code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import numpy as np from maro.rl import AbstractStateShaper class ECRStateShaper(AbstractStateShaper): def __init__(self, *, look_back, max_ports_downstream, port_attributes, vessel_attributes): super().__init__() self._look_back = look_back self._max_ports_downstream = max_ports_downstream self._port_attributes = port_attributes self._vessel_attributes = vessel_attributes self._dim = (look_back + 1) * (max_ports_downstream + 1) * len(port_attributes) + len(vessel_attributes) def __call__(self, decision_event, snapshot_list): tick, port_idx, vessel_idx = decision_event.tick, decision_event.port_idx, decision_event.vessel_idx ticks = [tick - rt for rt in range(self._look_back-1)] future_port_idx_list = snapshot_list["vessels"][tick: vessel_idx: 'future_stop_list'].astype('int') port_features = snapshot_list["ports"][ticks: [port_idx] + list(future_port_idx_list): self._port_attributes] vessel_features = snapshot_list["vessels"][tick: vessel_idx: self._vessel_attributes] state = np.concatenate((port_features, vessel_features)) return str(port_idx), state @property def dim(self): return self._dim
[ "numpy.concatenate" ]
[((1172, 1220), 'numpy.concatenate', 'np.concatenate', (['(port_features, vessel_features)'], {}), '((port_features, vessel_features))\n', (1186, 1220), True, 'import numpy as np\n')]
from __future__ import division import numpy as np __all__ = ['subtract_CAR', 'subtract_common_median_reference'] def subtract_CAR(X, b_size=16): """ Compute and subtract common average reference in 16 channel blocks. """ channels, time_points = X.shape s = channels // b_size r = channels % b_size X_1 = X[:channels-r].copy() X_1 = X_1.reshape((s, b_size, time_points)) X_1 -= np.nanmean(X_1, axis=1, keepdims=True) if r > 0: X_2 = X[channels-r:].copy() X_2 -= np.nanmean(X_2, axis=0, keepdims=True) X = np.vstack([X_1.reshape((s*b_size, time_points)), X_2]) return X else: return X_1.reshape((s*b_size, time_points)) def subtract_common_median_reference(X, channel_axis=-2): """ Compute and subtract common median reference for the entire grid. Parameters ---------- X : ndarray (..., n_channels, n_time) Data to common median reference. Returns ------- Xp : ndarray (..., n_channels, n_time) Common median referenced data. """ median = np.nanmedian(X, axis=channel_axis, keepdims=True) Xp = X - median return Xp
[ "numpy.nanmean", "numpy.nanmedian" ]
[((431, 469), 'numpy.nanmean', 'np.nanmean', (['X_1'], {'axis': '(1)', 'keepdims': '(True)'}), '(X_1, axis=1, keepdims=True)\n', (441, 469), True, 'import numpy as np\n'), ((1105, 1154), 'numpy.nanmedian', 'np.nanmedian', (['X'], {'axis': 'channel_axis', 'keepdims': '(True)'}), '(X, axis=channel_axis, keepdims=True)\n', (1117, 1154), True, 'import numpy as np\n'), ((535, 573), 'numpy.nanmean', 'np.nanmean', (['X_2'], {'axis': '(0)', 'keepdims': '(True)'}), '(X_2, axis=0, keepdims=True)\n', (545, 573), True, 'import numpy as np\n')]
from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import json import numpy as np import scipy.sparse as sparse import defenses import upper_bounds class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): assert len(np.shape(obj)) == 1 # Can only handle 1D ndarrays return obj.tolist() elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.int16): return str(obj) else: return super(NumpyEncoder, self).default(obj) def get_class_map(): return {-1: 0, 1: 1} def get_centroids(X, Y, class_map): num_classes = len(set(Y)) num_features = X.shape[1] centroids = np.zeros((num_classes, num_features)) for y in set(Y): centroids[class_map[y], :] = np.mean(X[Y == y, :], axis=0) return centroids def get_centroid_vec(centroids): assert centroids.shape[0] == 2 centroid_vec = centroids[0, :] - centroids[1, :] centroid_vec /= np.linalg.norm(centroid_vec) centroid_vec = np.reshape(centroid_vec, (1, -1)) return centroid_vec # Can speed this up if necessary def get_sqrt_inv_cov(X, Y, class_map): num_classes = len(set(Y)) num_features = X.shape[1] sqrt_inv_covs = np.zeros((num_classes, num_features, num_features)) for y in set(Y): cov = np.cov(X[Y == y, :], rowvar=False) U_cov, S_cov, _ = np.linalg.svd(cov + 1e-6 * np.eye(num_features)) print(' min eigenvalue of cov after 1e-6 reg is %s' % np.min(S_cov)) sqrt_inv_covs[class_map[y], ...] = U_cov.dot(np.diag(1 / np.sqrt(S_cov)).dot(U_cov.T)) return sqrt_inv_covs # Can speed this up if necessary def get_data_params(X, Y, percentile): num_classes = len(set(Y)) num_features = X.shape[1] centroids = np.zeros((num_classes, num_features)) class_map = get_class_map() centroids = get_centroids(X, Y, class_map) # Get radii for sphere sphere_radii = np.zeros(2) dists = defenses.compute_dists_under_Q( X, Y, Q=None, centroids=centroids, class_map=class_map, norm=2) for y in set(Y): sphere_radii[class_map[y]] = np.percentile(dists[Y == y], percentile) # Get vector between centroids centroid_vec = get_centroid_vec(centroids) # Get radii for slab slab_radii = np.zeros(2) for y in set(Y): dists = np.abs( (X[Y == y, :].dot(centroid_vec.T) - centroids[class_map[y], :].dot(centroid_vec.T))) slab_radii[class_map[y]] = np.percentile(dists, percentile) return class_map, centroids, centroid_vec, sphere_radii, slab_radii def vstack(A, B): if (sparse.issparse(A) or sparse.issparse(B)): return sparse.vstack((A, B), format='csr') else: return np.concatenate((A, B), axis=0) def add_points(x, y, X, Y, num_copies=1): if num_copies == 0: return X, Y x = np.array(x).reshape(-1) if sparse.issparse(X): X_modified = sparse.vstack(( X, sparse.csr_matrix( np.tile(x, num_copies).reshape(-1, len(x))))) else: X_modified = np.append( X, np.tile(x, num_copies).reshape(-1, len(x)), axis=0) Y_modified = np.append(Y, np.tile(y, num_copies)) return X_modified, Y_modified def copy_random_points(X, Y, mask_to_choose_from=None, target_class=1, num_copies=1, random_seed=18, replace=False): # Only copy from points where mask_to_choose_from == True np.random.seed(random_seed) combined_mask = (np.array(Y, dtype=int) == target_class) if mask_to_choose_from is not None: combined_mask = combined_mask & mask_to_choose_from idx_to_copy = np.random.choice( np.where(combined_mask)[0], size=num_copies, replace=replace) if sparse.issparse(X): X_modified = sparse.vstack((X, X[idx_to_copy, :])) else: X_modified = np.append(X, X[idx_to_copy, :], axis=0) Y_modified = np.append(Y, Y[idx_to_copy]) return X_modified, Y_modified def threshold(X): return np.clip(X, 0, np.max(X)) def rround(X, random_seed=3, return_sparse=True): if sparse.issparse(X): X = X.toarray() X_frac, X_int = np.modf(X) X_round = X_int + (np.random.random_sample(X.shape) < X_frac) if return_sparse: return sparse.csr_matrix(X_round) else: return X_round def rround_with_repeats(X, Y, repeat_points, random_seed=3, return_sparse=True): X_round = rround(X, random_seed=random_seed, return_sparse=return_sparse) assert Y.shape[0] == X.shape[0] if repeat_points > 1: pos_idx = 0 neg_idx = 0 for i in range(X_round.shape[0]): if Y[i] == 1: if pos_idx % repeat_points == 0: last_pos_x = X_round[i, :] else: X_round[i, :] = last_pos_x pos_idx += 1 else: if neg_idx % repeat_points == 0: last_neg_x = X_round[i, :] else: X_round[i, :] = last_neg_x neg_idx += 1 return X_round def project_onto_sphere(X, Y, radii, centroids, class_map): for y in set(Y): idx = class_map[y] radius = radii[idx] centroid = centroids[idx, :] shifts_from_center = X[Y == y, :] - centroid dists_from_center = np.linalg.norm(shifts_from_center, axis=1) shifts_from_center[dists_from_center > radius, :] *= radius / np.reshape(dists_from_center[dists_from_center > radius], (-1, 1)) X[Y == y, :] = shifts_from_center + centroid print("Number of (%s) points projected onto sphere: %s" % (y, np.sum(dists_from_center > radius))) return X def project_onto_slab(X, Y, v, radii, centroids, class_map): """ v^T x needs to be within radius of v^T centroid. v is 1 x d and normalized. """ v = np.reshape(v / np.linalg.norm(v), (1, -1)) for y in set(Y): idx = class_map[y] radius = radii[idx] centroid = centroids[idx, :] # If v^T x is too large, then dists_along_v is positive # If it's too small, then dists_along_v is negative dists_along_v = (X[Y == y, :] - centroid).dot(v.T) shifts_along_v = np.reshape( dists_along_v - np.clip(dists_along_v, -radius, radius), (1, -1)) X[Y == y, :] -= shifts_along_v.T.dot(v) print("Number of (%s) points projected onto slab: %s" % (y, np.sum(np.abs(dists_along_v) > radius))) return X def get_projection_fn( X_clean, Y_clean, sphere=True, slab=True, non_negative=False, less_than_one=False, use_lp_rounding=False, percentile=90): print(X_clean) goal = 'find_nearest_point' class_map, centroids, centroid_vec, sphere_radii, slab_radii = get_data_params(X_clean, Y_clean, percentile) if use_lp_rounding or non_negative or less_than_one or (sphere and slab): if use_lp_rounding: projector = upper_bounds.Minimizer( d=X_clean.shape[1], use_sphere=sphere, use_slab=slab, non_negative=non_negative, less_than_one=less_than_one, constrain_max_loss=False, goal=goal, X=X_clean ) projector = upper_bounds.Minimizer( d=X_clean.shape[1], use_sphere=sphere, use_slab=slab, non_negative=non_negative, less_than_one=less_than_one, constrain_max_loss=False, goal=goal, X=X_clean ) else: projector = upper_bounds.Minimizer( d=X_clean.shape[1], use_sphere=sphere, use_slab=slab, non_negative=non_negative, less_than_one=less_than_one, constrain_max_loss=False, goal=goal ) # Add back low-rank projection if we move back to just sphere+slab def project_onto_feasible_set( X, Y, theta=None, bias=None, ): num_examples = X.shape[0] proj_X = np.zeros_like(X) for idx in range(num_examples): x = X[idx, :] y = Y[idx] class_idx = class_map[y] centroid = centroids[class_idx, :] sphere_radius = sphere_radii[class_idx] slab_radius = slab_radii[class_idx] proj_X[idx, :] = projector.minimize_over_feasible_set( None, x, centroid, centroid_vec, sphere_radius, slab_radius) num_projected = np.sum(np.max(X - proj_X, axis=1) > 1e-6) print('Projected %s examples.' % num_projected) return proj_X else: def project_onto_feasible_set(X, Y, theta=None, bias=None): if sphere: X = project_onto_sphere(X, Y, sphere_radii, centroids, class_map) elif slab: X = project_onto_slab(X, Y, centroid_vec, slab_radii, centroids, class_map) return X return project_onto_feasible_set def filter_points_outside_feasible_set(X, Y, centroids, centroid_vec, sphere_radii, slab_radii, class_map): sphere_dists = defenses.compute_dists_under_Q( X, Y, Q=None, centroids=centroids, class_map=class_map) slab_dists = defenses.compute_dists_under_Q( X, Y, Q=centroid_vec, centroids=centroids, class_map=class_map) idx_to_keep = np.array([True] * X.shape[0]) for y in set(Y): idx_to_keep[np.where(Y == y)[0][sphere_dists[Y == y] > sphere_radii[class_map[y]]]] = False idx_to_keep[np.where(Y == y)[0][slab_dists[Y == y] > slab_radii[class_map[y]]]] = False print(np.sum(idx_to_keep)) return X[idx_to_keep, :], Y[idx_to_keep]
[ "numpy.clip", "numpy.sqrt", "numpy.array", "numpy.linalg.norm", "numpy.cov", "defenses.compute_dists_under_Q", "numpy.mean", "numpy.reshape", "numpy.where", "numpy.max", "numpy.random.seed", "numpy.concatenate", "numpy.min", "scipy.sparse.csr_matrix", "numpy.tile", "numpy.eye", "numpy.abs", "numpy.random.random_sample", "scipy.sparse.issparse", "numpy.shape", "numpy.modf", "upper_bounds.Minimizer", "numpy.append", "numpy.sum", "numpy.zeros", "numpy.percentile", "scipy.sparse.vstack", "numpy.zeros_like" ]
[((833, 870), 'numpy.zeros', 'np.zeros', (['(num_classes, num_features)'], {}), '((num_classes, num_features))\n', (841, 870), True, 'import numpy as np\n'), ((1122, 1150), 'numpy.linalg.norm', 'np.linalg.norm', (['centroid_vec'], {}), '(centroid_vec)\n', (1136, 1150), True, 'import numpy as np\n'), ((1170, 1203), 'numpy.reshape', 'np.reshape', (['centroid_vec', '(1, -1)'], {}), '(centroid_vec, (1, -1))\n', (1180, 1203), True, 'import numpy as np\n'), ((1381, 1432), 'numpy.zeros', 'np.zeros', (['(num_classes, num_features, num_features)'], {}), '((num_classes, num_features, num_features))\n', (1389, 1432), True, 'import numpy as np\n'), ((1929, 1966), 'numpy.zeros', 'np.zeros', (['(num_classes, num_features)'], {}), '((num_classes, num_features))\n', (1937, 1966), True, 'import numpy as np\n'), ((2093, 2104), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2101, 2104), True, 'import numpy as np\n'), ((2117, 2216), 'defenses.compute_dists_under_Q', 'defenses.compute_dists_under_Q', (['X', 'Y'], {'Q': 'None', 'centroids': 'centroids', 'class_map': 'class_map', 'norm': '(2)'}), '(X, Y, Q=None, centroids=centroids, class_map\n =class_map, norm=2)\n', (2147, 2216), False, 'import defenses\n'), ((2478, 2489), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2486, 2489), True, 'import numpy as np\n'), ((3079, 3097), 'scipy.sparse.issparse', 'sparse.issparse', (['X'], {}), '(X)\n', (3094, 3097), True, 'import scipy.sparse as sparse\n'), ((3674, 3701), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (3688, 3701), True, 'import numpy as np\n'), ((3994, 4012), 'scipy.sparse.issparse', 'sparse.issparse', (['X'], {}), '(X)\n', (4009, 4012), True, 'import scipy.sparse as sparse\n'), ((4161, 4189), 'numpy.append', 'np.append', (['Y', 'Y[idx_to_copy]'], {}), '(Y, Y[idx_to_copy])\n', (4170, 4189), True, 'import numpy as np\n'), ((4339, 4357), 'scipy.sparse.issparse', 'sparse.issparse', (['X'], {}), '(X)\n', (4354, 4357), True, 'import scipy.sparse as sparse\n'), ((4404, 4414), 'numpy.modf', 'np.modf', (['X'], {}), '(X)\n', (4411, 4414), True, 'import numpy as np\n'), ((9839, 9930), 'defenses.compute_dists_under_Q', 'defenses.compute_dists_under_Q', (['X', 'Y'], {'Q': 'None', 'centroids': 'centroids', 'class_map': 'class_map'}), '(X, Y, Q=None, centroids=centroids, class_map\n =class_map)\n', (9869, 9930), False, 'import defenses\n'), ((9984, 10082), 'defenses.compute_dists_under_Q', 'defenses.compute_dists_under_Q', (['X', 'Y'], {'Q': 'centroid_vec', 'centroids': 'centroids', 'class_map': 'class_map'}), '(X, Y, Q=centroid_vec, centroids=centroids,\n class_map=class_map)\n', (10014, 10082), False, 'import defenses\n'), ((10139, 10168), 'numpy.array', 'np.array', (['([True] * X.shape[0])'], {}), '([True] * X.shape[0])\n', (10147, 10168), True, 'import numpy as np\n'), ((929, 958), 'numpy.mean', 'np.mean', (['X[Y == y, :]'], {'axis': '(0)'}), '(X[Y == y, :], axis=0)\n', (936, 958), True, 'import numpy as np\n'), ((1469, 1503), 'numpy.cov', 'np.cov', (['X[Y == y, :]'], {'rowvar': '(False)'}), '(X[Y == y, :], rowvar=False)\n', (1475, 1503), True, 'import numpy as np\n'), ((2311, 2351), 'numpy.percentile', 'np.percentile', (['dists[Y == y]', 'percentile'], {}), '(dists[Y == y], percentile)\n', (2324, 2351), True, 'import numpy as np\n'), ((2667, 2699), 'numpy.percentile', 'np.percentile', (['dists', 'percentile'], {}), '(dists, percentile)\n', (2680, 2699), True, 'import numpy as np\n'), ((2801, 2819), 'scipy.sparse.issparse', 'sparse.issparse', (['A'], {}), '(A)\n', (2816, 2819), True, 'import scipy.sparse as sparse\n'), ((2823, 2841), 'scipy.sparse.issparse', 'sparse.issparse', (['B'], {}), '(B)\n', (2838, 2841), True, 'import scipy.sparse as sparse\n'), ((2859, 2894), 'scipy.sparse.vstack', 'sparse.vstack', (['(A, B)'], {'format': '"""csr"""'}), "((A, B), format='csr')\n", (2872, 2894), True, 'import scipy.sparse as sparse\n'), ((2920, 2950), 'numpy.concatenate', 'np.concatenate', (['(A, B)'], {'axis': '(0)'}), '((A, B), axis=0)\n', (2934, 2950), True, 'import numpy as np\n'), ((3407, 3429), 'numpy.tile', 'np.tile', (['y', 'num_copies'], {}), '(y, num_copies)\n', (3414, 3429), True, 'import numpy as np\n'), ((3723, 3745), 'numpy.array', 'np.array', (['Y'], {'dtype': 'int'}), '(Y, dtype=int)\n', (3731, 3745), True, 'import numpy as np\n'), ((4035, 4072), 'scipy.sparse.vstack', 'sparse.vstack', (['(X, X[idx_to_copy, :])'], {}), '((X, X[idx_to_copy, :]))\n', (4048, 4072), True, 'import scipy.sparse as sparse\n'), ((4104, 4143), 'numpy.append', 'np.append', (['X', 'X[idx_to_copy, :]'], {'axis': '(0)'}), '(X, X[idx_to_copy, :], axis=0)\n', (4113, 4143), True, 'import numpy as np\n'), ((4269, 4278), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (4275, 4278), True, 'import numpy as np\n'), ((4518, 4544), 'scipy.sparse.csr_matrix', 'sparse.csr_matrix', (['X_round'], {}), '(X_round)\n', (4535, 4544), True, 'import scipy.sparse as sparse\n'), ((5596, 5638), 'numpy.linalg.norm', 'np.linalg.norm', (['shifts_from_center'], {'axis': '(1)'}), '(shifts_from_center, axis=1)\n', (5610, 5638), True, 'import numpy as np\n'), ((10397, 10416), 'numpy.sum', 'np.sum', (['idx_to_keep'], {}), '(idx_to_keep)\n', (10403, 10416), True, 'import numpy as np\n'), ((3047, 3058), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (3055, 3058), True, 'import numpy as np\n'), ((3908, 3931), 'numpy.where', 'np.where', (['combined_mask'], {}), '(combined_mask)\n', (3916, 3931), True, 'import numpy as np\n'), ((4438, 4470), 'numpy.random.random_sample', 'np.random.random_sample', (['X.shape'], {}), '(X.shape)\n', (4461, 4470), True, 'import numpy as np\n'), ((5710, 5776), 'numpy.reshape', 'np.reshape', (['dists_from_center[dists_from_center > radius]', '(-1, 1)'], {}), '(dists_from_center[dists_from_center > radius], (-1, 1))\n', (5720, 5776), True, 'import numpy as np\n'), ((6138, 6155), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (6152, 6155), True, 'import numpy as np\n'), ((7235, 7423), 'upper_bounds.Minimizer', 'upper_bounds.Minimizer', ([], {'d': 'X_clean.shape[1]', 'use_sphere': 'sphere', 'use_slab': 'slab', 'non_negative': 'non_negative', 'less_than_one': 'less_than_one', 'constrain_max_loss': '(False)', 'goal': 'goal', 'X': 'X_clean'}), '(d=X_clean.shape[1], use_sphere=sphere, use_slab=slab,\n non_negative=non_negative, less_than_one=less_than_one,\n constrain_max_loss=False, goal=goal, X=X_clean)\n', (7257, 7423), False, 'import upper_bounds\n'), ((7586, 7774), 'upper_bounds.Minimizer', 'upper_bounds.Minimizer', ([], {'d': 'X_clean.shape[1]', 'use_sphere': 'sphere', 'use_slab': 'slab', 'non_negative': 'non_negative', 'less_than_one': 'less_than_one', 'constrain_max_loss': '(False)', 'goal': 'goal', 'X': 'X_clean'}), '(d=X_clean.shape[1], use_sphere=sphere, use_slab=slab,\n non_negative=non_negative, less_than_one=less_than_one,\n constrain_max_loss=False, goal=goal, X=X_clean)\n', (7608, 7774), False, 'import upper_bounds\n'), ((7951, 8128), 'upper_bounds.Minimizer', 'upper_bounds.Minimizer', ([], {'d': 'X_clean.shape[1]', 'use_sphere': 'sphere', 'use_slab': 'slab', 'non_negative': 'non_negative', 'less_than_one': 'less_than_one', 'constrain_max_loss': '(False)', 'goal': 'goal'}), '(d=X_clean.shape[1], use_sphere=sphere, use_slab=slab,\n non_negative=non_negative, less_than_one=less_than_one,\n constrain_max_loss=False, goal=goal)\n', (7973, 8128), False, 'import upper_bounds\n'), ((8505, 8521), 'numpy.zeros_like', 'np.zeros_like', (['X'], {}), '(X)\n', (8518, 8521), True, 'import numpy as np\n'), ((1644, 1657), 'numpy.min', 'np.min', (['S_cov'], {}), '(S_cov)\n', (1650, 1657), True, 'import numpy as np\n'), ((6529, 6568), 'numpy.clip', 'np.clip', (['dists_along_v', '(-radius)', 'radius'], {}), '(dists_along_v, -radius, radius)\n', (6536, 6568), True, 'import numpy as np\n'), ((378, 391), 'numpy.shape', 'np.shape', (['obj'], {}), '(obj)\n', (386, 391), True, 'import numpy as np\n'), ((1557, 1577), 'numpy.eye', 'np.eye', (['num_features'], {}), '(num_features)\n', (1563, 1577), True, 'import numpy as np\n'), ((3313, 3335), 'numpy.tile', 'np.tile', (['x', 'num_copies'], {}), '(x, num_copies)\n', (3320, 3335), True, 'import numpy as np\n'), ((5901, 5935), 'numpy.sum', 'np.sum', (['(dists_from_center > radius)'], {}), '(dists_from_center > radius)\n', (5907, 5935), True, 'import numpy as np\n'), ((9113, 9139), 'numpy.max', 'np.max', (['(X - proj_X)'], {'axis': '(1)'}), '(X - proj_X, axis=1)\n', (9119, 9139), True, 'import numpy as np\n'), ((10210, 10226), 'numpy.where', 'np.where', (['(Y == y)'], {}), '(Y == y)\n', (10218, 10226), True, 'import numpy as np\n'), ((10310, 10326), 'numpy.where', 'np.where', (['(Y == y)'], {}), '(Y == y)\n', (10318, 10326), True, 'import numpy as np\n'), ((1724, 1738), 'numpy.sqrt', 'np.sqrt', (['S_cov'], {}), '(S_cov)\n', (1731, 1738), True, 'import numpy as np\n'), ((3198, 3220), 'numpy.tile', 'np.tile', (['x', 'num_copies'], {}), '(x, num_copies)\n', (3205, 3220), True, 'import numpy as np\n'), ((6715, 6736), 'numpy.abs', 'np.abs', (['dists_along_v'], {}), '(dists_along_v)\n', (6721, 6736), True, 'import numpy as np\n')]
#%% [markdown] # # We will load EEG data from the lab and attemp to build a classifier that distinguishes between learners and non-learners #%% import mne import numpy as np import os.path import glob import re import pandas as pd # try to enable cuda support to speed up filtering, make sure the MNE_USE_CUDA environment variable is set to true mne.cuda.init_cuda() DATA_DIR = "../../EEGdata/Fish_5Block" event_dict = { "cat":{ "1": 20, "2": 21 } } data_path = os.path.join(DATA_DIR, "Tail/Learner/126670_EXP_FISH.bdf") test_data = mne.io.read_raw_edf(data_path, preload=True) # find the related behavioral data participant_number = re.search(r"^(\d+)_EXP_FISH", os.path.basename(data_path))[1] behav_path = [filename for filename in glob.glob(os.path.join(DATA_DIR, "EXP_fish2_Tomy/Cat_data/*.csv")) if participant_number in filename][0] behav_df = pd.read_csv(behav_path) learning_curve = behav_df["Resultat"].rolling(20).mean() # our in house definition of current learning performance learning_time = (learning_curve >= 0.8).idxmax() # using a 80% correct categorization threshold #%% [markdown] # We now need to find the event times and give the same code to all stimulus presentation events since we don't want to differentiate among category 1 or 2 #%% events = mne.find_events(test_data) events = np.array(events) events[events[:,2]==event_dict["cat"]["2"],2] = 20 events = events.tolist() #%% [markdown] # visualize data #%% #test_data.plot() #%% test_data.set_eeg_reference("average", projection=False) test_data.filter(0.1, 50.0, n_jobs="cuda") stim_epochs = mne.Epochs(test_data, events=events, event_id={"stimulus presentation":20}, tmin=-0.2, tmax=0.8, reject={"eeg":200-6}) # do basic cleaning by bandpass filtering, we will need to load the data stim_epochs.load_data() stim_epochs.resample(256) #%% building the pytorch model pass
[ "mne.cuda.init_cuda", "pandas.read_csv", "mne.find_events", "mne.Epochs", "numpy.array", "mne.io.read_raw_edf" ]
[((361, 381), 'mne.cuda.init_cuda', 'mne.cuda.init_cuda', ([], {}), '()\n', (379, 381), False, 'import mne\n'), ((591, 635), 'mne.io.read_raw_edf', 'mne.io.read_raw_edf', (['data_path'], {'preload': '(True)'}), '(data_path, preload=True)\n', (610, 635), False, 'import mne\n'), ((913, 936), 'pandas.read_csv', 'pd.read_csv', (['behav_path'], {}), '(behav_path)\n', (924, 936), True, 'import pandas as pd\n'), ((1357, 1383), 'mne.find_events', 'mne.find_events', (['test_data'], {}), '(test_data)\n', (1372, 1383), False, 'import mne\n'), ((1394, 1410), 'numpy.array', 'np.array', (['events'], {}), '(events)\n', (1402, 1410), True, 'import numpy as np\n'), ((1675, 1801), 'mne.Epochs', 'mne.Epochs', (['test_data'], {'events': 'events', 'event_id': "{'stimulus presentation': 20}", 'tmin': '(-0.2)', 'tmax': '(0.8)', 'reject': "{'eeg': 200 - 6}"}), "(test_data, events=events, event_id={'stimulus presentation': 20},\n tmin=-0.2, tmax=0.8, reject={'eeg': 200 - 6})\n", (1685, 1801), False, 'import mne\n')]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import integrate, optimize from scipy.signal import savgol_filter from dane import population as popu dias_restar = 4 # Los últimos días de información que no se tienen en cuenta dias_pred = 31 # Días sobre los cuáles se hará la predicción a corto plazo media_movil = 4 # Días que se promediaran en las series para mitigar errores en los datos Ciudades_dicc = {'Bog': 'Bogotá D.C.', 'Mde': 'Medellín', 'Cal': 'Cali', 'Brr': 'Barranquilla', 'Ctg': 'Cartagena de Indias'} Ciudades = ['Bog','Mde','Cal', 'Brr', 'Ctg'] Covid_Col = pd.read_csv("https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD", sep=',', encoding='utf-8', low_memory=False) def limpieza_datos(): # Covid_Col=pd.read_csv("C:\Users\danie\DS\vagrant4docker-master\laboratorios\covid-19-guaya-kilera\Casos_positivos_de_COVID-19_en_Colombia.csv", sep=',', encoding='utf-8', low_memory=False) Covid_Col.drop(['ID de caso', 'Código DIVIPOLA', 'Departamento o Distrito ', 'País de procedencia', 'Tipo', 'Codigo departamento', 'Codigo pais', 'Tipo recuperación', 'Pertenencia etnica', 'Nombre grupo etnico', 'atención'], axis=1, inplace=True) Covid_Col['FIS'] = Covid_Col['FIS'].replace('Asintomático', np.nan) Covid_Col['FIS'] = pd.to_datetime(Covid_Col['FIS'].str[:10]) Covid_Col['fecha reporte web'] = pd.to_datetime(Covid_Col['fecha reporte web'].str[:10]) Covid_Col['Fecha de notificación'] = pd.to_datetime(Covid_Col['Fecha de notificación'].str[:10]) Covid_Col['Fecha de muerte'] = pd.to_datetime(Covid_Col['Fecha de muerte'].str[:10]) Covid_Col['Fecha diagnostico'] = pd.to_datetime(Covid_Col['Fecha diagnostico'].str[:10]) Covid_Col['Fecha recuperado'] = pd.to_datetime(Covid_Col['Fecha recuperado'].str[:10]) # Covid_Col[(Covid_Col['Fecha diagnostico']<Covid_Col['Fecha de notificación']) & Covid_Col['FIS'].isnull()] Covid_Col['Fecha contagio'] = Covid_Col['FIS'] Covid_Col.loc[Covid_Col['Fecha contagio'].isnull(), 'Fecha contagio'] = Covid_Col['Fecha de notificación'] Covid_Col.drop(['Fecha de notificación', 'FIS', 'Fecha diagnostico', 'fecha reporte web'], axis=1, inplace=True) Covid_Col['Cantidad de personas'] = 1 Fecha_Inicio = Covid_Col['Fecha contagio'][0] Fecha_Fin = max(Covid_Col['Fecha contagio']) - pd.to_timedelta(dias_restar, unit='d') Fecha_Fin_pred = Fecha_Fin + pd.to_timedelta(dias_pred - 1, unit='d') globals()['Fechas_pred_i'] = pd.date_range(start=Fecha_Inicio, end=Fecha_Fin_pred) Fechas_evaluar_i = pd.date_range(start=Fecha_Inicio, end=Fecha_Fin) Fechas_evaluar = pd.DataFrame(index=Fechas_evaluar_i) for ciudad in Ciudades: globals()["Covid_" + str(ciudad)] = Covid_Col[Covid_Col['Ciudad de ubicación'] == Ciudades_dicc[ciudad]] globals()["nuevos_" + str(ciudad)] = globals()["Covid_" + str(ciudad)].groupby('Fecha contagio').sum() globals()["nuevos_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["nuevos_" + str(ciudad)] = pd.merge(Fechas_evaluar, globals()["nuevos_" + str(ciudad)], \ how='left', left_index=True, right_index=True) globals()["nuevos_" + str(ciudad)] = globals()["nuevos_" + str(ciudad)].replace(np.nan, 0) globals()["confirmados_" + str(ciudad)] = globals()["nuevos_" + str(ciudad)].cumsum() globals()["nuevos_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_nuevos_"}, inplace=True) globals()["confirmados_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_confirmados_"}, inplace=True) globals()["recuperados_" + str(ciudad)] = globals()["Covid_" + str(ciudad)].groupby('Fecha recuperado').sum() globals()["recuperados_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["recuperados_" + str(ciudad)] = pd.merge(Fechas_evaluar, globals()["recuperados_" + str(ciudad)], \ how='left', left_index=True, right_index=True) globals()["recuperados_" + str(ciudad)] = globals()["recuperados_" + str(ciudad)].replace(np.nan, 0) # globals()["recuperados_" + str(ciudad)]=globals()["recuperados_" + str(ciudad)].cumsum() globals()["recuperados_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_recuperados_"}, inplace=True) globals()["muertes_" + str(ciudad)] = globals()["Covid_" + str(ciudad)].groupby('Fecha de muerte').sum() globals()["muertes_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["muertes_" + str(ciudad)] = pd.merge(Fechas_evaluar, globals()["muertes_" + str(ciudad)], how='left', \ left_index=True, right_index=True) globals()["muertes_" + str(ciudad)] = globals()["muertes_" + str(ciudad)].replace(np.nan, 0) # globals()["muertes_" + str(ciudad)]=globals()["muertes_" + str(ciudad)].cumsum() globals()["muertes_" + str(ciudad)].rename(columns={'Cantidad de personas': "muertes_"}, inplace=True) globals()["activos_" + str(ciudad)] = pd.concat([globals()["confirmados_" + str(ciudad)], \ globals()["recuperados_" + str(ciudad)], globals()["muertes_" + str(ciudad)], globals()["nuevos_" + str(ciudad)]], axis=1) globals()["activos_" + str(ciudad)]['Casos_activos_'] = globals()["activos_" + str(ciudad)][ "Casos_confirmados_"] - \ globals()["activos_" + str(ciudad)][ "Casos_recuperados_"].cumsum() - \ globals()["activos_" + str(ciudad)]["muertes_"].cumsum() globals()["Casos_" + str(ciudad)] = globals()["activos_" + str(ciudad)].copy() globals()["activos_" + str(ciudad)].drop( ["Casos_confirmados_", "Casos_recuperados_", "muertes_", "Casos_nuevos_"], axis=1, inplace=True) globals()["Casos_" + str(ciudad)]["Total_recuperados_"] = globals()["Casos_" + str(ciudad)][ "Casos_recuperados_"].cumsum() globals()["Casos_" + str(ciudad)]["Total_muertes_"] = globals()["Casos_" + str(ciudad)]["muertes_"].cumsum() #%% limpieza_datos() #%% def casos(): for ciudad in Ciudades: globals()['N'+str(ciudad)] = popu(ciudad) globals()['real_'+str(ciudad)] = [i for i in globals()["confirmados_" + str(ciudad)]['Casos_confirmados_']] globals()['poly_pred_'+str(ciudad)] = savgol_filter(globals()['real_'+str(ciudad)], 51,3) # window size 51, polynomial order 1 globals()['df_pred_'+str(ciudad)] = pd.DataFrame(globals()['poly_pred_'+str(ciudad)]) globals()['df_real_'+str(ciudad)] = pd.DataFrame(globals()['real_'+str(ciudad)]) #Casos confirmados por día desde el caso 0 # return N,df_poly,df_vec_real,poly,vec_real_140,ciudad # plt.figure(figsize=(12,6)) # plt.plot(globals()['poly_pred_'+str(ciudad)]) # plt.plot(globals()['real_'+str(ciudad)]) # plt.legend(["Predicción","Real"], loc='upper left') # plt.title("Infecciones por COVID-19 desde el primer caso"+" "+ str(Ciudades_dicc.get(ciudad)), size=15) # plt.xlabel("Days", size=13) # plt.ylabel("Infecciones", size=13) # plt.ylim(0, max(globals()['real_'+str(ciudad)])+1000) # plt.show() N = globals()['N'+str(ciudad)] depart_df = pd.DataFrame() depart_df['ConfirmedCases'] = globals()['real_'+str(ciudad)] depart_df = depart_df[10:] depart_df['day_count'] = list(range(1,len(depart_df)+1)) ydata = [i for i in depart_df.ConfirmedCases] xdata = depart_df.day_count ydata = np.array(ydata, dtype=float) xdata = np.array(xdata, dtype=float) inf0 = ydata[0] sus0 = N - inf0 rec0 = 0.0 def sir_model(y, x, beta, gamma): sus = -beta * y[0] * y[1] / N rec = gamma * y[1] inf = -(sus + rec) return sus, inf, rec def fit_odeint(x, beta, gamma): return integrate.odeint(sir_model, (sus0, inf0, rec0), x, args=(beta, gamma))[:,1] if ciudad == 'Bog': popt = np.array([0.2783922953043075, 0.2165019796859231]) else: popt, pcov = optimize.curve_fit(fit_odeint, xdata, ydata, maxfev=5000) fitted = fit_odeint(xdata, *popt) plt.plot(xdata, ydata, 'o') plt.plot(xdata, fitted) plt.title("Modelo SIR"+" "+ str(Ciudades_dicc.get(ciudad)), size=15) plt.ylabel("Population infected") plt.xlabel("Days") plt.show() print("Optimal parameters: beta =", popt[0], " and gamma = ", popt[1]) #%% casos() #%% # t = np.linspace(0,400,400) # import plotly.offline as py # # for ciudad in Ciudades: # py.iplot([{ # 'x': t, # 'y': globals()['real_' + str(ciudad)] # }], filename='cufflinks/multiple-lines-on-same-chart') # # max(globals()['real_' + str(ciudad)]) #%% valores = [(popt[0],popt[1])] def modelo(beta,gamma): # Initial values I0, R0 = ydata[0], 0 ### S0 = N - I0 - R0 def deriv(y,t,N,beta, gamma): S,I,R = y dSdt = -beta * S * I /N dIdt = beta * S * I /N - gamma * I dRdt = gamma * I return dSdt, dIdt, dRdt #Vector de condiciones iniciales y0 = S0, I0, R0 #Solucion Equation System ret = integrate.odeint(deriv, y0, t, args=(N, beta, gamma)) S, I, R =ret.T return I import cufflinks as cf import plotly.offline as py py.iplot([{ 'x':t, 'y': modelo(*valor), 'name': str(valor), } for valor in valores], filename = 'cufflinks/multiple-lines-on-same-chart') # plt.figure(figsize=(12, 8)) # #plt.plot(modelo(0.42715777117416, 0.36645292847392247)[0]) # plt.plot(modelo(0.42715777117416, 0.36645292847392247)[1]) # # plt.plot(modelo(0.42715777117416, 0.36645292847392247)[2]) # plt.ylabel('Población') # plt.legend(['Susceptible', 'Infectados', 'Recuperados']) # plt.xlabel('Días') # plt.show()
[ "scipy.optimize.curve_fit", "pandas.to_timedelta", "pandas.read_csv", "matplotlib.pyplot.ylabel", "scipy.integrate.odeint", "dane.population", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.array", "pandas.date_range", "pandas.DataFrame", "pandas.to_datetime", "matplotlib.pyplot.show" ]
[((631, 774), 'pandas.read_csv', 'pd.read_csv', (['"""https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD"""'], {'sep': '""","""', 'encoding': '"""utf-8"""', 'low_memory': '(False)'}), "(\n 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'\n , sep=',', encoding='utf-8', low_memory=False)\n", (642, 774), True, 'import pandas as pd\n'), ((1418, 1459), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['FIS'].str[:10]"], {}), "(Covid_Col['FIS'].str[:10])\n", (1432, 1459), True, 'import pandas as pd\n'), ((1497, 1552), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['fecha reporte web'].str[:10]"], {}), "(Covid_Col['fecha reporte web'].str[:10])\n", (1511, 1552), True, 'import pandas as pd\n'), ((1595, 1654), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['Fecha de notificación'].str[:10]"], {}), "(Covid_Col['Fecha de notificación'].str[:10])\n", (1609, 1654), True, 'import pandas as pd\n'), ((1689, 1742), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['Fecha de muerte'].str[:10]"], {}), "(Covid_Col['Fecha de muerte'].str[:10])\n", (1703, 1742), True, 'import pandas as pd\n'), ((1780, 1835), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['Fecha diagnostico'].str[:10]"], {}), "(Covid_Col['Fecha diagnostico'].str[:10])\n", (1794, 1835), True, 'import pandas as pd\n'), ((1872, 1926), 'pandas.to_datetime', 'pd.to_datetime', (["Covid_Col['Fecha recuperado'].str[:10]"], {}), "(Covid_Col['Fecha recuperado'].str[:10])\n", (1886, 1926), True, 'import pandas as pd\n'), ((2613, 2666), 'pandas.date_range', 'pd.date_range', ([], {'start': 'Fecha_Inicio', 'end': 'Fecha_Fin_pred'}), '(start=Fecha_Inicio, end=Fecha_Fin_pred)\n', (2626, 2666), True, 'import pandas as pd\n'), ((2691, 2739), 'pandas.date_range', 'pd.date_range', ([], {'start': 'Fecha_Inicio', 'end': 'Fecha_Fin'}), '(start=Fecha_Inicio, end=Fecha_Fin)\n', (2704, 2739), True, 'import pandas as pd\n'), ((2761, 2797), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'Fechas_evaluar_i'}), '(index=Fechas_evaluar_i)\n', (2773, 2797), True, 'import pandas as pd\n'), ((9772, 9825), 'scipy.integrate.odeint', 'integrate.odeint', (['deriv', 'y0', 't'], {'args': '(N, beta, gamma)'}), '(deriv, y0, t, args=(N, beta, gamma))\n', (9788, 9825), False, 'from scipy import integrate, optimize\n'), ((2466, 2504), 'pandas.to_timedelta', 'pd.to_timedelta', (['dias_restar'], {'unit': '"""d"""'}), "(dias_restar, unit='d')\n", (2481, 2504), True, 'import pandas as pd\n'), ((2538, 2578), 'pandas.to_timedelta', 'pd.to_timedelta', (['(dias_pred - 1)'], {'unit': '"""d"""'}), "(dias_pred - 1, unit='d')\n", (2553, 2578), True, 'import pandas as pd\n'), ((6881, 6893), 'dane.population', 'popu', (['ciudad'], {}), '(ciudad)\n', (6885, 6893), True, 'from dane import population as popu\n'), ((7915, 7929), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7927, 7929), True, 'import pandas as pd\n'), ((8181, 8209), 'numpy.array', 'np.array', (['ydata'], {'dtype': 'float'}), '(ydata, dtype=float)\n', (8189, 8209), True, 'import numpy as np\n'), ((8222, 8250), 'numpy.array', 'np.array', (['xdata'], {'dtype': 'float'}), '(xdata, dtype=float)\n', (8230, 8250), True, 'import numpy as np\n'), ((8818, 8845), 'matplotlib.pyplot.plot', 'plt.plot', (['xdata', 'ydata', '"""o"""'], {}), "(xdata, ydata, 'o')\n", (8826, 8845), True, 'import matplotlib.pyplot as plt\n'), ((8850, 8873), 'matplotlib.pyplot.plot', 'plt.plot', (['xdata', 'fitted'], {}), '(xdata, fitted)\n', (8858, 8873), True, 'import matplotlib.pyplot as plt\n'), ((8951, 8984), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Population infected"""'], {}), "('Population infected')\n", (8961, 8984), True, 'import matplotlib.pyplot as plt\n'), ((8989, 9007), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Days"""'], {}), "('Days')\n", (8999, 9007), True, 'import matplotlib.pyplot as plt\n'), ((9012, 9022), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9020, 9022), True, 'import matplotlib.pyplot as plt\n'), ((8635, 8685), 'numpy.array', 'np.array', (['[0.2783922953043075, 0.2165019796859231]'], {}), '([0.2783922953043075, 0.2165019796859231])\n', (8643, 8685), True, 'import numpy as np\n'), ((8717, 8774), 'scipy.optimize.curve_fit', 'optimize.curve_fit', (['fit_odeint', 'xdata', 'ydata'], {'maxfev': '(5000)'}), '(fit_odeint, xdata, ydata, maxfev=5000)\n', (8735, 8774), False, 'from scipy import integrate, optimize\n'), ((8520, 8590), 'scipy.integrate.odeint', 'integrate.odeint', (['sir_model', '(sus0, inf0, rec0)', 'x'], {'args': '(beta, gamma)'}), '(sir_model, (sus0, inf0, rec0), x, args=(beta, gamma))\n', (8536, 8590), False, 'from scipy import integrate, optimize\n')]
# Copyright 2019 The Keras Tuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for Tuner class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import six import tensorflow as tf from tensorflow import keras from ..abstractions import display class TunerStats(object): """Track tuner statistics.""" def __init__(self): self.num_generated_models = 0 # overall number of instances generated self.num_invalid_models = 0 # how many models didn't work self.num_oversized_models = 0 # num models with params> max_params def summary(self, extended=False): display.subsection('Tuning stats') display.display_settings(self.get_config()) def get_config(self): return { 'num_generated_models': self.num_generated_models, 'num_invalid_models': self.num_invalid_models, 'num_oversized_models': self.num_oversized_models } @classmethod def from_config(cls, config): stats = cls() stats.num_generated_models = config['num_generated_models'] stats.num_invalid_models = config['num_invalid_models'] stats.num_oversized_models = config['num_oversized_models'] return stats def get_max_epochs_and_steps(fit_args, fit_kwargs): if fit_args: x = tf.nest.flatten(fit_args)[0] else: x = tf.nest.flatten(fit_kwargs.get('x'))[0] batch_size = fit_kwargs.get('batch_size', 32) if hasattr(x, '__len__'): max_steps = math.ceil(float(len(x)) / batch_size) else: max_steps = fit_kwargs.get('steps') max_epochs = fit_kwargs.get('epochs', 1) return max_epochs, max_steps class TunerCallback(keras.callbacks.Callback): def __init__(self, tuner, trial): super(TunerCallback, self).__init__() self.tuner = tuner self.trial = trial def on_epoch_begin(self, epoch, logs=None): self.tuner.on_epoch_begin( self.trial, self.model, epoch, logs=logs) def on_batch_begin(self, batch, logs=None): self.tuner.on_batch_begin(self.trial, self.model, batch, logs) def on_batch_end(self, batch, logs=None): self.tuner.on_batch_end(self.trial, self.model, batch, logs) def on_epoch_end(self, epoch, logs=None): self.tuner.on_epoch_end( self.trial, self.model, epoch, logs=logs) # TODO: Add more extensive display. class Display(object): def on_trial_begin(self, trial): display.section('New model') trial.summary() def on_trial_end(self, trial): display.section('Trial complete') trial.summary() def average_histories(histories): """Averages the per-epoch metrics from multiple executions.""" averaged = {} metrics = histories[0].keys() for metric in metrics: values = [] for epoch_values in six.moves.zip_longest( *[h[metric] for h in histories], fillvalue=np.nan): values.append(np.nanmean(epoch_values)) averaged[metric] = values # Convert {str: [float]} to [{str: float}] averaged = [dict(zip(metrics, vals)) for vals in zip(*averaged.values())] return averaged
[ "six.moves.zip_longest", "numpy.nanmean", "tensorflow.nest.flatten" ]
[((3473, 3545), 'six.moves.zip_longest', 'six.moves.zip_longest', (['*[h[metric] for h in histories]'], {'fillvalue': 'np.nan'}), '(*[h[metric] for h in histories], fillvalue=np.nan)\n', (3494, 3545), False, 'import six\n'), ((1924, 1949), 'tensorflow.nest.flatten', 'tf.nest.flatten', (['fit_args'], {}), '(fit_args)\n', (1939, 1949), True, 'import tensorflow as tf\n'), ((3606, 3630), 'numpy.nanmean', 'np.nanmean', (['epoch_values'], {}), '(epoch_values)\n', (3616, 3630), True, 'import numpy as np\n')]
import tkinter as tk from tkinter import filedialog from urllib.request import urlopen from pathlib import Path from tkinter import ttk import numpy as np import base64 import io import re from src.theme import theme from src.algorithm import blosum from src.utils import RichText def qopen(path:str): '''Opens and returns file content''' with open(path, 'r') as fh: content = fh.read() return content class Pysum(tk.Frame): def __init__(self, title): self.root = tk.Tk() self.root.title(title) self.root.configure(background='#ecffde') self.root.columnconfigure(0, weight=1) self.root.rowconfigure(1, weight=1) self.style = ttk.Style() self.style.theme_create('bio', settings=theme()) self.style.theme_use('bio') self.font_1 = ('Helvetica', 10, 'bold') self.font_2 = ('Helvetica', 10) self.main_text = qopen('src/main_texts.txt').split('\n\n') self.tabs = ttk.Notebook(self.root, padding=10) self.result_frame = None self.matrix_labels = None self.matrix_result = None self.add_tabs() self.add_content_tool() self.add_content_result() self.add_content_about() self.root.mainloop() def add_tabs(self): self.tool = ttk.Frame(self.tabs) self.tabs.add(self.tool, text=' Tool ') self.results = ttk.Frame(self.tabs) self.tabs.add(self.results, text=' Results ') self.about = ttk.Frame(self.tabs) self.tabs.add(self.about, text=' About ') self.tabs.grid(row=0, column=0) def add_content_tool(self): '''Adds all content to the tool tab''' tool_frame = ttk.LabelFrame(self.tool, text="File Structure", padding=50, relief=tk.RIDGE) tool_frame.grid(row=0, column=0, sticky=tk.E + tk.W + tk.N + tk.S) tf_l1 = ttk.Label(tool_frame, text=self.main_text[0], font=self.font_1) tf_l1.grid(row=0, column=0, pady=3, columnspan=3, sticky="w") tf_l2 = ttk.Label(tool_frame, text=self.main_text[1], font=self.font_2) tf_l2.grid(row=1, column=0, pady=3, columnspan=3, sticky="w") tf_l3 = ttk.Label(tool_frame, text=self.main_text[2], font=self.font_1) tf_l3.grid(row=2, column=0, pady=3, columnspan=3, sticky="w") tf_l3 = ttk.Label(tool_frame, text=self.main_text[3], font=self.font_2) tf_l3.grid(row=3, column=0, pady=3, columnspan=3, sticky="w") # --- in_frame = ttk.LabelFrame(self.tool, text="Input", padding=20, relief=tk.RIDGE) in_frame.grid(row=1, column=0, sticky=tk.E + tk.W + tk.N + tk.S) self.tf_textin = tk.Text(in_frame, height=6, width=50) self.tf_textin.grid(row=1, column=0, columnspan=1, sticky="w") self.tf_textin.insert(tk.END, self.main_text[4]) tf_open_text = ttk.Button(in_frame, text="Open File", command=self.tf_open_file) tf_open_text.grid(row=1, column=1, sticky="news") tf_clear_text = ttk.Button(in_frame, text="Clear Input", command=lambda: self.tf_textin.delete(1.0, tk.END)) tf_clear_text.grid(row=1, column=2, sticky="news") tf_l4 = ttk.Label(in_frame, text=self.main_text[5], font=self.font_1) tf_l4.grid(row=2, column=0, pady=5, columnspan=1, sticky="w") self.xx_textin = tk.Text(in_frame, height=1, width=9) self.xx_textin.grid(row=2, column=1, columnspan=1, sticky="w") self.xx_textin.insert(tk.END, '') tf_start_calc = ttk.Button(in_frame, text="CALCULATE!", command=self.check_input_and_pass) tf_start_calc.grid(row=2, column=2, sticky="news") def add_content_result(self): '''Adds all content to the result tab, when calculate is called''' if self.result_frame is not None: # dynamicly resize window self.result_frame.destroy() self.result_frame = ttk.LabelFrame(self.results, text="Matrix Representation", padding=50, relief=tk.RIDGE) self.result_frame.grid(row=0, column=0, sticky=tk.E + tk.W + tk.N + tk.S) if self.matrix_result is None: ttk.Label(self.result_frame, text="No result available.", font=self.font_2).grid(row=0, column=0, sticky="w") return for (row, col), value in np.ndenumerate(self.matrix_result): if row == 0: ttk.Label(self.result_frame, text=str(self.matrix_labels[col]), font=self.font_1).grid(row=row, column=col+1) if col == 0: ttk.Label(self.result_frame, width=2, text=str(self.matrix_labels[row]), font=self.font_1).grid(row=row+1, column=col) _ = ttk.Entry(self.result_frame, width=8, font=self.font_2, justify='center') _.insert(tk.END, str(value)) _.grid(row=row+1, column=col+1) _.configure(state="readonly") # --- degree_frame = ttk.LabelFrame(self.results, text="BLOSUM Degree", padding=50, relief=tk.RIDGE) degree_frame.grid(row=0, column=1, sticky=tk.E + tk.W + tk.N + tk.S) ttk.Label(degree_frame, text=str(self.xx_textin.get("1.0", "end-1c").rstrip()), font=('consolas', 30, 'bold')).grid(row=0, column=0, sticky="news") # --- out_res_frame = ttk.LabelFrame(self.results, text="Output Settings", padding=50, relief=tk.RIDGE) out_res_frame.grid(row=1, column=0, sticky=tk.E + tk.W + tk.N + tk.S) out_res_printtoconsole = ttk.Button(out_res_frame, text="Print to console", command=self.print_res_console_save) out_res_printtoconsole.grid(row=0, column=0, sticky="w") out_res_printtoconsole = ttk.Button(out_res_frame, text="Save to file", command=lambda: self.print_res_console_save(save_file=True)) out_res_printtoconsole.grid(row=0, column=2, sticky="w") def add_content_about(self, renderimg=False): if renderimg and self.ab_frame is not None: self.ab_frame.destroy() self.render_about.destroy() if not renderimg: self.render_about = ttk.Button(self.about, text="RENDER IMAGES", command=lambda: self.add_content_about(True)) self.render_about.grid(row=0, column=0, sticky="e") # This functions as README.md parser in combination witch the class RichText self.ab_frame = ttk.LabelFrame(self.about, text='About this program', relief=tk.RIDGE) self.ab_frame.grid(row=(0 if renderimg else 1), column=0, sticky=tk.E + tk.W + tk.N + tk.S) self.images = [] # need to store reference because of tkinter with open('README.md', 'r') as fh: about = fh.readlines() ab_text = RichText(self.ab_frame, width=73, wrap=tk.WORD) ab_text.grid(row=0, column=0) for line in about: line = line.replace('\\', '') line = line.replace('**', '') line = line.replace('```', '') # title of the readme if line.startswith('##'): ab_text.insert("end", line[3:], "h1") elif line.startswith('#'): ab_text.insert("end", 'PYSUM\n', "h1") #extract the url in parentheis and insert image elif line.startswith('!'): if renderimg: image_url = line.split('(')[1].split(')')[0] image_url = image_url.replace('svg', 'gif').replace('dpi%7B300', 'dpi%7B200') try: image_byt = urlopen(image_url).read() image_b64 = base64.encodestring(image_byt) photo = tk.PhotoImage(data=image_b64) ab_text.image_create(tk.END, image = photo) ab_text.insert('end', '\n') self.images.append(photo) except: self.warn(mode='badinternet', label_loc=self.about, row=2, col=0) else: ab_text.insert('end', '\n[NOT RENDERED YET, click on above button!]\n\n') # draw bulletpoints elif re.match(r'^[1-9]',line) or line.startswith('*'): ab_text.insert_bullet('end', line.split(' ', 1)[1]) else: ab_text.insert("end", line) ab_text.configure(state='disabled') return True def print_res_console_save(self, save_file=False): label_matrix = self.matrix_result.astype('str') label2 = self.matrix_labels label2 = np.asarray(['-'] + label2).reshape((len(label2)+1, 1)) label_matrix = np.vstack((self.matrix_labels, label_matrix)) label_matrix = np.hstack((label2, label_matrix)) header_str = f'BLOSUM{self.xx_textin.get("1.0", "end-1c").rstrip()} Matrix:' result_str = '\n'.join([''.join(['{:8}'.format(item) for item in row]) for row in label_matrix]) if save_file: file = filedialog.asksaveasfile(initialdir=str(Path.home()), mode='w', defaultextension=".txt") if file is None: return False file.write(header_str + "\n" + result_str) file.close() else: print(header_str + "\n" + result_str) def tf_open_file(self): tf_filename = filedialog.askopenfilename(initialdir=str(Path.home()), title="Select Text File", filetypes= (("txt files", "*.txt"), ("all files", "*.*"))) if len(tf_filename) == 0: return False with open(tf_filename, 'r') as fh: tf_text = fh.read() self.tf_textin.delete("1.0", tk.END) #self.tf_textin.insert(tk.END, tf_text) self.tf_textin.insert(tk.END, f'--File sucessfully loaded: {len(tf_text.splitlines())} sequences found.--\n'+tf_text.replace(' ', '')) def check_input_and_pass(self): dna_sequences = [] initial_len = None xx_number = self.xx_textin.get("1.0", "end-1c").rstrip().replace(' ', '') # first check xx_blosum value try: xx_number = int(xx_number) if not xx_number in range(1, 101): self.warn(mode='xnumrange', label_loc=self.tool) return False except: self.warn(mode='xnuminvalid', label_loc=self.tool) return False seq_string = self.tf_textin.get("1.0", tk.END).rstrip().replace(' ', '') if len(seq_string.splitlines()) < 2: self.warn(mode='empty', label_loc=self.tool) return False for i, line in enumerate(seq_string.upper().splitlines()): if line.startswith('-'): continue if initial_len is None: initial_len = len(line) if initial_len != len(line): self.warn(mode='len', line=i, label_loc=self.tool) return False else: dna_sequences.append(line) try: matrix, lables = blosum(dna_sequences, xx_number) if (matrix is None) and (labels is None): return self.warn(mode='elimination', label_loc=self.tool) else: self.matrix_result, self.matrix_labels = matrix, lables except: self.warn(mode='something', line=i, label_loc=self.tool) return False self.add_content_result() self.tabs.select([1]) def warn(self, mode:str, line:int=0, label_loc=None, row=2, col=0): warn_msg = tk.StringVar() if mode == 'len': warn_msg.set(f'[WARNING] Sequence nr.{line+1} differs in lenght!') elif mode == 'empty': warn_msg.set(f'[WARNING] At least 2 Sequences must be given!') elif mode == 'xnumrange': warn_msg.set(f'[WARNING] BLOSUM Degree must be between 1-100!') elif mode == 'xnuminvalid': warn_msg.set(f'[WARNING] BLOSUM Degree must be a number!') elif mode== 'elimination': warn_msg.set(f'[WARNING] Only one Sequnce left after elimination!') elif mode == 'something': warn_msg.set(f'[WARNING] BLOSUM cant be computed with that sequences!') elif mode== 'badinternet': warn_msg.set(f'[WARNING] Internet connection is reqired!') else: warn_msg.set(f'[WARNING] This will never happen.') warning_label = tk.Label(label_loc, textvariable=warn_msg, font=self.font_1, fg="red", bg='#ecffde') warning_label.grid(row=row, column=col, pady=5, sticky="w") self.root.after(4000, lambda: warn_msg.set(""))
[ "tkinter.ttk.Button", "src.theme.theme", "numpy.hstack", "pathlib.Path.home", "src.algorithm.blosum", "tkinter.ttk.LabelFrame", "base64.encodestring", "src.utils.RichText", "tkinter.Label", "tkinter.ttk.Entry", "tkinter.ttk.Frame", "tkinter.ttk.Label", "numpy.asarray", "numpy.ndenumerate", "tkinter.StringVar", "numpy.vstack", "urllib.request.urlopen", "re.match", "tkinter.ttk.Notebook", "tkinter.PhotoImage", "tkinter.ttk.Style", "tkinter.Tk", "tkinter.Text" ]
[((500, 507), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (505, 507), True, 'import tkinter as tk\n'), ((702, 713), 'tkinter.ttk.Style', 'ttk.Style', ([], {}), '()\n', (711, 713), False, 'from tkinter import ttk\n'), ((984, 1019), 'tkinter.ttk.Notebook', 'ttk.Notebook', (['self.root'], {'padding': '(10)'}), '(self.root, padding=10)\n', (996, 1019), False, 'from tkinter import ttk\n'), ((1322, 1342), 'tkinter.ttk.Frame', 'ttk.Frame', (['self.tabs'], {}), '(self.tabs)\n', (1331, 1342), False, 'from tkinter import ttk\n'), ((1415, 1435), 'tkinter.ttk.Frame', 'ttk.Frame', (['self.tabs'], {}), '(self.tabs)\n', (1424, 1435), False, 'from tkinter import ttk\n'), ((1512, 1532), 'tkinter.ttk.Frame', 'ttk.Frame', (['self.tabs'], {}), '(self.tabs)\n', (1521, 1532), False, 'from tkinter import ttk\n'), ((1726, 1803), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.tool'], {'text': '"""File Structure"""', 'padding': '(50)', 'relief': 'tk.RIDGE'}), "(self.tool, text='File Structure', padding=50, relief=tk.RIDGE)\n", (1740, 1803), False, 'from tkinter import ttk\n'), ((1897, 1960), 'tkinter.ttk.Label', 'ttk.Label', (['tool_frame'], {'text': 'self.main_text[0]', 'font': 'self.font_1'}), '(tool_frame, text=self.main_text[0], font=self.font_1)\n', (1906, 1960), False, 'from tkinter import ttk\n'), ((2048, 2111), 'tkinter.ttk.Label', 'ttk.Label', (['tool_frame'], {'text': 'self.main_text[1]', 'font': 'self.font_2'}), '(tool_frame, text=self.main_text[1], font=self.font_2)\n', (2057, 2111), False, 'from tkinter import ttk\n'), ((2199, 2262), 'tkinter.ttk.Label', 'ttk.Label', (['tool_frame'], {'text': 'self.main_text[2]', 'font': 'self.font_1'}), '(tool_frame, text=self.main_text[2], font=self.font_1)\n', (2208, 2262), False, 'from tkinter import ttk\n'), ((2350, 2413), 'tkinter.ttk.Label', 'ttk.Label', (['tool_frame'], {'text': 'self.main_text[3]', 'font': 'self.font_2'}), '(tool_frame, text=self.main_text[3], font=self.font_2)\n', (2359, 2413), False, 'from tkinter import ttk\n'), ((2518, 2586), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.tool'], {'text': '"""Input"""', 'padding': '(20)', 'relief': 'tk.RIDGE'}), "(self.tool, text='Input', padding=20, relief=tk.RIDGE)\n", (2532, 2586), False, 'from tkinter import ttk\n'), ((2686, 2723), 'tkinter.Text', 'tk.Text', (['in_frame'], {'height': '(6)', 'width': '(50)'}), '(in_frame, height=6, width=50)\n', (2693, 2723), True, 'import tkinter as tk\n'), ((2876, 2941), 'tkinter.ttk.Button', 'ttk.Button', (['in_frame'], {'text': '"""Open File"""', 'command': 'self.tf_open_file'}), "(in_frame, text='Open File', command=self.tf_open_file)\n", (2886, 2941), False, 'from tkinter import ttk\n'), ((3194, 3255), 'tkinter.ttk.Label', 'ttk.Label', (['in_frame'], {'text': 'self.main_text[5]', 'font': 'self.font_1'}), '(in_frame, text=self.main_text[5], font=self.font_1)\n', (3203, 3255), False, 'from tkinter import ttk\n'), ((3352, 3388), 'tkinter.Text', 'tk.Text', (['in_frame'], {'height': '(1)', 'width': '(9)'}), '(in_frame, height=1, width=9)\n', (3359, 3388), True, 'import tkinter as tk\n'), ((3527, 3601), 'tkinter.ttk.Button', 'ttk.Button', (['in_frame'], {'text': '"""CALCULATE!"""', 'command': 'self.check_input_and_pass'}), "(in_frame, text='CALCULATE!', command=self.check_input_and_pass)\n", (3537, 3601), False, 'from tkinter import ttk\n'), ((3921, 4012), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.results'], {'text': '"""Matrix Representation"""', 'padding': '(50)', 'relief': 'tk.RIDGE'}), "(self.results, text='Matrix Representation', padding=50,\n relief=tk.RIDGE)\n", (3935, 4012), False, 'from tkinter import ttk\n'), ((4306, 4340), 'numpy.ndenumerate', 'np.ndenumerate', (['self.matrix_result'], {}), '(self.matrix_result)\n', (4320, 4340), True, 'import numpy as np\n'), ((4910, 4989), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.results'], {'text': '"""BLOSUM Degree"""', 'padding': '(50)', 'relief': 'tk.RIDGE'}), "(self.results, text='BLOSUM Degree', padding=50, relief=tk.RIDGE)\n", (4924, 4989), False, 'from tkinter import ttk\n'), ((5264, 5350), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.results'], {'text': '"""Output Settings"""', 'padding': '(50)', 'relief': 'tk.RIDGE'}), "(self.results, text='Output Settings', padding=50, relief=tk.\n RIDGE)\n", (5278, 5350), False, 'from tkinter import ttk\n'), ((5458, 5550), 'tkinter.ttk.Button', 'ttk.Button', (['out_res_frame'], {'text': '"""Print to console"""', 'command': 'self.print_res_console_save'}), "(out_res_frame, text='Print to console', command=self.\n print_res_console_save)\n", (5468, 5550), False, 'from tkinter import ttk\n'), ((6322, 6392), 'tkinter.ttk.LabelFrame', 'ttk.LabelFrame', (['self.about'], {'text': '"""About this program"""', 'relief': 'tk.RIDGE'}), "(self.about, text='About this program', relief=tk.RIDGE)\n", (6336, 6392), False, 'from tkinter import ttk\n'), ((6661, 6708), 'src.utils.RichText', 'RichText', (['self.ab_frame'], {'width': '(73)', 'wrap': 'tk.WORD'}), '(self.ab_frame, width=73, wrap=tk.WORD)\n', (6669, 6708), False, 'from src.utils import RichText\n'), ((8577, 8622), 'numpy.vstack', 'np.vstack', (['(self.matrix_labels, label_matrix)'], {}), '((self.matrix_labels, label_matrix))\n', (8586, 8622), True, 'import numpy as np\n'), ((8646, 8679), 'numpy.hstack', 'np.hstack', (['(label2, label_matrix)'], {}), '((label2, label_matrix))\n', (8655, 8679), True, 'import numpy as np\n'), ((11467, 11481), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (11479, 11481), True, 'import tkinter as tk\n'), ((12350, 12439), 'tkinter.Label', 'tk.Label', (['label_loc'], {'textvariable': 'warn_msg', 'font': 'self.font_1', 'fg': '"""red"""', 'bg': '"""#ecffde"""'}), "(label_loc, textvariable=warn_msg, font=self.font_1, fg='red', bg=\n '#ecffde')\n", (12358, 12439), True, 'import tkinter as tk\n'), ((4671, 4744), 'tkinter.ttk.Entry', 'ttk.Entry', (['self.result_frame'], {'width': '(8)', 'font': 'self.font_2', 'justify': '"""center"""'}), "(self.result_frame, width=8, font=self.font_2, justify='center')\n", (4680, 4744), False, 'from tkinter import ttk\n'), ((10948, 10980), 'src.algorithm.blosum', 'blosum', (['dna_sequences', 'xx_number'], {}), '(dna_sequences, xx_number)\n', (10954, 10980), False, 'from src.algorithm import blosum\n'), ((762, 769), 'src.theme.theme', 'theme', ([], {}), '()\n', (767, 769), False, 'from src.theme import theme\n'), ((8498, 8524), 'numpy.asarray', 'np.asarray', (["(['-'] + label2)"], {}), "(['-'] + label2)\n", (8508, 8524), True, 'import numpy as np\n'), ((4143, 4218), 'tkinter.ttk.Label', 'ttk.Label', (['self.result_frame'], {'text': '"""No result available."""', 'font': 'self.font_2'}), "(self.result_frame, text='No result available.', font=self.font_2)\n", (4152, 4218), False, 'from tkinter import ttk\n'), ((9299, 9310), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (9308, 9310), False, 'from pathlib import Path\n'), ((8953, 8964), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (8962, 8964), False, 'from pathlib import Path\n'), ((8086, 8110), 're.match', 're.match', (['"""^[1-9]"""', 'line'], {}), "('^[1-9]', line)\n", (8094, 8110), False, 'import re\n'), ((7538, 7568), 'base64.encodestring', 'base64.encodestring', (['image_byt'], {}), '(image_byt)\n', (7557, 7568), False, 'import base64\n'), ((7601, 7630), 'tkinter.PhotoImage', 'tk.PhotoImage', ([], {'data': 'image_b64'}), '(data=image_b64)\n', (7614, 7630), True, 'import tkinter as tk\n'), ((7476, 7494), 'urllib.request.urlopen', 'urlopen', (['image_url'], {}), '(image_url)\n', (7483, 7494), False, 'from urllib.request import urlopen\n')]
import numpy as np import re def apply_colormaps_based_on_mask(mask, data_for_inside_mask, data_for_outside_mask, colormap_inside_mask, colormap_outside_mask): """ Returns the combination of applying two colormaps to two datasets on two mutually exclusive sets of pixels as follows. Applies <colormap_inside_mask> to <data_for_inside_mask> for pixels where <thresh_mask> is True and applies <colormap_outside_mask> to <data_for_outside_mask> for pixels where <thresh_mask> is False. :param mask: boolean numpy.ndarray :param data_for_inside_mask: float numpy.ndarray, having the same shape as thresh_mask :param data_for_outside_mask: float numpy.ndarray, having the same shape as thresh_mask :param colormap_inside_mask: matplotlib colormap :param colormap_outside_mask: matplotlib colormap :return: numpy.ndarray, having the same shape as thresh_mask """ assert data_for_inside_mask.shape == data_for_outside_mask.shape, f"data_within_mask and data_outside_mask " \ f"must have " \ f"the same shape. Given: {data_for_inside_mask.shape} " \ f"and {data_for_outside_mask.shape}" assert mask.shape == data_for_inside_mask.shape, f"The shape of given thresh_mask ({mask.shape}) " \ f"does not match shape of data given " \ f"({data_for_inside_mask.shape})" data_colorized = np.empty(list(data_for_inside_mask.shape) + [4]) data_colorized[mask, :] = colormap_inside_mask(data_for_inside_mask[mask]) data_colorized[~mask, :] = colormap_outside_mask(data_for_outside_mask[~mask]) return data_colorized # # data_masked_inside = np.ma.MaskedArray(data_for_outside_mask, mask, fill_value=0) # data_masked_outside = np.ma.MaskedArray(data_for_inside_mask, ~mask, fill_value=0) # # data_colorized_outside = colormap_outside_mask(data_masked_inside) # data_colorized_inside = colormap_inside_mask(data_masked_outside) # # return data_colorized_inside + data_colorized_outside def stack_duplicate_frames(frame, depth): """ Retuns a numpy.ndarray formed by stacking <frame> along the third axis :param frame: numpy.ndarray, of 2 dimensions :param depth: int :return: numpy.ndarray of shape (frame.shape[0], frame.shape[1], depth) """ return np.stack([frame] * depth, axis=2) def resolve_thresholdOnValue(data, mv_thresholdOnValue): """ Interprets <mv_thresholdOnValue> in the context of <data>, calculates the threshold and returns it :param data: numpy.ndarray :param mv_thresholdOnValue: str :return: float """ assert re.fullmatch(r"[ra][\-\.0-9]+", mv_thresholdOnValue) is not None, f"{mv_thresholdOnValue} is not a valid" \ f"threshold indicator. Valid formats are " \ f"'rxxx' for relative threshold and 'ayyy' " \ f" for absolute threshold where 'xxx' and" \ f"'yyy' represent numbers. " \ f"E.g.: a123.123, r0.4 and r-0.12533" threshold_value = float(mv_thresholdOnValue[1:]) if mv_thresholdOnValue.startswith("r"): thres_pc = np.clip(threshold_value, 0, 100) data_min, data_max = data.min(), data.max() threshold = data_min + 0.01 * thres_pc * (data_max - data_min) elif mv_thresholdOnValue.startswith("a"): threshold = threshold_value else: # Should not come here raise ValueError() return threshold
[ "re.fullmatch", "numpy.stack", "numpy.clip" ]
[((2605, 2638), 'numpy.stack', 'np.stack', (['([frame] * depth)'], {'axis': '(2)'}), '([frame] * depth, axis=2)\n', (2613, 2638), True, 'import numpy as np\n'), ((2915, 2968), 're.fullmatch', 're.fullmatch', (['"""[ra][\\\\-\\\\.0-9]+"""', 'mv_thresholdOnValue'], {}), "('[ra][\\\\-\\\\.0-9]+', mv_thresholdOnValue)\n", (2927, 2968), False, 'import re\n'), ((3717, 3749), 'numpy.clip', 'np.clip', (['threshold_value', '(0)', '(100)'], {}), '(threshold_value, 0, 100)\n', (3724, 3749), True, 'import numpy as np\n')]
# -*- coding: utf8 from gb.randomkit.random import RNG from gb.samplers import BaseSampler from gb.samplers import CollapsedGibbsSampler from gb.stamps import Timestamps from gb.sloppy import SloppyCounter from numpy.testing import assert_equal import numpy as np def test_get_probability(): d = {} d[0] = [1, 2, 3, 4, 5, 6, 7] d[1] = [11, 12, 13] stamps = Timestamps(d) causes = stamps._get_causes(0) causes[0] = 0 causes[1] = 0 causes[2] = 0 causes[3] = 1 causes[4] = 1 causes[5] = 1 causes[6] = 1 causes = stamps._get_causes(1) causes[0] = 0 causes[1] = 0 causes[2] = 1 nb = np.array([5, 5], dtype='uint64') init_state = np.array([[5, 5]], dtype='uint64') id_ = 0 sloppy = SloppyCounter(1, 9999, nb, init_state) sampler = CollapsedGibbsSampler(BaseSampler(stamps, sloppy, id_, 0.1, RNG()), 2) sampler._set_current_process(0) assert_equal(0.5961538461538461, sampler._get_probability(0)) assert_equal(0.7884615384615383, sampler._get_probability(1)) sampler._set_current_process(1) assert_equal(0.40384615384615385, sampler._get_probability(0)) assert_equal(0.21153846153846154, sampler._get_probability(1)) def test_inc_dec(): d = {} d[0] = [1, 2, 3, 4, 5, 6, 7] d[1] = [11, 12, 13] stamps = Timestamps(d) causes = stamps._get_causes(0) causes[0] = 0 causes[1] = 0 causes[2] = 0 causes[3] = 1 causes[4] = 1 causes[5] = 1 causes[6] = 1 causes = stamps._get_causes(1) causes[0] = 0 causes[1] = 0 causes[2] = 1 nb = np.array([5, 5], dtype='uint64') init_state = np.array([[5, 5]], dtype='uint64') id_ = 0 sloppy = SloppyCounter(1, 9999, nb, init_state) sampler = CollapsedGibbsSampler(BaseSampler(stamps, sloppy, id_, 0.1, RNG()), 2) sampler._set_current_process(0) assert_equal(0.5961538461538461, sampler._get_probability(0)) assert_equal(0.7884615384615383, sampler._get_probability(1)) sampler._inc_one(0) assert_equal(0.6612903225806451, sampler._get_probability(0)) assert_equal(0.7884615384615383, sampler._get_probability(1)) sampler._dec_one(0) assert_equal(0.5961538461538461, sampler._get_probability(0))
[ "numpy.array", "gb.sloppy.SloppyCounter", "gb.randomkit.random.RNG", "gb.stamps.Timestamps" ]
[((379, 392), 'gb.stamps.Timestamps', 'Timestamps', (['d'], {}), '(d)\n', (389, 392), False, 'from gb.stamps import Timestamps\n'), ((654, 686), 'numpy.array', 'np.array', (['[5, 5]'], {'dtype': '"""uint64"""'}), "([5, 5], dtype='uint64')\n", (662, 686), True, 'import numpy as np\n'), ((704, 738), 'numpy.array', 'np.array', (['[[5, 5]]'], {'dtype': '"""uint64"""'}), "([[5, 5]], dtype='uint64')\n", (712, 738), True, 'import numpy as np\n'), ((764, 802), 'gb.sloppy.SloppyCounter', 'SloppyCounter', (['(1)', '(9999)', 'nb', 'init_state'], {}), '(1, 9999, nb, init_state)\n', (777, 802), False, 'from gb.sloppy import SloppyCounter\n'), ((1378, 1391), 'gb.stamps.Timestamps', 'Timestamps', (['d'], {}), '(d)\n', (1388, 1391), False, 'from gb.stamps import Timestamps\n'), ((1653, 1685), 'numpy.array', 'np.array', (['[5, 5]'], {'dtype': '"""uint64"""'}), "([5, 5], dtype='uint64')\n", (1661, 1685), True, 'import numpy as np\n'), ((1703, 1737), 'numpy.array', 'np.array', (['[[5, 5]]'], {'dtype': '"""uint64"""'}), "([[5, 5]], dtype='uint64')\n", (1711, 1737), True, 'import numpy as np\n'), ((1763, 1801), 'gb.sloppy.SloppyCounter', 'SloppyCounter', (['(1)', '(9999)', 'nb', 'init_state'], {}), '(1, 9999, nb, init_state)\n', (1776, 1801), False, 'from gb.sloppy import SloppyCounter\n'), ((925, 930), 'gb.randomkit.random.RNG', 'RNG', ([], {}), '()\n', (928, 930), False, 'from gb.randomkit.random import RNG\n'), ((1924, 1929), 'gb.randomkit.random.RNG', 'RNG', ([], {}), '()\n', (1927, 1929), False, 'from gb.randomkit.random import RNG\n')]
# pylint: disable=invalid-name ''' Pytests for the common utilities included in this package. Includes: - conversions.py - specs.py - utils.py To run the tests, type the following in the top level repo directory: python -m pytest --nat-file [path/to/gribfile] --prs-file [path/to/gribfile] ''' from inspect import getfullargspec from string import ascii_letters, digits import warnings from matplotlib import cm from matplotlib import colors as mcolors from metpy.plots import ctables import numpy as np import adb_graphics.conversions as conversions import adb_graphics.specs as specs import adb_graphics.utils as utils import adb_graphics.datahandler.gribdata as gribdata def test_conversion(): ''' Test that conversions return at numpy array for input of np.ndarray, list, or int ''' a = np.ones([3, 2]) * 300 c = a[0, 0] # Check for the right answer assert np.array_equal(conversions.k_to_c(a), a - 273.15) assert np.array_equal(conversions.k_to_f(a), (a - 273.15) * 9/5 + 32) assert np.array_equal(conversions.kgm2_to_in(a), a * 0.03937) assert np.array_equal(conversions.m_to_dm(a), a / 10) assert np.array_equal(conversions.m_to_in(a), a * 39.3701) assert np.array_equal(conversions.m_to_kft(a), a / 304.8) assert np.array_equal(conversions.m_to_mi(a), a / 1609.344) assert np.array_equal(conversions.ms_to_kt(a), a * 1.9438) assert np.array_equal(conversions.pa_to_hpa(a), a / 100) assert np.array_equal(conversions.percent(a), a * 100) assert np.array_equal(conversions.to_micro(a), a * 1E6) assert np.array_equal(conversions.vvel_scale(a), a * -10) assert np.array_equal(conversions.vort_scale(a), a / 1E-05) assert np.array_equal(conversions.weasd_to_1hsnw(a), a * 10) functions = [ conversions.k_to_c, conversions.k_to_f, conversions.kgm2_to_in, conversions.m_to_dm, conversions.m_to_in, conversions.m_to_kft, conversions.m_to_mi, conversions.ms_to_kt, conversions.pa_to_hpa, conversions.percent, conversions.to_micro, conversions.vvel_scale, conversions.vort_scale, conversions.weasd_to_1hsnw, ] # Check that all functions return a np.ndarray given a collection, or single float for f in functions: for collection in [a, c]: assert isinstance(f(collection), type(collection)) class MockSpecs(specs.VarSpec): ''' Mock class for the VarSpec abstract class ''' @property def clevs(self): return np.asarray(range(15)) @property def vspec(self): return {} def test_specs(): ''' Test VarSpec properties. ''' config = 'adb_graphics/default_specs.yml' varspec = MockSpecs(config) # Ensure correct return type assert isinstance(varspec.t_colors, np.ndarray) assert isinstance(varspec.ps_colors, np.ndarray) assert isinstance(varspec.yml, dict) # Ensure the appropriate number of colors is returned assert np.shape(varspec.t_colors) == (len(varspec.clevs), 4) assert np.shape(varspec.ps_colors) == (105, 4) def test_utils(): ''' Test that utils works appropriately. ''' assert callable(utils.get_func('conversions.k_to_c')) class TestDefaultSpecs(): ''' Test contents of default_specs.yml. ''' config = 'adb_graphics/default_specs.yml' varspec = MockSpecs(config) cfg = varspec.yml @property def allowable(self): ''' Each entry in the dict names a function that tests a key in default_specs.yml. ''' return { 'accumulate': self.is_bool, 'annotate': self.is_bool, 'annotate_decimal': self.is_int, 'clevs': self.is_a_clev, 'cmap': self.is_a_cmap, 'colors': self.is_a_color, 'contours': self.is_a_contour_dict, 'hatches': self.is_a_contourf_dict, 'labels': self.is_a_contourf_dict, 'ncl_name': True, 'print_units': True, 'split': self.is_bool, 'ticks': self.is_number, 'title': self.is_string, 'transform': self.check_transform, 'unit': self.is_string, 'vertical_index': self.is_int, 'vertical_level_name': self.is_string, 'wind': self.is_wind, } def check_kwargs(self, accepted_args, kwargs): ''' Ensure a dictionary entry matches the kwargs accepted by a function. ''' assert isinstance(kwargs, dict) for key, args in kwargs.items(): lev = None if '_' in key: short_name, lev = key.split('_') else: short_name = key assert self.is_a_key(short_name) if lev: assert self.cfg.get(short_name).get(lev) is not None for arg in args.keys(): assert arg in accepted_args return True def check_transform(self, entry): ''' Check that the transform entry is either a single transformation function, a list of transformation functions, or a dictionary containing the functions list and the kwargs list like so: transform: funcs: [list, of, functions] kwargs: first_arg: value sec_arg: value The functions listed under functions MUST be methods, not attributes! ''' kwargs = dict() # Check that each item listed is callable if isinstance(entry, (list, str)): assert self.is_callable(entry) # If the transform entry is a dictionary, check that it has the # appropriate contents elif isinstance(entry, dict): funcs = entry.get('funcs') assert funcs is not None # Make sure funcs is a list funcs = funcs if isinstance(funcs, list) else [funcs] # Key word arguments may not be present. kwargs = entry.get('kwargs') transforms = [] for func in funcs: callables = self.get_callable(func) callables = callables if isinstance(callables, list) else \ [callables] transforms.extend(callables) # The argspecs bit gives us a list of all the accepted arguments # for the functions listed in the variable all_params. Test fails # when provided arguments don't appear in all_params. # arguments not in that list, we fail. if kwargs: argspecs = [getfullargspec(func) for func in transforms if callable(func)] all_params = [] for argspec in argspecs: # Make sure all functions accept key word arguments assert argspec.varkw is not None parameters = [] for argtype in [argspec.args, argspec.varargs, argspec.varkw]: if argtype is not None: parameters.extend(argtype) all_params.extend(parameters) for key in kwargs.keys(): if key not in all_params: msg = f'Function key {key} is not an expicit parameter \ in any of the transforms: {funcs}!' warnings.warn(msg, UserWarning) return True # pylint: disable=inconsistent-return-statements def get_callable(self, func): ''' Return the callable function given a function name. ''' if func in dir(self.varspec): return self.varspec.__getattribute__(func) # Check datahandler.gribdata objects if a single word is provided if len(func.split('.')) == 1: funcs = [] for attr in dir(gribdata): # pylint: disable=no-member if func in dir(gribdata.__getattribute__(attr)): funcs.append(gribdata.__getattribute__(attr).__dict__.get(func)) return funcs if callable(utils.get_func(func)): return utils.get_func(func) raise ValueError('{func} is not a known callable function!') @staticmethod def is_a_clev(clev): ''' Returns true for a clev that is a list, a range, or a callable function. ''' if isinstance(clev, (list, np.ndarray)): return True if 'range' in clev.split('[')[0]: clean = lambda x: x.strip().split('-')[-1].replace('.', '1') items = clev.split(' ', 1)[1].strip('[').strip(']').split(',') nums = [clean(i).isnumeric() for i in items] return all(nums) return callable(utils.get_func(clev)) @staticmethod def is_a_cmap(cmap): ''' Returns true for a cmap that is a Colormap object. ''' return cmap in dir(cm) + list(ctables.colortables.keys()) def is_a_contour_dict(self, entry): ''' Set up the accepted arguments for plt.contour, and check the given arguments. ''' args = ['X', 'Y', 'Z', 'levels', 'corner_mask', 'colors', 'alpha', 'cmap', 'norm', 'vmin', 'vmax', 'origin', 'extent', 'locator', 'extend', 'xunits', 'yunits', 'antialiased', 'nchunk', 'linewidths', 'linestyles'] if entry is None: return True return self.check_kwargs(args, entry) def is_a_contourf_dict(self, entry): ''' Set up the accepted arguments for plt.contourf, and check the given arguments. ''' args = ['X', 'Y', 'Z', 'levels', 'corner_mask', 'colors', 'alpha', 'cmap', 'labels', 'norm', 'vmin', 'vmax', 'origin', 'extent', 'locator', 'extend', 'xunits', 'yunits', 'antialiased', 'nchunk', 'linewidths', 'hatches'] if entry is None: return True return self.check_kwargs(args, entry) def is_a_color(self, color): ''' Returns true if color is contained in the list of recognized colors. ''' colors = dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS, **ctables.colortables) if color in colors.keys(): return True if color in dir(self.varspec): return True return False @staticmethod def is_a_level(key): ''' Returns true if the key fits one of the level descriptor formats. Allowable formats include: [str_descriptor] e.g. sfc, max, mup [numeric][lev_type] e.g. 500mb, or 2m [stat][numeric] e.g. mn02, mx25 ''' allowed_levels = [ 'agl', # above ground level 'best', # Best 'bndylay', # boundary layer cld cover 'esbl', # ??? 'esblmn', # ??? 'high', # high clouds 'int', # vertical integral 'low', # low clouds 'max', # maximum in column 'maxsfc', # max surface value 'mdn', # maximum downward 'mid', # mid-level clouds 'mnsfc', # min surface value 'msl', # mean sea level 'mu', # most unstable 'mul', # most unstable layer 'mup', # maximum upward 'mu', # most unstable 'pw', # wrt precipitable water 'sat', # satellite 'sfc', # surface 'sfclt', # surface (less than) 'top', # nominal top of atmosphere 'total', # total clouds 'ua', # upper air ] allowed_lev_type = [ 'cm', # centimeters 'ds', # difference 'ft', # feet 'km', # kilometers 'm', # meters 'mm', # millimeters 'mb', # milibars 'sr', # storm relative ] allowed_stat = [ 'in', # ??? 'ens', # ensemble 'm', # ??? 'maxm', # ??? 'mn', # minimum 'mx', # maximum ] # Easy check first -- it is in the allowed_levels list if key in allowed_levels: return True # Check for [numeric][lev_type] or [lev_type][numeric] pattern # Numbers come at beginning or end, only numeric = ''.join([c for c in key if c in digits + '.']) in key # The level is allowed level_str = [c for c in key if c in ascii_letters] allowed = ''.join(level_str) in allowed_lev_type + allowed_stat # Check the other direction - level string contains one of the allowed # types. if not allowed: for lev in allowed_lev_type + allowed_stat: if lev in level_str: allowed = True break if numeric and allowed: return True return False def is_a_key(self, key): ''' Returns true if key exists as a key in the config file. ''' return self.cfg.get(key) is not None @staticmethod def is_bool(k): ''' Returns true if k is a boolean variable. ''' return isinstance(k, bool) def is_callable(self, funcs): ''' Returns true if func in funcs list is the name of a callable function. ''' funcs = funcs if isinstance(funcs, list) else [funcs] callables = [] for func in funcs: callable_ = self.get_callable(func) callable_ = callable_ if isinstance(callable_, list) else [callable_] for clbl in callable_: if isinstance(clbl, np.ndarray): callables.append(True) elif callable(clbl): callables.append(True) else: callables.append(False) return all(callables) @staticmethod def is_dict(d): ''' Returns true if d is a dictionary ''' return isinstance(d, dict) @staticmethod def is_int(i): ''' Returns true if i is an integer. ''' if isinstance(i, int): return True return i.isnumeric() and len(i.split('.')) == 1 @staticmethod def is_number(i): ''' Returns true if i is a number. ''' if isinstance(i, (int, float)): return True return i.isnumeric() and len(i.split('.')) <= 2 @staticmethod def is_string(s): ''' Returns true if s is a string. ''' return isinstance(s, str) def is_wind(self, wind): ''' Returns true if wind is a bool or is_a_level. ''' return isinstance(wind, bool) or self.is_a_level(wind) def check_keys(self, d, depth=0): ''' Helper function that recursively checks the keys in the dictionary by calling the function defined in allowable. ''' max_depth = 2 # Only proceed if d is a dictionary if not isinstance(d, dict): return # Proceed only up to max depth. if depth >= max_depth: return level = depth+1 for k, v in d.items(): # Check that the key is allowable assert (k in self.allowable.keys()) or self.is_a_level(k) # Call a checker if one exists for the key, otherwise descend into # next level of dict checker = self.allowable.get(k) if checker: if isinstance(checker, bool): assert checker else: assert checker(v) else: if isinstance(v, dict): self.check_keys(v, depth=level) def test_keys(self): ''' Tests each of top-level variables in the config file by calling the helper function. ''' for short_name, spec in self.cfg.items(): assert '_' not in short_name self.check_keys(spec)
[ "adb_graphics.conversions.m_to_mi", "adb_graphics.conversions.pa_to_hpa", "inspect.getfullargspec", "adb_graphics.conversions.m_to_kft", "adb_graphics.datahandler.gribdata.__getattribute__", "adb_graphics.conversions.weasd_to_1hsnw", "adb_graphics.conversions.k_to_f", "adb_graphics.conversions.ms_to_kt", "adb_graphics.conversions.to_micro", "adb_graphics.conversions.vort_scale", "warnings.warn", "adb_graphics.conversions.m_to_in", "numpy.ones", "adb_graphics.conversions.k_to_c", "numpy.shape", "adb_graphics.conversions.percent", "adb_graphics.conversions.m_to_dm", "adb_graphics.utils.get_func", "adb_graphics.conversions.vvel_scale", "adb_graphics.conversions.kgm2_to_in", "metpy.plots.ctables.colortables.keys" ]
[((830, 845), 'numpy.ones', 'np.ones', (['[3, 2]'], {}), '([3, 2])\n', (837, 845), True, 'import numpy as np\n'), ((928, 949), 'adb_graphics.conversions.k_to_c', 'conversions.k_to_c', (['a'], {}), '(a)\n', (946, 949), True, 'import adb_graphics.conversions as conversions\n'), ((989, 1010), 'adb_graphics.conversions.k_to_f', 'conversions.k_to_f', (['a'], {}), '(a)\n', (1007, 1010), True, 'import adb_graphics.conversions as conversions\n'), ((1063, 1088), 'adb_graphics.conversions.kgm2_to_in', 'conversions.kgm2_to_in', (['a'], {}), '(a)\n', (1085, 1088), True, 'import adb_graphics.conversions as conversions\n'), ((1129, 1151), 'adb_graphics.conversions.m_to_dm', 'conversions.m_to_dm', (['a'], {}), '(a)\n', (1148, 1151), True, 'import adb_graphics.conversions as conversions\n'), ((1187, 1209), 'adb_graphics.conversions.m_to_in', 'conversions.m_to_in', (['a'], {}), '(a)\n', (1206, 1209), True, 'import adb_graphics.conversions as conversions\n'), ((1250, 1273), 'adb_graphics.conversions.m_to_kft', 'conversions.m_to_kft', (['a'], {}), '(a)\n', (1270, 1273), True, 'import adb_graphics.conversions as conversions\n'), ((1312, 1334), 'adb_graphics.conversions.m_to_mi', 'conversions.m_to_mi', (['a'], {}), '(a)\n', (1331, 1334), True, 'import adb_graphics.conversions as conversions\n'), ((1376, 1399), 'adb_graphics.conversions.ms_to_kt', 'conversions.ms_to_kt', (['a'], {}), '(a)\n', (1396, 1399), True, 'import adb_graphics.conversions as conversions\n'), ((1439, 1463), 'adb_graphics.conversions.pa_to_hpa', 'conversions.pa_to_hpa', (['a'], {}), '(a)\n', (1460, 1463), True, 'import adb_graphics.conversions as conversions\n'), ((1500, 1522), 'adb_graphics.conversions.percent', 'conversions.percent', (['a'], {}), '(a)\n', (1519, 1522), True, 'import adb_graphics.conversions as conversions\n'), ((1559, 1582), 'adb_graphics.conversions.to_micro', 'conversions.to_micro', (['a'], {}), '(a)\n', (1579, 1582), True, 'import adb_graphics.conversions as conversions\n'), ((1619, 1644), 'adb_graphics.conversions.vvel_scale', 'conversions.vvel_scale', (['a'], {}), '(a)\n', (1641, 1644), True, 'import adb_graphics.conversions as conversions\n'), ((1681, 1706), 'adb_graphics.conversions.vort_scale', 'conversions.vort_scale', (['a'], {}), '(a)\n', (1703, 1706), True, 'import adb_graphics.conversions as conversions\n'), ((1745, 1774), 'adb_graphics.conversions.weasd_to_1hsnw', 'conversions.weasd_to_1hsnw', (['a'], {}), '(a)\n', (1771, 1774), True, 'import adb_graphics.conversions as conversions\n'), ((3050, 3076), 'numpy.shape', 'np.shape', (['varspec.t_colors'], {}), '(varspec.t_colors)\n', (3058, 3076), True, 'import numpy as np\n'), ((3115, 3142), 'numpy.shape', 'np.shape', (['varspec.ps_colors'], {}), '(varspec.ps_colors)\n', (3123, 3142), True, 'import numpy as np\n'), ((3246, 3282), 'adb_graphics.utils.get_func', 'utils.get_func', (['"""conversions.k_to_c"""'], {}), "('conversions.k_to_c')\n", (3260, 3282), True, 'import adb_graphics.utils as utils\n'), ((8254, 8274), 'adb_graphics.utils.get_func', 'utils.get_func', (['func'], {}), '(func)\n', (8268, 8274), True, 'import adb_graphics.utils as utils\n'), ((8296, 8316), 'adb_graphics.utils.get_func', 'utils.get_func', (['func'], {}), '(func)\n', (8310, 8316), True, 'import adb_graphics.utils as utils\n'), ((8897, 8917), 'adb_graphics.utils.get_func', 'utils.get_func', (['clev'], {}), '(clev)\n', (8911, 8917), True, 'import adb_graphics.utils as utils\n'), ((9069, 9095), 'metpy.plots.ctables.colortables.keys', 'ctables.colortables.keys', ([], {}), '()\n', (9093, 9095), False, 'from metpy.plots import ctables\n'), ((6705, 6725), 'inspect.getfullargspec', 'getfullargspec', (['func'], {}), '(func)\n', (6719, 6725), False, 'from inspect import getfullargspec\n'), ((8089, 8120), 'adb_graphics.datahandler.gribdata.__getattribute__', 'gribdata.__getattribute__', (['attr'], {}), '(attr)\n', (8114, 8120), True, 'import adb_graphics.datahandler.gribdata as gribdata\n'), ((7531, 7562), 'warnings.warn', 'warnings.warn', (['msg', 'UserWarning'], {}), '(msg, UserWarning)\n', (7544, 7562), False, 'import warnings\n'), ((8156, 8187), 'adb_graphics.datahandler.gribdata.__getattribute__', 'gribdata.__getattribute__', (['attr'], {}), '(attr)\n', (8181, 8187), True, 'import adb_graphics.datahandler.gribdata as gribdata\n')]
import os import shutil import tempfile import numpy as np from yt.loaders import load, load_uniform_grid from yt.testing import ( assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module, ) from yt.utilities.answer_testing.framework import data_dir_load from yt.visualization.plot_window import ProjectionPlot, SlicePlot ytdata_dir = "ytdata_test" @requires_module("h5py") @requires_file(os.path.join(ytdata_dir, "slice.h5")) @requires_file(os.path.join(ytdata_dir, "proj.h5")) @requires_file(os.path.join(ytdata_dir, "oas.h5")) def test_old_plot_data(): tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) fn = "slice.h5" full_fn = os.path.join(ytdata_dir, fn) ds_slice = data_dir_load(full_fn) p = SlicePlot(ds_slice, "z", "density") fn = p.save() assert_fname(fn[0]) fn = "proj.h5" full_fn = os.path.join(ytdata_dir, fn) ds_proj = data_dir_load(full_fn) p = ProjectionPlot(ds_proj, "z", "density") fn = p.save() assert_fname(fn[0]) fn = "oas.h5" full_fn = os.path.join(ytdata_dir, fn) ds_oas = data_dir_load(full_fn) p = SlicePlot(ds_oas, [1, 1, 1], "density") fn = p.save() assert_fname(fn[0]) os.chdir(curdir) shutil.rmtree(tmpdir) @requires_module("h5py") def test_plot_data(): tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) ds = fake_random_ds(16) plot = SlicePlot(ds, "z", "density") fn = plot.data_source.save_as_dataset("slice.h5") ds_slice = load(fn) p = SlicePlot(ds_slice, "z", "density") fn = p.save() assert_fname(fn[0]) plot = ProjectionPlot(ds, "z", "density") fn = plot.data_source.save_as_dataset("proj.h5") ds_proj = load(fn) p = ProjectionPlot(ds_proj, "z", "density") fn = p.save() assert_fname(fn[0]) plot = SlicePlot(ds, [1, 1, 1], "density") fn = plot.data_source.save_as_dataset("oas.h5") ds_oas = load(fn) p = SlicePlot(ds_oas, [1, 1, 1], "density") fn = p.save() assert_fname(fn[0]) os.chdir(curdir) if tmpdir != ".": shutil.rmtree(tmpdir) @requires_module("h5py") def test_non_square_frb(): tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) # construct an arbitrary dataset arr = np.arange(8.0 * 9.0 * 10.0).reshape((8, 9, 10)) data = dict(density=(arr, "g/cm**3")) bbox = np.array([[-4, 4.0], [-4.5, 4.5], [-5.0, 5]]) ds = load_uniform_grid( data, arr.shape, length_unit="Mpc", bbox=bbox, periodicity=(False, False, False) ) # make a slice slc = ds.slice(axis="z", coord=ds.quan(0.0, "code_length")) # make a frb and save it to disk center = (ds.quan(0.0, "code_length"), ds.quan(0.0, "code_length")) xax, yax = ds.coordinates.x_axis[slc.axis], ds.coordinates.y_axis[slc.axis] res = [ds.domain_dimensions[xax], ds.domain_dimensions[yax]] # = [8,9] width = ds.domain_right_edge[xax] - ds.domain_left_edge[xax] # = 8 code_length height = ds.domain_right_edge[yax] - ds.domain_left_edge[yax] # = 9 code_length frb = slc.to_frb(width=width, height=height, resolution=res, center=center) fname = "test_frb_roundtrip.h5" frb.save_as_dataset(fname, fields=["density"]) expected_vals = arr[:, :, 5].T print( "\nConfirmation that initial frb results are expected:", (expected_vals == frb["density"].v).all(), "\n", ) # yt-reload: reloaded_ds = load(fname) assert_array_equal(frb["density"].shape, reloaded_ds.data["density"].shape) assert_array_equal(frb["density"], reloaded_ds.data["density"]) os.chdir(curdir) if tmpdir != ".": shutil.rmtree(tmpdir)
[ "yt.loaders.load_uniform_grid", "yt.visualization.plot_window.SlicePlot", "yt.testing.assert_fname", "yt.testing.assert_array_equal", "numpy.arange", "yt.testing.fake_random_ds", "os.path.join", "yt.loaders.load", "os.getcwd", "os.chdir", "yt.utilities.answer_testing.framework.data_dir_load", "numpy.array", "tempfile.mkdtemp", "shutil.rmtree", "yt.testing.requires_module", "yt.visualization.plot_window.ProjectionPlot" ]
[((399, 422), 'yt.testing.requires_module', 'requires_module', (['"""h5py"""'], {}), "('h5py')\n", (414, 422), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1300, 1323), 'yt.testing.requires_module', 'requires_module', (['"""h5py"""'], {}), "('h5py')\n", (1315, 1323), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((2160, 2183), 'yt.testing.requires_module', 'requires_module', (['"""h5py"""'], {}), "('h5py')\n", (2175, 2183), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((618, 636), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (634, 636), False, 'import tempfile\n'), ((650, 661), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (659, 661), False, 'import os\n'), ((666, 682), 'os.chdir', 'os.chdir', (['tmpdir'], {}), '(tmpdir)\n', (674, 682), False, 'import os\n'), ((718, 746), 'os.path.join', 'os.path.join', (['ytdata_dir', 'fn'], {}), '(ytdata_dir, fn)\n', (730, 746), False, 'import os\n'), ((762, 784), 'yt.utilities.answer_testing.framework.data_dir_load', 'data_dir_load', (['full_fn'], {}), '(full_fn)\n', (775, 784), False, 'from yt.utilities.answer_testing.framework import data_dir_load\n'), ((793, 828), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds_slice', '"""z"""', '"""density"""'], {}), "(ds_slice, 'z', 'density')\n", (802, 828), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((851, 870), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (863, 870), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((905, 933), 'os.path.join', 'os.path.join', (['ytdata_dir', 'fn'], {}), '(ytdata_dir, fn)\n', (917, 933), False, 'import os\n'), ((948, 970), 'yt.utilities.answer_testing.framework.data_dir_load', 'data_dir_load', (['full_fn'], {}), '(full_fn)\n', (961, 970), False, 'from yt.utilities.answer_testing.framework import data_dir_load\n'), ((979, 1018), 'yt.visualization.plot_window.ProjectionPlot', 'ProjectionPlot', (['ds_proj', '"""z"""', '"""density"""'], {}), "(ds_proj, 'z', 'density')\n", (993, 1018), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1041, 1060), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (1053, 1060), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1094, 1122), 'os.path.join', 'os.path.join', (['ytdata_dir', 'fn'], {}), '(ytdata_dir, fn)\n', (1106, 1122), False, 'import os\n'), ((1136, 1158), 'yt.utilities.answer_testing.framework.data_dir_load', 'data_dir_load', (['full_fn'], {}), '(full_fn)\n', (1149, 1158), False, 'from yt.utilities.answer_testing.framework import data_dir_load\n'), ((1167, 1206), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds_oas', '[1, 1, 1]', '"""density"""'], {}), "(ds_oas, [1, 1, 1], 'density')\n", (1176, 1206), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1229, 1248), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (1241, 1248), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1254, 1270), 'os.chdir', 'os.chdir', (['curdir'], {}), '(curdir)\n', (1262, 1270), False, 'import os\n'), ((1275, 1296), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {}), '(tmpdir)\n', (1288, 1296), False, 'import shutil\n'), ((438, 474), 'os.path.join', 'os.path.join', (['ytdata_dir', '"""slice.h5"""'], {}), "(ytdata_dir, 'slice.h5')\n", (450, 474), False, 'import os\n'), ((491, 526), 'os.path.join', 'os.path.join', (['ytdata_dir', '"""proj.h5"""'], {}), "(ytdata_dir, 'proj.h5')\n", (503, 526), False, 'import os\n'), ((543, 577), 'os.path.join', 'os.path.join', (['ytdata_dir', '"""oas.h5"""'], {}), "(ytdata_dir, 'oas.h5')\n", (555, 577), False, 'import os\n'), ((1359, 1377), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (1375, 1377), False, 'import tempfile\n'), ((1391, 1402), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1400, 1402), False, 'import os\n'), ((1407, 1423), 'os.chdir', 'os.chdir', (['tmpdir'], {}), '(tmpdir)\n', (1415, 1423), False, 'import os\n'), ((1433, 1451), 'yt.testing.fake_random_ds', 'fake_random_ds', (['(16)'], {}), '(16)\n', (1447, 1451), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1464, 1493), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds', '"""z"""', '"""density"""'], {}), "(ds, 'z', 'density')\n", (1473, 1493), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1563, 1571), 'yt.loaders.load', 'load', (['fn'], {}), '(fn)\n', (1567, 1571), False, 'from yt.loaders import load, load_uniform_grid\n'), ((1580, 1615), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds_slice', '"""z"""', '"""density"""'], {}), "(ds_slice, 'z', 'density')\n", (1589, 1615), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1638, 1657), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (1650, 1657), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1670, 1704), 'yt.visualization.plot_window.ProjectionPlot', 'ProjectionPlot', (['ds', '"""z"""', '"""density"""'], {}), "(ds, 'z', 'density')\n", (1684, 1704), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1772, 1780), 'yt.loaders.load', 'load', (['fn'], {}), '(fn)\n', (1776, 1780), False, 'from yt.loaders import load, load_uniform_grid\n'), ((1789, 1828), 'yt.visualization.plot_window.ProjectionPlot', 'ProjectionPlot', (['ds_proj', '"""z"""', '"""density"""'], {}), "(ds_proj, 'z', 'density')\n", (1803, 1828), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1851, 1870), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (1863, 1870), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((1883, 1918), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds', '[1, 1, 1]', '"""density"""'], {}), "(ds, [1, 1, 1], 'density')\n", (1892, 1918), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((1984, 1992), 'yt.loaders.load', 'load', (['fn'], {}), '(fn)\n', (1988, 1992), False, 'from yt.loaders import load, load_uniform_grid\n'), ((2001, 2040), 'yt.visualization.plot_window.SlicePlot', 'SlicePlot', (['ds_oas', '[1, 1, 1]', '"""density"""'], {}), "(ds_oas, [1, 1, 1], 'density')\n", (2010, 2040), False, 'from yt.visualization.plot_window import ProjectionPlot, SlicePlot\n'), ((2063, 2082), 'yt.testing.assert_fname', 'assert_fname', (['fn[0]'], {}), '(fn[0])\n', (2075, 2082), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((2088, 2104), 'os.chdir', 'os.chdir', (['curdir'], {}), '(curdir)\n', (2096, 2104), False, 'import os\n'), ((2224, 2242), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (2240, 2242), False, 'import tempfile\n'), ((2256, 2267), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2265, 2267), False, 'import os\n'), ((2272, 2288), 'os.chdir', 'os.chdir', (['tmpdir'], {}), '(tmpdir)\n', (2280, 2288), False, 'import os\n'), ((2438, 2483), 'numpy.array', 'np.array', (['[[-4, 4.0], [-4.5, 4.5], [-5.0, 5]]'], {}), '([[-4, 4.0], [-4.5, 4.5], [-5.0, 5]])\n', (2446, 2483), True, 'import numpy as np\n'), ((2493, 2596), 'yt.loaders.load_uniform_grid', 'load_uniform_grid', (['data', 'arr.shape'], {'length_unit': '"""Mpc"""', 'bbox': 'bbox', 'periodicity': '(False, False, False)'}), "(data, arr.shape, length_unit='Mpc', bbox=bbox,\n periodicity=(False, False, False))\n", (2510, 2596), False, 'from yt.loaders import load, load_uniform_grid\n'), ((3511, 3522), 'yt.loaders.load', 'load', (['fname'], {}), '(fname)\n', (3515, 3522), False, 'from yt.loaders import load, load_uniform_grid\n'), ((3528, 3603), 'yt.testing.assert_array_equal', 'assert_array_equal', (["frb['density'].shape", "reloaded_ds.data['density'].shape"], {}), "(frb['density'].shape, reloaded_ds.data['density'].shape)\n", (3546, 3603), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((3608, 3671), 'yt.testing.assert_array_equal', 'assert_array_equal', (["frb['density']", "reloaded_ds.data['density']"], {}), "(frb['density'], reloaded_ds.data['density'])\n", (3626, 3671), False, 'from yt.testing import assert_array_equal, assert_fname, fake_random_ds, requires_file, requires_module\n'), ((3677, 3693), 'os.chdir', 'os.chdir', (['curdir'], {}), '(curdir)\n', (3685, 3693), False, 'import os\n'), ((2135, 2156), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {}), '(tmpdir)\n', (2148, 2156), False, 'import shutil\n'), ((3724, 3745), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {}), '(tmpdir)\n', (3737, 3745), False, 'import shutil\n'), ((2337, 2364), 'numpy.arange', 'np.arange', (['(8.0 * 9.0 * 10.0)'], {}), '(8.0 * 9.0 * 10.0)\n', (2346, 2364), True, 'import numpy as np\n')]
import numba as nb import numpy as np import scipy.stats @nb.njit(parallel=True) def tiecorrect(rankvals): """ parallelized version of scipy.stats.tiecorrect :param rankvals: p x n array of ranked data (output of rankdata function) """ tc = np.ones(rankvals.shape[1], dtype=np.float64) for j in nb.prange(rankvals.shape[1]): arr = np.sort(np.ravel(rankvals[:, j])) idx = np.nonzero( np.concatenate((np.array([True]), arr[1:] != arr[:-1], np.array([True]))) )[0] t_k = np.diff(idx).astype(np.float64) size = np.float64(arr.size) if size >= 2: tc[j] = 1.0 - (t_k ** 3 - t_k).sum() / (size ** 3 - size) return tc @nb.njit(parallel=True) def rankdata(data): """ parallelized version of scipy.stats.rankdata :param data: p x n array of data to rank, column-wise """ ranked = np.empty(data.shape, dtype=np.float64) for j in nb.prange(data.shape[1]): arr = np.ravel(data[:, j]) sorter = np.argsort(arr) arr = arr[sorter] obs = np.concatenate((np.array([True]), arr[1:] != arr[:-1])) dense = np.empty(obs.size, dtype=np.int64) dense[sorter] = obs.cumsum() # cumulative counts of each unique value count = np.concatenate((np.nonzero(obs)[0], np.array([len(obs)]))) ranked[:, j] = 0.5 * (count[dense] + count[dense - 1] + 1) return ranked def mannwhitneyu(x, y, use_continuity=True): """Version of Mann-Whitney U-test that runs in parallel on 2d arrays This is the two-sided test, asymptotic algo only. Returns log p-values """ x = np.asarray(x) y = np.asarray(y) assert x.shape[1] == y.shape[1] n1 = x.shape[0] n2 = y.shape[0] ranked = rankdata(np.concatenate((x, y))) rankx = ranked[:n1, :] # get the x-ranks u1 = n1 * n2 + (n1 * (n1 + 1)) / 2.0 - np.sum(rankx, axis=0) # calc U for x u2 = n1 * n2 - u1 # remainder is U for y T = tiecorrect(ranked) # if *everything* is identical we'll raise an error, not otherwise if np.all(T == 0): raise ValueError("All numbers are identical in mannwhitneyu") sd = np.sqrt(T * n1 * n2 * (n1 + n2 + 1) / 12.0) meanrank = n1 * n2 / 2.0 + 0.5 * use_continuity bigu = np.maximum(u1, u2) with np.errstate(divide="ignore", invalid="ignore"): z = (bigu - meanrank) / sd logp = np.minimum(scipy.stats.norm.logsf(z) + np.log(2), 0) return u2, logp
[ "numpy.sqrt", "numpy.ones", "numpy.float64", "numpy.log", "numba.njit", "numpy.asarray", "numpy.diff", "numpy.argsort", "numpy.sum", "numpy.errstate", "numpy.array", "numpy.empty", "numpy.concatenate", "numpy.nonzero", "numpy.maximum", "numba.prange", "numpy.all", "numpy.ravel" ]
[((60, 82), 'numba.njit', 'nb.njit', ([], {'parallel': '(True)'}), '(parallel=True)\n', (67, 82), True, 'import numba as nb\n'), ((718, 740), 'numba.njit', 'nb.njit', ([], {'parallel': '(True)'}), '(parallel=True)\n', (725, 740), True, 'import numba as nb\n'), ((264, 308), 'numpy.ones', 'np.ones', (['rankvals.shape[1]'], {'dtype': 'np.float64'}), '(rankvals.shape[1], dtype=np.float64)\n', (271, 308), True, 'import numpy as np\n'), ((322, 350), 'numba.prange', 'nb.prange', (['rankvals.shape[1]'], {}), '(rankvals.shape[1])\n', (331, 350), True, 'import numba as nb\n'), ((898, 936), 'numpy.empty', 'np.empty', (['data.shape'], {'dtype': 'np.float64'}), '(data.shape, dtype=np.float64)\n', (906, 936), True, 'import numpy as np\n'), ((950, 974), 'numba.prange', 'nb.prange', (['data.shape[1]'], {}), '(data.shape[1])\n', (959, 974), True, 'import numba as nb\n'), ((1653, 1666), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (1663, 1666), True, 'import numpy as np\n'), ((1675, 1688), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (1685, 1688), True, 'import numpy as np\n'), ((2092, 2106), 'numpy.all', 'np.all', (['(T == 0)'], {}), '(T == 0)\n', (2098, 2106), True, 'import numpy as np\n'), ((2187, 2230), 'numpy.sqrt', 'np.sqrt', (['(T * n1 * n2 * (n1 + n2 + 1) / 12.0)'], {}), '(T * n1 * n2 * (n1 + n2 + 1) / 12.0)\n', (2194, 2230), True, 'import numpy as np\n'), ((2295, 2313), 'numpy.maximum', 'np.maximum', (['u1', 'u2'], {}), '(u1, u2)\n', (2305, 2313), True, 'import numpy as np\n'), ((587, 607), 'numpy.float64', 'np.float64', (['arr.size'], {}), '(arr.size)\n', (597, 607), True, 'import numpy as np\n'), ((990, 1010), 'numpy.ravel', 'np.ravel', (['data[:, j]'], {}), '(data[:, j])\n', (998, 1010), True, 'import numpy as np\n'), ((1028, 1043), 'numpy.argsort', 'np.argsort', (['arr'], {}), '(arr)\n', (1038, 1043), True, 'import numpy as np\n'), ((1158, 1192), 'numpy.empty', 'np.empty', (['obs.size'], {'dtype': 'np.int64'}), '(obs.size, dtype=np.int64)\n', (1166, 1192), True, 'import numpy as np\n'), ((1789, 1811), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (1803, 1811), True, 'import numpy as np\n'), ((1902, 1923), 'numpy.sum', 'np.sum', (['rankx'], {'axis': '(0)'}), '(rankx, axis=0)\n', (1908, 1923), True, 'import numpy as np\n'), ((2324, 2370), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (2335, 2370), True, 'import numpy as np\n'), ((374, 398), 'numpy.ravel', 'np.ravel', (['rankvals[:, j]'], {}), '(rankvals[:, j])\n', (382, 398), True, 'import numpy as np\n'), ((2458, 2467), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (2464, 2467), True, 'import numpy as np\n'), ((539, 551), 'numpy.diff', 'np.diff', (['idx'], {}), '(idx)\n', (546, 551), True, 'import numpy as np\n'), ((1101, 1117), 'numpy.array', 'np.array', (['[True]'], {}), '([True])\n', (1109, 1117), True, 'import numpy as np\n'), ((1312, 1327), 'numpy.nonzero', 'np.nonzero', (['obs'], {}), '(obs)\n', (1322, 1327), True, 'import numpy as np\n'), ((454, 470), 'numpy.array', 'np.array', (['[True]'], {}), '([True])\n', (462, 470), True, 'import numpy as np\n'), ((493, 509), 'numpy.array', 'np.array', (['[True]'], {}), '([True])\n', (501, 509), True, 'import numpy as np\n')]
