate.
"""
(_, nb_channels) = R_j.shape[:2]
# computes multichannel Wiener gain as v_j R_j inv_Cxx
G = np.zeros_like(inv_Cxx)
for (i1, i2, i3) in itertools.product(*(range(nb_channels),)*3):
G[..., i1, i2] += (R_j[None, :, i1, i3] * inv_Cxx[..., i3, i2])
G *= v_j[..., None, None]
return G
def apply_filter(x, W):
"""
Applies a filter on the mixture. Just corresponds to a matrix
multiplication.
Parameters
----------
x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
STFT of the signal on which to apply the filter.
W: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)]
filtering matrices, as returned, e.g. by :func:`wiener_gain`
Returns
-------
y_hat: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
filtered signal
"""
nb_channels = W.shape[-1]
# apply the filter
y_hat = 0+0j
for i in range(nb_channels):
y_hat += W[..., i] * x[..., i, None]
return y_hat
def get_mix_model(v, R):
"""
Compute the model covariance of a mixture based on local Gaussian models.
simply adds up all the v[..., j] * R[..., j]
Parameters
----------
v: np.ndarray [shape=(nb_frames, nb_bins, nb_sources)]
Power spectral densities for the sources
R: np.ndarray [shape=(nb_bins, nb_channels, nb_channels, nb_sources)]
Spatial covariance matrices of each sources
Returns
-------
Cxx: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)]
Covariance matrix for the mixture
"""
nb_channels = R.shape[1]
(nb_frames, nb_bins, nb_sources) = v.shape
Cxx = np.zeros((nb_frames, nb_bins, nb_channels, nb_channels), R.dtype)
for j in range(nb_sources):
Cxx += v[..., j, None, None] * R[None, ..., j]
return Cxx
def _covariance(y_j):
"""
Compute the empirical covariance for a source.
Parameters
----------
y_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)].
complex stft of the source.
Returns
-------
Cj: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)]
just y_j * conj(y_j.T): empirical covariance for each TF bin.
"""
(nb_frames, nb_bins, nb_channels) = y_j.shape
Cj = np.zeros((nb_frames, nb_bins, nb_channels, nb_channels),
y_j.dtype)
for (i1, i2) in itertools.product(*(range(nb_channels),)*2):
Cj[..., i1, i2] += y_j[..., i1] * np.conj(y_j[..., i2])
return Cj
def get_local_gaussian_model(y_j, eps=1.):
r"""
Compute the local Gaussian model [1]_ for a source given the complex STFT.
First get the power spectral densities, and then the spatial covariance
matrix, as done in [1]_, [2]_
References
----------
.. [1] <NAME> and <NAME> and R.Gribonval. "Under-determined
reverberant audio source separation using a full-rank spatial
covariance model." IEEE Transactions on Audio, Speech, and Language
Processing 18.7 (2010): 1830-1840.
.. [2] <NAME> and <NAME> and <NAME>. "Low bitrate informed
source separation of realistic mixtures." 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.
Parameters
----------
y_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]
complex stft of the source.
eps: float [scalar]
regularization term
Returns
-------
v_j: np.ndarray [shape=(nb_frames, nb_bins)]
power spectral density of the source
R_J: np.ndarray [shape=(nb_bins, nb_channels, nb_channels)]
Spatial covariance matrix of the source
"""
v_j = np.mean(np.abs(y_j)**2, axis=2)
# updates the spatial covariance matrix
nb_frames = y_j.shape[0]
R_j = 0
weight = eps
for t in range(nb_frames):
R_j += _covariance(y_j[None, t, ...])
weight += v_j[None, t, ...]
R_j /= weight[..., None, None]
return v_j, R_j
|
[
"numpy.abs",
"numpy.eye",
"numpy.sqrt",
"numpy.linalg.pinv",
"numpy.conj",
"numpy.angle",
"numpy.sum",
"numpy.zeros",
"numpy.real",
"numpy.empty_like",
"numpy.zeros_like"
] |
[((4979, 5045), 'numpy.zeros', 'np.zeros', (['(nb_bins, nb_channels, nb_channels, nb_sources)', 'x.dtype'], {}), '((nb_bins, nb_channels, nb_channels, nb_sources), x.dtype)\n', (4987, 5045), True, 'import numpy as np\n'), ((5054, 5096), 'numpy.zeros', 'np.zeros', (['(nb_frames, nb_bins, nb_sources)'], {}), '((nb_frames, nb_bins, nb_sources))\n', (5062, 5096), True, 'import numpy as np\n'), ((12060, 12093), 'numpy.sum', 'np.sum', (['v'], {'axis': '(-1)', 'keepdims': '(True)'}), '(v, axis=-1, keepdims=True)\n', (12066, 12093), True, 'import numpy as np\n'), ((14777, 14799), 'numpy.zeros_like', 'np.zeros_like', (['inv_Cxx'], {}), '(inv_Cxx)\n', (14790, 14799), True, 'import numpy as np\n'), ((16346, 16411), 'numpy.zeros', 'np.zeros', (['(nb_frames, nb_bins, nb_channels, nb_channels)', 'R.dtype'], {}), '((nb_frames, nb_bins, nb_channels, nb_channels), R.dtype)\n', (16354, 16411), True, 'import numpy as np\n'), ((16965, 17032), 'numpy.zeros', 'np.zeros', (['(nb_frames, nb_bins, nb_channels, nb_channels)', 'y_j.dtype'], {}), '((nb_frames, nb_bins, nb_channels, nb_channels), y_j.dtype)\n', (16973, 17032), True, 'import numpy as np\n'), ((5187, 5199), 'numpy.sqrt', 'np.sqrt', (['eps'], {}), '(eps)\n', (5194, 5199), True, 'import numpy as np\n'), ((5224, 5263), 'numpy.eye', 'np.eye', (['nb_channels'], {'dtype': 'np.complex64'}), '(nb_channels, dtype=np.complex64)\n', (5230, 5263), True, 'import numpy as np\n'), ((13200, 13216), 'numpy.empty_like', 'np.empty_like', (['M'], {}), '(M)\n', (13213, 13216), True, 'import numpy as np\n'), ((13493, 13515), 'numpy.linalg.pinv', 'np.linalg.pinv', (['M', 'eps'], {}), '(M, eps)\n', (13507, 13515), True, 'import numpy as np\n'), ((17158, 17179), 'numpy.conj', 'np.conj', (['y_j[..., i2]'], {}), '(y_j[..., i2])\n', (17165, 17179), True, 'import numpy as np\n'), ((18377, 18388), 'numpy.abs', 'np.abs', (['y_j'], {}), '(y_j)\n', (18383, 18388), True, 'import numpy as np\n'), ((4795, 4808), 'numpy.real', 'np.real', (['x[0]'], {}), '(x[0])\n', (4802, 4808), True, 'import numpy as np\n'), ((10034, 10056), 'numpy.angle', 'np.angle', (['x[..., None]'], {}), '(x[..., None])\n', (10042, 10056), True, 'import numpy as np\n'), ((10216, 10225), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (10222, 10225), True, 'import numpy as np\n'), ((12016, 12029), 'numpy.real', 'np.real', (['x[0]'], {}), '(x[0])\n', (12023, 12029), True, 'import numpy as np\n')]
|
import unittest
import numpy as np
from op_test import OpTest
def modified_huber_loss_forward(val):
if val < -1:
return -4 * val
elif val < 1:
return (1 - val) * (1 - val)
else:
return 0
class TestModifiedHuberLossOp(OpTest):
def setUp(self):
self.op_type = 'modified_huber_loss'
samples_num = 32
self.inputs = {
'X': np.random.uniform(-1, 1., (samples_num, 1)).astype('float32'),
'Y': np.random.choice([0, 1], samples_num).reshape((samples_num, 1))
}
product_res = self.inputs['X'] * (2 * self.inputs['Y'] - 1)
loss = np.vectorize(modified_huber_loss_forward)(product_res)
self.outputs = {
'IntermediateVal': product_res,
'Out': loss.reshape((samples_num, 1))
}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', max_relative_error=0.005)
if __name__ == '__main__':
unittest.main()
|
[
"unittest.main",
"numpy.random.choice",
"numpy.vectorize",
"numpy.random.uniform"
] |
[((1011, 1026), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1024, 1026), False, 'import unittest\n'), ((635, 676), 'numpy.vectorize', 'np.vectorize', (['modified_huber_loss_forward'], {}), '(modified_huber_loss_forward)\n', (647, 676), True, 'import numpy as np\n'), ((398, 442), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1.0)', '(samples_num, 1)'], {}), '(-1, 1.0, (samples_num, 1))\n', (415, 442), True, 'import numpy as np\n'), ((478, 515), 'numpy.random.choice', 'np.random.choice', (['[0, 1]', 'samples_num'], {}), '([0, 1], samples_num)\n', (494, 515), True, 'import numpy as np\n')]
|
"""The WaveBlocks Project
Plot some quadrature rules.
@author: <NAME>
@copyright: Copyright (C) 2010, 2011 <NAME>
@license: Modified BSD License
"""
from numpy import squeeze
from matplotlib.pyplot import *
from WaveBlocks import GaussHermiteQR
tests = (2, 3, 4, 7, 32, 64, 128)
for I in tests:
Q = GaussHermiteQR(I)
print(Q)
N = Q.get_nodes()
N = squeeze(N)
W = Q.get_weights()
W = squeeze(W)
fig = figure()
ax = fig.gca()
ax.stem(N, W)
ax.set_xlabel(r"$\gamma_i$")
ax.set_ylabel(r"$\omega_i$")
ax.set_title(r"Gauss-Hermite quadrature with $"+str(Q.get_number_nodes())+r"$ nodes")
fig.savefig("qr_order_"+str(Q.get_order())+".png")
|
[
"WaveBlocks.GaussHermiteQR",
"numpy.squeeze"
] |
[((315, 332), 'WaveBlocks.GaussHermiteQR', 'GaussHermiteQR', (['I'], {}), '(I)\n', (329, 332), False, 'from WaveBlocks import GaussHermiteQR\n'), ((382, 392), 'numpy.squeeze', 'squeeze', (['N'], {}), '(N)\n', (389, 392), False, 'from numpy import squeeze\n'), ((438, 448), 'numpy.squeeze', 'squeeze', (['W'], {}), '(W)\n', (445, 448), False, 'from numpy import squeeze\n')]
|
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
import scipy
ROWS = 64
COLS = 64
CHANNELS = 3
TRAIN_DIR = 'Train_data/'
TEST_DIR = 'Test_data/'
train_images = [TRAIN_DIR+i for i in os.listdir(TRAIN_DIR)]
test_images = [TEST_DIR+i for i in os.listdir(TEST_DIR)]
def read_image(file_path):
img = cv2.imread(file_path, cv2.IMREAD_COLOR)
return cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC)
def prepare_data(images):
m = len(images)
X = np.zeros((m, ROWS, COLS, CHANNELS), dtype=np.uint8)
y = np.zeros((1, m))
for i, image_file in enumerate(images):
X[i,:] = read_image(image_file)
if 'dog' in image_file.lower():
y[0, i] = 1
elif 'cat' in image_file.lower():
y[0, i] = 0
return X, y
def sigmoid(z):
s = 1/(1+np.exp(-z))
return s
train_set_x, train_set_y = prepare_data(train_images)
test_set_x, test_set_y = prepare_data(test_images)
train_set_x_flatten = train_set_x.reshape(train_set_x.shape[0], ROWS*COLS*CHANNELS).T
test_set_x_flatten = test_set_x.reshape(test_set_x.shape[0], -1).T
train_set_x = train_set_x_flatten/255
test_set_x = test_set_x_flatten/255
#train_set_x_flatten shape: (12288, 6002)
#train_set_y shape: (1, 6002)
def initialize_parameters(input_layer, hidden_layer, output_layer):
# initialize 1st layer output and input with random values
W1 = np.random.randn(hidden_layer, input_layer) * 0.01
# initialize 1st layer output bias
b1 = np.zeros((hidden_layer, 1))
# initialize 2nd layer output and input with random values
W2 = np.random.randn(output_layer, hidden_layer) * 0.01
# initialize 2nd layer output bias
b2 = np.zeros((output_layer,1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def forward_propagation(X, parameters):
# Retrieve each parameter from the dictionary "parameters"
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
# Implementing Forward Propagation to calculate A2 probabilities
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
# Values needed in the backpropagation are stored in "cache"
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
def compute_cost(A2, Y, parameters):
# number of example
m = Y.shape[1]
# Compute the cross-entropy cost
logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1-A2), (1-Y))
cost = -1/m*np.sum(logprobs)
# makes sure cost is in dimension we expect, E.g., turns [[51]] into 51
cost = np.squeeze(cost)
return cost
def backward_propagation(parameters, cache, X, Y):
# number of example
m = X.shape[1]
# Retrieve W1 and W2 from the "parameters" dictionary
W1 = parameters["W1"]
W2 = parameters["W2"]
# Retrieve A1 and A2 from "cache" dictionary
A1 = cache["A1"]
A2 = cache["A2"]
# Backward propagation for dW1, db1, dW2, db2
dZ2 = A2-Y
dW2 = 1./m*np.dot(dZ2, A1.T)
db2 = 1./m*np.sum(dZ2, axis = 1, keepdims=True)
dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
dW1 = 1./m*np.dot(dZ1, X.T)
db1 = 1./m*np.sum(dZ1, axis = 1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
def update_parameters(parameters, grads, learning_rate = 0.1):
# Retrieve each parameter from the dictionary "parameters"
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]
# Retrieve each gradient from the "grads" dictionary
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
# Update rule for each parameter
W1 = W1 - dW1 * learning_rate
b1 = b1 - db1 * learning_rate
W2 = W2 - dW2 * learning_rate
b2 = b2 - db2 * learning_rate
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def predict(parameters, X):
# Computes probabilities using forward propagation
Y_prediction = np.zeros((1, X.shape[1]))
A2, cache = forward_propagation(X, parameters)
for i in range(A2.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
if A2[0,i] > 0.5:
Y_prediction[[0],[i]] = 1
else:
Y_prediction[[0],[i]] = 0
return Y_prediction
def nn_model(X_train, Y_train, X_test, Y_test, n_h, num_iterations = 1000, learning_rate = 0.05, print_cost=False):
n_x = X_train.shape[0]
n_y = Y_train.shape[0]
# Initialize parameters with nputs: "n_x, n_h, n_y"
parameters = initialize_parameters(n_x, n_h, n_y)
# Retrieve W1, b1, W2, b2
W1 = parameters["W1"]
W2 = parameters["W2"]
b1 = parameters["b1"]
b2 = parameters["b2"]
costs = []
for i in range(0, num_iterations):
# Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
A2, cache = forward_propagation(X_train, parameters)
# Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
cost = compute_cost(A2, Y_train, parameters)
# Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
grads = backward_propagation(parameters, cache, X_train, Y_train)
# Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
parameters = update_parameters(parameters, grads, learning_rate)
# Print the cost every 200 iterations
if print_cost and i % 200 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
# Record the cost
if i % 100 == 0:
costs.append(cost)
# Predict test/train set examples
Y_prediction_test = predict(parameters,X_test)
Y_prediction_train = predict(parameters,X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
parameters.update({"costs": costs, "n_h": n_h})
return parameters
#nn_model(train_set_x, train_set_y, test_set_x, test_set_y, n_h = 10, num_iterations = 3000, learning_rate = 0.05, print_cost = True)
hidden_layer = [10, 50, 100, 200, 400]
models = {}
for i in hidden_layer:
print ("hidden layer is: ",i)
models[i] = nn_model(train_set_x, train_set_y, test_set_x, test_set_y, n_h = i, num_iterations = 10000, learning_rate = 0.05, print_cost = True)
print ("-------------------------------------------------------")
for i in hidden_layer:
plt.plot(np.squeeze(models[i]["costs"]), label= str(models[i]["n_h"]))
plt.ylabel('cost')
plt.xlabel('iterations (hundreds)')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
|
[
"numpy.abs",
"os.listdir",
"matplotlib.pyplot.ylabel",
"numpy.power",
"matplotlib.pyplot.xlabel",
"numpy.log",
"numpy.tanh",
"numpy.squeeze",
"numpy.exp",
"numpy.sum",
"numpy.zeros",
"numpy.random.randn",
"numpy.dot",
"cv2.resize",
"cv2.imread",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.show"
] |
[((6966, 6984), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""cost"""'], {}), "('cost')\n", (6976, 6984), True, 'import matplotlib.pyplot as plt\n'), ((6985, 7020), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iterations (hundreds)"""'], {}), "('iterations (hundreds)')\n", (6995, 7020), True, 'import matplotlib.pyplot as plt\n'), ((7031, 7074), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper center"""', 'shadow': '(True)'}), "(loc='upper center', shadow=True)\n", (7041, 7074), True, 'import matplotlib.pyplot as plt\n'), ((7130, 7140), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7138, 7140), True, 'import matplotlib.pyplot as plt\n'), ((327, 366), 'cv2.imread', 'cv2.imread', (['file_path', 'cv2.IMREAD_COLOR'], {}), '(file_path, cv2.IMREAD_COLOR)\n', (337, 366), False, 'import cv2\n'), ((378, 438), 'cv2.resize', 'cv2.resize', (['img', '(ROWS, COLS)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC)\n', (388, 438), False, 'import cv2\n'), ((494, 545), 'numpy.zeros', 'np.zeros', (['(m, ROWS, COLS, CHANNELS)'], {'dtype': 'np.uint8'}), '((m, ROWS, COLS, CHANNELS), dtype=np.uint8)\n', (502, 545), True, 'import numpy as np\n'), ((554, 570), 'numpy.zeros', 'np.zeros', (['(1, m)'], {}), '((1, m))\n', (562, 570), True, 'import numpy as np\n'), ((1503, 1530), 'numpy.zeros', 'np.zeros', (['(hidden_layer, 1)'], {}), '((hidden_layer, 1))\n', (1511, 1530), True, 'import numpy as np\n'), ((1702, 1729), 'numpy.zeros', 'np.zeros', (['(output_layer, 1)'], {}), '((output_layer, 1))\n', (1710, 1729), True, 'import numpy as np\n'), ((2189, 2200), 'numpy.tanh', 'np.tanh', (['Z1'], {}), '(Z1)\n', (2196, 2200), True, 'import numpy as np\n'), ((2753, 2769), 'numpy.squeeze', 'np.squeeze', (['cost'], {}), '(cost)\n', (2763, 2769), True, 'import numpy as np\n'), ((4309, 4334), 'numpy.zeros', 'np.zeros', (['(1, X.shape[1])'], {}), '((1, X.shape[1]))\n', (4317, 4334), True, 'import numpy as np\n'), ((208, 229), 'os.listdir', 'os.listdir', (['TRAIN_DIR'], {}), '(TRAIN_DIR)\n', (218, 229), False, 'import os\n'), ((267, 287), 'os.listdir', 'os.listdir', (['TEST_DIR'], {}), '(TEST_DIR)\n', (277, 287), False, 'import os\n'), ((1405, 1447), 'numpy.random.randn', 'np.random.randn', (['hidden_layer', 'input_layer'], {}), '(hidden_layer, input_layer)\n', (1420, 1447), True, 'import numpy as np\n'), ((1603, 1646), 'numpy.random.randn', 'np.random.randn', (['output_layer', 'hidden_layer'], {}), '(output_layer, hidden_layer)\n', (1618, 1646), True, 'import numpy as np\n'), ((2160, 2173), 'numpy.dot', 'np.dot', (['W1', 'X'], {}), '(W1, X)\n', (2166, 2173), True, 'import numpy as np\n'), ((2210, 2224), 'numpy.dot', 'np.dot', (['W2', 'A1'], {}), '(W2, A1)\n', (2216, 2224), True, 'import numpy as np\n'), ((2647, 2663), 'numpy.sum', 'np.sum', (['logprobs'], {}), '(logprobs)\n', (2653, 2663), True, 'import numpy as np\n'), ((3174, 3191), 'numpy.dot', 'np.dot', (['dZ2', 'A1.T'], {}), '(dZ2, A1.T)\n', (3180, 3191), True, 'import numpy as np\n'), ((3207, 3241), 'numpy.sum', 'np.sum', (['dZ2'], {'axis': '(1)', 'keepdims': '(True)'}), '(dZ2, axis=1, keepdims=True)\n', (3213, 3241), True, 'import numpy as np\n'), ((3254, 3271), 'numpy.dot', 'np.dot', (['W2.T', 'dZ2'], {}), '(W2.T, dZ2)\n', (3260, 3271), True, 'import numpy as np\n'), ((3311, 3327), 'numpy.dot', 'np.dot', (['dZ1', 'X.T'], {}), '(dZ1, X.T)\n', (3317, 3327), True, 'import numpy as np\n'), ((3343, 3377), 'numpy.sum', 'np.sum', (['dZ1'], {'axis': '(1)', 'keepdims': '(True)'}), '(dZ1, axis=1, keepdims=True)\n', (3349, 3377), True, 'import numpy as np\n'), ((6903, 6933), 'numpy.squeeze', 'np.squeeze', (["models[i]['costs']"], {}), "(models[i]['costs'])\n", (6913, 6933), True, 'import numpy as np\n'), ((831, 841), 'numpy.exp', 'np.exp', (['(-z)'], {}), '(-z)\n', (837, 841), True, 'import numpy as np\n'), ((2581, 2591), 'numpy.log', 'np.log', (['A2'], {}), '(A2)\n', (2587, 2591), True, 'import numpy as np\n'), ((2610, 2624), 'numpy.log', 'np.log', (['(1 - A2)'], {}), '(1 - A2)\n', (2616, 2624), True, 'import numpy as np\n'), ((3279, 3294), 'numpy.power', 'np.power', (['A1', '(2)'], {}), '(A1, 2)\n', (3287, 3294), True, 'import numpy as np\n'), ((6185, 6221), 'numpy.abs', 'np.abs', (['(Y_prediction_train - Y_train)'], {}), '(Y_prediction_train - Y_train)\n', (6191, 6221), True, 'import numpy as np\n'), ((6284, 6318), 'numpy.abs', 'np.abs', (['(Y_prediction_test - Y_test)'], {}), '(Y_prediction_test - Y_test)\n', (6290, 6318), True, 'import numpy as np\n')]
|
"""Test motif.features.bitteli
"""
import unittest
import numpy as np
from motif.feature_extractors import bitteli
def array_equal(array1, array2):
return np.all(np.isclose(array1, array2, atol=1e-7))
class TestBitteliFeatures(unittest.TestCase):
def setUp(self):
self.ftr = bitteli.BitteliFeatures()
def test_ref_hz(self):
expected = 55.0
actual = self.ftr.ref_hz
self.assertEqual(expected, actual)
def test_poly_degree(self):
expected = 5
actual = self.ftr.poly_degree
self.assertEqual(expected, actual)
def test_min_freq(self):
expected = 3
actual = self.ftr.min_freq
self.assertEqual(expected, actual)
def test_max_freq(self):
expected = 30
actual = self.ftr.max_freq
self.assertEqual(expected, actual)
def test_freq_step(self):
expected = 0.1
actual = self.ftr.freq_step
self.assertEqual(expected, actual)
def test_vibrato_threshold(self):
expected = 0.25
actual = self.ftr.vibrato_threshold
self.assertEqual(expected, actual)
def test_get_feature_vector(self):
times = np.linspace(0, 1, 2000)
freqs_hz = 440.0 * np.ones((2000, ))
salience = 0.5 * np.ones((2000, ))
sample_rate = 2000
actual = self.ftr.get_feature_vector(
times, freqs_hz, salience, sample_rate
)
expected = np.array([
0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
3600.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0,
0.0, 0.5, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0
])
self.assertTrue(array_equal(expected, actual))
self.assertEqual(len(actual), len(self.ftr.feature_names))
def test_get_feature_names(self):
expected = [
'vibrato rate',
'vibrato extent',
'vibrato coverage',
'vibrato coverage - beginning',
'vibrato coverage - middle',
'vibrato coverage - end',
'0th polynomial coeff - freq',
'1st polynomial coeff - freq',
'2nd polynomial coeff - freq',
'3rd polynomial coeff - freq',
'4th polynomial coeff - freq',
'5th polynomial coeff - freq',
'polynomial fit residual - freq',
'overall model fit residual - freq',
'0th polynomial coeff - salience',
'1st polynomial coeff - salience',
'2nd polynomial coeff - salience',
'3rd polynomial coeff - salience',
'4th polynomial coeff - salience',
'5th polynomial coeff - salience',
'polynomial fit residual - salience',
'duration',
'pitch stddev (cents)',
'pitch range (cents)',
'pitch average variation',
'salience stdev',
'salience range',
'salience average variation'
]
actual = self.ftr.feature_names
self.assertEqual(expected, actual)
def test_get_id(self):
expected = 'bitteli'
actual = self.ftr.get_id()
self.assertEqual(expected, actual)
|
[
"numpy.isclose",
"numpy.ones",
"motif.feature_extractors.bitteli.BitteliFeatures",
"numpy.array",
"numpy.linspace"
] |
[((169, 207), 'numpy.isclose', 'np.isclose', (['array1', 'array2'], {'atol': '(1e-07)'}), '(array1, array2, atol=1e-07)\n', (179, 207), True, 'import numpy as np\n'), ((297, 322), 'motif.feature_extractors.bitteli.BitteliFeatures', 'bitteli.BitteliFeatures', ([], {}), '()\n', (320, 322), False, 'from motif.feature_extractors import bitteli\n'), ((1184, 1207), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(2000)'], {}), '(0, 1, 2000)\n', (1195, 1207), True, 'import numpy as np\n'), ((1449, 1612), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3600.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3600.0, 0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0])\n', (1457, 1612), True, 'import numpy as np\n'), ((1235, 1251), 'numpy.ones', 'np.ones', (['(2000,)'], {}), '((2000,))\n', (1242, 1251), True, 'import numpy as np\n'), ((1278, 1294), 'numpy.ones', 'np.ones', (['(2000,)'], {}), '((2000,))\n', (1285, 1294), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
# 3D Image Data Synthesis.
# Copyright (C) 2021 <NAME>, <NAME>, <NAME>, <NAME>, <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the Liceense at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Please refer to the documentation for more information about the software
# as well as for installation instructions.
#
"""
import os
import glob
import csv
import numpy as np
def get_files(folders, data_root='', descriptor='', filetype='tif'):
filelist = []
for folder in folders:
files = glob.glob(os.path.join(data_root, folder, '*'+descriptor+'*.'+filetype))
filelist.extend([os.path.join(folder, os.path.split(f)[-1]) for f in files])
return filelist
def read_csv(list_path, data_root=''):
filelist = []
with open(list_path, 'r') as f:
reader = csv.reader(f, delimiter=';')
for row in reader:
if len(row)==0 or np.sum([len(r) for r in row])==0: continue
row = [os.path.join(data_root, r) for r in row]
filelist.append(row)
return filelist
def create_csv(data_list, save_path='list_folder/experiment_name', test_split=0.2, val_split=0.1, shuffle=False):
if shuffle:
np.random.shuffle(data_list)
# Get number of files for each split
num_files = len(data_list)
num_test_files = int(test_split*num_files)
num_val_files = int((num_files-num_test_files)*val_split)
num_train_files = num_files - num_test_files - num_val_files
# Get file indices
file_idx = np.arange(num_files)
# Save csv files
if num_test_files > 0:
test_idx = sorted(np.random.choice(file_idx, size=num_test_files, replace=False))
with open(save_path+'_test.csv', 'w') as fh:
writer = csv.writer(fh, delimiter=';')
for idx in test_idx:
writer.writerow(data_list[idx])
else:
test_idx = []
if num_val_files > 0:
val_idx = sorted(np.random.choice(list(set(file_idx)-set(test_idx)), size=num_val_files, replace=False))
with open(save_path+'_val.csv', 'w') as fh:
writer = csv.writer(fh, delimiter=';')
for idx in val_idx:
writer.writerow(data_list[idx])
else:
val_idx = []
if num_train_files > 0:
train_idx = sorted(list(set(file_idx) - set(test_idx) - set(val_idx)))
with open(save_path+'_train.csv', 'w') as fh:
writer = csv.writer(fh, delimiter=';')
for idx in train_idx:
writer.writerow(data_list[idx])
|
[
"numpy.random.choice",
"csv.writer",
"os.path.join",
"os.path.split",
"csv.reader",
"numpy.arange",
"numpy.random.shuffle"
] |
[((2046, 2066), 'numpy.arange', 'np.arange', (['num_files'], {}), '(num_files)\n', (2055, 2066), True, 'import numpy as np\n'), ((1316, 1344), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '""";"""'}), "(f, delimiter=';')\n", (1326, 1344), False, 'import csv\n'), ((1723, 1751), 'numpy.random.shuffle', 'np.random.shuffle', (['data_list'], {}), '(data_list)\n', (1740, 1751), True, 'import numpy as np\n'), ((997, 1064), 'os.path.join', 'os.path.join', (['data_root', 'folder', "('*' + descriptor + '*.' + filetype)"], {}), "(data_root, folder, '*' + descriptor + '*.' + filetype)\n", (1009, 1064), False, 'import os\n'), ((2146, 2208), 'numpy.random.choice', 'np.random.choice', (['file_idx'], {'size': 'num_test_files', 'replace': '(False)'}), '(file_idx, size=num_test_files, replace=False)\n', (2162, 2208), True, 'import numpy as np\n'), ((2284, 2313), 'csv.writer', 'csv.writer', (['fh'], {'delimiter': '""";"""'}), "(fh, delimiter=';')\n", (2294, 2313), False, 'import csv\n'), ((2648, 2677), 'csv.writer', 'csv.writer', (['fh'], {'delimiter': '""";"""'}), "(fh, delimiter=';')\n", (2658, 2677), False, 'import csv\n'), ((2976, 3005), 'csv.writer', 'csv.writer', (['fh'], {'delimiter': '""";"""'}), "(fh, delimiter=';')\n", (2986, 3005), False, 'import csv\n'), ((1464, 1490), 'os.path.join', 'os.path.join', (['data_root', 'r'], {}), '(data_root, r)\n', (1476, 1490), False, 'import os\n'), ((1106, 1122), 'os.path.split', 'os.path.split', (['f'], {}), '(f)\n', (1119, 1122), False, 'import os\n')]
|
import numpy as np
import torch
from modules.frustum import get_box_corners_3d
from kitti_meters.util import get_box_iou_3d
__all__ = ['MeterFrustumKitti']
class MeterFrustumKitti:
def __init__(self, num_heading_angle_bins, num_size_templates, size_templates, class_name_to_class_id,
metric='iou_3d'):
super().__init__()
assert metric in ['iou_2d', 'iou_3d', 'accuracy', 'iou_3d_accuracy', 'iou_3d_class_accuracy']
self.metric = metric
self.num_heading_angle_bins = num_heading_angle_bins
self.num_size_templates = num_size_templates
self.size_templates = size_templates.view(self.num_size_templates, 3)
self.heading_angle_bin_centers = torch.arange(0, 2 * np.pi, 2 * np.pi / self.num_heading_angle_bins)
self.class_name_to_class_id = class_name_to_class_id
self.reset()
def reset(self):
self.total_seen_num = 0
self.total_correct_num = 0
self.iou_3d_corrent_num = 0
self.iou_2d_sum = 0
self.iou_3d_sum = 0
self.iou_3d_corrent_num_per_class = {cls: 0 for cls in self.class_name_to_class_id.keys()}
self.total_seen_num_per_class = {cls: 0 for cls in self.class_name_to_class_id.keys()}
def update(self, outputs, targets):
if self.metric == 'accuracy':
mask_logits = outputs['mask_logits']
mask_logits_target = targets['mask_logits']
self.total_seen_num += mask_logits_target.numel()
self.total_correct_num += torch.sum(mask_logits.argmax(dim=1) == mask_logits_target).item()
else:
center = outputs['center'] # (B, 3)
heading_scores = outputs['heading_scores'] # (B, NH)
heading_residuals = outputs['heading_residuals'] # (B, NH)
size_scores = outputs['size_scores'] # (B, NS)
size_residuals = outputs['size_residuals'] # (B, NS, 3)
center_target = targets['center'] # (B, 3)
heading_bin_id_target = targets['heading_bin_id'] # (B, )
heading_residual_target = targets['heading_residual'] # (B, )
size_template_id_target = targets['size_template_id'] # (B, )
size_residual_target = targets['size_residual'] # (B, 3)
class_id_target = targets['class_id'].cpu().numpy() # (B, )
batch_size = center.size(0)
batch_id = torch.arange(batch_size, device=center.device)
self.size_templates = self.size_templates.to(center.device)
self.heading_angle_bin_centers = self.heading_angle_bin_centers.to(center.device)
heading_bin_id = torch.argmax(heading_scores, dim=1)
heading = self.heading_angle_bin_centers[heading_bin_id] + heading_residuals[batch_id, heading_bin_id]
size_template_id = torch.argmax(size_scores, dim=1)
size = self.size_templates[size_template_id] + size_residuals[batch_id, size_template_id] # (B, 3)
corners = get_box_corners_3d(centers=center, headings=heading, sizes=size, with_flip=False) # (B, 8, 3)
heading_target = self.heading_angle_bin_centers[heading_bin_id_target] + heading_residual_target # (B, )
size_target = self.size_templates[size_template_id_target] + size_residual_target # (B, 3)
corners_target = get_box_corners_3d(centers=center_target, headings=heading_target,
sizes=size_target, with_flip=False) # (B, 8, 3)
iou_3d, iou_2d = get_box_iou_3d(corners.cpu().detach().numpy(), corners_target.cpu().detach().numpy())
self.iou_2d_sum += iou_2d.sum()
self.iou_3d_sum += iou_3d.sum()
self.iou_3d_corrent_num += np.sum(iou_3d >= 0.7)
self.total_seen_num += batch_size
for cls, cls_id in self.class_name_to_class_id.items():
mask = (class_id_target == cls_id)
self.iou_3d_corrent_num_per_class[cls] += np.sum(iou_3d[mask] >= (0.7 if cls == 'Car' else 0.5))
self.total_seen_num_per_class[cls] += np.sum(mask)
def compute(self):
if self.metric == 'iou_3d':
return self.iou_3d_sum / self.total_seen_num
elif self.metric == 'iou_2d':
return self.iou_2d_sum / self.total_seen_num
elif self.metric == 'accuracy':
return self.total_correct_num / self.total_seen_num
elif self.metric == 'iou_3d_accuracy':
return self.iou_3d_corrent_num / self.total_seen_num
elif self.metric == 'iou_3d_class_accuracy':
return sum(self.iou_3d_corrent_num_per_class[cls] / max(self.total_seen_num_per_class[cls], 1)
for cls in self.class_name_to_class_id.keys()) / len(self.class_name_to_class_id)
else:
raise KeyError
|
[
"modules.frustum.get_box_corners_3d",
"numpy.sum",
"torch.arange",
"torch.argmax"
] |
[((717, 784), 'torch.arange', 'torch.arange', (['(0)', '(2 * np.pi)', '(2 * np.pi / self.num_heading_angle_bins)'], {}), '(0, 2 * np.pi, 2 * np.pi / self.num_heading_angle_bins)\n', (729, 784), False, 'import torch\n'), ((2407, 2453), 'torch.arange', 'torch.arange', (['batch_size'], {'device': 'center.device'}), '(batch_size, device=center.device)\n', (2419, 2453), False, 'import torch\n'), ((2650, 2685), 'torch.argmax', 'torch.argmax', (['heading_scores'], {'dim': '(1)'}), '(heading_scores, dim=1)\n', (2662, 2685), False, 'import torch\n'), ((2832, 2864), 'torch.argmax', 'torch.argmax', (['size_scores'], {'dim': '(1)'}), '(size_scores, dim=1)\n', (2844, 2864), False, 'import torch\n'), ((2999, 3085), 'modules.frustum.get_box_corners_3d', 'get_box_corners_3d', ([], {'centers': 'center', 'headings': 'heading', 'sizes': 'size', 'with_flip': '(False)'}), '(centers=center, headings=heading, sizes=size, with_flip=\n False)\n', (3017, 3085), False, 'from modules.frustum import get_box_corners_3d\n'), ((3345, 3452), 'modules.frustum.get_box_corners_3d', 'get_box_corners_3d', ([], {'centers': 'center_target', 'headings': 'heading_target', 'sizes': 'size_target', 'with_flip': '(False)'}), '(centers=center_target, headings=heading_target, sizes=\n size_target, with_flip=False)\n', (3363, 3452), False, 'from modules.frustum import get_box_corners_3d\n'), ((3751, 3772), 'numpy.sum', 'np.sum', (['(iou_3d >= 0.7)'], {}), '(iou_3d >= 0.7)\n', (3757, 3772), True, 'import numpy as np\n'), ((3996, 4050), 'numpy.sum', 'np.sum', (["(iou_3d[mask] >= (0.7 if cls == 'Car' else 0.5))"], {}), "(iou_3d[mask] >= (0.7 if cls == 'Car' else 0.5))\n", (4002, 4050), True, 'import numpy as np\n'), ((4105, 4117), 'numpy.sum', 'np.sum', (['mask'], {}), '(mask)\n', (4111, 4117), True, 'import numpy as np\n')]
|
import numpy as np
import pandas as pd
from Bio import AlignIO, Seq
# parameter to determine the maximum missing proportion that we keep
missing_thresh = 0.4
# load the alignments and turn them into a numpy array
alignments = AlignIO.read(snakemake.input[0], 'fasta')
align_arr = np.array([list(rec) for rec in alignments])
# get a list of missing values per base
missing_bases = []
# iterate over the whole alignment counting missing bases
for base in range(align_arr.shape[1]):
missing = 0
for seq in range(align_arr.shape[0]):
if alignments[seq, base] not in ['A', 'T', 'G', 'C']:
missing += 1
missing_bases.append(missing)
# calculate the proportion of missing bases for each column
missing_prop = np.array([m / align_arr.shape[0] for m in missing_bases])
align_arr = align_arr[:, missing_prop < missing_thresh]
for r, rec in enumerate(alignments):
joined_seq = ''.join(align_arr[r])
print(joined_seq[:10])
rec.seq = Seq.Seq(joined_seq)
with open(snakemake.output[0], 'w') as fout:
AlignIO.write(alignments, fout, 'fasta')
|
[
"numpy.array",
"Bio.Seq.Seq",
"Bio.AlignIO.read",
"Bio.AlignIO.write"
] |
[((228, 269), 'Bio.AlignIO.read', 'AlignIO.read', (['snakemake.input[0]', '"""fasta"""'], {}), "(snakemake.input[0], 'fasta')\n", (240, 269), False, 'from Bio import AlignIO, Seq\n'), ((739, 798), 'numpy.array', 'np.array', (['[(m / align_arr.shape[0]) for m in missing_bases]'], {}), '([(m / align_arr.shape[0]) for m in missing_bases])\n', (747, 798), True, 'import numpy as np\n'), ((971, 990), 'Bio.Seq.Seq', 'Seq.Seq', (['joined_seq'], {}), '(joined_seq)\n', (978, 990), False, 'from Bio import AlignIO, Seq\n'), ((1041, 1081), 'Bio.AlignIO.write', 'AlignIO.write', (['alignments', 'fout', '"""fasta"""'], {}), "(alignments, fout, 'fasta')\n", (1054, 1081), False, 'from Bio import AlignIO, Seq\n')]
|
from __future__ import (division, print_function, absolute_import,
unicode_literals)
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline as InterpUS
from powderday.nebular_emission.cloudy_tools import sym_to_name
"""
------------------------------------------------------------------------------------------
From cloudyfsps written by <NAME>.
(Source https://github.com/nell-byler/cloudyfsps/blob/master/cloudyfsps/nebAbundTools.py
retrieved in October 2019)
------------------------------------------------------------------------------------------
"""
def getNebAbunds(set_name, logZ, dust=True, re_z=False, **kwargs):
"""
neb_abund.get_abunds(set_name, logZ, dust=True, re_z=False)
set_name must be 'dopita', 'newdopita', 'cl01' or 'yeh'
"""
allowed_names = ['dopita', 'newdopita', 'cl01', 'yeh',
'varyNO', 'gutkin', 'UVbyler', 'varyCO']
if set_name in allowed_names:
return eval('{}({}, dust={}, re_z={})'.format(set_name, logZ, dust, re_z))
else:
raise IOError(allowed_names)
class abundSet(object):
def __init__(self, set_name, logZ):
"""
overarching class for abundance sets.
abundSet('dopita', 0.0)
"""
self.logZ = logZ
self.abund_0 = load_abund(set_name)
self.depl = load_depl(set_name)
self.calcSpecial()
self.calcFinal()
self.inputStrings()
def calcSpecial(self):
return
def calcFinal(self):
return
def inputStrings(self):
self.solarstr = 'abundances {} {}'.format(self.solar, self.grains)
elem_strs = []
names = sym_to_name()
for key in self.abund_0.keys():
elm = names[key]
abund = self.__getattribute__(key)
# if hasattr(self, 're_z'):
# if key != 'He':
# abund -= self.re_z
outstr = 'element abundance {0} {1:.2f} log'.format(elm, abund)
elem_strs.append(outstr)
self.__setattr__('elem_strs', elem_strs)
return
class dopita(abundSet):
solar = 'old solar 84'
def __init__(self, logZ, dust=True, re_z=False):
"""
Dopita+2001: old solar abundances = 0.019
ISM grains
"""
if dust:
self.grains = 'no grains\ngrains ISM'
else:
self.grains = 'no grains'
if re_z:
self.re_z = logZ
else:
self.re_z = 0.0
abundSet.__init__(self, 'dopita', logZ)
def calcSpecial(self):
"""
piece-wise function for nitrogen abund (step-function)
functional form for helium
"""
def calc_N(logZ):
if logZ <= -0.63:
return -4.57 + logZ
else:
return -3.94 + (2.0 * logZ)
def calc_He(logZ):
return np.log10(0.08096 + (0.02618 * (10.0 ** logZ)))
self.__setattr__('He', calc_He(self.logZ))
self.__setattr__('N', calc_N(self.logZ) + self.depl['N'])
return
def calcFinal(self):
"""
apply depletions and scale with logZ
"""
[self.__setattr__(key, val + self.logZ + self.depl[key])
for key, val in self.abund_0.items() if not hasattr(self, key)]
return
class newdopita(abundSet):
solar = 'GASS10'
def __init__(self, logZ, dust=True, re_z=False):
"""
Abundances from Dopita (2013)
Solar Abundances from Grevasse 2010 - z= 0.013
includes smooth polynomial for N/O, C/O relationship
functional form for He(z)
new depletion factors
ISM grains
"""
if dust:
self.grains = 'no grains\ngrains ISM'
else:
self.grains = 'no grains'
self.re_z = re_z
abundSet.__init__(self, 'newdopita', logZ)
def calcSpecial(self):
def calc_He(logZ):
return np.log10(0.0737 + (0.024 * (10.0 ** logZ)))
def calc_CNO(logZ):
oxy = np.array([7.39, 7.50, 7.69, 7.99, 8.17,
8.39, 8.69, 8.80, 8.99, 9.17, 9.39])
nit = np.array([-6.61, -6.47, -6.23, -5.79, -5.51,
-5.14, -4.60, -4.40, -4.04, -3.67, -3.17])
car = np.array([-5.58, -5.44, -5.20, -4.76, -4.48,
-4.11, -3.57, -3.37, -3.01, -2.64, -2.14])
O = self.abund_0['O'] + logZ
C = float(InterpUS(oxy, car, k=1)(O + 12.0))
N = float(InterpUS(oxy, nit, k=1)(O + 12.0))
return C, N, O
self.__setattr__('He', calc_He(self.logZ))
C, N, O = calc_CNO(self.logZ)
[self.__setattr__(key, val + self.depl[key])
for key, val in zip(['C', 'N', 'O'], [C, N, O])]
return
def calcFinal(self):
[self.__setattr__(key, val + self.logZ + self.depl[key])
for key, val in self.abund_0.items() if not hasattr(self, key)]
return
class UVbyler(abundSet):
solar = 'GASS10'
def __init__(self, logZ, dust=True, re_z=False):
"""
Abundances from Dopita (2013)
Solar Abundances from Grevasse 2010 - z= 0.013
New fit for N/O, C/O relationship
functional form for He(z)
new depletion factors
ISM grains
"""
if dust:
self.grains = 'no grains\ngrains ISM'
else:
self.grains = 'no grains'
self.re_z = re_z
abundSet.__init__(self, 'UVbyler', logZ)
def calcSpecial(self):
def calc_He(logZ):
return np.log10(0.0737 + (0.024 * (10.0 ** logZ)))
def calc_CNO(logZ):
O = self.abund_0['O'] + logZ
# C = np.log10((1.0*10.**O)*(10.**-1.1 + 10.**(2.96 + O)))
C = np.log10((10. ** O) * (10. ** -0.7 + 10. ** (4.8 + 1.45 * O)))
# N = np.log10((1.0*10.**O)*(10.**-1.8 + 10.**(2.2 + O)))
# N = np.log10((10.**O)*(10.**-1.5 + 10.**(2.5 + 1.2*O)))
N = np.log10((1.0 * 10. ** O) * (10. ** -1.55 + 10. ** (2.3 + 1.1 * O)))
# N = -4.81 + logZ if logZ <= -0.3 else -4.51 + 2.0*logZ
return C, N, O
self.__setattr__('He', calc_He(self.logZ))
C, N, O = calc_CNO(self.logZ)
[self.__setattr__(key, val + self.depl[key])
for key, val in zip(['C', 'N', 'O'], [C, N, O])]
return
def calcFinal(self):
[self.__setattr__(key, val + self.logZ + self.depl[key])
for key, val in self.abund_0.items() if not hasattr(self, key)]
return
class gutkin(abundSet):
solar = 'GASS10'
def __init__(self, logZ, dust=True, re_z=False):
"""
Gutkin+2016
PARSEC metallicity (Bressan+2012)
based on Grevesse+Sauvel (1998) and Caffau+2011
"""
if dust:
self.grains = 'no grains\ngrains ISM'
else:
self.grains = 'no grains'
self.re_z = re_z
abundSet.__init__(self, 'gutkin', logZ)
def calcSpecial(self):
def calc_He(logZ):
Z = (10. ** logZ) * 0.01524
Y = 0.2485 + 1.7756 * Z
X = 1. - Y - Z
return np.log10(Y / X / 4.)
def calc_CNO(logZ):
O = self.abund_0['O'] + logZ
N = np.log10((0.41 * 10. ** O) * (10. ** -1.6 + 10. ** (2.33 + O)))
C = self.abund_0['C'] + logZ
return C, N, O
self.__setattr__('He', calc_He(self.logZ))
C, N, O = calc_CNO(self.logZ)
[self.__setattr__(key, val)
for key, val in zip(['C', 'N', 'O'], [C, N, O])]
return
def calcFinal(self):
[self.__setattr__(key, val)
for key, val in self.abund_0.items() if not hasattr(self, key)]
return
def load_abund(set_name):
if set_name == 'dopita':
adict = dict(He=-1.01,
C=-3.44,
N=-3.95,
O=-3.07,
Ne=-3.91,
Mg=-4.42,
Si=-4.45,
S=-4.79,
Ar=-5.44,
Ca=-5.64,
Fe=-4.33,
F=-7.52,
Na=-5.69,
Al=-5.53,
P=-6.43,
Cl=-6.73,
K=-6.87,
Ti=-6.96,
Cr=-6.32,
Mn=-6.47,
Co=-7.08,
Ni=-5.75,
Cu=-7.73,
Zn=-7.34)
elif set_name == 'newdopita':
adict = dict(He=-1.01,
C=-3.57,
N=-4.60,
O=-3.31,
Ne=-4.07,
Na=-5.75,
Mg=-4.40,
Al=-5.55,
Si=-4.49,
S=-4.86,
Cl=-6.63,
Ar=-5.60,
Ca=-5.66,
Fe=-4.50,
Ni=-5.78,
F=-7.44,
P=-6.59,
K=-6.97,
Cr=-6.36,
Ti=-7.05,
Mn=-6.57,
Co=-7.01,
Cu=-7.81,
Zn=-7.44)
elif set_name == 'UVbyler':
adict = dict(He=-1.01,
C=-3.57,
N=-4.17,
O=-3.31,
Ne=-4.07,
Na=-5.75,
Mg=-4.40,
Al=-5.55,
Si=-4.49,
S=-4.86,
Cl=-6.63,
Ar=-5.60,
Ca=-5.66,
Fe=-4.50,
Ni=-5.78,
F=-7.44,
P=-6.59,
K=-6.97,
Cr=-6.36,
Ti=-7.05,
Mn=-6.57,
Co=-7.01,
Cu=-7.81,
Zn=-7.44)
elif set_name == 'gutkin':
adict = dict(He=-1.01,
C=-3.53,
N=-4.32,
O=-3.17,
F=-7.47,
Ne=-4.01,
Na=-5.70,
Mg=-4.45,
Al=-5.56,
Si=-4.48,
P=-6.57,
S=-4.87,
Cl=-6.53,
Ar=-5.63,
K=-6.92,
Ca=-5.67,
Sc=-8.86,
Ti=-7.01,
V=-8.03,
Cr=-6.36,
Mn=-6.64,
Fe=-4.51,
Co=-7.11,
Ni=-5.78,
Cu=-7.82,
Zn=-7.43)
return adict
def load_depl(set_name):
if set_name == 'dopita':
ddict = dict(C=-0.30,
N=-0.22,
O=-0.22,
Ne=0.0,
Mg=-0.70,
Si=-1.0,
S=0.0,
Ar=0.0,
Ca=-2.52,
Fe=-2.0,
F=0.0,
Na=0.0,
Al=0.0,
P=0.0,
Cl=0.0,
K=0.0,
Ti=0.0,
Cr=0.0,
Mn=0.0,
Co=0.0,
Ni=0.0,
Cu=0.0,
Zn=0.0)
elif set_name == 'newdopita':
ddict = dict(He=0.00,
C=-0.30,
N=-0.05,
O=-0.07,
Ne=0.00,
Na=-1.00,
Mg=-1.08,
Al=-1.39,
Si=-0.81,
S=0.00,
Cl=-1.00,
Ar=0.00,
Ca=-2.52,
Fe=-1.31,
Ni=-2.00,
F=0.0,
P=0.0,
K=0.0,
Cr=0.0,
Ti=0.0,
Mn=0.0,
Co=0.0,
Cu=0.0,
Zn=0.0)
elif set_name == 'UVbyler':
ddict = dict(He=0.00,
C=-0.30,
N=-0.05,
O=-0.07,
Ne=0.00,
Na=-1.00,
Mg=-1.08,
Al=-1.39,
Si=-0.81,
S=0.00,
Cl=-1.00,
Ar=0.00,
Ca=-2.52,
Fe=-1.31,
Ni=-2.00,
F=0.0,
P=0.0,
K=0.0,
Cr=0.0,
Ti=0.0,
Mn=0.0,
Co=0.0,
Cu=0.0,
Zn=0.0)
elif set_name == 'gutkin':
ddict = dict(He=0.00,
Li=-0.8,
C=-0.30,
O=-0.15,
Na=-0.60,
Mg=-0.70,
Al=-1.70,
Si=-1.00,
Cl=-0.30,
Ca=-2.52,
Fe=-2.00,
Ni=-1.40)
return ddict
|
[
"numpy.array",
"numpy.log10",
"scipy.interpolate.InterpolatedUnivariateSpline",
"powderday.nebular_emission.cloudy_tools.sym_to_name"
] |
[((1685, 1698), 'powderday.nebular_emission.cloudy_tools.sym_to_name', 'sym_to_name', ([], {}), '()\n', (1696, 1698), False, 'from powderday.nebular_emission.cloudy_tools import sym_to_name\n'), ((2912, 2954), 'numpy.log10', 'np.log10', (['(0.08096 + 0.02618 * 10.0 ** logZ)'], {}), '(0.08096 + 0.02618 * 10.0 ** logZ)\n', (2920, 2954), True, 'import numpy as np\n'), ((3994, 4033), 'numpy.log10', 'np.log10', (['(0.0737 + 0.024 * 10.0 ** logZ)'], {}), '(0.0737 + 0.024 * 10.0 ** logZ)\n', (4002, 4033), True, 'import numpy as np\n'), ((4085, 4159), 'numpy.array', 'np.array', (['[7.39, 7.5, 7.69, 7.99, 8.17, 8.39, 8.69, 8.8, 8.99, 9.17, 9.39]'], {}), '([7.39, 7.5, 7.69, 7.99, 8.17, 8.39, 8.69, 8.8, 8.99, 9.17, 9.39])\n', (4093, 4159), True, 'import numpy as np\n'), ((4208, 4298), 'numpy.array', 'np.array', (['[-6.61, -6.47, -6.23, -5.79, -5.51, -5.14, -4.6, -4.4, -4.04, -3.67, -3.17]'], {}), '([-6.61, -6.47, -6.23, -5.79, -5.51, -5.14, -4.6, -4.4, -4.04, -\n 3.67, -3.17])\n', (4216, 4298), True, 'import numpy as np\n'), ((4342, 4433), 'numpy.array', 'np.array', (['[-5.58, -5.44, -5.2, -4.76, -4.48, -4.11, -3.57, -3.37, -3.01, -2.64, -2.14]'], {}), '([-5.58, -5.44, -5.2, -4.76, -4.48, -4.11, -3.57, -3.37, -3.01, -\n 2.64, -2.14])\n', (4350, 4433), True, 'import numpy as np\n'), ((5666, 5705), 'numpy.log10', 'np.log10', (['(0.0737 + 0.024 * 10.0 ** logZ)'], {}), '(0.0737 + 0.024 * 10.0 ** logZ)\n', (5674, 5705), True, 'import numpy as np\n'), ((5867, 5930), 'numpy.log10', 'np.log10', (['(10.0 ** O * (10.0 ** -0.7 + 10.0 ** (4.8 + 1.45 * O)))'], {}), '(10.0 ** O * (10.0 ** -0.7 + 10.0 ** (4.8 + 1.45 * O)))\n', (5875, 5930), True, 'import numpy as np\n'), ((6086, 6155), 'numpy.log10', 'np.log10', (['(1.0 * 10.0 ** O * (10.0 ** -1.55 + 10.0 ** (2.3 + 1.1 * O)))'], {}), '(1.0 * 10.0 ** O * (10.0 ** -1.55 + 10.0 ** (2.3 + 1.1 * O)))\n', (6094, 6155), True, 'import numpy as np\n'), ((7267, 7288), 'numpy.log10', 'np.log10', (['(Y / X / 4.0)'], {}), '(Y / X / 4.0)\n', (7275, 7288), True, 'import numpy as np\n'), ((7374, 7438), 'numpy.log10', 'np.log10', (['(0.41 * 10.0 ** O * (10.0 ** -1.6 + 10.0 ** (2.33 + O)))'], {}), '(0.41 * 10.0 ** O * (10.0 ** -1.6 + 10.0 ** (2.33 + O)))\n', (7382, 7438), True, 'import numpy as np\n'), ((4521, 4544), 'scipy.interpolate.InterpolatedUnivariateSpline', 'InterpUS', (['oxy', 'car'], {'k': '(1)'}), '(oxy, car, k=1)\n', (4529, 4544), True, 'from scipy.interpolate import InterpolatedUnivariateSpline as InterpUS\n'), ((4578, 4601), 'scipy.interpolate.InterpolatedUnivariateSpline', 'InterpUS', (['oxy', 'nit'], {'k': '(1)'}), '(oxy, nit, k=1)\n', (4586, 4601), True, 'from scipy.interpolate import InterpolatedUnivariateSpline as InterpUS\n')]
|
from sklearn.preprocessing import StandardScaler, LabelEncoder, MinMaxScaler, OneHotEncoder
import numpy as np
import pandas as pd
import tqdm
"""
Class for Preprocessing CICIDS2017 Data represented as rows
"""
class CICIDSPreprocessor:
def __init__(self):
self.to_delete_columns = ['Flow ID', ' Timestamp']
self.label_column = ' Label'
def preprocess_train_data(self, df: pd.DataFrame, label="BENIGN"):
df = df.drop(self.to_delete_columns, axis=1)
df = df[df[self.label_column] == label]
df.reset_index(drop=True, inplace=True)
df.drop(self.label_column, axis=1, inplace=True)
return df.fillna(0)
def preprocess_test_data(self, df: pd.DataFrame, label="BENIGN"):
df = df.drop(self.to_delete_columns, axis=1)
df = df[df[self.label_column] == label]
df.reset_index(drop=True, inplace=True)
df.drop(self.label_column, axis=1, inplace=True)
return df.fillna(0)
def __get_windows(self, df, window_size=20, stride=10):
windows_arr = []
for i in tqdm.tqdm(range(0, len(df)-window_size+1, stride)):
windows_arr.append(df.iloc[i:i+window_size, :].to_numpy())
return np.array(windows_arr)
|
[
"numpy.array"
] |
[((1214, 1235), 'numpy.array', 'np.array', (['windows_arr'], {}), '(windows_arr)\n', (1222, 1235), True, 'import numpy as np\n')]
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2020 dlilien <<EMAIL>>
#
# Distributed under terms of the MIT license.
"""
"""
import numpy as np
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from .cartopy_overrides import SPS
# import shapely.geometry as sgeom
USP_EXTENT = (31000, 35000, -37750, -33750)
# USP_EXTENT = (-100000, 100000, -100000, 100000)
USP_ASP = (USP_EXTENT[1] - USP_EXTENT[0]) / (USP_EXTENT[3] - USP_EXTENT[2])
def upstream(ax=None, fig_kwargs=None):
if fig_kwargs is None:
fig_kwargs = {}
if ax is None:
_, ax = plt.subplots(**fig_kwargs, subplot_kw={'projection': SPS()})
ax.set_extent(USP_EXTENT, ccrs.epsg(3031))
ax._xlocs = np.arange(0, 180)
ax._ylocs = np.arange(-90, -80, 0.1)
ax._y_inline = False
ax._x_inline = False
return ax
|
[
"cartopy.crs.epsg",
"numpy.arange"
] |
[((733, 750), 'numpy.arange', 'np.arange', (['(0)', '(180)'], {}), '(0, 180)\n', (742, 750), True, 'import numpy as np\n'), ((767, 791), 'numpy.arange', 'np.arange', (['(-90)', '(-80)', '(0.1)'], {}), '(-90, -80, 0.1)\n', (776, 791), True, 'import numpy as np\n'), ((700, 715), 'cartopy.crs.epsg', 'ccrs.epsg', (['(3031)'], {}), '(3031)\n', (709, 715), True, 'import cartopy.crs as ccrs\n')]
|
import gym
from gym import spaces, error, utils
from gym.utils import seeding
import numpy as np
import configparser
from os import path
import matplotlib.pyplot as plt
from matplotlib.pyplot import gca
font = {'family': 'sans-serif',
'weight': 'bold',
'size': 14}
class FlockingEnv(gym.Env):
def __init__(self):
config_file = path.join(path.dirname(__file__), "params_flock.cfg")
config = configparser.ConfigParser()
config.read(config_file)
config = config['flock']
self.dynamic = False # if the agents are moving or not
self.mean_pooling = True # normalize the adjacency matrix by the number of neighbors or not
# number states per agent
self.nx_system = 4
# numer of observations per agent
self.n_features = 6
# number of actions per agent
self.nu = 2
# problem parameters from file
self.n_agents = int(config['network_size'])
self.comm_radius = float(config['comm_radius'])
self.comm_radius2 = self.comm_radius * self.comm_radius
self.dt = float(config['system_dt'])
self.v_max = float(config['max_vel_init'])
self.v_bias = self.v_max
self.r_max = float(config['max_rad_init'])
self.std_dev = float(config['std_dev']) * self.dt
# intitialize state matrices
self.x = np.zeros((self.n_agents, self.nx_system))
self.u = np.zeros((self.n_agents, self.nu))
self.mean_vel = np.zeros((self.n_agents, self.nu))
self.init_vel = np.zeros((self.n_agents, self.nu))
self.a_net = np.zeros((self.n_agents, self.n_agents))
# TODO : what should the action space be? is [-1,1] OK?
self.max_accel = 1
self.gain = 10.0 # TODO - adjust if necessary - may help the NN performance
self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2 * self.n_agents,),
dtype=np.float32)
self.observation_space = spaces.Box(low=-np.Inf, high=np.Inf, shape=(self.n_agents, self.n_features),
dtype=np.float32)
self.fig = None
self.line1 = None
self.seed()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def step(self, u):
#u = np.reshape(u, (-1, 2))
assert u.shape == (self.n_agents, self.nu)
self.u = u
if self.dynamic:
# x position
self.x[:, 0] = self.x[:, 0] + self.x[:, 2] * self.dt
# y position
self.x[:, 1] = self.x[:, 1] + self.x[:, 3] * self.dt
# x velocity
self.x[:, 2] = self.x[:, 2] + self.gain * self.u[:, 0] * self.dt #+ np.random.normal(0, self.std_dev, (self.n_agents,))
# y velocity
self.x[:, 3] = self.x[:, 3] + self.gain * self.u[:, 1] * self.dt #+ np.random.normal(0, self.std_dev, (self.n_agents,))
return self._get_obs(), self.instant_cost(), False, {}
def instant_cost(self): # sum of differences in velocities
# TODO adjust to desired reward
# action_cost = -1.0 * np.sum(np.square(self.u))
#curr_variance = -1.0 * np.sum((np.var(self.x[:, 2:4], axis=0)))
versus_initial_vel = -1.0 * np.sum(np.sum(np.square(self.x[:, 2:4] - self.mean_vel), axis=1))
#return curr_variance + versus_initial_vel
return versus_initial_vel
def reset(self):
x = np.zeros((self.n_agents, self.nx_system))
degree = 0
min_dist = 0
min_dist_thresh = 0.1 # 0.25
# generate an initial configuration with all agents connected,
# and minimum distance between agents > min_dist_thresh
while degree < 2 or min_dist < min_dist_thresh:
# randomly initialize the location and velocity of all agents
length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_agents,)))
angle = np.pi * np.random.uniform(0, 2, size=(self.n_agents,))
x[:, 0] = length * np.cos(angle)
x[:, 1] = length * np.sin(angle)
bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,))
x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) + bias[0]
x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) + bias[1]
# compute distances between agents
a_net = self.dist2_mat(x)
# compute minimum distance between agents and degree of network to check if good initial configuration
min_dist = np.sqrt(np.min(np.min(a_net)))
a_net = a_net < self.comm_radius2
degree = np.min(np.sum(a_net.astype(int), axis=1))
# keep good initialization
self.mean_vel = np.mean(x[:, 2:4], axis=0)
self.init_vel = x[:, 2:4]
self.x = x
self.a_net = self.get_connectivity(self.x)
return self._get_obs()
def _get_obs(self):
# state_values = self.x
state_values = np.hstack((self.x, self.init_vel)) # initial velocities are part of state to make system observable
if self.dynamic:
state_network = self.get_connectivity(self.x)
else:
state_network = self.a_net
return (state_values, state_network)
def dist2_mat(self, x):
"""
Compute squared euclidean distances between agents. Diagonal elements are infinity
Args:
x (): current state of all agents
Returns: symmetric matrix of size (n_agents, n_agents) with A_ij the distance between agents i and j
"""
x_loc = np.reshape(x[:, 0:2], (self.n_agents,2,1))
a_net = np.sum(np.square(np.transpose(x_loc, (0,2,1)) - np.transpose(x_loc, (2,0,1))), axis=2)
np.fill_diagonal(a_net, np.Inf)
return a_net
def get_connectivity(self, x):
"""
Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist
Args:
x (): current state of all agents
Returns: adjacency matrix of network
"""
a_net = self.dist2_mat(x)
a_net = (a_net < self.comm_radius2).astype(float)
if self.mean_pooling:
# Normalize the adjacency matrix by the number of neighbors - results in mean pooling, instead of sum pooling
n_neighbors = np.reshape(np.sum(a_net, axis=1), (self.n_agents,1)) # TODO or axis=0? Is the mean in the correct direction?
n_neighbors[n_neighbors == 0] = 1
a_net = a_net / n_neighbors
return a_net
def controller(self):
"""
Consensus-based centralized flocking with no obstacle avoidance
Returns: the optimal action
"""
# TODO implement Tanner 2003?
u = np.mean(self.x[:,2:4], axis=0) - self.x[:,2:4]
u = np.clip(u, a_min=-self.max_accel, a_max=self.max_accel)
return u
def render(self, mode='human'):
"""
Render the environment with agents as points in 2D space
"""
if self.fig is None:
plt.ion()
fig = plt.figure()
ax = fig.add_subplot(111)
line1, = ax.plot(self.x[:, 0], self.x[:, 1], 'bo') # Returns a tuple of line objects, thus the comma
ax.plot([0], [0], 'kx')
plt.ylim(-1.0 * self.r_max, 1.0 * self.r_max)
plt.xlim(-1.0 * self.r_max, 1.0 * self.r_max)
a = gca()
a.set_xticklabels(a.get_xticks(), font)
a.set_yticklabels(a.get_yticks(), font)
plt.title('GNN Controller')
self.fig = fig
self.line1 = line1
self.line1.set_xdata(self.x[:, 0])
self.line1.set_ydata(self.x[:, 1])
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def close(self):
pass
|
[
"numpy.clip",
"configparser.ConfigParser",
"numpy.hstack",
"numpy.sin",
"gym.utils.seeding.np_random",
"numpy.mean",
"numpy.reshape",
"numpy.min",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.gca",
"numpy.fill_diagonal",
"numpy.square",
"os.path.dirname",
"numpy.cos",
"matplotlib.pyplot.ion",
"matplotlib.pyplot.title",
"matplotlib.pyplot.xlim",
"numpy.transpose",
"gym.spaces.Box",
"numpy.sum",
"numpy.zeros",
"matplotlib.pyplot.figure",
"numpy.random.uniform"
] |
[((431, 458), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (456, 458), False, 'import configparser\n'), ((1387, 1428), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.nx_system)'], {}), '((self.n_agents, self.nx_system))\n', (1395, 1428), True, 'import numpy as np\n'), ((1446, 1480), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.nu)'], {}), '((self.n_agents, self.nu))\n', (1454, 1480), True, 'import numpy as np\n'), ((1505, 1539), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.nu)'], {}), '((self.n_agents, self.nu))\n', (1513, 1539), True, 'import numpy as np\n'), ((1564, 1598), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.nu)'], {}), '((self.n_agents, self.nu))\n', (1572, 1598), True, 'import numpy as np\n'), ((1620, 1660), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.n_agents)'], {}), '((self.n_agents, self.n_agents))\n', (1628, 1660), True, 'import numpy as np\n'), ((1866, 1969), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-self.max_accel)', 'high': 'self.max_accel', 'shape': '(2 * self.n_agents,)', 'dtype': 'np.float32'}), '(low=-self.max_accel, high=self.max_accel, shape=(2 * self.\n n_agents,), dtype=np.float32)\n', (1876, 1969), False, 'from gym import spaces, error, utils\n'), ((2039, 2137), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-np.Inf)', 'high': 'np.Inf', 'shape': '(self.n_agents, self.n_features)', 'dtype': 'np.float32'}), '(low=-np.Inf, high=np.Inf, shape=(self.n_agents, self.n_features),\n dtype=np.float32)\n', (2049, 2137), False, 'from gym import spaces, error, utils\n'), ((2313, 2336), 'gym.utils.seeding.np_random', 'seeding.np_random', (['seed'], {}), '(seed)\n', (2330, 2336), False, 'from gym.utils import seeding\n'), ((3519, 3560), 'numpy.zeros', 'np.zeros', (['(self.n_agents, self.nx_system)'], {}), '((self.n_agents, self.nx_system))\n', (3527, 3560), True, 'import numpy as np\n'), ((4882, 4908), 'numpy.mean', 'np.mean', (['x[:, 2:4]'], {'axis': '(0)'}), '(x[:, 2:4], axis=0)\n', (4889, 4908), True, 'import numpy as np\n'), ((5124, 5158), 'numpy.hstack', 'np.hstack', (['(self.x, self.init_vel)'], {}), '((self.x, self.init_vel))\n', (5133, 5158), True, 'import numpy as np\n'), ((5738, 5782), 'numpy.reshape', 'np.reshape', (['x[:, 0:2]', '(self.n_agents, 2, 1)'], {}), '(x[:, 0:2], (self.n_agents, 2, 1))\n', (5748, 5782), True, 'import numpy as np\n'), ((5892, 5923), 'numpy.fill_diagonal', 'np.fill_diagonal', (['a_net', 'np.Inf'], {}), '(a_net, np.Inf)\n', (5908, 5923), True, 'import numpy as np\n'), ((6988, 7043), 'numpy.clip', 'np.clip', (['u'], {'a_min': '(-self.max_accel)', 'a_max': 'self.max_accel'}), '(u, a_min=-self.max_accel, a_max=self.max_accel)\n', (6995, 7043), True, 'import numpy as np\n'), ((370, 392), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (382, 392), False, 'from os import path\n'), ((4178, 4242), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_bias)', 'high': 'self.v_bias', 'size': '(2,)'}), '(low=-self.v_bias, high=self.v_bias, size=(2,))\n', (4195, 4242), True, 'import numpy as np\n'), ((6929, 6960), 'numpy.mean', 'np.mean', (['self.x[:, 2:4]'], {'axis': '(0)'}), '(self.x[:, 2:4], axis=0)\n', (6936, 6960), True, 'import numpy as np\n'), ((7229, 7238), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (7236, 7238), True, 'import matplotlib.pyplot as plt\n'), ((7257, 7269), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7267, 7269), True, 'import matplotlib.pyplot as plt\n'), ((7470, 7515), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-1.0 * self.r_max)', '(1.0 * self.r_max)'], {}), '(-1.0 * self.r_max, 1.0 * self.r_max)\n', (7478, 7515), True, 'import matplotlib.pyplot as plt\n'), ((7528, 7573), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-1.0 * self.r_max)', '(1.0 * self.r_max)'], {}), '(-1.0 * self.r_max, 1.0 * self.r_max)\n', (7536, 7573), True, 'import matplotlib.pyplot as plt\n'), ((7590, 7595), 'matplotlib.pyplot.gca', 'gca', ([], {}), '()\n', (7593, 7595), False, 'from matplotlib.pyplot import gca\n'), ((7712, 7739), 'matplotlib.pyplot.title', 'plt.title', (['"""GNN Controller"""'], {}), "('GNN Controller')\n", (7721, 7739), True, 'import matplotlib.pyplot as plt\n'), ((3936, 3991), 'numpy.random.uniform', 'np.random.uniform', (['(0)', 'self.r_max'], {'size': '(self.n_agents,)'}), '(0, self.r_max, size=(self.n_agents,))\n', (3953, 3991), True, 'import numpy as np\n'), ((4021, 4067), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(2)'], {'size': '(self.n_agents,)'}), '(0, 2, size=(self.n_agents,))\n', (4038, 4067), True, 'import numpy as np\n'), ((4099, 4112), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (4105, 4112), True, 'import numpy as np\n'), ((4144, 4157), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (4150, 4157), True, 'import numpy as np\n'), ((4265, 4339), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_max)', 'high': 'self.v_max', 'size': '(self.n_agents,)'}), '(low=-self.v_max, high=self.v_max, size=(self.n_agents,))\n', (4282, 4339), True, 'import numpy as np\n'), ((4372, 4446), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.v_max)', 'high': 'self.v_max', 'size': '(self.n_agents,)'}), '(low=-self.v_max, high=self.v_max, size=(self.n_agents,))\n', (4389, 4446), True, 'import numpy as np\n'), ((6512, 6533), 'numpy.sum', 'np.sum', (['a_net'], {'axis': '(1)'}), '(a_net, axis=1)\n', (6518, 6533), True, 'import numpy as np\n'), ((3345, 3386), 'numpy.square', 'np.square', (['(self.x[:, 2:4] - self.mean_vel)'], {}), '(self.x[:, 2:4] - self.mean_vel)\n', (3354, 3386), True, 'import numpy as np\n'), ((4697, 4710), 'numpy.min', 'np.min', (['a_net'], {}), '(a_net)\n', (4703, 4710), True, 'import numpy as np\n'), ((5814, 5844), 'numpy.transpose', 'np.transpose', (['x_loc', '(0, 2, 1)'], {}), '(x_loc, (0, 2, 1))\n', (5826, 5844), True, 'import numpy as np\n'), ((5845, 5875), 'numpy.transpose', 'np.transpose', (['x_loc', '(2, 0, 1)'], {}), '(x_loc, (2, 0, 1))\n', (5857, 5875), True, 'import numpy as np\n')]
|
import logging
from datetime import datetime
import numpy as np
from logging.config import dictConfig
from kafkawrapper.producer import Producer
from utils.mongo_utils import BenchMarkingProcessRepo
from configs.configs import ulca_notifier_input_topic, ulca_notifier_benchmark_completed_event, ulca_notifier_benchmark_failed_event
from models.metric_manager import MetricManager
log = logging.getLogger('file')
prod = Producer()
repo = BenchMarkingProcessRepo()
class OcrMetricEvalHandler:
def __init__(self):
pass
def execute_ocr_metric_eval(self, request):
try:
log.info("Executing Ocr Metric Evaluation.... {}".format(datetime.now()))
metric_mgr = MetricManager.getInstance()
if 'benchmarkDatasets' in request.keys():
for benchmark in request["benchmarkDatasets"]:
metric_inst = metric_mgr.get_metric_execute(benchmark["metric"], request["modelTaskType"])
if not metric_inst:
log.info("Metric definition not found")
doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': None}
repo.insert(doc)
repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'})
mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}}
prod.produce(mail_notif_event, ulca_notifier_input_topic, None)
return
ground_truth = [corpus_sentence["tgt"] for corpus_sentence in benchmark["corpus"]]
machine_translation = [corpus_sentence["mtgt"] for corpus_sentence in benchmark["corpus"]]
eval_score = metric_inst.ocr_metric_eval(ground_truth, machine_translation)
if eval_score:
doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': float(np.round(eval_score, 3))}
repo.insert(doc)
repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Completed'})
mail_notif_event = {"event": ulca_notifier_benchmark_completed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}}
prod.produce(mail_notif_event, ulca_notifier_input_topic, None)
else:
log.exception("Exception while metric evaluation of model")
doc = {'benchmarkingProcessId':request['benchmarkingProcessId'],'benchmarkDatasetId': benchmark['datasetId'],'eval_score': None}
repo.insert(doc)
repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'})
mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}}
prod.produce(mail_notif_event, ulca_notifier_input_topic, None)
else:
log.exception("Missing parameter: benchmark details")
repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'})
mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}}
prod.produce(mail_notif_event, ulca_notifier_input_topic, None)
return
except Exception as e:
log.exception(f"Exception while metric evaluation of model: {str(e)}")
repo.insert_pt({'benchmarkingProcessId': request['benchmarkingProcessId'], 'status': 'Failed'})
mail_notif_event = {"event": ulca_notifier_benchmark_failed_event, "entityID": request['modelId'], "userID": request['userId'], "details":{"modelName":request['modelName']}}
prod.produce(mail_notif_event, ulca_notifier_input_topic, None)
# Log config
dictConfig({
'version': 1,
'formatters': {'default': {
'format': '[%(asctime)s] {%(filename)s:%(lineno)d} %(threadName)s %(levelname)s in %(module)s: %(message)s',
}},
'handlers': {
'info': {
'class': 'logging.FileHandler',
'level': 'DEBUG',
'formatter': 'default',
'filename': 'info.log'
},
'console': {
'class': 'logging.StreamHandler',
'level': 'DEBUG',
'formatter': 'default',
'stream': 'ext://sys.stdout',
}
},
'loggers': {
'file': {
'level': 'DEBUG',
'handlers': ['info', 'console'],
'propagate': ''
}
},
'root': {
'level': 'DEBUG',
'handlers': ['info', 'console']
}
})
|
[
"logging.getLogger",
"kafkawrapper.producer.Producer",
"utils.mongo_utils.BenchMarkingProcessRepo",
"models.metric_manager.MetricManager.getInstance",
"logging.config.dictConfig",
"datetime.datetime.now",
"numpy.round"
] |
[((387, 412), 'logging.getLogger', 'logging.getLogger', (['"""file"""'], {}), "('file')\n", (404, 412), False, 'import logging\n'), ((421, 431), 'kafkawrapper.producer.Producer', 'Producer', ([], {}), '()\n', (429, 431), False, 'from kafkawrapper.producer import Producer\n'), ((439, 464), 'utils.mongo_utils.BenchMarkingProcessRepo', 'BenchMarkingProcessRepo', ([], {}), '()\n', (462, 464), False, 'from utils.mongo_utils import BenchMarkingProcessRepo\n'), ((4418, 5006), 'logging.config.dictConfig', 'dictConfig', (["{'version': 1, 'formatters': {'default': {'format':\n '[%(asctime)s] {%(filename)s:%(lineno)d} %(threadName)s %(levelname)s in %(module)s: %(message)s'\n }}, 'handlers': {'info': {'class': 'logging.FileHandler', 'level':\n 'DEBUG', 'formatter': 'default', 'filename': 'info.log'}, 'console': {\n 'class': 'logging.StreamHandler', 'level': 'DEBUG', 'formatter':\n 'default', 'stream': 'ext://sys.stdout'}}, 'loggers': {'file': {'level':\n 'DEBUG', 'handlers': ['info', 'console'], 'propagate': ''}}, 'root': {\n 'level': 'DEBUG', 'handlers': ['info', 'console']}}"], {}), "({'version': 1, 'formatters': {'default': {'format':\n '[%(asctime)s] {%(filename)s:%(lineno)d} %(threadName)s %(levelname)s in %(module)s: %(message)s'\n }}, 'handlers': {'info': {'class': 'logging.FileHandler', 'level':\n 'DEBUG', 'formatter': 'default', 'filename': 'info.log'}, 'console': {\n 'class': 'logging.StreamHandler', 'level': 'DEBUG', 'formatter':\n 'default', 'stream': 'ext://sys.stdout'}}, 'loggers': {'file': {'level':\n 'DEBUG', 'handlers': ['info', 'console'], 'propagate': ''}}, 'root': {\n 'level': 'DEBUG', 'handlers': ['info', 'console']}})\n", (4428, 5006), False, 'from logging.config import dictConfig\n'), ((705, 732), 'models.metric_manager.MetricManager.getInstance', 'MetricManager.getInstance', ([], {}), '()\n', (730, 732), False, 'from models.metric_manager import MetricManager\n'), ((663, 677), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (675, 677), False, 'from datetime import datetime\n'), ((2195, 2218), 'numpy.round', 'np.round', (['eval_score', '(3)'], {}), '(eval_score, 3)\n', (2203, 2218), True, 'import numpy as np\n')]
|
""" Module containing helper routines for routes """
from typing import Dict, Any, Set, List, Tuple
import numpy as np
from route_distances.utils.type_utils import StrDict
def calc_depth(tree_dict: StrDict, depth: int = 0) -> int:
"""
Calculate the depth of a route, recursively
:param tree_dict: the route
:param depth: the current depth, don't specify for route
"""
children = tree_dict.get("children", [])
if children:
return max(calc_depth(child, depth + 1) for child in children)
return depth
def calc_llr(tree_dict: StrDict) -> int:
"""
Calculate the longest linear route for a synthetic route
:param tree_dict: the route
"""
return calc_depth(tree_dict) // 2
def extract_leaves(
tree_dict: StrDict,
) -> Set[str]:
"""
Extract a set with the SMILES of all the leaf nodes, i.e.
starting material
:param tree_dict: the route
:return: a set of SMILE strings
"""
def traverse(tree_dict: StrDict, leaves: Set[str]) -> None:
children = tree_dict.get("children", [])
if children:
for child in children:
traverse(child, leaves)
else:
leaves.add(tree_dict["smiles"])
leaves = set()
traverse(tree_dict, leaves)
return leaves
def is_solved(route: StrDict) -> bool:
"""
Find if a route is solved, i.e. if all starting material
is in stock.
To be accurate, each molecule node need to have an extra
boolean property called `in_stock`.
:param route: the route to analyze
"""
def find_leaves_not_in_stock(tree_dict: StrDict) -> None:
children = tree_dict.get("children", [])
if not children and not tree_dict.get("in_stock", True):
raise ValueError(f"child not in stock {tree_dict}")
elif children:
for child in children:
find_leaves_not_in_stock(child)
try:
find_leaves_not_in_stock(route)
except ValueError:
return False
return True
def route_score(
tree_dict: StrDict,
mol_costs: Dict[bool, float] = None,
average_yield=0.8,
reaction_cost=1.0,
) -> float:
"""
Calculate the score of route using the method from
(Badowski et al. Chem Sci. 2019, 10, 4640).
The reaction cost is constant and the yield is an average yield.
The starting materials are assigned a cost based on whether they are in
stock or not. By default starting material in stock is assigned a
cost of 1 and starting material not in stock is assigned a cost of 10.
To be accurate, each molecule node need to have an extra
boolean property called `in_stock`.
:param tree_dict: the route to analyze
:param mol_costs: the starting material cost
:param average_yield: the average yield, defaults to 0.8
:param reaction_cost: the reaction cost, defaults to 1.0
:return: the computed cost
"""
mol_cost = mol_costs or {True: 1, False: 10}
reactions = tree_dict.get("children", [])
if not reactions:
return mol_cost[tree_dict.get("in_stock", True)]
child_sum = sum(
1 / average_yield * route_score(child) for child in reactions[0]["children"]
)
return reaction_cost + child_sum
def route_scorer(routes: List[StrDict]) -> Tuple[List[StrDict], List[float]]:
"""
Scores and sort a list of routes.
Returns a tuple of the sorted routes and their costs.
:param routes: the routes to score
:return: the sorted routes and their costs
"""
scores = np.asarray([route_score(route) for route in routes])
sorted_idx = np.argsort(scores)
routes = [routes[idx] for idx in sorted_idx]
return routes, scores[sorted_idx].tolist()
def route_ranks(scores: List[float]) -> List[int]:
"""
Compute the rank of route scores. Rank starts at 1
:param scores: the route scores
:return: a list of ranks for each route
"""
ranks = [1]
for idx in range(1, len(scores)):
if abs(scores[idx] - scores[idx - 1]) < 1e-8:
ranks.append(ranks[idx - 1])
else:
ranks.append(ranks[idx - 1] + 1)
return ranks
|
[
"numpy.argsort"
] |
[((3623, 3641), 'numpy.argsort', 'np.argsort', (['scores'], {}), '(scores)\n', (3633, 3641), True, 'import numpy as np\n')]
|
import os
import dgl
import time
import argparse
import numpy as np
import torch as th
import distutils.util
import torch.nn.functional as F
import utils
import models
import data_loader
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
dev = th.device('cuda' if th.cuda.is_available() else 'cpu')
if __name__ == '__main__':
argparser = argparse.ArgumentParser("training")
argparser.add_argument('--adj-path', type=str, default='../data/adj_matrix_formal_stage.pkl')
argparser.add_argument('--feat-path', type=str, default='../data/feature_formal_stage.npy')
argparser.add_argument('--label-path', type=str, default='../data/train_labels_formal_stage.npy')
argparser.add_argument('--output-dir', type=str, default='./saved_models/')
argparser.add_argument('--output-name', type=str, default='tagcn_128_3.pkl')
argparser.add_argument('--if-load-model', type=lambda x: bool(distutils.util.strtobool(x)), default=False)
argparser.add_argument('--model-dir', type=str, default='./saved_models/')
argparser.add_argument('--model-name', type=str, default='tagcn_128_3.pkl')
argparser.add_argument('--num-epochs', type=int, default=5000)
argparser.add_argument('--num-hidden', type=int, default=128)
argparser.add_argument('--num-layers', type=int, default=3)
argparser.add_argument('--lr', type=float, default=0.001)
argparser.add_argument('--dropout', type=float, default=0.1)
argparser.add_argument('--adj-norm', type=lambda x: bool(distutils.util.strtobool(x)), default=True)
argparser.add_argument('--feat-norm', type=str, default=None)
args = argparser.parse_args()
print(vars(args))
dataset = data_loader.KddDataset(args.adj_path, args.feat_path, args.label_path, indices)
adj = dataset.adj
features = dataset.features
labels = dataset.labels
train_mask = dataset.train_mask
val_mask = dataset.val_mask
test_mask = dataset.test_mask
size_raw = features.shape[0]
size_reduced = size_raw - 50000
graph = dgl.DGLGraph()
if args.adj_norm:
adj = utils.adj_preprocess(adj)
feat_norm_func = utils.feat_norm(args.feat_norm)
graph.from_scipy_sparse_matrix(adj)
features = th.FloatTensor(features).to(dev)
features[th.where(features < -1.0)[0]] = 0
features[th.where(features > 1.0)[0]] = 0
features = feat_norm_func(features)
labels = th.LongTensor(labels).to(dev)
graph.ndata['features'] = features
model = models.TAGCN(100, args.num_hidden, 20, args.num_layers, activation=F.leaky_relu, dropout=args.dropout)
if args.if_load_model:
model_states = th.load(os.path.join(args.model_dir, args.model_name), map_location=dev)
model.load_state_dict(model_states)
model = model.to(dev)
optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
dur = []
for epoch in range(args.num_epochs):
t0 = time.time()
logits = model(graph, features).to(dev)
logp = F.log_softmax(logits, 1)[:size_reduced]
loss = F.nll_loss(logp[train_mask], labels[train_mask]).to(dev)
optimizer.zero_grad()
loss.backward()
optimizer.step()
dur.append(time.time() - t0)
if epoch % 10 == 0:
train_acc = utils.compute_acc(logp, labels, train_mask)
val_acc = utils.compute_acc(logp, labels, val_mask)
print('Epoch {:05d} | Loss {:.4f} | Train Acc {:.4f} | Val Acc {:.4f} '
'| Time(s) {:.4f} | GPU {:.1f} MiB'.format(
epoch, loss, train_acc, val_acc, np.mean(dur), th.cuda.max_memory_allocated() / 1000000))
th.save(model.state_dict(), os.path.join(args.output_dir, args.output_name))
|
[
"utils.feat_norm",
"numpy.mean",
"utils.compute_acc",
"argparse.ArgumentParser",
"torch.nn.functional.nll_loss",
"torch.LongTensor",
"os.path.join",
"torch.FloatTensor",
"data_loader.KddDataset",
"utils.adj_preprocess",
"torch.cuda.is_available",
"dgl.DGLGraph",
"torch.nn.functional.log_softmax",
"torch.cuda.max_memory_allocated",
"time.time",
"models.TAGCN",
"torch.where"
] |
[((336, 371), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""training"""'], {}), "('training')\n", (359, 371), False, 'import argparse\n'), ((1666, 1745), 'data_loader.KddDataset', 'data_loader.KddDataset', (['args.adj_path', 'args.feat_path', 'args.label_path', 'indices'], {}), '(args.adj_path, args.feat_path, args.label_path, indices)\n', (1688, 1745), False, 'import data_loader\n'), ((2012, 2026), 'dgl.DGLGraph', 'dgl.DGLGraph', ([], {}), '()\n', (2024, 2026), False, 'import dgl\n'), ((2110, 2141), 'utils.feat_norm', 'utils.feat_norm', (['args.feat_norm'], {}), '(args.feat_norm)\n', (2125, 2141), False, 'import utils\n'), ((2458, 2565), 'models.TAGCN', 'models.TAGCN', (['(100)', 'args.num_hidden', '(20)', 'args.num_layers'], {'activation': 'F.leaky_relu', 'dropout': 'args.dropout'}), '(100, args.num_hidden, 20, args.num_layers, activation=F.\n leaky_relu, dropout=args.dropout)\n', (2470, 2565), False, 'import models\n'), ((256, 278), 'torch.cuda.is_available', 'th.cuda.is_available', ([], {}), '()\n', (276, 278), True, 'import torch as th\n'), ((2063, 2088), 'utils.adj_preprocess', 'utils.adj_preprocess', (['adj'], {}), '(adj)\n', (2083, 2088), False, 'import utils\n'), ((2885, 2896), 'time.time', 'time.time', ([], {}), '()\n', (2894, 2896), False, 'import time\n'), ((3635, 3682), 'os.path.join', 'os.path.join', (['args.output_dir', 'args.output_name'], {}), '(args.output_dir, args.output_name)\n', (3647, 3682), False, 'import os\n'), ((2197, 2221), 'torch.FloatTensor', 'th.FloatTensor', (['features'], {}), '(features)\n', (2211, 2221), True, 'import torch as th\n'), ((2243, 2268), 'torch.where', 'th.where', (['(features < -1.0)'], {}), '(features < -1.0)\n', (2251, 2268), True, 'import torch as th\n'), ((2290, 2314), 'torch.where', 'th.where', (['(features > 1.0)'], {}), '(features > 1.0)\n', (2298, 2314), True, 'import torch as th\n'), ((2376, 2397), 'torch.LongTensor', 'th.LongTensor', (['labels'], {}), '(labels)\n', (2389, 2397), True, 'import torch as th\n'), ((2620, 2665), 'os.path.join', 'os.path.join', (['args.model_dir', 'args.model_name'], {}), '(args.model_dir, args.model_name)\n', (2632, 2665), False, 'import os\n'), ((2960, 2984), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['logits', '(1)'], {}), '(logits, 1)\n', (2973, 2984), True, 'import torch.nn.functional as F\n'), ((3242, 3285), 'utils.compute_acc', 'utils.compute_acc', (['logp', 'labels', 'train_mask'], {}), '(logp, labels, train_mask)\n', (3259, 3285), False, 'import utils\n'), ((3308, 3349), 'utils.compute_acc', 'utils.compute_acc', (['logp', 'labels', 'val_mask'], {}), '(logp, labels, val_mask)\n', (3325, 3349), False, 'import utils\n'), ((3015, 3063), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['logp[train_mask]', 'labels[train_mask]'], {}), '(logp[train_mask], labels[train_mask])\n', (3025, 3063), True, 'import torch.nn.functional as F\n'), ((3171, 3182), 'time.time', 'time.time', ([], {}), '()\n', (3180, 3182), False, 'import time\n'), ((3545, 3557), 'numpy.mean', 'np.mean', (['dur'], {}), '(dur)\n', (3552, 3557), True, 'import numpy as np\n'), ((3559, 3589), 'torch.cuda.max_memory_allocated', 'th.cuda.max_memory_allocated', ([], {}), '()\n', (3587, 3589), True, 'import torch as th\n')]
|
from bluepy import btle
import concurrent
from concurrent import futures
import threading
import multiprocessing
import time
from time_sync import *
import eval_client
import dashBoardClient
from joblib import dump, load
import numpy # to count labels and store in dict
import operator # to get most predicted label
import json
import random # RNG in worst case
from sklearn.preprocessing import StandardScaler # to normalise data
class UUIDS:
SERIAL_COMMS = btle.UUID("0000dfb1-0000-1000-8000-00805f9b34fb")
class Delegate(btle.DefaultDelegate):
def __init__(self, params):
btle.DefaultDelegate.__init__(self)
def handleNotification(self, cHandle, data):
ultra96_receiving_timestamp = time.time() * 1000
for idx in range(len(beetle_addresses)):
if global_delegate_obj[idx] == self:
#print("receiving data from %s" % (beetle_addresses[idx]))
#print("data: " + data.decode('ISO-8859-1'))
if beetle_addresses[idx] == "50:F1:4A:CC:01:C4": # emg beetle data
emg_buffer[beetle_addresses[idx]
] += data.decode('ISO-8859-1')
if '>' in data.decode('ISO-8859-1'):
print("sending emg dataset to dashboard")
packet_count_dict[beetle_addresses[idx]] += 1
try:
arr = emg_buffer[beetle_addresses[idx]].split(">")[
0]
final_arr = arr.split(",")
board_client.send_data_to_DB(
beetle_addresses[idx], str(final_arr))
emg_buffer[beetle_addresses[idx]] = ""
except Exception as e:
print(e)
board_client.send_data_to_DB(
beetle_addresses[idx], str(["1", "1", "1", "1"]))
emg_buffer[beetle_addresses[idx]] = ""
else:
if incoming_data_flag[beetle_addresses[idx]] is True:
if handshake_flag_dict[beetle_addresses[idx]] is True:
buffer_dict[beetle_addresses[idx]
] += data.decode('ISO-8859-1')
if '>' not in data.decode('ISO-8859-1'):
pass
else:
if 'T' in buffer_dict[beetle_addresses[idx]]:
for char in buffer_dict[beetle_addresses[idx]]:
if char == 'T':
ultra96_receiving_timestamp = time.time() * 1000
continue
if char == '>': # end of packet
try:
timestamp_dict[beetle_addresses[idx]].append(
int(datastring_dict[beetle_addresses[idx]]))
except Exception:
timestamp_dict[beetle_addresses[idx]].append(
0)
timestamp_dict[beetle_addresses[idx]].append(
ultra96_receiving_timestamp)
handshake_flag_dict[beetle_addresses[idx]] = False
clocksync_flag_dict[beetle_addresses[idx]] = True
# clear serial input buffer to get ready for data packets
datastring_dict[beetle_addresses[idx]] = ""
buffer_dict[beetle_addresses[idx]] = ""
return
elif char != '>':
if char == '|': # signify start of next timestamp
try:
timestamp_dict[beetle_addresses[idx]].append(
int(datastring_dict[beetle_addresses[idx]]))
except Exception:
timestamp_dict[beetle_addresses[idx]].append(
0)
datastring_dict[beetle_addresses[idx]] = ""
else:
datastring_dict[beetle_addresses[idx]] += char
else:
pass
else:
if '>' in data.decode('ISO-8859-1'):
buffer_dict[beetle_addresses[idx]
] += data.decode('ISO-8859-1')
#print("storing dance dataset")
packet_count_dict[beetle_addresses[idx]] += 1
else:
buffer_dict[beetle_addresses[idx]
] += data.decode('ISO-8859-1')
# send data to dashboard once every 10 datasets
try:
if packet_count_dict[beetle_addresses[idx]] % 10 == 0 and '>' in data.decode('ISO-8859-1'):
print("sending data to dashboard")
first_string = buffer_dict[beetle_addresses[idx]].split("|")[
0]
final_arr = [first_string.split(",")[0], str(int(first_string.split(",")[1])/divide_get_float), str(int(first_string.split(",")[2])/divide_get_float),
str(int(first_string.split(",")[
3])/divide_get_float), str(int(first_string.split(",")[4])/divide_get_float),
str(int(first_string.split(",")[5])/divide_get_float), str(int(first_string.split(",")[6])/divide_get_float)]
board_client.send_data_to_DB(
beetle_addresses[idx], str(final_arr))
except Exception as e:
print(e)
"""
class EMGThread(object):
def __init__(self):
thread = threading.Thread(target=self.getEMGData, args=(beetle, ))
thread.daemon = True # Daemonize thread
thread.start() # Start the execution
def getEMGData(self, beetle):
while True:
try:
if beetle.waitForNotifications(2):
continue
except Exception as e:
reestablish_connection(beetle)
"""
def initHandshake(beetle):
retries = 0
if beetle.addr != "50:F1:4A:CC:01:C4":
ultra96_sending_timestamp = time.time() * 1000
incoming_data_flag[beetle.addr] = True
handshake_flag_dict[beetle.addr] = True
for characteristic in beetle.getCharacteristics():
if characteristic.uuid == UUIDS.SERIAL_COMMS:
ultra96_sending_timestamp = time.time() * 1000
timestamp_dict[beetle.addr].append(
ultra96_sending_timestamp)
print("Sending 'T' and 'H' and 'Z' packets to %s" %
(beetle.addr))
characteristic.write(
bytes('T', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('H', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('Z', 'UTF-8'), withResponse=False)
while True:
try:
if beetle.waitForNotifications(2):
if clocksync_flag_dict[beetle.addr] is True:
# function for time calibration
try:
clock_offset_tmp = calculate_clock_offset(timestamp_dict[beetle.addr])
tmp_value_list = []
if clock_offset_tmp is not None:
tmp_value_list.append(clock_offset_tmp)
clock_offset_dict[beetle.addr] = tmp_value_list
except Exception as e:
print(e)
timestamp_dict[beetle.addr].clear()
print("beetle %s clock offset: %i" %
(beetle.addr, clock_offset_dict[beetle.addr][-1]))
clocksync_flag_dict[beetle.addr] = False
incoming_data_flag[beetle.addr] = False
return
else:
continue
else:
while True:
if retries >= 5:
retries = 0
break
print(
"Failed to receive timestamp, sending 'Z', 'T', 'H', and 'R' packet to %s" % (beetle.addr))
characteristic.write(
bytes('R', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('T', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('H', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('Z', 'UTF-8'), withResponse=False)
retries += 1
except Exception as e:
reestablish_connection(beetle)
def establish_connection(address):
while True:
try:
for idx in range(len(beetle_addresses)):
# for initial connections or when any beetle is disconnected
if beetle_addresses[idx] == address:
if global_beetle[idx] != 0: # do not reconnect if already connected
return
else:
print("connecting with %s" % (address))
beetle = btle.Peripheral(address)
global_beetle[idx] = beetle
beetle_delegate = Delegate(address)
global_delegate_obj[idx] = beetle_delegate
beetle.withDelegate(beetle_delegate)
if address != "50:F1:4A:CC:01:C4":
initHandshake(beetle)
print("Connected to %s" % (address))
return
except Exception as e:
print(e)
for idx in range(len(beetle_addresses)):
# for initial connections or when any beetle is disconnected
if beetle_addresses[idx] == address:
if global_beetle[idx] != 0: # do not reconnect if already connected
return
time.sleep(3)
def reestablish_connection(beetle):
while True:
try:
print("reconnecting to %s" % (beetle.addr))
beetle.connect(beetle.addr)
print("re-connected to %s" % (beetle.addr))
return
except:
time.sleep(1)
continue
def getDanceData(beetle):
if beetle.addr != "50:F1:4A:CC:01:C4":
timeout_count = 0
retries = 0
incoming_data_flag[beetle.addr] = True
for characteristic in beetle.getCharacteristics():
if characteristic.uuid == UUIDS.SERIAL_COMMS:
while True:
if retries >= 10:
retries = 0
break
print(
"sending 'A' to beetle %s to collect dancing data", (beetle.addr))
characteristic.write(
bytes('A', 'UTF-8'), withResponse=False)
retries += 1
while True:
try:
if beetle.waitForNotifications(2):
#print("getting data...")
# print(packet_count_dict[beetle.addr])
# if number of datasets received from all beetles exceed expectation
if packet_count_dict[beetle.addr] >= num_datasets:
print("sufficient datasets received from %s. Processing data now" % (
beetle.addr))
# reset for next dance move
packet_count_dict[beetle.addr] = 0
incoming_data_flag[beetle.addr] = False
while True:
if retries >= 10:
break
characteristic.write(
bytes('Z', 'UTF-8'), withResponse=False)
retries += 1
return
continue
# beetle finish transmitting, but got packet losses
elif (packet_count_dict[beetle.addr] < num_datasets) and (packet_count_dict[beetle.addr] >= 1):
print(packet_count_dict[beetle.addr])
print("sufficient datasets received from %s with packet losses. Processing data now" % (
beetle.addr))
# reset for next dance move
packet_count_dict[beetle.addr] = 0
incoming_data_flag[beetle.addr] = False
while True:
if retries >= 10:
break
characteristic.write(
bytes('Z', 'UTF-8'), withResponse=False)
retries += 1
return
elif timeout_count >= 3:
incoming_data_flag[beetle.addr] = False
packet_count_dict[beetle.addr] = 0
timeout_count = 0
return
else: # beetle did not start transmitting despite ultra96 sending 'A' previously
timeout_count += 1
packet_count_dict[beetle.addr] = 0
retries = 0
while True:
if retries >= 10:
retries = 0
break
print(
"Failed to receive data, resending 'A' and 'B' packet to %s" % (beetle.addr))
characteristic.write(
bytes('A', 'UTF-8'), withResponse=False)
characteristic.write(
bytes('B', 'UTF-8'), withResponse=False)
retries += 1
except Exception as e:
reestablish_connection(beetle)
def getEMGData(beetle):
retries = 0
for characteristic in beetle.getCharacteristics():
if characteristic.uuid == UUIDS.SERIAL_COMMS:
while True:
if retries >= 5:
retries = 0
break
print(
"sending 'E' to beetle %s to collect emg data", (beetle.addr))
characteristic.write(
bytes('E', 'UTF-8'), withResponse=False)
retries += 1
while True:
try:
if beetle.waitForNotifications(2):
if packet_count_dict[beetle.addr] >= 1:
packet_count_dict[beetle.addr] = 0
retries = 0
while True:
if retries >= 8:
break
characteristic.write(
bytes('X', 'UTF-8'), withResponse=False)
retries += 1
return
continue
else:
print("failed to collect emg data, resending 'E'")
characteristic.write(
bytes('E', 'UTF-8'), withResponse=False)
except Exception as e:
reestablish_connection(beetle)
def processData(address):
if address != "50:F1:4A:CC:01:C4":
data_dict = {address: {}}
def deserialize(buffer_dict, result_dict, address):
for char in buffer_dict[address]:
# start of new dataset
if char == 'D' or end_flag[address] is True:
# 2nd part of dataset lost or '>' lost in transmission
if start_flag[address] is True:
try:
# if only '>' lost in transmission, can keep dataset. Else delete
if checksum_dict[address] != int(datastring_dict[address]):
del result_dict[address][dataset_count_dict[address]]
except Exception: # 2nd part of dataset lost
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
# reset datastring to prepare for next dataset
datastring_dict[address] = ""
# reset checksum to prepare for next dataset
checksum_dict[address] = 0
comma_count_dict[address] = 0
dataset_count_dict[address] += 1
timestamp_flag_dict[address] = True
checksum_dict[address] ^= ord(char)
start_flag[address] = True
end_flag[address] = False
if char != 'D' and char != ',' and char != '|' and char != '>' and (char == '-' or char == '.' or float_flag_dict[address] is True or timestamp_flag_dict[address] is True):
datastring_dict[address] += char
checksum_dict[address] ^= ord(char)
elif char == ' ':
datastring_dict[address] += char
checksum_dict[address] ^= ord(char)
elif char == ',': # next value
comma_count_dict[address] += 1
checksum_dict[address] ^= ord(char)
# already past timestamp value
if comma_count_dict[address] == 1:
timestamp_flag_dict[address] = False
try:
result_dict[address].setdefault(
dataset_count_dict[address], []).append(int(datastring_dict[address]))
except Exception:
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
float_flag_dict[address] = True
elif comma_count_dict[address] < 5: # yaw, pitch, roll floats
try:
result_dict[address][dataset_count_dict[address]].append(
float("{0:.2f}".format((int(datastring_dict[address]) / divide_get_float))))
except Exception:
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
else: # accelerometer integers
try:
result_dict[address][dataset_count_dict[address]].append(
int(int(datastring_dict[address]) / divide_get_float))
except Exception:
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
datastring_dict[address] = ""
elif char == '>': # end of current dataset
# print("ultra96 checksum: %i" % (checksum_dict[address]))
# print("beetle checksum: %i" % (int(datastring_dict[address])))
# received dataset is invalid; drop the dataset from data dictionary
try:
if checksum_dict[address] != int(datastring_dict[address]):
del result_dict[address][dataset_count_dict[address]]
except Exception:
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
# reset datastring to prepare for next dataset
datastring_dict[address] = ""
# reset checksum to prepare for next dataset
checksum_dict[address] = 0
comma_count_dict[address] = 0
start_flag[address] = False
end_flag[address] = True
# missing data in previous dataset
try:
if len(result_dict[address][list(result_dict[address].keys())[-1]]) < 7:
del result_dict[address][list(
result_dict[address].keys())[-1]]
except Exception as e:
print(e)
print("error in processData in line 379")
elif char == '|' or (float_flag_dict[address] is False and timestamp_flag_dict[address] is False):
if float_flag_dict[address] is True:
try:
result_dict[address][dataset_count_dict[address]].append(
int(int(datastring_dict[address]) / divide_get_float))
except Exception:
try:
del result_dict[address][dataset_count_dict[address]]
except Exception:
pass
# clear datastring to prepare take in checksum from beetle
datastring_dict[address] = ""
float_flag_dict[address] = False
elif char != '|' and char != '>':
datastring_dict[address] += char
try:
if len(result_dict[address][list(result_dict[address].keys())[-1]]) < 7:
del result_dict[address][list(
result_dict[address].keys())[-1]]
except Exception as e:
print(e)
print("error in processData in line 478")
for character in "\r\n":
buffer_dict[address] = buffer_dict[address].replace(character, "")
deserialize(buffer_dict, data_dict, address)
dataset_count_dict[address] = 0
return data_dict
def parse_data(dic_data, beetle):
# collect hand data
data = []
for v in dic_data[beetle].values():
ypr = [] # yaw, pitch, roll
for i in range(1, 7):
ypr.append(v[i])
data.append(ypr)
return (data)
def predict_beetle(beetle_data, model):
pred_arr = model.predict(beetle_data)
unique, counts = numpy.unique(pred_arr, return_counts=True)
pred_count = dict(zip(unique, counts))
prediction = max(pred_count.items(), key=operator.itemgetter(1))[0]
return prediction
# Program to find most frequent element in a list
def most_frequent_prediction(pred_list):
return max(set(pred_list), key=pred_list.count)
def find_new_position(ground_truth, b1_move, b2_move, b3_move):
# ground_truth = [3, 2, 1]
# p1_movement = 'R'
# p2_movement = 'S'
# p3_movement = 'L'
dic = {1: b1_move, 2: b2_move, 3: b3_move}
p1_movement = dic[ground_truth[0]]
p2_movement = dic[ground_truth[1]]
p3_movement = dic[ground_truth[2]]
if p1_movement == "R" and p2_movement == "S" and p3_movement == "L":
# output = [3, 2, 1]
output = [ground_truth[2], ground_truth[1], ground_truth[0]]
elif p1_movement == "R" and p2_movement == "L" and p3_movement == "S":
# output = [2, 1, 3]
output = [ground_truth[1], ground_truth[0], ground_truth[2]]
elif p1_movement == "R" and p2_movement == "L" and p3_movement == "L":
# output = [2, 3, 1]
output = [ground_truth[1], ground_truth[2], ground_truth[0]]
elif p1_movement == "S" and p2_movement == "R" and p3_movement == "L":
# output = [1, 3, 2]
output = [ground_truth[0], ground_truth[2], ground_truth[1]]
elif p1_movement == "S" and p2_movement == "L" and p3_movement == "S":
# output = [2, 1, 3]
output = [ground_truth[1], ground_truth[0], ground_truth[2]]
else:
# output = [1, 2, 3]
output = ground_truth
position = str(output[0]) + " " + str(output[1]) + " " + str(output[2])
return position
def eval_1beetle(beetle_dict_1, beetle_1):
# Get beetle data from dictionaries
beetle1_data = parse_data(beetle_dict_1, beetle_1)
# Predict dance move of each beetle
#beetle1_dance = predict_beetle(beetle1_data, mlp_dance)
pred_arr = mlp_dance.predict(beetle1_data)
unique, counts = numpy.unique(pred_arr, return_counts=True)
pred_count = dict(zip(unique, counts))
beetle1_dance = max(pred_count.items(), key=operator.itemgetter(1))[0]
return beetle1_dance
def normalise_data(data):
try:
scaler = StandardScaler()
scaler.fit(data)
data = scaler.transform(data)
return data
except Exception as e:
return data
if __name__ == '__main__':
# 50:F1:4A:CB:FE:EE: position 1, 1C:BA:8C:1D:30:22: position 2, 78:DB:2F:BF:2C:E2: position 3
start_time = time.time()
# global variables
"""
beetle_addresses = ["50:F1:4A:CC:01:C4", "50:F1:4A:CB:FE:EE", "78:DB:2F:BF:2C:E2",
"1C:BA:8C:1D:30:22"]
"""
beetle_addresses = ["50:F1:4A:CC:01:C4", "50:F1:4A:CB:FE:EE", "78:DB:2F:BF:2C:E2",
"1C:BA:8C:1D:30:22"]
divide_get_float = 100.0
global_delegate_obj = []
global_beetle = []
handshake_flag_dict = {"50:F1:4A:CB:FE:EE": True,
"78:DB:2F:BF:2C:E2": True, "1C:BA:8C:1D:30:22": True}
emg_buffer = {"50:F1:4A:CC:01:C4": ""}
buffer_dict = {"50:F1:4A:CB:FE:EE": "",
"78:DB:2F:BF:2C:E2": "", "1C:BA:8C:1D:30:22": ""}
incoming_data_flag = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
ground_truth = [1, 2, 3]
ACTIONS = ['muscle', 'weightlifting', 'shoutout']
POSITIONS = ['1 2 3', '3 2 1', '2 3 1', '3 1 2', '1 3 2', '2 1 3']
beetle1 = "50:F1:4A:CB:FE:EE"
beetle2 = "78:DB:2F:BF:2C:E2"
beetle3 = "1C:BA:8C:1D:30:22"
dance = "shoutout"
new_pos = "1 2 3"
# data global variables
num_datasets = 200
beetle1_data_dict = {"50:F1:4A:CB:FE:EE": {}}
beetle2_data_dict = {"78:DB:2F:BF:2C:E2": {}}
beetle3_data_dict = {"1C:BA:8C:1D:30:22": {}}
beetle1_moving_dict = {"50:F1:4A:CB:FE:EE": {}}
beetle2_moving_dict = {"78:DB:2F:BF:2C:E2": {}}
beetle3_moving_dict = {"1C:BA:8C:1D:30:22": {}}
beetle1_dancing_dict = {"50:F1:4A:CB:FE:EE": {}}
beetle2_dancing_dict = {"78:DB:2F:BF:2C:E2": {}}
beetle3_dancing_dict = {"1C:BA:8C:1D:30:22": {}}
datastring_dict = {"50:F1:4A:CB:FE:EE": "",
"78:DB:2F:BF:2C:E2": "", "1C:BA:8C:1D:30:22": ""}
packet_count_dict = {"50:F1:4A:CC:01:C4": 0, "50:F1:4A:CB:FE:EE": 0,
"78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0}
dataset_count_dict = {"50:F1:4A:CB:FE:EE": 0,
"78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0}
float_flag_dict = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
timestamp_flag_dict = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
comma_count_dict = {"50:F1:4A:CB:FE:EE": 0,
"78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0}
checksum_dict = {"50:F1:4A:CB:FE:EE": 0,
"78:DB:2F:BF:2C:E2": 0, "1C:BA:8C:1D:30:22": 0}
start_flag = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
end_flag = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
# clock synchronization global variables
dance_count = 0
clocksync_flag_dict = {"50:F1:4A:CB:FE:EE": False,
"78:DB:2F:BF:2C:E2": False, "1C:BA:8C:1D:30:22": False}
timestamp_dict = {"50:F1:4A:CB:FE:EE": [],
"78:DB:2F:BF:2C:E2": [], "1C:BA:8C:1D:30:22": []}
clock_offset_dict = {"50:F1:4A:CB:FE:EE": [],
"78:DB:2F:BF:2C:E2": [], "1C:BA:8C:1D:30:22": []}
[global_delegate_obj.append(0) for idx in range(len(beetle_addresses))]
[global_beetle.append(0) for idx in range(len(beetle_addresses))]
try:
eval_client = eval_client.Client("192.168.43.6", 8080, 6, "cg40024002group6")
except Exception as e:
print(e)
try:
board_client = dashBoardClient.Client("192.168.43.248", 8080, 6, "cg40024002group6")
except Exception as e:
print(e)
establish_connection("50:F1:4A:CC:01:C4")
time.sleep(2)
establish_connection("78:DB:2F:BF:2C:E2")
time.sleep(3)
# Load MLP NN model
mlp_dance = load('mlp_dance_LATEST.joblib')
establish_connection("50:F1:4A:CB:FE:EE")
time.sleep(3)
# Load Movement ML
mlp_move = load('mlp_movement_LATEST.joblib')
establish_connection("1C:BA:8C:1D:30:22")
with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor:
for beetle in global_beetle:
if beetle.addr == "50:F1:4A:CC:01:C4":
data_executor.submit(getEMGData, beetle)
data_executor.shutdown(wait=True)
# start collecting data only after 1 min passed
while True:
elapsed_time = time.time() - start_time
if int(elapsed_time) >= 60:
break
else:
print(elapsed_time)
time.sleep(1)
"""
for beetle in global_beetle:
print(beetle.addr)
emg_thread = EMGThread(global_beetle[3])
"""
while True:
with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor:
{data_executor.submit(getDanceData, beetle): beetle for beetle in global_beetle}
data_executor.shutdown(wait=True)
"""
with concurrent.futures.ThreadPoolExecutor(max_workers=7) as data_executor:
data_executor.submit(getEMGData, global_beetle[0])
data_executor.shutdown(wait=True)
"""
# do calibration once every 4 moves; change 4 to other values according to time calibration needs
if dance_count == 1:
print("Proceed to do time calibration...")
# clear clock_offset_dict for next time calibration
for beetle in global_beetle:
if beetle.addr != "50:F1:4A:CC:01:C4":
initHandshake(beetle)
if dance_count == 1:
dance_count = 0
dance_count += 1
pool = multiprocessing.Pool()
workers = [pool.apply_async(processData, args=(address, ))
for address in beetle_addresses]
result = [worker.get() for worker in workers]
pool.close()
try:
# change to 1 if using emg beetle, 0 if not using
for idx in range(1, len(result)):
for address in result[idx].keys():
if address == "50:F1:4A:CB:FE:EE":
beetle1_data_dict[address] = result[idx][address]
elif address == "78:DB:2F:BF:2C:E2":
beetle2_data_dict[address] = result[idx][address]
elif address == "1C:BA:8C:1D:30:22":
beetle3_data_dict[address] = result[idx][address]
except Exception as e:
pass
try:
for dataset_num, dataset_list in beetle1_data_dict["50:F1:4A:CB:FE:EE"].items():
if dataset_list[0] == 0: # moving data
beetle1_moving_dict["50:F1:4A:CB:FE:EE"].update(
{dataset_num: dataset_list})
else: # dancing data
beetle1_dancing_dict["50:F1:4A:CB:FE:EE"].update(
{dataset_num: dataset_list})
except Exception as e:
pass
try:
for dataset_num, dataset_list in beetle2_data_dict["78:DB:2F:BF:2C:E2"].items():
if dataset_list[0] == 0: # moving data
beetle2_moving_dict["78:DB:2F:BF:2C:E2"].update(
{dataset_num: dataset_list})
else: # dancing data
beetle2_dancing_dict["78:DB:2F:BF:2C:E2"].update(
{dataset_num: dataset_list})
except Exception as e:
pass
try:
for dataset_num, dataset_list in beetle3_data_dict["1C:BA:8C:1D:30:22"].items():
if dataset_list[0] == 0: # moving data
beetle3_moving_dict["1C:BA:8C:1D:30:22"].update(
{dataset_num: dataset_list})
else: # dancing data
beetle3_dancing_dict["1C:BA:8C:1D:30:22"].update(
{dataset_num: dataset_list})
except Exception as e:
pass
# clear buffer for next move
for address in buffer_dict.keys():
buffer_dict[address] = ""
# print(beetle1_data_dict)
# print(beetle2_data_dict)
# print(beetle3_data_dict)
with open(r'position.txt', 'a') as file:
file.write(json.dumps(beetle1_moving_dict) + "\n")
file.write(json.dumps(beetle2_moving_dict) + "\n")
file.write(json.dumps(beetle3_moving_dict) + "\n")
file.close()
with open(r'dance.txt', 'a') as file:
file.write(json.dumps(beetle1_dancing_dict) + "\n")
file.write(json.dumps(beetle2_dancing_dict) + "\n")
file.write(json.dumps(beetle3_dancing_dict) + "\n")
file.close()
# synchronization delay
try:
beetle1_time_ultra96 = calculate_ultra96_time(
beetle1_dancing_dict, clock_offset_dict["50:F1:4A:CB:FE:EE"][0])
beetle2_time_ultra96 = calculate_ultra96_time(
beetle2_dancing_dict, clock_offset_dict["78:DB:2F:BF:2C:E2"][0])
beetle3_time_ultra96 = calculate_ultra96_time(
beetle3_dancing_dict, clock_offset_dict["1C:BA:8C:1D:30:22"][0])
sync_delay = calculate_sync_delay(beetle1_time_ultra96, beetle2_time_ultra96, beetle3_time_ultra96)
except Exception as e:
print(e)
print("use default sync delay")
sync_delay = 950
# print("Beetle 1 ultra 96 time: ", beetle1_time_ultra96)
# print("Beetle 2 ultra 96 time: ", beetle2_time_ultra96)
# print("Beetle 3 ultra 96 time: ", beetle3_time_ultra96)
print("Synchronization delay is: ", sync_delay)
# machine learning
# ml_result = get_prediction(beetle1_data_dict)
"""
"""
beetle1_moving_dict = parse_data(beetle1_moving_dict, beetle1)
beetle2_moving_dict = parse_data(beetle2_moving_dict, beetle2)
beetle3_moving_dict = parse_data(beetle3_moving_dict, beetle3)
beetle1_moving_dict = normalise_data(beetle1_moving_dict)
beetle2_moving_dict = normalise_data(beetle2_moving_dict)
beetle3_moving_dict = normalise_data(beetle3_moving_dict)
# Predict movement direction of each beetle
try:
beetle1_move = predict_beetle(beetle1_moving_dict, mlp_move)
except Exception as e:
beetle1_move = 'S'
try:
beetle2_move = predict_beetle(beetle2_moving_dict, mlp_move)
except Exception as e:
beetle2_move = 'S'
try:
beetle3_move = predict_beetle(beetle3_moving_dict, mlp_move)
except Exception as e:
beetle3_move = 'S'
# Find new position
new_pos = find_new_position(
ground_truth, beetle1_move, beetle2_move, beetle3_move)
# PREDICT DANCE
if beetle1_dancing_dict[beetle1] and beetle2_dancing_dict[beetle2] and beetle3_dancing_dict[beetle3]:
# Get DANCE data from dictionaries in arguments
beetle1_dance_data = parse_data(beetle1_dancing_dict, beetle1)
beetle2_dance_data = parse_data(beetle2_dancing_dict, beetle2)
beetle3_dance_data = parse_data(beetle3_dancing_dict, beetle3)
# print(beetle1_data)
# Normalise DANCE data
beetle1_dance_data_norm = normalise_data(beetle1_dance_data)
beetle2_dance_data_norm = normalise_data(beetle2_dance_data)
beetle3_dance_data_norm = normalise_data(beetle3_dance_data)
# print(beetle1_data_norm)
# Predict DANCE of each beetle
beetle1_dance = predict_beetle(beetle1_dance_data_norm, mlp_dance)
beetle2_dance = predict_beetle(beetle2_dance_data_norm, mlp_dance)
beetle3_dance = predict_beetle(beetle3_dance_data_norm, mlp_dance)
# print(beetle1_dance)
dance_predictions = [beetle1_dance, beetle2_dance, beetle3_dance]
dance = most_frequent_prediction(dance_predictions)
elif beetle2_dancing_dict[beetle2] and beetle3_dancing_dict[beetle3]:
dance = eval_1beetle(beetle2_dancing_dict, beetle2)
elif beetle1_dancing_dict[beetle1] and beetle3_dancing_dict[beetle3]:
dance = eval_1beetle(beetle1_dancing_dict, beetle1)
elif beetle1_dancing_dict[beetle1] and beetle2_dancing_dict[beetle2]:
dance = eval_1beetle(beetle1_dancing_dict, beetle1)
elif beetle1_dancing_dict[beetle1]:
dance = eval_1beetle(beetle1_dancing_dict, beetle1)
elif beetle2_dancing_dict[beetle2]:
dance = eval_1beetle(beetle2_dancing_dict, beetle2)
elif beetle3_dancing_dict[beetle3]:
dance = eval_1beetle(beetle3_dancing_dict, beetle3)
else:
# RNG
dance = random.choice(ACTIONS)
print(dance)
print(new_pos)
# send data to eval and dashboard server
eval_client.send_data(new_pos, dance, str(sync_delay))
ground_truth = eval_client.receive_dancer_position().split(' ')
ground_truth = [int(ground_truth[0]), int(
ground_truth[1]), int(ground_truth[2])]
final_string = dance + " " + new_pos
board_client.send_data_to_DB("MLDancer1", final_string)
beetle1_moving_dict = {"50:F1:4A:CB:FE:EE": {}}
beetle2_moving_dict = {"78:DB:2F:BF:2C:E2": {}}
beetle3_moving_dict = {"1C:BA:8C:1D:30:22": {}}
beetle1_dancing_dict = {"50:F1:4A:CB:FE:EE": {}}
beetle2_dancing_dict = {"78:DB:2F:BF:2C:E2": {}}
beetle3_dancing_dict = {"1C:BA:8C:1D:30:22": {}}
|
[
"random.choice",
"numpy.unique",
"bluepy.btle.DefaultDelegate.__init__",
"concurrent.futures.ThreadPoolExecutor",
"bluepy.btle.Peripheral",
"dashBoardClient.Client",
"json.dumps",
"time.sleep",
"sklearn.preprocessing.StandardScaler",
"multiprocessing.Pool",
"joblib.load",
"operator.itemgetter",
"eval_client.receive_dancer_position",
"time.time",
"bluepy.btle.UUID",
"eval_client.Client"
] |
[((469, 518), 'bluepy.btle.UUID', 'btle.UUID', (['"""0000dfb1-0000-1000-8000-00805f9b34fb"""'], {}), "('0000dfb1-0000-1000-8000-00805f9b34fb')\n", (478, 518), False, 'from bluepy import btle\n'), ((25115, 25157), 'numpy.unique', 'numpy.unique', (['pred_arr'], {'return_counts': '(True)'}), '(pred_arr, return_counts=True)\n', (25127, 25157), False, 'import numpy\n'), ((27115, 27157), 'numpy.unique', 'numpy.unique', (['pred_arr'], {'return_counts': '(True)'}), '(pred_arr, return_counts=True)\n', (27127, 27157), False, 'import numpy\n'), ((27648, 27659), 'time.time', 'time.time', ([], {}), '()\n', (27657, 27659), False, 'import time\n'), ((31358, 31371), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (31368, 31371), False, 'import time\n'), ((31423, 31436), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (31433, 31436), False, 'import time\n'), ((31477, 31508), 'joblib.load', 'load', (['"""mlp_dance_LATEST.joblib"""'], {}), "('mlp_dance_LATEST.joblib')\n", (31481, 31508), False, 'from joblib import dump, load\n'), ((31560, 31573), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (31570, 31573), False, 'import time\n'), ((31613, 31647), 'joblib.load', 'load', (['"""mlp_movement_LATEST.joblib"""'], {}), "('mlp_movement_LATEST.joblib')\n", (31617, 31647), False, 'from joblib import dump, load\n'), ((600, 635), 'bluepy.btle.DefaultDelegate.__init__', 'btle.DefaultDelegate.__init__', (['self'], {}), '(self)\n', (629, 635), False, 'from bluepy import btle\n'), ((27356, 27372), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (27370, 27372), False, 'from sklearn.preprocessing import StandardScaler\n'), ((31043, 31106), 'eval_client.Client', 'eval_client.Client', (['"""192.168.43.6"""', '(8080)', '(6)', '"""cg40024002group6"""'], {}), "('192.168.43.6', 8080, 6, 'cg40024002group6')\n", (31061, 31106), False, 'import eval_client\n'), ((31189, 31258), 'dashBoardClient.Client', 'dashBoardClient.Client', (['"""192.168.43.248"""', '(8080)', '(6)', '"""cg40024002group6"""'], {}), "('192.168.43.248', 8080, 6, 'cg40024002group6')\n", (31211, 31258), False, 'import dashBoardClient\n'), ((31709, 31761), 'concurrent.futures.ThreadPoolExecutor', 'concurrent.futures.ThreadPoolExecutor', ([], {'max_workers': '(7)'}), '(max_workers=7)\n', (31746, 31761), False, 'import concurrent\n'), ((33307, 33329), 'multiprocessing.Pool', 'multiprocessing.Pool', ([], {}), '()\n', (33327, 33329), False, 'import multiprocessing\n'), ((724, 735), 'time.time', 'time.time', ([], {}), '()\n', (733, 735), False, 'import time\n'), ((7564, 7575), 'time.time', 'time.time', ([], {}), '()\n', (7573, 7575), False, 'import time\n'), ((32071, 32082), 'time.time', 'time.time', ([], {}), '()\n', (32080, 32082), False, 'import time\n'), ((32208, 32221), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (32218, 32221), False, 'import time\n'), ((32373, 32425), 'concurrent.futures.ThreadPoolExecutor', 'concurrent.futures.ThreadPoolExecutor', ([], {'max_workers': '(7)'}), '(max_workers=7)\n', (32410, 32425), False, 'import concurrent\n'), ((11998, 12011), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (12008, 12011), False, 'import time\n'), ((12278, 12291), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (12288, 12291), False, 'import time\n'), ((25246, 25268), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (25265, 25268), False, 'import operator\n'), ((27249, 27271), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (27268, 27271), False, 'import operator\n'), ((40711, 40748), 'eval_client.receive_dancer_position', 'eval_client.receive_dancer_position', ([], {}), '()\n', (40746, 40748), False, 'import eval_client\n'), ((7839, 7850), 'time.time', 'time.time', ([], {}), '()\n', (7848, 7850), False, 'import time\n'), ((35911, 35942), 'json.dumps', 'json.dumps', (['beetle1_moving_dict'], {}), '(beetle1_moving_dict)\n', (35921, 35942), False, 'import json\n'), ((35974, 36005), 'json.dumps', 'json.dumps', (['beetle2_moving_dict'], {}), '(beetle2_moving_dict)\n', (35984, 36005), False, 'import json\n'), ((36037, 36068), 'json.dumps', 'json.dumps', (['beetle3_moving_dict'], {}), '(beetle3_moving_dict)\n', (36047, 36068), False, 'import json\n'), ((36171, 36203), 'json.dumps', 'json.dumps', (['beetle1_dancing_dict'], {}), '(beetle1_dancing_dict)\n', (36181, 36203), False, 'import json\n'), ((36235, 36267), 'json.dumps', 'json.dumps', (['beetle2_dancing_dict'], {}), '(beetle2_dancing_dict)\n', (36245, 36267), False, 'import json\n'), ((36299, 36331), 'json.dumps', 'json.dumps', (['beetle3_dancing_dict'], {}), '(beetle3_dancing_dict)\n', (36309, 36331), False, 'import json\n'), ((11165, 11189), 'bluepy.btle.Peripheral', 'btle.Peripheral', (['address'], {}), '(address)\n', (11180, 11189), False, 'from bluepy import btle\n'), ((40508, 40530), 'random.choice', 'random.choice', (['ACTIONS'], {}), '(ACTIONS)\n', (40521, 40530), False, 'import random\n'), ((2846, 2857), 'time.time', 'time.time', ([], {}), '()\n', (2855, 2857), False, 'import time\n')]
|
from .modules.common import *
import numpy as np
import os
from .modules.rs_structs import getRSformat
class RockstarFile(object):
def __init__(self,binfile,data,galaxies,debug):
self.galaxies = galaxies
self.binfile = binfile
self.debug = debug
self.header()
self.halos()
if data == 'particles':
self.particles()
self.f.close()
def header(self):
f = open(self.binfile,'rb')
f.seek(8*3 + 4*10,1)
self.num_halos = np.fromfile(f,dtype=np.int64,count=1)[0]
self.num_particles = np.fromfile(f,dtype=np.int64,count=1)[0]
#print self.num_halos
f.seek(4 + 4 + 8,1)
self.format_revision = np.fromfile(f,dtype=np.int32,count=1)[0]
if self.debug: print('found HALO_FORMAT_REVISION %d (header)' % self.format_revision)
bytes_left = 256 - f.tell()
f.seek(bytes_left,1)
self.f = f
self.halostruct = getRSformat(self)
def halos(self):
#print 'reading %d halos (%d)' % (self.num_halos,self.galaxies)
self.halodata = np.fromfile(self.f,dtype=self.halostruct,count=self.num_halos)
def particles(self):
self.particle_IDs = np.zeros(self.num_particles,dtype=np.int64)
self.particle_IDs.fill(-1)
self.particle_haloIDs = np.zeros(self.num_particles,dtype=np.int64)
self.particle_haloIDs.fill(-1)
nparts = 0
for i in range(0,self.num_halos):
hid = self.halodata[i]['id']
num_p = self.halodata[i]['num_p']
#print '%d %d' % (i,num_p)
pids = np.fromfile(self.f,dtype=np.int64,count=num_p)
self.particle_IDs[nparts:nparts+num_p] = pids
self.particle_haloIDs[nparts:nparts+num_p] = hid
nparts += num_p
#print 'complete'
def compileReturnArray(RS,data):
"""compile data from RS binary and return requested value"""
arr = []
singleval = False
## return particle ID data
if data == 'particles':
npart = 0
for i in range(0,len(RS)):
npart += len(RS[i].particle_IDs)
arr = np.zeros((npart,2),dtype=np.int64)
npart = 0
for i in range(0,len(RS)):
n = len(RS[i].particle_IDs)
arr[npart:npart+n,0] = RS[i].particle_IDs
arr[npart:npart+n,1] = RS[i].particle_haloIDs
npart += n
return arr
## return halo struct data
if data in RS[0].halostruct.names:
singleval = True
if RS[0].debug: print('%s found in halodata' % data)
nhalos = 0
for i in range(0,len(RS)):
nhalos += RS[i].num_halos
if singleval:
arr.extend(RS[i].halodata[data])
else:
arr.extend(RS[i].halodata)
#print nhalos,len(arr)
return np.asarray(arr)
def readrockstargalaxies(binfile,data,**kwargs):
if 'galaxies' in kwargs: del kwargs['galaxies']
arr = readrockstar(binfile,data,galaxies=1,**kwargs)
return arr
def readrockstar(binfile,data,**kwargs):
"""read rockstar binary file
Parameters
----------
binfile : string
path to rockstar binary file. Do NOT include file extention or leading number
data : string
requested data, see readme for details
Examples
--------
>>> halo_mass = readrockstar('/Users/bob/halos_020','m')
>>> halo_mass
array([ 7.25643648e+08, 5.70148608e+08, 3.97376288e+08,
3.66277274e+09, 1.99379231e+10, 5.01039648e+08,
...,
1.58950515e+09, 2.10782208e+09, 8.41401088e+09,
4.14653504e+08], dtype=float32)
"""
galaxies = 0
if 'galaxies' in kwargs and kwargs['galaxies']==1:
galaxies = 1
debug = 0
if 'debug' in kwargs and kwargs['debug']==1:
debug = 1
RS_DATA = []
for j in range(0,5000):
b = '%s.%d.bin' % (binfile,j)
if os.path.isfile(b):
if debug: print('reading %s' % b)
RS_DATA.append(RockstarFile(b,data,galaxies,debug))
else:
break
arr = compileReturnArray(RS_DATA,data)
return arr
|
[
"os.path.isfile",
"numpy.fromfile",
"numpy.asarray",
"numpy.zeros"
] |
[((2883, 2898), 'numpy.asarray', 'np.asarray', (['arr'], {}), '(arr)\n', (2893, 2898), True, 'import numpy as np\n'), ((1123, 1187), 'numpy.fromfile', 'np.fromfile', (['self.f'], {'dtype': 'self.halostruct', 'count': 'self.num_halos'}), '(self.f, dtype=self.halostruct, count=self.num_halos)\n', (1134, 1187), True, 'import numpy as np\n'), ((1252, 1296), 'numpy.zeros', 'np.zeros', (['self.num_particles'], {'dtype': 'np.int64'}), '(self.num_particles, dtype=np.int64)\n', (1260, 1296), True, 'import numpy as np\n'), ((1364, 1408), 'numpy.zeros', 'np.zeros', (['self.num_particles'], {'dtype': 'np.int64'}), '(self.num_particles, dtype=np.int64)\n', (1372, 1408), True, 'import numpy as np\n'), ((2203, 2239), 'numpy.zeros', 'np.zeros', (['(npart, 2)'], {'dtype': 'np.int64'}), '((npart, 2), dtype=np.int64)\n', (2211, 2239), True, 'import numpy as np\n'), ((3983, 4000), 'os.path.isfile', 'os.path.isfile', (['b'], {}), '(b)\n', (3997, 4000), False, 'import os\n'), ((537, 576), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': 'np.int64', 'count': '(1)'}), '(f, dtype=np.int64, count=1)\n', (548, 576), True, 'import numpy as np\n'), ((607, 646), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': 'np.int64', 'count': '(1)'}), '(f, dtype=np.int64, count=1)\n', (618, 646), True, 'import numpy as np\n'), ((737, 776), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': 'np.int32', 'count': '(1)'}), '(f, dtype=np.int32, count=1)\n', (748, 776), True, 'import numpy as np\n'), ((1657, 1705), 'numpy.fromfile', 'np.fromfile', (['self.f'], {'dtype': 'np.int64', 'count': 'num_p'}), '(self.f, dtype=np.int64, count=num_p)\n', (1668, 1705), True, 'import numpy as np\n')]
|
#! -*- coding:utf-8
from typing import Callable, List, Optional
import numpy as np
import torch
import torchvision
__all__ = ["CIFAR10", "FashionMNIST"]
class CIFAR10(torch.utils.data.Dataset):
def __init__(self,
root: str,
train: bool = True,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
indices: List[int] = None,
data_length: int = None,
shuffle: bool = False):
super(CIFAR10, self).__init__()
self.__datas__ = []
self.__labels__ = []
dataset = torchvision.datasets.CIFAR10(root,
train=train,
transform=transform,
target_transform=target_transform,
download=download)
self.__classes__ = dataset.classes
if indices is None:
indices = list(range(len(dataset)))
for i in indices: # load data and catching...
d, l = dataset[i]
self.__datas__.append(d)
self.__labels__.append(l)
self.__length__ = (len(self.data)
if data_length is None else data_length)
self.__indices__ = np.arange(len(self.data))
self.__shuffle__ = shuffle
if self.shuffle:
np.random.shuffle(self.__indices__)
self.__call_count__ = 0
@property
def data(self): return self.__datas__
@property
def label(self): return self.__labels__
@property
def classes(self): return self.__classes__
@property
def indices(self): return self.__indices__
@property
def shuffle(self): return self.__shuffle__
def __len__(self): return self.__length__
def __getitem__(self, idx):
idx = self.indices[idx % len(self.data)]
d = self.data[idx]
l = self.label[idx]
self.__call_count__ += 1
if self.shuffle and self.__call_count__ >= len(self):
np.random.shuffle(self.__indices__)
self.__call_count__ = 0
return d, l
class FashionMNIST(torch.utils.data.Dataset):
def __init__(self,
root: str,
train: bool = True,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
indices: List[int] = None,
data_length: int = None,
shuffle: bool = False):
super(FashionMNIST, self).__init__()
self.__datas__ = []
self.__labels__ = []
dataset = torchvision.datasets.FashionMNIST(root,
train=train,
transform=transform,
target_transform=target_transform,
download=download)
self.__classes__ = dataset.classes
if indices is None:
indices = list(range(len(dataset)))
for i in indices: # load data and catching...
d, l = dataset[i]
self.__datas__.append(d)
self.__labels__.append(l)
self.__length__ = (len(self.data)
if data_length is None else data_length)
self.__indices__ = np.arange(len(self.data))
self.__shuffle__ = shuffle
if self.shuffle:
np.random.shuffle(self.__indices__)
self.__call_count__ = 0
@property
def data(self): return self.__datas__
@property
def label(self): return self.__labels__
@property
def classes(self): return self.__classes__
@property
def indices(self): return self.__indices__
@property
def shuffle(self): return self.__shuffle__
def __len__(self): return self.__length__
def __getitem__(self, idx):
idx = self.indices[idx % len(self.data)]
d = self.data[idx]
l = self.label[idx]
self.__call_count__ += 1
if self.shuffle and self.__call_count__ >= len(self):
np.random.shuffle(self.__indices__)
self.__call_count__ = 0
return d, l
|
[
"numpy.random.shuffle",
"torchvision.datasets.FashionMNIST",
"torchvision.datasets.CIFAR10"
] |
[((709, 835), 'torchvision.datasets.CIFAR10', 'torchvision.datasets.CIFAR10', (['root'], {'train': 'train', 'transform': 'transform', 'target_transform': 'target_transform', 'download': 'download'}), '(root, train=train, transform=transform,\n target_transform=target_transform, download=download)\n', (737, 835), False, 'import torchvision\n'), ((2883, 3014), 'torchvision.datasets.FashionMNIST', 'torchvision.datasets.FashionMNIST', (['root'], {'train': 'train', 'transform': 'transform', 'target_transform': 'target_transform', 'download': 'download'}), '(root, train=train, transform=transform,\n target_transform=target_transform, download=download)\n', (2916, 3014), False, 'import torchvision\n'), ((1553, 1588), 'numpy.random.shuffle', 'np.random.shuffle', (['self.__indices__'], {}), '(self.__indices__)\n', (1570, 1588), True, 'import numpy as np\n'), ((2230, 2265), 'numpy.random.shuffle', 'np.random.shuffle', (['self.__indices__'], {}), '(self.__indices__)\n', (2247, 2265), True, 'import numpy as np\n'), ((3752, 3787), 'numpy.random.shuffle', 'np.random.shuffle', (['self.__indices__'], {}), '(self.__indices__)\n', (3769, 3787), True, 'import numpy as np\n'), ((4429, 4464), 'numpy.random.shuffle', 'np.random.shuffle', (['self.__indices__'], {}), '(self.__indices__)\n', (4446, 4464), True, 'import numpy as np\n')]
|
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
import torch
import numpy as np
import cv2
class Model:
def __init__(self,confidence_thresh=0.6):
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_thresh # set threshold for this model
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
self.model = DefaultPredictor(cfg)
def get_seg_output(self,image:np.array):
out = self.model(image)['instances']
outputs = [(out.pred_masks[i],out.pred_classes[i]) for i in range(len(out.pred_classes)) if out.pred_classes[i]==0]
return outputs
class Preprocessing:
def __init__(self,kernel,dilate_iter=5,erode_iter=1):
self.kernel = kernel
self.dilate_iter = dilate_iter
self.erode_iter = erode_iter
def get_target_mask(self,masks):
out = np.zeros(masks[0].shape)
for mask in masks:
out += mask
out = np.clip(out,0,1)
return out
def get_trimap(self,masks):
target_mask = self.get_target_mask(masks)
erode = cv2.erode(target_mask.astype('uint8'),self.kernel,iterations=self.erode_iter)
dilate = cv2.dilate(target_mask.astype('uint8'),self.kernel,iterations=self.dilate_iter)
h, w = target_mask.shape
trimap = np.zeros((h, w, 2))
trimap[erode == 1, 1] = 1
trimap[dilate == 0, 0] = 1
return trimap
|
[
"numpy.clip",
"detectron2.config.get_cfg",
"detectron2.model_zoo.get_checkpoint_url",
"numpy.zeros",
"detectron2.model_zoo.get_config_file",
"detectron2.engine.DefaultPredictor"
] |
[((333, 342), 'detectron2.config.get_cfg', 'get_cfg', ([], {}), '()\n', (340, 342), False, 'from detectron2.config import get_cfg\n'), ((580, 669), 'detectron2.model_zoo.get_checkpoint_url', 'model_zoo.get_checkpoint_url', (['"""COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"""'], {}), "(\n 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml')\n", (608, 669), False, 'from detectron2 import model_zoo\n'), ((686, 707), 'detectron2.engine.DefaultPredictor', 'DefaultPredictor', (['cfg'], {}), '(cfg)\n', (702, 707), False, 'from detectron2.engine import DefaultPredictor\n'), ((1221, 1245), 'numpy.zeros', 'np.zeros', (['masks[0].shape'], {}), '(masks[0].shape)\n', (1229, 1245), True, 'import numpy as np\n'), ((1311, 1329), 'numpy.clip', 'np.clip', (['out', '(0)', '(1)'], {}), '(out, 0, 1)\n', (1318, 1329), True, 'import numpy as np\n'), ((1681, 1700), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (1689, 1700), True, 'import numpy as np\n'), ((371, 457), 'detectron2.model_zoo.get_config_file', 'model_zoo.get_config_file', (['"""COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"""'], {}), "(\n 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml')\n", (396, 457), False, 'from detectron2 import model_zoo\n')]
|
import numpy as np
from example_functions import target_function_dict
from line_search_methods import line_search_dict
from main_methods import main_method_dict
from config import best_params
from helpers import generate_x0
def run_one(_theta, _main_method, _ls_method, params, ls_params):
theta = _theta()
x0 = generate_x0(theta.n, *theta.bounds)
ls_method = _ls_method(ls_params)
main_method = _main_method(params, ls_method)
# print('Correct solution: ', theta.min_values)
result = main_method(theta, np.array(x0))
# print('Found solution: ', result['min_value'])
# print(result_to_string(result))
return result
def result_to_string(result):
perf = result['performance']
ls_perf = perf['line_search']
return ', '.join([str(s) for s in [
result['status'], perf['iterations'], f"{perf['duration']} ms",
ls_perf['iterations'], f"{round(ls_perf['duration'], 2)} ms",
]])
np.warnings.filterwarnings('ignore', category=RuntimeWarning)
for theta in best_params:
for main_method in best_params[theta]:
for line_search in best_params[theta][main_method]:
result = run_one(
target_function_dict[theta],
main_method_dict[main_method],
line_search_dict[line_search],
best_params[theta][main_method][line_search]['params'],
best_params[theta][main_method][line_search]['ls_params'],
)
status = result['status']
print(f"{status}: {theta},{main_method},{line_search}")
|
[
"numpy.array",
"helpers.generate_x0",
"numpy.warnings.filterwarnings"
] |
[((946, 1007), 'numpy.warnings.filterwarnings', 'np.warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning'}), "('ignore', category=RuntimeWarning)\n", (972, 1007), True, 'import numpy as np\n'), ((323, 358), 'helpers.generate_x0', 'generate_x0', (['theta.n', '*theta.bounds'], {}), '(theta.n, *theta.bounds)\n', (334, 358), False, 'from helpers import generate_x0\n'), ((532, 544), 'numpy.array', 'np.array', (['x0'], {}), '(x0)\n', (540, 544), True, 'import numpy as np\n')]
|
import skimage.color
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import imghdr
import time
"""
Duplicate Image Finder (DIF): function that searches a given directory for images and finds duplicate/similar images among them.
Outputs the number of found duplicate/similar image pairs with a list of the filenames having lower resolution.
"""
class dif:
def compare_images(directory, show_imgs=False, similarity="normal", px_size=50, delete=False):
"""
directory (str)......folder path to search for duplicate/similar images
show_imgs (bool).....False = omits the output and doesn't show found images
True = shows duplicate/similar images found in output
similarity (str)....."normal" = searches for duplicates, recommended setting, MSE < 200
"high" = serached for exact duplicates, extremly sensitive to details, MSE < 0.1
"low" = searches for similar images, MSE < 1000
px_size (int)........recommended not to change default value
resize images to px_size height x width (in pixels) before being compared
the higher the pixel size, the more computational ressources and time required
delete (bool)........! please use with care, as this cannot be undone
lower resolution duplicate images that were found are automatically deleted
OUTPUT (set).........a set of the filenames of the lower resolution duplicate images
"""
# list where the found duplicate/similar images are stored
duplicates = []
lower_res = []
imgs_matrix = dif.create_imgs_matrix(directory, px_size)
# search for similar images, MSE < 1000
if similarity == "low":
ref = 1000
# search for exact duplicate images, extremly sensitive, MSE < 0.1
elif similarity == "high":
ref = 0.1
# normal, search for duplicates, recommended, MSE < 200
else:
ref = 200
main_img = 0
compared_img = 1
nrows, ncols = px_size, px_size
srow_A = 0
erow_A = nrows
srow_B = erow_A
erow_B = srow_B + nrows
while erow_B <= imgs_matrix.shape[0]:
while compared_img < (len(image_files)):
# select two images from imgs_matrix
imgA = imgs_matrix[srow_A: erow_A, # rows
0: ncols] # columns
imgB = imgs_matrix[srow_B: erow_B, # rows
0: ncols] # columns
# compare the images
rotations = 0
while image_files[main_img] not in duplicates and rotations <= 3:
if rotations != 0:
imgB = dif.rotate_img(imgB)
err = dif.mse(imgA, imgB)
if err < ref:
if show_imgs:
dif.show_img_figs(imgA, imgB, err)
dif.show_file_info(compared_img, main_img)
dif.add_to_list(image_files[main_img], duplicates)
dif.check_img_quality(directory, image_files[main_img], image_files[compared_img], lower_res)
rotations += 1
srow_B += nrows
erow_B += nrows
compared_img += 1
srow_A += nrows
erow_A += nrows
srow_B = erow_A
erow_B = srow_B + nrows
main_img += 1
compared_img = main_img + 1
msg = "\n***\nFound " + str(len(duplicates)) + " duplicate image pairs in " + str(
len(image_files)) + " total images.\n\nThe following files have lower resolution:"
print(msg)
print(lower_res, "\n")
time.sleep(0.5)
if delete:
usr = input("Are you sure you want to delete all lower resolution duplicate images? (y/n)")
if str(usr) == "y":
dif.delete_imgs(directory, set(lower_res))
else:
print("Image deletion canceled.")
return set(lower_res)
else:
return set(lower_res)
def _process_directory(directory):
directory += os.sep
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory: " + directory + " does not exist")
return directory
# Function that searches the folder for image files, converts them to a matrix
def create_imgs_matrix(directory, px_size):
directory = dif._process_directory(directory)
global image_files
image_files = []
# create list of all files in directory
folder_files = [filename for filename in os.listdir(directory)]
# create images matrix
counter = 0
for filename in folder_files:
if not os.path.isdir(directory + filename) and imghdr.what(directory + filename):
img = cv2.imdecode(np.fromfile(directory + filename, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if type(img) == np.ndarray:
img = img[..., 0:3]
img = cv2.resize(img, dsize=(px_size, px_size), interpolation=cv2.INTER_CUBIC)
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
if counter == 0:
imgs_matrix = img
image_files.append(filename)
counter += 1
else:
imgs_matrix = np.concatenate((imgs_matrix, img))
image_files.append(filename)
return imgs_matrix
# Function that calulates the mean squared error (mse) between two image matrices
def mse(imageA, imageB):
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
return err
# Function that plots two compared image files and their mse
def show_img_figs(imageA, imageB, err):
fig = plt.figure()
plt.suptitle("MSE: %.2f" % (err))
# plot first image
ax = fig.add_subplot(1, 2, 1)
plt.imshow(imageA, cmap=plt.cm.gray)
plt.axis("off")
# plot second image
ax = fig.add_subplot(1, 2, 2)
plt.imshow(imageB, cmap=plt.cm.gray)
plt.axis("off")
# show the images
plt.show()
# Function for rotating an image matrix by a 90 degree angle
def rotate_img(image):
image = np.rot90(image, k=1, axes=(0, 1))
return image
# Function for printing filename info of plotted image files
def show_file_info(compared_img, main_img):
print("Duplicate file: " + image_files[main_img] + " and " + image_files[compared_img])
# Function for appending items to a list
def add_to_list(filename, list):
list.append(filename)
# Function for checking the quality of compared images, appends the lower quality image to the list
def check_img_quality(directory, imageA, imageB, list):
directory = dif._process_directory(directory)
size_imgA = os.stat(directory + imageA).st_size
size_imgB = os.stat(directory + imageB).st_size
if size_imgA > size_imgB:
dif.add_to_list(imageB, list)
else:
dif.add_to_list(imageA, list)
def delete_imgs(directory, filenames_set):
directory = dif._process_directory(directory)
print("\nDeletion in progress...")
deleted = 0
for filename in filenames_set:
try:
os.remove(directory + filename)
print("Deleted file:", filename)
deleted += 1
except:
print("Could not delete file:", filename)
print("\n***\nDeleted", deleted, "duplicates.")
|
[
"matplotlib.pyplot.imshow",
"numpy.fromfile",
"os.listdir",
"os.stat",
"time.sleep",
"os.remove",
"matplotlib.pyplot.figure",
"os.path.isdir",
"imghdr.what",
"numpy.rot90",
"numpy.concatenate",
"matplotlib.pyplot.axis",
"cv2.resize",
"matplotlib.pyplot.suptitle",
"matplotlib.pyplot.show"
] |
[((3912, 3927), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (3922, 3927), False, 'import time\n'), ((6198, 6210), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6208, 6210), True, 'import matplotlib.pyplot as plt\n'), ((6219, 6250), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('MSE: %.2f' % err)"], {}), "('MSE: %.2f' % err)\n", (6231, 6250), True, 'import matplotlib.pyplot as plt\n'), ((6326, 6362), 'matplotlib.pyplot.imshow', 'plt.imshow', (['imageA'], {'cmap': 'plt.cm.gray'}), '(imageA, cmap=plt.cm.gray)\n', (6336, 6362), True, 'import matplotlib.pyplot as plt\n'), ((6371, 6386), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (6379, 6386), True, 'import matplotlib.pyplot as plt\n'), ((6461, 6497), 'matplotlib.pyplot.imshow', 'plt.imshow', (['imageB'], {'cmap': 'plt.cm.gray'}), '(imageB, cmap=plt.cm.gray)\n', (6471, 6497), True, 'import matplotlib.pyplot as plt\n'), ((6506, 6521), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (6514, 6521), True, 'import matplotlib.pyplot as plt\n'), ((6556, 6566), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6564, 6566), True, 'import matplotlib.pyplot as plt\n'), ((6676, 6709), 'numpy.rot90', 'np.rot90', (['image'], {'k': '(1)', 'axes': '(0, 1)'}), '(image, k=1, axes=(0, 1))\n', (6684, 6709), True, 'import numpy as np\n'), ((4380, 4404), 'os.path.isdir', 'os.path.isdir', (['directory'], {}), '(directory)\n', (4393, 4404), False, 'import os\n'), ((7293, 7320), 'os.stat', 'os.stat', (['(directory + imageA)'], {}), '(directory + imageA)\n', (7300, 7320), False, 'import os\n'), ((7349, 7376), 'os.stat', 'os.stat', (['(directory + imageB)'], {}), '(directory + imageB)\n', (7356, 7376), False, 'import os\n'), ((4855, 4876), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (4865, 4876), False, 'import os\n'), ((5030, 5063), 'imghdr.what', 'imghdr.what', (['(directory + filename)'], {}), '(directory + filename)\n', (5041, 5063), False, 'import imghdr\n'), ((7754, 7785), 'os.remove', 'os.remove', (['(directory + filename)'], {}), '(directory + filename)\n', (7763, 7785), False, 'import os\n'), ((4990, 5025), 'os.path.isdir', 'os.path.isdir', (['(directory + filename)'], {}), '(directory + filename)\n', (5003, 5025), False, 'import os\n'), ((5100, 5149), 'numpy.fromfile', 'np.fromfile', (['(directory + filename)'], {'dtype': 'np.uint8'}), '(directory + filename, dtype=np.uint8)\n', (5111, 5149), True, 'import numpy as np\n'), ((5283, 5355), 'cv2.resize', 'cv2.resize', (['img'], {'dsize': '(px_size, px_size)', 'interpolation': 'cv2.INTER_CUBIC'}), '(img, dsize=(px_size, px_size), interpolation=cv2.INTER_CUBIC)\n', (5293, 5355), False, 'import cv2\n'), ((5691, 5725), 'numpy.concatenate', 'np.concatenate', (['(imgs_matrix, img)'], {}), '((imgs_matrix, img))\n', (5705, 5725), True, 'import numpy as np\n')]
|
import torch
import numpy as np
PAD_TOKEN_INDEX = 0
def pad_masking(x, target_len):
# x: (batch_size, seq_len)
batch_size, seq_len = x.size()
padded_positions = x == PAD_TOKEN_INDEX # (batch_size, seq_len)
pad_mask = padded_positions.unsqueeze(1).expand(batch_size, target_len, seq_len)
return pad_mask
def subsequent_masking(x):
# x: (batch_size, seq_len - 1)
batch_size, seq_len = x.size()
subsequent_mask = np.triu(np.ones(shape=(seq_len, seq_len)), k=1).astype('uint8')
subsequent_mask = torch.tensor(subsequent_mask).to(x.device)
subsequent_mask = subsequent_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len)
return subsequent_mask
|
[
"torch.tensor",
"numpy.ones"
] |
[((534, 563), 'torch.tensor', 'torch.tensor', (['subsequent_mask'], {}), '(subsequent_mask)\n', (546, 563), False, 'import torch\n'), ((456, 489), 'numpy.ones', 'np.ones', ([], {'shape': '(seq_len, seq_len)'}), '(shape=(seq_len, seq_len))\n', (463, 489), True, 'import numpy as np\n')]
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
import codecs
import lightgbm as lgb
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
# Read data
image_file_path = './simulated_dpc_data.csv'
with codecs.open(image_file_path, "r", "Shift-JIS", "ignore") as file:
dpc = pd.read_table(file, delimiter=",")
# dpc_r, g_dpc_r_1, g_r: restricted data from dpc
dpc_r=dpc.loc[:, ['ID','code']]
# g_dpc_r_1: made to check the details (: name of the code, ‘name’)
g_dpc_r_1=dpc.loc[:, ['ID','code','name']]
# Dummy Encoding with ‘name’
g_r = pd.get_dummies(dpc_r['code'])
# Reconstruct simulated data for AI learning
df_concat_dpc_get_dummies = pd.concat([dpc_r, g_r], axis=1)
# Remove features that may be the cause of the data leak
dpc_Remove_data_leak = df_concat_dpc_get_dummies.drop(["code",160094710,160094810,160094910,150285010,2113008,8842965,8843014,622224401,810000000,160060010], axis=1)
# Sum up the number of occurrences of each feature for each patient.
total_patient_features= dpc_Remove_data_leak.groupby("ID").sum()
total_patient_features.reset_index()
# Load a new file with ID and treatment availability
# Prepare training data
image_file_path_ID_and_polyp_pn = './simulated_patient_data.csv'
with codecs.open(image_file_path_ID_and_polyp_pn, "r", "Shift-JIS", "ignore") as file:
ID_and_polyp_pn = pd.read_table(file, delimiter=",")
ID_and_polyp_pn_data= ID_and_polyp_pn[['ID', 'target']]
#Combine the new file containing ID and treatment status with the file after dummy encoding by the ‘name’
ID_treatment_medical_statement=pd.merge(ID_and_polyp_pn_data,total_patient_features,on=["ID"],how='outer')
ID_treatment_medical_statement_o= ID_treatment_medical_statement.fillna(0)
ID_treatment_medical_statement_p=ID_treatment_medical_statement_o.drop("ID", axis=1)
ID_treatment_medical_statement_rename= ID_treatment_medical_statement_p.rename(columns={'code':"Receipt type code"})
merge_data= ID_treatment_medical_statement_rename
# Split the training/validation set into 80% and the test set into 20%, with a constant proportion of cases with lesions
X = merge_data.drop("target",axis=1).values
y = merge_data["target"].values
columns_name = merge_data.drop("target",axis=1).columns
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2,random_state=1)
# Create a function to divide data
def data_split(X,y):
for train_index, test_index in sss.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
X_train = pd.DataFrame(X_train, columns=columns_name)
X_test = pd.DataFrame(X_test, columns=columns_name)
return X_train, y_train, X_test, y_test
# Separate into training, validation, and test set
X_train, y_train, X_test, y_test = data_split(X, y)
X_train, y_train, X_val, y_val = data_split(X_train.values, y_train)
# Make test set into pandas
X_test_df = pd.DataFrame(X_test)
y_test_df = pd.DataFrame(y_test)
# Make test set into test_df to keep away for the final process
test_dfp = pd.concat([y_test_df,X_test_df], axis=1)
test_df=test_dfp.rename(columns={0:"target"})
# Make training/validation sets into pandas
y_trainp = pd.DataFrame(y_train)
X_trainp = pd.DataFrame(X_train)
train=pd.concat([y_trainp, X_trainp], axis=1)
y_valp = pd.DataFrame(y_val)
X_valp = pd.DataFrame(X_val)
val=pd.concat([y_valp, X_valp], axis=1)
test_vol=pd.concat([train, val])
training_validation_sets=test_vol.rename(columns={0:"target"})
# Create a function to save the results and feature importance after analysis with lightGBM
def reg_top10_lightGBM(merge_data,outname,no,random_state_number):
# Define the objective variable
X = merge_data.drop("target",axis=1).values
y = merge_data["target"].values
columns_name = merge_data.drop("target",axis=1).columns
# Define a function
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=random_state_number)
def data_split(X,y):
for train_index, test_index in sss.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
X_train = pd.DataFrame(X_train, columns=columns_name)
X_test = pd.DataFrame(X_test, columns=columns_name)
return X_train, y_train, X_test, y_test
X_train, y_train, X_test, y_test = data_split(X, y)
X_train, y_train, X_val, y_val = data_split(X_train.values, y_train)
y_test_df = pd.DataFrame(y_test)
# Prepare dataset: training data: X_train, label: y_train
train = lgb.Dataset(X_train, label=y_train)
valid = lgb.Dataset(X_val, label=y_val)
# Set the parameters
params = {'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': 'rmse',
'learning_rate': 0.1 }
# Train the model
model = lgb.train(params,
train,
valid_sets=valid,
num_boost_round=3000,
early_stopping_rounds=100)
# Prediction
y_pred = model.predict(X_test, num_iteration=model.best_iteration)
# Display actual values and predicted values
df_pred = pd.DataFrame({'regression_y_test':y_test,'regression_y_pred':y_pred})
# Calculate MSE (Mean Square Error)
mse = mean_squared_error(y_test, y_pred)
# Calculate RSME = √MSE
rmse = np.sqrt(mse)
# r2 : Calculate the coefficient of determination
r2 = r2_score(y_test,y_pred)
df_Df = pd.DataFrame({'regression_y_test_'+no:y_test,'regression_y_pred_'+no:y_pred,'RMSE_'+no:rmse,'R2_'+no:r2})
df_Df.to_csv(r""+"./"+outname+no+'.csv', encoding = 'shift-jis')
importance = pd.DataFrame(model.feature_importance(), columns=['importance'])
column_list=merge_data.drop(["target"], axis=1)
importance["columns"] =list(column_list.columns)
return importance
# Find out Top 50 features procedure / Run the model once
importance = reg_top10_lightGBM(training_validation_sets,"check_data","_1",1)
# Create a function that sorts and stores the values of feature importance.
def after_imp_save_sort(importance,outname,no):
importance.sort_values(by='importance',ascending=False)
i_df=importance.sort_values(by='importance',ascending=False)
top50=i_df.iloc[0:51,:]
g_dpc_pre= g_dpc_r_1.drop(["ID"], axis=1)
g_dpc_Remove_duplicates=g_dpc_pre.drop_duplicates()
g_dpc_r_columns=g_dpc_Remove_duplicates.rename(columns={'code':"columns"})
importance_name=pd.merge(top50,g_dpc_r_columns)
importance_all=pd.merge(i_df,g_dpc_r_columns)
importance_all.to_csv(r""+"./"+outname+no+'importance_name_all'+'.csv', encoding = 'shift-jis')
return importance_all
# Run a function to sort and save the values of feature importance.
top50_importance_all = after_imp_save_sort(importance,"check_data","_1")
# 10 runs of this procedure
dict = {}
for num in range(10):
print(num+1)
importance = reg_top10_lightGBM(training_validation_sets,"check_data","_"+str(num+1),num+1)
top50_importance_all = after_imp_save_sort(importance,"check_data","_"+str(num+1))
dict[str(num)] = top50_importance_all
# Recall and merge the saved CSV files
def concat_importance(First_pd,Next_pd):
importance_1=pd.DataFrame(dict[First_pd])
importance_1d=importance_1.drop_duplicates(subset='columns')
importance_2=pd.DataFrame(dict[Next_pd])
importance_2d=importance_2.drop_duplicates(subset='columns')
importance_1_2=pd.concat([importance_1d, importance_2d])
return importance_1_2
importance_1_2 = concat_importance("0","1")
importance_3_4 = concat_importance("2","3")
importance_5_6 = concat_importance("4","5")
importance_7_8 = concat_importance("6","7")
importance_9_10 = concat_importance("8","9")
importance_1_4=pd.concat([importance_1_2, importance_3_4])
importance_1_6=pd.concat([importance_1_4, importance_5_6])
importance_1_8=pd.concat([importance_1_6, importance_7_8])
importance_1_10=pd.concat([importance_1_8, importance_9_10])
# Calculate the total value of the feature importance for each code
group_sum=importance_1_10.groupby(["columns"]).sum()
group_sum_s = group_sum.sort_values('importance', ascending=False)
importance_group_sum=group_sum_s.reset_index()
# Create train/validation test data with all features
merge_data_test=pd.concat([training_validation_sets, test_df])
# Make features in the order of highest total feature impotance value
importance_top50_previous_data=importance_group_sum["columns"]
importance_top50_previous_data
# refine the data to top 50 features
dict_top50 = {}
pycaret_dict_top50 = {}
X = range(1, 51)
for i,v in enumerate(X):
dict_top50[str(i)] = importance_top50_previous_data.iloc[v]
pycaret_dict_top50[importance_top50_previous_data[i]] = merge_data_test[dict_top50[str(i)]]
pycaret_df_dict_top50=pd.DataFrame(pycaret_dict_top50)
# Add the value of target (: objective variable)
target_data=merge_data_test["target"]
target_top50_dataframe=pd.concat([target_data, pycaret_df_dict_top50], axis=1)
# adjust pandas (pycaret needs to set “str” to “int”)
target_top50_dataframe_int=target_top50_dataframe.astype('int')
target_top50_dataframe_columns=target_top50_dataframe_int.columns.astype(str)
numpy_target_top50=target_top50_dataframe_int.to_numpy()
target_top50_dataframe_pycaret=pd.DataFrame(numpy_target_top50,columns=target_top50_dataframe_columns)
# compare the models
from pycaret.classification import *
clf1 = setup(target_top50_dataframe_pycaret, target ='target',train_size = 0.8,data_split_shuffle=False,fold=10,session_id=0)
best_model = compare_models()
|
[
"sklearn.model_selection.StratifiedShuffleSplit",
"numpy.sqrt",
"pandas.DataFrame",
"pandas.merge",
"lightgbm.train",
"sklearn.metrics.mean_squared_error",
"lightgbm.Dataset",
"pandas.read_table",
"pandas.get_dummies",
"codecs.open",
"sklearn.metrics.r2_score",
"pandas.concat"
] |
[((674, 703), 'pandas.get_dummies', 'pd.get_dummies', (["dpc_r['code']"], {}), "(dpc_r['code'])\n", (688, 703), True, 'import pandas as pd\n'), ((778, 809), 'pandas.concat', 'pd.concat', (['[dpc_r, g_r]'], {'axis': '(1)'}), '([dpc_r, g_r], axis=1)\n', (787, 809), True, 'import pandas as pd\n'), ((1684, 1762), 'pandas.merge', 'pd.merge', (['ID_and_polyp_pn_data', 'total_patient_features'], {'on': "['ID']", 'how': '"""outer"""'}), "(ID_and_polyp_pn_data, total_patient_features, on=['ID'], how='outer')\n", (1692, 1762), True, 'import pandas as pd\n'), ((2348, 2413), 'sklearn.model_selection.StratifiedShuffleSplit', 'StratifiedShuffleSplit', ([], {'n_splits': '(1)', 'test_size': '(0.2)', 'random_state': '(1)'}), '(n_splits=1, test_size=0.2, random_state=1)\n', (2370, 2413), False, 'from sklearn.model_selection import StratifiedShuffleSplit\n'), ((3027, 3047), 'pandas.DataFrame', 'pd.DataFrame', (['X_test'], {}), '(X_test)\n', (3039, 3047), True, 'import pandas as pd\n'), ((3060, 3080), 'pandas.DataFrame', 'pd.DataFrame', (['y_test'], {}), '(y_test)\n', (3072, 3080), True, 'import pandas as pd\n'), ((3156, 3197), 'pandas.concat', 'pd.concat', (['[y_test_df, X_test_df]'], {'axis': '(1)'}), '([y_test_df, X_test_df], axis=1)\n', (3165, 3197), True, 'import pandas as pd\n'), ((3298, 3319), 'pandas.DataFrame', 'pd.DataFrame', (['y_train'], {}), '(y_train)\n', (3310, 3319), True, 'import pandas as pd\n'), ((3331, 3352), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {}), '(X_train)\n', (3343, 3352), True, 'import pandas as pd\n'), ((3359, 3398), 'pandas.concat', 'pd.concat', (['[y_trainp, X_trainp]'], {'axis': '(1)'}), '([y_trainp, X_trainp], axis=1)\n', (3368, 3398), True, 'import pandas as pd\n'), ((3408, 3427), 'pandas.DataFrame', 'pd.DataFrame', (['y_val'], {}), '(y_val)\n', (3420, 3427), True, 'import pandas as pd\n'), ((3437, 3456), 'pandas.DataFrame', 'pd.DataFrame', (['X_val'], {}), '(X_val)\n', (3449, 3456), True, 'import pandas as pd\n'), ((3461, 3496), 'pandas.concat', 'pd.concat', (['[y_valp, X_valp]'], {'axis': '(1)'}), '([y_valp, X_valp], axis=1)\n', (3470, 3496), True, 'import pandas as pd\n'), ((3506, 3529), 'pandas.concat', 'pd.concat', (['[train, val]'], {}), '([train, val])\n', (3515, 3529), True, 'import pandas as pd\n'), ((7893, 7936), 'pandas.concat', 'pd.concat', (['[importance_1_2, importance_3_4]'], {}), '([importance_1_2, importance_3_4])\n', (7902, 7936), True, 'import pandas as pd\n'), ((7952, 7995), 'pandas.concat', 'pd.concat', (['[importance_1_4, importance_5_6]'], {}), '([importance_1_4, importance_5_6])\n', (7961, 7995), True, 'import pandas as pd\n'), ((8011, 8054), 'pandas.concat', 'pd.concat', (['[importance_1_6, importance_7_8]'], {}), '([importance_1_6, importance_7_8])\n', (8020, 8054), True, 'import pandas as pd\n'), ((8071, 8115), 'pandas.concat', 'pd.concat', (['[importance_1_8, importance_9_10]'], {}), '([importance_1_8, importance_9_10])\n', (8080, 8115), True, 'import pandas as pd\n'), ((8421, 8467), 'pandas.concat', 'pd.concat', (['[training_validation_sets, test_df]'], {}), '([training_validation_sets, test_df])\n', (8430, 8467), True, 'import pandas as pd\n'), ((8935, 8967), 'pandas.DataFrame', 'pd.DataFrame', (['pycaret_dict_top50'], {}), '(pycaret_dict_top50)\n', (8947, 8967), True, 'import pandas as pd\n'), ((9078, 9133), 'pandas.concat', 'pd.concat', (['[target_data, pycaret_df_dict_top50]'], {'axis': '(1)'}), '([target_data, pycaret_df_dict_top50], axis=1)\n', (9087, 9133), True, 'import pandas as pd\n'), ((9418, 9490), 'pandas.DataFrame', 'pd.DataFrame', (['numpy_target_top50'], {'columns': 'target_top50_dataframe_columns'}), '(numpy_target_top50, columns=target_top50_dataframe_columns)\n', (9430, 9490), True, 'import pandas as pd\n'), ((334, 390), 'codecs.open', 'codecs.open', (['image_file_path', '"""r"""', '"""Shift-JIS"""', '"""ignore"""'], {}), "(image_file_path, 'r', 'Shift-JIS', 'ignore')\n", (345, 390), False, 'import codecs\n'), ((410, 444), 'pandas.read_table', 'pd.read_table', (['file'], {'delimiter': '""","""'}), "(file, delimiter=',')\n", (423, 444), True, 'import pandas as pd\n'), ((1352, 1424), 'codecs.open', 'codecs.open', (['image_file_path_ID_and_polyp_pn', '"""r"""', '"""Shift-JIS"""', '"""ignore"""'], {}), "(image_file_path_ID_and_polyp_pn, 'r', 'Shift-JIS', 'ignore')\n", (1363, 1424), False, 'import codecs\n'), ((1456, 1490), 'pandas.read_table', 'pd.read_table', (['file'], {'delimiter': '""","""'}), "(file, delimiter=',')\n", (1469, 1490), True, 'import pandas as pd\n'), ((2663, 2706), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {'columns': 'columns_name'}), '(X_train, columns=columns_name)\n', (2675, 2706), True, 'import pandas as pd\n'), ((2724, 2766), 'pandas.DataFrame', 'pd.DataFrame', (['X_test'], {'columns': 'columns_name'}), '(X_test, columns=columns_name)\n', (2736, 2766), True, 'import pandas as pd\n'), ((3967, 4055), 'sklearn.model_selection.StratifiedShuffleSplit', 'StratifiedShuffleSplit', ([], {'n_splits': '(1)', 'test_size': '(0.2)', 'random_state': 'random_state_number'}), '(n_splits=1, test_size=0.2, random_state=\n random_state_number)\n', (3989, 4055), False, 'from sklearn.model_selection import StratifiedShuffleSplit\n'), ((4567, 4587), 'pandas.DataFrame', 'pd.DataFrame', (['y_test'], {}), '(y_test)\n', (4579, 4587), True, 'import pandas as pd\n'), ((4662, 4697), 'lightgbm.Dataset', 'lgb.Dataset', (['X_train'], {'label': 'y_train'}), '(X_train, label=y_train)\n', (4673, 4697), True, 'import lightgbm as lgb\n'), ((4710, 4741), 'lightgbm.Dataset', 'lgb.Dataset', (['X_val'], {'label': 'y_val'}), '(X_val, label=y_val)\n', (4721, 4741), True, 'import lightgbm as lgb\n'), ((4981, 5076), 'lightgbm.train', 'lgb.train', (['params', 'train'], {'valid_sets': 'valid', 'num_boost_round': '(3000)', 'early_stopping_rounds': '(100)'}), '(params, train, valid_sets=valid, num_boost_round=3000,\n early_stopping_rounds=100)\n', (4990, 5076), True, 'import lightgbm as lgb\n'), ((5312, 5384), 'pandas.DataFrame', 'pd.DataFrame', (["{'regression_y_test': y_test, 'regression_y_pred': y_pred}"], {}), "({'regression_y_test': y_test, 'regression_y_pred': y_pred})\n", (5324, 5384), True, 'import pandas as pd\n'), ((5432, 5466), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (5450, 5466), False, 'from sklearn.metrics import mean_squared_error\n'), ((5506, 5518), 'numpy.sqrt', 'np.sqrt', (['mse'], {}), '(mse)\n', (5513, 5518), True, 'import numpy as np\n'), ((5582, 5606), 'sklearn.metrics.r2_score', 'r2_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (5590, 5606), False, 'from sklearn.metrics import r2_score\n'), ((5618, 5750), 'pandas.DataFrame', 'pd.DataFrame', (["{('regression_y_test_' + no): y_test, ('regression_y_pred_' + no): y_pred,\n ('RMSE_' + no): rmse, ('R2_' + no): r2}"], {}), "({('regression_y_test_' + no): y_test, ('regression_y_pred_' +\n no): y_pred, ('RMSE_' + no): rmse, ('R2_' + no): r2})\n", (5630, 5750), True, 'import pandas as pd\n'), ((6617, 6649), 'pandas.merge', 'pd.merge', (['top50', 'g_dpc_r_columns'], {}), '(top50, g_dpc_r_columns)\n', (6625, 6649), True, 'import pandas as pd\n'), ((6668, 6699), 'pandas.merge', 'pd.merge', (['i_df', 'g_dpc_r_columns'], {}), '(i_df, g_dpc_r_columns)\n', (6676, 6699), True, 'import pandas as pd\n'), ((7366, 7394), 'pandas.DataFrame', 'pd.DataFrame', (['dict[First_pd]'], {}), '(dict[First_pd])\n', (7378, 7394), True, 'import pandas as pd\n'), ((7477, 7504), 'pandas.DataFrame', 'pd.DataFrame', (['dict[Next_pd]'], {}), '(dict[Next_pd])\n', (7489, 7504), True, 'import pandas as pd\n'), ((7589, 7630), 'pandas.concat', 'pd.concat', (['[importance_1d, importance_2d]'], {}), '([importance_1d, importance_2d])\n', (7598, 7630), True, 'import pandas as pd\n'), ((4270, 4313), 'pandas.DataFrame', 'pd.DataFrame', (['X_train'], {'columns': 'columns_name'}), '(X_train, columns=columns_name)\n', (4282, 4313), True, 'import pandas as pd\n'), ((4331, 4373), 'pandas.DataFrame', 'pd.DataFrame', (['X_test'], {'columns': 'columns_name'}), '(X_test, columns=columns_name)\n', (4343, 4373), True, 'import pandas as pd\n')]
|
from typing import Tuple
import numpy as np
import png
from skimage.transform import resize
def load_world(filename: str, size: Tuple[int, int], resolution: int) -> np.array:
"""Load a preconstructred track to initialize world.