from collections import deque import numpy as np import os from abc import ABCMeta, abstractmethod import random random.seed(42) from common import config, VehicleState from helper import Helper INFO = """Average merging time: {} s Traffic flow: {} vehicle/s Average speed: {} km/h Average fuel consumption: {} ml/vehicle""" class Vehicle(object): """docstring for Vehicle""" def __init__(self, builder): super(Vehicle, self).__init__() self.ID = builder.ID self.size = builder.size self.speed = builder.speed self.acceleration = builder.acceleration self.max_speed = builder.max_speed self.min_speed = builder.min_speed self.max_acc = builder.max_acc self.lane = builder.lane self.position = builder.position class VehicleBuilder(object): """docstring for VehicleBuilder""" def __init__(self, ID): super(VehicleBuilder, self).__init__() self.ID = ID self.max_acc = config.max_acc self.max_speed = config.max_speed self.min_speed = config.min_speed self.size = config.size def setSpeed(self, speed): self.speed = speed return self def setPosition(self, position): self.position = position return self def setLane(self, lane): self.lane = lane return self def setAcceleration(self, acceleration): self.acceleration = acceleration return self def build(self): return Vehicle(self) class OnBoardVehicle(object): """docstring for OnBoardVehicle""" def __init__(self, vehicle, t0, min_pass_time=config.min_pass_time): self.vehicle = vehicle self.t0 = t0 self.tm = float('Inf') self.position_history = [vehicle.position] self.speed_history = [vehicle.speed] self.acc_history = [vehicle.acceleration] self.fuel_history = [0] self.time_steps = [t0] self.ParaV = None self.min_pass_time = min_pass_time self.state = VehicleState.PENDING @property def v0(self): return self.speed_history[0] @property def p0(self): return self.position_history[0] @property def merge_time(self): return self.time_steps[-1] - self.time_steps[0] @property def tf(self): return self.time_steps[-1] @property def average_speed(self): return np.array(self.speed_history).mean() @property def fuel_consumption(self): return self.fuel_history[-1] class VehicleGeneratorBase(metaclass=ABCMeta): """docstring for VehicleGeneratorBase""" def __init__(self): self.schedule = deque() self.buildSchedule() @abstractmethod def buildSchedule(self): pass def getAtTime(self, ctime): vehicle_to_add = [] while self.hasVehicle() and self.schedule[0].t0 <= ctime: vehicle_to_add.append(self.schedule.popleft()) return vehicle_to_add def hasVehicle(self): return len(self.schedule) > 0 def FIFOIDAssigner(self): self.schedule = deque(sorted(self.schedule, key=lambda x:x.t0)) for i, ove in enumerate(self.schedule): ove.vehicle.ID = i def SpeedIDAssigner(self): for ove in self.schedule: ove.min_pass_time = Helper.getTmOptimal2(ove.v0, config.case_speed['speed_merge'], -config.control_len, 0) self.schedule = deque(sorted(self.schedule, key=lambda x:x.t0 + x.min_pass_time)) for i, ove in enumerate(self.schedule): ove.vehicle.ID = i self.schedule = deque(sorted(self.schedule, key=lambda x:x.t0)) class Case1VehicleGenerator(VehicleGeneratorBase): """docstring for Case1VehicleGenerator""" def __init__(self): super(Case1VehicleGenerator, self).__init__() def buildSchedule(self): for i in range(config.case1['total_cars']): v = VehicleBuilder(i)\ .setSpeed(config.case1['speed'])\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(i % 2).build() t = 10.0 if (i < 2) else 15.0 # self.schedule.append(OnBoardVehicle(v, t, config.control_len / config.case1['speed'])) tm = Helper.getTmOptimal2(config.case1['speed'], config.case_speed['speed_merge'], -config.control_len, 0) if i == 0 else 0 self.schedule.append(OnBoardVehicle(v, t, tm)) # self.schedule.sort(key=lambda x: x.vehicle.ID) class Case2VehicleGenerator(VehicleGeneratorBase): """docstring for Case1VehicleGenerator""" def __init__(self): super(Case2VehicleGenerator, self).__init__() def buildSchedule(self): tnum = config.case2['total_cars'] # Randomly generate tnum//2 cars on each lane, with time span 10~50 # This does not ensure feasibility at initial state t0_lane0 = np.random.rand(tnum//2) * 40.0 + 10.0 t0_lane1 = np.random.rand(tnum//2) * 40.0 + 10.0 for i in range(tnum): v = VehicleBuilder(-1)\ .setSpeed(config.case2['speed'])\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(i % 2).build() t = t0_lane0[i//2] if (i % 2 == 0) else t0_lane1[i//2] self.schedule.append(OnBoardVehicle(v, t, config.control_len / config.case2['speed'])) self.FIFOIDAssigner() class MainHigherSpeedVG(VehicleGeneratorBase): def __init__(self): super(MainHigherSpeedVG, self).__init__() def buildSchedule(self): # lane0 (main road) t0_lane0 = np.arange(10, 30.1, 2.0) t0_lane1 = np.arange(9, 30.1, 3.1) v0_lane0 = 25.0 v0_lane1 = 15.0 for ti0 in t0_lane0: v = VehicleBuilder(-1)\ .setSpeed(v0_lane0)\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(0).build() self.schedule.append(OnBoardVehicle(v, ti0, Helper.getTc(v))) for ti0 in t0_lane1: v = VehicleBuilder(-1)\ .setSpeed(v0_lane1)\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(1).build() self.schedule.append(OnBoardVehicle(v, ti0, Helper.getTc(v))) self.FIFOIDAssigner() # self.SpeedIDAssigner() class PoissonVehicleGenerator(VehicleGeneratorBase): """docstring for Case1VehicleGenerator""" def __init__(self, tnum_lane0, tnum_lane1): self.tnum_lane0 = tnum_lane0 self.tnum_lane1 = tnum_lane1 super(PoissonVehicleGenerator, self).__init__() def buildSchedule(self): speed_lane0 = config.case_speed['speed_init_lane0'] speed_lane1 = config.case_speed['speed_init_lane1'] t0_lane0 = [0] t0_lane1 = [0] tsp_lane0 = (config.delta) / speed_lane0 tsp_lane1 = (config.delta) / speed_lane1 for i in range(self.tnum_lane0): t0_lane0.append(t0_lane0[-1] + tsp_lane0 + np.random.exponential(5.0)) for i in range(self.tnum_lane1): t0_lane1.append(t0_lane1[-1] + tsp_lane1 + np.random.exponential(5.0)) t0_lane0 = np.array(t0_lane0[1:]) t0_lane1 = np.array(t0_lane1[1:]) for i in range(self.tnum_lane0): speed_v = speed_lane0 + np.random.randn() v = VehicleBuilder(-1)\ .setSpeed(speed_v)\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(0).build() t = t0_lane0[i] self.schedule.append(OnBoardVehicle(v, t, Helper.getTc(v))) for i in range(self.tnum_lane1): speed_v = speed_lane1 + np.random.randn() v = VehicleBuilder(-1)\ .setSpeed(speed_v)\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(1).build() t = t0_lane1[i] self.schedule.append(OnBoardVehicle(v, t, Helper.getTc(v))) self.FIFOIDAssigner() # self.SpeedIDAssigner() class APPVehicleGenerator(VehicleGeneratorBase): def __init__(self, tnum, id_assigner, min_pass_time): self.tnum = tnum self.ida = id_assigner self.mpt = min_pass_time super(APPVehicleGenerator, self).__init__() def buildSchedule(self): tnum = self.tnum t0_lane0 = np.random.rand(tnum//2) * 40.0 + 10.0 t0_lane1 = np.random.rand(tnum//2) * 40.0 + 10.0 for i in range(tnum): v = VehicleBuilder(-1)\ .setSpeed(config.case2['speed'])\ .setPosition(-config.control_len)\ .setAcceleration(0)\ .setLane(i % 2).build() t = t0_lane0[i//2] if (i % 2 == 0) else t0_lane1[i//2] self.schedule.append(OnBoardVehicle(v, t, self.mpt)) if self.ida == 'FIFO': self.FIFOIDAssigner() elif self.ida == 'main': self.MainRoadFirstIDAssigner() class GameLoop(object): """docstring for GameLoop""" def __init__(self, vscd): super(GameLoop, self).__init__() self.ctime = 0 self.vscd = vscd self.on_board_vehicles = deque() self.finished_vehicels = deque() def isOver(self): if self.ctime >= config.max_sim_time: print("Simulation time out.") return True return (not self.vscd.hasVehicle()) and self.isEmpty() def isEmpty(self): return len(self.on_board_vehicles) == 0 def nextStep(self): self.ctime += config.time_meta t = self.ctime ove_t = self.vscd.getAtTime(t) for v in ove_t: if v.vehicle.ID == 0: # v.tm = v.t0 + max(config.min_pass_time, v.min_pass_time) v.tm = v.t0 + Helper.getTmOptimal2(v.v0, config.speed_merge, v.p0, 0) elif len(self.on_board_vehicles) > 0: v.tm = Helper.getTm(v, self.on_board_vehicles[-1]) else: v.tm = Helper.getTm(v, self.finished_vehicels[-1]) self.on_board_vehicles.append(v) TimeM = Helper.getTimeMatrix(t, v.tm) ConfV = Helper.getConfigVec(v) v.ParaV = np.dot(np.linalg.inv(TimeM), ConfV) v.state = VehicleState.ON_RAMP for v in self.on_board_vehicles: Helper.updateAVP(v, t) if v.vehicle.position >= 0: v.state = VehicleState.ON_MERGING while not self.isEmpty() and self.on_board_vehicles[0].vehicle.position >= config.merging_len: self.on_board_vehicles[0].state = VehicleState.FINISHED self.finished_vehicels.append((self.on_board_vehicles.popleft())) def play(self): while not self.isOver(): self.nextStep() self.measure() def measure(self): # Measure average merging time AMT = np.array([v.merge_time for v in self.finished_vehicels]).mean() # Measure traffic flow TF = len(self.finished_vehicels) / (self.finished_vehicels[-1].tf - self.finished_vehicels[0].t0) # Measure average speed AS = 1 / np.array([1 / v.average_speed for v in self.finished_vehicels]).mean() * 3.6 # Measure average fuel consumption AFC = np.array([v.fuel_consumption for v in self.finished_vehicels]).mean() print(INFO.format(AMT, TF, AS, AFC)) def draw_result_pyplot(self, file_path=None): import matplotlib.pyplot as plt plt.figure(1) plt.subplot(221) plt.xlabel('time') plt.ylabel('position') plt.title('positions') for tv in self.finished_vehicels: linecolor = 'r--' if tv.vehicle.lane == 0 else 'b' plt.plot(tv.time_steps, tv.position_history, linecolor, label="Car {}".format(tv.vehicle.ID)) plt.grid(True) if file_path: plt.savefig(os.path.join(file_path, "position.pdf"), format="pdf") plt.subplot(222) plt.xlabel('time') plt.ylabel('speed') plt.title('speeds') for tv in self.finished_vehicels: linecolor = 'r--' if tv.vehicle.lane == 0 else 'b' plt.plot(tv.time_steps, tv.speed_history, linecolor, label="Car {}".format(tv.vehicle.ID)) plt.grid(True) if file_path: plt.savefig(os.path.join(file_path, "speed.pdf"), format="pdf") plt.subplot(223) plt.xlabel('time') plt.ylabel('acceleration') plt.title('accelerations') for tv in self.finished_vehicels: linecolor = 'r--' if tv.vehicle.lane == 0 else 'b' plt.plot(tv.time_steps, tv.acc_history, linecolor, label="Car {}".format(tv.vehicle.ID)) plt.grid(True) if file_path: plt.savefig(os.path.join(file_path, "acc.pdf"), format="pdf") plt.subplot(224) plt.xlabel('time') plt.ylabel('fuel') plt.title('fuels') for tv in self.finished_vehicels: linecolor = 'r--' if tv.vehicle.lane == 0 else 'b' plt.plot(tv.time_steps, tv.fuel_history, linecolor, label="Car {}".format(tv.vehicle.ID)) plt.grid(True) if file_path: plt.savefig(os.path.join(file_path, "fuel.pdf"), format="pdf") if not file_path: plt.subplots_adjust(top=0.92, bottom=-0.35, left=0.10, right=1.35, hspace=0.35, wspace=0.35) plt.show() def draw_result(self, file_path): from bokeh.layouts import gridplot from bokeh.plotting import figure, output_file, show output_file(file_path) TOOLS = "pan,wheel_zoom,box_zoom,reset,save,box_select,lasso_select" s1 = figure(tools=TOOLS, title="positions", x_axis_label="time", y_axis_label="position") for tv in self.finished_vehicels: s1.line(tv.time_steps, tv.position_history, line_color="red" if tv.vehicle.lane == 0 else "blue", legend="Car {}".format(tv.vehicle.ID), line_width=2) s1.xgrid.minor_grid_line_color = 'navy' s1.xgrid.minor_grid_line_alpha = 0.1 s1.ygrid.minor_grid_line_color = 'navy' s1.ygrid.minor_grid_line_alpha = 0.1 s2 = figure(tools=TOOLS, title="speed", x_axis_label="time", y_axis_label="speed", x_range=s1.x_range) for tv in self.finished_vehicels: s2.line(tv.time_steps, tv.speed_history, line_color="red" if tv.vehicle.lane == 0 else "blue", legend="Car {}".format(tv.vehicle.ID), line_width=2) s2.xgrid.minor_grid_line_color = 'navy' s2.xgrid.minor_grid_line_alpha = 0.1 s2.ygrid.minor_grid_line_color = 'navy' s2.ygrid.minor_grid_line_alpha = 0.1 s3 = figure(tools=TOOLS, title="acceleration", x_axis_label="time", y_axis_label="acceleration", x_range=s1.x_range) for tv in self.finished_vehicels: s3.line(tv.time_steps, tv.acc_history, line_color="red" if tv.vehicle.lane == 0 else "blue", legend="Car {}".format(tv.vehicle.ID), line_width=2) s3.xgrid.minor_grid_line_color = 'navy' s3.xgrid.minor_grid_line_alpha = 0.1 s3.ygrid.minor_grid_line_color = 'navy' s3.ygrid.minor_grid_line_alpha = 0.1 s4 = figure(tools=TOOLS, title="fuel consumption", x_axis_label="time", y_axis_label="fuel", x_range=s1.x_range) for tv in self.finished_vehicels: s4.line(tv.time_steps, tv.fuel_history, line_color="red" if tv.vehicle.lane == 0 else "blue", legend="Car {}".format(tv.vehicle.ID), line_width=2) s4.xgrid.minor_grid_line_color = 'navy' s4.xgrid.minor_grid_line_alpha = 0.1 s4.ygrid.minor_grid_line_color = 'navy' s4.ygrid.minor_grid_line_alpha = 0.1 p = gridplot([[s1, s2, s3, s4]]) try: show(p) except Exception as e: pass show(p) class SpeedGameLoop(GameLoop): """docstring for SpeedGameLoop""" def __init__(self, vscd): super(SpeedGameLoop, self).__init__(vscd) self.on_board_vehicles = [] def nextStep(self): self.ctime += config.time_meta t = self.ctime ove_t = self.vscd.getAtTime(t) for v in ove_t: tmp_v_stack = [] while len(self.on_board_vehicles) > 0 and self.on_board_vehicles[-1].vehicle.ID > v.vehicle.ID: tmpv = self.on_board_vehicles.pop() # tmpv.t0 = t # tmpv.min_pass_time = max(tmpv.min_pass_time, Helper.getTmOptimal2(tmpv.vehicle.speed, # config.case_speed['speed_merge'], tmpv.vehicle.position, 0)) tmp_v_stack.append(tmpv) # Get t_m if len(self.on_board_vehicles) == 0 and len(self.finished_vehicels) == 0: v.tm = v.t0 + max(config.min_pass_time, v.min_pass_time) elif len(self.on_board_vehicles) > 0: v.tm = Helper.getTm(v, self.on_board_vehicles[-1]) else: v.tm = Helper.getTm(v, self.finished_vehicels[-1]) tmp_v_stack.append(v) prevve = None for i in reversed(range(len(tmp_v_stack))): ve = tmp_v_stack[i] if prevve is not None: ve.tm = Helper.getTm(ve, prevve) self.on_board_vehicles.append(ve) TimeM = Helper.getTimeMatrix(t, ve.tm) ConfV = Helper.getConfigVec(ve) # from IPython import embed; embed() ve.ParaV = np.dot(np.linalg.inv(TimeM), ConfV) ve.state = VehicleState.ON_RAMP prevve = ve # print("ID {}".format(prevve.vehicle.ID)) for v in self.on_board_vehicles: Helper.updateAVP(v, t) if v.vehicle.position >= 0: v.state = VehicleState.ON_MERGING while not self.isEmpty() and self.on_board_vehicles[0].vehicle.position >= config.merging_len: self.on_board_vehicles[0].state = VehicleState.FINISHED self.finished_vehicels.append((self.on_board_vehicles.pop(0))) def main(): # vehicle_generator = Case1VehicleGenerator() # game = GameLoop(vehicle_generator) # game.play() # game.draw_result_pyplot("case1") vehicle_generator = MainHigherSpeedVG() game = GameLoop(vehicle_generator) # game = SpeedGameLoop(vehicle_generator) game.play() game.draw_result_pyplot("case2") # vehicle_generator = APPVehicleGenerator(12, 'FIFO', 16.9) # vehicle_generator = PoissonVehicleGenerator(config.case_speed['tnum_lane0'], # config.case_speed['tnum_lane1']) # ggame = GameLoop(vehicle_generator) # ggame.play() # # ggame.draw_result("result.html") # ggame.draw_result_pyplot(".") if __name__ == '__main__': main()
[ "matplotlib.pyplot.grid", "bokeh.plotting.figure", "helper.Helper.getTmOptimal2", "matplotlib.pyplot.ylabel", "numpy.random.rand", "helper.Helper.getConfigVec", "numpy.random.exponential", "numpy.array", "numpy.arange", "helper.Helper.getTc", "helper.Helper.getTimeMatrix", "collections.deque", "matplotlib.pyplot.xlabel", "helper.Helper.updateAVP", "bokeh.plotting.show", "bokeh.layouts.gridplot", "matplotlib.pyplot.title", "numpy.random.randn", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show", "helper.Helper.getTm", "os.path.join", "random.seed", "matplotlib.pyplot.figure", "numpy.linalg.inv", "matplotlib.pyplot.subplot", "bokeh.plotting.output_file" ]
[((118, 133), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (129, 133), False, 'import random\n'), ((2806, 2813), 'collections.deque', 'deque', ([], {}), '()\n', (2811, 2813), False, 'from collections import deque\n'), ((5912, 5936), 'numpy.arange', 'np.arange', (['(10)', '(30.1)', '(2.0)'], {}), '(10, 30.1, 2.0)\n', (5921, 5936), True, 'import numpy as np\n'), ((5957, 5980), 'numpy.arange', 'np.arange', (['(9)', '(30.1)', '(3.1)'], {}), '(9, 30.1, 3.1)\n', (5966, 5980), True, 'import numpy as np\n'), ((7571, 7593), 'numpy.array', 'np.array', (['t0_lane0[1:]'], {}), '(t0_lane0[1:])\n', (7579, 7593), True, 'import numpy as np\n'), ((7614, 7636), 'numpy.array', 'np.array', (['t0_lane1[1:]'], {}), '(t0_lane1[1:])\n', (7622, 7636), True, 'import numpy as np\n'), ((9689, 9696), 'collections.deque', 'deque', ([], {}), '()\n', (9694, 9696), False, 'from collections import deque\n'), ((9731, 9738), 'collections.deque', 'deque', ([], {}), '()\n', (9736, 9738), False, 'from collections import deque\n'), ((12048, 12061), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (12058, 12061), True, 'import matplotlib.pyplot as plt\n'), ((12071, 12087), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(221)'], {}), '(221)\n', (12082, 12087), True, 'import matplotlib.pyplot as plt\n'), ((12097, 12115), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (12107, 12115), True, 'import matplotlib.pyplot as plt\n'), ((12125, 12147), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""position"""'], {}), "('position')\n", (12135, 12147), True, 'import matplotlib.pyplot as plt\n'), ((12157, 12179), 'matplotlib.pyplot.title', 'plt.title', (['"""positions"""'], {}), "('positions')\n", (12166, 12179), True, 'import matplotlib.pyplot as plt\n'), ((12420, 12434), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (12428, 12434), True, 'import matplotlib.pyplot as plt\n'), ((12549, 12565), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(222)'], {}), '(222)\n', (12560, 12565), True, 'import matplotlib.pyplot as plt\n'), ((12575, 12593), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (12585, 12593), True, 'import matplotlib.pyplot as plt\n'), ((12603, 12622), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""speed"""'], {}), "('speed')\n", (12613, 12622), True, 'import matplotlib.pyplot as plt\n'), ((12632, 12651), 'matplotlib.pyplot.title', 'plt.title', (['"""speeds"""'], {}), "('speeds')\n", (12641, 12651), True, 'import matplotlib.pyplot as plt\n'), ((12889, 12903), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (12897, 12903), True, 'import matplotlib.pyplot as plt\n'), ((13015, 13031), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(223)'], {}), '(223)\n', (13026, 13031), True, 'import matplotlib.pyplot as plt\n'), ((13041, 13059), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (13051, 13059), True, 'import matplotlib.pyplot as plt\n'), ((13069, 13095), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""acceleration"""'], {}), "('acceleration')\n", (13079, 13095), True, 'import matplotlib.pyplot as plt\n'), ((13105, 13131), 'matplotlib.pyplot.title', 'plt.title', (['"""accelerations"""'], {}), "('accelerations')\n", (13114, 13131), True, 'import matplotlib.pyplot as plt\n'), ((13367, 13381), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (13375, 13381), True, 'import matplotlib.pyplot as plt\n'), ((13491, 13507), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(224)'], {}), '(224)\n', (13502, 13507), True, 'import matplotlib.pyplot as plt\n'), ((13517, 13535), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (13527, 13535), True, 'import matplotlib.pyplot as plt\n'), ((13545, 13563), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""fuel"""'], {}), "('fuel')\n", (13555, 13563), True, 'import matplotlib.pyplot as plt\n'), ((13573, 13591), 'matplotlib.pyplot.title', 'plt.title', (['"""fuels"""'], {}), "('fuels')\n", (13582, 13591), True, 'import matplotlib.pyplot as plt\n'), ((13828, 13842), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (13836, 13842), True, 'import matplotlib.pyplot as plt\n'), ((14280, 14302), 'bokeh.plotting.output_file', 'output_file', (['file_path'], {}), '(file_path)\n', (14291, 14302), False, 'from bokeh.plotting import figure, output_file, show\n'), ((14395, 14484), 'bokeh.plotting.figure', 'figure', ([], {'tools': 'TOOLS', 'title': '"""positions"""', 'x_axis_label': '"""time"""', 'y_axis_label': '"""position"""'}), "(tools=TOOLS, title='positions', x_axis_label='time', y_axis_label=\n 'position')\n", (14401, 14484), False, 'from bokeh.plotting import figure, output_file, show\n'), ((14927, 15029), 'bokeh.plotting.figure', 'figure', ([], {'tools': 'TOOLS', 'title': '"""speed"""', 'x_axis_label': '"""time"""', 'y_axis_label': '"""speed"""', 'x_range': 's1.x_range'}), "(tools=TOOLS, title='speed', x_axis_label='time', y_axis_label=\n 'speed', x_range=s1.x_range)\n", (14933, 15029), False, 'from bokeh.plotting import figure, output_file, show\n'), ((15482, 15598), 'bokeh.plotting.figure', 'figure', ([], {'tools': 'TOOLS', 'title': '"""acceleration"""', 'x_axis_label': '"""time"""', 'y_axis_label': '"""acceleration"""', 'x_range': 's1.x_range'}), "(tools=TOOLS, title='acceleration', x_axis_label='time', y_axis_label\n ='acceleration', x_range=s1.x_range)\n", (15488, 15598), False, 'from bokeh.plotting import figure, output_file, show\n'), ((16049, 16160), 'bokeh.plotting.figure', 'figure', ([], {'tools': 'TOOLS', 'title': '"""fuel consumption"""', 'x_axis_label': '"""time"""', 'y_axis_label': '"""fuel"""', 'x_range': 's1.x_range'}), "(tools=TOOLS, title='fuel consumption', x_axis_label='time',\n y_axis_label='fuel', x_range=s1.x_range)\n", (16055, 16160), False, 'from bokeh.plotting import figure, output_file, show\n'), ((16612, 16640), 'bokeh.layouts.gridplot', 'gridplot', (['[[s1, s2, s3, s4]]'], {}), '([[s1, s2, s3, s4]])\n', (16620, 16640), False, 'from bokeh.layouts import gridplot\n'), ((16735, 16742), 'bokeh.plotting.show', 'show', (['p'], {}), '(p)\n', (16739, 16742), False, 'from bokeh.plotting import figure, output_file, show\n'), ((3490, 3581), 'helper.Helper.getTmOptimal2', 'Helper.getTmOptimal2', (['ove.v0', "config.case_speed['speed_merge']", '(-config.control_len)', '(0)'], {}), "(ove.v0, config.case_speed['speed_merge'], -config.\n control_len, 0)\n", (3510, 3581), False, 'from helper import Helper\n'), ((10645, 10674), 'helper.Helper.getTimeMatrix', 'Helper.getTimeMatrix', (['t', 'v.tm'], {}), '(t, v.tm)\n', (10665, 10674), False, 'from helper import Helper\n'), ((10696, 10718), 'helper.Helper.getConfigVec', 'Helper.getConfigVec', (['v'], {}), '(v)\n', (10715, 10718), False, 'from helper import Helper\n'), ((10879, 10901), 'helper.Helper.updateAVP', 'Helper.updateAVP', (['v', 't'], {}), '(v, t)\n', (10895, 10901), False, 'from helper import Helper\n'), ((13984, 14080), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.92)', 'bottom': '(-0.35)', 'left': '(0.1)', 'right': '(1.35)', 'hspace': '(0.35)', 'wspace': '(0.35)'}), '(top=0.92, bottom=-0.35, left=0.1, right=1.35, hspace=\n 0.35, wspace=0.35)\n', (14003, 14080), True, 'import matplotlib.pyplot as plt\n'), ((14111, 14121), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (14119, 14121), True, 'import matplotlib.pyplot as plt\n'), ((16668, 16675), 'bokeh.plotting.show', 'show', (['p'], {}), '(p)\n', (16672, 16675), False, 'from bokeh.plotting import figure, output_file, show\n'), ((18658, 18680), 'helper.Helper.updateAVP', 'Helper.updateAVP', (['v', 't'], {}), '(v, t)\n', (18674, 18680), False, 'from helper import Helper\n'), ((2534, 2562), 'numpy.array', 'np.array', (['self.speed_history'], {}), '(self.speed_history)\n', (2542, 2562), True, 'import numpy as np\n'), ((4488, 4594), 'helper.Helper.getTmOptimal2', 'Helper.getTmOptimal2', (["config.case1['speed']", "config.case_speed['speed_merge']", '(-config.control_len)', '(0)'], {}), "(config.case1['speed'], config.case_speed['speed_merge'\n ], -config.control_len, 0)\n", (4508, 4594), False, 'from helper import Helper\n'), ((5158, 5183), 'numpy.random.rand', 'np.random.rand', (['(tnum // 2)'], {}), '(tnum // 2)\n', (5172, 5183), True, 'import numpy as np\n'), ((5216, 5241), 'numpy.random.rand', 'np.random.rand', (['(tnum // 2)'], {}), '(tnum // 2)\n', (5230, 5241), True, 'import numpy as np\n'), ((7718, 7735), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (7733, 7735), True, 'import numpy as np\n'), ((8120, 8137), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (8135, 8137), True, 'import numpy as np\n'), ((8844, 8869), 'numpy.random.rand', 'np.random.rand', (['(tnum // 2)'], {}), '(tnum // 2)\n', (8858, 8869), True, 'import numpy as np\n'), ((8902, 8927), 'numpy.random.rand', 'np.random.rand', (['(tnum // 2)'], {}), '(tnum // 2)\n', (8916, 8927), True, 'import numpy as np\n'), ((10749, 10769), 'numpy.linalg.inv', 'np.linalg.inv', (['TimeM'], {}), '(TimeM)\n', (10762, 10769), True, 'import numpy as np\n'), ((11439, 11495), 'numpy.array', 'np.array', (['[v.merge_time for v in self.finished_vehicels]'], {}), '([v.merge_time for v in self.finished_vehicels])\n', (11447, 11495), True, 'import numpy as np\n'), ((11829, 11891), 'numpy.array', 'np.array', (['[v.fuel_consumption for v in self.finished_vehicels]'], {}), '([v.fuel_consumption for v in self.finished_vehicels])\n', (11837, 11891), True, 'import numpy as np\n'), ((12483, 12522), 'os.path.join', 'os.path.join', (['file_path', '"""position.pdf"""'], {}), "(file_path, 'position.pdf')\n", (12495, 12522), False, 'import os\n'), ((12952, 12988), 'os.path.join', 'os.path.join', (['file_path', '"""speed.pdf"""'], {}), "(file_path, 'speed.pdf')\n", (12964, 12988), False, 'import os\n'), ((13430, 13464), 'os.path.join', 'os.path.join', (['file_path', '"""acc.pdf"""'], {}), "(file_path, 'acc.pdf')\n", (13442, 13464), False, 'import os\n'), ((13891, 13926), 'os.path.join', 'os.path.join', (['file_path', '"""fuel.pdf"""'], {}), "(file_path, 'fuel.pdf')\n", (13903, 13926), False, 'import os\n'), ((18265, 18295), 'helper.Helper.getTimeMatrix', 'Helper.getTimeMatrix', (['t', 've.tm'], {}), '(t, ve.tm)\n', (18285, 18295), False, 'from helper import Helper\n'), ((18321, 18344), 'helper.Helper.getConfigVec', 'Helper.getConfigVec', (['ve'], {}), '(ve)\n', (18340, 18344), False, 'from helper import Helper\n'), ((6320, 6335), 'helper.Helper.getTc', 'Helper.getTc', (['v'], {}), '(v)\n', (6332, 6335), False, 'from helper import Helper\n'), ((6627, 6642), 'helper.Helper.getTc', 'Helper.getTc', (['v'], {}), '(v)\n', (6639, 6642), False, 'from helper import Helper\n'), ((7397, 7423), 'numpy.random.exponential', 'np.random.exponential', (['(5.0)'], {}), '(5.0)\n', (7418, 7423), True, 'import numpy as np\n'), ((7523, 7549), 'numpy.random.exponential', 'np.random.exponential', (['(5.0)'], {}), '(5.0)\n', (7544, 7549), True, 'import numpy as np\n'), ((8021, 8036), 'helper.Helper.getTc', 'Helper.getTc', (['v'], {}), '(v)\n', (8033, 8036), False, 'from helper import Helper\n'), ((8423, 8438), 'helper.Helper.getTc', 'Helper.getTc', (['v'], {}), '(v)\n', (8435, 8438), False, 'from helper import Helper\n'), ((10316, 10371), 'helper.Helper.getTmOptimal2', 'Helper.getTmOptimal2', (['v.v0', 'config.speed_merge', 'v.p0', '(0)'], {}), '(v.v0, config.speed_merge, v.p0, 0)\n', (10336, 10371), False, 'from helper import Helper\n'), ((10447, 10490), 'helper.Helper.getTm', 'Helper.getTm', (['v', 'self.on_board_vehicles[-1]'], {}), '(v, self.on_board_vehicles[-1])\n', (10459, 10490), False, 'from helper import Helper\n'), ((10534, 10577), 'helper.Helper.getTm', 'Helper.getTm', (['v', 'self.finished_vehicels[-1]'], {}), '(v, self.finished_vehicels[-1])\n', (10546, 10577), False, 'from helper import Helper\n'), ((17808, 17851), 'helper.Helper.getTm', 'Helper.getTm', (['v', 'self.on_board_vehicles[-1]'], {}), '(v, self.on_board_vehicles[-1])\n', (17820, 17851), False, 'from helper import Helper\n'), ((17895, 17938), 'helper.Helper.getTm', 'Helper.getTm', (['v', 'self.finished_vehicels[-1]'], {}), '(v, self.finished_vehicels[-1])\n', (17907, 17938), False, 'from helper import Helper\n'), ((18164, 18188), 'helper.Helper.getTm', 'Helper.getTm', (['ve', 'prevve'], {}), '(ve, prevve)\n', (18176, 18188), False, 'from helper import Helper\n'), ((18434, 18454), 'numpy.linalg.inv', 'np.linalg.inv', (['TimeM'], {}), '(TimeM)\n', (18447, 18454), True, 'import numpy as np\n'), ((11693, 11758), 'numpy.array', 'np.array', (['[(1 / v.average_speed) for v in self.finished_vehicels]'], {}), '([(1 / v.average_speed) for v in self.finished_vehicels])\n', (11701, 11758), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import os import torch from torch.autograd import Variable import numpy as np import scipy import matplotlib.pyplot as plt import cv2 import scipy.ndimage import shutil import scipy.misc as misc from PIL import Image def mkdirs(folders, erase=False): if type(folders) is not list: folders = [folders] for fold in folders: if not os.path.exists(fold): os.makedirs(fold) else: if erase: shutil.rmtree(fold) os.makedirs(fold) def normalize_img(X): min_, max_ = np.min(X), np.max(X) X = (X - min_) / (max_ - min_ + 1e-9) X = X * 255 return X.astype(np.uint8) def imread(imgfile): assert os.path.exists(imgfile), '{} does not exist!'.format(imgfile) srcBGR = cv2.imread(imgfile) destRGB = cv2.cvtColor(srcBGR, cv2.COLOR_BGR2RGB) return destRGB def writeImg(array, savepath): scipy.misc.imsave(savepath, array) def imresize(img, resizeratio=1): '''Take care of cv2 reshape squeeze behevaior''' if resizeratio == 1: return img outshape = (int(img.shape[1] * resizeratio), int(img.shape[0] * resizeratio)) # temp = cv2.resize(img, outshape).astype(float) temp = misc.imresize(img, size=outshape).astype(float) if len(img.shape) == 3 and img.shape[2] == 1: temp = np.reshape(temp, temp.shape + (1,)) return temp def imresize_shape(img, outshape): if len(img.shape) == 3: if img.shape[0] == 1 or img.shape[0] == 3: transpose_img = np.transpose(img, (1, 2, 0)) _img = imresize_shape(transpose_img, outshape) return np.transpose(_img, (2, 0, 1)) if len(img.shape) == 4: img_out = [] for this_img in img: img_out.append(imresize_shape(this_img, outshape)) return np.stack(img_out, axis=0) img = img.astype(np.float32) outshape = (int(outshape[1]), int(outshape[0])) # temp = cv2.resize(img, outshape).astype(float) temp = misc.imresize(img, size=outshape, interp='bilinear').astype(float) if len(img.shape) == 3 and img.shape[2] == 1: temp = np.reshape(temp, temp.shape + (1,)) return temp def imshow(img, size=None): if size is not None: plt.figure(figsize=size) else: plt.figure() plt.imshow(img) plt.show() def Indexflow(Totalnum, batch_size, random=True): numberofchunk = int(Totalnum + batch_size - 1) // int(batch_size) # the floor # Chunkfile = np.zeros((batch_size, row*col*channel)) totalIndx = np.arange(Totalnum).astype(np.int) if random is True: totalIndx = np.random.permutation(totalIndx) chunkstart = 0 for chunkidx in range(int(numberofchunk)): thisnum = min(batch_size, Totalnum - chunkidx * batch_size) thisInd = totalIndx[chunkstart: chunkstart + thisnum] chunkstart += thisnum yield thisInd def IndexH5(h5_array, indices): read_list = [] for idx in indices: read_list.append(h5_array[idx]) return np.stack(read_list, 0) def ensure_dir(path): if not os.path.exists(path): os.makedirs(path) def word_list(word_idx_list, vocab): """Take a list of word ids and a vocabulary from a dataset as inputs and return the corresponding words as a list. """ word_list = [] for i in range(len(word_idx_list)): vocab_id = word_idx_list[i] word = vocab.idx2word[vocab_id] if word == vocab.end_word: break if word != vocab.start_word: word_list.append(word) return word_list def clean_sentence(word_idx_list, vocab): """Take a list of word ids and a vocabulary from a dataset as inputs and return the corresponding sentence (as a single Python string). """ sentence = [] for i in range(len(word_idx_list)): vocab_id = word_idx_list[i] word = vocab.idx2word[vocab_id] if word == vocab.end_word: break if word != vocab.start_word: sentence.append(word) sentence = " ".join(sentence) return sentence def get_end_symbol_index(caption_list): if 1 in caption_list: return caption_list.index(1) + 1 else: return len(caption_list) def get_caption_lengths(captions_list): caption_lengths = [get_end_symbol_index(caption) for caption in captions_list] caption_lengths.sort(reverse=True) batch_captions = torch.zeros(len(captions_list), max(caption_lengths)).long() caption_lengths = torch.LongTensor(caption_lengths) for i, cap in enumerate(captions_list): end = caption_lengths[i] batch_captions[i, :end] = torch.tensor(cap[:end]).long() if torch.cuda.is_available(): batch_captions = batch_captions.cuda() caption_lengths = caption_lengths.cuda() return batch_captions, caption_lengths def to_numpy(src): if type(src) == np.ndarray: return src elif type(src) == Variable: x = src.data else: x = src return x.detach().cpu().numpy() def tensor2im(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path) def convert_back_to_text(word_idx_array, vocab): from itertools import takewhile blacklist = [vocab.word2idx[word] for word in [vocab.start_word]] predicate = lambda word_id: vocab.idx2word[word_id] != vocab.end_word sampled_caption = [vocab.idx2word[word_id] for word_id in takewhile(predicate, word_idx_array) if word_id not in blacklist] sentence = '-'.join(sampled_caption) return sentence
[ "torch.LongTensor", "torch.cuda.is_available", "scipy.misc.imresize", "numpy.arange", "matplotlib.pyplot.imshow", "os.path.exists", "numpy.mean", "numpy.reshape", "scipy.misc.imsave", "numpy.max", "numpy.stack", "numpy.min", "numpy.random.permutation", "numpy.tile", "torch.abs", "itertools.takewhile", "cv2.cvtColor", "numpy.std", "numpy.transpose", "cv2.imread", "matplotlib.pyplot.show", "PIL.Image.fromarray", "numpy.median", "os.makedirs", "torch.tensor", "matplotlib.pyplot.figure", "shutil.rmtree" ]
[((724, 747), 'os.path.exists', 'os.path.exists', (['imgfile'], {}), '(imgfile)\n', (738, 747), False, 'import os\n'), ((799, 818), 'cv2.imread', 'cv2.imread', (['imgfile'], {}), '(imgfile)\n', (809, 818), False, 'import cv2\n'), ((833, 872), 'cv2.cvtColor', 'cv2.cvtColor', (['srcBGR', 'cv2.COLOR_BGR2RGB'], {}), '(srcBGR, cv2.COLOR_BGR2RGB)\n', (845, 872), False, 'import cv2\n'), ((929, 963), 'scipy.misc.imsave', 'scipy.misc.imsave', (['savepath', 'array'], {}), '(savepath, array)\n', (946, 963), False, 'import scipy\n'), ((2330, 2345), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (2340, 2345), True, 'import matplotlib.pyplot as plt\n'), ((2350, 2360), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2358, 2360), True, 'import matplotlib.pyplot as plt\n'), ((3058, 3080), 'numpy.stack', 'np.stack', (['read_list', '(0)'], {}), '(read_list, 0)\n', (3066, 3080), True, 'import numpy as np\n'), ((4542, 4575), 'torch.LongTensor', 'torch.LongTensor', (['caption_lengths'], {}), '(caption_lengths)\n', (4558, 4575), False, 'import torch\n'), ((4726, 4751), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4749, 4751), False, 'import torch\n'), ((6739, 6767), 'PIL.Image.fromarray', 'Image.fromarray', (['image_numpy'], {}), '(image_numpy)\n', (6754, 6767), False, 'from PIL import Image\n'), ((581, 590), 'numpy.min', 'np.min', (['X'], {}), '(X)\n', (587, 590), True, 'import numpy as np\n'), ((592, 601), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (598, 601), True, 'import numpy as np\n'), ((1356, 1391), 'numpy.reshape', 'np.reshape', (['temp', '(temp.shape + (1,))'], {}), '(temp, temp.shape + (1,))\n', (1366, 1391), True, 'import numpy as np\n'), ((1845, 1870), 'numpy.stack', 'np.stack', (['img_out'], {'axis': '(0)'}), '(img_out, axis=0)\n', (1853, 1870), True, 'import numpy as np\n'), ((2155, 2190), 'numpy.reshape', 'np.reshape', (['temp', '(temp.shape + (1,))'], {}), '(temp, temp.shape + (1,))\n', (2165, 2190), True, 'import numpy as np\n'), ((2270, 2294), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'size'}), '(figsize=size)\n', (2280, 2294), True, 'import matplotlib.pyplot as plt\n'), ((2313, 2325), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2323, 2325), True, 'import matplotlib.pyplot as plt\n'), ((2648, 2680), 'numpy.random.permutation', 'np.random.permutation', (['totalIndx'], {}), '(totalIndx)\n', (2669, 2680), True, 'import numpy as np\n'), ((3116, 3136), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (3130, 3136), False, 'import os\n'), ((3146, 3163), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (3157, 3163), False, 'import os\n'), ((7781, 7801), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (7795, 7801), False, 'import os\n'), ((7811, 7828), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (7822, 7828), False, 'import os\n'), ((382, 402), 'os.path.exists', 'os.path.exists', (['fold'], {}), '(fold)\n', (396, 402), False, 'import os\n'), ((416, 433), 'os.makedirs', 'os.makedirs', (['fold'], {}), '(fold)\n', (427, 433), False, 'import os\n'), ((1243, 1276), 'scipy.misc.imresize', 'misc.imresize', (['img'], {'size': 'outshape'}), '(img, size=outshape)\n', (1256, 1276), True, 'import scipy.misc as misc\n'), ((1552, 1580), 'numpy.transpose', 'np.transpose', (['img', '(1, 2, 0)'], {}), '(img, (1, 2, 0))\n', (1564, 1580), True, 'import numpy as np\n'), ((1659, 1688), 'numpy.transpose', 'np.transpose', (['_img', '(2, 0, 1)'], {}), '(_img, (2, 0, 1))\n', (1671, 1688), True, 'import numpy as np\n'), ((2022, 2074), 'scipy.misc.imresize', 'misc.imresize', (['img'], {'size': 'outshape', 'interp': '"""bilinear"""'}), "(img, size=outshape, interp='bilinear')\n", (2035, 2074), True, 'import scipy.misc as misc\n'), ((2570, 2589), 'numpy.arange', 'np.arange', (['Totalnum'], {}), '(Totalnum)\n', (2579, 2589), True, 'import numpy as np\n'), ((5746, 5777), 'numpy.tile', 'np.tile', (['image_numpy', '(3, 1, 1)'], {}), '(image_numpy, (3, 1, 1))\n', (5753, 5777), True, 'import numpy as np\n'), ((8122, 8158), 'itertools.takewhile', 'takewhile', (['predicate', 'word_idx_array'], {}), '(predicate, word_idx_array)\n', (8131, 8158), False, 'from itertools import takewhile\n'), ((486, 505), 'shutil.rmtree', 'shutil.rmtree', (['fold'], {}), '(fold)\n', (499, 505), False, 'import shutil\n'), ((522, 539), 'os.makedirs', 'os.makedirs', (['fold'], {}), '(fold)\n', (533, 539), False, 'import os\n'), ((4687, 4710), 'torch.tensor', 'torch.tensor', (['cap[:end]'], {}), '(cap[:end])\n', (4699, 4710), False, 'import torch\n'), ((6375, 6401), 'torch.abs', 'torch.abs', (['param.grad.data'], {}), '(param.grad.data)\n', (6384, 6401), False, 'import torch\n'), ((5801, 5837), 'numpy.transpose', 'np.transpose', (['image_numpy', '(1, 2, 0)'], {}), '(image_numpy, (1, 2, 0))\n', (5813, 5837), True, 'import numpy as np\n'), ((7267, 7277), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (7274, 7277), True, 'import numpy as np\n'), ((7279, 7288), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (7285, 7288), True, 'import numpy as np\n'), ((7290, 7299), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (7296, 7299), True, 'import numpy as np\n'), ((7301, 7313), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (7310, 7313), True, 'import numpy as np\n'), ((7315, 7324), 'numpy.std', 'np.std', (['x'], {}), '(x)\n', (7321, 7324), True, 'import numpy as np\n')]
"""plot.py: Utility builder class for ML plots. Uses scikit-learn code samples and framework """ __author__ = "<NAME>" __license__ = "BSD" __email__ = "<EMAIL>" import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import randomcolor import math from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve from sklearn.metrics import auc from .image import Image class PlotBuilder: def __init__(self): self.__figures = [] self._subplot_idx = None self._subplot_size = [1, 1] self._current_subplot = None self._next_plot = True def show(self, close=True): plt.show() if close: self.close() def close(self): for fig in self.__figures: plt.close(fig) self.__figures = [] self._subplot_idx = None self._subplot_size = [1, 1] def same(self): self._next_plot = False return self @staticmethod def get_plot(): return plt def create_subplots(self, rows, cols, fig_size=(18, 18)): self.__figures.append(plt.figure(figsize=fig_size)) self._subplot_idx = 0 self._subplot_size = [rows, cols] return self def _get_next_plot(self, **kwargs): if not self._next_plot: self._next_plot = False return self._current_subplot if self._subplot_idx is not None and self._subplot_idx >= (self._subplot_size[0] * self._subplot_size[1]): self._subplot_idx = None self._subplot_size = [1, 1] if self._subplot_idx is None: self.__figures.append(plt.figure(**kwargs)) self._current_subplot = self.__figures[-1].add_subplot(1, 1, 1) return self._current_subplot self._subplot_idx += 1 self._current_subplot = self.__figures[-1].add_subplot(*self._subplot_size, self._subplot_idx, **kwargs) return self._current_subplot def create_plot(self, title, x_data, *args): """ Plot a series of graphs on X axis points given by x_data and Y axis by tuples of (y_values, y_title) in args """ sp = self._get_next_plot() rand_color = randomcolor.RandomColor() limits = [[100000, -100000], [100000, -100000], [100000, -100000]] x_values, x_label = x_data limits[0][0] = min(limits[0][0], min(x_values)) limits[0][1] = max(limits[0][1], max(x_values)) for data in args: color = rand_color.generate()[0] if isinstance(data, list): i = 0 for y_values in data: i += 1 limits[1][0] = min(limits[1][0], min(y_values)) limits[1][1] = max(limits[1][1], max(y_values)) sp.plot(x_values, y_values, color=color, linewidth=2, linestyle='--' if i % 2 else '-') else: y_values, y_title = data limits[1][0] = min(limits[1][0], min(y_values)) limits[1][1] = max(limits[1][1], max(y_values)) sp.plot(x_values, y_values, label=y_title, color=color, linewidth=2, linestyle='-') sp.set_xlim(limits[0]) sp.set_xlabel(x_label) sp.set_ylim(limits[1]) sp.legend(loc='upper right') sp.set_title(title) return self def create_horizontal_line(self, *args, **kwargs): sp = self._get_next_plot() rand_color = randomcolor.RandomColor() y_limits = list(sp.get_ylim()) for data in args: y_value, y_title = data y_limits[0] = min(y_limits[0], y_value) y_limits[1] = max(y_limits[1], y_value) sp.plot(sp.get_xlim(), [y_value, y_value], label=y_title, color=rand_color.generate()[0], **kwargs) sp.set_ylim([y_limits[0] * 0.9, y_limits[1] * 1.1]) sp.legend(loc='upper right') return self def create_scatter_plot(self, title, axis_labels, *args): """ Plot a series of graphs of scatter points given by the list of tuples (x, y, data_label) """ markers = ['o', '*', '+', 'P', 'X', 'D'] is_3d = len(axis_labels) == 3 sp = self._get_next_plot(projection='3d') if is_3d else self._get_next_plot() rand_color = randomcolor.RandomColor() limits = [[100000, -100000], [100000, -100000], [100000, -100000]] marker_id = 0 for data in args: data = list(data) values = data[:-1] label = data[-1] color = rand_color.generate()[0] for i, v in enumerate(values): limits[i][0] = min(limits[i][0], min(v)) limits[i][1] = max(limits[i][1], max(v)) sp.scatter(*values, label=label, color=color, marker=markers[marker_id % len(markers)]) marker_id += 1 if is_3d: x_label, y_label, z_label = axis_labels else: x_label, y_label = axis_labels sp.set_xlim(limits[0]) sp.set_xlabel(x_label) sp.set_ylim(limits[1]) sp.set_ylabel(y_label) if is_3d: sp.set_zlim(limits[2]) sp.set_zlabel(z_label) sp.legend(loc='upper right') sp.set_title(title) return self def create_histograms(self, pd_categoricals, titles, bins='auto', fig_size=(13, 6)): """ Creates a histogram based on x_data """ fig, ax = plt.subplots(figsize=fig_size) self.__figures.append(fig) subplot_no = len(pd_categoricals) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) colors = {} for i in range(len(pd_categoricals)): data = pd_categoricals[i] if isinstance(data, pd.core.series.Series): data = data[data.isnull() == False].value_counts() else: data, labels = data class_id, data = np.unique(data, return_counts=True) sort_freq = np.argsort(-data) data = dict(zip([labels[c] for c in class_id[sort_freq]], data[sort_freq])) labels = [name for name in data.keys()] data = [data[name] for name in labels] if len(colors) != len(labels): colors = dict(zip(labels, randomcolor.RandomColor().generate(count=len(labels)))) sp = fig.add_subplot(1, subplot_no, i + 1) plt.bar(labels, data, color=[colors[l] for l in labels]) plt.xticks(labels, rotation=90) sp.set_title(titles[i]) plt.tight_layout() return self def create_images(self, images, titles, **kwargs): """ Creates a grid of images """ subplot_cols = min(len(images), 6) subplot_rows = math.ceil(len(images) / subplot_cols) fig_size = kwargs.pop('figsize', 3) dpi = kwargs.pop('dpi', 80) fig = plt.figure(figsize=(subplot_cols * fig_size, subplot_rows * fig_size), dpi=dpi) self.__figures.append(fig) if len(images) != len(titles): raise(Exception("Image and title list must be the same")) for i in range(len(images)): sp = fig.add_subplot(subplot_rows, subplot_cols, i + 1) sp.set_title(titles[i]) image = images[i] if isinstance(image, str): image = Image.load(image) plt.imshow(Image.to_image(image), **kwargs) sp.axes.get_xaxis().set_visible(False) sp.axes.get_yaxis().set_visible(False) sp.grid(None) plt.tight_layout() return self # https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html def create_confusion_matrix(self, y_true, y_pred, classes, title=None, x_label='Predicted class', y_label='True class', normalize=False, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ fig, ax = plt.subplots(figsize=(8, 8)) self.__figures.append(fig) if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred, labels=np.array(range(len(classes)))) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] im = ax.imshow(cm, interpolation='nearest', cmap=cmap) # ax.figure.colorbar(im, ax=ax) # We want to show all ticks...and label them with the respective list entries ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=classes, yticklabels=classes, title=title, ylabel=y_label, xlabel=x_label) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") ax.spines['bottom'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='both', which='major', pad=10) # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="green" if i == j else "white" if cm[i, j] > thresh else "black") fig.tight_layout() return self # https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html def create_roc_curve_multiclass(self, y_true_labels, y_predicted_scores, classes, plot_mask=False): """ Compute ROC curve and ROC area for each class classes contains a list of target label names in the multiclass clasification plot_mask can contain a list of True/False values for each of the above class to be predicted """ fpr = dict() tpr = dict() roc_auc = dict() if not plot_mask: plot_mask = classes != None for i in range(len(classes)): if plot_mask[i]: fpr[i], tpr[i], _ = roc_curve(y_true_labels, y_predicted_scores[:, i], pos_label=i) roc_auc[i] = auc(fpr[i], tpr[i]) # https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin # Compute micro-average ROC curve and ROC area for all classes y_true_micro = np.array([], dtype=np.int32) y_scores_micro = np.array([], dtype=np.float64) for i in range(len(classes)): if plot_mask[i]: y_true_micro = np.append(y_true_micro, y_true_labels == i) y_scores_micro = np.append(y_scores_micro, y_predicted_scores[:, i]) fpr["micro"], tpr["micro"], _ = roc_curve(y_true_micro, y_scores_micro) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) self.__plot_roc_curve(fpr, tpr, roc_auc, classes) return self def __plot_roc_curve(self, fpr, tpr, roc_auc, classes): self.__figures.append(plt.figure(figsize=(15, 15))) rand_color = randomcolor.RandomColor() for i, c in enumerate(classes): if i in fpr: plt.plot(fpr[i], tpr[i], label='ROC curve [class=%s] (area = %0.2f)' % (c, roc_auc[i]), color=rand_color.generate()[0], linewidth=2) if 'micro' in fpr: plt.plot(fpr['micro'], tpr['micro'], label='ROC curve Micro Average (area = %0.2f)' % roc_auc['micro'], color='deeppink', linewidth=4, linestyle=':') if 'macro' in fpr: plt.plot(fpr['macro'], tpr['macro'], label='ROC curve Macro Average (area = %0.2f)' % roc_auc['macro'], color='darkorange', linewidth=4, linestyle=':') plt.plot([0, 1], [0, 1], color='navy', linewidth=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall (False Positive Rate)') plt.ylabel('Precision (True Positive Rate)') plt.title('Receiver operating characteristic') plt.legend(loc="lower right")
[ "matplotlib.pyplot.ylabel", "sklearn.metrics.auc", "numpy.argsort", "numpy.array", "sklearn.metrics.roc_curve", "randomcolor.RandomColor", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xticks", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "numpy.unique", "numpy.append", "matplotlib.pyplot.figure", "matplotlib.pyplot.bar", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplots" ]
[((697, 707), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (705, 707), True, 'import matplotlib.pyplot as plt\n'), ((2273, 2298), 'randomcolor.RandomColor', 'randomcolor.RandomColor', ([], {}), '()\n', (2296, 2298), False, 'import randomcolor\n'), ((3572, 3597), 'randomcolor.RandomColor', 'randomcolor.RandomColor', ([], {}), '()\n', (3595, 3597), False, 'import randomcolor\n'), ((4421, 4446), 'randomcolor.RandomColor', 'randomcolor.RandomColor', ([], {}), '()\n', (4444, 4446), False, 'import randomcolor\n'), ((5593, 5623), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'fig_size'}), '(figsize=fig_size)\n', (5605, 5623), True, 'import matplotlib.pyplot as plt\n'), ((7098, 7177), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(subplot_cols * fig_size, subplot_rows * fig_size)', 'dpi': 'dpi'}), '(figsize=(subplot_cols * fig_size, subplot_rows * fig_size), dpi=dpi)\n', (7108, 7177), True, 'import matplotlib.pyplot as plt\n'), ((7768, 7786), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7784, 7786), True, 'import matplotlib.pyplot as plt\n'), ((8266, 8294), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (8278, 8294), True, 'import matplotlib.pyplot as plt\n'), ((10963, 10991), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int32'}), '([], dtype=np.int32)\n', (10971, 10991), True, 'import numpy as np\n'), ((11017, 11047), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.float64'}), '([], dtype=np.float64)\n', (11025, 11047), True, 'import numpy as np\n'), ((11316, 11355), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_true_micro', 'y_scores_micro'], {}), '(y_true_micro, y_scores_micro)\n', (11325, 11355), False, 'from sklearn.metrics import roc_curve\n'), ((11383, 11414), 'sklearn.metrics.auc', 'auc', (["fpr['micro']", "tpr['micro']"], {}), "(fpr['micro'], tpr['micro'])\n", (11386, 11414), False, 'from sklearn.metrics import auc\n'), ((11638, 11663), 'randomcolor.RandomColor', 'randomcolor.RandomColor', ([], {}), '()\n', (11661, 11663), False, 'import randomcolor\n'), ((12335, 12402), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]'], {'color': '"""navy"""', 'linewidth': '(2)', 'linestyle': '"""--"""'}), "([0, 1], [0, 1], color='navy', linewidth=2, linestyle='--')\n", (12343, 12402), True, 'import matplotlib.pyplot as plt\n'), ((12411, 12431), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (12419, 12431), True, 'import matplotlib.pyplot as plt\n'), ((12440, 12461), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (12448, 12461), True, 'import matplotlib.pyplot as plt\n'), ((12470, 12512), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall (False Positive Rate)"""'], {}), "('Recall (False Positive Rate)')\n", (12480, 12512), True, 'import matplotlib.pyplot as plt\n'), ((12521, 12565), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Precision (True Positive Rate)"""'], {}), "('Precision (True Positive Rate)')\n", (12531, 12565), True, 'import matplotlib.pyplot as plt\n'), ((12574, 12620), 'matplotlib.pyplot.title', 'plt.title', (['"""Receiver operating characteristic"""'], {}), "('Receiver operating characteristic')\n", (12583, 12620), True, 'import matplotlib.pyplot as plt\n'), ((12629, 12658), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (12639, 12658), True, 'import matplotlib.pyplot as plt\n'), ((820, 834), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (829, 834), True, 'import matplotlib.pyplot as plt\n'), ((1157, 1185), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'fig_size'}), '(figsize=fig_size)\n', (1167, 1185), True, 'import matplotlib.pyplot as plt\n'), ((6597, 6653), 'matplotlib.pyplot.bar', 'plt.bar', (['labels', 'data'], {'color': '[colors[l] for l in labels]'}), '(labels, data, color=[colors[l] for l in labels])\n', (6604, 6653), True, 'import matplotlib.pyplot as plt\n'), ((6666, 6697), 'matplotlib.pyplot.xticks', 'plt.xticks', (['labels'], {'rotation': '(90)'}), '(labels, rotation=90)\n', (6676, 6697), True, 'import matplotlib.pyplot as plt\n'), ((6746, 6764), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6762, 6764), True, 'import matplotlib.pyplot as plt\n'), ((11586, 11614), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 15)'}), '(figsize=(15, 15))\n', (11596, 11614), True, 'import matplotlib.pyplot as plt\n'), ((11943, 12102), 'matplotlib.pyplot.plot', 'plt.plot', (["fpr['micro']", "tpr['micro']"], {'label': "('ROC curve Micro Average (area = %0.2f)' % roc_auc['micro'])", 'color': '"""deeppink"""', 'linewidth': '(4)', 'linestyle': '""":"""'}), "(fpr['micro'], tpr['micro'], label=\n 'ROC curve Micro Average (area = %0.2f)' % roc_auc['micro'], color=\n 'deeppink', linewidth=4, linestyle=':')\n", (11951, 12102), True, 'import matplotlib.pyplot as plt\n'), ((12153, 12314), 'matplotlib.pyplot.plot', 'plt.plot', (["fpr['macro']", "tpr['macro']"], {'label': "('ROC curve Macro Average (area = %0.2f)' % roc_auc['macro'])", 'color': '"""darkorange"""', 'linewidth': '(4)', 'linestyle': '""":"""'}), "(fpr['macro'], tpr['macro'], label=\n 'ROC curve Macro Average (area = %0.2f)' % roc_auc['macro'], color=\n 'darkorange', linewidth=4, linestyle=':')\n", (12161, 12314), True, 'import matplotlib.pyplot as plt\n'), ((1696, 1716), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '(**kwargs)\n', (1706, 1716), True, 'import matplotlib.pyplot as plt\n'), ((6110, 6145), 'numpy.unique', 'np.unique', (['data'], {'return_counts': '(True)'}), '(data, return_counts=True)\n', (6119, 6145), True, 'import numpy as np\n'), ((6174, 6191), 'numpy.argsort', 'np.argsort', (['(-data)'], {}), '(-data)\n', (6184, 6191), True, 'import numpy as np\n'), ((8940, 8962), 'numpy.arange', 'np.arange', (['cm.shape[1]'], {}), '(cm.shape[1])\n', (8949, 8962), True, 'import numpy as np\n'), ((8986, 9008), 'numpy.arange', 'np.arange', (['cm.shape[0]'], {}), '(cm.shape[0])\n', (8995, 9008), True, 'import numpy as np\n'), ((10610, 10673), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_true_labels', 'y_predicted_scores[:, i]'], {'pos_label': 'i'}), '(y_true_labels, y_predicted_scores[:, i], pos_label=i)\n', (10619, 10673), False, 'from sklearn.metrics import roc_curve\n'), ((10703, 10722), 'sklearn.metrics.auc', 'auc', (['fpr[i]', 'tpr[i]'], {}), '(fpr[i], tpr[i])\n', (10706, 10722), False, 'from sklearn.metrics import auc\n'), ((11146, 11189), 'numpy.append', 'np.append', (['y_true_micro', '(y_true_labels == i)'], {}), '(y_true_micro, y_true_labels == i)\n', (11155, 11189), True, 'import numpy as np\n'), ((11223, 11274), 'numpy.append', 'np.append', (['y_scores_micro', 'y_predicted_scores[:, i]'], {}), '(y_scores_micro, y_predicted_scores[:, i])\n', (11232, 11274), True, 'import numpy as np\n'), ((6473, 6498), 'randomcolor.RandomColor', 'randomcolor.RandomColor', ([], {}), '()\n', (6496, 6498), False, 'import randomcolor\n')]
import os import time import random import scipy.sparse as sp import numpy as np import tensorflow as tf import argparse from models import SpHGAT from utils import process parser = argparse.ArgumentParser() parser.add_argument('--dataset', help='Dataset.', default='imdb', type=str) parser.add_argument('--epochs', help='Epochs.', default=100000, type=int) parser.add_argument('--patience', help='Patience for early stopping.', default=100, type=int) parser.add_argument('--lr', help='Learning rate.', default=0.005, type=float) parser.add_argument('--l2_coef', help='Weight decay.', default=0.0005, type=float) parser.add_argument('--dropout', help='Dropout.', default=0.6, type=float) parser.add_argument('--train_rate', help='Label rate for training.', default=0.1, type=float) parser.add_argument('--seed', help='Random seed for data splitting.', default=None, type=int) parser.add_argument('--layers', help='Number of layers.', default=2, type=int) parser.add_argument('--hid', help='Number of hidden units per head in each layer.', nargs='*', default=[8, 8], type=int) parser.add_argument('--heads', help='Number of attention heads in each layer.', nargs='*', default=[8, 1], type=int) parser.add_argument('--residue', help='Using residue.', action='store_true') parser.add_argument('--repeat', help='Repeat.', default=10, type=int) parser.add_argument('--random_feature', help='Random features', action='store_true') parser.add_argument('--target_node', help='index of target nodes for classification.', nargs='*', default=[0, 1], type=int) parser.add_argument('--target_is_multilabels', help='each type of target node for classification is multi-labels or not.(0 means not else means yes)', nargs='*', default=[0, 1], type=int) parser.add_argument('--saved_model_suffix', help='to splite checkpoint by suffix', default="", type=str) parser.add_argument('--no_attn_reg', help='Do not use edge direction regularization', action='store_true') parser.add_argument('--simple_inner', help='Use original inner product', action='store_true') parser.add_argument('--loop_coef', help='Coefficient for regularization.', default=1e-3, type=float) parser.add_argument('--inv_coef', help='Coefficient for regularization.', default=1e-3, type=float) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True args= parser.parse_args() dataset = args.dataset checkpt_file = 'pre_trained/{}/{}/{}.ckpt'.format(dataset, args.saved_model_suffix, dataset) checkpt_file = checkpt_file.replace('//', '/') process.mkdir(os.path.split(checkpt_file)[0]) # training params batch_size = 1 train_rate = args.train_rate seed = args.seed nb_epochs = args.epochs patience = args.patience lr = args.lr # learning rate l2_coef = args.l2_coef # weight decay dropout = args.dropout repeat = args.repeat random_feature = args.random_feature target_node = args.target_node is_multilabel = [False if t==0 else True for t in args.target_is_multilabels] loop_coef = args.loop_coef inv_coef = args.inv_coef layers = args.layers hid = args.hid if len(hid) == 1: hid_units = hid * layers elif len(hid) == layers: hid_units = hid heads = args.heads if len(heads) == 1: n_heads = heads * layers elif len(heads) == 2: n_heads = [heads[0]] * (layers - 1) + [heads[1]] elif len(heads) == layers: n_heads = heads residual = args.residue # False nonlinearity = tf.nn.elu model = SpHGAT no_attn_reg = args.no_attn_reg simple_inner = args.simple_inner random.seed(seed) # random seed for random data split only print('Dataset: ' + dataset) print('Train rate: ' + str(train_rate)) print('----- Opt. hyperparams -----') print('lr: ' + str(lr)) print('l2_coef: ' + str(l2_coef)) print('----- Archi. hyperparams -----') print('nb. layers: ' + str(len(hid_units))) print('nb. units per layer: ' + str(hid_units)) print('nb. attention heads: ' + str(n_heads)) print('residual: ' + str(residual)) print('nonlinearity: ' + str(nonlinearity)) print('model: ' + str(model)) print('target nodes: ', target_node) print('is_multilabel: ', is_multilabel) print('loop_coef:', loop_coef) print('inv_coef:', inv_coef) sparse = True metr_num = 2 total_vl_acc = np.array([0.]*(len(target_node)*metr_num)) # should be array total_ts_acc = np.array([0.]*(len(target_node)*metr_num)) # should be array def get_loss_acc(logits, labels, msk, is_multilabel=False): global model class_num = labels.shape[-1] log_resh = tf.reshape(logits, [-1, class_num]) lab_resh = tf.reshape(labels, [-1, class_num]) msk_resh = tf.reshape(msk, [-1]) if is_multilabel: loss = model.masked_sigmoid_cross_entropy(log_resh, lab_resh, msk_resh) accuracy = [model.micro_f1(log_resh, lab_resh, msk_resh), model.macro_f1(log_resh, lab_resh, msk_resh)] acc_name = ['if1', 'af1'] acc_full_name = ['micro f1', 'macro f1'] else: loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh) accuracy = [model.micro_f1_onelabel(log_resh, lab_resh, msk_resh), model.macro_f1_onelabel(log_resh, lab_resh, msk_resh)] acc_name = ['if1', 'af1'] acc_full_name = ['micro f1', 'macro f1'] return loss, accuracy, acc_name, acc_full_name def print_eachclass_info(train_loss_each, train_acc_each, val_loss_each, val_acc_each, acc_name): tl_average = np.mean(np.array(train_loss_each), axis=0) ta_average = np.mean(np.array(train_acc_each), axis=0) vl_average = np.mean(np.array(val_loss_each), axis=0) va_average = np.mean(np.array(val_acc_each), axis=0) metric_num = int(len(ta_average)/len(tl_average)) for i in range(len(tl_average)): line = '\t\t target %s: loss = %.3f, ' % (i, tl_average[i]) for j in range(metric_num): line += '%s = %.5f, ' % (acc_name[i*metric_num+j], ta_average[i*metric_num+j]) line += '| Val: loss = %.3f, ' % (vl_average[i]) for j in range(metric_num): line += '%s = %.5f, ' % (acc_name[i*metric_num+j], va_average[i*metric_num+j]) print(line) for repeat_i in range(repeat): print('Run #' + str(repeat_i) + ':') adj, adj_type, edge_list, features, y_train, y_val, y_test,\ train_mask, val_mask, test_mask = process.load_heterogeneous_data(dataset, train_rate=train_rate, target_node=target_node) features = [process.preprocess_features(feature)[0] for feature in features] nb_nodes = [feature.shape[0] for feature in features] ft_size = [feature.shape[1] for feature in features] nb_classes = [y.shape[1] for y in y_train] features = [feature[np.newaxis] for feature in features] y_train = [y[np.newaxis] for y in y_train] y_val = [y[np.newaxis] for y in y_val] y_test = [y[np.newaxis] for y in y_test] train_mask = [m[np.newaxis] for m in train_mask] val_mask = [m[np.newaxis] for m in val_mask] test_mask = [m[np.newaxis] for m in test_mask] if random_feature: features[0] = np.random.standard_normal(features[0].shape) if sparse: biases = [process.preprocess_adj_hete(a) for a in adj] # transposed here else: biases = [] for a in adj: a = a.todense() a = a[np.newaxis] if no_attn_reg: edge_list = [(i,) for i in range(len(adj_type))] if simple_inner: edge_list = [] with tf.Graph().as_default(): with tf.name_scope('input'): ftr_in = [tf.placeholder(dtype=tf.float32, shape=(batch_size, nb, ft)) for nb, ft in zip(nb_nodes, ft_size)] if sparse: bias_in = [tf.sparse_placeholder(dtype=tf.float32) for _ in biases] else: bias_in = None lbl_in = [tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]], nb_classes[i])) for i in range(len(nb_classes))] msk_in = [tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]])) for i in range(len(nb_classes))] attn_drop = tf.placeholder(dtype=tf.float32, shape=()) ffd_drop = tf.placeholder(dtype=tf.float32, shape=()) is_train = tf.placeholder(dtype=tf.bool, shape=()) logits = model.inference(ftr_in, nb_classes, nb_nodes, is_train, attn_drop, ffd_drop, target_nodes=target_node, bias_mat=bias_in, adj_type=adj_type, edge_list=edge_list, hid_units=hid_units, n_heads=n_heads, residual=residual, activation=nonlinearity) with tf.name_scope('loss_acc'): loss, accuracy, acc_name, acc_full_name = [], [], [], [] all_class_loss = 0.0 for tn in range(len(target_node)): tn_logits = logits[tn] tn_labels = lbl_in[tn] tn_masks = msk_in[tn] tn_is_multilabel = is_multilabel[tn] tn_loss, tn_accuracy, tn_acc_name, tn_acc_full_name = get_loss_acc(tn_logits, tn_labels, tn_masks, is_multilabel=tn_is_multilabel) loss.append(tn_loss) accuracy.extend(tn_accuracy) acc_name.extend(tn_acc_name) acc_full_name.extend(tn_acc_full_name) all_class_loss += tn_loss loss_loop = tf.add_n(tf.get_collection('loss_loop')) * loop_coef loss_inv= tf.add_n(tf.get_collection('loss_inv')) * inv_coef train_op = model.training(all_class_loss + loss_loop + loss_inv, lr, l2_coef) saver = tf.train.Saver() init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) vlss_mn = np.inf vacc_mx = 0.0 curr_step = 0 with tf.Session(config=config) as sess: sess.run(init_op) vacc_early_model = 0.0 vlss_early_model = 0.0 vacc_each_early_model = np.array([0.]*(len(target_node)*metr_num)) for epoch in range(nb_epochs): # summary information train_loss_avg = 0 train_acc_avg = 0 val_loss_avg = 0 val_acc_avg = 0 # for each class information train_loss_each = [] train_acc_each = [] val_loss_each = [] val_acc_each = [] tr_step = 0 tr_size = features[0].shape[0] while tr_step * batch_size < tr_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[tr_step * batch_size:(tr_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[tr_step * batch_size:(tr_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[tr_step*batch_size:(tr_step+1)*batch_size] for i, d in zip(lbl_in, y_train)}) fd.update({i:d[tr_step*batch_size:(tr_step+1)*batch_size] for i, d in zip(msk_in, train_mask)}) fd.update({is_train: True}) fd.update({attn_drop: dropout, ffd_drop:dropout}) _, loss_list_tr, acc_list_tr, loss_loop_tr, loss_inv_tr = sess.run([train_op, loss, accuracy, loss_loop, loss_inv], feed_dict=fd) train_loss_each.append(np.array(loss_list_tr)) train_acc_each.append(np.array(acc_list_tr)) train_loss_avg += np.sum(np.array(loss_list_tr)) train_acc_avg += np.sum(np.array(acc_list_tr)) tr_step += 1 vl_step = 0 vl_size = features[0].shape[0] while vl_step * batch_size < vl_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[vl_step * batch_size:(vl_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[vl_step * batch_size:(vl_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[vl_step*batch_size:(vl_step+1)*batch_size] for i, d in zip(lbl_in, y_val)}) fd.update({i:d[vl_step*batch_size:(vl_step+1)*batch_size] for i, d in zip(msk_in, val_mask)}) fd.update({is_train: False}) fd.update({attn_drop: 0.0, ffd_drop:0.0}) loss_list_vl, acc_list_vl = sess.run([loss, accuracy], feed_dict=fd) acc_list_vl = [0. if np.isnan(acc_vl) else acc_vl for acc_vl in acc_list_vl] val_loss_each.append(np.array(loss_list_vl)) val_acc_each.append(np.array(acc_list_vl)) val_loss_avg += np.sum(np.array(loss_list_vl)) val_acc_avg += np.sum(np.array(acc_list_vl)) vl_step += 1 print('Training %s: loss = %.5f, %s = %.5f, loss_loop = %.5f, loss_inv = %.5f | Val: loss = %.5f, %s = %.5f' % (epoch, train_loss_avg/tr_step, 'acc/F1', train_acc_avg/tr_step, loss_loop_tr, loss_inv_tr, val_loss_avg/vl_step, 'acc/F1', val_acc_avg/vl_step)) print_eachclass_info(train_loss_each, train_acc_each, val_loss_each, val_acc_each, acc_name) if val_acc_avg/vl_step > vacc_mx or val_loss_avg/vl_step < vlss_mn: if val_acc_avg/vl_step > vacc_mx and val_loss_avg/vl_step < vlss_mn: vacc_early_model = val_acc_avg/vl_step vlss_early_model = val_loss_avg/vl_step vacc_each_early_model = np.mean(np.array(val_acc_each), axis=0) saver.save(sess, checkpt_file) print("saved model as %s"%checkpt_file) vacc_mx = np.max((val_acc_avg/vl_step, vacc_mx)) vlss_mn = np.min((val_loss_avg/vl_step, vlss_mn)) curr_step = 0 else: curr_step += 1 if curr_step == patience: print('Early stop! Min loss: ', vlss_mn, ', Max', 'acc/F1', ': ', vacc_mx) print('Early stop model validation loss: ', vlss_early_model, ', ', 'acc/F1', ': ', vacc_early_model) total_vl_acc += vacc_each_early_model break if curr_step < patience: print('Min loss: ', vlss_mn, ', Max', 'acc/F1', ': ', vacc_mx) print('model validation loss: ', vlss_early_model, ', ', 'acc/F1', ': ', vacc_early_model) total_vl_acc += vacc_each_early_model saver.restore(sess, checkpt_file) ts_size = features[0].shape[0] ts_step = 0 test_loss_each = [] test_acc_each = [] while ts_step * batch_size < ts_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[ts_step * batch_size:(ts_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[ts_step * batch_size:(ts_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[ts_step*batch_size:(ts_step+1)*batch_size] for i, d in zip(lbl_in, y_test)}) fd.update({i:d[ts_step*batch_size:(ts_step+1)*batch_size] for i, d in zip(msk_in, test_mask)}) fd.update({is_train: False}) fd.update({attn_drop: 0.0, ffd_drop:0.0}) loss_list_ts, acc_list_ts = sess.run([loss, accuracy], feed_dict=fd) test_loss_each.append(np.array(loss_list_ts)) test_acc_each.append(np.array(acc_list_ts)) ts_step += 1 test_loss_each = np.mean(np.array(test_loss_each), axis=0) test_acc_each = np.mean(np.array(test_acc_each), axis=0) print('*'*10,'Test information:', '*'*10) for e in range(len(target_node)): print('target %s: loss: %.3f, %s:%.5f, %s:%.5f' % (e, test_loss_each[e], acc_full_name[e*metr_num], test_acc_each[e*metr_num], acc_full_name[e*metr_num+1], test_acc_each[e*metr_num+1])) total_ts_acc += test_acc_each sess.close() print('Validation:', total_vl_acc/repeat, 'Test:', total_ts_acc/repeat)
[ "tensorflow.local_variables_initializer", "numpy.random.standard_normal", "tensorflow.sparse_placeholder", "utils.process.load_heterogeneous_data", "numpy.array", "utils.process.preprocess_features", "tensorflow.Graph", "argparse.ArgumentParser", "tensorflow.placeholder", "tensorflow.Session", "os.path.split", "numpy.max", "utils.process.preprocess_adj_hete", "numpy.min", "tensorflow.ConfigProto", "numpy.isnan", "tensorflow.reshape", "tensorflow.train.Saver", "random.seed", "tensorflow.global_variables_initializer", "tensorflow.name_scope", "tensorflow.get_collection" ]
[((184, 209), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (207, 209), False, 'import argparse\n'), ((2336, 2377), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': '(True)'}), '(allow_soft_placement=True)\n', (2350, 2377), True, 'import tensorflow as tf\n'), ((3550, 3567), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (3561, 3567), False, 'import random\n'), ((4509, 4544), 'tensorflow.reshape', 'tf.reshape', (['logits', '[-1, class_num]'], {}), '(logits, [-1, class_num])\n', (4519, 4544), True, 'import tensorflow as tf\n'), ((4560, 4595), 'tensorflow.reshape', 'tf.reshape', (['labels', '[-1, class_num]'], {}), '(labels, [-1, class_num])\n', (4570, 4595), True, 'import tensorflow as tf\n'), ((4611, 4632), 'tensorflow.reshape', 'tf.reshape', (['msk', '[-1]'], {}), '(msk, [-1])\n', (4621, 4632), True, 'import tensorflow as tf\n'), ((6293, 6386), 'utils.process.load_heterogeneous_data', 'process.load_heterogeneous_data', (['dataset'], {'train_rate': 'train_rate', 'target_node': 'target_node'}), '(dataset, train_rate=train_rate, target_node\n =target_node)\n', (6324, 6386), False, 'from utils import process\n'), ((2621, 2648), 'os.path.split', 'os.path.split', (['checkpt_file'], {}), '(checkpt_file)\n', (2634, 2648), False, 'import os\n'), ((5414, 5439), 'numpy.array', 'np.array', (['train_loss_each'], {}), '(train_loss_each)\n', (5422, 5439), True, 'import numpy as np\n'), ((5474, 5498), 'numpy.array', 'np.array', (['train_acc_each'], {}), '(train_acc_each)\n', (5482, 5498), True, 'import numpy as np\n'), ((5533, 5556), 'numpy.array', 'np.array', (['val_loss_each'], {}), '(val_loss_each)\n', (5541, 5556), True, 'import numpy as np\n'), ((5591, 5613), 'numpy.array', 'np.array', (['val_acc_each'], {}), '(val_acc_each)\n', (5599, 5613), True, 'import numpy as np\n'), ((7034, 7078), 'numpy.random.standard_normal', 'np.random.standard_normal', (['features[0].shape'], {}), '(features[0].shape)\n', (7059, 7078), True, 'import numpy as np\n'), ((9690, 9706), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (9704, 9706), True, 'import tensorflow as tf\n'), ((6398, 6434), 'utils.process.preprocess_features', 'process.preprocess_features', (['feature'], {}), '(feature)\n', (6425, 6434), False, 'from utils import process\n'), ((7117, 7147), 'utils.process.preprocess_adj_hete', 'process.preprocess_adj_hete', (['a'], {}), '(a)\n', (7144, 7147), False, 'from utils import process\n'), ((7476, 7498), 'tensorflow.name_scope', 'tf.name_scope', (['"""input"""'], {}), "('input')\n", (7489, 7498), True, 'import tensorflow as tf\n'), ((8096, 8138), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '()'}), '(dtype=tf.float32, shape=())\n', (8110, 8138), True, 'import tensorflow as tf\n'), ((8162, 8204), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '()'}), '(dtype=tf.float32, shape=())\n', (8176, 8204), True, 'import tensorflow as tf\n'), ((8228, 8267), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.bool', 'shape': '()'}), '(dtype=tf.bool, shape=())\n', (8242, 8267), True, 'import tensorflow as tf\n'), ((8722, 8747), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss_acc"""'], {}), "('loss_acc')\n", (8735, 8747), True, 'import tensorflow as tf\n'), ((9739, 9772), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (9770, 9772), True, 'import tensorflow as tf\n'), ((9774, 9806), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (9804, 9806), True, 'import tensorflow as tf\n'), ((9900, 9925), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (9910, 9925), True, 'import tensorflow as tf\n'), ((7438, 7448), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (7446, 7448), True, 'import tensorflow as tf\n'), ((7522, 7582), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '(batch_size, nb, ft)'}), '(dtype=tf.float32, shape=(batch_size, nb, ft))\n', (7536, 7582), True, 'import tensorflow as tf\n'), ((7815, 7910), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '(batch_size, nb_nodes[target_node[i]], nb_classes[i])'}), '(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]],\n nb_classes[i]))\n', (7829, 7910), True, 'import tensorflow as tf\n'), ((7962, 8038), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.int32', 'shape': '(batch_size, nb_nodes[target_node[i]])'}), '(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]]))\n', (7976, 8038), True, 'import tensorflow as tf\n'), ((16595, 16619), 'numpy.array', 'np.array', (['test_loss_each'], {}), '(test_loss_each)\n', (16603, 16619), True, 'import numpy as np\n'), ((16665, 16688), 'numpy.array', 'np.array', (['test_acc_each'], {}), '(test_acc_each)\n', (16673, 16688), True, 'import numpy as np\n'), ((7687, 7726), 'tensorflow.sparse_placeholder', 'tf.sparse_placeholder', ([], {'dtype': 'tf.float32'}), '(dtype=tf.float32)\n', (7708, 7726), True, 'import tensorflow as tf\n'), ((9471, 9501), 'tensorflow.get_collection', 'tf.get_collection', (['"""loss_loop"""'], {}), "('loss_loop')\n", (9488, 9501), True, 'import tensorflow as tf\n'), ((9546, 9575), 'tensorflow.get_collection', 'tf.get_collection', (['"""loss_inv"""'], {}), "('loss_inv')\n", (9563, 9575), True, 'import tensorflow as tf\n'), ((14392, 14432), 'numpy.max', 'np.max', (['(val_acc_avg / vl_step, vacc_mx)'], {}), '((val_acc_avg / vl_step, vacc_mx))\n', (14398, 14432), True, 'import numpy as np\n'), ((14461, 14502), 'numpy.min', 'np.min', (['(val_loss_avg / vl_step, vlss_mn)'], {}), '((val_loss_avg / vl_step, vlss_mn))\n', (14467, 14502), True, 'import numpy as np\n'), ((16445, 16467), 'numpy.array', 'np.array', (['loss_list_ts'], {}), '(loss_list_ts)\n', (16453, 16467), True, 'import numpy as np\n'), ((16506, 16527), 'numpy.array', 'np.array', (['acc_list_ts'], {}), '(acc_list_ts)\n', (16514, 16527), True, 'import numpy as np\n'), ((11684, 11706), 'numpy.array', 'np.array', (['loss_list_tr'], {}), '(loss_list_tr)\n', (11692, 11706), True, 'import numpy as np\n'), ((11750, 11771), 'numpy.array', 'np.array', (['acc_list_tr'], {}), '(acc_list_tr)\n', (11758, 11771), True, 'import numpy as np\n'), ((11818, 11840), 'numpy.array', 'np.array', (['loss_list_tr'], {}), '(loss_list_tr)\n', (11826, 11840), True, 'import numpy as np\n'), ((11886, 11907), 'numpy.array', 'np.array', (['acc_list_tr'], {}), '(acc_list_tr)\n', (11894, 11907), True, 'import numpy as np\n'), ((13138, 13160), 'numpy.array', 'np.array', (['loss_list_vl'], {}), '(loss_list_vl)\n', (13146, 13160), True, 'import numpy as np\n'), ((13202, 13223), 'numpy.array', 'np.array', (['acc_list_vl'], {}), '(acc_list_vl)\n', (13210, 13223), True, 'import numpy as np\n'), ((13268, 13290), 'numpy.array', 'np.array', (['loss_list_vl'], {}), '(loss_list_vl)\n', (13276, 13290), True, 'import numpy as np\n'), ((13334, 13355), 'numpy.array', 'np.array', (['acc_list_vl'], {}), '(acc_list_vl)\n', (13342, 13355), True, 'import numpy as np\n'), ((13041, 13057), 'numpy.isnan', 'np.isnan', (['acc_vl'], {}), '(acc_vl)\n', (13049, 13057), True, 'import numpy as np\n'), ((14211, 14233), 'numpy.array', 'np.array', (['val_acc_each'], {}), '(val_acc_each)\n', (14219, 14233), True, 'import numpy as np\n')]
import numpy as np import h5py import os import sys from copy import deepcopy #handle .(period) and slash specially since it is part of path #replace with \period or \slash-forward when store, recover later #not using '\forward-slash' is because \f is a special character PERIOD='\period' SLASH='\slash-forward' ''' This function will save a python dictionary with format {'key':vector} to hdf5 format target_dict is the target dictionary f_name is the HDF5 file name including path to it mode is file open mode, 'a' for append is the default setting output file is a HDF5 file which the keys of HDF5 are keys of target dict dataset is corresponding array of each key in target dict ''' def dict2hdf5(target_dict, f_name, sub_group='/', mode='a'): print ('Saving In HDF5 Format...') index_count=0 bar_count=0 total=len(target_dict) if total<50: total=50 #open HDF5 file f = h5py.File(f_name, mode) for key in target_dict: ######### print progress ############# index_count +=1 if index_count % (total/50) ==0: sys.stdout.write('\r'), bar_count += 1 sys.stdout.write("[%-50s] %d%% %d/%d" % ('#'*bar_count, 2*bar_count, index_count, total)) sys.stdout.flush() ######### end print progress ######### #print os.path.join(sub_group,key) #sys.stdout.flush() #replace special handled chars, will not change string if / is not in it dataset_key=key.replace('.',PERIOD).replace('/',SLASH) f.create_dataset(os.path.join(sub_group,dataset_key), data=target_dict[key]) f.close() ''' This function will convert saved hdf5 file from previous function back to {'key':vector} dictionary f_name is the HDF5 file name including path to it ''' def hdf52dict(f_name, sub_group='/' ): rv=dict() #open HDF5 file f = h5py.File(f_name, 'r') group=f[sub_group] for key in group: #replace back special handled chars key=key.replace(PERIOD, '.').replace(SLASH,'/') rv[key]=np.array(group[key]) f.close() return rv def main(): d=dict() d['hello']=[1,0,0,0,0,0,0,0,0,0,0] d['world']=[0,1,0,0,0,0,0,0,0,0,0] dict2hdf5(target_dict=d, f_name='test') rv=hdf52dict('test') print (rv) if __name__ == '__main__': main()
[ "os.path.join", "h5py.File", "numpy.array", "sys.stdout.flush", "sys.stdout.write" ]
[((892, 915), 'h5py.File', 'h5py.File', (['f_name', 'mode'], {}), '(f_name, mode)\n', (901, 915), False, 'import h5py\n'), ((1759, 1781), 'h5py.File', 'h5py.File', (['f_name', '"""r"""'], {}), "(f_name, 'r')\n", (1768, 1781), False, 'import h5py\n'), ((1923, 1943), 'numpy.array', 'np.array', (['group[key]'], {}), '(group[key])\n', (1931, 1943), True, 'import numpy as np\n'), ((1085, 1182), 'sys.stdout.write', 'sys.stdout.write', (["('[%-50s] %d%% %d/%d' % ('#' * bar_count, 2 * bar_count, index_count, total))"], {}), "('[%-50s] %d%% %d/%d' % ('#' * bar_count, 2 * bar_count,\n index_count, total))\n", (1101, 1182), False, 'import sys\n'), ((1178, 1196), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1194, 1196), False, 'import sys\n'), ((1453, 1489), 'os.path.join', 'os.path.join', (['sub_group', 'dataset_key'], {}), '(sub_group, dataset_key)\n', (1465, 1489), False, 'import os\n'), ((1040, 1062), 'sys.stdout.write', 'sys.stdout.write', (["'\\r'"], {}), "('\\r')\n", (1056, 1062), False, 'import sys\n')]
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bigbench.api.model as model import bigbench.api.util as util import numpy as np import scipy.special class DummyModel(model.Model): def generate_text( self, inputs, max_length=100, stop_string=None, output_regex=None ): dummy_text = "dummy text, 123. Easy peasy lemon squeezy." if isinstance(inputs, str): text = dummy_text elif isinstance(inputs, list): text = [f"{i}_{dummy_text}" for i, _ in enumerate(inputs)] else: raise ValueError("inputs has unexpected type %s" % type(inputs)) text = util.postprocess_output(text, max_length, stop_string, output_regex) return text def cond_log_prob(self, inputs, targets, absolute_normalization=False): def generate_dummy_scores(inpt, tgts): unnorm_log_probs = [np.log(1 / (i + 1)) for i, _ in enumerate(tgts)] if len(unnorm_log_probs) > 1: # we want to make sure tasks can correctly handle responses which are # assigned zero probability unnorm_log_probs[0] = -np.inf if absolute_normalization: log_probs = unnorm_log_probs else: log_normalizer = scipy.special.logsumexp(unnorm_log_probs) log_probs = [lp - log_normalizer for lp in unnorm_log_probs] return log_probs if isinstance(inputs, str): return generate_dummy_scores(inputs, targets) elif isinstance(inputs, list): return [ generate_dummy_scores(inpt, tgts) for inpt, tgts in zip(inputs, targets) ] else: raise ValueError("inputs has unexpected type %s" % type(inputs))
[ "bigbench.api.util.postprocess_output", "numpy.log" ]
[((1171, 1239), 'bigbench.api.util.postprocess_output', 'util.postprocess_output', (['text', 'max_length', 'stop_string', 'output_regex'], {}), '(text, max_length, stop_string, output_regex)\n', (1194, 1239), True, 'import bigbench.api.util as util\n'), ((1417, 1436), 'numpy.log', 'np.log', (['(1 / (i + 1))'], {}), '(1 / (i + 1))\n', (1423, 1436), True, 'import numpy as np\n')]
import pybullet_data import pybullet as p import time import numpy as np from src.utils_geom import * from src.utils_depth import * from src.panda import Panda def full_jacob_pb(jac_t, jac_r): return np.vstack((jac_t[0], jac_t[1], jac_t[2], jac_r[0], jac_r[1], jac_r[2])) class pandaEnv(): def __init__(self, urdfRoot=pybullet_data.getDataPath(), mu=0.3, sigma=0.01, timestep=1./240., long_finger=False, ): self._urdfRoot = urdfRoot self._timeStep = timestep self._pandaId = None self._planeId = None self._tableId = None self._mu = mu self._sigma = sigma self.long_finger = long_finger def reset_env(self): p.resetSimulation() p.setPhysicsEngineParameter(numSolverIterations=150, enableConeFriction=1, contactBreakingThreshold=1e-3) p.setTimeStep(self._timeStep) # Set gravity p.setGravity(0, 0, -9.81) # Load plane and table self._planeId = p.loadURDF(self._urdfRoot+'/plane.urdf', basePosition=[0, 0, -1], useFixedBase=1) self._tableId = p.loadURDF(self._urdfRoot+'/table/table.urdf', basePosition=[0.4000000, 0.00000, -0.63+0.005], baseOrientation=[0, 0, 0, 1.0], useFixedBase=1) # Load arm, no need to settle (joint angle set instantly) self._panda = Panda(self.long_finger) self._pandaId = self._panda.load() # Set friction coefficients of arm and table self.change_friction_coeffs(self._mu, self._sigma) # Create a constraint to keep the fingers centered (upper links) fingerGear = p.createConstraint(self._pandaId, 9, self._pandaId, 11, jointType=p.JOINT_GEAR, jointAxis=[1, 0, 0], parentFramePosition=[0, 0, 0], childFramePosition=[0, 0, 0]) p.changeConstraint(fingerGear, gearRatio=-1, erp=0.1, maxForce=2*self._panda.maxFingerForce) # Disable damping for all links for i in range(self._panda.numJoints): p.changeDynamics(self._pandaId, i, linearDamping=0, angularDamping=0) def change_friction_coeffs(self, mu, sigma): p.changeDynamics(self._pandaId, self._panda.pandaLeftFingerLinkIndex, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) p.changeDynamics(self._pandaId, self._panda.pandaRightFingerLinkIndex, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) p.changeDynamics(self._tableId, -1, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) def reset_arm_joints_ik(self, pos, orn, fingerPos=0.0): jointPoses = list(p.calculateInverseKinematics(self._pandaId, self._panda.pandaEndEffectorLinkIndex, pos, orn, jointDamping=self._panda.jd, lowerLimits=self._panda.jointLowerLimit, upperLimits=self._panda.jointUpperLimit, jointRanges=self._panda.jointRange, restPoses=self._panda.jointRestPose, residualThreshold=1e-4)) # , maxNumIterations=1e5)) jointPoses = jointPoses[:7] + [0, -np.pi/4, fingerPos, 0.00, fingerPos, 0.00] self._panda.reset(jointPoses) def reset_arm_joints(self, joints): jointPoses = joints + [0, -np.pi/4, self._panda.fingerOpenPos, 0.00, self._panda.fingerOpenPos, 0.00] self._panda.reset(jointPoses) ########################* Arm control *####################### def move_pos(self, absolute_pos=None, relative_pos=None, absolute_global_euler=None, # preferred relative_global_euler=None, # preferred relative_local_euler=None, # not using absolute_global_quat=None, # preferred relative_azi=None, # for arm # relative_quat=None, # never use relative quat numSteps=50, maxJointVel=0.20, relativePos=True, globalOrn=True, checkContact=False, checkPalmContact=False, objId=None, gripper_target_pos=None, timeStep=0): # Get trajectory eePosNow, eeQuatNow = self._panda.get_ee() # Determine target pos if absolute_pos is not None: targetPos = absolute_pos elif relative_pos is not None: targetPos = eePosNow + relative_pos else: targetPos = eePosNow # Determine target orn if absolute_global_euler is not None: targetOrn = euler2quat(absolute_global_euler) elif relative_global_euler is not None: targetOrn = quatMult(euler2quat(relative_global_euler), eeQuatNow) elif relative_local_euler is not None: targetOrn = quatMult(eeQuatNow, euler2quat(relative_local_euler)) elif absolute_global_quat is not None: targetOrn = absolute_global_quat elif relative_azi is not None: # Extrinsic yaw targetOrn = quatMult(euler2quat([relative_azi[0],0,0]), eeQuatNow) # Intrinsic pitch targetOrn = quatMult(targetOrn, euler2quat([0,relative_azi[1],0])) # elif relative_quat is not None: # targetOrn = quatMult(eeQuatNow, relative_quat) else: targetOrn = array([1.0, 0., 0., 0.]) # Get trajectory trajPos = self.traj_time_scaling(startPos=eePosNow, endPos=targetPos, numSteps=numSteps) # Run steps numSteps = len(trajPos) for step in range(numSteps): # Get joint velocities from error tracking control jointDot = self.traj_tracking_vel(targetPos=trajPos[step], targetQuat=targetOrn) # Send velocity commands to joints for i in range(self._panda.numJointsArm): p.setJointMotorControl2(self._pandaId, i, p.VELOCITY_CONTROL, targetVelocity=jointDot[i], force=self._panda.maxJointForce[i], maxVelocity=maxJointVel) if gripper_target_pos is None: # Keep gripper current velocity p.setJointMotorControl2(self._pandaId, self._panda.pandaLeftFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self._panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04) p.setJointMotorControl2(self._pandaId, self._panda.pandaRightFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self._panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04) else: p.setJointMotorControl2(self._pandaId, self._panda.pandaLeftFingerJointIndex, p.POSITION_CONTROL, targetPosition=gripper_target_pos, maxVelocity=0.04) p.setJointMotorControl2(self._pandaId, self._panda.pandaRightFingerJointIndex, p.POSITION_CONTROL, targetPosition=gripper_target_pos, maxVelocity=0.04) # Quit if contact at either finger or palm if checkContact: contact = self.check_contact(objId, both=False) if contact: return timeStep, False if checkPalmContact: contact = self.check_palm_contact(objId) if contact: return timeStep, False # Step simulation p.stepSimulation() timeStep += 1 return timeStep, True def grasp(self, targetVel=0): # Change gripper velocity direction if targetVel > 1e-2 or targetVel < -1e-2: # Use specified velocity if available self._panda.fingerCurVel = targetVel else: if self._panda.fingerCurVel > 0.0: self._panda.fingerCurVel = -0.05 else: self._panda.fingerCurVel = 0.05 return def traj_time_scaling(self, startPos, endPos, numSteps): trajPos = np.zeros((numSteps, 3)) for step in range(numSteps): s = 3 * (1.0 * step / numSteps) ** 2 - 2 * (1.0 * step / numSteps) ** 3 trajPos[step] = (endPos-startPos)*s+startPos return trajPos def traj_tracking_vel(self, targetPos, targetQuat, posGain=20, velGain=5): eePos, eeQuat = self._panda.get_ee() eePosError = targetPos - eePos eeOrnError = log_rot(quat2rot(targetQuat).dot((quat2rot(eeQuat).T))) # in spatial frame jointPoses = self._panda.get_arm_joints() + [0,0,0] # add fingers eeState = p.getLinkState(self._pandaId, self._panda.pandaEndEffectorLinkIndex, computeLinkVelocity=1, computeForwardKinematics=1) # Get the Jacobians for the CoM of the end-effector link. Note that in this example com_rot = identity, and we would need to use com_rot.T * com_trn. The localPosition is always defined in terms of the link frame coordinates. zero_vec = [0.0] * len(jointPoses) jac_t, jac_r = p.calculateJacobian(self._pandaId, self._panda.pandaEndEffectorLinkIndex, eeState[2], jointPoses, zero_vec, zero_vec) # use localInertialFrameOrientation jac_sp = full_jacob_pb(jac_t, jac_r)[:, :7] # 6x10 -> 6x7, ignore last three columns try: jointDot = np.linalg.pinv(jac_sp).dot((np.hstack((posGain*eePosError, velGain*eeOrnError)).reshape(6,1))) # pseudo-inverse except np.linalg.LinAlgError: jointDot = np.zeros((7,1)) return jointDot ############################### Contact ################################## def get_contact(self, objId, minForceThres=1e-1): left_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaLeftFingerLinkIndex, linkIndexB=-1) right_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaRightFingerLinkIndex, linkIndexB=-1) left_contacts = [i for i in left_contacts if i[9] > minForceThres] right_contacts = [i for i in right_contacts if i[9] > minForceThres] return left_contacts, right_contacts def get_finger_force(self, objId): left_contacts, right_contacts = self.get_contact(objId) left_force = np.zeros((3)) right_force = np.zeros((3)) for i in left_contacts: left_force += i[9]*np.array(i[7])+i[10]*np.array(i[11])+i[12]*np.array(i[13]) for i in right_contacts: right_force += i[9]*np.array(i[7])+i[10]*np.array(i[11])+i[12]*np.array(i[13]) leftNormalMag = sum([i[9] for i in left_contacts]) rightNormalMag = sum([i[9] for i in right_contacts]) numLeftContact = len(left_contacts) numRightContact = len(right_contacts) if numLeftContact < 1 or numRightContact < 1: return None else: return left_force, right_force, \ np.array(left_contacts[0][6]), np.array(right_contacts[0][6]), \ leftNormalMag, rightNormalMag def check_hold_object(self, objId, minForceThres=10.0): left_contacts, right_contacts = self.get_contact(objId) leftNormalMag = sum([i[9] for i in left_contacts]) rightNormalMag = sum([i[9] for i in right_contacts]) return leftNormalMag > minForceThres and rightNormalMag > minForceThres def check_contact(self, objId, both=False): leftContacts, rightContacts = self.get_contact(objId) if both: if len(leftContacts) > 0 and len(rightContacts) > 0: return 1 else: if len(leftContacts) > 0 or len(rightContacts) > 0: return 1 return 0 def check_palm_contact(self, objId, minForceThres=1e-1): palm_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaHandLinkIndex, linkIndexB=-1) palm_contacts = [i for i in palm_contacts if i[9] > minForceThres] return len(palm_contacts) > 0 ############################### Info ################################## def get_ee(self): return self._panda.get_ee() def get_gripper_tip_long(self): return self._panda.get_gripper_tip_long() def get_arm_joints(self): return self._panda.get_arm_joints() def get_gripper_joint(self): return self._panda.get_gripper_joint() def get_left_finger(self): return self._panda.get_left_finger() def get_right_finger(self): return self._panda.get_right_finger() def get_obs(self): return self._panda.get_obs()
[ "pybullet_data.getDataPath", "numpy.linalg.pinv", "numpy.hstack", "pybullet.setTimeStep", "pybullet.setGravity", "numpy.array", "pybullet.setPhysicsEngineParameter", "src.panda.Panda", "pybullet.calculateJacobian", "pybullet.createConstraint", "numpy.vstack", "pybullet.changeConstraint", "pybullet.resetSimulation", "pybullet.changeDynamics", "pybullet.loadURDF", "pybullet.getLinkState", "pybullet.getContactPoints", "pybullet.calculateInverseKinematics", "numpy.zeros", "pybullet.stepSimulation", "pybullet.setJointMotorControl2" ]
[((207, 278), 'numpy.vstack', 'np.vstack', (['(jac_t[0], jac_t[1], jac_t[2], jac_r[0], jac_r[1], jac_r[2])'], {}), '((jac_t[0], jac_t[1], jac_t[2], jac_r[0], jac_r[1], jac_r[2]))\n', (216, 278), True, 'import numpy as np\n'), ((333, 360), 'pybullet_data.getDataPath', 'pybullet_data.getDataPath', ([], {}), '()\n', (358, 360), False, 'import pybullet_data\n'), ((675, 694), 'pybullet.resetSimulation', 'p.resetSimulation', ([], {}), '()\n', (692, 694), True, 'import pybullet as p\n'), ((697, 807), 'pybullet.setPhysicsEngineParameter', 'p.setPhysicsEngineParameter', ([], {'numSolverIterations': '(150)', 'enableConeFriction': '(1)', 'contactBreakingThreshold': '(0.001)'}), '(numSolverIterations=150, enableConeFriction=1,\n contactBreakingThreshold=0.001)\n', (724, 807), True, 'import pybullet as p\n'), ((827, 856), 'pybullet.setTimeStep', 'p.setTimeStep', (['self._timeStep'], {}), '(self._timeStep)\n', (840, 856), True, 'import pybullet as p\n'), ((876, 901), 'pybullet.setGravity', 'p.setGravity', (['(0)', '(0)', '(-9.81)'], {}), '(0, 0, -9.81)\n', (888, 901), True, 'import pybullet as p\n'), ((946, 1033), 'pybullet.loadURDF', 'p.loadURDF', (["(self._urdfRoot + '/plane.urdf')"], {'basePosition': '[0, 0, -1]', 'useFixedBase': '(1)'}), "(self._urdfRoot + '/plane.urdf', basePosition=[0, 0, -1],\n useFixedBase=1)\n", (956, 1033), True, 'import pybullet as p\n'), ((1046, 1187), 'pybullet.loadURDF', 'p.loadURDF', (["(self._urdfRoot + '/table/table.urdf')"], {'basePosition': '[0.4, 0.0, -0.63 + 0.005]', 'baseOrientation': '[0, 0, 0, 1.0]', 'useFixedBase': '(1)'}), "(self._urdfRoot + '/table/table.urdf', basePosition=[0.4, 0.0, -\n 0.63 + 0.005], baseOrientation=[0, 0, 0, 1.0], useFixedBase=1)\n", (1056, 1187), True, 'import pybullet as p\n'), ((1266, 1289), 'src.panda.Panda', 'Panda', (['self.long_finger'], {}), '(self.long_finger)\n', (1271, 1289), False, 'from src.panda import Panda\n'), ((1511, 1681), 'pybullet.createConstraint', 'p.createConstraint', (['self._pandaId', '(9)', 'self._pandaId', '(11)'], {'jointType': 'p.JOINT_GEAR', 'jointAxis': '[1, 0, 0]', 'parentFramePosition': '[0, 0, 0]', 'childFramePosition': '[0, 0, 0]'}), '(self._pandaId, 9, self._pandaId, 11, jointType=p.\n JOINT_GEAR, jointAxis=[1, 0, 0], parentFramePosition=[0, 0, 0],\n childFramePosition=[0, 0, 0])\n', (1529, 1681), True, 'import pybullet as p\n'), ((1717, 1816), 'pybullet.changeConstraint', 'p.changeConstraint', (['fingerGear'], {'gearRatio': '(-1)', 'erp': '(0.1)', 'maxForce': '(2 * self._panda.maxFingerForce)'}), '(fingerGear, gearRatio=-1, erp=0.1, maxForce=2 * self.\n _panda.maxFingerForce)\n', (1735, 1816), True, 'import pybullet as p\n'), ((2033, 2168), 'pybullet.changeDynamics', 'p.changeDynamics', (['self._pandaId', 'self._panda.pandaLeftFingerLinkIndex'], {'lateralFriction': 'mu', 'spinningFriction': 'sigma', 'frictionAnchor': '(1)'}), '(self._pandaId, self._panda.pandaLeftFingerLinkIndex,\n lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1)\n', (2049, 2168), True, 'import pybullet as p\n'), ((2178, 2314), 'pybullet.changeDynamics', 'p.changeDynamics', (['self._pandaId', 'self._panda.pandaRightFingerLinkIndex'], {'lateralFriction': 'mu', 'spinningFriction': 'sigma', 'frictionAnchor': '(1)'}), '(self._pandaId, self._panda.pandaRightFingerLinkIndex,\n lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1)\n', (2194, 2314), True, 'import pybullet as p\n'), ((2325, 2427), 'pybullet.changeDynamics', 'p.changeDynamics', (['self._tableId', '(-1)'], {'lateralFriction': 'mu', 'spinningFriction': 'sigma', 'frictionAnchor': '(1)'}), '(self._tableId, -1, lateralFriction=mu, spinningFriction=\n sigma, frictionAnchor=1)\n', (2341, 2427), True, 'import pybullet as p\n'), ((7318, 7341), 'numpy.zeros', 'np.zeros', (['(numSteps, 3)'], {}), '((numSteps, 3))\n', (7326, 7341), True, 'import numpy as np\n'), ((7837, 7960), 'pybullet.getLinkState', 'p.getLinkState', (['self._pandaId', 'self._panda.pandaEndEffectorLinkIndex'], {'computeLinkVelocity': '(1)', 'computeForwardKinematics': '(1)'}), '(self._pandaId, self._panda.pandaEndEffectorLinkIndex,\n computeLinkVelocity=1, computeForwardKinematics=1)\n', (7851, 7960), True, 'import pybullet as p\n'), ((8260, 8381), 'pybullet.calculateJacobian', 'p.calculateJacobian', (['self._pandaId', 'self._panda.pandaEndEffectorLinkIndex', 'eeState[2]', 'jointPoses', 'zero_vec', 'zero_vec'], {}), '(self._pandaId, self._panda.pandaEndEffectorLinkIndex,\n eeState[2], jointPoses, zero_vec, zero_vec)\n', (8279, 8381), True, 'import pybullet as p\n'), ((8933, 9042), 'pybullet.getContactPoints', 'p.getContactPoints', (['self._pandaId', 'objId'], {'linkIndexA': 'self._panda.pandaLeftFingerLinkIndex', 'linkIndexB': '(-1)'}), '(self._pandaId, objId, linkIndexA=self._panda.\n pandaLeftFingerLinkIndex, linkIndexB=-1)\n', (8951, 9042), True, 'import pybullet as p\n'), ((9081, 9191), 'pybullet.getContactPoints', 'p.getContactPoints', (['self._pandaId', 'objId'], {'linkIndexA': 'self._panda.pandaRightFingerLinkIndex', 'linkIndexB': '(-1)'}), '(self._pandaId, objId, linkIndexA=self._panda.\n pandaRightFingerLinkIndex, linkIndexB=-1)\n', (9099, 9191), True, 'import pybullet as p\n'), ((9503, 9514), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (9511, 9514), True, 'import numpy as np\n'), ((9533, 9544), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (9541, 9544), True, 'import numpy as np\n'), ((10813, 10916), 'pybullet.getContactPoints', 'p.getContactPoints', (['self._pandaId', 'objId'], {'linkIndexA': 'self._panda.pandaHandLinkIndex', 'linkIndexB': '(-1)'}), '(self._pandaId, objId, linkIndexA=self._panda.\n pandaHandLinkIndex, linkIndexB=-1)\n', (10831, 10916), True, 'import pybullet as p\n'), ((1895, 1964), 'pybullet.changeDynamics', 'p.changeDynamics', (['self._pandaId', 'i'], {'linearDamping': '(0)', 'angularDamping': '(0)'}), '(self._pandaId, i, linearDamping=0, angularDamping=0)\n', (1911, 1964), True, 'import pybullet as p\n'), ((2517, 2838), 'pybullet.calculateInverseKinematics', 'p.calculateInverseKinematics', (['self._pandaId', 'self._panda.pandaEndEffectorLinkIndex', 'pos', 'orn'], {'jointDamping': 'self._panda.jd', 'lowerLimits': 'self._panda.jointLowerLimit', 'upperLimits': 'self._panda.jointUpperLimit', 'jointRanges': 'self._panda.jointRange', 'restPoses': 'self._panda.jointRestPose', 'residualThreshold': '(0.0001)'}), '(self._pandaId, self._panda.\n pandaEndEffectorLinkIndex, pos, orn, jointDamping=self._panda.jd,\n lowerLimits=self._panda.jointLowerLimit, upperLimits=self._panda.\n jointUpperLimit, jointRanges=self._panda.jointRange, restPoses=self.\n _panda.jointRestPose, residualThreshold=0.0001)\n', (2545, 2838), True, 'import pybullet as p\n'), ((6855, 6873), 'pybullet.stepSimulation', 'p.stepSimulation', ([], {}), '()\n', (6871, 6873), True, 'import pybullet as p\n'), ((5360, 5518), 'pybullet.setJointMotorControl2', 'p.setJointMotorControl2', (['self._pandaId', 'i', 'p.VELOCITY_CONTROL'], {'targetVelocity': 'jointDot[i]', 'force': 'self._panda.maxJointForce[i]', 'maxVelocity': 'maxJointVel'}), '(self._pandaId, i, p.VELOCITY_CONTROL,\n targetVelocity=jointDot[i], force=self._panda.maxJointForce[i],\n maxVelocity=maxJointVel)\n', (5383, 5518), True, 'import pybullet as p\n'), ((5639, 5841), 'pybullet.setJointMotorControl2', 'p.setJointMotorControl2', (['self._pandaId', 'self._panda.pandaLeftFingerJointIndex', 'p.VELOCITY_CONTROL'], {'targetVelocity': 'self._panda.fingerCurVel', 'force': 'self._panda.maxJointForce[i]', 'maxVelocity': '(0.04)'}), '(self._pandaId, self._panda.\n pandaLeftFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self.\n _panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04)\n', (5662, 5841), True, 'import pybullet as p\n'), ((5891, 6094), 'pybullet.setJointMotorControl2', 'p.setJointMotorControl2', (['self._pandaId', 'self._panda.pandaRightFingerJointIndex', 'p.VELOCITY_CONTROL'], {'targetVelocity': 'self._panda.fingerCurVel', 'force': 'self._panda.maxJointForce[i]', 'maxVelocity': '(0.04)'}), '(self._pandaId, self._panda.\n pandaRightFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self.\n _panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04)\n', (5914, 6094), True, 'import pybullet as p\n'), ((6153, 6313), 'pybullet.setJointMotorControl2', 'p.setJointMotorControl2', (['self._pandaId', 'self._panda.pandaLeftFingerJointIndex', 'p.POSITION_CONTROL'], {'targetPosition': 'gripper_target_pos', 'maxVelocity': '(0.04)'}), '(self._pandaId, self._panda.\n pandaLeftFingerJointIndex, p.POSITION_CONTROL, targetPosition=\n gripper_target_pos, maxVelocity=0.04)\n', (6176, 6313), True, 'import pybullet as p\n'), ((6352, 6513), 'pybullet.setJointMotorControl2', 'p.setJointMotorControl2', (['self._pandaId', 'self._panda.pandaRightFingerJointIndex', 'p.POSITION_CONTROL'], {'targetPosition': 'gripper_target_pos', 'maxVelocity': '(0.04)'}), '(self._pandaId, self._panda.\n pandaRightFingerJointIndex, p.POSITION_CONTROL, targetPosition=\n gripper_target_pos, maxVelocity=0.04)\n', (6375, 6513), True, 'import pybullet as p\n'), ((8747, 8763), 'numpy.zeros', 'np.zeros', (['(7, 1)'], {}), '((7, 1))\n', (8755, 8763), True, 'import numpy as np\n'), ((10064, 10093), 'numpy.array', 'np.array', (['left_contacts[0][6]'], {}), '(left_contacts[0][6])\n', (10072, 10093), True, 'import numpy as np\n'), ((10095, 10125), 'numpy.array', 'np.array', (['right_contacts[0][6]'], {}), '(right_contacts[0][6])\n', (10103, 10125), True, 'import numpy as np\n'), ((8588, 8610), 'numpy.linalg.pinv', 'np.linalg.pinv', (['jac_sp'], {}), '(jac_sp)\n', (8602, 8610), True, 'import numpy as np\n'), ((9639, 9654), 'numpy.array', 'np.array', (['i[13]'], {}), '(i[13])\n', (9647, 9654), True, 'import numpy as np\n'), ((9748, 9763), 'numpy.array', 'np.array', (['i[13]'], {}), '(i[13])\n', (9756, 9763), True, 'import numpy as np\n'), ((8616, 8671), 'numpy.hstack', 'np.hstack', (['(posGain * eePosError, velGain * eeOrnError)'], {}), '((posGain * eePosError, velGain * eeOrnError))\n', (8625, 8671), True, 'import numpy as np\n'), ((9596, 9610), 'numpy.array', 'np.array', (['i[7]'], {}), '(i[7])\n', (9604, 9610), True, 'import numpy as np\n'), ((9617, 9632), 'numpy.array', 'np.array', (['i[11]'], {}), '(i[11])\n', (9625, 9632), True, 'import numpy as np\n'), ((9705, 9719), 'numpy.array', 'np.array', (['i[7]'], {}), '(i[7])\n', (9713, 9719), True, 'import numpy as np\n'), ((9726, 9741), 'numpy.array', 'np.array', (['i[11]'], {}), '(i[11])\n', (9734, 9741), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from pathlib import Path import multiprocessing as mp from functools import partial from src.audio import read_as_melspectrogram from src.utils import get_params_hash from src import config NOISE_SOUNDS = [ 'Buzz', 'Car_passing_by', 'Crackle', 'Cricket', 'Hiss', 'Mechanical_fan', 'Stream', 'Traffic_noise_and_roadway_noise', 'Walk_and_footsteps', 'Waves_and_surf', 'Crowd', 'Run', 'Female_speech_and_woman_speaking', 'Male_speech_and_man_speaking', 'Raindrop', 'Sink_(filling_or_washing)', 'Gurgling', 'Frying_(food)', ] def check_noise(labels): noise = True for label in labels.split(','): if label not in NOISE_SOUNDS: noise = False break return noise def make_spectrogram_and_save(file_path: Path, save_dir: Path, audio_params): spec = read_as_melspectrogram(file_path, audio_params) if spec.shape[1] >= 320: save_dir.mkdir(parents=True, exist_ok=True) save_path = save_dir / (file_path.name + '.npy') np.save(save_path, spec) def prepare_freesound_data(dir_path, audio_params): dir_path = Path(dir_path) file_path_lst = [] train_df = pd.read_csv(config.freesound_train_curated_csv_path) for i, row in train_df.iterrows(): if check_noise(row.labels): file_path = config.freesound_train_curated_dir / row.fname file_path_lst.append(file_path) train_df = pd.read_csv(config.freesound_train_noisy_csv_path) for i, row in train_df.iterrows(): if check_noise(row.labels): file_path = config.freesound_train_noisy_dir / row.fname file_path_lst.append(file_path) func = partial(make_spectrogram_and_save, save_dir=dir_path, audio_params=audio_params) with mp.Pool(mp.cpu_count()) as pool: pool.map(func, file_path_lst) def check_prepared_freesound_data(audio_params): params_hash = get_params_hash({**audio_params.dict(), 'noise_sounds': NOISE_SOUNDS}) prepared_train_dir = config.freesound_prepared_train_curated_dir / params_hash if not prepared_train_dir.exists(): print(f"Start preparing freesound dataset to '{prepared_train_dir}'") prepare_freesound_data(prepared_train_dir, audio_params) print(f"Dataset prepared.") else: print(f"'{prepared_train_dir}' already exists.") def get_freesound_folds_data(audio_params): params_hash = get_params_hash({**audio_params.dict(), 'noise_sounds': NOISE_SOUNDS}) prepared_train_dir = config.freesound_prepared_train_curated_dir / params_hash folds_data = [] audio_paths = sorted(prepared_train_dir.glob("*.npy")) for i, spec_path in enumerate(audio_paths): sample = { 'ebird_code': 'nocall', 'spec_path': spec_path, 'fold': config.n_folds } folds_data.append(sample) return folds_data if __name__ == "__main__": check_prepared_freesound_data(audio_params=config.audio)
[ "pandas.read_csv", "pathlib.Path", "src.audio.read_as_melspectrogram", "multiprocessing.cpu_count", "functools.partial", "numpy.save" ]
[((906, 953), 'src.audio.read_as_melspectrogram', 'read_as_melspectrogram', (['file_path', 'audio_params'], {}), '(file_path, audio_params)\n', (928, 953), False, 'from src.audio import read_as_melspectrogram\n'), ((1194, 1208), 'pathlib.Path', 'Path', (['dir_path'], {}), '(dir_path)\n', (1198, 1208), False, 'from pathlib import Path\n'), ((1247, 1299), 'pandas.read_csv', 'pd.read_csv', (['config.freesound_train_curated_csv_path'], {}), '(config.freesound_train_curated_csv_path)\n', (1258, 1299), True, 'import pandas as pd\n'), ((1518, 1568), 'pandas.read_csv', 'pd.read_csv', (['config.freesound_train_noisy_csv_path'], {}), '(config.freesound_train_noisy_csv_path)\n', (1529, 1568), True, 'import pandas as pd\n'), ((1769, 1854), 'functools.partial', 'partial', (['make_spectrogram_and_save'], {'save_dir': 'dir_path', 'audio_params': 'audio_params'}), '(make_spectrogram_and_save, save_dir=dir_path, audio_params=audio_params\n )\n', (1776, 1854), False, 'from functools import partial\n'), ((1100, 1124), 'numpy.save', 'np.save', (['save_path', 'spec'], {}), '(save_path, spec)\n', (1107, 1124), True, 'import numpy as np\n'), ((1887, 1901), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (1899, 1901), True, 'import multiprocessing as mp\n')]
import numpy as np import pandas as pd from sklearn.externals import joblib #from sklearn.ensemble import RandomForestRegressor #from sklearn.multioutput import MultiOutputRegressor #from sklearn.multioutput import MultiOutputRegressor from sklearn.model_selection import train_test_split df = pd.read_csv('https://drive.google.com/uc?export=download&id=1XoV8SfvHmzaxRuDRe81OWSQu10dYTbO5',sep=',') df_X = df.iloc[:, 2:13].copy() df_X = pd.get_dummies(df_X) df_y1 = df.iloc[:, 13:16].copy() df_y1 = pd.get_dummies(df_y1) df_y2 = df.iloc[:, 16:20].copy() df_y2 = pd.get_dummies(df_y2) #X_train, df_X, y_train, df_y1 = train_test_split(df_X, df_y1, test_size=0.2, random_state=0) def accuracy(model, X_test, y_test): predictions = model.predict(X_test) print(model.score(X_test, y_test)) errors = np.abs(predictions - y_test) mape = 100 * (errors / y_test) for col in mape: accuracy = 100 - np.mean(mape[col]) print('Accuracy:', round(accuracy, 2), '%.') def test(model, df_X, df_y1, num): accuracy(model, df_X, df_y1) predictions = pd.DataFrame(model.predict(df_X)) errors = np.abs(predictions - df_y1) print(type(predictions)) print(type(errors)) for i in range(num): #results = df_X.iloc[:, 0:10].values #results = np.append(results, df_y1.ix[:, i]) #results = np.append(results, predictions[:, i]) #results = np.append(results, errors.ix[:, i]) #result_df = pd.DataFrame(results) df_X.join(df_y1.ix[:, i]).join(predictions.ix[:, i]).to_csv("ModelPredictions" + str(num) + str(i) + ".csv") #model = RandomForestRegressor(n_estimators = 1900, max_depth = 70, random_state = 50, learning_rate = 0.1, min_samples_split = 0.1, max_features = 'sqrt', loss = 'lad', warm_start = True, min_samples_leaf = 0.0005) #model1 = MultipleOutputRegressor(model) #model2 = MultipleOutputRegressor(model, n_jobs = -1) #model1.fit(X_train, y_train) model = joblib.load("RegressorChainGradientBoostingRegressorEarningsNew.pkl") test(model, df_X, df_y1, 3) model = joblib.load("RegressorChainGradientBoostingRegressorRepaymentNew.pkl") test(model, df_X, df_y2, 4) #model2.fit(X_train, y_train) #joblib.dump(model2, "MultiplepleOutputRandomForestRegressorEarnings.pkl") #print("Model 2: "); #accuracy(model2, df_X, df_y1) #X_train, df_X, y_train, df_y1 = train_test_split(df_X, df_y2, test_size=0.2, random_state=0) #model1.fit(X_train, y_train) #joblib.dump(model1, "MultipleOutputRegressorRandomForestRegressorRepayment.pkl") #print("Model 3: "); #accuracy(model1, df_X, df_y1) #model2.fit(X_train, y_train) #joblib.dump(model2, "MultiplepleOutputRandomForestRegressorRepayment.pkl") #print("Model 4: "); #accuracy(model2, df_X, df_y1)