Args:
filename: Full path to the track file (png).
size: Width and height of the map
resolution: Resolution of the grid map (i.e. into how many cells)
one meter is divided into.
Returns:
An initialized gridmap based on the preconstructed track as
an n x m dimensional numpy array, where n is the width (num cells)
and m the height (num cells) - (after applying resolution).
"""
width_in_cells, height_in_cells = np.multiply(size, resolution)
world = np.array(png_to_ogm(
filename, normalized=True, origin='lower'))
# If the image is already in our desired shape, no need to rescale it
if world.shape == (height_in_cells, width_in_cells):
return world
# Otherwise, scale the image to our desired size.
resized_world = resize(world, (width_in_cells, height_in_cells))
return resized_world
def png_to_ogm(filename, normalized=False, origin='lower'):
"""Convert a png image to occupancy grid map.
Inspired by https://github.com/richardos/occupancy-grid-a-star
Args:
filename: Path to the png file.
normalized: Whether to normalize the data, i.e. to be in value range [0, 1]
origin: Point of origin (0,0)
Returns:
2D Array
"""
r = png.Reader(filename)
img = r.read()
img_data = list(img[2])
out_img = []
bitdepth = img[3]['bitdepth']
for i in range(len(img_data)):
out_img_row = []
for j in range(len(img_data[0])):
if j % img[3]['planes'] == 0:
if normalized:
out_img_row.append(img_data[i][j]*1.0/(2**bitdepth))
else:
out_img_row.append(img_data[i][j])
out_img.append(out_img_row)
if origin == 'lower':
out_img.reverse()
return out_img
|
[
"numpy.multiply",
"skimage.transform.resize",
"png.Reader"
] |
[((778, 807), 'numpy.multiply', 'np.multiply', (['size', 'resolution'], {}), '(size, resolution)\n', (789, 807), True, 'import numpy as np\n'), ((1122, 1170), 'skimage.transform.resize', 'resize', (['world', '(width_in_cells, height_in_cells)'], {}), '(world, (width_in_cells, height_in_cells))\n', (1128, 1170), False, 'from skimage.transform import resize\n'), ((1604, 1624), 'png.Reader', 'png.Reader', (['filename'], {}), '(filename)\n', (1614, 1624), False, 'import png\n')]
|
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import IncrementalPCA as _IncrementalPCA
from ..count_matrix.zarr import dataset_to_array
def _normalize_per_cell(matrix, cell_sum):
print('normalize per cell to CPM')
if cell_sum is None:
norm_vec = (matrix.sum(axis=1) + 1) / 1000000
else:
norm_vec = cell_sum / 1000000
norm_vec = norm_vec.values
norm_vec = norm_vec.astype(np.float32)
matrix /= norm_vec[:, None]
return matrix
class IncrementalPCA:
def __init__(self, n_components=100, sparse=False, normalize_per_cell=True, log1p=True, scale=True, **kwargs):
self.pca = _IncrementalPCA(n_components=n_components, **kwargs)
self.sparse = sparse
self.normalize_per_cell = normalize_per_cell
self.log1p = log1p
self.scale = scale
self.scaler = None
self.cell_sum = None
self.use_features = None
self.obs_dim = None
self.var_dim = None
self.load_chunk = None
self._fit = False
return
def fit(self,
ds,
use_cells=None,
use_features=None,
chunk=500000,
cell_sum=None,
var_dim='gene',
obs_dim='cell',
load_chunk=None,
random_shuffle=True):
self.cell_sum = cell_sum
self.use_features = use_features
self.obs_dim = obs_dim
self.var_dim = var_dim
self.load_chunk = chunk if load_chunk is None else load_chunk
# prepare index
cell_index = ds.get_index(obs_dim)
if use_cells is not None:
cell_index = cell_index[cell_index.isin(use_cells)].copy()
# random shuffle to make fitting more stable
if random_shuffle:
cell_order = cell_index.tolist()
np.random.shuffle(cell_order)
cell_order = pd.Index(cell_order)
else:
cell_order = cell_index
# fit by chunks
chunk_stds = []
chunk_means = []
for chunk_start in range(0, cell_order.size, chunk):
print(f'Fitting {chunk_start}-{chunk_start + chunk}')
_chunk_cells = cell_order[chunk_start:chunk_start + chunk]
_chunk_matrix, _chunk_cells, _chunk_genes = dataset_to_array(
ds,
use_cells=_chunk_cells,
use_genes=use_features,
sparse=self.sparse,
obs_dim=obs_dim,
var_dim=var_dim,
chunk=self.load_chunk)
if cell_sum is not None:
_chunk_cell_sum = cell_sum.loc[_chunk_cells]
else:
_chunk_cell_sum = None
_chunk_matrix = _chunk_matrix.astype(np.float32)
# normalize cell counts
if self.normalize_per_cell:
_chunk_matrix = _normalize_per_cell(matrix=_chunk_matrix,
cell_sum=_chunk_cell_sum)
# log transfer
if self.log1p:
print('log1p transform')
_chunk_matrix = np.log1p(_chunk_matrix)
# scale
if self.scale:
print('Scale')
if self.scaler is None:
# assume the chunk is large enough, so only use the first chunk to fit
# e.g., 5,000,000 cells
self.scaler = StandardScaler(with_mean=not self.sparse)
_chunk_matrix = self.scaler.fit_transform(_chunk_matrix)
else:
# transform remaining cells
_chunk_matrix = self.scaler.transform(_chunk_matrix)
# save chunk stats for checking robustness
chunk_stds.append(_chunk_matrix.std(axis=0))
chunk_means.append(_chunk_matrix.mean(axis=0))
# fit IncrementalPCA
print('Fit PCA')
self.pca.partial_fit(_chunk_matrix)
self._fit = True
return
def transform(self, ds, use_cells=None, chunk=100000):
if not self._fit:
raise ValueError('fit first before transform')
cell_index = ds.get_index(self.obs_dim)
if use_cells is not None:
cell_index = cell_index[cell_index.isin(use_cells)].copy()
total_pcs = []
for chunk_start in range(0, cell_index.size, chunk):
print(f'Transforming {chunk_start}-{chunk_start + chunk}')
_chunk_cells = cell_index[chunk_start:chunk_start + chunk]
_chunk_matrix, _chunk_cells, _chunk_genes = dataset_to_array(
ds,
use_cells=_chunk_cells,
use_genes=self.use_features,
sparse=self.sparse,
obs_dim=self.obs_dim,
var_dim=self.var_dim,
chunk=self.load_chunk)
if self.cell_sum is not None:
_chunk_cell_sum = self.cell_sum.loc[_chunk_cells]
else:
_chunk_cell_sum = None
_chunk_matrix = _chunk_matrix.astype(np.float32)
# normalize cell counts
if self.normalize_per_cell:
_chunk_matrix = _normalize_per_cell(matrix=_chunk_matrix,
cell_sum=_chunk_cell_sum)
# log transfer
if self.log1p:
print('log1p transform')
_chunk_matrix = np.log1p(_chunk_matrix)
# scale
if self.scale:
print('Scale')
if self.scaler is None:
# this shouldn't happen in transform
raise ValueError('scale is True, but scaler not exist')
else:
# transform remaining cells
_chunk_matrix = self.scaler.transform(_chunk_matrix)
# transform
print('Transform PCA')
pcs = self.pca.transform(_chunk_matrix)
pcs = pd.DataFrame(pcs, index=_chunk_cells)
total_pcs.append(pcs)
total_pcs = pd.concat(total_pcs)
return total_pcs
def fit_transform(self, ds,
use_cells=None,
use_features=None,
chunk=500000,
cell_sum=None,
var_dim='gene',
obs_dim='cell',
load_chunk=None,
random_shuffle=True):
self.fit(ds,
use_cells=use_cells,
use_features=use_features,
chunk=chunk,
cell_sum=cell_sum,
var_dim=var_dim,
obs_dim=obs_dim,
load_chunk=load_chunk,
random_shuffle=random_shuffle)
total_pcs = self.transform(ds, use_cells=use_cells, chunk=self.load_chunk)
return total_pcs
|
[
"pandas.Index",
"sklearn.preprocessing.StandardScaler",
"pandas.DataFrame",
"sklearn.decomposition.IncrementalPCA",
"numpy.log1p",
"pandas.concat",
"numpy.random.shuffle"
] |
[((702, 754), 'sklearn.decomposition.IncrementalPCA', '_IncrementalPCA', ([], {'n_components': 'n_components'}), '(n_components=n_components, **kwargs)\n', (717, 754), True, 'from sklearn.decomposition import IncrementalPCA as _IncrementalPCA\n'), ((6155, 6175), 'pandas.concat', 'pd.concat', (['total_pcs'], {}), '(total_pcs)\n', (6164, 6175), True, 'import pandas as pd\n'), ((1891, 1920), 'numpy.random.shuffle', 'np.random.shuffle', (['cell_order'], {}), '(cell_order)\n', (1908, 1920), True, 'import numpy as np\n'), ((1946, 1966), 'pandas.Index', 'pd.Index', (['cell_order'], {}), '(cell_order)\n', (1954, 1966), True, 'import pandas as pd\n'), ((6063, 6100), 'pandas.DataFrame', 'pd.DataFrame', (['pcs'], {'index': '_chunk_cells'}), '(pcs, index=_chunk_cells)\n', (6075, 6100), True, 'import pandas as pd\n'), ((3177, 3200), 'numpy.log1p', 'np.log1p', (['_chunk_matrix'], {}), '(_chunk_matrix)\n', (3185, 3200), True, 'import numpy as np\n'), ((5514, 5537), 'numpy.log1p', 'np.log1p', (['_chunk_matrix'], {}), '(_chunk_matrix)\n', (5522, 5537), True, 'import numpy as np\n'), ((3489, 3530), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {'with_mean': '(not self.sparse)'}), '(with_mean=not self.sparse)\n', (3503, 3530), False, 'from sklearn.preprocessing import StandardScaler\n')]
|
# Predict time series w/o using OutputProjectWrapper
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# Create time series
t_min, t_max = 0, 30
resolution = 0.1
def time_series(t):
return t * np.sin(t) / 3 + 2 * np.sin(t * 5)
def next_batch(batch_size, n_steps):
t0 = np.random.rand(batch_size, 1) * (t_max - t_min - n_steps * resolution)
Ts = t0 + np.arange(0., n_steps + 1) * resolution
ys = time_series(Ts)
return ys[:,:-1].reshape(-1, n_steps, 1), ys[:,1:].reshape(-1, n_steps, 1)
t = np.linspace(t_min, t_max, (t_max - t_min) // resolution)
n_steps = 20
t_instance = np.linspace(12.2, 12.2 + resolution * (n_steps + 1), n_steps + 1)
n_inputs = 1
n_neurons = 100
n_outputs = 1
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,
activation=tf.nn.relu)
rnn_outputs, states = tf.nn.dynamic_rnn(basic_cell, X,
dtype=tf.float32)
learning_rate = 0.001
stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)
outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])
loss = tf.reduce_sum(tf.square(outputs - y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
init = tf.global_variables_initializer()
n_iterations = 1000
batch_size = 50
with tf.Session() as sess:
init.run()
for k in range(n_iterations):
X_batch, y_batch = next_batch(batch_size, n_steps)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
if k % 100 == 0:
mse = loss.eval(feed_dict={X: X_batch, y: y_batch})
print(k, "\tMSE: ", mse)
X_new = time_series(np.array(t_instance[:-1].reshape(-1, n_steps, n_inputs)))
y_pred = sess.run(outputs, feed_dict={X: X_new})
print(y_pred)
# Generat a creative new seq
n_iterations = 2000
batch_size = 50
with tf.Session() as sess:
init.run()
for k in range(n_iterations):
X_batch, y_batch = next_batch(batch_size, n_steps)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
if k % 100 == 0:
mse = loss.eval(feed_dict={X: X_batch, y: y_batch})
print(k, "\tMSE: ", mse)
sequence1 = [0. for j in range(n_steps)]
for k in range(len(t) - n_steps):
X_batch = np.array(sequence1[-n_steps:]).reshape(1, n_steps, 1)
y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence1.append(y_pred[0, -1, 0])
sequence2 = [time_series(i * resolution + t_min + (t_max-t_min/3)) for i in range(n_steps)]
for j in range(len(t) - n_steps):
X_batch = np.array(sequence2[-n_steps:]).reshape(1, n_steps, 1)
y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence2.append(y_pred[0, -1, 0])
plt.figure(figsize=(11,4))
plt.subplot(121)
plt.plot(t, sequence1, 'b-')
plt.plot(t[:n_steps],sequence1[:n_steps], 'b-', linewidth=3)
plt.xlabel('Time')
plt.ylabel('Value')
plt.subplot(122)
plt.plot(t, sequence2, 'b-')
plt.plot(t[:n_steps], sequence2[:n_steps], 'b-', linewidth=3)
plt.xlabel('Time')
plt.show()
|
[
"numpy.random.rand",
"matplotlib.pyplot.ylabel",
"numpy.array",
"numpy.sin",
"numpy.arange",
"tensorflow.placeholder",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.xlabel",
"tensorflow.Session",
"tensorflow.nn.dynamic_rnn",
"numpy.linspace",
"tensorflow.square",
"tensorflow.train.AdamOptimizer",
"tensorflow.reshape",
"tensorflow.layers.dense",
"matplotlib.pyplot.show",
"tensorflow.contrib.rnn.BasicRNNCell",
"tensorflow.global_variables_initializer",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.subplot"
] |
[((540, 596), 'numpy.linspace', 'np.linspace', (['t_min', 't_max', '((t_max - t_min) // resolution)'], {}), '(t_min, t_max, (t_max - t_min) // resolution)\n', (551, 596), True, 'import numpy as np\n'), ((624, 689), 'numpy.linspace', 'np.linspace', (['(12.2)', '(12.2 + resolution * (n_steps + 1))', '(n_steps + 1)'], {}), '(12.2, 12.2 + resolution * (n_steps + 1), n_steps + 1)\n', (635, 689), True, 'import numpy as np\n'), ((739, 792), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, n_steps, n_inputs]'], {}), '(tf.float32, [None, n_steps, n_inputs])\n', (753, 792), True, 'import tensorflow as tf\n'), ((797, 851), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None, n_steps, n_outputs]'], {}), '(tf.float32, [None, n_steps, n_outputs])\n', (811, 851), True, 'import tensorflow as tf\n'), ((866, 937), 'tensorflow.contrib.rnn.BasicRNNCell', 'tf.contrib.rnn.BasicRNNCell', ([], {'num_units': 'n_neurons', 'activation': 'tf.nn.relu'}), '(num_units=n_neurons, activation=tf.nn.relu)\n', (893, 937), True, 'import tensorflow as tf\n'), ((964, 1014), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', (['basic_cell', 'X'], {'dtype': 'tf.float32'}), '(basic_cell, X, dtype=tf.float32)\n', (981, 1014), True, 'import tensorflow as tf\n'), ((1065, 1105), 'tensorflow.reshape', 'tf.reshape', (['rnn_outputs', '[-1, n_neurons]'], {}), '(rnn_outputs, [-1, n_neurons])\n', (1075, 1105), True, 'import tensorflow as tf\n'), ((1124, 1171), 'tensorflow.layers.dense', 'tf.layers.dense', (['stacked_rnn_outputs', 'n_outputs'], {}), '(stacked_rnn_outputs, n_outputs)\n', (1139, 1171), True, 'import tensorflow as tf\n'), ((1182, 1235), 'tensorflow.reshape', 'tf.reshape', (['stacked_outputs', '[-1, n_steps, n_outputs]'], {}), '(stacked_outputs, [-1, n_steps, n_outputs])\n', (1192, 1235), True, 'import tensorflow as tf\n'), ((1294, 1345), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (1316, 1345), True, 'import tensorflow as tf\n'), ((1393, 1426), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1424, 1426), True, 'import tensorflow as tf\n'), ((2915, 2942), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(11, 4)'}), '(figsize=(11, 4))\n', (2925, 2942), True, 'import matplotlib.pyplot as plt\n'), ((2942, 2958), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (2953, 2958), True, 'import matplotlib.pyplot as plt\n'), ((2959, 2987), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sequence1', '"""b-"""'], {}), "(t, sequence1, 'b-')\n", (2967, 2987), True, 'import matplotlib.pyplot as plt\n'), ((2988, 3049), 'matplotlib.pyplot.plot', 'plt.plot', (['t[:n_steps]', 'sequence1[:n_steps]', '"""b-"""'], {'linewidth': '(3)'}), "(t[:n_steps], sequence1[:n_steps], 'b-', linewidth=3)\n", (2996, 3049), True, 'import matplotlib.pyplot as plt\n'), ((3049, 3067), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (3059, 3067), True, 'import matplotlib.pyplot as plt\n'), ((3068, 3087), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Value"""'], {}), "('Value')\n", (3078, 3087), True, 'import matplotlib.pyplot as plt\n'), ((3089, 3105), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (3100, 3105), True, 'import matplotlib.pyplot as plt\n'), ((3106, 3134), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'sequence2', '"""b-"""'], {}), "(t, sequence2, 'b-')\n", (3114, 3134), True, 'import matplotlib.pyplot as plt\n'), ((3135, 3196), 'matplotlib.pyplot.plot', 'plt.plot', (['t[:n_steps]', 'sequence2[:n_steps]', '"""b-"""'], {'linewidth': '(3)'}), "(t[:n_steps], sequence2[:n_steps], 'b-', linewidth=3)\n", (3143, 3196), True, 'import matplotlib.pyplot as plt\n'), ((3197, 3215), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (3207, 3215), True, 'import matplotlib.pyplot as plt\n'), ((3216, 3226), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3224, 3226), True, 'import matplotlib.pyplot as plt\n'), ((1258, 1280), 'tensorflow.square', 'tf.square', (['(outputs - y)'], {}), '(outputs - y)\n', (1267, 1280), True, 'import tensorflow as tf\n'), ((1470, 1482), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1480, 1482), True, 'import tensorflow as tf\n'), ((2017, 2029), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2027, 2029), True, 'import tensorflow as tf\n'), ((306, 335), 'numpy.random.rand', 'np.random.rand', (['batch_size', '(1)'], {}), '(batch_size, 1)\n', (320, 335), True, 'import numpy as np\n'), ((245, 258), 'numpy.sin', 'np.sin', (['(t * 5)'], {}), '(t * 5)\n', (251, 258), True, 'import numpy as np\n'), ((391, 418), 'numpy.arange', 'np.arange', (['(0.0)', '(n_steps + 1)'], {}), '(0.0, n_steps + 1)\n', (400, 418), True, 'import numpy as np\n'), ((225, 234), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (231, 234), True, 'import numpy as np\n'), ((2445, 2475), 'numpy.array', 'np.array', (['sequence1[-n_steps:]'], {}), '(sequence1[-n_steps:])\n', (2453, 2475), True, 'import numpy as np\n'), ((2758, 2788), 'numpy.array', 'np.array', (['sequence2[-n_steps:]'], {}), '(sequence2[-n_steps:])\n', (2766, 2788), True, 'import numpy as np\n')]
|
import os
from argparse import ArgumentParser
from glob import glob
import cv2
import numpy as np
import torch
import torchvision
import matplotlib as mpl
import matplotlib.pyplot as plt
from PIL import Image
from fiery.trainer import TrainingModule
from fiery.utils.network import NormalizeInverse
from fiery.utils.instance import predict_instance_segmentation_and_trajectories
from fiery.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy
EXAMPLE_DATA_PATH = 'example_data'
def plot_prediction(image, output, cfg):
# Process predictions
consistent_instance_seg, matched_centers = predict_instance_segmentation_and_trajectories(
output, compute_matched_centers=True
)
# Plot future trajectories
unique_ids = torch.unique(consistent_instance_seg[0, 0]).cpu().long().numpy()[1:]
instance_map = dict(zip(unique_ids, unique_ids))
instance_colours = generate_instance_colours(instance_map)
vis_image = plot_instance_map(consistent_instance_seg[0, 0].cpu().numpy(), instance_map)
trajectory_img = np.zeros(vis_image.shape, dtype=np.uint8)
for instance_id in unique_ids:
path = matched_centers[instance_id]
for t in range(len(path) - 1):
color = instance_colours[instance_id].tolist()
cv2.line(trajectory_img, tuple(path[t]), tuple(path[t + 1]),
color, 4)
# Overlay arrows
temp_img = cv2.addWeighted(vis_image, 0.7, trajectory_img, 0.3, 1.0)
mask = ~ np.all(trajectory_img == 0, axis=2)
vis_image[mask] = temp_img[mask]
# Plot present RGB frames and predictions
val_w = 2.99
cameras = cfg.IMAGE.NAMES
image_ratio = cfg.IMAGE.FINAL_DIM[0] / cfg.IMAGE.FINAL_DIM[1]
val_h = val_w * image_ratio
fig = plt.figure(figsize=(4 * val_w, 2 * val_h))
width_ratios = (val_w, val_w, val_w, val_w)
gs = mpl.gridspec.GridSpec(2, 4, width_ratios=width_ratios)
gs.update(wspace=0.0, hspace=0.0, left=0.0, right=1.0, top=1.0, bottom=0.0)
denormalise_img = torchvision.transforms.Compose(
(NormalizeInverse(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
torchvision.transforms.ToPILImage(),)
)
for imgi, img in enumerate(image[0, -1]):
ax = plt.subplot(gs[imgi // 3, imgi % 3])
showimg = denormalise_img(img.cpu())
if imgi > 2:
showimg = showimg.transpose(Image.FLIP_LEFT_RIGHT)
plt.annotate(cameras[imgi].replace('_', ' ').replace('CAM ', ''), (0.01, 0.87), c='white',
xycoords='axes fraction', fontsize=14)
plt.imshow(showimg)
plt.axis('off')
ax = plt.subplot(gs[:, 3])
plt.imshow(make_contour(vis_image[::-1, ::-1]))
plt.axis('off')
plt.draw()
figure_numpy = convert_figure_numpy(fig)
plt.close()
return figure_numpy
def download_example_data():
from requests import get
def download(url, file_name):
# open in binary mode
with open(file_name, "wb") as file:
# get request
response = get(url)
# write to file
file.write(response.content)
if not os.path.exists(EXAMPLE_DATA_PATH):
os.makedirs(EXAMPLE_DATA_PATH, exist_ok=True)
url_list = ['https://github.com/wayveai/fiery/releases/download/v1.0/example_1.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_2.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_3.npz',
'https://github.com/wayveai/fiery/releases/download/v1.0/example_4.npz'
]
for url in url_list:
download(url, os.path.join(EXAMPLE_DATA_PATH, os.path.basename(url)))
def visualise(checkpoint_path):
trainer = TrainingModule.load_from_checkpoint(checkpoint_path, strict=True)
device = torch.device('cuda:0')
trainer = trainer.to(device)
trainer.eval()
# Download example data
download_example_data()
# Load data
for data_path in sorted(glob(os.path.join(EXAMPLE_DATA_PATH, '*.npz'))):
data = np.load(data_path)
image = torch.from_numpy(data['image']).to(device)
intrinsics = torch.from_numpy(data['intrinsics']).to(device)
extrinsics = torch.from_numpy(data['extrinsics']).to(device)
future_egomotions = torch.from_numpy(data['future_egomotion']).to(device)
# Forward pass
with torch.no_grad():
output = trainer.model(image, intrinsics, extrinsics, future_egomotions)
figure_numpy = plot_prediction(image, output, trainer.cfg)
os.makedirs('./output_vis', exist_ok=True)
output_filename = os.path.join('./output_vis', os.path.basename(data_path).split('.')[0]) + '.png'
Image.fromarray(figure_numpy).save(output_filename)
print(f'Saved output in {output_filename}')
if __name__ == '__main__':
parser = ArgumentParser(description='Fiery visualisation')
parser.add_argument('--checkpoint', default='./fiery.ckpt', type=str, help='path to checkpoint')
args = parser.parse_args()
visualise(args.checkpoint)
|
[
"fiery.trainer.TrainingModule.load_from_checkpoint",
"fiery.utils.network.NormalizeInverse",
"fiery.utils.instance.predict_instance_segmentation_and_trajectories",
"torchvision.transforms.ToPILImage",
"fiery.utils.visualisation.make_contour",
"torch.from_numpy",
"matplotlib.pyplot.imshow",
"fiery.utils.visualisation.generate_instance_colours",
"os.path.exists",
"torch.unique",
"argparse.ArgumentParser",
"matplotlib.pyplot.close",
"cv2.addWeighted",
"matplotlib.gridspec.GridSpec",
"matplotlib.pyplot.axis",
"requests.get",
"matplotlib.pyplot.draw",
"torch.device",
"PIL.Image.fromarray",
"os.makedirs",
"os.path.join",
"numpy.zeros",
"matplotlib.pyplot.figure",
"fiery.utils.visualisation.convert_figure_numpy",
"os.path.basename",
"torch.no_grad",
"numpy.all",
"numpy.load",
"matplotlib.pyplot.subplot"
] |
[((652, 740), 'fiery.utils.instance.predict_instance_segmentation_and_trajectories', 'predict_instance_segmentation_and_trajectories', (['output'], {'compute_matched_centers': '(True)'}), '(output,\n compute_matched_centers=True)\n', (698, 740), False, 'from fiery.utils.instance import predict_instance_segmentation_and_trajectories\n'), ((945, 984), 'fiery.utils.visualisation.generate_instance_colours', 'generate_instance_colours', (['instance_map'], {}), '(instance_map)\n', (970, 984), False, 'from fiery.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy\n'), ((1099, 1140), 'numpy.zeros', 'np.zeros', (['vis_image.shape'], {'dtype': 'np.uint8'}), '(vis_image.shape, dtype=np.uint8)\n', (1107, 1140), True, 'import numpy as np\n'), ((1459, 1516), 'cv2.addWeighted', 'cv2.addWeighted', (['vis_image', '(0.7)', 'trajectory_img', '(0.3)', '(1.0)'], {}), '(vis_image, 0.7, trajectory_img, 0.3, 1.0)\n', (1474, 1516), False, 'import cv2\n'), ((1805, 1847), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4 * val_w, 2 * val_h)'}), '(figsize=(4 * val_w, 2 * val_h))\n', (1815, 1847), True, 'import matplotlib.pyplot as plt\n'), ((1905, 1959), 'matplotlib.gridspec.GridSpec', 'mpl.gridspec.GridSpec', (['(2)', '(4)'], {'width_ratios': 'width_ratios'}), '(2, 4, width_ratios=width_ratios)\n', (1926, 1959), True, 'import matplotlib as mpl\n'), ((2677, 2698), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[:, 3]'], {}), '(gs[:, 3])\n', (2688, 2698), True, 'import matplotlib.pyplot as plt\n'), ((2755, 2770), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2763, 2770), True, 'import matplotlib.pyplot as plt\n'), ((2776, 2786), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (2784, 2786), True, 'import matplotlib.pyplot as plt\n'), ((2806, 2831), 'fiery.utils.visualisation.convert_figure_numpy', 'convert_figure_numpy', (['fig'], {}), '(fig)\n', (2826, 2831), False, 'from fiery.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy\n'), ((2836, 2847), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2845, 2847), True, 'import matplotlib.pyplot as plt\n'), ((3820, 3885), 'fiery.trainer.TrainingModule.load_from_checkpoint', 'TrainingModule.load_from_checkpoint', (['checkpoint_path'], {'strict': '(True)'}), '(checkpoint_path, strict=True)\n', (3855, 3885), False, 'from fiery.trainer import TrainingModule\n'), ((3900, 3922), 'torch.device', 'torch.device', (['"""cuda:0"""'], {}), "('cuda:0')\n", (3912, 3922), False, 'import torch\n'), ((4957, 5006), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Fiery visualisation"""'}), "(description='Fiery visualisation')\n", (4971, 5006), False, 'from argparse import ArgumentParser\n'), ((1530, 1565), 'numpy.all', 'np.all', (['(trajectory_img == 0)'], {'axis': '(2)'}), '(trajectory_img == 0, axis=2)\n', (1536, 1565), True, 'import numpy as np\n'), ((2289, 2325), 'matplotlib.pyplot.subplot', 'plt.subplot', (['gs[imgi // 3, imgi % 3]'], {}), '(gs[imgi // 3, imgi % 3])\n', (2300, 2325), True, 'import matplotlib.pyplot as plt\n'), ((2623, 2642), 'matplotlib.pyplot.imshow', 'plt.imshow', (['showimg'], {}), '(showimg)\n', (2633, 2642), True, 'import matplotlib.pyplot as plt\n'), ((2651, 2666), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2659, 2666), True, 'import matplotlib.pyplot as plt\n'), ((2714, 2749), 'fiery.utils.visualisation.make_contour', 'make_contour', (['vis_image[::-1, ::-1]'], {}), '(vis_image[::-1, ::-1])\n', (2726, 2749), False, 'from fiery.utils.visualisation import plot_instance_map, generate_instance_colours, make_contour, convert_figure_numpy\n'), ((3179, 3212), 'os.path.exists', 'os.path.exists', (['EXAMPLE_DATA_PATH'], {}), '(EXAMPLE_DATA_PATH)\n', (3193, 3212), False, 'import os\n'), ((3222, 3267), 'os.makedirs', 'os.makedirs', (['EXAMPLE_DATA_PATH'], {'exist_ok': '(True)'}), '(EXAMPLE_DATA_PATH, exist_ok=True)\n', (3233, 3267), False, 'import os\n'), ((4140, 4158), 'numpy.load', 'np.load', (['data_path'], {}), '(data_path)\n', (4147, 4158), True, 'import numpy as np\n'), ((4653, 4695), 'os.makedirs', 'os.makedirs', (['"""./output_vis"""'], {'exist_ok': '(True)'}), "('./output_vis', exist_ok=True)\n", (4664, 4695), False, 'import os\n'), ((2104, 2175), 'fiery.utils.network.NormalizeInverse', 'NormalizeInverse', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (2120, 2175), False, 'from fiery.utils.network import NormalizeInverse\n'), ((2186, 2221), 'torchvision.transforms.ToPILImage', 'torchvision.transforms.ToPILImage', ([], {}), '()\n', (2219, 2221), False, 'import torchvision\n'), ((3090, 3098), 'requests.get', 'get', (['url'], {}), '(url)\n', (3093, 3098), False, 'from requests import get\n'), ((4081, 4121), 'os.path.join', 'os.path.join', (['EXAMPLE_DATA_PATH', '"""*.npz"""'], {}), "(EXAMPLE_DATA_PATH, '*.npz')\n", (4093, 4121), False, 'import os\n'), ((4475, 4490), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4488, 4490), False, 'import torch\n'), ((4175, 4206), 'torch.from_numpy', 'torch.from_numpy', (["data['image']"], {}), "(data['image'])\n", (4191, 4206), False, 'import torch\n'), ((4239, 4275), 'torch.from_numpy', 'torch.from_numpy', (["data['intrinsics']"], {}), "(data['intrinsics'])\n", (4255, 4275), False, 'import torch\n'), ((4308, 4344), 'torch.from_numpy', 'torch.from_numpy', (["data['extrinsics']"], {}), "(data['extrinsics'])\n", (4324, 4344), False, 'import torch\n'), ((4384, 4426), 'torch.from_numpy', 'torch.from_numpy', (["data['future_egomotion']"], {}), "(data['future_egomotion'])\n", (4400, 4426), False, 'import torch\n'), ((4811, 4840), 'PIL.Image.fromarray', 'Image.fromarray', (['figure_numpy'], {}), '(figure_numpy)\n', (4826, 4840), False, 'from PIL import Image\n'), ((3748, 3769), 'os.path.basename', 'os.path.basename', (['url'], {}), '(url)\n', (3764, 3769), False, 'import os\n'), ((4751, 4778), 'os.path.basename', 'os.path.basename', (['data_path'], {}), '(data_path)\n', (4767, 4778), False, 'import os\n'), ((800, 843), 'torch.unique', 'torch.unique', (['consistent_instance_seg[0, 0]'], {}), '(consistent_instance_seg[0, 0])\n', (812, 843), False, 'import torch\n')]
|
import tensorflow as tf
import numpy as np
def euclidean_dist(x, y):
return np.linalg.norm(x - y)
def limit_gpu():
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
tf.config.set_logical_device_configuration(
gpus[0],
[tf.config.LogicalDeviceConfiguration(memory_limit=4000)])
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
|
[
"tensorflow.config.list_logical_devices",
"tensorflow.config.list_physical_devices",
"tensorflow.config.LogicalDeviceConfiguration",
"numpy.linalg.norm"
] |
[((82, 103), 'numpy.linalg.norm', 'np.linalg.norm', (['(x - y)'], {}), '(x - y)\n', (96, 103), True, 'import numpy as np\n'), ((134, 172), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (165, 172), True, 'import tensorflow as tf\n'), ((390, 427), 'tensorflow.config.list_logical_devices', 'tf.config.list_logical_devices', (['"""GPU"""'], {}), "('GPU')\n", (420, 427), True, 'import tensorflow as tf\n'), ((305, 360), 'tensorflow.config.LogicalDeviceConfiguration', 'tf.config.LogicalDeviceConfiguration', ([], {'memory_limit': '(4000)'}), '(memory_limit=4000)\n', (341, 360), True, 'import tensorflow as tf\n')]
|
from PIL import Image, ImageDraw
from numpy import array, random, vstack, ones, linalg
from const import TOWERS
from copy import deepcopy
from os import path
class MapDrawer:
"""
a class for drawing Dota2Maps with replay-parsed data
"""
def __init__(self, towers, received_tables):
"""
@param towers: table containing info about towers
@param received_tables: the received_tables from the replay
"""
self.coordinates = []
libdir = path.abspath(path.dirname(__file__))
self.image = Image.open(libdir + "/assets/dota2map.png")
self.draw = ImageDraw.Draw(self.image)
self.map_w, self.map_h = self.image.size
# init information tables and respective columns
tower_info_table = received_tables.by_dt['DT_DOTA_BaseNPC_Tower']
position_x_index = tower_info_table.by_name['m_cellX']
position_y_index = tower_info_table.by_name['m_cellY']
position_vector_index = tower_info_table.by_name['m_vecOrigin']
name_index = tower_info_table.by_name['m_iName']
tower_list = deepcopy(TOWERS)
# getting world coordinates for every tower in TOWERS
for name, data in tower_list.iteritems():
for t in towers:
state = t.state
state_name = state.get(name_index)
if state_name == name:
data["worldX"] = state.get(position_x_index) + state.get(position_vector_index)[0] / 128.
if "worldY" not in data:
data["worldY"] = state.get(position_y_index) + state.get(position_vector_index)[1] / 128.
# caching vals, so ordering stays the same throughout the comprehensions
vals = tower_list.values()
x = [v["worldX"] for v in vals if "worldX" in v]
y = [v["worldY"] for v in vals if "worldY" in v]
x_map = [v["x"] for v in vals if "worldX" in v]
y_map = [v["y"] for v in vals if "worldY" in v]
# calculating scale and offset to convert worldcoordinates to coordinates on the map
Ax = vstack((x, ones(len(x)))).T
Ay = vstack((y, ones(len(y)))).T
self.scale_x, self.offset_x = linalg.lstsq(Ax, x_map)[0]
self.scale_y, self.offset_y = linalg.lstsq(Ay, y_map)[0]
# import matplotlib
# matplotlib.use('Agg')
# import matplotlib.pyplot as plt
# x_tomap = [(a * self.scale_x) + self.offset_x for a in x]
# y_tomap = [(a * self.scale_y) + self.offset_y for a in y]
# plotting conversion output for debugging purposes
# fig, axarr = plt.subplots(nrows = 2, ncols = 2)
# axarr[0][0].scatter(x_tomap, y_tomap)
# axarr[0][1].scatter(x_map, y_map)
# axarr[1][0].scatter(x, y)
# plt.savefig("output/towers.png", figsize=(12, 4), dpi=150)
def draw_circle_world_coordinates(self, worldX, worldY, r=20, color="red"):
"""
draws a circle at the specified world coordinates (from bottom-left) with radius r (in px) and the color as required by PIL
"""
x, y = self.convert_coordinates(worldX, worldY)
bounds = (x-r, self.map_h-(y+r), x+r, self.map_h-(y-r))
bounds = tuple(int(round(a)) for a in bounds)
self.draw.ellipse(bounds, fill = color)
def draw_circle_world_coordinates_list(self, coordinates, r=20, color="red"):
"""
same as draw_circle_world_coordinates, but for batch drawing
"""
for x, y in coordinates:
self.draw_circle_world_coordinates(x, y, r, color)
def draw_circle_map_coordinates(self, x, y, r=20, color="red"):
"""
draws a circle on the specified pixels (from bottom-left) with radius r (in px) and the color as required by PIL
"""
bounds = (x-r, self.map_h-(y+r), x+r, self.map_h-(y-r))
bounds = tuple(int(round(a)) for a in bounds)
self.draw.ellipse(bounds, fill = color)
def draw_circle_map_coordinates_list(self, coordinates, r=20, color="red"):
"""
same as draw_circle_map_coordinates, but for batch drawing
"""
for x, y in coordinates:
self.draw_circle_map_coordinates(x, y, r, color)
def save(self, filename, scale=4):
"""
saves the map
"""
scaled = self.image.resize((self.map_w / scale, self.map_h / scale), Image.ANTIALIAS)
scaled.save(filename)
def convert_coordinates(self, worldX, worldY):
"""
converts world coordinates to map coordinates by using the scale and offset defined in the __init__ method
"""
return (worldX * self.scale_x) + self.offset_x, (worldY * self.scale_y) + self.offset_y
|
[
"PIL.Image.open",
"os.path.dirname",
"PIL.ImageDraw.Draw",
"numpy.linalg.lstsq",
"copy.deepcopy"
] |
[((585, 628), 'PIL.Image.open', 'Image.open', (["(libdir + '/assets/dota2map.png')"], {}), "(libdir + '/assets/dota2map.png')\n", (595, 628), False, 'from PIL import Image, ImageDraw\n'), ((650, 676), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['self.image'], {}), '(self.image)\n', (664, 676), False, 'from PIL import Image, ImageDraw\n'), ((1145, 1161), 'copy.deepcopy', 'deepcopy', (['TOWERS'], {}), '(TOWERS)\n', (1153, 1161), False, 'from copy import deepcopy\n'), ((539, 561), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (551, 561), False, 'from os import path\n'), ((2277, 2300), 'numpy.linalg.lstsq', 'linalg.lstsq', (['Ax', 'x_map'], {}), '(Ax, x_map)\n', (2289, 2300), False, 'from numpy import array, random, vstack, ones, linalg\n'), ((2343, 2366), 'numpy.linalg.lstsq', 'linalg.lstsq', (['Ay', 'y_map'], {}), '(Ay, y_map)\n', (2355, 2366), False, 'from numpy import array, random, vstack, ones, linalg\n')]
|
import torch
import numpy as np
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
def binary_reg(x: torch.Tensor):
# forward: f(x) = (x>=0)
# backward: f(x) = sigmoid
a = torch.sigmoid(x)
b = a.detach()
c = (x.detach() >= 0).float()
return a - b + c
class HIN2vec(nn.Module):
def __init__(self, node_size, path_size, embed_dim, sigmoid_reg=False, r=True):
super().__init__()
self.reg = torch.sigmoid if sigmoid_reg else binary_reg
self.__initialize_model(node_size, path_size, embed_dim, r)
def __initialize_model(self, node_size, path_size, embed_dim, r):
self.start_embeds = nn.Embedding(node_size, embed_dim)
self.end_embeds = self.start_embeds if r else nn.Embedding(node_size, embed_dim)
self.path_embeds = nn.Embedding(path_size, embed_dim)
# self.classifier = nn.Sequential(
# nn.Linear(embed_dim, 1),
# nn.Sigmoid(),
# )
def forward(self, start_node: torch.LongTensor, end_node: torch.LongTensor, path: torch.LongTensor):
# assert start_node.dim() == 1 # shape = (batch_size,)
s = self.start_embeds(start_node) # (batch_size, embed_size)
e = self.end_embeds(end_node)
p = self.path_embeds(path)
p = self.reg(p)
agg = torch.mul(s, e)
agg = torch.mul(agg, p)
# agg = F.sigmoid(agg)
# output = self.classifier(agg)
output = torch.sigmoid(torch.sum(agg, axis=1))
return output
def train(log_interval, model, device, train_loader: DataLoader, optimizer, loss_function, epoch):
model.train()
for idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data[:, 0], data[:, 1], data[:, 2])
loss = loss_function(output.view(-1), target)
loss.backward()
optimizer.step()
if idx % log_interval == 0:
print(f'\rTrain Epoch: {epoch} '
f'[{idx * len(data)}/{len(train_loader.dataset)} ({100. * idx / len(train_loader):.3f}%)]\t'
f'Loss: {loss.item():.3f}\t\t',
# f'data = {data}\t target = {target}',
end='')
print()
class NSTrainSet(Dataset):
"""
完全随机的负采样 todo 改进一下?
"""
def __init__(self, sample, node_size, neg=5):
"""
:param node_size: 节点数目
:param neg: 负采样数目
:param sample: HIN.sample()返回值,(start_node, end_node, path_id)
"""
print('init training dataset...')
l = len(sample)
x = np.tile(sample, (neg + 1, 1))
y = np.zeros(l * (1 + neg))
y[:l] = 1
# x[l:, 2] = np.random.randint(0, path_size - 1, (l * neg,))
x[l:, 1] = np.random.randint(0, node_size - 1, (l * neg,))
self.x = torch.LongTensor(x)
self.y = torch.FloatTensor(y)
self.length = len(x)
print('finished')
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return self.length
if __name__ == '__main__':
## test binary_reg
print('sigmoid')
a = torch.tensor([-1.,0.,1.],requires_grad=True)
b = torch.sigmoid(a)
c = b.sum()
print(a)
print(b)
print(c)
c.backward()
print(c.grad)
print(b.grad)
print(a.grad)
print('binary')
a = torch.tensor([-1., 0., 1.], requires_grad=True)
b = binary_reg(a)
c = b.sum()
print(a)
print(b)
print(c)
c.backward()
print(c.grad)
print(b.grad)
print(a.grad)
|
[
"torch.mul",
"numpy.tile",
"torch.LongTensor",
"torch.sigmoid",
"torch.tensor",
"numpy.zeros",
"numpy.random.randint",
"torch.sum",
"torch.FloatTensor",
"torch.nn.Embedding"
] |
[((205, 221), 'torch.sigmoid', 'torch.sigmoid', (['x'], {}), '(x)\n', (218, 221), False, 'import torch\n'), ((3209, 3259), 'torch.tensor', 'torch.tensor', (['[-1.0, 0.0, 1.0]'], {'requires_grad': '(True)'}), '([-1.0, 0.0, 1.0], requires_grad=True)\n', (3221, 3259), False, 'import torch\n'), ((3262, 3278), 'torch.sigmoid', 'torch.sigmoid', (['a'], {}), '(a)\n', (3275, 3278), False, 'import torch\n'), ((3434, 3484), 'torch.tensor', 'torch.tensor', (['[-1.0, 0.0, 1.0]'], {'requires_grad': '(True)'}), '([-1.0, 0.0, 1.0], requires_grad=True)\n', (3446, 3484), False, 'import torch\n'), ((668, 702), 'torch.nn.Embedding', 'nn.Embedding', (['node_size', 'embed_dim'], {}), '(node_size, embed_dim)\n', (680, 702), True, 'import torch.nn as nn\n'), ((820, 854), 'torch.nn.Embedding', 'nn.Embedding', (['path_size', 'embed_dim'], {}), '(path_size, embed_dim)\n', (832, 854), True, 'import torch.nn as nn\n'), ((1330, 1345), 'torch.mul', 'torch.mul', (['s', 'e'], {}), '(s, e)\n', (1339, 1345), False, 'import torch\n'), ((1360, 1377), 'torch.mul', 'torch.mul', (['agg', 'p'], {}), '(agg, p)\n', (1369, 1377), False, 'import torch\n'), ((2645, 2674), 'numpy.tile', 'np.tile', (['sample', '(neg + 1, 1)'], {}), '(sample, (neg + 1, 1))\n', (2652, 2674), True, 'import numpy as np\n'), ((2687, 2710), 'numpy.zeros', 'np.zeros', (['(l * (1 + neg))'], {}), '(l * (1 + neg))\n', (2695, 2710), True, 'import numpy as np\n'), ((2818, 2865), 'numpy.random.randint', 'np.random.randint', (['(0)', '(node_size - 1)', '(l * neg,)'], {}), '(0, node_size - 1, (l * neg,))\n', (2835, 2865), True, 'import numpy as np\n'), ((2884, 2903), 'torch.LongTensor', 'torch.LongTensor', (['x'], {}), '(x)\n', (2900, 2903), False, 'import torch\n'), ((2921, 2941), 'torch.FloatTensor', 'torch.FloatTensor', (['y'], {}), '(y)\n', (2938, 2941), False, 'import torch\n'), ((757, 791), 'torch.nn.Embedding', 'nn.Embedding', (['node_size', 'embed_dim'], {}), '(node_size, embed_dim)\n', (769, 791), True, 'import torch.nn as nn\n'), ((1481, 1503), 'torch.sum', 'torch.sum', (['agg'], {'axis': '(1)'}), '(agg, axis=1)\n', (1490, 1503), False, 'import torch\n')]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import json
import uuid
from typing import Callable, Mapping, Optional
import numpy as np
from caffe2.python import workspace
from caffe2.python.predictor import predictor_exporter
from .builtin_task import register_builtin_tasks
from .config import PyTextConfig, pytext_config_from_json
from .config.component import create_featurizer
from .data.featurizer import InputRecord
from .utils.onnx_utils import CAFFE2_DB_TYPE, convert_caffe2_blob_name
register_builtin_tasks()
Predictor = Callable[[Mapping[str, str]], Mapping[str, np.array]]
def _predict(workspace_id, feature_config, predict_net, featurizer, input):
workspace.SwitchWorkspace(workspace_id)
features = featurizer.featurize(InputRecord(**input))
if feature_config.word_feat:
for blob_name in feature_config.word_feat.export_input_names:
converted_blob_name = convert_caffe2_blob_name(blob_name)
workspace.blobs[converted_blob_name] = np.array(
[features.tokens], dtype=str
)
workspace.blobs["tokens_lens"] = np.array([len(features.tokens)], dtype=np.int_)
if feature_config.dict_feat:
dict_feats, weights, lens = feature_config.dict_feat.export_input_names
converted_dict_blob_name = convert_caffe2_blob_name(dict_feats)
workspace.blobs[converted_dict_blob_name] = np.array(
[features.gazetteer_feats], dtype=str
)
workspace.blobs[weights] = np.array(
[features.gazetteer_feat_weights], dtype=np.float32
)
workspace.blobs[lens] = np.array(features.gazetteer_feat_lengths, dtype=np.int_)
if feature_config.char_feat:
for blob_name in feature_config.char_feat.export_input_names:
converted_blob_name = convert_caffe2_blob_name(blob_name)
workspace.blobs[converted_blob_name] = np.array(
[features.characters], dtype=str
)
workspace.RunNet(predict_net)
return {
str(blob): workspace.blobs[blob][0] for blob in predict_net.external_outputs
}
def load_config(filename: str) -> PyTextConfig:
"""
Load a PyText configuration file from a file path.
See pytext.config.pytext_config for more info on configs.
"""
with open(filename) as file:
config_json = json.loads(file.read())
if "config" not in config_json:
return pytext_config_from_json(config_json)
return pytext_config_from_json(config_json["config"])
def create_predictor(
config: PyTextConfig, model_file: Optional[str] = None
) -> Predictor:
"""
Create a simple prediction API from a training config and an exported caffe2
model file. This model file should be created by calling export on a trained
model snapshot.
"""
workspace_id = str(uuid.uuid4())
workspace.SwitchWorkspace(workspace_id, True)
predict_net = predictor_exporter.prepare_prediction_net(
filename=model_file or config.export_caffe2_path, db_type=CAFFE2_DB_TYPE
)
task = config.task
feature_config = task.features
featurizer = create_featurizer(task.featurizer, feature_config)
return lambda input: _predict(
workspace_id, feature_config, predict_net, featurizer, input
)
|
[
"caffe2.python.workspace.RunNet",
"caffe2.python.workspace.SwitchWorkspace",
"caffe2.python.predictor.predictor_exporter.prepare_prediction_net",
"uuid.uuid4",
"numpy.array"
] |
[((721, 760), 'caffe2.python.workspace.SwitchWorkspace', 'workspace.SwitchWorkspace', (['workspace_id'], {}), '(workspace_id)\n', (746, 760), False, 'from caffe2.python import workspace\n'), ((2019, 2048), 'caffe2.python.workspace.RunNet', 'workspace.RunNet', (['predict_net'], {}), '(predict_net)\n', (2035, 2048), False, 'from caffe2.python import workspace\n'), ((2899, 2944), 'caffe2.python.workspace.SwitchWorkspace', 'workspace.SwitchWorkspace', (['workspace_id', '(True)'], {}), '(workspace_id, True)\n', (2924, 2944), False, 'from caffe2.python import workspace\n'), ((2963, 3083), 'caffe2.python.predictor.predictor_exporter.prepare_prediction_net', 'predictor_exporter.prepare_prediction_net', ([], {'filename': '(model_file or config.export_caffe2_path)', 'db_type': 'CAFFE2_DB_TYPE'}), '(filename=model_file or config.\n export_caffe2_path, db_type=CAFFE2_DB_TYPE)\n', (3004, 3083), False, 'from caffe2.python.predictor import predictor_exporter\n'), ((1438, 1485), 'numpy.array', 'np.array', (['[features.gazetteer_feats]'], {'dtype': 'str'}), '([features.gazetteer_feats], dtype=str)\n', (1446, 1485), True, 'import numpy as np\n'), ((1543, 1604), 'numpy.array', 'np.array', (['[features.gazetteer_feat_weights]'], {'dtype': 'np.float32'}), '([features.gazetteer_feat_weights], dtype=np.float32)\n', (1551, 1604), True, 'import numpy as np\n'), ((1659, 1715), 'numpy.array', 'np.array', (['features.gazetteer_feat_lengths'], {'dtype': 'np.int_'}), '(features.gazetteer_feat_lengths, dtype=np.int_)\n', (1667, 1715), True, 'import numpy as np\n'), ((2881, 2893), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2891, 2893), False, 'import uuid\n'), ((1043, 1081), 'numpy.array', 'np.array', (['[features.tokens]'], {'dtype': 'str'}), '([features.tokens], dtype=str)\n', (1051, 1081), True, 'import numpy as np\n'), ((1941, 1983), 'numpy.array', 'np.array', (['[features.characters]'], {'dtype': 'str'}), '([features.characters], dtype=str)\n', (1949, 1983), True, 'import numpy as np\n')]
|
import os
import re
import hyperparams as hp
from data_load import DataLoad
from tqdm import tqdm
import numpy as np
import pandas as pd
import tensorflow as tf
def load_ckpt_paths(model_name='cdmf'):
# get ckpt
ckpt_path = '../model_ckpt/compare/{}/'.format(model_name)
fpaths = []
with open(ckpt_path+'checkpoint', 'r', encoding='utf-8') as f_ckpt :
for line in f_ckpt.readlines()[1:]:
fname = re.sub(r'\"', '', line.split(':')[-1]).strip()
fpath = os.path.join(ckpt_path, fname)
fpaths.append(fpath)
return fpaths
if __name__ == '__main__':
data = DataLoad(data_path=hp.DATA_PATH,
fnames=hp.FNAMES,
forced_seq_len=hp.FORCED_SEQ_LEN,
vocab_size=hp.VOCAB_SIZE,
paly_times=hp.PLAY_TIMES,
num_main_actors=hp.NUM_MAIN_ACTORS,
batch_size=hp.BATCH_SIZE,
num_epochs=hp.NUM_EPOCHS,
noise_rate=hp.NOISE_RATE)
# CDMF
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
for fpath in load_ckpt_paths('cdmf'):
saver = tf.train.import_meta_graph(fpath+'.meta')
saver.restore(sess, fpath)
# Get the placeholders from the graph by name
m_oids = graph.get_tensor_by_name('movie_order_ids:0')
info = graph.get_tensor_by_name('info:0')
actors = graph.get_tensor_by_name('actors:0')
descriptions = graph.get_tensor_by_name('descriptions:0')
u_oids = graph.get_tensor_by_name('user_order_ids:0')
r_seq = graph.get_tensor_by_name('rating_sequence:0')
dropout_keep_prob = graph.get_tensor_by_name("dropout_keep_prob:0")
# Tensors we want to evaluate
mse_op = graph.get_tensor_by_name('mse/mse_op:0')
# load evalset
eval_iter = data.load_data('eval')
mse, count = 0.0, 0
for (sub_X_user, sub_X_movie), sub_Y in tqdm(eval_iter):
# unpack
sub_u_oids, sub_bu_seq = sub_X_user
sub_m_oids, sub_info, sub_actors, sub_des, sub_bm_seq = sub_X_movie
sub_r_seq = sub_Y
dev_feed_dict = {
m_oids: sub_m_oids,
info: sub_info,
actors: sub_actors,
descriptions: sub_des,
u_oids: sub_u_oids,
r_seq: sub_r_seq,
dropout_keep_prob: hp.DROPOUT_KEEP_PROB}
sub_mse = sess.run(mse_op, feed_dict=dev_feed_dict)
mse += sub_mse
count += 1
rmse = np.sqrt(mse / count)
print('cdmf | rmse:{}'.format(rmse))
# ConvMF
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
for fpath in load_ckpt_paths('convmf'):
saver = tf.train.import_meta_graph(fpath+'.meta')
saver.restore(sess, fpath)
# Get the placeholders from the graph by name
m_oids = graph.get_tensor_by_name('movie_order_ids:0')
descriptions = graph.get_tensor_by_name('descriptions:0')
u_oids = graph.get_tensor_by_name('user_order_ids:0')
r_seq = graph.get_tensor_by_name('rating_sequence:0')
dropout_keep_prob = graph.get_tensor_by_name("dropout_keep_prob:0")
# Tensors we want to evaluate
mse_op = graph.get_tensor_by_name('mse/mse_op:0')
# load evalset
eval_iter = data.load_data('eval')
mse, count = 0.0, 0
for (sub_X_user, sub_X_movie), sub_Y in tqdm(eval_iter):
# unpack
sub_u_oids, sub_bu_seq = sub_X_user
sub_m_oids, sub_info, sub_actors, sub_des, sub_bm_seq = sub_X_movie
sub_r_seq = sub_Y
dev_feed_dict = {
m_oids: sub_m_oids,
descriptions: sub_des,
u_oids: sub_u_oids,
r_seq: sub_r_seq,
dropout_keep_prob: hp.DROPOUT_KEEP_PROB}
sub_mse = sess.run(mse_op, feed_dict=dev_feed_dict)
mse += sub_mse
count += 1
rmse = np.sqrt(mse / count)
print('convmf | rmse:{}'.format(rmse))
|
[
"tensorflow.Graph",
"tensorflow.reset_default_graph",
"numpy.sqrt",
"tensorflow.Session",
"tqdm.tqdm",
"os.path.join",
"tensorflow.train.import_meta_graph",
"data_load.DataLoad",
"tensorflow.ConfigProto"
] |
[((623, 886), 'data_load.DataLoad', 'DataLoad', ([], {'data_path': 'hp.DATA_PATH', 'fnames': 'hp.FNAMES', 'forced_seq_len': 'hp.FORCED_SEQ_LEN', 'vocab_size': 'hp.VOCAB_SIZE', 'paly_times': 'hp.PLAY_TIMES', 'num_main_actors': 'hp.NUM_MAIN_ACTORS', 'batch_size': 'hp.BATCH_SIZE', 'num_epochs': 'hp.NUM_EPOCHS', 'noise_rate': 'hp.NOISE_RATE'}), '(data_path=hp.DATA_PATH, fnames=hp.FNAMES, forced_seq_len=hp.\n FORCED_SEQ_LEN, vocab_size=hp.VOCAB_SIZE, paly_times=hp.PLAY_TIMES,\n num_main_actors=hp.NUM_MAIN_ACTORS, batch_size=hp.BATCH_SIZE,\n num_epochs=hp.NUM_EPOCHS, noise_rate=hp.NOISE_RATE)\n', (631, 886), False, 'from data_load import DataLoad\n'), ((1058, 1068), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1066, 1068), True, 'import tensorflow as tf\n'), ((3153, 3177), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (3175, 3177), True, 'import tensorflow as tf\n'), ((3198, 3208), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (3206, 3208), True, 'import tensorflow as tf\n'), ((1121, 1190), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'log_device_placement': '(False)'}), '(allow_soft_placement=True, log_device_placement=False)\n', (1135, 1190), True, 'import tensorflow as tf\n'), ((1231, 1262), 'tensorflow.Session', 'tf.Session', ([], {'config': 'session_conf'}), '(config=session_conf)\n', (1241, 1262), True, 'import tensorflow as tf\n'), ((3261, 3330), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)', 'log_device_placement': '(False)'}), '(allow_soft_placement=True, log_device_placement=False)\n', (3275, 3330), True, 'import tensorflow as tf\n'), ((3371, 3402), 'tensorflow.Session', 'tf.Session', ([], {'config': 'session_conf'}), '(config=session_conf)\n', (3381, 3402), True, 'import tensorflow as tf\n'), ((502, 532), 'os.path.join', 'os.path.join', (['ckpt_path', 'fname'], {}), '(ckpt_path, fname)\n', (514, 532), False, 'import os\n'), ((1382, 1425), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (["(fpath + '.meta')"], {}), "(fpath + '.meta')\n", (1408, 1425), True, 'import tensorflow as tf\n'), ((2307, 2322), 'tqdm.tqdm', 'tqdm', (['eval_iter'], {}), '(eval_iter)\n', (2311, 2322), False, 'from tqdm import tqdm\n'), ((3061, 3081), 'numpy.sqrt', 'np.sqrt', (['(mse / count)'], {}), '(mse / count)\n', (3068, 3081), True, 'import numpy as np\n'), ((3511, 3554), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (["(fpath + '.meta')"], {}), "(fpath + '.meta')\n", (3537, 3554), True, 'import tensorflow as tf\n'), ((4316, 4331), 'tqdm.tqdm', 'tqdm', (['eval_iter'], {}), '(eval_iter)\n', (4320, 4331), False, 'from tqdm import tqdm\n'), ((4986, 5006), 'numpy.sqrt', 'np.sqrt', (['(mse / count)'], {}), '(mse / count)\n', (4993, 5006), True, 'import numpy as np\n')]
|
# coding=utf-8
# Author: <NAME> <<EMAIL>>
import numpy as np
import re
class KeelAttribute:
"""
A class that represent an attribute of keel dataset format.
"""
TYPE_REAL, TYPE_INTEGER, TYPE_NOMINAL = ("real", "integer", "nominal")
def __init__(self, attribute_name, attribute_type, attribute_range, attribute_builder):
self.name = attribute_name
self.type = attribute_type
self.range = attribute_range
self.builder = attribute_builder
class KeelDataSet:
"""
A class that represent the keel dataset format.
"""
UNKNOWN = '?'
def __init__(self, relation_name, attributes, data, inputs=None, outputs=None):
self.name = relation_name
self.attributes = attributes
self.data = data
self.inputs = inputs
self.outputs = outputs
self.shape = len(data[0]), len(data)
self.ir = self.__imbalance_ratio()
def __get_data(self, attributes):
return [self.data[self.attributes.index(a)] for a in attributes]
def __imbalance_ratio(self):
"""Compute the imbalance ratio of the dataset
"""
labels = self.__get_data(self.outputs)
labels = np.concatenate(labels)
_, count_classes = np.unique(labels, return_counts=True)
max_count = np.max(count_classes)
min_count = np.min(count_classes)
return round((max_count / min_count), 2)
def get_data(self):
"""Returns (data, target) of the dataset.
"""
inputs = self.__get_data(self.inputs)
outputs = self.__get_data(self.outputs)
return np.transpose(inputs), np.concatenate(outputs)
def __str__(self):
row_format = "{:<31}" * 5
labels = self.__get_data(self.outputs)
labels = np.concatenate(labels)
classes = np.unique(labels)
# metadata = f"{self.name}:\tAttributes: {self.shape[1]}\tSamples: {self.shape[0]}\tClasses: {classes.shape[0]}\tImbalance Ratio: {self.ir}"
return row_format.format(f"{self.name} ", *[f"Attributes: {self.shape[1]}", f"Samples: {self.shape[0]}", f"Classes: {classes.shape[0]}", f"IR: {self.ir}"])
def __get_header(self):
"""Get the header of a keel dataset format.
"""
header = f"@relation {self.name}\n"
attributes = []
for attr in self.attributes:
attr_type = "real" if attr.type == KeelAttribute.TYPE_REAL else "integer" if attr.type == KeelAttribute.TYPE_INTEGER else ''
if len(attr_type) > 0:
attributes.append(f"@attribute {attr.name} {attr_type} [{attr.range[0]}, {attr.range[1]}]")
else:
attributes.append("@attribute " + attr.name + " {" + (", ").join(list(attr.range)) + "}")
header += "\n".join(attributes)
header += "\n"
header += f"@inputs {(', ').join([attr.name for attr in self.inputs])}\n"
header += f"@outputs {(', ').join([attr.name for attr in self.outputs])}\n"
header += "@data\n"
return header
def save(self, path):
"""Export the data on keel dataset format.
Parameters
----------
path : str
The filepath to save the dataset.
"""
with open(path, 'w') as f:
# Write header of database
f.write(self.__get_header())
# Write data of database
data = list(map(list, zip(*self.data)))
data = '\n'.join(map(', '.join, map(lambda x: map(str, x), data)))
f.write(data)
def load_keel_file(path):
"""Load a keel dataset format.
Parameters
----------
path : str
The filepath of the keel dataset format.
Returns
-------
keel_dataset: KeelDataset
The keel dataset format loaded.
"""
handle = open(path)
try:
line = handle.readline().strip()
header_parts = line.split()
if header_parts[0] != "@relation" or len(header_parts) != 2:
raise SyntaxError("This is not a valid keel database.")
# Get database name
relation_name = header_parts[1]
# Get attributes
line = handle.readline().strip()
attrs = []
lkp = {}
while line.startswith("@attribute"):
# Get attribute name
attr_name = line.split(" ")[1]
# Get attribute type
match = re.findall(r"\s([a-z]+)\s{0,1}\[", line)
if len(match) > 0:
attr_type = match[0]
else:
attr_type = "nominal"
# Get values range
if attr_type != "nominal":
match = re.findall(r"\[(.*?)\]", line)
attr_builder = float if attr_type == "real" else int
attr_range = tuple(map(attr_builder, match[0].split(",")))
else:
match = re.findall(r"\{(.*?)\}", line)
attr_builder = str
attr_range = tuple(match[0].replace(" ", "").split(","))
keel_attribute = KeelAttribute(attr_name, attr_type, attr_range, attr_builder)
attrs.append(keel_attribute)
lkp[attr_name] = keel_attribute
line = handle.readline().strip()
# Get inputs
if not line.startswith("@input"):
raise SyntaxError("Expected @input or @inputs. " + line)
inputs_parts = line.split(maxsplit=1)
inputs_name = inputs_parts[1].replace(" ", "").split(",")
inputs = [lkp[name] for name in inputs_name]
# Get output
line = handle.readline().strip()
if not line.startswith("@output"):
raise SyntaxError("Expected @outputs or @outputs. " + line)
output_parts = line.split(maxsplit=1)
output_name = output_parts[1].replace(" ", "").split(",")
outputs = [lkp[name] for name in output_name]
# Get data
line = handle.readline().strip()
if line != "@data":
raise SyntaxError("Expected @data.")
data = [[] for _ in range(len(attrs))]
for data_line in handle:
if data_line:
data_values = data_line.strip().replace(" ", "").split(',')
for lst, value, attr in zip(data, data_values, attrs):
v = value
v = v if v == KeelDataSet.UNKNOWN else attr.builder(v)
lst.append(v)
return KeelDataSet(relation_name, attrs, data, inputs, outputs)
finally:
if path:
handle.close()
|
[
"numpy.unique",
"numpy.max",
"numpy.concatenate",
"numpy.min",
"re.findall",
"numpy.transpose"
] |
[((1202, 1224), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (1216, 1224), True, 'import numpy as np\n'), ((1253, 1290), 'numpy.unique', 'np.unique', (['labels'], {'return_counts': '(True)'}), '(labels, return_counts=True)\n', (1262, 1290), True, 'import numpy as np\n'), ((1320, 1341), 'numpy.max', 'np.max', (['count_classes'], {}), '(count_classes)\n', (1326, 1341), True, 'import numpy as np\n'), ((1362, 1383), 'numpy.min', 'np.min', (['count_classes'], {}), '(count_classes)\n', (1368, 1383), True, 'import numpy as np\n'), ((1800, 1822), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (1814, 1822), True, 'import numpy as np\n'), ((1842, 1859), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (1851, 1859), True, 'import numpy as np\n'), ((1631, 1651), 'numpy.transpose', 'np.transpose', (['inputs'], {}), '(inputs)\n', (1643, 1651), True, 'import numpy as np\n'), ((1653, 1676), 'numpy.concatenate', 'np.concatenate', (['outputs'], {}), '(outputs)\n', (1667, 1676), True, 'import numpy as np\n'), ((4458, 4500), 're.findall', 're.findall', (['"""\\\\s([a-z]+)\\\\s{0,1}\\\\["""', 'line'], {}), "('\\\\s([a-z]+)\\\\s{0,1}\\\\[', line)\n", (4468, 4500), False, 'import re\n'), ((4718, 4749), 're.findall', 're.findall', (['"""\\\\[(.*?)\\\\]"""', 'line'], {}), "('\\\\[(.*?)\\\\]', line)\n", (4728, 4749), False, 'import re\n'), ((4935, 4966), 're.findall', 're.findall', (['"""\\\\{(.*?)\\\\}"""', 'line'], {}), "('\\\\{(.*?)\\\\}', line)\n", (4945, 4966), False, 'import re\n')]
|
"""
This test module has tests relating to kelvin model validations.
All functions in /calculations/models_kelvin.py are tested here.
The purposes are:
- testing the meniscus shape determination function
- testing the output of the kelvin equations
- testing that the "function getter" is performing as expected.
The kelvin functions are tested against pre-calculated values
at several points.
"""
import numpy
import pytest
import pygaps.characterisation.models_kelvin as km
import pygaps.utilities.exceptions as pgEx
@pytest.mark.characterisation
class TestKelvinModels():
"""Test the kelvin models."""
@pytest.mark.parametrize(
'branch, pore, geometry', [
('ads', 'slit', 'hemicylindrical'),
('ads', 'cylinder', 'cylindrical'),
('ads', 'sphere', 'hemispherical'),
('des', 'slit', 'hemicylindrical'),
('des', 'cylinder', 'hemispherical'),
('des', 'sphere', 'hemispherical'),
]
)
def test_meniscus_geometry(self, branch, pore, geometry):
"""Test the meniscus geometry function."""
assert km.get_meniscus_geometry(branch, pore) == geometry
@pytest.mark.parametrize(
'model, pressure', [
(km._KELVIN_MODELS['Kelvin'], [0.1, 0.4, 0.9]),
]
)
@pytest.mark.parametrize(
'geometry, c_radius', [
('cylindrical', [0.208, 0.522, 4.539]),
('hemispherical', [0.415, 1.044, 9.078]),
('hemicylindrical', [0.831, 2.090, 18.180]),
]
)
def test_kelvin_model(
self, model, geometry, pressure, c_radius, basic_adsorbate
):
"""Test each model against pre-calculated values for N2 at 77K."""
temperature = 77.355
pressure = [0.1, 0.4, 0.9]
for index, value in enumerate(pressure):
radius = model(
value, geometry, temperature,
basic_adsorbate.liquid_density(temperature),
basic_adsorbate.molar_mass(),
basic_adsorbate.surface_tension(temperature)
)
assert numpy.isclose(radius, c_radius[index], 0.01, 0.01)
def test_kelvin_kjs_model(self, basic_adsorbate):
"""Test Kelvin KJS model against pre-calculated values for N2 at 77K."""
temperature = 77.355
pressure = [0.1, 0.4, 0.9]
c_radius = [0.715, 1.344, 9.378]
model = km._KELVIN_MODELS['Kelvin-KJS']
geometry = 'cylindrical'
for index, value in enumerate(pressure):
radius = model(
value, geometry, temperature,
basic_adsorbate.liquid_density(temperature),
basic_adsorbate.molar_mass(),
basic_adsorbate.surface_tension(temperature)
)
assert numpy.isclose(radius, c_radius[index], 0.01, 0.01)
# Now check for excluding other models
geometry = 'hemispherical'
with pytest.raises(pgEx.ParameterError):
radius = model(
value, geometry, temperature,
basic_adsorbate.liquid_density(temperature),
basic_adsorbate.molar_mass(),
basic_adsorbate.surface_tension(temperature)
)
def test_get_kelvin_error(self):
"""When the model requested is not found we raise."""
with pytest.raises(pgEx.ParameterError):
km.get_kelvin_model('bad_model')
def test_get_kelvin_callable(self):
"""When we pass a function and dict, we receive a partial back."""
def call_this(addendum):
return 'called' + addendum
ret = km.get_kelvin_model(call_this, addendum='add')
assert ret() == 'calledadd'
|
[
"pygaps.characterisation.models_kelvin.get_meniscus_geometry",
"numpy.isclose",
"pytest.mark.parametrize",
"pytest.raises",
"pygaps.characterisation.models_kelvin.get_kelvin_model"
] |
[((633, 914), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""branch, pore, geometry"""', "[('ads', 'slit', 'hemicylindrical'), ('ads', 'cylinder', 'cylindrical'), (\n 'ads', 'sphere', 'hemispherical'), ('des', 'slit', 'hemicylindrical'),\n ('des', 'cylinder', 'hemispherical'), ('des', 'sphere', 'hemispherical')]"], {}), "('branch, pore, geometry', [('ads', 'slit',\n 'hemicylindrical'), ('ads', 'cylinder', 'cylindrical'), ('ads',\n 'sphere', 'hemispherical'), ('des', 'slit', 'hemicylindrical'), ('des',\n 'cylinder', 'hemispherical'), ('des', 'sphere', 'hemispherical')])\n", (656, 914), False, 'import pytest\n'), ((1185, 1282), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model, pressure"""', "[(km._KELVIN_MODELS['Kelvin'], [0.1, 0.4, 0.9])]"], {}), "('model, pressure', [(km._KELVIN_MODELS['Kelvin'], [\n 0.1, 0.4, 0.9])])\n", (1208, 1282), False, 'import pytest\n'), ((1320, 1502), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""geometry, c_radius"""', "[('cylindrical', [0.208, 0.522, 4.539]), ('hemispherical', [0.415, 1.044, \n 9.078]), ('hemicylindrical', [0.831, 2.09, 18.18])]"], {}), "('geometry, c_radius', [('cylindrical', [0.208, \n 0.522, 4.539]), ('hemispherical', [0.415, 1.044, 9.078]), (\n 'hemicylindrical', [0.831, 2.09, 18.18])])\n", (1343, 1502), False, 'import pytest\n'), ((3655, 3701), 'pygaps.characterisation.models_kelvin.get_kelvin_model', 'km.get_kelvin_model', (['call_this'], {'addendum': '"""add"""'}), "(call_this, addendum='add')\n", (3674, 3701), True, 'import pygaps.characterisation.models_kelvin as km\n'), ((1128, 1166), 'pygaps.characterisation.models_kelvin.get_meniscus_geometry', 'km.get_meniscus_geometry', (['branch', 'pore'], {}), '(branch, pore)\n', (1152, 1166), True, 'import pygaps.characterisation.models_kelvin as km\n'), ((2121, 2171), 'numpy.isclose', 'numpy.isclose', (['radius', 'c_radius[index]', '(0.01)', '(0.01)'], {}), '(radius, c_radius[index], 0.01, 0.01)\n', (2134, 2171), False, 'import numpy\n'), ((2819, 2869), 'numpy.isclose', 'numpy.isclose', (['radius', 'c_radius[index]', '(0.01)', '(0.01)'], {}), '(radius, c_radius[index], 0.01, 0.01)\n', (2832, 2869), False, 'import numpy\n'), ((2966, 3000), 'pytest.raises', 'pytest.raises', (['pgEx.ParameterError'], {}), '(pgEx.ParameterError)\n', (2979, 3000), False, 'import pytest\n'), ((3371, 3405), 'pytest.raises', 'pytest.raises', (['pgEx.ParameterError'], {}), '(pgEx.ParameterError)\n', (3384, 3405), False, 'import pytest\n'), ((3419, 3451), 'pygaps.characterisation.models_kelvin.get_kelvin_model', 'km.get_kelvin_model', (['"""bad_model"""'], {}), "('bad_model')\n", (3438, 3451), True, 'import pygaps.characterisation.models_kelvin as km\n')]
|
import os
import sys
import pytest
import numpy as np
import pandas as pd
from scipy.stats import ks_2samp
sys.path.append("zarnitsa/")
from zarnitsa.stats import DataAugmenterExternally
N_TO_CHECK = 500
SIG = 0.5
@pytest.fixture
def dae():
return DataAugmenterExternally()
@pytest.fixture
def normal_data():
return pd.Series(np.random.normal(0, SIG * 3, size=N_TO_CHECK), dtype="float64")
def test_augment_column_permute(dae, normal_data):
"""
Augment column with normal distribution
"""
normal_data_aug = dae.augment_distrib_random(
aug_type="normal", size=N_TO_CHECK, loc=0, scale=SIG * 3
)
assert ks_2samp(normal_data, normal_data_aug).pvalue > 0.01, "KS criteria"
|
[
"numpy.random.normal",
"zarnitsa.stats.DataAugmenterExternally",
"sys.path.append",
"scipy.stats.ks_2samp"
] |
[((109, 137), 'sys.path.append', 'sys.path.append', (['"""zarnitsa/"""'], {}), "('zarnitsa/')\n", (124, 137), False, 'import sys\n'), ((259, 284), 'zarnitsa.stats.DataAugmenterExternally', 'DataAugmenterExternally', ([], {}), '()\n', (282, 284), False, 'from zarnitsa.stats import DataAugmenterExternally\n'), ((343, 388), 'numpy.random.normal', 'np.random.normal', (['(0)', '(SIG * 3)'], {'size': 'N_TO_CHECK'}), '(0, SIG * 3, size=N_TO_CHECK)\n', (359, 388), True, 'import numpy as np\n'), ((652, 690), 'scipy.stats.ks_2samp', 'ks_2samp', (['normal_data', 'normal_data_aug'], {}), '(normal_data, normal_data_aug)\n', (660, 690), False, 'from scipy.stats import ks_2samp\n')]
|
from .Wavefunction import Wavefunction
import numpy as np
from scipy.fft import ifft2, fft2
import numba
CACHE_OPTIMIZATIONS = True
class Collision():
targetWavefunction = None # Implements wilson line
incidentWavefunction = None # Doesn't (have to) implement wilson line
_omega = None
_omegaFFT = None
_particlesProduced = None
_particlesProducedDeriv = None
_momentaMagSquared = None
_momentaComponents = None
_thetaInFourierSpace = None
_momentaBins = None
_fourierHarmonics = None # This will be initialized as an empty dict to store harmonics (see __init__)
_omegaExists = False
_omegaFFTExists = False
_momentaComponentsExist = False
_particlesProducedExists = False
_particlesProducedDerivExists = False
_momentaBinsExists = False
def __init__(self, wavefunction1: Wavefunction, wavefunction2: Wavefunction):
r"""
Initialize a collision with two wavefunctions, presumably a nucleus and a proton. One must implement
the wilson line, though the order of the arguments does not matter.
In the case that both wavefunctions implement the wilson line, the first (wavefunction1) will be used as such.
In the case that neither implement the wilson line, an exception will be raised.
Parameters
----------
wavefunction1 : Wavefunction (or child)
The first wavefunction
wavefunction2 : Wavefunction (or child)
The second wavefunction
"""
# Make sure that at least one has a wilson line
wilsonLineExists1 = callable(getattr(wavefunction1, "wilsonLine", None))
wilsonLineExists2 = callable(getattr(wavefunction2, "wilsonLine", None))
if not wilsonLineExists1 and not wilsonLineExists2:
raise Exception("Neither of the wavefunctions passed to Collision(Wavefunction, Wavefunction) implement the wilsonLine() method; at least one is required to.")
if wilsonLineExists1 and not wilsonLineExists2:
self.targetWavefunction = wavefunction1
self.incidentWavefunction = wavefunction2
elif wilsonLineExists2 and not wilsonLineExists1:
self.targetWavefunction = wavefunction2
self.incidentWavefunction = wavefunction1
else:
self.targetWavefunction = wavefunction1
self.incidentWavefunction = wavefunction2
# Make sure that both use the same number of colors
if self.targetWavefunction.gluonDOF != self.incidentWavefunction.gluonDOF:
raise Exception(f"Wavefunctions implement different gluon degrees of freedom (number of color charges): {self.incidentWavefunction.gluonDOF} vs. {self.targetWavefunction.gluonDOF}")
# Probably some other checks that need to be done to make sure the two wavefunctions are compatable, but this is fine for now
# Carry over some variables so we don't have to call through the wavefunctions so much
self.N = self.targetWavefunction.N
self.length = self.targetWavefunction.length
self.gluonDOF = self.targetWavefunction.gluonDOF
self.delta = self.targetWavefunction.delta
self.delta2 = self.targetWavefunction.delta2
#print(self.targetWavefunction)
#print(self.incidentWavefunction)
# Variables to do with binning the momenta later on
self.binSize = 4*np.pi/self.length
self.kMax = 2/self.delta
self.numBins = int(self.kMax/self.binSize)
# This has to be initialized as an empty dict within the constructor
# because otherwise it can retain information across separate objects
# (no idea how, but this fixes it)
self._fourierHarmonics = {}
def omega(self, forceCalculate=False, verbose=0):
r"""
Calculate the field omega at each point on the lattice.
If the field already exists, it is simply returned and no calculation is done.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
omega : array(N, N, 2, 2, `colorCharges`**2 - 1)
"""
if self._omegaExists and not forceCalculate:
return self._omega
self.incidentWavefunction.gaugeField(verbose=verbose)
self.targetWavefunction.adjointWilsonLine(verbose=verbose)
if verbose > 0:
print(f'Calculating {type(self).__name__} omega' + '.'*10, end='')
self._omega = _calculateOmegaOpt(self.N, self.gluonDOF, self.delta, self.incidentWavefunction.gaugeField(), self.targetWavefunction.adjointWilsonLine())
self._omegaExists = True
if verbose > 0:
print('finished!')
return self._omega
def omegaFFT(self, forceCalculate=False, verbose=0):
r"""
Compute the fourier transform of the field omega on the lattice.
If the fft of the field already exists, it is simply returned and no calculation is done.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
omegaFFT : array(N, N, 2, 2, `colorCharges`**2 - 1)
"""
if self._omegaFFTExists and not forceCalculate:
return self._omegaFFT
# Make sure omega exists
self.omega(verbose=verbose)
if verbose > 0:
print(f'Calculating {type(self).__name__} omega fourier transform' + '.'*10, end='')
# We want to do the normalization explicitly, but scipy doesn't offer no
# normalization as an option, so we just set it to be the opposite of whatever
# we are doing (forward for ifft, backward for fft)
# (we had some issues with scipy changing its default mode)
self._omegaFFT = self.delta2 * fft2(self._omega, axes=(0,1), norm='backward')
self._omegaFFTExists = True
if verbose > 0:
print('finished!')
return self._omegaFFT
def momentaBins(self, forceCalculate=False, verbose=0):
r"""
Compute the range of momenta at which particles will be created based on the dimensions of the lattice.
The exact values are:
- \( k_{max} = 2 / \Delta\)
- \( w_k = 4 \pi / L \)
If the bins already exist, they are simply returned and no calculation is done.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
momentaBins : array(numBins = L / (delta 2 pi))
"""
if self._momentaBinsExists and not forceCalculate:
return self._momentaBins
if verbose > 0:
print(f'Calculating {type(self).__name__} momentum bins' + '.'*10, end='')
self._momentaBins = [i*self.binSize for i in range(self.numBins)]
self._momentaBinsExists = True
if verbose > 0:
print('finished!')
return self._momentaBins
def momentaComponents(self, forceCalculate=False, verbose=0):
r"""
Compute the components of the momentum at each point on the lattice, according to:
$$ (k_x, k_y) = \frac{2}{\Delta} \left( \sin\left( \frac{\pi i}{N} \right), \sin\left( \frac{\pi j}{N} \right) \right) $$
where \(i\) and \(j\) index the \(x\) and \(y\) directions in real space, respectively.
If the calculation has already been done, the result is simply returned and is not repeated.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
momentaComponents : array(N, N, 2)
"""
if self._momentaComponentsExist and not forceCalculate:
return self._momentaComponents
if verbose > 0:
print(f'Calculating {type(self).__name__} momentum components' + '.'*10, end='')
self._momentaComponents, self._thetaInFourierSpace = _calculateMomentaOpt(self.N, self.delta)
self._momentaMagSquared = np.linalg.norm(self._momentaComponents, axis=2)**2
self._momentaComponentsExist = True
if verbose > 0:
print('finished!')
return self._momentaComponents
def momentaMagnitudeSquared(self, forceCalculate=False, verbose=0):
r"""
Compute the magnitude of the momentum at each point on the lattice, according to:
$$ |k| = \sqrt{k_x^2 + k_y^2} $$
$$ (k_x, k_y) = \frac{2}{\Delta} \left( \sin\left( \frac{\pi i}{N} \right), \sin\left( \frac{\pi j}{N} \right) \right) $$
where \(i\) and \(j\) index the \(x\) and \(y\) directions in real space, respectively.
If the calculation has already been done, the result is simply returned and is not repeated.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
momentaComponents : array(N, N)
"""
if self._momentaComponentsExist and not forceCalculate:
return self._momentaMagSquared
if verbose > 0:
print(f'Calculating {type(self).__name__} momenta magnitude squared' + '.'*10, end='')
self._momentaComponents, self._thetaInFourierSpace = _calculateMomentaOpt(self.N, self.delta)
self._momentaMagSquared = np.linalg.norm(self._momentaComponents, axis=2)**2
self._momentaComponentsExist = True
if verbose > 0:
print('finished!')
return self._momentaMagSquared
def particlesProducedDeriv(self, forceCalculate=False, verbose=0):
r"""
Compute the derivative of particles produced (\( \frac{d^2 N}{d^2 k} \)) at each point on the lattice
If the calculation has already been done, the result is simply returned and is not repeated.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
particlesProducedDeriv : array(N, N)
"""
if self._particlesProducedDerivExists and not forceCalculate:
return self._particlesProducedDeriv
# Make sure these quantities exist
self.omegaFFT(verbose=verbose)
self.momentaMagnitudeSquared(verbose=verbose) # This also calculates thetaInFourierSpace and momentaComponents
if verbose > 0:
print(f'Calculating {type(self).__name__} derivative of particles produced' + '.'*10, end='')
self._particlesProducedDeriv = _calculateParticlesProducedDerivOpt(self.N, self.gluonDOF, self._momentaMagSquared, self._omegaFFT)
if verbose > 0:
print('finished!')
self._particlesProducedDerivExists = True
return self._particlesProducedDeriv
def particlesProduced(self, forceCalculate=False, verbose=0):
r"""
Compute the number of particles produced \(N(|k|)\) as a function of momentum. Note that this
is technically the zeroth fourier harmonic, so this actually just calls the
cgc.Collision.fourierHarmonic() function.
The particles are binned according to cgc.Collision.momentaBins().
Most likely will be plotted against cgc.Collision.momentaBins().
If the calculation has already been done, the result is simply returned and is not repeated.
Parameters
----------
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
particlesProduced : array(numBins = L / (delta 2 pi))
"""
# This one is strictly real, so we should make sure that is updated
self._fourierHarmonics[0] = np.real(self.fourierHarmonic(0, forceCalculate, verbose))
return self._fourierHarmonics[0]
def fourierHarmonic(self, harmonic: int, forceCalculate=False, verbose=0):
r"""
Calculate the fourier harmonic of the particle production as:
$$ v_n = \frac{ \sum_{(i,j)\in [k, k+ \Delta k]} |k| \frac{d^2 N}{d^2 k} e^{i n \theta }} { \sum_{(i,j)\in [k, k+ \Delta k]} |k| } $$
If the calculation has already been done, the result is simply returned and is not repeated.
Parameters
----------
harmonic : int
The fourier harmonic to calculate. All odd harmonics should be zero, and the zeroth harmonic
will be equal to cgc.Collision.particlesProduced()
forceCalculate : bool (default=False)
If the quantity has previously been calculated, the calculation will not be done
again unless this argument is set to True.
verbose : int (default=0)
How much output should be printed as calculations are done. Options are 0, 1, or 2.
Returns
-------
particlesProduced : array(numBins = L / (delta 2 pi))
"""
# First, see if we have already calculated this harmonic
if harmonic in self._fourierHarmonics.keys() and not forceCalculate:
return self._fourierHarmonics[harmonic]
# For actually calculating the harmonic, we first have to make sure we've calculated
# the derivative, dN/d^2k
# This makes sure that _momentaMagSquared, _thetaInFourierSpace and _particlesProducedDeriv
# all exist
self.particlesProducedDeriv(verbose=verbose)
if verbose > 0:
print(f'Calculating {type(self).__name__} fourier harmonic: {harmonic}' + '.'*10, end='')
# Drop all of our arrays into long 1D structure, since we will want to bin them
vectorizedParticleDerivs = np.reshape(self._particlesProducedDeriv, [self.N*self.N])
vectorizedTheta = np.reshape(self._thetaInFourierSpace, [self.N*self.N])
vectorizedMomentaMag = np.reshape(np.sqrt(self._momentaMagSquared), [self.N*self.N])
# The number of particles that are produced in each bin
# These bins are actually just thin rings in momentum space
self._fourierHarmonics[harmonic] = np.zeros(self.numBins, dtype='complex')
# The bin sizes/bounds are calculated for elsewhere
self.momentaBins()
# Ideally, these rings should be only have a thickness dk (infinitesimal)
# but since we have a discrete lattice, we weight the particles by their momentum
# (which may slightly vary) and then properly normalize
# Go through each bin and calculate (for all points in that bin):
# 1. Sum over |k| * dN/d^2k * exp(i * harmonic * theta)
# 2. Sum over |k|
# 3. Divide 1./2.
for i in range(self.numBins):
# Find which places on the lattice fall into this particular momentum bin
# Note the use of element-wise (or bitwise) and, "&"
particleDerivsInRing = vectorizedParticleDerivs[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)]
momentaMagInRing = vectorizedMomentaMag[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)]
thetaInRing = vectorizedTheta[(vectorizedMomentaMag < self.binSize*(i+1)) & (vectorizedMomentaMag > self.binSize*i)]
# Note that multiplication is done element-wise by default
numeratorSum = np.sum(particleDerivsInRing * momentaMagInRing * np.exp(1.j * harmonic * thetaInRing))
denominatorSum = np.sum(momentaMagInRing)
self._fourierHarmonics[harmonic][i] = numeratorSum / denominatorSum
if verbose > 0:
print('finished!')
return self._fourierHarmonics[harmonic]
# Using custom functions within other jitted functions can cause some issues,
# so we define the signatures explicitly for these two functions.
@numba.jit((numba.float64[:,:], numba.int64, numba.int64, numba.int64, numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS)
def _x_deriv(matrix, i, j, N, delta):
return (matrix[i,(j+1)%N] - matrix[i,j-1]) / (2 * delta)
@numba.jit((numba.float64[:,:], numba.int64, numba.int64, numba.int64, numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS)
def _y_deriv(matrix, i, j, N, delta):
return (matrix[(i+1)%N,j] - matrix[i-1,j]) / (2 * delta)
# Because of the same issue described above, we can't cache this function
# This function gives a warning because numba only experimentally supports
# treating functions as objects (the list derivs).
@numba.jit(nopython=True)
def _calculateOmegaOpt(N, gluonDOF, delta, incidentGaugeField, targetAdjointWilsonLine):
"""
Calculate the field omega at each point on the lattice.
If the field already exists, it is simply returned and no calculation is done.
Returns
-------
numpy.array : shape=(N, N, 2, 2, `colorCharges`**2 - 1)
"""
# 2,2 is for the 2 dimensions, x and y
omega = np.zeros((N, N, 2, 2, gluonDOF), dtype='complex') # 2 is for two dimensions, x and y
derivs = [_x_deriv, _y_deriv]
for i in range(N):
for j in range(N):
for k in range(gluonDOF):
for l in range(2): # 2 is number of dimensions
for n in range(2): # 2 is number of dimensions
omega[i,j,l,n,k] = np.sum(np.array([derivs[l](incidentGaugeField[:,:,m], i, j, N, delta) * derivs[n](targetAdjointWilsonLine[:,:,k,m], i, j, N, delta) for m in range(gluonDOF)]))
return omega
@numba.jit(nopython=True, cache=CACHE_OPTIMIZATIONS)
def _calculateMomentaOpt(N, delta):
"""
Optimized (via numba) function to calculated the position (momentum) in Fourier space of each point
Parameters
----------
N : int
Size of the lattice
delta : double
Spacing between each point
Returns
-------
(momentaComponents, theta)
momentaComponents : array(N, N, 2)
x and y components of the momentum at each point
theta : array(N, N)
Relationship between x and y components at each point, or atan2(k_y, k_x)
"""
momentaComponents = np.zeros((N, N, 2))
theta = np.zeros((N, N))
for i in range(N):
for j in range(N):
# Note that these components are of the form:
# k_x = 2/a sin(k_x' a / 2)
# Though the argument of the sin is simplified a bit
momentaComponents[i,j] = [2/delta * np.sin(np.pi*i/N) * np.sign(np.sin(2*np.pi*i/N)), 2/delta * np.sin(np.pi*j/N) * np.sign(np.sin(2*np.pi*j/N))]
theta[i,j] = np.arctan2(momentaComponents[i,j,1], momentaComponents[i,j,0])
return momentaComponents, theta
@numba.jit(nopython=True, cache=CACHE_OPTIMIZATIONS)
def _calculateParticlesProducedDerivOpt(N, gluonDOF, momentaMagSquared, omegaFFT):
"""
Optimized (via numba) function to calculate dN/d^2k
Parameters
----------
N : int
The system size
gluonDOF : int
The number of gluon degrees of freedom ((possible color charges)^2 - 1)
momentaMagSquared : array(N, N)
The magnitude of the momentum at each point, likely calculated (in part) with _calculateMomentaOpt()
omegaFFT : array(2, 2, gluonDOF, N, N)
Previously calculated omega array
Returns
-------
particleProduction : array(N, N)
The number of particles produced at each point on the momentum lattice
"""
# Where we will calculate dN/d^2k
particleProduction = np.zeros((N,N))
# # 2D Levi-Cevita symbol
LCS = np.array([[0,1],[-1,0]])
# # 2D Delta function
KDF = np.array([[1,0],[0,1]])
# Note that unlike in the rest of the code, i and j *do not* refer to the
# spacial indices here: x and y do (too many indices... :/ )
for y in range(N):
for x in range(N):
# To prevent any divide by zero errors
if momentaMagSquared[y,x] == 0:
continue
# All of these 2s are for our two dimensions, x and y
for i in range(2):
for j in range(2):
for l in range(2):
for m in range(2):
for a in range(gluonDOF):
particleProduction[y,x] += np.real(2/(2*np.pi)**3 / momentaMagSquared[y,x] * (
(KDF[i,j]*KDF[l,m] + LCS[i,j]*LCS[l,m])) * (
omegaFFT[y,x,i,j,a] * np.conj(omegaFFT[y,x,l,m,a])))
return particleProduction
|
[
"numpy.reshape",
"scipy.fft.fft2",
"numpy.sqrt",
"numpy.conj",
"numpy.exp",
"numpy.array",
"numpy.zeros",
"numba.jit",
"numpy.sum",
"numpy.arctan2",
"numpy.linalg.norm",
"numpy.sin"
] |
[((17641, 17773), 'numba.jit', 'numba.jit', (['(numba.float64[:, :], numba.int64, numba.int64, numba.int64, numba.float64)'], {'nopython': '(True)', 'cache': 'CACHE_OPTIMIZATIONS'}), '((numba.float64[:, :], numba.int64, numba.int64, numba.int64,\n numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS)\n', (17650, 17773), False, 'import numba\n'), ((17870, 18002), 'numba.jit', 'numba.jit', (['(numba.float64[:, :], numba.int64, numba.int64, numba.int64, numba.float64)'], {'nopython': '(True)', 'cache': 'CACHE_OPTIMIZATIONS'}), '((numba.float64[:, :], numba.int64, numba.int64, numba.int64,\n numba.float64), nopython=True, cache=CACHE_OPTIMIZATIONS)\n', (17879, 18002), False, 'import numba\n'), ((18299, 18323), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (18308, 18323), False, 'import numba\n'), ((19278, 19329), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'cache': 'CACHE_OPTIMIZATIONS'}), '(nopython=True, cache=CACHE_OPTIMIZATIONS)\n', (19287, 19329), False, 'import numba\n'), ((20446, 20497), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)', 'cache': 'CACHE_OPTIMIZATIONS'}), '(nopython=True, cache=CACHE_OPTIMIZATIONS)\n', (20455, 20497), False, 'import numba\n'), ((18715, 18764), 'numpy.zeros', 'np.zeros', (['(N, N, 2, 2, gluonDOF)'], {'dtype': '"""complex"""'}), "((N, N, 2, 2, gluonDOF), dtype='complex')\n", (18723, 18764), True, 'import numpy as np\n'), ((19898, 19917), 'numpy.zeros', 'np.zeros', (['(N, N, 2)'], {}), '((N, N, 2))\n', (19906, 19917), True, 'import numpy as np\n'), ((19930, 19946), 'numpy.zeros', 'np.zeros', (['(N, N)'], {}), '((N, N))\n', (19938, 19946), True, 'import numpy as np\n'), ((21259, 21275), 'numpy.zeros', 'np.zeros', (['(N, N)'], {}), '((N, N))\n', (21267, 21275), True, 'import numpy as np\n'), ((21316, 21343), 'numpy.array', 'np.array', (['[[0, 1], [-1, 0]]'], {}), '([[0, 1], [-1, 0]])\n', (21324, 21343), True, 'import numpy as np\n'), ((21378, 21404), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]'], {}), '([[1, 0], [0, 1]])\n', (21386, 21404), True, 'import numpy as np\n'), ((15481, 15540), 'numpy.reshape', 'np.reshape', (['self._particlesProducedDeriv', '[self.N * self.N]'], {}), '(self._particlesProducedDeriv, [self.N * self.N])\n', (15491, 15540), True, 'import numpy as np\n'), ((15565, 15621), 'numpy.reshape', 'np.reshape', (['self._thetaInFourierSpace', '[self.N * self.N]'], {}), '(self._thetaInFourierSpace, [self.N * self.N])\n', (15575, 15621), True, 'import numpy as np\n'), ((15896, 15935), 'numpy.zeros', 'np.zeros', (['self.numBins'], {'dtype': '"""complex"""'}), "(self.numBins, dtype='complex')\n", (15904, 15935), True, 'import numpy as np\n'), ((6384, 6431), 'scipy.fft.fft2', 'fft2', (['self._omega'], {'axes': '(0, 1)', 'norm': '"""backward"""'}), "(self._omega, axes=(0, 1), norm='backward')\n", (6388, 6431), False, 'from scipy.fft import ifft2, fft2\n'), ((9129, 9176), 'numpy.linalg.norm', 'np.linalg.norm', (['self._momentaComponents'], {'axis': '(2)'}), '(self._momentaComponents, axis=2)\n', (9143, 9176), True, 'import numpy as np\n'), ((10691, 10738), 'numpy.linalg.norm', 'np.linalg.norm', (['self._momentaComponents'], {'axis': '(2)'}), '(self._momentaComponents, axis=2)\n', (10705, 10738), True, 'import numpy as np\n'), ((15662, 15694), 'numpy.sqrt', 'np.sqrt', (['self._momentaMagSquared'], {}), '(self._momentaMagSquared)\n', (15669, 15694), True, 'import numpy as np\n'), ((17282, 17306), 'numpy.sum', 'np.sum', (['momentaMagInRing'], {}), '(momentaMagInRing)\n', (17288, 17306), True, 'import numpy as np\n'), ((20344, 20410), 'numpy.arctan2', 'np.arctan2', (['momentaComponents[i, j, 1]', 'momentaComponents[i, j, 0]'], {}), '(momentaComponents[i, j, 1], momentaComponents[i, j, 0])\n', (20354, 20410), True, 'import numpy as np\n'), ((17203, 17240), 'numpy.exp', 'np.exp', (['(1.0j * harmonic * thetaInRing)'], {}), '(1.0j * harmonic * thetaInRing)\n', (17209, 17240), True, 'import numpy as np\n'), ((20209, 20230), 'numpy.sin', 'np.sin', (['(np.pi * i / N)'], {}), '(np.pi * i / N)\n', (20215, 20230), True, 'import numpy as np\n'), ((20237, 20262), 'numpy.sin', 'np.sin', (['(2 * np.pi * i / N)'], {}), '(2 * np.pi * i / N)\n', (20243, 20262), True, 'import numpy as np\n'), ((20269, 20290), 'numpy.sin', 'np.sin', (['(np.pi * j / N)'], {}), '(np.pi * j / N)\n', (20275, 20290), True, 'import numpy as np\n'), ((20297, 20322), 'numpy.sin', 'np.sin', (['(2 * np.pi * j / N)'], {}), '(2 * np.pi * j / N)\n', (20303, 20322), True, 'import numpy as np\n'), ((22252, 22284), 'numpy.conj', 'np.conj', (['omegaFFT[y, x, l, m, a]'], {}), '(omegaFFT[y, x, l, m, a])\n', (22259, 22284), True, 'import numpy as np\n')]
|
import sys
sys.path.append("../../configs")
#../../configs
from path import EXP_PATH
import numpy as np
DECAY_PARAMS_DICT =\
{
'stair' :
{
128 :{
'a1': {'initial_lr' : 1e-5, 'decay_steps' : 50000, 'decay_rate' : 0.3},
'a2' : {'initial_lr' : 3e-4, 'decay_steps' : 50000, 'decay_rate' : 0.3},
'a3' : {'initial_lr' : 1e-3, 'decay_steps' : 50000, 'decay_rate' : 0.3},
'a4' : {'initial_lr' : 3e-3, 'decay_steps' : 50000, 'decay_rate' : 0.3},
'a5' : {'initial_lr' : 1e-2, 'decay_steps' : 50000, 'decay_rate' : 0.3}
}
},
'piecewise' :
{
128 : {
'a1' : {'boundaries' : [10000, 20000], 'values' : [1e-4, 3e-5, 1e-5]},
'a2' : {'boundaries' : [10000, 20000], 'values' : [3e-4, 1e-4, 3e-5]},
'a3' : {'boundaries' : [10000, 20000], 'values' : [1e-3, 3e-4, 1e-4]},
'a4' : {'boundaries' : [10000, 20000], 'values' : [3e-3, 1e-3, 3e-4]},
'a5' : {'boundaries' : [10000, 20000], 'values' : [1e-2, 3e-3, 1e-3]},
'b1' : {'boundaries' : [20000, 35000], 'values' : [1e-4, 3e-5, 1e-5]},
'b2' : {'boundaries' : [20000, 35000], 'values' : [3e-4, 1e-4, 3e-5]},
'b3' : {'boundaries' : [20000, 35000], 'values' : [1e-3, 3e-4, 1e-4]},
'b4' : {'boundaries' : [20000, 35000], 'values' : [3e-3, 1e-3, 3e-4]},
'b5' : {'boundaries' : [20000, 35000], 'values' : [1e-2, 3e-3, 1e-3]}
}
}
}
ACTIVATE_K_SET = np.arange(1, 5)
K_SET = [1,4,16]
RESULT_DIR = EXP_PATH+"cifar_exps/"
#========================PARAM============================#
DATASET= 'cifar'
GPU_ID = 0
BATCH_SIZE = 128
EPOCH = 300
NSCLASS = 16
# model
EMBED_M= 64
CONV_NAME = 'conv1'
# metric loss
LOSS_TYPE = 'triplet'
MARGIN_ALPHA = 0.3
LAMBDA = 0.003 # regularization for npair
# learning
DECAY_TYPE = 'stair'
DECAY_PARAM_TYPE = 'a3'
|
[
"sys.path.append",
"numpy.arange"
] |
[((11, 43), 'sys.path.append', 'sys.path.append', (['"""../../configs"""'], {}), "('../../configs')\n", (26, 43), False, 'import sys\n'), ((1616, 1631), 'numpy.arange', 'np.arange', (['(1)', '(5)'], {}), '(1, 5)\n', (1625, 1631), True, 'import numpy as np\n')]
|
import dgl
import torch as th
import numpy as np
import itertools
import time
from collections import *
Graph = namedtuple('Graph',
['g', 'src', 'tgt', 'tgt_y', 'nids', 'eids', 'nid_arr', 'n_nodes', 'n_edges', 'n_tokens', 'layer_eids'])
# We need to create new graph pools for relative position attention (ngram style)
def dedupe_tuples(tups):
try:
return list(set([(a, b) if a < b else (b, a) for a, b in tups]))
except ValueError:
raise Exception(tups)
def get_src_dst_deps(src_deps, order=1):
if not isinstance(src_deps, list):
src_deps = [src_deps]
# If order is one, then we simply return src_deps
if order == 1:
return list(set(src_deps))
else:
new_deps = list()
for src, dst in src_deps:
# Go up one order. i.e make dst the src, and find its parent
for src_dup, dst_dup in src_deps:
if dst_dup == dst and src != src_dup:
new_deps.append((src, src_dup))
elif src_dup == src and dst != dst_dup:
new_deps.append((dst, dst_dup))
elif dst == src_dup and src != dst_dup:
new_deps.append((src, dst_dup))
return list(set(get_src_dst_deps(new_deps, order=order - 1)).difference(set(src_deps)))
class GraphPool:
"Create a graph pool in advance to accelerate graph building phase in Transformer."
def __init__(self, n=50, m=50):
'''
args:
n: maximum length of input sequence.
m: maximum length of output sequence.
'''
print('start creating graph pool...')
tic = time.time()
self.n, self.m = n, m
g_pool = [[dgl.DGLGraph() for _ in range(m)] for _ in range(n)]
num_edges = {
'ee': np.zeros((n, n)).astype(int),
'ed': np.zeros((n, m)).astype(int),
'dd': np.zeros((m, m)).astype(int)
}
for i, j in itertools.product(range(n), range(m)):
src_length = i + 1
tgt_length = j + 1
g_pool[i][j].add_nodes(src_length + tgt_length)
enc_nodes = th.arange(src_length, dtype=th.long)
dec_nodes = th.arange(tgt_length, dtype=th.long) + src_length
# enc -> enc
us = enc_nodes.unsqueeze(-1).repeat(1, src_length).view(-1)
vs = enc_nodes.repeat(src_length)
g_pool[i][j].add_edges(us, vs)
num_edges['ee'][i][j] = len(us)
# enc -> dec
us = enc_nodes.unsqueeze(-1).repeat(1, tgt_length).view(-1)
vs = dec_nodes.repeat(src_length)
g_pool[i][j].add_edges(us, vs)
num_edges['ed'][i][j] = len(us)
# dec -> dec
indices = th.triu(th.ones(tgt_length, tgt_length)) == 1
us = dec_nodes.unsqueeze(-1).repeat(1, tgt_length)[indices]
vs = dec_nodes.unsqueeze(0).repeat(tgt_length, 1)[indices]
g_pool[i][j].add_edges(us, vs)
num_edges['dd'][i][j] = len(us)
print('successfully created graph pool, time: {0:0.3f}s'.format(time.time() - tic))
self.g_pool = g_pool
self.num_edges = num_edges
def beam(self, src_buf, start_sym, max_len, k, device='cpu', src_deps=None):
'''
Return a batched graph for beam search during inference of Transformer.
args:
src_buf: a list of input sequence
start_sym: the index of start-of-sequence symbol
max_len: maximum length for decoding
k: beam size
device: 'cpu' or 'cuda:*'
'''
if src_deps is None:
src_deps = list()
g_list = []
src_lens = [len(_) for _ in src_buf]
tgt_lens = [max_len] * len(src_buf)
num_edges = {'ee': [], 'ed': [], 'dd': []}
for src_len, tgt_len in zip(src_lens, tgt_lens):
i, j = src_len - 1, tgt_len - 1
for _ in range(k):
g_list.append(self.g_pool[i][j])
for key in ['ee', 'ed', 'dd']:
num_edges[key].append(int(self.num_edges[key][i][j]))
g = dgl.batch(g_list)
src, tgt = [], []
src_pos, tgt_pos = [], []
enc_ids, dec_ids = [], []
layer_eids = {
'dep': [[], []]
}
e2e_eids, e2d_eids, d2d_eids = [], [], []
n_nodes, n_edges, n_tokens = 0, 0, 0
for src_sample, src_dep, n, n_ee, n_ed, n_dd in zip(src_buf, src_deps, src_lens, num_edges['ee'], num_edges['ed'], num_edges['dd']):
for _ in range(k):
src.append(th.tensor(src_sample, dtype=th.long, device=device))
src_pos.append(th.arange(n, dtype=th.long, device=device))
enc_ids.append(th.arange(n_nodes, n_nodes + n, dtype=th.long, device=device))
n_nodes += n
e2e_eids.append(th.arange(n_edges, n_edges + n_ee, dtype=th.long, device=device))
# Copy the ids of edges that correspond to a given node and its previous N nodes
# We are using arange here. This will not work. Instead we need to select edges that
# correspond to previous positions. This information is present in graph pool
# For each edge, we need to figure out source_node_id and target_node_id.
if src_dep:
for i in range(0, 2):
for src_node_id, dst_node_id in dedupe_tuples(get_src_dst_deps(src_dep, i + 1)):
layer_eids['dep'][i].append(n_edges + src_node_id * n + dst_node_id)
layer_eids['dep'][i].append(n_edges + dst_node_id * n + src_node_id)
n_edges += n_ee
tgt_seq = th.zeros(max_len, dtype=th.long, device=device)
tgt_seq[0] = start_sym
tgt.append(tgt_seq)
tgt_pos.append(th.arange(max_len, dtype=th.long, device=device))
dec_ids.append(th.arange(n_nodes, n_nodes + max_len, dtype=th.long, device=device))
n_nodes += max_len
e2d_eids.append(th.arange(n_edges, n_edges + n_ed, dtype=th.long, device=device))
n_edges += n_ed
d2d_eids.append(th.arange(n_edges, n_edges + n_dd, dtype=th.long, device=device))
n_edges += n_dd
g.set_n_initializer(dgl.init.zero_initializer)
g.set_e_initializer(dgl.init.zero_initializer)
return Graph(g=g,
src=(th.cat(src), th.cat(src_pos)),
tgt=(th.cat(tgt), th.cat(tgt_pos)),
tgt_y=None,
nids = {'enc': th.cat(enc_ids), 'dec': th.cat(dec_ids)},
eids = {'ee': th.cat(e2e_eids), 'ed': th.cat(e2d_eids), 'dd': th.cat(d2d_eids)},
nid_arr = {'enc': enc_ids, 'dec': dec_ids},
n_nodes=n_nodes,
n_edges=n_edges,
layer_eids={
'dep': [
th.tensor(layer_eids['dep'][i]) for i in range(0, len(layer_eids['dep']))
]
},
n_tokens=n_tokens)
def __call__(self, src_buf, tgt_buf, device='cpu', src_deps=None):
'''
Return a batched graph for the training phase of Transformer.
args:
src_buf: a set of input sequence arrays.
tgt_buf: a set of output sequence arrays.
device: 'cpu' or 'cuda:*'
src_deps: list, optional
Dependency parses of the source in the form of src_node_id -> dst_node_id.
where src is the child and dst is the parent. i.e a child node attends on its
syntactic parent in a dependency parse
'''
if src_deps is None:
src_deps = list()
g_list = []
src_lens = [len(_) for _ in src_buf]
tgt_lens = [len(_) - 1 for _ in tgt_buf]
num_edges = {'ee': [], 'ed': [], 'dd': []}
# We are running over source and target pairs here
for src_len, tgt_len in zip(src_lens, tgt_lens):
i, j = src_len - 1, tgt_len - 1
g_list.append(self.g_pool[i][j])
for key in ['ee', 'ed', 'dd']:
num_edges[key].append(int(self.num_edges[key][i][j]))
g = dgl.batch(g_list)
src, tgt, tgt_y = [], [], []
src_pos, tgt_pos = [], []
enc_ids, dec_ids = [], []
e2e_eids, d2d_eids, e2d_eids = [], [], []
layer_eids = {
'dep': [[], []]
}
n_nodes, n_edges, n_tokens = 0, 0, 0
for src_sample, tgt_sample, src_dep, n, m, n_ee, n_ed, n_dd in zip(src_buf, tgt_buf, src_deps, src_lens, tgt_lens, num_edges['ee'], num_edges['ed'], num_edges['dd']):
src.append(th.tensor(src_sample, dtype=th.long, device=device))
tgt.append(th.tensor(tgt_sample[:-1], dtype=th.long, device=device))
tgt_y.append(th.tensor(tgt_sample[1:], dtype=th.long, device=device))
src_pos.append(th.arange(n, dtype=th.long, device=device))
tgt_pos.append(th.arange(m, dtype=th.long, device=device))
enc_ids.append(th.arange(n_nodes, n_nodes + n, dtype=th.long, device=device))
n_nodes += n
dec_ids.append(th.arange(n_nodes, n_nodes + m, dtype=th.long, device=device))
n_nodes += m
e2e_eids.append(th.arange(n_edges, n_edges + n_ee, dtype=th.long, device=device))
# Copy the ids of edges that correspond to a given node and its previous N nodes
# We are using arange here. This will not work. Instead we need to select edges that
# correspond to previous positions. This information is present in graph pool
# For each edge, we need to figure out source_node_id and target_node_id.
if src_dep:
for i in range(0, 2):
for src_node_id, dst_node_id in dedupe_tuples(get_src_dst_deps(src_dep, i + 1)):
layer_eids['dep'][i].append(n_edges + src_node_id * n + dst_node_id)
layer_eids['dep'][i].append(n_edges + dst_node_id * n + src_node_id)
n_edges += n_ee
e2d_eids.append(th.arange(n_edges, n_edges + n_ed, dtype=th.long, device=device))
n_edges += n_ed
d2d_eids.append(th.arange(n_edges, n_edges + n_dd, dtype=th.long, device=device))
n_edges += n_dd
n_tokens += m
g.set_n_initializer(dgl.init.zero_initializer)
g.set_e_initializer(dgl.init.zero_initializer)
return Graph(g=g,
src=(th.cat(src), th.cat(src_pos)),
tgt=(th.cat(tgt), th.cat(tgt_pos)),
tgt_y=th.cat(tgt_y),
nids = {'enc': th.cat(enc_ids), 'dec': th.cat(dec_ids)},
eids = {'ee': th.cat(e2e_eids), 'ed': th.cat(e2d_eids), 'dd': th.cat(d2d_eids)},
nid_arr = {'enc': enc_ids, 'dec': dec_ids},
n_nodes=n_nodes,
layer_eids={
'dep': [
th.tensor(layer_eids['dep'][i]) for i in range(0, len(layer_eids['dep']))
]
},
n_edges=n_edges,
n_tokens=n_tokens)
|
[
"dgl.batch",
"torch.tensor",
"torch.cat",
"numpy.zeros",
"dgl.DGLGraph",
"time.time",
"torch.zeros",
"torch.arange",
"torch.ones"
] |
[((1669, 1680), 'time.time', 'time.time', ([], {}), '()\n', (1678, 1680), False, 'import time\n'), ((4163, 4180), 'dgl.batch', 'dgl.batch', (['g_list'], {}), '(g_list)\n', (4172, 4180), False, 'import dgl\n'), ((8419, 8436), 'dgl.batch', 'dgl.batch', (['g_list'], {}), '(g_list)\n', (8428, 8436), False, 'import dgl\n'), ((2164, 2200), 'torch.arange', 'th.arange', (['src_length'], {'dtype': 'th.long'}), '(src_length, dtype=th.long)\n', (2173, 2200), True, 'import torch as th\n'), ((1730, 1744), 'dgl.DGLGraph', 'dgl.DGLGraph', ([], {}), '()\n', (1742, 1744), False, 'import dgl\n'), ((2225, 2261), 'torch.arange', 'th.arange', (['tgt_length'], {'dtype': 'th.long'}), '(tgt_length, dtype=th.long)\n', (2234, 2261), True, 'import torch as th\n'), ((5790, 5837), 'torch.zeros', 'th.zeros', (['max_len'], {'dtype': 'th.long', 'device': 'device'}), '(max_len, dtype=th.long, device=device)\n', (5798, 5837), True, 'import torch as th\n'), ((8896, 8947), 'torch.tensor', 'th.tensor', (['src_sample'], {'dtype': 'th.long', 'device': 'device'}), '(src_sample, dtype=th.long, device=device)\n', (8905, 8947), True, 'import torch as th\n'), ((8972, 9028), 'torch.tensor', 'th.tensor', (['tgt_sample[:-1]'], {'dtype': 'th.long', 'device': 'device'}), '(tgt_sample[:-1], dtype=th.long, device=device)\n', (8981, 9028), True, 'import torch as th\n'), ((9055, 9110), 'torch.tensor', 'th.tensor', (['tgt_sample[1:]'], {'dtype': 'th.long', 'device': 'device'}), '(tgt_sample[1:], dtype=th.long, device=device)\n', (9064, 9110), True, 'import torch as th\n'), ((9139, 9181), 'torch.arange', 'th.arange', (['n'], {'dtype': 'th.long', 'device': 'device'}), '(n, dtype=th.long, device=device)\n', (9148, 9181), True, 'import torch as th\n'), ((9210, 9252), 'torch.arange', 'th.arange', (['m'], {'dtype': 'th.long', 'device': 'device'}), '(m, dtype=th.long, device=device)\n', (9219, 9252), True, 'import torch as th\n'), ((9281, 9342), 'torch.arange', 'th.arange', (['n_nodes', '(n_nodes + n)'], {'dtype': 'th.long', 'device': 'device'}), '(n_nodes, n_nodes + n, dtype=th.long, device=device)\n', (9290, 9342), True, 'import torch as th\n'), ((9396, 9457), 'torch.arange', 'th.arange', (['n_nodes', '(n_nodes + m)'], {'dtype': 'th.long', 'device': 'device'}), '(n_nodes, n_nodes + m, dtype=th.long, device=device)\n', (9405, 9457), True, 'import torch as th\n'), ((9513, 9577), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_ee)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_ee, dtype=th.long, device=device)\n', (9522, 9577), True, 'import torch as th\n'), ((10352, 10416), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_ed)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_ed, dtype=th.long, device=device)\n', (10361, 10416), True, 'import torch as th\n'), ((10474, 10538), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_dd)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_dd, dtype=th.long, device=device)\n', (10483, 10538), True, 'import torch as th\n'), ((10874, 10887), 'torch.cat', 'th.cat', (['tgt_y'], {}), '(tgt_y)\n', (10880, 10887), True, 'import torch as th\n'), ((1823, 1839), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (1831, 1839), True, 'import numpy as np\n'), ((1871, 1887), 'numpy.zeros', 'np.zeros', (['(n, m)'], {}), '((n, m))\n', (1879, 1887), True, 'import numpy as np\n'), ((1919, 1935), 'numpy.zeros', 'np.zeros', (['(m, m)'], {}), '((m, m))\n', (1927, 1935), True, 'import numpy as np\n'), ((2792, 2823), 'torch.ones', 'th.ones', (['tgt_length', 'tgt_length'], {}), '(tgt_length, tgt_length)\n', (2799, 2823), True, 'import torch as th\n'), ((3133, 3144), 'time.time', 'time.time', ([], {}), '()\n', (3142, 3144), False, 'import time\n'), ((4630, 4681), 'torch.tensor', 'th.tensor', (['src_sample'], {'dtype': 'th.long', 'device': 'device'}), '(src_sample, dtype=th.long, device=device)\n', (4639, 4681), True, 'import torch as th\n'), ((4714, 4756), 'torch.arange', 'th.arange', (['n'], {'dtype': 'th.long', 'device': 'device'}), '(n, dtype=th.long, device=device)\n', (4723, 4756), True, 'import torch as th\n'), ((4789, 4850), 'torch.arange', 'th.arange', (['n_nodes', '(n_nodes + n)'], {'dtype': 'th.long', 'device': 'device'}), '(n_nodes, n_nodes + n, dtype=th.long, device=device)\n', (4798, 4850), True, 'import torch as th\n'), ((4913, 4977), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_ee)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_ee, dtype=th.long, device=device)\n', (4922, 4977), True, 'import torch as th\n'), ((5944, 5992), 'torch.arange', 'th.arange', (['max_len'], {'dtype': 'th.long', 'device': 'device'}), '(max_len, dtype=th.long, device=device)\n', (5953, 5992), True, 'import torch as th\n'), ((6026, 6093), 'torch.arange', 'th.arange', (['n_nodes', '(n_nodes + max_len)'], {'dtype': 'th.long', 'device': 'device'}), '(n_nodes, n_nodes + max_len, dtype=th.long, device=device)\n', (6035, 6093), True, 'import torch as th\n'), ((6163, 6227), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_ed)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_ed, dtype=th.long, device=device)\n', (6172, 6227), True, 'import torch as th\n'), ((6293, 6357), 'torch.arange', 'th.arange', (['n_edges', '(n_edges + n_dd)'], {'dtype': 'th.long', 'device': 'device'}), '(n_edges, n_edges + n_dd, dtype=th.long, device=device)\n', (6302, 6357), True, 'import torch as th\n'), ((6555, 6566), 'torch.cat', 'th.cat', (['src'], {}), '(src)\n', (6561, 6566), True, 'import torch as th\n'), ((6568, 6583), 'torch.cat', 'th.cat', (['src_pos'], {}), '(src_pos)\n', (6574, 6583), True, 'import torch as th\n'), ((6612, 6623), 'torch.cat', 'th.cat', (['tgt'], {}), '(tgt)\n', (6618, 6623), True, 'import torch as th\n'), ((6625, 6640), 'torch.cat', 'th.cat', (['tgt_pos'], {}), '(tgt_pos)\n', (6631, 6640), True, 'import torch as th\n'), ((6712, 6727), 'torch.cat', 'th.cat', (['enc_ids'], {}), '(enc_ids)\n', (6718, 6727), True, 'import torch as th\n'), ((6736, 6751), 'torch.cat', 'th.cat', (['dec_ids'], {}), '(dec_ids)\n', (6742, 6751), True, 'import torch as th\n'), ((6789, 6805), 'torch.cat', 'th.cat', (['e2e_eids'], {}), '(e2e_eids)\n', (6795, 6805), True, 'import torch as th\n'), ((6813, 6829), 'torch.cat', 'th.cat', (['e2d_eids'], {}), '(e2d_eids)\n', (6819, 6829), True, 'import torch as th\n'), ((6837, 6853), 'torch.cat', 'th.cat', (['d2d_eids'], {}), '(d2d_eids)\n', (6843, 6853), True, 'import torch as th\n'), ((10759, 10770), 'torch.cat', 'th.cat', (['src'], {}), '(src)\n', (10765, 10770), True, 'import torch as th\n'), ((10772, 10787), 'torch.cat', 'th.cat', (['src_pos'], {}), '(src_pos)\n', (10778, 10787), True, 'import torch as th\n'), ((10816, 10827), 'torch.cat', 'th.cat', (['tgt'], {}), '(tgt)\n', (10822, 10827), True, 'import torch as th\n'), ((10829, 10844), 'torch.cat', 'th.cat', (['tgt_pos'], {}), '(tgt_pos)\n', (10835, 10844), True, 'import torch as th\n'), ((10925, 10940), 'torch.cat', 'th.cat', (['enc_ids'], {}), '(enc_ids)\n', (10931, 10940), True, 'import torch as th\n'), ((10949, 10964), 'torch.cat', 'th.cat', (['dec_ids'], {}), '(dec_ids)\n', (10955, 10964), True, 'import torch as th\n'), ((11002, 11018), 'torch.cat', 'th.cat', (['e2e_eids'], {}), '(e2e_eids)\n', (11008, 11018), True, 'import torch as th\n'), ((11026, 11042), 'torch.cat', 'th.cat', (['e2d_eids'], {}), '(e2d_eids)\n', (11032, 11042), True, 'import torch as th\n'), ((11050, 11066), 'torch.cat', 'th.cat', (['d2d_eids'], {}), '(d2d_eids)\n', (11056, 11066), True, 'import torch as th\n'), ((7094, 7125), 'torch.tensor', 'th.tensor', (["layer_eids['dep'][i]"], {}), "(layer_eids['dep'][i])\n", (7103, 7125), True, 'import torch as th\n'), ((11269, 11300), 'torch.tensor', 'th.tensor', (["layer_eids['dep'][i]"], {}), "(layer_eids['dep'][i])\n", (11278, 11300), True, 'import torch as th\n')]
|
import tensorflow as tf
import prettytensor as pt
import numpy as np
import gym
import math
import random
from collections import deque
from agents import mixed_network, spaces, replay_buffer
tensorType = tf.float32
"""
Implements a Deep Deterministic Policy Gradient agent.
Adjustable parameters:
- Actor / Critic learning rates
- Temporal Difference discount factor
- Experience Replay buffer / batch sizes
"""
class DDPGAgent:
"""
Creates a new DDPG agent.
Args:
- actorGen and criticGen should be functions that create new
neural networks with supplied Placeholder input Tensors.
- state_shape will be the shape of the state input Placeholder.
- action_shape should be the shape of the tensors output by the
actor neural network.
- buf_sz is the size of the agent's internal experience replay buffer.
- batch_sz will be the size of each training batch (drawn from the replay buffer)
"""
def __init__(self, actorGen, criticGen, state_shape, action_shape, buf_sz=100000,
batch_sz=64, critic_learning_rate=0.001, actor_learning_rate=0.0001,
discount_factor=0.99, actor_mix_factor=0.001,
critic_mix_factor=0.001, actor_gradient_clipping=None, critic_gradient_clipping=None):
self.graph = tf.Graph()
self.session = tf.Session(graph=self.graph)
self.discount_factor = discount_factor
self.replay_buf = deque(maxlen=buf_sz)
self.batch_size = batch_sz
self.state_shape = state_shape
self.action_shape = action_shape
self.__single_state_shape = self.state_shape[:]
self.__single_state_shape[0] = 1
with self.graph.as_default():
self.state_in = tf.placeholder(tensorType, state_shape, name='state-in')
self.action_in = tf.placeholder(tensorType, action_shape, name='action-in')
with tf.variable_scope('critic'):
self.critic = mixed_network.MixedNetwork(self.graph, self.session,
tf.concat_v2([self.state_in, self.action_in], axis=1),
criticGen, target_mix_factor=critic_mix_factor,
prefix='critic/')
self.critic_prediction = tf.placeholder(tensorType, [None])
self.critic_loss = tf.reduce_mean( tf.square( self.critic_prediction - tf.squeeze(self.critic.main_out) ) )
critic_optimizer = tf.train.AdamOptimizer(critic_learning_rate)
if isinstance(critic_gradient_clipping, tuple):
critic_gradients = critic_optimizer.compute_gradients(self.critic_loss, self.critic.main_parameters)
clipped_grads = [ \
( tf.clip_by_value(gv[0], critic_gradient_clipping[0], critic_gradient_clipping[1]), gv[1]) \
for gv in critic_gradients ]
self.critic_optimize = critic_optimizer.apply_gradients(clipped_grads)
else:
self.critic_optimize = critic_optimizer.minimize(self.critic_loss, var_list=self.critic.main_parameters)
# gradient of the critic network w.r.t. the actions, averaged over all (s,a) pairs in batch
self.action_gradient = tf.div(tf.gradients(self.critic.main_out, self.action_in), tf.constant(self.batch_size, tensorType))
with tf.variable_scope('actor'):
self.actor = mixed_network.MixedNetwork(self.graph,
self.session, self.state_in, actorGen, prefix='actor/',
target_mix_factor=actor_mix_factor)
#self.aGrad_pl = tf.placeholder(tensorType, action_shape, name='action-gradient-placeholder')
self.actor_gradients = tf.gradients(self.actor.main_out, self.actor.main_parameters, self.action_gradient)
#self.actor_optimize = [p.assign(p + actor_learning_rate*g) \
#for p, g in zip(self.actor.main_parameters, self.actor_gradients)]
#self.actor_optimize = tf.train.GradientDescentOptimizer(actor_learning_rate).apply_gradients(
# zip(self.actor_gradients, self.actor.main_parameters)
#)
if isinstance(actor_gradient_clipping, tuple):
self.actor_gradients = [tf.clip_by_value(g, actor_gradient_clipping[0], actor_gradient_clipping[1]) for g in self.actor_gradients]
self.actor_gradients = [tf.negative(g) for g in self.actor_gradients]
self.actor_optimize = tf.train.AdamOptimizer(actor_learning_rate).apply_gradients(
zip(self.actor_gradients, self.actor.main_parameters)
)
self.session.run(tf.global_variables_initializer())
def act(self, observation):
return self.actor.get_main({ self.state_in: np.reshape(observation, self.__single_state_shape)})
def add_experience(self, state, action, reward, done, next_state):
self.replay_buf.append( (state, action, reward, done, next_state) )
def train(self):
sm = random.sample(self.replay_buf, min(len(self.replay_buf), self.batch_size))
state_shape = self.state_shape[:]
action_shape = self.action_shape[:]
state_shape[0] = action_shape[0] = len(sm)
states = np.reshape([ ts[0] for ts in sm ], state_shape)
actions = np.reshape([ ts[1] for ts in sm ], action_shape)
rewards = np.reshape([ ts[2] for ts in sm ], [len(sm)])
term_state = np.reshape([ ts[3] for ts in sm ], [len(sm)])
next_states = np.reshape([ ts[4] for ts in sm ], state_shape)
# Use target actor and critic networks to estimate TD targets
target_a = np.reshape(self.actor.get_target({self.state_in:next_states}), action_shape)
target_q = np.reshape(self.critic.get_target({ self.state_in:next_states, self.action_in:target_a }), [len(sm)])
td_targets = []
for i, t in enumerate(target_q):
if term_state[i]:
td_targets.append(rewards[i])
else:
td_targets.append(rewards[i] + (self.discount_factor * t))
_, crit_loss, predicted_q = self.session.run([self.critic_optimize, self.critic_loss, self.critic.main_out], {
self.state_in: states,
self.action_in: actions,
self.critic_prediction: np.squeeze(td_targets)
})
net_actions = np.reshape(self.actor.get_main({self.state_in: states}), action_shape)
self.session.run(self.actor_optimize, {self.state_in:states, self.action_in:net_actions})
#self.session.run(self.actor_optimize, {self.state_in:states, self.action_in:actions})
#actor_grad = self.session.run(self.actor_gradients, {self.state_in:states, self.action_in:net_actions})[0]
#assert not np.isnan(np.sum(actor_grad))
return np.squeeze(predicted_q), crit_loss
def update_targets(self):
self.actor.update_target()
self.critic.update_target()
|
[
"tensorflow.Graph",
"agents.mixed_network.MixedNetwork",
"collections.deque",
"numpy.reshape",
"tensorflow.variable_scope",
"tensorflow.placeholder",
"tensorflow.Session",
"numpy.squeeze",
"tensorflow.gradients",
"tensorflow.global_variables_initializer",
"tensorflow.negative",
"tensorflow.constant",
"tensorflow.clip_by_value",
"tensorflow.train.AdamOptimizer",
"tensorflow.concat_v2",
"tensorflow.squeeze"
] |
[((1300, 1310), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1308, 1310), True, 'import tensorflow as tf\n'), ((1334, 1362), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.graph'}), '(graph=self.graph)\n', (1344, 1362), True, 'import tensorflow as tf\n'), ((1438, 1458), 'collections.deque', 'deque', ([], {'maxlen': 'buf_sz'}), '(maxlen=buf_sz)\n', (1443, 1458), False, 'from collections import deque\n'), ((5346, 5391), 'numpy.reshape', 'np.reshape', (['[ts[0] for ts in sm]', 'state_shape'], {}), '([ts[0] for ts in sm], state_shape)\n', (5356, 5391), True, 'import numpy as np\n'), ((5412, 5458), 'numpy.reshape', 'np.reshape', (['[ts[1] for ts in sm]', 'action_shape'], {}), '([ts[1] for ts in sm], action_shape)\n', (5422, 5458), True, 'import numpy as np\n'), ((5614, 5659), 'numpy.reshape', 'np.reshape', (['[ts[4] for ts in sm]', 'state_shape'], {}), '([ts[4] for ts in sm], state_shape)\n', (5624, 5659), True, 'import numpy as np\n'), ((1739, 1795), 'tensorflow.placeholder', 'tf.placeholder', (['tensorType', 'state_shape'], {'name': '"""state-in"""'}), "(tensorType, state_shape, name='state-in')\n", (1753, 1795), True, 'import tensorflow as tf\n'), ((1825, 1883), 'tensorflow.placeholder', 'tf.placeholder', (['tensorType', 'action_shape'], {'name': '"""action-in"""'}), "(tensorType, action_shape, name='action-in')\n", (1839, 1883), True, 'import tensorflow as tf\n'), ((6919, 6942), 'numpy.squeeze', 'np.squeeze', (['predicted_q'], {}), '(predicted_q)\n', (6929, 6942), True, 'import numpy as np\n'), ((1902, 1929), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""critic"""'], {}), "('critic')\n", (1919, 1929), True, 'import tensorflow as tf\n'), ((2273, 2307), 'tensorflow.placeholder', 'tf.placeholder', (['tensorType', '[None]'], {}), '(tensorType, [None])\n', (2287, 2307), True, 'import tensorflow as tf\n'), ((2467, 2511), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['critic_learning_rate'], {}), '(critic_learning_rate)\n', (2489, 2511), True, 'import tensorflow as tf\n'), ((3410, 3436), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""actor"""'], {}), "('actor')\n", (3427, 3436), True, 'import tensorflow as tf\n'), ((3467, 3601), 'agents.mixed_network.MixedNetwork', 'mixed_network.MixedNetwork', (['self.graph', 'self.session', 'self.state_in', 'actorGen'], {'prefix': '"""actor/"""', 'target_mix_factor': 'actor_mix_factor'}), "(self.graph, self.session, self.state_in,\n actorGen, prefix='actor/', target_mix_factor=actor_mix_factor)\n", (3493, 3601), False, 'from agents import mixed_network, spaces, replay_buffer\n'), ((3781, 3869), 'tensorflow.gradients', 'tf.gradients', (['self.actor.main_out', 'self.actor.main_parameters', 'self.action_gradient'], {}), '(self.actor.main_out, self.actor.main_parameters, self.\n action_gradient)\n', (3793, 3869), True, 'import tensorflow as tf\n'), ((4759, 4792), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (4790, 4792), True, 'import tensorflow as tf\n'), ((4879, 4929), 'numpy.reshape', 'np.reshape', (['observation', 'self.__single_state_shape'], {}), '(observation, self.__single_state_shape)\n', (4889, 4929), True, 'import numpy as np\n'), ((6415, 6437), 'numpy.squeeze', 'np.squeeze', (['td_targets'], {}), '(td_targets)\n', (6425, 6437), True, 'import numpy as np\n'), ((2046, 2099), 'tensorflow.concat_v2', 'tf.concat_v2', (['[self.state_in, self.action_in]'], {'axis': '(1)'}), '([self.state_in, self.action_in], axis=1)\n', (2058, 2099), True, 'import tensorflow as tf\n'), ((3298, 3348), 'tensorflow.gradients', 'tf.gradients', (['self.critic.main_out', 'self.action_in'], {}), '(self.critic.main_out, self.action_in)\n', (3310, 3348), True, 'import tensorflow as tf\n'), ((3350, 3390), 'tensorflow.constant', 'tf.constant', (['self.batch_size', 'tensorType'], {}), '(self.batch_size, tensorType)\n', (3361, 3390), True, 'import tensorflow as tf\n'), ((4491, 4505), 'tensorflow.negative', 'tf.negative', (['g'], {}), '(g)\n', (4502, 4505), True, 'import tensorflow as tf\n'), ((4343, 4418), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['g', 'actor_gradient_clipping[0]', 'actor_gradient_clipping[1]'], {}), '(g, actor_gradient_clipping[0], actor_gradient_clipping[1])\n', (4359, 4418), True, 'import tensorflow as tf\n'), ((4576, 4619), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['actor_learning_rate'], {}), '(actor_learning_rate)\n', (4598, 4619), True, 'import tensorflow as tf\n'), ((2395, 2427), 'tensorflow.squeeze', 'tf.squeeze', (['self.critic.main_out'], {}), '(self.critic.main_out)\n', (2405, 2427), True, 'import tensorflow as tf\n'), ((2763, 2848), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['gv[0]', 'critic_gradient_clipping[0]', 'critic_gradient_clipping[1]'], {}), '(gv[0], critic_gradient_clipping[0],\n critic_gradient_clipping[1])\n', (2779, 2848), True, 'import tensorflow as tf\n')]
|
# -*- coding: utf-8 -*-
from remi.gui import *
from remi import start, App
import cv2
import numpy
import chdkptp
import time
import threading
import rawpy
class OpenCVVideoWidget(Image):
def __init__(self, **kwargs):
super(OpenCVVideoWidget, self).__init__("/%s/get_image_data" % id(self), **kwargs)
self.frame_index = 0
self.frame = numpy.full((480, 720,3),155, dtype=numpy.uint8)
def update(self, app_instance):
self.frame_index = numpy.random.randint(1e8)
app_instance.execute_javascript("""
var url = '/%(id)s/get_image_data?index=%(frame_index)s';
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'blob'
xhr.onload = function(e){
urlCreator = window.URL || window.webkitURL;
urlCreator.revokeObjectURL(document.getElementById('%(id)s').src);
imageUrl = urlCreator.createObjectURL(this.response);
document.getElementById('%(id)s').src = imageUrl;
}
xhr.send();
""" % {'id': id(self), 'frame_index':self.frame_index})
def get_image_data(self, index=0):
ret, jpeg = cv2.imencode('.jpeg', self.frame)
if ret:
headers = {'Content-type': 'image/jpeg'}
return [jpeg.tostring(), headers]
return None, None
class M10GUI(App):
def __init__(self, *args, **kwargs):
if not 'editing_mode' in kwargs.keys():
super(M10GUI, self).__init__(*args, static_file_path={'my_res':'./res/'})
self.stop_event = threading.Event()
self.stop_event.clear()
def log_message(self, *args, **kwargs):
pass
def idle(self):
if self.live_view_check.get_value():
vp, bm = self.get_live_view()
self.image.frame = numpy.clip(vp.astype(numpy.uint16)+ bm.astype(numpy.uint16),0,255).astype(numpy.uint8)
self.image.update(self)
if time.time()-self.timer > 10:
try:
self.temperature_label.set_text('Temp (\xb0C): '+str(self.camera.lua_execute('get_temperature(1)')))
self.battery_label.set_text('Batt (V): '+str(self.camera.lua_execute('get_vbatt()')/1000.))
except:
None
self.timer = time.time()
pass
def main(self):
self.timer = time.time()
return M10GUI.construct_ui(self)
def on_close(self):
self.stop_event.set()
super(M10GUI, self).on_close()
@staticmethod
def construct_ui(self):
container = GridBox(width='100%', height='100%', style={'margin':'0px auto', "background-color":"#d5d0c7"})
container.attributes.update({"class":"Widget","editor_constructor":"()","editor_varname":"container","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Widget"})
container.set_from_asciiart("""
| | | | iso_label | shutter_label | pics_label | time_label | live_view_label | zoom_label |
| shoot_button | video_button | stop_button | iso_menu | shutter_value | pics_value | time_value | live_view_check | zoom_menu |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| image | image | image | image | image | image | image | image | image |
| lua_label | lua_label | lua_value | lua_value | lua_value | lua_value | lua_value | lua_value | lua_value |
| status_label | status_label | status_label | status_label | status_label | status_label | temperature_label | battery_label | connect_button |
""", 1, 1)
self.shoot_button = Button('Shoot')
self.shoot_button.set_enabled(False)
self.shoot_button.style.update({"width":"100%","height":"100%"})
self.shoot_button.attributes.update({"class":"Button","editor_constructor":"('Shoot')","editor_varname":"shoot_button","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Button"})
self.shoot_button.onclick.do(self.start_shoot)
self.video_button = Button('Video')
self.video_button.set_enabled(False)
self.video_button.style.update({"width":"100%","height":"100%"})
self.video_button.attributes.update({"class":"Button","editor_constructor":"('Video')","editor_varname":"video_button","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Button"})
self.video_button.onclick.do(self.start_video)
self.stop_button = Button('Stop')
self.stop_button.set_enabled(False)
self.stop_button.style.update({"width":"100%","height":"100%"})
self.stop_button.attributes.update({"class":"Button","editor_constructor":"('Stop')","editor_varname":"stop_button","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Button"})
self.stop_button.onclick.do(self.stop_action)
self.iso_menu = DropDown.new_from_list(('Auto','100','125','160','200','250','320','400', '500','640','800','1000','1250','1600','2000','2500', '3200','4000','5000','6400','8000','10000','12800'))
self.iso_menu.set_enabled(False)
self.iso_menu.set_value('Auto')
self.iso_menu.attributes.update({"class":"DropDown","editor_constructor":"()","editor_varname":"iso_menu","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"DropDown"})
self.iso_menu.onchange.do(self.set_iso)
self.shutter_value = TextInput(True,'')
self.shutter_value.set_enabled(False)
self.shutter_value.attributes.update({"class":"TextInput","autocomplete":"off","editor_constructor":"(False,'')","editor_varname":"shutter_value","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"TextInput"})
self.shutter_value.onchange.do(self.change_shutter)
iso_label = Label('ISO')
iso_label.attributes.update({"class":"Label","editor_constructor":"('ISO')","editor_varname":"iso_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
shutter_label = Label('Shutter')
shutter_label.attributes.update({"class":"Label","editor_constructor":"('Shutter')","editor_varname":"shutter_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.pics_value = TextInput(True,'')
self.pics_value.set_enabled(False)
self.pics_value.attributes.update({"class":"TextInput","autocomplete":"off","editor_constructor":"(False,'')","editor_varname":"pics_value","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"TextInput"})
pics_label = Label('Pics')
pics_label.attributes.update({"class":"Label","editor_constructor":"('Pics')","editor_varname":"pics_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.time_value = TextInput(True,'')
self.time_value.set_enabled(False)
self.time_value.attributes.update({"class":"TextInput","autocomplete":"off","editor_constructor":"(False,'')","editor_varname":"time_value","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"TextInput"})
time_label = Label('Hold')
time_label.attributes.update({"class":"Label","editor_constructor":"('Time')","editor_varname":"time_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.live_view_check = CheckBox(False,'')
self.live_view_check.set_enabled(False)
self.live_view_check.onchange.do(self.toggle_live)
self.live_view_check.attributes.update({"class":"checkbox","value":"","type":"checkbox","autocomplete":"off","editor_constructor":"(False,'')","editor_varname":"live_view_check","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"CheckBox"})
live_view_label = Label('Live')
live_view_label.attributes.update({"class":"Label","editor_constructor":"('Live')","editor_varname":"live_view_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.zoom_menu = DropDown.new_from_list(('1', '5', '10'))
self.zoom_menu.set_enabled(False)
self.zoom_menu.set_value('1')
self.zoom_menu.attributes.update({"class":"DropDown","editor_constructor":"()","editor_varname":"zoom_menu","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"DropDown"})
self.zoom_menu.onchange.do(self.change_zoom)
zoom_label = Label('Zoom')
zoom_label.attributes.update({"class":"Label","editor_constructor":"('Zoom')","editor_varname":"zoom_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.image = OpenCVVideoWidget(width='100%', height='100%')
self.image.attributes.update({"class":"Image","width":"720","height":"480","editor_constructor":"(720,480)","editor_varname":"image","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Image"})
infos_label = Label('Infos')
infos_label.attributes.update({"class":"Label","editor_constructor":"('Infos')","editor_varname":"infos_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.temperature_label = Label('Temp (\xb0C):')
self.temperature_label.attributes.update({"class":"Label","editor_constructor":"('Temp (ºC):')","editor_varname":"temperature_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.battery_label = Label('Batt (V):')
self.battery_label.attributes.update({"class":"Label","editor_constructor":"('Batt (V):')","editor_varname":"battery_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.connect_button = Button('Connect')
self.connect_button.style.update({"width":"100%","height":"100%"})
self.connect_button.attributes.update({"class":"Button","editor_constructor":"('Connect')","editor_varname":"connect_button","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Button"})
self.connect_button.onclick.do(self.init_camera)
lua_label = Label('Lua Execute:')
lua_label.attributes.update({"class":"Label","editor_constructor":"('Lua Execute:')","editor_varname":"lua_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
self.lua_value = TextInput(True,'')
self.lua_value.set_enabled(False)
self.lua_value.attributes.update({"class":"TextInput","autocomplete":"off","editor_constructor":"(False,'')","editor_varname":"lua_value","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"TextInput"})
self.lua_value.onchange.do(self.exec_lua)
self.status_label = Label('Camera not connected')
self.status_label.attributes.update({"class":"Label","editor_constructor":"('')","editor_varname":"status_label","editor_tag_type":"widget","editor_newclass":"False","editor_baseclass":"Label"})
container.append({'shoot_button':self.shoot_button, 'video_button':self.video_button, 'stop_button':self.stop_button, 'iso_menu':self.iso_menu, 'shutter_value':self.shutter_value, 'iso_label':iso_label, 'shutter_label':shutter_label, 'pics_value':self.pics_value, 'pics_label':pics_label, 'time_value':self.time_value, 'time_label':time_label, 'live_view_check':self.live_view_check, 'live_view_label':live_view_label, 'zoom_menu':self.zoom_menu, 'zoom_label':zoom_label, 'image':self.image, 'temperature_label':self.temperature_label, 'battery_label':self.battery_label, 'connect_button':self.connect_button, 'lua_label':lua_label, 'lua_value':self.lua_value, 'status_label':self.status_label})
self.container = container
return self.container
def set_status_label(self, text):
with self.update_lock:
self.status_label.set_text(text)
##### Here the GUI is over and starts the camera
def init_camera(self, widget):
def erase_ok(widget):
try:
device=chdkptp.list_devices()
self.camera=chdkptp.ChdkDevice(device[0])
except:
self.status_label.set_text('Error: camera not connected')
return
self.camera.switch_mode('record')
self.camera.lua_execute('set_backlight(0)')
self.camera.lua_execute('call_event_proc("UI.CreatePublic")')
self.purge_files()
self.status_label.set_text('Camera connected')
self.connect_button.set_enabled(False)
self.iso_menu.set_enabled(True)
self.shutter_value.set_enabled(True)
self.pics_value.set_enabled(True)
self.shoot_button.set_enabled(True)
self.video_button.set_enabled(True)
self.live_view_check.set_enabled(True)
self.lua_value.set_enabled(True)
self.iso_menu.set_value(self.get_iso())
self.shutter_value.set_value(str(self.get_camera_shutter_time()))
self.pics_value.set_value('1')
if self.camera.lua_execute('get_drive_mode()') == 1:
if float(self.shutter_value.get_value()) < 1:
self.time_value.set_enabled(True)
self.time_value.set_value('0')
else:
self.time_value.set_value('0')
self.temperature_label.set_text('Temp (\xb0C): '+str(self.camera.lua_execute('get_temperature(1)')))
self.battery_label.set_text('Batt (V): '+str(self.camera.lua_execute('get_vbatt()')/1000.))
erase_dialog=GenericDialog(title='WARNING',message='All your data on the camera will be erased!')
erase_dialog.style.update({"margin":"0px","width":"500px","height":"100px","top":"10px","left":"10px","position":"absolute","overflow":"auto"})
erase_dialog.show(self)
erase_dialog.confirm_dialog.do(erase_ok)
def toggle_live(self, widget, value):
if self.live_view_check.get_value():
self.zoom_menu.set_enabled(True)
else:
self.zoom_menu.set_enabled(False)
def get_iso(self):
return self.camera.lua_execute('get_iso_mode()')
def set_iso(self, widget, iso):
iso = self.iso_menu.get_value()
if iso == 'Auto':
iso='0'
self.camera.lua_execute('set_iso_mode('+iso+')')
self.camera.lua_execute('press("shoot_half")')
def get_camera_shutter_time(self):
time = self.camera.lua_execute('tv96_to_usec(get_user_tv96())')
if time < 1000000:
return time/1000000.
else:
return time/1000000
def change_shutter(self, widget, value):
try:
time=int(float(self.shutter_value.get_text())*1000000)
except:
self.status_label.set_text('Error: shutter time must be a number')
return
if time > 32000000:
time=32000000
if time < 250:
time=250
self.camera.lua_execute('set_user_tv96(usec_to_tv96('+str(time)+'))\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.text_line_message='Done'
def purge_files(self):
for i in self.list_files():
self.camera.delete_files(i)
def list_files(self):
file_list=[]
for i in self.camera.list_files():
if 'CANONMSC' not in i:
file_list+=self.camera.list_files(i[:-1])
return file_list
def change_zoom(self, widget, zoom):
zoom = int(self.zoom_menu.get_value())
if zoom==1:
self.camera.lua_execute('post_levent_to_ui(0x11ea,0)\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.iso_menu.set_enabled(True)
self.shutter_value.set_enabled(True)
if zoom==5:
self.camera.lua_execute('post_levent_to_ui(0x11ea,0)\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.camera.lua_execute('post_levent_to_ui(0x11ea,1)\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.iso_menu.set_enabled(False)
self.shutter_value.set_enabled(False)
if zoom==10:
self.camera.lua_execute('post_levent_to_ui(0x11ea,1)\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'call_event_proc("PTM_SetCurrentItem",0x80b8,2)\n'
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.iso_menu.set_enabled(False)
self.shutter_value.set_enabled(False)
def start_shoot(self, widget):
try:
float(self.shutter_value.get_value())
float(self.time_value.get_value())
int(self.pics_value.get_value())
except:
return
self.shoot_button.set_enabled(False)
self.video_button.set_enabled(False)
self.stop_button.set_enabled(True)
self.live_view_check.set_value(False)
self.live_view_check.set_enabled(False)
tr = threading.Thread(target=self.shoot_pic, args=(self.stop_event,))
tr.start()
def start_video(self, widget):
try:
float(self.shutter_value.get_value())
float(self.time_value.get_value())
int(self.pics_value.get_value())
except:
return
if float(self.shutter_value.get_value()) < 1:
self.status_label.set_text('Video length must be at least 1 second')
return
self.shoot_button.set_enabled(False)
self.video_button.set_enabled(False)
self.stop_button.set_enabled(True)
self.live_view_check.set_value(False)
self.live_view_check.set_enabled(False)
tr = threading.Thread(target=self.shoot_video, args=(self.stop_event,))
tr.start()
def shoot_pic(self, stop_event):
record_counter = 0
timer=int(time.time())
shutter_time=str(int(numpy.rint(float(self.shutter_value.get_value())*1000000)))
while record_counter < int(self.pics_value.get_value()) and not stop_event.isSet():
if float(self.shutter_value.get_value()) >= 1 or float(self.time_value.get_value()) == 0:
self.camera.lua_execute('set_tv96_direct(usec_to_tv96('+shutter_time+'))\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'press("shoot_full")\n' \
'return')
else:
self.camera.lua_execute('set_tv96_direct(usec_to_tv96('+shutter_time+'))\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'press("shoot_full")\n' \
'sleep('+str(int(numpy.rint(float(self.time_value.get_value())*1000)))+')\n' \
'release("shoot_full")\n' \
'return')
if float(self.shutter_value.get_value()) <= 1:
self.status_label.set_text('Photo '+str(record_counter+1)+' of '+str(self.pics_value.get_value()))
time.sleep(float(self.shutter_value.get_value()))
else:
seconds=0
while seconds<float(self.shutter_value.get_value()):
if stop_event.isSet():
self.set_status_label('Aborting, waiting '+str(int(float(self.shutter_value.get_value())-seconds))+' seconds for the last photo')
else:
self.set_status_label('Photo '+str(record_counter+1)+' of '+str(self.pics_value.get_value())+' due in '+str(int(float(self.shutter_value.get_value())-seconds))+' seconds')
time.sleep(1)
seconds+=1
self.set_status_label('Downloading photos from the camera')
while len(self.list_files()) == 0:
time.sleep(1)
for i in self.list_files():
localfile=i.split('/')[3]
self.camera.download_file(i,localfile)
if 'JPG' in localfile:
self.image.frame=cv2.resize(cv2.imread(localfile.split('.')[0]+'.JPG'), (720, 480))
else:
raw=rawpy.imread(localfile.split('.')[0]+'.CR2')
self.image.frame=cv2.resize(raw.postprocess(half_size=True, user_flip=False)[...,::-1], (720, 480))
raw.close()
with self.update_lock:
self.image.update(self)
self.purge_files()
record_counter += 1
stop_event.clear()
self.set_status_label('Done')
with self.update_lock:
self.shoot_button.set_enabled(True)
self.video_button.set_enabled(True)
self.stop_button.set_enabled(False)
self.live_view_check.set_enabled(True)
def shoot_video(self, stop_event):
record_counter = 0
while record_counter < int(self.pics_value.get_value()) and not stop_event.isSet():
seconds=0
self.camera.lua_execute('press("video")')
while seconds<float(self.shutter_value.get_value()) and not stop_event.isSet():
self.set_status_label('Video '+str(record_counter+1)+' of '+str(self.pics_value.get_value())+' due in '+str(int(float(self.shutter_value.get_value())-seconds))+' seconds')
time.sleep(1)
seconds+=1
self.camera.lua_execute('press("video")')
self.set_status_label('Downloading video from the camera')
while self.camera.lua_execute('get_movie_status()') != 1:
time.sleep(1)
for i in self.list_files():
localfile=i.split('/')[3]
self.camera.download_file(i,localfile)
self.purge_files()
record_counter += 1
stop_event.clear()
self.set_status_label('Done')
with self.update_lock:
self.shoot_button.set_enabled(True)
self.video_button.set_enabled(True)
self.stop_button.set_enabled(False)
self.live_view_check.set_enabled(True)
def stop_action(self, widget):
self.status_label.set_text('Abotring...')
self.stop_event.set()
def get_live_view(self):
self.camera._lua.eval("""
function()
status, err = con:live_dump_start('/tmp/live_view_frame')
for i=1,1 do
status, err = con:live_get_frame(29)
status, err = con:live_dump_frame()
end
status, err = con:live_dump_end()
return err
end
""")()
lv_aspect_ratio = {0:'LV_ASPECT_4_3', 1:'LV_ASPECT_16_9', 2:'LV_ASPECT_3_2'}
fb_type = {0:12, 1:8, 2:16, 3:16, 4:8 }
file_header_dtype = numpy.dtype([('magic','int32'),('header_size', 'int32'),('version_major', 'int32'),('version_minor','int32')])
frame_length_dtype = numpy.dtype([('length','int32')])
frame_header_dtype = numpy.dtype([('version_major','int32'),('version_minor', 'int32'),('lv_aspect_ratio', 'int32'),
('palette_type','int32'), ('palette_data_start','int32'), ('vp_desc_start','int32'), ('bm_desc_start','int32'),
('bmo_desc_start','int32')])
block_description_dtype = numpy.dtype([('fb_type','int32'),('data_start','int32'),('buffer_width','int32'),
('visible_width','int32'),('visible_height','int32'),('margin_left','int32'), ('margin_top','int32'),
('margin_right','int32'),('margin_bottom','int32')])
myFile = open('/tmp/live_view_frame','r')
file_header=numpy.fromfile(myFile, dtype=file_header_dtype, count=1)
frame_length=numpy.fromfile(myFile, dtype=frame_length_dtype, count=1)
frame_header=numpy.fromfile(myFile, dtype=frame_header_dtype, count=1)
vp_description=numpy.fromfile(myFile, dtype=block_description_dtype, count=1)
vp_bpp = fb_type[int(vp_description['fb_type'])]
vp_frame_size=vp_description['buffer_width']*vp_description['visible_height']*vp_bpp/8 # in byte !
vp_frame_size = int(vp_frame_size[0])
bm_description=numpy.fromfile(myFile, dtype=block_description_dtype, count=1)
bm_bpp = fb_type[int(bm_description['fb_type'])]
bm_frame_size=bm_description['buffer_width']*bm_description['visible_height']*bm_bpp/8
bm_frame_size = int(bm_frame_size[0])
bmo_description=numpy.fromfile(myFile, dtype=block_description_dtype, count=1)
bmo_bpp = fb_type[int(bmo_description['fb_type'])]
bmo_frame_size=bmo_description['buffer_width']*bmo_description['visible_height']*bmo_bpp/8
bmo_frame_size = int(bmo_frame_size[0])
if vp_description['data_start'] > 0:
vp_raw_img=numpy.fromfile(myFile, dtype=numpy.uint8, count=vp_frame_size)
y=vp_raw_img[1::2].reshape(int(vp_description['visible_height']),int(vp_description['buffer_width']))
u=numpy.empty(vp_frame_size//2, dtype=numpy.uint8)
u[0::2]=vp_raw_img[0::4]
u[1::2]=vp_raw_img[0::4]
u=u.reshape(int(vp_description['visible_height']),int(vp_description['buffer_width']))
v=numpy.empty(vp_frame_size//2, dtype=numpy.uint8)
v[0::2]=vp_raw_img[2::4]
v[1::2]=vp_raw_img[2::4]
v=v.reshape(int(vp_description['visible_height']),int(vp_description['buffer_width']))
raw_yuv=numpy.dstack((y,u,v))[:,0:int(vp_description['visible_width']),:]
vp_rgb=cv2.cvtColor(raw_yuv, cv2.COLOR_YUV2BGR)
if bm_description['data_start'] > 0:
bm_raw_img=numpy.fromfile(myFile, dtype=numpy.uint8, count=bm_frame_size)
y=bm_raw_img[1::2].reshape(int(bm_description['visible_height']),int(bm_description['buffer_width']))
u=numpy.empty(bm_frame_size//2, dtype=numpy.uint8)
u[0::2]=bm_raw_img[0::4]
u[1::2]=bm_raw_img[0::4]
u=u.reshape(int(bm_description['visible_height']),int(bm_description['buffer_width']))
v=numpy.empty(bm_frame_size//2, dtype=numpy.uint8)
v[0::2]=bm_raw_img[2::4]
v[1::2]=bm_raw_img[2::4]
v=v.reshape(int(bm_description['visible_height']),int(bm_description['buffer_width']))
raw_yuv=numpy.dstack((y,u,v))[:,0:int(bm_description['visible_width']),:]
bm_rgb=cv2.cvtColor(raw_yuv, cv2.COLOR_YUV2BGR)
if bmo_description['data_start'] >0:
bmo_raw_img=numpy.fromfile(myFile, dtype=numpy.int32, count=bmo_frame_size)
myFile.close()
if vp_rgb.shape[0]==408: # Workaround for video mode
extension=numpy.zeros((480,720,3))
extension[36:444, :, :]=vp_rgb # (480-408)/2:480-(480-408)/2, :, :
vp_rgb=extension
return vp_rgb, bm_rgb
def exec_lua(self, widget, value):
try:
self.camera.lua_execute(str(self.lua_value.get_value())+'\n' \
'press("shoot_half")\n' \
'repeat\n' \
' sleep(10)\n' \
'until get_shooting()\n' \
'return')
self.status_label.set_text('Done')
except:
self.status_label.set_text('Error executing LUA')
if __name__ == "__main__":
start(M10GUI, address='0.0.0.0', port=8081, multiple_instance=False, enable_file_cache=True, start_browser=False, debug=False, update_interval = 0.01)
|
[
"numpy.dstack",
"numpy.fromfile",
"remi.start",
"cv2.imencode",
"chdkptp.ChdkDevice",
"time.sleep",
"threading.Event",
"numpy.random.randint",
"numpy.zeros",
"numpy.empty",
"cv2.cvtColor",
"numpy.full",
"numpy.dtype",
"time.time",
"threading.Thread",
"chdkptp.list_devices"
] |
[((31139, 31295), 'remi.start', 'start', (['M10GUI'], {'address': '"""0.0.0.0"""', 'port': '(8081)', 'multiple_instance': '(False)', 'enable_file_cache': '(True)', 'start_browser': '(False)', 'debug': '(False)', 'update_interval': '(0.01)'}), "(M10GUI, address='0.0.0.0', port=8081, multiple_instance=False,\n enable_file_cache=True, start_browser=False, debug=False,\n update_interval=0.01)\n", (31144, 31295), False, 'from remi import start, App\n'), ((365, 414), 'numpy.full', 'numpy.full', (['(480, 720, 3)', '(155)'], {'dtype': 'numpy.uint8'}), '((480, 720, 3), 155, dtype=numpy.uint8)\n', (375, 414), False, 'import numpy\n'), ((477, 510), 'numpy.random.randint', 'numpy.random.randint', (['(100000000.0)'], {}), '(100000000.0)\n', (497, 510), False, 'import numpy\n'), ((1223, 1256), 'cv2.imencode', 'cv2.imencode', (['""".jpeg"""', 'self.frame'], {}), "('.jpeg', self.frame)\n", (1235, 1256), False, 'import cv2\n'), ((1619, 1636), 'threading.Event', 'threading.Event', ([], {}), '()\n', (1634, 1636), False, 'import threading\n'), ((2409, 2420), 'time.time', 'time.time', ([], {}), '()\n', (2418, 2420), False, 'import time\n'), ((20296, 20360), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.shoot_pic', 'args': '(self.stop_event,)'}), '(target=self.shoot_pic, args=(self.stop_event,))\n', (20312, 20360), False, 'import threading\n'), ((21000, 21066), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.shoot_video', 'args': '(self.stop_event,)'}), '(target=self.shoot_video, args=(self.stop_event,))\n', (21016, 21066), False, 'import threading\n'), ((26509, 26628), 'numpy.dtype', 'numpy.dtype', (["[('magic', 'int32'), ('header_size', 'int32'), ('version_major', 'int32'),\n ('version_minor', 'int32')]"], {}), "([('magic', 'int32'), ('header_size', 'int32'), ('version_major',\n 'int32'), ('version_minor', 'int32')])\n", (26520, 26628), False, 'import numpy\n'), ((26649, 26683), 'numpy.dtype', 'numpy.dtype', (["[('length', 'int32')]"], {}), "([('length', 'int32')])\n", (26660, 26683), False, 'import numpy\n'), ((26712, 26971), 'numpy.dtype', 'numpy.dtype', (["[('version_major', 'int32'), ('version_minor', 'int32'), ('lv_aspect_ratio',\n 'int32'), ('palette_type', 'int32'), ('palette_data_start', 'int32'), (\n 'vp_desc_start', 'int32'), ('bm_desc_start', 'int32'), (\n 'bmo_desc_start', 'int32')]"], {}), "([('version_major', 'int32'), ('version_minor', 'int32'), (\n 'lv_aspect_ratio', 'int32'), ('palette_type', 'int32'), (\n 'palette_data_start', 'int32'), ('vp_desc_start', 'int32'), (\n 'bm_desc_start', 'int32'), ('bmo_desc_start', 'int32')])\n", (26723, 26971), False, 'import numpy\n'), ((27007, 27270), 'numpy.dtype', 'numpy.dtype', (["[('fb_type', 'int32'), ('data_start', 'int32'), ('buffer_width', 'int32'),\n ('visible_width', 'int32'), ('visible_height', 'int32'), ('margin_left',\n 'int32'), ('margin_top', 'int32'), ('margin_right', 'int32'), (\n 'margin_bottom', 'int32')]"], {}), "([('fb_type', 'int32'), ('data_start', 'int32'), ('buffer_width',\n 'int32'), ('visible_width', 'int32'), ('visible_height', 'int32'), (\n 'margin_left', 'int32'), ('margin_top', 'int32'), ('margin_right',\n 'int32'), ('margin_bottom', 'int32')])\n", (27018, 27270), False, 'import numpy\n'), ((27340, 27396), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'file_header_dtype', 'count': '(1)'}), '(myFile, dtype=file_header_dtype, count=1)\n', (27354, 27396), False, 'import numpy\n'), ((27418, 27475), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'frame_length_dtype', 'count': '(1)'}), '(myFile, dtype=frame_length_dtype, count=1)\n', (27432, 27475), False, 'import numpy\n'), ((27497, 27554), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'frame_header_dtype', 'count': '(1)'}), '(myFile, dtype=frame_header_dtype, count=1)\n', (27511, 27554), False, 'import numpy\n'), ((27578, 27640), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'block_description_dtype', 'count': '(1)'}), '(myFile, dtype=block_description_dtype, count=1)\n', (27592, 27640), False, 'import numpy\n'), ((27875, 27937), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'block_description_dtype', 'count': '(1)'}), '(myFile, dtype=block_description_dtype, count=1)\n', (27889, 27937), False, 'import numpy\n'), ((28161, 28223), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'block_description_dtype', 'count': '(1)'}), '(myFile, dtype=block_description_dtype, count=1)\n', (28175, 28223), False, 'import numpy\n'), ((2338, 2349), 'time.time', 'time.time', ([], {}), '()\n', (2347, 2349), False, 'import time\n'), ((21169, 21180), 'time.time', 'time.time', ([], {}), '()\n', (21178, 21180), False, 'import time\n'), ((28499, 28561), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'numpy.uint8', 'count': 'vp_frame_size'}), '(myFile, dtype=numpy.uint8, count=vp_frame_size)\n', (28513, 28561), False, 'import numpy\n'), ((28690, 28740), 'numpy.empty', 'numpy.empty', (['(vp_frame_size // 2)'], {'dtype': 'numpy.uint8'}), '(vp_frame_size // 2, dtype=numpy.uint8)\n', (28701, 28740), False, 'import numpy\n'), ((28926, 28976), 'numpy.empty', 'numpy.empty', (['(vp_frame_size // 2)'], {'dtype': 'numpy.uint8'}), '(vp_frame_size // 2, dtype=numpy.uint8)\n', (28937, 28976), False, 'import numpy\n'), ((29253, 29293), 'cv2.cvtColor', 'cv2.cvtColor', (['raw_yuv', 'cv2.COLOR_YUV2BGR'], {}), '(raw_yuv, cv2.COLOR_YUV2BGR)\n', (29265, 29293), False, 'import cv2\n'), ((29362, 29424), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'numpy.uint8', 'count': 'bm_frame_size'}), '(myFile, dtype=numpy.uint8, count=bm_frame_size)\n', (29376, 29424), False, 'import numpy\n'), ((29553, 29603), 'numpy.empty', 'numpy.empty', (['(bm_frame_size // 2)'], {'dtype': 'numpy.uint8'}), '(bm_frame_size // 2, dtype=numpy.uint8)\n', (29564, 29603), False, 'import numpy\n'), ((29789, 29839), 'numpy.empty', 'numpy.empty', (['(bm_frame_size // 2)'], {'dtype': 'numpy.uint8'}), '(bm_frame_size // 2, dtype=numpy.uint8)\n', (29800, 29839), False, 'import numpy\n'), ((30116, 30156), 'cv2.cvtColor', 'cv2.cvtColor', (['raw_yuv', 'cv2.COLOR_YUV2BGR'], {}), '(raw_yuv, cv2.COLOR_YUV2BGR)\n', (30128, 30156), False, 'import cv2\n'), ((30226, 30289), 'numpy.fromfile', 'numpy.fromfile', (['myFile'], {'dtype': 'numpy.int32', 'count': 'bmo_frame_size'}), '(myFile, dtype=numpy.int32, count=bmo_frame_size)\n', (30240, 30289), False, 'import numpy\n'), ((30396, 30422), 'numpy.zeros', 'numpy.zeros', (['(480, 720, 3)'], {}), '((480, 720, 3))\n', (30407, 30422), False, 'import numpy\n'), ((2001, 2012), 'time.time', 'time.time', ([], {}), '()\n', (2010, 2012), False, 'import time\n'), ((14060, 14082), 'chdkptp.list_devices', 'chdkptp.list_devices', ([], {}), '()\n', (14080, 14082), False, 'import chdkptp\n'), ((14111, 14140), 'chdkptp.ChdkDevice', 'chdkptp.ChdkDevice', (['device[0]'], {}), '(device[0])\n', (14129, 14140), False, 'import chdkptp\n'), ((23568, 23581), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (23578, 23581), False, 'import time\n'), ((25043, 25056), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (25053, 25056), False, 'import time\n'), ((25295, 25308), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (25305, 25308), False, 'import time\n'), ((29168, 29191), 'numpy.dstack', 'numpy.dstack', (['(y, u, v)'], {}), '((y, u, v))\n', (29180, 29191), False, 'import numpy\n'), ((30031, 30054), 'numpy.dstack', 'numpy.dstack', (['(y, u, v)'], {}), '((y, u, v))\n', (30043, 30054), False, 'import numpy\n'), ((23387, 23400), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (23397, 23400), False, 'import time\n')]
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import numpy as np
import os
import torch
import triton_python_backend_utils as pb_utils
from torch.utils.dlpack import to_dlpack, from_dlpack
from swig_decoders import ctc_beam_search_decoder_batch, Scorer, map_batch
class WenetModel(object):
def __init__(self, model_config, device):
params = self.parse_model_parameters(model_config)
self.device = device
print("Using device", device)
print("Successfully load model !")