[ "numpy.abs", "numpy.mean", "pandas.read_csv", "sklearn.externals.joblib.load", "pandas.get_dummies" ]
[((297, 411), 'pandas.read_csv', 'pd.read_csv', (['"""https://drive.google.com/uc?export=download&id=1XoV8SfvHmzaxRuDRe81OWSQu10dYTbO5"""'], {'sep': '""","""'}), "(\n 'https://drive.google.com/uc?export=download&id=1XoV8SfvHmzaxRuDRe81OWSQu10dYTbO5'\n , sep=',')\n", (308, 411), True, 'import pandas as pd\n'), ((440, 460), 'pandas.get_dummies', 'pd.get_dummies', (['df_X'], {}), '(df_X)\n', (454, 460), True, 'import pandas as pd\n'), ((503, 524), 'pandas.get_dummies', 'pd.get_dummies', (['df_y1'], {}), '(df_y1)\n', (517, 524), True, 'import pandas as pd\n'), ((567, 588), 'pandas.get_dummies', 'pd.get_dummies', (['df_y2'], {}), '(df_y2)\n', (581, 588), True, 'import pandas as pd\n'), ((1882, 1951), 'sklearn.externals.joblib.load', 'joblib.load', (['"""RegressorChainGradientBoostingRegressorEarningsNew.pkl"""'], {}), "('RegressorChainGradientBoostingRegressorEarningsNew.pkl')\n", (1893, 1951), False, 'from sklearn.externals import joblib\n'), ((1988, 2058), 'sklearn.externals.joblib.load', 'joblib.load', (['"""RegressorChainGradientBoostingRegressorRepaymentNew.pkl"""'], {}), "('RegressorChainGradientBoostingRegressorRepaymentNew.pkl')\n", (1999, 2058), False, 'from sklearn.externals import joblib\n'), ((804, 832), 'numpy.abs', 'np.abs', (['(predictions - y_test)'], {}), '(predictions - y_test)\n', (810, 832), True, 'import numpy as np\n'), ((1099, 1126), 'numpy.abs', 'np.abs', (['(predictions - df_y1)'], {}), '(predictions - df_y1)\n', (1105, 1126), True, 'import numpy as np\n'), ((905, 923), 'numpy.mean', 'np.mean', (['mape[col]'], {}), '(mape[col])\n', (912, 923), True, 'import numpy as np\n')]
# Costs # 2019 - Luque, Straub - Risk-based optimal inspection strategies for # structural systems using dynamic Bayesian networks # Table 4, case 1 import numpy as np class InspectionMaintenance: """ Inspection and Maintenance ========================== Cost calculation for inspection and maintenance reliability analysis. Parameters: ----------- c_c : float individual cost of campaign c_i : float individual cost of inspection c_r : float individual cost of repair c_f : float individual cost of failure r : float discount rate """ def __init__(self, c_c=5.0, c_i=1.0, c_r=10.0, c_f=10000, r=0.02): self.c_c, self.c_i, self.c_r, self.c_c, self.c_f, self.r = c_c, c_i, c_r, c_c, c_f, r def compute_cost_breakdown(self, system_model): """ Compute cost breakdown ====================== From simulated model, compute all lifetime costs: - campaign : C_C - inspection : C_I - repair : C_R - failure : C_F Results are stored in the system atributes in dictionaries: - system_obs - system_action - yearly_costs_breakdown - cost_breakdown """ system_insp, system_repair = dict(), dict() t, pf = np.vstack(system_model.system_pf).T unique_mask = np.diff(t) == 1 delta_pf = np.diff(pf)[unique_mask] abs_t = np.unique(t).astype(int) # t[1:][unique_mask] C_C, C_I, C_R, R_F = np.zeros_like(abs_t, dtype=float), np.zeros_like(abs_t, dtype=float), np.zeros_like(abs_t, dtype=float), np.zeros_like(abs_t, dtype=float) for component in system_model.components_list: action, output = np.array(component.action), np.array(component.output) y_t = (1 - self.r)**(np.array(component.t)) if any(action): comp_t = np.array(component.t, dtype=int) t_insp = comp_t[action == 'PoD'] t_repair = comp_t[action == 'PR'] C_I[t_insp] += self.c_i*(1 - self.r)**t_insp C_R[t_repair] += self.c_r*(1 - self.r)**t_repair system_insp[component.id]= t_insp system_repair[component.id] = t_repair else: system_insp[component.id]= list() system_repair[component.id] = list() t_temp = np.unique(np.concatenate(list(system_insp.values()))).astype(int) C_C[t_temp] += self.c_c*(1 - self.r)**(t_temp) R_F[abs_t[1:]] = self.c_f*delta_pf*(1 - self.r)**abs_t[1:] C_T = C_C + C_I + C_R + R_F system_model.yearly_costs_breakdown = {'t' : abs_t, 'C_C' : C_C, 'C_I' : C_I, 'C_R' : C_R, 'R_F' : R_F, 'C_T': C_T} system_model.cost_breakdown = {'C_C' : C_C.sum(), 'C_I' : C_I.sum(), 'C_R' : C_R.sum(), 'R_F' : R_F.sum(), 'C_T': C_T.sum()}
[ "numpy.unique", "numpy.diff", "numpy.array", "numpy.vstack", "numpy.zeros_like" ]
[((1359, 1392), 'numpy.vstack', 'np.vstack', (['system_model.system_pf'], {}), '(system_model.system_pf)\n', (1368, 1392), True, 'import numpy as np\n'), ((1417, 1427), 'numpy.diff', 'np.diff', (['t'], {}), '(t)\n', (1424, 1427), True, 'import numpy as np\n'), ((1452, 1463), 'numpy.diff', 'np.diff', (['pf'], {}), '(pf)\n', (1459, 1463), True, 'import numpy as np\n'), ((1569, 1602), 'numpy.zeros_like', 'np.zeros_like', (['abs_t'], {'dtype': 'float'}), '(abs_t, dtype=float)\n', (1582, 1602), True, 'import numpy as np\n'), ((1604, 1637), 'numpy.zeros_like', 'np.zeros_like', (['abs_t'], {'dtype': 'float'}), '(abs_t, dtype=float)\n', (1617, 1637), True, 'import numpy as np\n'), ((1639, 1672), 'numpy.zeros_like', 'np.zeros_like', (['abs_t'], {'dtype': 'float'}), '(abs_t, dtype=float)\n', (1652, 1672), True, 'import numpy as np\n'), ((1674, 1707), 'numpy.zeros_like', 'np.zeros_like', (['abs_t'], {'dtype': 'float'}), '(abs_t, dtype=float)\n', (1687, 1707), True, 'import numpy as np\n'), ((1493, 1505), 'numpy.unique', 'np.unique', (['t'], {}), '(t)\n', (1502, 1505), True, 'import numpy as np\n'), ((1792, 1818), 'numpy.array', 'np.array', (['component.action'], {}), '(component.action)\n', (1800, 1818), True, 'import numpy as np\n'), ((1820, 1846), 'numpy.array', 'np.array', (['component.output'], {}), '(component.output)\n', (1828, 1846), True, 'import numpy as np\n'), ((1880, 1901), 'numpy.array', 'np.array', (['component.t'], {}), '(component.t)\n', (1888, 1901), True, 'import numpy as np\n'), ((1956, 1988), 'numpy.array', 'np.array', (['component.t'], {'dtype': 'int'}), '(component.t, dtype=int)\n', (1964, 1988), True, 'import numpy as np\n')]
from __future__ import absolute_import, division, print_function import json import os.path as op import six import numpy as np import scipy.signal as sig import scipy.io.wavfile as sciwav MAXINT16 = 2**15 - 1 FS = 44100 COEFF_DIR = op.join(op.dirname(op.abspath(__file__)), 'coeffs') def normalize(data, maxamp=1): data *= maxamp / max(abs(data)) def load_coeffs(fname): with open(op.join(COEFF_DIR, fname)) as f: return json.load(f) POTS_COEFFS = load_coeffs('pots.json') def pots(data, snr=30, seed=None): if seed is not None: np.random.seed(seed) # ensure mono if data.ndim != 1: data = data[:,0] # convert to float, but simulate 16-bit quantization if needed orig_dtype = data.dtype data = data.astype('float') if orig_dtype != 'int16': normalize(data, maxamp=MAXINT16) np.around(data, out=data) normalize(data) # pad start and end #leader_len = np.random.randint(0.1 * FS, 0.4 * FS) #trailer_len = 0.5 * FS - leader_len #data = np.concatenate([np.zeros(leader_len), data, np.zeros(trailer_len)]) # do filtering for b, a in POTS_COEFFS['signal']: data = sig.lfilter(b, a, data) # add band-limited noise (filtered white noise) #np.random.seed(0) noise = 10**(-snr/20) * ((np.random.random(size=data.shape) * 2) - 1) for b, a in POTS_COEFFS['noiseband']: noise = sig.lfilter(b, a, noise) data += noise # renormalize and convert to 16-bit integers normalize(data, maxamp=MAXINT16) data = data.astype('int16') return data class DigitalStreamFilter(object): mimes = { 'wav': 'audio/vnd.wave', 'txt': 'text/plain', 'json': 'application/json', } output_suffix = 'filtered' def __init__(self, data=None, stream=None, filename=None, dtype=None): if dtype is None and filename is None: try: # werkzeug.FileStorage has 'filename', python files have 'name' filename = getattr(stream, 'filename', getattr(stream, 'name')) except AttributeError: raise ValueError("Can't determine type from stream. " "Provide dtype or filename to infer type.") if dtype is None: dtype = filename.split('.')[-1] self.dtype = dtype self.filename = filename self.json_extra = {} if data is not None: self.data = np.array(data) elif stream is not None: self.load(stream) else: with open(filename, 'rb') as stream: self.load(stream) def load(self, stream): dispatcher = { 'wav': self._load_wave, 'txt': self._load_text, 'json': self._load_json, } try: data = dispatcher[self.dtype](stream) except KeyError: raise TypeError('Unsupported input type: {} (accepts {})'.format( self.dtype, ', '.join(dispatcher.keys()))) self.data = np.array(data) def process(self, *args, **kwargs): raise NotImplementedError('abstract method') def dump(self, stream, dtype=None): if dtype is None: dtype = self.dtype {'wav': self._dump_wave, 'txt': self._dump_text, 'json': self._dump_json, }[dtype](stream) def suggested_name(self): parts = self.filename.split('.')[:-1] parts.extend([self.output_suffix, self.dtype]) return '.'.join(parts) def mimetype(self): return self.mimes[self.dtype] def _load_wave(self, stream): rate, data = sciwav.read(stream) return data def _load_text(self, stream): return np.loadtxt(stream, dtype='int16') def _load_json(self, stream): return np.array(json.load(stream)) def _dump_wave(self, stream): sciwav.write(stream, FS, self.data) def _dump_text(self, stream): np.savetxt(stream, self.data, fmt='%d') def _dump_json(self, stream): json.dump({'data': self.data.tolist(), 'rate': FS}, stream) class POTSFilter(DigitalStreamFilter): output_suffix = 'pots-filtered' def process(self, *args, **kwargs): self.data = pots(self.data, *args, **kwargs)
[ "numpy.random.random", "os.path.join", "json.load", "numpy.array", "scipy.signal.lfilter", "scipy.io.wavfile.read", "numpy.around", "numpy.random.seed", "scipy.io.wavfile.write", "os.path.abspath", "numpy.savetxt", "numpy.loadtxt" ]
[((255, 275), 'os.path.abspath', 'op.abspath', (['__file__'], {}), '(__file__)\n', (265, 275), True, 'import os.path as op\n'), ((443, 455), 'json.load', 'json.load', (['f'], {}), '(f)\n', (452, 455), False, 'import json\n'), ((565, 585), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (579, 585), True, 'import numpy as np\n'), ((860, 885), 'numpy.around', 'np.around', (['data'], {'out': 'data'}), '(data, out=data)\n', (869, 885), True, 'import numpy as np\n'), ((1182, 1205), 'scipy.signal.lfilter', 'sig.lfilter', (['b', 'a', 'data'], {}), '(b, a, data)\n', (1193, 1205), True, 'import scipy.signal as sig\n'), ((1414, 1438), 'scipy.signal.lfilter', 'sig.lfilter', (['b', 'a', 'noise'], {}), '(b, a, noise)\n', (1425, 1438), True, 'import scipy.signal as sig\n'), ((3071, 3085), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (3079, 3085), True, 'import numpy as np\n'), ((3686, 3705), 'scipy.io.wavfile.read', 'sciwav.read', (['stream'], {}), '(stream)\n', (3697, 3705), True, 'import scipy.io.wavfile as sciwav\n'), ((3776, 3809), 'numpy.loadtxt', 'np.loadtxt', (['stream'], {'dtype': '"""int16"""'}), "(stream, dtype='int16')\n", (3786, 3809), True, 'import numpy as np\n'), ((3931, 3966), 'scipy.io.wavfile.write', 'sciwav.write', (['stream', 'FS', 'self.data'], {}), '(stream, FS, self.data)\n', (3943, 3966), True, 'import scipy.io.wavfile as sciwav\n'), ((4010, 4049), 'numpy.savetxt', 'np.savetxt', (['stream', 'self.data'], {'fmt': '"""%d"""'}), "(stream, self.data, fmt='%d')\n", (4020, 4049), True, 'import numpy as np\n'), ((395, 420), 'os.path.join', 'op.join', (['COEFF_DIR', 'fname'], {}), '(COEFF_DIR, fname)\n', (402, 420), True, 'import os.path as op\n'), ((2467, 2481), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (2475, 2481), True, 'import numpy as np\n'), ((3869, 3886), 'json.load', 'json.load', (['stream'], {}), '(stream)\n', (3878, 3886), False, 'import json\n'), ((1312, 1345), 'numpy.random.random', 'np.random.random', ([], {'size': 'data.shape'}), '(size=data.shape)\n', (1328, 1345), True, 'import numpy as np\n')]
# Standard library import atexit import os os.environ["OMP_NUM_THREADS"] = "1" import sys import traceback # Third-party from astropy.utils import iers iers.conf.auto_download = False import astropy.table as at import numpy as np # This project from totoro.config import cache_path from totoro.data import datasets, elem_names from totoro.objective import TorusImagingObjective def worker(task): i, obj, x0, tmp_filename = task res = None try: res = obj.minimize(x0=x0, method="nelder-mead", options=dict(maxiter=250)) print(f"{i} finished optimizing: {res}") except Exception as e: print(f"{i} failed: {str(e)}") traceback.print_exc() if res is None or not res.success: xopt = np.nan * np.array(x0) else: xopt = res.x xopt = { 'zsun': [xopt[0]], 'vzsun': [xopt[1]], 'mdisk_f': [xopt[2]], 'disk_hz': [xopt[3]], } at.Table(xopt).write(tmp_filename, overwrite=True) return tmp_filename def combine_output(all_filename, this_cache_path, elem_name): import glob cache_glob_pattr = str(this_cache_path / f'tmp-*{elem_name}*.csv') if os.path.exists(all_filename): prev_table = at.Table.read(all_filename) else: prev_table = None # combine the individual worker cache files all_tables = [] remove_filenames = [] for filename in glob.glob(cache_glob_pattr): all_tables.append(at.Table.read(filename)) remove_filenames.append(filename) if all_tables: all_table = at.vstack(all_tables) else: return if prev_table: all_table = at.vstack((prev_table, all_table)) all_table.write(all_filename, overwrite=True) for filename in remove_filenames: os.unlink(filename) def main(pool, overwrite=False): tree_K = 32 # MAGIC NUMBER: set heuristically in Objective-function.ipynb bootstrap_K = 128 # MAGIC NUMBER for data_name, d in datasets.items(): # TODO: make seed configurable? rnd = np.random.default_rng(seed=42) # loop over all elements tasks = [] cache_paths = [] cache_filenames = [] for elem_name in elem_names[data_name]: print(f"Running element: {elem_name}") # TODO: if galah in data_name, filter on flag?? this_cache_path = cache_path / data_name this_cache_filename = (this_cache_path / f'optimize-results-{elem_name}.csv') if this_cache_filename.exists() and not overwrite: print(f"Cache file exists for {elem_name}: " f"{this_cache_filename}") continue atexit.register(combine_output, this_cache_filename, this_cache_path, elem_name) cache_paths.append(this_cache_path) cache_filenames.append(this_cache_filename) # print("Optimizing with full sample to initialize bootstraps...") # obj = TorusImagingObjective(d.t, d.c, elem_name, tree_K=tree_K) # full_sample_res = obj.minimize(method="nelder-mead", # options=dict(maxiter=1024)) # if not full_sample_res.success: # print(f"FAILED TO CONVERGE: optimize for full sample failed " # f"for {elem_name}") # continue # print(f"Finished optimizing full sample: {full_sample_res.x}") # x0 = full_sample_res.x x0 = np.array([20.8, 7.78, 1.1, 0.28]) # HACK: init from fiducial for k in range(bootstrap_K): idx = rnd.choice(len(d), len(d), replace=True) obj = TorusImagingObjective(d[idx], elem_name, tree_K=tree_K) tmp_filename = (this_cache_path / f'tmp-optimize-results-{elem_name}-{k}.csv') tasks.append((k, obj, x0, tmp_filename)) print("Done setting up bootstrap samples - running pool.map() on " f"{len(tasks)} tasks") for _ in pool.map(worker, tasks): pass for this_cache_filename, this_cache_path, elem_name in zip( cache_filenames, cache_paths, elem_names[data_name]): combine_output(this_cache_filename, this_cache_path, elem_name) sys.exit(0) if __name__ == '__main__': from argparse import ArgumentParser # Define parser object parser = ArgumentParser() parser.add_argument("-o", "--overwrite", dest="overwrite", action="store_true") # vq_group = parser.add_mutually_exclusive_group() # vq_group.add_argument('-v', '--verbose', action='count', default=0, # dest='verbosity') # vq_group.add_argument('-q', '--quiet', action='count', default=0, # dest='quietness') group = parser.add_mutually_exclusive_group() group.add_argument("--procs", dest="n_procs", default=1, type=int, help="Number of processes.") group.add_argument("--mpi", dest="mpi", default=False, action="store_true", help="Run with MPI.") parsed = parser.parse_args() # deal with multiproc: if parsed.mpi: from schwimmbad.mpi import MPIPool Pool = MPIPool kw = dict() elif parsed.n_procs > 1: from schwimmbad import MultiPool Pool = MultiPool kw = dict(processes=parsed.n_procs) else: from schwimmbad import SerialPool Pool = SerialPool kw = dict() Pool = Pool Pool_kwargs = kw with Pool(**Pool_kwargs) as pool: main(pool=pool, overwrite=parsed.overwrite) sys.exit(0)
[ "os.path.exists", "numpy.random.default_rng", "argparse.ArgumentParser", "astropy.table.Table", "astropy.table.vstack", "totoro.data.datasets.items", "numpy.array", "os.unlink", "sys.exit", "totoro.objective.TorusImagingObjective", "traceback.print_exc", "atexit.register", "glob.glob", "astropy.table.Table.read" ]
[((1200, 1228), 'os.path.exists', 'os.path.exists', (['all_filename'], {}), '(all_filename)\n', (1214, 1228), False, 'import os\n'), ((1430, 1457), 'glob.glob', 'glob.glob', (['cache_glob_pattr'], {}), '(cache_glob_pattr)\n', (1439, 1457), False, 'import glob\n'), ((2009, 2025), 'totoro.data.datasets.items', 'datasets.items', ([], {}), '()\n', (2023, 2025), False, 'from totoro.data import datasets, elem_names\n'), ((4562, 4573), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4570, 4573), False, 'import sys\n'), ((4684, 4700), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (4698, 4700), False, 'from argparse import ArgumentParser\n'), ((5940, 5951), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (5948, 5951), False, 'import sys\n'), ((1251, 1278), 'astropy.table.Table.read', 'at.Table.read', (['all_filename'], {}), '(all_filename)\n', (1264, 1278), True, 'import astropy.table as at\n'), ((1592, 1613), 'astropy.table.vstack', 'at.vstack', (['all_tables'], {}), '(all_tables)\n', (1601, 1613), True, 'import astropy.table as at\n'), ((1679, 1713), 'astropy.table.vstack', 'at.vstack', (['(prev_table, all_table)'], {}), '((prev_table, all_table))\n', (1688, 1713), True, 'import astropy.table as at\n'), ((1812, 1831), 'os.unlink', 'os.unlink', (['filename'], {}), '(filename)\n', (1821, 1831), False, 'import os\n'), ((2081, 2111), 'numpy.random.default_rng', 'np.random.default_rng', ([], {'seed': '(42)'}), '(seed=42)\n', (2102, 2111), True, 'import numpy as np\n'), ((694, 715), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (713, 715), False, 'import traceback\n'), ((780, 792), 'numpy.array', 'np.array', (['x0'], {}), '(x0)\n', (788, 792), True, 'import numpy as np\n'), ((964, 978), 'astropy.table.Table', 'at.Table', (['xopt'], {}), '(xopt)\n', (972, 978), True, 'import astropy.table as at\n'), ((1485, 1508), 'astropy.table.Table.read', 'at.Table.read', (['filename'], {}), '(filename)\n', (1498, 1508), True, 'import astropy.table as at\n'), ((2768, 2853), 'atexit.register', 'atexit.register', (['combine_output', 'this_cache_filename', 'this_cache_path', 'elem_name'], {}), '(combine_output, this_cache_filename, this_cache_path, elem_name\n )\n', (2783, 2853), False, 'import atexit\n'), ((3664, 3697), 'numpy.array', 'np.array', (['[20.8, 7.78, 1.1, 0.28]'], {}), '([20.8, 7.78, 1.1, 0.28])\n', (3672, 3697), True, 'import numpy as np\n'), ((3853, 3908), 'totoro.objective.TorusImagingObjective', 'TorusImagingObjective', (['d[idx]', 'elem_name'], {'tree_K': 'tree_K'}), '(d[idx], elem_name, tree_K=tree_K)\n', (3874, 3908), False, 'from totoro.objective import TorusImagingObjective\n')]
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.misc import scipy.io from matplotlib.patches import Rectangle import datetime import cv2 import sys def nms(dets, thresh): """Pure Python NMS baseline.""" x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep class Detect(object): def __init__(self): self.expand_scale_=0.0 self.force_gray_=False self.input_mean_value_=128.0 self.input_scale_=1.0 self.pixel_blob_name_='pixel-loss' self.bb_blob_name_='bb-output-tiled' self.res_stride_=4 self.det_threshold_=0.7 self.nms_threshold_=0.3 self.caffe_path_="" self.input_channels_=3 def model_init(self,caffe_python_path,model_path,def_path): sys.path.insert(0,caffe_python_path) import caffe self.caffe_path_=caffe_python_path self.net_=caffe.Net(def_path,model_path,caffe.TEST) def detect(self,image): #sys.path.insert(0,self.caffe_path_) import caffe #caffe.set_mode_cpu() #caffe.set_device(0) self.transformer_=caffe.io.Transformer({'data': (1,self.input_channels_,image.shape[0],image.shape[1])}) if self.force_gray_: image=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) self.input_channels_=1 else: self.transformer_.set_transpose('data', (2,0,1)) transformed_image=self.transformer_.preprocess('data',image) transformed_image=(transformed_image-self.input_mean_value_)*self.input_scale_ sz=image.shape self.net_.blobs['data'].reshape(1, self.input_channels_, sz[0], sz[1]) self.net_.blobs['data'].data[0, ...] = transformed_image output = self.net_.forward() prob = output[self.pixel_blob_name_][0, 1, ...] bb = output[self.bb_blob_name_][0, ...] gy = np.arange(0, sz[0], self.res_stride_) gx = np.arange(0, sz[1], self.res_stride_) gy = gy[0 : bb.shape[1]] gx = gx[0 : bb.shape[2]] [x, y] = np.meshgrid(gx, gy) #print bb.shape[1],len(gy),sz[0],sz[1] bb[0, :, :] += x bb[2, :, :] += x bb[1, :, :] += y bb[3, :, :] += y bb = np.reshape(bb, (4, -1)).T prob = np.reshape(prob, (-1, 1)) bb = bb[prob.ravel() > self.det_threshold_, :] prob = prob[prob.ravel() > self.det_threshold_, :] rects = np.hstack((bb, prob)) keep = nms(rects, self.nms_threshold_) rects = rects[keep, :] rects_expand=[] for rect in rects: rect_expand=[] rect_w=rect[2]-rect[0] rect_h=rect[3]-rect[1] rect_expand.append(int(max(0,rect[0]-rect_w*self.expand_scale_))) rect_expand.append(int(max(0,rect[1]-rect_h*self.expand_scale_))) rect_expand.append(int(min(sz[1],rect[2]+rect_w*self.expand_scale_))) rect_expand.append(int(min(sz[0],rect[3]+rect_h*self.expand_scale_))) rects_expand.append(rect_expand) return rects_expand
[ "sys.path.insert", "numpy.reshape", "numpy.minimum", "numpy.hstack", "caffe.io.Transformer", "numpy.where", "cv2.cvtColor", "caffe.Net", "numpy.meshgrid", "numpy.maximum", "numpy.arange" ]
[((1052, 1084), 'numpy.maximum', 'np.maximum', (['x1[i]', 'x1[order[1:]]'], {}), '(x1[i], x1[order[1:]])\n', (1062, 1084), True, 'import numpy as np\n'), ((1099, 1131), 'numpy.maximum', 'np.maximum', (['y1[i]', 'y1[order[1:]]'], {}), '(y1[i], y1[order[1:]])\n', (1109, 1131), True, 'import numpy as np\n'), ((1146, 1178), 'numpy.minimum', 'np.minimum', (['x2[i]', 'x2[order[1:]]'], {}), '(x2[i], x2[order[1:]])\n', (1156, 1178), True, 'import numpy as np\n'), ((1193, 1225), 'numpy.minimum', 'np.minimum', (['y2[i]', 'y2[order[1:]]'], {}), '(y2[i], y2[order[1:]])\n', (1203, 1225), True, 'import numpy as np\n'), ((1239, 1269), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (1249, 1269), True, 'import numpy as np\n'), ((1282, 1312), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (1292, 1312), True, 'import numpy as np\n'), ((1926, 1963), 'sys.path.insert', 'sys.path.insert', (['(0)', 'caffe_python_path'], {}), '(0, caffe_python_path)\n', (1941, 1963), False, 'import sys\n'), ((2033, 2076), 'caffe.Net', 'caffe.Net', (['def_path', 'model_path', 'caffe.TEST'], {}), '(def_path, model_path, caffe.TEST)\n', (2042, 2076), False, 'import caffe\n'), ((2234, 2327), 'caffe.io.Transformer', 'caffe.io.Transformer', (["{'data': (1, self.input_channels_, image.shape[0], image.shape[1])}"], {}), "({'data': (1, self.input_channels_, image.shape[0],\n image.shape[1])})\n", (2254, 2327), False, 'import caffe\n'), ((2932, 2969), 'numpy.arange', 'np.arange', (['(0)', 'sz[0]', 'self.res_stride_'], {}), '(0, sz[0], self.res_stride_)\n', (2941, 2969), True, 'import numpy as np\n'), ((2979, 3016), 'numpy.arange', 'np.arange', (['(0)', 'sz[1]', 'self.res_stride_'], {}), '(0, sz[1], self.res_stride_)\n', (2988, 3016), True, 'import numpy as np\n'), ((3088, 3107), 'numpy.meshgrid', 'np.meshgrid', (['gx', 'gy'], {}), '(gx, gy)\n', (3099, 3107), True, 'import numpy as np\n'), ((3286, 3311), 'numpy.reshape', 'np.reshape', (['prob', '(-1, 1)'], {}), '(prob, (-1, 1))\n', (3296, 3311), True, 'import numpy as np\n'), ((3430, 3451), 'numpy.hstack', 'np.hstack', (['(bb, prob)'], {}), '((bb, prob))\n', (3439, 3451), True, 'import numpy as np\n'), ((1411, 1434), 'numpy.where', 'np.where', (['(ovr <= thresh)'], {}), '(ovr <= thresh)\n', (1419, 1434), True, 'import numpy as np\n'), ((2358, 2397), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (2370, 2397), False, 'import cv2\n'), ((3249, 3272), 'numpy.reshape', 'np.reshape', (['bb', '(4, -1)'], {}), '(bb, (4, -1))\n', (3259, 3272), True, 'import numpy as np\n')]
# ============================================================================= # Copyright 2020 NVIDIA. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np from nemo import logging def analyze_confusion_matrix(cm, dict, max_pairs=10): """ Sort all confusions in the confusion matrix by value and display results. Print results in a format: (name -> name, value) Args: cm: Confusion matrix dict: Dictionary with key as a name and index as a value (Intents or Slots) max_pairs: Max number of confusions to print """ threshold = 5 # just arbitrary value to take confusion with at least this number confused_pairs = {} size = cm.shape[0] for i in range(size): res = cm[i].argsort() for j in range(size): pos = res[size - j - 1] # no confusion - same row and column if pos == i: continue elif cm[i][pos] >= threshold: str = f'{dict[i]} -> {dict[pos]}' confused_pairs[str] = cm[i][pos] else: break # sort by max confusions and print first max_pairs sorted_confused_pairs = sorted(confused_pairs.items(), key=lambda x: x[1], reverse=True) for i, pair_str in enumerate(sorted_confused_pairs): if i >= max_pairs: break logging.info(pair_str) def errors_per_class(cm, dict): """ Summarize confusions per each class in the confusion matrix. It can be useful both for Intents and Slots. It counts each confusion twice in both directions. Args: cm: Confusion matrix dict: Dictionary with key as a name and index as a value (Intents or Slots) """ size = cm.shape[0] confused_per_class = {} total_errors = 0 for class_num in range(size): sum = 0 for i in range(size): if i != class_num: sum += cm[class_num][i] sum += cm[i][class_num] confused_per_class[dict[class_num]] = sum total_errors += sum # logging.info(f'{dict[class_num]} - {sum}') logging.info(f'Total errors (multiplied by 2): {total_errors}') sorted_confused_per_class = sorted(confused_per_class.items(), key=lambda x: x[1], reverse=True) for conf_str in sorted_confused_per_class: logging.info(conf_str) def log_misclassified_queries(intent_labels, intent_preds, queries, intent_dict, limit=50): """ Display examples of Intent mistakes. In a format: Query, predicted and labeled intent names. """ logging.info(f'*** Misclassified intent queries (limit {limit}) ***') cnt = 0 for i in range(len(intent_preds)): if intent_labels[i] != intent_preds[i]: query = queries[i].split('\t')[0] logging.info( f'{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})' ) cnt = cnt + 1 if cnt >= limit: break def log_misclassified_slots( intent_labels, intent_preds, slot_labels, slot_preds, subtokens_mask, queries, intent_dict, slot_dict, limit=50 ): """ Display examples of Slot mistakes. In a format: Query, predicted and labeled intent names and list of predicted and labeled slot numbers. also prints dictionary of the slots at the start for easier reading. """ logging.info('') logging.info(f'*** Misclassified slots queries (limit {limit}) ***') # print slot dictionary logging.info(f'Slot dictionary:') str = '' for i, slot in enumerate(slot_dict): str += f'{i} - {slot}, ' if i % 5 == 4 or i == len(slot_dict) - 1: logging.info(str) str = '' logging.info('----------------') cnt = 0 for i in range(len(intent_preds)): cur_slot_pred = slot_preds[i][subtokens_mask[i]] cur_slot_label = slot_labels[i][subtokens_mask[i]] if not np.all(cur_slot_pred == cur_slot_label): query = queries[i].split('\t')[0] logging.info( f'{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})' ) logging.info(f'p: {cur_slot_pred}') logging.info(f'l: {cur_slot_label}') cnt = cnt + 1 if cnt >= limit: break def check_problematic_slots(slot_preds_list, slot_dict): """ Check non compliance of B- and I- slots for datasets that use such slot encoding. """ cnt = 0 # for sentence in slot_preds: # slots = sentence.split(" ") sentence = slot_preds_list for i in range(len(sentence)): slot_name = slot_dict[int(sentence[i])] if slot_name.startswith("I-"): prev_slot_name = slot_dict[int(sentence[i - 1])] if slot_name[2:] != prev_slot_name[2:]: print("Problem: " + slot_name + " - " + prev_slot_name) cnt += 1 print("Total problematic slots: " + str(cnt))
[ "nemo.logging.info", "numpy.all" ]
[((2735, 2798), 'nemo.logging.info', 'logging.info', (['f"""Total errors (multiplied by 2): {total_errors}"""'], {}), "(f'Total errors (multiplied by 2): {total_errors}')\n", (2747, 2798), False, 'from nemo import logging\n'), ((3193, 3262), 'nemo.logging.info', 'logging.info', (['f"""*** Misclassified intent queries (limit {limit}) ***"""'], {}), "(f'*** Misclassified intent queries (limit {limit}) ***')\n", (3205, 3262), False, 'from nemo import logging\n'), ((4028, 4044), 'nemo.logging.info', 'logging.info', (['""""""'], {}), "('')\n", (4040, 4044), False, 'from nemo import logging\n'), ((4049, 4117), 'nemo.logging.info', 'logging.info', (['f"""*** Misclassified slots queries (limit {limit}) ***"""'], {}), "(f'*** Misclassified slots queries (limit {limit}) ***')\n", (4061, 4117), False, 'from nemo import logging\n'), ((4150, 4183), 'nemo.logging.info', 'logging.info', (['f"""Slot dictionary:"""'], {}), "(f'Slot dictionary:')\n", (4162, 4183), False, 'from nemo import logging\n'), ((4377, 4409), 'nemo.logging.info', 'logging.info', (['"""----------------"""'], {}), "('----------------')\n", (4389, 4409), False, 'from nemo import logging\n'), ((1971, 1993), 'nemo.logging.info', 'logging.info', (['pair_str'], {}), '(pair_str)\n', (1983, 1993), False, 'from nemo import logging\n'), ((2955, 2977), 'nemo.logging.info', 'logging.info', (['conf_str'], {}), '(conf_str)\n', (2967, 2977), False, 'from nemo import logging\n'), ((3420, 3541), 'nemo.logging.info', 'logging.info', (['f"""{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})"""'], {}), "(\n f'{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})'\n )\n", (3432, 3541), False, 'from nemo import logging\n'), ((4333, 4350), 'nemo.logging.info', 'logging.info', (['str'], {}), '(str)\n', (4345, 4350), False, 'from nemo import logging\n'), ((4592, 4631), 'numpy.all', 'np.all', (['(cur_slot_pred == cur_slot_label)'], {}), '(cur_slot_pred == cur_slot_label)\n', (4598, 4631), True, 'import numpy as np\n'), ((4691, 4812), 'nemo.logging.info', 'logging.info', (['f"""{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})"""'], {}), "(\n f'{query} (predicted: {intent_dict[intent_preds[i]]} - labeled: {intent_dict[intent_labels[i]]})'\n )\n", (4703, 4812), False, 'from nemo import logging\n'), ((4845, 4880), 'nemo.logging.info', 'logging.info', (['f"""p: {cur_slot_pred}"""'], {}), "(f'p: {cur_slot_pred}')\n", (4857, 4880), False, 'from nemo import logging\n'), ((4893, 4929), 'nemo.logging.info', 'logging.info', (['f"""l: {cur_slot_label}"""'], {}), "(f'l: {cur_slot_label}')\n", (4905, 4929), False, 'from nemo import logging\n')]
import numpy as np import cv2 import glob from matplotlib import pyplot as plt class CameraCalibration(): def __init__(self): pass # =========================================================== # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @staticmethod def find_chess(frame_input, chess_size=(6, 6)): status = None print("chess...") # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((chess_size[0]*chess_size[1], 3), np.float32) objp[:, :2] = np.mgrid[0:chess_size[0], 0:chess_size[1]].T.reshape(-1, 2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. frame_gray = cv2.cvtColor(frame_input, cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(frame_gray, (chess_size[0], chess_size[1]), None) # If found, add object points, image points (after refining them) frame_output = None if ret == True: status = "checkmate!" print(status) objpoints.append(objp) corners2 = cv2.cornerSubPix(frame_gray, corners, (11, 11), (-1, -1), criteria) imgpoints.append(corners2) # Draw and display the corners frame_output = cv2.drawChessboardCorners(frame_input, (chess_size[0], chess_size[1]), corners2, ret) plt.imshow(frame_output) plt.show() if frame_output is None: frame_output = frame_input return frame_output, objpoints, imgpoints, status # =========================================================== # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @staticmethod def calibrateCoefficients(frame_input, objpoints, imgpoints): ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, frame_input.shape[::-1], None, None) tot_error = 0 mean_error = 0 for i in range(len(objpoints)): imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist) error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2) tot_error += error print("total error: ", mean_error/len(objpoints)) return ret, mtx, dist, rvecs, tvecs # $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @staticmethod def testbench(video_source=2): capture = cv2.VideoCapture(video_source) count_frame = 0 while 1: # ++++++++++++++++++++++++++++++++++++++++++++++++ print('calibrate state...') status = None while status is None: status = None ret, frame_input = capture.read() print(count_frame) count_frame += 1 frame_chess, objpoints, imgpoints, status = CameraCalibration.find_chess(frame_input) plt.imshow(frame_chess) plt.show() # ++++++++++++++++++++++++++++++++++++++++++++++++ frame_gray = cv2.cvtColor(frame_input, cv2.COLOR_BGR2GRAY) plt.imshow(frame_gray) plt.show() ret, mtx, dist, rvecs, tvecs = CameraCalibration.calibrateCoefficients(frame_gray, objpoints, imgpoints) h, w = frame_gray.shape[:2] newcameramtx, roi =cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h)) # ++++++++++++++++++++++++++++++++++++++++++++++++ print('test state...') while 1: ret, frame_input = capture.read() frame_gray = cv2.cvtColor(frame_input,cv2.COLOR_BGR2GRAY) h, w = frame_gray.shape[:2] newcameramtx, roi =cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h)) frame_undist = cv2.undistort(frame_input, mtx, dist, None, newcameramtx) x,y,w,h = roi print(x,y,w,h) # frame_undist = frame_undist[y:y+h, x:x+w] frame_concat = np.concatenate((frame_undist, frame_input), axis=1) plt.imshow(frame_concat) plt.show() # ---------------------------------------------------------- # Esc -> EXIT while # while 1: # k = cv2.waitKey(1) & 0xff # if k ==13 or k==27: # break # if k == 27: # break # ---------------------------------------------------------- capture.release() cv2.destroyAllWindows() # $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @staticmethod def getPhoto(video_source=0): capture = cv2.VideoCapture(video_source) while 1: ret, frame_input = capture.read() frame_line = frame_input frame_output = cv2.line(frame_line, (0, frame_line.shape[0]//2), (frame_line.shape[1], frame_line.shape[0]//2), (255,0,0), 1) frame_output = cv2.line(frame_line, (frame_line.shape[1]//2, 0), (frame_line.shape[1]//2, frame_line.shape[0]), (255,0,0), 1) cv2.imshow("Video", frame_line) # ------------------------------------------------------------------------------------------------------------------ # Esc -> EXIT while k = cv2.waitKey(30) & 0xff if k == 27: break # ------------------------------------------------------------------------------------------------------------------ # ---------------------------------------------------------------------------------------------------------------------- ret, frame_input = capture.read() frame_input = cv2.cvtColor(frame_input, cv2.COLOR_BGR2RGB) plt.imshow(frame_input) plt.xticks([]) plt.yticks([]) plt.show() # ---------------------------------------------------------------------------------------------------------------------- capture.release() cv2.destroyAllWindows() # $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ # $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ # $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ # CameraCalibration.testbench(video_source=2)
[ "cv2.norm", "cv2.projectPoints", "cv2.imshow", "cv2.destroyAllWindows", "cv2.calibrateCamera", "cv2.findChessboardCorners", "cv2.cornerSubPix", "matplotlib.pyplot.imshow", "cv2.line", "cv2.undistort", "matplotlib.pyplot.yticks", "numpy.concatenate", "cv2.waitKey", "matplotlib.pyplot.xticks", "cv2.getOptimalNewCameraMatrix", "cv2.cvtColor", "matplotlib.pyplot.show", "numpy.zeros", "cv2.VideoCapture", "cv2.drawChessboardCorners" ]
[((604, 660), 'numpy.zeros', 'np.zeros', (['(chess_size[0] * chess_size[1], 3)', 'np.float32'], {}), '((chess_size[0] * chess_size[1], 3), np.float32)\n', (612, 660), True, 'import numpy as np\n'), ((947, 992), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_input', 'cv2.COLOR_BGR2GRAY'], {}), '(frame_input, cv2.COLOR_BGR2GRAY)\n', (959, 992), False, 'import cv2\n'), ((1056, 1131), 'cv2.findChessboardCorners', 'cv2.findChessboardCorners', (['frame_gray', '(chess_size[0], chess_size[1])', 'None'], {}), '(frame_gray, (chess_size[0], chess_size[1]), None)\n', (1081, 1131), False, 'import cv2\n'), ((2254, 2332), 'cv2.calibrateCamera', 'cv2.calibrateCamera', (['objpoints', 'imgpoints', 'frame_input.shape[::-1]', 'None', 'None'], {}), '(objpoints, imgpoints, frame_input.shape[::-1], None, None)\n', (2273, 2332), False, 'import cv2\n'), ((3171, 3201), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_source'], {}), '(video_source)\n', (3187, 3201), False, 'import cv2\n'), ((5364, 5387), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5385, 5387), False, 'import cv2\n'), ((5591, 5621), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_source'], {}), '(video_source)\n', (5607, 5621), False, 'import cv2\n'), ((6905, 6949), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_input', 'cv2.COLOR_BGR2RGB'], {}), '(frame_input, cv2.COLOR_BGR2RGB)\n', (6917, 6949), False, 'import cv2\n'), ((6967, 6990), 'matplotlib.pyplot.imshow', 'plt.imshow', (['frame_input'], {}), '(frame_input)\n', (6977, 6990), True, 'from matplotlib import pyplot as plt\n'), ((6999, 7013), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (7009, 7013), True, 'from matplotlib import pyplot as plt\n'), ((7022, 7036), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (7032, 7036), True, 'from matplotlib import pyplot as plt\n'), ((7045, 7055), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7053, 7055), True, 'from matplotlib import pyplot as plt\n'), ((7220, 7243), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7241, 7243), False, 'import cv2\n'), ((1378, 1445), 'cv2.cornerSubPix', 'cv2.cornerSubPix', (['frame_gray', 'corners', '(11, 11)', '(-1, -1)', 'criteria'], {}), '(frame_gray, corners, (11, 11), (-1, -1), criteria)\n', (1394, 1445), False, 'import cv2\n'), ((1720, 1809), 'cv2.drawChessboardCorners', 'cv2.drawChessboardCorners', (['frame_input', '(chess_size[0], chess_size[1])', 'corners2', 'ret'], {}), '(frame_input, (chess_size[0], chess_size[1]),\n corners2, ret)\n', (1745, 1809), False, 'import cv2\n'), ((1818, 1842), 'matplotlib.pyplot.imshow', 'plt.imshow', (['frame_output'], {}), '(frame_output)\n', (1828, 1842), True, 'from matplotlib import pyplot as plt\n'), ((1855, 1865), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1863, 1865), True, 'from matplotlib import pyplot as plt\n'), ((2686, 2748), 'cv2.projectPoints', 'cv2.projectPoints', (['objpoints[i]', 'rvecs[i]', 'tvecs[i]', 'mtx', 'dist'], {}), '(objpoints[i], rvecs[i], tvecs[i], mtx, dist)\n', (2703, 2748), False, 'import cv2\n'), ((3817, 3862), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_input', 'cv2.COLOR_BGR2GRAY'], {}), '(frame_input, cv2.COLOR_BGR2GRAY)\n', (3829, 3862), False, 'import cv2\n'), ((3875, 3897), 'matplotlib.pyplot.imshow', 'plt.imshow', (['frame_gray'], {}), '(frame_gray)\n', (3885, 3897), True, 'from matplotlib import pyplot as plt\n'), ((3910, 3920), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3918, 3920), True, 'from matplotlib import pyplot as plt\n'), ((4112, 4171), 'cv2.getOptimalNewCameraMatrix', 'cv2.getOptimalNewCameraMatrix', (['mtx', 'dist', '(w, h)', '(1)', '(w, h)'], {}), '(mtx, dist, (w, h), 1, (w, h))\n', (4141, 4171), False, 'import cv2\n'), ((5752, 5873), 'cv2.line', 'cv2.line', (['frame_line', '(0, frame_line.shape[0] // 2)', '(frame_line.shape[1], frame_line.shape[0] // 2)', '(255, 0, 0)', '(1)'], {}), '(frame_line, (0, frame_line.shape[0] // 2), (frame_line.shape[1], \n frame_line.shape[0] // 2), (255, 0, 0), 1)\n', (5760, 5873), False, 'import cv2\n'), ((6035, 6155), 'cv2.line', 'cv2.line', (['frame_line', '(frame_line.shape[1] // 2, 0)', '(frame_line.shape[1] // 2, frame_line.shape[0])', '(255, 0, 0)', '(1)'], {}), '(frame_line, (frame_line.shape[1] // 2, 0), (frame_line.shape[1] //\n 2, frame_line.shape[0]), (255, 0, 0), 1)\n', (6043, 6155), False, 'import cv2\n'), ((6303, 6334), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame_line'], {}), "('Video', frame_line)\n", (6313, 6334), False, 'import cv2\n'), ((2769, 2816), 'cv2.norm', 'cv2.norm', (['imgpoints[i]', 'imgpoints2', 'cv2.NORM_L2'], {}), '(imgpoints[i], imgpoints2, cv2.NORM_L2)\n', (2777, 2816), False, 'import cv2\n'), ((3676, 3699), 'matplotlib.pyplot.imshow', 'plt.imshow', (['frame_chess'], {}), '(frame_chess)\n', (3686, 3699), True, 'from matplotlib import pyplot as plt\n'), ((3716, 3726), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3724, 3726), True, 'from matplotlib import pyplot as plt\n'), ((4373, 4418), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_input', 'cv2.COLOR_BGR2GRAY'], {}), '(frame_input, cv2.COLOR_BGR2GRAY)\n', (4385, 4418), False, 'import cv2\n'), ((4498, 4557), 'cv2.getOptimalNewCameraMatrix', 'cv2.getOptimalNewCameraMatrix', (['mtx', 'dist', '(w, h)', '(1)', '(w, h)'], {}), '(mtx, dist, (w, h), 1, (w, h))\n', (4527, 4557), False, 'import cv2\n'), ((4590, 4647), 'cv2.undistort', 'cv2.undistort', (['frame_input', 'mtx', 'dist', 'None', 'newcameramtx'], {}), '(frame_input, mtx, dist, None, newcameramtx)\n', (4603, 4647), False, 'import cv2\n'), ((4801, 4852), 'numpy.concatenate', 'np.concatenate', (['(frame_undist, frame_input)'], {'axis': '(1)'}), '((frame_undist, frame_input), axis=1)\n', (4815, 4852), True, 'import numpy as np\n'), ((4870, 4894), 'matplotlib.pyplot.imshow', 'plt.imshow', (['frame_concat'], {}), '(frame_concat)\n', (4880, 4894), True, 'from matplotlib import pyplot as plt\n'), ((4911, 4921), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4919, 4921), True, 'from matplotlib import pyplot as plt\n'), ((6513, 6528), 'cv2.waitKey', 'cv2.waitKey', (['(30)'], {}), '(30)\n', (6524, 6528), False, 'import cv2\n')]
# -*- coding: utf-8 -*- """ Utilities for reading and writing USID datasets that are highly model-dependent (with or without N-dimensional form) Created on Tue Nov 3 21:14:25 2015 @author: <NAME>, <NAME> """ from __future__ import division, print_function, absolute_import, unicode_literals from warnings import warn import sys import h5py import numpy as np from dask import array as da from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, \ copy_dataset, lazy_load_array from sidpy.base.num_utils import contains_integers from sidpy.base.dict_utils import flatten_dict from sidpy.base.string_utils import validate_single_string_arg, \ validate_list_of_strings, validate_string_args from sidpy.hdf.dtype_utils import validate_dtype from sidpy import sid from .base import write_book_keeping_attrs from .simple import link_as_main, check_if_main, write_ind_val_dsets, validate_dims_against_main, validate_anc_h5_dsets from ..dimension import Dimension, validate_dimensions from ..anc_build_utils import INDICES_DTYPE, make_indices_matrix if sys.version_info.major == 3: unicode = str def reshape_to_n_dims(h5_main, h5_pos=None, h5_spec=None, get_labels=False, verbose=False, sort_dims=False, lazy=False): """ Reshape the input 2D matrix to be N-dimensions based on the position and spectroscopic datasets. Parameters ---------- h5_main : HDF5 Dataset 2D data to be reshaped h5_pos : HDF5 Dataset, optional Position indices corresponding to rows in `h5_main` h5_spec : HDF5 Dataset, optional Spectroscopic indices corresponding to columns in `h5_main` get_labels : bool, optional Whether or not to return the dimension labels. Default False verbose : bool, optional Whether or not to print debugging statements sort_dims : bool If True, the data is sorted so that the dimensions are in order from slowest to fastest If False, the data is kept in the original order If `get_labels` is also True, the labels are sorted as well. lazy : bool, optional. Default = False If False, ds_Nd will be a numpy.ndarray object - this is suitable if the HDF5 dataset fits into memory If True, ds_Nd will be a dask.array object - This is suitable if the HDF5 dataset is too large to fit into memory. Note that this will bea lazy computation meaning that the returned object just contains the instructions . In order to get the actual value or content in numpy arrays, call ds_Nd.compute() Returns ------- ds_Nd : N-D numpy array or dask.array object N dimensional array arranged as [positions slowest to fastest, spectroscopic slowest to fastest] success : boolean or string True if full reshape was successful "Positions" if it was only possible to reshape by the position dimensions False if no reshape was possible ds_labels : list of str List of the labels of each dimension of `ds_Nd` Notes ----- If either `h5_pos` or `h5_spec` are not provided, the function will first attempt to find them as attributes of `h5_main`. If that fails, it will generate dummy values for them. """ # TODO: automatically switch on lazy if the data is larger than memory # TODO: sort_dims does not appear to do much. Functions as though it was always True if h5_pos is None and h5_spec is None: if not check_if_main(h5_main): raise ValueError('if h5_main is a h5py.Dataset it should be a Main dataset') else: if not isinstance(h5_main, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('h5_main should either be a h5py.Dataset or numpy array') if h5_pos is not None: if not isinstance(h5_pos, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('h5_pos should either be a h5py.Dataset or numpy array') if h5_pos.shape[0] != h5_main.shape[0]: raise ValueError('The size of h5_pos: {} does not match with h5_main: {}'.format(h5_pos.shape, h5_main.shape)) if h5_spec is not None: if not isinstance(h5_spec, (h5py.Dataset, np.ndarray, da.core.Array)): raise TypeError('h5_spec should either be a h5py.Dataset or numpy array') if h5_spec.shape[1] != h5_main.shape[1]: raise ValueError('The size of h5_spec: {} does not match with h5_main: {}'.format(h5_spec.shape, h5_main.shape)) pos_labs = np.array(['Positions']) spec_labs = np.array(['Spectral_Step']) if h5_pos is None: """ Get the Position datasets from the references if possible """ if isinstance(h5_main, h5py.Dataset): try: h5_pos = h5_main.file[h5_main.attrs['Position_Indices']] ds_pos = h5_pos[()] pos_labs = get_attr(h5_pos, 'labels') except KeyError: print('No position datasets found as attributes of {}'.format(h5_main.name)) if len(h5_main.shape) > 1: ds_pos = np.arange(h5_main.shape[0], dtype=INDICES_DTYPE).reshape(-1, 1) pos_labs = np.array(['Position Dimension {}'.format(ipos) for ipos in range(ds_pos.shape[1])]) else: ds_pos = np.array(0, dtype=INDICES_DTYPE).reshape(-1, 1) else: ds_pos = np.arange(h5_main.shape[0], dtype=INDICES_DTYPE).reshape(-1, 1) pos_labs = np.array(['Position Dimension {}'.format(ipos) for ipos in range(ds_pos.shape[1])]) elif isinstance(h5_pos, h5py.Dataset): """ Position Indices dataset was provided """ ds_pos = h5_pos[()] pos_labs = get_attr(h5_pos, 'labels') elif isinstance(h5_pos, (np.ndarray, da.core.Array)): ds_pos = np.atleast_2d(h5_pos) pos_labs = np.array(['Position Dimension {}'.format(ipos) for ipos in range(ds_pos.shape[1])]) else: raise TypeError('Position Indices must be either h5py.Dataset or None') if h5_spec is None: """ Get the Spectroscopic datasets from the references if possible """ if isinstance(h5_main, h5py.Dataset): try: h5_spec = h5_main.file[h5_main.attrs['Spectroscopic_Indices']] ds_spec = h5_spec[()] spec_labs = get_attr(h5_spec, 'labels') except KeyError: print('No spectroscopic datasets found as attributes of {}'.format(h5_main.name)) if len(h5_main.shape) > 1: ds_spec = np.arange(h5_main.shape[1], dtype=INDICES_DTYPE).reshape([1, -1]) spec_labs = np.array(['Spectral Dimension {}'.format(ispec) for ispec in range(ds_spec.shape[0])]) else: ds_spec = np.array(0, dtype=INDICES_DTYPE).reshape([1, 1]) else: ds_spec = np.arange(h5_main.shape[1], dtype=INDICES_DTYPE).reshape([1, -1]) spec_labs = np.array(['Spectral Dimension {}'.format(ispec) for ispec in range(ds_spec.shape[0])]) elif isinstance(h5_spec, h5py.Dataset): """ Spectroscopic Indices dataset was provided """ ds_spec = h5_spec[()] spec_labs = get_attr(h5_spec, 'labels') elif isinstance(h5_spec, (np.ndarray, da.core.Array)): ds_spec = h5_spec spec_labs = np.array(['Spectral Dimension {}'.format(ispec) for ispec in range(ds_spec.shape[0])]) else: raise TypeError('Spectroscopic Indices must be either h5py.Dataset or None') ''' Sort the indices from fastest to slowest ''' pos_sort = get_sort_order(np.transpose(ds_pos)) spec_sort = get_sort_order(ds_spec) if verbose: print('Position dimensions:', pos_labs) print('Position sort order:', pos_sort) print('Spectroscopic Dimensions:', spec_labs) print('Spectroscopic sort order:', spec_sort) ''' Get the size of each dimension in the sorted order ''' pos_dims = get_dimensionality(np.transpose(ds_pos), pos_sort) spec_dims = get_dimensionality(ds_spec, spec_sort) if np.prod(pos_dims) != h5_main.shape[0]: mesg = 'Product of position dimension sizes: {} = {} not matching ' \ 'with size of first axis of main dataset: {}. One or more ' \ 'dimensions are dependent dimensions and not marked as such' \ '.'.format(pos_dims, np.prod(pos_dims), h5_main.shape[0]) raise ValueError(mesg) if np.prod(spec_dims) != h5_main.shape[1]: mesg = 'Product of spectroscopic dimension sizes: {} = {} not matching ' \ 'with size of second axis of main dataset: {}. One or more ' \ 'dimensions are dependent dimensions and not marked as such' \ '.'.format(spec_dims, np.prod(spec_dims), h5_main.shape[1]) raise ValueError(mesg) if verbose: print('\nPosition dimensions (sort applied):', pos_labs[pos_sort]) print('Position dimensionality (sort applied):', pos_dims) print('Spectroscopic dimensions (sort applied):', spec_labs[spec_sort]) print('Spectroscopic dimensionality (sort applied):', spec_dims) if lazy: ds_main = lazy_load_array(h5_main) else: ds_main = h5_main[()] """ Now we reshape the dataset based on those dimensions numpy reshapes correctly when the dimensions are arranged from slowest to fastest. Since the sort orders we have are from fastest to slowest, we need to reverse the orders for both the position and spectroscopic dimensions """ if verbose: print('Will attempt to reshape main dataset from:\n{} to {}'.format(ds_main.shape, pos_dims[::-1] + spec_dims[::-1])) try: ds_Nd = ds_main.reshape(pos_dims[::-1] + spec_dims[::-1]) except ValueError: warn('Could not reshape dataset to full N-dimensional form. Attempting reshape based on position only.') try: ds_Nd = ds_main.reshape(pos_dims[::-1] + [-1]) except ValueError: warn('Reshape by position only also failed. Will keep dataset in 2d form.') if get_labels: return ds_main, False, ['Position', 'Spectral Step'] else: return ds_main, False # No exception else: if get_labels: return ds_Nd, 'Positions', ['Position'] + spec_labs else: return ds_Nd, 'Positions' all_labels = np.hstack((pos_labs[pos_sort][::-1], spec_labs[spec_sort][::-1])) if verbose: print('\nAfter reshaping, labels are', all_labels) print('Data shape is', ds_Nd.shape) """ At this point, the data is arranged from slowest to fastest dimension in both pos and spec """ if sort_dims: results = [ds_Nd, True] if get_labels: results.append(all_labels) return results if verbose: print('\nGoing to put dimensions back in the same order as in the file:') swap_axes = list() # Compare the original order of the pos / spec labels with where these dimensions occur in the sorted labels for lab in pos_labs: swap_axes.append(np.argwhere(all_labels == lab).squeeze()) for lab in spec_labs: swap_axes.append(np.argwhere(all_labels == lab).squeeze()) swap_axes = np.array(swap_axes) if verbose: print('Axes will permuted in this order:', swap_axes) print('New labels ordering:', all_labels[swap_axes]) ds_Nd = ds_Nd.transpose(tuple(swap_axes)) results = [ds_Nd, True] if verbose: print('Dataset now of shape:', ds_Nd.shape) if get_labels: ''' Get the labels in the proper order ''' results.append(all_labels[swap_axes]) return results def reshape_from_n_dims(data_n_dim, h5_pos=None, h5_spec=None, verbose=False): """ Reshape the input 2D matrix to be N-dimensions based on the position and spectroscopic datasets. Parameters ---------- data_n_dim : numpy.array or dask.array.core.Array N dimensional array arranged as [positions dimensions..., spectroscopic dimensions] If h5_pos and h5_spec are not provided, this function will have to assume that the dimensions are arranged as [positions slowest to fastest, spectroscopic slowest to fastest]. This restriction is removed if h5_pos and h5_spec are provided h5_pos : HDF5 Dataset, numpy.array or dask.array.core.Array Position indices corresponding to rows in the final 2d array The dimensions should be arranged in terms of rate of change corresponding to data_n_dim. In other words if data_n_dim had two position dimensions arranged as [pos_fast, pos_slow, spec_dim_1....], h5_pos should be arranged as [pos_fast, pos_slow] h5_spec : HDF5 Dataset, numpy. array or dask.array.core.Array Spectroscopic indices corresponding to columns in the final 2d array The dimensions should be arranged in terms of rate of change corresponding to data_n_dim. In other words if data_n_dim had two spectral dimensions arranged as [pos_dim_1,..., spec_fast, spec_slow], h5_spec should be arranged as [pos_slow, pos_fast] verbose : bool, optional. Default = False Whether or not to print log statements Returns ------- ds_2d : numpy.array 2 dimensional numpy array arranged as [positions, spectroscopic] success : boolean or string True if full reshape was successful "Positions" if it was only possible to reshape by the position dimensions False if no reshape was possible Notes ----- If either `h5_pos` or `h5_spec` are not provided, the function will assume the first dimension is position and the remaining are spectroscopic already in order from fastest to slowest. """ if not isinstance(data_n_dim, (np.ndarray, da.core.Array)): raise TypeError('data_n_dim is not a numpy or dask array') if h5_spec is None and h5_pos is None: raise ValueError('at least one of h5_pos or h5_spec must be specified for an attempt to reshape to 2D') if data_n_dim.ndim < 2: return data_n_dim, True if h5_pos is None: pass elif isinstance(h5_pos, h5py.Dataset): ''' Position Indices dataset was provided ''' ds_pos = h5_pos[()] elif isinstance(h5_pos, da.core.Array): ds_pos = h5_pos.compute() elif isinstance(h5_pos, np.ndarray): ds_pos = h5_pos else: raise TypeError('Position Indices must be either h5py.Dataset or None') if h5_spec is None: pass elif isinstance(h5_spec, h5py.Dataset): ''' Spectroscopic Indices dataset was provided ''' ds_spec = h5_spec[()] elif isinstance(h5_spec, da.core.Array): ds_spec = h5_spec.compute() elif isinstance(h5_spec, np.ndarray): ds_spec = h5_spec else: raise TypeError('Spectroscopic Indices must be either h5py.Dataset or None') if h5_spec is None and h5_pos is not None: if verbose: print('Spectral indices not provided but position indices provided.\n' 'Building spectral indices assuming that dimensions are arranged as slow -> fast') pos_dims = get_dimensionality(ds_pos, index_sort=get_sort_order(ds_pos)) if not np.all([x in data_n_dim.shape for x in pos_dims]): raise ValueError('Dimension sizes in pos_dims: {} do not exist in data_n_dim shape: ' '{}'.format(pos_dims, data_n_dim.shape)) spec_dims = [col for col in list(data_n_dim.shape[len(pos_dims):])] if verbose: print('data has dimensions: {}. Provided position indices had dimensions of size: {}. Spectral dimensions ' 'will built with dimensions: {}'.format(data_n_dim.shape, pos_dims, spec_dims)) ds_spec = make_indices_matrix(spec_dims, is_position=False) elif h5_pos is None and h5_spec is not None: if verbose: print('Position indices not provided but spectral indices provided.\n' 'Building position indices assuming that dimensions are arranged as slow -> fast') spec_dims = get_dimensionality(ds_spec, index_sort=get_sort_order(ds_spec)) if not np.all([x in data_n_dim.shape for x in spec_dims]): raise ValueError('Dimension sizes in spec_dims: {} do not exist in data_n_dim shape: ' '{}'.format(spec_dims, data_n_dim.shape)) pos_dims = [col for col in list(data_n_dim.shape[:data_n_dim.ndim-len(spec_dims)])] if verbose: print('data has dimensions: {}. Spectroscopic position indices had dimensions of size: {}. Position ' 'dimensions will built with dimensions: {}'.format(data_n_dim.shape, spec_dims, pos_dims)) ds_pos = make_indices_matrix(pos_dims, is_position=True) elif h5_spec is not None and h5_pos is not None: if ds_pos.shape[0] * ds_spec.shape[1] != np.product(data_n_dim.shape): raise ValueError('The product ({}) of the number of positions ({}) and spectroscopic ({}) observations is ' 'not equal to the product ({}) of the data shape ({})' '.'.format(ds_pos.shape[0] * ds_spec.shape[1], ds_pos.shape[0], ds_spec.shape[1], np.product(data_n_dim.shape), data_n_dim.shape)) if ds_pos.shape[1] + ds_spec.shape[0] != data_n_dim.ndim: # This may mean that the dummy position or spectroscopic axes has been squeezed out! # Dask does NOT allow singular dimensions apparently. So cannot do expand_dims. Handle later if ds_pos.size == 1 or ds_spec.size == 1: if verbose: print('ALL Position dimensions squeezed: {}. ALL Spectroscopic dimensions squeezed: {}' '.'.format(ds_pos.size == 1, ds_spec.size == 1)) else: raise ValueError('The number of position ({}) and spectroscopic ({}) dimensions do not match with the ' 'dimensionality of the N-dimensional dataset: {}' '.'.format(ds_pos.shape[1], ds_spec.shape[0], data_n_dim.ndim)) ''' Sort the indices from fastest to slowest ''' if ds_pos.size == 1: # Position dimension squeezed out: pos_sort = [] else: pos_sort = get_sort_order(np.transpose(ds_pos)) if ds_spec.size == 1: # Spectroscopic axis squeezed out: spec_sort = [] else: spec_sort = get_sort_order(ds_spec) if h5_spec is None: spec_sort = spec_sort[::-1] if h5_pos is None: pos_sort = pos_sort[::-1] if verbose: print('Position sort order: {}'.format(pos_sort)) print('Spectroscopic sort order: {}'.format(spec_sort)) ''' Now we transpose the axes associated with the spectroscopic dimensions so that they are in the same order as in the index array ''' swap_axes = np.uint16(np.append(pos_sort[::-1], spec_sort[::-1] + len(pos_sort))) if verbose: print('swap axes: {} to be applied to N dimensional data of shape {}'.format(swap_axes, data_n_dim.shape)) data_n_dim_2 = data_n_dim.transpose(tuple(swap_axes)) if verbose: print('N dimensional data shape after axes swap: {}'.format(data_n_dim_2.shape)) ''' Now we reshape the dataset based on those dimensions We must use the spectroscopic dimensions in reverse order ''' try: ds_2d = data_n_dim_2.reshape([ds_pos.shape[0], ds_spec.shape[1]]) except ValueError: raise ValueError('Could not reshape dataset to full N-dimensional form') return ds_2d, True def get_dimensionality(ds_index, index_sort=None): """ Get the size of each index dimension in a specified sort order Parameters ---------- ds_index : 2D HDF5 Dataset or numpy array Row matrix of indices index_sort : Iterable of unsigned integers (Optional) Sort that can be applied to dimensionality. For example - Order of rows sorted from fastest to slowest Returns ------- sorted_dims : list of unsigned integers Dimensionality of each row in ds_index. If index_sort is supplied, it will be in the sorted order """ if isinstance(ds_index, da.core.Array): ds_index = ds_index.compute() if not isinstance(ds_index, (np.ndarray, h5py.Dataset)): raise TypeError('ds_index should either be a numpy array or h5py.Dataset') if ds_index.shape[0] > ds_index.shape[1]: # must be spectroscopic like in shape (few rows, more cols) ds_index = np.transpose(ds_index) if index_sort is None: index_sort = np.arange(ds_index.shape[0]) else: if not contains_integers(index_sort, min_val=0): raise ValueError('index_sort should contain integers > 0') index_sort = np.array(index_sort) if index_sort.ndim != 1: raise ValueError('index_sort should be a 1D array') if len(np.unique(index_sort)) > ds_index.shape[0]: raise ValueError('length of index_sort ({}) should be smaller than number of dimensions in provided dataset' ' ({}'.format(len(np.unique(index_sort)), ds_index.shape[0])) if set(np.arange(ds_index.shape[0])) != set(index_sort): raise ValueError('Sort order of dimensions ({}) not matching with number of dimensions ({})' ''.format(index_sort, ds_index.shape[0])) sorted_dims = [len(np.unique(row)) for row in np.array(ds_index, ndmin=2)[index_sort]] return sorted_dims def get_sort_order(ds_spec): """ Find how quickly the spectroscopic values are changing in each row and the order of rows from fastest changing to slowest. Parameters ---------- ds_spec : 2D HDF5 dataset or numpy array Rows of indices to be sorted from fastest changing to slowest Returns ------- change_sort : List of unsigned integers Order of rows sorted from fastest changing to slowest """ if isinstance(ds_spec, da.core.Array): ds_spec = ds_spec.compute() if not isinstance(ds_spec, (np.ndarray, h5py.Dataset)): raise TypeError('ds_spec should either be a numpy array or h5py.Dataset') if ds_spec.shape[0] > ds_spec.shape[1]: # must be spectroscopic like in shape (few rows, more cols) ds_spec = np.transpose(ds_spec) change_count = [len(np.where([row[i] != row[i - 1] for i in range(len(row))])[0]) for row in ds_spec] change_sort = np.argsort(change_count)[::-1] return change_sort def get_unit_values(ds_inds, ds_vals, dim_names=None, all_dim_names=None, is_spec=None, verbose=False): """ Gets the unit arrays of values that describe the spectroscopic dimensions Parameters ---------- ds_inds : h5py.Dataset or numpy.ndarray Spectroscopic or Position Indices dataset ds_vals : h5py.Dataset or numpy.ndarray Spectroscopic or Position Values dataset dim_names : str, or list of str, Optional Names of the dimensions of interest. Default = all all_dim_names : list of str, Optional Names of all the dimensions in these datasets. Use this if supplying numpy arrays instead of h5py.Dataset objects for h5_inds, h5_vals since there is no other way of getting the dimension names. is_spec : bool, optional Whether or not the provided ancillary datasets are position or spectroscopic The user is recommended to supply this parameter whenever it is known By default, this function will attempt to recognize the answer based on the shape of the datasets. verbose : bool, optional Whether or not to print debugging statements. Default - off Note - this function can be extended / modified for ancillary position dimensions as well Returns ------- unit_values : dict Dictionary containing the unit array for each dimension. The name of the dimensions are the keys. """ if all_dim_names is None: allowed_types = h5py.Dataset else: all_dim_names = validate_list_of_strings(all_dim_names, 'all_dim_names') all_dim_names = np.array(all_dim_names) allowed_types = (h5py.Dataset, np.ndarray) for dset, dset_name in zip([ds_inds, ds_vals], ['ds_inds', 'ds_vals']): if not isinstance(dset, allowed_types): raise TypeError(dset_name + ' should be of type: {}'.format(allowed_types)) # For now, we will throw an error if even a single dimension is listed as an incomplete dimension: if isinstance(ds_inds, h5py.Dataset): if np.any(['incomplete_dimensions' in dset.attrs.keys() for dset in [ds_inds, ds_vals]]): try: incomp_dims_inds = get_attr(ds_inds, 'incomplete_dimensions') except KeyError: incomp_dims_inds = None try: incomp_dims_vals = get_attr(ds_vals, 'incomplete_dimensions') except KeyError: incomp_dims_vals = None if incomp_dims_inds is None and incomp_dims_vals is not None: incomp_dims = incomp_dims_vals elif incomp_dims_inds is not None and incomp_dims_vals is None: incomp_dims = incomp_dims_inds else: # ensure that both attributes are the same if incomp_dims_vals != incomp_dims_inds: raise ValueError('Provided indices ({}) and values ({}) datasets were marked with different values ' 'for incomplete_datasets.'.format(incomp_dims_inds, incomp_dims_vals)) incomp_dims = incomp_dims_vals all_dim_names = get_attr(ds_inds, 'labels') raise ValueError('Among all dimensions: {}, These dimensions were marked as incomplete dimensions: {}' '. You are recommended to find unit values manually'.format(all_dim_names, incomp_dims)) # Do we need to check that the provided inds and vals correspond to the same main dataset? if ds_inds.shape != ds_vals.shape: raise ValueError('h5_inds: {} and h5_vals: {} should have the same shapes'.format(ds_inds.shape, ds_vals.shape)) if all_dim_names is None: all_dim_names = get_attr(ds_inds, 'labels') if verbose: print('All dimensions: {}'.format(all_dim_names)) # First load to memory inds_mat = ds_inds[()] vals_mat = ds_vals[()] if is_spec is None: # Attempt to recognize the type automatically is_spec = False if inds_mat.shape[0] < inds_mat.shape[1]: is_spec = True else: if not isinstance(is_spec, bool): raise TypeError('is_spec should be a boolean. Provided object is of type: {}'.format(type(is_spec))) if verbose: print( 'Ancillary matrices of shape: {}, hence determined to be Spectroscopic:{}'.format(inds_mat.shape, is_spec)) if not is_spec: # Convert to spectral shape inds_mat = np.transpose(inds_mat) vals_mat = np.transpose(vals_mat) if len(all_dim_names) != inds_mat.shape[0]: raise ValueError('Length of dimension names list: {} not matching with shape of dataset: {}' '.'.format(len(all_dim_names), inds_mat.shape[0])) if dim_names is None: dim_names = all_dim_names if verbose: print('Going to return unit values for all dimensions: {}'.format(all_dim_names)) else: dim_names = validate_list_of_strings(dim_names, 'dim_names') if verbose: print('Checking to make sure that the target dimension names: {} exist in the datasets attributes: {}' '.'.format(dim_names, all_dim_names)) # check to make sure that the dimension names exist in the datasets: for dim_name in dim_names: if dim_name not in all_dim_names: raise KeyError('Dimension {} does not exist in the provided ancillary datasets'.format(dim_name)) unit_values = dict() for dim_name in all_dim_names: # Find the row in the spectroscopic indices that corresponds to the dimensions we want to slice: if verbose: print('Looking for dimension: {} in {}'.format(dim_name, dim_names)) desired_row_ind = np.where(all_dim_names == dim_name)[0][0] inds_for_dim = inds_mat[desired_row_ind] # Wherever this dimension goes to 0 - start of a new tile starts = np.where(inds_for_dim == np.min(inds_for_dim))[0] if starts[0] != 0: raise ValueError('Spectroscopic Indices for dimension: "{}" not ' 'starting with 0. Please fix this and try again' '.'.format(dim_name)) # There may be repetitions in addition to tiling. Find how the the positions increase. # 1 = repetition, > 1 = new tile step_sizes = np.hstack(([1], np.diff(starts))) # This array is of the same length as the full indices array # We should expect only two values of step sizes for a regular dimension (tiles of the same size): # 1 for same value repeating and a big jump in indices when the next tile starts # If the repeats / tiles are of different lengths, then this is not a regular dimension. # What does a Unit Values vector even mean in this case? Just raise an error for now if np.where(np.unique(step_sizes) - 1)[0].size > 1: raise ValueError('Non constant step sizes') # Finding Start of a new tile tile_starts = np.where(step_sizes > 1)[0] # converting these indices to correct indices that can be mapped straight to if len(tile_starts) < 1: # Dimension(s) with no tiling at all # Make it look as though the next tile starts at the end of the whole indices vector tile_starts = np.array([0, len(inds_for_dim)]) else: # Dimension with some form of repetition tile_starts = np.hstack(([0], starts[tile_starts])) # Verify that each tile is identical here # Last tile will not be checked unless we add the length of the indices vector as the start of next tile tile_starts = np.hstack((tile_starts, [len(inds_for_dim)])) subsections = [inds_for_dim[tile_starts[ind]: tile_starts[ind + 1]] for ind in range(len(tile_starts) - 1)] if np.max(np.diff(subsections, axis=0)) != 0: # Should get unit values for ALL dimensions regardless of expectations to catch such scenarios. raise ValueError('Values in each tile of dimension: {} are different'.format(dim_name)) # Now looking within the first tile: subsection = inds_for_dim[tile_starts[0]:tile_starts[1]] # remove all repetitions. ie - take indices only where jump == 1 step_inds = np.hstack(([0], np.where(np.hstack(([0], np.diff(subsection))))[0])) # Finally, use these indices to get the values if dim_name in dim_names: # Only add this dimension to dictionary if requwested. unit_values[dim_name] = vals_mat[desired_row_ind, step_inds] return unit_values def write_main_dataset(h5_parent_group, main_data, main_data_name, quantity, units, pos_dims, spec_dims, main_dset_attrs=None, h5_pos_inds=None, h5_pos_vals=None, h5_spec_inds=None, h5_spec_vals=None, aux_spec_prefix='Spectroscopic_', aux_pos_prefix='Position_', verbose=False, slow_to_fast=False, **kwargs): """ Writes the provided data as a 'Main' dataset with all appropriate linking. By default, the instructions for generating the ancillary datasets should be specified using the pos_dims and spec_dims arguments as dictionary objects. Alternatively, if both the indices and values datasets are already available for either/or the positions / spectroscopic, they can be specified using the keyword arguments. In this case, fresh datasets will not be generated. Parameters ---------- h5_parent_group : :class:`h5py.Group` Parent group under which the datasets will be created main_data : numpy.ndarray, dask.array.core.Array, list or tuple 2D matrix formatted as [position, spectral] or a list / tuple with the shape for an empty dataset. If creating an empty dataset - the dtype must be specified via a kwarg. main_data_name : String / Unicode Name to give to the main dataset. This cannot contain the '-' character. quantity : String / Unicode Name of the physical quantity stored in the dataset. Example - 'Current' units : String / Unicode Name of units for the quantity stored in the dataset. Example - 'A' for amperes pos_dims : Dimension or array-like of Dimension objects Sequence of Dimension objects that provides all necessary instructions for constructing the indices and values datasets Object specifying the instructions necessary for building the Position indices and values datasets spec_dims : Dimension or array-like of Dimension objects Sequence of Dimension objects that provides all necessary instructions for constructing the indices and values datasets Object specifying the instructions necessary for building the Spectroscopic indices and values datasets main_dset_attrs : dictionary, Optional Dictionary of parameters that will be written to the main dataset. Do NOT include region references here. h5_pos_inds : h5py.Dataset, Optional Dataset that will be linked with the name "Position_Indices" h5_pos_vals : h5py.Dataset, Optional Dataset that will be linked with the name "Position_Values" h5_spec_inds : h5py.Dataset, Optional Dataset that will be linked with the name "Spectroscopic_Indices" h5_spec_vals : h5py.Dataset, Optional Dataset that will be linked with the name "Spectroscopic_Values" aux_spec_prefix : str or unicode, Optional Default prefix for Spectroscopic datasets. Default = "Spectroscopic" aux_pos_prefix : str or unicode, Optional Default prefix for Position datasets. Default = "Position" verbose : bool, Optional, default=False If set to true - prints debugging logs slow_to_fast : bool, Optional. Default=False Set to True if the dimensions are arranged from slowest varying to fastest varying. Set to False otherwise. kwargs will be passed onto the creation of the dataset. Please pass chunking, compression, dtype, and other arguments this way Returns ------- h5_main : USIDataset Reference to the main dataset """ def __check_anc_before_creation(aux_prefix, dim_type='pos'): aux_prefix = validate_single_string_arg(aux_prefix, 'aux_' + dim_type + '_prefix') if not aux_prefix.endswith('_'): aux_prefix += '_' if '-' in aux_prefix: warn('aux_' + dim_type + ' should not contain the "-" character. Reformatted name from:{} to ' '{}'.format(aux_prefix, aux_prefix.replace('-', '_'))) aux_prefix = aux_prefix.replace('-', '_') for dset_name in [aux_prefix + 'Indices', aux_prefix + 'Values']: if dset_name in h5_parent_group.keys(): # TODO: What if the contained data was correct? raise KeyError('Dataset named: ' + dset_name + ' already exists in group: ' '{}. Consider passing these datasets using kwargs (if they are correct) instead of providing the pos_dims and spec_dims arguments'.format(h5_parent_group.name)) return aux_prefix def __ensure_anc_in_correct_file(h5_inds, h5_vals, prefix): if h5_inds.file != h5_vals.file: raise ValueError('Provided ' + prefix + ' datasets are present in different HDF5 files!') if h5_inds.file != h5_parent_group.file: # Need to copy over the anc datasets to the new group if verbose: print('Need to copy over ancillary datasets: {} and {} to ' 'destination group: {} which is in a different HDF5 ' 'file'.format(h5_inds, h5_vals, h5_parent_group)) ret_vals = [copy_dataset(x, h5_parent_group, verbose=verbose) for x in [h5_inds, h5_vals]] else: ret_vals = [h5_inds, h5_vals] return tuple(ret_vals) if not isinstance(h5_parent_group, (h5py.Group, h5py.File)): raise TypeError('h5_parent_group should be a h5py.File or h5py.Group object') if not is_editable_h5(h5_parent_group): raise ValueError('The provided file is not editable') if verbose: print('h5 group and file OK') quantity, units, main_data_name = validate_string_args([quantity, units, main_data_name], ['quantity', 'units', 'main_data_name']) if verbose: print('quantity, units, main_data_name all OK') quantity = quantity.strip() units = units.strip() main_data_name = main_data_name.strip() if '-' in main_data_name: warn('main_data_name should not contain the "-" character. Reformatted name from:{} to ' '{}'.format(main_data_name, main_data_name.replace('-', '_'))) main_data_name = main_data_name.replace('-', '_') if isinstance(main_data, (list, tuple)): if not contains_integers(main_data, min_val=1): raise ValueError('main_data if specified as a shape should be a list / tuple of integers >= 1') if len(main_data) != 2: raise ValueError('main_data if specified as a shape should contain 2 numbers') if 'dtype' not in kwargs: raise ValueError('dtype must be included as a kwarg when creating an empty dataset') _ = validate_dtype(kwargs.get('dtype')) main_shape = main_data if verbose: print('Selected empty dataset creation. OK so far') elif isinstance(main_data, (np.ndarray, da.core.Array)): if main_data.ndim != 2: raise ValueError('main_data should be a 2D array') main_shape = main_data.shape if verbose: print('Provided numpy or Dask array for main_data OK so far') else: raise TypeError('main_data should either be a numpy array or a tuple / list with the shape of the data') if h5_pos_inds is not None and h5_pos_vals is not None: # The provided datasets override fresh building instructions. validate_anc_h5_dsets(h5_pos_inds, h5_pos_vals, main_shape, is_spectroscopic=False) if verbose: print('The shapes of the provided h5 position indices and values are OK') h5_pos_inds, h5_pos_vals = __ensure_anc_in_correct_file(h5_pos_inds, h5_pos_vals, 'Position') else: aux_pos_prefix = __check_anc_before_creation(aux_pos_prefix, dim_type='pos') pos_dims = validate_dimensions(pos_dims, dim_type='Position') validate_dims_against_main(main_shape, pos_dims, is_spectroscopic=False) if verbose: print('Passed all pre-tests for creating position datasets') h5_pos_inds, h5_pos_vals = write_ind_val_dsets(h5_parent_group, pos_dims, is_spectral=False, verbose=verbose, slow_to_fast=slow_to_fast, base_name=aux_pos_prefix) if verbose: print('Created position datasets!') if h5_spec_inds is not None and h5_spec_vals is not None: # The provided datasets override fresh building instructions. validate_anc_h5_dsets(h5_spec_inds, h5_spec_vals, main_shape, is_spectroscopic=True) if verbose: print('The shapes of the provided h5 position indices and values ' 'are OK') h5_spec_inds, h5_spec_vals = __ensure_anc_in_correct_file(h5_spec_inds, h5_spec_vals, 'Spectroscopic') else: aux_spec_prefix = __check_anc_before_creation(aux_spec_prefix, dim_type='spec') spec_dims = validate_dimensions(spec_dims, dim_type='Spectroscopic') validate_dims_against_main(main_shape, spec_dims, is_spectroscopic=True) if verbose: print('Passed all pre-tests for creating spectroscopic datasets') h5_spec_inds, h5_spec_vals = write_ind_val_dsets(h5_parent_group, spec_dims, is_spectral=True, verbose=verbose, slow_to_fast=slow_to_fast, base_name=aux_spec_prefix) if verbose: print('Created Spectroscopic datasets') if h5_parent_group.file.driver == 'mpio': if kwargs.pop('compression', None) is not None: warn('This HDF5 file has been opened wth the "mpio" communicator. ' 'mpi4py does not allow creation of compressed datasets. Compression kwarg has been removed') if isinstance(main_data, np.ndarray): # Case 1 - simple small dataset h5_main = h5_parent_group.create_dataset(main_data_name, data=main_data, **kwargs) if verbose: print('Created main dataset with provided data') elif isinstance(main_data, da.core.Array): # Case 2 - Dask dataset # step 0 - get rid of any automated dtype specification: _ = kwargs.pop('dtype', None) # step 1 - create the empty dataset: h5_main = h5_parent_group.create_dataset(main_data_name, shape=main_data.shape, dtype=main_data.dtype, **kwargs) if verbose: print('Created empty dataset: {} for writing Dask dataset: {}'.format(h5_main, main_data)) print('Dask array will be written to HDF5 dataset: "{}" in file: "{}"'.format(h5_main.name, h5_main.file.filename)) # Step 2 - now ask Dask to dump data to disk da.to_hdf5(h5_main.file.filename, {h5_main.name: main_data}) # main_data.to_hdf5(h5_main.file.filename, h5_main.name) # Does not work with python 2 for some reason else: # Case 3 - large empty dataset h5_main = h5_parent_group.create_dataset(main_data_name, main_data, **kwargs) if verbose: print('Created empty dataset for Main') write_simple_attrs(h5_main, {'quantity': quantity, 'units': units}) if verbose: print('Wrote quantity and units attributes to main dataset') if isinstance(main_dset_attrs, dict): write_simple_attrs(h5_main, main_dset_attrs) if verbose: print('Wrote provided attributes to main dataset') write_book_keeping_attrs(h5_main) # make it main link_as_main(h5_main, h5_pos_inds, h5_pos_vals, h5_spec_inds, h5_spec_vals) if verbose: print('Successfully linked datasets - dataset should be main now') from ..usi_data import USIDataset return USIDataset(h5_main) def map_grid_to_cartesian(h5_main, grid_shape, mode='histogram', **kwargs): """ Map an incomplete measurement, such as a spiral scan, to a cartesian grid. Parameters ---------- h5_main : :class:`pyUSID.USIDataset` Dataset containing the sparse measurement grid_shape : int or [int, int] Shape of the output :class:`numpy.ndarray`. mode : str, optional. Default = 'histogram' Method used for building a cartesian grid. Available methods = 'histogram', 'linear', 'nearest', 'cubic' Use kwargs to pass onto each of the techniques Note ---- UNDER DEVELOPMENT! Currently only valid for 2 position dimensions @author: <NAME> Returns ------- :class:`numpy.ndarray` but could be a h5py.Dataset or dask.array.core.Array object """ try: from scipy.interpolate import griddata except ImportError as expn: griddata = None warn('map_grid_to_cartesian() requires scipy') raise expn from ..usi_data import USIDataset if not isinstance(h5_main, USIDataset): raise TypeError('Provided object is not a pyUSID.USIDataset object') if mode not in ['histogram', 'linear', 'nearest', 'cubic']: raise ValueError('mode must be a string among["histogram", "cubic"]') ds_main = h5_main[()].squeeze() ds_pos_vals = h5_main.h5_pos_vals[()] if ds_pos_vals.shape[1] != 2: raise TypeError("Only working for 2 position dimensions.") # Transform to row, col image format rotation = np.array([[0, 1], [-1, 0]]) ds_pos_vals = np.dot(ds_pos_vals, rotation) try: grid_n = len(grid_shape) except TypeError: grid_n = 1 if grid_n != 1 and grid_n != 2: raise ValueError("grid_shape must be of type int or [int, int].") if grid_n == 1: grid_shape = 2 * [grid_shape] def interpolate(points, values, grid_shape, method): grid_shape = list(map((1j).__mul__, grid_shape)) grid_x, grid_y = np.mgrid[ np.amin(points[:, 0]):np.amax(points[:, 0]):grid_shape[0], np.amin(points[:, 1]):np.amax(points[:, 1]):grid_shape[1] ] ndim_data = griddata(points, values, (grid_x, grid_y), method=method) return ndim_data if mode == "histogram": histogram_weighted, _, _ = np.histogram2d(*ds_pos_vals.T, bins=grid_shape, weights=ds_main) histogram, _, _ = np.histogram2d(*ds_pos_vals.T, bins=grid_shape) cart_data = np.divide(histogram_weighted, histogram) else: cart_data = interpolate(ds_pos_vals, ds_main, grid_shape, method=mode) return cart_data def write_sidpy_dataset(si_dset, h5_parent_group, verbose=False, **kwargs): """ Writes a sidpy.Dataset as a USID dataset in the provided HDF5 Group. Please see notes about dimension types Parameters ---------- si_dset: sidpy.Dataset Dataset to be written to HDF5 in NSID format h5_parent_group : class:`h5py.Group` Parent group under which the datasets will be created verbose : bool, Optional. Default = False Whether or not to write logs to standard out kwargs: dict additional keyword arguments passed on to h5py when writing data Returns ------ h5_main : USIDataset Reference to the main dataset Notes ----- USID only has two dimension types - Position and Spectroscopic. Consider changing the types of dimensions of all other dimensions to either "SPATIAL" or "SPECTRAL". """ if not isinstance(si_dset, sid.Dataset): raise TypeError('Data to write is not a sidpy dataset') if not isinstance(h5_parent_group, (h5py.File, h5py.Group)): raise TypeError('h5_parent_group is not a h5py.File or ' 'h5py.Group object') spatial_dims, spectral_dims, spatial_size, spectral_size = [], [], 1, 1 for dim_ind, dime in si_dset._axes.items(): if dime._dimension_type == sid.DimensionType.SPATIAL: spatial_dims.append(Dimension(dime._name, dime._units, dime.values, dime._quantity, dime._dimension_type)) spatial_size *= np.size(dime.values) else: if not dime._dimension_type == sid.DimensionType.SPECTRAL: warn('Will consider dimension: {} of type: {} as a ' 'spectroscopic dimension'.format(dime._name, dime._dimension_type)) spectral_dims.append(Dimension(dime._name, dime._units, dime.values, dime._quantity, dime._dimension_type)) spectral_size *= np.size(dime.values) main_dataset = da.reshape(si_dset, [spatial_size, spectral_size]) # TODO : Consider writing this out as a separate group main_dset_attr = {} for attr_name in dir(si_dset): attr_val = getattr(si_dset, attr_name) if isinstance(attr_val, dict): main_dset_attr.update(attr_val) h5_main = write_main_dataset(h5_parent_group=h5_parent_group, main_data=main_dataset, main_data_name=si_dset.name, quantity=si_dset.quantity, units=si_dset.units, pos_dims=spatial_dims, spec_dims=spectral_dims, main_dset_attrs=flatten_dict(main_dset_attr), slow_to_fast=True, verbose=verbose, **kwargs) return h5_main
[ "numpy.product", "numpy.prod", "sidpy.base.string_utils.validate_list_of_strings", "numpy.hstack", "numpy.argsort", "numpy.array", "numpy.divide", "numpy.arange", "numpy.atleast_2d", "dask.array.reshape", "sidpy.hdf.hdf_utils.copy_dataset", "numpy.where", "sidpy.hdf.hdf_utils.lazy_load_array", "numpy.diff", "numpy.dot", "numpy.min", "numpy.histogram2d", "warnings.warn", "sidpy.base.num_utils.contains_integers", "numpy.amin", "sidpy.base.dict_utils.flatten_dict", "numpy.size", "sidpy.hdf.hdf_utils.write_simple_attrs", "dask.array.to_hdf5", "numpy.transpose", "sidpy.base.string_utils.validate_single_string_arg", "sidpy.base.string_utils.validate_string_args", "numpy.unique", "scipy.interpolate.griddata", "sidpy.hdf.hdf_utils.is_editable_h5", "numpy.argwhere", "sidpy.hdf.hdf_utils.get_attr", "numpy.all", "numpy.amax" ]
[((4720, 4743), 'numpy.array', 'np.array', (["['Positions']"], {}), "(['Positions'])\n", (4728, 4743), True, 'import numpy as np\n'), ((4760, 4787), 'numpy.array', 'np.array', (["['Spectral_Step']"], {}), "(['Spectral_Step'])\n", (4768, 4787), True, 'import numpy as np\n'), ((10784, 10849), 'numpy.hstack', 'np.hstack', (['(pos_labs[pos_sort][::-1], spec_labs[spec_sort][::-1])'], {}), '((pos_labs[pos_sort][::-1], spec_labs[spec_sort][::-1]))\n', (10793, 10849), True, 'import numpy as np\n'), ((11683, 11702), 'numpy.array', 'np.array', (['swap_axes'], {}), '(swap_axes)\n', (11691, 11702), True, 'import numpy as np\n'), ((37647, 37747), 'sidpy.base.string_utils.validate_string_args', 'validate_string_args', (['[quantity, units, main_data_name]', "['quantity', 'units', 'main_data_name']"], {}), "([quantity, units, main_data_name], ['quantity',\n 'units', 'main_data_name'])\n", (37667, 37747), False, 'from sidpy.base.string_utils import validate_single_string_arg, validate_list_of_strings, validate_string_args\n'), ((43230, 43297), 'sidpy.hdf.hdf_utils.write_simple_attrs', 'write_simple_attrs', (['h5_main', "{'quantity': quantity, 'units': units}"], {}), "(h5_main, {'quantity': quantity, 'units': units})\n", (43248, 43297), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((45420, 45447), 'numpy.array', 'np.array', (['[[0, 1], [-1, 0]]'], {}), '([[0, 1], [-1, 0]])\n', (45428, 45447), True, 'import numpy as np\n'), ((45466, 45495), 'numpy.dot', 'np.dot', (['ds_pos_vals', 'rotation'], {}), '(ds_pos_vals, rotation)\n', (45472, 45495), True, 'import numpy as np\n'), ((48943, 48993), 'dask.array.reshape', 'da.reshape', (['si_dset', '[spatial_size, spectral_size]'], {}), '(si_dset, [spatial_size, spectral_size])\n', (48953, 48993), True, 'from dask import array as da\n'), ((7906, 7926), 'numpy.transpose', 'np.transpose', (['ds_pos'], {}), '(ds_pos)\n', (7918, 7926), True, 'import numpy as np\n'), ((8295, 8315), 'numpy.transpose', 'np.transpose', (['ds_pos'], {}), '(ds_pos)\n', (8307, 8315), True, 'import numpy as np\n'), ((8390, 8407), 'numpy.prod', 'np.prod', (['pos_dims'], {}), '(pos_dims)\n', (8397, 8407), True, 'import numpy as np\n'), ((8773, 8791), 'numpy.prod', 'np.prod', (['spec_dims'], {}), '(spec_dims)\n', (8780, 8791), True, 'import numpy as np\n'), ((9502, 9526), 'sidpy.hdf.hdf_utils.lazy_load_array', 'lazy_load_array', (['h5_main'], {}), '(h5_main)\n', (9517, 9526), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((21212, 21234), 'numpy.transpose', 'np.transpose', (['ds_index'], {}), '(ds_index)\n', (21224, 21234), True, 'import numpy as np\n'), ((21284, 21312), 'numpy.arange', 'np.arange', (['ds_index.shape[0]'], {}), '(ds_index.shape[0])\n', (21293, 21312), True, 'import numpy as np\n'), ((21472, 21492), 'numpy.array', 'np.array', (['index_sort'], {}), '(index_sort)\n', (21480, 21492), True, 'import numpy as np\n'), ((23028, 23049), 'numpy.transpose', 'np.transpose', (['ds_spec'], {}), '(ds_spec)\n', (23040, 23049), True, 'import numpy as np\n'), ((23175, 23199), 'numpy.argsort', 'np.argsort', (['change_count'], {}), '(change_count)\n', (23185, 23199), True, 'import numpy as np\n'), ((24753, 24809), 'sidpy.base.string_utils.validate_list_of_strings', 'validate_list_of_strings', (['all_dim_names', '"""all_dim_names"""'], {}), "(all_dim_names, 'all_dim_names')\n", (24777, 24809), False, 'from sidpy.base.string_utils import validate_single_string_arg, validate_list_of_strings, validate_string_args\n'), ((24834, 24857), 'numpy.array', 'np.array', (['all_dim_names'], {}), '(all_dim_names)\n', (24842, 24857), True, 'import numpy as np\n'), ((26949, 26976), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['ds_inds', '"""labels"""'], {}), "(ds_inds, 'labels')\n", (26957, 26976), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((27706, 27728), 'numpy.transpose', 'np.transpose', (['inds_mat'], {}), '(inds_mat)\n', (27718, 27728), True, 'import numpy as np\n'), ((27748, 27770), 'numpy.transpose', 'np.transpose', (['vals_mat'], {}), '(vals_mat)\n', (27760, 27770), True, 'import numpy as np\n'), ((28202, 28250), 'sidpy.base.string_utils.validate_list_of_strings', 'validate_list_of_strings', (['dim_names', '"""dim_names"""'], {}), "(dim_names, 'dim_names')\n", (28226, 28250), False, 'from sidpy.base.string_utils import validate_single_string_arg, validate_list_of_strings, validate_string_args\n'), ((35582, 35651), 'sidpy.base.string_utils.validate_single_string_arg', 'validate_single_string_arg', (['aux_prefix', "('aux_' + dim_type + '_prefix')"], {}), "(aux_prefix, 'aux_' + dim_type + '_prefix')\n", (35608, 35651), False, 'from sidpy.base.string_utils import validate_single_string_arg, validate_list_of_strings, validate_string_args\n'), ((37459, 37490), 'sidpy.hdf.hdf_utils.is_editable_h5', 'is_editable_h5', (['h5_parent_group'], {}), '(h5_parent_group)\n', (37473, 37490), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((43434, 43478), 'sidpy.hdf.hdf_utils.write_simple_attrs', 'write_simple_attrs', (['h5_main', 'main_dset_attrs'], {}), '(h5_main, main_dset_attrs)\n', (43452, 43478), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((46071, 46128), 'scipy.interpolate.griddata', 'griddata', (['points', 'values', '(grid_x, grid_y)'], {'method': 'method'}), '(points, values, (grid_x, grid_y), method=method)\n', (46079, 46128), False, 'from scipy.interpolate import griddata\n'), ((46219, 46283), 'numpy.histogram2d', 'np.histogram2d', (['*ds_pos_vals.T'], {'bins': 'grid_shape', 'weights': 'ds_main'}), '(*ds_pos_vals.T, bins=grid_shape, weights=ds_main)\n', (46233, 46283), True, 'import numpy as np\n'), ((46310, 46357), 'numpy.histogram2d', 'np.histogram2d', (['*ds_pos_vals.T'], {'bins': 'grid_shape'}), '(*ds_pos_vals.T, bins=grid_shape)\n', (46324, 46357), True, 'import numpy as np\n'), ((46378, 46418), 'numpy.divide', 'np.divide', (['histogram_weighted', 'histogram'], {}), '(histogram_weighted, histogram)\n', (46387, 46418), True, 'import numpy as np\n'), ((5961, 5987), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['h5_pos', '"""labels"""'], {}), "(h5_pos, 'labels')\n", (5969, 5987), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((7499, 7526), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['h5_spec', '"""labels"""'], {}), "(h5_spec, 'labels')\n", (7507, 7526), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((8698, 8715), 'numpy.prod', 'np.prod', (['pos_dims'], {}), '(pos_dims)\n', (8705, 8715), True, 'import numpy as np\n'), ((9089, 9107), 'numpy.prod', 'np.prod', (['spec_dims'], {}), '(spec_dims)\n', (9096, 9107), True, 'import numpy as np\n'), ((10126, 10241), 'warnings.warn', 'warn', (['"""Could not reshape dataset to full N-dimensional form. Attempting reshape based on position only."""'], {}), "(\n 'Could not reshape dataset to full N-dimensional form. Attempting reshape based on position only.'\n )\n", (10130, 10241), False, 'from warnings import warn\n'), ((15784, 15835), 'numpy.all', 'np.all', (['[(x in data_n_dim.shape) for x in pos_dims]'], {}), '([(x in data_n_dim.shape) for x in pos_dims])\n', (15790, 15835), True, 'import numpy as np\n'), ((18946, 18966), 'numpy.transpose', 'np.transpose', (['ds_pos'], {}), '(ds_pos)\n', (18958, 18966), True, 'import numpy as np\n'), ((21338, 21378), 'sidpy.base.num_utils.contains_integers', 'contains_integers', (['index_sort'], {'min_val': '(0)'}), '(index_sort, min_val=0)\n', (21355, 21378), False, 'from sidpy.base.num_utils import contains_integers\n'), ((22129, 22143), 'numpy.unique', 'np.unique', (['row'], {}), '(row)\n', (22138, 22143), True, 'import numpy as np\n'), ((26377, 26404), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['ds_inds', '"""labels"""'], {}), "(ds_inds, 'labels')\n", (26385, 26404), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((30293, 30317), 'numpy.where', 'np.where', (['(step_sizes > 1)'], {}), '(step_sizes > 1)\n', (30301, 30317), True, 'import numpy as np\n'), ((30738, 30775), 'numpy.hstack', 'np.hstack', (['([0], starts[tile_starts])'], {}), '(([0], starts[tile_starts]))\n', (30747, 30775), True, 'import numpy as np\n'), ((38296, 38335), 'sidpy.base.num_utils.contains_integers', 'contains_integers', (['main_data'], {'min_val': '(1)'}), '(main_data, min_val=1)\n', (38313, 38335), False, 'from sidpy.base.num_utils import contains_integers\n'), ((41613, 41780), 'warnings.warn', 'warn', (['"""This HDF5 file has been opened wth the "mpio" communicator. mpi4py does not allow creation of compressed datasets. Compression kwarg has been removed"""'], {}), '(\n \'This HDF5 file has been opened wth the "mpio" communicator. mpi4py does not allow creation of compressed datasets. Compression kwarg has been removed\'\n )\n', (41617, 41780), False, 'from warnings import warn\n'), ((42845, 42905), 'dask.array.to_hdf5', 'da.to_hdf5', (['h5_main.file.filename', '{h5_main.name: main_data}'], {}), '(h5_main.file.filename, {h5_main.name: main_data})\n', (42855, 42905), True, 'from dask import array as da\n'), ((44812, 44858), 'warnings.warn', 'warn', (['"""map_grid_to_cartesian() requires scipy"""'], {}), "('map_grid_to_cartesian() requires scipy')\n", (44816, 44858), False, 'from warnings import warn\n'), ((48253, 48273), 'numpy.size', 'np.size', (['dime.values'], {}), '(dime.values)\n', (48260, 48273), True, 'import numpy as np\n'), ((48902, 48922), 'numpy.size', 'np.size', (['dime.values'], {}), '(dime.values)\n', (48909, 48922), True, 'import numpy as np\n'), ((49706, 49734), 'sidpy.base.dict_utils.flatten_dict', 'flatten_dict', (['main_dset_attr'], {}), '(main_dset_attr)\n', (49718, 49734), False, 'from sidpy.base.dict_utils import flatten_dict\n'), ((5100, 5126), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['h5_pos', '"""labels"""'], {}), "(h5_pos, 'labels')\n", (5108, 5126), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((6063, 6084), 'numpy.atleast_2d', 'np.atleast_2d', (['h5_pos'], {}), '(h5_pos)\n', (6076, 6084), True, 'import numpy as np\n'), ((6606, 6633), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['h5_spec', '"""labels"""'], {}), "(h5_spec, 'labels')\n", (6614, 6633), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((16738, 16790), 'numpy.all', 'np.all', (['[(x in data_n_dim.shape) for x in spec_dims]'], {}), '([(x in data_n_dim.shape) for x in spec_dims])\n', (16744, 16790), True, 'import numpy as np\n'), ((21605, 21626), 'numpy.unique', 'np.unique', (['index_sort'], {}), '(index_sort)\n', (21614, 21626), True, 'import numpy as np\n'), ((21876, 21904), 'numpy.arange', 'np.arange', (['ds_index.shape[0]'], {}), '(ds_index.shape[0])\n', (21885, 21904), True, 'import numpy as np\n'), ((22156, 22183), 'numpy.array', 'np.array', (['ds_index'], {'ndmin': '(2)'}), '(ds_index, ndmin=2)\n', (22164, 22183), True, 'import numpy as np\n'), ((25418, 25460), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['ds_inds', '"""incomplete_dimensions"""'], {}), "(ds_inds, 'incomplete_dimensions')\n", (25426, 25460), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((25582, 25624), 'sidpy.hdf.hdf_utils.get_attr', 'get_attr', (['ds_vals', '"""incomplete_dimensions"""'], {}), "(ds_vals, 'incomplete_dimensions')\n", (25590, 25624), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((29009, 29044), 'numpy.where', 'np.where', (['(all_dim_names == dim_name)'], {}), '(all_dim_names == dim_name)\n', (29017, 29044), True, 'import numpy as np\n'), ((29642, 29657), 'numpy.diff', 'np.diff', (['starts'], {}), '(starts)\n', (29649, 29657), True, 'import numpy as np\n'), ((37130, 37179), 'sidpy.hdf.hdf_utils.copy_dataset', 'copy_dataset', (['x', 'h5_parent_group'], {'verbose': 'verbose'}), '(x, h5_parent_group, verbose=verbose)\n', (37142, 37179), False, 'from sidpy.hdf.hdf_utils import get_attr, write_simple_attrs, is_editable_h5, copy_dataset, lazy_load_array\n'), ((5634, 5682), 'numpy.arange', 'np.arange', (['h5_main.shape[0]'], {'dtype': 'INDICES_DTYPE'}), '(h5_main.shape[0], dtype=INDICES_DTYPE)\n', (5643, 5682), True, 'import numpy as np\n'), ((7156, 7204), 'numpy.arange', 'np.arange', (['h5_main.shape[1]'], {'dtype': 'INDICES_DTYPE'}), '(h5_main.shape[1], dtype=INDICES_DTYPE)\n', (7165, 7204), True, 'import numpy as np\n'), ((10344, 10420), 'warnings.warn', 'warn', (['"""Reshape by position only also failed. Will keep dataset in 2d form."""'], {}), "('Reshape by position only also failed. Will keep dataset in 2d form.')\n", (10348, 10420), False, 'from warnings import warn\n'), ((11531, 11561), 'numpy.argwhere', 'np.argwhere', (['(all_labels == lab)'], {}), '(all_labels == lab)\n', (11542, 11561), True, 'import numpy as np\n'), ((11624, 11654), 'numpy.argwhere', 'np.argwhere', (['(all_labels == lab)'], {}), '(all_labels == lab)\n', (11635, 11654), True, 'import numpy as np\n'), ((17463, 17491), 'numpy.product', 'np.product', (['data_n_dim.shape'], {}), '(data_n_dim.shape)\n', (17473, 17491), True, 'import numpy as np\n'), ((29209, 29229), 'numpy.min', 'np.min', (['inds_for_dim'], {}), '(inds_for_dim)\n', (29215, 29229), True, 'import numpy as np\n'), ((31162, 31190), 'numpy.diff', 'np.diff', (['subsections'], {'axis': '(0)'}), '(subsections, axis=0)\n', (31169, 31190), True, 'import numpy as np\n'), ((45912, 45933), 'numpy.amin', 'np.amin', (['points[:, 0]'], {}), '(points[:, 0])\n', (45919, 45933), True, 'import numpy as np\n'), ((45934, 45955), 'numpy.amax', 'np.amax', (['points[:, 0]'], {}), '(points[:, 0])\n', (45941, 45955), True, 'import numpy as np\n'), ((45983, 46004), 'numpy.amin', 'np.amin', (['points[:, 1]'], {}), '(points[:, 1])\n', (45990, 46004), True, 'import numpy as np\n'), ((46005, 46026), 'numpy.amax', 'np.amax', (['points[:, 1]'], {}), '(points[:, 1])\n', (46012, 46026), True, 'import numpy as np\n'), ((21817, 21838), 'numpy.unique', 'np.unique', (['index_sort'], {}), '(index_sort)\n', (21826, 21838), True, 'import numpy as np\n'), ((17848, 17876), 'numpy.product', 'np.product', (['data_n_dim.shape'], {}), '(data_n_dim.shape)\n', (17858, 17876), True, 'import numpy as np\n'), ((30136, 30157), 'numpy.unique', 'np.unique', (['step_sizes'], {}), '(step_sizes)\n', (30145, 30157), True, 'import numpy as np\n'), ((5321, 5369), 'numpy.arange', 'np.arange', (['h5_main.shape[0]'], {'dtype': 'INDICES_DTYPE'}), '(h5_main.shape[0], dtype=INDICES_DTYPE)\n', (5330, 5369), True, 'import numpy as np\n'), ((5551, 5583), 'numpy.array', 'np.array', (['(0)'], {'dtype': 'INDICES_DTYPE'}), '(0, dtype=INDICES_DTYPE)\n', (5559, 5583), True, 'import numpy as np\n'), ((6834, 6882), 'numpy.arange', 'np.arange', (['h5_main.shape[1]'], {'dtype': 'INDICES_DTYPE'}), '(h5_main.shape[1], dtype=INDICES_DTYPE)\n', (6843, 6882), True, 'import numpy as np\n'), ((7071, 7103), 'numpy.array', 'np.array', (['(0)'], {'dtype': 'INDICES_DTYPE'}), '(0, dtype=INDICES_DTYPE)\n', (7079, 7103), True, 'import numpy as np\n'), ((31659, 31678), 'numpy.diff', 'np.diff', (['subsection'], {}), '(subsection)\n', (31666, 31678), True, 'import numpy as np\n')]
import numpy as np import scipy import scipy.linalg as linalg import scipy.spatial import scipy.special import scipy.optimize import sklearn def bases(name): if name == 'linear': f = lambda x: x elif name == 'cubic': f = lambda x: x**3 elif name == 'multiquadric': f = lambda x, s: np.sqrt((1.0/s*x)**2 + 1) elif name == 'thin_plate': f = lambda x: scipy.special.xlogy(x**2, x) elif name == 'gaussian': f = lambda x, s: np.exp(-(1.0/s*x)**2) elif name == 'inverse_multiquadric': f = lambda x, s: 1.0/np.sqrt((1.0/s*x)**2 + 1) else: raise ValueError('Basis not recognised.') return f class RbfInterpolator: """ Standard RBF interpolation / kernel smoothing. Written to replace Scipy's Rbf class, which has a silly interface and is difficult to modify Also includes optional optimization of the "smooth" parameter Author: <NAME> -- 2018 """ def __init__(self, norm='euclidean', rbf=lambda r: r, smooth=0.0, optimize_smoothing=False): self.norm = norm self.rbf = rbf self.smooth = smooth self.optimize_smoothing = optimize_smoothing def _opt_smooth(self): # We're just using cross-validation and retraining the whole model. # Likely a lot of improvements possible def obj(x): ss = sklearn.model_selection.ShuffleSplit(n_splits=5, test_size=.3) for tri, tei in ss.split(self._X_train): K = scipy.spatial.distance.squareform(scipy.spatial.distance.pdist(self._X_train[tri,:], self.norm)) K = self.rbf(K) K -= np.eye(K.shape[0]) * x nodes = None rcond = 1/np.linalg.cond(K) if rcond > 1e-10: # If the matrix is not singular, (i.e. most of the time) try: nodes = linalg.solve(K, self._y_train[tri], sym_pos=True) except linalg.LinAlgError: pass if nodes is None: nodes = linalg.lstsq(K, self._y_train[tri])[0] K = scipy.spatial.distance.cdist(self._X_train[tei,:], self._X_train[tri,:], self.norm) K = self.rbf(K) return np.sum((self._y_train[tei] - np.dot(K, nodes))**2) opt_param = scipy.optimize.minimize_scalar(obj, bounds=[.0001,100], bracket=[0.0001,100]) self.smooth = opt_param.x def _make_kernel(self, new_X=None): if new_X is None: K = scipy.spatial.distance.squareform(scipy.spatial.distance.pdist(self._X_train, self.norm)) else: K = scipy.spatial.distance.cdist(new_X, self._X_train, self.norm) K = self.rbf(K) if new_X is None and self.smooth != 0: K -= np.eye(K.shape[0])*self.smooth return K def fit(self, X, y): self._X_train = X self._y_train = y if len(self._X_train.shape) == 1: self._X_train = self._X_train[:,np.newaxis] if self.optimize_smoothing: self._opt_smooth() self.K = self._make_kernel() nodes = None rcond = 1/np.linalg.cond(self.K) if rcond > 1e-10: try: self.nodes = linalg.solve(self.K, self._y_train, sym_pos=True) except linalg.LinAlgError: pass if nodes is None: self.nodes = linalg.lstsq(self.K, self._y_train)[0] def predict(self, X): if len(X.shape) == 1: X = X[:,np.newaxis] K = self._make_kernel(X) return np.dot(K, self.nodes) class RBFConsensus: def __init__(self, sample_frac=.6, subsample_rounds=32, radial_basis_function=lambda x:x, norm='euclidean', copy_data=True, categorical_features=None): self.sample_frac = sample_frac # What fraction of data to sample for each subsampling round self.subsample_rounds = subsample_rounds # How many rounds self.radial_basis_function = radial_basis_function # which interpolator ("linear" with euclidean norm is linear interpolation) self.norm = norm # Which distance function is appropriate? self.copy_data = copy_data # Should input data be copied, or refed? self.N = None self.trained_smooth_param = None self.categorical_features = categorical_features def _fit_one(self, X, y, optimize_smoothing=False): self.rbfis_by_dim = [] for dim in range(y.shape[1]): # Use previously optimized smoothing unless optimize_smoothing == True if self.trained_smooth_param is None: rbfi = RbfInterpolator(rbf=self.radial_basis_function, norm=self.norm, optimize_smoothing=optimize_smoothing) else: rbfi = RbfInterpolator(smooth=self.trained_smooth_param[dim], rbf=self.radial_basis_function, norm=self.norm, optimize_smoothing=optimize_smoothing) rbfi.fit(X,y[:,dim]) self.rbfis_by_dim.append(rbfi) if optimize_smoothing: # This means we have optimized params available self.trained_smooth_param = [self.rbfis_by_dim[dim].smooth for dim in range(y.shape[1])] return self def _predict_one(self, X): if len(X.shape) == 1: Xp = X[:,np.newaxis] else: Xp = X pred = np.empty([Xp.shape[0], self._y_train.shape[1]]) for dim in range(len(self.rbfis_by_dim)): pred[:,dim] = self.rbfis_by_dim[dim].predict(X).squeeze() return pred def fit(self, X, y): self._y_train = y.copy() if self.copy_data else y self._X_train = X.copy() if self.copy_data else X if len(self._y_train.shape) == 1: self._y_train = self._y_train[:,np.newaxis] if len(self._X_train.shape) == 1: self._X_train = self._X_train[:,np.newaxis] self.N = X.shape[0] def predict(self, X, return_std=False): if self.N is None: raise RuntimeError('`.fit` must be called before `.predict`') N_samp = int(np.ceil(self.N * self.sample_frac)) y_pred = np.empty([X.shape[0], self._y_train.shape[1], self.subsample_rounds]) # np.random.seed(7) for i in range(self.subsample_rounds): r = np.random.permutation(self.N)[:N_samp] y_sub = self._y_train[r,:] X_sub = self._X_train[r,:] self._fit_one(X_sub, y_sub) y_pred[:,:,i] = self._predict_one(X) y_out = y_pred.mean(axis=2) if return_std: y_std = np.sqrt(y_pred.var(axis=2).sum(axis=1)) return y_out, y_std else: return y_out def RBF_unit_test(): import matplotlib.pyplot as plt import time # Generate synthetic 1-d data N = 300 lo = -10.0 hi = 10.0 t = np.linspace(lo,hi,N) y = np.sin(t*.5) - .08*t**2 + np.random.randn(t.shape[0])*.05*(t-lo) # Messy fitting model = RBFConsensus(radial_basis_function=lambda x:bases('inverse_multiquadric')(x,.2)) t0 = time.time() model.fit(t,y) y_pred, y_std = model.predict(t, return_std=True) print(time.time()-t0) y_pred = y_pred.squeeze() y_std = y_std.squeeze() plt.fill_between(t, y_pred - 5*y_std, y_pred + 5*y_std, alpha=0.15, color='k') plt.scatter(t,y) plt.plot(t, y_pred, color='red') plt.show()
[ "scipy.special.xlogy", "numpy.sqrt", "numpy.linalg.cond", "matplotlib.pyplot.fill_between", "numpy.sin", "scipy.linalg.lstsq", "matplotlib.pyplot.plot", "sklearn.model_selection.ShuffleSplit", "numpy.exp", "numpy.linspace", "numpy.dot", "numpy.empty", "scipy.optimize.minimize_scalar", "matplotlib.pyplot.scatter", "numpy.random.permutation", "numpy.ceil", "numpy.eye", "scipy.spatial.distance.pdist", "time.time", "numpy.random.randn", "matplotlib.pyplot.show", "scipy.spatial.distance.cdist", "scipy.linalg.solve" ]
[((7360, 7382), 'numpy.linspace', 'np.linspace', (['lo', 'hi', 'N'], {}), '(lo, hi, N)\n', (7371, 7382), True, 'import numpy as np\n'), ((7582, 7593), 'time.time', 'time.time', ([], {}), '()\n', (7591, 7593), False, 'import time\n'), ((7757, 7843), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['t', '(y_pred - 5 * y_std)', '(y_pred + 5 * y_std)'], {'alpha': '(0.15)', 'color': '"""k"""'}), "(t, y_pred - 5 * y_std, y_pred + 5 * y_std, alpha=0.15,\n color='k')\n", (7773, 7843), True, 'import matplotlib.pyplot as plt\n'), ((7840, 7857), 'matplotlib.pyplot.scatter', 'plt.scatter', (['t', 'y'], {}), '(t, y)\n', (7851, 7857), True, 'import matplotlib.pyplot as plt\n'), ((7861, 7893), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'y_pred'], {'color': '"""red"""'}), "(t, y_pred, color='red')\n", (7869, 7893), True, 'import matplotlib.pyplot as plt\n'), ((7899, 7909), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7907, 7909), True, 'import matplotlib.pyplot as plt\n'), ((2392, 2477), 'scipy.optimize.minimize_scalar', 'scipy.optimize.minimize_scalar', (['obj'], {'bounds': '[0.0001, 100]', 'bracket': '[0.0001, 100]'}), '(obj, bounds=[0.0001, 100], bracket=[0.0001, 100]\n )\n', (2422, 2477), False, 'import scipy\n'), ((3729, 3750), 'numpy.dot', 'np.dot', (['K', 'self.nodes'], {}), '(K, self.nodes)\n', (3735, 3750), True, 'import numpy as np\n'), ((5721, 5768), 'numpy.empty', 'np.empty', (['[Xp.shape[0], self._y_train.shape[1]]'], {}), '([Xp.shape[0], self._y_train.shape[1]])\n', (5729, 5768), True, 'import numpy as np\n'), ((6582, 6651), 'numpy.empty', 'np.empty', (['[X.shape[0], self._y_train.shape[1], self.subsample_rounds]'], {}), '([X.shape[0], self._y_train.shape[1], self.subsample_rounds])\n', (6590, 6651), True, 'import numpy as np\n'), ((1385, 1448), 'sklearn.model_selection.ShuffleSplit', 'sklearn.model_selection.ShuffleSplit', ([], {'n_splits': '(5)', 'test_size': '(0.3)'}), '(n_splits=5, test_size=0.3)\n', (1421, 1448), False, 'import sklearn\n'), ((2711, 2772), 'scipy.spatial.distance.cdist', 'scipy.spatial.distance.cdist', (['new_X', 'self._X_train', 'self.norm'], {}), '(new_X, self._X_train, self.norm)\n', (2739, 2772), False, 'import scipy\n'), ((3295, 3317), 'numpy.linalg.cond', 'np.linalg.cond', (['self.K'], {}), '(self.K)\n', (3309, 3317), True, 'import numpy as np\n'), ((6528, 6562), 'numpy.ceil', 'np.ceil', (['(self.N * self.sample_frac)'], {}), '(self.N * self.sample_frac)\n', (6535, 6562), True, 'import numpy as np\n'), ((7389, 7404), 'numpy.sin', 'np.sin', (['(t * 0.5)'], {}), '(t * 0.5)\n', (7395, 7404), True, 'import numpy as np\n'), ((7677, 7688), 'time.time', 'time.time', ([], {}), '()\n', (7686, 7688), False, 'import time\n'), ((2172, 2261), 'scipy.spatial.distance.cdist', 'scipy.spatial.distance.cdist', (['self._X_train[tei, :]', 'self._X_train[tri, :]', 'self.norm'], {}), '(self._X_train[tei, :], self._X_train[tri, :],\n self.norm)\n', (2200, 2261), False, 'import scipy\n'), ((2625, 2679), 'scipy.spatial.distance.pdist', 'scipy.spatial.distance.pdist', (['self._X_train', 'self.norm'], {}), '(self._X_train, self.norm)\n', (2653, 2679), False, 'import scipy\n'), ((2883, 2901), 'numpy.eye', 'np.eye', (['K.shape[0]'], {}), '(K.shape[0])\n', (2889, 2901), True, 'import numpy as np\n'), ((3390, 3439), 'scipy.linalg.solve', 'linalg.solve', (['self.K', 'self._y_train'], {'sym_pos': '(True)'}), '(self.K, self._y_train, sym_pos=True)\n', (3402, 3439), True, 'import scipy.linalg as linalg\n'), ((3535, 3570), 'scipy.linalg.lstsq', 'linalg.lstsq', (['self.K', 'self._y_train'], {}), '(self.K, self._y_train)\n', (3547, 3570), True, 'import scipy.linalg as linalg\n'), ((6753, 6782), 'numpy.random.permutation', 'np.random.permutation', (['self.N'], {}), '(self.N)\n', (6774, 6782), True, 'import numpy as np\n'), ((7415, 7442), 'numpy.random.randn', 'np.random.randn', (['t.shape[0]'], {}), '(t.shape[0])\n', (7430, 7442), True, 'import numpy as np\n'), ((320, 351), 'numpy.sqrt', 'np.sqrt', (['((1.0 / s * x) ** 2 + 1)'], {}), '((1.0 / s * x) ** 2 + 1)\n', (327, 351), True, 'import numpy as np\n'), ((1555, 1617), 'scipy.spatial.distance.pdist', 'scipy.spatial.distance.pdist', (['self._X_train[tri, :]', 'self.norm'], {}), '(self._X_train[tri, :], self.norm)\n', (1583, 1617), False, 'import scipy\n'), ((1671, 1689), 'numpy.eye', 'np.eye', (['K.shape[0]'], {}), '(K.shape[0])\n', (1677, 1689), True, 'import numpy as np\n'), ((1766, 1783), 'numpy.linalg.cond', 'np.linalg.cond', (['K'], {}), '(K)\n', (1780, 1783), True, 'import numpy as np\n'), ((399, 429), 'scipy.special.xlogy', 'scipy.special.xlogy', (['(x ** 2)', 'x'], {}), '(x ** 2, x)\n', (418, 429), False, 'import scipy\n'), ((1932, 1981), 'scipy.linalg.solve', 'linalg.solve', (['K', 'self._y_train[tri]'], {'sym_pos': '(True)'}), '(K, self._y_train[tri], sym_pos=True)\n', (1944, 1981), True, 'import scipy.linalg as linalg\n'), ((2096, 2131), 'scipy.linalg.lstsq', 'linalg.lstsq', (['K', 'self._y_train[tri]'], {}), '(K, self._y_train[tri])\n', (2108, 2131), True, 'import scipy.linalg as linalg\n'), ((2341, 2357), 'numpy.dot', 'np.dot', (['K', 'nodes'], {}), '(K, nodes)\n', (2347, 2357), True, 'import numpy as np\n'), ((482, 509), 'numpy.exp', 'np.exp', (['(-(1.0 / s * x) ** 2)'], {}), '(-(1.0 / s * x) ** 2)\n', (488, 509), True, 'import numpy as np\n'), ((574, 605), 'numpy.sqrt', 'np.sqrt', (['((1.0 / s * x) ** 2 + 1)'], {}), '((1.0 / s * x) ** 2 + 1)\n', (581, 605), True, 'import numpy as np\n')]
"""Tests for qr.py.""" from jax import lax import jax.numpy as jnp import numpy as np import pytest import tempfile from distla_core.linalg.utils import testutils from distla_core.linalg.qr import qr_ooc from distla_core.utils import pops DTYPE = jnp.float32 seeds = [0, 1] flags = [True, False] def _dephase_qr(R, Q=None): """ Maps the Q and R factor from an arbitrary QR decomposition to the unique with non-negative diagonal entries. """ phases_data = np.sign(np.diagonal(R)) m, n = R.shape if m > n: phases = np.ones(m) phases[:n] = phases_data else: phases = phases_data R = phases.conj()[:, None] * R if Q is not None: Q = Q * phases return Q, R @pytest.mark.parametrize("N", [8, 32, 128]) @pytest.mark.parametrize("aspect_ratio", [1, 2, 10]) @pytest.mark.parametrize("panel_size", [1, 2]) @pytest.mark.parametrize("seed", [0, 1]) def test_qr_ooc(N, aspect_ratio, panel_size, seed): dtype = np.float32 M = N * aspect_ratio np.random.seed(seed) A = np.random.randn(M, N).astype(dtype) _, expected = np.linalg.qr(A) _, expected = _dephase_qr(expected) with tempfile.NamedTemporaryFile(delete=False) as f: np.save(f, A) f.close() # Explicit close needed to open again as a memmap. # The file is still deleted when the context goes out of scope. result = qr_ooc.qr_ooc(f.name, caqr_panel_size=panel_size) result = pops.undistribute(result) _, result = _dephase_qr(result) atol = testutils.eps(lax.Precision.HIGHEST, dtype=dtype) atol *= np.linalg.norm(A) ** 2 testutils.assert_allclose(result, expected, atol=atol) @pytest.mark.parametrize("N", [8, 32, 128]) @pytest.mark.parametrize("aspect_ratio", [1, 2, 10]) @pytest.mark.parametrize("panel_size", [1, 2]) @pytest.mark.parametrize("seed", [0, 1]) def test_fake_cholesky(N, aspect_ratio, panel_size, seed): fname = "fake_cholesky_test_matrix" dtype = np.float32 M = N * aspect_ratio np.random.seed(seed) A = np.random.randn(M, N).astype(dtype) cond = np.linalg.cond(A) expected_gram = np.dot(A.T, A) expected_chol = np.linalg.cholesky(expected_gram).T _, expected_chol = _dephase_qr(expected_chol) np.save(fname, A) fread = fname + ".npy" chol_fname = "cholesky_transpose" gram_fname = "gram_matrix" qr_ooc.fake_cholesky(fread, caqr_panel_size=panel_size, chol_fname=chol_fname, gram_fname=gram_fname) result_gram = np.load(gram_fname + ".npy") result_chol = np.load(chol_fname + ".npy") _, result_chol = _dephase_qr(result_chol) atol = testutils.eps(lax.Precision.HIGHEST, dtype=dtype) atol *= cond * np.linalg.norm(expected_gram) ** 2 testutils.assert_allclose(result_chol, expected_chol, atol=10 * atol) testutils.assert_allclose(result_gram, expected_gram, atol=atol)
[ "distla_core.linalg.utils.testutils.eps", "distla_core.linalg.utils.testutils.assert_allclose", "numpy.diagonal", "numpy.linalg.qr", "numpy.ones", "distla_core.linalg.qr.qr_ooc.qr_ooc", "numpy.linalg.cond", "numpy.linalg.norm", "pytest.mark.parametrize", "distla_core.utils.pops.undistribute", "numpy.dot", "distla_core.linalg.qr.qr_ooc.fake_cholesky", "numpy.random.seed", "tempfile.NamedTemporaryFile", "numpy.linalg.cholesky", "numpy.load", "numpy.random.randn", "numpy.save" ]
[((697, 739), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""N"""', '[8, 32, 128]'], {}), "('N', [8, 32, 128])\n", (720, 739), False, 'import pytest\n'), ((741, 792), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""aspect_ratio"""', '[1, 2, 10]'], {}), "('aspect_ratio', [1, 2, 10])\n", (764, 792), False, 'import pytest\n'), ((794, 839), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""panel_size"""', '[1, 2]'], {}), "('panel_size', [1, 2])\n", (817, 839), False, 'import pytest\n'), ((841, 880), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', '[0, 1]'], {}), "('seed', [0, 1])\n", (864, 880), False, 'import pytest\n'), ((1618, 1660), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""N"""', '[8, 32, 128]'], {}), "('N', [8, 32, 128])\n", (1641, 1660), False, 'import pytest\n'), ((1662, 1713), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""aspect_ratio"""', '[1, 2, 10]'], {}), "('aspect_ratio', [1, 2, 10])\n", (1685, 1713), False, 'import pytest\n'), ((1715, 1760), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""panel_size"""', '[1, 2]'], {}), "('panel_size', [1, 2])\n", (1738, 1760), False, 'import pytest\n'), ((1762, 1801), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed"""', '[0, 1]'], {}), "('seed', [0, 1])\n", (1785, 1801), False, 'import pytest\n'), ((979, 999), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (993, 999), True, 'import numpy as np\n'), ((1058, 1073), 'numpy.linalg.qr', 'np.linalg.qr', (['A'], {}), '(A)\n', (1070, 1073), True, 'import numpy as np\n'), ((1404, 1429), 'distla_core.utils.pops.undistribute', 'pops.undistribute', (['result'], {}), '(result)\n', (1421, 1429), False, 'from distla_core.utils import pops\n'), ((1474, 1523), 'distla_core.linalg.utils.testutils.eps', 'testutils.eps', (['lax.Precision.HIGHEST'], {'dtype': 'dtype'}), '(lax.Precision.HIGHEST, dtype=dtype)\n', (1487, 1523), False, 'from distla_core.linalg.utils import testutils\n'), ((1560, 1614), 'distla_core.linalg.utils.testutils.assert_allclose', 'testutils.assert_allclose', (['result', 'expected'], {'atol': 'atol'}), '(result, expected, atol=atol)\n', (1585, 1614), False, 'from distla_core.linalg.utils import testutils\n'), ((1945, 1965), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1959, 1965), True, 'import numpy as np\n'), ((2017, 2034), 'numpy.linalg.cond', 'np.linalg.cond', (['A'], {}), '(A)\n', (2031, 2034), True, 'import numpy as np\n'), ((2053, 2067), 'numpy.dot', 'np.dot', (['A.T', 'A'], {}), '(A.T, A)\n', (2059, 2067), True, 'import numpy as np\n'), ((2173, 2190), 'numpy.save', 'np.save', (['fname', 'A'], {}), '(fname, A)\n', (2180, 2190), True, 'import numpy as np\n'), ((2284, 2390), 'distla_core.linalg.qr.qr_ooc.fake_cholesky', 'qr_ooc.fake_cholesky', (['fread'], {'caqr_panel_size': 'panel_size', 'chol_fname': 'chol_fname', 'gram_fname': 'gram_fname'}), '(fread, caqr_panel_size=panel_size, chol_fname=\n chol_fname, gram_fname=gram_fname)\n', (2304, 2390), False, 'from distla_core.linalg.qr import qr_ooc\n'), ((2425, 2453), 'numpy.load', 'np.load', (["(gram_fname + '.npy')"], {}), "(gram_fname + '.npy')\n", (2432, 2453), True, 'import numpy as np\n'), ((2470, 2498), 'numpy.load', 'np.load', (["(chol_fname + '.npy')"], {}), "(chol_fname + '.npy')\n", (2477, 2498), True, 'import numpy as np\n'), ((2553, 2602), 'distla_core.linalg.utils.testutils.eps', 'testutils.eps', (['lax.Precision.HIGHEST'], {'dtype': 'dtype'}), '(lax.Precision.HIGHEST, dtype=dtype)\n', (2566, 2602), False, 'from distla_core.linalg.utils import testutils\n'), ((2657, 2726), 'distla_core.linalg.utils.testutils.assert_allclose', 'testutils.assert_allclose', (['result_chol', 'expected_chol'], {'atol': '(10 * atol)'}), '(result_chol, expected_chol, atol=10 * atol)\n', (2682, 2726), False, 'from distla_core.linalg.utils import testutils\n'), ((2729, 2793), 'distla_core.linalg.utils.testutils.assert_allclose', 'testutils.assert_allclose', (['result_gram', 'expected_gram'], {'atol': 'atol'}), '(result_gram, expected_gram, atol=atol)\n', (2754, 2793), False, 'from distla_core.linalg.utils import testutils\n'), ((477, 491), 'numpy.diagonal', 'np.diagonal', (['R'], {}), '(R)\n', (488, 491), True, 'import numpy as np\n'), ((535, 545), 'numpy.ones', 'np.ones', (['m'], {}), '(m)\n', (542, 545), True, 'import numpy as np\n'), ((1119, 1160), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'delete': '(False)'}), '(delete=False)\n', (1146, 1160), False, 'import tempfile\n'), ((1171, 1184), 'numpy.save', 'np.save', (['f', 'A'], {}), '(f, A)\n', (1178, 1184), True, 'import numpy as np\n'), ((1343, 1392), 'distla_core.linalg.qr.qr_ooc.qr_ooc', 'qr_ooc.qr_ooc', (['f.name'], {'caqr_panel_size': 'panel_size'}), '(f.name, caqr_panel_size=panel_size)\n', (1356, 1392), False, 'from distla_core.linalg.qr import qr_ooc\n'), ((1534, 1551), 'numpy.linalg.norm', 'np.linalg.norm', (['A'], {}), '(A)\n', (1548, 1551), True, 'import numpy as np\n'), ((2086, 2119), 'numpy.linalg.cholesky', 'np.linalg.cholesky', (['expected_gram'], {}), '(expected_gram)\n', (2104, 2119), True, 'import numpy as np\n'), ((1006, 1027), 'numpy.random.randn', 'np.random.randn', (['M', 'N'], {}), '(M, N)\n', (1021, 1027), True, 'import numpy as np\n'), ((1972, 1993), 'numpy.random.randn', 'np.random.randn', (['M', 'N'], {}), '(M, N)\n', (1987, 1993), True, 'import numpy as np\n'), ((2620, 2649), 'numpy.linalg.norm', 'np.linalg.norm', (['expected_gram'], {}), '(expected_gram)\n', (2634, 2649), True, 'import numpy as np\n')]
import os import logging import argparse import numpy as np import tensorflow as tf from keras_preprocessing.text import Tokenizer from tqdm import tqdm from data import DataLoader class EmbeddingsBuilder: def __init__(self, args): logging.info('initializing...') self.args = args self.dataset = DataLoader(self.args) self.embeddings_path = args.embeddings_path self.small_embeddings_path = os.path.splitext(self.embeddings_path)[0] + '_small.vec' logging.info('initializing...[ok]') def build_embedding(self, vocab_dict): """ Load embedding vectors from a .txt file. Optionally limit the vocabulary to save memory. `vocab` should be a set. """ num_words = len(vocab_dict) num_found = 0 with open(self.small_embeddings_path, 'w') as out_file: with tf.gfile.GFile(self.embeddings_path) as f: header =next(f) num_embeddings, embeddings_dim = header.split(' ') num_embeddings = int(num_embeddings) out_file.write(header) for _, line in tqdm(enumerate(f), 'loading embeddings', total=num_embeddings): tokens = line.rstrip().split(" ") word = tokens[0] if word in vocab_dict: num_found += 1 out_file.write(line) tf.logging.info("Found embeddings for {} out of {} words in vocabulary".format(num_found, num_words)) def run(self): self.dataset.load() X = self.dataset.X_train_labeled['moment'].values X = np.append(X, self.dataset.X_train_unlabeled['moment'].values, axis=0) X = np.append(X, self.dataset.X_test['moment'].values, axis=0) tokenizer = Tokenizer() tokenizer.fit_on_texts(X) self.build_embedding(tokenizer.word_index) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) logging.info('initializing task...') parser = argparse.ArgumentParser() parser.add_argument('--data-dir', default='data/claff-happydb') parser.add_argument('--embeddings-path', type=str, default=None) parser.add_argument('--num-unlabeled', type=int, default=1000) parser.add_argument('--use-allfeats', action='store_true', default=False) parser.add_argument('--predict', action='store_true', default=True) builder = EmbeddingsBuilder(args=parser.parse_args()) builder.run() logging.info('task finished...[ok]')
[ "logging.basicConfig", "keras_preprocessing.text.Tokenizer", "argparse.ArgumentParser", "os.path.splitext", "numpy.append", "tensorflow.gfile.GFile", "logging.info", "data.DataLoader" ]
[((1951, 2025), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(message)s"""', 'level': 'logging.DEBUG'}), "(format='%(asctime)s %(message)s', level=logging.DEBUG)\n", (1970, 2025), False, 'import logging\n'), ((2030, 2066), 'logging.info', 'logging.info', (['"""initializing task..."""'], {}), "('initializing task...')\n", (2042, 2066), False, 'import logging\n'), ((2080, 2105), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2103, 2105), False, 'import argparse\n'), ((2540, 2576), 'logging.info', 'logging.info', (['"""task finished...[ok]"""'], {}), "('task finished...[ok]')\n", (2552, 2576), False, 'import logging\n'), ((248, 279), 'logging.info', 'logging.info', (['"""initializing..."""'], {}), "('initializing...')\n", (260, 279), False, 'import logging\n'), ((328, 349), 'data.DataLoader', 'DataLoader', (['self.args'], {}), '(self.args)\n', (338, 349), False, 'from data import DataLoader\n'), ((504, 539), 'logging.info', 'logging.info', (['"""initializing...[ok]"""'], {}), "('initializing...[ok]')\n", (516, 539), False, 'import logging\n'), ((1655, 1724), 'numpy.append', 'np.append', (['X', "self.dataset.X_train_unlabeled['moment'].values"], {'axis': '(0)'}), "(X, self.dataset.X_train_unlabeled['moment'].values, axis=0)\n", (1664, 1724), True, 'import numpy as np\n'), ((1737, 1795), 'numpy.append', 'np.append', (['X', "self.dataset.X_test['moment'].values"], {'axis': '(0)'}), "(X, self.dataset.X_test['moment'].values, axis=0)\n", (1746, 1795), True, 'import numpy as np\n'), ((1817, 1828), 'keras_preprocessing.text.Tokenizer', 'Tokenizer', ([], {}), '()\n', (1826, 1828), False, 'from keras_preprocessing.text import Tokenizer\n'), ((439, 477), 'os.path.splitext', 'os.path.splitext', (['self.embeddings_path'], {}), '(self.embeddings_path)\n', (455, 477), False, 'import os\n'), ((878, 914), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['self.embeddings_path'], {}), '(self.embeddings_path)\n', (892, 914), True, 'import tensorflow as tf\n')]
import pytest import json import numpy as np @pytest.mark.parametrize("candidate, expected", [ (1.345, True), (-4.554, True), ('9999', True) ]) def test_number_please(candidate, expected): from hrm_code import number_please assert number_please(candidate) == expected def test_import_data(): from hrm_code import import_data [time, voltage] = import_data("test_data/test_data2.csv") assert time[0] == 0 assert voltage[0] == -0.345 def test_calc_duration(): from hrm_code import calc_duration fake_time = [0, 1, 2, 3, 4.3, 5, 6, 7.2] dur = calc_duration(fake_time) assert dur == 7.2 def test_find_min_max_volt(): from hrm_code import find_max_min_volt fake_voltage = [1.2, -0.3, 4.8, 0, -3] both = find_max_min_volt(fake_voltage) assert both == [-3, 4.8] def test_calc_freq(): from hrm_code import calc_sample_freq fake_time = [0, 0.5, 1, 1.5, 2] fs = calc_sample_freq(fake_time) assert fs == 2 def test_detect_peak(): from hrm_code import detect_peak # Peaks should occur every 60 sec fs = 60 t = np.arange(0, 5, 1/fs) wave = abs(np.sin(t*np.pi)**20) peaks = detect_peak(wave, fs, hrw=0.1) assert peaks == [27, 87, 147, 207, 267] def test_num_beat(): from hrm_code import num_beat fake_peaklist = [1, 3, 4] fake_time = [0, 0.5, 1, 1.5, 2, 2.5, 3] [num_beats, beats] = num_beat(fake_time, fake_peaklist) assert num_beats == 3 assert beats == [0.5, 1.5, 2] def test_calc_bpm(): from hrm_code import calc_bpm fake_num_beats = 20 fake_dur = 40 bpm = calc_bpm(fake_num_beats, fake_dur) assert bpm == 30 def test_create_metrics(): from hrm_code import create_metrics bpm = 70 both = [-1.4, 5.6] dur = 30 num_beats = 80 beats = [0.5, 0.75, 0.8] metrics = create_metrics(bpm, beats, both, dur, num_beats) assert metrics == { "mean_hr_bpm": 70, "voltage extremes": [-1.4, 5.6], "duration": 30, "num_beats": 80, "beats": [0.5, 0.75, 0.8] } def test_create_jason(): from hrm_code import create_jason metrics = {"Favorite Ice Cream Flavor": "Chocolate", "Favorite Book": "A Tree Grows in Brooklyn", "Favorite Number": 8} filename = "test_output.csv" create_jason(filename, metrics) read_file = json.load(open('test_output.json')) assert read_file == {"Favorite Ice Cream Flavor": "Chocolate", "Favorite Book": "A Tree Grows in Brooklyn", "Favorite Number": 8}
[ "hrm_code.num_beat", "hrm_code.detect_peak", "hrm_code.number_please", "pytest.mark.parametrize", "hrm_code.import_data", "hrm_code.calc_bpm", "hrm_code.create_jason", "hrm_code.find_max_min_volt", "hrm_code.calc_sample_freq", "numpy.sin", "hrm_code.create_metrics", "numpy.arange", "hrm_code.calc_duration" ]
[((48, 148), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""candidate, expected"""', "[(1.345, True), (-4.554, True), ('9999', True)]"], {}), "('candidate, expected', [(1.345, True), (-4.554, \n True), ('9999', True)])\n", (71, 148), False, 'import pytest\n'), ((375, 414), 'hrm_code.import_data', 'import_data', (['"""test_data/test_data2.csv"""'], {}), "('test_data/test_data2.csv')\n", (386, 414), False, 'from hrm_code import import_data\n'), ((593, 617), 'hrm_code.calc_duration', 'calc_duration', (['fake_time'], {}), '(fake_time)\n', (606, 617), False, 'from hrm_code import calc_duration\n'), ((769, 800), 'hrm_code.find_max_min_volt', 'find_max_min_volt', (['fake_voltage'], {}), '(fake_voltage)\n', (786, 800), False, 'from hrm_code import find_max_min_volt\n'), ((941, 968), 'hrm_code.calc_sample_freq', 'calc_sample_freq', (['fake_time'], {}), '(fake_time)\n', (957, 968), False, 'from hrm_code import calc_sample_freq\n'), ((1109, 1132), 'numpy.arange', 'np.arange', (['(0)', '(5)', '(1 / fs)'], {}), '(0, 5, 1 / fs)\n', (1118, 1132), True, 'import numpy as np\n'), ((1179, 1209), 'hrm_code.detect_peak', 'detect_peak', (['wave', 'fs'], {'hrw': '(0.1)'}), '(wave, fs, hrw=0.1)\n', (1190, 1209), False, 'from hrm_code import detect_peak\n'), ((1410, 1444), 'hrm_code.num_beat', 'num_beat', (['fake_time', 'fake_peaklist'], {}), '(fake_time, fake_peaklist)\n', (1418, 1444), False, 'from hrm_code import num_beat\n'), ((1614, 1648), 'hrm_code.calc_bpm', 'calc_bpm', (['fake_num_beats', 'fake_dur'], {}), '(fake_num_beats, fake_dur)\n', (1622, 1648), False, 'from hrm_code import calc_bpm\n'), ((1850, 1898), 'hrm_code.create_metrics', 'create_metrics', (['bpm', 'beats', 'both', 'dur', 'num_beats'], {}), '(bpm, beats, both, dur, num_beats)\n', (1864, 1898), False, 'from hrm_code import create_metrics\n'), ((2336, 2367), 'hrm_code.create_jason', 'create_jason', (['filename', 'metrics'], {}), '(filename, metrics)\n', (2348, 2367), False, 'from hrm_code import create_jason\n'), ((253, 277), 'hrm_code.number_please', 'number_please', (['candidate'], {}), '(candidate)\n', (266, 277), False, 'from hrm_code import number_please\n'), ((1146, 1163), 'numpy.sin', 'np.sin', (['(t * np.pi)'], {}), '(t * np.pi)\n', (1152, 1163), True, 'import numpy as np\n')]
import numpy as np from math import sqrt def robot_distance_incorrect(robot_actual_location, hexagon_pixel_values): distance_to_get_back = [] distances = [] pixel_distance = [] for i in range(0, len(hexagon_pixel_values)): dist = sqrt((robot_actual_location[0] - hexagon_pixel_values[i][0]) ** 2 + (robot_actual_location[1] - hexagon_pixel_values[i][1]) ** 2) distances += [dist] index_min = np.argmin(distances) correct_position = hexagon_pixel_values[index_min] # find the distance that needs to be traveled to get to the correct location pixel_distance = (correct_position[0] - robot_actual_location[0], correct_position[1]-robot_actual_location[1]) # print(correct_position, robot_actual_location, pixel_distance) # convert to actual distance distance_to_get_back = (pixel_distance[0]/1.79, pixel_distance[1]/1.749) return distance_to_get_back
[ "numpy.argmin", "math.sqrt" ]
[((450, 470), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (459, 470), True, 'import numpy as np\n'), ((256, 390), 'math.sqrt', 'sqrt', (['((robot_actual_location[0] - hexagon_pixel_values[i][0]) ** 2 + (\n robot_actual_location[1] - hexagon_pixel_values[i][1]) ** 2)'], {}), '((robot_actual_location[0] - hexagon_pixel_values[i][0]) ** 2 + (\n robot_actual_location[1] - hexagon_pixel_values[i][1]) ** 2)\n', (260, 390), False, 'from math import sqrt\n')]
"""Largest prime factor The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143? """ import math import numpy as np def largest_prime_factor_naive(number): """ Let the given number be n and let k = 2, 3, 4, 5, ... . For each k, if it is a factor of n then we divide n by k and completely divide out each k before moving to the next k. It can be seen that when k is a factor it will necessarily be prime, as all smaller factors have been removed, and the final result of this process will be n = 1. """ factor = 2 factors = [] while number > 1: if number % factor == 0: factors.append(factor) number = number // factor # Remainder guarenteed to be zero while number % factor == 0: number = number // factor # Remainder guarenteed to be zero factor += 1 return factors def largest_prime_factor_even_optimized(number): """ We know that, excluding 2, there are no even prime numbers. So we can increase factor by 2 per iteration after having found the """ factors = [] factor = 2 if number % factor == 0: number = number // factor factors.append(factor) while number % factor == 0: number = number // factor factor = 3 while number > 1: if number % factor == 0: factors.append(factor) number = number // factor # Remainder guarenteed to be zero while number % factor == 0: number = number // factor # Remainder guarenteed to be zero factor += 2 return factors def largest_prime_factor_square_optimized(number): """ Every number n can at most have one prime factor greater than n. If we, after dividing out some prime factor, calculate the square root of the remaining number we can use that square root as upper limit for factor. If factor exceeds this square root we know the remaining number is prime. """ factors = [] factor = 2 if number % factor == 0: number = number // factor factors.append(factor) while number % factor == 0: number = number // factor factor = 3 max_factor = math.sqrt(number) while number > 1 and factor <= max_factor: if number % factor == 0: factors.append(factor) number = number // factor while number % factor == 0: number = number // factor max_factor = math.sqrt(number) factor += 2 return factors def idx_sieve(length): """Static length sieve-based prime generator""" primes = [] is_prime = np.array([True]*length) i = 2 while i < length: if is_prime[i]: is_prime[np.arange(i, length, i)] = False primes.append(i) else: i += 1 return primes def prime_factor(n, primes): i = 0 factors = [] while n != 1: while (n % primes[i]) != 0: i += 1 factors.append(primes[i]) n = n / primes[i] return factors if __name__ == '__main__': number = 600851475143 print(largest_prime_factor_naive(number)) print(largest_prime_factor_even_optimized(number)) print(largest_prime_factor_square_optimized(number)) number = 600851475143 primes = idx_sieve(20000) print(max(prime_factor(number, primes)))
[ "numpy.array", "math.sqrt", "numpy.arange" ]
[((2287, 2304), 'math.sqrt', 'math.sqrt', (['number'], {}), '(number)\n', (2296, 2304), False, 'import math\n'), ((2735, 2760), 'numpy.array', 'np.array', (['([True] * length)'], {}), '([True] * length)\n', (2743, 2760), True, 'import numpy as np\n'), ((2569, 2586), 'math.sqrt', 'math.sqrt', (['number'], {}), '(number)\n', (2578, 2586), False, 'import math\n'), ((2836, 2859), 'numpy.arange', 'np.arange', (['i', 'length', 'i'], {}), '(i, length, i)\n', (2845, 2859), True, 'import numpy as np\n')]
# encoding: utf-8 ''' @author: <NAME> @contact: <EMAIL> @software: basenef @file: doc_generator.py @date: 4/13/2019 @desc: ''' import os import sys import time from getpass import getuser import matplotlib import numpy as np import json from srfnef import Image, MlemFull matplotlib.use('Agg') author = getuser() def title_block_gen(): timestamp = time.time() datetime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(timestamp))) title_block = f''' # NEF AutoDoc {datetime} - Author: {author} - Generation time: {datetime} - Operation system: {sys.platform} - OS language: {os.environ['LANG']} - Duration: 0.0 sec - Total errors: 0 - Total warning: 0 - Description: ''' return title_block def _text_gen_as_table(dct: dict = {}): out_text = ['|key|values|\n|:---|:---|\n'] for key, val in dct.items(): if key == 'data': out_text.append(f"| {key} | Ignored |\n") elif not isinstance(val, dict): if isinstance(val, str) and len(val) > 30: out_text.append(f"| {key} | Ignored |\n") else: out_text.append(f"| {key} | {val} |\n") else: out_text.append(f"| {key} | {'Ignored'} |\n") return out_text def json_block_gen(dct: dict = {}): if isinstance(dct, str): dct = json.loads(dct) dct['image_config']['size'] = np.round(dct['image_config']['size'], decimals = 3).tolist() if dct['emap'] is not None: dct['emap']['size'] = np.round(dct['emap']['size'], decimals = 3).tolist() json_str = json.dumps(dct, indent = 4) out_text = "## RECON JSON\n" out_text += "```javascript\n" out_text += json_str + '\n' out_text += "```\n" return out_text def image_block_gen(img: Image, path: str): print('Generating text blocks...') from matplotlib import pyplot as plt vmax = np.percentile(img.data, 99.99) midind = [int(img.shape[i] / 2) for i in range(3)] plt.figure(figsize = (30, 10)) plt.subplot(231) plt.imshow(img.data[midind[0], :, :], vmax = vmax) plt.subplot(232) plt.imshow(img.data[:, midind[1], :].transpose(), vmax = vmax) plt.subplot(233) plt.imshow(img.data[:, :, midind[2]].transpose(), vmax = vmax) plt.subplot(234) plt.plot(img.data[midind[0], midind[1], :]) plt.subplot(235) plt.plot(img.data[midind[0], :, midind[2]]) plt.subplot(236) plt.plot(img.data[:, midind[1], midind[2]]) timestamp = time.time() datetime_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(int(timestamp))) plt.savefig(path + f'/out_img{datetime_str}.png') out_text = f'![123]({path}/out_img{datetime_str}.png)\n' return out_text def statistic_block_gen(dct: dict = {}): out_text = [] key_set = set() for name, sub_dct in dct.items(): for key, val in sub_dct.items(): if isinstance(val, str) and len(val) < 30: key_set.add(key) col_names = ['|name ', '|:---'] for key in key_set: col_names[0] += '|' + key + '' else: col_names[0] += '|\n' for _ in key_set: col_names[1] += '|:---' else: col_names[1] += '|\n' out_text += col_names for name, sub_dct in dct.items(): row = '| ' + name + ' ' for key in key_set: if key in sub_dct: row += '|' + str(sub_dct[key]) + '' else: row += '|-' else: row += '|\n' out_text += [row] return out_text def metric_block_gen(mask: np.ndarray, img: Image): from srfnef import image_metric as metric dct = {} # contrast hot dct.update( contrast_hot = {str(ind_): float(val_) for ind_, val_ in metric.contrast_hot(mask, img)}) dct.update( contrast_cold = {str(ind_): float(val_) for ind_, val_ in metric.contrast_cold(mask, img)}) dct.update(contrast_noise_ratio1 = metric.cnr1(mask, img)) dct.update(contrast_noise_ratio2 = metric.cnr2(mask, img)) dct.update(contrast_recovery_coefficiency1 = metric.crc1(mask, img)) dct.update(contrast_recovery_coefficiency2 = metric.crc2(mask, img)) dct.update(standard_error = metric.standard_error(mask, img)) dct.update(normalized_standard_error = metric.nsd(mask, img)) dct.update(standard_deviation = metric.sd(mask, img)) dct.update(background_visibility = metric.bg_visibility(mask, img)) dct.update(noise1 = metric.noise1(mask, img)) dct.update(noise2 = metric.noise2(mask, img)) dct.update(signal_noise_ratio1 = metric.snr1(mask, img)) dct.update(signal_noise_ratio2 = metric.snr2(mask, img)) dct.update(positive_deviation = metric.pos_dev(mask, img)) for ind, val in dct.items(): if not isinstance(val, dict): dct[ind] = float(val) json_str = json.dumps(dct, indent = 4) out_text = "## IMAGE METRIC JSON\n" out_text += "```javascript\n" out_text += json_str + '\n' out_text += "```\n" return out_text def doc_gen(mlem_obj: MlemFull, img: Image, path: str, filename: str = None, mask: np.ndarray = None): timestamp = time.time() datetime_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime(int(timestamp))) if filename is None: filename = 'doc_gen-' + datetime_str + '.md' out_text = title_block_gen() out_text += image_block_gen(img, path) out_text += json_block_gen(mlem_obj.asdict(recurse = True)) if mask is not None: if isinstance(mask, str): mask = np.load(mask) out_text += metric_block_gen(mask, img) # out_text += statistic_block_gen(dct) with open(filename, 'w') as fout: fout.writelines(out_text) # print('Converting MD to PDF...') # import pypandoc # print(filename) # pypandoc.convert_file(filename, 'pdf', outputfile = filename + '.pdf') return filename
[ "srfnef.image_metric.nsd", "getpass.getuser", "matplotlib.pyplot.imshow", "srfnef.image_metric.noise2", "json.dumps", "matplotlib.pyplot.plot", "srfnef.image_metric.pos_dev", "srfnef.image_metric.bg_visibility", "srfnef.image_metric.crc2", "numpy.round", "srfnef.image_metric.standard_error", "json.loads", "srfnef.image_metric.sd", "matplotlib.pyplot.savefig", "srfnef.image_metric.contrast_cold", "matplotlib.use", "srfnef.image_metric.snr1", "srfnef.image_metric.cnr2", "time.time", "srfnef.image_metric.noise1", "srfnef.image_metric.snr2", "srfnef.image_metric.crc1", "matplotlib.pyplot.figure", "srfnef.image_metric.cnr1", "srfnef.image_metric.contrast_hot", "numpy.percentile", "numpy.load", "matplotlib.pyplot.subplot" ]
[((274, 295), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (288, 295), False, 'import matplotlib\n'), ((306, 315), 'getpass.getuser', 'getuser', ([], {}), '()\n', (313, 315), False, 'from getpass import getuser\n'), ((357, 368), 'time.time', 'time.time', ([], {}), '()\n', (366, 368), False, 'import time\n'), ((1567, 1592), 'json.dumps', 'json.dumps', (['dct'], {'indent': '(4)'}), '(dct, indent=4)\n', (1577, 1592), False, 'import json\n'), ((1875, 1905), 'numpy.percentile', 'np.percentile', (['img.data', '(99.99)'], {}), '(img.data, 99.99)\n', (1888, 1905), True, 'import numpy as np\n'), ((1965, 1993), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(30, 10)'}), '(figsize=(30, 10))\n', (1975, 1993), True, 'from matplotlib import pyplot as plt\n'), ((2000, 2016), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(231)'], {}), '(231)\n', (2011, 2016), True, 'from matplotlib import pyplot as plt\n'), ((2021, 2069), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img.data[midind[0], :, :]'], {'vmax': 'vmax'}), '(img.data[midind[0], :, :], vmax=vmax)\n', (2031, 2069), True, 'from matplotlib import pyplot as plt\n'), ((2076, 2092), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(232)'], {}), '(232)\n', (2087, 2092), True, 'from matplotlib import pyplot as plt\n'), ((2164, 2180), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(233)'], {}), '(233)\n', (2175, 2180), True, 'from matplotlib import pyplot as plt\n'), ((2253, 2269), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(234)'], {}), '(234)\n', (2264, 2269), True, 'from matplotlib import pyplot as plt\n'), ((2274, 2317), 'matplotlib.pyplot.plot', 'plt.plot', (['img.data[midind[0], midind[1], :]'], {}), '(img.data[midind[0], midind[1], :])\n', (2282, 2317), True, 'from matplotlib import pyplot as plt\n'), ((2322, 2338), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(235)'], {}), '(235)\n', (2333, 2338), True, 'from matplotlib import pyplot as plt\n'), ((2343, 2386), 'matplotlib.pyplot.plot', 'plt.plot', (['img.data[midind[0], :, midind[2]]'], {}), '(img.data[midind[0], :, midind[2]])\n', (2351, 2386), True, 'from matplotlib import pyplot as plt\n'), ((2391, 2407), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(236)'], {}), '(236)\n', (2402, 2407), True, 'from matplotlib import pyplot as plt\n'), ((2412, 2455), 'matplotlib.pyplot.plot', 'plt.plot', (['img.data[:, midind[1], midind[2]]'], {}), '(img.data[:, midind[1], midind[2]])\n', (2420, 2455), True, 'from matplotlib import pyplot as plt\n'), ((2472, 2483), 'time.time', 'time.time', ([], {}), '()\n', (2481, 2483), False, 'import time\n'), ((2574, 2623), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(path + f'/out_img{datetime_str}.png')"], {}), "(path + f'/out_img{datetime_str}.png')\n", (2585, 2623), True, 'from matplotlib import pyplot as plt\n'), ((4830, 4855), 'json.dumps', 'json.dumps', (['dct'], {'indent': '(4)'}), '(dct, indent=4)\n', (4840, 4855), False, 'import json\n'), ((5141, 5152), 'time.time', 'time.time', ([], {}), '()\n', (5150, 5152), False, 'import time\n'), ((1324, 1339), 'json.loads', 'json.loads', (['dct'], {}), '(dct)\n', (1334, 1339), False, 'import json\n'), ((1375, 1424), 'numpy.round', 'np.round', (["dct['image_config']['size']"], {'decimals': '(3)'}), "(dct['image_config']['size'], decimals=3)\n", (1383, 1424), True, 'import numpy as np\n'), ((3930, 3952), 'srfnef.image_metric.cnr1', 'metric.cnr1', (['mask', 'img'], {}), '(mask, img)\n', (3941, 3952), True, 'from srfnef import image_metric as metric\n'), ((3993, 4015), 'srfnef.image_metric.cnr2', 'metric.cnr2', (['mask', 'img'], {}), '(mask, img)\n', (4004, 4015), True, 'from srfnef import image_metric as metric\n'), ((4066, 4088), 'srfnef.image_metric.crc1', 'metric.crc1', (['mask', 'img'], {}), '(mask, img)\n', (4077, 4088), True, 'from srfnef import image_metric as metric\n'), ((4139, 4161), 'srfnef.image_metric.crc2', 'metric.crc2', (['mask', 'img'], {}), '(mask, img)\n', (4150, 4161), True, 'from srfnef import image_metric as metric\n'), ((4195, 4227), 'srfnef.image_metric.standard_error', 'metric.standard_error', (['mask', 'img'], {}), '(mask, img)\n', (4216, 4227), True, 'from srfnef import image_metric as metric\n'), ((4272, 4293), 'srfnef.image_metric.nsd', 'metric.nsd', (['mask', 'img'], {}), '(mask, img)\n', (4282, 4293), True, 'from srfnef import image_metric as metric\n'), ((4331, 4351), 'srfnef.image_metric.sd', 'metric.sd', (['mask', 'img'], {}), '(mask, img)\n', (4340, 4351), True, 'from srfnef import image_metric as metric\n'), ((4392, 4423), 'srfnef.image_metric.bg_visibility', 'metric.bg_visibility', (['mask', 'img'], {}), '(mask, img)\n', (4412, 4423), True, 'from srfnef import image_metric as metric\n'), ((4449, 4473), 'srfnef.image_metric.noise1', 'metric.noise1', (['mask', 'img'], {}), '(mask, img)\n', (4462, 4473), True, 'from srfnef import image_metric as metric\n'), ((4499, 4523), 'srfnef.image_metric.noise2', 'metric.noise2', (['mask', 'img'], {}), '(mask, img)\n', (4512, 4523), True, 'from srfnef import image_metric as metric\n'), ((4562, 4584), 'srfnef.image_metric.snr1', 'metric.snr1', (['mask', 'img'], {}), '(mask, img)\n', (4573, 4584), True, 'from srfnef import image_metric as metric\n'), ((4623, 4645), 'srfnef.image_metric.snr2', 'metric.snr2', (['mask', 'img'], {}), '(mask, img)\n', (4634, 4645), True, 'from srfnef import image_metric as metric\n'), ((4683, 4708), 'srfnef.image_metric.pos_dev', 'metric.pos_dev', (['mask', 'img'], {}), '(mask, img)\n', (4697, 4708), True, 'from srfnef import image_metric as metric\n'), ((5536, 5549), 'numpy.load', 'np.load', (['mask'], {}), '(mask)\n', (5543, 5549), True, 'import numpy as np\n'), ((1498, 1539), 'numpy.round', 'np.round', (["dct['emap']['size']"], {'decimals': '(3)'}), "(dct['emap']['size'], decimals=3)\n", (1506, 1539), True, 'import numpy as np\n'), ((3742, 3772), 'srfnef.image_metric.contrast_hot', 'metric.contrast_hot', (['mask', 'img'], {}), '(mask, img)\n', (3761, 3772), True, 'from srfnef import image_metric as metric\n'), ((3857, 3888), 'srfnef.image_metric.contrast_cold', 'metric.contrast_cold', (['mask', 'img'], {}), '(mask, img)\n', (3877, 3888), True, 'from srfnef import image_metric as metric\n')]
import math import numpy as np from matplotlib.patches import FancyArrowPatch def home_has_possession(row): if row.possessionTeam == row.homeTeamAbbr: return True return False def calculate_team_sitation(row): ball_string = 'football' if row.team == ball_string: return ball_string if row.team == 'home' and row.homeHasPossession: return 'attacking' elif row.team == 'away' and not row.homeHasPossession: return 'attacking' return 'defending' def convert_speed_to_marker_size(speed: float) -> int: if 0 < speed <= 1.5: return 10 elif 1.5 < speed <= 3: return 15 elif 3 < speed <= 4.5: return 20 elif 4.5 < speed <= 6: return 25 return 30 def arrow(x, y, s, ax, color): """ Function to draw the arrow of the movement :param x: position on x-axis :param y: position on y-axis :param s: speed in yards/s :param ax: plot's configuration :param color: color of the arrows :return: arrows on the specific positions """ # distance between the arrows distance = 5 ind = range(1, len(x), distance) # computing of the arrows for i in ind: ar = FancyArrowPatch( (x[i - 1], y[i - 1]), (x[i], y[i]), arrowstyle='->', mutation_scale=convert_speed_to_marker_size(s[i]), color=color, ) ax.add_patch(ar) def calculate_arrow_xy(x, y, o): o = o % 360 delta = 0.1 if o == 0: y_delta = delta x_delta = 0 return x + x_delta, y + y_delta elif o == 90: y_delta = 0 x_delta = delta return x + x_delta, y + y_delta elif o == 180: y_delta = -delta x_delta = 0 print(f'F {y_delta}') return x + x_delta, y + y_delta elif o == 270: y_delta = 0 x_delta = -delta return x + x_delta, y + y_delta elif 0 < o < 90: y_delta = math.sin(math.radians(90 - o)) * delta x_delta = math.sqrt(delta ** 2 - y_delta ** 2) return x + x_delta, y + y_delta elif 90 < o < 180: y_delta = math.sin(math.radians(o - 90)) * delta x_delta = math.sqrt(delta ** 2 - y_delta ** 2) return x + x_delta, y - y_delta elif 180 < o < 270: x_delta = math.sin(math.radians(o - 180)) * delta y_delta = math.sqrt(delta ** 2 - x_delta ** 2) return x - x_delta, y - y_delta else: y_delta = math.sin(math.radians(o - 270)) * delta x_delta = math.sqrt(delta ** 2 - y_delta ** 2) return x - x_delta, y + y_delta def arrow_o(x, y, o, s, ax, color): """ Function to draw the arrow of the movement :param x: position on x-axis :param y: position on y-axis :param o: orientation in degrees 0-360 :param s: speed in yards/s :param ax: plot's configuration :param color: color of the arrows :return: arrows on the specific positions """ # distance between the arrows distance = 3 ind = range(5, len(x), distance) # computing of the arrows for i in ind: x2, y2 = calculate_arrow_xy(x[i], y[i], o[i]) ar = FancyArrowPatch( (x[i], y[i]), (x2, y2), arrowstyle='-|>', mutation_scale=convert_speed_to_marker_size(s[i]), alpha=0.6, color=color, ) ax.add_patch(ar) def calculate_distance_v4(x1: np.array, y1: np.array, x2: np.array, y2: np.array) -> np.array: return np.round(np.sqrt(np.square(x1 - x2) + np.square(y1 - y2)), 2)
[ "math.radians", "math.sqrt", "numpy.square" ]
[((3550, 3568), 'numpy.square', 'np.square', (['(x1 - x2)'], {}), '(x1 - x2)\n', (3559, 3568), True, 'import numpy as np\n'), ((3571, 3589), 'numpy.square', 'np.square', (['(y1 - y2)'], {}), '(y1 - y2)\n', (3580, 3589), True, 'import numpy as np\n'), ((2039, 2075), 'math.sqrt', 'math.sqrt', (['(delta ** 2 - y_delta ** 2)'], {}), '(delta ** 2 - y_delta ** 2)\n', (2048, 2075), False, 'import math\n'), ((2214, 2250), 'math.sqrt', 'math.sqrt', (['(delta ** 2 - y_delta ** 2)'], {}), '(delta ** 2 - y_delta ** 2)\n', (2223, 2250), False, 'import math\n'), ((1991, 2011), 'math.radians', 'math.radians', (['(90 - o)'], {}), '(90 - o)\n', (2003, 2011), False, 'import math\n'), ((2391, 2427), 'math.sqrt', 'math.sqrt', (['(delta ** 2 - x_delta ** 2)'], {}), '(delta ** 2 - x_delta ** 2)\n', (2400, 2427), False, 'import math\n'), ((2554, 2590), 'math.sqrt', 'math.sqrt', (['(delta ** 2 - y_delta ** 2)'], {}), '(delta ** 2 - y_delta ** 2)\n', (2563, 2590), False, 'import math\n'), ((2166, 2186), 'math.radians', 'math.radians', (['(o - 90)'], {}), '(o - 90)\n', (2178, 2186), False, 'import math\n'), ((2342, 2363), 'math.radians', 'math.radians', (['(o - 180)'], {}), '(o - 180)\n', (2354, 2363), False, 'import math\n'), ((2505, 2526), 'math.radians', 'math.radians', (['(o - 270)'], {}), '(o - 270)\n', (2517, 2526), False, 'import math\n')]
""" Automatic speech recognition scenario """ import logging from typing import Optional from tqdm import tqdm import numpy as np from art.preprocessing.audio import LFilter, LFilterPyTorch from armory.utils.config_loading import ( load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter, ) from armory.utils import metrics from armory.scenarios.base import Scenario from armory.utils.export import SampleExporter logger = logging.getLogger(__name__) def load_audio_channel(delay, attenuation, pytorch=True): """ Return an art LFilter object for a simple delay (multipath) channel If attenuation == 0 or delay == 0, return an identity channel Otherwise, return a channel with length equal to delay + 1 NOTE: lfilter truncates the end of the echo, so output length equals input length """ delay = int(delay) attenuation = float(attenuation) if delay < 0: raise ValueError(f"delay {delay} must be a nonnegative number (of samples)") if delay == 0 or attenuation == 0: logger.warning("Using an identity channel") numerator_coef = np.array([1.0]) denominator_coef = np.array([1.0]) else: if not (-1 <= attenuation <= 1): logger.warning(f"filter attenuation {attenuation} not in [-1, 1]") # Simple FIR filter with a single multipath delay numerator_coef = np.zeros(delay + 1) numerator_coef[0] = 1.0 numerator_coef[delay] = attenuation denominator_coef = np.zeros_like(numerator_coef) denominator_coef[0] = 1.0 if pytorch: try: return LFilterPyTorch( numerator_coef=numerator_coef, denominator_coef=denominator_coef ) except ImportError: logger.exception("PyTorch not available. Resorting to scipy filter") logger.warning("Scipy LFilter does not currently implement proper gradients") return LFilter(numerator_coef=numerator_coef, denominator_coef=denominator_coef) class AutomaticSpeechRecognition(Scenario): def _evaluate( self, config: dict, num_eval_batches: Optional[int], skip_benign: Optional[bool], skip_attack: Optional[bool], skip_misclassified: Optional[bool], ) -> dict: """ Evaluate the config and return a results dict """ if skip_misclassified: raise ValueError("skip_misclassified shouldn't be set for ASR scenario") model_config = config["model"] estimator, fit_preprocessing_fn = load_model(model_config) audio_channel_config = config.get("adhoc", {}).get("audio_channel") if audio_channel_config is not None: logger.info("loading audio channel") for k in "delay", "attenuation": if k not in audio_channel_config: raise ValueError(f"audio_channel must have key {k}") audio_channel = load_audio_channel(**audio_channel_config) if estimator.preprocessing_defences: estimator.preprocessing_defences.insert(0, audio_channel) else: estimator.preprocessing_defences = [audio_channel] estimator._update_preprocessing_operations() defense_config = config.get("defense") or {} defense_type = defense_config.get("type") if defense_type in ["Preprocessor", "Postprocessor"]: logger.info(f"Applying internal {defense_type} defense to estimator") estimator = load_defense_internal(config["defense"], estimator) if model_config["fit"]: logger.info( f"Fitting model {model_config['module']}.{model_config['name']}..." ) fit_kwargs = model_config["fit_kwargs"] logger.info(f"Loading train dataset {config['dataset']['name']}...") batch_size = config["dataset"].pop("batch_size") config["dataset"]["batch_size"] = fit_kwargs.get( "fit_batch_size", batch_size ) train_data = load_dataset( config["dataset"], epochs=fit_kwargs["nb_epochs"], split=config["dataset"].get("train_split", "train_clean100"), preprocessing_fn=fit_preprocessing_fn, shuffle_files=True, ) config["dataset"]["batch_size"] = batch_size if defense_type == "Trainer": logger.info(f"Training with {defense_type} defense...") defense = load_defense_wrapper(config["defense"], estimator) defense.fit_generator(train_data, **fit_kwargs) else: logger.info("Fitting estimator on clean train dataset...") estimator.fit_generator(train_data, **fit_kwargs) if defense_type == "Transform": # NOTE: Transform currently not supported logger.info(f"Transforming estimator with {defense_type} defense...") defense = load_defense_wrapper(config["defense"], estimator) estimator = defense() attack_config = config["attack"] attack_type = attack_config.get("type") targeted = bool(attack_config.get("targeted")) metrics_logger = metrics.MetricsLogger.from_config( config["metric"], skip_benign=skip_benign, skip_attack=skip_attack, targeted=targeted, ) if config["dataset"]["batch_size"] != 1: logger.warning("Evaluation batch_size != 1 may not be supported.") predict_kwargs = config["model"].get("predict_kwargs", {}) eval_split = config["dataset"].get("eval_split", "test_clean") if skip_benign: logger.info("Skipping benign classification...") else: # Evaluate the ART estimator on benign test examples logger.info(f"Loading test dataset {config['dataset']['name']}...") test_data = load_dataset( config["dataset"], epochs=1, split=eval_split, num_batches=num_eval_batches, shuffle_files=False, ) logger.info("Running inference on benign examples...") for x, y in tqdm(test_data, desc="Benign"): # Ensure that input sample isn't overwritten by estimator x.flags.writeable = False with metrics.resource_context( name="Inference", profiler=config["metric"].get("profiler_type"), computational_resource_dict=metrics_logger.computational_resource_dict, ): y_pred = estimator.predict(x, **predict_kwargs) metrics_logger.update_task(y, y_pred) metrics_logger.log_task() if skip_attack: logger.info("Skipping attack generation...") return metrics_logger.results() # Imperceptible attack still WIP if (config.get("adhoc") or {}).get("skip_adversarial"): logger.info("Skipping adversarial classification...") return metrics_logger.results() # Evaluate the ART estimator on adversarial test examples logger.info("Generating or loading / testing adversarial examples...") if attack_type == "preloaded": test_data = load_adversarial_dataset( attack_config, epochs=1, split="adversarial", num_batches=num_eval_batches, shuffle_files=False, ) else: attack = load_attack(attack_config, estimator) if targeted != attack.targeted: logger.warning( f"targeted config {targeted} != attack field {attack.targeted}" ) test_data = load_dataset( config["dataset"], epochs=1, split=eval_split, num_batches=num_eval_batches, shuffle_files=False, ) if targeted: label_targeter = load_label_targeter(attack_config["targeted_labels"]) export_samples = config["scenario"].get("export_samples") if export_samples is not None and export_samples > 0: sample_exporter = SampleExporter( self.scenario_output_dir, test_data.context, export_samples ) else: sample_exporter = None for x, y in tqdm(test_data, desc="Attack"): with metrics.resource_context( name="Attack", profiler=config["metric"].get("profiler_type"), computational_resource_dict=metrics_logger.computational_resource_dict, ): if attack_type == "preloaded": x, x_adv = x if targeted: y, y_target = y elif attack_config.get("use_label"): x_adv = attack.generate(x=x, y=y) elif targeted: y_target = label_targeter.generate(y) x_adv = attack.generate(x=x, y=y_target) else: x_adv = attack.generate(x=x) # Ensure that input sample isn't overwritten by estimator x_adv.flags.writeable = False y_pred_adv = estimator.predict(x_adv, **predict_kwargs) metrics_logger.update_task(y, y_pred_adv, adversarial=True) if targeted: metrics_logger.update_task( y_target, y_pred_adv, adversarial=True, targeted=True, ) metrics_logger.update_perturbation(x, x_adv) if sample_exporter is not None: sample_exporter.export(x, x_adv, y, y_pred_adv) metrics_logger.log_task(adversarial=True) if targeted: metrics_logger.log_task(adversarial=True, targeted=True) return metrics_logger.results()
[ "logging.getLogger", "armory.utils.config_loading.load_label_targeter", "art.preprocessing.audio.LFilterPyTorch", "armory.utils.export.SampleExporter", "armory.utils.metrics.MetricsLogger.from_config", "tqdm.tqdm", "art.preprocessing.audio.LFilter", "armory.utils.config_loading.load_defense_wrapper", "numpy.array", "numpy.zeros", "armory.utils.config_loading.load_attack", "armory.utils.config_loading.load_dataset", "armory.utils.config_loading.load_defense_internal", "armory.utils.config_loading.load_model", "armory.utils.config_loading.load_adversarial_dataset", "numpy.zeros_like" ]
[((530, 557), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (547, 557), False, 'import logging\n'), ((2030, 2103), 'art.preprocessing.audio.LFilter', 'LFilter', ([], {'numerator_coef': 'numerator_coef', 'denominator_coef': 'denominator_coef'}), '(numerator_coef=numerator_coef, denominator_coef=denominator_coef)\n', (2037, 2103), False, 'from art.preprocessing.audio import LFilter, LFilterPyTorch\n'), ((1206, 1221), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1214, 1221), True, 'import numpy as np\n'), ((1249, 1264), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1257, 1264), True, 'import numpy as np\n'), ((1479, 1498), 'numpy.zeros', 'np.zeros', (['(delay + 1)'], {}), '(delay + 1)\n', (1487, 1498), True, 'import numpy as np\n'), ((1603, 1632), 'numpy.zeros_like', 'np.zeros_like', (['numerator_coef'], {}), '(numerator_coef)\n', (1616, 1632), True, 'import numpy as np\n'), ((2654, 2678), 'armory.utils.config_loading.load_model', 'load_model', (['model_config'], {}), '(model_config)\n', (2664, 2678), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((5382, 5506), 'armory.utils.metrics.MetricsLogger.from_config', 'metrics.MetricsLogger.from_config', (["config['metric']"], {'skip_benign': 'skip_benign', 'skip_attack': 'skip_attack', 'targeted': 'targeted'}), "(config['metric'], skip_benign=skip_benign,\n skip_attack=skip_attack, targeted=targeted)\n", (5415, 5506), False, 'from armory.utils import metrics\n'), ((8664, 8694), 'tqdm.tqdm', 'tqdm', (['test_data'], {'desc': '"""Attack"""'}), "(test_data, desc='Attack')\n", (8668, 8694), False, 'from tqdm import tqdm\n'), ((1716, 1801), 'art.preprocessing.audio.LFilterPyTorch', 'LFilterPyTorch', ([], {'numerator_coef': 'numerator_coef', 'denominator_coef': 'denominator_coef'}), '(numerator_coef=numerator_coef, denominator_coef=denominator_coef\n )\n', (1730, 1801), False, 'from art.preprocessing.audio import LFilter, LFilterPyTorch\n'), ((3627, 3678), 'armory.utils.config_loading.load_defense_internal', 'load_defense_internal', (["config['defense']", 'estimator'], {}), "(config['defense'], estimator)\n", (3648, 3678), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((5126, 5176), 'armory.utils.config_loading.load_defense_wrapper', 'load_defense_wrapper', (["config['defense']", 'estimator'], {}), "(config['defense'], estimator)\n", (5146, 5176), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((6098, 6213), 'armory.utils.config_loading.load_dataset', 'load_dataset', (["config['dataset']"], {'epochs': '(1)', 'split': 'eval_split', 'num_batches': 'num_eval_batches', 'shuffle_files': '(False)'}), "(config['dataset'], epochs=1, split=eval_split, num_batches=\n num_eval_batches, shuffle_files=False)\n", (6110, 6213), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((6395, 6425), 'tqdm.tqdm', 'tqdm', (['test_data'], {'desc': '"""Benign"""'}), "(test_data, desc='Benign')\n", (6399, 6425), False, 'from tqdm import tqdm\n'), ((7519, 7644), 'armory.utils.config_loading.load_adversarial_dataset', 'load_adversarial_dataset', (['attack_config'], {'epochs': '(1)', 'split': '"""adversarial"""', 'num_batches': 'num_eval_batches', 'shuffle_files': '(False)'}), "(attack_config, epochs=1, split='adversarial',\n num_batches=num_eval_batches, shuffle_files=False)\n", (7543, 7644), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((7771, 7808), 'armory.utils.config_loading.load_attack', 'load_attack', (['attack_config', 'estimator'], {}), '(attack_config, estimator)\n', (7782, 7808), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((8011, 8126), 'armory.utils.config_loading.load_dataset', 'load_dataset', (["config['dataset']"], {'epochs': '(1)', 'split': 'eval_split', 'num_batches': 'num_eval_batches', 'shuffle_files': '(False)'}), "(config['dataset'], epochs=1, split=eval_split, num_batches=\n num_eval_batches, shuffle_files=False)\n", (8023, 8126), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((8488, 8563), 'armory.utils.export.SampleExporter', 'SampleExporter', (['self.scenario_output_dir', 'test_data.context', 'export_samples'], {}), '(self.scenario_output_dir, test_data.context, export_samples)\n', (8502, 8563), False, 'from armory.utils.export import SampleExporter\n'), ((4653, 4703), 'armory.utils.config_loading.load_defense_wrapper', 'load_defense_wrapper', (["config['defense']", 'estimator'], {}), "(config['defense'], estimator)\n", (4673, 4703), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n'), ((8275, 8328), 'armory.utils.config_loading.load_label_targeter', 'load_label_targeter', (["attack_config['targeted_labels']"], {}), "(attack_config['targeted_labels'])\n", (8294, 8328), False, 'from armory.utils.config_loading import load_dataset, load_model, load_attack, load_adversarial_dataset, load_defense_wrapper, load_defense_internal, load_label_targeter\n')]
import tensorflow as tf from os import path import numpy as np from scipy import misc from styx_msgs.msg import TrafficLight import cv2 import rospy import tensorflow as tf class CarlaModel(object): def __init__(self, model_checkpoint): self.sess = None self.checkpoint = model_checkpoint self.prob_thr = 0.90 self.TRAFFIC_LIGHT_CLASS = 10 self.image_no = 10000 tf.reset_default_graph() def predict(self, img): if self.sess == None: gd = tf.GraphDef() gd.ParseFromString(tf.gfile.GFile(self.checkpoint, "rb").read()) tf.import_graph_def(gd, name="object_detection_api") self.sess = tf.Session() g = tf.get_default_graph() self.image = g.get_tensor_by_name("object_detection_api/image_tensor:0") self.boxes = g.get_tensor_by_name("object_detection_api/detection_boxes:0") self.scores = g.get_tensor_by_name("object_detection_api/detection_scores:0") self.classes = g.get_tensor_by_name("object_detection_api/detection_classes:0") img_h, img_w = img.shape[:2] self.image_no = self.image_no+1 cv2.imwrite("full_"+str(self.image_no)+".png", img) for h0 in [img_h//3, (img_h//3)-150]: for w0 in [0, img_w//3, img_w*2//3]: grid = img[h0:h0+img_h//3+50, w0:w0+img_w//3, :] # grid pred_boxes, pred_scores, pred_classes = self.sess.run([self.boxes, self.scores, self.classes], feed_dict={self.image: np.expand_dims(grid, axis=0)}) pred_boxes = pred_boxes.squeeze() pred_scores = pred_scores.squeeze() # descreding order pred_classes = pred_classes.squeeze() traffic_light = None h, w = grid.shape[:2] cv2.imwrite("grid_"+str(self.image_no)+"_"+str(h0)+"_"+str(w0)+".png",grid) rospy.loginfo("w,h is %s,%s",h0,w0) for i in range(pred_boxes.shape[0]): box = pred_boxes[i] score = pred_scores[i] if score < self.prob_thr: continue if pred_classes[i] != self.TRAFFIC_LIGHT_CLASS: continue x0, y0 = box[1] * w, box[0] * h x1, y1 = box[3] * w, box[2] * h x0, y0, x1, y1 = map(int, [x0, y0, x1, y1]) x_diff = x1 - x0 y_diff = y1 - y0 xy_ratio = x_diff/float(y_diff) rospy.loginfo("image_no is %s", self.image_no) rospy.loginfo("x,y ratio is %s",xy_ratio) rospy.loginfo("score is %s",score) if xy_ratio > 0.48: continue area = np.abs((x1-x0) * (y1-y0)) / float(w*h) rospy.loginfo("area is %s",area) if area <= 0.001: continue traffic_light = grid[y0:y1, x0:x1] rospy.loginfo("traffic light given") # select first -most confidence if traffic_light is not None: break if traffic_light is not None: break if traffic_light is None: pass else: rospy.loginfo("w,h is %s,%s",h0,w0) rospy.loginfo("x,y ratio is %s",xy_ratio) rospy.loginfo("score is %s",score) cv2.imwrite("light_"+str(self.image_no)+".png",traffic_light) #cv2.imwrite("full_"+str(self.image_no)+".png", img) #cv2.imwrite("grid_"+str(self.image_no)+".png",grid) #self.image_no = self.image_no+1 brightness = cv2.cvtColor(traffic_light, cv2.COLOR_RGB2HSV)[:,:,-1] hs, ws = np.where(brightness >= (brightness.max()-30)) hs_mean = hs.mean() tl_h = traffic_light.shape[0] if hs_mean / tl_h < 0.4: rospy.loginfo("image"+str(self.image_no-1)+" is RED") return TrafficLight.RED elif hs_mean / tl_h >= 0.55: rospy.loginfo("image"+str(self.image_no-1)+" is GREEN") return TrafficLight.GREEN else: rospy.loginfo("image"+str(self.image_no-1)+" is YELLOW") return TrafficLight.YELLOW return TrafficLight.UNKNOWN
[ "numpy.abs", "tensorflow.reset_default_graph", "tensorflow.Session", "tensorflow.GraphDef", "tensorflow.import_graph_def", "cv2.cvtColor", "tensorflow.gfile.GFile", "numpy.expand_dims", "rospy.loginfo", "tensorflow.get_default_graph" ]
[((417, 441), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (439, 441), True, 'import tensorflow as tf\n'), ((522, 535), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (533, 535), True, 'import tensorflow as tf\n'), ((625, 677), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['gd'], {'name': '"""object_detection_api"""'}), "(gd, name='object_detection_api')\n", (644, 677), True, 'import tensorflow as tf\n'), ((702, 714), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (712, 714), True, 'import tensorflow as tf\n'), ((740, 762), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (760, 762), True, 'import tensorflow as tf\n'), ((3384, 3421), 'rospy.loginfo', 'rospy.loginfo', (['"""w,h is %s,%s"""', 'h0', 'w0'], {}), "('w,h is %s,%s', h0, w0)\n", (3397, 3421), False, 'import rospy\n'), ((3432, 3474), 'rospy.loginfo', 'rospy.loginfo', (['"""x,y ratio is %s"""', 'xy_ratio'], {}), "('x,y ratio is %s', xy_ratio)\n", (3445, 3474), False, 'import rospy\n'), ((3486, 3521), 'rospy.loginfo', 'rospy.loginfo', (['"""score is %s"""', 'score'], {}), "('score is %s', score)\n", (3499, 3521), False, 'import rospy\n'), ((2027, 2064), 'rospy.loginfo', 'rospy.loginfo', (['"""w,h is %s,%s"""', 'h0', 'w0'], {}), "('w,h is %s,%s', h0, w0)\n", (2040, 2064), False, 'import rospy\n'), ((3795, 3841), 'cv2.cvtColor', 'cv2.cvtColor', (['traffic_light', 'cv2.COLOR_RGB2HSV'], {}), '(traffic_light, cv2.COLOR_RGB2HSV)\n', (3807, 3841), False, 'import cv2\n'), ((2646, 2692), 'rospy.loginfo', 'rospy.loginfo', (['"""image_no is %s"""', 'self.image_no'], {}), "('image_no is %s', self.image_no)\n", (2659, 2692), False, 'import rospy\n'), ((2713, 2755), 'rospy.loginfo', 'rospy.loginfo', (['"""x,y ratio is %s"""', 'xy_ratio'], {}), "('x,y ratio is %s', xy_ratio)\n", (2726, 2755), False, 'import rospy\n'), ((2775, 2810), 'rospy.loginfo', 'rospy.loginfo', (['"""score is %s"""', 'score'], {}), "('score is %s', score)\n", (2788, 2810), False, 'import rospy\n'), ((2957, 2990), 'rospy.loginfo', 'rospy.loginfo', (['"""area is %s"""', 'area'], {}), "('area is %s', area)\n", (2970, 2990), False, 'import rospy\n'), ((3112, 3148), 'rospy.loginfo', 'rospy.loginfo', (['"""traffic light given"""'], {}), "('traffic light given')\n", (3125, 3148), False, 'import rospy\n'), ((567, 604), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['self.checkpoint', '"""rb"""'], {}), "(self.checkpoint, 'rb')\n", (581, 604), True, 'import tensorflow as tf\n'), ((2898, 2927), 'numpy.abs', 'np.abs', (['((x1 - x0) * (y1 - y0))'], {}), '((x1 - x0) * (y1 - y0))\n', (2904, 2927), True, 'import numpy as np\n'), ((1636, 1664), 'numpy.expand_dims', 'np.expand_dims', (['grid'], {'axis': '(0)'}), '(grid, axis=0)\n', (1650, 1664), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2021 The HERA Collaboration # Licensed under the MIT License """Utilities for dealing with galaxy/QSO catalogs.""" import numpy as np import matplotlib.pyplot as plt from astropy.coordinates import SkyCoord from .util import deg_per_hr _xshooter_ref = "https://ui.adsabs.harvard.edu/abs/2020ApJ...905...51S/abstract" # VIKING _viking_ref1 = "https://ui.adsabs.harvard.edu/abs/2013ApJ...779...24V/abstract" _viking_ref2 = "https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.2259V/abstract" _viking = { "J2348-3054": { "ra": "23h48m33.34s", "dec": "-30d54m10.0s", "z": 6.886, "ref": _viking_ref1, }, "J0109-3047": { "ra": "01h09m53.13s", "dec": "-30d47m26.3s", "z": 6.745, "ref": _viking_ref1, }, "J0305-3150": { "ra": "03h05m16.92s", "dec": "-31d50m56.0s", "z": 6.604, "ref": _viking_ref1, }, "J0328-3253": { "ra": "03h28m35.511s", "dec": "-32d53m22.92s", "z": 5.860, "ref": _viking_ref2, }, "J0046-2837": { "ra": "00h46m23.645s", "dec": "-28d37m47.34s", "z": 5.9926, "ref": _xshooter_ref, }, "J2211-3206": { "ra": "22h11m12.391s", "dec": "-32d06m12.95s", "z": 6.3394, "ref": _xshooter_ref, }, "J2318-3029": { "ra": "23h18m33.103s", "dec": "-30d29m33.36s", "z": 6.1456, "ref": _xshooter_ref, }, "J2348-3054_xshooter": { "ra": "23h48m33.336s", "dec": "-30d54m10.24s", "z": 6.9007, "ref": _xshooter_ref, }, } # Pan-STARRS1 _ps1_ref1 = "https://ui.adsabs.harvard.edu/abs/2014AJ....148...14B/abstract" _ps1_ref2 = "https://ui.adsabs.harvard.edu/abs/2017ApJ...849...91M/abstract" _ps1 = { "PSO 231-20": {"ra": "231.6576", "dec": "-20.8335", "z": 6.5864, "ref": _ps1_ref2}, "PSO J037.9706-28.8389": { "ra": "02h31m52.96s", "dec": "-28d50m20.1s", "z": 5.99, "ref": _ps1_ref1, }, "PSO J065.4085-26.9543": { "ra": "04h21m38.049s", "dec": "-26d57m15.61s", "z": 6.1871, "ref": _xshooter_ref, }, } # Banados+ 2016 https://ui.adsabs.harvard.edu/abs/2016ApJS..227...11B/abstract # has table of all z > 5.6 quasars known at that point (March 2016). # https://ned.ipac.caltech.edu/inrefcode?search_type=Search&refcode=2016ApJS..227...11B # VLT ATLAS # https://ui.adsabs.harvard.edu/abs/2015MNRAS.451L..16C/abstract _atlas_ref1 = "https://ui.adsabs.harvard.edu/abs/2015MNRAS.451L..16C/abstract" _atlas_ref2 = "https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.1649C/abstract" _atlas = { "J025.6821-33.4627": { "ra": "025.6821", "dec": "-33.4627", "z": 6.31, "ref": _atlas_ref1, }, "J332.8017-32.1036": { "ra": "332.8017", "dec": "-32.1036", "z": 6.32, "ref": _atlas_ref2, }, } # VHS-DES _ps1_vhs_des = "https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.1874R/abstract" _des = { "VDES J0020-3653": { "ra": "00h20m31.47s", "dec": "-36d53m41.8s", "z": 6.5864, "ref": _ps1_vhs_des, }, } _yang = "https://ui.adsabs.harvard.edu/abs/2020ApJ...904...26Y/abstract" _decarli = "https://ui.adsabs.harvard.edu/abs/2018ApJ...854...97D/abstract" _other = { "J0142−3327": {"ra": "0142", "dec": "-3327", "z": 6.3379, "ref": _yang}, "J0148−2826": {"ra": "0148", "dec": "-2826", "z": 6.54, "ref": _yang}, "J2002−3013": {"ra": "2002", "dec": "-3013", "z": 6.67, "ref": _yang}, "J2318–3113": { "ra": "23h18m18.351s", "dec": "-31d13m46.35s", "z": 6.444, "ref": _decarli, }, } def _to_decimal(s): if "." in s: out = float(s) elif s[0] == "-": out = float(s[0:3] + "." + s[3:]) else: out = float(s[0:2] + "." + s[2:]) return out _qso_catalogs = {"viking": _viking, "panstarrs": _ps1, "atlas": _atlas, "other": _other} class Catalog(object): """ Define a class for handling QSO catalogs. Parameters ---------- data : str The type of data to handle. Right now "qso" is the only allowed value. kwargs : dict Keyword arguments to save directly on the object. """ def __init__(self, data, **kwargs): self.data = data self.kwargs = kwargs def plot_catalog( self, ax=None, zmin=None, num=1, projection="rectilinear", **fig_kwargs ): """ Plot a catalog using matplotlib. Parameters ---------- ax : matplotlib axis object, optional The axes to use for plotting. If None, then a new figure and axis will be created. zmin : float, optional The minimum redshift to use for plotting objects. num : int, optional The figure number to create if `ax` is not provided. projection : str, optional The projection to use for plotting. kwargs : dict, optional Additional kwargs passed to matplotlib.pyplot.figure Returns ------- ax : matplotlib axis object If `ax` is provided as a parameter, the same axis object. Otherwise, a new one. Raises ------ NotImplementedError Raised if any projection besides "rectilinear" is passed. """ if projection != "rectilinear": raise NotImplementedError("Only know rectilinear projection right now!") # Setup plot window has_ax = True if ax is None: fig = plt.figure(num=num, **fig_kwargs) ax = fig.gca() has_ax = False # Get all objects in catalog names, coords = self.get_all_pos(zmin=zmin) # Loop over them all and plot. Could do a lot more efficiently if # we ever end up with big catalogs. for i, coord in enumerate(coords): ra, dec, z = coord ax.scatter(ra, dec) if not has_ax: ax.set_xlabel(r"Right Ascension [hours]", fontsize=24, labelpad=5) ax.set_ylabel(r"Declination [deg]", fontsize=24, labelpad=5) return ax def get_all_pos(self, zmin=None): """ Return a list of (RA, DEC, redshift) for all objects. Parameters ---------- zmin : float The minimum redshift to include for objects in the catalog. Returns ------- names : list of str, shape (n_objects) The names of objects in the catalog. data : ndarray, shape (n_objects, 3) The RA [hour angle], dec [degree], and redshift of the objects. Raises ------ ValueError This is raised if `self.data` is not "qso", as this is the only type of data we know how to handle right now. """ if not self.data.lower().startswith("qso"): raise ValueError("Only know how to do QSOs right now.") data = [] names = [] for cat in _qso_catalogs.keys(): for element in _qso_catalogs[cat]: obj = _qso_catalogs[cat][element] if zmin is not None: if obj["z"] < zmin: continue if "h" in obj["ra"]: kw = {"frame": "icrs"} ra = obj["ra"] dec = obj["dec"] else: kw = {"unit": "degree", "frame": "icrs"} if len(obj["ra"]) == 4: ra = _to_decimal(obj["ra"]) * deg_per_hr else: ra = _to_decimal(obj["ra"]) dec = _to_decimal(obj["dec"]) coord = SkyCoord(ra, dec, **kw) names.append(element) data.append((coord.ra.hour, coord.dec.degree, obj["z"])) return names, np.array(data)
[ "numpy.array", "matplotlib.pyplot.figure", "astropy.coordinates.SkyCoord" ]
[((5676, 5709), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': 'num'}), '(num=num, **fig_kwargs)\n', (5686, 5709), True, 'import matplotlib.pyplot as plt\n'), ((8031, 8045), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (8039, 8045), True, 'import numpy as np\n'), ((7872, 7895), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['ra', 'dec'], {}), '(ra, dec, **kw)\n', (7880, 7895), False, 'from astropy.coordinates import SkyCoord\n')]
"""***************************************************************************************** MIT License Copyright (c) 2022 <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *****************************************************************************************""" import Utils from helper_functions import Fast_Caratheodory import numpy as np from scipy.optimize import linprog from numpy import linalg as la from scipy.linalg import null_space from numpy.linalg import matrix_rank from sklearn.decomposition import TruncatedSVD import time ######################################################## Caratheodory ################################################## def computeInitialWeightVector(P, p): """ This function given a point, solves the linear program dot(self.P.P^T, x) = p where x \in [0, \infty)^n, and n denotes the number of rows of self.P.P. :param p: A numpy array representing a point. :return: A numpy array of n non-negative weights with respect to each row of self.P.P """ N = P.shape[0] # number of rows of P # # Solve the linear program using scipy # ts = time.time() Q = P.T Q = np.vstack((Q, np.ones((1, N)))) b = np.hstack((p, 1)) res = linprog(np.ones((N,)), A_eq=Q, b_eq=b, options={'maxiter': int(1e7), 'tol': 1e-10}) w = res.x assert (np.linalg.norm(np.dot(P.T, w) - p) <= 1e-9, np.linalg.norm(np.dot(P.T, w) - p)) return w def attainCaratheodorySet(P, p): """ The function at hand returns a set of at most d+1 indices of rows of P where d denotes the dimension of rows of P. It calls the algorithms implemented by <NAME>, <NAME> and <NAME> at "Fast and Accurate Least-Mean-Squares Solvers". :param p: A numpy array denoting a point. :return: The indices of points from self.P.P which p is a convex combination of. """ d = P.shape[1] u = computeInitialWeightVector(P, p) # compute initial weight vector # print('Sum of weights {}'.format(np.sum(u))) if np.count_nonzero(u) > (d + 1): # if the number of positive weights exceeds d+1 u = Fast_Caratheodory(P, u.flatten(), False) assert(np.linalg.norm(p - np.dot(P.T, u)) <= 1e-9, np.linalg.norm(p - np.dot(P.T, u))) return np.where(u != 0)[0] ############################################################ AMVEE ##################################################### def isPD(B): """Returns true when input is positive-definite, via Cholesky""" try: _ = la.cholesky(B) return True except la.LinAlgError: return False def nearestPD(A): """Find the nearest positive-definite matrix to input A Python/Numpy port of <NAME>'s `nearestSPD` MATLAB code [1], which credits [2]. [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd [2] <NAME>, "Computing a nearest symmetric positive semidefinite matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6 """ B = (A + A.T) / 2 _, s, V = la.svd(B) H = np.dot(V.T, np.dot(np.diag(s), V)) A2 = (B + H) / 2 A3 = (A2 + A2.T) / 2 if isPD(A3): return A3 spacing = np.spacing(la.norm(A)) # The above is different from [1]. It appears that MATLAB's `chol` Cholesky # decomposition will accept matrixes with exactly 0-eigenvalue, whereas # Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab # for `np.spacing`), we use the above definition. CAVEAT: our `spacing` # will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on # the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas # `spacing` will, for Gaussian random matrixes of small dimension, be on # othe order of 1e-16. In practice, both ways converge, as the unit test # below suggests. I = np.eye(A.shape[0]) k = 1 while not isPD(A3): mineig = np.min(np.real(la.eigvals(A3))) A3 += I * (-mineig * k ** 2 + spacing) k += 1 return A3 def computeAxesPoints(E, C): """ This function finds the vertices of the self.E (the MVEE of P or the inscribed version of it) :return: A numpy matrix containing the vertices of the ellipsoid. """ if not isPD(E): E = nearestPD(E) # L = np.linalg.cholesky(self.E) # compute the cholesky decomposition of self.E # U, D, V = np.linalg.svd(L, full_matrices=True) # attain the length of each axis of the ellipsoid and the # # rotation of the ellipsoid _, D, V = np.linalg.svd(E, full_matrices=True) ellips_points = np.multiply(1.0 / np.sqrt(D[:, np.newaxis]), V.T) # attain the vertices of the ellipsoid assuming it was # centered at the origin return np.vstack((ellips_points + C.flatten(), - ellips_points + C.flatten())) def volumeApproximation(P): """ This is our implementation of Algorithm 4.1 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute a set of at most 2*self.P.d points which will be used for computing an initial ellipsoid. :return: A numpy array of 2 * self.P.d indices of points from self.P.P """ basis = None basis_points = [] n, d = P if n <= 2 * d: # if number of points is less than 2*self.P.d, then return their indices in self.P.P return [i for i in range(n)] v = np.random.randn(d) # start with a random vector while np.linalg.matrix_rank(basis) < d: # while rank of basis is less than self.P.d if basis is not None: # if we already have computed basis points if basis.shape[1] == d: # if this line is reached then it means that there is numerical instability print('Numerical Issues!') _, _, V = np.linalg.svd(basis[:, :-1], full_matrices=True) return list(range(n)) orth_basis = null_space(basis.T) # get the orthant of basis v = orth_basis[:, 0] if orth_basis.ndim > 1 else orth_basis # set v to be the first column of basis Q = np.dot(P, v.T) # get the dot product of each row of self.P.P and v if len(basis_points) > 0: # if there are already chosen points, then their dot product is depricated Q[basis_points] = np.nan p_alpha = np.nanargmax(np.dot(P, v.T)) # get the index of row with largest non nan dot product value p_beta = np.nanargmin(np.dot(P, v.T)) # get the index of row with smallest non nan dot product value v = np.expand_dims(P[p_beta, :] - P[p_alpha, :], 1) # let v be the substraction between the # row of the largest dot product and the # point with the smallest dot product if basis is None: # if no basis was computed basis = v / np.linalg.norm(v) else: # add v to the basis basis = np.hstack((basis, v / np.linalg.norm(v, 2))) basis_points.append(p_alpha) # add the index of the point with largest dot product basis_points.append(p_beta) # add the index of the point with smallest dot product return basis_points def computemahalanobisDistance(Q, ellip): """ This function is used for computing the distance between the rows of Q and ellip using the Mahalanobis loss function. :param ellip: A numpy array representing a p.s.d matrix (an ellipsoid) :return: The Mahalanobis distance between each row in self.P.P to ellip. """ s = np.einsum("ij,ij->i", np.dot(Q, ellip), Q) # compute the distance efficiently return s def computeEllipsoid(P, weights): """ This function computes the ellipsoid which is the MVEE of self.P. :param weights: a numpy of array of weights with respest to the rows of self.P.P. :return: - The MVEE of self.P.P in a p.s.d. matrix form. - The center of the MVEE of self.P.P. """ if weights.ndim == 1: # make sure that the weights are not flattened weights = np.expand_dims(weights, 1) c = np.dot(P.T, weights) # attain the center of the MVEE d = P.shape[1] Q = P[np.where(weights.flatten() > 0.0)[0], :] # get all the points with positive weights weights2 = weights[np.where(weights.flatten() > 0.0)[0], :] # get all the positive weights # compute a p.s.d matrix which will represent the ellipsoid ellipsoid = 1.0 / d * np.linalg.inv(np.dot(np.multiply(Q, weights2).T, Q) - np.multiply.outer(c.T.ravel(), c.T.ravel())) return ellipsoid, c def enlargeByTol(ellipsoid): """ The function at hand enlarges the MVEE (the ellipsoid) by a fact or (1 + Utils.TOL). :param ellipsoid: A numpy matrix represent a p.s.d matrix :return: An enlarged version of ellipsoid. """ return ellipsoid / (1 + Utils.TOL) ** 2.0 def getContainedEllipsoid(ellipsoid): """ This function returns a dialtion of E such that it will be contained in the convex hull of self.P.P. :param ellipsoid: A p.s.d matrix which represents the MVEE of self.P.P :return: A dilated version of the MVEE of self.P.P such that it will be contained in the convex hull of self.P.P. """ return ellipsoid * ellipsoid.shape[1] ** 2 * (1 + Utils.TOL) ** 2 # get inscribed ellipsoid def computeEllipInHigherDimension(Q, weights): """ The function at hand computes the ellipsoid in a self.P.d + 1 dimensional space (with respect to the lifted points) which is centered at the origin. :param weights: A numpy array of weights with respect to each lifter point in self.Q :return: """ idxs = np.where(weights > 0.0)[0] # get all indices of points with positive weights weighted_Q = np.multiply(Q[idxs, :], np.expand_dims(np.sqrt(weights[idxs]), 1)) # multiply the postive # weights with their # corresponding points delta = np.sum(np.einsum('bi,bo->bio', weighted_Q, weighted_Q), axis=0) # compute an ellipsoid which is # centered at the origin return delta def optimalityCondition(d, Q, ellip, weights): """ This function checks if the MVEE of P is found in the context of <NAME> and <NAME> algorithm. :param ellip: A numpy array representing a p.s.d matrix. :param weights: A numpy array of weights with respect to the rows of P. :return: A boolean value whether the desired MVEE has been achieved or not. """ pos_weights_idxs = np.where(weights > 0)[0] # get the indices of all the points with positive weights current_dists = computemahalanobisDistance(Q, ellip) # compute the Mahalanobis distance between ellip and # the rows of P # check if all the distance are at max (1 + self.tol) * (self.P.d +1) and the distances of the points # with positive weights are at least (1.0 - self.tol) * (self.P.d + 1) return np.all(current_dists <= (1.0 + Utils.TOL) * (d + 1)) and \ np.all(current_dists[pos_weights_idxs] >= (1.0 - Utils.TOL) * (d + 1)), current_dists def yilidrimAlgorithm(P): """ This is our implementation of Algorithm 4.2 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute an MVEE of self.P.P faster than Khachiyan's algorithm. :return: The MVEE ellipsoid of self.P.P. """ n, d = P.shape Q = np.hstack((P, np.ones((n, 1)))) chosen_indices = volumeApproximation(P) # compute an initial set of points which will give the initial # ellipsoid if len(chosen_indices) == n: # if all the points were chosen then simply run Khachiyan's algorithm. # Might occur due to numerical instabilities. return khachiyanAlgorithm(P) weights = np.zeros((n, 1)).flatten() # initial the weights to zeros weights[chosen_indices] = 1.0 / len(chosen_indices) # all the chosen indices of points by the # volume Approximation algorithm are given uniform weights ellip = np.linalg.inv(computeEllipInHigherDimension(Q, weights)) # compute the initial ellipsoid while True: # run till conditions are fulfilled stop_flag, distances = optimalityCondition(d, Q, ellip, weights) # check if current ellipsoid is desired # MVEE, and get the distance between rows # of self.P.P to current ellipsoid pos_weights_idx = np.where(weights > 0)[0] # get indices of points with positive weights if stop_flag: # if desired MVEE is achieved break j_plus = np.argmax(distances) # index of maximal distance from the ellipsoid k_plus = distances[j_plus] # maximal distance from the ellipsoid j_minus = pos_weights_idx[np.argmin(distances[pos_weights_idx])] # get the the index of the points with # positive weights which also have the # smallest distance from the current # ellipsoid k_minus = distances[j_minus] # the smallest distance of the point among the points with positive weights eps_plus = k_plus / (d + 1.0) - 1.0 eps_minus = 1.0 - k_minus / (d + 1.0) if eps_plus > eps_minus: # new point is found and it is important beta_current = (k_plus - d - 1.0) / ((d + 1) * (k_plus - 1.0)) weights = (1.0 - beta_current) * weights weights[j_plus] = weights[j_plus] + beta_current else: # a point which was already found before, yet has large impact on the ellipsoid beta_current = min((d + 1.0 - k_minus) / ((d + 1.0) * (k_minus - 1.0)), weights[j_minus]/(1 - weights[j_minus])) weights = weights * (1 + beta_current) weights[j_minus] = weights[j_minus] - beta_current weights[weights < 0.0] = 0.0 # all negative weights are set to zero ellip = np.linalg.inv(computeEllipInHigherDimension(weights)) # recompute the ellipsoid return computeEllipsoid(P, weights) def khachiyanAlgorithm(P): """ This is our implementation of Algorithm 3.1 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute an MVEE of self.P.P using Khachiyan's algorithm. :return: The MVEE ellipsoid of self.P.P. """ err = 1 count = 1 # used for debugging purposes n, d = P.shape u = np.ones((n, 1)) / n # all points have uniform weights Q = np.hstack((P, np.ones((n, 1)))) while err > Utils.TOL: # while the approximation of the ellipsoid is higher than desired X = np.dot(np.multiply(Q, u).T, Q) # compute ellipsoid M = computemahalanobisDistance(Q, np.linalg.inv(X)) # get Mahalanobis distances between rows of self.P.P # and current ellipsoid j = np.argmax(M) # index of point with maximal distance from current ellipsoid max_val = M[j] # the maximal Mahalanobis distance from the rows of self.P.P and the current ellipsoid step_size = (max_val - d - 1) / ((d + 1) * (max_val - 1)) new_u = (1 - step_size) * u # update weights new_u[j, 0] += step_size count += 1 err = np.linalg.norm(new_u - u) # set err to be the change between updated weighted and current weights u = new_u return computeEllipsoid(P, u) def computeMVEE(P, alg_type=1): """ This function is responsible for running the desired algorithm chosen by the user (or by default value) for computing the MVEE of P. :param alg_type: An algorithm type indicator where 1 stands for yilidrim and 0 stands kachaiyan. :return: - The inscribed version of MVEE of P. - The center of the MVEE of P. - The vertices of the inscribed ellipsoid. """ global ax if alg_type == 1: # yilidrim is chosen or by default E, C = yilidrimAlgorithm(P) else: # Kachaiyan, slower yet more numerically stable E, C = khachiyanAlgorithm(P) # self.plotEllipsoid(self.E, self.C, self.computeAxesPoints()) contained_ellipsoid = getContainedEllipsoid(E) # get inscribed ellipsoid return contained_ellipsoid, C, computeAxesPoints(contained_ellipsoid, C) ################################################## ApproximateCenterProblems ########################################### def computeLINFCoresetKOne(P): """ The function at hand computes an L∞ coreset for the matrix vector multiplication or the dot product, with respect to the weighted set of points P. :return: - C: the coreset points, which are a subset of the rows of P - idx_in_P: the indices with respect to the coreset points C in P. - an upper bound on the approximation which our L∞ coreset is associated with. """ global max_time r = matrix_rank(P[:, :-1]) # get the rank of P or the dimension of the span of P d = P.shape[1] if r < d - 1: # if the span of P is a subspace in REAL^d svd = TruncatedSVD(n_components=r) # an instance of TruncatedSVD Q = svd.fit_transform(P[:, :-1]) # reduce the dimensionality of P by taking their dot product by the # subspace which spans P Q = np.hstack((Q, np.expand_dims(P[:, -1], 1))) # concatenate the indices to their respected "projected" # points else: # if the span of P is REAL^d where d is the dimension of P Q = P start_time = time.time() # start counting the time here if r > 1: # if the dimension of the "projected points" is not on a line if Q.shape[1] - 1 >= Q.shape[0]: return Q, np.arange(Q.shape[0]).astype(np.int), Utils.UPPER_BOUND(r) else: _, _, S = computeMVEE(Q[:, :-1], alg_type=0) # compute the MVEE of Q else: # otherwise # get the index of the maximal and minimal point on the line, i.e., both its ends idx_in_P = np.unique([np.argmin(Q[:, :-1]).astype(np.int), np.argmax(Q[:, :-1]).astype(np.int)]).tolist() return Q[idx_in_P], idx_in_P, Utils.UPPER_BOUND(r) C = [] # idx_in_P_list = [] # C_list = [] # ts = time.time() # for q in S: # for each boundary points along the axis of the MVEE of Q # K = attainCaratheodorySet(P[:, :-1], q) # get d+1 indices of points from Q where q is their convex # # combination # idx_in_P_list += [int(idx) for idx in K] # get the indices of the coreset point in Q # C_list += [int(Q[idx, -1]) for idx in K] # the actual coreset points # # print('Time for list {}'.format(time.time() - ts)) idx_in_P = np.empty((2*(Utils.J + 1) ** 2, )).astype(np.int) C = np.empty((2*(Utils.J + 1) ** 2, )).astype(np.int) idx = 0 # ts = time.time() for q in S: # for each boundary points along the axis of the MVEE of Q K = attainCaratheodorySet(Q[:, :-1], q) # get d+1 indices of points from Q where q is their convex # combination idx_in_P[idx:idx+K.shape[0]] = K.astype(np.int) # get the indices of the coreset point in Q C[idx:idx+K.shape[0]] = Q[idx_in_P[idx:idx+K.shape[0]], -1].astype(np.int) idx += K.shape[0] # print('Time for numpy {}'.format(time.time() - ts)) return np.unique(C[:idx]), np.unique(idx_in_P[:idx]), Utils.UPPER_BOUND(r) ####################################################### Bicriteria ##################################################### def attainClosestPointsToSubspaces(P, W, flats, indices): """ This function returns the closest n/2 points among all of the n points to a list of flats. :param flats: A list of flats where each flat is represented by an orthogonal matrix and a translation vector. :param indices: A list of indices of points in self.P.P :return: The function returns the closest n/2 points to flats. """ dists = np.empty((P[indices, :].shape[0], )) N = indices.shape[0] if not Utils.ACCELERATE_BICRETERIA: for i in range(N): dists[i] = np.min([ Utils.computeDistanceToSubspace(P[np.array([indices[i]]), :], flats[j][0], flats[j][1]) for j in range(len(flats))]) else: dists = Utils.computeDistanceToSubspace(P[indices, :], flats[0], flats[1]) idxs = np.argpartition(dists, N // 2)[:N//2] return idxs.tolist() return np.array(indices)[np.argsort(dists).astype(np.int)[:int(N / 2)]].tolist() def sortDistancesToSubspace(P, X, v, points_indices): """ The function at hand sorts the distances in an ascending order between the points and the flat denoted by (X,v). :param X: An orthogonal matrix which it's span is a subspace. :param v: An numpy array denoting a translation vector. :param points_indices: a numpy array of indices for computing the distance to a subset of the points. :return: sorted distances between the subset points addressed by points_indices and the flat (X,v). """ dists = Utils.computeDistanceToSubspace(P[points_indices, :], X, v) # compute the distance between the subset # of points towards # the flat which is represented by (X,v) return np.array(points_indices)[np.argsort(dists).astype(np.int)].tolist() # return sorted distances def computeSubOptimalFlat(P, weights): """ This function computes the sub optimal flat with respect to l2^2 loss function, which relied on computing the SVD factorization of the set of the given points, namely P. :param P: A numpy matrix which denotes the set of points. :param weights: A numpy array of weightes with respect to each row (point) in P. :return: A flat which best fits P with respect to the l2^2 loss function. """ v = np.average(P, axis=0, weights=weights) # compute the weighted mean of the points svd = TruncatedSVD(algorithm='randomized', n_iter=1, n_components=Utils.J).fit(P-v) V = svd.components_ return V, v # return a flat denoted by an orthogonal matrix and a translation vector def clusterIdxsBasedOnKSubspaces(P, B): """ This functions partitions the points into clusters a list of flats. :param B: A list of flats :return: A numpy array such each entry contains the index of the flat to which the point which is related to the entry is assigned to. """ n = P.shape[0] idxs = np.arange(n) # a numpy array of indices centers = np.array(B) # a numpy array of the flats dists = np.apply_along_axis(lambda x: Utils.computeDistanceToSubspace(P[idxs, :], x[0], x[1]), 1, centers) # compute the # distance between # each point and # each flat idxs = np.argmin(dists, axis=0) return idxs # return the index of the closest flat to each point in self.P.P def addFlats(P, W, S, B): """ This function is responsible for computing a set of all possible flats which passes through j+1 points. :param S: list of j+1 subsets of points. :return: None (Add all the aforementioned flats into B). """ indices = [np.arange(S[i].shape[0]) for i in range(len(S))] points = np.meshgrid(*indices) # compute a mesh grid using the duplicated coefs points = np.array([p.flatten() for p in points]) # flatten each point in the meshgrid for computing the # all possible ordered sets of j+1 points idx = len(B) for i in range(points.shape[1]): A = [S[j][points[j, i]][0] for j in range(points.shape[0])] P_sub, W_sub = P[A, :], W[A] B.append(computeSubOptimalFlat(P_sub, W_sub)) return np.arange(idx, len(B)), B def computeBicriteria(P, W): """ The function at hand is an implemetation of Algorithm Approx-k-j-Flats(P, k, j) at the paper "Bi-criteria Linear-time Approximations for Generalized k-Mean/Median/Center". The algorithm returns an (2^j, O(log(n) * (jk)^O(j))-approximation algorithm for the (k,j)-projective clustering problem using the l2^2 loss function. :return: A (2^j, O(log(n) * (jk)^O(j)) approximation solution towards the optimal solution. """ n = P.shape[0] Q = np.arange(0, n, 1) t = 1 B = [] tol_sample_size = Utils.K * (Utils.J + 1) sample_size = (lambda t: int(np.ceil(Utils.K * (Utils.J + 1) * (2 + np.log(Utils.J + 1) + np.log(Utils.K) + min(t, np.log(np.log(n))))))) while np.size(Q) >= tol_sample_size: # run we have small set of points S = [] for i in range(0, Utils.J+1): # Sample j + 1 subsets of the points in an i.i.d. fashion random_sample = np.random.choice(Q, size=sample_size(t)) S.append(random_sample[:, np.newaxis]) if not Utils.ACCELERATE_BICRETERIA: F = addFlats(P, W, S, B) else: S = np.unique(np.vstack(S).flatten()) F = computeSubOptimalFlat(P[S, :], W[S]) B.append(F) sorted_indices = attainClosestPointsToSubspaces(P, W, F, Q) Q = np.delete(Q, sorted_indices) t += 1 if not Utils.ACCELERATE_BICRETERIA: _, B = addFlats(P, W, [Q for i in range(Utils.J + 1)], B) else: F = computeSubOptimalFlat(P[Q.flatten(), :], W[Q.flatten()]) B.append(F) return B ################################################### L1Coreset ########################################################## def applyBiCriterea(P, W): """ The function at hand runs a bicriteria algorithm, which then partition the rows of P into clusters. :return: - B: The set of flats which give the bicriteria algorithm, i.e., O((jk)^{j+1}) j-flats which attain 2^j approximation towards the optimal (k,j)-projective clustering problem involving self.P.P. - idxs: The set of indices where each entry is with respect to a point in P and contains index of the flat in B which is assigned to respected point in P. """ B = computeBicriteria(P,W) # compute the set of flats which bi-cirteria algorithm returns idxs = clusterIdxsBasedOnKSubspaces(P, B) # compute for each point which flat fits it best return B, idxs def initializeSens(P, B, idxs): """ This function initializes the sensitivities using the bicriteria algorithm, to be the distance between each point to it's closest flat from the set of flats B divided by the sum of distances between self.P.P and B. :param B: A set of flats where each flat is represented by an orthogonal matrix and a translation vector. :param idxs: A numpy array which represents the clustering which B imposes on self.P.P :return: None. """ centers_idxs = np.unique(idxs) # number of clusters imposed by B sensitivity_additive_term = np.zeros((P.shape[0], )) for center_idx in centers_idxs: # go over each cluster of points from self.P.P cluster_per_center = np.where(idxs == center_idx)[0] # get all points in certain cluster # compute the distance of each point in the cluster to its respect flat cost_per_point_in_cluster = Utils.computeDistanceToSubspace(P[cluster_per_center, :-1], B[center_idx][0], B[center_idx][1]) # ost_per_point_in_cluster = np.apply_along_axis(lambda x: # Utils.computeDistanceToSubspace(x, B[center_idx][0], # B[center_idx][1]), 1, # self.set_P.P[cluster_per_center, :-1]) # set the sensitivity to the distance of each point from its respected flat divided by the total distance # between cluster points and the respected flat sensitivity_additive_term[cluster_per_center] = 2 ** Utils.J * \ np.nan_to_num(cost_per_point_in_cluster / np.sum(cost_per_point_in_cluster)) return sensitivity_additive_term def Level(P, k, V, desired_eps=0.01): """ The algorithm is an implementation of Algorithm 7 of "Coresets for Gaussian Mixture Models of Any shapes" by Zahi Kfir and <NAME>. :param P: A Pointset object, i.e., a weighted set of points. :param k: The number of $j$-subspaces which defines the (k,j)-projective clustering problem. :param V: A set of numpy arrays :param desired_eps: An approximation error, default value is set to 0.01. :return: A list "C" of subset of points of P.P. """ t = V.shape[0] # numnber of points in V d = P.shape[1] - 1 # exclude last entry of each point for it is the concatenated index # C = [[]] #np.empty((P.shape[0] + Utils.J ** (2 * Utils.K), P.shape[1])) # initialize list of coresets # U = [[]] #np.empty((P.shape[0] + Utils.J ** (2 * Utils.K), P.shape[1])) # list of each point in V \setminus V_0 minus its # projection onto a specific affine subspace, see below C = np.zeros((P.shape[0], ), dtype="bool") D = np.zeros((P.shape[0], ), dtype="bool") if k <= 1 or t-1 >= Utils.J: return np.array([]) # ts = time.time() A, v = Utils.computeAffineSpan(V) # print('Affine took {}'.format(time.time() - ts)) dists_from_P_to_A = Utils.computeDistanceToSubspace(P[:, :-1], A.T, v) non_zero_idxs = np.where(dists_from_P_to_A > 1e-11)[0] d_0 = 0 if len(non_zero_idxs) < 1 else np.min(dists_from_P_to_A[non_zero_idxs]) c = 1 / d ** (1.5 * (d + 1)) M = np.max(np.abs(P[:, :-1])) on_j_subspace = np.where(dists_from_P_to_A <= 1e-11)[0] B = [[]] if on_j_subspace.size != 0: B[0] = P[on_j_subspace, :] if B[0].shape[0] >= Utils.J ** (2 * k): indices_in_B = B[0][:, -1] Q = np.hstack((B[0][:,:-1], np.arange(B[0].shape[0])[:, np.newaxis])) temp = computeLInfCoreset(B[0], k-1) C[indices_in_B[temp].astype(np.int)] = True else: C[B[0][:, -1].astype(np.int)] = True # current_point += temp.shape[0] # D = [P[C]] # print('Bound is {}'.format(int(np.ceil(8 * np.log(M) + np.log(1.0/c)) + 1))) if d_0 > 0: for i in range(1, int(np.ceil(8 * np.log(M) + np.log(1.0/c)) + 1)): B.append(P[np.where(np.logical_and(2 ** (i-1) * d_0 <= dists_from_P_to_A, dists_from_P_to_A <= 2 ** i * d_0))[0], :]) if len(B[i]) > 0: if len(B[i]) >= Utils.J ** (2 * k): indices_B = B[i][:, -1] Q_B = np.hstack((B[i][:, :-1], np.arange(B[i].shape[0])[:, np.newaxis])) temp = computeLInfCoreset(Q_B, k-1) if temp.size > 0: C[indices_B[temp].astype(np.int)] = True else: C[B[i][:, -1].astype(np.int)] = True temp = np.arange(B[i].shape[0]).astype(np.int) list_of_coresets = [x for x in B if len(x) > 0] Q = np.vstack(list_of_coresets) indices_Q = Q[:, -1] Q = np.hstack((Q[:, :-1], np.arange(Q.shape[0])[:, np.newaxis])) if temp.size > 0: for point in B[i][temp, :]: indices = Level(Q, k-1, np.vstack((V, point[np.newaxis, :-1]))) if indices.size > 0: D[indices_Q[indices].astype(np.int)] = True # D.extend(Level(Q, k-1, np.vstack((V, point[np.newaxis, :-1])))) return np.where(np.add(C, D))[0] def computeLInfCoreset(P, k): """ This function is our main L_\infty coreset method, as for k = 1 it runs our fast algorithm for computing the L_\infty coreset. When k > 1, it runs a recursive algorithm for computing a L_\infty coreset for the (k,j)-projective clustering problem. This algorithm is a variant of Algorithm 6 of "Coresets for Gaussian Mixture Models of Any shapes" by Zahi Kfir and <NAME>. :param P: A PointSet object, i.e., a weighted set of points. :param k: The number of $j$-subspaces which defines the (k,j)-projective clustering problem. :return: A PointSet object which contains a subset of P which serves as a L_\infty coreset for the (k,j)-projective clustering problem. """ C = [] if k == 1: # if subspace clustering problem _, idxs_in_Q, upper_bound = computeLINFCoresetKOne(P) # Compute our L_\infty coreset for P return idxs_in_Q elif k < 1: # should return None here return np.array([]) else: # If k > 1 temp = computeLInfCoreset(P, k-1) # call recursively till k == 1 C = np.zeros((P.shape[0], ), dtype="bool") C[P[temp, -1].astype(np.int)] = True # Q = np.empty((P.shape[0] + Utils.J ** (2 * Utils.K), P.shape[1])) # Q[:C_0.shape[0], :] = C_0 for p in P[temp, :]: # for each point in coreset # print('K = {}'.format(k)) recursive_core = Level(P, k, p[np.newaxis, :-1]) # compute a coreset for (k,j)-projective clustering # problem using a coreset for (k-1,j)-projective # clustering problem if recursive_core.size > 0: # if the coreset for the (k,j)-projective clustering problem is not empty C[P[recursive_core, -1].astype(np.int)] = True if np.where(C == False)[0].size < 1: return np.where(C)[0] return np.where(C)[0] # return a L_\infty coreset for (k,j)-projective clustering problem def computeSensitivityPerCluster(P): sensitivity = np.ones((P.shape[0], )) * np.inf i = 0 upper_bound = Utils.determineUpperBound() # set upper bound on the approximation which the L_\infty Q = np.hstack((P[:, :-1], np.arange(P.shape[0])[:, np.newaxis])) # coreset attains while Q.shape[0] > 2 * Q.shape[1]: # run till you have at most 2*j points orig_idx_in_Q = Q[:, -1] idxs_of_P = computeLInfCoreset(np.hstack((Q[:, :-1], np.arange(Q.shape[0])[:, np.newaxis])), Utils.K) # compute L_\infty coreset # idxs_of_P = np.unique(Q_P[:, -1]).astype(np.int) # get all points in P which are also in Q_P if np.any(np.logical_not(np.isinf(sensitivity[orig_idx_in_Q[idxs_of_P].astype(np.int)]))): # used for debugging raise ValueError('A crucial Bug!') sensitivity[orig_idx_in_Q[idxs_of_P].astype(np.int)] = upper_bound / (i + 1) # bound the sensitivity of each point in Q_P if np.isnan(np.sum(sensitivity)): print('HOLD ON!') remaining_idxs = Utils.attainAllButSpecifiedIndices(Q, orig_idx_in_Q[idxs_of_P].astype(np.int)) # get all points in cluster which # are not in Q_P idxs_in_Q = np.where(remaining_idxs)[0] # get indices in cluster which are not in Q_P Q = Q[idxs_in_Q, :] # update cluster to exclude current L_\infty coreset print('Batch {} has finished'.format(i)) i += 1 # count number of L_\infty coreset per each cluster of points remaining_idxs_per_cluster = Q[:, -1].astype(np.int) # all of the remaining 2*j points sensitivity[remaining_idxs_per_cluster] = upper_bound / (i if i > 0 else i + 1) # give them the lowest return np.hstack((sensitivity[:, np.newaxis], P[:, -1][:, np.newaxis])) def computeSensitivity(P, W): """ The function at hand computes the sensitivity of each point using a reduction from L_\infty to L1. :return: None """ P = np.hstack((P, np.arange(P.shape[0])[:, np.newaxis])) B, idxs = applyBiCriterea(P[:, :-1], W) # attain set of flats which gives 2^j approximation to the optimal solution sensitivity_additive_term = initializeSens(P, B, idxs) # initialize the sensitivities unique_cetner_idxs = np.unique(idxs) # get unique indices of clusters sensitivity = np.empty((P.shape[0], )) clusters = [np.where(idxs == idx)[0] for idx in unique_cetner_idxs] Qs = [[] for idx in range(len(clusters))] for idx in range(len(clusters)): # apply L_\infty conversion to L_1 on each cluster of points # Qs[idx] = np.hstack(((P[clusters[idx], :-1] - B[idx][1]).dot(B[idx][0].T.dot(B[idx][0])), P[clusters[idx], -1][:, np.newaxis])) Qs[idx] = np.hstack(((P[clusters[idx], :-1] - B[idx][1]).dot(B[idx][0].T), P[clusters[idx], -1][:, np.newaxis])) ts = time.time() # s = computeSensitivityPerCluster(Qs[0]) # print('max = {}, min = {}'.format(np.max(s[0,:]), np.min(s[0,:]))) # print('Time for one cluster took {} secs'.format(time.time() - ts)) # input() # pool = multiprocessing.Pool(3) # list_of_sensitivities = pool.map(computeSensitivityPerCluster, Qs) # print('Time for parallel took {} secs'.format(time.time() - ts)) for i in range(len(Qs)): s = computeSensitivityPerCluster(Qs[i]) sensitivity[s[:, -1].astype(np.int)] = s[:, 0] # print('Number of unique values = {}, max = {}, min = {}'.format(np.unique(sensitivity).shape[0], # np.max(sensitivity), np.min(sensitivity))) sensitivity += 2 ** Utils.J * sensitivity_additive_term # add the additive term for the sensitivity return sensitivity if __name__ == '__main__': P = np.random.randn(10000, 5) P = np.hstack((P, np.arange(10000)[:, np.newaxis])) W = np.ones((P.shape[0], )) s = computeSensitivity(P, W)
[ "numpy.linalg.matrix_rank", "numpy.sqrt", "numpy.hstack", "numpy.log", "Utils.UPPER_BOUND", "Utils.computeDistanceToSubspace", "numpy.array", "numpy.count_nonzero", "numpy.argsort", "numpy.einsum", "numpy.linalg.norm", "numpy.arange", "Utils.determineUpperBound", "numpy.multiply", "numpy.where", "numpy.delete", "numpy.dot", "numpy.empty", "numpy.vstack", "numpy.min", "numpy.argmin", "numpy.meshgrid", "numpy.abs", "numpy.eye", "numpy.ones", "numpy.add", "numpy.average", "numpy.size", "numpy.argmax", "sklearn.decomposition.TruncatedSVD", "Utils.computeAffineSpan", "numpy.linalg.eigvals", "numpy.linalg.svd", "time.time", "numpy.random.randn", "numpy.unique", "numpy.argpartition", "scipy.linalg.null_space", "numpy.logical_and", "numpy.diag", "numpy.sum", "numpy.zeros", "numpy.linalg.inv", "numpy.expand_dims", "numpy.linalg.cholesky", "numpy.all" ]