# load vocabulary
ret = self.load_vocab(params["vocab_path"])
self.id2vocab, self.vocab, space_id, blank_id, sos_eos = ret
self.space_id = space_id if space_id else -1
self.blank_id = blank_id if blank_id else 0
self.eos = self.sos = sos_eos if sos_eos else len(self.vocab) - 1
print("Successfully load vocabulary !")
self.params = params
# beam search setting
self.beam_size = params.get("beam_size")
self.cutoff_prob = params.get("cutoff_prob")
# language model
lm_path = params.get("lm_path", None)
alpha, beta = params.get('alpha'), params.get('beta')
self.scorer = None
if os.path.exists(lm_path):
self.scorer = Scorer(alpha, beta, lm_path, self.vocab)
self.bidecoder = params.get('bidecoder')
# rescore setting
self.rescoring = params.get("rescoring", 0)
print("Using rescoring:", bool(self.rescoring))
print("Successfully load all parameters!")
self.dtype = torch.float16
def generate_init_cache(self):
encoder_out = None
return encoder_out
def load_vocab(self, vocab_file):
"""
load lang_char.txt
"""
id2vocab = {}
space_id, blank_id, sos_eos = None, None, None
with open(vocab_file, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
char, id = line.split()
id2vocab[int(id)] = char
if char == " ":
space_id = int(id)
elif char == "<blank>":
blank_id = int(id)
elif char == "<sos/eos>":
sos_eos = int(id)
vocab = [0] * len(id2vocab)
for id, char in id2vocab.items():
vocab[id] = char
return (id2vocab, vocab, space_id, blank_id, sos_eos)
def parse_model_parameters(self, model_parameters):
model_p = {"beam_size": 10,
"cutoff_prob": 0.999,
"vocab_path": None,
"lm_path": None,
"alpha": 2.0,
"beta": 1.0,
"rescoring": 0,
"bidecoder": 1}
# get parameter configurations
for li in model_parameters.items():
key, value = li
true_value = value["string_value"]
if key not in model_p:
continue
key_type = type(model_p[key])
if key_type == type(None):
model_p[key] = true_value
else:
model_p[key] = key_type(true_value)
assert model_p["vocab_path"] is not None
return model_p
def infer(self, batch_log_probs, batch_log_probs_idx,
seq_lens, rescore_index, batch_states):
"""
batch_states = [trieVector, batch_start,
batch_encoder_hist, cur_encoder_out]
"""
trie_vector, batch_start, batch_encoder_hist, cur_encoder_out = batch_states
num_processes = min(multiprocessing.cpu_count(), len(batch_log_probs))
score_hyps = self.batch_ctc_prefix_beam_search_cpu(batch_log_probs,
batch_log_probs_idx,
seq_lens,
trie_vector,
batch_start,
self.beam_size,
self.blank_id,
self.space_id,
self.cutoff_prob,
num_processes,
self.scorer)
if self.rescoring and len(rescore_index) != 0:
# find the end of sequence
rescore_encoder_hist = []
rescore_encoder_lens = []
rescore_hyps = []
res_idx = list(rescore_index.keys())
max_length = -1
for idx in res_idx:
hist_enc = batch_encoder_hist[idx]
if hist_enc is None:
cur_enc = cur_encoder_out[idx]
else:
cur_enc = torch.cat([hist_enc, cur_encoder_out[idx]], axis=0)
rescore_encoder_hist.append(cur_enc)
cur_mask_len = int(len(hist_enc) + seq_lens[idx])
rescore_encoder_lens.append(cur_mask_len)
rescore_hyps.append(score_hyps[idx])
if cur_enc.shape[0] > max_length:
max_length = cur_enc.shape[0]
best_index = self.batch_rescoring(rescore_hyps, rescore_encoder_hist,
rescore_encoder_lens, max_length)
best_sent = []
j = 0
for idx, li in enumerate(score_hyps):
if idx in rescore_index and self.rescoring:
best_sent.append(li[best_index[j]][1])
j += 1
else:
best_sent.append(li[0][1])
final_result = map_batch(best_sent, self.vocab, num_processes)
return final_result, cur_encoder_out
def batch_ctc_prefix_beam_search_cpu(self, batch_log_probs_seq,
batch_log_probs_idx,
batch_len, batch_root,
batch_start, beam_size,
blank_id, space_id,
cutoff_prob, num_processes,
scorer):
"""
Return: Batch x Beam_size elements, each element is a tuple
(score, list of ids),
"""
batch_len_list = batch_len
batch_log_probs_seq_list = []
batch_log_probs_idx_list = []
for i in range(len(batch_len_list)):
cur_len = int(batch_len_list[i])
batch_log_probs_seq_list.append(batch_log_probs_seq[i][0:cur_len].tolist())
batch_log_probs_idx_list.append(batch_log_probs_idx[i][0:cur_len].tolist())
score_hyps = ctc_beam_search_decoder_batch(batch_log_probs_seq_list,
batch_log_probs_idx_list,
batch_root,
batch_start,
beam_size,
num_processes,
blank_id,
space_id,
cutoff_prob,
scorer)
return score_hyps
def batch_rescoring(self, score_hyps, hist_enc, hist_mask_len, max_len):
"""
score_hyps: [((ctc_score, (id1, id2, id3, ....)), (), ...), ....]
hist_enc: [len1xF, len2xF, .....]
hist_mask: [1x1xlen1, 1x1xlen2]
return bzx1 best_index
"""
bz = len(hist_enc)
f = hist_enc[0].shape[-1]
beam_size = self.beam_size
encoder_lens = np.zeros((bz, 1), dtype=np.int32)
encoder_out = torch.zeros((bz, max_len, f), dtype=self.dtype)
hyps = []
ctc_score = torch.zeros((bz, beam_size), dtype=self.dtype)
max_seq_len = 0
for i in range(bz):
cur_len = hist_enc[i].shape[0]
encoder_out[i, 0:cur_len] = hist_enc[i]
encoder_lens[i, 0] = hist_mask_len[i]
# process candidate
if len(score_hyps[i]) < beam_size:
to_append = (beam_size - len(score_hyps[i])) * [(-10000, ())]
score_hyps[i] = list(score_hyps[i]) + to_append
for idx, c in enumerate(score_hyps[i]):
score, idlist = c
if score < -10000:
score = -10000
ctc_score[i][idx] = score
hyps.append(list(idlist))
if len(hyps[-1]) > max_seq_len:
max_seq_len = len(hyps[-1])
max_seq_len += 2
hyps_pad_sos_eos = np.ones((bz, beam_size, max_seq_len), dtype=np.int64)
hyps_pad_sos_eos = hyps_pad_sos_eos * self.eos # fill eos
if self.bidecoder:
r_hyps_pad_sos_eos = np.ones((bz, beam_size, max_seq_len), dtype=np.int64)
r_hyps_pad_sos_eos = r_hyps_pad_sos_eos * self.eos
hyps_lens_sos = np.ones((bz, beam_size), dtype=np.int32)
bz_id = 0
for idx, cand in enumerate(hyps):
bz_id = idx // beam_size
length = len(cand) + 2
bz_offset = idx % beam_size
pad_cand = [self.sos] + cand + [self.eos]
hyps_pad_sos_eos[bz_id][bz_offset][0 : length] = pad_cand
if self.bidecoder:
r_pad_cand = [self.sos] + cand[::-1] + [self.eos]
r_hyps_pad_sos_eos[bz_id][bz_offset][0:length] = r_pad_cand
hyps_lens_sos[bz_id][idx % beam_size] = len(cand) + 1
in0 = pb_utils.Tensor.from_dlpack("encoder_out", to_dlpack(encoder_out))
in1 = pb_utils.Tensor("encoder_out_lens", encoder_lens)
in2 = pb_utils.Tensor("hyps_pad_sos_eos", hyps_pad_sos_eos)
in3 = pb_utils.Tensor("hyps_lens_sos", hyps_lens_sos)
input_tensors = [in0, in1, in2, in3]
if self.bidecoder:
in4 = pb_utils.Tensor("r_hyps_pad_sos_eos", r_hyps_pad_sos_eos)
input_tensors.append(in4)
in5 = pb_utils.Tensor.from_dlpack("ctc_score", to_dlpack(ctc_score))
input_tensors.append(in5)
request = pb_utils.InferenceRequest(model_name='decoder',
requested_output_names=['best_index'],
inputs=input_tensors)
response = request.exec()
best_index = pb_utils.get_output_tensor_by_name(response, 'best_index')
best_index = from_dlpack(best_index.to_dlpack()).clone()
best_index = best_index.numpy()[:, 0]
return best_index
def __del__(self):
print("remove wenet model")
|
[
"os.path.exists",
"numpy.ones",
"triton_python_backend_utils.InferenceRequest",
"swig_decoders.map_batch",
"torch.utils.dlpack.to_dlpack",
"triton_python_backend_utils.Tensor",
"swig_decoders.Scorer",
"multiprocessing.cpu_count",
"numpy.zeros",
"triton_python_backend_utils.get_output_tensor_by_name",
"swig_decoders.ctc_beam_search_decoder_batch",
"torch.zeros",
"torch.cat"
] |
[((1805, 1828), 'os.path.exists', 'os.path.exists', (['lm_path'], {}), '(lm_path)\n', (1819, 1828), False, 'import os\n'), ((6428, 6475), 'swig_decoders.map_batch', 'map_batch', (['best_sent', 'self.vocab', 'num_processes'], {}), '(best_sent, self.vocab, num_processes)\n', (6437, 6475), False, 'from swig_decoders import ctc_beam_search_decoder_batch, Scorer, map_batch\n'), ((7491, 7672), 'swig_decoders.ctc_beam_search_decoder_batch', 'ctc_beam_search_decoder_batch', (['batch_log_probs_seq_list', 'batch_log_probs_idx_list', 'batch_root', 'batch_start', 'beam_size', 'num_processes', 'blank_id', 'space_id', 'cutoff_prob', 'scorer'], {}), '(batch_log_probs_seq_list,\n batch_log_probs_idx_list, batch_root, batch_start, beam_size,\n num_processes, blank_id, space_id, cutoff_prob, scorer)\n', (7520, 7672), False, 'from swig_decoders import ctc_beam_search_decoder_batch, Scorer, map_batch\n'), ((8559, 8592), 'numpy.zeros', 'np.zeros', (['(bz, 1)'], {'dtype': 'np.int32'}), '((bz, 1), dtype=np.int32)\n', (8567, 8592), True, 'import numpy as np\n'), ((8615, 8662), 'torch.zeros', 'torch.zeros', (['(bz, max_len, f)'], {'dtype': 'self.dtype'}), '((bz, max_len, f), dtype=self.dtype)\n', (8626, 8662), False, 'import torch\n'), ((8701, 8747), 'torch.zeros', 'torch.zeros', (['(bz, beam_size)'], {'dtype': 'self.dtype'}), '((bz, beam_size), dtype=self.dtype)\n', (8712, 8747), False, 'import torch\n'), ((9556, 9609), 'numpy.ones', 'np.ones', (['(bz, beam_size, max_seq_len)'], {'dtype': 'np.int64'}), '((bz, beam_size, max_seq_len), dtype=np.int64)\n', (9563, 9609), True, 'import numpy as np\n'), ((9879, 9919), 'numpy.ones', 'np.ones', (['(bz, beam_size)'], {'dtype': 'np.int32'}), '((bz, beam_size), dtype=np.int32)\n', (9886, 9919), True, 'import numpy as np\n'), ((10550, 10599), 'triton_python_backend_utils.Tensor', 'pb_utils.Tensor', (['"""encoder_out_lens"""', 'encoder_lens'], {}), "('encoder_out_lens', encoder_lens)\n", (10565, 10599), True, 'import triton_python_backend_utils as pb_utils\n'), ((10614, 10667), 'triton_python_backend_utils.Tensor', 'pb_utils.Tensor', (['"""hyps_pad_sos_eos"""', 'hyps_pad_sos_eos'], {}), "('hyps_pad_sos_eos', hyps_pad_sos_eos)\n", (10629, 10667), True, 'import triton_python_backend_utils as pb_utils\n'), ((10682, 10729), 'triton_python_backend_utils.Tensor', 'pb_utils.Tensor', (['"""hyps_lens_sos"""', 'hyps_lens_sos'], {}), "('hyps_lens_sos', hyps_lens_sos)\n", (10697, 10729), True, 'import triton_python_backend_utils as pb_utils\n'), ((11045, 11158), 'triton_python_backend_utils.InferenceRequest', 'pb_utils.InferenceRequest', ([], {'model_name': '"""decoder"""', 'requested_output_names': "['best_index']", 'inputs': 'input_tensors'}), "(model_name='decoder', requested_output_names=[\n 'best_index'], inputs=input_tensors)\n", (11070, 11158), True, 'import triton_python_backend_utils as pb_utils\n'), ((11297, 11355), 'triton_python_backend_utils.get_output_tensor_by_name', 'pb_utils.get_output_tensor_by_name', (['response', '"""best_index"""'], {}), "(response, 'best_index')\n", (11331, 11355), True, 'import triton_python_backend_utils as pb_utils\n'), ((1856, 1896), 'swig_decoders.Scorer', 'Scorer', (['alpha', 'beta', 'lm_path', 'self.vocab'], {}), '(alpha, beta, lm_path, self.vocab)\n', (1862, 1896), False, 'from swig_decoders import ctc_beam_search_decoder_batch, Scorer, map_batch\n'), ((4213, 4240), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (4238, 4240), False, 'import multiprocessing\n'), ((9737, 9790), 'numpy.ones', 'np.ones', (['(bz, beam_size, max_seq_len)'], {'dtype': 'np.int64'}), '((bz, beam_size, max_seq_len), dtype=np.int64)\n', (9744, 9790), True, 'import numpy as np\n'), ((10512, 10534), 'torch.utils.dlpack.to_dlpack', 'to_dlpack', (['encoder_out'], {}), '(encoder_out)\n', (10521, 10534), False, 'from torch.utils.dlpack import to_dlpack, from_dlpack\n'), ((10820, 10877), 'triton_python_backend_utils.Tensor', 'pb_utils.Tensor', (['"""r_hyps_pad_sos_eos"""', 'r_hyps_pad_sos_eos'], {}), "('r_hyps_pad_sos_eos', r_hyps_pad_sos_eos)\n", (10835, 10877), True, 'import triton_python_backend_utils as pb_utils\n'), ((10971, 10991), 'torch.utils.dlpack.to_dlpack', 'to_dlpack', (['ctc_score'], {}), '(ctc_score)\n', (10980, 10991), False, 'from torch.utils.dlpack import to_dlpack, from_dlpack\n'), ((5581, 5632), 'torch.cat', 'torch.cat', (['[hist_enc, cur_encoder_out[idx]]'], {'axis': '(0)'}), '([hist_enc, cur_encoder_out[idx]], axis=0)\n', (5590, 5632), False, 'import torch\n')]
|
"""Temporal VAE with gaussian margial and laplacian transition prior"""
import torch
import numpy as np
import ipdb as pdb
import torch.nn as nn
import pytorch_lightning as pl
import torch.distributions as D
from torch.nn import functional as F
from .components.beta import BetaVAE_MLP
from .metrics.correlation import compute_mcc
from .components.base import GroupLinearLayer
from .components.transforms import ComponentWiseSpline
def reconstruction_loss(x, x_recon, distribution):
batch_size = x.size(0)
assert batch_size != 0
if distribution == 'bernoulli':
recon_loss = F.binary_cross_entropy_with_logits(
x_recon, x, size_average=False).div(batch_size)
elif distribution == 'gaussian':
recon_loss = F.mse_loss(x_recon, x, size_average=False).div(batch_size)
elif distribution == 'sigmoid':
x_recon = F.sigmoid(x_recon)
recon_loss = F.mse_loss(x_recon, x, size_average=False).div(batch_size)
return recon_loss
def compute_cross_ent_normal(mu, logvar):
return 0.5 * (mu**2 + torch.exp(logvar)) + np.log(np.sqrt(2 * np.pi))
def compute_ent_normal(logvar):
return 0.5 * (logvar + np.log(2 * np.pi * np.e))
def compute_sparsity(mu, normed=True):
# assume couples, compute normalized sparsity
diff = mu[::2] - mu[1::2]
if normed:
norm = torch.norm(diff, dim=1, keepdim=True)
norm[norm == 0] = 1 # keep those that are same, dont divide by 0
diff = diff / norm
return torch.mean(torch.abs(diff))
class AfflineVAESynthetic(pl.LightningModule):
def __init__(
self,
input_dim,
lag=1,
beta=1,
alpha=1,
lr=1e-4,
z_dim=10,
gamma=10,
rate_prior=1,
hidden_dim=128,
diagonal=False,
decoder_dist='gaussian',
nonlinear_type='gaussian'
):
'''Import Beta-VAE as encoder/decoder'''
super().__init__()
self.net = BetaVAE_MLP(input_dim=input_dim,
z_dim=z_dim,
hidden_dim=hidden_dim)
self.trans_func = GroupLinearLayer(din=z_dim,
dout=z_dim,
num_blocks=lag,
diagonal=diagonal)
self.spline = ComponentWiseSpline(input_dim=z_dim,
bound=5,
count_bins=8,
order="linear")
self.f1 = nn.Sequential(nn.Linear(z_dim, z_dim),
nn.LeakyReLU(0.2))
self.f2 = nn.Sequential(nn.Linear(z_dim, z_dim),
nn.LeakyReLU(0.2))
self.coff = nn.Linear(z_dim, z_dim)
# self.spline.load_state_dict(torch.load("/home/yuewen/spline.pth"))
self.lr = lr
self.lag = lag
self.beta = beta
self.z_dim = z_dim
self.alpha = alpha
self.gamma = gamma
self.input_dim = input_dim
self.rate_prior = rate_prior
self.decoder_dist = decoder_dist
self.nonlinear_type = nonlinear_type
self.b = nn.Parameter(0.01 * torch.randn(1, z_dim))
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_var', torch.eye(self.z_dim))
self.register_buffer('base_dist_mean', torch.zeros(self.z_dim))
@property
def base_dist(self):
return D.MultivariateNormal(self.base_dist_mean, self.base_dist_var)
def forward(self, batch):
xt, xt_ = batch["xt"], batch["xt_"]
batch_size, _, _ = xt.shape
x = torch.cat((xt, xt_), dim=1)
x = x.view(-1, self.input_dim)
return self.net(x)
def compute_cross_ent_laplace(self, mean, logvar, rate_prior):
var = torch.exp(logvar)
sigma = torch.sqrt(var)
ce = - torch.log(rate_prior / 2) + rate_prior * sigma *\
np.sqrt(2 / np.pi) * torch.exp(- mean**2 / (2 * var)) -\
rate_prior * mean * (
1 - 2 * self.normal_dist.cdf(mean / sigma))
return ce
def training_step(self, batch, batch_idx):
xt, xt_ = batch["xt"], batch["xt_"]
batch_size, _, _ = xt.shape
x = torch.cat((xt, xt_), dim=1)
x = x.view(-1, self.input_dim)
x_recon, mu, logvar, z = self.net(x)
# Normal VAE loss: recon_loss + kld_loss
recon_loss = reconstruction_loss(x, x_recon, self.decoder_dist)
mu = mu.view(batch_size, -1, self.z_dim)
logvar = logvar.view(batch_size, -1, self.z_dim)
z = z.view(batch_size, -1, self.z_dim)
mut, mut_ = mu[:,:-1,:], mu[:,-1:,:]
logvart, logvart_ = logvar[:,:-1,:], logvar[:,-1:,:]
zt, zt_ = z[:,:-1,:], z[:,-1:,:]
# Past KLD divergenve
p1 = D.Normal(torch.zeros_like(mut), torch.ones_like(logvart))
q1 = D.Normal(mut, torch.exp(logvart / 2))
log_qz_normal = q1.log_prob(zt)
log_pz_normal = p1.log_prob(zt)
kld_normal = log_qz_normal - log_pz_normal
kld_normal = torch.sum(torch.sum(kld_normal,dim=-1),dim=-1).mean()
'''
have question on this part...
'''
# Current KLD divergence
if self.nonlinear_type == "gaussian":
zt_mid = self.f1(zt)
noise_term = nn.Parameter(torch.randn(zt.shape).cuda())
zt_mid = zt_mid + self.coff(noise_term)
zt_bar = self.f2(zt_mid)
recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist)
else:
zt_mid = self.f1(zt)
noise_term = nn.Parameter(torch.distributions.laplace.Laplace(0,1).rsample(zt.shape).cuda())
zt_mid = zt_mid + self.coff(noise_term)
zt_bar = self.f2(zt_mid)
recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist)
coff = torch.abs(self.coff.weight).mean()
# # Current KLD divergence
# ut = self.trans_func(zt)
# ut = torch.sum(ut, dim=1) + self.b
# epst_ = zt_.squeeze() + ut
# et_, logabsdet = self.spline(epst_)
# log_pz_laplace = self.base_dist.log_prob(et_) + logabsdet
# q_laplace = D.Normal(mut_, torch.exp(logvart_ / 2))
# log_qz_laplace = q_laplace.log_prob(zt_)
# kld_laplace = torch.sum(torch.sum(log_qz_laplace,dim=-1),dim=-1) - log_pz_laplace
# kld_laplace = kld_laplace.mean()
loss = (self.lag+1) * recon_loss + self.beta * kld_normal + self.gamma * recon_zt_ + self.alpha * coff
# loss = (self.lag+1) * recon_loss + self.beta * kld_normal
zt_recon = mu[:,-1,:].T.detach().cpu().numpy()
zt_true = batch["yt_"].squeeze().T.detach().cpu().numpy()
mcc = compute_mcc(zt_recon, zt_true, "Pearson")
self.log("train_mcc", mcc)
self.log("train_coff", coff)
self.log("train_elbo_loss", loss)
self.log("train_recon_zt_", recon_zt_)
self.log("train_recon_loss", recon_loss)
self.log("train_kld_normal", kld_normal)
return loss
def validation_step(self, batch, batch_idx):
xt, xt_ = batch["xt"], batch["xt_"]
batch_size, _, _ = xt.shape
x = torch.cat((xt, xt_), dim=1)
x = x.view(-1, self.input_dim)
x_recon, mu, logvar, z = self.net(x)
# Normal VAE loss: recon_loss + kld_loss
recon_loss = reconstruction_loss(x, x_recon, self.decoder_dist)
mu = mu.view(batch_size, -1, self.z_dim)
logvar = logvar.view(batch_size, -1, self.z_dim)
z = z.view(batch_size, -1, self.z_dim)
mut, mut_ = mu[:,:-1,:], mu[:,-1:,:]
logvart, logvart_ = logvar[:,:-1,:], logvar[:,-1:,:]
zt, zt_ = z[:,:-1,:], z[:,-1:,:]
# Past KLD divergenve
p1 = D.Normal(torch.zeros_like(mut), torch.ones_like(logvart))
q1 = D.Normal(mut, torch.exp(logvart / 2))
log_qz_normal = q1.log_prob(zt)
log_pz_normal = p1.log_prob(zt)
kld_normal = log_qz_normal - log_pz_normal
kld_normal = torch.sum(torch.sum(kld_normal,dim=-1),dim=-1).mean()
# Current KLD divergence
if self.nonlinear_type == "gaussian":
zt_mid = self.f1(zt)
noise_term = nn.Parameter(torch.randn(zt.shape).cuda())
zt_mid = zt_mid + self.coff(noise_term)
zt_bar = self.f2(zt_mid)
recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist)
else:
zt_mid = self.f1(zt)
noise_term = nn.Parameter(torch.distributions.laplace.Laplace(0,1).rsample(zt.shape).cuda())
zt_mid = zt_mid + self.coff(noise_term)
zt_bar = self.f2(zt_mid)
recon_zt_ = reconstruction_loss(zt_, zt_bar, self.decoder_dist)
coff = torch.abs(self.coff.weight).mean()
loss = (self.lag+1) * recon_loss + self.beta * kld_normal + self.gamma * recon_zt_ + self.alpha * coff
# loss = (self.lag+1) * recon_loss + self.beta * kld_normal
zt_recon = mu[:,-1,:].T.detach().cpu().numpy()
zt_true = batch["yt_"].squeeze().T.detach().cpu().numpy()
mcc = compute_mcc(zt_recon, zt_true, "Pearson")
self.log("val_mcc", mcc)
self.log("val_coff", coff)
self.log("val_elbo_loss", loss)
self.log("val_recon_zt_", recon_zt_)
self.log("val_recon_loss", recon_loss)
self.log("val_kld_normal", kld_normal)
return loss
def sample(self, xt):
batch_size = xt.shape[0]
e = torch.randn(batch_size, self.z_dim).to(xt.device)
eps, _ = self.spline.inverse(e)
return eps
def reconstruct(self):
return self.forward(batch)[0]
def configure_optimizers(self):
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=self.lr)
# An scheduler is optional, but can help in flows to get the last bpd improvement
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.99)
return [optimizer], [scheduler]
|
[
"numpy.sqrt",
"numpy.log",
"torch.sqrt",
"torch.exp",
"torch.nn.functional.sigmoid",
"torch.sum",
"torch.eye",
"torch.zeros_like",
"torch.randn",
"torch.ones_like",
"torch.abs",
"torch.nn.functional.mse_loss",
"torch.nn.LeakyReLU",
"torch.distributions.laplace.Laplace",
"torch.norm",
"torch.cat",
"torch.log",
"torch.optim.lr_scheduler.StepLR",
"torch.nn.Linear",
"torch.distributions.MultivariateNormal",
"torch.zeros",
"torch.nn.functional.binary_cross_entropy_with_logits"
] |
[((1386, 1423), 'torch.norm', 'torch.norm', (['diff'], {'dim': '(1)', 'keepdim': '(True)'}), '(diff, dim=1, keepdim=True)\n', (1396, 1423), False, 'import torch\n'), ((1550, 1565), 'torch.abs', 'torch.abs', (['diff'], {}), '(diff)\n', (1559, 1565), False, 'import torch\n'), ((2875, 2898), 'torch.nn.Linear', 'nn.Linear', (['z_dim', 'z_dim'], {}), '(z_dim, z_dim)\n', (2884, 2898), True, 'import torch.nn as nn\n'), ((3631, 3692), 'torch.distributions.MultivariateNormal', 'D.MultivariateNormal', (['self.base_dist_mean', 'self.base_dist_var'], {}), '(self.base_dist_mean, self.base_dist_var)\n', (3651, 3692), True, 'import torch.distributions as D\n'), ((3822, 3849), 'torch.cat', 'torch.cat', (['(xt, xt_)'], {'dim': '(1)'}), '((xt, xt_), dim=1)\n', (3831, 3849), False, 'import torch\n'), ((4003, 4020), 'torch.exp', 'torch.exp', (['logvar'], {}), '(logvar)\n', (4012, 4020), False, 'import torch\n'), ((4038, 4053), 'torch.sqrt', 'torch.sqrt', (['var'], {}), '(var)\n', (4048, 4053), False, 'import torch\n'), ((4458, 4485), 'torch.cat', 'torch.cat', (['(xt, xt_)'], {'dim': '(1)'}), '((xt, xt_), dim=1)\n', (4467, 4485), False, 'import torch\n'), ((7517, 7544), 'torch.cat', 'torch.cat', (['(xt, xt_)'], {'dim': '(1)'}), '((xt, xt_), dim=1)\n', (7526, 7544), False, 'import torch\n'), ((10323, 10380), 'torch.optim.lr_scheduler.StepLR', 'torch.optim.lr_scheduler.StepLR', (['optimizer', '(1)'], {'gamma': '(0.99)'}), '(optimizer, 1, gamma=0.99)\n', (10354, 10380), False, 'import torch\n'), ((1121, 1139), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (1128, 1139), True, 'import numpy as np\n'), ((1204, 1228), 'numpy.log', 'np.log', (['(2 * np.pi * np.e)'], {}), '(2 * np.pi * np.e)\n', (1210, 1228), True, 'import numpy as np\n'), ((2667, 2690), 'torch.nn.Linear', 'nn.Linear', (['z_dim', 'z_dim'], {}), '(z_dim, z_dim)\n', (2676, 2690), True, 'import torch.nn as nn\n'), ((2725, 2742), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {}), '(0.2)\n', (2737, 2742), True, 'import torch.nn as nn\n'), ((2777, 2800), 'torch.nn.Linear', 'nn.Linear', (['z_dim', 'z_dim'], {}), '(z_dim, z_dim)\n', (2786, 2800), True, 'import torch.nn as nn\n'), ((2835, 2852), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {}), '(0.2)\n', (2847, 2852), True, 'import torch.nn as nn\n'), ((3476, 3497), 'torch.eye', 'torch.eye', (['self.z_dim'], {}), '(self.z_dim)\n', (3485, 3497), False, 'import torch\n'), ((3547, 3570), 'torch.zeros', 'torch.zeros', (['self.z_dim'], {}), '(self.z_dim)\n', (3558, 3570), False, 'import torch\n'), ((5059, 5080), 'torch.zeros_like', 'torch.zeros_like', (['mut'], {}), '(mut)\n', (5075, 5080), False, 'import torch\n'), ((5082, 5106), 'torch.ones_like', 'torch.ones_like', (['logvart'], {}), '(logvart)\n', (5097, 5106), False, 'import torch\n'), ((5136, 5158), 'torch.exp', 'torch.exp', (['(logvart / 2)'], {}), '(logvart / 2)\n', (5145, 5158), False, 'import torch\n'), ((8118, 8139), 'torch.zeros_like', 'torch.zeros_like', (['mut'], {}), '(mut)\n', (8134, 8139), False, 'import torch\n'), ((8141, 8165), 'torch.ones_like', 'torch.ones_like', (['logvart'], {}), '(logvart)\n', (8156, 8165), False, 'import torch\n'), ((8195, 8217), 'torch.exp', 'torch.exp', (['(logvart / 2)'], {}), '(logvart / 2)\n', (8204, 8217), False, 'import torch\n'), ((620, 686), 'torch.nn.functional.binary_cross_entropy_with_logits', 'F.binary_cross_entropy_with_logits', (['x_recon', 'x'], {'size_average': '(False)'}), '(x_recon, x, size_average=False)\n', (654, 686), True, 'from torch.nn import functional as F\n'), ((896, 914), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['x_recon'], {}), '(x_recon)\n', (905, 914), True, 'from torch.nn import functional as F\n'), ((1093, 1110), 'torch.exp', 'torch.exp', (['logvar'], {}), '(logvar)\n', (1102, 1110), False, 'import torch\n'), ((3333, 3354), 'torch.randn', 'torch.randn', (['(1)', 'z_dim'], {}), '(1, z_dim)\n', (3344, 3354), False, 'import torch\n'), ((6132, 6159), 'torch.abs', 'torch.abs', (['self.coff.weight'], {}), '(self.coff.weight)\n', (6141, 6159), False, 'import torch\n'), ((9128, 9155), 'torch.abs', 'torch.abs', (['self.coff.weight'], {}), '(self.coff.weight)\n', (9137, 9155), False, 'import torch\n'), ((9888, 9923), 'torch.randn', 'torch.randn', (['batch_size', 'self.z_dim'], {}), '(batch_size, self.z_dim)\n', (9899, 9923), False, 'import torch\n'), ((779, 821), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['x_recon', 'x'], {'size_average': '(False)'}), '(x_recon, x, size_average=False)\n', (789, 821), True, 'from torch.nn import functional as F\n'), ((4070, 4095), 'torch.log', 'torch.log', (['(rate_prior / 2)'], {}), '(rate_prior / 2)\n', (4079, 4095), False, 'import torch\n'), ((4155, 4188), 'torch.exp', 'torch.exp', (['(-mean ** 2 / (2 * var))'], {}), '(-mean ** 2 / (2 * var))\n', (4164, 4188), False, 'import torch\n'), ((5326, 5355), 'torch.sum', 'torch.sum', (['kld_normal'], {'dim': '(-1)'}), '(kld_normal, dim=-1)\n', (5335, 5355), False, 'import torch\n'), ((8385, 8414), 'torch.sum', 'torch.sum', (['kld_normal'], {'dim': '(-1)'}), '(kld_normal, dim=-1)\n', (8394, 8414), False, 'import torch\n'), ((937, 979), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['x_recon', 'x'], {'size_average': '(False)'}), '(x_recon, x, size_average=False)\n', (947, 979), True, 'from torch.nn import functional as F\n'), ((4134, 4152), 'numpy.sqrt', 'np.sqrt', (['(2 / np.pi)'], {}), '(2 / np.pi)\n', (4141, 4152), True, 'import numpy as np\n'), ((5595, 5616), 'torch.randn', 'torch.randn', (['zt.shape'], {}), '(zt.shape)\n', (5606, 5616), False, 'import torch\n'), ((8591, 8612), 'torch.randn', 'torch.randn', (['zt.shape'], {}), '(zt.shape)\n', (8602, 8612), False, 'import torch\n'), ((5881, 5922), 'torch.distributions.laplace.Laplace', 'torch.distributions.laplace.Laplace', (['(0)', '(1)'], {}), '(0, 1)\n', (5916, 5922), False, 'import torch\n'), ((8877, 8918), 'torch.distributions.laplace.Laplace', 'torch.distributions.laplace.Laplace', (['(0)', '(1)'], {}), '(0, 1)\n', (8912, 8918), False, 'import torch\n')]
|
import openmoc
import openmc.openmoc_compatible
import openmc.mgxs
import numpy as np
import matplotlib
# Enable Matplotib to work for headless nodes
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
opts = openmoc.options.Options()
openmoc.log.set_log_level('NORMAL')
###############################################################################
# Eigenvalue Calculation w/o SPH Factors
###############################################################################
# Initialize 2-group OpenMC multi-group cross section library for a pin cell
mgxs_lib = openmc.mgxs.Library.load_from_file(filename='mgxs', directory='.')
# Create an OpenMOC Geometry from the OpenMOC Geometry
openmoc_geometry = \
openmc.openmoc_compatible.get_openmoc_geometry(mgxs_lib.geometry)
# Load cross section data
openmoc_materials = \
openmoc.materialize.load_openmc_mgxs_lib(mgxs_lib, openmoc_geometry)
# Initialize FSRs
openmoc_geometry.initializeFlatSourceRegions()
# Initialize an OpenMOC TrackGenerator
track_generator = openmoc.TrackGenerator(
openmoc_geometry, opts.num_azim, opts.azim_spacing)
track_generator.generateTracks()
# Initialize an OpenMOC Solver
solver = openmoc.CPUSolver(track_generator)
solver.setConvergenceThreshold(opts.tolerance)
solver.setNumThreads(opts.num_omp_threads)
# Run an eigenvalue calulation with the MGXS from OpenMC
solver.computeEigenvalue(opts.max_iters)
solver.printTimerReport()
keff_no_sph = solver.getKeff()
# Extract the OpenMOC scalar fluxes
fluxes_no_sph = openmoc.process.get_scalar_fluxes(solver)
###############################################################################
# Eigenvalue Calculation with SPH Factors
###############################################################################
# Compute SPH factors
sph, sph_mgxs_lib, sph_indices = \
openmoc.materialize.compute_sph_factors(
mgxs_lib, azim_spacing=opts.azim_spacing,
num_azim=opts.num_azim, num_threads=opts.num_omp_threads)
# Load the SPH-corrected MGXS library data
materials = \
openmoc.materialize.load_openmc_mgxs_lib(sph_mgxs_lib, openmoc_geometry)
# Run an eigenvalue calculation with the SPH-corrected modified MGXS library
solver.computeEigenvalue(opts.max_iters)
solver.printTimerReport()
keff_with_sph = solver.getKeff()
# Report the OpenMC and OpenMOC eigenvalues
openmoc.log.py_printf('RESULT', 'OpenMOC keff w/o SPH: \t%1.5f', keff_no_sph)
openmoc.log.py_printf('RESULT', 'OpenMOC keff w/ SPH: \t%1.5f', keff_with_sph)
openmoc.log.py_printf('RESULT', 'OpenMC keff: \t\t1.17574 +/- 0.00086')
###############################################################################
# Extracting Scalar Fluxes
###############################################################################
openmoc.log.py_printf('NORMAL', 'Plotting data...')
# Plot the cells
openmoc.plotter.plot_cells(openmoc_geometry)
# Extract the OpenMOC scalar fluxes
fluxes_sph = openmoc.process.get_scalar_fluxes(solver)
fluxes_sph *= sph
# Extract the OpenMC scalar fluxes
num_fsrs = openmoc_geometry.getNumFSRs()
num_groups = openmoc_geometry.getNumEnergyGroups()
openmc_fluxes = np.zeros((num_fsrs, num_groups), dtype=np.float64)
nufission_xs = np.zeros((num_fsrs, num_groups), dtype=np.float64)
# Get the OpenMC flux in each FSR
for fsr in range(num_fsrs):
# Find the OpenMOC cell and volume for this FSR
openmoc_cell = openmoc_geometry.findCellContainingFSR(fsr)
cell_id = openmoc_cell.getId()
fsr_volume = track_generator.getFSRVolume(fsr)
# Store the volume-averaged flux
mgxs = mgxs_lib.get_mgxs(cell_id, 'nu-fission')
flux = mgxs.tallies['flux'].mean.flatten()
flux = np.flipud(flux) / fsr_volume
openmc_fluxes[fsr, :] = flux
nufission_xs[fsr, :] = mgxs.get_xs(nuclide='all')
# Extract energy group edges
group_edges = mgxs_lib.energy_groups.group_edges
group_edges += 1e-3 # Adjust lower bound to 1e-3 eV (for loglog scaling)
# Compute difference in energy bounds for each group
group_edges = np.flipud(group_edges)
# Normalize fluxes with the fission source
openmc_fluxes /= np.sum(openmc_fluxes * nufission_xs)
fluxes_sph /= np.sum(fluxes_sph * nufission_xs)
fluxes_no_sph /= np.sum(fluxes_no_sph * nufission_xs)
###############################################################################
# Plot the OpenMC, OpenMOC Scalar Fluxes
###############################################################################
# Extend the mgxs values array for matplotlib's step plot of fluxes
openmc_fluxes = np.insert(openmc_fluxes, 0, openmc_fluxes[:,0], axis=1)
fluxes_no_sph = np.insert(fluxes_no_sph, 0, fluxes_no_sph[:,0], axis=1)
fluxes_sph = np.insert(fluxes_sph, 0, fluxes_sph[:,0], axis=1)
# Plot OpenMOC and OpenMC fluxes in each FSR
for fsr in range(num_fsrs):
# Get the OpenMOC cell and material for this FSR
cell = openmoc_geometry.findCellContainingFSR(fsr)
material_name = cell.getFillMaterial().getName()
# Create a step plot for the MGXS
fig = plt.figure()
plt.plot(group_edges, openmc_fluxes[fsr,:],
drawstyle='steps', color='r', linewidth=2)
plt.plot(group_edges, fluxes_no_sph[fsr,:],
drawstyle='steps', color='b', linewidth=2)
plt.plot(group_edges, fluxes_sph[fsr,:],
drawstyle='steps', color='g', linewidth=2)
plt.yscale('log')
plt.xscale('log')
plt.xlabel('Energy [eV]')
plt.ylabel('Flux')
plt.title('Normalized Flux ({0})'.format(material_name))
plt.xlim((min(group_edges), max(group_edges)))
plt.legend(['openmc', 'openmoc w/o sph', 'openmoc w/ sph'], loc='best')
plt.grid()
filename = 'plots/flux-{0}.png'.format(material_name.replace(' ', '-'))
plt.savefig(filename, bbox_inches='tight')
plt.close()
###############################################################################
# Plot OpenMC-to-OpenMOC Scalar Flux Errors
###############################################################################
# Compute the percent relative error in the flux
rel_err_no_sph = np.zeros(openmc_fluxes.shape)
rel_err_sph = np.zeros(openmc_fluxes.shape)
for fsr in range(num_fsrs):
delta_flux_no_sph = fluxes_no_sph[fsr,:] - openmc_fluxes[fsr,:]
delta_flux_sph = fluxes_sph[fsr,:] - openmc_fluxes[fsr,:]
rel_err_no_sph[fsr,:] = delta_flux_no_sph / openmc_fluxes[fsr,:] * 100.
rel_err_sph[fsr,:] = delta_flux_sph / openmc_fluxes[fsr,:] * 100.
# Plot OpenMOC relative flux errors in each FSR
for fsr in range(num_fsrs):
# Get the OpenMOC cell and material for this FSR
cell = openmoc_geometry.findCellContainingFSR(fsr)
material_name = cell.getFillMaterial().getName()
# Create a step plot for the MGXS
fig = plt.figure()
plt.plot(group_edges, rel_err_no_sph[fsr,:],
drawstyle='steps', color='r', linewidth=2)
plt.plot(group_edges, rel_err_sph[fsr,:],
drawstyle='steps', color='b', linewidth=2)
plt.xscale('log')
plt.xlabel('Energy [eV]')
plt.ylabel('Relative Error [%]')
plt.title('OpenMOC-to-OpenMC Flux Rel. Err. ({0})'.format(material_name))
plt.xlim((min(group_edges), max(group_edges)))
plt.legend(['openmoc w/o sph', 'openmoc w/ sph'], loc='best')
plt.grid()
filename = 'plots/rel-err-{0}.png'.format(material_name.replace(' ', '-'))
plt.savefig(filename, bbox_inches='tight')
plt.close()
|
[
"matplotlib.pyplot.grid",
"openmoc.plotter.plot_cells",
"matplotlib.pyplot.ylabel",
"openmoc.materialize.compute_sph_factors",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.close",
"openmoc.log.set_log_level",
"matplotlib.pyplot.yscale",
"openmoc.options.Options",
"matplotlib.pyplot.savefig",
"numpy.flipud",
"matplotlib.use",
"matplotlib.pyplot.ioff",
"openmoc.log.py_printf",
"matplotlib.pyplot.legend",
"numpy.insert",
"openmoc.TrackGenerator",
"openmoc.CPUSolver",
"numpy.sum",
"numpy.zeros",
"matplotlib.pyplot.figure",
"openmoc.materialize.load_openmc_mgxs_lib",
"matplotlib.pyplot.xscale",
"openmoc.process.get_scalar_fluxes"
] |
[((152, 173), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (166, 173), False, 'import matplotlib\n'), ((206, 216), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (214, 216), True, 'import matplotlib.pyplot as plt\n'), ((226, 251), 'openmoc.options.Options', 'openmoc.options.Options', ([], {}), '()\n', (249, 251), False, 'import openmoc\n'), ((252, 287), 'openmoc.log.set_log_level', 'openmoc.log.set_log_level', (['"""NORMAL"""'], {}), "('NORMAL')\n", (277, 287), False, 'import openmoc\n'), ((863, 931), 'openmoc.materialize.load_openmc_mgxs_lib', 'openmoc.materialize.load_openmc_mgxs_lib', (['mgxs_lib', 'openmoc_geometry'], {}), '(mgxs_lib, openmoc_geometry)\n', (903, 931), False, 'import openmoc\n'), ((1056, 1130), 'openmoc.TrackGenerator', 'openmoc.TrackGenerator', (['openmoc_geometry', 'opts.num_azim', 'opts.azim_spacing'], {}), '(openmoc_geometry, opts.num_azim, opts.azim_spacing)\n', (1078, 1130), False, 'import openmoc\n'), ((1210, 1244), 'openmoc.CPUSolver', 'openmoc.CPUSolver', (['track_generator'], {}), '(track_generator)\n', (1227, 1244), False, 'import openmoc\n'), ((1544, 1585), 'openmoc.process.get_scalar_fluxes', 'openmoc.process.get_scalar_fluxes', (['solver'], {}), '(solver)\n', (1577, 1585), False, 'import openmoc\n'), ((1867, 2011), 'openmoc.materialize.compute_sph_factors', 'openmoc.materialize.compute_sph_factors', (['mgxs_lib'], {'azim_spacing': 'opts.azim_spacing', 'num_azim': 'opts.num_azim', 'num_threads': 'opts.num_omp_threads'}), '(mgxs_lib, azim_spacing=opts.\n azim_spacing, num_azim=opts.num_azim, num_threads=opts.num_omp_threads)\n', (1906, 2011), False, 'import openmoc\n'), ((2086, 2158), 'openmoc.materialize.load_openmc_mgxs_lib', 'openmoc.materialize.load_openmc_mgxs_lib', (['sph_mgxs_lib', 'openmoc_geometry'], {}), '(sph_mgxs_lib, openmoc_geometry)\n', (2126, 2158), False, 'import openmoc\n'), ((2382, 2459), 'openmoc.log.py_printf', 'openmoc.log.py_printf', (['"""RESULT"""', '"""OpenMOC keff w/o SPH: \t%1.5f"""', 'keff_no_sph'], {}), "('RESULT', 'OpenMOC keff w/o SPH: \\t%1.5f', keff_no_sph)\n", (2403, 2459), False, 'import openmoc\n'), ((2460, 2538), 'openmoc.log.py_printf', 'openmoc.log.py_printf', (['"""RESULT"""', '"""OpenMOC keff w/ SPH: \t%1.5f"""', 'keff_with_sph'], {}), "('RESULT', 'OpenMOC keff w/ SPH: \\t%1.5f', keff_with_sph)\n", (2481, 2538), False, 'import openmoc\n'), ((2539, 2610), 'openmoc.log.py_printf', 'openmoc.log.py_printf', (['"""RESULT"""', '"""OpenMC keff: \t\t1.17574 +/- 0.00086"""'], {}), "('RESULT', 'OpenMC keff: \\t\\t1.17574 +/- 0.00086')\n", (2560, 2610), False, 'import openmoc\n'), ((2825, 2876), 'openmoc.log.py_printf', 'openmoc.log.py_printf', (['"""NORMAL"""', '"""Plotting data..."""'], {}), "('NORMAL', 'Plotting data...')\n", (2846, 2876), False, 'import openmoc\n'), ((2895, 2939), 'openmoc.plotter.plot_cells', 'openmoc.plotter.plot_cells', (['openmoc_geometry'], {}), '(openmoc_geometry)\n', (2921, 2939), False, 'import openmoc\n'), ((2990, 3031), 'openmoc.process.get_scalar_fluxes', 'openmoc.process.get_scalar_fluxes', (['solver'], {}), '(solver)\n', (3023, 3031), False, 'import openmoc\n'), ((3194, 3244), 'numpy.zeros', 'np.zeros', (['(num_fsrs, num_groups)'], {'dtype': 'np.float64'}), '((num_fsrs, num_groups), dtype=np.float64)\n', (3202, 3244), True, 'import numpy as np\n'), ((3260, 3310), 'numpy.zeros', 'np.zeros', (['(num_fsrs, num_groups)'], {'dtype': 'np.float64'}), '((num_fsrs, num_groups), dtype=np.float64)\n', (3268, 3310), True, 'import numpy as np\n'), ((4064, 4086), 'numpy.flipud', 'np.flipud', (['group_edges'], {}), '(group_edges)\n', (4073, 4086), True, 'import numpy as np\n'), ((4148, 4184), 'numpy.sum', 'np.sum', (['(openmc_fluxes * nufission_xs)'], {}), '(openmc_fluxes * nufission_xs)\n', (4154, 4184), True, 'import numpy as np\n'), ((4199, 4232), 'numpy.sum', 'np.sum', (['(fluxes_sph * nufission_xs)'], {}), '(fluxes_sph * nufission_xs)\n', (4205, 4232), True, 'import numpy as np\n'), ((4250, 4286), 'numpy.sum', 'np.sum', (['(fluxes_no_sph * nufission_xs)'], {}), '(fluxes_no_sph * nufission_xs)\n', (4256, 4286), True, 'import numpy as np\n'), ((4591, 4647), 'numpy.insert', 'np.insert', (['openmc_fluxes', '(0)', 'openmc_fluxes[:, 0]'], {'axis': '(1)'}), '(openmc_fluxes, 0, openmc_fluxes[:, 0], axis=1)\n', (4600, 4647), True, 'import numpy as np\n'), ((4663, 4719), 'numpy.insert', 'np.insert', (['fluxes_no_sph', '(0)', 'fluxes_no_sph[:, 0]'], {'axis': '(1)'}), '(fluxes_no_sph, 0, fluxes_no_sph[:, 0], axis=1)\n', (4672, 4719), True, 'import numpy as np\n'), ((4732, 4782), 'numpy.insert', 'np.insert', (['fluxes_sph', '(0)', 'fluxes_sph[:, 0]'], {'axis': '(1)'}), '(fluxes_sph, 0, fluxes_sph[:, 0], axis=1)\n', (4741, 4782), True, 'import numpy as np\n'), ((6118, 6147), 'numpy.zeros', 'np.zeros', (['openmc_fluxes.shape'], {}), '(openmc_fluxes.shape)\n', (6126, 6147), True, 'import numpy as np\n'), ((6162, 6191), 'numpy.zeros', 'np.zeros', (['openmc_fluxes.shape'], {}), '(openmc_fluxes.shape)\n', (6170, 6191), True, 'import numpy as np\n'), ((5067, 5079), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5077, 5079), True, 'import matplotlib.pyplot as plt\n'), ((5084, 5175), 'matplotlib.pyplot.plot', 'plt.plot', (['group_edges', 'openmc_fluxes[fsr, :]'], {'drawstyle': '"""steps"""', 'color': '"""r"""', 'linewidth': '(2)'}), "(group_edges, openmc_fluxes[fsr, :], drawstyle='steps', color='r',\n linewidth=2)\n", (5092, 5175), True, 'import matplotlib.pyplot as plt\n'), ((5188, 5279), 'matplotlib.pyplot.plot', 'plt.plot', (['group_edges', 'fluxes_no_sph[fsr, :]'], {'drawstyle': '"""steps"""', 'color': '"""b"""', 'linewidth': '(2)'}), "(group_edges, fluxes_no_sph[fsr, :], drawstyle='steps', color='b',\n linewidth=2)\n", (5196, 5279), True, 'import matplotlib.pyplot as plt\n'), ((5292, 5380), 'matplotlib.pyplot.plot', 'plt.plot', (['group_edges', 'fluxes_sph[fsr, :]'], {'drawstyle': '"""steps"""', 'color': '"""g"""', 'linewidth': '(2)'}), "(group_edges, fluxes_sph[fsr, :], drawstyle='steps', color='g',\n linewidth=2)\n", (5300, 5380), True, 'import matplotlib.pyplot as plt\n'), ((5394, 5411), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (5404, 5411), True, 'import matplotlib.pyplot as plt\n'), ((5416, 5433), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (5426, 5433), True, 'import matplotlib.pyplot as plt\n'), ((5438, 5463), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Energy [eV]"""'], {}), "('Energy [eV]')\n", (5448, 5463), True, 'import matplotlib.pyplot as plt\n'), ((5468, 5486), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flux"""'], {}), "('Flux')\n", (5478, 5486), True, 'import matplotlib.pyplot as plt\n'), ((5603, 5674), 'matplotlib.pyplot.legend', 'plt.legend', (["['openmc', 'openmoc w/o sph', 'openmoc w/ sph']"], {'loc': '"""best"""'}), "(['openmc', 'openmoc w/o sph', 'openmoc w/ sph'], loc='best')\n", (5613, 5674), True, 'import matplotlib.pyplot as plt\n'), ((5679, 5689), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (5687, 5689), True, 'import matplotlib.pyplot as plt\n'), ((5770, 5812), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {'bbox_inches': '"""tight"""'}), "(filename, bbox_inches='tight')\n", (5781, 5812), True, 'import matplotlib.pyplot as plt\n'), ((5817, 5828), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5826, 5828), True, 'import matplotlib.pyplot as plt\n'), ((6786, 6798), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6796, 6798), True, 'import matplotlib.pyplot as plt\n'), ((6803, 6895), 'matplotlib.pyplot.plot', 'plt.plot', (['group_edges', 'rel_err_no_sph[fsr, :]'], {'drawstyle': '"""steps"""', 'color': '"""r"""', 'linewidth': '(2)'}), "(group_edges, rel_err_no_sph[fsr, :], drawstyle='steps', color='r',\n linewidth=2)\n", (6811, 6895), True, 'import matplotlib.pyplot as plt\n'), ((6908, 6997), 'matplotlib.pyplot.plot', 'plt.plot', (['group_edges', 'rel_err_sph[fsr, :]'], {'drawstyle': '"""steps"""', 'color': '"""b"""', 'linewidth': '(2)'}), "(group_edges, rel_err_sph[fsr, :], drawstyle='steps', color='b',\n linewidth=2)\n", (6916, 6997), True, 'import matplotlib.pyplot as plt\n'), ((7011, 7028), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (7021, 7028), True, 'import matplotlib.pyplot as plt\n'), ((7033, 7058), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Energy [eV]"""'], {}), "('Energy [eV]')\n", (7043, 7058), True, 'import matplotlib.pyplot as plt\n'), ((7063, 7095), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Relative Error [%]"""'], {}), "('Relative Error [%]')\n", (7073, 7095), True, 'import matplotlib.pyplot as plt\n'), ((7229, 7290), 'matplotlib.pyplot.legend', 'plt.legend', (["['openmoc w/o sph', 'openmoc w/ sph']"], {'loc': '"""best"""'}), "(['openmoc w/o sph', 'openmoc w/ sph'], loc='best')\n", (7239, 7290), True, 'import matplotlib.pyplot as plt\n'), ((7295, 7305), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (7303, 7305), True, 'import matplotlib.pyplot as plt\n'), ((7389, 7431), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {'bbox_inches': '"""tight"""'}), "(filename, bbox_inches='tight')\n", (7400, 7431), True, 'import matplotlib.pyplot as plt\n'), ((7436, 7447), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7445, 7447), True, 'import matplotlib.pyplot as plt\n'), ((3724, 3739), 'numpy.flipud', 'np.flipud', (['flux'], {}), '(flux)\n', (3733, 3739), True, 'import numpy as np\n')]
|
from sklearn.cluster import KMeans
import cv2
import PIL
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib import image as img1
import pandas as pd
from scipy.cluster.vq import whiten
import os
class DominantColors:
CLUSTERS = None
IMAGEPATH = None
IMAGE = None
COLORS = None
LABELS = None
BASEWIDTH = 256
def __init__(self, image, clusters=3):
self.CLUSTERS = clusters
self.IMAGEPATH = image
def dominantColors(self):
# read image
img = cv2.imread(self.IMAGEPATH)
# resize image
imgh, imgw, _ = img.shape
wpercent = (self.BASEWIDTH / float(imgw))
hsize = int((float(imgh) * float(wpercent)))
img = cv2.resize(img, (self.BASEWIDTH, hsize), PIL.Image.ANTIALIAS)
# convert to rgb from bgr
img = cv2.cvtColor(img, cv2.COLOR_RGB2Luv)
# reshaping to a list of pixels
img = img.reshape((img.shape[0] * img.shape[1], 3))
# save image after operations
self.IMAGE = img
# using k-means to cluster pixels
kmeans = KMeans(n_clusters=self.CLUSTERS)
kmeans.fit(img)
# the cluster centers are our dominant colors.
self.COLORS = kmeans.cluster_centers_
# save labels
self.LABELS = kmeans.labels_
# returning after converting to integer from float
return self.COLORS.astype(int)
def rgb_to_hex(self, rgb):
return '#%02x%02x%02x' % (int(rgb[0]), int(rgb[1]), int(rgb[2]))
def analyseRGB(self):
r = []
g = []
b = []
image = img1.imread(self.IMAGEPATH)
for line in image:
for pixel in line:
# print(pixel)
temp_r, temp_g, temp_b = pixel
r.append(temp_r)
g.append(temp_g)
b.append(temp_b)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(r, g, b)
plt.show()
df = pd.DataFrame({'red': r, 'blue': b, 'green': g})
df['scaled_red'] = whiten(df['red'])
df['scaled_blue'] = whiten(df['blue'])
df['scaled_green'] = whiten(df['green'])
df.sample(n=10)
from scipy.cluster.vq import kmeans
cluster_centers, distortion = kmeans(df[['scaled_red', 'scaled_green', 'scaled_blue']], 2)
print(cluster_centers)
colors = []
r_std, g_std, b_std = df[['red', 'green', 'blue']].std()
for cluster_center in cluster_centers:
scaled_r, scaled_g, scaled_b = cluster_center
colors.append((scaled_r * r_std / 255, scaled_g * g_std / 255, scaled_b * b_std / 255))
plt.imshow([colors])
plt.show()
def plotClusters(self):
# plotting
fig = plt.figure()
ax = Axes3D(fig)
for label, pix in zip(self.LABELS, self.IMAGE):
ax.scatter(pix[0], pix[1], pix[2], color=self.rgb_to_hex(self.COLORS[label]))
plt.show()
def plotHistogram(self):
# labels form 0 to no. of clusters
numLabels = np.arange(0, self.CLUSTERS + 1)
# create frequency count tables
(hist, _) = np.histogram(self.LABELS, bins=numLabels)
hist = hist.astype("float")
hist /= hist.sum()
# appending frequencies to cluster centers
colors = self.COLORS
# descending order sorting as per frequency count
colors = colors[(-hist).argsort()]
hist = hist[(-hist).argsort()]
# creating empty chart
chart = np.zeros((50, 500, 3), np.uint8)
start = 0
# creating color rectangles
for i in range(self.CLUSTERS):
end = start + hist[i] * 500
# getting rgb values
r = colors[i][0]
g = colors[i][1]
b = colors[i][2]
# using cv2.rectangle to plot colors
cv2.rectangle(chart, (int(start), 0), (int(end), 50), (r, g, b), -1)
start = end
# display chart
plt.figure()
plt.axis("off")
plt.imshow(chart)
plt.show()
def _main_():
clusters = 8
for img in sorted(os.listdir('output\\predicted\\')):
print(img)
dc = DominantColors('..\\..\\data\\output\\predicted\\{0}'.format(img), clusters)
colors = dc.dominantColors()
dc.analyseRGB()
if __name__ == '__main__':
_main_()
|
[
"sklearn.cluster.KMeans",
"matplotlib.pyplot.imshow",
"numpy.histogram",
"scipy.cluster.vq.kmeans",
"os.listdir",
"cv2.resize",
"numpy.arange",
"matplotlib.image.imread",
"scipy.cluster.vq.whiten",
"matplotlib.pyplot.figure",
"numpy.zeros",
"cv2.cvtColor",
"pandas.DataFrame",
"matplotlib.pyplot.axis",
"scipy.cluster.vq.kmeans.fit",
"cv2.imread",
"mpl_toolkits.mplot3d.Axes3D",
"matplotlib.pyplot.show"
] |
[((564, 590), 'cv2.imread', 'cv2.imread', (['self.IMAGEPATH'], {}), '(self.IMAGEPATH)\n', (574, 590), False, 'import cv2\n'), ((766, 827), 'cv2.resize', 'cv2.resize', (['img', '(self.BASEWIDTH, hsize)', 'PIL.Image.ANTIALIAS'], {}), '(img, (self.BASEWIDTH, hsize), PIL.Image.ANTIALIAS)\n', (776, 827), False, 'import cv2\n'), ((877, 913), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2Luv'], {}), '(img, cv2.COLOR_RGB2Luv)\n', (889, 913), False, 'import cv2\n'), ((1139, 1171), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'self.CLUSTERS'}), '(n_clusters=self.CLUSTERS)\n', (1145, 1171), False, 'from sklearn.cluster import KMeans\n'), ((1180, 1195), 'scipy.cluster.vq.kmeans.fit', 'kmeans.fit', (['img'], {}), '(img)\n', (1190, 1195), False, 'from scipy.cluster.vq import kmeans\n'), ((1652, 1679), 'matplotlib.image.imread', 'img1.imread', (['self.IMAGEPATH'], {}), '(self.IMAGEPATH)\n', (1663, 1679), True, 'from matplotlib import image as img1\n'), ((1929, 1941), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1939, 1941), True, 'import matplotlib.pyplot as plt\n'), ((1955, 1966), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (1961, 1966), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((2003, 2013), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2011, 2013), True, 'import matplotlib.pyplot as plt\n'), ((2027, 2074), 'pandas.DataFrame', 'pd.DataFrame', (["{'red': r, 'blue': b, 'green': g}"], {}), "({'red': r, 'blue': b, 'green': g})\n", (2039, 2074), True, 'import pandas as pd\n'), ((2102, 2119), 'scipy.cluster.vq.whiten', 'whiten', (["df['red']"], {}), "(df['red'])\n", (2108, 2119), False, 'from scipy.cluster.vq import whiten\n'), ((2148, 2166), 'scipy.cluster.vq.whiten', 'whiten', (["df['blue']"], {}), "(df['blue'])\n", (2154, 2166), False, 'from scipy.cluster.vq import whiten\n'), ((2196, 2215), 'scipy.cluster.vq.whiten', 'whiten', (["df['green']"], {}), "(df['green'])\n", (2202, 2215), False, 'from scipy.cluster.vq import whiten\n'), ((2322, 2382), 'scipy.cluster.vq.kmeans', 'kmeans', (["df[['scaled_red', 'scaled_green', 'scaled_blue']]", '(2)'], {}), "(df[['scaled_red', 'scaled_green', 'scaled_blue']], 2)\n", (2328, 2382), False, 'from scipy.cluster.vq import kmeans\n'), ((2712, 2732), 'matplotlib.pyplot.imshow', 'plt.imshow', (['[colors]'], {}), '([colors])\n', (2722, 2732), True, 'import matplotlib.pyplot as plt\n'), ((2741, 2751), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2749, 2751), True, 'import matplotlib.pyplot as plt\n'), ((2815, 2827), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2825, 2827), True, 'import matplotlib.pyplot as plt\n'), ((2841, 2852), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (2847, 2852), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((3007, 3017), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3015, 3017), True, 'import matplotlib.pyplot as plt\n'), ((3112, 3143), 'numpy.arange', 'np.arange', (['(0)', '(self.CLUSTERS + 1)'], {}), '(0, self.CLUSTERS + 1)\n', (3121, 3143), True, 'import numpy as np\n'), ((3205, 3246), 'numpy.histogram', 'np.histogram', (['self.LABELS'], {'bins': 'numLabels'}), '(self.LABELS, bins=numLabels)\n', (3217, 3246), True, 'import numpy as np\n'), ((3580, 3612), 'numpy.zeros', 'np.zeros', (['(50, 500, 3)', 'np.uint8'], {}), '((50, 500, 3), np.uint8)\n', (3588, 3612), True, 'import numpy as np\n'), ((4060, 4072), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4070, 4072), True, 'import matplotlib.pyplot as plt\n'), ((4081, 4096), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4089, 4096), True, 'import matplotlib.pyplot as plt\n'), ((4105, 4122), 'matplotlib.pyplot.imshow', 'plt.imshow', (['chart'], {}), '(chart)\n', (4115, 4122), True, 'import matplotlib.pyplot as plt\n'), ((4131, 4141), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4139, 4141), True, 'import matplotlib.pyplot as plt\n'), ((4196, 4229), 'os.listdir', 'os.listdir', (['"""output\\\\predicted\\\\"""'], {}), "('output\\\\predicted\\\\')\n", (4206, 4229), False, 'import os\n')]
|
import torch
from torch import nn
import numpy as np
from models.AttentionLayer import AttentionLayer
from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch,\
BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP,\
BertMultiAttentionScoresP, BertAttentionClsQuery
from pytorch_transformers.modeling_bert import BertAttention, BertSelfAttention
from utils import visualize_attention
__author__ = "<NAME>"
class EmbracementLayer(nn.Module):
def __init__(self, config, hidden_size, p, max_seq_length):
super(EmbracementLayer, self).__init__()
self.p = p
self.hidden_size = hidden_size # 768
self.max_seq_length = max_seq_length # 128
if self.p == 'selfattention':
self.self_attention = SelfAttention(self.hidden_size) #self.max_seq_length) # AttentionLayer(self.hidden_size)
elif self.p == 'multihead_bertselfattention':
self.self_attention = BertSelfAttention(config)
elif self.p == 'multihead_bertselfattention_in_p':
config.num_attention_heads = 1
self.self_attention = BertSelfAttentionScoresP(config)
elif self.p == 'multihead_bertattention':
self.self_attention = BertAttention(config)
elif self.p == 'multihead_bertattention_clsquery':
config.output_attentions = True
self.self_attention = BertAttentionClsQuery(config, hidden_size)
self.softmax = nn.Softmax()
elif self.p == 'attention_clsquery':
self.self_attention = AttentionLayer(self.hidden_size)
elif self.p == 'attention_clsquery_weights':
self.self_attention = AttentionLayer(self.hidden_size, return_att_weights=True)
self.softmax = nn.Softmax(dim=-1)
elif self.p == 'multiheadattention':
config_att = config
config_att.output_attentions = True
self.self_attention = BertSelfAttentionScores(config_att)
elif self.p == 'selfattention_pytorch':
self.self_attention = SelfAttentionPytorch(self.max_seq_length) # 128
elif self.p == 'multiple_multihead_bertselfattention_in_p':
config.num_attention_heads = 1
self.self_attention = BertMultiSelfAttentionScoresP(config)
elif self.p == 'multiple_multihead_bertattention_in_p':
config.num_attention_heads = 1
config.output_attentions = True
self.self_attention = BertMultiAttentionScoresP(config, max_seq_length)
self.softmax = nn.Softmax(dim=-1)
def forward(self, output_tokens_from_bert, cls_token=None):
# pooled_enc_output = bs x 768
# output_tokens_from_bert = bert_output[0]
# cls_output = bert_output[1] # CLS
# Note: Docking layer not needed given that all features have the same size
# tokens_to_embrace = output_tokens_from_bert[:, 1:, :] # (8, 128, 768) = (bs, sequence_length (where the first index is CLS), embedding_size)
tokens_to_embrace = output_tokens_from_bert[:, :, :] # (8, 128, 768) = (bs, sequence_length, embedding_size)
[bs, seq_len, emb_size] = tokens_to_embrace.size()
tokens_to_embrace = tokens_to_embrace.cpu().detach().numpy()
# Note: Consider each token in the sequence of 128 as one modality.
embraced_features_token = []
for i_bs in range(bs):
# 1. Choose feature indexes to be considered in the Embrace vector
if self.p == 'multinomial':
# A. Multinomial distribution: randomly choose features from all 128 with same probability for each index feature
probability = torch.tensor(np.ones(seq_len), dtype=torch.float)
embraced_features_index = torch.multinomial(probability, emb_size, replacement=True) # shape = [768]
embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768
elif self.p == 'multihead_bertselfattention' or self.p == 'multihead_bertattention':
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
head_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
attention_mask = torch.zeros([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda()
#selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None)
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=head_mask)
selfattention_scores = selfattention_scores[0]
elif self.p == 'multihead_bertattention_clsquery':
print("TODO. Use cls_token - Come back to this")
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
cls_token_bs = cls_token[i_bs, :]
#cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).unsqueeze(0).cuda()
attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda()
cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0)
cls_token_bs = cls_token_bs.repeat(self.max_seq_length, 1)
cls_token_bs = cls_token_bs.unsqueeze(0).cuda()
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask, cls_query=cls_token_bs)
selfattention_scores = self.softmax(selfattention_scores[1])
print("")
elif self.p == 'attention_clsquery':
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
cls_token_bs = cls_token[i_bs, :]
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).cuda()
cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).cuda()
selfattention_scores = self.self_attention(cls_token_bs, tokens_to_embrace_bs_tensor, unsqueeze_idx=0)
selfattention_scores = selfattention_scores[0]
elif self.p == 'multiple_multihead_bertselfattention_in_p' or self.p == 'multiple_multihead_bertattention_in_p':
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda()
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask,
is_visualize_attention=False)
if self.p == 'multiple_multihead_bertattention_in_p':
selfattention_scores = selfattention_scores.squeeze()
selfattention_scores = self.softmax(selfattention_scores)
# Choose features using information from self-attention
multiple_embrace_vectors = []
for i in range(self.max_seq_length): # 128
score = selfattention_scores[i, :]
#attention_probs_img = score.unsqueeze(0).cpu().detach().numpy()
#visualize_attention(attention_probs_img)
embraced_features_index = torch.multinomial(score, emb_size, replacement=True) # shape = [768]
embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768
embraced_features_token_bs = []
for i_emb, e in enumerate(embraced_features_index):
embraced_features_token_bs.append(tokens_to_embrace[i_bs, e, i_emb])
multiple_embrace_vectors.append(embraced_features_token_bs)
multiple_embrace_vectors = torch.tensor(multiple_embrace_vectors, dtype=torch.float)
else:
# B. Self-attention used to choose most important indexes -> p = softmax(mean(self_att))
# 'selfattention_scores' shape -> (bs, 128)
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
# ADD THE NEXT 2 LINES TO CONDENSED
# attention_mask_bs = attention_mask[i_bs, :]
# _, selfattention_scores = self.self_attention(tokens_to_embrace_bs, attention_mask_bs)
# Original attention_mask ranges from 0 to -1000
# If we want to mask the scores by multiplying between 0 and 1, we should give the attention_mask
# as head_mask
if self.p == 'selfattention':
_, selfattention_scores = self.self_attention(tokens_to_embrace_bs)
elif self.p == 'attention_clsquery_weights':
tokens_to_embrace_bs = tokens_to_embrace[i_bs, :, :]
cls_token_bs = cls_token[i_bs, :]
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).cuda()
cls_token_bs = torch.tensor(cls_token_bs, dtype=torch.float).unsqueeze(0).cuda()
selfattention_scores = self.self_attention(cls_token_bs, tokens_to_embrace_bs_tensor, unsqueeze_idx=0)
selfattention_scores = selfattention_scores[1]
selfattention_scores = self.softmax(selfattention_scores).squeeze()
elif self.p == 'multiheadattention': # BertAttention
attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda()
#selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None)
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask)
elif self.p == 'multihead_bertselfattention_in_p':
attention_mask = torch.ones([1, 1, 1, np.shape(tokens_to_embrace_bs)[0]]).cuda()
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(0).cuda()
#selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, attention_mask, head_mask=None)
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor, head_mask=attention_mask)
else: # 'selfattention_pytorch'
tokens_to_embrace_bs_tensor = torch.tensor(tokens_to_embrace_bs, dtype=torch.float).unsqueeze(
0).cuda()
selfattention_scores = self.self_attention(tokens_to_embrace_bs_tensor)
# Choose features using information from self-attention
selfattention_scores = torch.tensor(selfattention_scores, dtype=torch.float)
embraced_features_index = torch.multinomial(selfattention_scores, emb_size, replacement=True) # shape = [768]
embraced_features_index = embraced_features_index.cpu().detach().numpy() # shape = 768
# 2. Add features into one of size (bs, embedding_size)
embraced_features_token_bs = []
if self.p == 'multihead_bertselfattention' or self.p == 'multihead_bertattention':
embraced_features_index = torch.sum(selfattention_scores, dim=1)
embraced_features_token_bs = embraced_features_index.squeeze()
embraced_features_token_bs = embraced_features_token_bs.cpu().detach().numpy()
elif self.p == 'multiple_multihead_bertselfattention_in_p' or self.p == 'multiple_multihead_bertattention_in_p':
embraced_features_token_bs = torch.sum(multiple_embrace_vectors, dim=0)
embraced_features_token_bs = embraced_features_token_bs.squeeze()
embraced_features_token_bs = embraced_features_token_bs.cpu().detach().numpy()
elif self.p == 'attention_clsquery':
embraced_features_token_bs = selfattention_scores.cpu().detach().numpy()
else:
for i_emb, e in enumerate(embraced_features_index):
embraced_features_token_bs.append(tokens_to_embrace[i_bs, e, i_emb])
embraced_features_token.append(embraced_features_token_bs) # (768)
embraced_features_token = torch.tensor(embraced_features_token, dtype=torch.float) # (bs, 768)
return embraced_features_token
|
[
"models.SelfAttentionLayer.BertAttentionClsQuery",
"models.SelfAttentionLayer.SelfAttentionPytorch",
"torch.multinomial",
"numpy.ones",
"torch.nn.Softmax",
"models.SelfAttentionLayer.BertMultiAttentionScoresP",
"models.AttentionLayer.AttentionLayer",
"models.SelfAttentionLayer.BertMultiSelfAttentionScoresP",
"models.SelfAttentionLayer.BertSelfAttentionScores",
"torch.tensor",
"pytorch_transformers.modeling_bert.BertSelfAttention",
"torch.sum",
"pytorch_transformers.modeling_bert.BertAttention",
"models.SelfAttentionLayer.BertSelfAttentionScoresP",
"numpy.shape",
"models.SelfAttentionLayer.SelfAttention"
] |
[((12737, 12793), 'torch.tensor', 'torch.tensor', (['embraced_features_token'], {'dtype': 'torch.float'}), '(embraced_features_token, dtype=torch.float)\n', (12749, 12793), False, 'import torch\n'), ((800, 831), 'models.SelfAttentionLayer.SelfAttention', 'SelfAttention', (['self.hidden_size'], {}), '(self.hidden_size)\n', (813, 831), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((979, 1004), 'pytorch_transformers.modeling_bert.BertSelfAttention', 'BertSelfAttention', (['config'], {}), '(config)\n', (996, 1004), False, 'from pytorch_transformers.modeling_bert import BertAttention, BertSelfAttention\n'), ((3792, 3850), 'torch.multinomial', 'torch.multinomial', (['probability', 'emb_size'], {'replacement': '(True)'}), '(probability, emb_size, replacement=True)\n', (3809, 3850), False, 'import torch\n'), ((11707, 11745), 'torch.sum', 'torch.sum', (['selfattention_scores'], {'dim': '(1)'}), '(selfattention_scores, dim=1)\n', (11716, 11745), False, 'import torch\n'), ((1141, 1173), 'models.SelfAttentionLayer.BertSelfAttentionScoresP', 'BertSelfAttentionScoresP', (['config'], {}), '(config)\n', (1165, 1173), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((3713, 3729), 'numpy.ones', 'np.ones', (['seq_len'], {}), '(seq_len)\n', (3720, 3729), True, 'import numpy as np\n'), ((12090, 12132), 'torch.sum', 'torch.sum', (['multiple_embrace_vectors'], {'dim': '(0)'}), '(multiple_embrace_vectors, dim=0)\n', (12099, 12132), False, 'import torch\n'), ((1258, 1279), 'pytorch_transformers.modeling_bert.BertAttention', 'BertAttention', (['config'], {}), '(config)\n', (1271, 1279), False, 'from pytorch_transformers.modeling_bert import BertAttention, BertSelfAttention\n'), ((1417, 1459), 'models.SelfAttentionLayer.BertAttentionClsQuery', 'BertAttentionClsQuery', (['config', 'hidden_size'], {}), '(config, hidden_size)\n', (1438, 1459), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((1487, 1499), 'torch.nn.Softmax', 'nn.Softmax', ([], {}), '()\n', (1497, 1499), False, 'from torch import nn\n'), ((1579, 1611), 'models.AttentionLayer.AttentionLayer', 'AttentionLayer', (['self.hidden_size'], {}), '(self.hidden_size)\n', (1593, 1611), False, 'from models.AttentionLayer import AttentionLayer\n'), ((5363, 5408), 'torch.tensor', 'torch.tensor', (['cls_token_bs'], {'dtype': 'torch.float'}), '(cls_token_bs, dtype=torch.float)\n', (5375, 5408), False, 'import torch\n'), ((8136, 8193), 'torch.tensor', 'torch.tensor', (['multiple_embrace_vectors'], {'dtype': 'torch.float'}), '(multiple_embrace_vectors, dtype=torch.float)\n', (8148, 8193), False, 'import torch\n'), ((11172, 11225), 'torch.tensor', 'torch.tensor', (['selfattention_scores'], {'dtype': 'torch.float'}), '(selfattention_scores, dtype=torch.float)\n', (11184, 11225), False, 'import torch\n'), ((11268, 11335), 'torch.multinomial', 'torch.multinomial', (['selfattention_scores', 'emb_size'], {'replacement': '(True)'}), '(selfattention_scores, emb_size, replacement=True)\n', (11285, 11335), False, 'import torch\n'), ((1699, 1756), 'models.AttentionLayer.AttentionLayer', 'AttentionLayer', (['self.hidden_size'], {'return_att_weights': '(True)'}), '(self.hidden_size, return_att_weights=True)\n', (1713, 1756), False, 'from models.AttentionLayer import AttentionLayer\n'), ((1784, 1802), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (1794, 1802), False, 'from torch import nn\n'), ((4374, 4427), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (4386, 4427), False, 'import torch\n'), ((6016, 6069), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (6028, 6069), False, 'import torch\n'), ((7618, 7670), 'torch.multinomial', 'torch.multinomial', (['score', 'emb_size'], {'replacement': '(True)'}), '(score, emb_size, replacement=True)\n', (7635, 7670), False, 'import torch\n'), ((1962, 1997), 'models.SelfAttentionLayer.BertSelfAttentionScores', 'BertSelfAttentionScores', (['config_att'], {}), '(config_att)\n', (1985, 1997), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((4187, 4217), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (4195, 4217), True, 'import numpy as np\n'), ((4285, 4315), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (4293, 4315), True, 'import numpy as np\n'), ((5258, 5311), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (5270, 5311), False, 'import torch\n'), ((2080, 2121), 'models.SelfAttentionLayer.SelfAttentionPytorch', 'SelfAttentionPytorch', (['self.max_seq_length'], {}), '(self.max_seq_length)\n', (2100, 2121), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((5169, 5199), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (5177, 5199), True, 'import numpy as np\n'), ((6108, 6153), 'torch.tensor', 'torch.tensor', (['cls_token_bs'], {'dtype': 'torch.float'}), '(cls_token_bs, dtype=torch.float)\n', (6120, 6153), False, 'import torch\n'), ((2274, 2311), 'models.SelfAttentionLayer.BertMultiSelfAttentionScoresP', 'BertMultiSelfAttentionScoresP', (['config'], {}), '(config)\n', (2303, 2311), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((6693, 6746), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (6705, 6746), False, 'import torch\n'), ((9258, 9311), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (9270, 9311), False, 'import torch\n'), ((2497, 2546), 'models.SelfAttentionLayer.BertMultiAttentionScoresP', 'BertMultiAttentionScoresP', (['config', 'max_seq_length'], {}), '(config, max_seq_length)\n', (2522, 2546), False, 'from models.SelfAttentionLayer import SelfAttention, SelfAttentionPytorch, BertSelfAttentionScores, BertSelfAttentionScoresP, BertMultiSelfAttentionScoresP, BertMultiAttentionScoresP, BertAttentionClsQuery\n'), ((2574, 2592), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (2584, 2592), False, 'from torch import nn\n'), ((6604, 6634), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (6612, 6634), True, 'import numpy as np\n'), ((9354, 9399), 'torch.tensor', 'torch.tensor', (['cls_token_bs'], {'dtype': 'torch.float'}), '(cls_token_bs, dtype=torch.float)\n', (9366, 9399), False, 'import torch\n'), ((9919, 9972), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (9931, 9972), False, 'import torch\n'), ((9826, 9856), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (9834, 9856), True, 'import numpy as np\n'), ((10454, 10507), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (10466, 10507), False, 'import torch\n'), ((10870, 10923), 'torch.tensor', 'torch.tensor', (['tokens_to_embrace_bs'], {'dtype': 'torch.float'}), '(tokens_to_embrace_bs, dtype=torch.float)\n', (10882, 10923), False, 'import torch\n'), ((10361, 10391), 'numpy.shape', 'np.shape', (['tokens_to_embrace_bs'], {}), '(tokens_to_embrace_bs)\n', (10369, 10391), True, 'import numpy as np\n')]
|
""" Functions for ionospheric modelling: see SDP memo 97
"""
import astropy.units as u
import numpy
from astropy.coordinates import SkyCoord
from data_models.memory_data_models import BlockVisibility
from processing_components.calibration.operations import create_gaintable_from_blockvisibility, \
create_gaintable_from_rows
from processing_components.calibration.iterators import gaintable_timeslice_iter
from processing_components.image.operations import copy_image, create_empty_image_like
from processing_components.visibility.base import create_visibility_from_rows
from processing_components.visibility.iterators import vis_timeslice_iter
from processing_library.util.coordinate_support import xyz_to_uvw, skycoord_to_lmn
import logging
log = logging.getLogger(__name__)
def find_pierce_points(station_locations, ha, dec, phasecentre, height):
"""Find the pierce points for a flat screen at specified height
:param station_locations: All station locations [:3]
:param ha: Hour angle
:param dec: Declination
:param phasecentre: Phase centre
:param height: Height of screen
:return:
"""
source_direction = SkyCoord(ra=ha, dec=dec, frame='icrs', equinox='J2000')
local_locations = xyz_to_uvw(station_locations, ha, dec)
local_locations -= numpy.average(local_locations, axis=0)
lmn = numpy.array(skycoord_to_lmn(source_direction, phasecentre))
lmn[2] += 1.0
pierce_points = local_locations + height * numpy.array(lmn)
return pierce_points
def create_gaintable_from_screen(vis, sc, screen, height=3e5, vis_slices=None, scale=1.0, **kwargs):
""" Create gaintables from a screen calculated using ARatmospy
:param vis:
:param sc: Sky components for which pierce points are needed
:param screen:
:param height: Height (in m) of screen above telescope e.g. 3e5
:param scale: Multiply the screen by this factor
:return:
"""
assert isinstance(vis, BlockVisibility)
station_locations = vis.configuration.xyz
nant = station_locations.shape[0]
t2r = numpy.pi / 43200.0
gaintables = [create_gaintable_from_blockvisibility(vis, **kwargs) for i in sc]
# The time in the Visibility is hour angle in seconds!
for iha, rows in enumerate(vis_timeslice_iter(vis, vis_slices=vis_slices)):
v = create_visibility_from_rows(vis, rows)
ha = numpy.average(v.time)
number_bad = 0
number_good = 0
for icomp, comp in enumerate(sc):
pp = find_pierce_points(station_locations, (comp.direction.ra.rad + t2r * ha) * u.rad, comp.direction.dec,
height=height, phasecentre=vis.phasecentre)
scr = numpy.zeros([nant])
for ant in range(nant):
pp0 = pp[ant][0:2]
worldloc = [pp0[0], pp0[1], ha, 1e8]
try:
pixloc = screen.wcs.wcs_world2pix([worldloc], 0)[0].astype('int')
scr[ant] = scale * screen.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]]
number_good += 1
except:
number_bad += 1
scr[ant] = 0.0
gaintables[icomp].gain[iha, :, :, :] = numpy.exp(1j * scr[:, numpy.newaxis, numpy.newaxis, numpy.newaxis])
gaintables[icomp].phasecentre = comp.direction
if number_bad > 0:
log.warning("create_gaintable_from_screen: %d pierce points are inside the screen image" % (number_good))
log.warning("create_gaintable_from_screen: %d pierce points are outside the screen image" % (number_bad))
return gaintables
def grid_gaintable_to_screen(vis, gaintables, screen, height=3e5, gaintable_slices=None, scale=1.0, **kwargs):
""" Grid a gaintable to a screen image
The phases are just average per grid cell, no phase unwrapping is performed.