[((2252, 2269), 'numpy.hstack', 'np.hstack', (['(p, 1)'], {}), '((p, 1))\n', (2261, 2269), True, 'import numpy as np\n'), ((4103, 4112), 'numpy.linalg.svd', 'la.svd', (['B'], {}), '(B)\n', (4109, 4112), True, 'from numpy import linalg as la\n'), ((4953, 4971), 'numpy.eye', 'np.eye', (['A.shape[0]'], {}), '(A.shape[0])\n', (4959, 4971), True, 'import numpy as np\n'), ((5709, 5745), 'numpy.linalg.svd', 'np.linalg.svd', (['E'], {'full_matrices': '(True)'}), '(E, full_matrices=True)\n', (5722, 5745), True, 'import numpy as np\n'), ((6684, 6702), 'numpy.random.randn', 'np.random.randn', (['d'], {}), '(d)\n', (6699, 6702), True, 'import numpy as np\n'), ((9502, 9522), 'numpy.dot', 'np.dot', (['P.T', 'weights'], {}), '(P.T, weights)\n', (9508, 9522), True, 'import numpy as np\n'), ((19251, 19273), 'numpy.linalg.matrix_rank', 'matrix_rank', (['P[:, :-1]'], {}), '(P[:, :-1])\n', (19262, 19273), False, 'from numpy.linalg import matrix_rank\n'), ((19954, 19965), 'time.time', 'time.time', ([], {}), '()\n', (19963, 19965), False, 'import time\n'), ((22541, 22576), 'numpy.empty', 'np.empty', (['(P[indices, :].shape[0],)'], {}), '((P[indices, :].shape[0],))\n', (22549, 22576), True, 'import numpy as np\n'), ((23678, 23737), 'Utils.computeDistanceToSubspace', 'Utils.computeDistanceToSubspace', (['P[points_indices, :]', 'X', 'v'], {}), '(P[points_indices, :], X, v)\n', (23709, 23737), False, 'import Utils\n'), ((24578, 24616), 'numpy.average', 'np.average', (['P'], {'axis': '(0)', 'weights': 'weights'}), '(P, axis=0, weights=weights)\n', (24588, 24616), True, 'import numpy as np\n'), ((25220, 25232), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (25229, 25232), True, 'import numpy as np\n'), ((25276, 25287), 'numpy.array', 'np.array', (['B'], {}), '(B)\n', (25284, 25287), True, 'import numpy as np\n'), ((25798, 25822), 'numpy.argmin', 'np.argmin', (['dists'], {'axis': '(0)'}), '(dists, axis=0)\n', (25807, 25822), True, 'import numpy as np\n'), ((26257, 26278), 'numpy.meshgrid', 'np.meshgrid', (['*indices'], {}), '(*indices)\n', (26268, 26278), True, 'import numpy as np\n'), ((27335, 27353), 'numpy.arange', 'np.arange', (['(0)', 'n', '(1)'], {}), '(0, n, 1)\n', (27344, 27353), True, 'import numpy as np\n'), ((30064, 30079), 'numpy.unique', 'np.unique', (['idxs'], {}), '(idxs)\n', (30073, 30079), True, 'import numpy as np\n'), ((30148, 30171), 'numpy.zeros', 'np.zeros', (['(P.shape[0],)'], {}), '((P.shape[0],))\n', (30156, 30171), True, 'import numpy as np\n'), ((32579, 32616), 'numpy.zeros', 'np.zeros', (['(P.shape[0],)'], {'dtype': '"""bool"""'}), "((P.shape[0],), dtype='bool')\n", (32587, 32616), True, 'import numpy as np\n'), ((32627, 32664), 'numpy.zeros', 'np.zeros', (['(P.shape[0],)'], {'dtype': '"""bool"""'}), "((P.shape[0],), dtype='bool')\n", (32635, 32664), True, 'import numpy as np\n'), ((32771, 32797), 'Utils.computeAffineSpan', 'Utils.computeAffineSpan', (['V'], {}), '(V)\n', (32794, 32797), False, 'import Utils\n'), ((32879, 32929), 'Utils.computeDistanceToSubspace', 'Utils.computeDistanceToSubspace', (['P[:, :-1]', 'A.T', 'v'], {}), '(P[:, :-1], A.T, v)\n', (32910, 32929), False, 'import Utils\n'), ((37502, 37529), 'Utils.determineUpperBound', 'Utils.determineUpperBound', ([], {}), '()\n', (37527, 37529), False, 'import Utils\n'), ((39108, 39172), 'numpy.hstack', 'np.hstack', (['(sensitivity[:, np.newaxis], P[:, -1][:, np.newaxis])'], {}), '((sensitivity[:, np.newaxis], P[:, -1][:, np.newaxis]))\n', (39117, 39172), True, 'import numpy as np\n'), ((39655, 39670), 'numpy.unique', 'np.unique', (['idxs'], {}), '(idxs)\n', (39664, 39670), True, 'import numpy as np\n'), ((39724, 39747), 'numpy.empty', 'np.empty', (['(P.shape[0],)'], {}), '((P.shape[0],))\n', (39732, 39747), True, 'import numpy as np\n'), ((40248, 40259), 'time.time', 'time.time', ([], {}), '()\n', (40257, 40259), False, 'import time\n'), ((41191, 41216), 'numpy.random.randn', 'np.random.randn', (['(10000)', '(5)'], {}), '(10000, 5)\n', (41206, 41216), True, 'import numpy as np\n'), ((41283, 41305), 'numpy.ones', 'np.ones', (['(P.shape[0],)'], {}), '((P.shape[0],))\n', (41290, 41305), True, 'import numpy as np\n'), ((2289, 2302), 'numpy.ones', 'np.ones', (['(N,)'], {}), '((N,))\n', (2296, 2302), True, 'import numpy as np\n'), ((3081, 3100), 'numpy.count_nonzero', 'np.count_nonzero', (['u'], {}), '(u)\n', (3097, 3100), True, 'import numpy as np\n'), ((3321, 3337), 'numpy.where', 'np.where', (['(u != 0)'], {}), '(u != 0)\n', (3329, 3337), True, 'import numpy as np\n'), ((3574, 3588), 'numpy.linalg.cholesky', 'la.cholesky', (['B'], {}), '(B)\n', (3585, 3588), True, 'from numpy import linalg as la\n'), ((4278, 4288), 'numpy.linalg.norm', 'la.norm', (['A'], {}), '(A)\n', (4285, 4288), True, 'from numpy import linalg as la\n'), ((6744, 6772), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['basis'], {}), '(basis)\n', (6765, 6772), True, 'import numpy as np\n'), ((7388, 7402), 'numpy.dot', 'np.dot', (['P', 'v.T'], {}), '(P, v.T)\n', (7394, 7402), True, 'import numpy as np\n'), ((7841, 7888), 'numpy.expand_dims', 'np.expand_dims', (['(P[p_beta, :] - P[p_alpha, :])', '(1)'], {}), '(P[p_beta, :] - P[p_alpha, :], 1)\n', (7855, 7888), True, 'import numpy as np\n'), ((8954, 8970), 'numpy.dot', 'np.dot', (['Q', 'ellip'], {}), '(Q, ellip)\n', (8960, 8970), True, 'import numpy as np\n'), ((9464, 9490), 'numpy.expand_dims', 'np.expand_dims', (['weights', '(1)'], {}), '(weights, 1)\n', (9478, 9490), True, 'import numpy as np\n'), ((11165, 11188), 'numpy.where', 'np.where', (['(weights > 0.0)'], {}), '(weights > 0.0)\n', (11173, 11188), True, 'import numpy as np\n'), ((11598, 11645), 'numpy.einsum', 'np.einsum', (['"""bi,bo->bio"""', 'weighted_Q', 'weighted_Q'], {}), "('bi,bo->bio', weighted_Q, weighted_Q)\n", (11607, 11645), True, 'import numpy as np\n'), ((12229, 12250), 'numpy.where', 'np.where', (['(weights > 0)'], {}), '(weights > 0)\n', (12237, 12250), True, 'import numpy as np\n'), ((14638, 14658), 'numpy.argmax', 'np.argmax', (['distances'], {}), '(distances)\n', (14647, 14658), True, 'import numpy as np\n'), ((16710, 16725), 'numpy.ones', 'np.ones', (['(n, 1)'], {}), '((n, 1))\n', (16717, 16725), True, 'import numpy as np\n'), ((17184, 17196), 'numpy.argmax', 'np.argmax', (['M'], {}), '(M)\n', (17193, 17196), True, 'import numpy as np\n'), ((17563, 17588), 'numpy.linalg.norm', 'np.linalg.norm', (['(new_u - u)'], {}), '(new_u - u)\n', (17577, 17588), True, 'import numpy as np\n'), ((19427, 19455), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': 'r'}), '(n_components=r)\n', (19439, 19455), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((21912, 21930), 'numpy.unique', 'np.unique', (['C[:idx]'], {}), '(C[:idx])\n', (21921, 21930), True, 'import numpy as np\n'), ((21932, 21957), 'numpy.unique', 'np.unique', (['idx_in_P[:idx]'], {}), '(idx_in_P[:idx])\n', (21941, 21957), True, 'import numpy as np\n'), ((21959, 21979), 'Utils.UPPER_BOUND', 'Utils.UPPER_BOUND', (['r'], {}), '(r)\n', (21976, 21979), False, 'import Utils\n'), ((22885, 22951), 'Utils.computeDistanceToSubspace', 'Utils.computeDistanceToSubspace', (['P[indices, :]', 'flats[0]', 'flats[1]'], {}), '(P[indices, :], flats[0], flats[1])\n', (22916, 22951), False, 'import Utils\n'), ((26192, 26216), 'numpy.arange', 'np.arange', (['S[i].shape[0]'], {}), '(S[i].shape[0])\n', (26201, 26216), True, 'import numpy as np\n'), ((27728, 27738), 'numpy.size', 'np.size', (['Q'], {}), '(Q)\n', (27735, 27738), True, 'import numpy as np\n'), ((28344, 28372), 'numpy.delete', 'np.delete', (['Q', 'sorted_indices'], {}), '(Q, sorted_indices)\n', (28353, 28372), True, 'import numpy as np\n'), ((30479, 30579), 'Utils.computeDistanceToSubspace', 'Utils.computeDistanceToSubspace', (['P[cluster_per_center, :-1]', 'B[center_idx][0]', 'B[center_idx][1]'], {}), '(P[cluster_per_center, :-1], B[center_idx][0\n ], B[center_idx][1])\n', (30510, 30579), False, 'import Utils\n'), ((32718, 32730), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (32726, 32730), True, 'import numpy as np\n'), ((32951, 32986), 'numpy.where', 'np.where', (['(dists_from_P_to_A > 1e-11)'], {}), '(dists_from_P_to_A > 1e-11)\n', (32959, 32986), True, 'import numpy as np\n'), ((33036, 33076), 'numpy.min', 'np.min', (['dists_from_P_to_A[non_zero_idxs]'], {}), '(dists_from_P_to_A[non_zero_idxs])\n', (33042, 33076), True, 'import numpy as np\n'), ((33127, 33144), 'numpy.abs', 'np.abs', (['P[:, :-1]'], {}), '(P[:, :-1])\n', (33133, 33144), True, 'import numpy as np\n'), ((33167, 33203), 'numpy.where', 'np.where', (['(dists_from_P_to_A <= 1e-11)'], {}), '(dists_from_P_to_A <= 1e-11)\n', (33175, 33203), True, 'import numpy as np\n'), ((37439, 37461), 'numpy.ones', 'np.ones', (['(P.shape[0],)'], {}), '((P.shape[0],))\n', (37446, 37461), True, 'import numpy as np\n'), ((2225, 2240), 'numpy.ones', 'np.ones', (['(1, N)'], {}), '((1, N))\n', (2232, 2240), True, 'import numpy as np\n'), ((4143, 4153), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (4150, 4153), True, 'import numpy as np\n'), ((5785, 5810), 'numpy.sqrt', 'np.sqrt', (['D[:, np.newaxis]'], {}), '(D[:, np.newaxis])\n', (5792, 5810), True, 'import numpy as np\n'), ((7213, 7232), 'scipy.linalg.null_space', 'null_space', (['basis.T'], {}), '(basis.T)\n', (7223, 7232), False, 'from scipy.linalg import null_space\n'), ((7639, 7653), 'numpy.dot', 'np.dot', (['P', 'v.T'], {}), '(P, v.T)\n', (7645, 7653), True, 'import numpy as np\n'), ((7749, 7763), 'numpy.dot', 'np.dot', (['P', 'v.T'], {}), '(P, v.T)\n', (7755, 7763), True, 'import numpy as np\n'), ((11300, 11322), 'numpy.sqrt', 'np.sqrt', (['weights[idxs]'], {}), '(weights[idxs])\n', (11307, 11322), True, 'import numpy as np\n'), ((12697, 12749), 'numpy.all', 'np.all', (['(current_dists <= (1.0 + Utils.TOL) * (d + 1))'], {}), '(current_dists <= (1.0 + Utils.TOL) * (d + 1))\n', (12703, 12749), True, 'import numpy as np\n'), ((12765, 12835), 'numpy.all', 'np.all', (['(current_dists[pos_weights_idxs] >= (1.0 - Utils.TOL) * (d + 1))'], {}), '(current_dists[pos_weights_idxs] >= (1.0 - Utils.TOL) * (d + 1))\n', (12771, 12835), True, 'import numpy as np\n'), ((13246, 13261), 'numpy.ones', 'np.ones', (['(n, 1)'], {}), '((n, 1))\n', (13253, 13261), True, 'import numpy as np\n'), ((13673, 13689), 'numpy.zeros', 'np.zeros', (['(n, 1)'], {}), '((n, 1))\n', (13681, 13689), True, 'import numpy as np\n'), ((14475, 14496), 'numpy.where', 'np.where', (['(weights > 0)'], {}), '(weights > 0)\n', (14483, 14496), True, 'import numpy as np\n'), ((14817, 14854), 'numpy.argmin', 'np.argmin', (['distances[pos_weights_idx]'], {}), '(distances[pos_weights_idx])\n', (14826, 14854), True, 'import numpy as np\n'), ((16788, 16803), 'numpy.ones', 'np.ones', (['(n, 1)'], {}), '((n, 1))\n', (16795, 16803), True, 'import numpy as np\n'), ((17011, 17027), 'numpy.linalg.inv', 'np.linalg.inv', (['X'], {}), '(X)\n', (17024, 17027), True, 'import numpy as np\n'), ((20605, 20625), 'Utils.UPPER_BOUND', 'Utils.UPPER_BOUND', (['r'], {}), '(r)\n', (20622, 20625), False, 'import Utils\n'), ((21231, 21266), 'numpy.empty', 'np.empty', (['(2 * (Utils.J + 1) ** 2,)'], {}), '((2 * (Utils.J + 1) ** 2,))\n', (21239, 21266), True, 'import numpy as np\n'), ((21290, 21325), 'numpy.empty', 'np.empty', (['(2 * (Utils.J + 1) ** 2,)'], {}), '((2 * (Utils.J + 1) ** 2,))\n', (21298, 21325), True, 'import numpy as np\n'), ((22968, 22998), 'numpy.argpartition', 'np.argpartition', (['dists', '(N // 2)'], {}), '(dists, N // 2)\n', (22983, 22998), True, 'import numpy as np\n'), ((24671, 24739), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'algorithm': '"""randomized"""', 'n_iter': '(1)', 'n_components': 'Utils.J'}), "(algorithm='randomized', n_iter=1, n_components=Utils.J)\n", (24683, 24739), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((25363, 25418), 'Utils.computeDistanceToSubspace', 'Utils.computeDistanceToSubspace', (['P[idxs, :]', 'x[0]', 'x[1]'], {}), '(P[idxs, :], x[0], x[1])\n', (25394, 25418), False, 'import Utils\n'), ((30290, 30318), 'numpy.where', 'np.where', (['(idxs == center_idx)'], {}), '(idxs == center_idx)\n', (30298, 30318), True, 'import numpy as np\n'), ((35233, 35245), 'numpy.add', 'np.add', (['C', 'D'], {}), '(C, D)\n', (35239, 35245), True, 'import numpy as np\n'), ((36271, 36283), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (36279, 36283), True, 'import numpy as np\n'), ((36395, 36432), 'numpy.zeros', 'np.zeros', (['(P.shape[0],)'], {'dtype': '"""bool"""'}), "((P.shape[0],), dtype='bool')\n", (36403, 36432), True, 'import numpy as np\n'), ((38365, 38384), 'numpy.sum', 'np.sum', (['sensitivity'], {}), '(sensitivity)\n', (38371, 38384), True, 'import numpy as np\n'), ((38605, 38629), 'numpy.where', 'np.where', (['remaining_idxs'], {}), '(remaining_idxs)\n', (38613, 38629), True, 'import numpy as np\n'), ((39768, 39789), 'numpy.where', 'np.where', (['(idxs == idx)'], {}), '(idxs == idx)\n', (39776, 39789), True, 'import numpy as np\n'), ((2452, 2466), 'numpy.dot', 'np.dot', (['P.T', 'w'], {}), '(P.T, w)\n', (2458, 2466), True, 'import numpy as np\n'), ((3292, 3306), 'numpy.dot', 'np.dot', (['P.T', 'u'], {}), '(P.T, u)\n', (3298, 3306), True, 'import numpy as np\n'), ((5041, 5055), 'numpy.linalg.eigvals', 'la.eigvals', (['A3'], {}), '(A3)\n', (5051, 5055), True, 'from numpy import linalg as la\n'), ((7099, 7147), 'numpy.linalg.svd', 'np.linalg.svd', (['basis[:, :-1]'], {'full_matrices': '(True)'}), '(basis[:, :-1], full_matrices=True)\n', (7112, 7147), True, 'import numpy as np\n'), ((8241, 8258), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (8255, 8258), True, 'import numpy as np\n'), ((16923, 16940), 'numpy.multiply', 'np.multiply', (['Q', 'u'], {}), '(Q, u)\n', (16934, 16940), True, 'import numpy as np\n'), ((19693, 19720), 'numpy.expand_dims', 'np.expand_dims', (['P[:, -1]', '(1)'], {}), '(P[:, -1], 1)\n', (19707, 19720), True, 'import numpy as np\n'), ((20179, 20199), 'Utils.UPPER_BOUND', 'Utils.UPPER_BOUND', (['r'], {}), '(r)\n', (20196, 20199), False, 'import Utils\n'), ((23050, 23067), 'numpy.array', 'np.array', (['indices'], {}), '(indices)\n', (23058, 23067), True, 'import numpy as np\n'), ((24002, 24026), 'numpy.array', 'np.array', (['points_indices'], {}), '(points_indices)\n', (24010, 24026), True, 'import numpy as np\n'), ((34679, 34706), 'numpy.vstack', 'np.vstack', (['list_of_coresets'], {}), '(list_of_coresets)\n', (34688, 34706), True, 'import numpy as np\n'), ((37292, 37303), 'numpy.where', 'np.where', (['C'], {}), '(C)\n', (37300, 37303), True, 'import numpy as np\n'), ((37620, 37641), 'numpy.arange', 'np.arange', (['P.shape[0]'], {}), '(P.shape[0])\n', (37629, 37641), True, 'import numpy as np\n'), ((39376, 39397), 'numpy.arange', 'np.arange', (['P.shape[0]'], {}), '(P.shape[0])\n', (39385, 39397), True, 'import numpy as np\n'), ((41240, 41256), 'numpy.arange', 'np.arange', (['(10000)'], {}), '(10000)\n', (41249, 41256), True, 'import numpy as np\n'), ((2408, 2422), 'numpy.dot', 'np.dot', (['P.T', 'w'], {}), '(P.T, w)\n', (2414, 2422), True, 'import numpy as np\n'), ((3248, 3262), 'numpy.dot', 'np.dot', (['P.T', 'u'], {}), '(P.T, u)\n', (3254, 3262), True, 'import numpy as np\n'), ((31462, 31495), 'numpy.sum', 'np.sum', (['cost_per_point_in_cluster'], {}), '(cost_per_point_in_cluster)\n', (31468, 31495), True, 'import numpy as np\n'), ((8339, 8359), 'numpy.linalg.norm', 'np.linalg.norm', (['v', '(2)'], {}), '(v, 2)\n', (8353, 8359), True, 'import numpy as np\n'), ((9888, 9912), 'numpy.multiply', 'np.multiply', (['Q', 'weights2'], {}), '(Q, weights2)\n', (9899, 9912), True, 'import numpy as np\n'), ((20141, 20162), 'numpy.arange', 'np.arange', (['Q.shape[0]'], {}), '(Q.shape[0])\n', (20150, 20162), True, 'import numpy as np\n'), ((24027, 24044), 'numpy.argsort', 'np.argsort', (['dists'], {}), '(dists)\n', (24037, 24044), True, 'import numpy as np\n'), ((28157, 28169), 'numpy.vstack', 'np.vstack', (['S'], {}), '(S)\n', (28166, 28169), True, 'import numpy as np\n'), ((33424, 33448), 'numpy.arange', 'np.arange', (['B[0].shape[0]'], {}), '(B[0].shape[0])\n', (33433, 33448), True, 'import numpy as np\n'), ((37261, 37272), 'numpy.where', 'np.where', (['C'], {}), '(C)\n', (37269, 37272), True, 'import numpy as np\n'), ((37858, 37879), 'numpy.arange', 'np.arange', (['Q.shape[0]'], {}), '(Q.shape[0])\n', (37867, 37879), True, 'import numpy as np\n'), ((23068, 23085), 'numpy.argsort', 'np.argsort', (['dists'], {}), '(dists)\n', (23078, 23085), True, 'import numpy as np\n'), ((27593, 27608), 'numpy.log', 'np.log', (['Utils.K'], {}), '(Utils.K)\n', (27599, 27608), True, 'import numpy as np\n'), ((33856, 33871), 'numpy.log', 'np.log', (['(1.0 / c)'], {}), '(1.0 / c)\n', (33862, 33871), True, 'import numpy as np\n'), ((34553, 34577), 'numpy.arange', 'np.arange', (['B[i].shape[0]'], {}), '(B[i].shape[0])\n', (34562, 34577), True, 'import numpy as np\n'), ((34788, 34809), 'numpy.arange', 'np.arange', (['Q.shape[0]'], {}), '(Q.shape[0])\n', (34797, 34809), True, 'import numpy as np\n'), ((34960, 34998), 'numpy.vstack', 'np.vstack', (['(V, point[np.newaxis, :-1])'], {}), '((V, point[np.newaxis, :-1]))\n', (34969, 34998), True, 'import numpy as np\n'), ((37203, 37223), 'numpy.where', 'np.where', (['(C == False)'], {}), '(C == False)\n', (37211, 37223), True, 'import numpy as np\n'), ((20446, 20466), 'numpy.argmin', 'np.argmin', (['Q[:, :-1]'], {}), '(Q[:, :-1])\n', (20455, 20466), True, 'import numpy as np\n'), ((20519, 20539), 'numpy.argmax', 'np.argmax', (['Q[:, :-1]'], {}), '(Q[:, :-1])\n', (20528, 20539), True, 'import numpy as np\n'), ((22757, 22779), 'numpy.array', 'np.array', (['[indices[i]]'], {}), '([indices[i]])\n', (22765, 22779), True, 'import numpy as np\n'), ((27497, 27516), 'numpy.log', 'np.log', (['(Utils.J + 1)'], {}), '(Utils.J + 1)\n', (27503, 27516), True, 'import numpy as np\n'), ((27699, 27708), 'numpy.log', 'np.log', (['n'], {}), '(n)\n', (27705, 27708), True, 'import numpy as np\n'), ((33844, 33853), 'numpy.log', 'np.log', (['M'], {}), '(M)\n', (33850, 33853), True, 'import numpy as np\n'), ((33911, 34005), 'numpy.logical_and', 'np.logical_and', (['(2 ** (i - 1) * d_0 <= dists_from_P_to_A)', '(dists_from_P_to_A <= 2 ** i * d_0)'], {}), '(2 ** (i - 1) * d_0 <= dists_from_P_to_A, dists_from_P_to_A <=\n 2 ** i * d_0)\n', (33925, 34005), True, 'import numpy as np\n'), ((34240, 34264), 'numpy.arange', 'np.arange', (['B[i].shape[0]'], {}), '(B[i].shape[0])\n', (34249, 34264), True, 'import numpy as np\n')]
import logic import numpy as np import gym ACTION_MAP = { 0: 'up', 1: 'down', 2: 'left', 3: 'right' } class Env2048(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, n=4, max_idle=100, seed=None): super(Env2048, self).__init__() self.n = n self.max_idle = max_idle self.action_map = ACTION_MAP # up, down, left, right self.action_space = gym.spaces.Discrete(4) self.observation_space = gym.spaces.Box( low=0, high=255, shape=(self.n, self.n, 2 ** n), dtype=np.uint8) self.eye = np.eye(2 ** n) self.reward_range = (float('-inf'), float('inf')) if seed is not None: self.seed(seed) def seed(self, seed): np.random.seed(seed) def reset(self): self.matrix = logic.new_game(self.n) self.reward_i = self.i = 0 self.total_reward = 0 return self.obs @property def obs(self): m = np.array(self.matrix) m = np.clip(m, 1, float('inf')) # from 0, 2, 4, 8, ... to 1, 2, 4, 8 m = np.log2(m).astype(np.int64) # from 1, 2, 4, 8,..., 2048 to 0, 1, 2, 3, ..., 11 m = self.eye[m] m = m * 255 m = m.astype(np.uint8) obs = m return obs def step(self, action): if isinstance(action, str) and action in ('up', 'down', 'left', 'right'): pass if isinstance(action, (int, np.int64, np.int32)): action = self.action_map[int(action)] else: print(action, type(action)) raise old_score = np.sort(np.array(self.matrix).flatten())[::-1] old_matrix = str(self.matrix) # import pdb; pdb.set_trace() if action == 'up': self.matrix, updated = logic.up(self.matrix) elif action == 'down': self.matrix, updated = logic.down(self.matrix) elif action == 'left': self.matrix, updated = logic.left(self.matrix) elif action == 'right': self.matrix, updated = logic.right(self.matrix) new_matrix = str(self.matrix) new_score = np.sort(np.array(self.matrix).flatten())[::-1] reward = np.sum((new_score - old_score) * (new_score >= old_score)) * 4 reward = float(reward) self.total_reward += reward self.i += 1 if updated: # matrix有更新 self.matrix = logic.add_two(self.matrix) if logic.game_state(self.matrix) == 'win': print('you win') return self.obs, 10000.0, True, {'i': self.i, 'ri': self.reward_i, 'tr': self.total_reward} elif logic.game_state(self.matrix) == 'lose': return self.obs, 100.0, True, {'i': self.i, 'ri': self.reward_i, 'tr': self.total_reward} idle = False if old_matrix == new_matrix: idle = True if idle: reward = -1 else: self.reward_i = self.i if self.i - self.reward_i > self.max_idle: return self.obs, -100, True, {'i': self.i, 'ri': self.reward_i, 'tr': self.total_reward} return self.obs, reward, False, {'i': self.i, 'ri': self.reward_i, 'tr': self.total_reward} def render(self, mode='human'): pass def close(self): pass def main(): env = Env2048() obs = env.reset() print(obs) for _ in range(1000): obs, reward, done, info = env.step(np.random.choice(['right', 'left', 'up', 'down'])) print(obs) print(reward, done, info) if done: break if __name__ == '__main__': main()
[ "numpy.eye", "logic.left", "numpy.random.choice", "logic.game_state", "gym.spaces.Discrete", "gym.spaces.Box", "logic.new_game", "numpy.array", "numpy.sum", "logic.right", "numpy.random.seed", "logic.add_two", "logic.up", "numpy.log2", "logic.down" ]
[((434, 456), 'gym.spaces.Discrete', 'gym.spaces.Discrete', (['(4)'], {}), '(4)\n', (453, 456), False, 'import gym\n'), ((490, 569), 'gym.spaces.Box', 'gym.spaces.Box', ([], {'low': '(0)', 'high': '(255)', 'shape': '(self.n, self.n, 2 ** n)', 'dtype': 'np.uint8'}), '(low=0, high=255, shape=(self.n, self.n, 2 ** n), dtype=np.uint8)\n', (504, 569), False, 'import gym\n'), ((614, 628), 'numpy.eye', 'np.eye', (['(2 ** n)'], {}), '(2 ** n)\n', (620, 628), True, 'import numpy as np\n'), ((779, 799), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (793, 799), True, 'import numpy as np\n'), ((844, 866), 'logic.new_game', 'logic.new_game', (['self.n'], {}), '(self.n)\n', (858, 866), False, 'import logic\n'), ((1002, 1023), 'numpy.array', 'np.array', (['self.matrix'], {}), '(self.matrix)\n', (1010, 1023), True, 'import numpy as np\n'), ((1823, 1844), 'logic.up', 'logic.up', (['self.matrix'], {}), '(self.matrix)\n', (1831, 1844), False, 'import logic\n'), ((2240, 2298), 'numpy.sum', 'np.sum', (['((new_score - old_score) * (new_score >= old_score))'], {}), '((new_score - old_score) * (new_score >= old_score))\n', (2246, 2298), True, 'import numpy as np\n'), ((2450, 2476), 'logic.add_two', 'logic.add_two', (['self.matrix'], {}), '(self.matrix)\n', (2463, 2476), False, 'import logic\n'), ((3495, 3544), 'numpy.random.choice', 'np.random.choice', (["['right', 'left', 'up', 'down']"], {}), "(['right', 'left', 'up', 'down'])\n", (3511, 3544), True, 'import numpy as np\n'), ((1114, 1124), 'numpy.log2', 'np.log2', (['m'], {}), '(m)\n', (1121, 1124), True, 'import numpy as np\n'), ((1911, 1934), 'logic.down', 'logic.down', (['self.matrix'], {}), '(self.matrix)\n', (1921, 1934), False, 'import logic\n'), ((2493, 2522), 'logic.game_state', 'logic.game_state', (['self.matrix'], {}), '(self.matrix)\n', (2509, 2522), False, 'import logic\n'), ((2001, 2024), 'logic.left', 'logic.left', (['self.matrix'], {}), '(self.matrix)\n', (2011, 2024), False, 'import logic\n'), ((2691, 2720), 'logic.game_state', 'logic.game_state', (['self.matrix'], {}), '(self.matrix)\n', (2707, 2720), False, 'import logic\n'), ((1646, 1667), 'numpy.array', 'np.array', (['self.matrix'], {}), '(self.matrix)\n', (1654, 1667), True, 'import numpy as np\n'), ((2092, 2116), 'logic.right', 'logic.right', (['self.matrix'], {}), '(self.matrix)\n', (2103, 2116), False, 'import logic\n'), ((2184, 2205), 'numpy.array', 'np.array', (['self.matrix'], {}), '(self.matrix)\n', (2192, 2205), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Nov 13 12:55:47 2018 @name: CSVMachLearn.py @description: 1D CNN using CSV vector for machine learning @author: <NAME> """ from __future__ import absolute_import, division, print_function import matplotlib.pyplot as plt from matplotlib.lines import Line2D from sklearn.decomposition import PCA import numpy as np import tensorflow as tf import tensorflow.contrib.eager as tfe from tensorflow import set_random_seed tf.enable_eager_execution() set_random_seed(0) nrds='S0' #============================================================================== # Global parameters #============================================================================== total_dataset_fp="D:\\AI_experiments\\CSV\\"+nrds+"\\DAT"+nrds+".csv" pathlog="D:\\AI_experiments\\CSV\\"+nrds+"\\"+nrds+"pub.log" pathimg="D:\\AI_experiments\\CSV\\"+nrds+"\\IMG" num_epochs = 1001 # number of epochs lrate=2e-5 # learning rate test_procent=0.2 # procentage of test_dataset learn_batch_size=32 # batch size print("Local copy of the dataset file: {}".format(total_dataset_fp)) print("TensorFlow version: {}".format(tf.VERSION)) print("Eager execution: {}".format(tf.executing_eagerly())) #============================================================================== # Methods #============================================================================== def ChangeBatchSize(dataset,bsize): dataset=dataset.apply(tf.data.experimental.unbatch()) dataset=dataset.batch(batch_size=bsize) return dataset def pack_features_vector(features, labels): """Pack the features into a single array.""" features = tf.stack(list(features.values()), axis=1) return features, labels with open(total_dataset_fp) as f: content = f.readlines() grup=content[0].split(',') print(grup[1]) f_size=int(grup[1])-1 #number of points in data vector print("Vector size: "+str(f_size)) filtr1=32 filtr_size1=5 filtr2=32 filtr_size2=5 filtr3=64 filtr_size3=5 filtr4=64 filtr_size4=4 DenseLast=4096 filtr5=512 filtr_size5=5 def create_model(): model = tf.keras.models.Sequential([ tf.keras.layers.Reshape((f_size,1), input_shape=(None,f_size),name='x'), tf.keras.layers.Conv1D(filters=filtr1,kernel_size=filtr_size1,strides=1, kernel_initializer='random_uniform',activation=tf.nn.relu,padding='same',name='Conv1'), tf.keras.layers.MaxPooling1D(pool_size=filtr_size1, strides=2, padding='same', name='pool1'), tf.keras.layers.Conv1D(filters=filtr2,kernel_size=filtr_size2,strides=1, padding='same',name='Conv2',activation=tf.nn.relu, kernel_initializer='random_uniform'), tf.keras.layers.MaxPooling1D(pool_size=filtr_size2, strides=2, padding='same', name='pool2'), tf.keras.layers.Conv1D(filters=filtr3,kernel_size=filtr_size3,strides=1, padding='same',name='Conv3',activation=tf.nn.relu, kernel_initializer='random_uniform'), tf.keras.layers.MaxPooling1D(pool_size=filtr_size3, strides=2, padding='same', name='pool3'), tf.keras.layers.Conv1D(filters=filtr4,kernel_size=filtr_size4,strides=1, padding='same',name='Conv4',activation=tf.nn.relu, kernel_initializer='random_uniform'), tf.keras.layers.MaxPooling1D(pool_size=filtr_size4, strides=2, padding='same', name='pool4'), tf.keras.layers.GlobalMaxPool1D(), #size of last filter tf.keras.layers.Dense(DenseLast, activation=tf.nn.relu,name='fir'), # input shape required tf.keras.layers.Dense(256, activation=tf.nn.relu,name='mod_up'), tf.keras.layers.Dense(3,name='y_pred'), #output layer ]) model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) return model def loss(model, x, y): y_ = model(x) #print(y) #print(y_) return tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_) def grad(model, inputs, targets): with tf.GradientTape() as tape: loss_value = loss(model, inputs, targets) #print(loss_value) return loss_value, tape.gradient(loss_value, model.trainable_variables) mapcolor=['red','green','blue'] # column order in CSV file column_names = [] for a in range(0,f_size): column_names.append(str(a)) column_names.append('signal') print(len(column_names)) feature_names = column_names[:-1] label_name = column_names[-1] #class_names = ['Left','Right','NONE'] class_names = ['LIP','JAW','NONE'] batch_size = 200000 #train_dataset = tf.data.experimental.make_csv_dataset( # total_dataset_fp, # batch_size, # column_names=column_names, # label_name=label_name, # num_epochs=1, # shuffle=False) #train_dataset = train_dataset.map(pack_features_vector) total_dataset = tf.data.experimental.make_csv_dataset( total_dataset_fp, batch_size, column_names=column_names, label_name=label_name, num_epochs=1, shuffle=True) features, labels = next(iter(total_dataset)) setsize=float(str(labels.shape[0])) ts_size=setsize*test_procent tr_size=setsize-ts_size print("Total_CSV_size: "+str(setsize) ) print("Train_size: "+str(tr_size) ) print("Test_size: "+str(ts_size) ) total_dataset = total_dataset.map(pack_features_vector) total_dataset=ChangeBatchSize(total_dataset,tr_size) #============================================================================== #Split dataset into train_dataset and test_dataset. #============================================================================== i=0 for (parts, labels) in total_dataset: if(i==0): k1 = parts l1 = labels else: k2 = parts l2 = labels i=i+1 train_dataset = tf.data.Dataset.from_tensors((k1, l1)) train_dataset = ChangeBatchSize(train_dataset,learn_batch_size) test_dataset = tf.data.Dataset.from_tensors((k2, l2)) test_dataset = ChangeBatchSize(test_dataset,ts_size) #============================================================================== # Create model object #============================================================================== model=create_model() model.summary() optimizer = tf.train.AdamOptimizer(learning_rate=lrate) global_step = tf.train.get_or_create_global_step() legend_elements = [Line2D([0], [0], marker='o', color='w', label=class_names[0],markerfacecolor='r', markersize=10), Line2D([0], [0], marker='o', color='w', label=class_names[1],markerfacecolor='g', markersize=10), Line2D([0], [0], marker='o', color='w', label=class_names[2],markerfacecolor='b', markersize=10)] # keep results for plotting train_loss_results = [] train_accuracy_results = [] np.set_printoptions(threshold=np.nan) #============================================================================== # Make machine learning process #============================================================================== old_loss=1000 for epoch in range(num_epochs): epoch_loss_avg = tfe.metrics.Mean() epoch_accuracy = tfe.metrics.Accuracy() # Training loop - using batches of 32 for x, y in train_dataset: # Optimize the model #print(str(type(x))) #print(str(x.shape)) loss_value, grads = grad(model, x, y) optimizer.apply_gradients(zip(grads, model.variables), global_step) # Track progress epoch_loss_avg(loss_value) # add current batch loss # compare predicted label to actual label epoch_accuracy(tf.argmax(model(x), axis=1, output_type=tf.int32), y) # end epoch train_loss_results.append(epoch_loss_avg.result()) train_accuracy_results.append(epoch_accuracy.result()) if epoch % 5 == 0: test_accuracy = tfe.metrics.Accuracy() for (x, y) in test_dataset: logits = model(x) prediction = tf.argmax(logits, axis=1, output_type=tf.int32) test_accuracy(prediction, y) X=logits.numpy() Y=y.numpy() PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False) X = PCA(n_components=2).fit_transform(X) arrcolor = [] for cl in Y: arrcolor.append(mapcolor[cl]) plt.scatter(X[:, 0], X[:, 1], s=40, c=arrcolor) #plt.show() imgfile="{:s}\\epoch{:03d}.png".format(pathimg,epoch) plt.title("{:.3%}".format(test_accuracy.result())) plt.legend(handles=legend_elements, loc='upper right') plt.savefig(imgfile) plt.close() new_loss=epoch_loss_avg.result() accur=epoch_accuracy.result() test_acc=test_accuracy.result() msg="Epoch {:03d}: Loss: {:.6f}, Accuracy: {:.3%}, Test: {:.3%}".format(epoch,new_loss,accur,test_acc) msg2 = "{0} {1:.6f} {2:.6f} {3:.6f} \n".format(epoch,accur,test_acc,new_loss) print(msg) if new_loss>old_loss: break file = open(pathlog,"a"); file.write(msg2) file.close(); old_loss=epoch_loss_avg.result() #============================================================================== # Save trained model to disk #============================================================================== model.compile(optimizer=tf.train.AdamOptimizer(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) filepath="csvsignal.h5" tf.keras.models.save_model( model, filepath, overwrite=True, include_optimizer=True ) print("Model csvsignal.h5 saved to disk")
[ "tensorflow.enable_eager_execution", "tensorflow.GradientTape", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.MaxPooling1D", "tensorflow.set_random_seed", "matplotlib.lines.Line2D", "tensorflow.keras.models.save_model", "tensorflow.keras.layers.Reshape", "sklearn.decomposition.PCA", "tensorflow.executing_eagerly", "matplotlib.pyplot.close", "matplotlib.pyplot.scatter", "tensorflow.contrib.eager.metrics.Accuracy", "tensorflow.train.AdamOptimizer", "tensorflow.data.experimental.unbatch", "tensorflow.train.get_or_create_global_step", "tensorflow.data.Dataset.from_tensors", "matplotlib.pyplot.savefig", "tensorflow.keras.layers.GlobalMaxPool1D", "matplotlib.pyplot.legend", "numpy.set_printoptions", "tensorflow.contrib.eager.metrics.Mean", "tensorflow.data.experimental.make_csv_dataset", "tensorflow.argmax", "tensorflow.keras.layers.Conv1D", "tensorflow.losses.sparse_softmax_cross_entropy" ]
[((485, 512), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (510, 512), True, 'import tensorflow as tf\n'), ((514, 532), 'tensorflow.set_random_seed', 'set_random_seed', (['(0)'], {}), '(0)\n', (529, 532), False, 'from tensorflow import set_random_seed\n'), ((5009, 5163), 'tensorflow.data.experimental.make_csv_dataset', 'tf.data.experimental.make_csv_dataset', (['total_dataset_fp', 'batch_size'], {'column_names': 'column_names', 'label_name': 'label_name', 'num_epochs': '(1)', 'shuffle': '(True)'}), '(total_dataset_fp, batch_size,\n column_names=column_names, label_name=label_name, num_epochs=1, shuffle\n =True)\n', (5046, 5163), True, 'import tensorflow as tf\n'), ((5951, 5989), 'tensorflow.data.Dataset.from_tensors', 'tf.data.Dataset.from_tensors', (['(k1, l1)'], {}), '((k1, l1))\n', (5979, 5989), True, 'import tensorflow as tf\n'), ((6074, 6112), 'tensorflow.data.Dataset.from_tensors', 'tf.data.Dataset.from_tensors', (['(k2, l2)'], {}), '((k2, l2))\n', (6102, 6112), True, 'import tensorflow as tf\n'), ((6411, 6454), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'lrate'}), '(learning_rate=lrate)\n', (6433, 6454), True, 'import tensorflow as tf\n'), ((6472, 6508), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (6506, 6508), True, 'import tensorflow as tf\n'), ((6953, 6990), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.nan'}), '(threshold=np.nan)\n', (6972, 6990), True, 'import numpy as np\n'), ((9700, 9787), 'tensorflow.keras.models.save_model', 'tf.keras.models.save_model', (['model', 'filepath'], {'overwrite': '(True)', 'include_optimizer': '(True)'}), '(model, filepath, overwrite=True,\n include_optimizer=True)\n', (9726, 9787), True, 'import tensorflow as tf\n'), ((4065, 4124), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'labels': 'y', 'logits': 'y_'}), '(labels=y, logits=y_)\n', (4103, 4124), True, 'import tensorflow as tf\n'), ((6533, 6634), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'marker': '"""o"""', 'color': '"""w"""', 'label': 'class_names[0]', 'markerfacecolor': '"""r"""', 'markersize': '(10)'}), "([0], [0], marker='o', color='w', label=class_names[0],\n markerfacecolor='r', markersize=10)\n", (6539, 6634), False, 'from matplotlib.lines import Line2D\n'), ((6651, 6752), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'marker': '"""o"""', 'color': '"""w"""', 'label': 'class_names[1]', 'markerfacecolor': '"""g"""', 'markersize': '(10)'}), "([0], [0], marker='o', color='w', label=class_names[1],\n markerfacecolor='g', markersize=10)\n", (6657, 6752), False, 'from matplotlib.lines import Line2D\n'), ((6769, 6870), 'matplotlib.lines.Line2D', 'Line2D', (['[0]', '[0]'], {'marker': '"""o"""', 'color': '"""w"""', 'label': 'class_names[2]', 'markerfacecolor': '"""b"""', 'markersize': '(10)'}), "([0], [0], marker='o', color='w', label=class_names[2],\n markerfacecolor='b', markersize=10)\n", (6775, 6870), False, 'from matplotlib.lines import Line2D\n'), ((7256, 7274), 'tensorflow.contrib.eager.metrics.Mean', 'tfe.metrics.Mean', ([], {}), '()\n', (7272, 7274), True, 'import tensorflow.contrib.eager as tfe\n'), ((7295, 7317), 'tensorflow.contrib.eager.metrics.Accuracy', 'tfe.metrics.Accuracy', ([], {}), '()\n', (7315, 7317), True, 'import tensorflow.contrib.eager as tfe\n'), ((1376, 1398), 'tensorflow.executing_eagerly', 'tf.executing_eagerly', ([], {}), '()\n', (1396, 1398), True, 'import tensorflow as tf\n'), ((1640, 1670), 'tensorflow.data.experimental.unbatch', 'tf.data.experimental.unbatch', ([], {}), '()\n', (1668, 1670), True, 'import tensorflow as tf\n'), ((4172, 4189), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (4187, 4189), True, 'import tensorflow as tf\n'), ((8000, 8022), 'tensorflow.contrib.eager.metrics.Accuracy', 'tfe.metrics.Accuracy', ([], {}), '()\n', (8020, 8022), True, 'import tensorflow.contrib.eager as tfe\n'), ((9535, 9559), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {}), '()\n', (9557, 9559), True, 'import tensorflow as tf\n'), ((2351, 2425), 'tensorflow.keras.layers.Reshape', 'tf.keras.layers.Reshape', (['(f_size, 1)'], {'input_shape': '(None, f_size)', 'name': '"""x"""'}), "((f_size, 1), input_shape=(None, f_size), name='x')\n", (2374, 2425), True, 'import tensorflow as tf\n'), ((2429, 2602), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', ([], {'filters': 'filtr1', 'kernel_size': 'filtr_size1', 'strides': '(1)', 'kernel_initializer': '"""random_uniform"""', 'activation': 'tf.nn.relu', 'padding': '"""same"""', 'name': '"""Conv1"""'}), "(filters=filtr1, kernel_size=filtr_size1, strides=1,\n kernel_initializer='random_uniform', activation=tf.nn.relu, padding=\n 'same', name='Conv1')\n", (2451, 2602), True, 'import tensorflow as tf\n'), ((2595, 2692), 'tensorflow.keras.layers.MaxPooling1D', 'tf.keras.layers.MaxPooling1D', ([], {'pool_size': 'filtr_size1', 'strides': '(2)', 'padding': '"""same"""', 'name': '"""pool1"""'}), "(pool_size=filtr_size1, strides=2, padding=\n 'same', name='pool1')\n", (2623, 2692), True, 'import tensorflow as tf\n'), ((2694, 2867), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', ([], {'filters': 'filtr2', 'kernel_size': 'filtr_size2', 'strides': '(1)', 'padding': '"""same"""', 'name': '"""Conv2"""', 'activation': 'tf.nn.relu', 'kernel_initializer': '"""random_uniform"""'}), "(filters=filtr2, kernel_size=filtr_size2, strides=1,\n padding='same', name='Conv2', activation=tf.nn.relu, kernel_initializer\n ='random_uniform')\n", (2716, 2867), True, 'import tensorflow as tf\n'), ((2861, 2958), 'tensorflow.keras.layers.MaxPooling1D', 'tf.keras.layers.MaxPooling1D', ([], {'pool_size': 'filtr_size2', 'strides': '(2)', 'padding': '"""same"""', 'name': '"""pool2"""'}), "(pool_size=filtr_size2, strides=2, padding=\n 'same', name='pool2')\n", (2889, 2958), True, 'import tensorflow as tf\n'), ((2966, 3139), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', ([], {'filters': 'filtr3', 'kernel_size': 'filtr_size3', 'strides': '(1)', 'padding': '"""same"""', 'name': '"""Conv3"""', 'activation': 'tf.nn.relu', 'kernel_initializer': '"""random_uniform"""'}), "(filters=filtr3, kernel_size=filtr_size3, strides=1,\n padding='same', name='Conv3', activation=tf.nn.relu, kernel_initializer\n ='random_uniform')\n", (2988, 3139), True, 'import tensorflow as tf\n'), ((3133, 3230), 'tensorflow.keras.layers.MaxPooling1D', 'tf.keras.layers.MaxPooling1D', ([], {'pool_size': 'filtr_size3', 'strides': '(2)', 'padding': '"""same"""', 'name': '"""pool3"""'}), "(pool_size=filtr_size3, strides=2, padding=\n 'same', name='pool3')\n", (3161, 3230), True, 'import tensorflow as tf\n'), ((3232, 3405), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', ([], {'filters': 'filtr4', 'kernel_size': 'filtr_size4', 'strides': '(1)', 'padding': '"""same"""', 'name': '"""Conv4"""', 'activation': 'tf.nn.relu', 'kernel_initializer': '"""random_uniform"""'}), "(filters=filtr4, kernel_size=filtr_size4, strides=1,\n padding='same', name='Conv4', activation=tf.nn.relu, kernel_initializer\n ='random_uniform')\n", (3254, 3405), True, 'import tensorflow as tf\n'), ((3399, 3496), 'tensorflow.keras.layers.MaxPooling1D', 'tf.keras.layers.MaxPooling1D', ([], {'pool_size': 'filtr_size4', 'strides': '(2)', 'padding': '"""same"""', 'name': '"""pool4"""'}), "(pool_size=filtr_size4, strides=2, padding=\n 'same', name='pool4')\n", (3427, 3496), True, 'import tensorflow as tf\n'), ((3500, 3533), 'tensorflow.keras.layers.GlobalMaxPool1D', 'tf.keras.layers.GlobalMaxPool1D', ([], {}), '()\n', (3531, 3533), True, 'import tensorflow as tf\n'), ((3566, 3633), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['DenseLast'], {'activation': 'tf.nn.relu', 'name': '"""fir"""'}), "(DenseLast, activation=tf.nn.relu, name='fir')\n", (3587, 3633), True, 'import tensorflow as tf\n'), ((3663, 3727), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(256)'], {'activation': 'tf.nn.relu', 'name': '"""mod_up"""'}), "(256, activation=tf.nn.relu, name='mod_up')\n", (3684, 3727), True, 'import tensorflow as tf\n'), ((3735, 3774), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(3)'], {'name': '"""y_pred"""'}), "(3, name='y_pred')\n", (3756, 3774), True, 'import tensorflow as tf\n'), ((3828, 3852), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {}), '()\n', (3850, 3852), True, 'import tensorflow as tf\n'), ((8103, 8150), 'tensorflow.argmax', 'tf.argmax', (['logits'], {'axis': '(1)', 'output_type': 'tf.int32'}), '(logits, axis=1, output_type=tf.int32)\n', (8112, 8150), True, 'import tensorflow as tf\n'), ((8237, 8355), 'sklearn.decomposition.PCA', 'PCA', ([], {'copy': '(True)', 'iterated_power': '"""auto"""', 'n_components': '(2)', 'random_state': 'None', 'svd_solver': '"""auto"""', 'tol': '(0.0)', 'whiten': '(False)'}), "(copy=True, iterated_power='auto', n_components=2, random_state=None,\n svd_solver='auto', tol=0.0, whiten=False)\n", (8240, 8355), False, 'from sklearn.decomposition import PCA\n'), ((8503, 8550), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(40)', 'c': 'arrcolor'}), '(X[:, 0], X[:, 1], s=40, c=arrcolor)\n', (8514, 8550), True, 'import matplotlib.pyplot as plt\n'), ((8714, 8768), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'handles': 'legend_elements', 'loc': '"""upper right"""'}), "(handles=legend_elements, loc='upper right')\n", (8724, 8768), True, 'import matplotlib.pyplot as plt\n'), ((8776, 8796), 'matplotlib.pyplot.savefig', 'plt.savefig', (['imgfile'], {}), '(imgfile)\n', (8787, 8796), True, 'import matplotlib.pyplot as plt\n'), ((8804, 8815), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8813, 8815), True, 'import matplotlib.pyplot as plt\n'), ((8363, 8382), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (8366, 8382), False, 'from sklearn.decomposition import PCA\n')]
# -*- coding: utf-8 -*- """ Created on 2020/03/16 Feature selection: Relief-based feature selection algorithm. ------ @author: <NAME> """ import numpy as np from sklearn import preprocessing import os from sklearn.externals import joblib from el_classify_sensitive_person_train_validation import ClassifyFourKindOfPersonTrain from eslearn.utils.lc_evaluation_model_performances import eval_performance class ClassifyFourKindOfPersonTest(): """ This class is used to testing classification model for 2 kind of sensitive person identification. Parameters ---------- data_test_file: path str Path of the dataset label_test_file: path str Path of the label path_out : Path to save results is_feature_selection : bool if perfrome feature selection. is_showfig_finally: bool If show figure after all iteration finished. Returns ------- Save all classification results and figures to local disk. """ def __init__(selftest, data_test_file=None, label_test_file=None, data_train_file=None, models_path=None, path_out=None, is_feature_selection=False, is_showfig_finally=True): selftest.data_test_file = data_test_file selftest.label_test_file = label_test_file selftest.data_train_file = data_train_file selftest.path_out = path_out selftest.models_path = models_path selftest.is_feature_selection = is_feature_selection selftest.is_showfig_finally = is_showfig_finally def main_function(selftest): """ """ print('Training model and testing...\n') # load data and mask mask_lassocv = joblib.load(os.path.join(selftest.path_out, 'mask_selected_features_lassocv.pkl')) model_feature_selection = joblib.load(os.path.join(selftest.models_path, 'model_feature_selection.pkl')) model_classification = joblib.load(os.path.join(selftest.models_path, 'model_classification.pkl')) feature_test, selftest.label_test, feature_train = selftest._load_data() # Age encoding feature_test[:,2] = ClassifyFourKindOfPersonTrain().age_encodeing(feature_train[:,2], feature_test[:,2]) # Feature selection if selftest.is_feature_selection: feature_test = feature_test[:, mask_lassocv != 0] # Testting selftest.prediction, selftest.decision = selftest.testing(model_classification, feature_test) # Evaluating classification performances selftest.accuracy, selftest.sensitivity, selftest.specificity, selftest.AUC = eval_performance(selftest.label_test, selftest.prediction, selftest.decision, accuracy_kfold=None, sensitivity_kfold=None, specificity_kfold=None, AUC_kfold=None, verbose=1, is_showfig=0) # Save results and fig to local path selftest.save_results() selftest.save_fig() print("--" * 10 + "Done!" + "--" * 10 ) return selftest def _load_data(selftest): """ Load data """ data_test = np.load(selftest.data_test_file) label_test = np.load(selftest.label_test_file) data_train = np.load(selftest.data_train_file) return data_test, label_test, data_train def testing(selftest, model, test_X): predict = model.predict(test_X) decision = model.decision_function(test_X) return predict, decision def save_results(selftest): # Save performances and others import pandas as pd performances_to_save = np.array([selftest.accuracy, selftest.sensitivity, selftest.specificity, selftest.AUC]).reshape(1,4) de_pred_label_to_save = np.vstack([selftest.decision.T, selftest.prediction.T, selftest.label_test.T]).T performances_to_save = pd.DataFrame(performances_to_save, columns=[['Accuracy','Sensitivity', 'Specificity', 'AUC']]) de_pred_label_to_save = pd.DataFrame(de_pred_label_to_save, columns=[['Decision','Prediction', 'Sorted_Real_Label']]) performances_to_save.to_csv(os.path.join(selftest.path_out, 'test_Performances.txt'), index=False, header=True) de_pred_label_to_save.to_csv(os.path.join(selftest.path_out, 'test_Decision_prediction_label.txt'), index=False, header=True) def save_fig(selftest): # Save ROC and Classification 2D figure acc, sens, spec, auc = eval_performance(selftest.label_test, selftest.prediction, selftest.decision, selftest.accuracy, selftest.sensitivity, selftest.specificity, selftest.AUC, verbose=0, is_showfig=selftest.is_showfig_finally, is_savefig=1, out_name=os.path.join(selftest.path_out, 'Classification_performances_test.pdf'), legend1='Healthy', legend2='Unhealthy') # if __name__ == '__main__': # ============================================================================= # All inputs data_file = r'D:\workstation_b\Fundation\给黎超.xlsx' path_out = r'D:\workstation_b\Fundation' models_path = r'D:\workstation_b\Fundation' # ============================================================================= selftest = ClassifyFourKindOfPersonTest(data_test_file=r'D:\workstation_b\Fundation\feature_test.npy', label_test_file=r'D:\workstation_b\Fundation\label_test.npy', data_train_file=r'D:\workstation_b\Fundation\feature_train.npy', path_out=path_out, models_path=models_path, is_feature_selection=1) selftest.main_function()
[ "pandas.DataFrame", "os.path.join", "numpy.array", "numpy.vstack", "eslearn.utils.lc_evaluation_model_performances.eval_performance", "el_classify_sensitive_person_train_validation.ClassifyFourKindOfPersonTrain", "numpy.load" ]
[((2744, 2940), 'eslearn.utils.lc_evaluation_model_performances.eval_performance', 'eval_performance', (['selftest.label_test', 'selftest.prediction', 'selftest.decision'], {'accuracy_kfold': 'None', 'sensitivity_kfold': 'None', 'specificity_kfold': 'None', 'AUC_kfold': 'None', 'verbose': '(1)', 'is_showfig': '(0)'}), '(selftest.label_test, selftest.prediction, selftest.\n decision, accuracy_kfold=None, sensitivity_kfold=None,\n specificity_kfold=None, AUC_kfold=None, verbose=1, is_showfig=0)\n', (2760, 2940), False, 'from eslearn.utils.lc_evaluation_model_performances import eval_performance\n'), ((3243, 3275), 'numpy.load', 'np.load', (['selftest.data_test_file'], {}), '(selftest.data_test_file)\n', (3250, 3275), True, 'import numpy as np\n'), ((3297, 3330), 'numpy.load', 'np.load', (['selftest.label_test_file'], {}), '(selftest.label_test_file)\n', (3304, 3330), True, 'import numpy as np\n'), ((3352, 3385), 'numpy.load', 'np.load', (['selftest.data_train_file'], {}), '(selftest.data_train_file)\n', (3359, 3385), True, 'import numpy as np\n'), ((3979, 4078), 'pandas.DataFrame', 'pd.DataFrame', (['performances_to_save'], {'columns': "[['Accuracy', 'Sensitivity', 'Specificity', 'AUC']]"}), "(performances_to_save, columns=[['Accuracy', 'Sensitivity',\n 'Specificity', 'AUC']])\n", (3991, 4078), True, 'import pandas as pd\n'), ((4106, 4204), 'pandas.DataFrame', 'pd.DataFrame', (['de_pred_label_to_save'], {'columns': "[['Decision', 'Prediction', 'Sorted_Real_Label']]"}), "(de_pred_label_to_save, columns=[['Decision', 'Prediction',\n 'Sorted_Real_Label']])\n", (4118, 4204), True, 'import pandas as pd\n'), ((1827, 1896), 'os.path.join', 'os.path.join', (['selftest.path_out', '"""mask_selected_features_lassocv.pkl"""'], {}), "(selftest.path_out, 'mask_selected_features_lassocv.pkl')\n", (1839, 1896), False, 'import os\n'), ((1944, 2009), 'os.path.join', 'os.path.join', (['selftest.models_path', '"""model_feature_selection.pkl"""'], {}), "(selftest.models_path, 'model_feature_selection.pkl')\n", (1956, 2009), False, 'import os\n'), ((2054, 2116), 'os.path.join', 'os.path.join', (['selftest.models_path', '"""model_classification.pkl"""'], {}), "(selftest.models_path, 'model_classification.pkl')\n", (2066, 2116), False, 'import os\n'), ((3867, 3945), 'numpy.vstack', 'np.vstack', (['[selftest.decision.T, selftest.prediction.T, selftest.label_test.T]'], {}), '([selftest.decision.T, selftest.prediction.T, selftest.label_test.T])\n', (3876, 3945), True, 'import numpy as np\n'), ((4245, 4301), 'os.path.join', 'os.path.join', (['selftest.path_out', '"""test_Performances.txt"""'], {}), "(selftest.path_out, 'test_Performances.txt')\n", (4257, 4301), False, 'import os\n'), ((4366, 4435), 'os.path.join', 'os.path.join', (['selftest.path_out', '"""test_Decision_prediction_label.txt"""'], {}), "(selftest.path_out, 'test_Decision_prediction_label.txt')\n", (4378, 4435), False, 'import os\n'), ((2253, 2284), 'el_classify_sensitive_person_train_validation.ClassifyFourKindOfPersonTrain', 'ClassifyFourKindOfPersonTrain', ([], {}), '()\n', (2282, 2284), False, 'from el_classify_sensitive_person_train_validation import ClassifyFourKindOfPersonTrain\n'), ((3734, 3825), 'numpy.array', 'np.array', (['[selftest.accuracy, selftest.sensitivity, selftest.specificity, selftest.AUC]'], {}), '([selftest.accuracy, selftest.sensitivity, selftest.specificity,\n selftest.AUC])\n', (3742, 3825), True, 'import numpy as np\n'), ((4954, 5025), 'os.path.join', 'os.path.join', (['selftest.path_out', '"""Classification_performances_test.pdf"""'], {}), "(selftest.path_out, 'Classification_performances_test.pdf')\n", (4966, 5025), False, 'import os\n')]
from pandas.core.algorithms import mode import torch import torch.nn as nn from albumentations import Compose,Resize,Normalize from albumentations.pytorch import ToTensorV2 import wandb import time import torchvision import torch.nn.functional as F import torch.optim as optim from torch.cuda.amp import autocast,GradScaler import os import numpy as np from tqdm import tqdm from callbacks import EarlyStopping import pandas as pd from torch.utils.data import Dataset, DataLoader import cv2 import torch.nn.functional as F import random from build_model import Deformed_Darknet53 torch.manual_seed(2021) np.random.seed(2021) random.seed(2021) torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu" TOTAL_EPOCHS = 100 scaler = GradScaler() early_stop = EarlyStopping() wandb.init(project='deformed-darknet',entity='tensorthug',name='new-darknet-256x256_32') print("***** Loading the Model in {} *****".format(DEVICE)) Model = Deformed_Darknet53().to(DEVICE) print("Model Shipped to {}".format(DEVICE)) data = pd.read_csv("data.csv") train_loss_fn = nn.BCEWithLogitsLoss() val_loss_fn = nn.BCEWithLogitsLoss() optim = torch.optim.Adam(Model.parameters()) wandb.watch(Model) class dog_cat(Dataset): def __init__(self,df,mode="train",folds=0,transforms=None): super(dog_cat,self).__init__() self.df = df self.mode = mode self.folds = folds self.transforms = transforms if self.mode == "train": self.data = self.df[self.df.folds != self.folds].reset_index(drop=True) else: self.data = self.df[self.df.folds == self.folds].reset_index(drop=True) def __len__(self): return len(self.data) def __getitem__(self,idx): img = cv2.imread(self.data.loc[idx,"Paths"]) label = self.data.loc[idx,'Labels'] if self.transforms is not None: image = self.transforms(image=img)['image'] return image,label def train_loop(epoch,dataloader,model,loss_fn,optim,device=DEVICE): model.train() epoch_loss = 0 epoch_acc = 0 #start_time = time.time() pbar = tqdm(enumerate(dataloader),total=len(dataloader)) for i,(img,label) in pbar: optim.zero_grad() img = img.to(DEVICE).float() label = label.to(DEVICE).float() #LOAD_TIME = time.time() - start_time with autocast(): yhat = model(img) #Loss Calculation train_loss = loss_fn(input = yhat.flatten(), target = label) out = (yhat.flatten().sigmoid() > 0.5).float() correct = (label == out).float().sum() scaler.scale(train_loss).backward() scaler.step(optim) scaler.update() epoch_loss += train_loss.item() epoch_acc += correct.item() / out.shape[0] train_epoch_loss = epoch_loss / len(dataloader) train_epoch_acc = epoch_acc / len(dataloader) wandb.log({"Training_Loss":train_epoch_loss}) wandb.log({"Training_Acc":train_epoch_acc}) #print(f"Epoch:{epoch}/{TOTAL_EPOCHS} Epoch Loss:{epoch_loss / len(dataloader):.4f} Epoch Acc:{epoch_acc / len(dataloader):.4f}") return train_epoch_loss,train_epoch_acc def val_loop(epoch,dataloader,model,loss_fn,device = DEVICE): model.eval() val_epoch_loss = 0 val_epoch_acc = 0 pbar = tqdm(enumerate(dataloader),total=len(dataloader)) with torch.no_grad(): for i,(img,label) in pbar: img = img.to(device).float() label = label.to(device).float() yhat = model(img) val_loss = loss_fn(input=yhat.flatten(),target=label) out = (yhat.flatten().sigmoid()>0.5).float() correct = (label == out).float().sum() val_epoch_loss += val_loss.item() val_epoch_acc += correct.item() / out.shape[0] val_lossd = val_epoch_loss / len(dataloader) val_accd = val_epoch_acc / len(dataloader) wandb.log({"Val_Loss":val_lossd,"Epoch":epoch}) wandb.log({"Val_Acc":val_accd/len(dataloader),"Epoch":epoch}) return val_lossd,val_accd if __name__ == "__main__": train_per_epoch_loss,train_per_epoch_acc = [],[] val_per_epoch_loss,val_per_epoch_acc = [],[] train = dog_cat(data,transforms=Compose([Resize(256,256),Normalize(),ToTensorV2()])) val = dog_cat(data,mode='val',transforms=Compose([Resize(256,256),Normalize(),ToTensorV2()])) train_load = DataLoader(train,batch_size=32,shuffle=True,num_workers=4) val_load = DataLoader(val,batch_size=32,num_workers=4) for e in range(TOTAL_EPOCHS): train_loss,train_acc = train_loop(e,train_load,Model,train_loss_fn,optim) val_loss,val_acc = val_loop(e,val_load,Model,val_loss_fn) train_per_epoch_loss.append(train_loss) train_per_epoch_acc.append(train_acc) val_per_epoch_loss.append(val_loss) val_per_epoch_acc.append(val_acc) print(f"TrainLoss:{train_loss:.4f} TrainAcc:{train_acc:.4f}") print(f"ValLoss:{val_loss:.4f} ValAcc:{val_acc:.4f}") early_stop(Model,val_loss) if early_stop.early_stop: break
[ "wandb.log", "pandas.read_csv", "wandb.init", "torch.cuda.is_available", "torch.cuda.amp.GradScaler", "torch.cuda.amp.autocast", "numpy.random.seed", "build_model.Deformed_Darknet53", "albumentations.Normalize", "callbacks.EarlyStopping", "torch.nn.BCEWithLogitsLoss", "torch.optim.zero_grad", "cv2.imread", "torch.manual_seed", "albumentations.pytorch.ToTensorV2", "random.seed", "wandb.watch", "albumentations.Resize", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((585, 608), 'torch.manual_seed', 'torch.manual_seed', (['(2021)'], {}), '(2021)\n', (602, 608), False, 'import torch\n'), ((609, 629), 'numpy.random.seed', 'np.random.seed', (['(2021)'], {}), '(2021)\n', (623, 629), True, 'import numpy as np\n'), ((630, 647), 'random.seed', 'random.seed', (['(2021)'], {}), '(2021)\n', (641, 647), False, 'import random\n'), ((814, 826), 'torch.cuda.amp.GradScaler', 'GradScaler', ([], {}), '()\n', (824, 826), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((840, 855), 'callbacks.EarlyStopping', 'EarlyStopping', ([], {}), '()\n', (853, 855), False, 'from callbacks import EarlyStopping\n'), ((856, 951), 'wandb.init', 'wandb.init', ([], {'project': '"""deformed-darknet"""', 'entity': '"""tensorthug"""', 'name': '"""new-darknet-256x256_32"""'}), "(project='deformed-darknet', entity='tensorthug', name=\n 'new-darknet-256x256_32')\n", (866, 951), False, 'import wandb\n'), ((1102, 1125), 'pandas.read_csv', 'pd.read_csv', (['"""data.csv"""'], {}), "('data.csv')\n", (1113, 1125), True, 'import pandas as pd\n'), ((1143, 1165), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (1163, 1165), True, 'import torch.nn as nn\n'), ((1180, 1202), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (1200, 1202), True, 'import torch.nn as nn\n'), ((1250, 1268), 'wandb.watch', 'wandb.watch', (['Model'], {}), '(Model)\n', (1261, 1268), False, 'import wandb\n'), ((749, 774), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (772, 774), False, 'import torch\n'), ((3052, 3098), 'wandb.log', 'wandb.log', (["{'Training_Loss': train_epoch_loss}"], {}), "({'Training_Loss': train_epoch_loss})\n", (3061, 3098), False, 'import wandb\n'), ((3102, 3146), 'wandb.log', 'wandb.log', (["{'Training_Acc': train_epoch_acc}"], {}), "({'Training_Acc': train_epoch_acc})\n", (3111, 3146), False, 'import wandb\n'), ((4616, 4677), 'torch.utils.data.DataLoader', 'DataLoader', (['train'], {'batch_size': '(32)', 'shuffle': '(True)', 'num_workers': '(4)'}), '(train, batch_size=32, shuffle=True, num_workers=4)\n', (4626, 4677), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((4690, 4735), 'torch.utils.data.DataLoader', 'DataLoader', (['val'], {'batch_size': '(32)', 'num_workers': '(4)'}), '(val, batch_size=32, num_workers=4)\n', (4700, 4735), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1017, 1037), 'build_model.Deformed_Darknet53', 'Deformed_Darknet53', ([], {}), '()\n', (1035, 1037), False, 'from build_model import Deformed_Darknet53\n'), ((1853, 1892), 'cv2.imread', 'cv2.imread', (["self.data.loc[idx, 'Paths']"], {}), "(self.data.loc[idx, 'Paths'])\n", (1863, 1892), False, 'import cv2\n'), ((2325, 2342), 'torch.optim.zero_grad', 'optim.zero_grad', ([], {}), '()\n', (2340, 2342), True, 'import torch.optim as optim\n'), ((3534, 3549), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3547, 3549), False, 'import torch\n'), ((4106, 4156), 'wandb.log', 'wandb.log', (["{'Val_Loss': val_lossd, 'Epoch': epoch}"], {}), "({'Val_Loss': val_lossd, 'Epoch': epoch})\n", (4115, 4156), False, 'import wandb\n'), ((2491, 2501), 'torch.cuda.amp.autocast', 'autocast', ([], {}), '()\n', (2499, 2501), False, 'from torch.cuda.amp import autocast, GradScaler\n'), ((4456, 4472), 'albumentations.Resize', 'Resize', (['(256)', '(256)'], {}), '(256, 256)\n', (4462, 4472), False, 'from albumentations import Compose, Resize, Normalize\n'), ((4472, 4483), 'albumentations.Normalize', 'Normalize', ([], {}), '()\n', (4481, 4483), False, 'from albumentations import Compose, Resize, Normalize\n'), ((4484, 4496), 'albumentations.pytorch.ToTensorV2', 'ToTensorV2', ([], {}), '()\n', (4494, 4496), False, 'from albumentations.pytorch import ToTensorV2\n'), ((4554, 4570), 'albumentations.Resize', 'Resize', (['(256)', '(256)'], {}), '(256, 256)\n', (4560, 4570), False, 'from albumentations import Compose, Resize, Normalize\n'), ((4570, 4581), 'albumentations.Normalize', 'Normalize', ([], {}), '()\n', (4579, 4581), False, 'from albumentations import Compose, Resize, Normalize\n'), ((4582, 4594), 'albumentations.pytorch.ToTensorV2', 'ToTensorV2', ([], {}), '()\n', (4592, 4594), False, 'from albumentations.pytorch import ToTensorV2\n')]
import os.path as op from urllib.request import urlretrieve import matplotlib import numpy as np from numpy.testing import assert_allclose import pytest import hnn_core from hnn_core import read_params, read_dipole, average_dipoles from hnn_core import Network, jones_2009_model from hnn_core.viz import plot_dipole from hnn_core.dipole import Dipole, simulate_dipole, _rmse from hnn_core.parallel_backends import requires_mpi4py, requires_psutil matplotlib.use('agg') def test_dipole(tmpdir, run_hnn_core_fixture): """Test dipole object.""" hnn_core_root = op.dirname(hnn_core.__file__) params_fname = op.join(hnn_core_root, 'param', 'default.json') dpl_out_fname = tmpdir.join('dpl1.txt') params = read_params(params_fname) times = np.arange(0, 6000 * params['dt'], params['dt']) data = np.random.random((6000, 3)) dipole = Dipole(times, data) dipole._baseline_renormalize(params['N_pyr_x'], params['N_pyr_y']) dipole._convert_fAm_to_nAm() # test smoothing and scaling dipole_raw = dipole.copy() dipole.scale(params['dipole_scalefctr']) dipole.smooth(window_len=params['dipole_smooth_win']) with pytest.raises(AssertionError): assert_allclose(dipole.data['agg'], dipole_raw.data['agg']) assert_allclose(dipole.data['agg'], (params['dipole_scalefctr'] * dipole_raw.smooth( params['dipole_smooth_win']).data['agg'])) dipole.plot(show=False) plot_dipole([dipole, dipole], show=False) # Test IO dipole.write(dpl_out_fname) dipole_read = read_dipole(dpl_out_fname) assert_allclose(dipole_read.times, dipole.times, rtol=0, atol=0.00051) for dpl_key in dipole.data.keys(): assert_allclose(dipole_read.data[dpl_key], dipole.data[dpl_key], rtol=0, atol=0.000051) # average two identical dipole objects dipole_avg = average_dipoles([dipole, dipole_read]) for dpl_key in dipole_avg.data.keys(): assert_allclose(dipole_read.data[dpl_key], dipole_avg.data[dpl_key], rtol=0, atol=0.000051) with pytest.raises(ValueError, match="Dipole at index 0 was already an " "average of 2 trials"): dipole_avg = average_dipoles([dipole_avg, dipole_read]) # average an n_of_1 dipole list single_dpl_avg = average_dipoles([dipole]) for dpl_key in single_dpl_avg.data.keys(): assert_allclose( dipole_read.data[dpl_key], single_dpl_avg.data[dpl_key], rtol=0, atol=0.000051) # average dipole list with one dipole object and a zero dipole object n_times = len(dipole_read.data['agg']) dpl_null = Dipole(np.zeros(n_times, ), np.zeros((n_times, 3))) dpl_1 = [dipole, dpl_null] dpl_avg = average_dipoles(dpl_1) for dpl_key in dpl_avg.data.keys(): assert_allclose(dpl_1[0].data[dpl_key] / 2., dpl_avg.data[dpl_key]) # Test experimental dipole dipole_exp = Dipole(times, data[:, 1]) dipole_exp.write(dpl_out_fname) dipole_exp_read = read_dipole(dpl_out_fname) assert_allclose(dipole_exp.data['agg'], dipole_exp_read.data['agg'], rtol=1e-2) dipole_exp_avg = average_dipoles([dipole_exp, dipole_exp]) assert_allclose(dipole_exp.data['agg'], dipole_exp_avg.data['agg']) # XXX all below to be deprecated in 0.3 dpls_raw, net = run_hnn_core_fixture(backend='joblib', n_jobs=1, reduced=True, record_isoma=True, record_vsoma=True) # test deprecation of postproc with pytest.warns(DeprecationWarning, match='The postproc-argument is deprecated'): dpls, _ = run_hnn_core_fixture(backend='joblib', n_jobs=1, reduced=True, record_isoma=True, record_vsoma=True, postproc=True) with pytest.raises(AssertionError): assert_allclose(dpls[0].data['agg'], dpls_raw[0].data['agg']) dpls_raw[0]._post_proc(net._params['dipole_smooth_win'], net._params['dipole_scalefctr']) assert_allclose(dpls_raw[0].data['agg'], dpls[0].data['agg']) def test_dipole_simulation(): """Test data produced from simulate_dipole() call.""" hnn_core_root = op.dirname(hnn_core.__file__) params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) params.update({'N_pyr_x': 3, 'N_pyr_y': 3, 'dipole_smooth_win': 5, 't_evprox_1': 5, 't_evdist_1': 10, 't_evprox_2': 20}) net = jones_2009_model(params, add_drives_from_params=True) with pytest.raises(ValueError, match="Invalid number of simulations: 0"): simulate_dipole(net, tstop=25., n_trials=0) with pytest.raises(TypeError, match="record_vsoma must be bool, got int"): simulate_dipole(net, tstop=25., n_trials=1, record_vsoma=0) with pytest.raises(TypeError, match="record_isoma must be bool, got int"): simulate_dipole(net, tstop=25., n_trials=1, record_vsoma=False, record_isoma=0) # test Network.copy() returns 'bare' network after simulating dpl = simulate_dipole(net, tstop=25., n_trials=1)[0] net_copy = net.copy() assert len(net_copy.external_drives['evprox1']['events']) == 0 # test that Dipole.copy() returns the expected exact copy assert_allclose(dpl.data['agg'], dpl.copy().data['agg']) with pytest.warns(UserWarning, match='No connections'): net = Network(params) # warning triggered on simulate_dipole() simulate_dipole(net, tstop=0.1, n_trials=1) # Smoke test for raster plot with no spikes net.cell_response.plot_spikes_raster() @requires_mpi4py @requires_psutil def test_cell_response_backends(run_hnn_core_fixture): """Test cell_response outputs across backends.""" # reduced simulation has n_trials=2 trial_idx, n_trials, gid = 0, 2, 7 _, joblib_net = run_hnn_core_fixture(backend='joblib', n_jobs=1, reduced=True, record_isoma=True, record_vsoma=True) _, mpi_net = run_hnn_core_fixture(backend='mpi', n_procs=2, reduced=True, record_isoma=True, record_vsoma=True) n_times = len(joblib_net.cell_response.times) assert len(joblib_net.cell_response.vsoma) == n_trials assert len(joblib_net.cell_response.isoma) == n_trials assert len(joblib_net.cell_response.vsoma[trial_idx][gid]) == n_times assert len(joblib_net.cell_response.isoma[ trial_idx][gid]['soma_gabaa']) == n_times assert len(mpi_net.cell_response.vsoma) == n_trials assert len(mpi_net.cell_response.isoma) == n_trials assert len(mpi_net.cell_response.vsoma[trial_idx][gid]) == n_times assert len(mpi_net.cell_response.isoma[ trial_idx][gid]['soma_gabaa']) == n_times assert mpi_net.cell_response.vsoma == joblib_net.cell_response.vsoma assert mpi_net.cell_response.isoma == joblib_net.cell_response.isoma # Test if spike time falls within depolarization window above v_thresh v_thresh = 0.0 times = np.array(joblib_net.cell_response.times) spike_times = np.array(joblib_net.cell_response.spike_times[trial_idx]) spike_gids = np.array(joblib_net.cell_response.spike_gids[trial_idx]) vsoma = np.array(joblib_net.cell_response.vsoma[trial_idx][gid]) v_mask = vsoma > v_thresh assert np.all([spike_times[spike_gids == gid] > times[v_mask][0], spike_times[spike_gids == gid] < times[v_mask][-1]]) # test that event times before and after simulation are the same for drive_name, drive in joblib_net.external_drives.items(): gid_ran = joblib_net.gid_ranges[drive_name] for idx_drive, event_times in enumerate(drive['events'][trial_idx]): net_ets = [spike_times[i] for i, g in enumerate(spike_gids) if g == gid_ran[idx_drive]] assert_allclose(np.array(event_times), np.array(net_ets)) def test_rmse(): """Test to check RMSE calculation""" data_url = ('https://raw.githubusercontent.com/jonescompneurolab/hnn/' 'master/data/MEG_detection_data/yes_trial_S1_ERP_all_avg.txt') if not op.exists('yes_trial_S1_ERP_all_avg.txt'): urlretrieve(data_url, 'yes_trial_S1_ERP_all_avg.txt') extdata = np.loadtxt('yes_trial_S1_ERP_all_avg.txt') exp_dpl = Dipole(times=extdata[:, 0], data=np.c_[extdata[:, 1], extdata[:, 1], extdata[:, 1]]) hnn_core_root = op.join(op.dirname(hnn_core.__file__)) params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) expected_rmse = 0.1 test_dpl = Dipole(times=extdata[:, 0], data=np.c_[extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse]) avg_rmse = _rmse(test_dpl, exp_dpl, tstop=params['tstop']) assert_allclose(avg_rmse, expected_rmse)
[ "hnn_core.jones_2009_model", "hnn_core.dipole.Dipole", "numpy.array", "numpy.loadtxt", "numpy.arange", "os.path.exists", "hnn_core.dipole.simulate_dipole", "urllib.request.urlretrieve", "numpy.random.random", "numpy.testing.assert_allclose", "hnn_core.average_dipoles", "hnn_core.dipole._rmse", "matplotlib.use", "os.path.dirname", "pytest.raises", "hnn_core.read_params", "hnn_core.read_dipole", "hnn_core.Network", "os.path.join", "numpy.zeros", "numpy.all", "hnn_core.viz.plot_dipole", "pytest.warns" ]
[((450, 471), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (464, 471), False, 'import matplotlib\n'), ((571, 600), 'os.path.dirname', 'op.dirname', (['hnn_core.__file__'], {}), '(hnn_core.__file__)\n', (581, 600), True, 'import os.path as op\n'), ((620, 667), 'os.path.join', 'op.join', (['hnn_core_root', '"""param"""', '"""default.json"""'], {}), "(hnn_core_root, 'param', 'default.json')\n", (627, 667), True, 'import os.path as op\n'), ((725, 750), 'hnn_core.read_params', 'read_params', (['params_fname'], {}), '(params_fname)\n', (736, 750), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((763, 810), 'numpy.arange', 'np.arange', (['(0)', "(6000 * params['dt'])", "params['dt']"], {}), "(0, 6000 * params['dt'], params['dt'])\n", (772, 810), True, 'import numpy as np\n'), ((822, 849), 'numpy.random.random', 'np.random.random', (['(6000, 3)'], {}), '((6000, 3))\n', (838, 849), True, 'import numpy as np\n'), ((863, 882), 'hnn_core.dipole.Dipole', 'Dipole', (['times', 'data'], {}), '(times, data)\n', (869, 882), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((1472, 1513), 'hnn_core.viz.plot_dipole', 'plot_dipole', (['[dipole, dipole]'], {'show': '(False)'}), '([dipole, dipole], show=False)\n', (1483, 1513), False, 'from hnn_core.viz import plot_dipole\n'), ((1579, 1605), 'hnn_core.read_dipole', 'read_dipole', (['dpl_out_fname'], {}), '(dpl_out_fname)\n', (1590, 1605), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((1610, 1680), 'numpy.testing.assert_allclose', 'assert_allclose', (['dipole_read.times', 'dipole.times'], {'rtol': '(0)', 'atol': '(0.00051)'}), '(dipole_read.times, dipole.times, rtol=0, atol=0.00051)\n', (1625, 1680), False, 'from numpy.testing import assert_allclose\n'), ((1901, 1939), 'hnn_core.average_dipoles', 'average_dipoles', (['[dipole, dipole_read]'], {}), '([dipole, dipole_read])\n', (1916, 1939), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((2354, 2379), 'hnn_core.average_dipoles', 'average_dipoles', (['[dipole]'], {}), '([dipole])\n', (2369, 2379), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((2810, 2832), 'hnn_core.average_dipoles', 'average_dipoles', (['dpl_1'], {}), '(dpl_1)\n', (2825, 2832), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((2998, 3023), 'hnn_core.dipole.Dipole', 'Dipole', (['times', 'data[:, 1]'], {}), '(times, data[:, 1])\n', (3004, 3023), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((3082, 3108), 'hnn_core.read_dipole', 'read_dipole', (['dpl_out_fname'], {}), '(dpl_out_fname)\n', (3093, 3108), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((3113, 3192), 'numpy.testing.assert_allclose', 'assert_allclose', (["dipole_exp.data['agg']", "dipole_exp_read.data['agg']"], {'rtol': '(0.01)'}), "(dipole_exp.data['agg'], dipole_exp_read.data['agg'], rtol=0.01)\n", (3128, 3192), False, 'from numpy.testing import assert_allclose\n'), ((3234, 3275), 'hnn_core.average_dipoles', 'average_dipoles', (['[dipole_exp, dipole_exp]'], {}), '([dipole_exp, dipole_exp])\n', (3249, 3275), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((3280, 3347), 'numpy.testing.assert_allclose', 'assert_allclose', (["dipole_exp.data['agg']", "dipole_exp_avg.data['agg']"], {}), "(dipole_exp.data['agg'], dipole_exp_avg.data['agg'])\n", (3295, 3347), False, 'from numpy.testing import assert_allclose\n'), ((4189, 4250), 'numpy.testing.assert_allclose', 'assert_allclose', (["dpls_raw[0].data['agg']", "dpls[0].data['agg']"], {}), "(dpls_raw[0].data['agg'], dpls[0].data['agg'])\n", (4204, 4250), False, 'from numpy.testing import assert_allclose\n'), ((4361, 4390), 'os.path.dirname', 'op.dirname', (['hnn_core.__file__'], {}), '(hnn_core.__file__)\n', (4371, 4390), True, 'import os.path as op\n'), ((4410, 4457), 'os.path.join', 'op.join', (['hnn_core_root', '"""param"""', '"""default.json"""'], {}), "(hnn_core_root, 'param', 'default.json')\n", (4417, 4457), True, 'import os.path as op\n'), ((4471, 4496), 'hnn_core.read_params', 'read_params', (['params_fname'], {}), '(params_fname)\n', (4482, 4496), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((4727, 4780), 'hnn_core.jones_2009_model', 'jones_2009_model', (['params'], {'add_drives_from_params': '(True)'}), '(params, add_drives_from_params=True)\n', (4743, 4780), False, 'from hnn_core import Network, jones_2009_model\n'), ((7349, 7389), 'numpy.array', 'np.array', (['joblib_net.cell_response.times'], {}), '(joblib_net.cell_response.times)\n', (7357, 7389), True, 'import numpy as np\n'), ((7408, 7465), 'numpy.array', 'np.array', (['joblib_net.cell_response.spike_times[trial_idx]'], {}), '(joblib_net.cell_response.spike_times[trial_idx])\n', (7416, 7465), True, 'import numpy as np\n'), ((7483, 7539), 'numpy.array', 'np.array', (['joblib_net.cell_response.spike_gids[trial_idx]'], {}), '(joblib_net.cell_response.spike_gids[trial_idx])\n', (7491, 7539), True, 'import numpy as np\n'), ((7552, 7608), 'numpy.array', 'np.array', (['joblib_net.cell_response.vsoma[trial_idx][gid]'], {}), '(joblib_net.cell_response.vsoma[trial_idx][gid])\n', (7560, 7608), True, 'import numpy as np\n'), ((7651, 7767), 'numpy.all', 'np.all', (['[spike_times[spike_gids == gid] > times[v_mask][0], spike_times[spike_gids ==\n gid] < times[v_mask][-1]]'], {}), '([spike_times[spike_gids == gid] > times[v_mask][0], spike_times[\n spike_gids == gid] < times[v_mask][-1]])\n', (7657, 7767), True, 'import numpy as np\n'), ((8583, 8625), 'numpy.loadtxt', 'np.loadtxt', (['"""yes_trial_S1_ERP_all_avg.txt"""'], {}), "('yes_trial_S1_ERP_all_avg.txt')\n", (8593, 8625), True, 'import numpy as np\n'), ((8641, 8729), 'hnn_core.dipole.Dipole', 'Dipole', ([], {'times': 'extdata[:, 0]', 'data': 'np.c_[extdata[:, 1], extdata[:, 1], extdata[:, 1]]'}), '(times=extdata[:, 0], data=np.c_[extdata[:, 1], extdata[:, 1],\n extdata[:, 1]])\n', (8647, 8729), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((8826, 8873), 'os.path.join', 'op.join', (['hnn_core_root', '"""param"""', '"""default.json"""'], {}), "(hnn_core_root, 'param', 'default.json')\n", (8833, 8873), True, 'import os.path as op\n'), ((8887, 8912), 'hnn_core.read_params', 'read_params', (['params_fname'], {}), '(params_fname)\n', (8898, 8912), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((8953, 9090), 'hnn_core.dipole.Dipole', 'Dipole', ([], {'times': 'extdata[:, 0]', 'data': 'np.c_[extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse, extdata\n [:, 1] + expected_rmse]'}), '(times=extdata[:, 0], data=np.c_[extdata[:, 1] + expected_rmse, \n extdata[:, 1] + expected_rmse, extdata[:, 1] + expected_rmse])\n', (8959, 9090), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((9189, 9236), 'hnn_core.dipole._rmse', '_rmse', (['test_dpl', 'exp_dpl'], {'tstop': "params['tstop']"}), "(test_dpl, exp_dpl, tstop=params['tstop'])\n", (9194, 9236), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((9242, 9282), 'numpy.testing.assert_allclose', 'assert_allclose', (['avg_rmse', 'expected_rmse'], {}), '(avg_rmse, expected_rmse)\n', (9257, 9282), False, 'from numpy.testing import assert_allclose\n'), ((1164, 1193), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1177, 1193), False, 'import pytest\n'), ((1203, 1262), 'numpy.testing.assert_allclose', 'assert_allclose', (["dipole.data['agg']", "dipole_raw.data['agg']"], {}), "(dipole.data['agg'], dipole_raw.data['agg'])\n", (1218, 1262), False, 'from numpy.testing import assert_allclose\n'), ((1728, 1818), 'numpy.testing.assert_allclose', 'assert_allclose', (['dipole_read.data[dpl_key]', 'dipole.data[dpl_key]'], {'rtol': '(0)', 'atol': '(5.1e-05)'}), '(dipole_read.data[dpl_key], dipole.data[dpl_key], rtol=0,\n atol=5.1e-05)\n', (1743, 1818), False, 'from numpy.testing import assert_allclose\n'), ((1991, 2085), 'numpy.testing.assert_allclose', 'assert_allclose', (['dipole_read.data[dpl_key]', 'dipole_avg.data[dpl_key]'], {'rtol': '(0)', 'atol': '(5.1e-05)'}), '(dipole_read.data[dpl_key], dipole_avg.data[dpl_key], rtol=0,\n atol=5.1e-05)\n', (2006, 2085), False, 'from numpy.testing import assert_allclose\n'), ((2117, 2209), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Dipole at index 0 was already an average of 2 trials"""'}), "(ValueError, match=\n 'Dipole at index 0 was already an average of 2 trials')\n", (2130, 2209), False, 'import pytest\n'), ((2253, 2295), 'hnn_core.average_dipoles', 'average_dipoles', (['[dipole_avg, dipole_read]'], {}), '([dipole_avg, dipole_read])\n', (2268, 2295), False, 'from hnn_core import read_params, read_dipole, average_dipoles\n'), ((2435, 2533), 'numpy.testing.assert_allclose', 'assert_allclose', (['dipole_read.data[dpl_key]', 'single_dpl_avg.data[dpl_key]'], {'rtol': '(0)', 'atol': '(5.1e-05)'}), '(dipole_read.data[dpl_key], single_dpl_avg.data[dpl_key],\n rtol=0, atol=5.1e-05)\n', (2450, 2533), False, 'from numpy.testing import assert_allclose\n'), ((2720, 2737), 'numpy.zeros', 'np.zeros', (['n_times'], {}), '(n_times)\n', (2728, 2737), True, 'import numpy as np\n'), ((2741, 2763), 'numpy.zeros', 'np.zeros', (['(n_times, 3)'], {}), '((n_times, 3))\n', (2749, 2763), True, 'import numpy as np\n'), ((2881, 2949), 'numpy.testing.assert_allclose', 'assert_allclose', (['(dpl_1[0].data[dpl_key] / 2.0)', 'dpl_avg.data[dpl_key]'], {}), '(dpl_1[0].data[dpl_key] / 2.0, dpl_avg.data[dpl_key])\n', (2896, 2949), False, 'from numpy.testing import assert_allclose\n'), ((3640, 3717), 'pytest.warns', 'pytest.warns', (['DeprecationWarning'], {'match': '"""The postproc-argument is deprecated"""'}), "(DeprecationWarning, match='The postproc-argument is deprecated')\n", (3652, 3717), False, 'import pytest\n'), ((3962, 3991), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3975, 3991), False, 'import pytest\n'), ((4001, 4062), 'numpy.testing.assert_allclose', 'assert_allclose', (["dpls[0].data['agg']", "dpls_raw[0].data['agg']"], {}), "(dpls[0].data['agg'], dpls_raw[0].data['agg'])\n", (4016, 4062), False, 'from numpy.testing import assert_allclose\n'), ((4790, 4857), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Invalid number of simulations: 0"""'}), "(ValueError, match='Invalid number of simulations: 0')\n", (4803, 4857), False, 'import pytest\n'), ((4867, 4911), 'hnn_core.dipole.simulate_dipole', 'simulate_dipole', (['net'], {'tstop': '(25.0)', 'n_trials': '(0)'}), '(net, tstop=25.0, n_trials=0)\n', (4882, 4911), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((4920, 4988), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""record_vsoma must be bool, got int"""'}), "(TypeError, match='record_vsoma must be bool, got int')\n", (4933, 4988), False, 'import pytest\n'), ((4998, 5058), 'hnn_core.dipole.simulate_dipole', 'simulate_dipole', (['net'], {'tstop': '(25.0)', 'n_trials': '(1)', 'record_vsoma': '(0)'}), '(net, tstop=25.0, n_trials=1, record_vsoma=0)\n', (5013, 5058), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((5067, 5135), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""record_isoma must be bool, got int"""'}), "(TypeError, match='record_isoma must be bool, got int')\n", (5080, 5135), False, 'import pytest\n'), ((5145, 5230), 'hnn_core.dipole.simulate_dipole', 'simulate_dipole', (['net'], {'tstop': '(25.0)', 'n_trials': '(1)', 'record_vsoma': '(False)', 'record_isoma': '(0)'}), '(net, tstop=25.0, n_trials=1, record_vsoma=False, record_isoma=0\n )\n', (5160, 5230), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((5326, 5370), 'hnn_core.dipole.simulate_dipole', 'simulate_dipole', (['net'], {'tstop': '(25.0)', 'n_trials': '(1)'}), '(net, tstop=25.0, n_trials=1)\n', (5341, 5370), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((5600, 5649), 'pytest.warns', 'pytest.warns', (['UserWarning'], {'match': '"""No connections"""'}), "(UserWarning, match='No connections')\n", (5612, 5649), False, 'import pytest\n'), ((5665, 5680), 'hnn_core.Network', 'Network', (['params'], {}), '(params)\n', (5672, 5680), False, 'from hnn_core import Network, jones_2009_model\n'), ((5738, 5781), 'hnn_core.dipole.simulate_dipole', 'simulate_dipole', (['net'], {'tstop': '(0.1)', 'n_trials': '(1)'}), '(net, tstop=0.1, n_trials=1)\n', (5753, 5781), False, 'from hnn_core.dipole import Dipole, simulate_dipole, _rmse\n'), ((8464, 8505), 'os.path.exists', 'op.exists', (['"""yes_trial_S1_ERP_all_avg.txt"""'], {}), "('yes_trial_S1_ERP_all_avg.txt')\n", (8473, 8505), True, 'import os.path as op\n'), ((8515, 8568), 'urllib.request.urlretrieve', 'urlretrieve', (['data_url', '"""yes_trial_S1_ERP_all_avg.txt"""'], {}), "(data_url, 'yes_trial_S1_ERP_all_avg.txt')\n", (8526, 8568), False, 'from urllib.request import urlretrieve\n'), ((8776, 8805), 'os.path.dirname', 'op.dirname', (['hnn_core.__file__'], {}), '(hnn_core.__file__)\n', (8786, 8805), True, 'import os.path as op\n'), ((8197, 8218), 'numpy.array', 'np.array', (['event_times'], {}), '(event_times)\n', (8205, 8218), True, 'import numpy as np\n'), ((8220, 8237), 'numpy.array', 'np.array', (['net_ets'], {}), '(net_ets)\n', (8228, 8237), True, 'import numpy as np\n')]
# USAGE # python extract_embeddings.py --dataset dataset --embeddings output/embeddings.pickle \ # --detector face_detection_model --embedding-model openface_nn4.small2.v1.t7 # import the necessary packages from imutils.face_utils import FaceAligner from imutils import paths import numpy as np import argparse import imutils import pickle import cv2 import os import dlib from PIL import Image from yolo import YOLO, detect_video from yolo3.utils import letterbox_image from keras import backend as K def detect_image(self, image): if self.model_image_size != (None, None): assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') #print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) print('Found {} boxes for {}'.format(len(out_boxes), 'img')) return out_boxes, out_scores, out_classes # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--dataset", required=True, help="path to input directory of faces + images") ap.add_argument("-e", "--embeddings", required=True, help="path to output serialized db of facial embeddings") ap.add_argument("-m", "--embedding-model", required=True, help="path to OpenCV's deep learning face embedding model") ap.add_argument("-p", "--shape-predictor", required=True, help="path to facial landmark predictor") args = vars(ap.parse_args()) # load our serialized face detector from disk print("[INFO] loading face detector...") predictor = dlib.shape_predictor(args["shape_predictor"]) #detector = dlib.get_frontal_face_detector() detector = YOLO() # load our serialized face embedding model from disk print("[INFO] loading face recognizer...") embedder = cv2.dnn.readNetFromTorch(args["embedding_model"]) # grab the paths to the input images in our dataset print("[INFO] quantifying faces...") imagePaths = list(paths.list_images(args["dataset"])) # initialize our lists of extracted facial embeddings and # corresponding people names knownEmbeddings = [] knownNames = [] # initialize the total number of faces processed total = 0 # loop over the image paths for (i, imagePath) in enumerate(imagePaths): # extract the person name from the image path print("[INFO] processing image {}/{}".format(i + 1, len(imagePaths))) name = imagePath.split(os.path.sep)[-2] # load the image, resize it to have a width of 800 pixels (while # maintaining the aspect ratio), and then grab the image # dimensions image = cv2.imread(imagePath) image = imutils.resize(image, width=800) #try to rise resolution #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #blurred = cv2.GaussianBlur(gray, (5, 5), 0) #image = blurred #clahe = cv2.createCLAHE(clipLimit=4.0, tileGridSize=(8,8)) #image = clahe.apply(image) #image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) (h, w) = image.shape[:2] # we're making the assumption that each image has only ONE # face, so find the bounding box with the largest probability #align_faces fa = FaceAligner(predictor, desiredFaceWidth=256) #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #rects = detector(gray, 2) rects = [] out_boxes, out_scores, out_classes = detect_image(detector, Image.fromarray(image)) for i, c in reversed(list(enumerate(out_classes))): (x, y, x1, y1) = out_boxes[i] w = abs(x - x1) h = abs(y - y1) startX = int(min(x1, x)) endX = startX + w startY = int(min(y1, y)) endY = startY + h left, right, bottom, top = startX, endX, endY, startY rect = dlib.rectangle(int(top), int(left), int(bottom) , int(right)) rects.append(rect) for rect in rects: faceAligned = fa.align(image, gray, rect) print(faceAligned) cv2.imshow("Aligned", np.asarray(faceAligned)) cv2.waitKey(0) face = faceAligned (fH, fW) = face.shape[:2] # ensure the face width and height are sufficiently large if fW < 20 or fH < 20: continue # construct a blob for the face ROI, then pass the blob # through our face embedding model to obtain the 128-d # quantification of the face faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False) embedder.setInput(faceBlob) vec = embedder.forward() # add the name of the person + corresponding face # embedding to their respective lists knownNames.append(name) knownEmbeddings.append(vec.flatten()) total += 1 # dump the facial embeddings + names to disk print("[INFO] serializing {} encodings...".format(total)) data = {"embeddings": knownEmbeddings, "names": knownNames} f = open(args["embeddings"], "wb") f.write(pickle.dumps(data)) f.close()
[ "cv2.dnn.blobFromImage", "PIL.Image.fromarray", "cv2.dnn.readNetFromTorch", "argparse.ArgumentParser", "yolo.YOLO", "pickle.dumps", "keras.backend.learning_phase", "numpy.asarray", "dlib.shape_predictor", "numpy.array", "imutils.resize", "cv2.waitKey", "imutils.paths.list_images", "numpy.expand_dims", "cv2.cvtColor", "yolo3.utils.letterbox_image", "cv2.imread", "imutils.face_utils.FaceAligner" ]
[((1650, 1675), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1673, 1675), False, 'import argparse\n'), ((2238, 2283), 'dlib.shape_predictor', 'dlib.shape_predictor', (["args['shape_predictor']"], {}), "(args['shape_predictor'])\n", (2258, 2283), False, 'import dlib\n'), ((2340, 2346), 'yolo.YOLO', 'YOLO', ([], {}), '()\n', (2344, 2346), False, 'from yolo import YOLO, detect_video\n'), ((2455, 2504), 'cv2.dnn.readNetFromTorch', 'cv2.dnn.readNetFromTorch', (["args['embedding_model']"], {}), "(args['embedding_model'])\n", (2479, 2504), False, 'import cv2\n'), ((1028, 1066), 'numpy.array', 'np.array', (['boxed_image'], {'dtype': '"""float32"""'}), "(boxed_image, dtype='float32')\n", (1036, 1066), True, 'import numpy as np\n'), ((1137, 1166), 'numpy.expand_dims', 'np.expand_dims', (['image_data', '(0)'], {}), '(image_data, 0)\n', (1151, 1166), True, 'import numpy as np\n'), ((2613, 2647), 'imutils.paths.list_images', 'paths.list_images', (["args['dataset']"], {}), "(args['dataset'])\n", (2630, 2647), False, 'from imutils import paths\n'), ((3217, 3238), 'cv2.imread', 'cv2.imread', (['imagePath'], {}), '(imagePath)\n', (3227, 3238), False, 'import cv2\n'), ((3248, 3280), 'imutils.resize', 'imutils.resize', (['image'], {'width': '(800)'}), '(image, width=800)\n', (3262, 3280), False, 'import imutils\n'), ((3572, 3611), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (3584, 3611), False, 'import cv2\n'), ((3790, 3834), 'imutils.face_utils.FaceAligner', 'FaceAligner', (['predictor'], {'desiredFaceWidth': '(256)'}), '(predictor, desiredFaceWidth=256)\n', (3801, 3834), False, 'from imutils.face_utils import FaceAligner\n'), ((4846, 4934), 'cv2.dnn.blobFromImage', 'cv2.dnn.blobFromImage', (['face', '(1.0 / 255)', '(96, 96)', '(0, 0, 0)'], {'swapRB': '(True)', 'crop': '(False)'}), '(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True,\n crop=False)\n', (4867, 4934), False, 'import cv2\n'), ((5362, 5380), 'pickle.dumps', 'pickle.dumps', (['data'], {}), '(data)\n', (5374, 5380), False, 'import pickle\n'), ((972, 1010), 'yolo3.utils.letterbox_image', 'letterbox_image', (['image', 'new_image_size'], {}), '(image, new_image_size)\n', (987, 1010), False, 'from yolo3.utils import letterbox_image\n'), ((3990, 4012), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (4005, 4012), False, 'from PIL import Image\n'), ((4526, 4540), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4537, 4540), False, 'import cv2\n'), ((4499, 4522), 'numpy.asarray', 'np.asarray', (['faceAligned'], {}), '(faceAligned)\n', (4509, 4522), True, 'import numpy as np\n'), ((1442, 1460), 'keras.backend.learning_phase', 'K.learning_phase', ([], {}), '()\n', (1458, 1460), True, 'from keras import backend as K\n')]
#!/usr/bin/env python """ HIAS AI Model Data Augmentation Class. Provides data augmentation methods. MIT License Copyright (c) 2021 Asociación de Investigacion en Inteligencia Artificial Para la Leucemia <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Contributors: - <NAME> - First version - 2021-5-2 """ import cv2 import random import numpy as np from numpy.random import seed from scipy import ndimage from skimage import transform as tm class augmentation(): """ HIAS AI Model Data Augmentation Class Provides data augmentation methods. """ def __init__(self, helpers): """ Initializes the class. """ self.helpers = helpers self.seed = self.helpers.confs["data"]["seed"] seed(self.seed) self.helpers.logger.info( "Augmentation class initialization complete.") def grayscale(self, data): """ Creates a grayscale copy. """ gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY) return np.dstack([gray, gray, gray]).astype(np.float32)/255. def equalize_hist(self, data): """ Creates a histogram equalized copy. """ img_to_yuv = cv2.cvtColor(data, cv2.COLOR_BGR2YUV) img_to_yuv[:, :, 0] = cv2.equalizeHist(img_to_yuv[:, :, 0]) hist_equalization_result = cv2.cvtColor(img_to_yuv, cv2.COLOR_YUV2BGR) return hist_equalization_result.astype(np.float32)/255. def reflection(self, data): """ Creates a reflected copy. """ return cv2.flip(data, 0).astype(np.float32)/255., cv2.flip(data, 1).astype(np.float32)/255. def gaussian(self, data): """ Creates a gaussian blurred copy. """ return ndimage.gaussian_filter( data, sigma=5.11).astype(np.float32)/255. def translate(self, data): """ Creates transformed copy. """ cols, rows, chs = data.shape return cv2.warpAffine( data, np.float32([[1, 0, 84], [0, 1, 56]]), (rows, cols), borderMode=cv2.BORDER_CONSTANT, borderValue=(144, 159, 162)).astype(np.float32)/255. def rotation(self, data, label, tdata, tlabels): """ Creates rotated copies. """ cols, rows, chs = data.shape for i in range(0, self.helpers.confs["data"]["rotations"]): # Seed needs to be set each time randint is called random.seed(self.seed) rand_deg = random.randint(-180, 180) matrix = cv2.getRotationMatrix2D( (cols/2, rows/2), rand_deg, 0.70) rotated = cv2.warpAffine( data, matrix, (rows, cols), borderMode=cv2.BORDER_CONSTANT, borderValue=(144, 159, 162)) rotated = rotated.astype(np.float32)/255. tdata.append(rotated) tlabels.append(label) return tdata, tlabels def shear(self, data): """ Creates a histogram equalized copy. """ at = tm.AffineTransform(shear=0.5) return tm.warp(data, inverse_map=at)
[ "numpy.dstack", "cv2.warpAffine", "cv2.flip", "numpy.float32", "skimage.transform.AffineTransform", "skimage.transform.warp", "random.seed", "cv2.equalizeHist", "numpy.random.seed", "cv2.cvtColor", "scipy.ndimage.gaussian_filter", "cv2.getRotationMatrix2D", "random.randint" ]
[((1721, 1736), 'numpy.random.seed', 'seed', (['self.seed'], {}), '(self.seed)\n', (1725, 1736), False, 'from numpy.random import seed\n'), ((1921, 1959), 'cv2.cvtColor', 'cv2.cvtColor', (['data', 'cv2.COLOR_BGR2GRAY'], {}), '(data, cv2.COLOR_BGR2GRAY)\n', (1933, 1959), False, 'import cv2\n'), ((2139, 2176), 'cv2.cvtColor', 'cv2.cvtColor', (['data', 'cv2.COLOR_BGR2YUV'], {}), '(data, cv2.COLOR_BGR2YUV)\n', (2151, 2176), False, 'import cv2\n'), ((2207, 2244), 'cv2.equalizeHist', 'cv2.equalizeHist', (['img_to_yuv[:, :, 0]'], {}), '(img_to_yuv[:, :, 0])\n', (2223, 2244), False, 'import cv2\n'), ((2280, 2323), 'cv2.cvtColor', 'cv2.cvtColor', (['img_to_yuv', 'cv2.COLOR_YUV2BGR'], {}), '(img_to_yuv, cv2.COLOR_YUV2BGR)\n', (2292, 2323), False, 'import cv2\n'), ((3930, 3959), 'skimage.transform.AffineTransform', 'tm.AffineTransform', ([], {'shear': '(0.5)'}), '(shear=0.5)\n', (3948, 3959), True, 'from skimage import transform as tm\n'), ((3975, 4004), 'skimage.transform.warp', 'tm.warp', (['data'], {'inverse_map': 'at'}), '(data, inverse_map=at)\n', (3982, 4004), True, 'from skimage import transform as tm\n'), ((3338, 3360), 'random.seed', 'random.seed', (['self.seed'], {}), '(self.seed)\n', (3349, 3360), False, 'import random\n'), ((3384, 3409), 'random.randint', 'random.randint', (['(-180)', '(180)'], {}), '(-180, 180)\n', (3398, 3409), False, 'import random\n'), ((3431, 3491), 'cv2.getRotationMatrix2D', 'cv2.getRotationMatrix2D', (['(cols / 2, rows / 2)', 'rand_deg', '(0.7)'], {}), '((cols / 2, rows / 2), rand_deg, 0.7)\n', (3454, 3491), False, 'import cv2\n'), ((3528, 3635), 'cv2.warpAffine', 'cv2.warpAffine', (['data', 'matrix', '(rows, cols)'], {'borderMode': 'cv2.BORDER_CONSTANT', 'borderValue': '(144, 159, 162)'}), '(data, matrix, (rows, cols), borderMode=cv2.BORDER_CONSTANT,\n borderValue=(144, 159, 162))\n', (3542, 3635), False, 'import cv2\n'), ((1975, 2004), 'numpy.dstack', 'np.dstack', (['[gray, gray, gray]'], {}), '([gray, gray, gray])\n', (1984, 2004), True, 'import numpy as np\n'), ((2660, 2701), 'scipy.ndimage.gaussian_filter', 'ndimage.gaussian_filter', (['data'], {'sigma': '(5.11)'}), '(data, sigma=5.11)\n', (2683, 2701), False, 'from scipy import ndimage\n'), ((2479, 2496), 'cv2.flip', 'cv2.flip', (['data', '(0)'], {}), '(data, 0)\n', (2487, 2496), False, 'import cv2\n'), ((2522, 2539), 'cv2.flip', 'cv2.flip', (['data', '(1)'], {}), '(data, 1)\n', (2530, 2539), False, 'import cv2\n'), ((2901, 2937), 'numpy.float32', 'np.float32', (['[[1, 0, 84], [0, 1, 56]]'], {}), '([[1, 0, 84], [0, 1, 56]])\n', (2911, 2937), True, 'import numpy as np\n')]
# Program 8_plot_data_perstation.py written by <NAME> (<EMAIL>) file_name= '8_plot_data_perstation.py' # Uses receiver functions computed to produce a nice graph for every directory in DATARF import obspy from obspy import read from obspy.core import Stream from obspy.core import trace import matplotlib.pyplot as plt import os.path import time import glob import shutil import numpy as np from obspy import UTCDateTime import receiver_function as rf direc = 'DataRF' flag = 'SV' filt = 'jgf1' stadirs = glob.glob(direc+'/*') for stadir in stadirs: print(stadir) with open(stadir+'/selected_RFs_jgf1.dat','r') as f: goodrfs= f.read().replace('\n', '') # loop through events stalist=glob.glob(stadir+'/*.PICKLE') print(stalist) c=0 # Loop through data if(len(stalist)>0): for i in range(len(stalist)): #range(cat.count()): print(stalist[i]) seis=read(stalist[i],format='PICKLE') distdg=seis[0].stats['dist'] if stalist[i] in goodrfs: good=True print('YAY',seis[0].stats['event'].magnitudes[0].mag) else: good=False print('NO',seis[0].stats['event'].magnitudes[0].mag) tshift=UTCDateTime(seis[0].stats['starttime'])-seis[0].stats['event'].origins[0].time #Ptime=Ptime plt.subplot(1,3,1) vertical = seis.select(channel='BHZ')[0] vertical.filter('bandpass', freqmin=0.01,freqmax=.1, corners=2, zerophase=True) windowed=vertical[np.where(vertical.times()>seis[0].stats.traveltimes['P']-100) and np.where(vertical.times()<seis[0].stats.traveltimes['P']+100)] norm=np.max(np.abs(windowed)) if good: plt.plot(vertical.times()-seis[0].stats.traveltimes['P'], vertical.data/norm+np.round(distdg),'k') else: plt.plot(vertical.times()-seis[0].stats.traveltimes['P'], vertical.data/norm+np.round(distdg),'r') #plt.plot(seis[0].stats.traveltimes['P'],np.round(distdg),'.b') #plt.plot(seis[0].stats.traveltimes['S'],np.round(distdg),'.g') plt.xlim([-25,150]) plt.ylim([30,92]) plt.subplot(1,3,2) radial = seis.select(channel='BHR')[0] radial.filter('bandpass', freqmin=0.01,freqmax=.1, corners=2, zerophase=True) windowed=vertical[np.where(radial.times()>seis[0].stats.traveltimes['P']-100) and np.where(radial.times()<seis[0].stats.traveltimes['P']+100)] norm=np.max(np.abs(windowed)) if good: plt.plot(radial.times()-seis[0].stats.traveltimes['P'], radial.data/norm+np.round(distdg),'k') else: plt.plot(radial.times()-seis[0].stats.traveltimes['P'], radial.data/norm+np.round(distdg),'r') plt.xlim([-25,150]) plt.plot(seis[0].stats.traveltimes['P'],np.round(distdg),'.b') plt.plot(seis[0].stats.traveltimes['S'],np.round(distdg),'.g') plt.ylim([30,92]) plt.subplot(1,3,3) RF=getattr(seis[0],filt)['iterativedeconvolution'] time=getattr(seis[0],filt)['time'] if good: plt.plot(time, RF/np.max(np.abs(RF))+np.round(distdg),'k') else: plt.plot(time, RF/np.max(np.abs(RF))+np.round(distdg),'r') plt.subplot(1,3,1) plt.title('vertical') plt.ylabel('distance') plt.xlabel('time') plt.subplot(1,3,2) plt.title('radial') plt.ylabel('distance') plt.xlabel('time') plt.subplot(1,3,3) plt.title('receiver functions') plt.ylabel('distance') plt.xlabel('time') #plt.xlim([-150,1000]) plt.show()
[ "obspy.read", "numpy.abs", "matplotlib.pyplot.ylabel", "numpy.round", "matplotlib.pyplot.xlabel", "obspy.UTCDateTime", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "matplotlib.pyplot.ylim", "matplotlib.pyplot.subplot", "glob.glob", "matplotlib.pyplot.show" ]
[((509, 532), 'glob.glob', 'glob.glob', (["(direc + '/*')"], {}), "(direc + '/*')\n", (518, 532), False, 'import glob\n'), ((713, 744), 'glob.glob', 'glob.glob', (["(stadir + '/*.PICKLE')"], {}), "(stadir + '/*.PICKLE')\n", (722, 744), False, 'import glob\n'), ((3703, 3723), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(1)'], {}), '(1, 3, 1)\n', (3714, 3723), True, 'import matplotlib.pyplot as plt\n'), ((3730, 3751), 'matplotlib.pyplot.title', 'plt.title', (['"""vertical"""'], {}), "('vertical')\n", (3739, 3751), True, 'import matplotlib.pyplot as plt\n'), ((3760, 3782), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""distance"""'], {}), "('distance')\n", (3770, 3782), True, 'import matplotlib.pyplot as plt\n'), ((3791, 3809), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (3801, 3809), True, 'import matplotlib.pyplot as plt\n'), ((3818, 3838), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(2)'], {}), '(1, 3, 2)\n', (3829, 3838), True, 'import matplotlib.pyplot as plt\n'), ((3845, 3864), 'matplotlib.pyplot.title', 'plt.title', (['"""radial"""'], {}), "('radial')\n", (3854, 3864), True, 'import matplotlib.pyplot as plt\n'), ((3873, 3895), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""distance"""'], {}), "('distance')\n", (3883, 3895), True, 'import matplotlib.pyplot as plt\n'), ((3904, 3922), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (3914, 3922), True, 'import matplotlib.pyplot as plt\n'), ((3931, 3951), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(3)'], {}), '(1, 3, 3)\n', (3942, 3951), True, 'import matplotlib.pyplot as plt\n'), ((3958, 3989), 'matplotlib.pyplot.title', 'plt.title', (['"""receiver functions"""'], {}), "('receiver functions')\n", (3967, 3989), True, 'import matplotlib.pyplot as plt\n'), ((3998, 4020), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""distance"""'], {}), "('distance')\n", (4008, 4020), True, 'import matplotlib.pyplot as plt\n'), ((4029, 4047), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (4039, 4047), True, 'import matplotlib.pyplot as plt\n'), ((4095, 4105), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4103, 4105), True, 'import matplotlib.pyplot as plt\n'), ((932, 965), 'obspy.read', 'read', (['stalist[i]'], {'format': '"""PICKLE"""'}), "(stalist[i], format='PICKLE')\n", (936, 965), False, 'from obspy import read\n'), ((1436, 1456), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(1)'], {}), '(1, 3, 1)\n', (1447, 1456), True, 'import matplotlib.pyplot as plt\n'), ((2298, 2318), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-25, 150]'], {}), '([-25, 150])\n', (2306, 2318), True, 'import matplotlib.pyplot as plt\n'), ((2334, 2352), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[30, 92]'], {}), '([30, 92])\n', (2342, 2352), True, 'import matplotlib.pyplot as plt\n'), ((2368, 2388), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(2)'], {}), '(1, 3, 2)\n', (2379, 2388), True, 'import matplotlib.pyplot as plt\n'), ((3035, 3055), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-25, 150]'], {}), '([-25, 150])\n', (3043, 3055), True, 'import matplotlib.pyplot as plt\n'), ((3247, 3265), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[30, 92]'], {}), '([30, 92])\n', (3255, 3265), True, 'import matplotlib.pyplot as plt\n'), ((3294, 3314), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(3)'], {}), '(1, 3, 3)\n', (3305, 3314), True, 'import matplotlib.pyplot as plt\n'), ((1309, 1348), 'obspy.UTCDateTime', 'UTCDateTime', (["seis[0].stats['starttime']"], {}), "(seis[0].stats['starttime'])\n", (1320, 1348), False, 'from obspy import UTCDateTime\n'), ((1799, 1815), 'numpy.abs', 'np.abs', (['windowed'], {}), '(windowed)\n', (1805, 1815), True, 'import numpy as np\n'), ((2724, 2740), 'numpy.abs', 'np.abs', (['windowed'], {}), '(windowed)\n', (2730, 2740), True, 'import numpy as np\n'), ((3129, 3145), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (3137, 3145), True, 'import numpy as np\n'), ((3208, 3224), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (3216, 3224), True, 'import numpy as np\n'), ((1939, 1955), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (1947, 1955), True, 'import numpy as np\n'), ((2080, 2096), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (2088, 2096), True, 'import numpy as np\n'), ((2860, 2876), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (2868, 2876), True, 'import numpy as np\n'), ((2997, 3013), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (3005, 3013), True, 'import numpy as np\n'), ((3513, 3529), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (3521, 3529), True, 'import numpy as np\n'), ((3614, 3630), 'numpy.round', 'np.round', (['distdg'], {}), '(distdg)\n', (3622, 3630), True, 'import numpy as np\n'), ((3501, 3511), 'numpy.abs', 'np.abs', (['RF'], {}), '(RF)\n', (3507, 3511), True, 'import numpy as np\n'), ((3602, 3612), 'numpy.abs', 'np.abs', (['RF'], {}), '(RF)\n', (3608, 3612), True, 'import numpy as np\n')]
import tensorflow as tf from netensorflow.ann.ANN import ANN from netensorflow.ann.macro_layer.MacroLayer import MacroLayer from netensorflow.ann.macro_layer.layer_structure.InputLayerStructure import InputLayerStructure from netensorflow.ann.macro_layer.layer_structure.LayerStructure import LayerStructure, LayerType from netensorflow.ann.macro_layer.layer_structure.layers.FullConnected import FullConnected from netensorflow.ann.macro_layer.layer_structure.layers.FullConnectedWithSoftmaxLayer import FullConnectedWithSoftmaxLayer ''' ann Creation and simple usage, the goal of this code is simply run the most simpler artificial neural network ''' def main(): # tensorflow tf_sess = tf.Session() # Layers: input_dim = [None, 3] hidden_layer = FullConnected(inputs_amount=20) out_layer = FullConnectedWithSoftmaxLayer(inputs_amount=10) # Layer Structures input_layer_structure = InputLayerStructure(input_dim) hidden_layer_structure = LayerStructure('Hidden', layer_type=LayerType.ONE_DIMENSION, layers=[hidden_layer]) output_layer_structure = LayerStructure('Output', layer_type=LayerType.ONE_DIMENSION,layers=[out_layer]) # Macro Layer macro_layers = MacroLayer(layers_structure=[input_layer_structure, hidden_layer_structure, output_layer_structure]) # ann ann = ANN(macro_layers=macro_layers, tf_session=tf_sess, base_folder='./tensorboard_logs/') ann.connect_and_initialize() # Execute for it in range(100): import numpy as np input_tensor_value = [np.random.uniform(0.0, 10.0, 3)] print(ann.run(global_iteration=it, input_tensor_value=input_tensor_value)) if __name__ == '__main__': main()
[ "netensorflow.ann.macro_layer.layer_structure.InputLayerStructure.InputLayerStructure", "netensorflow.ann.macro_layer.layer_structure.layers.FullConnectedWithSoftmaxLayer.FullConnectedWithSoftmaxLayer", "tensorflow.Session", "netensorflow.ann.macro_layer.layer_structure.layers.FullConnected.FullConnected", "netensorflow.ann.macro_layer.MacroLayer.MacroLayer", "netensorflow.ann.ANN.ANN", "numpy.random.uniform", "netensorflow.ann.macro_layer.layer_structure.LayerStructure.LayerStructure" ]
[((706, 718), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (716, 718), True, 'import tensorflow as tf\n'), ((779, 810), 'netensorflow.ann.macro_layer.layer_structure.layers.FullConnected.FullConnected', 'FullConnected', ([], {'inputs_amount': '(20)'}), '(inputs_amount=20)\n', (792, 810), False, 'from netensorflow.ann.macro_layer.layer_structure.layers.FullConnected import FullConnected\n'), ((827, 874), 'netensorflow.ann.macro_layer.layer_structure.layers.FullConnectedWithSoftmaxLayer.FullConnectedWithSoftmaxLayer', 'FullConnectedWithSoftmaxLayer', ([], {'inputs_amount': '(10)'}), '(inputs_amount=10)\n', (856, 874), False, 'from netensorflow.ann.macro_layer.layer_structure.layers.FullConnectedWithSoftmaxLayer import FullConnectedWithSoftmaxLayer\n'), ((927, 957), 'netensorflow.ann.macro_layer.layer_structure.InputLayerStructure.InputLayerStructure', 'InputLayerStructure', (['input_dim'], {}), '(input_dim)\n', (946, 957), False, 'from netensorflow.ann.macro_layer.layer_structure.InputLayerStructure import InputLayerStructure\n'), ((987, 1075), 'netensorflow.ann.macro_layer.layer_structure.LayerStructure.LayerStructure', 'LayerStructure', (['"""Hidden"""'], {'layer_type': 'LayerType.ONE_DIMENSION', 'layers': '[hidden_layer]'}), "('Hidden', layer_type=LayerType.ONE_DIMENSION, layers=[\n hidden_layer])\n", (1001, 1075), False, 'from netensorflow.ann.macro_layer.layer_structure.LayerStructure import LayerStructure, LayerType\n'), ((1100, 1185), 'netensorflow.ann.macro_layer.layer_structure.LayerStructure.LayerStructure', 'LayerStructure', (['"""Output"""'], {'layer_type': 'LayerType.ONE_DIMENSION', 'layers': '[out_layer]'}), "('Output', layer_type=LayerType.ONE_DIMENSION, layers=[out_layer]\n )\n", (1114, 1185), False, 'from netensorflow.ann.macro_layer.layer_structure.LayerStructure import LayerStructure, LayerType\n'), ((1218, 1322), 'netensorflow.ann.macro_layer.MacroLayer.MacroLayer', 'MacroLayer', ([], {'layers_structure': '[input_layer_structure, hidden_layer_structure, output_layer_structure]'}), '(layers_structure=[input_layer_structure, hidden_layer_structure,\n output_layer_structure])\n', (1228, 1322), False, 'from netensorflow.ann.macro_layer.MacroLayer import MacroLayer\n'), ((1340, 1430), 'netensorflow.ann.ANN.ANN', 'ANN', ([], {'macro_layers': 'macro_layers', 'tf_session': 'tf_sess', 'base_folder': '"""./tensorboard_logs/"""'}), "(macro_layers=macro_layers, tf_session=tf_sess, base_folder=\n './tensorboard_logs/')\n", (1343, 1430), False, 'from netensorflow.ann.ANN import ANN\n'), ((1557, 1588), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(10.0)', '(3)'], {}), '(0.0, 10.0, 3)\n', (1574, 1588), True, 'import numpy as np\n')]
# import modules import numpy as np import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size") args = vars(ap.parse_args()) # define the lower and upper boundaries of the colors in the HSV color space lower = {'red': (166, 84, 141), 'green': (66, 122, 129), 'blue': (97, 100, 117), 'yellow': (23, 59, 119), 'orange': (0, 50, 80)} # assign new item lower['blue'] = (93, 10, 0) upper = {'red': (186, 255, 255), 'green': (86, 255, 255), 'blue': (117, 255, 255), 'yellow': (54, 255, 255), 'orange': (20, 255, 255)} # define standard colors for circle around the object colors = {'red': (0, 0, 255), 'green': (0, 255, 0), 'blue': (255, 0, 0), 'yellow': (0, 255, 217), 'orange': (0, 140, 255)} camera = cv2.VideoCapture(0 + cv2.CAP_DSHOW) # keep looping while True: # grab the current frame (grabbed, frame) = camera.read() # resize the frame, blur it, and convert it to the HSV # color space frame = cv2.resize(frame, (640, 480)) blurred = cv2.GaussianBlur(frame, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # for each color in dictionary check object in frame for key, value in upper.items(): # construct a mask for the color from dictionary`1, then perform # a series of dilations and erosions to remove any small # blobs left in the mask kernel = np.ones((9, 9), np.uint8) mask = cv2.inRange(hsv, lower[key], upper[key]) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size. Correct this value for your obect's size if radius > 0.5: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(frame, (int(x), int(y)), int(radius), colors[key], 2) cv2.putText(frame, key, (int(x - radius), int(y - radius)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, colors[key], 2) # show the frame to our screen cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the 'q' key is pressed, stop the loop if key == ord("q"): break # cleanup the camera and close any open windows camera.release() cv2.destroyAllWindows()
[ "numpy.ones", "argparse.ArgumentParser", "cv2.inRange", "cv2.minEnclosingCircle", "cv2.imshow", "cv2.morphologyEx", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.cvtColor", "cv2.moments", "cv2.resize", "cv2.GaussianBlur", "cv2.waitKey" ]
[((125, 150), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (148, 150), False, 'import argparse\n'), ((853, 888), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0 + cv2.CAP_DSHOW)'], {}), '(0 + cv2.CAP_DSHOW)\n', (869, 888), False, 'import cv2\n'), ((3087, 3110), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3108, 3110), False, 'import cv2\n'), ((1073, 1102), 'cv2.resize', 'cv2.resize', (['frame', '(640, 480)'], {}), '(frame, (640, 480))\n', (1083, 1102), False, 'import cv2\n'), ((1118, 1154), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['frame', '(11, 11)', '(0)'], {}), '(frame, (11, 11), 0)\n', (1134, 1154), False, 'import cv2\n'), ((1165, 1205), 'cv2.cvtColor', 'cv2.cvtColor', (['blurred', 'cv2.COLOR_BGR2HSV'], {}), '(blurred, cv2.COLOR_BGR2HSV)\n', (1177, 1205), False, 'import cv2\n'), ((2876, 2902), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (2886, 2902), False, 'import cv2\n'), ((1488, 1513), 'numpy.ones', 'np.ones', (['(9, 9)', 'np.uint8'], {}), '((9, 9), np.uint8)\n', (1495, 1513), True, 'import numpy as np\n'), ((1529, 1569), 'cv2.inRange', 'cv2.inRange', (['hsv', 'lower[key]', 'upper[key]'], {}), '(hsv, lower[key], upper[key])\n', (1540, 1569), False, 'import cv2\n'), ((1585, 1631), 'cv2.morphologyEx', 'cv2.morphologyEx', (['mask', 'cv2.MORPH_OPEN', 'kernel'], {}), '(mask, cv2.MORPH_OPEN, kernel)\n', (1601, 1631), False, 'import cv2\n'), ((1647, 1694), 'cv2.morphologyEx', 'cv2.morphologyEx', (['mask', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(mask, cv2.MORPH_CLOSE, kernel)\n', (1663, 1694), False, 'import cv2\n'), ((2914, 2928), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2925, 2928), False, 'import cv2\n'), ((2249, 2274), 'cv2.minEnclosingCircle', 'cv2.minEnclosingCircle', (['c'], {}), '(c)\n', (2271, 2274), False, 'import cv2\n'), ((2291, 2305), 'cv2.moments', 'cv2.moments', (['c'], {}), '(c)\n', (2302, 2305), False, 'import cv2\n')]
from CHECLabPy.plotting.setup import Plotter from CHECLabPy.plotting.camera import CameraImage from CHECLabPy.utils.files import create_directory from CHECLabPy.utils.mapping import get_ctapipe_camera_geometry from sstcam_sandbox import get_plot, get_data from os.path import join from matplotlib import pyplot as plt from tqdm import tqdm import numpy as np import pandas as pd import warnings from CHECOnsky.calib import obtain_cleaning_mask from CHECLabPy.calib import TimeCalibrator from mpl_toolkits.axes_grid1 import make_axes_locatable from IPython import embed def colorbar(mappable, label): ax = mappable.axes fig = ax.figure divider = make_axes_locatable(ax) _ = divider.append_axes("right", size="10%", pad=0.15) cax = divider.append_axes("right", size="10%", pad=0.15) return fig.colorbar(mappable, label=label, cax=cax, aspect=20) class CameraMovie(Plotter): def __init__(self, mapping, output_path): super().__init__() self.fig = plt.figure(figsize=(8, 3)) self.ax_goldfish = self.fig.add_axes([0, 0, 0.4, 1]) self.ax_image = self.fig.add_axes([0.4, 0, 0.4, 1]) self.ax_cb = self.fig.add_axes([0.68, 0, 0.15, 1]) self.ax_image.patch.set_alpha(0) self.ax_cb.patch.set_alpha(0) self.ax_cb.axis('off') self.ci_image = CameraImage.from_mapping(mapping, ax=self.ax_image) self.ci_image.add_colorbar( "Pixel Amplitude (p.e.)", ax=self.ax_cb, pad=-0.5 ) self.ci_goldfish = CameraImage.from_mapping(mapping, ax=self.ax_goldfish) self.output_path = output_path self.source_point_image = None self.source_point_goldfish = None self.source_label_image = None self.source_label_goldfish = None self.alpha_line = None self.timestamp = None self.iframe = 0 def set_source_position(self, x_src, y_src): offset = 0.004 if self.source_point_image is None: self.source_point_image, = self.ax_image.plot( x_src, y_src, 'x', c='red' ) self.source_label_image = self.ax_image.text( x_src+offset, y_src+offset, "Mrk421", color='red', size=10 ) else: self.source_point_image.set_xdata(x_src) self.source_point_image.set_ydata(y_src) self.source_label_image.set_position((x_src+offset, y_src+offset)) if self.source_point_goldfish is None: self.source_point_goldfish, = self.ax_goldfish.plot( x_src, y_src, 'x', c='red' ) self.source_label_goldfish = self.ax_goldfish.text( x_src+offset, y_src+offset, "Mrk421", color='red', size=10 ) else: self.source_point_goldfish.set_xdata(x_src) self.source_point_goldfish.set_ydata(y_src) self.source_label_goldfish.set_position((x_src+offset, y_src+offset)) def set_timestamp(self, timestamp): timestamp_str = str(timestamp) timestamp_len = len(timestamp_str) missing = 29 - timestamp_len timestamp_str += "0" * missing if self.timestamp is None: self.timestamp = self.fig.text( 0.4, -0.1, timestamp_str, horizontalalignment='center', size=12 ) else: self.timestamp.set_text(timestamp_str) def set_image(self, image, min_=None, max_=None): self.ci_image.image = image self.ci_image.set_limits_minmax(min_, max_) def set_goldfish(self, slice, min_=None, max_=None): self.ci_goldfish.image = slice self.ci_goldfish.set_limits_minmax(min_, max_) def set_alpha_line(self, cog_x, cog_y, psi): y_min, y_max = self.ax_image.get_ylim() x_min = cog_x - (cog_y - y_min) / np.tan(psi) x_max = cog_x - (cog_y - y_max) / np.tan(psi) if self.alpha_line is None: self.alpha_line, = self.ax_image.plot( [x_min, x_max], [y_min, y_max], ls="--", c='red' ) else: self.alpha_line.set_xdata([x_min, x_max]) self.alpha_line.set_ydata([y_min, y_max]) def save_frame(self): path = self.output_path.format(self.iframe) self.fig.savefig(path, bbox_inches='tight') self.iframe += 1 def main(): path = get_data("d190717_alpha/wobble.h5") with pd.HDFStore(path, mode='r') as store: df = store['data'].loc[::4] mapping = store['mapping'] with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) mapping.metadata = store.get_storer('mapping').attrs.metadata tc = TimeCalibrator() geom = get_ctapipe_camera_geometry(mapping) n_row = df.index.size p_camera = CameraMovie(mapping, get_plot( "d190717_alpha/wobble_animation_goldfish/frames/{:04d}.png" )) for _, row in tqdm(df.iterrows(), total=n_row): timestamp = row['timestamp'] iobs = row['iobs'] iev = row['iev'] x_src = row['x_src'] y_src = row['y_src'] dl1 = row['dl1'].values time = row['dl1_pulse_time'].values r1 = row['r1'] x_cog = row['x_cog'] y_cog = row['y_cog'] psi = row['psi'] p_camera.set_source_position(x_src, y_src) n_pixels, n_samples = r1.shape shifted = tc(r1) mask = obtain_cleaning_mask(geom, dl1, time) if not mask.any(): msg = f"No pixels survived cleaning for: RUN {iobs} IEV {iev}" print(msg) continue # raise ValueError(msg) dl1_ma = np.ma.masked_array(dl1, mask=~mask) min_pixel = dl1_ma.argmin() max_pixel = dl1_ma.argmax() min_image = -4 max_image = 0.7 * dl1.max() min_gf = shifted[max_pixel, :20].min() max_gf = shifted[max_pixel].max() * 0.8 st = int(np.min(time[mask]) - 3) et = int(np.max(time[mask]) + 6) st = st if st > 0 else 0 et = et if et < n_samples else n_samples # embed() p_camera.set_image(dl1, min_image, max_image) for t in range(st, et, 3): slice_ = shifted[:, t] p_camera.set_timestamp(timestamp + pd.Timedelta(f"{t}ns")) p_camera.set_goldfish(slice_, min_gf, max_gf) p_camera.save_frame() if __name__ == '__main__': main()
[ "CHECLabPy.plotting.camera.CameraImage.from_mapping", "sstcam_sandbox.get_plot", "CHECOnsky.calib.obtain_cleaning_mask", "numpy.tan", "CHECLabPy.utils.mapping.get_ctapipe_camera_geometry", "CHECLabPy.calib.TimeCalibrator", "pandas.Timedelta", "warnings.catch_warnings", "numpy.max", "sstcam_sandbox.get_data", "matplotlib.pyplot.figure", "mpl_toolkits.axes_grid1.make_axes_locatable", "numpy.min", "warnings.simplefilter", "numpy.ma.masked_array", "pandas.HDFStore" ]
[((659, 682), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (678, 682), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((4380, 4415), 'sstcam_sandbox.get_data', 'get_data', (['"""d190717_alpha/wobble.h5"""'], {}), "('d190717_alpha/wobble.h5')\n", (4388, 4415), False, 'from sstcam_sandbox import get_plot, get_data\n'), ((4715, 4731), 'CHECLabPy.calib.TimeCalibrator', 'TimeCalibrator', ([], {}), '()\n', (4729, 4731), False, 'from CHECLabPy.calib import TimeCalibrator\n'), ((4743, 4779), 'CHECLabPy.utils.mapping.get_ctapipe_camera_geometry', 'get_ctapipe_camera_geometry', (['mapping'], {}), '(mapping)\n', (4770, 4779), False, 'from CHECLabPy.utils.mapping import get_ctapipe_camera_geometry\n'), ((993, 1019), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 3)'}), '(figsize=(8, 3))\n', (1003, 1019), True, 'from matplotlib import pyplot as plt\n'), ((1334, 1385), 'CHECLabPy.plotting.camera.CameraImage.from_mapping', 'CameraImage.from_mapping', (['mapping'], {'ax': 'self.ax_image'}), '(mapping, ax=self.ax_image)\n', (1358, 1385), False, 'from CHECLabPy.plotting.camera import CameraImage\n'), ((1521, 1575), 'CHECLabPy.plotting.camera.CameraImage.from_mapping', 'CameraImage.from_mapping', (['mapping'], {'ax': 'self.ax_goldfish'}), '(mapping, ax=self.ax_goldfish)\n', (1545, 1575), False, 'from CHECLabPy.plotting.camera import CameraImage\n'), ((4425, 4452), 'pandas.HDFStore', 'pd.HDFStore', (['path'], {'mode': '"""r"""'}), "(path, mode='r')\n", (4436, 4452), True, 'import pandas as pd\n'), ((4843, 4912), 'sstcam_sandbox.get_plot', 'get_plot', (['"""d190717_alpha/wobble_animation_goldfish/frames/{:04d}.png"""'], {}), "('d190717_alpha/wobble_animation_goldfish/frames/{:04d}.png')\n", (4851, 4912), False, 'from sstcam_sandbox import get_plot, get_data\n'), ((5442, 5479), 'CHECOnsky.calib.obtain_cleaning_mask', 'obtain_cleaning_mask', (['geom', 'dl1', 'time'], {}), '(geom, dl1, time)\n', (5462, 5479), False, 'from CHECOnsky.calib import obtain_cleaning_mask\n'), ((5680, 5715), 'numpy.ma.masked_array', 'np.ma.masked_array', (['dl1'], {'mask': '(~mask)'}), '(dl1, mask=~mask)\n', (5698, 5715), True, 'import numpy as np\n'), ((4547, 4572), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (4570, 4572), False, 'import warnings\n'), ((4586, 4630), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (4607, 4630), False, 'import warnings\n'), ((3845, 3856), 'numpy.tan', 'np.tan', (['psi'], {}), '(psi)\n', (3851, 3856), True, 'import numpy as np\n'), ((3899, 3910), 'numpy.tan', 'np.tan', (['psi'], {}), '(psi)\n', (3905, 3910), True, 'import numpy as np\n'), ((5963, 5981), 'numpy.min', 'np.min', (['time[mask]'], {}), '(time[mask])\n', (5969, 5981), True, 'import numpy as np\n'), ((6004, 6022), 'numpy.max', 'np.max', (['time[mask]'], {}), '(time[mask])\n', (6010, 6022), True, 'import numpy as np\n'), ((6301, 6323), 'pandas.Timedelta', 'pd.Timedelta', (['f"""{t}ns"""'], {}), "(f'{t}ns')\n", (6313, 6323), True, 'import pandas as pd\n')]
import argparse import numpy as np import os import random import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from datasets import custom_collate_fn, load_data, WebDataset from models import WebObjExtractionNet from train import train_model, evaluate_model from utils import print_and_log ########## CMDLINE ARGS ########## parser = argparse.ArgumentParser('Train Model') parser.add_argument('-d', '--device', type=int, default=0) parser.add_argument('-e', '--n_epochs', type=int, default=100) parser.add_argument('-bb', '--backbone', type=str, default='alexnet', choices=['alexnet', 'resnet']) parser.add_argument('-tc', '--trainable_convnet', type=int, default=1, choices=[0,1]) parser.add_argument('-lr', '--learning_rate', type=float, default=0.0005) parser.add_argument('-bs', '--batch_size', type=int, default=25) parser.add_argument('-cs', '--context_size', type=int, default=6) parser.add_argument('-att', '--attention', type=int, default=1, choices=[0,1]) parser.add_argument('-hd', '--hidden_dim', type=int, default=300) parser.add_argument('-r', '--roi', type=int, default=1) parser.add_argument('-bbf', '--bbox_feat', type=int, default=1, choices=[0,1]) parser.add_argument('-wd', '--weight_decay', type=float, default=0) parser.add_argument('-dp', '--drop_prob', type=float, default=0.5) parser.add_argument('-mbb', '--max_bg_boxes', type=int, default=-1) parser.add_argument('-nw', '--num_workers', type=int, default=8) args = parser.parse_args() device = torch.device('cuda:%d' % args.device if torch.cuda.is_available() else 'cpu') ########## MAKING RESULTS REPRODUCIBLE ########## seed = 1 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False ########## PARAMETERS ########## N_CLASSES = 4 CLASS_NAMES = ['BG', 'Price', 'Title', 'Image'] IMG_HEIGHT = 1280 # Image assumed to have same height and width EVAL_INTERVAL = 3 # Number of Epochs after which model is evaluated NUM_WORKERS = args.num_workers # multithreaded data loading DATA_DIR = '/shared/data_product_info/v2_8.3k/' # Contains .png and .pkl files for train and test data OUTPUT_DIR = 'results_attn' # logs are saved here! # NOTE: if same hyperparameter configuration is run again, previous log file and saved model will be overwritten if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) SPLIT_DIR = 'splits' train_img_ids = np.loadtxt('%s/train_imgs.txt' % SPLIT_DIR, dtype=np.int32) val_img_ids = np.loadtxt('%s/val_imgs.txt' % SPLIT_DIR, dtype=np.int32) test_img_ids = np.loadtxt('%s/test_imgs.txt' % SPLIT_DIR, dtype=np.int32) test_domains = np.loadtxt('%s/test_domains.txt' % SPLIT_DIR, dtype=str) # for calculating macro accuracy ########## HYPERPARAMETERS ########## N_EPOCHS = args.n_epochs BACKBONE = args.backbone TRAINABLE_CONVNET = bool(args.trainable_convnet) LEARNING_RATE = args.learning_rate BATCH_SIZE = args.batch_size CONTEXT_SIZE = args.context_size USE_ATTENTION = bool(args.attention) HIDDEN_DIM = args.hidden_dim ROI_POOL_OUTPUT_SIZE = (args.roi, args.roi) USE_BBOX_FEAT = bool(args.bbox_feat) WEIGHT_DECAY = args.weight_decay DROP_PROB = args.drop_prob MAX_BG_BOXES = args.max_bg_boxes if args.max_bg_boxes > 0 else -1 params = '%s lr-%.0e batch-%d cs-%d att-%d hd-%d roi-%d bbf-%d wd-%.0e dp-%.2f mbb-%d' % (BACKBONE, LEARNING_RATE, BATCH_SIZE, CONTEXT_SIZE, USE_ATTENTION, HIDDEN_DIM, ROI_POOL_OUTPUT_SIZE[0], USE_BBOX_FEAT, WEIGHT_DECAY, DROP_PROB, MAX_BG_BOXES) log_file = '%s/%s logs.txt' % (OUTPUT_DIR, params) test_acc_domainwise_file = '%s/%s test_acc_domainwise.csv' % (OUTPUT_DIR, params) model_save_file = '%s/%s saved_model.pth' % (OUTPUT_DIR, params) print('logs will be saved in \"%s\"' % (log_file)) print_and_log('Backbone Convnet: %s' % (BACKBONE), log_file, 'w') print_and_log('Trainable Convnet: %s' % (TRAINABLE_CONVNET), log_file) print_and_log('Learning Rate: %.0e' % (LEARNING_RATE), log_file) print_and_log('Batch Size: %d' % (BATCH_SIZE), log_file) print_and_log('Context Size: %d' % (CONTEXT_SIZE), log_file) print_and_log('Attention: %s' % (USE_ATTENTION), log_file) print_and_log('Hidden Dim: %d' % (HIDDEN_DIM), log_file) print_and_log('RoI Pool Output Size: (%d, %d)' % ROI_POOL_OUTPUT_SIZE, log_file) print_and_log('BBox Features: %s' % (USE_BBOX_FEAT), log_file) print_and_log('Weight Decay: %.0e' % (WEIGHT_DECAY), log_file) print_and_log('Dropout Probability: %.2f' % (DROP_PROB), log_file) print_and_log('Max BG Boxes: %d\n' % (MAX_BG_BOXES), log_file) ########## DATA LOADERS ########## train_loader, val_loader, test_loader = load_data(DATA_DIR, train_img_ids, val_img_ids, test_img_ids, CONTEXT_SIZE, BATCH_SIZE, NUM_WORKERS, MAX_BG_BOXES) ########## CREATE MODEL & LOSS FN ########## model = WebObjExtractionNet(ROI_POOL_OUTPUT_SIZE, IMG_HEIGHT, N_CLASSES, BACKBONE, USE_ATTENTION, HIDDEN_DIM, TRAINABLE_CONVNET, DROP_PROB, USE_BBOX_FEAT, CLASS_NAMES).to(device) optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY) criterion = nn.CrossEntropyLoss(reduction='sum').to(device) ########## TRAIN MODEL ########## train_model(model, train_loader, optimizer, criterion, N_EPOCHS, device, val_loader, EVAL_INTERVAL, log_file, 'ckpt_%d.pth' % args.device) ########## EVALUATE TEST PERFORMANCE ########## print('Evaluating test data class wise accuracies...') evaluate_model(model, test_loader, criterion, device, 'TEST', log_file) with open (test_acc_domainwise_file, 'w') as f: f.write('Domain,N_examples,%s,%s,%s\n' % (CLASS_NAMES[1], CLASS_NAMES[2], CLASS_NAMES[3])) print('Evaluating per domain accuracy for %d test domains...' % len(test_domains)) for domain in test_domains: print('\n---> Domain:', domain) test_dataset = WebDataset(DATA_DIR, np.loadtxt('%s/domain_wise_imgs/%s.txt' % (SPLIT_DIR, domain), np.int32).reshape(-1), CONTEXT_SIZE, max_bg_boxes=-1) test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=NUM_WORKERS, collate_fn=custom_collate_fn, drop_last=False) per_class_acc = evaluate_model(model, test_loader, criterion, device, 'TEST') with open (test_acc_domainwise_file, 'a') as f: f.write('%s,%d,%.2f,%.2f,%.2f\n' % (domain, len(test_dataset), 100*per_class_acc[1], 100*per_class_acc[2], 100*per_class_acc[3])) macro_acc_test = np.loadtxt(test_acc_domainwise_file, delimiter=',', skiprows=1, dtype=str)[:,2:].astype(np.float32).mean(0) for i in range(1, len(CLASS_NAMES)): print_and_log('%s Macro Acc: %.2f%%' % (CLASS_NAMES[i], macro_acc_test[i-1]), log_file) ########## SAVE MODEL ########## torch.save(model.state_dict(), model_save_file) print_and_log('Model can be restored from \"%s\"' % (model_save_file), log_file)
[ "torch.manual_seed", "os.path.exists", "train.train_model", "argparse.ArgumentParser", "os.makedirs", "utils.print_and_log", "models.WebObjExtractionNet", "torch.nn.CrossEntropyLoss", "random.seed", "numpy.loadtxt", "torch.cuda.is_available", "numpy.random.seed", "torch.utils.data.DataLoader", "torch.cuda.manual_seed", "datasets.load_data", "train.evaluate_model" ]
[((388, 426), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Train Model"""'], {}), "('Train Model')\n", (411, 426), False, 'import argparse\n'), ((1664, 1681), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (1675, 1681), False, 'import random\n'), ((1682, 1702), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1696, 1702), True, 'import numpy as np\n'), ((1703, 1726), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (1720, 1726), False, 'import torch\n'), ((1727, 1755), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (1749, 1755), False, 'import torch\n'), ((2499, 2558), 'numpy.loadtxt', 'np.loadtxt', (["('%s/train_imgs.txt' % SPLIT_DIR)"], {'dtype': 'np.int32'}), "('%s/train_imgs.txt' % SPLIT_DIR, dtype=np.int32)\n", (2509, 2558), True, 'import numpy as np\n'), ((2573, 2630), 'numpy.loadtxt', 'np.loadtxt', (["('%s/val_imgs.txt' % SPLIT_DIR)"], {'dtype': 'np.int32'}), "('%s/val_imgs.txt' % SPLIT_DIR, dtype=np.int32)\n", (2583, 2630), True, 'import numpy as np\n'), ((2646, 2704), 'numpy.loadtxt', 'np.loadtxt', (["('%s/test_imgs.txt' % SPLIT_DIR)"], {'dtype': 'np.int32'}), "('%s/test_imgs.txt' % SPLIT_DIR, dtype=np.int32)\n", (2656, 2704), True, 'import numpy as np\n'), ((2721, 2777), 'numpy.loadtxt', 'np.loadtxt', (["('%s/test_domains.txt' % SPLIT_DIR)"], {'dtype': 'str'}), "('%s/test_domains.txt' % SPLIT_DIR, dtype=str)\n", (2731, 2777), True, 'import numpy as np\n'), ((3821, 3884), 'utils.print_and_log', 'print_and_log', (["('Backbone Convnet: %s' % BACKBONE)", 'log_file', '"""w"""'], {}), "('Backbone Convnet: %s' % BACKBONE, log_file, 'w')\n", (3834, 3884), False, 'from utils import print_and_log\n'), ((3887, 3955), 'utils.print_and_log', 'print_and_log', (["('Trainable Convnet: %s' % TRAINABLE_CONVNET)", 'log_file'], {}), "('Trainable Convnet: %s' % TRAINABLE_CONVNET, log_file)\n", (3900, 3955), False, 'from utils import print_and_log\n'), ((3958, 4020), 'utils.print_and_log', 'print_and_log', (["('Learning Rate: %.0e' % LEARNING_RATE)", 'log_file'], {}), "('Learning Rate: %.0e' % LEARNING_RATE, log_file)\n", (3971, 4020), False, 'from utils import print_and_log\n'), ((4023, 4077), 'utils.print_and_log', 'print_and_log', (["('Batch Size: %d' % BATCH_SIZE)", 'log_file'], {}), "('Batch Size: %d' % BATCH_SIZE, log_file)\n", (4036, 4077), False, 'from utils import print_and_log\n'), ((4080, 4138), 'utils.print_and_log', 'print_and_log', (["('Context Size: %d' % CONTEXT_SIZE)", 'log_file'], {}), "('Context Size: %d' % CONTEXT_SIZE, log_file)\n", (4093, 4138), False, 'from utils import print_and_log\n'), ((4141, 4197), 'utils.print_and_log', 'print_and_log', (["('Attention: %s' % USE_ATTENTION)", 'log_file'], {}), "('Attention: %s' % USE_ATTENTION, log_file)\n", (4154, 4197), False, 'from utils import print_and_log\n'), ((4200, 4254), 'utils.print_and_log', 'print_and_log', (["('Hidden Dim: %d' % HIDDEN_DIM)", 'log_file'], {}), "('Hidden Dim: %d' % HIDDEN_DIM, log_file)\n", (4213, 4254), False, 'from utils import print_and_log\n'), ((4257, 4342), 'utils.print_and_log', 'print_and_log', (["('RoI Pool Output Size: (%d, %d)' % ROI_POOL_OUTPUT_SIZE)", 'log_file'], {}), "('RoI Pool Output Size: (%d, %d)' % ROI_POOL_OUTPUT_SIZE, log_file\n )\n", (4270, 4342), False, 'from utils import print_and_log\n'), ((4338, 4398), 'utils.print_and_log', 'print_and_log', (["('BBox Features: %s' % USE_BBOX_FEAT)", 'log_file'], {}), "('BBox Features: %s' % USE_BBOX_FEAT, log_file)\n", (4351, 4398), False, 'from utils import print_and_log\n'), ((4401, 4461), 'utils.print_and_log', 'print_and_log', (["('Weight Decay: %.0e' % WEIGHT_DECAY)", 'log_file'], {}), "('Weight Decay: %.0e' % WEIGHT_DECAY, log_file)\n", (4414, 4461), False, 'from utils import print_and_log\n'), ((4464, 4528), 'utils.print_and_log', 'print_and_log', (["('Dropout Probability: %.2f' % DROP_PROB)", 'log_file'], {}), "('Dropout Probability: %.2f' % DROP_PROB, log_file)\n", (4477, 4528), False, 'from utils import print_and_log\n'), ((4531, 4591), 'utils.print_and_log', 'print_and_log', (["('Max BG Boxes: %d\\n' % MAX_BG_BOXES)", 'log_file'], {}), "('Max BG Boxes: %d\\n' % MAX_BG_BOXES, log_file)\n", (4544, 4591), False, 'from utils import print_and_log\n'), ((4670, 4788), 'datasets.load_data', 'load_data', (['DATA_DIR', 'train_img_ids', 'val_img_ids', 'test_img_ids', 'CONTEXT_SIZE', 'BATCH_SIZE', 'NUM_WORKERS', 'MAX_BG_BOXES'], {}), '(DATA_DIR, train_img_ids, val_img_ids, test_img_ids, CONTEXT_SIZE,\n BATCH_SIZE, NUM_WORKERS, MAX_BG_BOXES)\n', (4679, 4788), False, 'from datasets import custom_collate_fn, load_data, WebDataset\n'), ((5222, 5364), 'train.train_model', 'train_model', (['model', 'train_loader', 'optimizer', 'criterion', 'N_EPOCHS', 'device', 'val_loader', 'EVAL_INTERVAL', 'log_file', "('ckpt_%d.pth' % args.device)"], {}), "(model, train_loader, optimizer, criterion, N_EPOCHS, device,\n val_loader, EVAL_INTERVAL, log_file, 'ckpt_%d.pth' % args.device)\n", (5233, 5364), False, 'from train import train_model, evaluate_model\n'), ((5465, 5536), 'train.evaluate_model', 'evaluate_model', (['model', 'test_loader', 'criterion', 'device', '"""TEST"""', 'log_file'], {}), "(model, test_loader, criterion, device, 'TEST', log_file)\n", (5479, 5536), False, 'from train import train_model, evaluate_model\n'), ((6741, 6817), 'utils.print_and_log', 'print_and_log', (['(\'Model can be restored from "%s"\' % model_save_file)', 'log_file'], {}), '(\'Model can be restored from "%s"\' % model_save_file, log_file)\n', (6754, 6817), False, 'from utils import print_and_log\n'), ((2405, 2431), 'os.path.exists', 'os.path.exists', (['OUTPUT_DIR'], {}), '(OUTPUT_DIR)\n', (2419, 2431), False, 'import os\n'), ((2437, 2460), 'os.makedirs', 'os.makedirs', (['OUTPUT_DIR'], {}), '(OUTPUT_DIR)\n', (2448, 2460), False, 'import os\n'), ((6004, 6134), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset'], {'batch_size': '(1)', 'shuffle': '(False)', 'num_workers': 'NUM_WORKERS', 'collate_fn': 'custom_collate_fn', 'drop_last': '(False)'}), '(test_dataset, batch_size=1, shuffle=False, num_workers=\n NUM_WORKERS, collate_fn=custom_collate_fn, drop_last=False)\n', (6014, 6134), False, 'from torch.utils.data import DataLoader\n'), ((6151, 6212), 'train.evaluate_model', 'evaluate_model', (['model', 'test_loader', 'criterion', 'device', '"""TEST"""'], {}), "(model, test_loader, criterion, device, 'TEST')\n", (6165, 6212), False, 'from train import train_model, evaluate_model\n'), ((6571, 6665), 'utils.print_and_log', 'print_and_log', (["('%s Macro Acc: %.2f%%' % (CLASS_NAMES[i], macro_acc_test[i - 1]))", 'log_file'], {}), "('%s Macro Acc: %.2f%%' % (CLASS_NAMES[i], macro_acc_test[i - \n 1]), log_file)\n", (6584, 6665), False, 'from utils import print_and_log\n'), ((1566, 1591), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1589, 1591), False, 'import torch\n'), ((4839, 5006), 'models.WebObjExtractionNet', 'WebObjExtractionNet', (['ROI_POOL_OUTPUT_SIZE', 'IMG_HEIGHT', 'N_CLASSES', 'BACKBONE', 'USE_ATTENTION', 'HIDDEN_DIM', 'TRAINABLE_CONVNET', 'DROP_PROB', 'USE_BBOX_FEAT', 'CLASS_NAMES'], {}), '(ROI_POOL_OUTPUT_SIZE, IMG_HEIGHT, N_CLASSES, BACKBONE,\n USE_ATTENTION, HIDDEN_DIM, TRAINABLE_CONVNET, DROP_PROB, USE_BBOX_FEAT,\n CLASS_NAMES)\n', (4858, 5006), False, 'from models import WebObjExtractionNet\n'), ((5139, 5175), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'reduction': '"""sum"""'}), "(reduction='sum')\n", (5158, 5175), True, 'import torch.nn as nn\n'), ((5869, 5941), 'numpy.loadtxt', 'np.loadtxt', (["('%s/domain_wise_imgs/%s.txt' % (SPLIT_DIR, domain))", 'np.int32'], {}), "('%s/domain_wise_imgs/%s.txt' % (SPLIT_DIR, domain), np.int32)\n", (5879, 5941), True, 'import numpy as np\n'), ((6422, 6496), 'numpy.loadtxt', 'np.loadtxt', (['test_acc_domainwise_file'], {'delimiter': '""","""', 'skiprows': '(1)', 'dtype': 'str'}), "(test_acc_domainwise_file, delimiter=',', skiprows=1, dtype=str)\n", (6432, 6496), True, 'import numpy as np\n')]
import numpy as np from typing import Union, Optional, List, Dict, Any from buffers.chunk_buffer import ChunkReplayBuffer class IntrospectiveChunkReplayBuffer(ChunkReplayBuffer): def __init__(self, buffer_size: int, *args, **kwargs): super().__init__(buffer_size, *args, **kwargs) self.sample_counts = np.zeros((buffer_size,), dtype=np.int) self.first_access = np.zeros((buffer_size,), dtype=np.int) - 1 def _log_indices(self, indices): self.sample_counts[indices] += 1 mask = np.zeros_like(self.first_access, dtype=bool) mask[indices] = 1 self.first_access[(self.first_access == -1) & mask] = self.pos def add(self, obs: np.ndarray, next_obs: np.ndarray, action: np.ndarray, reward: np.ndarray, done: np.ndarray, infos: List[Dict[str, Any]] ): super().add(obs, next_obs, action, reward, done, infos) def _get_chunk_batches(self, beginnings): sampled_indices = super()._get_chunk_batches(beginnings) self._log_indices(sampled_indices.flatten()) return sampled_indices
[ "numpy.zeros", "numpy.zeros_like" ]
[((333, 371), 'numpy.zeros', 'np.zeros', (['(buffer_size,)'], {'dtype': 'np.int'}), '((buffer_size,), dtype=np.int)\n', (341, 371), True, 'import numpy as np\n'), ((537, 581), 'numpy.zeros_like', 'np.zeros_like', (['self.first_access'], {'dtype': 'bool'}), '(self.first_access, dtype=bool)\n', (550, 581), True, 'import numpy as np\n'), ((400, 438), 'numpy.zeros', 'np.zeros', (['(buffer_size,)'], {'dtype': 'np.int'}), '((buffer_size,), dtype=np.int)\n', (408, 438), True, 'import numpy as np\n')]
""" Identify low-level jets in wind profile data. <NAME> December 2020 """ import numpy as np import xarray as xr def detect_llj(x, axis=None, falloff=0, output='strength', inverse=False): """ Identify maxima in wind profiles. args: - x : ndarray with wind profile data - axis : specifies the vertical dimension is internally used with np.apply_along_axis - falloff : threshold for labeling as low-level jet default 0; can be masked later, e.g. llj[falloff>2.0] - output : specifiy return type: 'strength' or 'index' returns (depending on <output> argument): - strength : 0 if no maximum identified, otherwise falloff strength - index : nan if no maximum identified, otherwise index along <axis>, to get the height of the jet etc. """ def inner(x, output): if inverse: x = x[::-1, ...] # Identify local maxima x = x[~np.isnan(x)] dx = x[1:] - x[:-1] ind = np.where((np.hstack((dx, 0)) < 0) & (np.hstack((0, dx)) >= 0))[0] # Last value of x cannot be llj if ind.size and ind[-1] == x.size - 1: ind = ind[:-1] # Compute the falloff strength for each local maxima if ind.size: # this assumes height increases along axis!!! strength = np.array([x[i] - min(x[i:]) for i in ind]) imax = np.argmax(strength) # Return jet_strength and index of maximum: if output == 'strength': r = max(strength) if ind.size else 0 elif output == 'index': r = ind[imax] if ind.size else 0 return r # Wrapper interface to apply 1d function to ndarray return np.apply_along_axis(inner, axis, x, output=output) def detect_llj_vectorized(xs, axis=-1, output='falloff', mask_inv=False, inverse=False): """ Identify local maxima in wind profiles. args: - x : ndarray with wind profile data - axis : specifies the vertical dimension - output : specifiy return type: 'falloff', 'strength' or 'index' - mask_inv : use np.ma to mask nan values returns (depending on <output> argument and whether llj is identified): - falloff : 0 or largest difference between local max and subseq min - strength : 0 or wind speed at jet height - index : -1 or index along <axis> """ # Move <axis> to first dimension, to easily index and iterate over it. xv = np.rollaxis(xs, axis) if inverse: xv = xv[::-1, ...] if mask_inv: xv = np.ma.masked_invalid(xv) # Set initial arrays min_elem = xv[-1].copy() max_elem = np.zeros(min_elem.shape) max_diff = np.zeros(min_elem.shape) max_idx = np.ones(min_elem.shape, dtype=int) * (-1) # Start at end of array and search backwards for larger differences. for i, elem in reversed(list(enumerate(xv))): min_elem = np.minimum(elem, min_elem) new_max_identified = elem - min_elem > max_diff max_diff = np.where(new_max_identified, elem - min_elem, max_diff) max_elem = np.where(new_max_identified, elem, max_elem) max_idx = np.where(new_max_identified, i, max_idx) if output == 'falloff': r = max_diff elif output == 'strength': r = max_elem elif output == 'index': r = max_idx else: raise ValueError('Invalid argument for <output>: %s' % output) return r def detect_llj_xarray(da, inverse=False): """ Identify local maxima in wind profiles. args: - da : xarray.DataArray with wind profile data - inverse : to flip the array if the data is stored upside down returns: : xarray.Dataset with vertical dimension removed containing: - falloff : 0 or largest difference between local max and subseq min - strength : 0 or wind speed at jet height - index : -1 or index along <axis> Note: vertical dimension should be labeled 'level' and axis=1 """ # Move <axis> to first dimension, to easily index and iterate over it. xv = np.rollaxis(da.values, 1) if inverse: xv = xv[::-1, ...] # Set initial arrays min_elem = xv[-1].copy() max_elem = np.zeros(min_elem.shape) max_diff = np.zeros(min_elem.shape) max_idx = np.ones(min_elem.shape, dtype=int) * (-1) # Start at end of array and search backwards for larger differences. for i, elem in reversed(list(enumerate(xv))): min_elem = np.minimum(elem, min_elem) new_max_identified = elem - min_elem > max_diff max_diff = np.where(new_max_identified, elem - min_elem, max_diff) max_elem = np.where(new_max_identified, elem, max_elem) max_idx = np.where(new_max_identified, i, max_idx) # Combine the results in a dataframe get_height = lambda i: np.where(i > 0, da.level.values[i], da.level.values[ -1]) dims = da.isel(level=0).drop('level').dims coords = da.isel(level=0).drop('level').coords lljs = xr.Dataset( { 'falloff': (dims, max_diff), 'strength': (dims, max_elem), 'level': (dims, get_height(max_idx)), }, coords=coords) print( 'Beware! Level is also filled if no jet is detected! ' 'Use ds.sel(level=lljs.level).where(lljs.falloff>0) to get rid of them' ) return lljs
[ "numpy.ones", "numpy.minimum", "numpy.hstack", "numpy.where", "numpy.rollaxis", "numpy.argmax", "numpy.zeros", "numpy.apply_along_axis", "numpy.isnan", "numpy.ma.masked_invalid" ]
[((1794, 1844), 'numpy.apply_along_axis', 'np.apply_along_axis', (['inner', 'axis', 'x'], {'output': 'output'}), '(inner, axis, x, output=output)\n', (1813, 1844), True, 'import numpy as np\n'), ((2690, 2711), 'numpy.rollaxis', 'np.rollaxis', (['xs', 'axis'], {}), '(xs, axis)\n', (2701, 2711), True, 'import numpy as np\n'), ((2882, 2906), 'numpy.zeros', 'np.zeros', (['min_elem.shape'], {}), '(min_elem.shape)\n', (2890, 2906), True, 'import numpy as np\n'), ((2922, 2946), 'numpy.zeros', 'np.zeros', (['min_elem.shape'], {}), '(min_elem.shape)\n', (2930, 2946), True, 'import numpy as np\n'), ((4338, 4363), 'numpy.rollaxis', 'np.rollaxis', (['da.values', '(1)'], {}), '(da.values, 1)\n', (4349, 4363), True, 'import numpy as np\n'), ((4478, 4502), 'numpy.zeros', 'np.zeros', (['min_elem.shape'], {}), '(min_elem.shape)\n', (4486, 4502), True, 'import numpy as np\n'), ((4518, 4542), 'numpy.zeros', 'np.zeros', (['min_elem.shape'], {}), '(min_elem.shape)\n', (4526, 4542), True, 'import numpy as np\n'), ((2787, 2811), 'numpy.ma.masked_invalid', 'np.ma.masked_invalid', (['xv'], {}), '(xv)\n', (2807, 2811), True, 'import numpy as np\n'), ((2961, 2995), 'numpy.ones', 'np.ones', (['min_elem.shape'], {'dtype': 'int'}), '(min_elem.shape, dtype=int)\n', (2968, 2995), True, 'import numpy as np\n'), ((3146, 3172), 'numpy.minimum', 'np.minimum', (['elem', 'min_elem'], {}), '(elem, min_elem)\n', (3156, 3172), True, 'import numpy as np\n'), ((3248, 3303), 'numpy.where', 'np.where', (['new_max_identified', '(elem - min_elem)', 'max_diff'], {}), '(new_max_identified, elem - min_elem, max_diff)\n', (3256, 3303), True, 'import numpy as np\n'), ((3323, 3367), 'numpy.where', 'np.where', (['new_max_identified', 'elem', 'max_elem'], {}), '(new_max_identified, elem, max_elem)\n', (3331, 3367), True, 'import numpy as np\n'), ((3386, 3426), 'numpy.where', 'np.where', (['new_max_identified', 'i', 'max_idx'], {}), '(new_max_identified, i, max_idx)\n', (3394, 3426), True, 'import numpy as np\n'), ((4557, 4591), 'numpy.ones', 'np.ones', (['min_elem.shape'], {'dtype': 'int'}), '(min_elem.shape, dtype=int)\n', (4564, 4591), True, 'import numpy as np\n'), ((4742, 4768), 'numpy.minimum', 'np.minimum', (['elem', 'min_elem'], {}), '(elem, min_elem)\n', (4752, 4768), True, 'import numpy as np\n'), ((4844, 4899), 'numpy.where', 'np.where', (['new_max_identified', '(elem - min_elem)', 'max_diff'], {}), '(new_max_identified, elem - min_elem, max_diff)\n', (4852, 4899), True, 'import numpy as np\n'), ((4919, 4963), 'numpy.where', 'np.where', (['new_max_identified', 'elem', 'max_elem'], {}), '(new_max_identified, elem, max_elem)\n', (4927, 4963), True, 'import numpy as np\n'), ((4982, 5022), 'numpy.where', 'np.where', (['new_max_identified', 'i', 'max_idx'], {}), '(new_max_identified, i, max_idx)\n', (4990, 5022), True, 'import numpy as np\n'), ((5092, 5148), 'numpy.where', 'np.where', (['(i > 0)', 'da.level.values[i]', 'da.level.values[-1]'], {}), '(i > 0, da.level.values[i], da.level.values[-1])\n', (5100, 5148), True, 'import numpy as np\n'), ((1476, 1495), 'numpy.argmax', 'np.argmax', (['strength'], {}), '(strength)\n', (1485, 1495), True, 'import numpy as np\n'), ((1025, 1036), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (1033, 1036), True, 'import numpy as np\n'), ((1090, 1108), 'numpy.hstack', 'np.hstack', (['(dx, 0)'], {}), '((dx, 0))\n', (1099, 1108), True, 'import numpy as np\n'), ((1117, 1135), 'numpy.hstack', 'np.hstack', (['(0, dx)'], {}), '((0, dx))\n', (1126, 1135), True, 'import numpy as np\n')]
import time import sys import numpy as np from local_search import kmedian_local_search import feasibility from kmedkpm import k_median_k_partitions_LS import psutil from sklearn.datasets import make_blobs import generator import random test = False def lp_ls_complete(data, color_mat, rvec, k, logfile): ############################################################################ # INPUT # data: N X d numpy array # color_mat: N*t numpy array representing groups' memberships # rvec: requirements vector of t size # k: number of clusters # OUTPUT # Object with stats, i.e, with "cost" that is a cost of the solution ############################################################################ (N, d) = data.shape many_solutions_lp_only = True command = 'linear-program' return_solution = False process = psutil.Process() tstart = time.time() time_buf = time.time() perf_stats = feasibility.calculate(k, rvec, color_mat, command, return_solution, logfile, many_solutions_lp_only) set_mappings = perf_stats["subset_map"] solution = perf_stats["solution"] set_to_indices = {} for (idx, _id) in enumerate(sorted(set_mappings.keys())): set_to_indices[idx] = _id #end for unique_solutions = solution if len(solution) == 0 else np.unique(np.stack(solution, axis=0), axis=0) print('solutions: ', 0 if len(solution) == 0 else unique_solutions.shape[0]) total_cost = sys.maxsize time_buf = time.time() for (_, s) in enumerate(unique_solutions): E = {} i = 0 for (idx, e) in enumerate(s): for _ in range(e): #E[i] = (idx, set_to_indices[idx]) E[i] = data[set_mappings[set_to_indices[idx]], :] i = i + 1 #end for #end for if k > i: continue statc = k_median_k_partitions_LS(E, data, None, N, d, k, is_coreset=False) total_cost = min(total_cost, statc["cost"]) # print(set_to_indices) kmedkpmtime = time.time() - time_buf total_time = time.time() - tstart stats_total = {} opt_ls_cost = kmedian_local_search(data, k)["cost"] stats_total['opt_ls_cost'] = opt_ls_cost stats_total["lp_time"] = perf_stats["total_time"] stats_total["total_time"] = total_time stats_total["ls_time"] = kmedkpmtime stats_total['peak_memory'] = process.memory_info().rss/(1024*1024) stats_total['virtual_memory'] = process.memory_info().vms/(1024*1024) stats_total['cost'] = total_cost return stats_total #end lp_ls_complete() def test_lp_ls_complete(): #random number generator seeds gen_seed = 12312321 dist_matrix_seed = random.randint(1, int(pow(2, 32)-1)) local_search_seed = random.randint(1, int(pow(2, 32)-1)) #initialize logfile = sys.stdout n = 100 t = 3 k = 3 d = 2 r_max = 3 r_min = 1 max_freq = 3 data, _ = make_blobs(n_samples=n, centers=k, n_features=d, random_state=12312, cluster_std=0.8) #generate instance and time it time_buf = time.time() color_mat, rvec, _ = generator.get_feasible_instance( t, n, r_max, r_min, max_freq, k, gen_seed, unique=False) lp_ls_complete(data, color_mat, rvec, k, logfile) #end es_fpt_3apx_complete_test() ################################################################################ if __name__ == '__main__': test_lp_ls_complete()
[ "feasibility.calculate", "kmedkpm.k_median_k_partitions_LS", "psutil.Process", "sklearn.datasets.make_blobs", "generator.get_feasible_instance", "numpy.stack", "local_search.kmedian_local_search", "time.time" ]
[((865, 881), 'psutil.Process', 'psutil.Process', ([], {}), '()\n', (879, 881), False, 'import psutil\n'), ((895, 906), 'time.time', 'time.time', ([], {}), '()\n', (904, 906), False, 'import time\n'), ((922, 933), 'time.time', 'time.time', ([], {}), '()\n', (931, 933), False, 'import time\n'), ((952, 1056), 'feasibility.calculate', 'feasibility.calculate', (['k', 'rvec', 'color_mat', 'command', 'return_solution', 'logfile', 'many_solutions_lp_only'], {}), '(k, rvec, color_mat, command, return_solution, logfile,\n many_solutions_lp_only)\n', (973, 1056), False, 'import feasibility\n'), ((1588, 1599), 'time.time', 'time.time', ([], {}), '()\n', (1597, 1599), False, 'import time\n'), ((3053, 3142), 'sklearn.datasets.make_blobs', 'make_blobs', ([], {'n_samples': 'n', 'centers': 'k', 'n_features': 'd', 'random_state': '(12312)', 'cluster_std': '(0.8)'}), '(n_samples=n, centers=k, n_features=d, random_state=12312,\n cluster_std=0.8)\n', (3063, 3142), False, 'from sklearn.datasets import make_blobs\n'), ((3218, 3229), 'time.time', 'time.time', ([], {}), '()\n', (3227, 3229), False, 'import time\n'), ((3255, 3347), 'generator.get_feasible_instance', 'generator.get_feasible_instance', (['t', 'n', 'r_max', 'r_min', 'max_freq', 'k', 'gen_seed'], {'unique': '(False)'}), '(t, n, r_max, r_min, max_freq, k, gen_seed,\n unique=False)\n', (3286, 3347), False, 'import generator\n'), ((1982, 2048), 'kmedkpm.k_median_k_partitions_LS', 'k_median_k_partitions_LS', (['E', 'data', 'None', 'N', 'd', 'k'], {'is_coreset': '(False)'}), '(E, data, None, N, d, k, is_coreset=False)\n', (2006, 2048), False, 'from kmedkpm import k_median_k_partitions_LS\n'), ((2147, 2158), 'time.time', 'time.time', ([], {}), '()\n', (2156, 2158), False, 'import time\n'), ((2187, 2198), 'time.time', 'time.time', ([], {}), '()\n', (2196, 2198), False, 'import time\n'), ((2249, 2278), 'local_search.kmedian_local_search', 'kmedian_local_search', (['data', 'k'], {}), '(data, k)\n', (2269, 2278), False, 'from local_search import kmedian_local_search\n'), ((1427, 1453), 'numpy.stack', 'np.stack', (['solution'], {'axis': '(0)'}), '(solution, axis=0)\n', (1435, 1453), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import datetime import json class DateTimeTransformer(object): def __init__(self): self._new_columns = [] self._old_column = None self._min_datetime = None self._transforms = [] def fit(self, X, column): self._old_column = column self._min_datetime = np.min(X[column]) values = X[column].dt.year if len(np.unique(values)) > 1: self._transforms += ["year"] new_column = column + "_Year" self._new_columns += [new_column] values = X[column].dt.month if len(np.unique(values)) > 1: self._transforms += ["month"] new_column = column + "_Month" self._new_columns += [new_column] values = X[column].dt.day if len(np.unique(values)) > 1: self._transforms += ["day"] new_column = column + "_Day" self._new_columns += [new_column] values = X[column].dt.weekday if len(np.unique(values)) > 1: self._transforms += ["weekday"] new_column = column + "_WeekDay" self._new_columns += [new_column] values = X[column].dt.dayofyear if len(np.unique(values)) > 1: self._transforms += ["dayofyear"] new_column = column + "_DayOfYear" self._new_columns += [new_column] values = X[column].dt.hour if len(np.unique(values)) > 1: self._transforms += ["hour"] new_column = column + "_Hour" self._new_columns += [new_column] values = (X[column] - self._min_datetime).dt.days if len(np.unique(values)) > 1: self._transforms += ["days_diff"] new_column = column + "_Days_Diff_To_Min" self._new_columns += [new_column] def transform(self, X): column = self._old_column if "year" in self._transforms: new_column = column + "_Year" X[new_column] = X[column].dt.year if "month" in self._transforms: new_column = column + "_Month" X[new_column] = X[column].dt.month if "day" in self._transforms: new_column = column + "_Day" X[new_column] = X[column].dt.day if "weekday" in self._transforms: new_column = column + "_WeekDay" X[new_column] = X[column].dt.weekday if "dayofyear" in self._transforms: new_column = column + "_DayOfYear" X[new_column] = X[column].dt.dayofyear if "hour" in self._transforms: new_column = column + "_Hour" X[new_column] = X[column].dt.hour if "days_diff" in self._transforms: new_column = column + "_Days_Diff_To_Min" X[new_column] = (X[column] - self._min_datetime).dt.days X.drop(column, axis=1, inplace=True) return X def to_json(self): return { "new_columns": list(self._new_columns), "old_column": self._old_column, "min_datetime": str(self._min_datetime), "transforms": list(self._transforms), } def from_json(self, data_json): self._new_columns = data_json.get("new_columns", None) self._old_column = data_json.get("old_column", None) d = data_json.get("min_datetime", None) self._min_datetime = None if d is None else pd.to_datetime(d) self._transforms = data_json.get("transforms", [])
[ "numpy.unique", "pandas.to_datetime", "numpy.min" ]
[((349, 366), 'numpy.min', 'np.min', (['X[column]'], {}), '(X[column])\n', (355, 366), True, 'import numpy as np\n'), ((3456, 3473), 'pandas.to_datetime', 'pd.to_datetime', (['d'], {}), '(d)\n', (3470, 3473), True, 'import pandas as pd\n'), ((418, 435), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (427, 435), True, 'import numpy as np\n'), ((623, 640), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (632, 640), True, 'import numpy as np\n'), ((828, 845), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (837, 845), True, 'import numpy as np\n'), ((1033, 1050), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (1042, 1050), True, 'import numpy as np\n'), ((1248, 1265), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (1257, 1265), True, 'import numpy as np\n'), ((1462, 1479), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (1471, 1479), True, 'import numpy as np\n'), ((1689, 1706), 'numpy.unique', 'np.unique', (['values'], {}), '(values)\n', (1698, 1706), True, 'import numpy as np\n')]
from flask import Flask, request, render_template, send_file, Response import io import base64 import csv import json import time from collections import OrderedDict import numpy import pandas as pd from numpy import genfromtxt from flask import jsonify from flask_cors import CORS from LoadingNetwork import EchoWebSocket import shutil import gc from tornado.wsgi import WSGIContainer from tornado.web import Application, FallbackHandler from tornado.websocket import WebSocketHandler from tornado.ioloop import IOLoop app = Flask('flasknado') #app = Flask(__name__) app.debug = True CORS(app) ##initial netwrok csv data############################ rawdata = open('NetworkWithDistance.txt') with open('NetworkWithDistance.txt') as f: rawdata = f.readlines() # you may also want to remove whitespace characters like `\n` at the end # of each line rawdata = [x.strip() for x in rawdata] my_data = genfromtxt('networkwithdist.csv', delimiter=',') # my_data=numpy.delete(my_data,(0),axis=0) header = ['id', 'id_to', 'lon', 'lat', 'basinid'] frame = pd.DataFrame(my_data, columns=header) data = [] MY_GLOBAL = [] with open('tempcsv.csv') as f: for line in f: temp = line.strip().split(',') data.append(temp) ############################# data1 = [] with open('MyFile1.txt') as f: r = 0 for line in f: if(r > 0): data2 = [] # print(line) temp = line.split("\",") data2.append(temp[0][1:]) temp1 = temp[1].split(",[") data2.append(temp1[0]) data2.append(temp1[1][:-2]) data1.append(data2) r += 1 header = ['celllist', 'cellid', 'cellto'] frame_celllist = pd.DataFrame(data1, columns=header) frame_celllist = frame_celllist.drop_duplicates() del data1[:] ################## data_c = [] with open('powerplant_cell_loc.csv') as f: r = 0 for line in f: if(r > 0): data_cc = line.split(",") data_c.append(data_cc) # print(line) r += 1 header = ['cellid', 'loc'] frame_cell = pd.DataFrame(data_c, columns=header) frame_cell = frame_cell.drop_duplicates() del data_c[:] ######################################################## import os import sys from SimpleHTTPServer import SimpleHTTPRequestHandler import BaseHTTPServer # class MyHTTPRequestHandler(SimpleHTTPRequestHandler): # def translate_path(self,path): # path = SimpleHTTPRequestHandler.translate_path(self,path) # if os.path.isdir(path): # for base in "index", "default": # for ext in ".html", ".htm", ".txt": # index = path + "/" + base + ext # if os.path.exists(index): # return index # return path # def test(HandlerClass = MyHTTPRequestHandler, # ServerClass = BaseHTTPServer.HTTPServer): # BaseHTTPServer.test(HandlerClass, ServerClass) ##################travesal network upstream############ '''def find_upstream(value): gc.collect() ii=0 li = [] temp=[] a=frame.ix[int(value)] temp.append(a) #print(MY_GLOBAL) MY_GLOBAL[:]=[] #x=data[int(value)] #x=frame[frame['id']==a['id_to']] #print x i=0 z=0 zz=0 while zz<len(temp): item=temp[zz] zz+=1 ##print(z,len(temp)) ## item=temp.pop() ## print item #x=frame[frame['id_to']==item['id']] x=data[int(float(item['id']))] #print x i=1 while i<len(x) : # d = OrderedDict() # xx=x.loc[x.index[i]] xx=frame.ix[int(float(x[i]))] # d['type'] = 'Feature' # d['geometry'] = { # 'type': 'MultiLineString', # 'coordinates': [[[float(xx['lon']),float(xx['lat'])],[float(item['lon']), float(item['lat'])]]] # } # d['properties'] = { "id":int(xx['id']),"id_to":int(xx['id_to']),"lon": float(xx['lon']),"lat": float(xx['lat']) # } # li.append(d) i+=1 # ii+=1 ##if ii%1000==0: ## print ii temp.append(xx) print(len(temp)) while z<len(temp): item=temp[z] z+=1 ##print(z,len(temp)) ## item=temp.pop() ## print item #x=frame[frame['id_to']==item['id']] x=data[int(float(item['id']))] #print x i=1 while i<len(x) : d = OrderedDict() #xx=x.loc[x.index[i]] xx=frame.ix[int(float(x[i]))] d['type'] = 'Feature' d['geometry'] = { 'type': 'MultiLineString', 'coordinates': [[[float(xx['lon']),float(xx['lat'])],[float(item['lon']), float(item['lat'])]]] } d['properties'] = { "id":int(xx['id']),"id_to":int(xx['id_to']),"lon": float(xx['lon']),"lat": float(xx['lat']) } li.append(d) d = OrderedDict() #xx=x.loc[x.index[i]] # xx=frame.ix[int(float(x[i]))] i+=1 ii+=1 if ii%1000==0 or (ii+1)/len(temp)==1: MY_GLOBAL.append((int)((ii+1)/(len(temp)* 1.0)*100)) ## print(checkInt,ii,len(temp)) ## print ii # temp.append(xx) #d = OrderedDict() #d['type'] = 'FeatureCollection' #d['features'] = li #print li print(ii) return li,200''' def find_upstream(value): gc.collect() ii = 0 li = [] temp = [] a = frame.ix[int(value)] temp.append(int(value)) MY_GLOBAL[:] = [] i = 0 z = 0 zz = 0 jstring = '' while z < len(temp): item = frame.ix[temp[z]] z += 1 x = data[int(float(item['id']))] #print x i = 1 while i < len(x): xx = frame.ix[int(float(x[i]))] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' ii += 1 temp.append(int(float(x[i]))) i += 1 if ii % 1000 == 0: # print(ii) MY_GLOBAL.append((int)((ii + 1) / (200000 * 1.0) * 100)) # print(checkInt,ii,len(temp)) ## print ii # temp.append(xx) #d = OrderedDict() #d['type'] = 'FeatureCollection' #d['features'] = li #print li # print(jstring) MY_GLOBAL.append(100) return jstring[:-1], 200 ##################travesal network downstream############ def find_downstream(value, sourceid): #print value,sourceid ii = 0 li = [] temp = [] jstring = '' # MY_GLOBAL[:]=[] a = frame.ix[int(value)] temp.append(a) check = True z = 0 while z < len(temp) and check: item = temp[z] z += 1 if(item['id_to'] == sourceid): check = False # break ## print item # if(item['id']==sourceid): # check=False x = frame.ix[frame['id'] == item['id_to']] #print x i = 0 while i < len(x): # d = OrderedDict() xx = x.ix[x.index[i]] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' # d['type'] = 'Feature' # d['geometry'] = { # 'type': 'MultiLineString', # 'coordinates': [[[float(xx['lon']),float(xx['lat'])],[float(item['lon']), float(item['lat'])]]] # } # d['properties'] = { "id":int(xx['id']),"id_to":int(xx['id_to']),"lon": float(xx['lon']),"lat": float(xx['lat']) # } # li.append(d) # d=OrderedDict() i += 1 ii += 1 temp.append(xx) # if(item['id']==sourceid): # check=False # MY_GLOBAL.append(100) # d = OrderedDict() # d['type'] = 'FeatureCollection' # d['features'] = li # print li # if (check==False): return jstring[:-1], 200 ##################travesal network downstream############ def find_downstream1(value): #print value,sourceid ii = 0 li = [] temp = [] jstring = '' # MY_GLOBAL[:]=[] a = frame.ix[int(value)] temp.append(a) check = True z = 0 while z < len(temp) and check: item = temp[z] z += 1 ## print item # if(item['id']==sourceid): # check=False x = frame.ix[frame['id'] == item['id_to']] #print x i = 0 while i < len(x): # d = OrderedDict() xx = x.ix[x.index[i]] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' # d['type'] = 'Feature' # d['geometry'] = { # 'type': 'MultiLineString', # 'coordinates': [[[float(xx['lon']),float(xx['lat'])],[float(item['lon']), float(item['lat'])]]] # } # d['properties'] = { "id":int(xx['id']),"id_to":int(xx['id_to']),"lon": float(xx['lon']),"lat": float(xx['lat']) # } # li.append(d) # d=OrderedDict() i += 1 ii += 1 temp.append(xx) # if(item['id']==sourceid): # check=False # MY_GLOBAL.append(100) # d = OrderedDict() # d['type'] = 'FeatureCollection' # d['features'] = li # print li # if (check==False): return jstring[:-1], 200 #######################pp upstream####################### def find_upstream_pp(cellid): gc.collect() # header=['celllist','cellid','cellto'] # header=['cellid','loc'] templi = frame_celllist[frame_celllist['cellid'] == cellid]['celllist'].tolist() templist = templi[0][1:-1].split(",") z = 0 jstring = '' while z < len(templist): curid = templist[z].strip() # print(curid,templist) curidloc = frame_cell[frame_cell['cellid'] == curid]['loc'].tolist() curidloc1 = curidloc[0].split("_") # print(curidloc1[0],curidloc1[1][:-1],curidloc[0]) z += 1 temp = frame_celllist[frame_celllist['cellid'] == curid]['cellto'].tolist() print(temp) temp = temp[0].split(",") if len(temp) == 1 and temp[0][:-1] == "none": # print(temp[0]) continue else: zz = 0 while zz < len(temp): # print(temp[zz],temp) x = temp[zz] zz += 1 if zz == len(temp): nextloc = frame_cell[frame_cell['cellid'] == x[:-1]]['loc'].tolist() else: nextloc = frame_cell[frame_cell['cellid'] == x]['loc'].tolist() nextloc1 = nextloc[0].split("_") # print(nextloc1[0],nextloc1[1][:-1],nextloc1) jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(curidloc1[0]) + ',' + str(curidloc1[1][:-1]) + '],[' + str( nextloc1[0]) + ',' + str(nextloc1[1][:-1]) + ']]]},"properties": {"lat":' + str(curidloc1[1][:-1]) + ',"lon": ' + str(curidloc1[0]) + '}},' # jstring+='{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[['+str(float(xx['lon']))+','+str(float(xx['lat']))+'],['+str(float(item['lon']))+','+str(float(item['lat']))+']]]},"properties": {"id_to": '+str(int(xx['id_to']))+',"id":'+str(int(xx['id']))+',"lat":'+str(float(xx['lat']))+',"lon": '+str(float(xx['lon']))+'}},'; return jstring[:-1], 200 #######################pp downstream####################### def find_downstream_pp(cellid, dcellid): gc.collect() # header=['celllist','cellid','cellto'] # header=['cellid','loc'] print(cellid, dcellid) templi = frame_celllist[frame_celllist['cellid'] == cellid]['celllist'].tolist() templist = templi[0][1:-1].split(",") z = len(templist) - 1 jstring = '' while z > 0: print(templist[z].strip()) curid = templist[z].strip() if curid != str(dcellid): z -= 1 else: print(z) break while z > 0: curid = templist[z].strip() # print(curid,templist) curidloc = frame_cell[frame_cell['cellid'] == curid]['loc'].tolist() curidloc1 = curidloc[0].split("_") # print(curidloc1[0],curidloc1[1][:-1],curidloc[0]) temp = frame_celllist[frame_celllist['cellid'] == templist[z].strip()]['cellto'].tolist() z -= 1 print(temp) temp = temp[0].split(",") if len(temp) == 1 and temp[0][:-1] == "none": # print(temp[0]) z -= 1 continue else: zz = 0 aaaa = 'false' while zz < len(temp): # print(temp[zz],temp) x = temp[zz] zz += 1 if zz == len(temp): if x[:-1] == curid: aaaa = 'true' nextloc = frame_cell[frame_cell['cellid'] == x[:-1]]['loc'].tolist() else: if x == curid: aaaa = 'true' nextloc = frame_cell[frame_cell['cellid'] == x]['loc'].tolist() if aaaa == 'true': nextloc1 = nextloc[0].split("_") # print(nextloc1[0],nextloc1[1][:-1],nextloc1) jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(curidloc1[0]) + ',' + str(curidloc1[1][:-1]) + '],[' + str( nextloc1[0]) + ',' + str(nextloc1[1][:-1]) + ']]]},"properties": {"lat":' + str(curidloc1[1][:-1]) + ',"lon": ' + str(curidloc1[0]) + '}},' # jstring+='{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[['+str(float(xx['lon']))+','+str(float(xx['lat']))+'],['+str(float(item['lon']))+','+str(float(item['lat']))+']]]},"properties": {"id_to": '+str(int(xx['id_to']))+',"id":'+str(int(xx['id']))+',"lat":'+str(float(xx['lat']))+',"lon": '+str(float(xx['lon']))+'}},'; print(jstring) if len(jstring) > 0: return jstring[:-1], 200 else: return jstring, 200 @app.route("/", methods=['GET', 'POST']) def index(): print(request) return render_template('test1.html') @app.route("/api/", methods=['GET', 'POST']) def update(): print(request.method) if request.method == "POST": source = request.form["source"] dist = request.form["dist"] pic = request.form["pic"] downfirst = request.form["downfirst"] pp = request.form["pp"] print(pp, source, dist, downfirst, pic) if(pp == 'yes'): upstream = request.form["upstream"] if(upstream == 'yes'): ucellid = request.form["ucellid"] re, ii = find_upstream_pp(ucellid) # print(re) return json.dumps(re), ii # if(upstream=='no'): ### ucellid = request.form["ucellid"] # dcellid = request.form["dcellid"] # re,ii=find_downstream_pp(ucellid,dcellid) # print(re) # if(pp=='no'): source = request.form["source"] dist = request.form["dist"] pic = request.form["pic"] downfirst = request.form["downfirst"] #print dist if(downfirst == 'no'): if(source == 'yes'): sourceid = request.form["sourceid"] #print sourceid import time start = time. time() re, ii = find_upstream(sourceid) end = time. time() #print ii,(end-start) # print(re) # print(MY_GLOBAL) return json.dumps(re), ii if(dist == 'yes'): distid = request.form["distid"] sourceid = request.form["sourceid"] MY_GLOBAL[:] = [] #print distid,sourceid re, ii = find_downstream(int(distid), int(sourceid)) print (re) gc.collect() MY_GLOBAL.append(100) return json.dumps(re, sort_keys=False, indent=4), ii if(downfirst == 'yes'): if(dist == 'yes'): distid = request.form["distid"] sourceid = request.form["sourceid"] MY_GLOBAL[:] = [] #print distid,sourceid re, ii = find_downstream1(int(distid)) print (re) gc.collect() MY_GLOBAL.append(100) return json.dumps(re, sort_keys=False, indent=4), ii if(pic == 'yes'): #print request.form MY_GLOBAL[:] = [] start1 = request.form["dist_lat"] start2 = request.form["dist_lon"] goal1 = request.form["source_lat"] goal2 = request.form["source_lon"] fromdate = request.form["from"] todate = request.form["to"] import time before = time.time() output, str1, str2, str3 = LoadingNetwork.main( [start1, start2], [goal1, goal2], fromdate, todate, rawdata) #print str1,str2,str3 after = time.time() print ("time,", after - before) if(isinstance(output, str)): return output, 201 else: # gc.collect() #print base64.b64encode(output.getvalue()) return base64.b64encode( output.getvalue()) + "***" + str1 + "***" + str2 + "***" + str3, 200 class WebSocket(WebSocketHandler): def on_message(self, message): # self.write_message("Received: " + message) # self.write_message("Received2: " + message) # m=message.split("&") print("Received message: " + m[0]) print("Received message: " + m[1]) print("Received message: " + m[2]) print("Received message: " + m[3]) print("Received message: " + m[4]) print("Received message: " + m[5]) print("Received message: " + m[6]) m=message[1:-1].split("&") source = m[0].split("=")[1] value = m[1].split("=")[1] dist = m[2].split("=")[1] value1 = m[3].split("=")[1] pic = m[4].split("=")[1] downfirst = m[5].split("=")[1] pp = m[6].split("=") print(pp, source, dist, downfirst, pic,value,value1) ###################################upstram##########################3 if(downfirst == 'no'): if(source == 'yes'): ################## gc.collect() ii = 0 li = [] temp = [] a = frame.ix[int(value)] temp.append(int(value)) i = 0 z = 0 zz = 0 jstring = '' while z < len(temp): item = frame.ix[temp[z]] z += 1 x = data[int(float(item['id']))] #print x i = 1 while i < len(x): xx = frame.ix[int(float(x[i]))] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' ii += 1 temp.append(int(float(x[i]))) i += 1 if(len(jstring)>1500000): zz+=5 self.write_message( jstring[:-1]) self.write_message( '~'+str(zz*1.0/100)) jstring = '' self.write_message( jstring[:-1]) self.write_message( '~1') ############################downstream######################### if(dist == 'yes'): ######################################################################## ii = 0 li = [] temp = [] jstring = '' # MY_GLOBAL[:]=[] a = frame.ix[int(value1)] temp.append(a) check = True z = 0 zz=0 while z < len(temp) and check: item = temp[z] z += 1 if(item['id_to'] == int(value)): check = False x = frame.ix[frame['id'] == item['id_to']] #print x i = 0 while i < len(x): # d = OrderedDict() xx = x.ix[x.index[i]] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' i += 1 ii += 1 temp.append(xx) if(len(jstring)>150000): zz+=5 self.write_message( jstring[:-1]) self.write_message( '~'+str(zz*1.0/100)) jstring = '' self.write_message( jstring[:-1]) self.write_message( '~1') ##########################downfirst############################################## if(downfirst == 'yes'): if(dist == 'yes'): ii = 0 li = [] temp = [] jstring = '' # MY_GLOBAL[:]=[] a = frame.ix[int(value1)] temp.append(a) z = 0 zz=0 while z < len(temp) : item = temp[z] z += 1 # break ## print item # if(item['id']==sourceid): # check=False x = frame.ix[frame['id'] == item['id_to']] #print x i = 0 while i < len(x): # d = OrderedDict() xx = x.ix[x.index[i]] jstring += '{"type": "Feature","geometry": { "type": "MultiLineString", "coordinates": [[[' + str(float(xx['lon'])) + ',' + str(float(xx['lat'])) + '],[' + str(float(item['lon'])) + ',' + str( float(item['lat'])) + ']]]},"properties": {"id_to": ' + str(int(xx['id_to'])) + ',"id":' + str(int(xx['id'])) + ',"lat":' + str(float(xx['lat'])) + ',"lon": ' + str(float(xx['lon'])) + '}},' # d['type'] = 'Feature' # d['geometry'] = { # 'type': 'MultiLineString', # 'coordinates': [[[float(xx['lon']),float(xx['lat'])],[float(item['lon']), float(item['lat'])]]] # } # d['properties'] = { "id":int(xx['id']),"id_to":int(xx['id_to']),"lon": float(xx['lon']),"lat": float(xx['lat']) # } # li.append(d) # d=OrderedDict() i += 1 ii += 1 temp.append(xx) # if(item['id']==sourceid): # check=False # MY_GLOBAL.append(100) # d = OrderedDict() # d['type'] = 'FeatureCollection' # d['features'] = li # print li # if (check==False): if(len(jstring)>150000): zz+=5 self.write_message( jstring[:-1]) self.write_message( '~'+str(zz*1.0/100)) jstring = '' self.write_message( jstring[:-1]) self.write_message( '~1') # if(downfirst == 'yes'): if(pic == 'yes'): #print request.form #"&dist_lat="+dist_lat+"&dist_lon="+dist_lon+"&source_lat="+source_lat+"&source_lon="+source_lon+"&from="+value3.value+"&to="+value4.value); #m[6].split("=") # start1 = request.form["dist_lat"] # start2 = request.form["dist_lon"] # goal1 = request.form["source_lat"] # goal2 = request.form["source_lon"] # fromdate = request.form["from"] # todate = request.form["to"] start1 = m[7].split("=")[1] start2 = m[8].split("=")[1] goal1 =m[9].split("=")[1] goal2 = m[10].split("=")[1] fromdate = m[11].split("=")[1] todate = m[12].split("=")[1] print(start1,start2,goal1,goal2,fromdate,todate) import time before = time.time() output, str1, str2, str3 = LoadingNetwork.main( [start1, start2], [goal1, goal2], fromdate, todate, rawdata) #print str1,str2,str3 # print(output) after = time.time() print ("time,", after - before) # if(isinstance(output, str)): # return output, 201 # else: # gc.collect() #print base64.b64encode(output.getvalue()) # return base64.b64encode( # output.getvalue()) + "***" + str1 + "***" + str2 + "***" + str3, 200 # if __name__ == "__main__": container = WSGIContainer(app) server = Application([ (r'/websocket/', WebSocket), (r'/we/', EchoWebSocket), (r'.*', FallbackHandler, dict(fallback=container)) ]) server.listen(5000) IOLoop.instance().start() # test()
[ "flask.render_template", "flask_cors.CORS", "flask.Flask", "json.dumps", "tornado.ioloop.IOLoop.instance", "gc.collect", "time.time", "pandas.DataFrame", "tornado.wsgi.WSGIContainer", "numpy.genfromtxt" ]
[((547, 565), 'flask.Flask', 'Flask', (['"""flasknado"""'], {}), "('flasknado')\n", (552, 565), False, 'from flask import Flask, request, render_template, send_file, Response\n'), ((609, 618), 'flask_cors.CORS', 'CORS', (['app'], {}), '(app)\n', (613, 618), False, 'from flask_cors import CORS\n'), ((936, 984), 'numpy.genfromtxt', 'genfromtxt', (['"""networkwithdist.csv"""'], {'delimiter': '""","""'}), "('networkwithdist.csv', delimiter=',')\n", (946, 984), False, 'from numpy import genfromtxt\n'), ((1089, 1126), 'pandas.DataFrame', 'pd.DataFrame', (['my_data'], {'columns': 'header'}), '(my_data, columns=header)\n', (1101, 1126), True, 'import pandas as pd\n'), ((1751, 1786), 'pandas.DataFrame', 'pd.DataFrame', (['data1'], {'columns': 'header'}), '(data1, columns=header)\n', (1763, 1786), True, 'import pandas as pd\n'), ((2140, 2176), 'pandas.DataFrame', 'pd.DataFrame', (['data_c'], {'columns': 'header'}), '(data_c, columns=header)\n', (2152, 2176), True, 'import pandas as pd\n'), ((5483, 5495), 'gc.collect', 'gc.collect', ([], {}), '()\n', (5493, 5495), False, 'import gc\n'), ((10571, 10583), 'gc.collect', 'gc.collect', ([], {}), '()\n', (10581, 10583), False, 'import gc\n'), ((12856, 12868), 'gc.collect', 'gc.collect', ([], {}), '()\n', (12866, 12868), False, 'import gc\n'), ((15728, 15757), 'flask.render_template', 'render_template', (['"""test1.html"""'], {}), "('test1.html')\n", (15743, 15757), False, 'from flask import Flask, request, render_template, send_file, Response\n'), ((27708, 27726), 'tornado.wsgi.WSGIContainer', 'WSGIContainer', (['app'], {}), '(app)\n', (27721, 27726), False, 'from tornado.wsgi import WSGIContainer\n'), ((18608, 18619), 'time.time', 'time.time', ([], {}), '()\n', (18617, 18619), False, 'import time\n'), ((18815, 18826), 'time.time', 'time.time', ([], {}), '()\n', (18824, 18826), False, 'import time\n'), ((27035, 27046), 'time.time', 'time.time', ([], {}), '()\n', (27044, 27046), False, 'import time\n'), ((27269, 27280), 'time.time', 'time.time', ([], {}), '()\n', (27278, 27280), False, 'import time\n'), ((27931, 27948), 'tornado.ioloop.IOLoop.instance', 'IOLoop.instance', ([], {}), '()\n', (27946, 27948), False, 'from tornado.ioloop import IOLoop\n'), ((17046, 17057), 'time.time', 'time.time', ([], {}), '()\n', (17055, 17057), False, 'import time\n'), ((17134, 17145), 'time.time', 'time.time', ([], {}), '()\n', (17143, 17145), False, 'import time\n'), ((17606, 17618), 'gc.collect', 'gc.collect', ([], {}), '()\n', (17616, 17618), False, 'import gc\n'), ((18057, 18069), 'gc.collect', 'gc.collect', ([], {}), '()\n', (18067, 18069), False, 'import gc\n'), ((20267, 20279), 'gc.collect', 'gc.collect', ([], {}), '()\n', (20277, 20279), False, 'import gc\n'), ((16394, 16408), 'json.dumps', 'json.dumps', (['re'], {}), '(re)\n', (16404, 16408), False, 'import json\n'), ((17277, 17291), 'json.dumps', 'json.dumps', (['re'], {}), '(re)\n', (17287, 17291), False, 'import json\n'), ((17682, 17723), 'json.dumps', 'json.dumps', (['re'], {'sort_keys': '(False)', 'indent': '(4)'}), '(re, sort_keys=False, indent=4)\n', (17692, 17723), False, 'import json\n'), ((18133, 18174), 'json.dumps', 'json.dumps', (['re'], {'sort_keys': '(False)', 'indent': '(4)'}), '(re, sort_keys=False, indent=4)\n', (18143, 18174), False, 'import json\n')]
# Copyright (C) 2021 <NAME> # # SPDX-License-Identifier: MIT from typing import Callable, Tuple, Union import dolfinx.common as _common import dolfinx.fem as _fem import dolfinx.log as _log import dolfinx.mesh as _mesh import dolfinx_cuas import numpy as np import ufl from dolfinx.cpp.graph import AdjacencyList_int32 from dolfinx.cpp.mesh import MeshTags_int32 from petsc4py import PETSc as _PETSc import dolfinx_contact import dolfinx_contact.cpp from dolfinx_contact.helpers import (epsilon, lame_parameters, rigid_motions_nullspace, sigma_func) kt = dolfinx_contact.cpp.Kernel __all__ = ["nitsche_unbiased"] def nitsche_unbiased(mesh: _mesh.Mesh, mesh_tags: list[MeshTags_int32], domain_marker: MeshTags_int32, surfaces: AdjacencyList_int32, dirichlet: list[Tuple[int, Callable[[np.ndarray], np.ndarray]]], neumann: list[Tuple[int, Callable[[np.ndarray], np.ndarray]]], contact_pairs: list[Tuple[int, int]], body_forces: list[Tuple[int, Callable[[np.ndarray], np.ndarray]]], physical_parameters: dict[str, Union[bool, np.float64, int]], nitsche_parameters: dict[str, np.float64], quadrature_degree: int = 5, form_compiler_params: dict = None, jit_params: dict = None, petsc_options: dict = None, newton_options: dict = None, initial_guess=None, outfile: str = None, order: int = 1) -> Tuple[_fem.Function, int, int, float]: """ Use custom kernel to compute the contact problem with two elastic bodies coming into contact. Parameters ========== mesh The input mesh mesh_tags A list of meshtags. The first element must contain the mesh_tags for all puppet surfaces, Dirichlet-surfaces and Neumann-surfaces All further elements may contain candidate_surfaces domain_marker marker for subdomains where a body force is applied surfaces Adjacency list. Links of i are meshtag values for contact surfaces in ith mesh_tag in mesh_tags dirichlet List of Dirichlet boundary conditions as pairs of (meshtag value, function), where function is a function to be interpolated into the dolfinx function space neumann Same as dirichlet for Neumann boundary conditions contact_pairs: list of pairs (i, j) marking the ith surface as a puppet surface and the jth surface as the corresponding candidate surface physical_parameters Optional dictionary with information about the linear elasticity problem. Valid (key, value) tuples are: ('E': float), ('nu', float), ('strain', bool) nitsche_parameters Optional dictionary with information about the Nitsche configuration. Valid (keu, value) tuples are: ('gamma', float), ('theta', float) where theta can be -1, 0 or 1 for skew-symmetric, penalty like or symmetric enforcement of Nitsche conditions displacement The displacement enforced on Dirichlet boundary quadrature_degree The quadrature degree to use for the custom contact kernels form_compiler_params Parameters used in FFCX compilation of this form. Run `ffcx --help` at the commandline to see all available options. Takes priority over all other parameter values, except for `scalar_type` which is determined by DOLFINX. jit_params Parameters used in CFFI JIT compilation of C code generated by FFCX. See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py for all available parameters. Takes priority over all other parameter values. petsc_options Parameters that is passed to the linear algebra backend PETSc. For available choices for the 'petsc_options' kwarg, see the `PETSc-documentation <https://petsc4py.readthedocs.io/en/stable/manual/ksp/>` newton_options Dictionary with Newton-solver options. Valid (key, item) tuples are: ("atol", float), ("rtol", float), ("convergence_criterion", "str"), ("max_it", int), ("error_on_nonconvergence", bool), ("relaxation_parameter", float) initial_guess A functon containing an intial guess to use for the Newton-solver outfile File to append solver summary order The order of mesh and function space """ form_compiler_params = {} if form_compiler_params is None else form_compiler_params jit_params = {} if jit_params is None else jit_params petsc_options = {} if petsc_options is None else petsc_options newton_options = {} if newton_options is None else newton_options strain = physical_parameters.get("strain") if strain is None: raise RuntimeError("Need to supply if problem is plane strain (True) or plane stress (False)") else: plane_strain = bool(strain) _E = physical_parameters.get("E") if _E is not None: E = np.float64(_E) else: raise RuntimeError("Need to supply Youngs modulus") if physical_parameters.get("nu") is None: raise RuntimeError("Need to supply Poisson's ratio") else: nu = physical_parameters.get("nu") # Compute lame parameters mu_func, lambda_func = lame_parameters(plane_strain) mu = mu_func(E, nu) lmbda = lambda_func(E, nu) sigma = sigma_func(mu, lmbda) # Nitche parameters and variables theta = nitsche_parameters.get("theta") if theta is None: raise RuntimeError("Need to supply theta for Nitsche imposition of boundary conditions") _gamma = nitsche_parameters.get("gamma") if _gamma is None: raise RuntimeError("Need to supply Coercivity/Stabilization parameter for Nitsche condition") else: gamma: np.float64 = _gamma * E lifting = nitsche_parameters.get("lift_bc", False) # Functions space and FEM functions V = _fem.VectorFunctionSpace(mesh, ("CG", order)) u = _fem.Function(V) v = ufl.TestFunction(V) du = ufl.TrialFunction(V) h = ufl.CellDiameter(mesh) n = ufl.FacetNormal(mesh) # Integration measure and ufl part of linear/bilinear form # metadata = {"quadrature_degree": quadrature_degree} dx = ufl.Measure("dx", domain=mesh, subdomain_data=domain_marker) ds = ufl.Measure("ds", domain=mesh, # metadata=metadata, subdomain_data=mesh_tags[0]) J = ufl.inner(sigma(du), epsilon(v)) * dx F = ufl.inner(sigma(u), epsilon(v)) * dx for contact_pair in contact_pairs: surface_value = int(surfaces.links(0)[contact_pair[0]]) J += - 0.5 * theta * h / gamma * ufl.inner(sigma(du) * n, sigma(v) * n) * \ ds(surface_value) F += - 0.5 * theta * h / gamma * ufl.inner(sigma(u) * n, sigma(v) * n) * \ ds(surface_value) # Dirichle boundary conditions bcs = [] if lifting: tdim = mesh.topology.dim for bc in dirichlet: facets = mesh_tags[0].find(bc[0]) cells = _mesh.compute_incident_entities(mesh, facets, tdim - 1, tdim) u_bc = _fem.Function(V) u_bc.interpolate(bc[1], cells) u_bc.x.scatter_forward() bcs.append(_fem.dirichletbc(u_bc, _fem.locate_dofs_topological(V, tdim - 1, facets))) else: for bc in dirichlet: f = _fem.Function(V) f.interpolate(bc[1]) F += - ufl.inner(sigma(u) * n, v) * ds(bc[0])\ - theta * ufl.inner(sigma(v) * n, u - f) * \ ds(bc[0]) + gamma / h * ufl.inner(u - f, v) * ds(bc[0]) J += - ufl.inner(sigma(du) * n, v) * ds(bc[0])\ - theta * ufl.inner(sigma(v) * n, du) * \ ds(bc[0]) + gamma / h * ufl.inner(du, v) * ds(bc[0]) # Neumann boundary conditions for bc in neumann: g = _fem.Function(V) g.interpolate(bc[1]) F -= ufl.inner(g, v) * ds(bc[0]) # body forces for bf in body_forces: f = _fem.Function(V) f.interpolate(bf[1]) F -= ufl.inner(f, v) * dx(bf[0]) # Custom assembly # create contact class with _common.Timer("~Contact: Init"): contact = dolfinx_contact.cpp.Contact(mesh_tags, surfaces, contact_pairs, V._cpp_object, quadrature_degree=quadrature_degree) with _common.Timer("~Contact: Distance maps"): for i in range(len(contact_pairs)): contact.create_distance_map(i) # pack constants consts = np.array([gamma, theta]) # Pack material parameters mu and lambda on each contact surface with _common.Timer("~Contact: Interpolate coeffs (mu, lmbda)"): V2 = _fem.FunctionSpace(mesh, ("DG", 0)) lmbda2 = _fem.Function(V2) lmbda2.interpolate(lambda x: np.full((1, x.shape[1]), lmbda)) mu2 = _fem.Function(V2) mu2.interpolate(lambda x: np.full((1, x.shape[1]), mu)) entities = [] with _common.Timer("~Contact: Compute active entities"): for pair in contact_pairs: entities.append(contact.active_entities(pair[0])) material = [] with _common.Timer("~Contact: Pack coeffs (mu, lmbda"): for i in range(len(contact_pairs)): material.append(dolfinx_cuas.pack_coefficients([mu2, lmbda2], entities[i])) # Pack celldiameter on each surface h_packed = [] with _common.Timer("~Contact: Compute and pack celldiameter"): surface_cells = np.unique(np.hstack([entities[i][:, 0] for i in range(len(contact_pairs))])) h_int = _fem.Function(V2) expr = _fem.Expression(h, V2.element.interpolation_points) h_int.interpolate(expr, surface_cells) for i in range(len(contact_pairs)): h_packed.append(dolfinx_cuas.pack_coefficients([h_int], entities[i])) # Pack gap, normals and test functions on each surface gaps = [] normals = [] test_fns = [] with _common.Timer("~Contact: Pack gap, normals, testfunction"): for i in range(len(contact_pairs)): gaps.append(contact.pack_gap(i)) normals.append(contact.pack_ny(i, gaps[i])) test_fns.append(contact.pack_test_functions(i, gaps[i])) # Concatenate all coeffs coeffs_const = [] for i in range(len(contact_pairs)): coeffs_const.append(np.hstack([material[i], h_packed[i], gaps[i], normals[i], test_fns[i]])) # Generate Jacobian data structures J_custom = _fem.form(J, form_compiler_params=form_compiler_params, jit_params=jit_params) with _common.Timer("~Contact: Generate Jacobian kernel"): kernel_jac = contact.generate_kernel(kt.Jac) with _common.Timer("~Contact: Create matrix"): J = contact.create_matrix(J_custom) # Generate residual data structures F_custom = _fem.form(F, form_compiler_params=form_compiler_params, jit_params=jit_params) with _common.Timer("~Contact: Generate residual kernel"): kernel_rhs = contact.generate_kernel(kt.Rhs) with _common.Timer("~Contact: Create vector"): b = _fem.petsc.create_vector(F_custom) @_common.timed("~Contact: Update coefficients") def compute_coefficients(x, coeffs): u.vector[:] = x.array u_candidate = [] with _common.Timer("~~Contact: Pack u contact"): for i in range(len(contact_pairs)): u_candidate.append(contact.pack_u_contact(i, u._cpp_object, gaps[i])) u_puppet = [] with _common.Timer("~~Contact: Pack u"): for i in range(len(contact_pairs)): u_puppet.append(dolfinx_cuas.pack_coefficients([u], entities[i])) for i in range(len(contact_pairs)): c_0 = np.hstack([coeffs_const[i], u_puppet[i], u_candidate[i]]) coeffs[i][:, :] = c_0[:, :] @_common.timed("~Contact: Assemble residual") def compute_residual(x, b, coeffs): b.zeroEntries() with _common.Timer("~~Contact: Contact contributions (in assemble vector)"): for i in range(len(contact_pairs)): contact.assemble_vector(b, i, kernel_rhs, coeffs[i], consts) with _common.Timer("~~Contact: Standard contributions (in assemble vector)"): _fem.petsc.assemble_vector(b, F_custom) # Apply boundary condition if lifting: _fem.petsc.apply_lifting(b, [J_custom], bcs=[bcs], x0=[x], scale=-1.0) b.ghostUpdate(addv=_PETSc.InsertMode.ADD, mode=_PETSc.ScatterMode.REVERSE) _fem.petsc.set_bc(b, bcs, x, -1.0) @_common.timed("~Contact: Assemble matrix") def compute_jacobian_matrix(x, A, coeffs): A.zeroEntries() with _common.Timer("~~Contact: Contact contributions (in assemble matrix)"): for i in range(len(contact_pairs)): contact.assemble_matrix(A, [], i, kernel_jac, coeffs[i], consts) with _common.Timer("~~Contact: Standard contributions (in assemble matrix)"): _fem.petsc.assemble_matrix(A, J_custom, bcs=bcs) A.assemble() # coefficient arrays num_coeffs = contact.coefficients_size() coeffs = np.array([np.zeros((len(entities[i]), num_coeffs)) for i in range(len(contact_pairs))]) newton_solver = dolfinx_contact.NewtonSolver(mesh.comm, J, b, coeffs) # Set matrix-vector computations newton_solver.set_residual(compute_residual) newton_solver.set_jacobian(compute_jacobian_matrix) newton_solver.set_coefficients(compute_coefficients) # Set rigid motion nullspace null_space = rigid_motions_nullspace(V) newton_solver.A.setNearNullSpace(null_space) # Set Newton solver options newton_solver.set_newton_options(newton_options) # Set initial guess if initial_guess is None: u.x.array[:] = 0 else: u.x.array[:] = initial_guess.x.array[:] # Set Krylov solver options newton_solver.set_krylov_options(petsc_options) dofs_global = V.dofmap.index_map_bs * V.dofmap.index_map.size_global _log.set_log_level(_log.LogLevel.OFF) # Solve non-linear problem timing_str = f"~Contact: {id(dofs_global)} Solve Nitsche" with _common.Timer(timing_str): n, converged = newton_solver.solve(u) if outfile is not None: viewer = _PETSc.Viewer().createASCII(outfile, "a") newton_solver.krylov_solver.view(viewer) newton_time = _common.timing(timing_str) if not converged: raise RuntimeError("Newton solver did not converge") u.x.scatter_forward() print(f"{dofs_global}\n Number of Newton iterations: {n:d}\n", f"Number of Krylov iterations {newton_solver.krylov_iterations}\n", flush=True) return u, n, newton_solver.krylov_iterations, newton_time[1]
[ "dolfinx.common.timing", "ufl.Measure", "numpy.hstack", "ufl.FacetNormal", "numpy.array", "dolfinx.fem.petsc.set_bc", "dolfinx_contact.NewtonSolver", "dolfinx.fem.petsc.apply_lifting", "dolfinx.fem.petsc.assemble_matrix", "dolfinx_contact.cpp.Contact", "dolfinx.fem.Expression", "dolfinx.fem.locate_dofs_topological", "dolfinx.fem.petsc.create_vector", "numpy.float64", "dolfinx_contact.helpers.sigma_func", "ufl.inner", "dolfinx.fem.petsc.assemble_vector", "dolfinx.fem.VectorFunctionSpace", "dolfinx.log.set_log_level", "petsc4py.PETSc.Viewer", "ufl.TestFunction", "ufl.CellDiameter", "dolfinx.common.Timer", "dolfinx_contact.helpers.rigid_motions_nullspace", "ufl.TrialFunction", "dolfinx_contact.helpers.epsilon", "dolfinx.fem.form", "dolfinx.mesh.compute_incident_entities", "dolfinx.fem.Function", "dolfinx.fem.FunctionSpace", "dolfinx_contact.helpers.lame_parameters", "dolfinx_cuas.pack_coefficients", "numpy.full", "dolfinx.common.timed" ]
[((5390, 5419), 'dolfinx_contact.helpers.lame_parameters', 'lame_parameters', (['plane_strain'], {}), '(plane_strain)\n', (5405, 5419), False, 'from dolfinx_contact.helpers import epsilon, lame_parameters, rigid_motions_nullspace, sigma_func\n'), ((5487, 5508), 'dolfinx_contact.helpers.sigma_func', 'sigma_func', (['mu', 'lmbda'], {}), '(mu, lmbda)\n', (5497, 5508), False, 'from dolfinx_contact.helpers import epsilon, lame_parameters, rigid_motions_nullspace, sigma_func\n'), ((6033, 6078), 'dolfinx.fem.VectorFunctionSpace', '_fem.VectorFunctionSpace', (['mesh', "('CG', order)"], {}), "(mesh, ('CG', order))\n", (6057, 6078), True, 'import dolfinx.fem as _fem\n'), ((6087, 6103), 'dolfinx.fem.Function', '_fem.Function', (['V'], {}), '(V)\n', (6100, 6103), True, 'import dolfinx.fem as _fem\n'), ((6112, 6131), 'ufl.TestFunction', 'ufl.TestFunction', (['V'], {}), '(V)\n', (6128, 6131), False, 'import ufl\n'), ((6141, 6161), 'ufl.TrialFunction', 'ufl.TrialFunction', (['V'], {}), '(V)\n', (6158, 6161), False, 'import ufl\n'), ((6171, 6193), 'ufl.CellDiameter', 'ufl.CellDiameter', (['mesh'], {}), '(mesh)\n', (6187, 6193), False, 'import ufl\n'), ((6202, 6223), 'ufl.FacetNormal', 'ufl.FacetNormal', (['mesh'], {}), '(mesh)\n', (6217, 6223), False, 'import ufl\n'), ((6355, 6415), 'ufl.Measure', 'ufl.Measure', (['"""dx"""'], {'domain': 'mesh', 'subdomain_data': 'domain_marker'}), "('dx', domain=mesh, subdomain_data=domain_marker)\n", (6366, 6415), False, 'import ufl\n'), ((6425, 6484), 'ufl.Measure', 'ufl.Measure', (['"""ds"""'], {'domain': 'mesh', 'subdomain_data': 'mesh_tags[0]'}), "('ds', domain=mesh, subdomain_data=mesh_tags[0])\n", (6436, 6484), False, 'import ufl\n'), ((8650, 8674), 'numpy.array', 'np.array', (['[gamma, theta]'], {}), '([gamma, theta])\n', (8658, 8674), True, 'import numpy as np\n'), ((10593, 10671), 'dolfinx.fem.form', '_fem.form', (['J'], {'form_compiler_params': 'form_compiler_params', 'jit_params': 'jit_params'}), '(J, form_compiler_params=form_compiler_params, jit_params=jit_params)\n', (10602, 10671), True, 'import dolfinx.fem as _fem\n'), ((10938, 11016), 'dolfinx.fem.form', '_fem.form', (['F'], {'form_compiler_params': 'form_compiler_params', 'jit_params': 'jit_params'}), '(F, form_compiler_params=form_compiler_params, jit_params=jit_params)\n', (10947, 11016), True, 'import dolfinx.fem as _fem\n'), ((11236, 11282), 'dolfinx.common.timed', '_common.timed', (['"""~Contact: Update coefficients"""'], {}), "('~Contact: Update coefficients')\n", (11249, 11282), True, 'import dolfinx.common as _common\n'), ((11937, 11981), 'dolfinx.common.timed', '_common.timed', (['"""~Contact: Assemble residual"""'], {}), "('~Contact: Assemble residual')\n", (11950, 11981), True, 'import dolfinx.common as _common\n'), ((12673, 12715), 'dolfinx.common.timed', '_common.timed', (['"""~Contact: Assemble matrix"""'], {}), "('~Contact: Assemble matrix')\n", (12686, 12715), True, 'import dolfinx.common as _common\n'), ((13361, 13414), 'dolfinx_contact.NewtonSolver', 'dolfinx_contact.NewtonSolver', (['mesh.comm', 'J', 'b', 'coeffs'], {}), '(mesh.comm, J, b, coeffs)\n', (13389, 13414), False, 'import dolfinx_contact\n'), ((13666, 13692), 'dolfinx_contact.helpers.rigid_motions_nullspace', 'rigid_motions_nullspace', (['V'], {}), '(V)\n', (13689, 13692), False, 'from dolfinx_contact.helpers import epsilon, lame_parameters, rigid_motions_nullspace, sigma_func\n'), ((14129, 14166), 'dolfinx.log.set_log_level', '_log.set_log_level', (['_log.LogLevel.OFF'], {}), '(_log.LogLevel.OFF)\n', (14147, 14166), True, 'import dolfinx.log as _log\n'), ((14497, 14523), 'dolfinx.common.timing', '_common.timing', (['timing_str'], {}), '(timing_str)\n', (14511, 14523), True, 'import dolfinx.common as _common\n'), ((5086, 5100), 'numpy.float64', 'np.float64', (['_E'], {}), '(_E)\n', (5096, 5100), True, 'import numpy as np\n'), ((7974, 7990), 'dolfinx.fem.Function', '_fem.Function', (['V'], {}), '(V)\n', (7987, 7990), True, 'import dolfinx.fem as _fem\n'), ((8119, 8135), 'dolfinx.fem.Function', '_fem.Function', (['V'], {}), '(V)\n', (8132, 8135), True, 'import dolfinx.fem as _fem\n'), ((8265, 8296), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Init"""'], {}), "('~Contact: Init')\n", (8278, 8296), True, 'import dolfinx.common as _common\n'), ((8316, 8436), 'dolfinx_contact.cpp.Contact', 'dolfinx_contact.cpp.Contact', (['mesh_tags', 'surfaces', 'contact_pairs', 'V._cpp_object'], {'quadrature_degree': 'quadrature_degree'}), '(mesh_tags, surfaces, contact_pairs, V.\n _cpp_object, quadrature_degree=quadrature_degree)\n', (8343, 8436), False, 'import dolfinx_contact\n'), ((8487, 8527), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Distance maps"""'], {}), "('~Contact: Distance maps')\n", (8500, 8527), True, 'import dolfinx.common as _common\n'), ((8754, 8811), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Interpolate coeffs (mu, lmbda)"""'], {}), "('~Contact: Interpolate coeffs (mu, lmbda)')\n", (8767, 8811), True, 'import dolfinx.common as _common\n'), ((8826, 8861), 'dolfinx.fem.FunctionSpace', '_fem.FunctionSpace', (['mesh', "('DG', 0)"], {}), "(mesh, ('DG', 0))\n", (8844, 8861), True, 'import dolfinx.fem as _fem\n'), ((8879, 8896), 'dolfinx.fem.Function', '_fem.Function', (['V2'], {}), '(V2)\n', (8892, 8896), True, 'import dolfinx.fem as _fem\n'), ((8981, 8998), 'dolfinx.fem.Function', '_fem.Function', (['V2'], {}), '(V2)\n', (8994, 8998), True, 'import dolfinx.fem as _fem\n'), ((9091, 9141), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Compute active entities"""'], {}), "('~Contact: Compute active entities')\n", (9104, 9141), True, 'import dolfinx.common as _common\n'), ((9268, 9317), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Pack coeffs (mu, lmbda"""'], {}), "('~Contact: Pack coeffs (mu, lmbda')\n", (9281, 9317), True, 'import dolfinx.common as _common\n'), ((9519, 9575), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Compute and pack celldiameter"""'], {}), "('~Contact: Compute and pack celldiameter')\n", (9532, 9575), True, 'import dolfinx.common as _common\n'), ((9694, 9711), 'dolfinx.fem.Function', '_fem.Function', (['V2'], {}), '(V2)\n', (9707, 9711), True, 'import dolfinx.fem as _fem\n'), ((9727, 9778), 'dolfinx.fem.Expression', '_fem.Expression', (['h', 'V2.element.interpolation_points'], {}), '(h, V2.element.interpolation_points)\n', (9742, 9778), True, 'import dolfinx.fem as _fem\n'), ((10070, 10128), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Pack gap, normals, testfunction"""'], {}), "('~Contact: Pack gap, normals, testfunction')\n", (10083, 10128), True, 'import dolfinx.common as _common\n'), ((10681, 10732), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Generate Jacobian kernel"""'], {}), "('~Contact: Generate Jacobian kernel')\n", (10694, 10732), True, 'import dolfinx.common as _common\n'), ((10796, 10836), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Create matrix"""'], {}), "('~Contact: Create matrix')\n", (10809, 10836), True, 'import dolfinx.common as _common\n'), ((11026, 11077), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Generate residual kernel"""'], {}), "('~Contact: Generate residual kernel')\n", (11039, 11077), True, 'import dolfinx.common as _common\n'), ((11141, 11181), 'dolfinx.common.Timer', '_common.Timer', (['"""~Contact: Create vector"""'], {}), "('~Contact: Create vector')\n", (11154, 11181), True, 'import dolfinx.common as _common\n'), ((11195, 11229), 'dolfinx.fem.petsc.create_vector', '_fem.petsc.create_vector', (['F_custom'], {}), '(F_custom)\n', (11219, 11229), True, 'import dolfinx.fem as _fem\n'), ((14269, 14294), 'dolfinx.common.Timer', '_common.Timer', (['timing_str'], {}), '(timing_str)\n', (14282, 14294), True, 'import dolfinx.common as _common\n'), ((6558, 6568), 'dolfinx_contact.helpers.epsilon', 'epsilon', (['v'], {}), '(v)\n', (6565, 6568), False, 'from dolfinx_contact.helpers import epsilon, lame_parameters, rigid_motions_nullspace, sigma_func\n'), ((6603, 6613), 'dolfinx_contact.helpers.epsilon', 'epsilon', (['v'], {}), '(v)\n', (6610, 6613), False, 'from dolfinx_contact.helpers import epsilon, lame_parameters, rigid_motions_nullspace, sigma_func\n'), ((7144, 7205), 'dolfinx.mesh.compute_incident_entities', '_mesh.compute_incident_entities', (['mesh', 'facets', '(tdim - 1)', 'tdim'], {}), '(mesh, facets, tdim - 1, tdim)\n', (7175, 7205), True, 'import dolfinx.mesh as _mesh\n'), ((7225, 7241), 'dolfinx.fem.Function', '_fem.Function', (['V'], {}), '(V)\n', (7238, 7241), True, 'import dolfinx.fem as _fem\n'), ((7475, 7491), 'dolfinx.fem.Function', '_fem.Function', (['V'], {}), '(V)\n', (7488, 7491), True, 'import dolfinx.fem as _fem\n'), ((8033, 8048), 'ufl.inner', 'ufl.inner', (['g', 'v'], {}), '(g, v)\n', (8042, 8048), False, 'import ufl\n'), ((8178, 8193), 'ufl.inner', 'ufl.inner', (['f', 'v'], {}), '(f, v)\n', (8187, 8193), False, 'import ufl\n'), ((10464, 10535), 'numpy.hstack', 'np.hstack', (['[material[i], h_packed[i], gaps[i], normals[i], test_fns[i]]'], {}), '([material[i], h_packed[i], gaps[i], normals[i], test_fns[i]])\n', (10473, 10535), True, 'import numpy as np\n'), ((11392, 11434), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Pack u contact"""'], {}), "('~~Contact: Pack u contact')\n", (11405, 11434), True, 'import dolfinx.common as _common\n'), ((11605, 11639), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Pack u"""'], {}), "('~~Contact: Pack u')\n", (11618, 11639), True, 'import dolfinx.common as _common\n'), ((11833, 11890), 'numpy.hstack', 'np.hstack', (['[coeffs_const[i], u_puppet[i], u_candidate[i]]'], {}), '([coeffs_const[i], u_puppet[i], u_candidate[i]])\n', (11842, 11890), True, 'import numpy as np\n'), ((12059, 12129), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Contact contributions (in assemble vector)"""'], {}), "('~~Contact: Contact contributions (in assemble vector)')\n", (12072, 12129), True, 'import dolfinx.common as _common\n'), ((12269, 12340), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Standard contributions (in assemble vector)"""'], {}), "('~~Contact: Standard contributions (in assemble vector)')\n", (12282, 12340), True, 'import dolfinx.common as _common\n'), ((12354, 12393), 'dolfinx.fem.petsc.assemble_vector', '_fem.petsc.assemble_vector', (['b', 'F_custom'], {}), '(b, F_custom)\n', (12380, 12393), True, 'import dolfinx.fem as _fem\n'), ((12462, 12532), 'dolfinx.fem.petsc.apply_lifting', '_fem.petsc.apply_lifting', (['b', '[J_custom]'], {'bcs': '[bcs]', 'x0': '[x]', 'scale': '(-1.0)'}), '(b, [J_custom], bcs=[bcs], x0=[x], scale=-1.0)\n', (12486, 12532), True, 'import dolfinx.fem as _fem\n'), ((12632, 12666), 'dolfinx.fem.petsc.set_bc', '_fem.petsc.set_bc', (['b', 'bcs', 'x', '(-1.0)'], {}), '(b, bcs, x, -1.0)\n', (12649, 12666), True, 'import dolfinx.fem as _fem\n'), ((12800, 12870), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Contact contributions (in assemble matrix)"""'], {}), "('~~Contact: Contact contributions (in assemble matrix)')\n", (12813, 12870), True, 'import dolfinx.common as _common\n'), ((13014, 13085), 'dolfinx.common.Timer', '_common.Timer', (['"""~~Contact: Standard contributions (in assemble matrix)"""'], {}), "('~~Contact: Standard contributions (in assemble matrix)')\n", (13027, 13085), True, 'import dolfinx.common as _common\n'), ((13099, 13147), 'dolfinx.fem.petsc.assemble_matrix', '_fem.petsc.assemble_matrix', (['A', 'J_custom'], {'bcs': 'bcs'}), '(A, J_custom, bcs=bcs)\n', (13125, 13147), True, 'import dolfinx.fem as _fem\n'), ((8934, 8965), 'numpy.full', 'np.full', (['(1, x.shape[1])', 'lmbda'], {}), '((1, x.shape[1]), lmbda)\n', (8941, 8965), True, 'import numpy as np\n'), ((9033, 9061), 'numpy.full', 'np.full', (['(1, x.shape[1])', 'mu'], {}), '((1, x.shape[1]), mu)\n', (9040, 9061), True, 'import numpy as np\n'), ((9391, 9449), 'dolfinx_cuas.pack_coefficients', 'dolfinx_cuas.pack_coefficients', (['[mu2, lmbda2]', 'entities[i]'], {}), '([mu2, lmbda2], entities[i])\n', (9421, 9449), False, 'import dolfinx_cuas\n'), ((9898, 9950), 'dolfinx_cuas.pack_coefficients', 'dolfinx_cuas.pack_coefficients', (['[h_int]', 'entities[i]'], {}), '([h_int], entities[i])\n', (9928, 9950), False, 'import dolfinx_cuas\n'), ((14388, 14403), 'petsc4py.PETSc.Viewer', '_PETSc.Viewer', ([], {}), '()\n', (14401, 14403), True, 'from petsc4py import PETSc as _PETSc\n'), ((7368, 7417), 'dolfinx.fem.locate_dofs_topological', '_fem.locate_dofs_topological', (['V', '(tdim - 1)', 'facets'], {}), '(V, tdim - 1, facets)\n', (7396, 7417), True, 'import dolfinx.fem as _fem\n'), ((11721, 11769), 'dolfinx_cuas.pack_coefficients', 'dolfinx_cuas.pack_coefficients', (['[u]', 'entities[i]'], {}), '([u], entities[i])\n', (11751, 11769), False, 'import dolfinx_cuas\n'), ((7685, 7704), 'ufl.inner', 'ufl.inner', (['(u - f)', 'v'], {}), '(u - f, v)\n', (7694, 7704), False, 'import ufl\n'), ((7875, 7891), 'ufl.inner', 'ufl.inner', (['du', 'v'], {}), '(du, v)\n', (7884, 7891), False, 'import ufl\n')]
import numpy as np from sklearn.metrics import average_precision_score as ap from sklearn.metrics import roc_auc_score """ each row is an instance each column is the prediction of a class """ def _score_to_rank(score_list): rank_array = np.zeros([len(score_list)]) score_array = np.array(score_list) idx_sorted = (-score_array).argsort() rank_array[idx_sorted] = np.arange(len(score_list))+1 rank_list = rank_array.tolist() return rank_list # For clip evaluation def auc_y_classwise(Y_target, Y_score): """ Y_target: list of lists. {0, 1} real labels Y_score: list of lists. real values prediction values """ # Y_target = np.squeeze(np.array(Y_target)) # Y_score = np.squeeze(np.array(Y_score)) Y_target = np.array(Y_target) Y_score = np.array(Y_score) auc_list = roc_auc_score(Y_target, Y_score, average=None) return auc_list def ap_y_classwise(Y_target, Y_score): """ Y_target: list of lists. {0, 1} real labels Y_score: list of lists. real values prediction values """ # Y_target = np.squeeze(np.array(Y_target)) # Y_score = np.squeeze(np.array(Y_score)) Y_target = np.array(Y_target) Y_score = np.array(Y_score) ap_list = ap(Y_target, Y_score, average=None) return ap_list def auc(Y_target, Y_score): """ Y_target: list of lists. {0, 1} real labels Y_score: list of lists. real values prediction values """ Y_target = np.array(Y_target) Y_score = np.array(Y_score) auc_list = [] for i in range(Y_score.shape[1]): try: auc = roc_auc_score(Y_target[:, i], Y_score[:, i]) except: continue auc_list.append(auc) return auc_list def mean_auc(Y_target, Y_score): auc_list = auc(Y_target, Y_score) mean_auc = np.mean(auc_list) return mean_auc def mean_auc_y(Y_target, Y_score): ''' along y-axis ''' return mean_auc(Y_target, Y_score) def mean_auc_x(Y_target, Y_score): ''' along x-axis ''' return mean_auc(np.array(Y_target).T, np.array(Y_score).T) def mean_average_precision(Y_target, Y_score): """ mean average precision raw-based operation Y_target: list of lists. {0, 1} real labels Y_score: list of lists. real values prediction values """ p = float(len(Y_target)) temp_sum = 0 for y_target, y_score in zip(Y_target, Y_score): y_target = np.array(y_target) y_score = np.array(y_score) if (y_target == 0).all() or (y_target == 1).all(): p -= 1 continue idx_target = np.nonzero(y_target > 0)[0] n_target = float(len(idx_target)) rank_list = np.array(_score_to_rank(y_score)) target_rank_list = rank_list[idx_target] temp_sum_2 = 0 for target_rank in target_rank_list: mm = sum([1 for ii in idx_target if rank_list[ii] <= target_rank])/float(target_rank) temp_sum_2 += mm temp_sum += temp_sum_2/n_target measure = temp_sum/p return measure def map(Y_target, Y_score): return mean_average_precision(Y_target, Y_score) def map_x(Y_target, Y_score): return mean_average_precision(Y_target, Y_score) def map_y(Y_target, Y_score): return mean_average_precision(np.array(Y_target).T, np.array(Y_score).T)
[ "numpy.mean", "sklearn.metrics.average_precision_score", "sklearn.metrics.roc_auc_score", "numpy.array", "numpy.nonzero" ]
[((289, 309), 'numpy.array', 'np.array', (['score_list'], {}), '(score_list)\n', (297, 309), True, 'import numpy as np\n'), ((780, 798), 'numpy.array', 'np.array', (['Y_target'], {}), '(Y_target)\n', (788, 798), True, 'import numpy as np\n'), ((813, 830), 'numpy.array', 'np.array', (['Y_score'], {}), '(Y_score)\n', (821, 830), True, 'import numpy as np\n'), ((846, 892), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_target', 'Y_score'], {'average': 'None'}), '(Y_target, Y_score, average=None)\n', (859, 892), False, 'from sklearn.metrics import roc_auc_score\n'), ((1202, 1220), 'numpy.array', 'np.array', (['Y_target'], {}), '(Y_target)\n', (1210, 1220), True, 'import numpy as np\n'), ((1235, 1252), 'numpy.array', 'np.array', (['Y_score'], {}), '(Y_score)\n', (1243, 1252), True, 'import numpy as np\n'), ((1267, 1302), 'sklearn.metrics.average_precision_score', 'ap', (['Y_target', 'Y_score'], {'average': 'None'}), '(Y_target, Y_score, average=None)\n', (1269, 1302), True, 'from sklearn.metrics import average_precision_score as ap\n'), ((1506, 1524), 'numpy.array', 'np.array', (['Y_target'], {}), '(Y_target)\n', (1514, 1524), True, 'import numpy as np\n'), ((1539, 1556), 'numpy.array', 'np.array', (['Y_score'], {}), '(Y_score)\n', (1547, 1556), True, 'import numpy as np\n'), ((1863, 1880), 'numpy.mean', 'np.mean', (['auc_list'], {}), '(auc_list)\n', (1870, 1880), True, 'import numpy as np\n'), ((2501, 2519), 'numpy.array', 'np.array', (['y_target'], {}), '(y_target)\n', (2509, 2519), True, 'import numpy as np\n'), ((2538, 2555), 'numpy.array', 'np.array', (['y_score'], {}), '(y_score)\n', (2546, 2555), True, 'import numpy as np\n'), ((1644, 1688), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_target[:, i]', 'Y_score[:, i]'], {}), '(Y_target[:, i], Y_score[:, i])\n', (1657, 1688), False, 'from sklearn.metrics import roc_auc_score\n'), ((2100, 2118), 'numpy.array', 'np.array', (['Y_target'], {}), '(Y_target)\n', (2108, 2118), True, 'import numpy as np\n'), ((2122, 2139), 'numpy.array', 'np.array', (['Y_score'], {}), '(Y_score)\n', (2130, 2139), True, 'import numpy as np\n'), ((2676, 2700), 'numpy.nonzero', 'np.nonzero', (['(y_target > 0)'], {}), '(y_target > 0)\n', (2686, 2700), True, 'import numpy as np\n'), ((3386, 3404), 'numpy.array', 'np.array', (['Y_target'], {}), '(Y_target)\n', (3394, 3404), True, 'import numpy as np\n'), ((3442, 3459), 'numpy.array', 'np.array', (['Y_score'], {}), '(Y_score)\n', (3450, 3459), True, 'import numpy as np\n')]