:param vis:
:param sc: Sky components for which pierce points are needed
:param screen:
:param height: Height (in m) of screen above telescope e.g. 3e5
:param scale: Multiply the screen by this factor
:return: gridded screen image, weights image
"""
assert isinstance(vis, BlockVisibility)
station_locations = vis.configuration.xyz
nant = station_locations.shape[0]
t2r = numpy.pi / 43200.0
newscreen = create_empty_image_like(screen)
weights = create_empty_image_like(screen)
nchan, ntimes, ny, nx = screen.shape
# The time in the Visibility is hour angle in seconds!
number_no_weight = 0
for gaintable in gaintables:
for iha, rows in enumerate(gaintable_timeslice_iter(gaintable, gaintable_slices=gaintable_slices)):
gt = create_gaintable_from_rows(gaintable, rows)
ha = numpy.average(gt.time)
pp = find_pierce_points(station_locations,
(gt.phasecentre.ra.rad + t2r * ha) * u.rad,
gt.phasecentre.dec,
height=height,
phasecentre=vis.phasecentre)
scr = numpy.angle(gt.gain[0, :, 0, 0, 0])
wt = gt.weight[0, :, 0, 0, 0]
for ant in range(nant):
pp0 = pp[ant][0:2]
worldloc = [pp0[0], pp0[1], ha, 1e8]
pixloc = newscreen.wcs.wcs_world2pix([worldloc], 0)[0].astype('int')
assert pixloc[0] >= 0
assert pixloc[0] < nx
assert pixloc[1] >= 0
assert pixloc[1] < ny
newscreen.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]] += wt[ant] * scr[ant]
weights.data[pixloc[3], pixloc[2], pixloc[1], pixloc[0]] += wt[ant]
if wt[ant] == 0.0:
number_no_weight += 1
if number_no_weight > 0:
print("grid_gaintable_to_screen: %d pierce points are have no weight" % (number_no_weight))
log.warning("grid_gaintable_to_screen: %d pierce points are have no weight" % (number_no_weight))
newscreen.data[weights.data > 0.0] = newscreen.data[weights.data > 0.0] / weights.data[weights.data > 0.0]
return newscreen, weights
def calculate_sf_from_screen(screen):
""" Calculate structure function image from screen
Screen axes are ['XX', 'YY', 'TIME', 'FREQ']
:param screen:
:return:
"""
from scipy.signal import fftconvolve
nchan, ntimes, ny, nx = screen.data.shape
sf = numpy.zeros([nchan, 1, 2 * ny - 1, 2 * nx - 1])
for chan in range(nchan):
sf[chan, 0, ...] = fftconvolve(screen.data[chan, 0, ...], screen.data[chan, 0, ::-1, ::-1])
for itime in range(ntimes):
sf += fftconvolve(screen.data[chan, itime, ...], screen.data[chan, itime, ::-1, ::-1])
sf[chan, 0, ...] /= numpy.max(sf[chan, 0, ...])
sf[chan, 0, ...] = 1.0 - sf[chan, 0, ...]
sf_image = copy_image(screen)
sf_image.data = sf[:, :, (ny - ny // 4):(ny + ny // 4), (nx - nx // 4):(nx + nx // 4)]
sf_image.wcs.wcs.crpix[0] = ny // 4 + 1
sf_image.wcs.wcs.crpix[1] = ny // 4 + 1
sf_image.wcs.wcs.crpix[2] = 1
return sf_image
def plot_gaintable_on_screen(vis, gaintables, height=3e5, gaintable_slices=None, plotfile=None):
""" Plot a gaintable on an ionospheric screen
:param vis:
:param sc: Sky components for which pierce points are needed
:param height: Height (in m) of screen above telescope e.g. 3e5
:param scale: Multiply the screen by this factor
:return: gridded screen image, weights image
"""
import matplotlib.pyplot as plt
assert isinstance(vis, BlockVisibility)
station_locations = vis.configuration.xyz
t2r = numpy.pi / 43200.0
# The time in the Visibility is hour angle in seconds!
plt.clf()
for gaintable in gaintables:
for iha, rows in enumerate(gaintable_timeslice_iter(gaintable, gaintable_slices=gaintable_slices)):
gt = create_gaintable_from_rows(gaintable, rows)
ha = numpy.average(gt.time)
pp = find_pierce_points(station_locations,
(gt.phasecentre.ra.rad + t2r * ha) * u.rad,
gt.phasecentre.dec,
height=height,
phasecentre=vis.phasecentre)
phases = numpy.angle(gt.gain[0, :, 0, 0, 0])
plt.scatter(pp[:,0],pp[:,1], c=phases, cmap='hsv', alpha=0.75, s=0.1)
plt.title('Pierce point phases')
plt.xlabel('X (m)')
plt.ylabel('Y (m)')
if plotfile is not None:
plt.savefig(plotfile)
plt.show()
|
[
"logging.getLogger",
"matplotlib.pyplot.ylabel",
"processing_components.calibration.operations.create_gaintable_from_blockvisibility",
"numpy.array",
"processing_components.calibration.operations.create_gaintable_from_rows",
"processing_library.util.coordinate_support.skycoord_to_lmn",
"matplotlib.pyplot.xlabel",
"scipy.signal.fftconvolve",
"numpy.max",
"numpy.exp",
"matplotlib.pyplot.scatter",
"processing_components.image.operations.copy_image",
"processing_components.visibility.base.create_visibility_from_rows",
"matplotlib.pyplot.savefig",
"numpy.average",
"processing_components.calibration.iterators.gaintable_timeslice_iter",
"matplotlib.pyplot.title",
"matplotlib.pyplot.show",
"processing_components.image.operations.create_empty_image_like",
"matplotlib.pyplot.clf",
"astropy.coordinates.SkyCoord",
"processing_components.visibility.iterators.vis_timeslice_iter",
"numpy.angle",
"numpy.zeros",
"processing_library.util.coordinate_support.xyz_to_uvw"
] |
[((757, 784), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (774, 784), False, 'import logging\n'), ((1160, 1215), 'astropy.coordinates.SkyCoord', 'SkyCoord', ([], {'ra': 'ha', 'dec': 'dec', 'frame': '"""icrs"""', 'equinox': '"""J2000"""'}), "(ra=ha, dec=dec, frame='icrs', equinox='J2000')\n", (1168, 1215), False, 'from astropy.coordinates import SkyCoord\n'), ((1238, 1276), 'processing_library.util.coordinate_support.xyz_to_uvw', 'xyz_to_uvw', (['station_locations', 'ha', 'dec'], {}), '(station_locations, ha, dec)\n', (1248, 1276), False, 'from processing_library.util.coordinate_support import xyz_to_uvw, skycoord_to_lmn\n'), ((1300, 1338), 'numpy.average', 'numpy.average', (['local_locations'], {'axis': '(0)'}), '(local_locations, axis=0)\n', (1313, 1338), False, 'import numpy\n'), ((4395, 4426), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', (['screen'], {}), '(screen)\n', (4418, 4426), False, 'from processing_components.image.operations import copy_image, create_empty_image_like\n'), ((4441, 4472), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', (['screen'], {}), '(screen)\n', (4464, 4472), False, 'from processing_components.image.operations import copy_image, create_empty_image_like\n'), ((6536, 6583), 'numpy.zeros', 'numpy.zeros', (['[nchan, 1, 2 * ny - 1, 2 * nx - 1]'], {}), '([nchan, 1, 2 * ny - 1, 2 * nx - 1])\n', (6547, 6583), False, 'import numpy\n'), ((6975, 6993), 'processing_components.image.operations.copy_image', 'copy_image', (['screen'], {}), '(screen)\n', (6985, 6993), False, 'from processing_components.image.operations import copy_image, create_empty_image_like\n'), ((7884, 7893), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7891, 7893), True, 'import matplotlib.pyplot as plt\n'), ((8612, 8644), 'matplotlib.pyplot.title', 'plt.title', (['"""Pierce point phases"""'], {}), "('Pierce point phases')\n", (8621, 8644), True, 'import matplotlib.pyplot as plt\n'), ((8649, 8668), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X (m)"""'], {}), "('X (m)')\n", (8659, 8668), True, 'import matplotlib.pyplot as plt\n'), ((8673, 8692), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Y (m)"""'], {}), "('Y (m)')\n", (8683, 8692), True, 'import matplotlib.pyplot as plt\n'), ((8762, 8772), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8770, 8772), True, 'import matplotlib.pyplot as plt\n'), ((1366, 1412), 'processing_library.util.coordinate_support.skycoord_to_lmn', 'skycoord_to_lmn', (['source_direction', 'phasecentre'], {}), '(source_direction, phasecentre)\n', (1381, 1412), False, 'from processing_library.util.coordinate_support import xyz_to_uvw, skycoord_to_lmn\n'), ((2119, 2171), 'processing_components.calibration.operations.create_gaintable_from_blockvisibility', 'create_gaintable_from_blockvisibility', (['vis'], {}), '(vis, **kwargs)\n', (2156, 2171), False, 'from processing_components.calibration.operations import create_gaintable_from_blockvisibility, create_gaintable_from_rows\n'), ((2280, 2326), 'processing_components.visibility.iterators.vis_timeslice_iter', 'vis_timeslice_iter', (['vis'], {'vis_slices': 'vis_slices'}), '(vis, vis_slices=vis_slices)\n', (2298, 2326), False, 'from processing_components.visibility.iterators import vis_timeslice_iter\n'), ((2341, 2379), 'processing_components.visibility.base.create_visibility_from_rows', 'create_visibility_from_rows', (['vis', 'rows'], {}), '(vis, rows)\n', (2368, 2379), False, 'from processing_components.visibility.base import create_visibility_from_rows\n'), ((2393, 2414), 'numpy.average', 'numpy.average', (['v.time'], {}), '(v.time)\n', (2406, 2414), False, 'import numpy\n'), ((6641, 6713), 'scipy.signal.fftconvolve', 'fftconvolve', (['screen.data[chan, 0, ...]', 'screen.data[chan, 0, ::-1, ::-1]'], {}), '(screen.data[chan, 0, ...], screen.data[chan, 0, ::-1, ::-1])\n', (6652, 6713), False, 'from scipy.signal import fftconvolve\n'), ((6877, 6904), 'numpy.max', 'numpy.max', (['sf[chan, 0, ...]'], {}), '(sf[chan, 0, ...])\n', (6886, 6904), False, 'import numpy\n'), ((8735, 8756), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plotfile'], {}), '(plotfile)\n', (8746, 8756), True, 'import matplotlib.pyplot as plt\n'), ((1479, 1495), 'numpy.array', 'numpy.array', (['lmn'], {}), '(lmn)\n', (1490, 1495), False, 'import numpy\n'), ((2722, 2741), 'numpy.zeros', 'numpy.zeros', (['[nant]'], {}), '([nant])\n', (2733, 2741), False, 'import numpy\n'), ((3264, 3333), 'numpy.exp', 'numpy.exp', (['(1.0j * scr[:, numpy.newaxis, numpy.newaxis, numpy.newaxis])'], {}), '(1.0j * scr[:, numpy.newaxis, numpy.newaxis, numpy.newaxis])\n', (3273, 3333), False, 'import numpy\n'), ((4667, 4737), 'processing_components.calibration.iterators.gaintable_timeslice_iter', 'gaintable_timeslice_iter', (['gaintable'], {'gaintable_slices': 'gaintable_slices'}), '(gaintable, gaintable_slices=gaintable_slices)\n', (4691, 4737), False, 'from processing_components.calibration.iterators import gaintable_timeslice_iter\n'), ((4757, 4800), 'processing_components.calibration.operations.create_gaintable_from_rows', 'create_gaintable_from_rows', (['gaintable', 'rows'], {}), '(gaintable, rows)\n', (4783, 4800), False, 'from processing_components.calibration.operations import create_gaintable_from_blockvisibility, create_gaintable_from_rows\n'), ((4818, 4840), 'numpy.average', 'numpy.average', (['gt.time'], {}), '(gt.time)\n', (4831, 4840), False, 'import numpy\n'), ((5175, 5210), 'numpy.angle', 'numpy.angle', (['gt.gain[0, :, 0, 0, 0]'], {}), '(gt.gain[0, :, 0, 0, 0])\n', (5186, 5210), False, 'import numpy\n'), ((6768, 6853), 'scipy.signal.fftconvolve', 'fftconvolve', (['screen.data[chan, itime, ...]', 'screen.data[chan, itime, ::-1, ::-1]'], {}), '(screen.data[chan, itime, ...], screen.data[chan, itime, ::-1, ::-1]\n )\n', (6779, 6853), False, 'from scipy.signal import fftconvolve\n'), ((7962, 8032), 'processing_components.calibration.iterators.gaintable_timeslice_iter', 'gaintable_timeslice_iter', (['gaintable'], {'gaintable_slices': 'gaintable_slices'}), '(gaintable, gaintable_slices=gaintable_slices)\n', (7986, 8032), False, 'from processing_components.calibration.iterators import gaintable_timeslice_iter\n'), ((8052, 8095), 'processing_components.calibration.operations.create_gaintable_from_rows', 'create_gaintable_from_rows', (['gaintable', 'rows'], {}), '(gaintable, rows)\n', (8078, 8095), False, 'from processing_components.calibration.operations import create_gaintable_from_blockvisibility, create_gaintable_from_rows\n'), ((8113, 8135), 'numpy.average', 'numpy.average', (['gt.time'], {}), '(gt.time)\n', (8126, 8135), False, 'import numpy\n'), ((8477, 8512), 'numpy.angle', 'numpy.angle', (['gt.gain[0, :, 0, 0, 0]'], {}), '(gt.gain[0, :, 0, 0, 0])\n', (8488, 8512), False, 'import numpy\n'), ((8525, 8597), 'matplotlib.pyplot.scatter', 'plt.scatter', (['pp[:, 0]', 'pp[:, 1]'], {'c': 'phases', 'cmap': '"""hsv"""', 'alpha': '(0.75)', 's': '(0.1)'}), "(pp[:, 0], pp[:, 1], c=phases, cmap='hsv', alpha=0.75, s=0.1)\n", (8536, 8597), True, 'import matplotlib.pyplot as plt\n')]
|
import numpy as np
import matplotlib.pyplot as plt
N = 4
ind = np.arange(N) # the x locations for the groups
width = 0.4 # the width of the bars
fig, ax = plt.subplots()
ax.set_ylim(0,11) # outliers only
#ax2.set_ylim(0,35) # most of the data
#ax.spines['bottom'].set_visible(False)
#ax2.spines['top'].set_visible(False)
ax.xaxis.tick_top()
#ax.tick_params(labeltop='off') # don't put tick labels at the top
ax.xaxis.tick_bottom()
fig.subplots_adjust(hspace=0.1)
# call-site-specific
noneV = (5.729, 6.966, 7.953, 8.524)
rectsNone = ax.bar(ind, noneV, width, color='w', hatch=' ')
#ax2.bar(ind, noneV, width, color='w')
# call-target-specific uncached
classCached = (2.560, 3.616, 5.357, 6.846)
rectsClassCached = ax.bar(ind+width, classCached, width, color='w', hatch='o')
#ax2.bar(ind+width, classCached, width, color='w', hatch='/')
# call-target-specific cached
#classUncached = (2.634, 3.358, 5.583, 6.838)
#rectsClassUncached = ax.bar(ind+2*width, classUncached, width, color='w', hatch='o')
#ax2.bar(ind+2*width, classUncached, width, color='w', hatch='o')
# add some text for labels, title and axes ticks
#ax2.set_ylabel('Runtime (ms)')
#ax.set_title('Average rendering runtime per frame')
ax.set_ylabel('Runtime (s) / 100.000 invocations')
ax.set_xticks(ind+width+0.14)
ax.set_xticklabels( ('(a) 1 target \n (10 kwargs)', '(b) 2 targets \n (10 kwargs; \n 10 kwargs)', '(c) 2 targets \n (10 kwargs; \n 5 kwargs + rest kwargs)', '(d) 1 target \n (5 kwargs + rest kwargs)') )
#ax2.set_yticks(ax2.get_yticks()[:-1])
ax.set_yticks(ax.get_yticks()[1:])
ax.legend( (rectsNone[0], rectsClassCached[0]), ('call-site-specific', 'call-target-specific') , loc=4)
def autolabel(rects):
# attach some text labels
for rect in rects:
height = rect.get_height()
if height == 0:
ax.text(rect.get_x()+rect.get_width()/2., height+2, 'n/a',
ha='center', va='bottom', rotation='vertical')
else:
ax.text(rect.get_x()+rect.get_width()/2., height+0.2, '%.2f'%float(height),
ha='center', va='bottom', rotation='vertical')
autolabel(rectsNone)
autolabel(rectsClassCached)
plt.show()
|
[
"matplotlib.pyplot.subplots",
"numpy.arange",
"matplotlib.pyplot.show"
] |
[((66, 78), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (75, 78), True, 'import numpy as np\n'), ((165, 179), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (177, 179), True, 'import matplotlib.pyplot as plt\n'), ((2178, 2188), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2186, 2188), True, 'import matplotlib.pyplot as plt\n')]
|
#+ echo=False
import numpy
from biobakery_workflows import utilities, visualizations, files
from anadama2 import PweaveDocument
document=PweaveDocument()
# get the variables for this document generation task
vars = document.get_vars()
# determine the document format
pdf_format = True if vars["format"] == "pdf" else False
# read in the DNA samples
(dna_paired_columns, dna_orphan_columns), dna_samples, (dna_paired_data, dna_orphan_data) = visualizations.qc_read_counts(document, vars["dna_read_counts"])
# read in the RNA samples
(rna_paired_columns, rna_orphan_columns), rna_samples, (rna_paired_data, rna_orphan_data) = visualizations.qc_read_counts(document, vars["rna_read_counts"])
#' # Quality Control
#' <% visualizations.ShotGun.print_qc_intro_caption("{} DNA and {} RNA ".format(len(dna_samples),len(rna_samples)), rna_paired_columns[2:], paired=True) %>
#+ echo=False
#' ## DNA Samples Quality Control
#' ### DNA Samples Tables of Filtered Reads
#+ echo=False
document.write_table(["# Sample"]+dna_paired_columns, dna_samples, dna_paired_data,
files.ShotGunVis.path("qc_counts_paired",document.data_folder))
table_message=visualizations.show_table_max_rows(document, dna_paired_data, dna_samples,
dna_paired_columns, "DNA Paired end reads", files.ShotGunVis.path("qc_counts_paired"),
format_data_comma=True)
#' <%= table_message %>
#+ echo=False
document.write_table(["# Sample"]+dna_orphan_columns, dna_samples, dna_orphan_data,
files.ShotGunVis.path("qc_counts_orphan",document.data_folder))
table_message=visualizations.show_table_max_rows(document, dna_orphan_data, dna_samples,
dna_orphan_columns, "DNA Orphan reads", files.ShotGunVis.path("qc_counts_orphan"),
format_data_comma=True)
#' <%= table_message %>
#' <% if pdf_format: print("\clearpage") %>
#+ echo=False
# plot the microbial reads ratios
dna_microbial_reads, dna_microbial_labels = utilities.microbial_read_proportion_multiple_databases(
dna_paired_data, dna_paired_columns, dna_orphan_data)
document.write_table(["# Sample"]+dna_microbial_labels, dna_samples,
dna_microbial_reads, files.ShotGunVis.path("microbial_counts",document.data_folder))
table_message=visualizations.show_table_max_rows(document, dna_microbial_reads, dna_samples,
dna_microbial_labels, "DNA microbial read proportion",
files.ShotGunVis.path("microbial_counts"))
#' <%= visualizations.ShotGun.captions["microbial_ratios"] %>
#' <%= table_message %>
#' ### DNA Samples Plots of Filtered Reads
#+ echo=False
document.plot_grouped_barchart(numpy.transpose(dna_paired_data), row_labels=dna_paired_columns,
column_labels=dna_samples, title="DNA Paired end reads", ylabel="Read count (in millions)",
legend_title="Filter", yaxis_in_millions=True)
#+ echo=False
document.plot_grouped_barchart(numpy.transpose(dna_orphan_data), row_labels=dna_orphan_columns,
column_labels=dna_samples, title="DNA Orphan reads", ylabel="Read count (in millions)",
legend_title="Filter", yaxis_in_millions=True)
#' ## RNA Samples Quality Control
#' ### RNA Samples Tables of Filtered Reads
#+ echo=False
document.write_table(["# Sample"]+rna_paired_columns, rna_samples, rna_paired_data,
files.ShotGunVis.path("rna_qc_counts_paired",document.data_folder))
table_message=visualizations.show_table_max_rows(document, rna_paired_data, rna_samples,
rna_paired_columns, "RNA Paired end reads", files.ShotGunVis.path("rna_qc_counts_paired"),
format_data_comma=True)
#' <%= table_message %>
#+ echo=False
document.write_table(["# Sample"]+rna_orphan_columns, rna_samples, rna_orphan_data,
files.ShotGunVis.path("rna_qc_counts_orphan",document.data_folder))
table_message=visualizations.show_table_max_rows(document, rna_orphan_data, rna_samples,
rna_orphan_columns, "RNA Orphan reads", files.ShotGunVis.path("rna_qc_counts_orphan"),
format_data_comma=True)
#' <%= table_message %>
#' <% if pdf_format: print("\clearpage") %>
#+ echo=False
# write and plot the microbial reads ratios
rna_microbial_reads, rna_microbial_labels = utilities.microbial_read_proportion_multiple_databases(
rna_paired_data, rna_paired_columns, rna_orphan_data)
document.write_table(["# Sample"]+rna_microbial_labels, rna_samples,
rna_microbial_reads, files.ShotGunVis.path("rna_microbial_counts",document.data_folder))
table_message=visualizations.show_table_max_rows(document, rna_microbial_reads, rna_samples,
rna_microbial_labels, "RNA microbial read proportion",
files.ShotGunVis.path("rna_microbial_counts"))
#' <%= visualizations.ShotGun.captions["microbial_ratios"] %>
#' <%= table_message %>
#' ### RNA Samples Plots of Filtered Reads
#+ echo=False
document.plot_grouped_barchart(numpy.transpose(rna_paired_data), row_labels=rna_paired_columns,
column_labels=rna_samples, title="RNA Paired end reads", ylabel="Read count (in millions)",
legend_title="Filter", yaxis_in_millions=True)
#+ echo=False
document.plot_grouped_barchart(numpy.transpose(rna_orphan_data), row_labels=rna_orphan_columns,
column_labels=rna_samples, title="RNA Orphan reads", ylabel="Read count (in millions)",
legend_title="Filter", yaxis_in_millions=True)
|
[
"biobakery_workflows.files.ShotGunVis.path",
"numpy.transpose",
"anadama2.PweaveDocument",
"biobakery_workflows.utilities.microbial_read_proportion_multiple_databases",
"biobakery_workflows.visualizations.qc_read_counts"
] |
[((141, 157), 'anadama2.PweaveDocument', 'PweaveDocument', ([], {}), '()\n', (155, 157), False, 'from anadama2 import PweaveDocument\n'), ((450, 514), 'biobakery_workflows.visualizations.qc_read_counts', 'visualizations.qc_read_counts', (['document', "vars['dna_read_counts']"], {}), "(document, vars['dna_read_counts'])\n", (479, 514), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((634, 698), 'biobakery_workflows.visualizations.qc_read_counts', 'visualizations.qc_read_counts', (['document', "vars['rna_read_counts']"], {}), "(document, vars['rna_read_counts'])\n", (663, 698), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((1919, 2031), 'biobakery_workflows.utilities.microbial_read_proportion_multiple_databases', 'utilities.microbial_read_proportion_multiple_databases', (['dna_paired_data', 'dna_paired_columns', 'dna_orphan_data'], {}), '(dna_paired_data,\n dna_paired_columns, dna_orphan_data)\n', (1973, 2031), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((4082, 4194), 'biobakery_workflows.utilities.microbial_read_proportion_multiple_databases', 'utilities.microbial_read_proportion_multiple_databases', (['rna_paired_data', 'rna_paired_columns', 'rna_orphan_data'], {}), '(rna_paired_data,\n rna_paired_columns, rna_orphan_data)\n', (4136, 4194), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((1077, 1140), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""qc_counts_paired"""', 'document.data_folder'], {}), "('qc_counts_paired', document.data_folder)\n", (1098, 1140), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((1279, 1320), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""qc_counts_paired"""'], {}), "('qc_counts_paired')\n", (1300, 1320), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((1478, 1541), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""qc_counts_orphan"""', 'document.data_folder'], {}), "('qc_counts_orphan', document.data_folder)\n", (1499, 1541), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((1676, 1717), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""qc_counts_orphan"""'], {}), "('qc_counts_orphan')\n", (1697, 1717), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((2128, 2191), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""microbial_counts"""', 'document.data_folder'], {}), "('microbial_counts', document.data_folder)\n", (2149, 2191), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((2349, 2390), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""microbial_counts"""'], {}), "('microbial_counts')\n", (2370, 2390), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((2572, 2604), 'numpy.transpose', 'numpy.transpose', (['dna_paired_data'], {}), '(dna_paired_data)\n', (2587, 2604), False, 'import numpy\n'), ((2831, 2863), 'numpy.transpose', 'numpy.transpose', (['dna_orphan_data'], {}), '(dna_orphan_data)\n', (2846, 2863), False, 'import numpy\n'), ((3223, 3290), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_qc_counts_paired"""', 'document.data_folder'], {}), "('rna_qc_counts_paired', document.data_folder)\n", (3244, 3290), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((3429, 3474), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_qc_counts_paired"""'], {}), "('rna_qc_counts_paired')\n", (3450, 3474), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((3632, 3699), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_qc_counts_orphan"""', 'document.data_folder'], {}), "('rna_qc_counts_orphan', document.data_folder)\n", (3653, 3699), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((3834, 3879), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_qc_counts_orphan"""'], {}), "('rna_qc_counts_orphan')\n", (3855, 3879), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((4291, 4358), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_microbial_counts"""', 'document.data_folder'], {}), "('rna_microbial_counts', document.data_folder)\n", (4312, 4358), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((4516, 4561), 'biobakery_workflows.files.ShotGunVis.path', 'files.ShotGunVis.path', (['"""rna_microbial_counts"""'], {}), "('rna_microbial_counts')\n", (4537, 4561), False, 'from biobakery_workflows import utilities, visualizations, files\n'), ((4744, 4776), 'numpy.transpose', 'numpy.transpose', (['rna_paired_data'], {}), '(rna_paired_data)\n', (4759, 4776), False, 'import numpy\n'), ((5003, 5035), 'numpy.transpose', 'numpy.transpose', (['rna_orphan_data'], {}), '(rna_orphan_data)\n', (5018, 5035), False, 'import numpy\n')]
|
'''
This example provides three examples of a simple plot of 1-D data.
1. a publication-ready single column figure, which is printed to png (600 dpi), pdf, and svg
2. a presentation-ready figure on a black background
Four steps are involved in each figure:
- load/generate the data
- construct a 1d plot (figure, axis, line series) for the spectrum
- size the figure and font
- print the figure to a pdf
'''
import jalapeno.colors.svgcolors as jc
import jalapeno.plots.plots as jpp
import jalapeno.plots.colorscheme as jpc
import numpy as np
# generate the data
x = np.linspace(0, 2*np.pi, 600)
y = np.abs(np.cos(2*x))
# make a 1d plot
fig, ax, line = jpp.make_1d_plot(linecolor=jc.darkorange,
maxx=max(x/np.pi),
maxy=1.01,
xname='x/pi',
yname='cos(2x)')
# plot the data on our 1d plot
line.set_data(x/np.pi,y)
# size the figure and print it to pdf
jpp.SquareFigure().set_size(fig)
jpp.print_fig(fig, 'xy-for-publication', ['pdf', 'png', 'svg'], dpi=600)
# make another 1d plot
fig, ax, line = jpp.make_1d_plot(colorscheme=jpc.FigColors.scheme('black'),
linecolor=jc.coral,
linewidth=4,
showgrid='off',
maxx=max(x/np.pi),
maxy=1.01,
xname='x/pi',
yname='cos(2x)')
# plot the data on our 1d plot
line.set_data(x/np.pi, y)
# size the figure and print it to pdf
jpp.SquareFigure(width=4, fontsize=12).set_size(fig)
jpp.print_fig(fig, 'xy-for-presentation', exts=['pdf']) # way 1, use print_fig and provide exts=['pdf']
jpp.print_fig_to_pdf(fig, 'xy-for-presentation') # way 2, use print_fig_to_pdf
|
[
"jalapeno.plots.plots.print_fig",
"jalapeno.plots.colorscheme.FigColors.scheme",
"jalapeno.plots.plots.SquareFigure",
"numpy.linspace",
"numpy.cos",
"jalapeno.plots.plots.print_fig_to_pdf"
] |
[((573, 603), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(600)'], {}), '(0, 2 * np.pi, 600)\n', (584, 603), True, 'import numpy as np\n'), ((1024, 1096), 'jalapeno.plots.plots.print_fig', 'jpp.print_fig', (['fig', '"""xy-for-publication"""', "['pdf', 'png', 'svg']"], {'dpi': '(600)'}), "(fig, 'xy-for-publication', ['pdf', 'png', 'svg'], dpi=600)\n", (1037, 1096), True, 'import jalapeno.plots.plots as jpp\n'), ((1688, 1743), 'jalapeno.plots.plots.print_fig', 'jpp.print_fig', (['fig', '"""xy-for-presentation"""'], {'exts': "['pdf']"}), "(fig, 'xy-for-presentation', exts=['pdf'])\n", (1701, 1743), True, 'import jalapeno.plots.plots as jpp\n'), ((1793, 1841), 'jalapeno.plots.plots.print_fig_to_pdf', 'jpp.print_fig_to_pdf', (['fig', '"""xy-for-presentation"""'], {}), "(fig, 'xy-for-presentation')\n", (1813, 1841), True, 'import jalapeno.plots.plots as jpp\n'), ((613, 626), 'numpy.cos', 'np.cos', (['(2 * x)'], {}), '(2 * x)\n', (619, 626), True, 'import numpy as np\n'), ((991, 1009), 'jalapeno.plots.plots.SquareFigure', 'jpp.SquareFigure', ([], {}), '()\n', (1007, 1009), True, 'import jalapeno.plots.plots as jpp\n'), ((1166, 1195), 'jalapeno.plots.colorscheme.FigColors.scheme', 'jpc.FigColors.scheme', (['"""black"""'], {}), "('black')\n", (1186, 1195), True, 'import jalapeno.plots.colorscheme as jpc\n'), ((1635, 1673), 'jalapeno.plots.plots.SquareFigure', 'jpp.SquareFigure', ([], {'width': '(4)', 'fontsize': '(12)'}), '(width=4, fontsize=12)\n', (1651, 1673), True, 'import jalapeno.plots.plots as jpp\n')]
|
from __future__ import division
from __future__ import print_function
from pathlib import Path
import sys
project_path = Path(__file__).resolve().parents[1]
sys.path.append(str(project_path))
from keras.layers import Dense, Activation, Dropout
from keras.models import Model, Sequential
from keras.regularizers import l2
from keras.optimizers import Adam
import keras.backend as K
import numpy as np
import time
import tensorflow as tf
import os
from core.utils import *
from core.layers.graph_cnn_layer import GraphCNN
from sklearn.preprocessing import normalize
# Set random seed
seed = 123
np.random.seed(seed)
tf.random.set_seed(seed)
# Settings
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'brc_microarray_usa', 'Dataset string.')
flags.DEFINE_string('embedding_method', 'ge', 'Name of the embedding method.')
#Check dataset availability
if not os.path.isdir("{}/data/parsed_input/{}".format(project_path, FLAGS.dataset)):
sys.exit("{} dataset is not available under data/parsed_input/".format(FLAGS.dataset))
if not os.path.isdir("{}/data/output/{}/embedding/{}".format(project_path, FLAGS.dataset, FLAGS.embedding_method)):
os.makedirs("{}/data/output/{}/embedding/{}".format(project_path, FLAGS.dataset, FLAGS.embedding_method))
print("--------------------------------------------")
print("--------------------------------------------")
print("Hyper-parameters:")
print("Dataset: {}".format(FLAGS.dataset))
print("Embedding method: {}".format(FLAGS.embedding_method))
print("--------------------------------------------")
print("--------------------------------------------")
# Prepare Data
X, A, Y = load_training_data(dataset=FLAGS.dataset)
Y_train, Y_val, Y_test, train_idx, val_idx, test_idx, train_mask = get_splits_for_learning(Y, dataset=FLAGS.dataset)
# Normalize gene expression
X = normalize(X, norm='l1') #for positive non-zero entries, it's equivalent to: X /= X.sum(1).reshape(-1, 1)
#Save the node emmbeddings
np.savetxt("{}/data/output/{}/embedding/{}/embeddings.txt".format(project_path, FLAGS.dataset, FLAGS.embedding_method), X, delimiter="\t")
print("Embeddings saved in /data/output/{}/embedding/{}/embeddings.txt".format(FLAGS.dataset, FLAGS.embedding_method))
|
[
"tensorflow.random.set_seed",
"sklearn.preprocessing.normalize",
"numpy.random.seed",
"pathlib.Path"
] |
[((623, 643), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (637, 643), True, 'import numpy as np\n'), ((645, 669), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (663, 669), True, 'import tensorflow as tf\n'), ((1912, 1935), 'sklearn.preprocessing.normalize', 'normalize', (['X'], {'norm': '"""l1"""'}), "(X, norm='l1')\n", (1921, 1935), False, 'from sklearn.preprocessing import normalize\n'), ((127, 141), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (131, 141), False, 'from pathlib import Path\n')]
|
import io
import zlib
import numpy as np
def maybe_compress(str, compress):
return zlib.compress(str) if compress else str
def maybe_decompress(str, decompress):
return zlib.decompress(str) if decompress else str
def serialize_numpy(arr: np.ndarray, compress: bool = False) -> str:
"""Serializes numpy array to string with optional zlib compression.
Args:
arr (np.ndarray): Numpy array to serialize.
compress (bool, optional): Whether to compress resulting string with zlib or not.
Defaults to False.
Returns:
str: serialized string
"""
buf = io.BytesIO()
assert isinstance(arr, np.ndarray)
np.save(buf, arr)
result = buf.getvalue()
return maybe_compress(result, compress)
def deserialize_numpy(serialized_string: str, decompress: bool = False) -> np.ndarray:
"""Deserializes numpy array from compressed string.
Args:
serialized_string (str): Serialized numpy array
decompress (bool, optional): Whether to decompress string with zlib before laoding.
Defaults to False.
Returns:
np.ndarray: deserialized numpy array
"""
str = maybe_decompress(serialized_string, decompress)
buf = io.BytesIO(str)
return np.load(buf)
|
[
"io.BytesIO",
"zlib.compress",
"numpy.save",
"numpy.load",
"zlib.decompress"
] |
[((616, 628), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (626, 628), False, 'import io\n'), ((672, 689), 'numpy.save', 'np.save', (['buf', 'arr'], {}), '(buf, arr)\n', (679, 689), True, 'import numpy as np\n'), ((1232, 1247), 'io.BytesIO', 'io.BytesIO', (['str'], {}), '(str)\n', (1242, 1247), False, 'import io\n'), ((1259, 1271), 'numpy.load', 'np.load', (['buf'], {}), '(buf)\n', (1266, 1271), True, 'import numpy as np\n'), ((90, 108), 'zlib.compress', 'zlib.compress', (['str'], {}), '(str)\n', (103, 108), False, 'import zlib\n'), ((182, 202), 'zlib.decompress', 'zlib.decompress', (['str'], {}), '(str)\n', (197, 202), False, 'import zlib\n')]
|
from cv2 import fastNlMeansDenoisingColored
from cv2 import cvtColor
from cv2 import bitwise_not,threshold,getRotationMatrix2D
from cv2 import warpAffine,filter2D,imread
from cv2 import THRESH_BINARY,COLOR_BGR2GRAY,THRESH_OTSU
from cv2 import INTER_CUBIC,BORDER_REPLICATE,minAreaRect
from numpy import column_stack,array,where
from matplotlib.pyplot import imshow,xticks,yticks
from pytesseract import image_to_string,pytesseract
from PIL import Image
class ImageProcess:
'''this function is removing noise from the image'''
def remove_noise(image):
image = fastNlMeansDenoisingColored(image,None,20,10,7,21)
return image
'''this function is removing skewness.
first, it calculate the angle and accordingly rotate image'''
def remove_skew(image):
in_gray = cvtColor(image, COLOR_BGR2GRAY)
in_gray = bitwise_not(in_gray)
thresh_pic = threshold(in_gray, 0, 255,THRESH_BINARY | THRESH_OTSU)[1]
coords_x_y = column_stack(where(thresh_pic > 0))
angle = minAreaRect(coords_x_y)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
(h, w) = image.shape[:2]
center_of_pic = (w // 2, h // 2)
M = getRotationMatrix2D(center_of_pic, angle, 1.0)
image = warpAffine(image, M, (w, h),flags=INTER_CUBIC, borderMode=BORDER_REPLICATE)
return image
'''for removing blurness from the image,
this function increase sharpness of the image.'''
def shapness_blur(image):
sharpen_kernel = array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
image = filter2D(image, -1, sharpen_kernel)
return image
'''using pytesseract, this function extracting text from the image.'''
def to_text(image):
try:
pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
string_from_image = image_to_string(image,lang='eng')
except Exception:
pytesseract.tesseract_cmd = r"C:\Program Files(x86)\Tesseract-OCR\tesseract.exe"
string_from_image = image_to_string(image,lang='eng')
return string_from_image
##plot image in output
def plot_image(image):
imshow(image)
xticks([])
yticks([])
|
[
"matplotlib.pyplot.imshow",
"cv2.warpAffine",
"cv2.getRotationMatrix2D",
"matplotlib.pyplot.xticks",
"cv2.fastNlMeansDenoisingColored",
"cv2.threshold",
"numpy.where",
"cv2.filter2D",
"cv2.minAreaRect",
"numpy.array",
"matplotlib.pyplot.yticks",
"cv2.cvtColor",
"pytesseract.image_to_string",
"cv2.bitwise_not"
] |
[((576, 631), 'cv2.fastNlMeansDenoisingColored', 'fastNlMeansDenoisingColored', (['image', 'None', '(20)', '(10)', '(7)', '(21)'], {}), '(image, None, 20, 10, 7, 21)\n', (603, 631), False, 'from cv2 import fastNlMeansDenoisingColored\n'), ((804, 835), 'cv2.cvtColor', 'cvtColor', (['image', 'COLOR_BGR2GRAY'], {}), '(image, COLOR_BGR2GRAY)\n', (812, 835), False, 'from cv2 import cvtColor\n'), ((854, 874), 'cv2.bitwise_not', 'bitwise_not', (['in_gray'], {}), '(in_gray)\n', (865, 874), False, 'from cv2 import bitwise_not, threshold, getRotationMatrix2D\n'), ((1240, 1286), 'cv2.getRotationMatrix2D', 'getRotationMatrix2D', (['center_of_pic', 'angle', '(1.0)'], {}), '(center_of_pic, angle, 1.0)\n', (1259, 1286), False, 'from cv2 import bitwise_not, threshold, getRotationMatrix2D\n'), ((1303, 1379), 'cv2.warpAffine', 'warpAffine', (['image', 'M', '(w, h)'], {'flags': 'INTER_CUBIC', 'borderMode': 'BORDER_REPLICATE'}), '(image, M, (w, h), flags=INTER_CUBIC, borderMode=BORDER_REPLICATE)\n', (1313, 1379), False, 'from cv2 import warpAffine, filter2D, imread\n'), ((1555, 1603), 'numpy.array', 'array', (['[[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]'], {}), '([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])\n', (1560, 1603), False, 'from numpy import column_stack, array, where\n'), ((1614, 1649), 'cv2.filter2D', 'filter2D', (['image', '(-1)', 'sharpen_kernel'], {}), '(image, -1, sharpen_kernel)\n', (1622, 1649), False, 'from cv2 import warpAffine, filter2D, imread\n'), ((2219, 2232), 'matplotlib.pyplot.imshow', 'imshow', (['image'], {}), '(image)\n', (2225, 2232), False, 'from matplotlib.pyplot import imshow, xticks, yticks\n'), ((2241, 2251), 'matplotlib.pyplot.xticks', 'xticks', (['[]'], {}), '([])\n', (2247, 2251), False, 'from matplotlib.pyplot import imshow, xticks, yticks\n'), ((2260, 2270), 'matplotlib.pyplot.yticks', 'yticks', (['[]'], {}), '([])\n', (2266, 2270), False, 'from matplotlib.pyplot import imshow, xticks, yticks\n'), ((896, 951), 'cv2.threshold', 'threshold', (['in_gray', '(0)', '(255)', '(THRESH_BINARY | THRESH_OTSU)'], {}), '(in_gray, 0, 255, THRESH_BINARY | THRESH_OTSU)\n', (905, 951), False, 'from cv2 import bitwise_not, threshold, getRotationMatrix2D\n'), ((988, 1009), 'numpy.where', 'where', (['(thresh_pic > 0)'], {}), '(thresh_pic > 0)\n', (993, 1009), False, 'from numpy import column_stack, array, where\n'), ((1027, 1050), 'cv2.minAreaRect', 'minAreaRect', (['coords_x_y'], {}), '(coords_x_y)\n', (1038, 1050), False, 'from cv2 import INTER_CUBIC, BORDER_REPLICATE, minAreaRect\n'), ((1904, 1938), 'pytesseract.image_to_string', 'image_to_string', (['image'], {'lang': '"""eng"""'}), "(image, lang='eng')\n", (1919, 1938), False, 'from pytesseract import image_to_string, pytesseract\n'), ((2089, 2123), 'pytesseract.image_to_string', 'image_to_string', (['image'], {'lang': '"""eng"""'}), "(image, lang='eng')\n", (2104, 2123), False, 'from pytesseract import image_to_string, pytesseract\n')]
|
import cv2
import numpy as np
import matplotlib.pyplot as plt
from findpoint import FindPoint
class LineDetector:
def __init__(self,img):
self.frame = None
self.leftx = None
self.rightx = None
# self.output = None
self.frame = 0
self.frame_list = []
self.findpoint = FindPoint(img)
def sliding_window(self,x_start_L,x_start_R,img):
x_location = None
out_img = np.dstack((img,img,img))
height = img.shape[0]
width = img.shape[1]
window_height = 5
nwindows = 30
nonzero = img.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
point_list_left = list()
point_list_right = list()
margin = 20
minpix = 10
left_lane_inds = []
right_lane_inds = []
good_left_inds = \
((nonzerox >= x_start_L-20) & (nonzeroy >= 300)& (nonzeroy <= 400) & (nonzerox <= x_start_L+20)).nonzero()[
0]
good_right_inds = ((nonzerox >= x_start_R-40) & (nonzeroy >= 300)& (nonzeroy <= 400) & (
nonzerox <= x_start_R+20)).nonzero()[0]
line_exist_flag = None
y_current = None
x_current = None
good_center_inds = None
p_cut = None
# check the minpix before left start line
# if minpix is enough on left, draw left, then draw right depends on left
# else draw right, then draw left depends on right
# lx_current = 120
# ly_current = 350
# rx_current = 550
# ry_current = 350
if len(good_left_inds) > minpix and len(good_right_inds) > minpix:
line_flag = 3
lx_current = np.int(np.mean(nonzerox[good_left_inds]))
ly_current = np.int(np.mean(nonzeroy[good_left_inds]))
rx_current = np.int(np.mean(nonzerox[good_right_inds]))
ry_current = np.int(np.mean(nonzeroy[good_right_inds]))
elif len(good_left_inds) > minpix:
line_flag = 1
lx_current = np.int(np.mean(nonzerox[good_left_inds]))
ly_current = np.int(np.mean(nonzeroy[good_left_inds]))
rx_current = None
ry_current = None
max_y = y_current
elif len(good_right_inds) > minpix:
line_flag = 2
rx_current = nonzerox[good_right_inds[np.argmax(nonzeroy[good_right_inds])]]
ry_current = np.int(np.max(nonzeroy[good_right_inds]))
lx_current = None
ly_current = None
else:
line_flag = 4
# rx_current
# ry_current
# if line_flag ==3:
# for i in range(len(good_left_inds)):
# cv2.circle(out_img, (nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i]]), 1, (0, 255, 0), -1)
# for i in range(len(good_right_inds)):
# cv2.circle(out_img, (nonzerox[good_right_inds[i]], nonzeroy[good_right_inds[i]]), 1, (255,0, 0), -1)
# for window in range(0, nwindows):
# print('x',x_location)
if line_flag != 4:
# it's just for visualization of the valid inds in the region
for i in range(len(good_left_inds)):
cv2.circle(out_img, (nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i]]), 1, (0, 255, 0), -1)
for i in range(len(good_right_inds)):
cv2.circle(out_img, (nonzerox[good_right_inds[i]], nonzeroy[good_right_inds[i]]), 1, (255,0, 0), -1)
# window sliding and draw
# print(lx_current)
# print(rx_current)
for window in range(0, nwindows):
# if lx_current and rx_current:
# # print(line_flag)
# cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1)
# cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1)
# mean_x = (lx_current + rx_current)/2
# cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1)
# point_list_left.append((lx_current, ly_current-window*window_height-3))
# point_list_right.append((rx_current,ry_current-window*window_height-3))
if lx_current and rx_current:
cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1)
cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1)
mean_x = (lx_current + rx_current)/2
cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1)
point_list_left.append((lx_current, ly_current-window*window_height-3))
point_list_right.append((rx_current,ry_current-window*window_height-3))
elif lx_current:
cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1)
mean_x = (lx_current + width/2)
cv2.circle(out_img,(mean_x,ly_current-window*window_height-3),3,(0,255,255),-1)
point_list_left.append((lx_current, ly_current-window*window_height-3))
elif rx_current:
# cv2.circle(out_img,(lx_current,ly_current-window*window_height-3),3,(0,0,255),-1)
cv2.circle(out_img,(rx_current,ry_current-window*window_height-3),3,(0,0,255),-1)
mean_x = (rx_current-width/2)/2
cv2.circle(out_img,(mean_x,ry_current-window*window_height-3),3,(0,255,255),-1)
# point_list_left.append((lx_current, ly_current-window*window_height-3))
point_list_right.append((rx_current,ry_current-window*window_height-3))
if line_flag == 3:
l_win_y_low = ly_current - (window + 1) * window_height
l_win_y_high = ly_current - (window) * window_height
l_win_x_low = lx_current - margin
l_win_x_high = lx_current + margin
r_win_y_low = ry_current - (window + 1) * window_height
r_win_y_high = ry_current - (window) * window_height
r_win_x_low = rx_current - margin
r_win_x_high = rx_current + margin
# draw rectangle
# 0.33 is for width of the road
cv2.rectangle(out_img, (l_win_x_low, l_win_y_low), (l_win_x_high, l_win_y_high), (0, 255, 0), 1)
cv2.rectangle(out_img, (r_win_x_low, r_win_y_low), (r_win_x_high, r_win_y_high), (255,0, 0), 1)
good_left_inds = ((nonzeroy >= l_win_y_low) & (nonzeroy < l_win_y_high) & (nonzerox >= l_win_x_low) & (
nonzerox < l_win_x_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= r_win_y_low) & (nonzeroy < r_win_y_high) & (nonzerox >= r_win_x_low) & (
nonzerox < r_win_x_high)).nonzero()[0]
# check num of indicies in square and put next location to current
if len(good_left_inds) > minpix:
lx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rx_current = np.int(np.mean(nonzerox[good_right_inds]))
# 338~344 is for recognize line which is yellow line in processed image(you can check in imshow)
# if (l_win_y_low >= 338 and l_win_y_low < 344) and (r_win_y_low >= 338 and r_win_y_low < 344):
# # 0.165 is the half of the road(0.33)
x_location = rx_current - lx_current + 75
elif line_flag == 1:
# rectangle x,y range init
win_y_low = ly_current - (window + 1) * window_height
win_y_high = ly_current - (window) * window_height
win_x_low = lx_current - margin
win_x_high = lx_current + margin
# draw rectangle
# 0.33 is for width of the road
cv2.rectangle(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (0, 255, 0), 1)
# cv2.rectangle(out_img, (win_x_low + int(width * 0.33), win_y_low),
# (win_x_high + int(width * 0.33), win_y_high), (255, 0, 0), 1)
# indicies of dots in nonzerox in one square
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_low) & (
nonzerox < win_x_high)).nonzero()[0]
# check num of indicies in square and put next location to current
if len(good_left_inds) > minpix:
# x_current = np.int(np.mean(nonzerox[good_left_inds]))
lx_current = np.int(np.mean(nonzerox[good_left_inds]))
# elif nonzeroy[left_lane_inds] != [] and nonzerox[left_lane_inds] != []:
# p_left = np.polyfit(nonzeroy[left_lane_inds], nonzerox[left_lane_inds], 2)
# x_current = np.int(np.polyval(p_left, win_y_high))
# # 338~344 is for recognize line which is yellow line in processed image(you can check in imshow)
# if win_y_low >= 338 and win_y_low < 344:
# # 0.165 is the half of the road(0.33)
# x_location = x_current + 180
elif line_flag ==2:
win_y_low = ry_current - (window + 1) * window_height
win_y_high = ry_current - (window) * window_height
win_x_low = rx_current - margin
win_x_high = rx_current + margin
# cv2.rectangle(out_img, (win_x_low , win_y_low),
# (win_x_high, win_y_high), (0, 255, 0), 1)
cv2.rectangle(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (255, 0, 0), 1)
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_low) & (
nonzerox < win_x_high)).nonzero()[0]
if len(good_right_inds) > minpix:
# x_current = np.int(np.mean(nonzerox[good_right_inds]))
rx_current = np.int(np.mean(nonzerox[good_right_inds]))
# elif nonzeroy[right_lane_inds] != [] and nonzerox[right_lane_inds] != []:
# p_right = np.polyfit(nonzeroy[right_lane_inds], nonzerox[right_lane_inds], 2)
# x_current = np.int(np.polyval(p_right, win_y_high))
# if win_y_low >= 338 and win_y_low < 344:
# # 0.165 is the half of the road(0.33)
# x_location = x_current - 250
# left_lane_inds.extend(good_left_inds)
# right_lane_inds.extend(good_right_inds)
# left_lane_inds = np.concatenate(left_lane_inds)
# right_lane_inds = np.concatenate(right_lane_inds)
# else:
return out_img, x_location, point_list_left, point_list_right
def main(self,img):
x_start_l,x_start_r = self.findpoint.findpoint(img)
output , x_location, point_list_left, point_list_right = self.sliding_window(x_start_l,x_start_r,img)
return output, x_location, point_list_left, point_list_right
|
[
"cv2.rectangle",
"numpy.dstack",
"numpy.mean",
"findpoint.FindPoint",
"numpy.argmax",
"numpy.max",
"numpy.array",
"cv2.circle"
] |
[((330, 344), 'findpoint.FindPoint', 'FindPoint', (['img'], {}), '(img)\n', (339, 344), False, 'from findpoint import FindPoint\n'), ((444, 470), 'numpy.dstack', 'np.dstack', (['(img, img, img)'], {}), '((img, img, img))\n', (453, 470), True, 'import numpy as np\n'), ((629, 649), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (637, 649), True, 'import numpy as np\n'), ((669, 689), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (677, 689), True, 'import numpy as np\n'), ((1739, 1772), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (1746, 1772), True, 'import numpy as np\n'), ((1806, 1839), 'numpy.mean', 'np.mean', (['nonzeroy[good_left_inds]'], {}), '(nonzeroy[good_left_inds])\n', (1813, 1839), True, 'import numpy as np\n'), ((1873, 1907), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (1880, 1907), True, 'import numpy as np\n'), ((1941, 1975), 'numpy.mean', 'np.mean', (['nonzeroy[good_right_inds]'], {}), '(nonzeroy[good_right_inds])\n', (1948, 1975), True, 'import numpy as np\n'), ((3271, 3375), 'cv2.circle', 'cv2.circle', (['out_img', '(nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i]])', '(1)', '(0, 255, 0)', '(-1)'], {}), '(out_img, (nonzerox[good_left_inds[i]], nonzeroy[good_left_inds[i\n ]]), 1, (0, 255, 0), -1)\n', (3281, 3375), False, 'import cv2\n'), ((3437, 3543), 'cv2.circle', 'cv2.circle', (['out_img', '(nonzerox[good_right_inds[i]], nonzeroy[good_right_inds[i]])', '(1)', '(255, 0, 0)', '(-1)'], {}), '(out_img, (nonzerox[good_right_inds[i]], nonzeroy[good_right_inds\n [i]]), 1, (255, 0, 0), -1)\n', (3447, 3543), False, 'import cv2\n'), ((2079, 2112), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (2086, 2112), True, 'import numpy as np\n'), ((2146, 2179), 'numpy.mean', 'np.mean', (['nonzeroy[good_left_inds]'], {}), '(nonzeroy[good_left_inds])\n', (2153, 2179), True, 'import numpy as np\n'), ((4387, 4486), 'cv2.circle', 'cv2.circle', (['out_img', '(lx_current, ly_current - window * window_height - 3)', '(3)', '(0, 0, 255)', '(-1)'], {}), '(out_img, (lx_current, ly_current - window * window_height - 3), \n 3, (0, 0, 255), -1)\n', (4397, 4486), False, 'import cv2\n'), ((4489, 4588), 'cv2.circle', 'cv2.circle', (['out_img', '(rx_current, ry_current - window * window_height - 3)', '(3)', '(0, 0, 255)', '(-1)'], {}), '(out_img, (rx_current, ry_current - window * window_height - 3), \n 3, (0, 0, 255), -1)\n', (4499, 4588), False, 'import cv2\n'), ((4648, 4745), 'cv2.circle', 'cv2.circle', (['out_img', '(mean_x, ry_current - window * window_height - 3)', '(3)', '(0, 255, 255)', '(-1)'], {}), '(out_img, (mean_x, ry_current - window * window_height - 3), 3, (\n 0, 255, 255), -1)\n', (4658, 4745), False, 'import cv2\n'), ((6528, 6628), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(l_win_x_low, l_win_y_low)', '(l_win_x_high, l_win_y_high)', '(0, 255, 0)', '(1)'], {}), '(out_img, (l_win_x_low, l_win_y_low), (l_win_x_high,\n l_win_y_high), (0, 255, 0), 1)\n', (6541, 6628), False, 'import cv2\n'), ((6645, 6745), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(r_win_x_low, r_win_y_low)', '(r_win_x_high, r_win_y_high)', '(255, 0, 0)', '(1)'], {}), '(out_img, (r_win_x_low, r_win_y_low), (r_win_x_high,\n r_win_y_high), (255, 0, 0), 1)\n', (6658, 6745), False, 'import cv2\n'), ((2462, 2495), 'numpy.max', 'np.max', (['nonzeroy[good_right_inds]'], {}), '(nonzeroy[good_right_inds])\n', (2468, 2495), True, 'import numpy as np\n'), ((4965, 5064), 'cv2.circle', 'cv2.circle', (['out_img', '(lx_current, ly_current - window * window_height - 3)', '(3)', '(0, 0, 255)', '(-1)'], {}), '(out_img, (lx_current, ly_current - window * window_height - 3), \n 3, (0, 0, 255), -1)\n', (4975, 5064), False, 'import cv2\n'), ((5119, 5216), 'cv2.circle', 'cv2.circle', (['out_img', '(mean_x, ly_current - window * window_height - 3)', '(3)', '(0, 255, 255)', '(-1)'], {}), '(out_img, (mean_x, ly_current - window * window_height - 3), 3, (\n 0, 255, 255), -1)\n', (5129, 5216), False, 'import cv2\n'), ((8287, 8379), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_x_low, win_y_low)', '(win_x_high, win_y_high)', '(0, 255, 0)', '(1)'], {}), '(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (0,\n 255, 0), 1)\n', (8300, 8379), False, 'import cv2\n'), ((2391, 2427), 'numpy.argmax', 'np.argmax', (['nonzeroy[good_right_inds]'], {}), '(nonzeroy[good_right_inds])\n', (2400, 2427), True, 'import numpy as np\n'), ((5448, 5547), 'cv2.circle', 'cv2.circle', (['out_img', '(rx_current, ry_current - window * window_height - 3)', '(3)', '(0, 0, 255)', '(-1)'], {}), '(out_img, (rx_current, ry_current - window * window_height - 3), \n 3, (0, 0, 255), -1)\n', (5458, 5547), False, 'import cv2\n'), ((5602, 5699), 'cv2.circle', 'cv2.circle', (['out_img', '(mean_x, ry_current - window * window_height - 3)', '(3)', '(0, 255, 255)', '(-1)'], {}), '(out_img, (mean_x, ry_current - window * window_height - 3), 3, (\n 0, 255, 255), -1)\n', (5612, 5699), False, 'import cv2\n'), ((7314, 7347), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (7321, 7347), True, 'import numpy as np\n'), ((7447, 7481), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (7454, 7481), True, 'import numpy as np\n'), ((10145, 10238), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_x_low, win_y_low)', '(win_x_high, win_y_high)', '(255, 0, 0)', '(1)'], {}), '(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (\n 255, 0, 0), 1)\n', (10158, 10238), False, 'import cv2\n'), ((9079, 9112), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (9086, 9112), True, 'import numpy as np\n'), ((10601, 10635), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (10608, 10635), True, 'import numpy as np\n')]
|
import numpy as np
from matplotlib import _api
from .axes_divider import make_axes_locatable, Size
from .mpl_axes import Axes
@_api.delete_parameter("3.3", "add_all")
def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True, **kwargs):
"""
Parameters
----------
pad : float
Fraction of the axes height.
"""
divider = make_axes_locatable(ax)
pad_size = pad * Size.AxesY(ax)
xsize = ((1-2*pad)/3) * Size.AxesX(ax)
ysize = ((1-2*pad)/3) * Size.AxesY(ax)
divider.set_horizontal([Size.AxesX(ax), pad_size, xsize])
divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize])
ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1))
ax_rgb = []
if axes_class is None:
try:
axes_class = ax._axes_class
except AttributeError:
axes_class = type(ax)
for ny in [4, 2, 0]:
ax1 = axes_class(ax.get_figure(), ax.get_position(original=True),
sharex=ax, sharey=ax, **kwargs)
locator = divider.new_locator(nx=2, ny=ny)
ax1.set_axes_locator(locator)
for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels():
t.set_visible(False)
try:
for axis in ax1.axis.values():
axis.major_ticklabels.set_visible(False)
except AttributeError:
pass
ax_rgb.append(ax1)
if add_all:
fig = ax.get_figure()
for ax1 in ax_rgb:
fig.add_axes(ax1)
return ax_rgb
@_api.deprecated("3.3", alternative="ax.imshow(np.dstack([r, g, b]))")
def imshow_rgb(ax, r, g, b, **kwargs):
return ax.imshow(np.dstack([r, g, b]), **kwargs)
class RGBAxes:
"""
4-panel imshow (RGB, R, G, B).
Layout:
+---------------+-----+
| | R |
+ +-----+
| RGB | G |
+ +-----+
| | B |
+---------------+-----+
Subclasses can override the ``_defaultAxesClass`` attribute.
Attributes
----------
RGB : ``_defaultAxesClass``
The axes object for the three-channel imshow.
R : ``_defaultAxesClass``
The axes object for the red channel imshow.
G : ``_defaultAxesClass``
The axes object for the green channel imshow.
B : ``_defaultAxesClass``
The axes object for the blue channel imshow.
"""
_defaultAxesClass = Axes
@_api.delete_parameter("3.3", "add_all")
def __init__(self, *args, pad=0, add_all=True, **kwargs):
"""
Parameters
----------
pad : float, default: 0
fraction of the axes height to put as padding.
add_all : bool, default: True
Whether to add the {rgb, r, g, b} axes to the figure.
This parameter is deprecated.
axes_class : matplotlib.axes.Axes
*args
Unpacked into axes_class() init for RGB
**kwargs
Unpacked into axes_class() init for RGB, R, G, B axes
"""
axes_class = kwargs.pop("axes_class", self._defaultAxesClass)
self.RGB = ax = axes_class(*args, **kwargs)
if add_all:
ax.get_figure().add_axes(ax)
else:
kwargs["add_all"] = add_all # only show deprecation in that case
self.R, self.G, self.B = make_rgb_axes(
ax, pad=pad, axes_class=axes_class, **kwargs)
# Set the line color and ticks for the axes.
for ax1 in [self.RGB, self.R, self.G, self.B]:
ax1.axis[:].line.set_color("w")
ax1.axis[:].major_ticks.set_markeredgecolor("w")
@_api.deprecated("3.3")
def add_RGB_to_figure(self):
"""Add red, green and blue axes to the RGB composite's axes figure."""
self.RGB.get_figure().add_axes(self.R)
self.RGB.get_figure().add_axes(self.G)
self.RGB.get_figure().add_axes(self.B)
def imshow_rgb(self, r, g, b, **kwargs):
"""
Create the four images {rgb, r, g, b}.
Parameters
----------
r, g, b : array-like
The red, green, and blue arrays.
kwargs : imshow kwargs
kwargs get unpacked into the imshow calls for the four images.
Returns
-------
rgb : matplotlib.image.AxesImage
r : matplotlib.image.AxesImage
g : matplotlib.image.AxesImage
b : matplotlib.image.AxesImage
"""
if not (r.shape == g.shape == b.shape):
raise ValueError(
f'Input shapes ({r.shape}, {g.shape}, {b.shape}) do not match')
RGB = np.dstack([r, g, b])
R = np.zeros_like(RGB)
R[:, :, 0] = r
G = np.zeros_like(RGB)
G[:, :, 1] = g
B = np.zeros_like(RGB)
B[:, :, 2] = b
im_rgb = self.RGB.imshow(RGB, **kwargs)
im_r = self.R.imshow(R, **kwargs)
im_g = self.G.imshow(G, **kwargs)
im_b = self.B.imshow(B, **kwargs)
return im_rgb, im_r, im_g, im_b
@_api.deprecated("3.3", alternative="RGBAxes")
class RGBAxesBase(RGBAxes):
pass
|
[
"numpy.dstack",
"matplotlib._api.delete_parameter",
"numpy.zeros_like",
"matplotlib._api.deprecated"
] |
[((130, 169), 'matplotlib._api.delete_parameter', '_api.delete_parameter', (['"""3.3"""', '"""add_all"""'], {}), "('3.3', 'add_all')\n", (151, 169), False, 'from matplotlib import _api\n'), ((1527, 1596), 'matplotlib._api.deprecated', '_api.deprecated', (['"""3.3"""'], {'alternative': '"""ax.imshow(np.dstack([r, g, b]))"""'}), "('3.3', alternative='ax.imshow(np.dstack([r, g, b]))')\n", (1542, 1596), False, 'from matplotlib import _api\n'), ((5031, 5076), 'matplotlib._api.deprecated', '_api.deprecated', (['"""3.3"""'], {'alternative': '"""RGBAxes"""'}), "('3.3', alternative='RGBAxes')\n", (5046, 5076), False, 'from matplotlib import _api\n'), ((2463, 2502), 'matplotlib._api.delete_parameter', '_api.delete_parameter', (['"""3.3"""', '"""add_all"""'], {}), "('3.3', 'add_all')\n", (2484, 2502), False, 'from matplotlib import _api\n'), ((3656, 3678), 'matplotlib._api.deprecated', '_api.deprecated', (['"""3.3"""'], {}), "('3.3')\n", (3671, 3678), False, 'from matplotlib import _api\n'), ((1657, 1677), 'numpy.dstack', 'np.dstack', (['[r, g, b]'], {}), '([r, g, b])\n', (1666, 1677), True, 'import numpy as np\n'), ((4631, 4651), 'numpy.dstack', 'np.dstack', (['[r, g, b]'], {}), '([r, g, b])\n', (4640, 4651), True, 'import numpy as np\n'), ((4664, 4682), 'numpy.zeros_like', 'np.zeros_like', (['RGB'], {}), '(RGB)\n', (4677, 4682), True, 'import numpy as np\n'), ((4718, 4736), 'numpy.zeros_like', 'np.zeros_like', (['RGB'], {}), '(RGB)\n', (4731, 4736), True, 'import numpy as np\n'), ((4772, 4790), 'numpy.zeros_like', 'np.zeros_like', (['RGB'], {}), '(RGB)\n', (4785, 4790), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is part of the SCICO package. Details of the copyright
# and user license can be found in the 'LICENSE.txt' file distributed
# with the package.
r"""
Regularized Abel Inversion
==========================
This example demonstrates a TV-regularized Abel inversion using
an Abel projector based on PyAbel :cite:`pyabel-2022`
"""
import numpy as np
import scico.numpy as snp
from scico import functional, linop, loss, metric, plot
from scico.examples import create_circular_phantom
from scico.linop.abel import AbelProjector
from scico.optimize.admm import ADMM, LinearSubproblemSolver
from scico.util import device_info
"""
Create a ground truth image.
"""
N = 256 # phantom size
x_gt = create_circular_phantom((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5])
"""
Set up the forward operator and create a test measurement
"""
A = AbelProjector(x_gt.shape)
y = A @ x_gt
np.random.seed(12345)
y = y + np.random.normal(size=y.shape).astype(np.float32)
ATy = A.T @ y
"""
Set up ADMM solver object.
"""
λ = 1.9e1 # L1 norm regularization parameter
ρ = 4.9e1 # ADMM penalty parameter
maxiter = 100 # number of ADMM iterations
cg_tol = 1e-4 # CG relative tolerance
cg_maxiter = 25 # maximum CG iterations per ADMM iteration
# Note the use of anisotropic TV. Isotropic TV would require use of L21Norm.
g = λ * functional.L1Norm()
C = linop.FiniteDifference(input_shape=x_gt.shape)
f = loss.SquaredL2Loss(y=y, A=A)
x_inv = A.inverse(y)
x0 = snp.clip(x_inv, 0, 1.0)
solver = ADMM(
f=f,
g_list=[g],
C_list=[C],
rho_list=[ρ],
x0=x0,
maxiter=maxiter,
subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}),
itstat_options={"display": True, "period": 5},
)
"""
Run the solver.
"""
print(f"Solving on {device_info()}\n")
solver.solve()
hist = solver.itstat_object.history(transpose=True)
x_tv = snp.clip(solver.x, 0, 1.0)
"""
Show results.