""" :filename transformations.py :author <NAME> :email <EMAIL> from Classes of custom transformations that are applied during the training as additional augmentation of the depth maps. """ import torch import random import numpy as np import torch.nn.functional as F from random import randrange from skimage.transform import resize, warp, AffineTransform class Normalize(object): """Normalization of a depth map in the value of [0, 1] for each pixel.""" def __init__(self, input_type): self.input_type = input_type def __call__(self, sample): if self.input_type == 'geom': image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] mean, std = image.mean([1, 2]), image.std([1, 2]) # TODO? return {'image': image, 'landmarks': landmarks, 'label': label} class ToTensor(object): """Transformation of a training sample into a torch tensor instance.""" def __init__(self, input_type): self.input_type = input_type def __call__(self, sample): image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] image = torch.from_numpy(image.copy()) if self.input_type != 'depth+geom': image = image.unsqueeze(1) image = image.permute(1, 0, 2) else: image = image.permute(2, 0, 1) landmarks = np.asarray(landmarks) landmarks = torch.from_numpy(landmarks.copy()) return {'image': image, 'landmarks': landmarks, 'label': label} class Resize(object): """Resizing of the input sample into provided dimensions.""" def __init__(self, width, height, input_type='image'): assert isinstance(width, int) assert isinstance(height, int) self.width = width self.height = height self.type = input_type def __call__(self, sample): image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] resized_landmarks = landmarks.copy() if self.type == 'image': image = resize(image, (self.height, self.width), anti_aliasing=True) if self.type == 'landmarks': resized_landmarks = [] for landmark in landmarks: landmark_resized = resize(landmark, (self.height, self.width), anti_aliasing=True) resized_landmarks.append(landmark_resized) return {'image': image, 'landmarks': resized_landmarks, 'label': label} class RandomTranslating(object): """Randomly translate the input sample from range [-10 px, 10 px] with provided probability.""" def __init__(self, p=0.5): assert isinstance(p, float) self.p = p def __call__(self, sample): image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] translated_landmarks = landmarks.copy() if np.random.rand(1) < self.p: n1 = randrange(-10, 10) n2 = randrange(-10, 10) t = AffineTransform(translation=(n1, n2)) image = warp(image, t.inverse) translated_landmarks = [] for landmark in landmarks: translated_landmarks.append(warp(landmark, t.inverse)) return {'image': image, 'landmarks': translated_landmarks, 'label': label} class RandomScaling(object): """Randomly scales the input sample with scale index from range [0.90, 1.10] with provided probability.""" def __init__(self, p=0.5): assert isinstance(p, float) self.p = p def __call__(self, sample): image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] scaled_landmarks = landmarks.copy() if np.random.rand(1) < self.p: n = random.uniform(0.90, 1.10) t = AffineTransform(scale=(n, n)) image = warp(image, t.inverse) scaled_landmarks = [] for landmark in landmarks: scaled_landmarks.append(warp(landmark, t.inverse)) return {'image': image, 'landmarks': scaled_landmarks, 'label': label} class RandomRotation(object): """Randomly rotates the input sample from range [−11.25 deg, 11.25 deg] with provided probability.""" def __init__(self, p=0.5): assert isinstance(p, float) self.p = p def __call__(self, sample): image, landmarks, label = sample['image'], sample['landmarks'], sample['label'] rnd_num1 = randrange(-32, -6) rnd_num2 = randrange(6, 32) rnd_num = random.choice([rnd_num1, rnd_num2]) if np.random.rand(1) < self.p: rotated_image = self.rotate(x=image.unsqueeze(0).type(torch.FloatTensor), theta=np.pi/rnd_num) rotated_landmarks = [] for _, landmark in enumerate(landmarks): rotated_landmark = self.rotate(x=landmark.unsqueeze(0).unsqueeze(0).type(torch.FloatTensor), theta=np.pi/rnd_num) rotated_landmarks.append(rotated_landmark.squeeze(0)) result = torch.cat(rotated_landmarks, dim=0) return {'image': rotated_image.squeeze(0), 'landmarks': result, 'label': label} return {'image': image, 'landmarks': landmarks, 'label': label} @staticmethod def get_rotation_matrix(theta): """Returns a tensor rotation matrix with given theta value.""" theta = torch.tensor(theta) return torch.tensor([[torch.cos(theta), -torch.sin(theta), 0], [torch.sin(theta), torch.cos(theta), 0]]) def rotate(self, x, theta): rot_mat = self.get_rotation_matrix(theta)[None, ...].repeat(x.shape[0], 1, 1) grid = F.affine_grid(rot_mat, x.size(), align_corners=False) x = F.grid_sample(x, grid, align_corners=False) return x
[ "torch.nn.functional.grid_sample", "random.uniform", "random.choice", "numpy.random.rand", "random.randrange", "skimage.transform.AffineTransform", "numpy.asarray", "skimage.transform.warp", "torch.sin", "torch.tensor", "torch.cos", "skimage.transform.resize", "torch.cat" ]
[((1466, 1487), 'numpy.asarray', 'np.asarray', (['landmarks'], {}), '(landmarks)\n', (1476, 1487), True, 'import numpy as np\n'), ((4681, 4699), 'random.randrange', 'randrange', (['(-32)', '(-6)'], {}), '(-32, -6)\n', (4690, 4699), False, 'from random import randrange\n'), ((4719, 4735), 'random.randrange', 'randrange', (['(6)', '(32)'], {}), '(6, 32)\n', (4728, 4735), False, 'from random import randrange\n'), ((4754, 4789), 'random.choice', 'random.choice', (['[rnd_num1, rnd_num2]'], {}), '([rnd_num1, rnd_num2])\n', (4767, 4789), False, 'import random\n'), ((5665, 5684), 'torch.tensor', 'torch.tensor', (['theta'], {}), '(theta)\n', (5677, 5684), False, 'import torch\n'), ((6028, 6071), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['x', 'grid'], {'align_corners': '(False)'}), '(x, grid, align_corners=False)\n', (6041, 6071), True, 'import torch.nn.functional as F\n'), ((2182, 2242), 'skimage.transform.resize', 'resize', (['image', '(self.height, self.width)'], {'anti_aliasing': '(True)'}), '(image, (self.height, self.width), anti_aliasing=True)\n', (2188, 2242), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((3029, 3046), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (3043, 3046), True, 'import numpy as np\n'), ((3074, 3092), 'random.randrange', 'randrange', (['(-10)', '(10)'], {}), '(-10, 10)\n', (3083, 3092), False, 'from random import randrange\n'), ((3110, 3128), 'random.randrange', 'randrange', (['(-10)', '(10)'], {}), '(-10, 10)\n', (3119, 3128), False, 'from random import randrange\n'), ((3146, 3183), 'skimage.transform.AffineTransform', 'AffineTransform', ([], {'translation': '(n1, n2)'}), '(translation=(n1, n2))\n', (3161, 3183), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((3205, 3227), 'skimage.transform.warp', 'warp', (['image', 't.inverse'], {}), '(image, t.inverse)\n', (3209, 3227), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((3900, 3917), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (3914, 3917), True, 'import numpy as np\n'), ((3944, 3968), 'random.uniform', 'random.uniform', (['(0.9)', '(1.1)'], {}), '(0.9, 1.1)\n', (3958, 3968), False, 'import random\n'), ((3987, 4016), 'skimage.transform.AffineTransform', 'AffineTransform', ([], {'scale': '(n, n)'}), '(scale=(n, n))\n', (4002, 4016), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((4038, 4060), 'skimage.transform.warp', 'warp', (['image', 't.inverse'], {}), '(image, t.inverse)\n', (4042, 4060), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((4802, 4819), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (4816, 4819), True, 'import numpy as np\n'), ((5248, 5283), 'torch.cat', 'torch.cat', (['rotated_landmarks'], {'dim': '(0)'}), '(rotated_landmarks, dim=0)\n', (5257, 5283), False, 'import torch\n'), ((2389, 2452), 'skimage.transform.resize', 'resize', (['landmark', '(self.height, self.width)'], {'anti_aliasing': '(True)'}), '(landmark, (self.height, self.width), anti_aliasing=True)\n', (2395, 2452), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((3350, 3375), 'skimage.transform.warp', 'warp', (['landmark', 't.inverse'], {}), '(landmark, t.inverse)\n', (3354, 3375), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((4175, 4200), 'skimage.transform.warp', 'warp', (['landmark', 't.inverse'], {}), '(landmark, t.inverse)\n', (4179, 4200), False, 'from skimage.transform import resize, warp, AffineTransform\n'), ((5716, 5732), 'torch.cos', 'torch.cos', (['theta'], {}), '(theta)\n', (5725, 5732), False, 'import torch\n'), ((5787, 5803), 'torch.sin', 'torch.sin', (['theta'], {}), '(theta)\n', (5796, 5803), False, 'import torch\n'), ((5805, 5821), 'torch.cos', 'torch.cos', (['theta'], {}), '(theta)\n', (5814, 5821), False, 'import torch\n'), ((5735, 5751), 'torch.sin', 'torch.sin', (['theta'], {}), '(theta)\n', (5744, 5751), False, 'import torch\n')]
import astropy.units as u import numpy as np from lofti_gaia.loftitools import * from lofti_gaia.cFunctions import calcOFTI_C #from loftitools import * import pickle import time import matplotlib.pyplot as plt # Astroquery throws some warnings we can ignore: import warnings warnings.filterwarnings("ignore") '''This module obtaines measurements from Gaia EDR3 (Gaia DR2 is also available as a secondary option) and runs through the LOFTI Gaia/OFTI wide stellar binary orbit fitting technique. ''' class Fitter(object): '''Initialize the Fitter object for the binary system, and compute observational constraints to be used in the orbit fit. User must provide Gaia source ids, tuples of mass estimates for both objects, specify the number of desired orbits in posterior sample. Fit will be for object 2 relative to object 1. Attributes are tuples of (value,uncertainty) unless otherwise indicated. Attributes with astropy units are retrieved from Gaia archive, attributes without units are computed from Gaia values. All relative values are for object 2 relative to object 1. Args: sourceid1, sourceid2 (int): Gaia source ids for the two objects, fit will be for motion of \ object 2 relative to object 1 mass1, mass2 (tuple, flt): tuple os mass estimate for object 1 and 2, of the form (value, uncertainty) Norbits (int): Number of desired orbits in posterior sample. Default = 100000 results_filename (str): Filename for fit results files. If none, results will be written to files \ named FitResults.yr.mo.day.hr.min.s astrometry (dict): User-supplied astrometric measurements. Must be dictionary or table or pandas dataframe with\ column names "sep,seperr,pa,paerr,dates" or "ra,raerr,dec,decerr,dates". May be same as the rv table. \ Sep, deltaRA, and deltaDEC must be in arcseconds, PA in degrees, dates in decimal years. \ Default = None user_rv (dict): User-supplied radial velocity measurements. Must be dictionary or table or pandas dataframe with\ column names "rv,rverr,rv_dates". May be same as the astrometry table. Default = None. catalog (str): name of Gaia catalog to query. Default = 'gaiaedr3.gaia_source' ruwe1, ruwe2 (flt): RUWE value from Gaia archive ref_epoch (flt): reference epoch in decimal years. For Gaia DR2 this is 2015.5, for Gaia EDR3 it is 2016.0 plx1, plx2 (flt): parallax from Gaia in mas RA1, RA2 (flt): right ascension from Gaia; RA in deg, uncertainty in mas Dec1, Dec2 (flt): declination from Gaia; Dec in deg, uncertainty in mas pmRA1, pmRA2 (flt): proper motion in RA in mas yr^-1 from Gaia pmDec1, pmDec2 (flt): proper motion in DEC in mas yr^-1 from Gaia rv1, rv2 (flt, optional): radial velocity in km s^-1 from Gaia rv (flt, optional): relative RV of 2 relative to 1, if both are present in Gaia plx (flt): weighted mean parallax for the binary system in mas distance (flt): distance of system in pc, computed from Gaia parallax using method \ of Bailer-Jones et. al 2018. deltaRA, deltaDec (flt): relative separation in RA and Dec directions, in mas pmRA, pmDec (flt): relative proper motion in RA/Dec directions in km s^-1 sep (flt): total separation vector in mas pa (flt): postion angle of separation vector in degrees from North sep_au (flt): separation in AU sep_km (flt): separation in km total_vel (flt): total velocity vector in km s^-1. If RV is available for both, \ this is the 3d velocity vector; if not it is just the plane of sky velocity. total_planeofsky_vel (flt): total velocity in the plane of sky in km s^-1. \ In the absence of RV this is equivalent to the total velocity vector. deltaGmag (flt): relative contrast in Gaia G magnitude. Does not include uncertainty. inflateProperMOtionError (flt): an optional factor to mulitply default gaia proper motion error by. Written by <NAME>, 2020 ''' def __init__(self, sourceid1, sourceid2, mass1, mass2, Norbits = 100000, \ results_filename = None, astrometry = None, user_rv = None, catalog = 'gaiaedr3.gaia_source', inflateProperMotionError=1 ): self.sourceid1 = sourceid1 self.sourceid2 = sourceid2 try: self.mass1 = mass1[0] self.mass1err = mass1[1] self.mass2 = mass2[0] self.mass2err = mass2[1] self.mtot = [self.mass1 + self.mass2, np.sqrt((self.mass1err**2) + (self.mass2err**2))] except: raise ValueError('Masses must be tuples of (value,error), ex: mass1 = (1.0,0.05)') self.Norbits = Norbits if not results_filename: self.results_filename = 'FitResults.'+time.strftime("%Y.%m.%d.%H.%M.%S")+'.txt' self.stats_filename = 'FitResults.Stats.'+time.strftime("%Y.%m.%d.%H.%M.%S")+'.txt' else: self.results_filename = results_filename self.stats_filename = results_filename+'.Stats.txt' self.astrometry = False # check if user supplied astrometry: if astrometry is not None: # if so, set astrometric flag to True: self.astrometry = True # store observation dates: self.astrometric_dates = astrometry['dates'] # if in sep/pa, convert to ra/dec: if 'sep' in astrometry: try: astr_ra = [MonteCarloIt([astrometry['sep'][i],astrometry['seperr'][i]]) * \ np.sin(np.radians(MonteCarloIt([astrometry['pa'][i],astrometry['paerr'][i]]))) \ for i in range(len(astrometry['sep']))] astr_dec = [MonteCarloIt([astrometry['sep'][i],astrometry['seperr'][i]]) * \ np.cos(np.radians(MonteCarloIt([astrometry['pa'][i],astrometry['paerr'][i]]))) \ for i in range(len(astrometry['sep']))] self.astrometric_ra = np.array([ [np.mean(astr_ra[i]) for i in range(len(astrometry['sep']))], [np.std(astr_ra[i]) for i in range(len(astrometry['sep']))] ]) self.astrometric_dec = np.array([ [np.mean(astr_dec[i]) for i in range(len(astrometry['sep']))], [np.std(astr_dec[i]) for i in range(len(astrometry['sep']))] ]) except: raise ValueError('Astrometry keys not recognized. Please provide dictionary or table or pandas dataframe with\ column names "sep,seperr,pa,paerr,dates" or "ra,raerr,dec,decerr,dates"') elif 'ra' in astrometry: # else store the ra/dec as attributes: try: self.astrometric_ra = np.array([astrometry['ra'], astrometry['raerr']]) self.astrometric_dec = np.array([astrometry['dec'], astrometry['decerr']]) except: raise ValueError('Astrometry keys not recognized. Please provide dictionary or table or pandas dataframe with\ column names "sep,seperr,pa,paerr,dates" or "ra,raerr,dec,decerr,dates"') else: raise ValueError('Astrometry keys not recognized. Please provide dictionary or table or pandas dataframe with\ column names "sep,seperr,pa,paerr,dates" or "ra,raerr,dec,decerr,dates"') # Check if user supplied rv: self.use_user_rv = False if user_rv is not None: # set user rv flag to true: self.use_user_rv = True try: # set attributes; multiply rv by -1 due to difference in coordinate systems: self.user_rv = np.array([user_rv['rv']*-1,user_rv['rverr']]) self.user_rv_dates = np.array(user_rv['rv_dates']) except: raise ValueError('RV keys not recognized. Please use column names "rv,rverr,rv_dates"') self.catalog = catalog # Get Gaia measurements, compute needed constraints, and add to object: self.PrepareConstraints(catalog=self.catalog,inflateFactor=inflateProperMotionError) def edr3ToICRF(self,pmra,pmdec,ra,dec,G): ''' Corrects for biases in proper motion. The function is from https://arxiv.org/pdf/2103.07432.pdf Args: pmra,pmdec (float): proper motion ra, dec (float): right ascension and declination G (float): G magnitude Written by <NAME>, 2021 ''' if G>=13: return pmra , pmdec import numpy as np def sind(x): return np.sin(np.radians(x)) def cosd(x): return np.cos(np.radians(x)) table1=""" 0.0 9.0 9.0 9.5 9.5 10.0 10.0 10.5 10.5 11.0 11.0 11.5 11.5 11.75 11.75 12.0 12.0 12.25 12.25 12.5 12.5 12.75 12.75 13.0 18.4 33.8 -11.3 14.0 30.7 -19.4 12.8 31.4 -11.8 13.6 35.7 -10.5 16.2 50.0 2.1 19.4 59.9 0.2 21.8 64.2 1.0 17.7 65.6 -1.9 21.3 74.8 2.1 25.7 73.6 1.0 27.3 76.6 0.5 34.9 68.9 -2.9 """ table1 = np.fromstring(table1,sep=" ").reshape((12,5)).T Gmin = table1[0] Gmax = table1[1] #pick the appropriate omegaXYZ for the source’s magnitude: omegaX = table1[2][(Gmin<=G)&(Gmax>G)][0] omegaY = table1[3][(Gmin<=G)&(Gmax>G)][0] omegaZ = table1[4][(Gmin<=G)&(Gmax>G)][0] pmraCorr = -1*sind(dec)*cosd(ra)*omegaX -sind(dec)*sind(ra)*omegaY + cosd(dec)*omegaZ pmdecCorr = sind(ra)*omegaX -cosd(ra)*omegaY return pmra-pmraCorr/1000., pmdec-pmdecCorr/1000. def PrepareConstraints(self, rv=False, catalog='gaiaedr3.gaia_source', inflateFactor=1.): '''Retrieves parameters for both objects from Gaia EDR3 archive and computes system attriubtes, and assigns them to the Fitter object class. Args: rv (bool): flag for handling the presence or absence of RV measurements for both objects \ in EDR3. Gets set to True if both objects have Gaia RV measurements. Default = False catalog (str): name of Gaia catalog to query. Default = 'gaiaedr3.gaia_source' inflateFactor (flt): Factor by which to inflate the errors on Gaia proper motions to \ account for improper uncertainty estimates. Default = 1.0 Written by <NAME>, 2020 ''' from astroquery.gaia import Gaia deg_to_mas = 3600000. mas_to_deg = 1./3600000. # Retrieve astrometric solution from Gaia EDR3 job = Gaia.launch_job("SELECT * FROM "+catalog+" WHERE source_id = "+str(self.sourceid1)) j = job.get_results() job = Gaia.launch_job("SELECT * FROM "+catalog+" WHERE source_id = "+str(self.sourceid2)) k = job.get_results() if catalog == 'gaiadr2.gaia_source': # Retrieve RUWE from RUWE catalog for both sources and add to object state: job = Gaia.launch_job("SELECT * FROM gaiadr2.ruwe WHERE source_id = "+str(self.sourceid1)) jruwe = job.get_results() job = Gaia.launch_job("SELECT * FROM gaiadr2.ruwe WHERE source_id = "+str(self.sourceid2)) kruwe = job.get_results() self.ruwe1 = jruwe['ruwe'][0] self.ruwe2 = kruwe['ruwe'][0] else: # EDR3 contains ruwe in the main catalog: self.ruwe1 = j['ruwe'][0] self.ruwe2 = k['ruwe'][0] # Check RUWE for both objects and warn if too high: if self.ruwe1>1.2 or self.ruwe2>1.2: print('''WARNING: RUWE for one or more of your solutions is greater than 1.2. This indicates that the source might be an unresolved binary or experiencing acceleration during the observation. Orbit fit results may not be trustworthy.''') # reference epoch: self.ref_epoch = j['ref_epoch'][0] # parallax: self.plx1 = [j[0]['parallax']*u.mas, j[0]['parallax_error']*u.mas] self.plx2 = [k[0]['parallax']*u.mas, k[0]['parallax_error']*u.mas] # RA/DEC self.RA1 = [j[0]['ra']*u.deg, j[0]['ra_error']*mas_to_deg*u.deg] self.RA2 = [k[0]['ra']*u.deg, k[0]['ra_error']*mas_to_deg*u.deg] self.Dec1 = [j[0]['dec']*u.deg, j[0]['dec_error']*mas_to_deg*u.deg] self.Dec2 = [k[0]['dec']*u.deg, k[0]['dec_error']*mas_to_deg*u.deg] # Proper motions pmRACorrected1,pmDecCorrected1 = self.edr3ToICRF(j[0]['pmra'],j[0]['pmdec'],j[0]['ra'],j[0]['dec'],j[0]["phot_g_mean_mag"]) pmRACorrected2,pmDecCorrected2 = self.edr3ToICRF(k[0]['pmra'],k[0]['pmdec'],k[0]['ra'],k[0]['dec'],k[0]["phot_g_mean_mag"]) self.pmRA1 = [pmRACorrected1*u.mas/u.yr, j[0]['pmra_error']*u.mas/u.yr*inflateFactor] self.pmRA2 = [pmRACorrected2*u.mas/u.yr, k[0]['pmra_error']*u.mas/u.yr*inflateFactor] self.pmDec1 = [pmDecCorrected1*u.mas/u.yr, j[0]['pmdec_error']*u.mas/u.yr*inflateFactor] self.pmDec2 = [pmDecCorrected2*u.mas/u.yr, k[0]['pmdec_error']*u.mas/u.yr*inflateFactor] # See if both objects have RV's in DR2: if catalog == 'gaiaedr3.gaia_source': key = 'dr2_radial_velocity' error_key = 'dr2_radial_velocity_error' elif catalog == 'gaiadr2.gaia_source': key = 'radial_velocity' error_key = 'radial_velocity_error' if type(k[0][key]) == np.float64 and type(j[0][key]) == np.float64 or type(k[0][key]) == np.float32 and type(j[0][key]) == np.float32: rv = True self.rv1 = [j[0][key]*u.km/u.s,j[0][error_key]*u.km/u.s] self.rv2 = [k[0][key]*u.km/u.s,k[0][error_key]*u.km/u.s] rv1 = MonteCarloIt(self.rv1) rv2 = MonteCarloIt(self.rv2) self.rv = [ -np.mean(rv2-rv1) , np.std(rv2-rv1) ] # km/s # negative to relfect change in coordinate system from RV measurements to lofti # pos RV = towards observer in this coord system else: self.rv = [0,0] # weighted mean of parallax values: plx = np.average([self.plx1[0].value,self.plx2[0].value], weights = [self.plx1[1].value,self.plx2[1].value]) plxerr = np.max([self.plx1[1].value,self.plx2[1].value]) self.plx = [plx,plxerr] # mas self.distance = distance(*self.plx) # pc # Compute separations of component 2 relative to 1: r1 = MonteCarloIt(self.RA1) r2 = MonteCarloIt(self.RA2) d1 = MonteCarloIt(self.Dec1) d2 = MonteCarloIt(self.Dec2) ra = (r2*deg_to_mas - r1*deg_to_mas) * np.cos(np.radians(np.mean([self.Dec1[0].value,self.Dec2[0].value]))) dec = ((d2 - d1)*u.deg).to(u.mas).value self.deltaRA = [np.mean(ra),np.std(ra)] # mas self.deltaDec = [np.mean(dec),np.std(dec)] # mas # compute relative proper motion: pr1 = MonteCarloIt(self.pmRA1) pr2 = MonteCarloIt(self.pmRA2) pd1 = MonteCarloIt(self.pmDec1) pd2 = MonteCarloIt(self.pmDec2) pmRA = [np.mean(pr2 - pr1), np.std(pr2-pr1)] # mas/yr pmDec = [np.mean(pd2 - pd1), np.std(pd2 - pd1)] # mas/yr self.pmRA = masyr_to_kms(pmRA,self.plx) # km/s self.pmDec = masyr_to_kms(pmDec,self.plx) # km/s # Compute separation/position angle: r, p = to_polar(r1,r2,d1,d2) self.sep = tuple([np.mean(r).value, np.std(r).value]) # mas self.pa = tuple([np.mean(p).value, np.std(p).value]) # deg self.sep_au = tuple([((self.sep[0]/1000)*self.distance[0]), ((self.sep[1]/1000)*self.distance[0])]) self.sep_km = tuple([ self.sep_au[0]*u.au.to(u.km) , self.sep_au[1]*u.au.to(u.km)]) # compute total velocities: if rv: self.total_vel = [ add_in_quad([self.pmRA[0],self.pmDec[0],self.rv[0]]) , add_in_quad([self.pmRA[1],self.pmDec[1],self.rv[1]]) ] # km/s self.total_planeofsky_vel = [ add_in_quad([self.pmRA[0],self.pmDec[0]]) , add_in_quad([self.pmRA[1],self.pmDec[1]]) ] # km/s else: self.total_vel = [ add_in_quad([self.pmRA[0],self.pmDec[0]]) , add_in_quad([self.pmRA[1],self.pmDec[1]]) ] # km/s self.total_planeofsky_vel = self.total_vel.copy() # km/s # compute deltamag: self.deltaGmag = j[0]['phot_g_mean_mag'] - k[0]['phot_g_mean_mag'] class FitOrbit(object): ''' Object for performing an orbit fit. Takes attributes from Fitter class. ex: orbits = FitOrbit(fitterobject) Args: fitterobject (Fitter object): Fitter object initialized from the Fitter class write_stats (bool): If True, write out summary statistics of orbit sample at \ conclusion of fit. Default = True. write_results (bool): If True, write out the fit results to a pickle file \ in addition to the text file created during the fit. Default = True. deltaRA, deltaDec (flt): relative separation in RA and Dec directions, in mas pmRA, pmDec (flt): relative proper motion in RA/Dec directions in km s^-1 rv (flt, optional): relative RV of 2 relative to 1, if both are present in Gaia EDR3 mtot_init (flt): initial total system mass in Msun from user input distance (flt): distance of system in pc, computed from Gaia parallax using method of Bailer-Jones et. al 2018. sep (flt): separation vector in mas pa (flt): postion angle of separation vector in degrees from North ref_epoch (flt): epoch of the measurement, 2016.0 for Gaia EDR3 and 2015.5 for Gaia DR2. Norbits (int): number of desired orbit samples write_stats (bool): if True, write summary of sample statistics to human-readable file at end of run. Default = True write_results (bool): if True, write out current state of sample orbits in pickle file in periodic intervals during \ run, and again at the end of the run. RECOMMENDED. Default = True results_filename (str): name of file for saving pickled results to disk. If not supplied, \ defaul name is FitResults.y.mo.d.h.m.s.pkl, saved in same directory as fit was run. stats_filename (str): name of file for saving human-readable file of stats of sample results. If not supplied, \ defaul name is FitResults.Stats.y.mo.d.h.m.s.pkl, saved in same directory as fit was run. run_time (flt): run time for the last fit. astropy units object Written by <NAME>, 2020 ''' def __init__(self, fitterobject, write_stats = True, write_results = True, python_version=False, \ use_pm_cross_term = False, corr_coeff = None): # establish fit parameters: self.deltaRA = fitterobject.deltaRA self.deltaDec = fitterobject.deltaDec self.pmRA = fitterobject.pmRA self.pmDec = fitterobject.pmDec self.rv = fitterobject.rv self.mtot_init = fitterobject.mtot self.distance = fitterobject.distance self.sep = fitterobject.sep self.pa = fitterobject.pa self.ref_epoch = fitterobject.ref_epoch self.Norbits = fitterobject.Norbits self.write_results = write_results self.write_stats = write_stats self.results_filename = fitterobject.results_filename self.stats_filename = fitterobject.stats_filename self.astrometry = fitterobject.astrometry if self.astrometry: self.astrometric_ra = fitterobject.astrometric_ra self.astrometric_dec = fitterobject.astrometric_dec self.astrometric_dates = fitterobject.astrometric_dates self.use_user_rv = fitterobject.use_user_rv if self.use_user_rv: self.user_rv = fitterobject.user_rv self.user_rv_dates = fitterobject.user_rv_dates # run orbit fitter: self.fitorbit(python_fitOFTI=python_version, use_pm_cross_term = use_pm_cross_term, corr_coeff = corr_coeff) def fitorbit(self, save_results_every_X_loops = 100, python_fitOFTI=False, use_pm_cross_term = False, corr_coeff = None): '''Run the OFTI fitting run on the Fitter object. Called when FitOrbit object is created. Args: save_results_every_X_loops (int): on every Xth loop, save status of the \ orbit sample arrays to a pickle file, if write_results = True (Default) python_fitOFTI (bool): If True, fit using python only without using C Kepler's equation solver. Default = False use_pm_cross_term (bool): If True, include the proper motion correlation cross term in the Chi^2 computation \ Default = False Written by <NAME>, 2020 ''' # write header: print('Saving orbits in',self.results_filename) k = open(self.results_filename, 'w') output_file_header = '# sma [arcsec] period [yrs] orbit phase t_0 [yr] ecc incl [deg]\ argp [deg] lan [deg] m_tot [Msun] dist [pc] chi^2 ln(prob) ln(randn)' k.write(output_file_header + "\n") k.close() import time as tm ########### Perform initial run to get initial chi-squared: ############# # Draw random orbits: #parameters = a,T,const,to,e,i,w,O,m1,dist numSamples = 10000 parameters_init = draw_samples(numSamples, self.mtot_init, self.distance, self.ref_epoch) # Compute positions and velocities: if(python_fitOFTI): X,Y,Z,Xdot,Ydot,Zdot,Xddot,Yddot,Zddot,parameters=calc_OFTI(parameters_init,self.ref_epoch,self.sep,self.pa) else: returnArray = np.zeros((19,numSamples)) returnArray = calcOFTI_C(parameters_init,self.ref_epoch,self.sep,self.pa,returnArray.copy()) X,Y,Z,Xdot,Ydot,Zdot,Xddot,Yddot,Zddot = returnArray[0:9] parameters = returnArray[9:] # Compute chi squared: if self.rv[0] != 0: model = np.array([Y,X,Ydot,Xdot,Zdot]) data = np.array([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv]) else: model = np.array([Y,X,Ydot,Xdot]) data = np.array([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec]) chi2 = ComputeChi2(data,model) if use_pm_cross_term: chi2 -= ( 2 * corr_coeff * (data[2][0] - model[2]) * (data[3][0] - model[3]) ) / (data[2][1] * data[3][1]) if self.astrometry: p = parameters.copy() a,T,const,to,e,i,w,O,m1,dist = p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9] chi2_astr = np.zeros(10000) # Calculate predicted positions at astr observation dates for each orbit: for j in range(self.astrometric_ra.shape[1]): # for each date, compute XYZ for each 10000 trial orbit. We can # skip scale and rotate because that was accomplished in the calc_OFTI call above. X1,Y1,Z1,E1 = calc_XYZ(a,T,to,e,i,w,O,self.astrometric_dates[j]) # Place astrometry into data array where: data[0][0]=ra obs, data[0][1]=ra err, etc: data = np.array([self.astrometric_ra[:,j], self.astrometric_dec[:,j]]) # place corresponding predicited positions at that date for each trial orbit in arcsec: model = np.array([Y1*1000,X1*1000]) # compute chi2 for trial orbits at that date and add to the total chi2 sum: chi2_astr += ComputeChi2(data,model) chi2 = chi2 + chi2_astr if self.use_user_rv: p = parameters.copy() a,T,const,to,e,i,w,O,m1,dist = p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9] chi2_rv = np.zeros(10000) for j in range(self.user_rv.shape[1]): # compute ecc anomaly at that date: X1,Y1,Z1,E1 = calc_XYZ(a,T,to,e,i,w,O,self.user_rv_dates[j]) # compute velocities at that ecc anom: Xdot,Ydot,Zdot = calc_velocities(a,T,to,e,i,w,O,dist,E1) # compute chi2: chi2_rv += ComputeChi2(np.array([self.user_rv[:,j]]),np.array([Zdot])) chi2 = chi2 + chi2_rv print('inital chi min',np.nanmin(chi2)) self.chi_min = np.nanmin(chi2) # Accept/reject: accepted, lnprob, lnrand = AcceptOrReject(chi2,self.chi_min) # count number accepted: number_orbits_accepted = np.size(accepted) # tack on chi2, log probability, log random unif number to parameters array: parameters = np.concatenate((parameters,chi2[None,:],lnprob[None,:],lnrand[None,:]), axis = 0) # transpose: parameters=np.transpose(parameters) # write results to file: k = open(self.results_filename, 'a') for params in parameters[accepted]: string = ' '.join([str(p) for p in params]) k.write(string + "\n") k.close() ###### start loop ######## # initialize: loop_count = 0 start=tm.time() while number_orbits_accepted < self.Norbits: # Draw random orbits: numSamples = 10000 parameters_init = draw_samples(numSamples, self.mtot_init, self.distance, self.ref_epoch) # Compute positions and velocities and new parameters array with scaled and rotated values: if(python_fitOFTI): X,Y,Z,Xdot,Ydot,Zdot,Xddot,Yddot,Zddot,parameters=calc_OFTI(parameters_init,self.ref_epoch,self.sep,self.pa) else: returnArray = np.zeros((19,numSamples)) returnArray = calcOFTI_C(parameters_init,self.ref_epoch,self.sep,self.pa,returnArray.copy()) X,Y,Z,Xdot,Ydot,Zdot,Xddot,Yddot,Zddot = returnArray[0:9] parameters = returnArray[9:] returnArray = None # compute chi2 for orbits using Gaia observations: if self.rv[0] != 0: model = np.array([Y,X,Ydot,Xdot,Zdot]) data = np.array([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv]) else: model = np.array([Y,X,Ydot,Xdot]) data = np.array([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec]) chi2 = ComputeChi2(data,model) if use_pm_cross_term: chi2 -= ( 2 * (data[2][0] - model[2]) * (data[3][0] - model[3]) ) / (data[2][1] * data[3][1]) # add user astrometry if given: if self.astrometry: p = parameters.copy() a,T,const,to,e,i,w,O,m1,dist = p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9] chi2_astr = np.zeros(10000) # Calculate predicted positions at astr observation dates for each orbit: for j in range(self.astrometric_ra.shape[1]): # for each date, compute XYZ for each 10000 trial orbit. We can # skip scale and rotate because that was accomplished in the calc_OFTI call above. X1,Y1,Z1,E1 = calc_XYZ(a,T,to,e,i,w,O,self.astrometric_dates[j]) # Place astrometry into data array where: data[0][0]=ra obs, data[0][1]=ra err, etc: data = np.array([self.astrometric_ra[:,j], self.astrometric_dec[:,j]]) # place corresponding predicited positions at that date for each trial orbit: model = np.array([Y1*1000,X1*1000]) # compute chi2 for trial orbits at that date and add to the total chi2 sum: chi2_astr += ComputeChi2(data,model) chi2 = chi2 + chi2_astr # add user rv if given: if self.use_user_rv: p = parameters.copy() a,T,const,to,e,i,w,O,m1,dist = p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9] chi2_rv = np.zeros(10000) for j in range(self.user_rv.shape[1]): # compute ecc anomaly at that date: X1,Y1,Z1,E1 = calc_XYZ(a,T,to,e,i,w,O,self.user_rv_dates[j]) # compute velocities at that ecc anom: Xdot,Ydot,Zdot = calc_velocities(a,T,to,e,i,w,O,dist,E1) # compute chi2: chi2_rv += ComputeChi2(np.array([self.user_rv[:,j]]),np.array([Zdot])) chi2 = chi2 + chi2_rv # Accept/reject: accepted, lnprob, lnrand = AcceptOrReject(chi2,self.chi_min) if np.size(accepted) == 0: pass else: # count num accepted p = parameters.copy() a,T,const,to,e,i,w,O,m1,dist = p[0],p[1],p[2],p[3],p[4],p[5],p[6],p[7],p[8],p[9] sampleResults = calc_XYZ(a,T,to,e,i/180*np.pi,w/180*np.pi,O/180*np.pi,2016.0) number_orbits_accepted += np.size(accepted) parameters = np.concatenate((parameters,chi2[None,:],lnprob[None,:],lnrand[None,:]), axis = 0) parameters=np.transpose(parameters) k = open(self.results_filename, 'a') for params in parameters[accepted]: string = ' '.join([str(p) for p in params]) k.write(string + "\n") k.close() if np.nanmin(chi2) < self.chi_min: # If there is a new min chi2: self.chi_min = np.nanmin(chi2) #print('found new chi min:',self.chi_min) # re-evaluate to accept/reject with new chi_min: if number_orbits_accepted != 0: dat = np.loadtxt(open(self.results_filename,"r"),delimiter=' ',ndmin=2) lnprob = -(dat[:,10]-self.chi_min)/2.0 dat[:,11] = lnprob accepted_retest = np.where(lnprob > dat[:,12]) q = open(self.results_filename, 'w') q.write(output_file_header + "\n") for data in dat[accepted_retest]: string = ' '.join([str(d) for d in data]) q.write(string + "\n") q.close() dat2 = np.loadtxt(open(self.results_filename,"r"),delimiter=' ',ndmin=2) number_orbits_accepted=dat2.shape[0] loop_count += 1 #print('loop count',loop_count) update_progress(number_orbits_accepted,self.Norbits) # one last accept/reject with final chi_min value: dat = np.loadtxt(open(self.results_filename,"r"),delimiter=' ',ndmin=2) lnprob = -(dat[:,10]-self.chi_min)/2.0 dat[:,11] = lnprob accepted_retest = np.where(lnprob > dat[:,12]) q = open(self.results_filename, 'w') q.write(output_file_header + "\n") for data in dat[accepted_retest]: string = ' '.join([str(d) for d in data]) q.write(string + "\n") q.close() # when finished, upload results and store in object: dat = np.loadtxt(open(self.results_filename,"r"),delimiter=' ',ndmin=2) number_orbits_accepted=dat.shape[0] print('Final Norbits:', number_orbits_accepted) # intialise results object and store accepted orbits: if self.rv[0] != 0: self.results = Results(orbits = dat, limit_lan = False, limit_aop = False) else: self.results = Results(orbits = dat, limit_lan = True, limit_aop = False) self.results.Update(self.results.orbits) # pickle dump the results attribute: if self.write_results: self.results.SaveResults(self.results_filename.replace(".txt", ".pkl"), write_text_file = False) stop = tm.time() self.results.run_time = (stop - start)*u.s # compute stats and write to file: self.results.stats = Stats(orbits = self.results.orbits, write_to_file = self.write_stats, filename = self.stats_filename) class Results(object): '''A class for storing and manipulating the results of the orbit fit. Args: orbits (Norbits x 13 array): array of accepted orbits from \ OFTI fit in the same order as the following attributes sma (1 x Norbits array): semi-major axis in arcsec period (1 x Norbits array): period in years orbit_fraction (1 x Norbits array): fraction of orbit past periastron \ passage the observation (2016) occured on. Values: [0,1) t0 (1 x Norbits array): date of periastron passage in decimal years ecc (1 x Norbits array): eccentricity inc (1 x Norbits array): inclination relative to plane of the sky in deg aop (1 x Norbits array): arguement of periastron in deg lan (1 x Norbits array): longitude of ascending node in deg mtot (1 x Norbits array): total system mass in Msun distance (1 x Norbits array): distance to system in parsecs chi2 (1 x Norbits array): chi^2 value for the orbit lnprob (1 x Norbits array): log probability of orbit lnrand (1 x Norbits array): log of random "dice roll" for \ orbit acceptance limit_aop, limit_lan (bool): In the absence of radial velocity info, \ there is a degeneracy between arg of periastron and long of ascending \ node. Common practice is to limit one to the interval [0,180] deg. \ By default, lofti limits lan to this interval if rv = False. The user can \ choose to limit aop instead by setting limit_aop = True, limit_lan = False. \ The orbits[:,6] (aop) and orbits[:,7] (lan) arrays preserve the original values. \ Written by <NAME>, 2020 ''' def __init__(self, orbits = [], limit_aop = False, limit_lan = True): self.orbits = orbits self.limit_lan = limit_lan self.limit_aop = limit_aop def Update(self, orbits): '''Take elements of the "orbits" attribute and populate the orbital element attributes Args: orbits (arr): orbits array from Results class Written by <NAME>, 2020 ''' self.sma = orbits[:,0] self.period = orbits[:,1] self.orbit_fraction = orbits[:,2] self.t0 = orbits[:,3] self.ecc = orbits[:,4] self.inc = orbits[:,5] self.aop = orbits[:,6] if self.limit_aop: self.aop = limit_to_180deg(self.aop) self.lan = orbits[:,7] % 360 if self.limit_lan: self.lan = limit_to_180deg(self.lan) self.mtot = orbits[:,8] self.distance = orbits[:,9] self.chi2 = orbits[:,10] self.lnprob = orbits[:,11] self.lnrand = orbits[:,12] def SaveResults(self, filename, write_text_file = False, text_filename = None): '''Save the orbits and orbital parameters attributes in a pickle file Args: filename (str): filename for pickle file write_text_file (bool): if True, also write out the accepted orbits to a \ human readable text file text_filename (bool): if write_to_text = True, specifify filename for text file Written by <NAME>, 2020 ''' pickle.dump(self, open( filename, "wb" ) ) # write results to file: if write_text_file: k = open(text_filename, 'a') for params in self.orbits: string = ' '.join([str(p) for p in params]) k.write(string + "\n") k.close() def LoadResults(self, filename, append = False): '''Read in the orbits and orbital parameters attributes from a pickle file Args: filename (str): filename of pickle file to load append (bool): if True, append read in orbit samples to another Results \ object. Default = False. Written by <NAME>, 2020 ''' results_in = pickle.load( open( filename, "rb" ) ) if append == False: self.orbits = results_in.orbits self.Update(self.orbits) else: self.orbits = np.vstack((self.orbits,results_in.orbits)) self.Update(self.orbits) # plotting results: def PlotHists(self): '''Plot 1-d histograms of orbital elements 'sma','ecc','inc','aop','lan','t0' from fit results. Written by <NAME>, 2020 ''' if len(self.sma < 50): bins = 50 else: bins = 'fd' fig = plt.figure(figsize=(30, 5.5)) params = np.array([self.sma,self.ecc,self.inc,self.aop,self.lan,self.t0]) names = np.array(['sma','ecc','inc','aop','lan','t0']) for i in range(len(params)): ax = plt.subplot2grid((1,len(params)), (0,i)) plt.hist(params[i],bins=bins,edgecolor='none',alpha=0.8) plt.tick_params(axis='both', left=False, top=False, right=False, bottom=True, \ labelleft=False, labeltop=False, labelright=False, labelbottom=True) plt.xticks(rotation=45, fontsize = 20) plt.xlabel(names[i], fontsize = 25) plt.tight_layout() return fig def PlotOrbits(self, color = True, colorbar = True, ref_epoch = 2016.0, size = 100, plot3d = False, cmap = 'viridis',xlim=False,ylim=False): '''Plot a random selection of orbits from the sample in the plane of the sky. Args: color (bool): if True, plot orbit tracks using a colormap scale to orbit fraction (phase) \ past observation date (2015.5). If False, orbit tracks will be black. Default = True colorbar (bool): if True and color = True, plot colorbar for orbit phase ref_epoch (flt): reference epoch for drawing orbits. Default = 2015.5 size (int): Number of orbits to plot. Default = True plot3d (bool): If True, return a plot of orbits in 3D space. Default = False cmap (str): colormap for orbit phase plot Written by <NAME>, 2020 ''' # Random selection of orbits to plot: if len(self.sma) > size: # if there are more orbits than desired size, randomly select orbits from # the posterior sample: ind = np.random.choice(range(0,len(self.sma)),replace=False,size=size) else: # if there are fewer orbits than desired size, take all of them: ind = np.random.choice(range(0,len(self.sma)),replace=False,size=len(self.sma)) from numpy import tan, arctan, sqrt, cos, sin, arccos # label for colormap axis: colorlabel = 'Phase' # create figure: fig = plt.figure(figsize = (7.5, 6.)) plt.grid(ls=':') # invert X axis for RA: plt.gca().invert_xaxis() if plot3d: # Make 3d axis object: ax = fig.add_subplot(111, projection='3d') # plot central star: ax.scatter(0,0,0,color='orange',marker='*',s=300,zorder=10) ax.set_zlabel('Z (")',fontsize=20) else: # plot central star: plt.scatter(0,0,color='orange',marker='*',s=300,zorder=10) # For each orbit in the random selection from the posterior samples: for a,T,to,e,i,w,O in zip(self.sma[ind],self.period[ind],self.t0[ind],self.ecc[ind],np.radians(self.inc[ind]),\ np.radians(self.aop[ind]),np.radians(self.lan[ind])): # define an array of times along orbit: times = np.linspace(ref_epoch,ref_epoch+T,5000) X,Y,Z = np.array([]),np.array([]),np.array([]) E = np.array([]) # Compute X,Y,Z positions for each time: for t in times: n = (2*np.pi)/T M = n*(t-to) nextE = [danby_solve(eccentricity_anomaly, varM,vare, 0.001) for varM,vare in zip([M],[e])] E = np.append(E,nextE) r1 = a*(1.-e*cos(E)) f1 = sqrt(1.+e)*sin(E/2.) f2 = sqrt(1.-e)*cos(E/2.) f = 2.*np.arctan2(f1,f2) r = (a*(1.-e**2))/(1.+(e*cos(f))) X1 = r * ( cos(O)*cos(w+f) - sin(O)*sin(w+f)*cos(i) ) Y1 = r * ( sin(O)*cos(w+f) + cos(O)*sin(w+f)*cos(i) ) Z1 = r * sin(w+f) * sin(i) X,Y,Z = np.append(X,X1),np.append(Y,Y1),np.append(Z,Z1) # Plot the X,Y(Z) positions: if not plot3d: if color: plt.scatter(Y,X,c=((times-ref_epoch)/T),cmap=cmap,s=3,lw=0) plt.gca().set_aspect('equal', adjustable='datalim') else: plt.plot(Y,X, color='black',alpha=0.3) plt.gca().set_aspect('equal', adjustable='datalim') if plot3d: from mpl_toolkits.mplot3d import Axes3D if color: ax.scatter(Y,X,Z,c=((times-ref_epoch)/T),cmap=cmap,s=3,lw=0) else: ax.plot(Y,X,Z, color='black',alpha=0.3) # plot colorbar: if not plot3d: if color: if colorbar == True: cb = plt.colorbar().set_label(colorlabel, fontsize=20) plt.gca().tick_params(labelsize=14) plt.ylabel('Dec (")',fontsize=20) plt.xlabel('RA (")',fontsize=20) plt.gca().tick_params(labelsize=14) if(xlim): plt.xlim(xlim) if(ylim): plt.ylim(ylim) return fig def PlotSepPA(self, ref_epoch = 2016.0, size = 100, timespan = [20,20], orbitcolor = 'skyblue'): '''Plot a random selection of orbits from the sample in separation and position angle as a function of time. Args: ref_epoch (flt): reference epoch for drawing orbits. Default = 2015.5 size (int): Number of orbits to plot. Default = True timespan (tuple, int): number of years before [0] and after [1] the ref epoch to \ plot sep and pa orbitcolor (str): color to use to plot the orbits Written by <NAME>, 2020 ''' # Random selection of orbits to plot: if len(self.sma) > size: # if there are more orbits than desired size, randomly select orbits from # the posterior sample: ind = np.random.choice(range(0,len(self.sma)),replace=False,size=size) else: # if there are fewer orbits than desired size, take all of them: ind = np.random.choice(range(0,len(self.sma)),replace=False,size=len(self.sma)) from numpy import tan, arctan, sqrt, cos, sin, arccos # make figure fig = plt.figure(figsize = (8, 10)) # define subplots: plt.subplot(2,1,1) plt.gca().tick_params(labelsize=14) plt.grid(ls=':') # define times to compute sep/pa: tmin,tmax = ref_epoch - timespan[0],ref_epoch + timespan[1] t = np.linspace(tmin,tmax,2000) date_ticks = np.arange(tmin,tmax,10) # for each selected orbit from the sample: for a,T,to,e,i,w,O in zip(self.sma[ind],self.period[ind],self.t0[ind],self.ecc[ind],np.radians(self.inc[ind]),\ np.radians(self.aop[ind]),np.radians(self.lan[ind])): X = np.array([]) Y = np.array([]) # compute X,Y at each time point: X1,Y1 = orbits_for_plotting(a,T,to,e,i,w,O,t) X = np.append(X, X1) Y = np.append(Y,Y1) # compute sep: r=np.sqrt((X**2)+(Y**2)) # plot sep in mas: plt.plot(t,r*1000,color=orbitcolor,alpha=0.5) plt.ylabel(r'$\rho$ (mas)',fontsize=20) # next suplot: plt.subplot(2,1,2) plt.grid(ls=':') # for each selected orbit from the sample: for a,T,to,e,i,w,O in zip(self.sma[ind],self.period[ind],self.t0[ind],self.ecc[ind],np.radians(self.inc[ind]),\ np.radians(self.aop[ind]),np.radians(self.lan[ind])): X = np.array([]) Y = np.array([]) X1,Y1 = orbits_for_plotting(a,T,to,e,i,w,O,t) X = np.append(X, X1) Y = np.append(Y,Y1) # compute pa: theta=np.arctan2(X,-Y) theta=(np.degrees(theta)+270.)%360 # plot it: plt.plot(t,theta,color=orbitcolor,alpha=0.5) plt.ylabel(r'P.A. (deg)',fontsize=19) plt.xlabel('Years',fontsize=19) plt.gca().tick_params(labelsize=14) plt.tight_layout() return fig class Stats(object): '''A class for storing and manipulating the statistics of the results of the orbit fit. For every parameter, there is a series of stats computed and saved as stats.param.stat Examples: stats.sma.mean = mean of semimajor axis stats.ecc.ci68 = 68% confidence interval for eccentricity stats.aop.std = standard deviation of arg of periastron Args: orbits (Norbits x 13 array): array of accepted orbits from \ OFTI fit in the same order as the following attributes param.mean (flt): mean of parameter computed using np.mean param.median (flt): np.median of parameter param.mode (flt): mode of parameter param.std (flt): standard deviation from np.std param.ci68 (tuple,flt): 68% minimum credible interval of form (lower bound, upper bound) param.ci95 (tuple,flt): 95% minimum credible interval write_to_file (bool): If True, write stats to a human-readbale text file. filename (str): filename for saving stats file. If not supplied, default \ name is FitResults.Stats.y.mo.d.h.m.s.pkl, saved in same directory as fit was run. Written by <NAME>, 2020 ''' def __init__(self, orbits = [], write_to_file = False, filename = None): self.orbits = orbits # Compute stats on parameter arrays and save as attributes: self.sma = StatsSubclass(self.orbits[:,0]) self.period = StatsSubclass(self.orbits[:,1]) self.orbit_fraction = StatsSubclass(self.orbits[:,2]) self.t0 = StatsSubclass(self.orbits[:,3]) self.ecc = StatsSubclass(self.orbits[:,4]) self.inc = StatsSubclass(self.orbits[:,5]) self.aop = StatsSubclass(self.orbits[:,6]) self.lan = StatsSubclass(self.orbits[:,7]) self.mtot = StatsSubclass(self.orbits[:,8]) self.distance = StatsSubclass(self.orbits[:,9]) if write_to_file: params = np.array([self.sma,self.period,self.orbit_fraction,self.t0,self.ecc,self.inc,\ self.aop,self.lan,self.mtot,self.distance]) names = np.array(['sma','period','orbit fraction','t0','ecc','inc','aop','lan','mtot','distance']) if not filename: filename = 'FitResults.Stats.'+time.strftime("%Y.%m.%d.%H.%M.%S")+'.txt' k = open(filename, 'w') string = 'Parameter Mean Median Mode Std 68% Min Cred Int 95% Min Cred Int' k.write(string + "\n") for i in range(len(params)): string = make_parameter_string(params[i],names[i]) k.write(string + "\n") k.close() class StatsSubclass(Stats): '''Subclass for computing and storing statistics Args: array (arr): array for which to compute statistics ''' def __init__(self, array): self.mean,self.median,self.mode,self.std,self.ci68,self.ci95 = compute_statistics(array)
[ "numpy.radians", "matplotlib.pyplot.grid", "matplotlib.pyplot.hist", "numpy.sqrt", "matplotlib.pyplot.ylabel", "numpy.array", "numpy.arctan2", "numpy.nanmin", "numpy.sin", "numpy.arange", "numpy.mean", "numpy.where", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.max", "numpy.linspace", "numpy.vstack", "numpy.concatenate", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ylim", "numpy.degrees", "numpy.fromstring", "matplotlib.pyplot.xticks", "numpy.average", "matplotlib.pyplot.gca", "numpy.size", "matplotlib.pyplot.tick_params", "numpy.cos", "numpy.std", "matplotlib.pyplot.xlim", "numpy.transpose", "time.time", "warnings.filterwarnings", "astropy.units.au.to", "time.strftime", "matplotlib.pyplot.colorbar", "numpy.append", "matplotlib.pyplot.figure", "numpy.zeros", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot" ]
[((275, 308), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (298, 308), False, 'import warnings\n'), ((14422, 14529), 'numpy.average', 'np.average', (['[self.plx1[0].value, self.plx2[0].value]'], {'weights': '[self.plx1[1].value, self.plx2[1].value]'}), '([self.plx1[0].value, self.plx2[0].value], weights=[self.plx1[1].\n value, self.plx2[1].value])\n', (14432, 14529), True, 'import numpy as np\n'), ((14542, 14590), 'numpy.max', 'np.max', (['[self.plx1[1].value, self.plx2[1].value]'], {}), '([self.plx1[1].value, self.plx2[1].value])\n', (14548, 14590), True, 'import numpy as np\n'), ((24848, 24863), 'numpy.nanmin', 'np.nanmin', (['chi2'], {}), '(chi2)\n', (24857, 24863), True, 'import numpy as np\n'), ((25025, 25042), 'numpy.size', 'np.size', (['accepted'], {}), '(accepted)\n', (25032, 25042), True, 'import numpy as np\n'), ((25149, 25239), 'numpy.concatenate', 'np.concatenate', (['(parameters, chi2[None, :], lnprob[None, :], lnrand[None, :])'], {'axis': '(0)'}), '((parameters, chi2[None, :], lnprob[None, :], lnrand[None, :]\n ), axis=0)\n', (25163, 25239), True, 'import numpy as np\n'), ((25271, 25295), 'numpy.transpose', 'np.transpose', (['parameters'], {}), '(parameters)\n', (25283, 25295), True, 'import numpy as np\n'), ((25632, 25641), 'time.time', 'tm.time', ([], {}), '()\n', (25639, 25641), True, 'import time as tm\n'), ((31428, 31457), 'numpy.where', 'np.where', (['(lnprob > dat[:, 12])'], {}), '(lnprob > dat[:, 12])\n', (31436, 31457), True, 'import numpy as np\n'), ((32467, 32476), 'time.time', 'tm.time', ([], {}), '()\n', (32474, 32476), True, 'import time as tm\n'), ((37267, 37296), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(30, 5.5)'}), '(figsize=(30, 5.5))\n', (37277, 37296), True, 'import matplotlib.pyplot as plt\n'), ((37314, 37383), 'numpy.array', 'np.array', (['[self.sma, self.ecc, self.inc, self.aop, self.lan, self.t0]'], {}), '([self.sma, self.ecc, self.inc, self.aop, self.lan, self.t0])\n', (37322, 37383), True, 'import numpy as np\n'), ((37395, 37446), 'numpy.array', 'np.array', (["['sma', 'ecc', 'inc', 'aop', 'lan', 't0']"], {}), "(['sma', 'ecc', 'inc', 'aop', 'lan', 't0'])\n", (37403, 37446), True, 'import numpy as np\n'), ((37894, 37912), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (37910, 37912), True, 'import matplotlib.pyplot as plt\n'), ((39443, 39473), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7.5, 6.0)'}), '(figsize=(7.5, 6.0))\n', (39453, 39473), True, 'import matplotlib.pyplot as plt\n'), ((39483, 39499), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'ls': '""":"""'}), "(ls=':')\n", (39491, 39499), True, 'import matplotlib.pyplot as plt\n'), ((42049, 42083), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Dec (")"""'], {'fontsize': '(20)'}), '(\'Dec (")\', fontsize=20)\n', (42059, 42083), True, 'import matplotlib.pyplot as plt\n'), ((42091, 42124), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""RA (")"""'], {'fontsize': '(20)'}), '(\'RA (")\', fontsize=20)\n', (42101, 42124), True, 'import matplotlib.pyplot as plt\n'), ((43471, 43498), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 10)'}), '(figsize=(8, 10))\n', (43481, 43498), True, 'import matplotlib.pyplot as plt\n'), ((43536, 43556), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (43547, 43556), True, 'import matplotlib.pyplot as plt\n'), ((43607, 43623), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'ls': '""":"""'}), "(ls=':')\n", (43615, 43623), True, 'import matplotlib.pyplot as plt\n'), ((43746, 43775), 'numpy.linspace', 'np.linspace', (['tmin', 'tmax', '(2000)'], {}), '(tmin, tmax, 2000)\n', (43757, 43775), True, 'import numpy as np\n'), ((43795, 43820), 'numpy.arange', 'np.arange', (['tmin', 'tmax', '(10)'], {}), '(tmin, tmax, 10)\n', (43804, 43820), True, 'import numpy as np\n'), ((44452, 44492), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\rho$ (mas)"""'], {'fontsize': '(20)'}), "('$\\\\rho$ (mas)', fontsize=20)\n", (44462, 44492), True, 'import matplotlib.pyplot as plt\n'), ((44524, 44544), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (44535, 44544), True, 'import matplotlib.pyplot as plt\n'), ((44551, 44567), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'ls': '""":"""'}), "(ls=':')\n", (44559, 44567), True, 'import matplotlib.pyplot as plt\n'), ((45190, 45227), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""P.A. (deg)"""'], {'fontsize': '(19)'}), "('P.A. (deg)', fontsize=19)\n", (45200, 45227), True, 'import matplotlib.pyplot as plt\n'), ((45236, 45268), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Years"""'], {'fontsize': '(19)'}), "('Years', fontsize=19)\n", (45246, 45268), True, 'import matplotlib.pyplot as plt\n'), ((45320, 45338), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (45336, 45338), True, 'import matplotlib.pyplot as plt\n'), ((15108, 15119), 'numpy.mean', 'np.mean', (['ra'], {}), '(ra)\n', (15115, 15119), True, 'import numpy as np\n'), ((15120, 15130), 'numpy.std', 'np.std', (['ra'], {}), '(ra)\n', (15126, 15130), True, 'import numpy as np\n'), ((15171, 15183), 'numpy.mean', 'np.mean', (['dec'], {}), '(dec)\n', (15178, 15183), True, 'import numpy as np\n'), ((15184, 15195), 'numpy.std', 'np.std', (['dec'], {}), '(dec)\n', (15190, 15195), True, 'import numpy as np\n'), ((15425, 15443), 'numpy.mean', 'np.mean', (['(pr2 - pr1)'], {}), '(pr2 - pr1)\n', (15432, 15443), True, 'import numpy as np\n'), ((15445, 15462), 'numpy.std', 'np.std', (['(pr2 - pr1)'], {}), '(pr2 - pr1)\n', (15451, 15462), True, 'import numpy as np\n'), ((15491, 15509), 'numpy.mean', 'np.mean', (['(pd2 - pd1)'], {}), '(pd2 - pd1)\n', (15498, 15509), True, 'import numpy as np\n'), ((15511, 15528), 'numpy.std', 'np.std', (['(pd2 - pd1)'], {}), '(pd2 - pd1)\n', (15517, 15528), True, 'import numpy as np\n'), ((22195, 22221), 'numpy.zeros', 'np.zeros', (['(19, numSamples)'], {}), '((19, numSamples))\n', (22203, 22221), True, 'import numpy as np\n'), ((22529, 22563), 'numpy.array', 'np.array', (['[Y, X, Ydot, Xdot, Zdot]'], {}), '([Y, X, Ydot, Xdot, Zdot])\n', (22537, 22563), True, 'import numpy as np\n'), ((22579, 22650), 'numpy.array', 'np.array', (['[self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv]'], {}), '([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv])\n', (22587, 22650), True, 'import numpy as np\n'), ((22685, 22713), 'numpy.array', 'np.array', (['[Y, X, Ydot, Xdot]'], {}), '([Y, X, Ydot, Xdot])\n', (22693, 22713), True, 'import numpy as np\n'), ((22730, 22792), 'numpy.array', 'np.array', (['[self.deltaRA, self.deltaDec, self.pmRA, self.pmDec]'], {}), '([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec])\n', (22738, 22792), True, 'import numpy as np\n'), ((23175, 23190), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (23183, 23190), True, 'import numpy as np\n'), ((24299, 24314), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (24307, 24314), True, 'import numpy as np\n'), ((24807, 24822), 'numpy.nanmin', 'np.nanmin', (['chi2'], {}), '(chi2)\n', (24816, 24822), True, 'import numpy as np\n'), ((36882, 36925), 'numpy.vstack', 'np.vstack', (['(self.orbits, results_in.orbits)'], {}), '((self.orbits, results_in.orbits))\n', (36891, 36925), True, 'import numpy as np\n'), ((37549, 37608), 'matplotlib.pyplot.hist', 'plt.hist', (['params[i]'], {'bins': 'bins', 'edgecolor': '"""none"""', 'alpha': '(0.8)'}), "(params[i], bins=bins, edgecolor='none', alpha=0.8)\n", (37557, 37608), True, 'import matplotlib.pyplot as plt\n'), ((37618, 37769), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'left': '(False)', 'top': '(False)', 'right': '(False)', 'bottom': '(True)', 'labelleft': '(False)', 'labeltop': '(False)', 'labelright': '(False)', 'labelbottom': '(True)'}), "(axis='both', left=False, top=False, right=False, bottom=\n True, labelleft=False, labeltop=False, labelright=False, labelbottom=True)\n", (37633, 37769), True, 'import matplotlib.pyplot as plt\n'), ((37799, 37835), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)', 'fontsize': '(20)'}), '(rotation=45, fontsize=20)\n', (37809, 37835), True, 'import matplotlib.pyplot as plt\n'), ((37850, 37883), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['names[i]'], {'fontsize': '(25)'}), '(names[i], fontsize=25)\n', (37860, 37883), True, 'import matplotlib.pyplot as plt\n'), ((39885, 39948), 'matplotlib.pyplot.scatter', 'plt.scatter', (['(0)', '(0)'], {'color': '"""orange"""', 'marker': '"""*"""', 's': '(300)', 'zorder': '(10)'}), "(0, 0, color='orange', marker='*', s=300, zorder=10)\n", (39896, 39948), True, 'import matplotlib.pyplot as plt\n'), ((40113, 40138), 'numpy.radians', 'np.radians', (['self.inc[ind]'], {}), '(self.inc[ind])\n', (40123, 40138), True, 'import numpy as np\n'), ((40161, 40186), 'numpy.radians', 'np.radians', (['self.aop[ind]'], {}), '(self.aop[ind])\n', (40171, 40186), True, 'import numpy as np\n'), ((40187, 40212), 'numpy.radians', 'np.radians', (['self.lan[ind]'], {}), '(self.lan[ind])\n', (40197, 40212), True, 'import numpy as np\n'), ((40287, 40330), 'numpy.linspace', 'np.linspace', (['ref_epoch', '(ref_epoch + T)', '(5000)'], {}), '(ref_epoch, ref_epoch + T, 5000)\n', (40298, 40330), True, 'import numpy as np\n'), ((40402, 40414), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (40410, 40414), True, 'import numpy as np\n'), ((42198, 42212), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xlim'], {}), '(xlim)\n', (42206, 42212), True, 'import matplotlib.pyplot as plt\n'), ((42243, 42257), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ylim'], {}), '(ylim)\n', (42251, 42257), True, 'import matplotlib.pyplot as plt\n'), ((43962, 43987), 'numpy.radians', 'np.radians', (['self.inc[ind]'], {}), '(self.inc[ind])\n', (43972, 43987), True, 'import numpy as np\n'), ((44010, 44035), 'numpy.radians', 'np.radians', (['self.aop[ind]'], {}), '(self.aop[ind])\n', (44020, 44035), True, 'import numpy as np\n'), ((44036, 44061), 'numpy.radians', 'np.radians', (['self.lan[ind]'], {}), '(self.lan[ind])\n', (44046, 44061), True, 'import numpy as np\n'), ((44080, 44092), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (44088, 44092), True, 'import numpy as np\n'), ((44109, 44121), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (44117, 44121), True, 'import numpy as np\n'), ((44242, 44258), 'numpy.append', 'np.append', (['X', 'X1'], {}), '(X, X1)\n', (44251, 44258), True, 'import numpy as np\n'), ((44275, 44291), 'numpy.append', 'np.append', (['Y', 'Y1'], {}), '(Y, Y1)\n', (44284, 44291), True, 'import numpy as np\n'), ((44332, 44356), 'numpy.sqrt', 'np.sqrt', (['(X ** 2 + Y ** 2)'], {}), '(X ** 2 + Y ** 2)\n', (44339, 44356), True, 'import numpy as np\n'), ((44398, 44448), 'matplotlib.pyplot.plot', 'plt.plot', (['t', '(r * 1000)'], {'color': 'orbitcolor', 'alpha': '(0.5)'}), '(t, r * 1000, color=orbitcolor, alpha=0.5)\n', (44406, 44448), True, 'import matplotlib.pyplot as plt\n'), ((44711, 44736), 'numpy.radians', 'np.radians', (['self.inc[ind]'], {}), '(self.inc[ind])\n', (44721, 44736), True, 'import numpy as np\n'), ((44759, 44784), 'numpy.radians', 'np.radians', (['self.aop[ind]'], {}), '(self.aop[ind])\n', (44769, 44784), True, 'import numpy as np\n'), ((44785, 44810), 'numpy.radians', 'np.radians', (['self.lan[ind]'], {}), '(self.lan[ind])\n', (44795, 44810), True, 'import numpy as np\n'), ((44829, 44841), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (44837, 44841), True, 'import numpy as np\n'), ((44858, 44870), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (44866, 44870), True, 'import numpy as np\n'), ((44945, 44961), 'numpy.append', 'np.append', (['X', 'X1'], {}), '(X, X1)\n', (44954, 44961), True, 'import numpy as np\n'), ((44978, 44994), 'numpy.append', 'np.append', (['Y', 'Y1'], {}), '(Y, Y1)\n', (44987, 44994), True, 'import numpy as np\n'), ((45038, 45055), 'numpy.arctan2', 'np.arctan2', (['X', '(-Y)'], {}), '(X, -Y)\n', (45048, 45055), True, 'import numpy as np\n'), ((45137, 45184), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'theta'], {'color': 'orbitcolor', 'alpha': '(0.5)'}), '(t, theta, color=orbitcolor, alpha=0.5)\n', (45145, 45184), True, 'import matplotlib.pyplot as plt\n'), ((47352, 47485), 'numpy.array', 'np.array', (['[self.sma, self.period, self.orbit_fraction, self.t0, self.ecc, self.inc,\n self.aop, self.lan, self.mtot, self.distance]'], {}), '([self.sma, self.period, self.orbit_fraction, self.t0, self.ecc,\n self.inc, self.aop, self.lan, self.mtot, self.distance])\n', (47360, 47485), True, 'import numpy as np\n'), ((47511, 47614), 'numpy.array', 'np.array', (["['sma', 'period', 'orbit fraction', 't0', 'ecc', 'inc', 'aop', 'lan',\n 'mtot', 'distance']"], {}), "(['sma', 'period', 'orbit fraction', 't0', 'ecc', 'inc', 'aop',\n 'lan', 'mtot', 'distance'])\n", (47519, 47614), True, 'import numpy as np\n'), ((4688, 4736), 'numpy.sqrt', 'np.sqrt', (['(self.mass1err ** 2 + self.mass2err ** 2)'], {}), '(self.mass1err ** 2 + self.mass2err ** 2)\n', (4695, 4736), True, 'import numpy as np\n'), ((8026, 8074), 'numpy.array', 'np.array', (["[user_rv['rv'] * -1, user_rv['rverr']]"], {}), "([user_rv['rv'] * -1, user_rv['rverr']])\n", (8034, 8074), True, 'import numpy as np\n'), ((8109, 8138), 'numpy.array', 'np.array', (["user_rv['rv_dates']"], {}), "(user_rv['rv_dates'])\n", (8117, 8138), True, 'import numpy as np\n'), ((8954, 8967), 'numpy.radians', 'np.radians', (['x'], {}), '(x)\n', (8964, 8967), True, 'import numpy as np\n'), ((9016, 9029), 'numpy.radians', 'np.radians', (['x'], {}), '(x)\n', (9026, 9029), True, 'import numpy as np\n'), ((14141, 14158), 'numpy.std', 'np.std', (['(rv2 - rv1)'], {}), '(rv2 - rv1)\n', (14147, 14158), True, 'import numpy as np\n'), ((23720, 23785), 'numpy.array', 'np.array', (['[self.astrometric_ra[:, j], self.astrometric_dec[:, j]]'], {}), '([self.astrometric_ra[:, j], self.astrometric_dec[:, j]])\n', (23728, 23785), True, 'import numpy as np\n'), ((23912, 23944), 'numpy.array', 'np.array', (['[Y1 * 1000, X1 * 1000]'], {}), '([Y1 * 1000, X1 * 1000])\n', (23920, 23944), True, 'import numpy as np\n'), ((26180, 26206), 'numpy.zeros', 'np.zeros', (['(19, numSamples)'], {}), '((19, numSamples))\n', (26188, 26206), True, 'import numpy as np\n'), ((26588, 26622), 'numpy.array', 'np.array', (['[Y, X, Ydot, Xdot, Zdot]'], {}), '([Y, X, Ydot, Xdot, Zdot])\n', (26596, 26622), True, 'import numpy as np\n'), ((26642, 26713), 'numpy.array', 'np.array', (['[self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv]'], {}), '([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec, self.rv])\n', (26650, 26713), True, 'import numpy as np\n'), ((26756, 26784), 'numpy.array', 'np.array', (['[Y, X, Ydot, Xdot]'], {}), '([Y, X, Ydot, Xdot])\n', (26764, 26784), True, 'import numpy as np\n'), ((26805, 26867), 'numpy.array', 'np.array', (['[self.deltaRA, self.deltaDec, self.pmRA, self.pmDec]'], {}), '([self.deltaRA, self.deltaDec, self.pmRA, self.pmDec])\n', (26813, 26867), True, 'import numpy as np\n'), ((27296, 27311), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (27304, 27311), True, 'import numpy as np\n'), ((28523, 28538), 'numpy.zeros', 'np.zeros', (['(10000)'], {}), '(10000)\n', (28531, 28538), True, 'import numpy as np\n'), ((29175, 29192), 'numpy.size', 'np.size', (['accepted'], {}), '(accepted)\n', (29182, 29192), True, 'import numpy as np\n'), ((29546, 29563), 'numpy.size', 'np.size', (['accepted'], {}), '(accepted)\n', (29553, 29563), True, 'import numpy as np\n'), ((29593, 29683), 'numpy.concatenate', 'np.concatenate', (['(parameters, chi2[None, :], lnprob[None, :], lnrand[None, :])'], {'axis': '(0)'}), '((parameters, chi2[None, :], lnprob[None, :], lnrand[None, :]\n ), axis=0)\n', (29607, 29683), True, 'import numpy as np\n'), ((29702, 29726), 'numpy.transpose', 'np.transpose', (['parameters'], {}), '(parameters)\n', (29714, 29726), True, 'import numpy as np\n'), ((30001, 30016), 'numpy.nanmin', 'np.nanmin', (['chi2'], {}), '(chi2)\n', (30010, 30016), True, 'import numpy as np\n'), ((30110, 30125), 'numpy.nanmin', 'np.nanmin', (['chi2'], {}), '(chi2)\n', (30119, 30125), True, 'import numpy as np\n'), ((39540, 39549), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (39547, 39549), True, 'import matplotlib.pyplot as plt\n'), ((40347, 40359), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (40355, 40359), True, 'import numpy as np\n'), ((40360, 40372), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (40368, 40372), True, 'import numpy as np\n'), ((40373, 40385), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (40381, 40385), True, 'import numpy as np\n'), ((40685, 40704), 'numpy.append', 'np.append', (['E', 'nextE'], {}), '(E, nextE)\n', (40694, 40704), True, 'import numpy as np\n'), ((40754, 40767), 'numpy.sqrt', 'sqrt', (['(1.0 + e)'], {}), '(1.0 + e)\n', (40758, 40767), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40765, 40777), 'numpy.sin', 'sin', (['(E / 2.0)'], {}), '(E / 2.0)\n', (40768, 40777), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40792, 40805), 'numpy.sqrt', 'sqrt', (['(1.0 - e)'], {}), '(1.0 - e)\n', (40796, 40805), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40803, 40815), 'numpy.cos', 'cos', (['(E / 2.0)'], {}), '(E / 2.0)\n', (40806, 40815), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40832, 40850), 'numpy.arctan2', 'np.arctan2', (['f1', 'f2'], {}), '(f1, f2)\n', (40842, 40850), True, 'import numpy as np\n'), ((41060, 41066), 'numpy.sin', 'sin', (['i'], {}), '(i)\n', (41063, 41066), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41087, 41103), 'numpy.append', 'np.append', (['X', 'X1'], {}), '(X, X1)\n', (41096, 41103), True, 'import numpy as np\n'), ((41103, 41119), 'numpy.append', 'np.append', (['Y', 'Y1'], {}), '(Y, Y1)\n', (41112, 41119), True, 'import numpy as np\n'), ((41119, 41135), 'numpy.append', 'np.append', (['Z', 'Z1'], {}), '(Z, Z1)\n', (41128, 41135), True, 'import numpy as np\n'), ((42132, 42141), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (42139, 42141), True, 'import matplotlib.pyplot as plt\n'), ((43563, 43572), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (43570, 43572), True, 'import matplotlib.pyplot as plt\n'), ((45276, 45285), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (45283, 45285), True, 'import matplotlib.pyplot as plt\n'), ((4963, 4997), 'time.strftime', 'time.strftime', (['"""%Y.%m.%d.%H.%M.%S"""'], {}), "('%Y.%m.%d.%H.%M.%S')\n", (4976, 4997), False, 'import time\n'), ((5059, 5093), 'time.strftime', 'time.strftime', (['"""%Y.%m.%d.%H.%M.%S"""'], {}), "('%Y.%m.%d.%H.%M.%S')\n", (5072, 5093), False, 'import time\n'), ((9394, 9424), 'numpy.fromstring', 'np.fromstring', (['table1'], {'sep': '""" """'}), "(table1, sep=' ')\n", (9407, 9424), True, 'import numpy as np\n'), ((14122, 14140), 'numpy.mean', 'np.mean', (['(rv2 - rv1)'], {}), '(rv2 - rv1)\n', (14129, 14140), True, 'import numpy as np\n'), ((14985, 15034), 'numpy.mean', 'np.mean', (['[self.Dec1[0].value, self.Dec2[0].value]'], {}), '([self.Dec1[0].value, self.Dec2[0].value])\n', (14992, 15034), True, 'import numpy as np\n'), ((15774, 15784), 'numpy.mean', 'np.mean', (['r'], {}), '(r)\n', (15781, 15784), True, 'import numpy as np\n'), ((15792, 15801), 'numpy.std', 'np.std', (['r'], {}), '(r)\n', (15798, 15801), True, 'import numpy as np\n'), ((15853, 15863), 'numpy.mean', 'np.mean', (['p'], {}), '(p)\n', (15860, 15863), True, 'import numpy as np\n'), ((15871, 15880), 'numpy.std', 'np.std', (['p'], {}), '(p)\n', (15877, 15880), True, 'import numpy as np\n'), ((16063, 16076), 'astropy.units.au.to', 'u.au.to', (['u.km'], {}), '(u.km)\n', (16070, 16076), True, 'import astropy.units as u\n'), ((16094, 16107), 'astropy.units.au.to', 'u.au.to', (['u.km'], {}), '(u.km)\n', (16101, 16107), True, 'import astropy.units as u\n'), ((24694, 24724), 'numpy.array', 'np.array', (['[self.user_rv[:, j]]'], {}), '([self.user_rv[:, j]])\n', (24702, 24724), True, 'import numpy as np\n'), ((24724, 24740), 'numpy.array', 'np.array', (['[Zdot]'], {}), '([Zdot])\n', (24732, 24740), True, 'import numpy as np\n'), ((27869, 27934), 'numpy.array', 'np.array', (['[self.astrometric_ra[:, j], self.astrometric_dec[:, j]]'], {}), '([self.astrometric_ra[:, j], self.astrometric_dec[:, j]])\n', (27877, 27934), True, 'import numpy as np\n'), ((28059, 28091), 'numpy.array', 'np.array', (['[Y1 * 1000, X1 * 1000]'], {}), '([Y1 * 1000, X1 * 1000])\n', (28067, 28091), True, 'import numpy as np\n'), ((30544, 30573), 'numpy.where', 'np.where', (['(lnprob > dat[:, 12])'], {}), '(lnprob > dat[:, 12])\n', (30552, 30573), True, 'import numpy as np\n'), ((41049, 41059), 'numpy.sin', 'sin', (['(w + f)'], {}), '(w + f)\n', (41052, 41059), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41249, 41315), 'matplotlib.pyplot.scatter', 'plt.scatter', (['Y', 'X'], {'c': '((times - ref_epoch) / T)', 'cmap': 'cmap', 's': '(3)', 'lw': '(0)'}), '(Y, X, c=(times - ref_epoch) / T, cmap=cmap, s=3, lw=0)\n', (41260, 41315), True, 'import matplotlib.pyplot as plt\n'), ((41423, 41463), 'matplotlib.pyplot.plot', 'plt.plot', (['Y', 'X'], {'color': '"""black"""', 'alpha': '(0.3)'}), "(Y, X, color='black', alpha=0.3)\n", (41431, 41463), True, 'import matplotlib.pyplot as plt\n'), ((45074, 45091), 'numpy.degrees', 'np.degrees', (['theta'], {}), '(theta)\n', (45084, 45091), True, 'import numpy as np\n'), ((7071, 7120), 'numpy.array', 'np.array', (["[astrometry['ra'], astrometry['raerr']]"], {}), "([astrometry['ra'], astrometry['raerr']])\n", (7079, 7120), True, 'import numpy as np\n'), ((7164, 7215), 'numpy.array', 'np.array', (["[astrometry['dec'], astrometry['decerr']]"], {}), "([astrometry['dec'], astrometry['decerr']])\n", (7172, 7215), True, 'import numpy as np\n'), ((28946, 28976), 'numpy.array', 'np.array', (['[self.user_rv[:, j]]'], {}), '([self.user_rv[:, j]])\n', (28954, 28976), True, 'import numpy as np\n'), ((28976, 28992), 'numpy.array', 'np.array', (['[Zdot]'], {}), '([Zdot])\n', (28984, 28992), True, 'import numpy as np\n'), ((40729, 40735), 'numpy.cos', 'cos', (['E'], {}), '(E)\n', (40732, 40735), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40887, 40893), 'numpy.cos', 'cos', (['f'], {}), '(f)\n', (40890, 40893), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40919, 40925), 'numpy.cos', 'cos', (['O'], {}), '(O)\n', (40922, 40925), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40926, 40936), 'numpy.cos', 'cos', (['(w + f)'], {}), '(w + f)\n', (40929, 40936), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40953, 40959), 'numpy.cos', 'cos', (['i'], {}), '(i)\n', (40956, 40959), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40985, 40991), 'numpy.sin', 'sin', (['O'], {}), '(O)\n', (40988, 40991), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40992, 41002), 'numpy.cos', 'cos', (['(w + f)'], {}), '(w + f)\n', (40995, 41002), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41019, 41025), 'numpy.cos', 'cos', (['i'], {}), '(i)\n', (41022, 41025), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((47678, 47712), 'time.strftime', 'time.strftime', (['"""%Y.%m.%d.%H.%M.%S"""'], {}), "('%Y.%m.%d.%H.%M.%S')\n", (47691, 47712), False, 'import time\n'), ((40937, 40943), 'numpy.sin', 'sin', (['O'], {}), '(O)\n', (40940, 40943), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((40944, 40954), 'numpy.sin', 'sin', (['(w + f)'], {}), '(w + f)\n', (40947, 40954), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41003, 41009), 'numpy.cos', 'cos', (['O'], {}), '(O)\n', (41006, 41009), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41010, 41020), 'numpy.sin', 'sin', (['(w + f)'], {}), '(w + f)\n', (41013, 41020), False, 'from numpy import tan, arctan, sqrt, cos, sin, arccos\n'), ((41329, 41338), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (41336, 41338), True, 'import matplotlib.pyplot as plt\n'), ((41482, 41491), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (41489, 41491), True, 'import matplotlib.pyplot as plt\n'), ((41934, 41948), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (41946, 41948), True, 'import matplotlib.pyplot as plt\n'), ((42004, 42013), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (42011, 42013), True, 'import matplotlib.pyplot as plt\n'), ((6241, 6260), 'numpy.mean', 'np.mean', (['astr_ra[i]'], {}), '(astr_ra[i])\n', (6248, 6260), True, 'import numpy as np\n'), ((6327, 6345), 'numpy.std', 'np.std', (['astr_ra[i]'], {}), '(astr_ra[i])\n', (6333, 6345), True, 'import numpy as np\n'), ((6492, 6512), 'numpy.mean', 'np.mean', (['astr_dec[i]'], {}), '(astr_dec[i])\n', (6499, 6512), True, 'import numpy as np\n'), ((6579, 6598), 'numpy.std', 'np.std', (['astr_dec[i]'], {}), '(astr_dec[i])\n', (6585, 6598), True, 'import numpy as np\n')]
""" script to run mc sims on the three associations techniques when the tracks origin are equal. Used to calculate the total number of correctly associating tracks and total # falsly not associating tracks from the same target. """ import numpy as np from stonesoup.types.state import GaussianState from data_association.CountingAssociator import CountingAssociator from data_association.bar_shalom_hypothesis_associators import HypothesisTestDependenceAssociator, \ HypothesisTestIndependenceAssociator from trackers.kf_dependent_fusion_async_sensors import KalmanFilterDependentFusionAsyncSensors from utils import open_object from utils.scenario_generator import generate_scenario_3 start_seed = 0 end_seed = 5 # normally 500 num_mc_iterations = end_seed - start_seed # params save_fig = False # scenario parameters sigma_process_list = [0.3] # [0.05, 0.05, 0.05, 0.5, 0.5, 0.5, 3, 3, 3] sigma_meas_radar_list = [50] # [5, 30, 200, 5, 30, 200, 5, 30, 200] sigma_meas_ais_list = [10] # [10] * 9 radar_meas_rate = 1 # relevant radar meas rates: 1 ais_meas_rate_list = [6] # relevant AIS meas rates: 2 - 12 timesteps = 200 # associator params association_distance_threshold = 10 consecutive_hits_confirm_association = 3 consecutive_misses_end_association = 2 # dicts to store final results for printing in a latex friendly way Pc_overall = {} # Pc is the percentage of correctly associating tracks that originate from the same target something_else_overall = {} stats = [] for sigma_process, sigma_meas_radar, sigma_meas_ais, ais_meas_rate in zip(sigma_process_list, sigma_meas_radar_list, sigma_meas_ais_list, ais_meas_rate_list): for seed in range(start_seed, end_seed): # generate scenario generate_scenario_3(seed=seed, permanent_save=False, radar_meas_rate=radar_meas_rate, ais_meas_rate=ais_meas_rate, sigma_process=sigma_process, sigma_meas_radar=sigma_meas_radar, sigma_meas_ais=sigma_meas_ais, timesteps=timesteps) folder = "temp" # temp instead of seed, as it is not a permanent save # load ground truth and the measurements data_folder = "../scenarios/scenario3/" + folder + "/" ground_truth = open_object.open_object(data_folder + "ground_truth.pk1") measurements_radar = open_object.open_object(data_folder + "measurements_radar.pk1") measurements_ais = open_object.open_object(data_folder + "measurements_ais.pk1") # load start_time start_time = open_object.open_object(data_folder + "start_time.pk1") # prior initial_covar = np.diag([sigma_meas_radar * sigma_meas_ais, sigma_meas_radar * sigma_process, sigma_meas_radar * sigma_meas_ais, sigma_meas_radar * sigma_process]) ** 2 prior = GaussianState([1, 1.1, -1, 0.9], initial_covar, timestamp=start_time) kf_dependent_fusion = KalmanFilterDependentFusionAsyncSensors(start_time, prior, sigma_process_radar=sigma_process, sigma_process_ais=sigma_process, sigma_meas_radar=sigma_meas_radar, sigma_meas_ais=sigma_meas_ais) tracks_fused_dependent, tracks_radar, tracks_ais = kf_dependent_fusion.track_async( start_time, measurements_radar, measurements_ais, fusion_rate=1) # use the CountingAssociator to evaluate whether the tracks are associated associator = CountingAssociator(association_distance_threshold, consecutive_hits_confirm_association, consecutive_misses_end_association) num_correct_associations = 0 num_false_mis_associations = 0 for i in range(1, len(tracks_radar)): # use the associator to check the association associated = associator.associate_tracks(tracks_radar[:i], tracks_ais[:i]) if associated: num_correct_associations += 1 else: num_false_mis_associations += 1 # save the number of correct associations and false mis associations in a dict stats_individual = {'seed': seed, 'num_correct_associations': num_correct_associations, 'num_false_mis_associations': num_false_mis_associations} stats.append(stats_individual) # todo count the number of associations that turn out to be correct # calc the #correct_associations and #false_mis_associations tot_num_correct_associations = sum([stat['num_correct_associations'] for stat in stats]) tot_num_false_mis_associations = sum([stat['num_false_mis_associations'] for stat in stats]) print("")
[ "utils.open_object.open_object", "stonesoup.types.state.GaussianState", "numpy.diag", "data_association.CountingAssociator.CountingAssociator", "trackers.kf_dependent_fusion_async_sensors.KalmanFilterDependentFusionAsyncSensors", "utils.scenario_generator.generate_scenario_3" ]
[((1806, 2051), 'utils.scenario_generator.generate_scenario_3', 'generate_scenario_3', ([], {'seed': 'seed', 'permanent_save': '(False)', 'radar_meas_rate': 'radar_meas_rate', 'ais_meas_rate': 'ais_meas_rate', 'sigma_process': 'sigma_process', 'sigma_meas_radar': 'sigma_meas_radar', 'sigma_meas_ais': 'sigma_meas_ais', 'timesteps': 'timesteps'}), '(seed=seed, permanent_save=False, radar_meas_rate=\n radar_meas_rate, ais_meas_rate=ais_meas_rate, sigma_process=\n sigma_process, sigma_meas_radar=sigma_meas_radar, sigma_meas_ais=\n sigma_meas_ais, timesteps=timesteps)\n', (1825, 2051), False, 'from utils.scenario_generator import generate_scenario_3\n'), ((2337, 2394), 'utils.open_object.open_object', 'open_object.open_object', (["(data_folder + 'ground_truth.pk1')"], {}), "(data_folder + 'ground_truth.pk1')\n", (2360, 2394), False, 'from utils import open_object\n'), ((2424, 2487), 'utils.open_object.open_object', 'open_object.open_object', (["(data_folder + 'measurements_radar.pk1')"], {}), "(data_folder + 'measurements_radar.pk1')\n", (2447, 2487), False, 'from utils import open_object\n'), ((2515, 2576), 'utils.open_object.open_object', 'open_object.open_object', (["(data_folder + 'measurements_ais.pk1')"], {}), "(data_folder + 'measurements_ais.pk1')\n", (2538, 2576), False, 'from utils import open_object\n'), ((2625, 2680), 'utils.open_object.open_object', 'open_object.open_object', (["(data_folder + 'start_time.pk1')"], {}), "(data_folder + 'start_time.pk1')\n", (2648, 2680), False, 'from utils import open_object\n'), ((2924, 2993), 'stonesoup.types.state.GaussianState', 'GaussianState', (['[1, 1.1, -1, 0.9]', 'initial_covar'], {'timestamp': 'start_time'}), '([1, 1.1, -1, 0.9], initial_covar, timestamp=start_time)\n', (2937, 2993), False, 'from stonesoup.types.state import GaussianState\n'), ((3025, 3225), 'trackers.kf_dependent_fusion_async_sensors.KalmanFilterDependentFusionAsyncSensors', 'KalmanFilterDependentFusionAsyncSensors', (['start_time', 'prior'], {'sigma_process_radar': 'sigma_process', 'sigma_process_ais': 'sigma_process', 'sigma_meas_radar': 'sigma_meas_radar', 'sigma_meas_ais': 'sigma_meas_ais'}), '(start_time, prior,\n sigma_process_radar=sigma_process, sigma_process_ais=sigma_process,\n sigma_meas_radar=sigma_meas_radar, sigma_meas_ais=sigma_meas_ais)\n', (3064, 3225), False, 'from trackers.kf_dependent_fusion_async_sensors import KalmanFilterDependentFusionAsyncSensors\n'), ((3773, 3901), 'data_association.CountingAssociator.CountingAssociator', 'CountingAssociator', (['association_distance_threshold', 'consecutive_hits_confirm_association', 'consecutive_misses_end_association'], {}), '(association_distance_threshold,\n consecutive_hits_confirm_association, consecutive_misses_end_association)\n', (3791, 3901), False, 'from data_association.CountingAssociator import CountingAssociator\n'), ((2722, 2877), 'numpy.diag', 'np.diag', (['[sigma_meas_radar * sigma_meas_ais, sigma_meas_radar * sigma_process, \n sigma_meas_radar * sigma_meas_ais, sigma_meas_radar * sigma_process]'], {}), '([sigma_meas_radar * sigma_meas_ais, sigma_meas_radar *\n sigma_process, sigma_meas_radar * sigma_meas_ais, sigma_meas_radar *\n sigma_process])\n', (2729, 2877), True, 'import numpy as np\n')]
from numpy import exp, pi, cos, sin, tan from ....Functions.Geometry.inter_line_circle import inter_line_circle def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : HoleM51 A HoleM51 object Returns ------- point_dict: dict A dict of the slot coordinates """ Rext = self.get_Rext() # comp point coordinate (in complex) alpha = self.comp_alpha() Wslot = 2 * sin(self.W1 / 2) * (Rext - self.H1) L = 0.5 * (Wslot - self.W0) / cos(alpha) # ||P2,P5|| # Center of the hole Z0 = Rext - self.H0 Z2 = Z0 + 1j * self.W0 / 2 Z25 = Z0 - 1j * self.W0 / 2 Z15 = Z25 - self.H2 Z1 = Z2 - 1j * self.W2 Z26 = Z1 - 1j * self.W3 Z12 = Z2 - self.H2 Z13 = Z12 - 1j * self.W2 Z14 = Z13 - 1j * self.W3 Z11 = Z12 + 1j * tan(alpha / 2) * self.H2 Z16 = Z15 - 1j * tan(alpha / 2) * self.H2 # Draw the left side with center P2, and X axis =(P2,P5), Y axis=(P2,P10) Z3 = self.W4 * exp(1j * (pi / 2 - alpha)) + Z2 Z4 = (self.W4 + self.W5) * exp(1j * (pi / 2 - alpha)) + Z2 Z5 = (Rext - self.H1) * exp(1j * self.W1 / 2) Z10 = (1j * self.H2) * exp(1j * (pi / 2 - alpha)) + Z2 Z9 = (1j * self.H2 + self.W4) * exp(1j * (pi / 2 - alpha)) + Z2 Z8 = (1j * self.H2 + self.W4 + self.W5) * exp(1j * (pi / 2 - alpha)) + Z2 Z7 = (1j * self.H2 + L) * exp(1j * (pi / 2 - alpha)) + Z2 # Draw the right side with center P25, X axis (P25,P23), Y axis(P25,P17) Z24 = self.W6 * exp(-1j * (pi / 2 - alpha)) + Z25 Z23 = (self.W6 + self.W7) * exp(-1j * (pi / 2 - alpha)) + Z25 Z22 = (Rext - self.H1) * exp(-1j * self.W1 / 2) Z17 = (-1j * self.H2) * exp(-1j * (pi / 2 - alpha)) + Z25 Z18 = (-1j * self.H2 + self.W6) * exp(-1j * (pi / 2 - alpha)) + Z25 Z19 = (-1j * self.H2 + self.W6 + self.W7) * exp(-1j * (pi / 2 - alpha)) + Z25 Z20 = (-1j * self.H2 + L) * exp(-1j * (pi / 2 - alpha)) + Z25 # Z6 is the intersection of the line [Z7,Z10] and Circle centre # (0,0) radius Rext - H1 Zint = inter_line_circle(Z7, Z10, Rext - self.H1) # Select the point with Re(Z) > 0 if Zint[0].real > 0: Z6 = Zint[0] else: Z6 = Zint[1] Z21 = Z6.conjugate() point_dict = dict() point_dict["Z1"] = Z1 point_dict["Z2"] = Z2 point_dict["Z3"] = Z3 point_dict["Z4"] = Z4 point_dict["Z5"] = Z5 point_dict["Z6"] = Z6 point_dict["Z7"] = Z7 point_dict["Z8"] = Z8 point_dict["Z9"] = Z9 point_dict["Z10"] = Z10 point_dict["Z11"] = Z11 point_dict["Z12"] = Z12 point_dict["Z13"] = Z13 point_dict["Z14"] = Z14 point_dict["Z15"] = Z15 point_dict["Z16"] = Z16 point_dict["Z17"] = Z17 point_dict["Z18"] = Z18 point_dict["Z19"] = Z19 point_dict["Z20"] = Z20 point_dict["Z21"] = Z21 point_dict["Z22"] = Z22 point_dict["Z23"] = Z23 point_dict["Z24"] = Z24 point_dict["Z25"] = Z25 point_dict["Z26"] = Z26 return point_dict
[ "numpy.exp", "numpy.sin", "numpy.cos", "numpy.tan" ]
[((565, 575), 'numpy.cos', 'cos', (['alpha'], {}), '(alpha)\n', (568, 575), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1175, 1198), 'numpy.exp', 'exp', (['(1.0j * self.W1 / 2)'], {}), '(1.0j * self.W1 / 2)\n', (1178, 1198), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1691, 1715), 'numpy.exp', 'exp', (['(-1.0j * self.W1 / 2)'], {}), '(-1.0j * self.W1 / 2)\n', (1694, 1715), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((495, 511), 'numpy.sin', 'sin', (['(self.W1 / 2)'], {}), '(self.W1 / 2)\n', (498, 511), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1052, 1080), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1055, 1080), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1115, 1143), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1118, 1143), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1224, 1252), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1227, 1252), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1292, 1320), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1295, 1320), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1370, 1398), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1373, 1398), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1432, 1460), 'numpy.exp', 'exp', (['(1.0j * (pi / 2 - alpha))'], {}), '(1.0j * (pi / 2 - alpha))\n', (1435, 1460), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1562, 1591), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1565, 1591), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1628, 1657), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1631, 1657), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1742, 1771), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1745, 1771), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1814, 1843), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1817, 1843), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1896, 1925), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1899, 1925), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((1962, 1991), 'numpy.exp', 'exp', (['(-1.0j * (pi / 2 - alpha))'], {}), '(-1.0j * (pi / 2 - alpha))\n', (1965, 1991), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((883, 897), 'numpy.tan', 'tan', (['(alpha / 2)'], {}), '(alpha / 2)\n', (886, 897), False, 'from numpy import exp, pi, cos, sin, tan\n'), ((929, 943), 'numpy.tan', 'tan', (['(alpha / 2)'], {}), '(alpha / 2)\n', (932, 943), False, 'from numpy import exp, pi, cos, sin, tan\n')]
print("\n") print("PythonExercises-v2 by <NAME>") print("\n") print("=== EXERCISE 1 ===") print("\n") print("(a) 5 / 3 = " + str(5 / 3)) print("=> with python3 you can receive a float even if you divide two \ integers") print("\n") print("(b) 5 % 3 = " + str(5 % 3)) print("=> % is the modulus which divides left hand operand by right hand \ operand and returns remainder") print("\n") print("(c) 5.0 / 3 = " + str(5.0 / 3)) print("=> outputs a float number.. there is no difference if a plain 5 or 5.0 \ is used") print("\n") print("(d) 5 / 3.0 = " + str(5 / 3.0)) print("=> outputs a float number.. there is no difference if a plain 3 or 3.0 \ is used") print("\n") print("(e) 5.2 % 3 = " + str(5.2 % 3)) print("=> % is the modulus which divides left hand operand by right hand \ operand and returns remainder") print("\n") print("=== EXERCISE 2 ===") print("\n") print("(a) 2000.3 ** 200 = ...") try: print(str(2000.3 ** 200)) except OverflowError as e: print("=> The python3 interpreter throws a OverflowError " + str(e)) print("\n") print("(b) 1.0 + 1.0 - 1.0 = " + str(1.0 + 1.0 - 1.0)) print("=> Addition and substraction of float values which results in another \ float value") print("\n") print("(c) 1.0 + 1.0e20 - 1.0e20 = " + str(1.0 + 1.0e20 - 1.0e20)) print("=> 1.0 + 1.0e20 is rounded as close as possible, which is 1.0e20 and \ after substraction of it again it results in 0.0") print("\n") print("=== EXERCISE 3 ===") print("\n") print("(a) float(123) = " + str(float(123))) print("=> Takes the integer value 123 as input and casts it to the float \ value 123.0") print("\n") print("(b) float('123') = " + str(float('123'))) print("=> Takes the string '123' as input and casts it to the float value \ 123.0") print("\n") print("(c) float('123.23') = " + str(float('123.23'))) print("=> Takes the string '123.23' as input and casts it to the float value \ 123.23") print("\n") print("(d) int(123.23) = " + str(int(123.23))) print("=> Takes the float 123.23 as input and casts it to the integer value \ 123") print("\n") print("(e) int('123.23') = ...") try: int('123.23') except ValueError as e: print("=> The int() function can't cast a string to float to int and thus \ throws a ValueError (" + str(e) + ")") print("\n") print("(f) int(float('123.23')) = " + str(int(float(123.23)))) print("=> As we cast the string to float first, we can use it as a input to \ the int() function and receive a integer") print("\n") print("(g) str(12) = " + str(12)) print("=> Takes the integer 12 as input and casts it to the string '12'") print("\n") print("(h) str(12.2) = " + str(12.2)) print("=> Takes the float 12.2 as input and casts it to the string '12.2'") print("\n") print("(i) bool('a') = " + str(bool('a'))) print("=> Because an actual value (the character 'a') is passed to the bool() \ function, True is returned") print("\n") print("(j) bool(0) = " + str(bool(0))) print("=> The boolean value False equals 0 in python, thus False is returned") print("\n") print("(k) bool(0.1) = " + str(bool(0.1))) print("=> Because a value != 0 is provided in the bool() function, \ it returns True") print("\n") print("=== EXERCISE 4 ===") print("\n") print("range(5) = {}".format(range(5))) print("=> range(5) returns a sequence of integers from 0 to 4. for i in \ range(5) is consequently iterating over the sequence of integers") print("\n") print("type(range(5)) = {}".format(type(range(5)))) print("=> The type function returns an object's class. For range(5) the class \ range is returned") print("\n") print("=== EXERCISE 5 ===") print("\n") def div_by_number(numbers_list, max_found): number_found = 0 x = 1 while number_found < max_found: for number in numbers_list: if x % number == 0: print(x) number_found = number_found + 1 x = x + 1 numbers_list = [5, 7, 11] print("div_by_number({}, 20)\n".format(numbers_list)) div_by_number(numbers_list, 20) print("\n") print("=== EXERCISE 6 ===") print("\n") print("(a) & (b)\n") def is_prime(n): if n <= 3: return n > 1 elif n % 2 == 0 or n % 3 == 0: return False i = 5 while i * i <= n: if n % i == 0 or n % (i + 2) == 0: return False i = i + 6 return True print("is_prime(0) = {}\n".format(is_prime(0))) print("is_prime(1) = {}\n".format(is_prime(1))) print("is_prime(3) = {}\n".format(is_prime(3))) print("is_prime(7) = {}\n".format(is_prime(7))) print("is_prime(8) = {}\n".format(is_prime(8))) print("is_prime(112331) = {}".format(is_prime(112331))) def primes_up_to(n): primes = [] for i in range(0, n): if is_prime(i): primes.append(i) return primes print("\n(c) primes_up_to(100) = {}".format(primes_up_to(100))) def first_primes(n): primes = [] i = 0 while len(primes) < n: if is_prime(i): primes.append(i) i = i + 1 return primes print("\n(d) first_primes(12) = {}".format(first_primes(12))) print("\n") print("=== EXERCISE 7 ===") print("\n") print("(a) print_elements(elements_list)\n") def print_elements(elements): for element in elements: print(element) elements_list = [12, "abc", 92.2, "hello"] print_elements(elements_list) print("\n(b) print_elements_reverse(elements_list)\n") def print_elements_reverse(elements): for element in elements[::-1]: print(element) print_elements_reverse(elements_list) print("\n(c) len_elements(elements_list)\n") def len_elements(elements): count = 0 for _ in elements: count = count + 1 return count print("len_elements(elements_list) = {}".format(len_elements(elements_list))) print("\n") print("=== EXERCISE 8 ===") a = [12, "abc", 92.2, "hello"] print("\n") print("(a) a = {}".format(a)) print("\n(b) b = a") b = a print("\n(c) b[1] = 'changed'") b[1] = "changed" print("\n(d) a = {}".format(a)) print("=> b is binding to the same object as a, so when b[1] was changed \ a[1] also shows the change") print("\n(e) c = a[:]") c = a[:] print("\n(f) c[2] = 'also changed'") c[2] = "also changed" print("\n(g) a = {}".format(a)) print("=> A copy of the list a was created with a[:] and assigned to c, thus \ a[2] did not change when c[2] changed") def set_first_elem_to_zero(l): if len(l) > 0: l[0] = 0 return l numbers = [12, 21, 214, 3] print("\n...") print("\nnumbers = {}".format(numbers)) print("set_first_elem_to_zero(numbers) = \ {}".format(set_first_elem_to_zero(numbers))) print("numbers = {}".format(numbers)) print("=> The original list also changed, even though we did not assign \ the returned list to it (same binding)") print("\n") print("=== EXERCISE 9 ===") elements = [[1,3], [3,6]] print("\n") print("elements = {}".format(elements)) flat_list = lambda l: [element for sublist in l for element in sublist] print("flat_list(elements) = {}".format(flat_list(elements))) print("\n") print("=== EXERCISE 10 ===") import matplotlib.pyplot as plt import numpy as np t = np.arange(0.0, 2.0, 0.01) s = np.sin(t - 2) ** 2 * np.e ** (-t ** 2) fig, ax = plt.subplots() ax.plot(t, s) ax.set(xlabel='x', ylabel='y', title='Exercise 10') plt.show() print("\n") print("See Figure_1.png") print("\n") print("=== EXERCISE 11 ===") def product_iteration(numbers): product = 0 if len(numbers) > 0: product = numbers.pop() for number in numbers: product = product * number return product from functools import reduce def product_recursive(numbers): if len(numbers) > 0: return reduce((lambda x, y: x * y), numbers) else: return 0 numbers = [21, 12, 10, 128, 2] empty_list = [] print("\n") print("product_iteration(numbers) = {}".format(product_iteration(numbers))) print("product_iteration(empty_list) = \ {}".format(product_iteration(empty_list))) numbers = [21, 12, 10, 128, 2] print("\n") print("product_recursive(numbers) = {}".format(product_recursive(numbers))) print("product_recursive(empty_list) = \ {}".format(product_recursive(empty_list))) print("\n") print("=== EXERCISE 12 ===") print("\n\nGood to know!") print("\n") print("=== EXERCISE 13 ===") def read_file(filename): with open(filename, 'r') as myfile: data=myfile.read().replace('\n', '') return data file_content = read_file("emails.txt") print("\n\nread_file('emails.txt')\n\n{}".format(file_content)) import re def extract_email(string): match = re.findall(r'[\w\.-]+@[\w\.-]+\.\w+', string) return match print("\nextract_email(file_content)\ \n\n{}".format(extract_email(file_content)))
[ "functools.reduce", "numpy.sin", "re.findall", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((7097, 7122), 'numpy.arange', 'np.arange', (['(0.0)', '(2.0)', '(0.01)'], {}), '(0.0, 2.0, 0.01)\n', (7106, 7122), True, 'import numpy as np\n'), ((7177, 7191), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (7189, 7191), True, 'import matplotlib.pyplot as plt\n'), ((7266, 7276), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7274, 7276), True, 'import matplotlib.pyplot as plt\n'), ((8547, 8597), 're.findall', 're.findall', (['"""[\\\\w\\\\.-]+@[\\\\w\\\\.-]+\\\\.\\\\w+"""', 'string'], {}), "('[\\\\w\\\\.-]+@[\\\\w\\\\.-]+\\\\.\\\\w+', string)\n", (8557, 8597), False, 'import re\n'), ((7127, 7140), 'numpy.sin', 'np.sin', (['(t - 2)'], {}), '(t - 2)\n', (7133, 7140), True, 'import numpy as np\n'), ((7660, 7695), 'functools.reduce', 'reduce', (['(lambda x, y: x * y)', 'numbers'], {}), '(lambda x, y: x * y, numbers)\n', (7666, 7695), False, 'from functools import reduce\n')]
#------------------------------------------------------------------------------- # This function defines the sea level change timeseries for marine ice sheet problem. # *Default = sinusoidal tidal cycle if 'tides' with 1m amplitude if 'tides' turned 'on', OR... # = zero if 'tides' turned 'off' #------------------------------------------------------------------------------- import numpy as np from params import t_final,nt_per_year,tides def sl_change(t): if tides == 'on': SLC = np.sin(4*np.pi*t/(3.154e7/12.0/30.0)) # tidal frequency of 2 per day else: SLC = 0.0 # no sea level change for # long-time marine problem return SLC
[ "numpy.sin" ]
[((505, 555), 'numpy.sin', 'np.sin', (['(4 * np.pi * t / (31540000.0 / 12.0 / 30.0))'], {}), '(4 * np.pi * t / (31540000.0 / 12.0 / 30.0))\n', (511, 555), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # from scipy.stats import entropy import sys sys.path.append('../') import cloudtropy # data gen_dim = 2 gen_N = 300 lims = (-2,6) scale = 0.2 X = np.random.uniform(low=lims[0],high=lims[1],size=(10000,2)) # background X = np.concatenate([X,scale*np.random.randn(gen_N,gen_dim)+np.array([0,0])] ) X = np.concatenate([X,scale*np.random.randn(gen_N,gen_dim)+np.array([4,0])] ) X = np.concatenate([X,scale*np.random.randn(gen_N,gen_dim)+np.array([0,4])] ) X = np.concatenate([X,scale*np.random.randn(gen_N,gen_dim)+np.array([4,4])] ) # input parameters N_grid = 80 delta_c = 0.35 # grid,pmf = cloudtropy.pmf(X,N=N_grid,delta_c=delta_c,lims=[(-2,6),(-2,6)]) grid,pmf = cloudtropy.pmf(X,d=0.1,delta_c=delta_c,lims=[(-2,6),(-2,6)]) entropy = cloudtropy.entropy(X,base=2,N=N_grid,delta_c=delta_c,lims=[(-3,7),(-3,7)]) print(cloudtropy.entropy(X,base=2,d=0.1,delta_c=delta_c,lims=[(-3,7),(-3,7)])) ############## All in one fig = plt.figure(figsize=(14,3)) # ax1 = fig.add_subplot(1,4,1) # levels = np.linspace(0,flat_pmf.max(),40) ax1.scatter(X[:,0], X[:,1],s=1,alpha=0.1,color='k') ax1.set_xlabel('x'),ax1.set_ylabel('y') ax1.set_xlim(lims),ax1.set_xlim(lims) ax1.axis('equal') # ax2 = fig.add_subplot(1,3,2,projection='3d') ax2.plot_surface(grid[0], grid[1], pmf,cmap='coolwarm', edgecolor='none',shade='interp') ax2.set_xlabel('x'),ax2.set_ylabel('y')#,ax.set_zlabel('PMF',rotation=90) ax2.view_init(elev=60, azim=-45) # ax3 = fig.add_subplot(1,3,3) cs = ax3.contourf(grid[0], grid[1], pmf, levels=np.linspace(0,pmf.max(),40), cmap='Purples_r') ax3.set_xlabel('x'),ax3.set_ylabel('y') ax3.set_title('Entropy = %.3f'%entropy) ax3.set_xlim(lims),ax3.set_xlim(lims), ax3.axis('equal') cbar = fig.colorbar(cs) # plt.tight_layout() # plt.savefig('all.pdf') plt.savefig('all.png',dpi=400) ############## Separate fig = plt.figure(figsize=(4,3)) # ax1 = fig.add_subplot(1,1,1) # levels = np.linspace(0,flat_pmf.max(),40) ax1.scatter(X[:,0], X[:,1],s=1,alpha=0.1,color='k') ax1.set_xlabel('x'),ax1.set_ylabel('y') ax1.set_xlim(lims),ax1.set_xlim(lims) ax1.axis('equal') plt.savefig('scatter.png',dpi=400) # fig = plt.figure(figsize=(4,3)) # ax2 = fig.add_subplot(1,1,1,projection='3d') ax2.plot_surface(grid[0], grid[1], pmf,cmap='coolwarm', edgecolor='none',shade='interp') ax2.set_xlabel('x'),ax2.set_ylabel('y')#,ax.set_zlabel('PMF',rotation=90) ax2.view_init(elev=60, azim=-45) plt.savefig('surf.png',dpi=400) # fig = plt.figure(figsize=(4,3)) # ax3 = fig.add_subplot(1,1,1) cs = ax3.contourf(grid[0], grid[1], pmf, levels=np.linspace(0,pmf.max(),40), cmap='Purples_r') # ax3.set_xlabel('x'),ax3.set_ylabel('y') # ax3.set_title('Entropy = %.3f'%entropy) ax3.set_xlim(lims),ax3.set_xlim(lims), ax3.axis('equal') cbar = fig.colorbar(cs) # plt.tight_layout() # plt.savefig('all.pdf') plt.savefig('contour_simple.png',dpi=400)
[ "matplotlib.pyplot.savefig", "cloudtropy.entropy", "cloudtropy.pmf", "numpy.array", "matplotlib.pyplot.figure", "numpy.random.randn", "matplotlib.pyplot.tight_layout", "numpy.random.uniform", "sys.path.append" ]
[((133, 155), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (148, 155), False, 'import sys\n'), ((239, 300), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'lims[0]', 'high': 'lims[1]', 'size': '(10000, 2)'}), '(low=lims[0], high=lims[1], size=(10000, 2))\n', (256, 300), True, 'import numpy as np\n'), ((761, 827), 'cloudtropy.pmf', 'cloudtropy.pmf', (['X'], {'d': '(0.1)', 'delta_c': 'delta_c', 'lims': '[(-2, 6), (-2, 6)]'}), '(X, d=0.1, delta_c=delta_c, lims=[(-2, 6), (-2, 6)])\n', (775, 827), False, 'import cloudtropy\n'), ((832, 917), 'cloudtropy.entropy', 'cloudtropy.entropy', (['X'], {'base': '(2)', 'N': 'N_grid', 'delta_c': 'delta_c', 'lims': '[(-3, 7), (-3, 7)]'}), '(X, base=2, N=N_grid, delta_c=delta_c, lims=[(-3, 7), (-3,\n 7)])\n', (850, 917), False, 'import cloudtropy\n'), ((1023, 1050), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 3)'}), '(figsize=(14, 3))\n', (1033, 1050), True, 'import matplotlib.pyplot as plt\n'), ((1805, 1823), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1821, 1823), True, 'import matplotlib.pyplot as plt\n'), ((1849, 1880), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""all.png"""'], {'dpi': '(400)'}), "('all.png', dpi=400)\n", (1860, 1880), True, 'import matplotlib.pyplot as plt\n'), ((1912, 1938), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 3)'}), '(figsize=(4, 3))\n', (1922, 1938), True, 'import matplotlib.pyplot as plt\n'), ((2161, 2196), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""scatter.png"""'], {'dpi': '(400)'}), "('scatter.png', dpi=400)\n", (2172, 2196), True, 'import matplotlib.pyplot as plt\n'), ((2204, 2230), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 3)'}), '(figsize=(4, 3))\n', (2214, 2230), True, 'import matplotlib.pyplot as plt\n'), ((2473, 2505), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""surf.png"""'], {'dpi': '(400)'}), "('surf.png', dpi=400)\n", (2484, 2505), True, 'import matplotlib.pyplot as plt\n'), ((2513, 2539), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(4, 3)'}), '(figsize=(4, 3))\n', (2523, 2539), True, 'import matplotlib.pyplot as plt\n'), ((2832, 2850), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2848, 2850), True, 'import matplotlib.pyplot as plt\n'), ((2876, 2918), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""contour_simple.png"""'], {'dpi': '(400)'}), "('contour_simple.png', dpi=400)\n", (2887, 2918), True, 'import matplotlib.pyplot as plt\n'), ((915, 993), 'cloudtropy.entropy', 'cloudtropy.entropy', (['X'], {'base': '(2)', 'd': '(0.1)', 'delta_c': 'delta_c', 'lims': '[(-3, 7), (-3, 7)]'}), '(X, base=2, d=0.1, delta_c=delta_c, lims=[(-3, 7), (-3, 7)])\n', (933, 993), False, 'import cloudtropy\n'), ((370, 386), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (378, 386), True, 'import numpy as np\n'), ((448, 464), 'numpy.array', 'np.array', (['[4, 0]'], {}), '([4, 0])\n', (456, 464), True, 'import numpy as np\n'), ((526, 542), 'numpy.array', 'np.array', (['[0, 4]'], {}), '([0, 4])\n', (534, 542), True, 'import numpy as np\n'), ((604, 620), 'numpy.array', 'np.array', (['[4, 4]'], {}), '([4, 4])\n', (612, 620), True, 'import numpy as np\n'), ((339, 370), 'numpy.random.randn', 'np.random.randn', (['gen_N', 'gen_dim'], {}), '(gen_N, gen_dim)\n', (354, 370), True, 'import numpy as np\n'), ((417, 448), 'numpy.random.randn', 'np.random.randn', (['gen_N', 'gen_dim'], {}), '(gen_N, gen_dim)\n', (432, 448), True, 'import numpy as np\n'), ((495, 526), 'numpy.random.randn', 'np.random.randn', (['gen_N', 'gen_dim'], {}), '(gen_N, gen_dim)\n', (510, 526), True, 'import numpy as np\n'), ((573, 604), 'numpy.random.randn', 'np.random.randn', (['gen_N', 'gen_dim'], {}), '(gen_N, gen_dim)\n', (588, 604), True, 'import numpy as np\n')]
#!/usr/bin/env python # _*_ encoding: utf-8 _*_ """simplex.py: Simplex algorithm with rational coefficients""" import numpy as np import fractions as frac __author__ = "<NAME>" __email__ = "<EMAIL>" class RestrictedSimplex(object): def __init__(self, leaving_index=None, entering_index=None): if not leaving_index: def func(l): m = 0 while not l[m] and m < len(l): m += 1 if m == len(l): return 0 for i in range(len(l)): if l[i] and l[m] > l[i]: m = i return m leaving_index = func if not entering_index: def func(l): return l.index(min(l)) entering_index = func self.leaving_index = leaving_index self.entering_index = entering_index def __call__(self, lin_p, recursion_limit=100): """ Runs a restricted version of the simplex algorithm Runs simplex algorithm on linear programs having feasible basic solution. It takes in an integer to limit the number of recursions. :return: a linear program whose basic solution has maximal objective value. """ a = lin_p.table if not lin_p.has_feasible_basic: raise TypeError("Linear program doesn't have feasible base solution") n = 0 while any(a[0, :-1] < 0) and n < recursion_limit: entering_choices = [i for i in map(lambda x: 0 if x > 0 else x, a[0, :-1])] e = self.entering_index(entering_choices) leaving_choices = [None]*lin_p.shape[0] for i in range(lin_p.shape[0]): if a[i+1, e] > 0: leaving_choices[i] = (a[i+1, -1]/a[i+1, e]) if not [i for i in leaving_choices if i]: raise OverflowError("Linear program unbounded | check model and state.") else: l = 1 + self.leaving_index(leaving_choices) lin_p.pivot(e, l) n += 1 form = "Basic solution = " + \ "(" + "{}, " * (lin_p.shape[1] - 1) + "{})" + \ " with objective value = {}." print(form.format(*lin_p.basic_solution(), lin_p.table[0, -1]), end="\n\n") return lin_p.basic_solution(), lin_p.table[0, -1] class Simplex(RestrictedSimplex): def is_feasible(self, lin_p): """ Checks if linear program is feasible.. Has side effect: transforms linear program if not basic feasible into an equivalent linear program having basic feasible solution. :return: boolean. """ print(" ### Checking feasibility of linear program", lin_p, sep="\n\n") if lin_p.has_feasible_basic(): print(" ### Input linear program has feasible basic solution", end="\n\n") return True print(" ### Basic solution is not feasible: using auxiliary linear program in next step", end="\n\n") gain_fun = np.copy(lin_p.table[0]) lin_p.shape = (lin_p.shape[0], lin_p.shape[1] + 1) lin_p.table = np.insert(lin_p.table, 0, frac.Fraction(-1, 1), axis=1) lin_p.table[0] = np.hstack((np.ones(1, dtype=frac.Fraction), np.zeros(lin_p.shape[1], dtype=frac.Fraction))) lin_p.basic = [i+1 for i in lin_p.basic] l = 1 + np.argmin(lin_p.table[1:, -1]) lin_p.pivot(0, l) # Now program has feasible basic solution if RestrictedSimplex.__call__(self, lin_p)[1] == 0: print(" ### Input linear program is thus feasible", end="\n\n") if 0 in lin_p.basic: l = lin_p.basic.index(0) e = 0 while e < lin_p.shape and lin_p.table[l, e] == 0: # There is a at least an e with this property # Unbounded otherwise e += 1 lin_p.pivot(e, l) # 0 not basic anymore lin_p.basic = [i-1 for i in lin_p.basic] lin_p.table = lin_p.table[:, 1:] lin_p.shape = (lin_p.shape[0], lin_p.shape[1] - 1) lin_p.table[0] = gain_fun for i in lin_p.basic: lin_p.table[0, :] = lin_p.table[0, :] - \ lin_p.table[0, i] * \ lin_p.table[1 + lin_p.basic.index(i), :] lin_p.table[0, -1] = -lin_p.table[0, -1] return True else: return False def __call__(self, lin_p, recursion_limit=100): """ Simplex algorithm. :return: a linear program whose basic solution has maximal objective value. """ if self.is_feasible(lin_p): simplex = RestrictedSimplex(self.leaving_index, self.entering_index) print(" ### Getting back to linear program equivalent to input with feasible basic solution", end="\n\n") return simplex(lin_p, recursion_limit=recursion_limit) else: raise Exception("Linear program is not feasible.")