"""
norm = plot.matplotlib.colors.Normalize(vmin=-0.1, vmax=1.2)
fig, ax = plot.subplots(nrows=2, ncols=2, figsize=(12, 12))
plot.imview(x_gt, title="Ground Truth", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0], norm=norm)
plot.imview(y, title="Measurement", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1])
plot.imview(
x_inv,
title="Inverse Abel: %.2f (dB)" % metric.psnr(x_gt, x_inv),
cmap=plot.cm.Blues,
fig=fig,
ax=ax[1, 0],
norm=norm,
)
plot.imview(
x_tv,
title="TV Regularized Inversion: %.2f (dB)" % metric.psnr(x_gt, x_tv),
cmap=plot.cm.Blues,
fig=fig,
ax=ax[1, 1],
norm=norm,
)
fig.show()
input("\nWaiting for input to close figures and exit")
|
[
"scico.linop.abel.AbelProjector",
"scico.functional.L1Norm",
"scico.plot.subplots",
"scico.plot.matplotlib.colors.Normalize",
"numpy.random.normal",
"scico.examples.create_circular_phantom",
"scico.plot.imview",
"scico.linop.FiniteDifference",
"scico.optimize.admm.LinearSubproblemSolver",
"numpy.random.seed",
"scico.numpy.clip",
"scico.loss.SquaredL2Loss",
"scico.util.device_info",
"scico.metric.psnr"
] |
[((748, 821), 'scico.examples.create_circular_phantom', 'create_circular_phantom', (['(N, N)', '[0.4 * N, 0.2 * N, 0.1 * N]', '[1, 0, 0.5]'], {}), '((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5])\n', (771, 821), False, 'from scico.examples import create_circular_phantom\n'), ((894, 919), 'scico.linop.abel.AbelProjector', 'AbelProjector', (['x_gt.shape'], {}), '(x_gt.shape)\n', (907, 919), False, 'from scico.linop.abel import AbelProjector\n'), ((933, 954), 'numpy.random.seed', 'np.random.seed', (['(12345)'], {}), '(12345)\n', (947, 954), True, 'import numpy as np\n'), ((1398, 1444), 'scico.linop.FiniteDifference', 'linop.FiniteDifference', ([], {'input_shape': 'x_gt.shape'}), '(input_shape=x_gt.shape)\n', (1420, 1444), False, 'from scico import functional, linop, loss, metric, plot\n'), ((1450, 1478), 'scico.loss.SquaredL2Loss', 'loss.SquaredL2Loss', ([], {'y': 'y', 'A': 'A'}), '(y=y, A=A)\n', (1468, 1478), False, 'from scico import functional, linop, loss, metric, plot\n'), ((1506, 1529), 'scico.numpy.clip', 'snp.clip', (['x_inv', '(0)', '(1.0)'], {}), '(x_inv, 0, 1.0)\n', (1514, 1529), True, 'import scico.numpy as snp\n'), ((1925, 1951), 'scico.numpy.clip', 'snp.clip', (['solver.x', '(0)', '(1.0)'], {}), '(solver.x, 0, 1.0)\n', (1933, 1951), True, 'import scico.numpy as snp\n'), ((1983, 2036), 'scico.plot.matplotlib.colors.Normalize', 'plot.matplotlib.colors.Normalize', ([], {'vmin': '(-0.1)', 'vmax': '(1.2)'}), '(vmin=-0.1, vmax=1.2)\n', (2015, 2036), False, 'from scico import functional, linop, loss, metric, plot\n'), ((2047, 2096), 'scico.plot.subplots', 'plot.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(12, 12)'}), '(nrows=2, ncols=2, figsize=(12, 12))\n', (2060, 2096), False, 'from scico import functional, linop, loss, metric, plot\n'), ((2097, 2194), 'scico.plot.imview', 'plot.imview', (['x_gt'], {'title': '"""Ground Truth"""', 'cmap': 'plot.cm.Blues', 'fig': 'fig', 'ax': 'ax[0, 0]', 'norm': 'norm'}), "(x_gt, title='Ground Truth', cmap=plot.cm.Blues, fig=fig, ax=ax[\n 0, 0], norm=norm)\n", (2108, 2194), False, 'from scico import functional, linop, loss, metric, plot\n'), ((2190, 2267), 'scico.plot.imview', 'plot.imview', (['y'], {'title': '"""Measurement"""', 'cmap': 'plot.cm.Blues', 'fig': 'fig', 'ax': 'ax[0, 1]'}), "(y, title='Measurement', cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1])\n", (2201, 2267), False, 'from scico import functional, linop, loss, metric, plot\n'), ((1375, 1394), 'scico.functional.L1Norm', 'functional.L1Norm', ([], {}), '()\n', (1392, 1394), False, 'from scico import functional, linop, loss, metric, plot\n'), ((1659, 1731), 'scico.optimize.admm.LinearSubproblemSolver', 'LinearSubproblemSolver', ([], {'cg_kwargs': "{'tol': cg_tol, 'maxiter': cg_maxiter}"}), "(cg_kwargs={'tol': cg_tol, 'maxiter': cg_maxiter})\n", (1681, 1731), False, 'from scico.optimize.admm import ADMM, LinearSubproblemSolver\n'), ((963, 993), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'y.shape'}), '(size=y.shape)\n', (979, 993), True, 'import numpy as np\n'), ((1832, 1845), 'scico.util.device_info', 'device_info', ([], {}), '()\n', (1843, 1845), False, 'from scico.util import device_info\n'), ((2330, 2354), 'scico.metric.psnr', 'metric.psnr', (['x_gt', 'x_inv'], {}), '(x_gt, x_inv)\n', (2341, 2354), False, 'from scico import functional, linop, loss, metric, plot\n'), ((2500, 2523), 'scico.metric.psnr', 'metric.psnr', (['x_gt', 'x_tv'], {}), '(x_gt, x_tv)\n', (2511, 2523), False, 'from scico import functional, linop, loss, metric, plot\n')]
|
import numpy as np
import scipy.stats as sp
from concept import Concept
def info_gain(prev_dist, new_dist):
return sp.entropy(prev_dist) - sp.entropy(new_dist)
def main():
attributes = range(10)
num_concepts = 5
concept_size = 4
concept_space = Concept(attributes, num_concepts, concept_size)
problem1 = [(1, 2, 3, 4), (3, 4, 5, 6), (2, 4, 5, 7), (2, 3, 5, 8), (2, 3, 4, 5)]
init_belief = np.ones(num_concepts) / num_concepts
for msg in [2, 3, 4, 5]:
new_belief = concept_space.bayesian_update(init_belief, problem1, msg)
print(info_gain(init_belief, new_belief))
init_belief = new_belief
print(info_gain(np.ones(num_concepts) / num_concepts, new_belief))
print('%%%%%%%%%%%%%%%%%%%%%%')
problem2 = [(0, 2, 3), (4, 7, 9), (4, 7), (0, 2, 4, 9)]
init_belief = np.ones(4) / 4
for msg in [7] * 8:
new_belief = concept_space.bayesian_update(init_belief, problem2, msg)
print(info_gain(init_belief, new_belief))
init_belief = new_belief
print(info_gain(np.ones(4) / 4, [0, 0, 1, 0]))
if __name__ == '__main__':
main()
|
[
"scipy.stats.entropy",
"numpy.ones",
"concept.Concept"
] |
[((253, 300), 'concept.Concept', 'Concept', (['attributes', 'num_concepts', 'concept_size'], {}), '(attributes, num_concepts, concept_size)\n', (260, 300), False, 'from concept import Concept\n'), ((117, 138), 'scipy.stats.entropy', 'sp.entropy', (['prev_dist'], {}), '(prev_dist)\n', (127, 138), True, 'import scipy.stats as sp\n'), ((141, 161), 'scipy.stats.entropy', 'sp.entropy', (['new_dist'], {}), '(new_dist)\n', (151, 161), True, 'import scipy.stats as sp\n'), ((399, 420), 'numpy.ones', 'np.ones', (['num_concepts'], {}), '(num_concepts)\n', (406, 420), True, 'import numpy as np\n'), ((781, 791), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (788, 791), True, 'import numpy as np\n'), ((624, 645), 'numpy.ones', 'np.ones', (['num_concepts'], {}), '(num_concepts)\n', (631, 645), True, 'import numpy as np\n'), ((978, 988), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (985, 988), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
# %reset -f
"""
@author: <NAME>
"""
# Demonstration of MAEcce in PLS modeling
import matplotlib.figure as figure
import matplotlib.pyplot as plt
import numpy as np
from dcekit.validation import mae_cce
from sklearn import datasets
from sklearn.cross_decomposition import PLSRegression
from sklearn.model_selection import GridSearchCV, train_test_split
# settings
number_of_training_samples = 50 # 30, 50, 100, 300, 500, 1000, 3000, for example
number_of_test_samples = 10000
number_of_x_variables = 30 # 10, 30, 50, 100, 300, 500, 1000, 3000, for example
number_of_y_randomization = 50
max_pls_component_number = 20
fold_number = 5
# generate sample dataset
x, y = datasets.make_regression(n_samples=number_of_training_samples + number_of_test_samples,
n_features=number_of_x_variables, n_informative=10, noise=30,
random_state=number_of_training_samples + number_of_x_variables)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, random_state=0)
# autoscaling
autoscaled_x_train = (x_train - x_train.mean(axis=0)) / x_train.std(axis=0, ddof=1)
autoscaled_y_train = (y_train - y_train.mean()) / y_train.std(ddof=1)
autoscaled_x_test = (x_test - x_train.mean(axis=0)) / x_train.std(axis=0, ddof=1)
# cross-validation
pls_components = np.arange(1, max_pls_component_number + 1)
cv_model = GridSearchCV(PLSRegression(), {'n_components': pls_components}, cv=fold_number)
cv_model.fit(autoscaled_x_train, autoscaled_y_train)
# modeling and prediction
model = getattr(cv_model, 'estimator')
hyperparameters = list(cv_model.best_params_.keys())
for hyperparameter in hyperparameters:
setattr(model, hyperparameter, cv_model.best_params_[hyperparameter])
model.fit(autoscaled_x_train, autoscaled_y_train)
estimated_y_train = np.ndarray.flatten(model.predict(autoscaled_x_train))
estimated_y_train = estimated_y_train * y_train.std(ddof=1) + y_train.mean()
predicted_y_test = np.ndarray.flatten(model.predict(autoscaled_x_test))
predicted_y_test = predicted_y_test * y_train.std(ddof=1) + y_train.mean()
# MAEcce
mae_cce_train = mae_cce(cv_model, x_train, y_train, number_of_y_randomization=number_of_y_randomization, do_autoscaling=True, random_state=0)
# yy-plot for test data
plt.figure(figsize=figure.figaspect(1))
plt.scatter(y_test, predicted_y_test)
y_max = np.max(np.array([np.array(y_test), predicted_y_test]))
y_min = np.min(np.array([np.array(y_test), predicted_y_test]))
plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)],
[y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-')
plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))
plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))
plt.xlabel('Actual Y')
plt.ylabel('Estimated Y')
plt.show()
# r2p, RMSEp, MAEp for test data
print('r2p: {0}'.format(float(1 - sum((y_test - predicted_y_test) ** 2) / sum((y_test - y_test.mean()) ** 2))))
print('RMSEp: {0}'.format(float((sum((y_test - predicted_y_test) ** 2) / len(y_test)) ** 0.5)))
mae_test = float(sum(abs(y_test - predicted_y_test)) / len(y_test))
print('MAEp: {0}'.format(mae_test))
# histgram of MAEcce
plt.rcParams["font.size"] = 18
plt.hist(mae_cce_train, bins=30)
plt.plot(mae_test, 0.2, 'r.', markersize=30)
plt.xlabel('MAEcce(histgram), MAEp(red point)')
plt.ylabel('frequency')
plt.show()
|
[
"sklearn.datasets.make_regression",
"matplotlib.pyplot.hist",
"sklearn.cross_decomposition.PLSRegression",
"matplotlib.pyplot.ylabel",
"sklearn.model_selection.train_test_split",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"matplotlib.figure.figaspect",
"numpy.array",
"matplotlib.pyplot.scatter",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.xlim",
"dcekit.validation.mae_cce",
"numpy.arange",
"matplotlib.pyplot.show"
] |
[((719, 946), 'sklearn.datasets.make_regression', 'datasets.make_regression', ([], {'n_samples': '(number_of_training_samples + number_of_test_samples)', 'n_features': 'number_of_x_variables', 'n_informative': '(10)', 'noise': '(30)', 'random_state': '(number_of_training_samples + number_of_x_variables)'}), '(n_samples=number_of_training_samples +\n number_of_test_samples, n_features=number_of_x_variables, n_informative\n =10, noise=30, random_state=number_of_training_samples +\n number_of_x_variables)\n', (743, 946), False, 'from sklearn import datasets\n'), ((1036, 1108), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {'test_size': 'number_of_test_samples', 'random_state': '(0)'}), '(x, y, test_size=number_of_test_samples, random_state=0)\n', (1052, 1108), False, 'from sklearn.model_selection import GridSearchCV, train_test_split\n'), ((1405, 1447), 'numpy.arange', 'np.arange', (['(1)', '(max_pls_component_number + 1)'], {}), '(1, max_pls_component_number + 1)\n', (1414, 1447), True, 'import numpy as np\n'), ((2214, 2344), 'dcekit.validation.mae_cce', 'mae_cce', (['cv_model', 'x_train', 'y_train'], {'number_of_y_randomization': 'number_of_y_randomization', 'do_autoscaling': '(True)', 'random_state': '(0)'}), '(cv_model, x_train, y_train, number_of_y_randomization=\n number_of_y_randomization, do_autoscaling=True, random_state=0)\n', (2221, 2344), False, 'from dcekit.validation import mae_cce\n'), ((2409, 2446), 'matplotlib.pyplot.scatter', 'plt.scatter', (['y_test', 'predicted_y_test'], {}), '(y_test, predicted_y_test)\n', (2420, 2446), True, 'import matplotlib.pyplot as plt\n'), ((2576, 2726), 'matplotlib.pyplot.plot', 'plt.plot', (['[y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)]', '[y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)]', '"""k-"""'], {}), "([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)],\n [y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-')\n", (2584, 2726), True, 'import matplotlib.pyplot as plt\n'), ((2734, 2806), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(y_min - 0.05 * (y_max - y_min))', '(y_max + 0.05 * (y_max - y_min))'], {}), '(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))\n', (2742, 2806), True, 'import matplotlib.pyplot as plt\n'), ((2808, 2880), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(y_min - 0.05 * (y_max - y_min))', '(y_max + 0.05 * (y_max - y_min))'], {}), '(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))\n', (2816, 2880), True, 'import matplotlib.pyplot as plt\n'), ((2882, 2904), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Actual Y"""'], {}), "('Actual Y')\n", (2892, 2904), True, 'import matplotlib.pyplot as plt\n'), ((2906, 2931), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Estimated Y"""'], {}), "('Estimated Y')\n", (2916, 2931), True, 'import matplotlib.pyplot as plt\n'), ((2933, 2943), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2941, 2943), True, 'import matplotlib.pyplot as plt\n'), ((3351, 3383), 'matplotlib.pyplot.hist', 'plt.hist', (['mae_cce_train'], {'bins': '(30)'}), '(mae_cce_train, bins=30)\n', (3359, 3383), True, 'import matplotlib.pyplot as plt\n'), ((3385, 3429), 'matplotlib.pyplot.plot', 'plt.plot', (['mae_test', '(0.2)', '"""r."""'], {'markersize': '(30)'}), "(mae_test, 0.2, 'r.', markersize=30)\n", (3393, 3429), True, 'import matplotlib.pyplot as plt\n'), ((3431, 3478), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""MAEcce(histgram), MAEp(red point)"""'], {}), "('MAEcce(histgram), MAEp(red point)')\n", (3441, 3478), True, 'import matplotlib.pyplot as plt\n'), ((3480, 3503), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""frequency"""'], {}), "('frequency')\n", (3490, 3503), True, 'import matplotlib.pyplot as plt\n'), ((3505, 3515), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3513, 3515), True, 'import matplotlib.pyplot as plt\n'), ((1473, 1488), 'sklearn.cross_decomposition.PLSRegression', 'PLSRegression', ([], {}), '()\n', (1486, 1488), False, 'from sklearn.cross_decomposition import PLSRegression\n'), ((2387, 2406), 'matplotlib.figure.figaspect', 'figure.figaspect', (['(1)'], {}), '(1)\n', (2403, 2406), True, 'import matplotlib.figure as figure\n'), ((2473, 2489), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (2481, 2489), True, 'import numpy as np\n'), ((2537, 2553), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (2545, 2553), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
'''
@author: <NAME>
May 2018
'''
# import code
# code.interact(local=locals())
import os
import pickle
# from fordclassifier.classifier.classifier import Classifier
import numpy as np
import pandas as pd
from sklearn.metrics import roc_curve, auc
import json
import matplotlib.pyplot as plt
import operator
import itertools
from sklearn.metrics import confusion_matrix
from collections import OrderedDict
import pyemd
# Local imports
from fordclassifier.evaluator.predictorClass import Predictor
from fordclassifier.evaluator.rbo import *
import pdb
class Evaluator(object):
'''
Class to evaluate the performance of the classifiers
============================================================================
Methods:
============================================================================
_recover: if a variable is not in memory, tries to recover it from disk
_get_folder: retuns full path to a subfolder
_exists_file: check if the file exists in disk
draw_rocs: draws the Xval ROCs and saves them as png files
load_Xtfidf: Loads from disk Xtfidf and tags
load_test_data: Loads from disk test Xtfidf and tags
load_train_data: Loads from disk train Xtfidf and tags
compute_average_xval_AUC: computes the average AUC on xval
compute_average_test_AUC: computes the average AUC on test
obtain_labels_from_Preds: Produces the multilabel tag prediction from
individual predictions of every classifier
compute_confussion_matrix: computes the confusion matrix on test
(multiclass case)
compute_confusion_matrix_multilabel: computes the confussion matrix for a
multilabel set (multilabel case)
draw_confussion_matrix: draws the CM and saves it as a png file
draw_ROCS_tst: draws the ROC curves for the test data
draw_anyROC: draws the ROC curves
compute_thresholds: computes the thresholds
compute_cardinality: computes the cardinality of the tags
compute_label_density: Computes the label density
JaccardIndex: Computes the Jaccard index
compute_multilabel_threshold: Computes the multilabel threshold
draw_costs_on_test: draws the multilabel cost for the test data
load_multilabel_threshold: Loads the multilabel thresholds
Jaccard_RBO_cost: Computes a convex combination of the Jaccard and
RBO costs
align_strings: Aligns strings into columns
get_pred_weights: Returns the normalized predictions
write_prediction_report: writes a simple prediction report in text format
============================================================================
'''
def __init__(self, project_path, subfolders, categories=None, verbose=True):
'''
Initialization: Creates the initial object data
Inputs:
- project_path: path to the working project
- subfolders: subfolder structure
'''
self._project_path = project_path # working directory
self._verbose = verbose # messages are printed on screen when True
self.models2evaluate = None # models to evaluate (classif, params)
self._subfolders = None # subfolders structure
self.best_auc = None # Best AUC
self.best_models = None # Best models
self.Xtfidf_tr = None # Xtfidf for training
self.tags_tr = None # Training tags
self.tags = None # All tags
self.ths_dict = None # dict with the thresholds for every classifier
self.Preds = None # Prediction matrix, one column per category
self.Preds_tr = None # Pred. matrix, one column per category, train
self.Preds_tst = None # Pred. matrix, one column per category, test
self.index_tst = None # Index for tags test
self.categories = categories # List of categories
self.Xtfidf_tst = None # Xtfidf for test
self.tags_tst = None # Test tags
self.CONF = None # Confusion matrix
self.multilabel_th = None # Multilabel Threshold
self._subfolders = subfolders
def _get_folder(self, subfolder):
'''
gets full path to a folder
Inputs:
- subfolder: target subfolder
'''
return os.path.join(self._project_path, self._subfolders[subfolder])
def _exists_file(self, filename):
'''
Checks if the file exists
Inputs:
- filename
'''
try:
f = open(filename, 'r')
existe = True
f.close()
except:
existe = False
pass
return existe
def _recover(self, field):
'''
Loads from disk a previously stored variable, to avoid recomputing it
Inputs:
- field: variable to restore from disk
'''
if field == 'best_auc':
input_file = os.path.join(self._get_folder('results'),
'best_auc.json')
with open(input_file, 'r') as f:
self.best_auc = json.load(f)
if field == 'best_models':
try:
input_file = os.path.join(self._get_folder('results'),
'best_models.json')
with open(input_file, 'r') as f:
self.best_models = json.load(f)
except:
input_file = os.path.join(self._get_folder('export'),
'best_models.json')
with open(input_file, 'r') as f:
self.best_models = json.load(f)
pass
if field == 'Xtfidf_tr':
filetoload_Xtfidf = os.path.join(
self._project_path + self._subfolders['training_data'],
'train_data.pkl')
with open(filetoload_Xtfidf, 'rb') as f:
[self.Xtfidf_tr, tags_tr, self.tags_tr,
refs_tr] = pickle.load(f)
if field == 'Xtfidf_tst':
filetoload_Xtfidf = os.path.join(
self._project_path + self._subfolders['test_data'],
'test_data.pkl')
with open(filetoload_Xtfidf, 'rb') as f:
[self.Xtfidf_tst, tags_tst, self.tags_tst,
refs_tst] = pickle.load(f)
if field == 'tags':
filetoload_tags = os.path.join(
self._project_path + self._subfolders['training_data'],
'tags.pkl')
with open(filetoload_tags, 'rb') as f:
self.tags = pickle.load(f)
if field == 'ths_dict':
try:
filename = os.path.join(
self._project_path + self._subfolders['results'],
'ths_dict.pkl')
with open(filename, 'rb') as f:
self.ths_dict = pickle.load(f)
except:
filename = os.path.join(
self._project_path + self._subfolders['export'],
'ths_dict.pkl')
with open(filename, 'rb') as f:
self.ths_dict = pickle.load(f)
pass
if field == 'Preds':
filename = os.path.join(
self._project_path + self._subfolders['results'], 'Preds.pkl')
with open(filename, 'rb') as f:
self.Preds = pickle.load(f)
if field == 'Preds_tr':
filename = os.path.join(
self._project_path, self._subfolders['results'],
'Preds_tr.pkl')
with open(filename, 'rb') as f:
self.Preds_tr = pickle.load(f)
if field == 'Preds_tst':
filename = os.path.join(
self._project_path, self._subfolders['results'],
'Preds_test.pkl')
with open(filename, 'rb') as f:
self.Preds_tst = pickle.load(f)
if field == 'CONF':
filename = os.path.join(
self._project_path + self._subfolders['results'], 'CONF.pkl')
with open(filename, 'rb') as f:
self.CONF = pickle.load(f)
if field == 'tags_index':
filename = os.path.join(
self._project_path + self._subfolders['test_data'],
'tags_index.pkl')
with open(filename, 'rb') as f:
[self.tags_tst, self.index_tst] = pickle.load(f)
if field == 'categories':
try:
filename = os.path.join(
self._project_path + self._subfolders['training_data'],
'categories.pkl')
with open(filename, 'rb') as f:
self.categories = pickle.load(f)
except:
filename = os.path.join(
self._project_path + self._subfolders['export'],
'categories.pkl')
with open(filename, 'rb') as f:
self.categories = pickle.load(f)
pass
if field == 'models2evaluate':
try:
filename = os.path.join(
self._project_path + self._subfolders['training_data'],
'models2evaluate.pkl')
with open(filename, 'rb') as f:
self.models2evaluate = pickle.load(f)
except:
filename = os.path.join(
self._project_path + self._subfolders['export'],
'models2evaluate.pkl')
with open(filename, 'rb') as f:
self.models2evaluate = pickle.load(f)
pass
if field == 'multilabel_th':
try:
filename = os.path.join(
self._project_path + self._subfolders['training_data'],
'multilabel_th.pkl')
with open(filename, 'rb') as f:
self.multilabel_th = pickle.load(f)
except:
filename = os.path.join(
self._project_path + self._subfolders['export'],
'multilabel_th.pkl')
with open(filename, 'rb') as f:
self.multilabel_th = pickle.load(f)
pass
return
def draw_rocs(self, verbose=True):
'''
Draws the Xval ROCs and saves them as png files
Inputs:
- None, it operates on self values
'''
if verbose:
print("Saving ROC figures ...")
if self.categories is None:
self._recover('categories')
if self.models2evaluate is None:
self._recover('models2evaluate')
# get the evaluated models
models = list(self.models2evaluate.keys())
Nclass = len(models)
Ncats = len(self.categories)
for kcat in range(0, Ncats):
plt.figure(figsize=(15, 12))
aucs = []
cat = self.categories[kcat]
for kclass in range(0, Nclass):
try:
model_name = models[kclass]
file_input_ROC = os.path.join(
self._get_folder('eval_ROCs'),
'ROC_' + model_name + '_' + cat + '.pkl')
with open(file_input_ROC, 'rb') as f:
mdict = pickle.load(f)
auc = mdict['roc_auc_loo']
aucs.append((model_name, auc))
except:
pass
# Sorting by AUC
aucs.sort(key=operator.itemgetter(1), reverse=True)
colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--',
'c--', 'k--']
# drawing the best 10 models
for k in range(0, 10):
try:
model_name = aucs[k][0]
auc = aucs[k][1]
file_input_ROC = os.path.join(
self._get_folder('eval_ROCs'),
'ROC_' + model_name + '_' + cat + '.pkl')
with open(file_input_ROC, 'rb') as f:
mdict = pickle.load(f)
fpr = mdict['fpr_loo']
tpr = mdict['tpr_loo']
text = model_name + ', AUC= ' + str(auc)[0:6]
if auc > 0.6:
if k == 0:
# drawing the best model with thicker line
plt.plot(fpr, tpr, colors[k], label=text,
linewidth=6.0)
else:
plt.plot(fpr, tpr, colors[k], label=text,
linewidth=2.0)
except:
pass
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC curves for category ' + cat)
plt.grid(True)
plt.legend(loc="lower right")
filename = os.path.join(self._get_folder('ROCS_tr'),
cat + '_ROC_xval.png')
plt.savefig(filename)
plt.close()
if verbose:
print(cat, )
return
def load_Xtfidf(self, verbose=True):
'''
Loads from disk Xtfidf and tags
Inputs:
- None, it operates on self values
'''
if self.Xtfidf is None:
self._recover('Xtfidf')
if self.tags is None:
self._recover('tags')
return self.Xtfidf, self.tags
def load_test_data(self, verbose=True):
'''
Loads from disk test Xtfidf and tags
Inputs:
- None, it operates on self values
'''
filename = os.path.join(
self._project_path + self._subfolders['test_data'],
'test_data.pkl')
with open(filename, 'rb') as f:
[self.Xtfidf_tst, self.tags_tst, refs_tst] = pickle.load(f)
new_tags_tst = []
for tags in self.tags_tst:
unique_tags = sorted(set(tags), key=tags.index)
new_tags_tst.append(unique_tags)
return self.Xtfidf_tst, new_tags_tst, refs_tst
def load_train_data(self, verbose=True):
'''
Loads from disk train Xtfidf and tags
Inputs:
- None, it operates on self values
'''
filename = os.path.join(
self._project_path + self._subfolders['training_data'],
'train_data.pkl')
with open(filename, 'rb') as f:
[self.Xtfidf_tr, self.tags_tr, refs_tr] = pickle.load(f)
new_tags_tr = []
for tags in self.tags_tr:
unique_tags = sorted(set(tags), key=tags.index)
new_tags_tr.append(unique_tags)
return self.Xtfidf_tr, new_tags_tr, refs_tr
def compute_average_xval_AUC(self, verbose=True):
'''
Computes the average AUC on xval
Inputs:
- None, it operates on self values
'''
if self.best_auc is None:
self._recover('best_auc')
aucs = list(self.best_auc.values())
average_auc = np.mean(aucs)
return average_auc
def obtain_labels_from_Preds(self, Preds, threshold,
categories=None, verbose=True):
'''
Produces the multilabel tag prediction from individual predictions of
every classifier
Inputs:
- Preds: predictions matrix, one column per category, as many rows
as patterns
- threshold: multilabel threshold
'''
if self.categories is None:
self._recover('categories')
labels_preds = []
Ndocs = Preds.shape[0]
for kdoc in range(0, Ndocs):
l = []
p = Preds[kdoc, :]
# Normalize individual predictions, the maximum becomes 1.0 in all
# cases
if max(p) > 0:
p = p / max(p)
orden = np.argsort(-p)
for index in orden:
if p[index] > threshold:
l.append(self.categories[index])
labels_preds.append(l)
return labels_preds
def compute_confusion_matrix(self, orig_tags, best_pred_tags, filename,
sorted_categories=[], verbose=True):
'''
computes the confussion matrix on test (multiclass case)
Inputs:
- orig_tags: original labels
- best_pred_tags: predicted labels
- filename: file to save results
- sorted_categories: categories to take into account, respecting
the order
'''
if self.categories is None:
self._recover('categories')
if len(sorted_categories) > 0:
labels_categories = sorted_categories
else:
labels_categories = self.categories
self.CONF = confusion_matrix(orig_tags, best_pred_tags,
labels=labels_categories)
pathfilename = os.path.join(
self._project_path + self._subfolders['results'], filename)
with open(pathfilename, 'wb') as f:
pickle.dump(self.CONF, f)
return self.CONF
def compute_confusion_matrix_multilabel(self, orig_tags, best_pred_tags,
filename, sorted_categories=[],
verbose=True):
'''
computes the confussion matrix for a multilabel set (multilabel case)
Inputs:
- orig_tags: original labels
- best_pred_tags: predicted labels
- filename: file to save results
- sorted_categories: categories to take into account, respecting
the order
'''
if self.categories is None:
self._recover('categories')
if len(sorted_categories) > 0:
labels_categories = sorted_categories
else:
labels_categories = self.categories
Ncats = len(labels_categories)
self.CONF = np.zeros((Ncats, Ncats))
NP = len(orig_tags)
for k in range(0, NP):
cats_orig = orig_tags[k]
cats_pred = best_pred_tags[k]
for m in range(0, Ncats):
for n in range(0, Ncats):
cat_orig = labels_categories[m]
cat_pred = labels_categories[n]
if cat_orig in cats_orig and cat_pred in cats_pred:
self.CONF[m, n] += 1.0
# self.CONF = confusion_matrix(orig_tags, best_pred_tags,
# labels=labels_categories)
pathfilename = os.path.join(
self._project_path + self._subfolders['results'], filename)
with open(pathfilename, 'wb') as f:
pickle.dump(self.CONF, f)
return self.CONF
def compute_confusion_matrix_multilabel_v2(
self, orig_tags, best_pred_tags, filename, sorted_categories=[],
order_sensitive=False, verbose=True):
'''
computes the confusion matrix for a multilabel set
Inputs:
- orig_tags: original labels
- best_pred_tags: predicted labels
- filename: file to save results
- sorted_categories: categories to take into account, respecting
the order
- order_sensitive: indicates if the computation is order sensitive
or not
'''
# Set dump factor
if order_sensitive:
dump_factor = 0.5
else:
dump_factor = 1.0
# Take categories from the input arguments. If not, from the object.
# If not, from a file using the recover method.
if len(sorted_categories) > 0:
categories = sorted_categories
else:
# Get list of categories
if self.categories is None:
self._recover('categories')
categories = self.categories
# Validate true labels
n = len([x for x in orig_tags if len(x) == 0])
if n > 0:
print('---- WARNING: {} samples without labels '.format(n) +
'will be ignored.')
# Validate predicted labels
n = len([x for x in best_pred_tags if len(x) == 0])
if n > 0:
print('---- WARNING: {} samples without predictions '.format(n) +
'will be ignored.')
# Loop over the true and predicted labels
Ncats = len(categories)
self.CONF = np.zeros((Ncats, Ncats))
for cats_orig, cats_pred in zip(orig_tags, best_pred_tags):
if len(cats_orig) > 0 and len(cats_pred) > 0:
# Compute numerical true label vector
value_orig = 1.0
p = np.zeros(Ncats)
for c in cats_orig:
p[categories.index(c)] = value_orig
value_orig *= dump_factor
p = p / np.sum(p)
# Compute numerical prediction label vector
value_pred = 1.0
q = np.zeros(Ncats)
for c in cats_pred:
q[categories.index(c)] = value_pred
value_pred *= dump_factor
q = q / np.sum(q)
# Compute diagonal elements
min_pq = np.minimum(p, q)
M = np.diag(min_pq)
# Compute non-diagonal elements
p_ = p - min_pq
q_ = q - min_pq
z = 1 - np.sum(min_pq)
if z > 0:
M += (p_[:, np.newaxis] * q_) / z
self.CONF += M
pathfilename = os.path.join(
self._project_path, self._subfolders['results'], filename)
with open(pathfilename, 'wb') as f:
pickle.dump(self.CONF, f)
return self.CONF
def compute_EMD_error(self, orig_tags, best_pred_tags, fpath,
order_sensitive=False):
'''
computes the confusion matrix for a multilabel set
Args:
- orig_tags: original labels
- best_pred_tags: predicted labels
- fpath: path to the file with the similarity matrix
- order_sensitive: indicates if the computation is order sensitive
or not
'''
# ######################
# Load similarity values
if type(fpath) is str:
df_S = pd.read_excel(fpath)
# Compute cost matrix
C = 1 - df_S[df_S.columns].values
# WARNING: For later versions of pandas, you might need to use:
# Note that df_S.columnst shooud be taken from 1, because
# The first column is taken as the index column.
# C = 1 - df_S[df_S.columns[1:]].to_numpy()
else:
# This is a combination of cost matrices that takes the
# component-wise minimum of the costs
C = 1
for fp in fpath:
df_S = pd.read_excel(fp)
# Compute cost matrix
Cf = 1 - df_S[df_S.columns].values
C = np.minimum(C, Cf)
# This combination of cost matrices takes each cost matrix with a
# different weights. Only for two Cost matrices.
# df_S = pd.read_excel(fpath[0])
# C1 = 1 - df_S[df_S.columns].values
# df_S = pd.read_excel(fpath[1])
# Cs = 1 - df_S[df_S.columns].values
# ncat = Cs.shape[0]
# C = np.minimum(1 - np.eye(ncat),
# np.minimum(0.25 + 0.75 * Cs, 0.5 + 0.5 * C1))
# This is to make sure that C is "C-contitguos", a requirement of pyemd
C = np.ascontiguousarray(C, dtype=np.float64)
# Set dump factor
if order_sensitive:
dump_factor = 0.5
else:
dump_factor = 1.0
# Take categories in the order of the cost matrix
categories = df_S.columns.tolist()
# Validate true labels
n = len([x for x in orig_tags if len(x) == 0])
if n > 0:
print(f'---- WARNING: {n} samples without labels will be ignored')
# Validate predicted labels
n = len([x for x in best_pred_tags if len(x) == 0])
if n > 0:
print(f'---- WARNING: {n} samples without preds will be ignored')
# ##################
# Compute EMD errors
# Loop over the true and predicted labels
Ncats = len(categories)
self.emd = 0
count = 0
for cats_orig, cats_pred in zip(orig_tags, best_pred_tags):
if len(cats_orig) > 0 and len(cats_pred) > 0:
# Compute numerical true label vector
value_orig = 1.0
p = np.zeros(Ncats)
for c in cats_orig:
p[categories.index(c)] = value_orig
value_orig *= dump_factor
p = p / np.sum(p)
# Compute numerical prediction label vector
value_pred = 1.0
q = np.zeros(Ncats)
for c in cats_pred:
q[categories.index(c)] = value_pred
value_pred *= dump_factor
q = q / np.sum(q)
# Compute EMD distance for the given sample
emd_i = pyemd.emd(p, q, C)
self.emd += emd_i
count += 1
self.emd /= count
return self.emd
def compute_sorted_errors(self, CONF, categories):
eps = 1e-20
# Sample size per category
n_cat = len(categories)
ns_cat = CONF.sum(axis=1, keepdims=True)
# Total sample size
ns_tot = CONF.sum()
# Compute all-normalized confusion matrix
CONF_a = CONF / ns_tot
# Compute row-normalized confusion matrix
CONF_r = ((CONF.astype('float') + eps) /
(ns_cat + n_cat*eps))
# Sort errors by
unsorted_values = [(categories[i], categories[j], 100*CONF_a[i, j],
100*CONF_r[i, j], 100*ns_cat[i][0]/ns_tot)
for i in range(n_cat) for j in range(n_cat)]
sorted_values_a = sorted(unsorted_values, key=lambda x: -x[2])
sorted_values_r = sorted(unsorted_values, key=lambda x: -x[3])
# Remove diagonal elements
sorted_values_a = [x for x in sorted_values_a if x[0] != x[1]]
sorted_values_r = [x for x in sorted_values_r if x[0] != x[1]]
# Remove relative errors of categories with zero samples
sorted_values_r = [x for x in sorted_values_r
if ns_cat[categories.index(x[0])] > 0]
cols = ['Cat. real', 'Clasif', 'Err/total (%)', 'Error/cat (%)',
'Peso muestral']
df_ranked_abs = pd.DataFrame(sorted_values_a, columns=cols)
df_ranked_rel = pd.DataFrame(sorted_values_r, columns=cols)
f_path = os.path.join(self._project_path, self._subfolders['results'],
'ranked_abs_errors.xlsx')
df_ranked_abs.to_excel(f_path)
f_path = os.path.join(self._project_path, self._subfolders['results'],
'ranked_rel_errors.xlsx')
df_ranked_rel.to_excel(f_path)
return df_ranked_abs, df_ranked_rel
def compute_error_confusion_matrix(self, CONF, normalize=True,
verbose=True):
# Returns the ratio of elements outside the diagonal
allsum = np.sum(CONF)
diagsum = np.sum(np.diagonal(CONF))
offdiagsum = allsum - diagsum
error = offdiagsum / allsum
return error
def draw_confusion_matrix(self, CONF, filename, sorted_categories=[],
verbose=True, normalize=True):
'''
draws the CM and saves it as a png file
Inputs:
- CONF: conf matrix to be stored
- filename: filename
- sorted_categories: list of sorted categories
- normalize: indicates to normalize CONF
'''
# An extemelly small value to avoid zero division
eps = 1e-20
n_cat = len(sorted_categories)
if len(sorted_categories) > 0:
labels_categories = sorted_categories
else:
if self.categories is None:
self._recover('categories')
labels_categories = self.categories
if normalize:
# Normalize
CONF = ((CONF.astype('float') + eps) /
(CONF.sum(axis=1, keepdims=True) + n_cat*eps))
else:
CONF = CONF.astype('float')
plt.figure(figsize=(15, 12))
cmap = plt.cm.Blues
plt.imshow(CONF, interpolation='nearest', cmap=cmap)
plt.colorbar()
tick_marks = np.arange(len(labels_categories))
plt.xticks(tick_marks, labels_categories, rotation=90)
plt.yticks(tick_marks, labels_categories)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
pathfilename = os.path.join(self._get_folder('figures'), filename)
print(f"SALVADO EN {pathfilename}")
plt.savefig(pathfilename)
plt.clf()
return
def draw_ROCS_tst(self, Preds_tst, tags_tst):
'''
draws the ROC curves for the test data
Inputs:
- Preds_tst: predicted labels
- tags_tst: true labels
'''
if self.best_models is None:
self._recover('best_models')
if self.categories is None:
self._recover('categories')
colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--',
'c--', 'k--']
# retain the first tag in the labels
tags = [t[0] if len(t) > 0 else '' for t in tags_tst]
for k in range(0, len(self.categories)):
cat = self.categories[k]
y_tst = [1.0 if p == cat else -1.0 for p in tags]
preds_tst = list(Preds_tst[:, k])
fpr_tst, tpr_tst, thresholds = roc_curve(y_tst, preds_tst)
roc_auc_tst = auc(fpr_tst, tpr_tst)
model_name = self.best_models[cat]
file_output_ROC = os.path.join(
self._get_folder('ROCS_tst'),
'ROC_' + model_name + '_' + cat + '.pkl')
mdict = {'fpr_tst': list(fpr_tst), 'tpr_tst': list(tpr_tst),
'roc_auc_tst': roc_auc_tst, 'y_tst': list(y_tst),
'preds_tst': list(preds_tst)}
with open(file_output_ROC, 'wb') as f:
pickle.dump(mdict, f)
plt.figure(figsize=(15, 12))
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC test curve for category ' + cat)
text = model_name + ', AUC= ' + str(roc_auc_tst)[0:6]
plt.plot(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0)
plt.grid(True)
plt.legend(loc="lower right")
filename = os.path.join(
self._get_folder('ROCS_tst'), cat + '_ROC_test.png')
plt.savefig(filename)
plt.close()
return
def draw_anyROC(self, Preds_tst, tags_tst, case):
'''
draws the ROC curves
Inputs:
- Preds_tst: predicted labels
- tags_tst: true labels
'''
if self.categories is None:
self._recover('categories')
colors = ['k', 'r', 'g', 'b', 'm', 'c', 'r--', 'g--', 'b--', 'm--',
'c--', 'k--']
# retain the first tag in the labels
tags = [t[0] if len(t) > 0 else '' for t in tags_tst]
aucs = []
for k in range(0, len(self.categories)):
cat = self.categories[k]
y_tst = [1.0 if p == cat else -1.0 for p in tags]
preds_tst = list(Preds_tst[:, k])
fpr_tst, tpr_tst, thresholds = roc_curve(y_tst, preds_tst)
roc_auc_tst = auc(fpr_tst, tpr_tst)
aucs.append(roc_auc_tst)
file_output_ROC = os.path.join(
self._get_folder('ROCS_tst'),
cat + '_' + 'ROC_' + case + '.pkl')
mdict = {'fpr_tst': list(fpr_tst), 'tpr_tst': list(tpr_tst),
'roc_auc_tst': roc_auc_tst, 'y_tst': list(y_tst),
'preds_tst': list(preds_tst)}
with open(file_output_ROC, 'wb') as f:
pickle.dump(mdict, f)
plt.figure(figsize=(15, 12))
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC test curve for category ' + cat)
text = case + ', AUC= ' + str(roc_auc_tst)[0:6]
plt.plot(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0)
plt.grid(True)
plt.legend(loc="lower right")
filename = os.path.join(self._get_folder('ROCS_tst'),
cat + '_' + 'ROC_' + case + '.png')
plt.savefig(filename)
plt.close()
average_auc = np.nanmean(aucs)
return average_auc
def compute_average_test_AUC(self, verbose=True):
'''
computes the average AUC on test
Inputs:
- None, it operates on self values
'''
if self.best_models is None:
self._recover('best_models')
if self.categories is None:
self._recover('categories')
aucs = []
for k in range(0, len(self.categories)):
cat = self.categories[k]
model_name = self.best_models[cat]
filename = os.path.join(
self._get_folder('ROCS_tst'),
'ROC_' + model_name + '_' + cat + '.pkl')
with open(filename, 'rb') as f:
mdict = pickle.load(f)
auc = mdict['roc_auc_tst']
aucs.append(auc)
average_auc = np.nanmean(aucs)
return average_auc
def compute_thresholds(self, verbose=True):
'''
computes the thresholds
Inputs:
- None, it operates on self values
'''
if self.categories is None:
self._recover('categories')
if self.best_models is None:
self._recover('best_models')
Ncats = len(self.categories)
ths_dict = {}
for kcat in range(0, Ncats):
try:
cat = self.categories[kcat]
model_name = self.best_models[cat]
file_input_ROC = os.path.join(
self._get_folder('eval_ROCs'),
'ROC_' + model_name + '_' + cat + '.pkl')
with open(file_input_ROC, 'rb') as f:
mdict = pickle.load(f)
fpr = mdict['fpr_loo']
tpr = mdict['tpr_loo']
ths = mdict['thresholds']
mix = []
for k in range(0, len(fpr)):
# We select the threshold maximizing this convex combinat
mix.append(tpr[k] + (1 - fpr[k]))
cual = np.argmax(mix)
th = ths[cual]
ths_dict.update({cat: th})
print(cat, th, cual, tpr[cual], fpr[cual])
except:
print("Error in cat ", cat)
pass
filename = os.path.join(
self._project_path + self._subfolders['results'], 'ths_dict.pkl')
with open(filename, 'wb') as f:
pickle.dump(ths_dict, f)
return
def compute_cardinality(self, tags):
'''
computes the cardinality of the tags
Inputs:
- tags: labels
'''
C = np.mean([len(set(l)) for l in tags])
return C
def compute_label_density(self, tags):
'''
Computes the label density
Inputs:
- tags: labels
'''
# total number of possible labels
NL = len(set(itertools.chain.from_iterable(tags)))
D = np.mean([len(set(l)) / NL for l in tags])
return D
def JaccardIndex(self, orig, pred):
'''
Computes the Jaccard index
Inputs:
- orig: original labels
- pred: predicted labels
'''
accs = []
for k in range(0, len(orig)):
l_orig = orig[k]
l_pred = pred[k]
num = len(set(l_orig).intersection(l_pred))
den = len(set(l_orig + l_pred))
acc = num / den
accs.append(acc)
JI = np.mean(accs)
return JI
def compute_multilabel_threshold(self, p, alpha, option, th_values,
verbose=True):
'''
Computes the multilabel threshold
Inputs:
- p: RBO parameter, ``p`` is the probability of looking for overlap
at rank k + 1 after having examined rank k
- alpha: convex Jaccard-RBO combination parameter
- option: sorting option for multilabel prediction
- th_values: range of threshold values to be evaluated
'''
if self.Xtfidf_tr is None:
self._recover('Xtfidf_tr')
if self.Preds_tr is None:
self._recover('Preds_tr')
# Warning tags_tr may have duplicates...
self.tags_tr = [list(OrderedDict.fromkeys(l)) for l in self.tags_tr]
if verbose:
print('-' * 50)
COST = []
DENS_pred = []
DENS_true = []
COST_dens = []
density_true = self.compute_cardinality(self.tags_tr)
# to normalize Jaccard_RBO_cost, depends on p
baseline = [0]
for k in range(2, 50):
l = list(range(1, k))
baseline.append(rbo(l, l, p)['min'])
P = Predictor(self._project_path, self._subfolders, verbose=False)
for threshold in th_values:
multilabel_pred_tr, labels_pred_tr = P.obtain_multilabel_preds(
self.Preds_tr, option, threshold, verbose=True)
density_pred = self.compute_cardinality(labels_pred_tr)
DENS_pred.append(density_pred)
DENS_true.append(density_true)
dens_error = (density_pred - density_true) ** 2
COST_dens.append(dens_error)
# Computing Jackard_RBO cost
jrbos = []
for k in range(0, len(self.tags_tr)):
values = []
for key in labels_pred_tr[k]:
values.append((key, multilabel_pred_tr[k][key]['p']))
values.sort(key=lambda x: x[1], reverse=True)
l_pred = []
for v in values:
l_pred.append(v[0])
jrbo = self.Jaccard_RBO_cost(
self.tags_tr[k], l_pred, baseline, p, alpha)
jrbos.append(jrbo)
cost_jrbo = np.mean(jrbos)
print(threshold, cost_jrbo, density_true, density_pred, )
COST.append(cost_jrbo)
max_cost = max(COST)
max_dens = max(COST_dens)
COST_dens = [x / max_dens * max_cost for x in COST_dens]
plt.figure(figsize=(15, 12))
plt.xlabel('Th')
plt.ylabel('Jackard-RBO cost')
plt.title('Jackard-RBO and Label Density costs for p =' + str(p) +
' and alpha= ' + str(alpha))
plt.plot(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0)
plt.plot(th_values, COST_dens, 'r', label='Labels Density cost',
linewidth=3.0)
cual_min = np.argmin(COST)
th_JRBO = th_values[cual_min]
plt.plot(th_values[cual_min], COST[cual_min], 'bo',
label='Minimum Jackard-RBO cost', linewidth=3.0)
cual_min = np.argmin(COST_dens)
th_DENS = th_values[cual_min]
plt.plot(th_values[cual_min], COST_dens[cual_min], 'ro',
label='Minimum Labels Density cost', linewidth=3.0)
plt.legend(loc="upper right")
plt.grid(True)
filename = os.path.join(
self._project_path + self._subfolders['results'],
'JRBO_COST_tr_p_' + str(p) + '_alpha_' + str(alpha) + '.png')
plt.savefig(filename)
plt.close()
self.multilabel_th = np.mean([th_JRBO, th_DENS])
filename = os.path.join(
self._project_path + self._subfolders['training_data'],
'multilabel_th.pkl')
with open(filename, 'wb') as f:
pickle.dump(self.multilabel_th, f)
filename = os.path.join(
self._project_path + self._subfolders['export'],
'multilabel_th.pkl')
with open(filename, 'wb') as f:
pickle.dump(self.multilabel_th, f)
return self.multilabel_th
def draw_costs_on_test(self, p, alpha, option, th_values, verbose=True):
'''
draws the multilabel cost for the test data
Inputs:
- p: RBO parameter, ``p`` is the probability of looking for
overlap at rank k + 1 after having examined rank k
- alpha: convex Jaccard-RBO combination parameter
- option: sorting option for multilabel prediction
- th_values: range of threshold values to be evaluated
'''
if self.Xtfidf_tst is None:
self._recover('Xtfidf_tst')
if self.Preds_tst is None:
self._recover('Preds_tst')
if self.multilabel_th is None:
self._recover('multilabel_th')
# Warning tags_tst may have duplicates...
self.tags_tst = [list(OrderedDict.fromkeys(l)) for l in self.tags_tst]
if verbose:
print('-' * 50)
COST = []
DENS_pred = []
DENS_true = []
COST_dens = []
density_true = self.compute_cardinality(self.tags_tst)
# to normalize Jaccard_RBO_cost, depends on p
baseline = [0]
for k in range(2, 50):
l = list(range(1, k))
baseline.append(rbo(l, l, p)['min'])
P = Predictor(self._project_path, self._subfolders, verbose=False)
for threshold in th_values:
multilabel_pred_tst, labels_pred_tst = P.obtain_multilabel_preds(
self.Preds_tst, option, threshold, verbose=True)
density_pred = self.compute_cardinality(labels_pred_tst)
DENS_pred.append(density_pred)
DENS_true.append(density_true)
dens_error = (density_pred - density_true) ** 2
COST_dens.append(dens_error)
# Computing Jackard_RBO cost
jrbos = []
for k in range(0, len(self.tags_tst)):
values = []
for key in labels_pred_tst[k]:
values.append((key, multilabel_pred_tst[k][key]['p']))
values.sort(key=lambda x: x[1], reverse=True)
l_pred = []
for v in values:
l_pred.append(v[0])
jrbo = self.Jaccard_RBO_cost(
self.tags_tst[k], l_pred, baseline, p, alpha)
jrbos.append(jrbo)
cost_jrbo = np.mean(jrbos)
print(threshold, cost_jrbo, density_true, density_pred, )
COST.append(cost_jrbo)
max_cost = max(COST)
max_dens = max(COST_dens)
COST_dens = [x / max_dens * max_cost for x in COST_dens]
plt.figure(figsize=(15, 12))
plt.xlabel('Th')
plt.ylabel('Jackard-RBO cost')
plt.title('Jackard-RBO and Label Density costs for p =' + str(p) +
' and alpha= ' + str(alpha))
plt.plot(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0)
plt.plot(th_values, COST_dens, 'r', label='Labels Density cost',
linewidth=3.0)
cual_min = np.argmin(abs(th_values - self.multilabel_th))
plt.plot(th_values[cual_min], COST[cual_min], 'bo',
label='Jackard-RBO cost at threshold', linewidth=3.0)
plt.plot(th_values[cual_min], COST_dens[cual_min], 'ro',
label='Labels Density cost at threshold', linewidth=3.0)
plt.legend(loc="upper right")
plt.grid(True)
filename = os.path.join(
self._project_path + self._subfolders['results'],
'JRBO_COST_tst_p_' + str(p) + '_alpha_' + str(alpha) + '.png')
plt.savefig(filename)
plt.close()
return
def load_multilabel_threshold(self, path2export=''):
'''
Loads the multilabel thresholds
Inputs:
- path2export: export path
'''
if path2export != '':
print('Loading multilabel_th from export')
filename = os.path.join(path2export, 'multilabel_th.pkl')
with open(filename, 'rb') as f:
self.multilabel_th = pickle.load(f)
else:
if self.multilabel_th is None:
self._recover('multilabel_th')
return self.multilabel_th
def Jaccard_RBO_cost(self, l_orig, l_pred, baseline, p, alpha):
'''
Computes a convex combination of the Jaccard and RBO costs
Inputs:
- l_orig: original labels
- l_pred: predicted labels
- baseline: normalizing values
- p: RBO parameter, ``p`` is the probability of looking for overlap
at rank k + 1 after having examined rank k
- alpha: convex Jaccard-RBO combination parameter
'''
try:
if len(l_orig) > 0:
num = len(set(l_orig).intersection(l_pred))
den = len(set(l_orig + l_pred))
ji = 1.0 - num / den
else:
if len(l_pred) == 0:
# empty labels and empty predict means cost = 0.0
ji = 0
else:
# empty labels and non-empty predict means cost = 1.0
ji = 1.0
r = 0
L = min((len(l_orig), len(l_pred)))
if L > 0:
r = 1 - rbo(l_orig, l_pred, p)['min'] / baseline[L]
else:
r = 1.0
if len(l_orig) == 0 and len(l_pred) == 0:
r = 0.0
except:
print('Error in Jaccard_RBO_cost ' +
'----------------------------------------------------')
import code
code.interact(local=locals())
pass
jrbo = (alpha * ji + (1 - alpha) * r) / 2.0
return jrbo
def align_strings(self, string0, string1, string2, string3, L, M, N, P):
'''
Aligns strings into columns
'''
empty = ' '
# if len(string1) > M or len(string2) > N or len(string3) > P:
# import code
# code.interact(local=locals())
if L - len(string0) > 0:
string0 = string0 + empty[0: L - len(string0)]
if M - len(string1) > 0:
string1 = string1 + empty[0: M - len(string1)]
if N - len(string2) > 0:
string2 = string2 + empty[0: N - len(string2)]
if P - len(string3) > 0:
string3 = string3 + empty[0: P - len(string3)]
aligned_string = string0 + '| ' + string1 + '| ' + string2 + '| ' + string3 + '\r\n'
return aligned_string
def get_pred_weights(self, refs, label_preds, multilabel_preds):
'''
Returns the normalized predictions **Unused????****
Inputs:
- refs: *unused*
- label_preds:
- multilabel_preds:
'''
weights = []
for k, labels in enumerate(label_preds):
w0 = [multilabel_preds[k][key]['p'] for key in labels]
scale = np.sum(w0)
weights.append([w / scale for w in w0])
return weights
def write_prediction_report(self, refs_tst, tags_tst, labels_pred_tst,
multilabel_pred_tst, filename_out):
'''
writes a simple prediction report in text format
Inputs:
- refs_tst: references
- tags_tst: original labels
- labels_pred_tst: predicted labels
- multilabel_pred_tst: multilabel predicted labels
- filename_out: file to save results
'''
# writing report for the best threshold value
string0 = 'PROJECT REFERENCE'
string1 = 'TARGET LABELS'
string2 = 'PREDICTED LABELS'
string3 = ' '
data = [self.align_strings(string0, string1, string2, string3, 20, 30,
50, 10)]
data.append('=' * 80 + '\r\n')
for k in range(0, len(tags_tst)):
string0 = refs_tst[k]
string1 = ''
for t in tags_tst[k]:
string1 += t + ', '
if len(tags_tst[k]) == 0:
string1 += '--------------'
values = labels_pred_tst[k]
if len(values) == 0:
string2 = '--------------'
else:
string2 = ''
pesos = []
for key in values:
pesos.append(multilabel_pred_tst[k][key]['p'])
for key in values:
weight = multilabel_pred_tst[k][key]['p'] / np.sum(pesos)
str_weight = str(weight)[0:5]
string2 += key + '(' + str_weight + '), '
string3 = ' '
cadena = self.align_strings(string0, string1, string2, string3,
20, 30, 50, 10)
data.append(cadena)
filename = os.path.join(self._project_path,
self._subfolders['results'], filename_out)
with open(filename, 'w') as f:
f.writelines(data)
print('Saved ', filename)
return
|
[
"matplotlib.pyplot.grid",
"matplotlib.pyplot.ylabel",
"sklearn.metrics.auc",
"numpy.ascontiguousarray",
"numpy.argsort",
"numpy.nanmean",
"sklearn.metrics.roc_curve",
"pandas.read_excel",
"operator.itemgetter",
"matplotlib.pyplot.imshow",
"numpy.mean",
"collections.OrderedDict.fromkeys",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.close",
"itertools.chain.from_iterable",
"matplotlib.pyplot.yticks",
"pandas.DataFrame",
"numpy.argmin",
"sklearn.metrics.confusion_matrix",
"pyemd.emd",
"numpy.diagonal",
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.xticks",
"pickle.load",
"numpy.argmax",
"matplotlib.pyplot.title",
"matplotlib.pyplot.legend",
"pickle.dump",
"numpy.minimum",
"matplotlib.pyplot.colorbar",
"os.path.join",
"matplotlib.pyplot.clf",
"fordclassifier.evaluator.predictorClass.Predictor",
"numpy.diag",
"numpy.sum",
"numpy.zeros",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.tight_layout",
"json.load"
] |
[((4723, 4784), 'os.path.join', 'os.path.join', (['self._project_path', 'self._subfolders[subfolder]'], {}), '(self._project_path, self._subfolders[subfolder])\n', (4735, 4784), False, 'import os\n'), ((14515, 14600), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['test_data'])", '"""test_data.pkl"""'], {}), "(self._project_path + self._subfolders['test_data'],\n 'test_data.pkl')\n", (14527, 14600), False, 'import os\n'), ((15174, 15264), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""train_data.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'train_data.pkl')\n", (15186, 15264), False, 'import os\n'), ((15959, 15972), 'numpy.mean', 'np.mean', (['aucs'], {}), '(aucs)\n', (15966, 15972), True, 'import numpy as np\n'), ((17818, 17887), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['orig_tags', 'best_pred_tags'], {'labels': 'labels_categories'}), '(orig_tags, best_pred_tags, labels=labels_categories)\n', (17834, 17887), False, 'from sklearn.metrics import confusion_matrix\n'), ((17952, 18024), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", 'filename'], {}), "(self._project_path + self._subfolders['results'], filename)\n", (17964, 18024), False, 'import os\n'), ((19029, 19053), 'numpy.zeros', 'np.zeros', (['(Ncats, Ncats)'], {}), '((Ncats, Ncats))\n', (19037, 19053), True, 'import numpy as np\n'), ((19669, 19741), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", 'filename'], {}), "(self._project_path + self._subfolders['results'], filename)\n", (19681, 19741), False, 'import os\n'), ((21594, 21618), 'numpy.zeros', 'np.zeros', (['(Ncats, Ncats)'], {}), '((Ncats, Ncats))\n', (21602, 21618), True, 'import numpy as np\n'), ((22789, 22860), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", 'filename'], {}), "(self._project_path, self._subfolders['results'], filename)\n", (22801, 22860), False, 'import os\n'), ((24975, 25016), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['C'], {'dtype': 'np.float64'}), '(C, dtype=np.float64)\n', (24995, 25016), True, 'import numpy as np\n'), ((28191, 28234), 'pandas.DataFrame', 'pd.DataFrame', (['sorted_values_a'], {'columns': 'cols'}), '(sorted_values_a, columns=cols)\n', (28203, 28234), True, 'import pandas as pd\n'), ((28260, 28303), 'pandas.DataFrame', 'pd.DataFrame', (['sorted_values_r'], {'columns': 'cols'}), '(sorted_values_r, columns=cols)\n', (28272, 28303), True, 'import pandas as pd\n'), ((28324, 28415), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", '"""ranked_abs_errors.xlsx"""'], {}), "(self._project_path, self._subfolders['results'],\n 'ranked_abs_errors.xlsx')\n", (28336, 28415), False, 'import os\n'), ((28503, 28594), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", '"""ranked_rel_errors.xlsx"""'], {}), "(self._project_path, self._subfolders['results'],\n 'ranked_rel_errors.xlsx')\n", (28515, 28594), False, 'import os\n'), ((28916, 28928), 'numpy.sum', 'np.sum', (['CONF'], {}), '(CONF)\n', (28922, 28928), True, 'import numpy as np\n'), ((30099, 30127), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (30109, 30127), True, 'import matplotlib.pyplot as plt\n'), ((30166, 30218), 'matplotlib.pyplot.imshow', 'plt.imshow', (['CONF'], {'interpolation': '"""nearest"""', 'cmap': 'cmap'}), "(CONF, interpolation='nearest', cmap=cmap)\n", (30176, 30218), True, 'import matplotlib.pyplot as plt\n'), ((30228, 30242), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (30240, 30242), True, 'import matplotlib.pyplot as plt\n'), ((30308, 30362), 'matplotlib.pyplot.xticks', 'plt.xticks', (['tick_marks', 'labels_categories'], {'rotation': '(90)'}), '(tick_marks, labels_categories, rotation=90)\n', (30318, 30362), True, 'import matplotlib.pyplot as plt\n'), ((30372, 30413), 'matplotlib.pyplot.yticks', 'plt.yticks', (['tick_marks', 'labels_categories'], {}), '(tick_marks, labels_categories)\n', (30382, 30413), True, 'import matplotlib.pyplot as plt\n'), ((30423, 30441), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (30439, 30441), True, 'import matplotlib.pyplot as plt\n'), ((30451, 30475), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True label"""'], {}), "('True label')\n", (30461, 30475), True, 'import matplotlib.pyplot as plt\n'), ((30485, 30514), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted label"""'], {}), "('Predicted label')\n", (30495, 30514), True, 'import matplotlib.pyplot as plt\n'), ((30645, 30670), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pathfilename'], {}), '(pathfilename)\n', (30656, 30670), True, 'import matplotlib.pyplot as plt\n'), ((30680, 30689), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (30687, 30689), True, 'import matplotlib.pyplot as plt\n'), ((34624, 34640), 'numpy.nanmean', 'np.nanmean', (['aucs'], {}), '(aucs)\n', (34634, 34640), True, 'import numpy as np\n'), ((35498, 35514), 'numpy.nanmean', 'np.nanmean', (['aucs'], {}), '(aucs)\n', (35508, 35514), True, 'import numpy as np\n'), ((36978, 37056), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", '"""ths_dict.pkl"""'], {}), "(self._project_path + self._subfolders['results'], 'ths_dict.pkl')\n", (36990, 37056), False, 'import os\n'), ((38214, 38227), 'numpy.mean', 'np.mean', (['accs'], {}), '(accs)\n', (38221, 38227), True, 'import numpy as np\n'), ((39499, 39561), 'fordclassifier.evaluator.predictorClass.Predictor', 'Predictor', (['self._project_path', 'self._subfolders'], {'verbose': '(False)'}), '(self._project_path, self._subfolders, verbose=False)\n', (39508, 39561), False, 'from fordclassifier.evaluator.predictorClass import Predictor\n'), ((40882, 40910), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (40892, 40910), True, 'import matplotlib.pyplot as plt\n'), ((40920, 40936), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Th"""'], {}), "('Th')\n", (40930, 40936), True, 'import matplotlib.pyplot as plt\n'), ((40946, 40976), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Jackard-RBO cost"""'], {}), "('Jackard-RBO cost')\n", (40956, 40976), True, 'import matplotlib.pyplot as plt\n'), ((41110, 41181), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values', 'COST', '"""b"""'], {'label': '"""Jackard-RBO cost"""', 'linewidth': '(3.0)'}), "(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0)\n", (41118, 41181), True, 'import matplotlib.pyplot as plt\n'), ((41191, 41270), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values', 'COST_dens', '"""r"""'], {'label': '"""Labels Density cost"""', 'linewidth': '(3.0)'}), "(th_values, COST_dens, 'r', label='Labels Density cost', linewidth=3.0)\n", (41199, 41270), True, 'import matplotlib.pyplot as plt\n'), ((41309, 41324), 'numpy.argmin', 'np.argmin', (['COST'], {}), '(COST)\n', (41318, 41324), True, 'import numpy as np\n'), ((41373, 41478), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values[cual_min]', 'COST[cual_min]', '"""bo"""'], {'label': '"""Minimum Jackard-RBO cost"""', 'linewidth': '(3.0)'}), "(th_values[cual_min], COST[cual_min], 'bo', label=\n 'Minimum Jackard-RBO cost', linewidth=3.0)\n", (41381, 41478), True, 'import matplotlib.pyplot as plt\n'), ((41512, 41532), 'numpy.argmin', 'np.argmin', (['COST_dens'], {}), '(COST_dens)\n', (41521, 41532), True, 'import numpy as np\n'), ((41581, 41694), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values[cual_min]', 'COST_dens[cual_min]', '"""ro"""'], {'label': '"""Minimum Labels Density cost"""', 'linewidth': '(3.0)'}), "(th_values[cual_min], COST_dens[cual_min], 'ro', label=\n 'Minimum Labels Density cost', linewidth=3.0)\n", (41589, 41694), True, 'import matplotlib.pyplot as plt\n'), ((41717, 41746), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (41727, 41746), True, 'import matplotlib.pyplot as plt\n'), ((41756, 41770), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (41764, 41770), True, 'import matplotlib.pyplot as plt\n'), ((41952, 41973), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (41963, 41973), True, 'import matplotlib.pyplot as plt\n'), ((41983, 41994), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (41992, 41994), True, 'import matplotlib.pyplot as plt\n'), ((42027, 42054), 'numpy.mean', 'np.mean', (['[th_JRBO, th_DENS]'], {}), '([th_JRBO, th_DENS])\n', (42034, 42054), True, 'import numpy as np\n'), ((42077, 42170), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""multilabel_th.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'multilabel_th.pkl')\n", (42089, 42170), False, 'import os\n'), ((42305, 42391), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['export'])", '"""multilabel_th.pkl"""'], {}), "(self._project_path + self._subfolders['export'],\n 'multilabel_th.pkl')\n", (42317, 42391), False, 'import os\n'), ((43851, 43913), 'fordclassifier.evaluator.predictorClass.Predictor', 'Predictor', (['self._project_path', 'self._subfolders'], {'verbose': '(False)'}), '(self._project_path, self._subfolders, verbose=False)\n', (43860, 43913), False, 'from fordclassifier.evaluator.predictorClass import Predictor\n'), ((45242, 45270), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (45252, 45270), True, 'import matplotlib.pyplot as plt\n'), ((45280, 45296), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Th"""'], {}), "('Th')\n", (45290, 45296), True, 'import matplotlib.pyplot as plt\n'), ((45306, 45336), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Jackard-RBO cost"""'], {}), "('Jackard-RBO cost')\n", (45316, 45336), True, 'import matplotlib.pyplot as plt\n'), ((45470, 45541), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values', 'COST', '"""b"""'], {'label': '"""Jackard-RBO cost"""', 'linewidth': '(3.0)'}), "(th_values, COST, 'b', label='Jackard-RBO cost', linewidth=3.0)\n", (45478, 45541), True, 'import matplotlib.pyplot as plt\n'), ((45551, 45630), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values', 'COST_dens', '"""r"""'], {'label': '"""Labels Density cost"""', 'linewidth': '(3.0)'}), "(th_values, COST_dens, 'r', label='Labels Density cost', linewidth=3.0)\n", (45559, 45630), True, 'import matplotlib.pyplot as plt\n'), ((45725, 45835), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values[cual_min]', 'COST[cual_min]', '"""bo"""'], {'label': '"""Jackard-RBO cost at threshold"""', 'linewidth': '(3.0)'}), "(th_values[cual_min], COST[cual_min], 'bo', label=\n 'Jackard-RBO cost at threshold', linewidth=3.0)\n", (45733, 45835), True, 'import matplotlib.pyplot as plt\n'), ((45858, 45976), 'matplotlib.pyplot.plot', 'plt.plot', (['th_values[cual_min]', 'COST_dens[cual_min]', '"""ro"""'], {'label': '"""Labels Density cost at threshold"""', 'linewidth': '(3.0)'}), "(th_values[cual_min], COST_dens[cual_min], 'ro', label=\n 'Labels Density cost at threshold', linewidth=3.0)\n", (45866, 45976), True, 'import matplotlib.pyplot as plt\n'), ((45999, 46028), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (46009, 46028), True, 'import matplotlib.pyplot as plt\n'), ((46038, 46052), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (46046, 46052), True, 'import matplotlib.pyplot as plt\n'), ((46235, 46256), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (46246, 46256), True, 'import matplotlib.pyplot as plt\n'), ((46266, 46277), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (46275, 46277), True, 'import matplotlib.pyplot as plt\n'), ((51706, 51781), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", 'filename_out'], {}), "(self._project_path, self._subfolders['results'], filename_out)\n", (51718, 51781), False, 'import os\n'), ((6220, 6310), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""train_data.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'train_data.pkl')\n", (6232, 6310), False, 'import os\n'), ((6567, 6652), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['test_data'])", '"""test_data.pkl"""'], {}), "(self._project_path + self._subfolders['test_data'],\n 'test_data.pkl')\n", (6579, 6652), False, 'import os\n'), ((6905, 6990), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""tags.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'], 'tags.pkl'\n )\n", (6917, 6990), False, 'import os\n'), ((7770, 7845), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", '"""Preds.pkl"""'], {}), "(self._project_path + self._subfolders['results'], 'Preds.pkl')\n", (7782, 7845), False, 'import os\n'), ((8013, 8090), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", '"""Preds_tr.pkl"""'], {}), "(self._project_path, self._subfolders['results'], 'Preds_tr.pkl')\n", (8025, 8090), False, 'import os\n'), ((8279, 8358), 'os.path.join', 'os.path.join', (['self._project_path', "self._subfolders['results']", '"""Preds_test.pkl"""'], {}), "(self._project_path, self._subfolders['results'], 'Preds_test.pkl')\n", (8291, 8358), False, 'import os\n'), ((8543, 8617), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", '"""CONF.pkl"""'], {}), "(self._project_path + self._subfolders['results'], 'CONF.pkl')\n", (8555, 8617), False, 'import os\n'), ((8786, 8872), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['test_data'])", '"""tags_index.pkl"""'], {}), "(self._project_path + self._subfolders['test_data'],\n 'tags_index.pkl')\n", (8798, 8872), False, 'import os\n'), ((11549, 11577), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (11559, 11577), True, 'import matplotlib.pyplot as plt\n'), ((13518, 13535), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""FPR"""'], {}), "('FPR')\n", (13528, 13535), True, 'import matplotlib.pyplot as plt\n'), ((13549, 13566), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""TPR"""'], {}), "('TPR')\n", (13559, 13566), True, 'import matplotlib.pyplot as plt\n'), ((13580, 13623), 'matplotlib.pyplot.title', 'plt.title', (["('ROC curves for category ' + cat)"], {}), "('ROC curves for category ' + cat)\n", (13589, 13623), True, 'import matplotlib.pyplot as plt\n'), ((13637, 13651), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (13645, 13651), True, 'import matplotlib.pyplot as plt\n'), ((13665, 13694), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (13675, 13694), True, 'import matplotlib.pyplot as plt\n'), ((13834, 13855), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (13845, 13855), True, 'import matplotlib.pyplot as plt\n'), ((13869, 13880), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (13878, 13880), True, 'import matplotlib.pyplot as plt\n'), ((14723, 14737), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (14734, 14737), False, 'import pickle\n'), ((15384, 15398), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (15395, 15398), False, 'import pickle\n'), ((16851, 16865), 'numpy.argsort', 'np.argsort', (['(-p)'], {}), '(-p)\n', (16861, 16865), True, 'import numpy as np\n'), ((18097, 18122), 'pickle.dump', 'pickle.dump', (['self.CONF', 'f'], {}), '(self.CONF, f)\n', (18108, 18122), False, 'import pickle\n'), ((19814, 19839), 'pickle.dump', 'pickle.dump', (['self.CONF', 'f'], {}), '(self.CONF, f)\n', (19825, 19839), False, 'import pickle\n'), ((22933, 22958), 'pickle.dump', 'pickle.dump', (['self.CONF', 'f'], {}), '(self.CONF, f)\n', (22944, 22958), False, 'import pickle\n'), ((23618, 23638), 'pandas.read_excel', 'pd.read_excel', (['fpath'], {}), '(fpath)\n', (23631, 23638), True, 'import pandas as pd\n'), ((28955, 28972), 'numpy.diagonal', 'np.diagonal', (['CONF'], {}), '(CONF)\n', (28966, 28972), True, 'import numpy as np\n'), ((31565, 31592), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_tst', 'preds_tst'], {}), '(y_tst, preds_tst)\n', (31574, 31592), False, 'from sklearn.metrics import roc_curve, auc\n'), ((31620, 31641), 'sklearn.metrics.auc', 'auc', (['fpr_tst', 'tpr_tst'], {}), '(fpr_tst, tpr_tst)\n', (31623, 31641), False, 'from sklearn.metrics import roc_curve, auc\n'), ((32143, 32171), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (32153, 32171), True, 'import matplotlib.pyplot as plt\n'), ((32185, 32202), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""FPR"""'], {}), "('FPR')\n", (32195, 32202), True, 'import matplotlib.pyplot as plt\n'), ((32216, 32233), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""TPR"""'], {}), "('TPR')\n", (32226, 32233), True, 'import matplotlib.pyplot as plt\n'), ((32247, 32294), 'matplotlib.pyplot.title', 'plt.title', (["('ROC test curve for category ' + cat)"], {}), "('ROC test curve for category ' + cat)\n", (32256, 32294), True, 'import matplotlib.pyplot as plt\n'), ((32375, 32439), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr_tst', 'tpr_tst', 'colors[3]'], {'label': 'text', 'linewidth': '(6.0)'}), '(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0)\n', (32383, 32439), True, 'import matplotlib.pyplot as plt\n'), ((32453, 32467), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (32461, 32467), True, 'import matplotlib.pyplot as plt\n'), ((32481, 32510), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (32491, 32510), True, 'import matplotlib.pyplot as plt\n'), ((32632, 32653), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (32643, 32653), True, 'import matplotlib.pyplot as plt\n'), ((32667, 32678), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (32676, 32678), True, 'import matplotlib.pyplot as plt\n'), ((33475, 33502), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_tst', 'preds_tst'], {}), '(y_tst, preds_tst)\n', (33484, 33502), False, 'from sklearn.metrics import roc_curve, auc\n'), ((33530, 33551), 'sklearn.metrics.auc', 'auc', (['fpr_tst', 'tpr_tst'], {}), '(fpr_tst, tpr_tst)\n', (33533, 33551), False, 'from sklearn.metrics import roc_curve, auc\n'), ((34039, 34067), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 12)'}), '(figsize=(15, 12))\n', (34049, 34067), True, 'import matplotlib.pyplot as plt\n'), ((34081, 34098), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""FPR"""'], {}), "('FPR')\n", (34091, 34098), True, 'import matplotlib.pyplot as plt\n'), ((34112, 34129), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""TPR"""'], {}), "('TPR')\n", (34122, 34129), True, 'import matplotlib.pyplot as plt\n'), ((34143, 34190), 'matplotlib.pyplot.title', 'plt.title', (["('ROC test curve for category ' + cat)"], {}), "('ROC test curve for category ' + cat)\n", (34152, 34190), True, 'import matplotlib.pyplot as plt\n'), ((34265, 34329), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr_tst', 'tpr_tst', 'colors[3]'], {'label': 'text', 'linewidth': '(6.0)'}), '(fpr_tst, tpr_tst, colors[3], label=text, linewidth=6.0)\n', (34273, 34329), True, 'import matplotlib.pyplot as plt\n'), ((34343, 34357), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (34351, 34357), True, 'import matplotlib.pyplot as plt\n'), ((34371, 34400), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (34381, 34400), True, 'import matplotlib.pyplot as plt\n'), ((34554, 34575), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (34565, 34575), True, 'import matplotlib.pyplot as plt\n'), ((34589, 34600), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (34598, 34600), True, 'import matplotlib.pyplot as plt\n'), ((37125, 37149), 'pickle.dump', 'pickle.dump', (['ths_dict', 'f'], {}), '(ths_dict, f)\n', (37136, 37149), False, 'import pickle\n'), ((40614, 40628), 'numpy.mean', 'np.mean', (['jrbos'], {}), '(jrbos)\n', (40621, 40628), True, 'import numpy as np\n'), ((42248, 42282), 'pickle.dump', 'pickle.dump', (['self.multilabel_th', 'f'], {}), '(self.multilabel_th, f)\n', (42259, 42282), False, 'import pickle\n'), ((42469, 42503), 'pickle.dump', 'pickle.dump', (['self.multilabel_th', 'f'], {}), '(self.multilabel_th, f)\n', (42480, 42503), False, 'import pickle\n'), ((44974, 44988), 'numpy.mean', 'np.mean', (['jrbos'], {}), '(jrbos)\n', (44981, 44988), True, 'import numpy as np\n'), ((46591, 46637), 'os.path.join', 'os.path.join', (['path2export', '"""multilabel_th.pkl"""'], {}), "(path2export, 'multilabel_th.pkl')\n", (46603, 46637), False, 'import os\n'), ((49774, 49784), 'numpy.sum', 'np.sum', (['w0'], {}), '(w0)\n', (49780, 49784), True, 'import numpy as np\n'), ((5564, 5576), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5573, 5576), False, 'import json\n'), ((6482, 6496), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6493, 6496), False, 'import pickle\n'), ((6828, 6842), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6839, 6842), False, 'import pickle\n'), ((7102, 7116), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7113, 7116), False, 'import pickle\n'), ((7198, 7276), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['results'])", '"""ths_dict.pkl"""'], {}), "(self._project_path + self._subfolders['results'], 'ths_dict.pkl')\n", (7210, 7276), False, 'import os\n'), ((7939, 7953), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7950, 7953), False, 'import pickle\n'), ((8204, 8218), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8215, 8218), False, 'import pickle\n'), ((8473, 8487), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8484, 8487), False, 'import pickle\n'), ((8710, 8724), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (8721, 8724), False, 'import pickle\n'), ((9000, 9014), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9011, 9014), False, 'import pickle\n'), ((9098, 9188), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""categories.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'categories.pkl')\n", (9110, 9188), False, 'import os\n'), ((9716, 9811), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""models2evaluate.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'models2evaluate.pkl')\n", (9728, 9811), False, 'import os\n'), ((10352, 10445), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['training_data'])", '"""multilabel_th.pkl"""'], {}), "(self._project_path + self._subfolders['training_data'],\n 'multilabel_th.pkl')\n", (10364, 10445), False, 'import os\n'), ((21861, 21876), 'numpy.zeros', 'np.zeros', (['Ncats'], {}), '(Ncats)\n', (21869, 21876), True, 'import numpy as np\n'), ((22171, 22186), 'numpy.zeros', 'np.zeros', (['Ncats'], {}), '(Ncats)\n', (22179, 22186), True, 'import numpy as np\n'), ((22436, 22452), 'numpy.minimum', 'np.minimum', (['p', 'q'], {}), '(p, q)\n', (22446, 22452), True, 'import numpy as np\n'), ((22474, 22489), 'numpy.diag', 'np.diag', (['min_pq'], {}), '(min_pq)\n', (22481, 22489), True, 'import numpy as np\n'), ((24214, 24231), 'pandas.read_excel', 'pd.read_excel', (['fp'], {}), '(fp)\n', (24227, 24231), True, 'import pandas as pd\n'), ((24344, 24361), 'numpy.minimum', 'np.minimum', (['C', 'Cf'], {}), '(C, Cf)\n', (24354, 24361), True, 'import numpy as np\n'), ((26075, 26090), 'numpy.zeros', 'np.zeros', (['Ncats'], {}), '(Ncats)\n', (26083, 26090), True, 'import numpy as np\n'), ((26385, 26400), 'numpy.zeros', 'np.zeros', (['Ncats'], {}), '(Ncats)\n', (26393, 26400), True, 'import numpy as np\n'), ((26665, 26683), 'pyemd.emd', 'pyemd.emd', (['p', 'q', 'C'], {}), '(p, q, C)\n', (26674, 26683), False, 'import pyemd\n'), ((32108, 32129), 'pickle.dump', 'pickle.dump', (['mdict', 'f'], {}), '(mdict, f)\n', (32119, 32129), False, 'import pickle\n'), ((34002, 34023), 'pickle.dump', 'pickle.dump', (['mdict', 'f'], {}), '(mdict, f)\n', (34013, 34023), False, 'import pickle\n'), ((35390, 35404), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (35401, 35404), False, 'import pickle\n'), ((36717, 36731), 'numpy.argmax', 'np.argmax', (['mix'], {}), '(mix)\n', (36726, 36731), True, 'import numpy as np\n'), ((37613, 37648), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['tags'], {}), '(tags)\n', (37642, 37648), False, 'import itertools\n'), ((39032, 39055), 'collections.OrderedDict.fromkeys', 'OrderedDict.fromkeys', (['l'], {}), '(l)\n', (39052, 39055), False, 'from collections import OrderedDict\n'), ((43382, 43405), 'collections.OrderedDict.fromkeys', 'OrderedDict.fromkeys', (['l'], {}), '(l)\n', (43402, 43405), False, 'from collections import OrderedDict\n'), ((46721, 46735), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (46732, 46735), False, 'import pickle\n'), ((5858, 5870), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5867, 5870), False, 'import json\n'), ((7406, 7420), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7417, 7420), False, 'import pickle\n'), ((7470, 7547), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['export'])", '"""ths_dict.pkl"""'], {}), "(self._project_path + self._subfolders['export'], 'ths_dict.pkl')\n", (7482, 7547), False, 'import os\n'), ((9316, 9330), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9327, 9330), False, 'import pickle\n'), ((9380, 9459), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['export'])", '"""categories.pkl"""'], {}), "(self._project_path + self._subfolders['export'], 'categories.pkl')\n", (9392, 9459), False, 'import os\n'), ((9944, 9958), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9955, 9958), False, 'import pickle\n'), ((10008, 10096), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['export'])", '"""models2evaluate.pkl"""'], {}), "(self._project_path + self._subfolders['export'],\n 'models2evaluate.pkl')\n", (10020, 10096), False, 'import os\n'), ((10576, 10590), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10587, 10590), False, 'import pickle\n'), ((10640, 10726), 'os.path.join', 'os.path.join', (["(self._project_path + self._subfolders['export'])", '"""multilabel_th.pkl"""'], {}), "(self._project_path + self._subfolders['export'],\n 'multilabel_th.pkl')\n", (10652, 10726), False, 'import os\n'), ((12250, 12272), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (12269, 12272), False, 'import operator\n'), ((22043, 22052), 'numpy.sum', 'np.sum', (['p'], {}), '(p)\n', (22049, 22052), True, 'import numpy as np\n'), ((22353, 22362), 'numpy.sum', 'np.sum', (['q'], {}), '(q)\n', (22359, 22362), True, 'import numpy as np\n'), ((22632, 22646), 'numpy.sum', 'np.sum', (['min_pq'], {}), '(min_pq)\n', (22638, 22646), True, 'import numpy as np\n'), ((26257, 26266), 'numpy.sum', 'np.sum', (['p'], {}), '(p)\n', (26263, 26266), True, 'import numpy as np\n'), ((26567, 26576), 'numpy.sum', 'np.sum', (['q'], {}), '(q)\n', (26573, 26576), True, 'import numpy as np\n'), ((36345, 36359), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (36356, 36359), False, 'import pickle\n'), ((51366, 51379), 'numpy.sum', 'np.sum', (['pesos'], {}), '(pesos)\n', (51372, 51379), True, 'import numpy as np\n'), ((6116, 6128), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6125, 6128), False, 'import json\n'), ((7677, 7691), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (7688, 7691), False, 'import pickle\n'), ((9591, 9605), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9602, 9605), False, 'import pickle\n'), ((10229, 10243), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10240, 10243), False, 'import pickle\n'), ((10857, 10871), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10868, 10871), False, 'import pickle\n'), ((12025, 12039), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (12036, 12039), False, 'import pickle\n'), ((12860, 12874), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (12871, 12874), False, 'import pickle\n'), ((13202, 13258), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr', 'colors[k]'], {'label': 'text', 'linewidth': '(6.0)'}), '(fpr, tpr, colors[k], label=text, linewidth=6.0)\n', (13210, 13258), True, 'import matplotlib.pyplot as plt\n'), ((13357, 13413), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr', 'colors[k]'], {'label': 'text', 'linewidth': '(2.0)'}), '(fpr, tpr, colors[k], label=text, linewidth=2.0)\n', (13365, 13413), True, 'import matplotlib.pyplot as plt\n')]
|
#!/usr/bin/env python3
# do not hesitate to debug
import pdb
# python computation modules and visualization
import numpy as np
import sympy as sy
import scipy as sp
import matplotlib.pyplot as plt
from sympy import Q as syQ
sy.init_printing(use_latex=True,forecolor="White")
def Lyapunov_stability_test_linear(ev):
''' test if a linear homogeneous system with constant coefficients is stable
in the sense of Lyapunov by checking the theorem conditions against the
provided eigenvalues
source https://www.math24.net/stability-theory-basic-concepts/
TODO taking into account eigenvalue multiplicity '''
# the criteria result will be saved here
r = None
# system is asymptotically stable if only if
# all eigenvalues have negative real parts
r = 'asymptotically stable' if ( not r
and all(sy.ask(syQ.negative(sy.re(_))) for _ in ev) ) else None
# system is stable if and only if
# all eigenvalues have nonpositive real parts
# TODO incorporate algebraic and geometric multiplicity criteria
r = 'stable' if ( not r
and all(sy.ask(syQ.nonpositive(sy.re(_))) for _ in ev) ) else None
# system is unstable if
# at least one eigenvalue has positive real part
# TODO incorporate algebraic and geometric multiplicity criteria
r = 'unstable' if ( not r
and any(sy.ask(syQ.positive(sy.re(_))) for _ in ev) ) else None
return r
def Lyapunov_stability_test_nonlinear(ev):
''' test if the fixed point of a nonlinear structure stable system
is stable, unstable, critical or impossible to determine using Lyapunov
criteria of first order and thus other methods are needed
TODO tests are only applicable for structurally stable systems, i.e.
with purely imaginary eigenvalues are not taken into account
source https://www.math24.net/stability-first-approximation/ '''
# the criteria result will be saved here
r = None
# system is asymptotically stable if only if
# all eigenvalues have negative real parts
r = 'asymptotically stable' if ( not r
and all(sy.ask(syQ.negative(sy.re(_))) for _ in ev) ) else None
# system is unstable if
# at least one eigenvalue has positive real part
r = 'unstable' if ( not r
and any(sy.ask(syQ.positive(sy.re(_))) for _ in ev) ) else None
# if all eigenvalues have non-positive real parts,
# and there is at least one eigenvalue with zero real part
# then fixed point can be stable or unstable and other methods should be
# used, thus mark the point critical
r = 'critical' if ( not r
and all(sy.ask(Q.nonpositive(sy.re(_))) for _ in ev)
and any(sy.re(_) == 0 for _ in ev)
) else None
return r if r else 'not decided'
def RouthHurwitz_Criterion(p):
''' return principal minors of Hurwitz matrix as sympy polynomials, which if
all are positive it is sufficient condition for asymptotic stability
NOTE: if all n-1 principal minors are positive, and nth minor is zero,
the system is at the boundary of stability, with two cases:
a_n = 0 -- one of the root is zero and system is on the boundary of
aperiodic stability
n-1 minor is zero -- there are two complex conjugate imaginary roots and
the system is at boundary of oscillatory stability
source https://www.math24.net/routh-hurwitz-criterion/ '''
# initial key and index pair needed to create Hurwitz matrix via sympy banded
# each entry is of the type [ dictionary key, coefficient slice ]
idxs = [ [ 1, 0 ] ]
# generate next key by decrementing with 1
genKey = lambda _: _ - 1
# generate next index by incrementing with 1 if key was nonnegative
# or with 2 if key is negative
genSlice = lambda _, __: __ + 1 if _ >= 0 else __ + 2
# fill the rest pairs w.r.t. the polynomial degree - 1, as we already have
# one entry
for _ in range(p.degree() - 1):
key = genKey(idxs[-1][0])
idxs.append( [ key, genSlice(key, idxs[-1][1] ) ] )
# create the matrix itself
H = sy.banded({ k: p.all_coeffs()[v:] for k, v in idxs })
return [ H[:_, :_].det() if _ > 0 else p.LC() for _ in range(0, p.degree()+1) ]
# define independent variable
t = sy.symbols('t', real=True)
# define dependent variables individually and pact them in an variable
theta, omega = sy.symbols(r'\theta, \omega', real = True)
Y = theta, omega
# define free parameters of they system and pack them in a variable
g, L = sy.symbols('g, L', positive = True)
parms = g, L
# create rhs as sympy expressions
theta_dt = omega
omega_dt = -(g/L)*sy.sin(theta)
rhs = {}
rhs['sympy'] = sy.Matrix([theta_dt, omega_dt])
# convert the sympy matrix function to numpy function with usual signature
rhs['numpy'] = sy.lambdify((t, Y, *parms), rhs['sympy'], 'numpy')
# create Jacobian matrix as sympy expression
J = {}
J['sympy'] = rhs['sympy'].jacobian(Y)
# convert the sympy Jacobian expression to numpy function with usual signature
J['numpy'] = sy.lambdify((t, Y, *parms), J['sympy'])
# calculate rhs fixed points
fixed_points = sy.solve(rhs['sympy'], Y)
# substitute each fixed point in the Jacobian
# and calculate the eigenvalues
J_fixed = {}
for i, fp in enumerate(fixed_points):
J_subs = J['sympy'].subs( [(y, v) for y, v in zip(Y, fp)])
#J_eigenvals = J_subs.eigenvals(multiple=True)
J_eigenvals = J_subs.eigenvals()
# save the fixed point results in more details
# most importantly the eigenvalues and their corresponding multiplicity
J_fixed[i] = {
'fixed point': fp,
'subs': J_subs,
'eigenvalues': list(J_eigenvals.keys()),
'multiplicity': list(J_eigenvals.values())
}
def plot_phase_portrait(ax, rhs, section, args=(), n_points=25):
''' plot section of phase space of a field defined via its rhs '''
# create section grid
x_grid, y_grid = np.meshgrid(
np.linspace( section[0][0], section[0][1], n_points ),
np.linspace( section[1][0], section[1][1], n_points )
)
# calculate rhs on the grid
xx, yy = rhs(None, ( x_grid, y_grid ), *args)
# compute vector norms and make line width proportional to them
# i.e. greater the vector length, the thicker the line
# TODO not sure why rhs returns different shape
vector_norms = np.sqrt(xx[0]**2 + yy[0]**2)
lw = 0.25 + 3*vector_norms/vector_norms.max()
# plot the phase portrait
ax.streamplot(
x_grid, y_grid,
xx[0], yy[0],
linewidth = lw,
arrowsize = 1.2,
density = 1
)
return ax
def plot_main():
fig, ax = plt.subplots()
ax = plot_phase_portrait(
ax,
rhs['numpy'],
(
( -np.pi, np.pi ),
( -2*np.pi, 2*np.pi)
),
args = ( 5, 1 ),
)
if __name__ == '__main__':
plot_main()
|
[
"sympy.sin",
"numpy.sqrt",
"sympy.re",
"sympy.lambdify",
"sympy.Matrix",
"sympy.init_printing",
"sympy.symbols",
"numpy.linspace",
"sympy.solve",
"matplotlib.pyplot.subplots"
] |
[((227, 278), 'sympy.init_printing', 'sy.init_printing', ([], {'use_latex': '(True)', 'forecolor': '"""White"""'}), "(use_latex=True, forecolor='White')\n", (243, 278), True, 'import sympy as sy\n'), ((4294, 4320), 'sympy.symbols', 'sy.symbols', (['"""t"""'], {'real': '(True)'}), "('t', real=True)\n", (4304, 4320), True, 'import sympy as sy\n'), ((4408, 4449), 'sympy.symbols', 'sy.symbols', (['"""\\\\theta, \\\\omega"""'], {'real': '(True)'}), "('\\\\theta, \\\\omega', real=True)\n", (4418, 4449), True, 'import sympy as sy\n'), ((4545, 4578), 'sympy.symbols', 'sy.symbols', (['"""g, L"""'], {'positive': '(True)'}), "('g, L', positive=True)\n", (4555, 4578), True, 'import sympy as sy\n'), ((4702, 4733), 'sympy.Matrix', 'sy.Matrix', (['[theta_dt, omega_dt]'], {}), '([theta_dt, omega_dt])\n', (4711, 4733), True, 'import sympy as sy\n'), ((4825, 4875), 'sympy.lambdify', 'sy.lambdify', (['(t, Y, *parms)', "rhs['sympy']", '"""numpy"""'], {}), "((t, Y, *parms), rhs['sympy'], 'numpy')\n", (4836, 4875), True, 'import sympy as sy\n'), ((5060, 5099), 'sympy.lambdify', 'sy.lambdify', (['(t, Y, *parms)', "J['sympy']"], {}), "((t, Y, *parms), J['sympy'])\n", (5071, 5099), True, 'import sympy as sy\n'), ((5145, 5170), 'sympy.solve', 'sy.solve', (["rhs['sympy']", 'Y'], {}), "(rhs['sympy'], Y)\n", (5153, 5170), True, 'import sympy as sy\n'), ((4664, 4677), 'sympy.sin', 'sy.sin', (['theta'], {}), '(theta)\n', (4670, 4677), True, 'import sympy as sy\n'), ((6409, 6441), 'numpy.sqrt', 'np.sqrt', (['(xx[0] ** 2 + yy[0] ** 2)'], {}), '(xx[0] ** 2 + yy[0] ** 2)\n', (6416, 6441), True, 'import numpy as np\n'), ((6735, 6749), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6747, 6749), True, 'import matplotlib.pyplot as plt\n'), ((5992, 6043), 'numpy.linspace', 'np.linspace', (['section[0][0]', 'section[0][1]', 'n_points'], {}), '(section[0][0], section[0][1], n_points)\n', (6003, 6043), True, 'import numpy as np\n'), ((6059, 6110), 'numpy.linspace', 'np.linspace', (['section[1][0]', 'section[1][1]', 'n_points'], {}), '(section[1][0], section[1][1], n_points)\n', (6070, 6110), True, 'import numpy as np\n'), ((2713, 2721), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (2718, 2721), True, 'import sympy as sy\n'), ((865, 873), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (870, 873), True, 'import sympy as sy\n'), ((1130, 1138), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (1135, 1138), True, 'import sympy as sy\n'), ((1387, 1395), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (1392, 1395), True, 'import sympy as sy\n'), ((2137, 2145), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (2142, 2145), True, 'import sympy as sy\n'), ((2325, 2333), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (2330, 2333), True, 'import sympy as sy\n'), ((2669, 2677), 'sympy.re', 'sy.re', (['_'], {}), '(_)\n', (2674, 2677), True, 'import sympy as sy\n')]
|
#coding=utf-8
import numpy as np
import tensorflow as tf
import os
import sys
import time
import shutil
import re
import signal
import subprocess
import numpy as np
import math
from Policy import *
np.set_printoptions(threshold=np.inf)
BASELINES = 1
class MultiBaseline:
def __init__(self, baseline_number):
self.baseline_number = baseline_number
self.baselines = [Baseline() for _ in range(baseline_number)]
self.reward_signal_access, self.reward_signal_wait, self.reward_signal_piece = [], [], []
self.reward_signal_wait_info1, self.reward_signal_wait_info2, self.reward_signal_wait_info3 = [], [], []
def __str__(self):
stri = ''
for i in range(self.baseline_number):
stri = stri + 'baseline number ' + str(i) + ' has reward ' + str(self.baselines[i].reward) + '\n'
stri = stri + str(self.baselines[i].sample) + '\n'
return stri
def insert_baseline(self, baseline):
if baseline > self.baselines[0]:
self.baselines[0].SetSampleWithAnotherBaseline(baseline)
self.baselines.sort()
def store_reward_signal(self, result):
self.reward_signal_access.extend(result[0])
self.reward_signal_wait.extend(result[1])
self.reward_signal_piece.extend(result[2])
self.reward_signal_wait_info1.extend(result[3])
self.reward_signal_wait_info2.extend(result[4])
self.reward_signal_wait_info3.extend(result[5])
def samples_different_action(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3):
# get a all True form
result = Sample.default_different_action()
# get different actions
for j in range(self.baseline_number):
diff = self.baselines[j].different_action(\
access, wait, piece, waitinfo1, waitinfo2, waitinfo3)
for i in range(len(result)):
result[i] = result[i] & np.array(diff[i])
self.store_reward_signal(result)
def get_ratio(self, avg_reward):
rewards = []
for i in range(self.baseline_number):
reward_ = self.baselines[i].reward - avg_reward
if reward_ > 0:
rewards.append(reward_)
else:
rewards.append(0)
rewards = np.array(rewards)
if np.sum(rewards) == 0:
return [1 / self.baseline_number] * self.baseline_number
else:
return rewards / np.sum(rewards)
def calculate_reward(self, reward):
# ratio = self.get_ratio(np.mean(reward))
access_rs, wait_rs, piece_rs = \
[0] * (len(reward) * ACCESSE_SPACE), [0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * PIECE_SPACE)
waitinfo1_rs, waitinfo2_rs, waitinfo3_rs = \
[0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * WAIT_SPACE), [0] * (len(reward) * WAIT_SPACE)
# for i in range(self.baseline_number):
# calculate discount_reward for each slot
access_dr, wait_dr, piece_dr = [], [], []
waitinfo1_dr, waitinfo2_dr, waitinfo3_dr = [], [], []
for j in range(len(reward)):
for _ in range(ACCESSE_SPACE):
access_dr.append(reward[j])
for _ in range(PIECE_SPACE):
piece_dr.append(reward[j])
for _ in range(WAIT_SPACE):
wait_dr.append(reward[j])
waitinfo1_dr.append(reward[j])
waitinfo2_dr.append(reward[j])
waitinfo3_dr.append(reward[j])
avg_reward = np.mean(reward)
access_rs = np.array(access_dr) - avg_reward
wait_rs = np.array(wait_dr) - avg_reward
piece_rs = np.array(piece_dr) - avg_reward
waitinfo1_rs = (np.array(waitinfo1_dr) - avg_reward) * 5
waitinfo2_rs = (np.array(waitinfo2_dr) - avg_reward) * 2
waitinfo3_rs = (np.array(waitinfo3_dr) - avg_reward) * 2.5
# access_dr = np.array(access_dr) - self.baselines[i].reward
# wait_dr = np.array(wait_dr) - self.baselines[i].reward
# piece_dr = np.array(piece_dr) - self.baselines[i].reward
# waitinfo1_dr = np.array(waitinfo1_dr) - self.baselines[i].reward
# waitinfo2_dr = np.array(waitinfo2_dr) - self.baselines[i].reward
# waitinfo3_dr = np.array(waitinfo3_dr) - self.baselines[i].reward
# access_rs = access_rs + ratio[i] * access_dr * ((access_dr > 0) | self.reward_signal_access)
# wait_rs = wait_rs + ratio[i] * wait_dr * ((wait_dr > 0) | self.reward_signal_wait)
# piece_rs = piece_rs + ratio[i] * piece_dr * ((piece_dr > 0) | self.reward_signal_piece)
# waitinfo1_rs = waitinfo1_rs + ratio[i] * waitinfo1_dr * ((waitinfo1_dr > 0) | self.reward_signal_wait_info1)
# waitinfo2_rs = waitinfo2_rs + ratio[i] * waitinfo2_dr * ((waitinfo2_dr > 0) | self.reward_signal_wait_info2)
# waitinfo3_rs = waitinfo3_rs + ratio[i] * waitinfo3_dr * ((waitinfo3_dr > 0) | self.reward_signal_wait_info3)
return access_rs, wait_rs, piece_rs, waitinfo1_rs, waitinfo2_rs, waitinfo3_rs
def clear_signal(self):
self.reward_signal_access, self.reward_signal_wait, self.reward_signal_piece = [], [], []
self.reward_signal_wait_info1, self.reward_signal_wait_info2, self.reward_signal_wait_info3 = [], [], []
class Baseline:
def __init__(self, access = [], wait = [], piece = [], \
waitinfo1 = [], waitinfo2 = [], waitinfo3 = [], \
reward = 0):
if access == []:
self.set = False
else:
self.set = True
# manual asign a opt setting for backoff
self.sample = Sample(access, wait, piece, waitinfo1, waitinfo2, waitinfo3, 6, [0,4,8,1,0,0,8,4,2,1,8,1,4,2,1,4,2,4])
self.reward = reward
def setSample(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3, reward):
self.set = True
self.sample.set_sample(access, wait, piece, waitinfo1, waitinfo2, waitinfo3)
self.reward = reward
def SetSampleWithAnotherBaseline(self, baseline):
self.setSample(baseline.sample.access, baseline.sample.wait, baseline.sample.piece, \
baseline.sample.wait_info1, baseline.sample.wait_info2, baseline.sample.wait_info3, \
baseline.reward)
def __lt__(self, r):
return self.reward < r.reward
def different_action(self, access, wait, piece, waitinfo1, waitinfo2, waitinfo3):
if self.set == False:
return Sample.default_different_action()
return self.sample.different_action(access, wait, piece, \
waitinfo1, waitinfo2, waitinfo3)
class PolicyGradient:
# initialize
def __init__(self, log_dir, kid_dir, learning_rate,rd,output_graph=False):
self.log_dir = log_dir
self.kid_dir = kid_dir
self.lr = learning_rate
self.reward_decay = rd
self.best_seen = 0
self.round_best = 0
self.round_mean = 0
self.round_worst = 0
self.round_std = 0
self.round_best_sample = None
self.baselines = MultiBaseline(BASELINES)
# to store observations, actions and corresponding rewards
self.access_p, self.wait_p, self.piece_p = [], [], []
self.wait_info1_p, self.wait_info2_p, self.wait_info3_p = [], [], []
self.ep_access_rs, self.ep_wait_rs, self.ep_piece_rs = [], [], []
self.ep_waitinfo1_rs, self.ep_waitinfo2_rs, self.ep_waitinfo3_rs = [], [], []
self.ep_access_act, self.ep_wait_act, self.ep_piece_act = [], [], []
self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3 = [], [], []
self.samples_count = 0
self.policy = Policy()
self._build_net()
self.sess = tf.Session()
if output_graph:
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.update_policy()
def clear_round_info(self):
self.round_best = 0
self.round_mean = 0
self.round_worst = 0
self.round_std = 0
self.round_best_sample = None
def _build_net(self):
with tf.name_scope('inputs'):
self.tf_access_vt = tf.placeholder(tf.float32, [None, ], name="access_value")
self.tf_wait_vt = tf.placeholder(tf.float32, [None, ], name="wait_value")
self.tf_piece_vt = tf.placeholder(tf.float32, [None, ], name="piece_value")
self.tf_wait_info_vt1 = tf.placeholder(tf.float32, [None, ], name="wait_info_value1")
self.tf_wait_info_vt2 = tf.placeholder(tf.float32, [None, ], name="wait_info_value2")
self.tf_wait_info_vt3 = tf.placeholder(tf.float32, [None, ], name="wait_info_value3")
self.tf_access_act = tf.placeholder(tf.int32, [None, ], name="access_act")
self.tf_wait_act = tf.placeholder(tf.int32, [None, ], name="wait_act")
self.tf_piece_act = tf.placeholder(tf.int32, [None, ], name="piece_act")
self.tf_wait_info_act1 = tf.placeholder(tf.int32, [None, ], name="wait_info_act1")
self.tf_wait_info_act2 = tf.placeholder(tf.int32, [None, ], name="wait_info_act2")
self.tf_wait_info_act3 = tf.placeholder(tf.int32, [None, ], name="wait_info_act3")
self.tf_samples_count = tf.placeholder(tf.float32, name='samples_count')
self.learning_rate = tf.placeholder(tf.float32, name='learning_rate')
self.access_action_v = tf.Variable(tf.random_normal(shape=[INPUT_SPACE, 2], mean=0, stddev=1), name='access_action_v')
self.wait_action_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, 2], mean=0, stddev=1), name='wait_action_v')
self.piece_action_v = tf.Variable(tf.random_normal(shape=[PIECE_SPACE, 2], mean=0, stddev=1), name='piece_action_v')
self.wait_info_action1_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[0]], mean=0, stddev=1), name='wait_info_action1_v')
self.wait_info_action2_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[1]], mean=0, stddev=1), name='wait_info_action2_v')
self.wait_info_action3_v = tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[2]], mean=0, stddev=1), name='wait_info_action3_v')
self.access_action = tf.nn.softmax(self.access_action_v, axis = 1)
self.wait_action = tf.nn.softmax(self.wait_action_v, axis = 1)
self.piece_action = tf.nn.softmax(self.piece_action_v, axis = 1)
self.wait_info_action1 = tf.nn.softmax(self.wait_info_action1_v, axis = 1)
self.wait_info_action2 = tf.nn.softmax(self.wait_info_action2_v, axis = 1)
self.wait_info_action3 = tf.nn.softmax(self.wait_info_action3_v, axis = 1)
# self.access_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[ACCESSE_SPACE, 2], mean=0, stddev=1), name='access_action'), axis = 1)
# self.wait_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, 2], mean=0, stddev=1), name='wait_action'), axis = 1)
# self.piece_action = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[PIECE_SPACE, 2], mean=0, stddev=1), name='piece_action'), axis = 1)
# self.wait_info_action1 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[0]], mean=0, stddev=1), name='wait_info_action1'), axis = 1)
# self.wait_info_action2 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[1]], mean=0, stddev=1), name='wait_info_action2'), axis = 1)
# self.wait_info_action3 = tf.nn.softmax(tf.Variable(tf.random_normal(shape=[WAIT_SPACE, wait_info_act_count[2]], mean=0, stddev=1), name='wait_info_action3'), axis = 1)
with tf.name_scope('reward'):
# add a very small number to the probability in case of logging a very small number and then ouputting NAN
self.access_action = tf.add(self.access_action, 0.000001)
self.wait_action = tf.add(self.wait_action, 0.000001)
self.piece_action = tf.add(self.piece_action, 0.000001)
self.wait_info_action1 = tf.add(self.wait_info_action1, 0.000001)
self.wait_info_action2 = tf.add(self.wait_info_action2, 0.000001)
self.wait_info_action3 = tf.add(self.wait_info_action3, 0.000001)
access_act = tf.reshape(tf.one_hot(self.tf_access_act, 2), [-1, ACCESSE_SPACE * 2])
access_act_prob = tf.reshape((access_act * (tf.reshape(self.access_action, [ACCESSE_SPACE * 2]))), [-1 ,2])
access_act_prob = -tf.log(tf.reduce_sum(access_act_prob, axis = 1))
wait_act = tf.reshape(tf.one_hot(self.tf_wait_act, 2), [-1, WAIT_SPACE * 2])
wait_act_prob = tf.reshape((wait_act * (tf.reshape(self.wait_action, [WAIT_SPACE * 2]))), [-1 ,2])
wait_act_prob = -tf.log(tf.reduce_sum(wait_act_prob, axis = 1))
piece_act = tf.reshape(tf.one_hot(self.tf_piece_act, 2), [-1, PIECE_SPACE * 2])
piece_act_prob = tf.reshape((piece_act * (tf.reshape(self.piece_action, [PIECE_SPACE * 2]))), [-1 ,2])
piece_act_prob = -tf.log(tf.reduce_sum(piece_act_prob, axis = 1))
wait_info_act1 = tf.reshape((tf.one_hot(self.tf_wait_info_act1, wait_info_act_count[0])), [-1, WAIT_SPACE * wait_info_act_count[0]])
wait_info_act1_prob = tf.reshape((wait_info_act1 * (tf.reshape(self.wait_info_action1, [WAIT_SPACE * wait_info_act_count[0]]))), [-1, wait_info_act_count[0]])
wait_info_act1_prob = -tf.log(tf.reduce_sum(wait_info_act1_prob, axis = 1))
wait_info_act2 = tf.reshape((tf.one_hot(self.tf_wait_info_act2, wait_info_act_count[1])), [-1, WAIT_SPACE * wait_info_act_count[1]])
wait_info_act2_prob = tf.reshape((wait_info_act2 * (tf.reshape(self.wait_info_action2, [WAIT_SPACE * wait_info_act_count[1]]))), [-1, wait_info_act_count[1]])
wait_info_act2_prob = -tf.log(tf.reduce_sum(wait_info_act2_prob, axis = 1))
wait_info_act3 = tf.reshape((tf.one_hot(self.tf_wait_info_act3, wait_info_act_count[2])), [-1, WAIT_SPACE * wait_info_act_count[2]])
wait_info_act3_prob = tf.reshape((wait_info_act3 * (tf.reshape(self.wait_info_action3, [WAIT_SPACE * wait_info_act_count[2]]))), [-1, wait_info_act_count[2]])
wait_info_act3_prob = -tf.log(tf.reduce_sum(wait_info_act3_prob, axis = 1))
self.reward = tf.divide(tf.reduce_sum(access_act_prob * self.tf_access_vt) + \
tf.reduce_sum(piece_act_prob * self.tf_piece_vt) + \
tf.reduce_sum(wait_act_prob * self.tf_wait_vt) + \
tf.reduce_sum(wait_info_act1_prob * self.tf_wait_info_vt1) + \
tf.reduce_sum(wait_info_act2_prob * self.tf_wait_info_vt2) + \
tf.reduce_sum(wait_info_act3_prob * self.tf_wait_info_vt3), self.tf_samples_count)
with tf.name_scope('train'):
self.train_op = tf.train.GradientDescentOptimizer(learning_rate = self.learning_rate).minimize(self.reward)
def update_policy(self):
access_p, wait_p, piece_p, wait_info1_p, wait_info2_p, wait_info3_p = \
self.sess.run([self.access_action, self.wait_action, self.piece_action, \
self.wait_info_action1, self.wait_info_action2, self.wait_info_action3])
self.policy.set_prob(access_p, wait_p, piece_p, \
wait_info1_p, wait_info2_p, wait_info3_p)
# store corresponding reward
def record_reward(self, round_id, reward, previous_samples, idx):
access = self.ep_access_act[previous_samples * ACCESSE_SPACE : (previous_samples + 1) * ACCESSE_SPACE]
wait = self.ep_wait_act[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE]
piece = self.ep_piece_act[previous_samples * PIECE_SPACE : (previous_samples + 1) * PIECE_SPACE]
waitinfo1 = self.ep_wait_info_act1[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE]
waitinfo2 = self.ep_wait_info_act2[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE]
waitinfo3 = self.ep_wait_info_act3[previous_samples * WAIT_SPACE : (previous_samples + 1) * WAIT_SPACE]
if reward > self.baselines.baselines[0].reward:
baseline_ = Baseline(access, wait, piece, waitinfo1, waitinfo2, waitinfo3, reward)
self.baselines.insert_baseline(baseline_)
if reward > self.best_seen:
self.best_seen = reward
# save RL best seen result
print('Update rl best seen sample - {}'.format(reward))
kid_path = os.path.join(os.getcwd(), self.kid_dir + '/kid_' + str(idx) + '.txt')
log_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best.txt')
shutil.copy(kid_path, log_path)
# save RL best seen result for every round
old_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best.txt')
new_path = os.path.join(os.getcwd(), self.log_dir + '/rl_best_iter_' + str(round_id) + '.txt')
shutil.copy(old_path, new_path)
if reward > self.round_best:
self.round_best = reward
kid_path = os.path.join(os.getcwd(), self.kid_dir + '/kid_' + str(idx) + '.txt')
log_path = os.path.join(os.getcwd(), self.log_dir + '/round_best_' + str(round_id) + '.txt')
shutil.copy(kid_path, log_path)
# store round_best sample for EA future use
self.round_best_sample = Sample(access, wait, piece, \
waitinfo1, waitinfo2, waitinfo3, 6, [0,4,8,1,0,0,8,4,2,1,8,1,4,2,1,4,2,4])
if self.round_worst == 0:
self.round_worst = reward
if reward < self.round_worst:
self.round_worst = reward
self.round_mean = (self.round_mean * previous_samples + reward)/(previous_samples + 1)
# store reward for each sample
self.ep_rs.append(reward)
def Evaluate(self, command, round_id, samples_per_distribution, load_per_sample):
base_path = os.path.join(os.getcwd(), self.log_dir)
policy_path = os.path.join(base_path, 'Distribution.txt')
with open(policy_path, 'a+') as f:
f.write('RL at iter {}'.format(round_id) + '\n')
f.write(str(self.policy) + '\n')
self.ep_rs = []
self.ep_access_act, self.ep_wait_act, self.ep_piece_act, \
self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3, \
= self.policy.table_sample_batch(self.kid_dir, samples_per_distribution)
policies_res = samples_eval(command, samples_per_distribution, load_per_sample)
reward_ = 0
fail_to_exe = 0
for idx in range(samples_per_distribution):
# if the execution has failed, rollback the ep_obs and ep_as, continue the training
if policies_res[idx][0] == 0.0 and policies_res[idx][1] == 1.0:
print("continue")
self.rollback(idx, fail_to_exe)
fail_to_exe += 1
continue
print("RL sample:" + str(idx) + " throughput:" + str(policies_res[idx][0]))
self.record_reward(round_id, policies_res[idx][0], idx - fail_to_exe, idx)
def set_baseline(self, access, wait, piece, \
wait_info1, wait_info2, wait_info3, \
reward_buffer):
samples = int(len(access) / ACCESSE_SPACE)
for i in range(samples):
r = reward_buffer[i]
if r > self.baselines.baselines[0].reward:
access_t = access[i * ACCESSE_SPACE : (i + 1) * ACCESSE_SPACE]
wait_t = wait[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
piece_t = piece[i * PIECE_SPACE : (i + 1) * PIECE_SPACE]
waitinfo1_t = wait_info1[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
waitinfo2_t = wait_info2[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
waitinfo3_t = wait_info3[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
baseline_ = Baseline(access_t, wait_t, piece_t, \
waitinfo1_t, waitinfo2_t, waitinfo3_t, \
r)
self.baselines.insert_baseline(baseline_)
print("access")
print(self.baselines.baselines[0].sample)
access, wait, piece, waitinfo1, waitinfo2, waitinfo3 = self.baselines.baselines[0].sample.get_actions()
assign_access = tf.assign(self.access_action_v, access)
assign_wait = tf.assign(self.wait_action_v, wait)
assign_piece = tf.assign(self.piece_action_v, piece)
assign_waitinfo1 = tf.assign(self.wait_info_action1_v, waitinfo1)
assign_waitinfo2 = tf.assign(self.wait_info_action2_v, waitinfo2)
assign_waitinfo3 = tf.assign(self.wait_info_action3_v, waitinfo3)
self.sess.run([assign_access, assign_wait, assign_piece, assign_waitinfo1, assign_waitinfo2, assign_waitinfo3])
self.update_policy()
def get_ic3_distribution(self, access_in, wait_in , piece_in, waitinfo1_in, waitinfo2_in, waitinfo3_in):
access, wait, piece, waitinfo1, waitinfo2, waitinfo3 = \
self.baselines.baselines[0].sample.get_actions(access_in, wait_in , piece_in, waitinfo1_in, waitinfo2_in, waitinfo3_in)
assign_access = tf.assign(self.access_action_v, access)
assign_wait = tf.assign(self.wait_action_v, wait)
assign_piece = tf.assign(self.piece_action_v, piece)
assign_waitinfo1 = tf.assign(self.wait_info_action1_v, waitinfo1)
assign_waitinfo2 = tf.assign(self.wait_info_action2_v, waitinfo2)
assign_waitinfo3 = tf.assign(self.wait_info_action3_v, waitinfo3)
self.sess.run([assign_access, assign_wait, assign_piece, assign_waitinfo1, assign_waitinfo2, assign_waitinfo3])
self.update_policy()
# preprocess the reward
def get_reward(self, access, wait, piece, \
wait_info1, wait_info2, wait_info3, \
reward_buffer):
samples = int(len(access) / ACCESSE_SPACE)
for i in range(samples):
access_t = access[i * ACCESSE_SPACE : (i + 1) * ACCESSE_SPACE]
wait_t = wait[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
piece_t = piece[i * PIECE_SPACE : (i + 1) * PIECE_SPACE]
waitinfo1_t = wait_info1[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
waitinfo2_t = wait_info2[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
waitinfo3_t = wait_info3[i * WAIT_SPACE : (i + 1) * WAIT_SPACE]
self.baselines.samples_different_action(access_t, wait_t, piece_t, \
waitinfo1_t, waitinfo2_t, waitinfo3_t)
self.ep_access_rs, self.ep_wait_rs, self.ep_piece_rs, \
self.ep_waitinfo1_rs, self.ep_waitinfo2_rs, self.ep_waitinfo3_rs, \
= self.baselines.calculate_reward(reward_buffer)
self.baselines.clear_signal()
def learn(self, idx, lr, generations):
if (len(self.ep_access_act) == 0):
print("useless round")
return
base_path = os.path.join(os.getcwd(), self.log_dir)
baseline_path = os.path.join(base_path, 'Baseline.txt')
with open(baseline_path, 'a+') as f:
f.write('RL at iter {}'.format(idx) + ', ')
f.write(str(self.baselines) + '\n')
self.get_reward(self.ep_access_act, self.ep_wait_act, self.ep_piece_act, \
self.ep_wait_info_act1, self.ep_wait_info_act2, self.ep_wait_info_act3, \
self.ep_rs)
self.lr = 0.5 * lr * (1 + math.cos(math.pi * idx / generations))
self.samples_count = len(self.ep_rs)
self.sess.run(self.train_op, feed_dict={
self.tf_access_act: self.ep_access_act,
self.tf_wait_act: self.ep_wait_act,
self.tf_piece_act: self.ep_piece_act,
self.tf_wait_info_act1: self.ep_wait_info_act1,
self.tf_wait_info_act2: self.ep_wait_info_act2,
self.tf_wait_info_act3: self.ep_wait_info_act3,
self.tf_access_vt: self.ep_access_rs,
self.tf_wait_vt: self.ep_wait_rs,
self.tf_piece_vt: self.ep_piece_rs,
self.tf_wait_info_vt1: self.ep_waitinfo1_rs,
self.tf_wait_info_vt2: self.ep_waitinfo2_rs,
self.tf_wait_info_vt3: self.ep_waitinfo3_rs,
self.tf_samples_count: self.samples_count,
self.learning_rate: self.lr,
})
self.update_policy()
# tool functions:
def get_prob(self):
self.access_p, self.wait_p, self.piece_p, \
self.wait_info1_p, self.wait_info2_p, self.wait_info3_p, \
= self.sess.run([self.access_action, self.wait_action, self.piece_action, \
self.wait_info_action1, self.wait_info_action2, self.wait_info_action3])
self.print_prob()
def print_prob(self):
stri = ""
stri += str(self.access_p) + " "
stri += str(self.wait_p) + " "
stri += str(self.piece_p) + " "
stri += str(self.wait_info1_p) + " "
stri += str(self.wait_info2_p) + " "
stri += str(self.wait_info3_p) + " "
print(stri + "\n")
def rollback(self, index, fail_to_exe):
self.ep_access_act = self.ep_access_act[:(index - fail_to_exe) * ACCESSE_SPACE] + self.ep_access_act[(index + 1 - fail_to_exe) * ACCESSE_SPACE :]
self.ep_wait_act = self.ep_wait_act[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_act[(index + 1 - fail_to_exe) * WAIT_SPACE :]
self.ep_piece_act = self.ep_piece_act[:(index - fail_to_exe) * PIECE_SPACE] + self.ep_piece_act[(index + 1 - fail_to_exe) * PIECE_SPACE :]
self.ep_wait_info_act1 = self.ep_wait_info_act1[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act1[(index + 1 - fail_to_exe) * WAIT_SPACE :]
self.ep_wait_info_act2 = self.ep_wait_info_act2[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act2[(index + 1 - fail_to_exe) * WAIT_SPACE :]
self.ep_wait_info_act3 = self.ep_wait_info_act3[:(index - fail_to_exe) * WAIT_SPACE] + self.ep_wait_info_act3[(index + 1 - fail_to_exe) * WAIT_SPACE :]
|
[
"tensorflow.reduce_sum",
"math.cos",
"numpy.array",
"tensorflow.nn.softmax",
"numpy.mean",
"tensorflow.random_normal",
"tensorflow.Session",
"tensorflow.placeholder",
"tensorflow.assign",
"tensorflow.one_hot",
"tensorflow.add",
"tensorflow.train.GradientDescentOptimizer",
"shutil.copy",
"tensorflow.reshape",
"tensorflow.summary.FileWriter",
"numpy.set_printoptions",
"os.path.join",
"os.getcwd",
"tensorflow.global_variables_initializer",
"numpy.sum",
"tensorflow.name_scope"
] |
[((199, 236), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf'}), '(threshold=np.inf)\n', (218, 236), True, 'import numpy as np\n'), ((2315, 2332), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (2323, 2332), True, 'import numpy as np\n'), ((3569, 3584), 'numpy.mean', 'np.mean', (['reward'], {}), '(reward)\n', (3576, 3584), True, 'import numpy as np\n'), ((7904, 7916), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (7914, 7916), True, 'import tensorflow as tf\n'), ((10475, 10518), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.access_action_v'], {'axis': '(1)'}), '(self.access_action_v, axis=1)\n', (10488, 10518), True, 'import tensorflow as tf\n'), ((10548, 10589), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.wait_action_v'], {'axis': '(1)'}), '(self.wait_action_v, axis=1)\n', (10561, 10589), True, 'import tensorflow as tf\n'), ((10620, 10662), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.piece_action_v'], {'axis': '(1)'}), '(self.piece_action_v, axis=1)\n', (10633, 10662), True, 'import tensorflow as tf\n'), ((10698, 10745), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.wait_info_action1_v'], {'axis': '(1)'}), '(self.wait_info_action1_v, axis=1)\n', (10711, 10745), True, 'import tensorflow as tf\n'), ((10781, 10828), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.wait_info_action2_v'], {'axis': '(1)'}), '(self.wait_info_action2_v, axis=1)\n', (10794, 10828), True, 'import tensorflow as tf\n'), ((10864, 10911), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['self.wait_info_action3_v'], {'axis': '(1)'}), '(self.wait_info_action3_v, axis=1)\n', (10877, 10911), True, 'import tensorflow as tf\n'), ((18424, 18467), 'os.path.join', 'os.path.join', (['base_path', '"""Distribution.txt"""'], {}), "(base_path, 'Distribution.txt')\n", (18436, 18467), False, 'import os\n'), ((20805, 20844), 'tensorflow.assign', 'tf.assign', (['self.access_action_v', 'access'], {}), '(self.access_action_v, access)\n', (20814, 20844), True, 'import tensorflow as tf\n'), ((20867, 20902), 'tensorflow.assign', 'tf.assign', (['self.wait_action_v', 'wait'], {}), '(self.wait_action_v, wait)\n', (20876, 20902), True, 'import tensorflow as tf\n'), ((20926, 20963), 'tensorflow.assign', 'tf.assign', (['self.piece_action_v', 'piece'], {}), '(self.piece_action_v, piece)\n', (20935, 20963), True, 'import tensorflow as tf\n'), ((20991, 21037), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action1_v', 'waitinfo1'], {}), '(self.wait_info_action1_v, waitinfo1)\n', (21000, 21037), True, 'import tensorflow as tf\n'), ((21065, 21111), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action2_v', 'waitinfo2'], {}), '(self.wait_info_action2_v, waitinfo2)\n', (21074, 21111), True, 'import tensorflow as tf\n'), ((21139, 21185), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action3_v', 'waitinfo3'], {}), '(self.wait_info_action3_v, waitinfo3)\n', (21148, 21185), True, 'import tensorflow as tf\n'), ((21664, 21703), 'tensorflow.assign', 'tf.assign', (['self.access_action_v', 'access'], {}), '(self.access_action_v, access)\n', (21673, 21703), True, 'import tensorflow as tf\n'), ((21726, 21761), 'tensorflow.assign', 'tf.assign', (['self.wait_action_v', 'wait'], {}), '(self.wait_action_v, wait)\n', (21735, 21761), True, 'import tensorflow as tf\n'), ((21785, 21822), 'tensorflow.assign', 'tf.assign', (['self.piece_action_v', 'piece'], {}), '(self.piece_action_v, piece)\n', (21794, 21822), True, 'import tensorflow as tf\n'), ((21850, 21896), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action1_v', 'waitinfo1'], {}), '(self.wait_info_action1_v, waitinfo1)\n', (21859, 21896), True, 'import tensorflow as tf\n'), ((21924, 21970), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action2_v', 'waitinfo2'], {}), '(self.wait_info_action2_v, waitinfo2)\n', (21933, 21970), True, 'import tensorflow as tf\n'), ((21998, 22044), 'tensorflow.assign', 'tf.assign', (['self.wait_info_action3_v', 'waitinfo3'], {}), '(self.wait_info_action3_v, waitinfo3)\n', (22007, 22044), True, 'import tensorflow as tf\n'), ((23530, 23569), 'os.path.join', 'os.path.join', (['base_path', '"""Baseline.txt"""'], {}), "(base_path, 'Baseline.txt')\n", (23542, 23569), False, 'import os\n'), ((2344, 2359), 'numpy.sum', 'np.sum', (['rewards'], {}), '(rewards)\n', (2350, 2359), True, 'import numpy as np\n'), ((3606, 3625), 'numpy.array', 'np.array', (['access_dr'], {}), '(access_dr)\n', (3614, 3625), True, 'import numpy as np\n'), ((3657, 3674), 'numpy.array', 'np.array', (['wait_dr'], {}), '(wait_dr)\n', (3665, 3674), True, 'import numpy as np\n'), ((3707, 3725), 'numpy.array', 'np.array', (['piece_dr'], {}), '(piece_dr)\n', (3715, 3725), True, 'import numpy as np\n'), ((7955, 8002), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""logs/"""', 'self.sess.graph'], {}), "('logs/', self.sess.graph)\n", (7976, 8002), True, 'import tensorflow as tf\n'), ((8026, 8059), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8057, 8059), True, 'import tensorflow as tf\n'), ((8313, 8336), 'tensorflow.name_scope', 'tf.name_scope', (['"""inputs"""'], {}), "('inputs')\n", (8326, 8336), True, 'import tensorflow as tf\n'), ((8370, 8425), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""access_value"""'}), "(tf.float32, [None], name='access_value')\n", (8384, 8425), True, 'import tensorflow as tf\n'), ((8458, 8511), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""wait_value"""'}), "(tf.float32, [None], name='wait_value')\n", (8472, 8511), True, 'import tensorflow as tf\n'), ((8545, 8599), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""piece_value"""'}), "(tf.float32, [None], name='piece_value')\n", (8559, 8599), True, 'import tensorflow as tf\n'), ((8638, 8697), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""wait_info_value1"""'}), "(tf.float32, [None], name='wait_info_value1')\n", (8652, 8697), True, 'import tensorflow as tf\n'), ((8736, 8795), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""wait_info_value2"""'}), "(tf.float32, [None], name='wait_info_value2')\n", (8750, 8795), True, 'import tensorflow as tf\n'), ((8834, 8893), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[None]'], {'name': '"""wait_info_value3"""'}), "(tf.float32, [None], name='wait_info_value3')\n", (8848, 8893), True, 'import tensorflow as tf\n'), ((8930, 8981), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""access_act"""'}), "(tf.int32, [None], name='access_act')\n", (8944, 8981), True, 'import tensorflow as tf\n'), ((9015, 9064), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""wait_act"""'}), "(tf.int32, [None], name='wait_act')\n", (9029, 9064), True, 'import tensorflow as tf\n'), ((9099, 9149), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""piece_act"""'}), "(tf.int32, [None], name='piece_act')\n", (9113, 9149), True, 'import tensorflow as tf\n'), ((9189, 9244), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""wait_info_act1"""'}), "(tf.int32, [None], name='wait_info_act1')\n", (9203, 9244), True, 'import tensorflow as tf\n'), ((9284, 9339), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""wait_info_act2"""'}), "(tf.int32, [None], name='wait_info_act2')\n", (9298, 9339), True, 'import tensorflow as tf\n'), ((9379, 9434), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[None]'], {'name': '"""wait_info_act3"""'}), "(tf.int32, [None], name='wait_info_act3')\n", (9393, 9434), True, 'import tensorflow as tf\n'), ((9474, 9522), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""samples_count"""'}), "(tf.float32, name='samples_count')\n", (9488, 9522), True, 'import tensorflow as tf\n'), ((9556, 9604), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""learning_rate"""'}), "(tf.float32, name='learning_rate')\n", (9570, 9604), True, 'import tensorflow as tf\n'), ((9649, 9707), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[INPUT_SPACE, 2]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[INPUT_SPACE, 2], mean=0, stddev=1)\n', (9665, 9707), True, 'import tensorflow as tf\n'), ((9774, 9831), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[WAIT_SPACE, 2]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[WAIT_SPACE, 2], mean=0, stddev=1)\n', (9790, 9831), True, 'import tensorflow as tf\n'), ((9897, 9955), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[PIECE_SPACE, 2]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[PIECE_SPACE, 2], mean=0, stddev=1)\n', (9913, 9955), True, 'import tensorflow as tf\n'), ((10027, 10105), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[WAIT_SPACE, wait_info_act_count[0]]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[WAIT_SPACE, wait_info_act_count[0]], mean=0, stddev=1)\n', (10043, 10105), True, 'import tensorflow as tf\n'), ((10182, 10260), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[WAIT_SPACE, wait_info_act_count[1]]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[WAIT_SPACE, wait_info_act_count[1]], mean=0, stddev=1)\n', (10198, 10260), True, 'import tensorflow as tf\n'), ((10337, 10415), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[WAIT_SPACE, wait_info_act_count[2]]', 'mean': '(0)', 'stddev': '(1)'}), '(shape=[WAIT_SPACE, wait_info_act_count[2]], mean=0, stddev=1)\n', (10353, 10415), True, 'import tensorflow as tf\n'), ((11916, 11939), 'tensorflow.name_scope', 'tf.name_scope', (['"""reward"""'], {}), "('reward')\n", (11929, 11939), True, 'import tensorflow as tf\n'), ((12093, 12126), 'tensorflow.add', 'tf.add', (['self.access_action', '(1e-06)'], {}), '(self.access_action, 1e-06)\n', (12099, 12126), True, 'import tensorflow as tf\n'), ((12161, 12192), 'tensorflow.add', 'tf.add', (['self.wait_action', '(1e-06)'], {}), '(self.wait_action, 1e-06)\n', (12167, 12192), True, 'import tensorflow as tf\n'), ((12228, 12260), 'tensorflow.add', 'tf.add', (['self.piece_action', '(1e-06)'], {}), '(self.piece_action, 1e-06)\n', (12234, 12260), True, 'import tensorflow as tf\n'), ((12301, 12338), 'tensorflow.add', 'tf.add', (['self.wait_info_action1', '(1e-06)'], {}), '(self.wait_info_action1, 1e-06)\n', (12307, 12338), True, 'import tensorflow as tf\n'), ((12379, 12416), 'tensorflow.add', 'tf.add', (['self.wait_info_action2', '(1e-06)'], {}), '(self.wait_info_action2, 1e-06)\n', (12385, 12416), True, 'import tensorflow as tf\n'), ((12457, 12494), 'tensorflow.add', 'tf.add', (['self.wait_info_action3', '(1e-06)'], {}), '(self.wait_info_action3, 1e-06)\n', (12463, 12494), True, 'import tensorflow as tf\n'), ((15172, 15194), 'tensorflow.name_scope', 'tf.name_scope', (['"""train"""'], {}), "('train')\n", (15185, 15194), True, 'import tensorflow as tf\n'), ((17062, 17093), 'shutil.copy', 'shutil.copy', (['kid_path', 'log_path'], {}), '(kid_path, log_path)\n', (17073, 17093), False, 'import shutil\n'), ((17348, 17379), 'shutil.copy', 'shutil.copy', (['old_path', 'new_path'], {}), '(old_path, new_path)\n', (17359, 17379), False, 'import shutil\n'), ((17664, 17695), 'shutil.copy', 'shutil.copy', (['kid_path', 'log_path'], {}), '(kid_path, log_path)\n', (17675, 17695), False, 'import shutil\n'), ((18375, 18386), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (18384, 18386), False, 'import os\n'), ((23479, 23490), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (23488, 23490), False, 'import os\n'), ((2478, 2493), 'numpy.sum', 'np.sum', (['rewards'], {}), '(rewards)\n', (2484, 2493), True, 'import numpy as np\n'), ((3763, 3785), 'numpy.array', 'np.array', (['waitinfo1_dr'], {}), '(waitinfo1_dr)\n', (3771, 3785), True, 'import numpy as np\n'), ((3828, 3850), 'numpy.array', 'np.array', (['waitinfo2_dr'], {}), '(waitinfo2_dr)\n', (3836, 3850), True, 'import numpy as np\n'), ((3893, 3915), 'numpy.array', 'np.array', (['waitinfo3_dr'], {}), '(waitinfo3_dr)\n', (3901, 3915), True, 'import numpy as np\n'), ((12535, 12568), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_access_act', '(2)'], {}), '(self.tf_access_act, 2)\n', (12545, 12568), True, 'import tensorflow as tf\n'), ((12830, 12861), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_wait_act', '(2)'], {}), '(self.tf_wait_act, 2)\n', (12840, 12861), True, 'import tensorflow as tf\n'), ((13108, 13140), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_piece_act', '(2)'], {}), '(self.tf_piece_act, 2)\n', (13118, 13140), True, 'import tensorflow as tf\n'), ((13400, 13458), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_wait_info_act1', 'wait_info_act_count[0]'], {}), '(self.tf_wait_info_act1, wait_info_act_count[0])\n', (13410, 13458), True, 'import tensorflow as tf\n'), ((13805, 13863), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_wait_info_act2', 'wait_info_act_count[1]'], {}), '(self.tf_wait_info_act2, wait_info_act_count[1])\n', (13815, 13863), True, 'import tensorflow as tf\n'), ((14210, 14268), 'tensorflow.one_hot', 'tf.one_hot', (['self.tf_wait_info_act3', 'wait_info_act_count[2]'], {}), '(self.tf_wait_info_act3, wait_info_act_count[2])\n', (14220, 14268), True, 'import tensorflow as tf\n'), ((16913, 16924), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (16922, 16924), False, 'import os\n'), ((17006, 17017), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17015, 17017), False, 'import os\n'), ((17185, 17196), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17194, 17196), False, 'import os\n'), ((17265, 17276), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17274, 17276), False, 'import os\n'), ((17490, 17501), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17499, 17501), False, 'import os\n'), ((17583, 17594), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (17592, 17594), False, 'import os\n'), ((23972, 24009), 'math.cos', 'math.cos', (['(math.pi * idx / generations)'], {}), '(math.pi * idx / generations)\n', (23980, 24009), False, 'import math\n'), ((1953, 1970), 'numpy.array', 'np.array', (['diff[i]'], {}), '(diff[i])\n', (1961, 1970), True, 'import numpy as np\n'), ((12651, 12702), 'tensorflow.reshape', 'tf.reshape', (['self.access_action', '[ACCESSE_SPACE * 2]'], {}), '(self.access_action, [ACCESSE_SPACE * 2])\n', (12661, 12702), True, 'import tensorflow as tf\n'), ((12753, 12791), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['access_act_prob'], {'axis': '(1)'}), '(access_act_prob, axis=1)\n', (12766, 12791), True, 'import tensorflow as tf\n'), ((12937, 12983), 'tensorflow.reshape', 'tf.reshape', (['self.wait_action', '[WAIT_SPACE * 2]'], {}), '(self.wait_action, [WAIT_SPACE * 2])\n', (12947, 12983), True, 'import tensorflow as tf\n'), ((13032, 13068), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['wait_act_prob'], {'axis': '(1)'}), '(wait_act_prob, axis=1)\n', (13045, 13068), True, 'import tensorflow as tf\n'), ((13219, 13267), 'tensorflow.reshape', 'tf.reshape', (['self.piece_action', '[PIECE_SPACE * 2]'], {}), '(self.piece_action, [PIECE_SPACE * 2])\n', (13229, 13267), True, 'import tensorflow as tf\n'), ((13317, 13354), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['piece_act_prob'], {'axis': '(1)'}), '(piece_act_prob, axis=1)\n', (13330, 13354), True, 'import tensorflow as tf\n'), ((13568, 13641), 'tensorflow.reshape', 'tf.reshape', (['self.wait_info_action1', '[WAIT_SPACE * wait_info_act_count[0]]'], {}), '(self.wait_info_action1, [WAIT_SPACE * wait_info_act_count[0]])\n', (13578, 13641), True, 'import tensorflow as tf\n'), ((13717, 13759), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['wait_info_act1_prob'], {'axis': '(1)'}), '(wait_info_act1_prob, axis=1)\n', (13730, 13759), True, 'import tensorflow as tf\n'), ((13973, 14046), 'tensorflow.reshape', 'tf.reshape', (['self.wait_info_action2', '[WAIT_SPACE * wait_info_act_count[1]]'], {}), '(self.wait_info_action2, [WAIT_SPACE * wait_info_act_count[1]])\n', (13983, 14046), True, 'import tensorflow as tf\n'), ((14122, 14164), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['wait_info_act2_prob'], {'axis': '(1)'}), '(wait_info_act2_prob, axis=1)\n', (14135, 14164), True, 'import tensorflow as tf\n'), ((14378, 14451), 'tensorflow.reshape', 'tf.reshape', (['self.wait_info_action3', '[WAIT_SPACE * wait_info_act_count[2]]'], {}), '(self.wait_info_action3, [WAIT_SPACE * wait_info_act_count[2]])\n', (14388, 14451), True, 'import tensorflow as tf\n'), ((14527, 14569), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['wait_info_act3_prob'], {'axis': '(1)'}), '(wait_info_act3_prob, axis=1)\n', (14540, 14569), True, 'import tensorflow as tf\n'), ((15075, 15133), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(wait_info_act3_prob * self.tf_wait_info_vt3)'], {}), '(wait_info_act3_prob * self.tf_wait_info_vt3)\n', (15088, 15133), True, 'import tensorflow as tf\n'), ((15224, 15291), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'self.learning_rate'}), '(learning_rate=self.learning_rate)\n', (15257, 15291), True, 'import tensorflow as tf\n'), ((14976, 15034), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(wait_info_act2_prob * self.tf_wait_info_vt2)'], {}), '(wait_info_act2_prob * self.tf_wait_info_vt2)\n', (14989, 15034), True, 'import tensorflow as tf\n'), ((14877, 14935), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(wait_info_act1_prob * self.tf_wait_info_vt1)'], {}), '(wait_info_act1_prob * self.tf_wait_info_vt1)\n', (14890, 14935), True, 'import tensorflow as tf\n'), ((14790, 14836), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(wait_act_prob * self.tf_wait_vt)'], {}), '(wait_act_prob * self.tf_wait_vt)\n', (14803, 14836), True, 'import tensorflow as tf\n'), ((14610, 14660), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(access_act_prob * self.tf_access_vt)'], {}), '(access_act_prob * self.tf_access_vt)\n', (14623, 14660), True, 'import tensorflow as tf\n'), ((14701, 14749), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(piece_act_prob * self.tf_piece_vt)'], {}), '(piece_act_prob * self.tf_piece_vt)\n', (14714, 14749), True, 'import tensorflow as tf\n')]
|
import numpy as np
from scipy.special import factorial
from itertools import permutations, product
from pysat.solvers import Minisat22, Minicard
from pysat.pb import PBEnc
from clauses import build_clauses, build_max_min_clauses
from clauses import build_permutation_clauses
from clauses import build_cardinality_lits, build_exclusivity_lits
def compare_dice(first, second):
hits = 0
for x in first:
for y in second:
if y < x:
hits += 1
return hits
def compare_doubled_dice(first, second, comp="max"):
d = len(first)
hits = 0
if comp == "max":
indices = range(1, 2 * d, 2)
if comp == "min":
indices = range(2 * d - 1, 0, -2)
for i, x in zip(indices, first):
for j, y in zip(indices, second):
if y < x:
hits += i * j
return hits
def recover_values(d, dice_names, constraints):
natural_faces = []
for die in dice_names:
faces = np.arange(d)
for die2 in dice_names:
if die != die2:
faces += constraints[(die, die2)].sum(1)
natural_faces.append(faces)
return natural_faces
def compress_values(*args):
T = {}
for i, die in enumerate(args):
T.update({k: i for k in die})
n = len(T.keys())
T_list = [T[i] for i in range(n)]
current_value = 0
current_die = T_list[0]
compressed_dice = [[] for _ in args]
compressed_dice[current_die].append(current_value)
for i in range(1, n):
previous_die = current_die
current_die = T_list[i]
if current_die != previous_die:
current_value += 1
compressed_dice[current_die].append(current_value)
return compressed_dice
def sat_to_constraints(d, dice_names, sat_solution, compress=True):
dice_pairs = list(permutations(dice_names, 2))
n = len(dice_pairs)
signs_array = (sat_solution[: (n * d ** 2)] > 0).reshape((n, d, d))
constraints = {v: s for v, s in zip(dice_pairs, signs_array)}
return constraints
def sat_to_dice(d, dice_names, sat_solution, compress=False):
constraints = sat_to_constraints(d, dice_names, sat_solution)
natural_faces = recover_values(d, dice_names, constraints)
if compress:
dice_faces = compress_values(*natural_faces)
dice_dict = {k: v for k, v in zip(dice_names, dice_faces)}
else:
dice_dict = {k: v for k, v in zip(dice_names, natural_faces)}
return dice_dict
def dice_to_constraints(dice, dtype=np.int):
dice_names = list(dice.keys())
d = len(dice[dice_names[0]])
dice_pairs = list(permutations(dice_names, 2))
n = len(dice_pairs)
constraints = dict()
for x, y in dice_pairs:
foo = np.array(dice[x]).reshape(len(dice[x]), 1)
bar = np.array(dice[y]).reshape(1, len(dice[y]))
constraint = foo > bar
constraints[(x, y)] = constraint.astype(dtype)
return constraints
def dice_to_word(dice_solution):
dice_names = list(dice_solution.keys())
m = len(dice_names)
d = len(dice_solution[dice_names[0]])
foo = [[(x, dice_solution[x][i]) for i in range(d)] for x in dice_names]
bar = sum(foo, [])
ram = sorted(bar, key=lambda x: x[1])
word = "".join([t[0] for t in ram])
segments = [word[i : (i + m)] for i in range(0, m * d, m)]
segmented_word = " ".join(segments)
return word, segmented_word
def word_to_dice(word):
dice_names = set(word)
dice_solution = dict()
for i, w in enumerate(word):
if w in dice_solution:
dice_solution[w].append(i)
else:
dice_solution[w] = [i]
return dice_solution
def permute_letters(string, permutation, relative=True):
letter_set = set(string)
if relative:
pairs = [(string.index(letter), letter) for letter in letter_set]
sorted_pairs = sorted(pairs)
letters = "".join(l for i, l in sorted_pairs)
# letters = string[: len(letter_set)]
else:
letters = sorted(list(set(string)))
subs = {s: letters[p] for s, p in zip(letters, permutation)}
subs_string = "".join([subs[s] for s in string])
return subs_string
# ----------------------------------------------------------------------------
def verify_solution(scores, dice_solution):
for x, y in scores:
check = compare_dice(dice_solution[x], dice_solution[y])
print((x, y), check, scores[(x, y)])
def verify_doubling_solution(
scores, doubled_scores_max, doubled_scores_min, dice_solution
):
verify_solution(scores, dice_solution)
print()
for x, y in doubled_scores_max:
check = compare_doubled_dice(dice_solution[x], dice_solution[y], "max")
print((x, y), check, doubled_scores_max[(x, y)])
print()
for x, y in doubled_scores_min:
check = compare_doubled_dice(dice_solution[x], dice_solution[y], "min")
print((x, y), check, doubled_scores_min[(x, y)])
def verify_go_first(dice_solution, verbose=True):
m = len(dice_solution)
keys = np.array(sorted(list(dice_solution.keys())))
d = len(dice_solution[keys[0]])
check = d ** m // factorial(m, exact=True)
counts = {x: 0 for x in permutations(keys)}
for outcome in product(*[dice_solution[k] for k in keys]):
perm = np.argsort(outcome)
counts[tuple(keys[perm])] += 1
if verbose:
for k in counts:
print(k, check, counts[k])
print()
return counts
# ============================================================================
def build_sat(
d,
dice_names,
scores,
cardinality_clauses=False,
symmetry_clauses=True,
structure_clauses=True,
pb=PBEnc.equals,
):
clauses, cardinality_lits = build_clauses(
d,
dice_names,
scores,
card_clauses=cardinality_clauses,
symmetry_clauses=symmetry_clauses,
structure_clauses=structure_clauses,
)
sat = Minicard()
for clause in clauses:
sat.add_clause(clause)
if not cardinality_clauses:
for x, lits in cardinality_lits.items():
if pb in (PBEnc.equals, PBEnc.atmost):
sat.add_atmost(lits, scores[x])
if pb in (PBEnc.equals, PBEnc.atleast):
conv_lits = [-l for l in lits]
sat.add_atmost(conv_lits, d ** 2 - scores[x])
return sat
def sat_search(
d,
dice_names,
scores,
cardinality_clauses=False,
symmetry_clauses=True,
structure_clauses=True,
pb=PBEnc.equals,
solution_type="dice_solution",
):
sat = build_sat(
d=d,
dice_names=dice_names,
scores=scores,
cardinality_clauses=cardinality_clauses,
symmetry_clauses=symmetry_clauses,
structure_clauses=structure_clauses,
pb=pb,
)
is_solvable = sat.solve()
if is_solvable:
sat_solution = np.array(sat.get_model())
dice_solution = sat_to_dice(d, dice_names, sat_solution, compress=False)
else:
sat_solution = None
dice_solution = None
if solution_type == "sat_solution":
return sat_solution
elif solution_type == "dice_solution":
return dice_solution
# ----------------------------------------------------------------------------
def sat_exhaust(
d,
dice_names,
scores,
cardinality_clauses=False,
symmetry_clauses=True,
structure_clauses=True,
pb=PBEnc.equals,
solution_type="sat_solution",
):
sat = build_sat(
d=d,
dice_names=dice_names,
scores=scores,
cardinality_clauses=cardinality_clauses,
symmetry_clauses=symmetry_clauses,
structure_clauses=structure_clauses,
pb=pb,
)
dice_pairs = list(permutations(dice_names, 2))
n = len(dice_pairs)
solutions = sat.enum_models()
if solution_type == "sat_solution":
return [np.array(s) for s in solutions]
elif solution_type == "dice_solution":
dice_solutions = [sat_to_dice(d, dice_names, np.array(s)) for s in solutions]
return dice_solutions
# ----------------------------------------------------------------------------
def sat_search_max_min(d, dice_names, scores, max_scores, min_scores):
clauses = build_max_min_clauses(d, dice_names, scores, max_scores, min_scores)
sat = Minisat22()
for clause in clauses:
sat.add_clause(clause)
is_solvable = sat.solve()
if is_solvable:
model = np.array(sat.get_model())
sat_solution = np.array(sat.get_model())
dice_solution = sat_to_dice(d, dice_names, sat_solution, compress=False)
else:
dice_solution = None
return dice_solution
# ----------------------------------------------------------------------------
def sat_search_go_first(d, dice_names, scores_2, scores_m, m=None):
if m == None:
m = len(dice_names)
start_enum = 1
dice_pairs = list(permutations(dice_names, 2))
faces = {x: ["%s%i" % (x, i) for i in range(1, d + 1)] for x in dice_names}
# ------------------------------------------------------------------------
var_lists_2 = {(x, y): list(product(faces[x], faces[y])) for (x, y) in dice_pairs}
variables_2 = sum(var_lists_2.values(), [])
var_dict_2 = dict((v, k) for k, v in enumerate(variables_2, start_enum))
start_enum += len(variables_2)
# ------------------------------------------------------------------------
dice_perms = list(permutations(dice_names, m))
var_lists_m = {xs: list(product(*[faces[x] for x in xs])) for xs in dice_perms}
variables_m = sum(var_lists_m.values(), [])
var_dict_m = dict((v, k) for k, v in enumerate(variables_m, start_enum))
start_enum += len(variables_m)
# ------------------------------------------------------------------------
clauses_2, cardinality_lits_2 = build_clauses(d, dice_names, scores_2)
# ------------------------------------------------------------------------
clauses_m = build_permutation_clauses(d, var_dict_2, var_dict_m, dice_names, m)
cardinality_lits_m = build_cardinality_lits(d, var_dict_m, var_lists_m)
exclusivity_lits = build_exclusivity_lits(d, var_dict_m, dice_names, m)
# ------------------------------------------------------------------------
clauses = clauses_2 + clauses_m
sat = Minicard()
for clause in clauses:
sat.add_clause(clause)
for x, lits in cardinality_lits_2.items():
sat.add_atmost(lits, scores_2[x])
conv_lits = [-l for l in lits]
sat.add_atmost(conv_lits, d ** 2 - scores_2[x])
for x, lits in cardinality_lits_m.items():
sat.add_atmost(lits, scores_m[x])
conv_lits = [-l for l in lits]
sat.add_atmost(conv_lits, d ** m - scores_m[x])
for x, lits in exclusivity_lits.items():
sat.add_atmost(lits, 1)
conv_lits = [-l for l in lits]
sat.add_atmost(conv_lits, len(lits) - 1)
is_solvable = sat.solve()
if is_solvable:
sat_solution = np.array(sat.get_model())
dice_solution = sat_to_dice(d, dice_names, sat_solution, compress=False)
else:
dice_solution = None
return dice_solution
|
[
"clauses.build_exclusivity_lits",
"pysat.solvers.Minicard",
"clauses.build_permutation_clauses",
"scipy.special.factorial",
"itertools.product",
"clauses.build_cardinality_lits",
"pysat.solvers.Minisat22",
"numpy.argsort",
"numpy.array",
"clauses.build_max_min_clauses",
"clauses.build_clauses",
"itertools.permutations",
"numpy.arange"
] |
[((5231, 5273), 'itertools.product', 'product', (['*[dice_solution[k] for k in keys]'], {}), '(*[dice_solution[k] for k in keys])\n', (5238, 5273), False, 'from itertools import permutations, product\n'), ((5738, 5884), 'clauses.build_clauses', 'build_clauses', (['d', 'dice_names', 'scores'], {'card_clauses': 'cardinality_clauses', 'symmetry_clauses': 'symmetry_clauses', 'structure_clauses': 'structure_clauses'}), '(d, dice_names, scores, card_clauses=cardinality_clauses,\n symmetry_clauses=symmetry_clauses, structure_clauses=structure_clauses)\n', (5751, 5884), False, 'from clauses import build_clauses, build_max_min_clauses\n'), ((5947, 5957), 'pysat.solvers.Minicard', 'Minicard', ([], {}), '()\n', (5955, 5957), False, 'from pysat.solvers import Minisat22, Minicard\n'), ((8259, 8327), 'clauses.build_max_min_clauses', 'build_max_min_clauses', (['d', 'dice_names', 'scores', 'max_scores', 'min_scores'], {}), '(d, dice_names, scores, max_scores, min_scores)\n', (8280, 8327), False, 'from clauses import build_clauses, build_max_min_clauses\n'), ((8339, 8350), 'pysat.solvers.Minisat22', 'Minisat22', ([], {}), '()\n', (8348, 8350), False, 'from pysat.solvers import Minisat22, Minicard\n'), ((9867, 9905), 'clauses.build_clauses', 'build_clauses', (['d', 'dice_names', 'scores_2'], {}), '(d, dice_names, scores_2)\n', (9880, 9905), False, 'from clauses import build_clauses, build_max_min_clauses\n'), ((10003, 10070), 'clauses.build_permutation_clauses', 'build_permutation_clauses', (['d', 'var_dict_2', 'var_dict_m', 'dice_names', 'm'], {}), '(d, var_dict_2, var_dict_m, dice_names, m)\n', (10028, 10070), False, 'from clauses import build_permutation_clauses\n'), ((10096, 10146), 'clauses.build_cardinality_lits', 'build_cardinality_lits', (['d', 'var_dict_m', 'var_lists_m'], {}), '(d, var_dict_m, var_lists_m)\n', (10118, 10146), False, 'from clauses import build_cardinality_lits, build_exclusivity_lits\n'), ((10170, 10222), 'clauses.build_exclusivity_lits', 'build_exclusivity_lits', (['d', 'var_dict_m', 'dice_names', 'm'], {}), '(d, var_dict_m, dice_names, m)\n', (10192, 10222), False, 'from clauses import build_cardinality_lits, build_exclusivity_lits\n'), ((10351, 10361), 'pysat.solvers.Minicard', 'Minicard', ([], {}), '()\n', (10359, 10361), False, 'from pysat.solvers import Minisat22, Minicard\n'), ((974, 986), 'numpy.arange', 'np.arange', (['d'], {}), '(d)\n', (983, 986), True, 'import numpy as np\n'), ((1827, 1854), 'itertools.permutations', 'permutations', (['dice_names', '(2)'], {}), '(dice_names, 2)\n', (1839, 1854), False, 'from itertools import permutations, product\n'), ((2612, 2639), 'itertools.permutations', 'permutations', (['dice_names', '(2)'], {}), '(dice_names, 2)\n', (2624, 2639), False, 'from itertools import permutations, product\n'), ((5139, 5163), 'scipy.special.factorial', 'factorial', (['m'], {'exact': '(True)'}), '(m, exact=True)\n', (5148, 5163), False, 'from scipy.special import factorial\n'), ((5290, 5309), 'numpy.argsort', 'np.argsort', (['outcome'], {}), '(outcome)\n', (5300, 5309), True, 'import numpy as np\n'), ((7755, 7782), 'itertools.permutations', 'permutations', (['dice_names', '(2)'], {}), '(dice_names, 2)\n', (7767, 7782), False, 'from itertools import permutations, product\n'), ((8936, 8963), 'itertools.permutations', 'permutations', (['dice_names', '(2)'], {}), '(dice_names, 2)\n', (8948, 8963), False, 'from itertools import permutations, product\n'), ((9477, 9504), 'itertools.permutations', 'permutations', (['dice_names', 'm'], {}), '(dice_names, m)\n', (9489, 9504), False, 'from itertools import permutations, product\n'), ((5192, 5210), 'itertools.permutations', 'permutations', (['keys'], {}), '(keys)\n', (5204, 5210), False, 'from itertools import permutations, product\n'), ((7900, 7911), 'numpy.array', 'np.array', (['s'], {}), '(s)\n', (7908, 7911), True, 'import numpy as np\n'), ((9158, 9185), 'itertools.product', 'product', (['faces[x]', 'faces[y]'], {}), '(faces[x], faces[y])\n', (9165, 9185), False, 'from itertools import permutations, product\n'), ((9534, 9566), 'itertools.product', 'product', (['*[faces[x] for x in xs]'], {}), '(*[faces[x] for x in xs])\n', (9541, 9566), False, 'from itertools import permutations, product\n'), ((2732, 2749), 'numpy.array', 'np.array', (['dice[x]'], {}), '(dice[x])\n', (2740, 2749), True, 'import numpy as np\n'), ((2789, 2806), 'numpy.array', 'np.array', (['dice[y]'], {}), '(dice[y])\n', (2797, 2806), True, 'import numpy as np\n'), ((8028, 8039), 'numpy.array', 'np.array', (['s'], {}), '(s)\n', (8036, 8039), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
#
# import modules used here -- sys is a very standard one
from __future__ import print_function
import argparse
import csv
import logging
import zipfile
from collections import OrderedDict
from glob import glob
import os
import sys
import nibabel as nb
import json
import pandas as pd
import numpy as np
# Gather our code in a main() function
from shutil import copy
def get_metadata_for_nifti(bids_root, path):
#TODO support .nii
sidecarJSON = path.replace(".nii.gz", ".json")
pathComponents = os.path.split(sidecarJSON)
filenameComponents = pathComponents[-1].split("_")
sessionLevelComponentList = []
subjectLevelComponentList = []
topLevelComponentList = []
ses = None;
sub = None;
for filenameComponent in filenameComponents:
if filenameComponent[:3] != "run":
sessionLevelComponentList.append(filenameComponent)
if filenameComponent[:3] == "ses":
ses = filenameComponent
else:
subjectLevelComponentList.append(filenameComponent)
if filenameComponent[:3] == "sub":
sub = filenameComponent
else:
topLevelComponentList.append(filenameComponent)
topLevelJSON = os.path.join(bids_root, "_".join(topLevelComponentList))
potentialJSONs = [topLevelJSON]
subjectLevelJSON = os.path.join(bids_root, sub, "_".join(subjectLevelComponentList))
potentialJSONs.append(subjectLevelJSON)
if ses:
sessionLevelJSON = os.path.join(bids_root, sub, ses, "_".join(sessionLevelComponentList))
potentialJSONs.append(sessionLevelJSON)
potentialJSONs.append(sidecarJSON)
merged_param_dict = {}
for json_file_path in potentialJSONs:
if os.path.exists(json_file_path):
param_dict = json.load(open(json_file_path, "r"))
merged_param_dict.update(param_dict)
return merged_param_dict
def dict_append(d, key, value):
if key in d:
d[key].append(value)
else:
d[key] = [value, ]
def run(args):
guid_mapping = dict([line.split(" - ") for line in open(args.guid_mapping).read().split("\n") if line != ''])
suffix_to_scan_type = {"dwi": "MR diffusion",
"bold": "fMRI",
#""MR structural(MPRAGE)",
"T1w": "MR structural (T1)",
"PD": "MR structural (PD)",
#"MR structural(FSPGR)",
"T2w": "MR structural (T2)",
"T2map": "MR structural (T2)",
"T2star": "MR: T2star",
"FLAIR": "MR: FLAIR",
"asl": "ASL",
"FLASH": "MR structural (FLASH)",
#PET;
#microscopy;
#MR structural(PD, T2);
#MR structural(B0 map);
#MR structural(B1 map);
#single - shell DTI;
#multi - shell DTI;
"epi": "Field Map",
"phase1": "Field Map",
"phase2": "Field Map",
"phasediff": "Field Map",
"magnitude1": "Field Map",
"magnitude2": "Field Map",
"fieldmap": "Field Map"
#X - Ray
}
units_dict = {"mm": "Millimeters",
"sec": "Seconds",
"msec": "Milliseconds"}
participants_df = pd.read_csv(os.path.join(args.bids_directory, "participants.tsv"), header=0, sep="\t")
participants_df['age'] = participants_df.age.astype(str).str.rstrip('Y').str.lstrip('0')
image03_dict = OrderedDict()
for file in glob(os.path.join(args.bids_directory, "sub-*", "*", "sub-*.nii.gz")) + \
glob(os.path.join(args.bids_directory, "sub-*", "ses-*", "*", "sub-*_ses-*.nii.gz")):
metadata = get_metadata_for_nifti(args.bids_directory, file)
bids_subject_id = os.path.split(file)[-1].split("_")[0][4:]
dict_append(image03_dict, 'subjectkey', guid_mapping[bids_subject_id])
dict_append(image03_dict, 'src_subject_id', bids_subject_id)
sub = file.split("sub-")[-1].split("_")[0]
if "ses-" in file:
ses = file.split("ses-")[-1].split("_")[0]
scans_file = (os.path.join(args.bids_directory, "sub-" + sub, "ses-" + ses, "sub-" + sub + "_ses-" + ses + "_scans.tsv"))
else:
scans_file = (os.path.join(args.bids_directory, "sub-" + sub, "sub-" + sub + "_scans.tsv"))
if os.path.exists(scans_file):
scans_df = pd.read_csv(scans_file, header=0, sep="\t")
else:
print("%s file not found - information about scan date required by NDA could not be found." % scans_file)
sys.exit(-1)
for (_, row) in scans_df.iterrows():
if file.endswith(row["filename"].replace("/", os.sep)):
date = row.acq_time
break
sdate = date.split("-")
ndar_date = sdate[1] + "/" + sdate[2].split("T")[0] + "/" + sdate[0]
dict_append(image03_dict, 'interview_date', ndar_date)
interview_age = int(round(float(participants_df[participants_df.participant_id == "sub-" + sub].age.values[0]), 0)*12)
dict_append(image03_dict, 'interview_age', interview_age)
sex = list(participants_df[participants_df.participant_id == "sub-" + sub].sex)[0]
dict_append(image03_dict, 'gender', sex)
dict_append(image03_dict, 'image_file', file)
suffix = file.split("_")[-1].split(".")[0]
if suffix == "bold":
description = suffix + " " + metadata["TaskName"]
dict_append(image03_dict, 'experiment_id', metadata.get("ExperimentID", args.experiment_id))
else:
description = suffix
dict_append(image03_dict, 'experiment_id', '')
dict_append(image03_dict, 'image_description', description)
dict_append(image03_dict, 'scan_type', suffix_to_scan_type[suffix])
dict_append(image03_dict, 'scan_object', "Live")
dict_append(image03_dict, 'image_file_format', "NIFTI")
dict_append(image03_dict, 'image_modality', "MRI")
dict_append(image03_dict, 'scanner_manufacturer_pd', metadata.get("Manufacturer", ""))
dict_append(image03_dict, 'scanner_type_pd', metadata.get("ManufacturersModelName", ""))
dict_append(image03_dict, 'scanner_software_versions_pd', metadata.get("SoftwareVersions", ""))
dict_append(image03_dict, 'magnetic_field_strength', metadata.get("MagneticFieldStrength", ""))
dict_append(image03_dict, 'mri_echo_time_pd', metadata.get("EchoTime", ""))
dict_append(image03_dict, 'flip_angle', metadata.get("FlipAngle", ""))
dict_append(image03_dict, 'receive_coil', metadata.get("ReceiveCoilName", ""))
plane = metadata.get("ImageOrientationPatient","")
get_orientation = lambda place: ['Axial','Coronal','Sagittal'][np.argmax(plane[:3])]
dict_append(image03_dict, 'image_orientation',get_orientation(plane))
dict_append(image03_dict, 'transformation_performed', 'Yes')
dict_append(image03_dict, 'transformation_type', 'BIDS2NDA')
nii = nb.load(file)
dict_append(image03_dict, 'image_num_dimensions', len(nii.shape))
dict_append(image03_dict, 'image_extent1', nii.shape[0])
dict_append(image03_dict, 'image_extent2', nii.shape[1])
dict_append(image03_dict, 'image_extent3', nii.shape[2])
if suffix == "bold":
extent4_type = "time"
elif suffix == "dwi":
extent4_type = "diffusion weighting"
else:
extent4_type = ""
dict_append(image03_dict, 'extent4_type', extent4_type)
dict_append(image03_dict, 'acquisition_matrix', "%g x %g" %(nii.shape[0], nii.shape[1]))
dict_append(image03_dict, 'image_resolution1', nii.header.get_zooms()[0])
dict_append(image03_dict, 'image_resolution2', nii.header.get_zooms()[1])
dict_append(image03_dict, 'image_resolution3', nii.header.get_zooms()[2])
dict_append(image03_dict, 'image_slice_thickness', nii.header.get_zooms()[2])
dict_append(image03_dict, 'photomet_interpret', metadata.get("global",{}).get("const",{}).get("PhotometricInterpretation","MONOCHROME2"))
if len(nii.shape) > 3:
image_extent4 = nii.shape[3]
image_resolution4 = nii.header.get_zooms()[3]
image_unit4 = units_dict[nii.header.get_xyzt_units()[1]]
if image_unit4 == "Milliseconds":
TR = nii.header.get_zooms()[3]/1000.
else:
TR = nii.header.get_zooms()[3]
else:
image_resolution4 = ""
image_unit4 = ""
image_extent4 = ""
TR = metadata.get("RepetitionTime", "")
slice_timing = metadata.get("SliceTiming", "")
dict_append(image03_dict, 'image_extent4', image_extent4)
dict_append(image03_dict, 'slice_timing', slice_timing)
dict_append(image03_dict, 'image_unit4', image_unit4)
dict_append(image03_dict, 'mri_repetition_time_pd', TR)
dict_append(image03_dict, 'image_resolution4', image_resolution4)
dict_append(image03_dict, 'image_unit1', units_dict[nii.header.get_xyzt_units()[0]])
dict_append(image03_dict, 'image_unit2', units_dict[nii.header.get_xyzt_units()[0]])
dict_append(image03_dict, 'image_unit3', units_dict[nii.header.get_xyzt_units()[0]])
dict_append(image03_dict, 'mri_field_of_view_pd', "%g x %g %s" % (nii.header.get_zooms()[0],
nii.header.get_zooms()[1],
units_dict[nii.header.get_xyzt_units()[0]]))
dict_append(image03_dict, 'patient_position', 'head first-supine')
if file.split(os.sep)[-1].split("_")[1].startswith("ses"):
visit = file.split(os.sep)[-1].split("_")[1][4:]
else:
visit = ""
dict_append(image03_dict, 'visit', visit)
if len(metadata) > 0 or suffix in ['bold', 'dwi']:
_, fname = os.path.split(file)
zip_name = fname.split(".")[0] + ".metadata.zip"
zip_path = os.path.join(args.output_directory, zip_name)
zip_path_exists = os.path.exists(zip_path)
if not zip_path_exists or (zip_path_exists and args.overwrite_zips):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
zipf.writestr(fname.replace(".nii.gz", ".json"), json.dumps(metadata, indent=4, sort_keys=True))
if suffix == "bold":
#TODO write a more robust function for finding those files
events_file = file.split("_bold")[0] + "_events.tsv"
arch_name = os.path.split(events_file)[1]
if not os.path.exists(events_file):
task_name = file.split("_task-")[1].split("_")[0]
events_file = os.path.join(args.bids_directory, "task-" + task_name + "_events.tsv")
if os.path.exists(events_file):
zipf.write(events_file, arch_name)
dict_append(image03_dict, 'data_file2', zip_path)
dict_append(image03_dict, 'data_file2_type', "ZIP file with additional metadata from Brain Imaging "
"Data Structure (http://bids.neuroimaging.io)")
else:
dict_append(image03_dict, 'data_file2', "")
dict_append(image03_dict, 'data_file2_type', "")
if suffix == "dwi":
# TODO write a more robust function for finding those files
bvec_file = file.split("_dwi")[0] + "_dwi.bvec"
if not os.path.exists(bvec_file):
bvec_file = os.path.join(args.bids_directory, "dwi.bvec")
if os.path.exists(bvec_file):
dict_append(image03_dict, 'bvecfile', bvec_file)
else:
dict_append(image03_dict, 'bvecfile', "")
bval_file = file.split("_dwi")[0] + "_dwi.bval"
if not os.path.exists(bval_file):
bval_file = os.path.join(args.bids_directory, "dwi.bval")
if os.path.exists(bval_file):
dict_append(image03_dict, 'bvalfile', bval_file)
else:
dict_append(image03_dict, 'bvalfile', "")
if os.path.exists(bval_file) or os.path.exists(bvec_file):
dict_append(image03_dict, 'bvek_bval_files', 'Yes')
else:
dict_append(image03_dict, 'bvek_bval_files', 'No')
else:
dict_append(image03_dict, 'bvecfile', "")
dict_append(image03_dict, 'bvalfile', "")
dict_append(image03_dict, 'bvek_bval_files', "")
# all values of image03_dict should be the same length.
# Fail when this is not true instead of when the dataframe
# is created.
assert(len(set(map(len,image03_dict.values()))) ==1)
image03_df = pd.DataFrame(image03_dict)
with open(os.path.join(args.output_directory, "image03.txt"), "w") as out_fp:
out_fp.write('"image"\t"3"\n')
image03_df.to_csv(out_fp, sep="\t", index=False, quoting=csv.QUOTE_ALL)
def main():
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
parser = MyParser(
description="BIDS to NDA converter.",
fromfile_prefix_chars='@')
# TODO Specify your real parameters here.
parser.add_argument(
"bids_directory",
help="Location of the root of your BIDS compatible directory",
metavar="BIDS_DIRECTORY")
parser.add_argument('-e', '--experiment_id', default=None,
help = ("Functional scans require an experiment_id. If ExperimentID is not"
" found in the scan metadata this value is used"))
parser.add_argument('-o', '--overwrite_zips', action='store_true',
help = ("If a conversion has already been performed, the default is "
"to avoid rewriting each zip file generated and instead just rewrite image03.txt"))
parser.add_argument(
"guid_mapping",
help="Path to a text file with participant_id to GUID mapping. You will need to use the "
"GUID Tool (https://ndar.nih.gov/contribute.html) to generate GUIDs for your participants.",
metavar="GUID_MAPPING")
parser.add_argument(
"output_directory",
help="Directory where NDA files will be stored",
metavar="OUTPUT_DIRECTORY")
args = parser.parse_args()
run(args)
print("Metadata extraction complete.")
if __name__ == '__main__':
main()
|
[
"os.path.exists",
"collections.OrderedDict",
"pandas.read_csv",
"nibabel.load",
"zipfile.ZipFile",
"json.dumps",
"os.path.join",
"numpy.argmax",
"os.path.split",
"sys.stderr.write",
"sys.exit",
"pandas.DataFrame"
] |
[((538, 564), 'os.path.split', 'os.path.split', (['sidecarJSON'], {}), '(sidecarJSON)\n', (551, 564), False, 'import os\n'), ((3938, 3951), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3949, 3951), False, 'from collections import OrderedDict\n'), ((13537, 13563), 'pandas.DataFrame', 'pd.DataFrame', (['image03_dict'], {}), '(image03_dict)\n', (13549, 13563), True, 'import pandas as pd\n'), ((1795, 1825), 'os.path.exists', 'os.path.exists', (['json_file_path'], {}), '(json_file_path)\n', (1809, 1825), False, 'import os\n'), ((3748, 3801), 'os.path.join', 'os.path.join', (['args.bids_directory', '"""participants.tsv"""'], {}), "(args.bids_directory, 'participants.tsv')\n", (3760, 3801), False, 'import os\n'), ((4825, 4851), 'os.path.exists', 'os.path.exists', (['scans_file'], {}), '(scans_file)\n', (4839, 4851), False, 'import os\n'), ((7524, 7537), 'nibabel.load', 'nb.load', (['file'], {}), '(file)\n', (7531, 7537), True, 'import nibabel as nb\n'), ((3973, 4036), 'os.path.join', 'os.path.join', (['args.bids_directory', '"""sub-*"""', '"""*"""', '"""sub-*.nii.gz"""'], {}), "(args.bids_directory, 'sub-*', '*', 'sub-*.nii.gz')\n", (3985, 4036), False, 'import os\n'), ((4059, 4137), 'os.path.join', 'os.path.join', (['args.bids_directory', '"""sub-*"""', '"""ses-*"""', '"""*"""', '"""sub-*_ses-*.nii.gz"""'], {}), "(args.bids_directory, 'sub-*', 'ses-*', '*', 'sub-*_ses-*.nii.gz')\n", (4071, 4137), False, 'import os\n'), ((4587, 4697), 'os.path.join', 'os.path.join', (['args.bids_directory', "('sub-' + sub)", "('ses-' + ses)", "('sub-' + sub + '_ses-' + ses + '_scans.tsv')"], {}), "(args.bids_directory, 'sub-' + sub, 'ses-' + ses, 'sub-' + sub +\n '_ses-' + ses + '_scans.tsv')\n", (4599, 4697), False, 'import os\n'), ((4735, 4811), 'os.path.join', 'os.path.join', (['args.bids_directory', "('sub-' + sub)", "('sub-' + sub + '_scans.tsv')"], {}), "(args.bids_directory, 'sub-' + sub, 'sub-' + sub + '_scans.tsv')\n", (4747, 4811), False, 'import os\n'), ((4876, 4919), 'pandas.read_csv', 'pd.read_csv', (['scans_file'], {'header': '(0)', 'sep': '"""\t"""'}), "(scans_file, header=0, sep='\\t')\n", (4887, 4919), True, 'import pandas as pd\n'), ((5064, 5076), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (5072, 5076), False, 'import sys\n'), ((10523, 10542), 'os.path.split', 'os.path.split', (['file'], {}), '(file)\n', (10536, 10542), False, 'import os\n'), ((10627, 10672), 'os.path.join', 'os.path.join', (['args.output_directory', 'zip_name'], {}), '(args.output_directory, zip_name)\n', (10639, 10672), False, 'import os\n'), ((10703, 10727), 'os.path.exists', 'os.path.exists', (['zip_path'], {}), '(zip_path)\n', (10717, 10727), False, 'import os\n'), ((12364, 12389), 'os.path.exists', 'os.path.exists', (['bvec_file'], {}), '(bvec_file)\n', (12378, 12389), False, 'import os\n'), ((12729, 12754), 'os.path.exists', 'os.path.exists', (['bval_file'], {}), '(bval_file)\n', (12743, 12754), False, 'import os\n'), ((13579, 13629), 'os.path.join', 'os.path.join', (['args.output_directory', '"""image03.txt"""'], {}), "(args.output_directory, 'image03.txt')\n", (13591, 13629), False, 'import os\n'), ((13870, 13911), 'sys.stderr.write', 'sys.stderr.write', (["('error: %s\\n' % message)"], {}), "('error: %s\\n' % message)\n", (13886, 13911), False, 'import sys\n'), ((13954, 13965), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (13962, 13965), False, 'import sys\n'), ((7271, 7291), 'numpy.argmax', 'np.argmax', (['plane[:3]'], {}), '(plane[:3])\n', (7280, 7291), True, 'import numpy as np\n'), ((12247, 12272), 'os.path.exists', 'os.path.exists', (['bvec_file'], {}), '(bvec_file)\n', (12261, 12272), False, 'import os\n'), ((12302, 12347), 'os.path.join', 'os.path.join', (['args.bids_directory', '"""dwi.bvec"""'], {}), "(args.bids_directory, 'dwi.bvec')\n", (12314, 12347), False, 'import os\n'), ((12612, 12637), 'os.path.exists', 'os.path.exists', (['bval_file'], {}), '(bval_file)\n', (12626, 12637), False, 'import os\n'), ((12667, 12712), 'os.path.join', 'os.path.join', (['args.bids_directory', '"""dwi.bval"""'], {}), "(args.bids_directory, 'dwi.bval')\n", (12679, 12712), False, 'import os\n'), ((12912, 12937), 'os.path.exists', 'os.path.exists', (['bval_file'], {}), '(bval_file)\n', (12926, 12937), False, 'import os\n'), ((12941, 12966), 'os.path.exists', 'os.path.exists', (['bvec_file'], {}), '(bvec_file)\n', (12955, 12966), False, 'import os\n'), ((10830, 10882), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zip_path', '"""w"""', 'zipfile.ZIP_DEFLATED'], {}), "(zip_path, 'w', zipfile.ZIP_DEFLATED)\n", (10845, 10882), False, 'import zipfile\n'), ((10962, 11008), 'json.dumps', 'json.dumps', (['metadata'], {'indent': '(4)', 'sort_keys': '(True)'}), '(metadata, indent=4, sort_keys=True)\n', (10972, 11008), False, 'import json\n'), ((11556, 11583), 'os.path.exists', 'os.path.exists', (['events_file'], {}), '(events_file)\n', (11570, 11583), False, 'import os\n'), ((4237, 4256), 'os.path.split', 'os.path.split', (['file'], {}), '(file)\n', (4250, 4256), False, 'import os\n'), ((11247, 11273), 'os.path.split', 'os.path.split', (['events_file'], {}), '(events_file)\n', (11260, 11273), False, 'import os\n'), ((11308, 11335), 'os.path.exists', 'os.path.exists', (['events_file'], {}), '(events_file)\n', (11322, 11335), False, 'import os\n'), ((11457, 11527), 'os.path.join', 'os.path.join', (['args.bids_directory', "('task-' + task_name + '_events.tsv')"], {}), "(args.bids_directory, 'task-' + task_name + '_events.tsv')\n", (11469, 11527), False, 'import os\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.