[ "numpy.copy", "numpy.ones", "fractions.Fraction", "numpy.zeros", "numpy.argmin" ]
[((3105, 3128), 'numpy.copy', 'np.copy', (['lin_p.table[0]'], {}), '(lin_p.table[0])\n', (3112, 3128), True, 'import numpy as np\n'), ((3237, 3257), 'fractions.Fraction', 'frac.Fraction', (['(-1)', '(1)'], {}), '(-1, 1)\n', (3250, 3257), True, 'import fractions as frac\n'), ((3486, 3516), 'numpy.argmin', 'np.argmin', (['lin_p.table[1:, -1]'], {}), '(lin_p.table[1:, -1])\n', (3495, 3516), True, 'import numpy as np\n'), ((3303, 3334), 'numpy.ones', 'np.ones', (['(1)'], {'dtype': 'frac.Fraction'}), '(1, dtype=frac.Fraction)\n', (3310, 3334), True, 'import numpy as np\n'), ((3372, 3417), 'numpy.zeros', 'np.zeros', (['lin_p.shape[1]'], {'dtype': 'frac.Fraction'}), '(lin_p.shape[1], dtype=frac.Fraction)\n', (3380, 3417), True, 'import numpy as np\n')]
# STL imports import random import logging import string import time import datetime import random import struct import sys from functools import wraps # Third party imports import numpy as np import faker from faker.providers import BaseProvider logging.getLogger('faker').setLevel(logging.ERROR) sys.path.append('.') def gen_vectors(num, dim): return [[random.random() for _ in range(dim)] for _ in range(num)] def gen_single_vector(dim): return [[random.random() for _ in range(dim)]] def gen_vector(nb, d, seed=np.random.RandomState(1234)): xb = seed.rand(nb, d).astype("float32") return xb.tolist() def gen_unique_str(str=None): prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8)) return prefix if str is None else str + "_" + prefix def get_current_day(): return time.strftime('%Y-%m-%d', time.localtime()) def get_last_day(day): tmp = datetime.datetime.now() - datetime.timedelta(days=day) return tmp.strftime('%Y-%m-%d') def get_next_day(day): tmp = datetime.datetime.now() + datetime.timedelta(days=day) return tmp.strftime('%Y-%m-%d') def gen_long_str(num): string = '' for _ in range(num): char = random.choice('tomorrow') string += char class FakerProvider(BaseProvider): def collection_name(self): return 'collection_names' + str(random.randint(1000, 9999)) def name(self): return 'name' + str(random.randint(1000, 9999)) def dim(self): return random.randint(0, 999) fake = faker.Faker() fake.add_provider(FakerProvider) def collection_name_factory(): return fake.collection_name() def records_factory(dimension, nq): return [[random.random() for _ in range(dimension)] for _ in range(nq)] def binary_records_factory(dim, nq): # uint8 values range is [0, 256), so we specify the high range is 256. xnb = np.random.randint(256, size=[nq, (dim // 8)], dtype="uint8") xb = [bytes(b) for b in xnb] return xb def integer_factory(nq): return [random.randint(0, 128) for _ in range(nq)] def time_it(func): @wraps(func) def inner(*args, **kwrgs): pref = time.perf_counter() result = func(*args, **kwrgs) delt = time.perf_counter() - pref print(f"[{func.__name__}][{delt:.4}s]") return result return inner
[ "logging.getLogger", "random.choice", "time.perf_counter", "functools.wraps", "datetime.timedelta", "faker.Faker", "datetime.datetime.now", "numpy.random.randint", "random.random", "time.localtime", "sys.path.append", "random.randint", "numpy.random.RandomState" ]
[((301, 321), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (316, 321), False, 'import sys\n'), ((1553, 1566), 'faker.Faker', 'faker.Faker', ([], {}), '()\n', (1564, 1566), False, 'import faker\n'), ((532, 559), 'numpy.random.RandomState', 'np.random.RandomState', (['(1234)'], {}), '(1234)\n', (553, 559), True, 'import numpy as np\n'), ((1905, 1963), 'numpy.random.randint', 'np.random.randint', (['(256)'], {'size': '[nq, dim // 8]', 'dtype': '"""uint8"""'}), "(256, size=[nq, dim // 8], dtype='uint8')\n", (1922, 1963), True, 'import numpy as np\n'), ((2121, 2132), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (2126, 2132), False, 'from functools import wraps\n'), ((249, 275), 'logging.getLogger', 'logging.getLogger', (['"""faker"""'], {}), "('faker')\n", (266, 275), False, 'import logging\n'), ((872, 888), 'time.localtime', 'time.localtime', ([], {}), '()\n', (886, 888), False, 'import time\n'), ((925, 948), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (946, 948), False, 'import datetime\n'), ((951, 979), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'day'}), '(days=day)\n', (969, 979), False, 'import datetime\n'), ((1051, 1074), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1072, 1074), False, 'import datetime\n'), ((1077, 1105), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'day'}), '(days=day)\n', (1095, 1105), False, 'import datetime\n'), ((1223, 1248), 'random.choice', 'random.choice', (['"""tomorrow"""'], {}), "('tomorrow')\n", (1236, 1248), False, 'import random\n'), ((1521, 1543), 'random.randint', 'random.randint', (['(0)', '(999)'], {}), '(0, 999)\n', (1535, 1543), False, 'import random\n'), ((2052, 2074), 'random.randint', 'random.randint', (['(0)', '(128)'], {}), '(0, 128)\n', (2066, 2074), False, 'import random\n'), ((2179, 2198), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2196, 2198), False, 'import time\n'), ((364, 379), 'random.random', 'random.random', ([], {}), '()\n', (377, 379), False, 'import random\n'), ((465, 480), 'random.random', 'random.random', ([], {}), '()\n', (478, 480), False, 'import random\n'), ((682, 733), 'random.choice', 'random.choice', (['(string.ascii_letters + string.digits)'], {}), '(string.ascii_letters + string.digits)\n', (695, 733), False, 'import random\n'), ((1718, 1733), 'random.random', 'random.random', ([], {}), '()\n', (1731, 1733), False, 'import random\n'), ((2252, 2271), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2269, 2271), False, 'import time\n'), ((1381, 1407), 'random.randint', 'random.randint', (['(1000)', '(9999)'], {}), '(1000, 9999)\n', (1395, 1407), False, 'import random\n'), ((1458, 1484), 'random.randint', 'random.randint', (['(1000)', '(9999)'], {}), '(1000, 9999)\n', (1472, 1484), False, 'import random\n')]
import numba import numpy as np from scipy.sparse import csr_matrix from .base import BasePointer, GraphBlasContainer from .context import handle_panic, return_error from .exceptions import GrB_Info class MatrixPtr(BasePointer): def set_matrix(self, matrix): self.instance = matrix class Matrix(GraphBlasContainer): def __init__(self, matrix): assert isinstance(matrix, csr_matrix) self.matrix = matrix @classmethod def new_from_dtype(cls, dtype, nrows, ncols): matrix = csr_matrix((nrows, ncols), dtype=dtype) return cls(matrix) @classmethod def new_from_existing(cls, other): matrix = csr_matrix(other) return cls(matrix) @classmethod def get_pointer(cls): return MatrixPtr() @handle_panic def Matrix_new(A: MatrixPtr, dtype: type, nrows: int, ncols: int): if nrows <= 0: return_error(GrB_Info.GrB_INVALID_VALUE, "nrows must be > 0") if ncols <= 0: return_error(GrB_Info.GrB_INVALID_VALUE, "ncols must be > 0") matrix = Matrix.new_from_dtype(dtype, nrows, ncols) A.set_matrix(matrix) return GrB_Info.GrB_SUCCESS @handle_panic def Matrix_dup(C: MatrixPtr, A: Matrix): matrix = Matrix.new_from_existing(A) C.set_matrix(matrix) return GrB_Info.GrB_SUCCESS @handle_panic def Matrix_resize(C: Matrix, nrows: int, ncols: int): if nrows <= 0: return_error(GrB_Info.GrB_INVALID_VALUE, "nrows must be > 0") if ncols <= 0: return_error(GrB_Info.GrB_INVALID_VALUE, "ncols must be > 0") C.matrix.resize((nrows, ncols)) return GrB_Info.GrB_SUCCESS # TODO: this is just the essential code; it needs to handle descriptors, masks, accumulators, etc @handle_panic def mxm(C, A, B, semiring): cr, cc = C.shape ar, ac = A.shape br, bc = B.shape if cr != ar: return_error(GrB_Info.GrB_DIMENSION_MISMATCH, "C.nrows != A.nrows") if cc != bc: return_error(GrB_Info.GrB_DIMENSION_MISMATCH, "C.ncols != B.ncols") if ac != br: return_error(GrB_Info.GrB_DIMENSION_MISMATCH, "A.nrows != B.ncols") b = B.tocsc() d, i, ip = _sparse_matmul( A.data, A.indices, A.indptr, b.data, b.indices, b.indptr, semiring.plus.op, semiring.times, semiring.plus.identity, C.dtype, ) C.data = d C.indices = i C.indptr = ip return GrB_Info.GrB_SUCCESS @numba.njit def _sparse_matmul( a_data, a_indices, a_indptr, b_data, b_indices, b_indptr, plus, times, identity, dtype, ): # Final array size is unknown, so we give ourselves room and then adjust on the fly tmp_output_size = a_data.size * 2 data = np.empty((tmp_output_size,), dtype=dtype) indices = np.empty((tmp_output_size,), dtype=a_indices.dtype) indptr = np.empty((a_indptr.size,), dtype=a_indptr.dtype) output_counter = 0 for iptr in range(a_indptr.size - 1): indptr[iptr] = output_counter for jptr in range(b_indptr.size - 1): a_counter = a_indptr[iptr] a_stop = a_indptr[iptr + 1] b_counter = b_indptr[jptr] b_stop = b_indptr[jptr + 1] val = identity nonempty = False while a_counter < a_stop and b_counter < b_stop: a_k = a_indices[a_counter] b_k = b_indices[b_counter] if a_k == b_k: val = plus(val, times(a_data[a_counter], b_data[b_counter])) nonempty = True a_counter += 1 b_counter += 1 elif a_k < b_k: a_counter += 1 else: b_counter += 1 if nonempty: if output_counter >= tmp_output_size: # We filled up the allocated space; copy existing data to a larger array tmp_output_size *= 2 new_data = np.empty((tmp_output_size,), dtype=data.dtype) new_indices = np.empty((tmp_output_size,), dtype=indices.dtype) new_data[:output_counter] = data[:output_counter] new_indices[:output_counter] = indices[:output_counter] data = new_data indices = new_indices data[output_counter] = val indices[output_counter] = jptr output_counter += 1 # Add final entry to indptr (should indicate nnz in the output) nnz = output_counter indptr[iptr + 1] = nnz # Trim output arrays data = data[:nnz] indices = indices[:nnz] return (data, indices, indptr)
[ "scipy.sparse.csr_matrix", "numpy.empty" ]
[((2755, 2796), 'numpy.empty', 'np.empty', (['(tmp_output_size,)'], {'dtype': 'dtype'}), '((tmp_output_size,), dtype=dtype)\n', (2763, 2796), True, 'import numpy as np\n'), ((2811, 2862), 'numpy.empty', 'np.empty', (['(tmp_output_size,)'], {'dtype': 'a_indices.dtype'}), '((tmp_output_size,), dtype=a_indices.dtype)\n', (2819, 2862), True, 'import numpy as np\n'), ((2876, 2924), 'numpy.empty', 'np.empty', (['(a_indptr.size,)'], {'dtype': 'a_indptr.dtype'}), '((a_indptr.size,), dtype=a_indptr.dtype)\n', (2884, 2924), True, 'import numpy as np\n'), ((524, 563), 'scipy.sparse.csr_matrix', 'csr_matrix', (['(nrows, ncols)'], {'dtype': 'dtype'}), '((nrows, ncols), dtype=dtype)\n', (534, 563), False, 'from scipy.sparse import csr_matrix\n'), ((665, 682), 'scipy.sparse.csr_matrix', 'csr_matrix', (['other'], {}), '(other)\n', (675, 682), False, 'from scipy.sparse import csr_matrix\n'), ((4021, 4067), 'numpy.empty', 'np.empty', (['(tmp_output_size,)'], {'dtype': 'data.dtype'}), '((tmp_output_size,), dtype=data.dtype)\n', (4029, 4067), True, 'import numpy as np\n'), ((4102, 4151), 'numpy.empty', 'np.empty', (['(tmp_output_size,)'], {'dtype': 'indices.dtype'}), '((tmp_output_size,), dtype=indices.dtype)\n', (4110, 4151), True, 'import numpy as np\n')]
import numpy as np class CellularAutomationModel: grid_width = 40 grid_height = 40 def __init__(self): self.grid = self._randomised_grid() def evolve(self): """ Evolve the current grid state using Conway's Game of Life algorithm. :returns dict: A dictionary representation of the state of cells in the grid """ base_grid = self.grid.copy() for y in range(self.grid_height): for x in range(self.grid_width): cell_state = base_grid[x, y] n_neighbours = self._calculate_alive_neighbours(x, y, cell_state, grid=base_grid) self.grid[x, y] = self._next_cell_state(cell_state, n_neighbours) return self._json_formatted_grid() def toggle_cell_state(self, x, y): """ Reverses the cell state for a particular cell coordinate. """ self.grid[x][y] = 0 if self.grid[x][y] == 1 else 1 def reset_grid(self): """ Resets the grid array to a random state. :returns dict: A dictionary representation of the state of cells in the grid """ self.grid = self._randomised_grid() return self._json_formatted_grid() def _calculate_alive_neighbours(self, x, y, cell_state, grid): """ Returns the number of alive nearest neighbours. """ surrounding_arr = self._surrounding_arr(x, y, grid) n_alive = sum(sum(surrounding_arr)) return n_alive - cell_state def _json_formatted_grid(self): """ Returns a python dictionary which represents the current state of the cells in the grid. key: An integer that represents a single cell based on the coordinate position. value: The cell state <0 or 1> to represent whether a cell is dead or alive. """ json_grid = {} for x in range(self.grid_width): for y in range(self.grid_height): cell_id = int(x + y*self.grid_width) json_grid[cell_id] = int(self.grid[x, y]) return json_grid def _randomised_grid(self): """ Returns a 2d array with values of randomly assigned values of 0 or 1. """ return np.random.randint(2, size=(self.grid_height, self.grid_width)) @staticmethod def _surrounding_arr(x, y, grid): """ Returns an 2d array containing all the adjacent cells for a particular coordinate (radius = 1 cell). """ if x != 0 and y != 0: return grid[x - 1:x + 2, y - 1:y + 2] elif x == 0: return grid[x:x + 2, y - 1:y + 2] elif y == 0: return grid[x - 1:x + 2, y:y + 2] else: return grid[x:x + 2, y:y + 2] @staticmethod def _next_cell_state(cell_state, n_neighbours): """ Returns the new cell state 0 (dead) or 1 (alive). New state is determined using the current cell state and number of alive neighbours based on the rules in Conway's Game of Life. """ if (cell_state == 1 and (n_neighbours not in range(2, 4))) or (cell_state == 0 and n_neighbours != 3): return 0 return 1
[ "numpy.random.randint" ]
[((2271, 2333), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': '(self.grid_height, self.grid_width)'}), '(2, size=(self.grid_height, self.grid_width))\n', (2288, 2333), True, 'import numpy as np\n')]
# run.py """ Script for running a specific pipeline from a given yaml config file """ import os import argparse import yaml from importlib import import_module import numpy as np import time import pandas as pd def import_from_path(path_to_module, obj_name = None): """ Import an object from a module based on the filepath of the module and the string name of the object. If obj_name is None, return the module instead. """ module_name = path_to_module.replace("/",".").strip(".py") module = import_module(module_name) if obj_name == None: return module obj = getattr(module, obj_name) return obj if __name__ == "__main__": parser = argparse.ArgumentParser(description = __doc__) parser.add_argument("-c", "--config", help = "File path to the config file") parser.add_argument("-o", "--output", help = "Path to the output file") args = parser.parse_args() with open(args.config) as config_file: config = yaml.safe_load(config_file) if args.output != None: output = True out_csv = args.output dfs = [] else: output = False # Importing pipeline elements ds_splitter = import_from_path(config["split"]["filepath"], config["split"]["class"]) (**config["split"]["parameters"]) preprocess = import_from_path(config["preprocess"]["filepath"]) model_params = config["model"]["parameters"] if "kernel" in model_params: kernel_func = import_from_path(model_params["kernel"]["filepath"], model_params["kernel"]["class"]) kernel_params = model_params["kernel"]["parameters"] model_params["kernel"] = lambda X, Y: kernel_func(X,Y,**kernel_params) model = import_from_path(config["model"]["filepath"], config["model"]["class"])(**config["model"]["parameters"]) evaluation = import_from_path(config["evaluation"]["filepath"]) # Evaluation output directory out_dir = 'submissions' if output and not os.path.isdir(out_dir): os.makedirs(out_dir) # Lists filling information for the output dataframe datasets = [] metrics = [] values = [] # Applying pipeline # Iterate over datasets for i, dataset in enumerate(config["datasets"]): time_beg = time.time() print("Working on dataset ", i) # Read dataset X = pd.read_csv(dataset["X"]["filepath"], **dataset["X"]["parameters"]) ## It is currently very important to drop Id before splitting or preprocessing y = pd.read_csv(dataset["y"]["filepath"], **dataset["y"]["parameters"]).drop("Id", axis = 1) if output: test = pd.read_csv(dataset["test"]["filepath"], **dataset["test"]["parameters"]) # Split dataset ds_splitter.generate_idx(y) X_train, X_test = ds_splitter.split(X) y_train, y_test = ds_splitter.split(y) # Preprocess dataset for transform in config["preprocess"]["X"]: X_train = getattr(preprocess, transform["transform"])(X_train, **transform["parameters"]) X_test = getattr(preprocess, transform["transform"])(X_test, **transform["parameters"]) for transform in config["preprocess"]["y"]: y_train = getattr(preprocess, transform["transform"])(y_train, **transform["parameters"]) y_test = getattr(preprocess, transform["transform"])(y_test, **transform["parameters"]) if output: for transform in config["preprocess"]["X"]: test = getattr(preprocess, transform["transform"])(test, **transform["parameters"]) # Fit model model.fit(X_train, y_train) y_pred = model.predict(X_test) if output: y_pred_test = model.predict(test) y_pred_test = (y_pred_test + 1)/2 id = np.arange(1000*i, 1000*(i + 1)) dic = {'Id': id, 'Bound': y_pred_test} df = pd.DataFrame(data = dic) dfs.append(df) # Evaluate model for metric in config["evaluation"]["metrics"]: datasets.append(dataset["name"]) metrics.append(metric) values.append(getattr(evaluation, metric)(y_pred, y_test)) print("Done ! In {} s".format(time.time() - time_beg)) if output: df = pd.concat(dfs).astype('int32') df.to_csv(os.path.join(out_dir, out_csv), index = False) results = {"datasets": datasets, "metrics": metrics, "values": values} print(pd.DataFrame.from_dict(results))
[ "importlib.import_module", "os.makedirs", "argparse.ArgumentParser", "pandas.read_csv", "os.path.join", "pandas.DataFrame.from_dict", "yaml.safe_load", "os.path.isdir", "pandas.concat", "pandas.DataFrame", "time.time", "numpy.arange" ]
[((525, 551), 'importlib.import_module', 'import_module', (['module_name'], {}), '(module_name)\n', (538, 551), False, 'from importlib import import_module\n'), ((691, 735), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (714, 735), False, 'import argparse\n'), ((987, 1014), 'yaml.safe_load', 'yaml.safe_load', (['config_file'], {}), '(config_file)\n', (1001, 1014), False, 'import yaml\n'), ((2127, 2147), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (2138, 2147), False, 'import os\n'), ((2382, 2393), 'time.time', 'time.time', ([], {}), '()\n', (2391, 2393), False, 'import time\n'), ((2469, 2536), 'pandas.read_csv', 'pd.read_csv', (["dataset['X']['filepath']"], {}), "(dataset['X']['filepath'], **dataset['X']['parameters'])\n", (2480, 2536), True, 'import pandas as pd\n'), ((4725, 4756), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['results'], {}), '(results)\n', (4747, 4756), True, 'import pandas as pd\n'), ((2095, 2117), 'os.path.isdir', 'os.path.isdir', (['out_dir'], {}), '(out_dir)\n', (2108, 2117), False, 'import os\n'), ((2820, 2893), 'pandas.read_csv', 'pd.read_csv', (["dataset['test']['filepath']"], {}), "(dataset['test']['filepath'], **dataset['test']['parameters'])\n", (2831, 2893), True, 'import pandas as pd\n'), ((4033, 4068), 'numpy.arange', 'np.arange', (['(1000 * i)', '(1000 * (i + 1))'], {}), '(1000 * i, 1000 * (i + 1))\n', (4042, 4068), True, 'import numpy as np\n'), ((4133, 4155), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'dic'}), '(data=dic)\n', (4145, 4155), True, 'import pandas as pd\n'), ((4584, 4614), 'os.path.join', 'os.path.join', (['out_dir', 'out_csv'], {}), '(out_dir, out_csv)\n', (4596, 4614), False, 'import os\n'), ((2660, 2727), 'pandas.read_csv', 'pd.read_csv', (["dataset['y']['filepath']"], {}), "(dataset['y']['filepath'], **dataset['y']['parameters'])\n", (2671, 2727), True, 'import pandas as pd\n'), ((4535, 4549), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (4544, 4549), True, 'import pandas as pd\n'), ((4481, 4492), 'time.time', 'time.time', ([], {}), '()\n', (4490, 4492), False, 'import time\n')]
import glob import os import os.path import sys import shutil import cPickle from types import StringType, UnicodeType from distutils.core import setup from distutils.extension import Extension from distutils.command.install import install PY3K = sys.version_info[0] > 2 with open('README.rst') as inp: long_description = inp.read() __version__ = '' inp = open('prody/__init__.py') for line in inp: if (line.startswith('__version__')): exec(line.strip()) break inp.close() def isInstalled(module_name): """Check if a required package is installed, by trying to import it.""" try: return __import__(module_name) except ImportError: return False else: return True if not isInstalled('numpy'): print("""NumPy is not installed. This package is required for main ProDy features and needs to be installed before you can use ProDy. You can find NumPy at: http://numpy.scipy.org""") PACKAGES = ['prody', 'prody.atomic', 'prody.dynamics', 'prody.ensemble', 'prody.measure', 'prody.proteins', 'prody.trajectory', 'prody.routines', 'prody.utilities'] PACKAGE_DATA = {} if sys.version_info[:2] > (2,6): PACKAGES.extend(['prody.tests', 'prody.tests.test_kdtree', 'prody.tests.test_measure']) PACKAGE_DATA['prody.tests'] = ['data/pdb*.pdb', 'data/*.dat', 'data/*.coo', 'data/dcd*.dcd'] EXTENSIONS = [] if os.name != 'java' and sys.version_info[0] == 2: pairwise2 = ['cpairwise2.c', 'pairwise2.py'] if all([os.path.isfile(os.path.join('prody', 'proteins', fn)) for fn in pairwise2]): EXTENSIONS.append( Extension('prody.proteins.cpairwise2', ['prody/proteins/cpairwise2.c'], include_dirs=["prody"] )) else: raise Exception('one or more pairwise2 module files are missing') if isInstalled('numpy'): import numpy kdtree_files = ['__init__.py', 'KDTree.c', 'KDTree.h', 'KDTreemodule.c', 'Neighbor.h', 'kdtree.py'] if all([os.path.isfile(os.path.join('prody', 'kdtree', fn)) for fn in kdtree_files]): EXTENSIONS.append( Extension('prody.kdtree._CKDTree', ['prody/kdtree/KDTree.c', 'prody/kdtree/KDTreemodule.c'], include_dirs=[numpy.get_include()], )) else: raise Exception('one or more kdtree module files are missing') PACKAGES.append('prody.kdtree') elif isInstalled('numpy'): raise ImportError('numpy is not installed') SCRIPTS = ['scripts/prody'] setup( name='ProDy', version=__version__, author='<NAME>', author_email='ahb12 at pitt dot edu', description='A Python Package for Protein Dynamics Analysis', long_description=long_description, url='http://www.csb.pitt.edu/ProDy', packages=PACKAGES, package_data=PACKAGE_DATA, ext_modules=EXTENSIONS, license='GPLv3', keywords=('protein, dynamics, elastic network model, ' 'Gaussian network model, anisotropic network model, ' 'essential dynamics analysis, principal component analysis, ' 'Protein Data Bank, PDB, GNM, ANM, PCA'), classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Chemistry', ], scripts=SCRIPTS, requires=['NumPy', ], provides=['ProDy({0:s})'.format(__version__)] )
[ "os.path.join", "distutils.extension.Extension", "numpy.get_include" ]
[((1721, 1820), 'distutils.extension.Extension', 'Extension', (['"""prody.proteins.cpairwise2"""', "['prody/proteins/cpairwise2.c']"], {'include_dirs': "['prody']"}), "('prody.proteins.cpairwise2', ['prody/proteins/cpairwise2.c'],\n include_dirs=['prody'])\n", (1730, 1820), False, 'from distutils.extension import Extension\n'), ((1590, 1627), 'os.path.join', 'os.path.join', (['"""prody"""', '"""proteins"""', 'fn'], {}), "('prody', 'proteins', fn)\n", (1602, 1627), False, 'import os\n'), ((2183, 2218), 'os.path.join', 'os.path.join', (['"""prody"""', '"""kdtree"""', 'fn'], {}), "('prody', 'kdtree', fn)\n", (2195, 2218), False, 'import os\n'), ((2496, 2515), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (2513, 2515), False, 'import numpy\n')]
import numpy as np def pline(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py u = ((x - x1) * px + (y - y1) * py) / max(1e-9, float(dd)) dx = x1 + u * px - x dy = y1 + u * py - y return dx * dx + dy * dy def psegment(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py u = max(min(((x - x1) * px + (y - y1) * py) / float(dd), 1), 0) dx = x1 + u * px - x dy = y1 + u * py - y return dx * dx + dy * dy def plambda(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py return ((x - x1) * px + (y - y1) * py) / max(1e-9, float(dd)) def postprocess(lines, scores, threshold=0.01, tol=1e9, do_clip=False): nlines, nscores = [], [] for (p, q), score in zip(lines, scores): start, end = 0, 1 for a, b in nlines: # nlines: Selected lines. if ( min( max(pline(*p, *q, *a), pline(*p, *q, *b)), max(pline(*a, *b, *p), pline(*a, *b, *q)), ) > threshold ** 2 ): continue lambda_a = plambda(*p, *q, *a) lambda_b = plambda(*p, *q, *b) if lambda_a > lambda_b: lambda_a, lambda_b = lambda_b, lambda_a lambda_a -= tol lambda_b += tol # case 1: skip (if not do_clip) if start < lambda_a and lambda_b < end: continue # not intersect if lambda_b < start or lambda_a > end: continue # cover if lambda_a <= start and end <= lambda_b: start = 10 break # case 2 & 3: if lambda_a <= start and start <= lambda_b: start = lambda_b if lambda_a <= end and end <= lambda_b: end = lambda_a if start >= end: break if start >= end: continue nlines.append(np.array([p + (q - p) * start, p + (q - p) * end])) nscores.append(score) return np.array(nlines), np.array(nscores)
[ "numpy.array" ]
[((2149, 2165), 'numpy.array', 'np.array', (['nlines'], {}), '(nlines)\n', (2157, 2165), True, 'import numpy as np\n'), ((2167, 2184), 'numpy.array', 'np.array', (['nscores'], {}), '(nscores)\n', (2175, 2184), True, 'import numpy as np\n'), ((2056, 2106), 'numpy.array', 'np.array', (['[p + (q - p) * start, p + (q - p) * end]'], {}), '([p + (q - p) * start, p + (q - p) * end])\n', (2064, 2106), True, 'import numpy as np\n')]
import os from typing import List, Optional import pickle import numpy as np from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align from config import Config as cf PAD = 0 # TODO: choose appropriate index for these special chars UNK = 1 DEFAULT = {'PAD': PAD, 'UNK': UNK} DEFAULT_C = {'': PAD, 'UNK': UNK} def word_lookup(w: str, table: dict, default=None): """ Translate a word into a value by looking up from a dict. First priority is case-sensitive, then the next priority is case-insensitive. In case the word does not exist in the dict, a KeyError exception is raised or a default value is returned. Args: w: word to translate table: a dict to translate the word by looking up default: If not None, this is the value to return in case the word does not exist in the table. Returns: Translated value for the word by looking up the word into table. """ if w in table: # Match word in case-sentitive mode is the first priority return table[w] elif w.lower() in table: # Then, case-insensitive return table[w.lower()] else: if default is not None: return default else: raise KeyError('Key `{}` not found'.format(w)) def char_lookup(c: str, table: dict, default=None): """ Translate a char into a value by looking up from a dict. Args: c: char to translate table: a dict to translate the char by looking up default: If not None, this is the value to return in case the char does not exist in the table. Returns: Translated value for the char by looking up the char into table. """ if c in table: # Match word in case-sentitive mode is the first priority return table[c] else: if default is not None: return default else: raise KeyError('Key `{}` not found'.format(c)) class Vocabulary(object): def __init__(self, wv: dict, char_vocab: set): offset = len(DEFAULT) w2id = {w: idx+offset for idx, w in enumerate(wv.keys())} w2id.update(DEFAULT) id2w = {i:w for w, i in w2id.items()} c2id = {c: idx+offset for idx, c in enumerate(list(char_vocab))} c2id.update(DEFAULT_C) id2c = {i:c for c, i in c2id.items()} self.wv = wv self.emb_size = len(wv['the']) # most common word that absolutely appears in the dict self.w2id = w2id # mapping word to index self.id2w = id2w # mapping index to word self.c2id = c2id # mapping char to index self.id2c = id2c # mapping index to char def vectorize(self, tokens: List[str], length: int): """ Convert list of text tokens into list of indices """ vect = [word_lookup(t, self.w2id, default=UNK) for t in tokens] vect = vect[:length] if len(vect) < length: vect.extend([PAD]*(length-len(vect))) return vect def vectorize_c(self, chars_list: List[List[str]], length: int, w_length: int): """ Convert list of list of chars into list of index-based representation """ vects = [] PAD_VECT = [PAD]*w_length for chars in chars_list: vects.append([char_lookup(c, self.c2id, default=UNK) for c in chars]) vects = vects[:length] while len(vects) < length: vects.append(PAD_VECT) return vects def get_embed_weights(self): """ Build weights for a word embedding layer. Note that pre-trained word embedding is used, so no need to parameterize embed_size. Args: emb_size: Dim of the vectors Returns: [N, emb_size] matrix, where N is number of VOCAB + 1 (for pad) """ emb_size = len(self.wv[list(self.wv.keys())[0]]) weights = np.zeros((len(self.id2w), emb_size)) for i, tok in self.id2w.items(): if tok in self.wv: weights[i] = self.wv[tok] else: weights[i] = np.random.uniform(0.0, 1.0, [emb_size]) return weights def get_char_embed_weights(self, emb_size=64): """ Initialize weights for char embedding layer. Args: emb_size: Dim of the vectors Returns: [len(id2c), emb_size] matrix """ weights = emb = np.random.uniform(0.0, 1.0, size=(len(self.id2c), emb_size)) return weights @property def vocab_size(self): return len(self.w2id) def __getitem__(self, idx): """ Get vector for a word. """ if not isinstance(idx, str): raise ValueError('Index must be a string') return word_lookup(idx, self.wv, default=None) def __contains__(self, idx): if not isinstance(idx, str): raise ValueError('Index must be a string') return idx in self.wv or idx.lower() in self.wv class Span(object): def __init__(self, start_idx: int, end_idx: int): self.start = start_idx # index of the start token in context self.end = end_idx # index of the end token in context @classmethod def allocate(cls, anchors: List[int], start_char: int, end_char: int): start_idx = 0 while anchors[start_idx] < start_char: start_idx += 1 if anchors[start_idx] > start_char: start_idx -= 1 end_idx = start_idx while end_idx < len(anchors) and anchors[end_idx] <= end_char: end_idx += 1 end_idx -= 1 return Span(start_idx, end_idx) def __str__(self): return "({}, {})".format(self.start, self.end) class Answer(object): def __init__(self, answer_text: str, answer_toks: List[str], span: Span, answer_start: int): self.answer_text = answer_text # original answer text in JSON self.answer_toks = answer_toks # tokens of the original answer text self.answer_chars = to_chars(answer_toks, cf.WORD_LEN, cf.PAD_CHAR) # list of chars of the answer text self.span = span # The span (token-based index) of the answer in context self.answer_start = answer_start # start character in original answer text def vectorize(self, vocab: Vocabulary): self.answer: List[int] = vocab.vectorize(self.answer_toks, cf.ANSWER_LEN) self.answer_c: List[List[int]] = vocab.vectorize_c(self.answer_chars, cf.ANSWER_LEN, cf.WORD_LEN) @classmethod def parse_json(cls, answers_js: List[dict], context: str, context_toks: List[str], anchors: List[int]): answers = [] for ans in answers_js: ans_text = ans['text'] ans_start = ans['answer_start'] ans_toks = tokenize(ans_text) # Identify the span from context, ans_text & start index span = Span.allocate(anchors, ans_start, ans_start+len(ans_text)-1) answers.append(Answer(ans_text, ans_toks, span, ans_start)) return answers class Question(object): def __init__(self, question_text: str, ques_id: str, question: List[str], answers: List[Answer], plausible_answers: List[Answer]): self.question_text = question_text # original question text in JSON self.question_toks = question # tokens of the original question text self.question_chars = to_chars(question, cf.WORD_LEN, cf.PAD_CHAR) # list of chars of the question text self.answers = answers # list of Answer object of the question self.ques_id = ques_id # id of the question in JSON self.plausible_answers = plausible_answers self.paragraph = None # handle to the parent paragraph def set_paragraph(self, paragraph): self.paragraph = paragraph def vectorize(self, vocab: Vocabulary): self.question: List[int] = vocab.vectorize(self.question_toks, cf.QUERY_LEN) self.question_c: List[List[int]] = vocab.vectorize_c(self.question_chars, cf.QUERY_LEN, cf.WORD_LEN) for answer in self.answers: answer.vectorize(vocab) class Paragraph(object): def __init__(self, raw_context: str, context_text: str, context_toks: List[str], questions: List[Question], para_idx: int, anchors: List[int]): self.raw_context = raw_context # original context text in JSON self.context_text = context_text # augmented from original context text with SPACES to guide the tokenization self.context_toks = context_toks # tokens of the context text self.context_chars = to_chars(context_toks, cf.WORD_LEN, cf.PAD_CHAR) # chars of the context self.questions = questions # list of Question objects self.local_word_vocab = self._build_local_word_vocab() self.local_char_vocab = self._build_local_char_vocab() self.para_idx = para_idx # Just for management & debug. Not used in experiment. self.anchors = anchors def _build_local_word_vocab(self): local_vocab = set() local_vocab = local_vocab.union(set(self.context_toks)) for question in self.questions: local_vocab = local_vocab.union(set(question.question_toks)) for answer in question.answers + question.plausible_answers: local_vocab = local_vocab.union(set(answer.answer_toks)) return local_vocab def _build_local_char_vocab(self): def char_set(tokens): chars = set() for tok in tokens: chars = chars.union(set(tok)) return chars char_vocab = set() char_vocab = char_vocab.union(char_set(self.context_chars)) for question in self.questions: char_vocab = char_vocab.union(char_set(question.question_chars)) for answer in question.answers + question.plausible_answers: char_vocab = char_vocab.union(char_set(answer.answer_chars)) return char_vocab @classmethod def parse_json(cls, para_js: dict, para_idx: int): # Accumulate all answers' tokens first all_para_answers = [] for q in para_js['qas']: if 'answers' in q: all_para_answers.extend([ans for ans in q['answers']]) if 'plausible_answers' in q: all_para_answers.extend([ans for ans in q['plausible_answers']]) # Improve the context for better tokenization raw_context = para_js['context'] # context = augment_long_text(para_js['context'], all_para_answers) context = raw_context context_toks = tokenize_long_text(context) context_toks = [t.strip(' ') for t in context_toks] anchors = align(raw_context, context_toks) questions = [] for q in para_js['qas']: question_text = q['question'] q_toks = tokenize(question_text) ques_id = q['id'] answers = Answer.parse_json(q['answers'], raw_context, context_toks, anchors) if 'answers' in q else [] plausible_answers = Answer.parse_json(q['plausible_answers'], raw_context, context_toks, anchors) if 'plausible_answers' in q else [] questions.append(Question(question_text, ques_id, q_toks, answers, plausible_answers)) para = Paragraph(raw_context, context, context_toks, questions, para_idx, anchors) for ques in questions: ques.set_paragraph(para) return para def vectorize(self, vocab): """ Vectorize pargraph context, question text & answer text based on given vocab. """ self.context: List[int] = vocab.vectorize(self.context_toks, cf.CONTEXT_LEN) self.context_c: List[List[int]] = vocab.vectorize_c(self.context_chars, cf.CONTEXT_LEN, cf.WORD_LEN) for question in self.questions: question.vectorize(vocab) def exact_match(gt_s, gt_e, pr_s, pr_e): """ Evaluate exact match of a predicted span over a ground truth span. Args: gt_s: index of the ground truth start position gt_e: index of the ground truth end position pr_s: index of the predicted start position pr_e: index of the predicted end position """ return gt_s == pr_s and gt_e == pr_e def f1(gt_s, gt_e, pr_s, pr_e): """ Evaluate F1 score of a predicted span over a ground truth span. Args: gt_s: index of the ground truth start position gt_e: index of the ground truth end position pr_s: index of the predicted start position pr_e: index of the predicted end position """ gt = {idx for idx in range(gt_s, gt_e+1)} pr = {idx for idx in range(pr_s, pr_e+1)} intersection = gt.intersection(pr) prec = 1. * len(intersection) / len(pr) rec = 1. * len(intersection) / len(gt) f1_score = (2. * prec * rec) / (prec+rec) if prec+rec != 0. else 0. return f1_score def get_score(metric, gt_starts, gt_ends, pred_start, pred_end): """ Args: metric: a metric function to calculate the score (exact_match or f1_score) gt_starts: (list) an array of start indices of the available answers gt_ends: (list) an array of end indices of the available answers pred_start: (int) predicted start index returned by a model pred_end: (int) predicted end index returned by a model Returns: The best score of the metric evaluated on multiple answer spans. """ scores = [] for gt_s, gt_e in zip(gt_starts, gt_ends): scores.append(metric(gt_s, gt_e, pred_start, pred_end)) return 1.0 * np.max(scores) class SquadData(object): """ To save the whole object to pickle file: ```python data.save('data/squad_processed.pkl') ``` To load the whole object from pickle file, and extract train & validation data ```python data = SquadData.load('data/squad_processed.pkl') ques_ids_train, X_train, y_train = data.train_data() ques_ids_valid, X_valid, y_valid = data.validation_data() ``` To save structured data to binary files for fast loading: ```python data.save(np_path='data/numpy') ``` To load numpy data from binary files: ```python word_vectors, char_vectors, ques_ids_train, X_train, y_train, ques_ids_valid, X_valid, y_valid = SquadData.load(np_path='data/numpy') ``` """ def __init__(self, train_paragraphs: List[Paragraph], dev_paragraphs: List[Paragraph], vocab: Vocabulary, squad_words: set, squad_chars: set): """ Initializer. Args: train_paragraphs: list of Paragraph objects from train data dev_paragraphs: list of Paragraph objects from dev data vocab: Vocabulary object which store vectors of words appearing in Squad data squad_words: set of all tokens appearing in Squad data (context, question text, answer text). Note that some tokens may not appear in vocab. They are treated as unknown words. Note that this is a set of words, so it must not be used to map words to indices. Use Vocabulary.w2id instead. squad_chars: set of all characters appearing in Squad data (context, question text, answer text). """ self.train_paragraphs = train_paragraphs self.dev_paragraphs = dev_paragraphs self.vocab = vocab self.squad_words = squad_words self.squad_chars = squad_chars def summary(self): print('Num of train paragraphs: {}'.format(len(self.train_paragraphs))) print('Num of dev paragraphs: {}'.format(len(self.dev_paragraphs))) print('Num words in vocab: {}'.format(self.vocab.vocab_size)) print('Num unique words: {}'.format(len(self.squad_words))) print('Num unique chars: {}'.format(len(self.squad_chars))) unknown_words = [w for w in self.squad_words if w not in self.vocab] print('Num of unknown words: {}'.format(len(unknown_words))) def _generate_data(self, paragraphs, dataset: str ='train'): ques_ids = [] contextw_inp, queryw_inp, contextc_inp, queryc_inp = [], [], [], [] p1, p2, start, end = [], [], [], [] long_count = 0 for para in paragraphs: for ques in para.questions: if dataset == 'train': for ans in ques.answers: if ans.span.start >= cf.CONTEXT_LEN or ans.span.end >= cf.CONTEXT_LEN: # print('ques.ques_id:', ques.ques_id, ',', 'ans.span.start, end:', ans.span.start, ',', ans.span.end) long_count += 1 continue ques_ids.append(ques.ques_id) contextw_inp.append(para.context) queryw_inp.append(ques.question) contextc_inp.append(para.context_c) queryc_inp.append(ques.question_c) vect = np.zeros(cf.CONTEXT_LEN, dtype=np.float16) vect[ans.span.start] = 1. p1.append(vect) vect = np.zeros(cf.CONTEXT_LEN, dtype=np.float16) vect[ans.span.end] = 1. p2.append(vect) start.append(ans.span.start) end.append(ans.span.end) else: # dev dataset ques_ids.append(ques.ques_id) contextw_inp.append(para.context) queryw_inp.append(ques.question) contextc_inp.append(para.context_c) queryc_inp.append(ques.question_c) start_list = [] end_list = [] for ans in ques.answers: if ans.span.start >= cf.CONTEXT_LEN or ans.span.end >= cf.CONTEXT_LEN: long_count += 1 continue start_list.append(ans.span.start) end_list.append(ans.span.end) # p1, p2 are ignored in dev set start.append(start_list) end.append(end_list) print('There are {} long answers'.format(long_count)) ques_ids = np.array(ques_ids) contextw_inp, queryw_inp, contextc_inp, queryc_inp = np.array(contextw_inp), np.array(queryw_inp), np.array(contextc_inp), np.array(queryc_inp) p1, p2, start, end = np.array(p1), np.array(p2), np.array(start), np.array(end) return (ques_ids, [contextw_inp, queryw_inp, contextc_inp, queryc_inp], [p1, p2, start, end]) def train_data(self): return self._generate_data(self.train_paragraphs) def validation_data(self): return self._generate_data(self.dev_paragraphs, dataset='dev') def search_paragraph(self, para_idx: int, dataset: str ='train'): """ Search for paragraph by index. This function is used for debug only. """ paragraphs = self.train_paragraphs if dataset == 'train' else self.dev_paragraphs for para in paragraphs: if para.para_idx == para_idx: return para return None def search_question(self, ques_id: str, dataset: str ='train'): """ Search for question by ques_id. This function is used for debug only. """ paragraphs = self.train_paragraphs if dataset == 'train' else self.dev_paragraphs for para in paragraphs: for ques in para.questions: if ques.ques_id == ques_id: return ques return None @classmethod def evaluate(cls, gt_start_list, gt_end_list, pred_starts, pred_ends): """ Evaluate ExactMatch score & F1 score of predictions on a validation set. Args: gt_start_list: list of start indices of multiple ground-truth answer spans gt_start_list: list of end indices of multiple ground-truth answer spans pred_starts: list of predicted start indices pred_ends: list of predicted end indices Returns: A hash with 2 keys: 'exact_match' & 'f1' """ em_score = 0 f1_score = 0 total = 0 for gt_starts, gt_ends, pred_start, pred_end in zip(gt_start_list, gt_end_list, pred_starts, pred_ends): if len(gt_starts) > 0: em_score += get_score(exact_match, gt_starts, gt_ends, pred_start, pred_end) f1_score += get_score(f1, gt_starts, gt_ends, pred_start, pred_end) # If gt_starts is empty, the ground-truth answer is over the limit length of the input text. # We give penalty for that case, that means we give 0 to EM & F1 while we increase the total. total += 1 em_score = 100. * em_score / total f1_score = 100. * f1_score / total em_score, f1_score return { 'exact_match': em_score, 'f1': f1_score } def save(self, filepath=None, np_path=None): def save_data(prefix, ques_ids, contextw, queryw, contextc, queryc, p1, p2, start, end): np.save(np_path + '/%s_ques_ids.npy' % prefix, ques_ids) np.save(np_path + '/%s_contextw.npy' % prefix, contextw) np.save(np_path + '/%s_queryw.npy' % prefix, queryw) np.save(np_path + '/%s_contextc.npy' % prefix, contextc) np.save(np_path + '/%s_queryc.npy' % prefix, queryc) np.save(np_path + '/%s_p1.npy' % prefix, p1) np.save(np_path + '/%s_p2.npy' % prefix, p2) np.save(np_path + '/%s_start.npy' % prefix, start) np.save(np_path + '/%s_end.npy' % prefix, end) if filepath: # Save the SquadData object to pickle file (slow) print('Saving squad data to {}...'.format(filepath)) with open(filepath, 'wb') as f: pickle.dump(self, f) else: # Save the binary data to *.npy files (fast) print('Accumulating train & validation arrays from the structure...') t_ques_ids, X_train, y_train = self.train_data() v_ques_ids, X_valid, y_valid = self.validation_data() t_contextw, t_queryw, t_contextc, t_queryc = X_train t_p1, t_p2, t_start, t_end = y_train v_contextw, v_queryw, v_contextc, v_queryc = X_valid v_p1, v_p2, v_start, v_end = y_valid if not os.path.exists(np_path): os.makedirs(np_path) print('Saving word vectors into numpy files...') word_vectors = self.vocab.get_embed_weights() char_vectors = self.vocab.get_char_embed_weights() np.save(np_path + '/word_vectors.npy', word_vectors) np.save(np_path + '/char_vectors.npy', char_vectors) print('Saving train arrays into numpy files...') save_data( 'train', t_ques_ids, t_contextw, t_queryw, t_contextc, t_queryc, t_p1, t_p2, t_start, t_end) print('Saving validation arrays into numpy files...') save_data( 'val', v_ques_ids, v_contextw, v_queryw, v_contextc, v_queryc, v_p1, v_p2, v_start, v_end) @classmethod def load(cls, filepath=None, np_path=None): def load_data(prefix): ques_ids = np.load(np_path + '/%s_ques_ids.npy' % prefix) contextw = np.load(np_path + '/%s_contextw.npy' % prefix) queryw = np.load(np_path + '/%s_queryw.npy' % prefix) contextc = np.load(np_path + '/%s_contextc.npy' % prefix) queryc = np.load(np_path + '/%s_queryc.npy' % prefix) p1 = np.load(np_path + '/%s_p1.npy' % prefix) p2 = np.load(np_path + '/%s_p2.npy' % prefix) start = np.load(np_path + '/%s_start.npy' % prefix) end = np.load(np_path + '/%s_end.npy' % prefix) return ques_ids, contextw, queryw, contextc, queryc, p1, p2, start, end if filepath: # Load SquadData object from pickle file (slow) print('Loading squad data from pickle file {}...'.format(filepath)) with open(filepath, 'rb') as f: return pickle.load(f) else: # Load binary data from *.npy files (fast) print('Loading word vectors from numpy files...') word_vectors = np.load(np_path + '/word_vectors.npy') char_vectors = np.load(np_path + '/char_vectors.npy') print('Loading train arrays from numpy files...') t_ques_ids, t_contextw, t_queryw, t_contextc, t_queryc, t_p1, t_p2, t_start, t_end = load_data('train') print('Loading validation arrays from numpy files...') v_ques_ids, v_contextw, v_queryw, v_contextc, v_queryc, v_p1, v_p2, v_start, v_end = load_data('val') return [ word_vectors, char_vectors, t_ques_ids, [t_contextw, t_queryw, t_contextc, t_queryc], [t_p1, t_p2, t_start, t_end], v_ques_ids, [v_contextw, v_queryw, v_contextc, v_queryc], [v_p1, v_p2, v_start, v_end] ]
[ "os.path.exists", "pickle.dump", "os.makedirs", "pickle.load", "utilities.align", "numpy.max", "numpy.array", "numpy.zeros", "numpy.random.uniform", "utilities.to_chars", "numpy.save", "utilities.tokenize", "utilities.tokenize_long_text", "numpy.load" ]
[((6131, 6178), 'utilities.to_chars', 'to_chars', (['answer_toks', 'cf.WORD_LEN', 'cf.PAD_CHAR'], {}), '(answer_toks, cf.WORD_LEN, cf.PAD_CHAR)\n', (6139, 6178), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((7546, 7590), 'utilities.to_chars', 'to_chars', (['question', 'cf.WORD_LEN', 'cf.PAD_CHAR'], {}), '(question, cf.WORD_LEN, cf.PAD_CHAR)\n', (7554, 7590), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((8794, 8842), 'utilities.to_chars', 'to_chars', (['context_toks', 'cf.WORD_LEN', 'cf.PAD_CHAR'], {}), '(context_toks, cf.WORD_LEN, cf.PAD_CHAR)\n', (8802, 8842), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((10832, 10859), 'utilities.tokenize_long_text', 'tokenize_long_text', (['context'], {}), '(context)\n', (10850, 10859), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((10938, 10970), 'utilities.align', 'align', (['raw_context', 'context_toks'], {}), '(raw_context, context_toks)\n', (10943, 10970), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((13832, 13846), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (13838, 13846), True, 'import numpy as np\n'), ((18580, 18598), 'numpy.array', 'np.array', (['ques_ids'], {}), '(ques_ids)\n', (18588, 18598), True, 'import numpy as np\n'), ((6915, 6933), 'utilities.tokenize', 'tokenize', (['ans_text'], {}), '(ans_text)\n', (6923, 6933), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((11090, 11113), 'utilities.tokenize', 'tokenize', (['question_text'], {}), '(question_text)\n', (11098, 11113), False, 'from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align\n'), ((18660, 18682), 'numpy.array', 'np.array', (['contextw_inp'], {}), '(contextw_inp)\n', (18668, 18682), True, 'import numpy as np\n'), ((18684, 18704), 'numpy.array', 'np.array', (['queryw_inp'], {}), '(queryw_inp)\n', (18692, 18704), True, 'import numpy as np\n'), ((18706, 18728), 'numpy.array', 'np.array', (['contextc_inp'], {}), '(contextc_inp)\n', (18714, 18728), True, 'import numpy as np\n'), ((18730, 18750), 'numpy.array', 'np.array', (['queryc_inp'], {}), '(queryc_inp)\n', (18738, 18750), True, 'import numpy as np\n'), ((18780, 18792), 'numpy.array', 'np.array', (['p1'], {}), '(p1)\n', (18788, 18792), True, 'import numpy as np\n'), ((18794, 18806), 'numpy.array', 'np.array', (['p2'], {}), '(p2)\n', (18802, 18806), True, 'import numpy as np\n'), ((18808, 18823), 'numpy.array', 'np.array', (['start'], {}), '(start)\n', (18816, 18823), True, 'import numpy as np\n'), ((18825, 18838), 'numpy.array', 'np.array', (['end'], {}), '(end)\n', (18833, 18838), True, 'import numpy as np\n'), ((21543, 21599), 'numpy.save', 'np.save', (["(np_path + '/%s_ques_ids.npy' % prefix)", 'ques_ids'], {}), "(np_path + '/%s_ques_ids.npy' % prefix, ques_ids)\n", (21550, 21599), True, 'import numpy as np\n'), ((21612, 21668), 'numpy.save', 'np.save', (["(np_path + '/%s_contextw.npy' % prefix)", 'contextw'], {}), "(np_path + '/%s_contextw.npy' % prefix, contextw)\n", (21619, 21668), True, 'import numpy as np\n'), ((21681, 21733), 'numpy.save', 'np.save', (["(np_path + '/%s_queryw.npy' % prefix)", 'queryw'], {}), "(np_path + '/%s_queryw.npy' % prefix, queryw)\n", (21688, 21733), True, 'import numpy as np\n'), ((21746, 21802), 'numpy.save', 'np.save', (["(np_path + '/%s_contextc.npy' % prefix)", 'contextc'], {}), "(np_path + '/%s_contextc.npy' % prefix, contextc)\n", (21753, 21802), True, 'import numpy as np\n'), ((21815, 21867), 'numpy.save', 'np.save', (["(np_path + '/%s_queryc.npy' % prefix)", 'queryc'], {}), "(np_path + '/%s_queryc.npy' % prefix, queryc)\n", (21822, 21867), True, 'import numpy as np\n'), ((21880, 21924), 'numpy.save', 'np.save', (["(np_path + '/%s_p1.npy' % prefix)", 'p1'], {}), "(np_path + '/%s_p1.npy' % prefix, p1)\n", (21887, 21924), True, 'import numpy as np\n'), ((21937, 21981), 'numpy.save', 'np.save', (["(np_path + '/%s_p2.npy' % prefix)", 'p2'], {}), "(np_path + '/%s_p2.npy' % prefix, p2)\n", (21944, 21981), True, 'import numpy as np\n'), ((21994, 22044), 'numpy.save', 'np.save', (["(np_path + '/%s_start.npy' % prefix)", 'start'], {}), "(np_path + '/%s_start.npy' % prefix, start)\n", (22001, 22044), True, 'import numpy as np\n'), ((22057, 22103), 'numpy.save', 'np.save', (["(np_path + '/%s_end.npy' % prefix)", 'end'], {}), "(np_path + '/%s_end.npy' % prefix, end)\n", (22064, 22103), True, 'import numpy as np\n'), ((23110, 23162), 'numpy.save', 'np.save', (["(np_path + '/word_vectors.npy')", 'word_vectors'], {}), "(np_path + '/word_vectors.npy', word_vectors)\n", (23117, 23162), True, 'import numpy as np\n'), ((23175, 23227), 'numpy.save', 'np.save', (["(np_path + '/char_vectors.npy')", 'char_vectors'], {}), "(np_path + '/char_vectors.npy', char_vectors)\n", (23182, 23227), True, 'import numpy as np\n'), ((23804, 23850), 'numpy.load', 'np.load', (["(np_path + '/%s_ques_ids.npy' % prefix)"], {}), "(np_path + '/%s_ques_ids.npy' % prefix)\n", (23811, 23850), True, 'import numpy as np\n'), ((23874, 23920), 'numpy.load', 'np.load', (["(np_path + '/%s_contextw.npy' % prefix)"], {}), "(np_path + '/%s_contextw.npy' % prefix)\n", (23881, 23920), True, 'import numpy as np\n'), ((23942, 23986), 'numpy.load', 'np.load', (["(np_path + '/%s_queryw.npy' % prefix)"], {}), "(np_path + '/%s_queryw.npy' % prefix)\n", (23949, 23986), True, 'import numpy as np\n'), ((24010, 24056), 'numpy.load', 'np.load', (["(np_path + '/%s_contextc.npy' % prefix)"], {}), "(np_path + '/%s_contextc.npy' % prefix)\n", (24017, 24056), True, 'import numpy as np\n'), ((24078, 24122), 'numpy.load', 'np.load', (["(np_path + '/%s_queryc.npy' % prefix)"], {}), "(np_path + '/%s_queryc.npy' % prefix)\n", (24085, 24122), True, 'import numpy as np\n'), ((24140, 24180), 'numpy.load', 'np.load', (["(np_path + '/%s_p1.npy' % prefix)"], {}), "(np_path + '/%s_p1.npy' % prefix)\n", (24147, 24180), True, 'import numpy as np\n'), ((24198, 24238), 'numpy.load', 'np.load', (["(np_path + '/%s_p2.npy' % prefix)"], {}), "(np_path + '/%s_p2.npy' % prefix)\n", (24205, 24238), True, 'import numpy as np\n'), ((24259, 24302), 'numpy.load', 'np.load', (["(np_path + '/%s_start.npy' % prefix)"], {}), "(np_path + '/%s_start.npy' % prefix)\n", (24266, 24302), True, 'import numpy as np\n'), ((24321, 24362), 'numpy.load', 'np.load', (["(np_path + '/%s_end.npy' % prefix)"], {}), "(np_path + '/%s_end.npy' % prefix)\n", (24328, 24362), True, 'import numpy as np\n'), ((24838, 24876), 'numpy.load', 'np.load', (["(np_path + '/word_vectors.npy')"], {}), "(np_path + '/word_vectors.npy')\n", (24845, 24876), True, 'import numpy as np\n'), ((24904, 24942), 'numpy.load', 'np.load', (["(np_path + '/char_vectors.npy')"], {}), "(np_path + '/char_vectors.npy')\n", (24911, 24942), True, 'import numpy as np\n'), ((4154, 4193), 'numpy.random.uniform', 'np.random.uniform', (['(0.0)', '(1.0)', '[emb_size]'], {}), '(0.0, 1.0, [emb_size])\n', (4171, 4193), True, 'import numpy as np\n'), ((22305, 22325), 'pickle.dump', 'pickle.dump', (['self', 'f'], {}), '(self, f)\n', (22316, 22325), False, 'import pickle\n'), ((22853, 22876), 'os.path.exists', 'os.path.exists', (['np_path'], {}), '(np_path)\n', (22867, 22876), False, 'import os\n'), ((22894, 22914), 'os.makedirs', 'os.makedirs', (['np_path'], {}), '(np_path)\n', (22905, 22914), False, 'import os\n'), ((24667, 24681), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (24678, 24681), False, 'import pickle\n'), ((17248, 17290), 'numpy.zeros', 'np.zeros', (['cf.CONTEXT_LEN'], {'dtype': 'np.float16'}), '(cf.CONTEXT_LEN, dtype=np.float16)\n', (17256, 17290), True, 'import numpy as np\n'), ((17413, 17455), 'numpy.zeros', 'np.zeros', (['cf.CONTEXT_LEN'], {'dtype': 'np.float16'}), '(cf.CONTEXT_LEN, dtype=np.float16)\n', (17421, 17455), True, 'import numpy as np\n')]
import numpy from kapteyn import maputils from matplotlib.pyplot import show, figure import csv # Read some poitions from file in Comma Separated Values format # Some initializations blankcol = "#334455" # Represent undefined values by this color epsilon = 0.0000000001 figsize = (9,7) # Figure size in inches plotbox = (0.1,0.05,0.8,0.8) fig = figure(figsize=figsize) frame = fig.add_axes(plotbox) Basefits = maputils.FITSimage("allsky_raw.fits") # Here is your downloaded FITS file in rectangular coordinates Basefits.hdr['CTYPE1'] = 'GLON-CAR' # For transformations we need to give it a projection type Basefits.hdr['CTYPE2'] = 'GLAT-CAR' # CAR is rectangular # Use some header values to define reprojection parameters cdelt1 = Basefits.hdr['CDELT1'] cdelt2 = Basefits.hdr['CDELT2'] naxis1 = Basefits.hdr['NAXIS1'] naxis2 = Basefits.hdr['NAXIS2'] # Header works only with a patched wcslib 4.3 # Note that changing CRVAL1 to 180 degerees, shifts the plot 180 deg. header = {'NAXIS' : 2, 'NAXIS1': naxis1, 'NAXIS2': naxis2, 'CTYPE1' : 'GLON-AIT', 'CRVAL1' : 0, 'CRPIX1' : naxis1//2, 'CUNIT1' : 'deg', 'CDELT1' : cdelt1, 'CTYPE2' : 'GLAT-AIT', 'CRVAL2' : 30.0, 'CRPIX2' : naxis2//2, 'CUNIT2' : 'deg', 'CDELT2' : cdelt2, 'LONPOLE' :60.0, 'PV1_1' : 0.0, 'PV1_2' : 90.0, # IMPORTANT. This is a setting from Cal.section 7.1, p 1103 } Reprojfits = Basefits.reproject_to(header) annim_rep = Reprojfits.Annotatedimage(frame) annim_rep.set_colormap("heat.lut") # Set color map before creating Image object annim_rep.set_blankcolor(blankcol) # Background are NaN's (blanks). Set color here annim_rep.Image(vmin=30000, vmax=150000) # Just a selection of two clip levels annim_rep.plot() # Draw the graticule, but do not cover near -90 to prevent ambiguity X = numpy.arange(0,390.0,15.0); Y = numpy.arange(-75,90,15.0) f = maputils.FITSimage(externalheader=header) annim = f.Annotatedimage(frame) grat = annim.Graticule(axnum= (1,2), wylim=(-90,90.0), wxlim=(0,360), startx=X, starty=Y) grat.setp_lineswcs0(0, color='w', lw=2) grat.setp_lineswcs1(0, color='w', lw=2) # Draw border with standard graticule, just to make the borders look smooth header['CRVAL1'] = 0.0 header['CRVAL2'] = 0.0 del header['PV1_1'] del header['PV1_2'] header['LONPOLE'] = 0.0 header['LATPOLE'] = 0.0 border = annim.Graticule(header, axnum= (1,2), wylim=(-90,90.0), wxlim=(-180,180), startx=(180-epsilon, -180+epsilon), skipy=True) border.setp_lineswcs0(color='w', lw=2) # Show borders in arbitrary color (e.g. background color) border.setp_lineswcs1(color='w', lw=2) # Plot the 'inside' graticules lon_constval = 0.0 lat_constval = 0.0 lon_fmt = 'Dms'; lat_fmt = 'Dms' # Only Degrees must be plotted addangle0 = addangle1=0.0 deltapx0 = deltapx1 = 1.0 labkwargs0 = {'color':'r', 'va':'center', 'ha':'center'} labkwargs1 = {'color':'r', 'va':'center', 'ha':'center'} lon_world = list(range(0,360,30)) lat_world = [-60, -30, 30, 60] ilabs1 = grat.Insidelabels(wcsaxis=0, world=lon_world, constval=lat_constval, deltapx=1.0, deltapy=1.0, addangle=addangle0, fmt=lon_fmt, **labkwargs0) ilabs2 = grat.Insidelabels(wcsaxis=1, world=lat_world, constval=lon_constval, deltapx=1.0, deltapy=1.0, addangle=addangle1, fmt=lat_fmt, **labkwargs1) # Read marker positions (in 0h0m0s 0d0m0s format) from file reader = csv.reader(open("positions.txt"), delimiter=' ', skipinitialspace=True) for line in reader: if line: hms, dms = line postxt = "{eq fk4-no-e} "+hms+" {} "+dms # Define the sky system of the source print(postxt) annim.Marker(pos=postxt, marker='*', color='yellow', ms=20) # Plot a title titlepos = 1.02 title = r"""All sky map in Hammer Aitoff projection (AIT) oblique with: $(\alpha_p,\delta_p) = (0^\circ,30^\circ)$, $\phi_p = 75^\circ$ also: $(\phi_0,\theta_0) = (0^\circ,90^\circ)$.""" t = frame.set_title(title, color='g', fontsize=13, linespacing=1.5) t.set_y(titlepos) annim.plot() annim.interact_toolbarinfo() annim_rep.interact_imagecolors() show()
[ "matplotlib.pyplot.figure", "kapteyn.maputils.FITSimage", "numpy.arange", "matplotlib.pyplot.show" ]
[((387, 410), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (393, 410), False, 'from matplotlib.pyplot import show, figure\n'), ((453, 490), 'kapteyn.maputils.FITSimage', 'maputils.FITSimage', (['"""allsky_raw.fits"""'], {}), "('allsky_raw.fits')\n", (471, 490), False, 'from kapteyn import maputils\n'), ((1933, 1961), 'numpy.arange', 'numpy.arange', (['(0)', '(390.0)', '(15.0)'], {}), '(0, 390.0, 15.0)\n', (1945, 1961), False, 'import numpy\n'), ((1966, 1993), 'numpy.arange', 'numpy.arange', (['(-75)', '(90)', '(15.0)'], {}), '(-75, 90, 15.0)\n', (1978, 1993), False, 'import numpy\n'), ((1996, 2037), 'kapteyn.maputils.FITSimage', 'maputils.FITSimage', ([], {'externalheader': 'header'}), '(externalheader=header)\n', (2014, 2037), False, 'from kapteyn import maputils\n'), ((4320, 4326), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (4324, 4326), False, 'from matplotlib.pyplot import show, figure\n')]
import uuid import random import os import math import numpy as np import simpy import matplotlib.pyplot as plt from simulation.ghostdag import block from simulation.ghostdag.dag import select_ghostdag_k, DAG from simulation.fakes import FakeDAG from simulation.channel import Hub, Channel, PlanarTopology from simulation.helpers import print_dag, print_stats, save_to_json from simulation.miner import Miner from simulation.attack_miners import AttackMiner simulation_time = 2 ** 12 with_attack = True print_progress = True def make_dag(genesis_hash, k): return DAG(k=k, interval=(0, 2 ** 64 - 1), genesis_hash=genesis_hash) def make_honest_miner(miner_channel, genesis_hash, k, _lambda, _alpha, miner_index, num_miners): if miner_index == 0: dag = make_dag(genesis_hash, k) else: dag = FakeDAG(genesis_hash=genesis_hash) return Miner(k, _lambda, 1 / num_miners, dag, miner_channel) def make_attack_miner(miner_channel, genesis_hash, k, _lambda, _alpha, miner_index, num_miners): if miner_index == 0: dag = make_dag(genesis_hash, k) miner = Miner(-1, _lambda, (1 - _alpha) / (num_miners - 1), dag, miner_channel) # Only miner 1 is the actual attacker elif miner_index == 1: dag = make_dag(genesis_hash, k) miner = AttackMiner(-1, _lambda, _alpha, dag, miner_channel) else: dag = FakeDAG(genesis_hash=genesis_hash) miner = Miner(-1, _lambda, (1 - _alpha) / (num_miners - 1), dag, miner_channel) return miner class Simulation: def __init__(self, _alpha, _delta, _lambda, rows=3, cols=3, D_factor=1.0, k=None): # Communication constants self.D_min, self.D_max = 0.1, np.sqrt((rows * D_factor) ** 2 + (cols * D_factor) ** 2) + 0.1 # Mining parameters self._alpha = _alpha self._delta = _delta self._lambda = _lambda if k is None: self.k = select_ghostdag_k(2 * self.D_max * _lambda, _delta) else: self.k = k # Simulation environment self.env = simpy.Environment() # Grid topology self.topology = PlanarTopology(D_min=self.D_min, D_max=self.D_max) self.hub = Hub(self.env, latency_oracle=self.topology.latency) self.channels = [] for r in range(rows): for c in range(cols): channel = Channel(self.hub) self.topology.channel_map[channel] = (r * D_factor, c * D_factor) self.channels.append(channel) def run_simulation(self, seed=22522): # Setup and start the simulation if seed is not None: np.random.seed(seed) random.seed(seed) if print_progress: print('\n=========\n') print('GHOSTDAG simulation') print('\n=========\n') genesis_hash = uuid.uuid1().int miners = [] block.reindex_size_trace = [] for i, channel in enumerate(self.channels): s = str(self.topology.channel_map[channel]) if print_progress: print('Miner %d coordinates: %s' % (i, s)) if with_attack: miner = make_attack_miner(channel, genesis_hash, self.k, self._lambda, self._alpha, i, len(self.channels)) else: miner = make_honest_miner(channel, genesis_hash, self.k, self._lambda, self._alpha, i, len(self.channels)) self.env.process(miner.mine(self.env)) self.env.process(miner.receive(self.env)) if i == 0 and print_progress: self.env.process(miner.report(self.env)) miners.append(miner) if print_progress: print('\n=========\n') self.env.run(until=simulation_time) if print_progress: print('\n=========\n') return miners[0].dag def main(): _lambda, _delta, _alpha = 1, 0.01, 0.01 simulation = Simulation(_alpha, _delta, _lambda) dag = simulation.run_simulation() # print_dag(dag) print('\n=========\n') # Print stats print_stats(simulation.D_max, _delta, _lambda, dag, simulation.k) print('\n=========\n') plt.figure() plt.plot(block.reindex_size_trace, linewidth=0.1) plt.xlabel('time') plt.ylabel('reindex size') plt.show() if not os.path.isdir('data'): os.mkdir('data') save_to_json(dag, file_name=os.path.join('data', 'dag.json')) if __name__ == '__main__': main() # try: # main() # except Exception as ex: # print(type(ex).__name__, ex)
[ "numpy.sqrt", "matplotlib.pyplot.ylabel", "simulation.ghostdag.dag.DAG", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "simulation.channel.Hub", "os.path.isdir", "os.mkdir", "numpy.random.seed", "simpy.Environment", "uuid.uuid1", "matplotlib.pyplot.show", "simulation.helpers.print_stats", "simulation.channel.Channel", "simulation.miner.Miner", "simulation.ghostdag.dag.select_ghostdag_k", "random.seed", "simulation.channel.PlanarTopology", "os.path.join", "matplotlib.pyplot.figure", "simulation.fakes.FakeDAG", "simulation.attack_miners.AttackMiner" ]
[((570, 632), 'simulation.ghostdag.dag.DAG', 'DAG', ([], {'k': 'k', 'interval': '(0, 2 ** 64 - 1)', 'genesis_hash': 'genesis_hash'}), '(k=k, interval=(0, 2 ** 64 - 1), genesis_hash=genesis_hash)\n', (573, 632), False, 'from simulation.ghostdag.dag import select_ghostdag_k, DAG\n'), ((846, 899), 'simulation.miner.Miner', 'Miner', (['k', '_lambda', '(1 / num_miners)', 'dag', 'miner_channel'], {}), '(k, _lambda, 1 / num_miners, dag, miner_channel)\n', (851, 899), False, 'from simulation.miner import Miner\n'), ((3576, 3641), 'simulation.helpers.print_stats', 'print_stats', (['simulation.D_max', '_delta', '_lambda', 'dag', 'simulation.k'], {}), '(simulation.D_max, _delta, _lambda, dag, simulation.k)\n', (3587, 3641), False, 'from simulation.helpers import print_dag, print_stats, save_to_json\n'), ((3669, 3681), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3679, 3681), True, 'import matplotlib.pyplot as plt\n'), ((3683, 3732), 'matplotlib.pyplot.plot', 'plt.plot', (['block.reindex_size_trace'], {'linewidth': '(0.1)'}), '(block.reindex_size_trace, linewidth=0.1)\n', (3691, 3732), True, 'import matplotlib.pyplot as plt\n'), ((3734, 3752), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""time"""'], {}), "('time')\n", (3744, 3752), True, 'import matplotlib.pyplot as plt\n'), ((3754, 3780), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""reindex size"""'], {}), "('reindex size')\n", (3764, 3780), True, 'import matplotlib.pyplot as plt\n'), ((3782, 3792), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3790, 3792), True, 'import matplotlib.pyplot as plt\n'), ((803, 837), 'simulation.fakes.FakeDAG', 'FakeDAG', ([], {'genesis_hash': 'genesis_hash'}), '(genesis_hash=genesis_hash)\n', (810, 837), False, 'from simulation.fakes import FakeDAG\n'), ((1065, 1136), 'simulation.miner.Miner', 'Miner', (['(-1)', '_lambda', '((1 - _alpha) / (num_miners - 1))', 'dag', 'miner_channel'], {}), '(-1, _lambda, (1 - _alpha) / (num_miners - 1), dag, miner_channel)\n', (1070, 1136), False, 'from simulation.miner import Miner\n'), ((1908, 1927), 'simpy.Environment', 'simpy.Environment', ([], {}), '()\n', (1925, 1927), False, 'import simpy\n'), ((1965, 2015), 'simulation.channel.PlanarTopology', 'PlanarTopology', ([], {'D_min': 'self.D_min', 'D_max': 'self.D_max'}), '(D_min=self.D_min, D_max=self.D_max)\n', (1979, 2015), False, 'from simulation.channel import Hub, Channel, PlanarTopology\n'), ((2029, 2080), 'simulation.channel.Hub', 'Hub', (['self.env'], {'latency_oracle': 'self.topology.latency'}), '(self.env, latency_oracle=self.topology.latency)\n', (2032, 2080), False, 'from simulation.channel import Hub, Channel, PlanarTopology\n'), ((3802, 3823), 'os.path.isdir', 'os.path.isdir', (['"""data"""'], {}), "('data')\n", (3815, 3823), False, 'import os\n'), ((3827, 3843), 'os.mkdir', 'os.mkdir', (['"""data"""'], {}), "('data')\n", (3835, 3843), False, 'import os\n'), ((1244, 1296), 'simulation.attack_miners.AttackMiner', 'AttackMiner', (['(-1)', '_lambda', '_alpha', 'dag', 'miner_channel'], {}), '(-1, _lambda, _alpha, dag, miner_channel)\n', (1255, 1296), False, 'from simulation.attack_miners import AttackMiner\n'), ((1312, 1346), 'simulation.fakes.FakeDAG', 'FakeDAG', ([], {'genesis_hash': 'genesis_hash'}), '(genesis_hash=genesis_hash)\n', (1319, 1346), False, 'from simulation.fakes import FakeDAG\n'), ((1357, 1428), 'simulation.miner.Miner', 'Miner', (['(-1)', '_lambda', '((1 - _alpha) / (num_miners - 1))', 'dag', 'miner_channel'], {}), '(-1, _lambda, (1 - _alpha) / (num_miners - 1), dag, miner_channel)\n', (1362, 1428), False, 'from simulation.miner import Miner\n'), ((1793, 1844), 'simulation.ghostdag.dag.select_ghostdag_k', 'select_ghostdag_k', (['(2 * self.D_max * _lambda)', '_delta'], {}), '(2 * self.D_max * _lambda, _delta)\n', (1810, 1844), False, 'from simulation.ghostdag.dag import select_ghostdag_k, DAG\n'), ((2388, 2408), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2402, 2408), True, 'import numpy as np\n'), ((2412, 2429), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (2423, 2429), False, 'import random\n'), ((2552, 2564), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (2562, 2564), False, 'import uuid\n'), ((3873, 3905), 'os.path.join', 'os.path.join', (['"""data"""', '"""dag.json"""'], {}), "('data', 'dag.json')\n", (3885, 3905), False, 'import os\n'), ((1608, 1664), 'numpy.sqrt', 'np.sqrt', (['((rows * D_factor) ** 2 + (cols * D_factor) ** 2)'], {}), '((rows * D_factor) ** 2 + (cols * D_factor) ** 2)\n', (1615, 1664), True, 'import numpy as np\n'), ((2165, 2182), 'simulation.channel.Channel', 'Channel', (['self.hub'], {}), '(self.hub)\n', (2172, 2182), False, 'from simulation.channel import Hub, Channel, PlanarTopology\n')]
import argparse import os import cv2 import numpy as np def gamma_correction(source_path, destination_path, a, b, version): # Load image into memory # Algorithm can work correctly with colored and grayscale images if version == 'colored': original_image = cv2.imread(source_path) elif version == 'grayscale': original_image = cv2.imread(source_path, cv2.IMREAD_GRAYSCALE) else: # Other types are not supported raise RuntimeError('Wrong type of image') # Apply formula to rescaled image processed_image = a * ((original_image / 255) ** b) # Crop values, that are too high processed_image[processed_image >= 1] = 1 # Scale image back to [0 - 255] processed_image = processed_image * 255 # Correctly convert float values to integers processed_image = np.rint(processed_image) # Convert to `np.uint8`, so `imwrite` will save image correctly cv2.imwrite(destination_path, processed_image.astype(np.uint8)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Perform gamma correction.') parser.add_argument('source_path', metavar='source_path', type=str, help='Path to the original image.') parser.add_argument('destination_path', metavar='destination_path', type=str, help='Path to the processed image.') parser.add_argument('a', metavar='a', type=float, help='First parameter of gamma correction algorithm.') parser.add_argument('b', metavar='b', type=float, help='Second parameter of gamma correction algorithm.') parser.add_argument('--version', type=str, default='colored', help='Shows type of image. Variants: colored / grayscale.') args = parser.parse_args() if not os.path.exists(args.source_path): raise FileNotFoundError gamma_correction(args.source_path, args.destination_path, args.a, args.b, args.version)
[ "os.path.exists", "numpy.rint", "argparse.ArgumentParser", "cv2.imread" ]
[((836, 860), 'numpy.rint', 'np.rint', (['processed_image'], {}), '(processed_image)\n', (843, 860), True, 'import numpy as np\n'), ((1040, 1104), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Perform gamma correction."""'}), "(description='Perform gamma correction.')\n", (1063, 1104), False, 'import argparse\n'), ((279, 302), 'cv2.imread', 'cv2.imread', (['source_path'], {}), '(source_path)\n', (289, 302), False, 'import cv2\n'), ((1841, 1873), 'os.path.exists', 'os.path.exists', (['args.source_path'], {}), '(args.source_path)\n', (1855, 1873), False, 'import os\n'), ((361, 406), 'cv2.imread', 'cv2.imread', (['source_path', 'cv2.IMREAD_GRAYSCALE'], {}), '(source_path, cv2.IMREAD_GRAYSCALE)\n', (371, 406), False, 'import cv2\n')]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import paddle import paddle.fluid as fluid import numpy as np import paddle.distributed.fleet as fleet class Trainer(object): def __init__(self): """ """ self.place = None class CPUTrainer(Trainer): def __init__(self): super(CPUTrainer, self).__init__() self.place = fluid.CPUPlace() self.exe = fluid.Executor(self.place) def fit(self, model, dataloader, epoch, start_step=10): fleet.init_worker() self.exe.run(fluid.default_startup_program()) for epoch_id in range(epoch): total_time = 0 step = 0 for data in dataloader(): if step > start_step: start_time = time.time() loss = self.exe.run(fluid.default_main_program(), feed=data, fetch_list=[model.loss.name]) if step > start_step: end_time = time.time() total_time += (end_time - start_time) print( "worker_index: %d, step%d, train_loss: %f, total time cost = %f, step per second: %f, speed: %f" % (fleet.worker_index(), step, loss[0], total_time, (step - start_step) / total_time, 1 / (end_time - start_time))) step += 1 fleet.stop_worker() class MultiGPUTrainer(Trainer): def __init__(self): super(MultiGPUTrainer, self).__init__() self.place = fluid.CUDAPlace( int(os.environ.get('FLAGS_selected_gpus', 0))) self.exe = fluid.Executor(self.place) self.exe.run(fluid.default_startup_program()) def fit(self, model, dataloader, epoch, use_dali=False, start_step=10): for epoch_id in range(epoch): total_time = 0 step = 0 for data in dataloader: if step > start_step: start_time = time.time() loss = self.exe.run(fluid.default_main_program(), feed=data, fetch_list=[model.loss.name], use_program_cache=True) if step > start_step: end_time = time.time() total_time += (end_time - start_time) print( "epoch id: %d, step%d, train_loss: %f, total time cost = %f, step per second: %f, speed: %f" % (epoch_id, step, loss[0], total_time, (step - start_step) / total_time, 1 / (end_time - start_time))) step += 1 if use_dali: dataloader.reset() def val(self, model, dataloader, target_list, current_epoch=-1, use_dali=False): self.test_program = model.main_prog.clone(for_test=True) fetch_target = [] results = {} for item in target_list: if item in model.target.keys(): fetch_target.append(model.target[item].name) results[item] = [] else: raise Exception("ERROR: Current model only support target: {}". format(model.target.keys())) for data in dataloader: result = self.exe.run(self.test_program, feed=data, fetch_list=fetch_target, use_program_cache=True) for item in target_list: results[item].append(np.mean(result[target_list.index(item)])) log_info = "" for item in target_list: log_info += ", {} = {}".format(item, np.mean(results[item])) if current_epoch > 0: print("Test Epoch {}{}".format(current_epoch, log_info)) else: print("Test Result {}".format(log_info)) if use_dali: dataloader.reset() def quick_benchmark(self, model, dataloader, start_step=20, end_step=200): step = 0 total_time = 0 total_step = 0 counting_time = False for data in dataloader: if step > start_step and step <= end_step: start_time = time.time() loss = self.exe.run(fluid.default_main_program(), feed=data, fetch_list=[], use_program_cache=True) if step > start_step and step <= end_step: end_time = time.time() total_time += (end_time - start_time) if step > end_step: break step += 1 mean_qps = (end_step - start_step) / total_time return mean_qps def benchmark(self, model, dataloader, epoch, use_dali=False, start_step=20): for epoch_id in range(epoch): total_time = 0 step = 0 for data in dataloader: if step > start_step and step <= start_step + 100: start_time = time.time() loss = self.exe.run(fluid.default_main_program(), feed=data, fetch_list=[model.loss.name], use_program_cache=True) if step > start_step and step <= start_step + 100: end_time = time.time() total_time += (end_time - start_time) step += 1 average_speed = 100 / total_time if use_dali: dataloader.reset() return average_speed def benchmark_val(self, model, dataloader, target_list, use_dali=False): self.test_program = model.main_prog.clone(for_test=True) fetch_target = [] results = {} for item in target_list: if item in model.target.keys(): fetch_target.append(model.target[item].name) results[item] = [] else: raise Exception("ERROR: Current model only support target: {}". format(model.target.keys())) for data in dataloader: result = self.exe.run(self.test_program, feed=data, fetch_list=fetch_target, use_program_cache=True) for item in target_list: results[item].append(np.mean(result[target_list.index(item)])) if use_dali: dataloader.reset() return results
[ "numpy.mean", "paddle.distributed.fleet.worker_index", "paddle.fluid.default_startup_program", "paddle.fluid.CPUPlace", "os.environ.get", "paddle.fluid.default_main_program", "paddle.fluid.Executor", "paddle.distributed.fleet.stop_worker", "paddle.distributed.fleet.init_worker", "time.time" ]
[((960, 976), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (974, 976), True, 'import paddle.fluid as fluid\n'), ((996, 1022), 'paddle.fluid.Executor', 'fluid.Executor', (['self.place'], {}), '(self.place)\n', (1010, 1022), True, 'import paddle.fluid as fluid\n'), ((1092, 1111), 'paddle.distributed.fleet.init_worker', 'fleet.init_worker', ([], {}), '()\n', (1109, 1111), True, 'import paddle.distributed.fleet as fleet\n'), ((2069, 2088), 'paddle.distributed.fleet.stop_worker', 'fleet.stop_worker', ([], {}), '()\n', (2086, 2088), True, 'import paddle.distributed.fleet as fleet\n'), ((2311, 2337), 'paddle.fluid.Executor', 'fluid.Executor', (['self.place'], {}), '(self.place)\n', (2325, 2337), True, 'import paddle.fluid as fluid\n'), ((1133, 1164), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (1162, 1164), True, 'import paddle.fluid as fluid\n'), ((2359, 2390), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (2388, 2390), True, 'import paddle.fluid as fluid\n'), ((2249, 2289), 'os.environ.get', 'os.environ.get', (['"""FLAGS_selected_gpus"""', '(0)'], {}), "('FLAGS_selected_gpus', 0)\n", (2263, 2289), False, 'import os\n'), ((4524, 4546), 'numpy.mean', 'np.mean', (['results[item]'], {}), '(results[item])\n', (4531, 4546), True, 'import numpy as np\n'), ((5151, 5162), 'time.time', 'time.time', ([], {}), '()\n', (5160, 5162), False, 'import time\n'), ((5195, 5223), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (5221, 5223), True, 'import paddle.fluid as fluid\n'), ((5453, 5464), 'time.time', 'time.time', ([], {}), '()\n', (5462, 5464), False, 'import time\n'), ((1362, 1373), 'time.time', 'time.time', ([], {}), '()\n', (1371, 1373), False, 'import time\n'), ((1410, 1438), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (1436, 1438), True, 'import paddle.fluid as fluid\n'), ((1622, 1633), 'time.time', 'time.time', ([], {}), '()\n', (1631, 1633), False, 'import time\n'), ((2663, 2674), 'time.time', 'time.time', ([], {}), '()\n', (2672, 2674), False, 'import time\n'), ((2711, 2739), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (2737, 2739), True, 'import paddle.fluid as fluid\n'), ((2983, 2994), 'time.time', 'time.time', ([], {}), '()\n', (2992, 2994), False, 'import time\n'), ((6073, 6084), 'time.time', 'time.time', ([], {}), '()\n', (6082, 6084), False, 'import time\n'), ((6121, 6149), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (6147, 6149), True, 'import paddle.fluid as fluid\n'), ((6422, 6433), 'time.time', 'time.time', ([], {}), '()\n', (6431, 6433), False, 'import time\n'), ((1867, 1887), 'paddle.distributed.fleet.worker_index', 'fleet.worker_index', ([], {}), '()\n', (1885, 1887), True, 'import paddle.distributed.fleet as fleet\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2020, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Converter to convert a problem with inequality constraints to unconstrained with penalty terms.""" import logging from typing import Optional, Union, Tuple, List, Dict import numpy as np from .quadratic_program_converter import QuadraticProgramConverter from ..exceptions import QiskitOptimizationError from ..problems.constraint import Constraint, ConstraintSense from ..problems.quadratic_objective import QuadraticObjective from ..problems.quadratic_program import QuadraticProgram from ..problems.variable import Variable logger = logging.getLogger(__name__) class LinearInequalityToPenalty(QuadraticProgramConverter): r"""Convert linear inequality constraints to penalty terms of the objective function. There are some linear constraints which do not require slack variables to construct penalty terms [1]. This class supports the following inequality constraints. .. math:: \begin{array}{} \text { Inequality constraint } & & \text { Penalty term } \\ x \leq y & \rightarrow & P(x-x y) \\ x \geq y & \rightarrow & P(y-x y) \\ \sum_{i=1}^n x_i \leq 1, n \geq 2 & \rightarrow & P \sum_{i, j : i < j} x_i x_j\\ \sum_{i=1}^n x_i \geq n-1, n \geq 2 & \rightarrow & P \sum_{i, j : i < j} (1 - x_i) (1 - x_j) \end{array} Note that x, y, z and :math:`x_i` are binary variables, and P is a penalty factor, where the value of P is automatically determined or supplied by users. If constraints match with any of the patterns, they are converted into penalty terms and added to the objective function. Otherwise, constraints are kept as is. References: [1]: <NAME>, et al. (2019), A Tutorial on Formulating and Using QUBO Models, `arXiv:1811.11538 <https://arxiv.org/abs/1811.11538>`_. """ def __init__(self, penalty: Optional[float] = None) -> None: """ Args: penalty: Penalty factor to scale equality constraints that are added to objective. If None is passed, a penalty factor will be automatically calculated on every conversion. """ self._src_num_vars: Optional[int] = None self._dst: Optional[QuadraticProgram] = None self._penalty: Optional[float] = penalty self._should_define_penalty: bool = penalty is None def convert(self, problem: QuadraticProgram) -> QuadraticProgram: r"""Convert inequality constraints into penalty terms of the objective function. This methods converts the following patterns where x, y, and :math:`x_i` are binary variables and P is a penalty factor. .. math:: \begin{array}{} \text { Inequality constraint } & & \text { Penalty term } \\ x \leq y & \rightarrow & P(x-x y) \\ x \geq y & \rightarrow & P(y-x y) \\ \sum_{i=1}^n x_i \leq 1, n \geq 2 & \rightarrow & P \sum_{i, j : i < j} x_i x_j\\ \sum_{i=1}^n x_i \geq n-1, n \geq 2 & \rightarrow & P \sum_{i, j : i < j} (1 - x_i) (1 - x_j) \end{array} Args: problem: The problem to be solved. Returns: The converted problem Raises: QiskitOptimizationError: If an unsupported-type variable exists. """ # create empty QuadraticProgram model self._src_num_vars = problem.get_num_vars() self._dst = QuadraticProgram(name=problem.name) # If no penalty was given, set the penalty coefficient by _auto_define_penalty() if self._should_define_penalty: penalty = self._auto_define_penalty(problem) else: penalty = self._penalty # Set variables for x in problem.variables: if x.vartype == Variable.Type.CONTINUOUS: self._dst.continuous_var(x.lowerbound, x.upperbound, x.name) elif x.vartype == Variable.Type.BINARY: self._dst.binary_var(x.name) elif x.vartype == Variable.Type.INTEGER: self._dst.integer_var(x.lowerbound, x.upperbound, x.name) else: raise QiskitOptimizationError(f"Unsupported vartype: {x.vartype}") # get original objective terms offset = problem.objective.constant linear = problem.objective.linear.to_dict() quadratic = problem.objective.quadratic.to_dict() sense = problem.objective.sense.value # convert linear constraints into penalty terms for constraint in problem.linear_constraints: # special constraint check function here if not self._is_matched_constraint(problem, constraint): self._dst.linear_constraint( constraint.linear.coefficients, constraint.sense, constraint.rhs, constraint.name, ) continue conv_offset, conv_linear, conv_quadratic, varmap = self._conversion_table(constraint) # constant part offset += sense * penalty * conv_offset # linear parts of penalty for j, j_2 in varmap.items(): # if j already exists in the linear terms dic, add a penalty term # into existing value else create new key and value in the linear_term dict if conv_linear[j] != 0: linear[j_2] = linear.get(j_2, 0.0) + sense * penalty * conv_linear[j] # quadratic parts of penalty for j, j_2 in varmap.items(): for k in range(j, len(varmap)): # if j and k already exist in the quadratic terms dict, # add a penalty term into existing value # else create new key and value in the quadratic term dict if conv_quadratic[j][k] != 0: tup = (j_2, varmap[k]) quadratic[tup] = ( quadratic.get(tup, 0.0) + sense * penalty * conv_quadratic[j][k] ) # Copy quadratic_constraints for quadratic_constraint in problem.quadratic_constraints: self._dst.quadratic_constraint( quadratic_constraint.linear.coefficients, quadratic_constraint.quadratic.coefficients, quadratic_constraint.sense, quadratic_constraint.rhs, quadratic_constraint.name, ) if problem.objective.sense == QuadraticObjective.Sense.MINIMIZE: self._dst.minimize(offset, linear, quadratic) else: self._dst.maximize(offset, linear, quadratic) # Update the penalty to the one just used self._penalty = penalty return self._dst @staticmethod def _conversion_table( constraint, ) -> Tuple[int, np.ndarray, np.ndarray, Dict[int, int]]: """Construct conversion matrix for special constraint. Returns: Return conversion table which is used to construct penalty term in main function. Raises: QiskitOptimizationError: if the constraint is invalid. """ vars_dict = constraint.linear.to_dict() coeffs = list(vars_dict.values()) varmap = dict(enumerate(vars_dict.keys())) rhs = constraint.rhs sense = constraint.sense num_vars = len(vars_dict) # initialize return values, these are used for converted offset, linear # and quadratic terms offset = 0 linear = np.zeros(num_vars, dtype=int) quadratic = np.zeros((num_vars, num_vars), dtype=int) # rhs = num_vars - 1 correspond to multiple variable with >= n - 1 case. if sense == ConstraintSense.GE and rhs == num_vars - 1: # x_1 + ... + x_n >= n - 1 # The number of offset is combination ( nC2 ) offset = num_vars * (num_vars - 1) // 2 linear = np.full(num_vars, 1 - num_vars, dtype=int) quadratic = np.triu(np.ones((num_vars, num_vars), dtype=int), k=1) elif sense == ConstraintSense.LE and rhs == 1: # x_1 + ... + x_n <= 1 quadratic = np.triu(np.ones((num_vars, num_vars), dtype=int), k=1) elif rhs == 0: if num_vars != 2: raise QiskitOptimizationError( f"Internal error: invalid number of variables {num_vars} {constraint.name}" ) quadratic = np.array([[0, -1], [0, 0]]) if sense == ConstraintSense.GE: # x >= y case if coeffs[0] < 0.0: linear[0] = 1 else: linear[1] = 1 elif sense == ConstraintSense.LE: # x <= y case if coeffs[0] > 0.0: linear[0] = 1 else: linear[1] = 1 else: raise QiskitOptimizationError(f"Internal error: invalid constraint {constraint.name}") return offset, linear, quadratic, varmap @staticmethod def _is_matched_constraint(problem, constraint) -> bool: """Determine if constraint is special or not. Returns: True: when constraint is special False: when constraint is not special """ params = constraint.linear.to_dict() num_vars = len(params) rhs = constraint.rhs sense = constraint.sense coeff_array = np.array(list(params.values())) # Binary parameter? if any(problem.variables[i].vartype != Variable.Type.BINARY for i in params.keys()): return False if num_vars == 2 and rhs == 0: if sense in (Constraint.Sense.LE, Constraint.Sense.GE): # x-y<=0 # x-y>=0 return coeff_array.min() == -1.0 and coeff_array.max() == 1.0 elif num_vars >= 2: if sense == Constraint.Sense.LE and rhs == 1: if all(i == 1 for i in params.values()): # x1+x2+...<=1 return True elif sense == Constraint.Sense.GE and rhs == num_vars - 1: if all(i == 1 for i in params.values()): # x1+x2+...>=n-1 return True return False @staticmethod def _auto_define_penalty(problem) -> float: """Automatically define the penalty coefficient. Returns: Return the minimum valid penalty factor calculated from the upper bound and the lower bound of the objective function. If a constraint has a float coefficient, return the default value for the penalty factor. """ default_penalty = 1e5 # Check coefficients of constraints. # If a constraint has a float coefficient, return the default value for the penalty factor. terms = [] for constraint in problem.linear_constraints: terms.append(constraint.rhs) terms.extend(constraint.linear.to_array().tolist()) if any(isinstance(term, float) and not term.is_integer() for term in terms): logger.warning( "Warning: Using %f for the penalty coefficient because " "a float coefficient exists in constraints. \n" "The value could be too small. " "If so, set the penalty coefficient manually.", default_penalty, ) return default_penalty lin_b = problem.objective.linear.bounds quad_b = problem.objective.quadratic.bounds return 1.0 + (lin_b.upperbound - lin_b.lowerbound) + (quad_b.upperbound - quad_b.lowerbound) def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray: """Convert the result of the converted problem back to that of the original problem Args: x: The result of the converted problem or the given result in case of FAILURE. Returns: The result of the original problem. Raises: QiskitOptimizationError: if the number of variables in the result differs from that of the original problem. """ if len(x) != self._src_num_vars: raise QiskitOptimizationError( f"The number of variables in the passed result ({len(x)}) differs from " f"that of the original problem ({self._src_num_vars})." ) return np.asarray(x) @property def penalty(self) -> Optional[float]: """Returns the penalty factor used in conversion. Returns: The penalty factor used in conversion. """ return self._penalty @penalty.setter def penalty(self, penalty: Optional[float]) -> None: """Set a new penalty factor. Args: penalty: The new penalty factor. If None is passed, a penalty factor will be automatically calculated on every conversion. """ self._penalty = penalty self._should_define_penalty = penalty is None
[ "logging.getLogger", "numpy.ones", "numpy.asarray", "numpy.array", "numpy.zeros", "numpy.full" ]
[((1026, 1053), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1043, 1053), False, 'import logging\n'), ((8151, 8180), 'numpy.zeros', 'np.zeros', (['num_vars'], {'dtype': 'int'}), '(num_vars, dtype=int)\n', (8159, 8180), True, 'import numpy as np\n'), ((8201, 8242), 'numpy.zeros', 'np.zeros', (['(num_vars, num_vars)'], {'dtype': 'int'}), '((num_vars, num_vars), dtype=int)\n', (8209, 8242), True, 'import numpy as np\n'), ((13159, 13172), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (13169, 13172), True, 'import numpy as np\n'), ((8559, 8601), 'numpy.full', 'np.full', (['num_vars', '(1 - num_vars)'], {'dtype': 'int'}), '(num_vars, 1 - num_vars, dtype=int)\n', (8566, 8601), True, 'import numpy as np\n'), ((8634, 8674), 'numpy.ones', 'np.ones', (['(num_vars, num_vars)'], {'dtype': 'int'}), '((num_vars, num_vars), dtype=int)\n', (8641, 8674), True, 'import numpy as np\n'), ((8803, 8843), 'numpy.ones', 'np.ones', (['(num_vars, num_vars)'], {'dtype': 'int'}), '((num_vars, num_vars), dtype=int)\n', (8810, 8843), True, 'import numpy as np\n'), ((9088, 9115), 'numpy.array', 'np.array', (['[[0, -1], [0, 0]]'], {}), '([[0, -1], [0, 0]])\n', (9096, 9115), True, 'import numpy as np\n')]
""" Decision Trees - Supervised learning: 1-Classification*, 2-Regression. D.T.s are a non-parametric supervised learning method used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. Some advantages of decision trees are: 1- Simple to understand and to interpret. Trees can be visualised. 2- Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be created and blank values to be removed. Note however that this module does not support missing values. 3- The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree. 4- Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing datasets that have only one type of variable. See algorithms for more information. 5- Able to handle multi-output problems. 6- Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may be more difficult to interpret. 7- Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the model. 8- Performs well even if its assumptions are somewhat violated by the true model from which the data were generated. The disadvantages of decision trees include: 1- Decision-tree learners can create over-complex trees that do not generalise the data well.This is called overfitting. Mechanisms such as pruning (not currently supported), setting the minimum number of samples required at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem. 2- Decision trees can be unstable because small variations in the data might result in a completely different tree being generated. This problem is mitigated by using decision trees within an ensemble. 3- The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in an ensemble learner, where the features and samples are randomly sampled with replacement. 4- There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity or multiplexer problems. 5- Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the dataset prior to fitting with the decision tree. ID3 (Iterative Dichotomiser 3) was developed in 1986 by <NAME>. The algorithm creates a multiway tree, finding for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the tree to generalise to unseen data. C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a rule's precondition if the accuracy of the rule improves without it. """ import numpy as np from sklearn.externals import joblib from sklearn import datasets, metrics, tree from sklearn.cross_validation import train_test_split cancer = datasets.load_breast_cancer() data = cancer.data labels = cancer.target data = np.asarray(data, dtype='float32') labels = np.asarray(labels, dtype='int32') trainData, testData, trainLabels, testLabels = train_test_split(data, labels, train_size=0.8, test_size=0.2) print('Tree Learning... Fitting... ') tree_clf = tree.DecisionTreeClassifier(criterion='entropy', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None, presort=False) tree_clf.fit(X=trainData, y=trainLabels) print('Tree Predicting... ') predicted = tree_clf.predict(X=testData) print("Results: \n %s" % metrics.classification_report(testLabels, predicted)) matrix = metrics.confusion_matrix(testLabels, predicted) print("Confusion Matrix: \n %s" % matrix) print("\nMean Accuracy: %.4f " % tree_clf.score(X=testData, y=testLabels)) print("Tree Saving in ... /Output/Tree_model.pkl") joblib.dump(tree_clf, '/home/rainer85ah/PycharmProjects/DiagnosticCancerSolution/Output/Tree_model.pkl')
[ "sklearn.metrics.classification_report", "sklearn.tree.DecisionTreeClassifier", "numpy.asarray", "sklearn.datasets.load_breast_cancer", "sklearn.cross_validation.train_test_split", "sklearn.externals.joblib.dump", "sklearn.metrics.confusion_matrix" ]
[((4019, 4048), 'sklearn.datasets.load_breast_cancer', 'datasets.load_breast_cancer', ([], {}), '()\n', (4046, 4048), False, 'from sklearn import datasets, metrics, tree\n'), ((4099, 4132), 'numpy.asarray', 'np.asarray', (['data'], {'dtype': '"""float32"""'}), "(data, dtype='float32')\n", (4109, 4132), True, 'import numpy as np\n'), ((4142, 4175), 'numpy.asarray', 'np.asarray', (['labels'], {'dtype': '"""int32"""'}), "(labels, dtype='int32')\n", (4152, 4175), True, 'import numpy as np\n'), ((4223, 4284), 'sklearn.cross_validation.train_test_split', 'train_test_split', (['data', 'labels'], {'train_size': '(0.8)', 'test_size': '(0.2)'}), '(data, labels, train_size=0.8, test_size=0.2)\n', (4239, 4284), False, 'from sklearn.cross_validation import train_test_split\n'), ((4335, 4593), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {'criterion': '"""entropy"""', 'splitter': '"""best"""', 'max_depth': 'None', 'min_samples_split': '(2)', 'min_samples_leaf': '(1)', 'min_weight_fraction_leaf': '(0.0)', 'max_features': 'None', 'random_state': 'None', 'max_leaf_nodes': 'None', 'class_weight': 'None', 'presort': '(False)'}), "(criterion='entropy', splitter='best', max_depth\n =None, min_samples_split=2, min_samples_leaf=1,\n min_weight_fraction_leaf=0.0, max_features=None, random_state=None,\n max_leaf_nodes=None, class_weight=None, presort=False)\n", (4362, 4593), False, 'from sklearn import datasets, metrics, tree\n'), ((4860, 4907), 'sklearn.metrics.confusion_matrix', 'metrics.confusion_matrix', (['testLabels', 'predicted'], {}), '(testLabels, predicted)\n', (4884, 4907), False, 'from sklearn import datasets, metrics, tree\n'), ((5077, 5190), 'sklearn.externals.joblib.dump', 'joblib.dump', (['tree_clf', '"""/home/rainer85ah/PycharmProjects/DiagnosticCancerSolution/Output/Tree_model.pkl"""'], {}), "(tree_clf,\n '/home/rainer85ah/PycharmProjects/DiagnosticCancerSolution/Output/Tree_model.pkl'\n )\n", (5088, 5190), False, 'from sklearn.externals import joblib\n'), ((4797, 4849), 'sklearn.metrics.classification_report', 'metrics.classification_report', (['testLabels', 'predicted'], {}), '(testLabels, predicted)\n', (4826, 4849), False, 'from sklearn import datasets, metrics, tree\n')]
""" .. todo:: WRITEME """ import logging from theano import function, shared from pylearn2.optimization import linear_cg as cg from pylearn2.optimization.feature_sign import feature_sign_search import numpy as N import theano.tensor as T from pylearn2.utils.rng import make_np_rng logger = logging.getLogger(__name__) class LocalCoordinateCoding(object): """ .. todo:: WRITEME Parameters ---------- nvis : WRITEME nhid : WRITEME coeff : WRITEME """ def __init__(self, nvis, nhid, coeff): self.nvis = nvis self.nhid = nhid self.coeff = float(coeff) self.rng = make_np_rng(None, [1, 2, 3], which_method="randn") self.redo_everything() def get_output_channels(self): """ .. todo:: WRITEME """ return self.nhid def redo_everything(self): """ .. todo:: WRITEME """ self.W = shared(self.rng.randn(self.nhid, self.nvis), name='W') self.W.T.name = 'W.T' def weights_format(self): """ .. todo:: WRITEME """ return ['h', 'v'] def optimize_gamma(self, example): """ .. todo:: WRITEME """ #variable names chosen to follow the arguments to l1ls_featuresign Y = N.zeros((self.nvis,)) Y[:] = example c = (1e-10 + N.square(self.W.get_value(borrow=True) - example).sum(axis=1)) A = self.W.get_value(borrow=True).T / c x = feature_sign_search(A, Y, self.coeff) g = x / c return g def train_batch(self, dataset, batch_size): """ .. todo:: WRITEME """ #TODO-- this results in compilation happening every time learn is # called should cache the compilation results, including those # inside cg X = dataset.get_design_matrix() m = X.shape[0] assert X.shape[1] == self.nvis gamma = N.zeros((batch_size, self.nhid)) cur_gamma = T.vector(name='cur_gamma') cur_v = T.vector(name='cur_v') recons = T.dot(cur_gamma, self.W) recons.name = 'recons' recons_diffs = cur_v - recons recons_diffs.name = 'recons_diffs' recons_diff_sq = T.sqr(recons_diffs) recons_diff_sq.name = 'recons_diff' recons_error = T.sum(recons_diff_sq) recons_error.name = 'recons_error' dict_dists = T.sum(T.sqr(self.W - cur_v), axis=1) dict_dists.name = 'dict_dists' abs_gamma = abs(cur_gamma) abs_gamma.name = 'abs_gamma' weighted_dists = T.dot(abs_gamma, dict_dists) weighted_dists.name = 'weighted_dists' penalty = self.coeff * weighted_dists penalty.name = 'penalty' #prevent directions of absolute flatness in the hessian #W_sq = T.sqr(self.W) #W_sq.name = 'W_sq' #debug = T.sum(W_sq) debug = 1e-10 * T.sum(dict_dists) debug.name = 'debug' #J = debug J = recons_error + penalty + debug J.name = 'J' Jf = function([cur_v, cur_gamma], J) start = self.rng.randint(m - batch_size + 1) batch_X = X[start:start + batch_size, :] #TODO-- optimize gamma logger.info('optimizing gamma') for i in xrange(batch_size): #print str(i+1)+'/'+str(batch_size) gamma[i, :] = self.optimize_gamma(batch_X[i, :]) logger.info('max min') logger.info(N.abs(gamma).min(axis=0).max()) logger.info('min max') logger.info(N.abs(gamma).max(axis=0).max()) #Optimize W logger.info('optimizing W') logger.warning("not tested since switching to Razvan's all-theano " "implementation of linear cg") cg.linear_cg(J, [self.W], max_iters=3) err = 0. for i in xrange(batch_size): err += Jf(batch_X[i, :], gamma[i, :]) assert not N.isnan(err) assert not N.isinf(err) logger.info('err: {0}'.format(err)) return True
[ "logging.getLogger", "pylearn2.optimization.feature_sign.feature_sign_search", "pylearn2.utils.rng.make_np_rng", "pylearn2.optimization.linear_cg.linear_cg", "numpy.abs", "theano.function", "theano.tensor.sum", "theano.tensor.vector", "theano.tensor.sqr", "numpy.zeros", "numpy.isnan", "numpy.isinf", "theano.tensor.dot" ]
[((297, 324), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (314, 324), False, 'import logging\n'), ((647, 697), 'pylearn2.utils.rng.make_np_rng', 'make_np_rng', (['None', '[1, 2, 3]'], {'which_method': '"""randn"""'}), "(None, [1, 2, 3], which_method='randn')\n", (658, 697), False, 'from pylearn2.utils.rng import make_np_rng\n'), ((1363, 1384), 'numpy.zeros', 'N.zeros', (['(self.nvis,)'], {}), '((self.nvis,))\n', (1370, 1384), True, 'import numpy as N\n'), ((1582, 1619), 'pylearn2.optimization.feature_sign.feature_sign_search', 'feature_sign_search', (['A', 'Y', 'self.coeff'], {}), '(A, Y, self.coeff)\n', (1601, 1619), False, 'from pylearn2.optimization.feature_sign import feature_sign_search\n'), ((2051, 2083), 'numpy.zeros', 'N.zeros', (['(batch_size, self.nhid)'], {}), '((batch_size, self.nhid))\n', (2058, 2083), True, 'import numpy as N\n'), ((2104, 2130), 'theano.tensor.vector', 'T.vector', ([], {'name': '"""cur_gamma"""'}), "(name='cur_gamma')\n", (2112, 2130), True, 'import theano.tensor as T\n'), ((2147, 2169), 'theano.tensor.vector', 'T.vector', ([], {'name': '"""cur_v"""'}), "(name='cur_v')\n", (2155, 2169), True, 'import theano.tensor as T\n'), ((2187, 2211), 'theano.tensor.dot', 'T.dot', (['cur_gamma', 'self.W'], {}), '(cur_gamma, self.W)\n', (2192, 2211), True, 'import theano.tensor as T\n'), ((2351, 2370), 'theano.tensor.sqr', 'T.sqr', (['recons_diffs'], {}), '(recons_diffs)\n', (2356, 2370), True, 'import theano.tensor as T\n'), ((2439, 2460), 'theano.tensor.sum', 'T.sum', (['recons_diff_sq'], {}), '(recons_diff_sq)\n', (2444, 2460), True, 'import theano.tensor as T\n'), ((2701, 2729), 'theano.tensor.dot', 'T.dot', (['abs_gamma', 'dict_dists'], {}), '(abs_gamma, dict_dists)\n', (2706, 2729), True, 'import theano.tensor as T\n'), ((3179, 3210), 'theano.function', 'function', (['[cur_v, cur_gamma]', 'J'], {}), '([cur_v, cur_gamma], J)\n', (3187, 3210), False, 'from theano import function, shared\n'), ((3894, 3932), 'pylearn2.optimization.linear_cg.linear_cg', 'cg.linear_cg', (['J', '[self.W]'], {'max_iters': '(3)'}), '(J, [self.W], max_iters=3)\n', (3906, 3932), True, 'from pylearn2.optimization import linear_cg as cg\n'), ((2532, 2553), 'theano.tensor.sqr', 'T.sqr', (['(self.W - cur_v)'], {}), '(self.W - cur_v)\n', (2537, 2553), True, 'import theano.tensor as T\n'), ((3034, 3051), 'theano.tensor.sum', 'T.sum', (['dict_dists'], {}), '(dict_dists)\n', (3039, 3051), True, 'import theano.tensor as T\n'), ((4058, 4070), 'numpy.isnan', 'N.isnan', (['err'], {}), '(err)\n', (4065, 4070), True, 'import numpy as N\n'), ((4090, 4102), 'numpy.isinf', 'N.isinf', (['err'], {}), '(err)\n', (4097, 4102), True, 'import numpy as N\n'), ((3584, 3596), 'numpy.abs', 'N.abs', (['gamma'], {}), '(gamma)\n', (3589, 3596), True, 'import numpy as N\n'), ((3667, 3679), 'numpy.abs', 'N.abs', (['gamma'], {}), '(gamma)\n', (3672, 3679), True, 'import numpy as N\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import time import sys import functools import math import paddle import paddle.fluid as fluid import paddle.dataset.flowers as flowers import models import reader import argparse from models.learning_rate import cosine_decay from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 256, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('total_images', int, 1281167, "Training image number.") add_arg('num_epochs', int, 120, "number of epochs.") add_arg('class_dim', int, 1000, "Class number.") add_arg('image_shape', str, "3,224,224", "input image size") add_arg('model_save_dir', str, "output", "model save directory") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('checkpoint', str, None, "Whether to resume checkpoint.") add_arg('lr', float, 0.1, "set learning rate.") add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate decay strategy.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def optimizer_setting(params): ls = params["learning_strategy"] if ls["name"] == "piecewise_decay": if "total_images" not in params: total_images = 1281167 else: total_images = params["total_images"] batch_size = ls["batch_size"] step = int(total_images / batch_size + 1) bd = [step * e for e in ls["epochs"]] base_lr = params["lr"] lr = [] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] optimizer = fluid.optimizer.Momentum( learning_rate=fluid.layers.piecewise_decay( boundaries=bd, values=lr), momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) elif ls["name"] == "cosine_decay": if "total_images" not in params: total_images = 1281167 else: total_images = params["total_images"] batch_size = ls["batch_size"] step = int(total_images / batch_size + 1) lr = params["lr"] num_epochs = params["num_epochs"] optimizer = fluid.optimizer.Momentum( learning_rate=cosine_decay( learning_rate=lr, step_each_epoch=step, epochs=num_epochs), momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) else: lr = params["lr"] optimizer = fluid.optimizer.Momentum( learning_rate=lr, momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) return optimizer def train(args): # parameters from arguments class_dim = args.class_dim model_name = args.model checkpoint = args.checkpoint pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt model_save_dir = args.model_save_dir image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # model definition model = models.__dict__[model_name]() if args.enable_ce: assert model_name == "SE_ResNeXt50_32x4d" fluid.default_startup_program().random_seed = 1000 model.params["enable_ce"] = True class_dim = 102 if model_name == "GoogleNet": out0, out1, out2 = model.net(input=image, class_dim=class_dim) cost0 = fluid.layers.cross_entropy(input=out0, label=label) cost1 = fluid.layers.cross_entropy(input=out1, label=label) cost2 = fluid.layers.cross_entropy(input=out2, label=label) avg_cost0 = fluid.layers.mean(x=cost0) avg_cost1 = fluid.layers.mean(x=cost1) avg_cost2 = fluid.layers.mean(x=cost2) avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2 acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5) else: out = model.net(input=image, class_dim=class_dim) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) test_program = fluid.default_main_program().clone(for_test=True) # parameters from model and arguments params = model.params params["total_images"] = args.total_images params["lr"] = args.lr params["num_epochs"] = args.num_epochs params["learning_strategy"]["batch_size"] = args.batch_size params["learning_strategy"]["name"] = args.lr_strategy # initialize optimizer optimizer = optimizer_setting(params) opts = optimizer.minimize(avg_cost) if with_memory_optimization: fluid.memory_optimize(fluid.default_main_program()) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if checkpoint is not None: fluid.io.load_persistables(exe, checkpoint) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) train_batch_size = args.batch_size test_batch_size = 16 if not args.enable_ce: train_reader = paddle.batch(reader.train(), batch_size=train_batch_size) test_reader = paddle.batch(reader.val(), batch_size=test_batch_size) else: # use flowers dataset for CE and set use_xmap False to avoid disorder data # but it is time consuming. For faster speed, need another dataset. import random random.seed(0) np.random.seed(0) train_reader = paddle.batch( flowers.train(use_xmap=False), batch_size=train_batch_size) test_reader = paddle.batch( flowers.test(use_xmap=False), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) train_exe = fluid.ParallelExecutor( use_cuda=True if args.use_gpu else False, loss_name=avg_cost.name) fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name] gpu = os.getenv("CUDA_VISIBLE_DEVICES") or "" gpu_nums = len(gpu.split(",")) for pass_id in range(params["num_epochs"]): train_info = [[], [], []] test_info = [[], [], []] train_time = [] for batch_id, data in enumerate(train_reader()): t1 = time.time() loss, acc1, acc5 = train_exe.run(fetch_list, feed=feeder.feed(data)) t2 = time.time() period = t2 - t1 loss = np.mean(np.array(loss)) acc1 = np.mean(np.array(acc1)) acc5 = np.mean(np.array(acc5)) train_info[0].append(loss) train_info[1].append(acc1) train_info[2].append(acc5) train_time.append(period) if batch_id % 10 == 0: print("Pass {0}, trainbatch {1}, loss {2}, \ acc1 {3}, acc5 {4} time {5}" .format(pass_id, \ batch_id, loss, acc1, acc5, \ "%2.2f sec" % period)) sys.stdout.flush() train_loss = np.array(train_info[0]).mean() train_acc1 = np.array(train_info[1]).mean() train_acc5 = np.array(train_info[2]).mean() train_speed = np.array(train_time).mean() / train_batch_size cnt = 0 for test_batch_id, data in enumerate(test_reader()): t1 = time.time() loss, acc1, acc5 = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) t2 = time.time() period = t2 - t1 loss = np.mean(loss) acc1 = np.mean(acc1) acc5 = np.mean(acc5) test_info[0].append(loss * len(data)) test_info[1].append(acc1 * len(data)) test_info[2].append(acc5 * len(data)) cnt += len(data) if test_batch_id % 10 == 0: print("Pass {0},testbatch {1},loss {2}, \ acc1 {3},acc5 {4},time {5}" .format(pass_id, \ test_batch_id, loss, acc1, acc5, \ "%2.2f sec" % period)) sys.stdout.flush() test_loss = np.sum(test_info[0]) / cnt test_acc1 = np.sum(test_info[1]) / cnt test_acc5 = np.sum(test_info[2]) / cnt print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, " "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(pass_id, \ train_loss, train_acc1, train_acc5, test_loss, test_acc1, \ test_acc5)) sys.stdout.flush() model_path = os.path.join(model_save_dir + '/' + model_name, str(pass_id)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables(exe, model_path) # This is for continuous evaluation only if args.enable_ce and pass_id == args.num_epochs - 1: if gpu_nums == 1: # Use the mean cost/acc for training print("kpis train_cost %s" % train_loss) print("kpis train_acc_top1 %s" % train_acc1) print("kpis train_acc_top5 %s" % train_acc5) # Use the mean cost/acc for testing print("kpis test_cost %s" % test_loss) print("kpis test_acc_top1 %s" % test_acc1) print("kpis test_acc_top5 %s" % test_acc5) print("kpis train_speed %s" % train_speed) else: # Use the mean cost/acc for training print("kpis train_cost_card%s %s" % (gpu_nums, train_loss)) print("kpis train_acc_top1_card%s %s" % (gpu_nums, train_acc1)) print("kpis train_acc_top5_card%s %s" % (gpu_nums, train_acc5)) # Use the mean cost/acc for testing print("kpis test_cost_card%s %s" % (gpu_nums, test_loss)) print("kpis test_acc_top1_card%s %s" % (gpu_nums, test_acc1)) print("kpis test_acc_top5_card%s %s" % (gpu_nums, test_acc5)) print("kpis train_speed_card%s %s" % (gpu_nums, train_speed)) def main(): args = parser.parse_args() print_arguments(args) train(args) if __name__ == '__main__': main()
[ "paddle.fluid.DataFeeder", "paddle.dataset.flowers.test", "paddle.fluid.layers.data", "paddle.fluid.layers.cross_entropy", "numpy.array", "paddle.fluid.Executor", "paddle.dataset.flowers.train", "paddle.fluid.layers.piecewise_decay", "reader.train", "numpy.mean", "argparse.ArgumentParser", "paddle.fluid.default_startup_program", "paddle.fluid.layers.mean", "paddle.fluid.default_main_program", "os.path.isdir", "paddle.fluid.io.load_vars", "numpy.random.seed", "sys.stdout.flush", "models.learning_rate.cosine_decay", "paddle.fluid.io.save_persistables", "paddle.fluid.io.load_persistables", "paddle.fluid.CPUPlace", "time.time", "reader.val", "os.getenv", "os.makedirs", "paddle.fluid.layers.accuracy", "os.path.join", "random.seed", "numpy.sum", "paddle.fluid.regularizer.L2Decay", "functools.partial", "paddle.fluid.CUDAPlace", "paddle.fluid.ParallelExecutor", "utility.print_arguments" ]
[((425, 469), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (448, 469), False, 'import argparse\n'), ((480, 530), 'functools.partial', 'functools.partial', (['add_arguments'], {'argparser': 'parser'}), '(add_arguments, argparser=parser)\n', (497, 530), False, 'import functools\n'), ((3879, 3946), 'paddle.fluid.layers.data', 'fluid.layers.data', ([], {'name': '"""image"""', 'shape': 'image_shape', 'dtype': '"""float32"""'}), "(name='image', shape=image_shape, dtype='float32')\n", (3896, 3946), True, 'import paddle.fluid as fluid\n'), ((3959, 4016), 'paddle.fluid.layers.data', 'fluid.layers.data', ([], {'name': '"""label"""', 'shape': '[1]', 'dtype': '"""int64"""'}), "(name='label', shape=[1], dtype='int64')\n", (3976, 4016), True, 'import paddle.fluid as fluid\n'), ((5923, 5944), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (5937, 5944), True, 'import paddle.fluid as fluid\n'), ((6995, 7050), 'paddle.fluid.DataFeeder', 'fluid.DataFeeder', ([], {'place': 'place', 'feed_list': '[image, label]'}), '(place=place, feed_list=[image, label])\n', (7011, 7050), True, 'import paddle.fluid as fluid\n'), ((7068, 7162), 'paddle.fluid.ParallelExecutor', 'fluid.ParallelExecutor', ([], {'use_cuda': '(True if args.use_gpu else False)', 'loss_name': 'avg_cost.name'}), '(use_cuda=True if args.use_gpu else False, loss_name=\n avg_cost.name)\n', (7090, 7162), True, 'import paddle.fluid as fluid\n'), ((11723, 11744), 'utility.print_arguments', 'print_arguments', (['args'], {}), '(args)\n', (11738, 11744), False, 'from utility import add_arguments, print_arguments\n'), ((4403, 4454), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', ([], {'input': 'out0', 'label': 'label'}), '(input=out0, label=label)\n', (4429, 4454), True, 'import paddle.fluid as fluid\n'), ((4471, 4522), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', ([], {'input': 'out1', 'label': 'label'}), '(input=out1, label=label)\n', (4497, 4522), True, 'import paddle.fluid as fluid\n'), ((4539, 4590), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', ([], {'input': 'out2', 'label': 'label'}), '(input=out2, label=label)\n', (4565, 4590), True, 'import paddle.fluid as fluid\n'), ((4611, 4637), 'paddle.fluid.layers.mean', 'fluid.layers.mean', ([], {'x': 'cost0'}), '(x=cost0)\n', (4628, 4637), True, 'import paddle.fluid as fluid\n'), ((4658, 4684), 'paddle.fluid.layers.mean', 'fluid.layers.mean', ([], {'x': 'cost1'}), '(x=cost1)\n', (4675, 4684), True, 'import paddle.fluid as fluid\n'), ((4705, 4731), 'paddle.fluid.layers.mean', 'fluid.layers.mean', ([], {'x': 'cost2'}), '(x=cost2)\n', (4722, 4731), True, 'import paddle.fluid as fluid\n'), ((4817, 4868), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', ([], {'input': 'out0', 'label': 'label', 'k': '(1)'}), '(input=out0, label=label, k=1)\n', (4838, 4868), True, 'import paddle.fluid as fluid\n'), ((4888, 4939), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', ([], {'input': 'out0', 'label': 'label', 'k': '(5)'}), '(input=out0, label=label, k=5)\n', (4909, 4939), True, 'import paddle.fluid as fluid\n'), ((5023, 5073), 'paddle.fluid.layers.cross_entropy', 'fluid.layers.cross_entropy', ([], {'input': 'out', 'label': 'label'}), '(input=out, label=label)\n', (5049, 5073), True, 'import paddle.fluid as fluid\n'), ((5094, 5119), 'paddle.fluid.layers.mean', 'fluid.layers.mean', ([], {'x': 'cost'}), '(x=cost)\n', (5111, 5119), True, 'import paddle.fluid as fluid\n'), ((5139, 5189), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', ([], {'input': 'out', 'label': 'label', 'k': '(1)'}), '(input=out, label=label, k=1)\n', (5160, 5189), True, 'import paddle.fluid as fluid\n'), ((5209, 5259), 'paddle.fluid.layers.accuracy', 'fluid.layers.accuracy', ([], {'input': 'out', 'label': 'label', 'k': '(5)'}), '(input=out, label=label, k=5)\n', (5230, 5259), True, 'import paddle.fluid as fluid\n'), ((5856, 5874), 'paddle.fluid.CUDAPlace', 'fluid.CUDAPlace', (['(0)'], {}), '(0)\n', (5871, 5874), True, 'import paddle.fluid as fluid\n'), ((5896, 5912), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (5910, 5912), True, 'import paddle.fluid as fluid\n'), ((5957, 5988), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (5986, 5988), True, 'import paddle.fluid as fluid\n'), ((6030, 6073), 'paddle.fluid.io.load_persistables', 'fluid.io.load_persistables', (['exe', 'checkpoint'], {}), '(exe, checkpoint)\n', (6056, 6073), True, 'import paddle.fluid as fluid\n'), ((6213, 6274), 'paddle.fluid.io.load_vars', 'fluid.io.load_vars', (['exe', 'pretrained_model'], {'predicate': 'if_exist'}), '(exe, pretrained_model, predicate=if_exist)\n', (6231, 6274), True, 'import paddle.fluid as fluid\n'), ((6725, 6739), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (6736, 6739), False, 'import random\n'), ((6748, 6765), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (6762, 6765), True, 'import numpy as np\n'), ((7242, 7275), 'os.getenv', 'os.getenv', (['"""CUDA_VISIBLE_DEVICES"""'], {}), "('CUDA_VISIBLE_DEVICES')\n", (7251, 7275), False, 'import os\n'), ((9928, 9946), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9944, 9946), False, 'import sys\n'), ((10151, 10194), 'paddle.fluid.io.save_persistables', 'fluid.io.save_persistables', (['exe', 'model_path'], {}), '(exe, model_path)\n', (10177, 10194), True, 'import paddle.fluid as fluid\n'), ((4165, 4196), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (4194, 4196), True, 'import paddle.fluid as fluid\n'), ((5280, 5308), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (5306, 5308), True, 'import paddle.fluid as fluid\n'), ((5813, 5841), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (5839, 5841), True, 'import paddle.fluid as fluid\n'), ((6404, 6418), 'reader.train', 'reader.train', ([], {}), '()\n', (6416, 6418), False, 'import reader\n'), ((6484, 6496), 'reader.val', 'reader.val', ([], {}), '()\n', (6494, 6496), False, 'import reader\n'), ((6815, 6844), 'paddle.dataset.flowers.train', 'flowers.train', ([], {'use_xmap': '(False)'}), '(use_xmap=False)\n', (6828, 6844), True, 'import paddle.dataset.flowers as flowers\n'), ((6923, 6951), 'paddle.dataset.flowers.test', 'flowers.test', ([], {'use_xmap': '(False)'}), '(use_xmap=False)\n', (6935, 6951), True, 'import paddle.dataset.flowers as flowers\n'), ((7530, 7541), 'time.time', 'time.time', ([], {}), '()\n', (7539, 7541), False, 'import time\n'), ((7640, 7651), 'time.time', 'time.time', ([], {}), '()\n', (7649, 7651), False, 'import time\n'), ((8637, 8648), 'time.time', 'time.time', ([], {}), '()\n', (8646, 8648), False, 'import time\n'), ((8844, 8855), 'time.time', 'time.time', ([], {}), '()\n', (8853, 8855), False, 'import time\n'), ((8904, 8917), 'numpy.mean', 'np.mean', (['loss'], {}), '(loss)\n', (8911, 8917), True, 'import numpy as np\n'), ((8937, 8950), 'numpy.mean', 'np.mean', (['acc1'], {}), '(acc1)\n', (8944, 8950), True, 'import numpy as np\n'), ((8970, 8983), 'numpy.mean', 'np.mean', (['acc5'], {}), '(acc5)\n', (8977, 8983), True, 'import numpy as np\n'), ((9541, 9561), 'numpy.sum', 'np.sum', (['test_info[0]'], {}), '(test_info[0])\n', (9547, 9561), True, 'import numpy as np\n'), ((9588, 9608), 'numpy.sum', 'np.sum', (['test_info[1]'], {}), '(test_info[1])\n', (9594, 9608), True, 'import numpy as np\n'), ((9635, 9655), 'numpy.sum', 'np.sum', (['test_info[2]'], {}), '(test_info[2])\n', (9641, 9655), True, 'import numpy as np\n'), ((10080, 10105), 'os.path.isdir', 'os.path.isdir', (['model_path'], {}), '(model_path)\n', (10093, 10105), False, 'import os\n'), ((10119, 10142), 'os.makedirs', 'os.makedirs', (['model_path'], {}), '(model_path)\n', (10130, 10142), False, 'import os\n'), ((2396, 2450), 'paddle.fluid.layers.piecewise_decay', 'fluid.layers.piecewise_decay', ([], {'boundaries': 'bd', 'values': 'lr'}), '(boundaries=bd, values=lr)\n', (2424, 2450), True, 'import paddle.fluid as fluid\n'), ((2522, 2555), 'paddle.fluid.regularizer.L2Decay', 'fluid.regularizer.L2Decay', (['(0.0001)'], {}), '(0.0001)\n', (2547, 2555), True, 'import paddle.fluid as fluid\n'), ((6162, 6202), 'os.path.join', 'os.path.join', (['pretrained_model', 'var.name'], {}), '(pretrained_model, var.name)\n', (6174, 6202), False, 'import os\n'), ((7708, 7722), 'numpy.array', 'np.array', (['loss'], {}), '(loss)\n', (7716, 7722), True, 'import numpy as np\n'), ((7751, 7765), 'numpy.array', 'np.array', (['acc1'], {}), '(acc1)\n', (7759, 7765), True, 'import numpy as np\n'), ((7794, 7808), 'numpy.array', 'np.array', (['acc5'], {}), '(acc5)\n', (7802, 7808), True, 'import numpy as np\n'), ((8298, 8316), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (8314, 8316), False, 'import sys\n'), ((8339, 8362), 'numpy.array', 'np.array', (['train_info[0]'], {}), '(train_info[0])\n', (8347, 8362), True, 'import numpy as np\n'), ((8391, 8414), 'numpy.array', 'np.array', (['train_info[1]'], {}), '(train_info[1])\n', (8399, 8414), True, 'import numpy as np\n'), ((8443, 8466), 'numpy.array', 'np.array', (['train_info[2]'], {}), '(train_info[2])\n', (8451, 8466), True, 'import numpy as np\n'), ((9501, 9519), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9517, 9519), False, 'import sys\n'), ((2965, 3036), 'models.learning_rate.cosine_decay', 'cosine_decay', ([], {'learning_rate': 'lr', 'step_each_epoch': 'step', 'epochs': 'num_epochs'}), '(learning_rate=lr, step_each_epoch=step, epochs=num_epochs)\n', (2977, 3036), False, 'from models.learning_rate import cosine_decay\n'), ((3108, 3141), 'paddle.fluid.regularizer.L2Decay', 'fluid.regularizer.L2Decay', (['(0.0001)'], {}), '(0.0001)\n', (3133, 3141), True, 'import paddle.fluid as fluid\n'), ((3306, 3339), 'paddle.fluid.regularizer.L2Decay', 'fluid.regularizer.L2Decay', (['(0.0001)'], {}), '(0.0001)\n', (3331, 3339), True, 'import paddle.fluid as fluid\n'), ((8496, 8516), 'numpy.array', 'np.array', (['train_time'], {}), '(train_time)\n', (8504, 8516), True, 'import numpy as np\n')]
from __future__ import print_function import os import base64 import cStringIO import time import numpy from PIL import Image from flask import (Flask, request, render_template, url_for, flash, redirect, send_file) from SeamErasure import seam_erasure, obj_reader, util from SeamErasure.lib import weight_data app = Flask(__name__) ALLOWED_EXTENSIONS = set(['png', 'tga', 'jpg', 'jpeg', 'gif', 'tif', 'tiff']) def allowed_file(filename): return ('.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS) def is_data_file(filename): return "data" in request.form or ('.' in filename and filename.rsplit('.', 1)[1].lower() == "data") def upload_file(fileID): """ Returns the uploaded file with fileID. None if no file uploaded. """ if request.method == 'POST': if fileID not in request.files: return None else: inFile = request.files[fileID] if inFile.filename == '': return None elif inFile: # and allowed_file(file.filename) return inFile else: return None @app.route('/') def index(): return render_template('min-form.html') @app.route('/erased', methods=['GET', 'POST']) def erase(): if request.method == 'POST': try: startTime = time.time() # Check the uploaded files obj_file = upload_file("obj-input") if not obj_file or ('.' in obj_file.filename and obj_file.filename.rsplit('.', 1)[1].lower() != "obj"): return render_template('min-error.html', error_msg="No OBJ model provided.") tex_file = upload_file("tex-input") if not tex_file: return render_template('min-error.html', error_msg="No texture image provided.") mesh = obj_reader.quads_to_triangles( obj_reader.parse_obj(obj_file)) isFloatTexture = isDataFile = False if(is_data_file(tex_file.filename)): textureData = weight_data.read_tex_from_file(tex_file)[0] isFloatTexture, isDataFile = True, True else: textureData = numpy.array(Image.open(tex_file).transpose( Image.FLIP_TOP_BOTTOM)) isFloatTexture = not issubclass(textureData.dtype.type, numpy.integer) if(not isFloatTexture): textureData = textureData / 255.0 height, width, depth = (textureData.shape + (1,))[:3] sv_methods = {"none": seam_erasure.SeamValueMethod.NONE, "texture": seam_erasure.SeamValueMethod.TEXTURE, "lerp": seam_erasure.SeamValueMethod.LERP} sv_method = sv_methods[request.form["sv"]] do_global = "global" in request.form out = seam_erasure.erase_seam(mesh, textureData, do_global=do_global, sv_method=sv_method, display_energy_file=None) out = out.reshape((height, width, -1)) if(out.shape[2] < 2): out = numpy.squeeze(out, axis=2) if(not isFloatTexture): out = util.to_uint8(out) base, ext = os.path.splitext(os.path.basename(tex_file.filename)) out_filename = base + "-erased" + ext if isDataFile: img_io = cStringIO.StringIO() weight_data.write_tex_to_file(img_io, textureData) img_io.seek(0) return send_file(img_io, as_attachment=True, attachment_filename=out_filename) else: texture = Image.fromarray(out).transpose(Image.FLIP_TOP_BOTTOM) img_io = cStringIO.StringIO() texture.save(img_io, format=Image.EXTENSION[ext]) img_io.seek(0) if isFloatTexture: return send_file(img_io, as_attachment=True, attachment_filename=out_filename) data_uri = base64.b64encode(img_io.getvalue()) try: return render_template('min-results.html', min_tex=data_uri, runtime=("%.2f" % (time.time() - startTime)), mime_type=Image.MIME[Image.EXTENSION[ext]]) except Exception: return send_file(img_io, as_attachment=True, attachment_filename=out_filename) except Exception as e: return render_template('min-error.html', error_msg=("Unable to erase the texture (%s)." % e.message)) return render_template('min-form.html') if __name__ == '__main__': app.run(debug=True)
[ "flask.render_template", "PIL.Image.fromarray", "cStringIO.StringIO", "SeamErasure.obj_reader.parse_obj", "SeamErasure.lib.weight_data.write_tex_to_file", "PIL.Image.open", "flask.Flask", "SeamErasure.lib.weight_data.read_tex_from_file", "SeamErasure.seam_erasure.erase_seam", "numpy.squeeze", "os.path.basename", "SeamErasure.util.to_uint8", "flask.send_file", "time.time" ]
[((326, 341), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (331, 341), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((1175, 1207), 'flask.render_template', 'render_template', (['"""min-form.html"""'], {}), "('min-form.html')\n", (1190, 1207), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((4759, 4791), 'flask.render_template', 'render_template', (['"""min-form.html"""'], {}), "('min-form.html')\n", (4774, 4791), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((1340, 1351), 'time.time', 'time.time', ([], {}), '()\n', (1349, 1351), False, 'import time\n'), ((2931, 3046), 'SeamErasure.seam_erasure.erase_seam', 'seam_erasure.erase_seam', (['mesh', 'textureData'], {'do_global': 'do_global', 'sv_method': 'sv_method', 'display_energy_file': 'None'}), '(mesh, textureData, do_global=do_global, sv_method=\n sv_method, display_energy_file=None)\n', (2954, 3046), False, 'from SeamErasure import seam_erasure, obj_reader, util\n'), ((1598, 1667), 'flask.render_template', 'render_template', (['"""min-error.html"""'], {'error_msg': '"""No OBJ model provided."""'}), "('min-error.html', error_msg='No OBJ model provided.')\n", (1613, 1667), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((1789, 1862), 'flask.render_template', 'render_template', (['"""min-error.html"""'], {'error_msg': '"""No texture image provided."""'}), "('min-error.html', error_msg='No texture image provided.')\n", (1804, 1862), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((1950, 1980), 'SeamErasure.obj_reader.parse_obj', 'obj_reader.parse_obj', (['obj_file'], {}), '(obj_file)\n', (1970, 1980), False, 'from SeamErasure import seam_erasure, obj_reader, util\n'), ((3182, 3208), 'numpy.squeeze', 'numpy.squeeze', (['out'], {'axis': '(2)'}), '(out, axis=2)\n', (3195, 3208), False, 'import numpy\n'), ((3267, 3285), 'SeamErasure.util.to_uint8', 'util.to_uint8', (['out'], {}), '(out)\n', (3280, 3285), False, 'from SeamErasure import seam_erasure, obj_reader, util\n'), ((3328, 3363), 'os.path.basename', 'os.path.basename', (['tex_file.filename'], {}), '(tex_file.filename)\n', (3344, 3363), False, 'import os\n'), ((3467, 3487), 'cStringIO.StringIO', 'cStringIO.StringIO', ([], {}), '()\n', (3485, 3487), False, 'import cStringIO\n'), ((3504, 3554), 'SeamErasure.lib.weight_data.write_tex_to_file', 'weight_data.write_tex_to_file', (['img_io', 'textureData'], {}), '(img_io, textureData)\n', (3533, 3554), False, 'from SeamErasure.lib import weight_data\n'), ((3610, 3681), 'flask.send_file', 'send_file', (['img_io'], {'as_attachment': '(True)', 'attachment_filename': 'out_filename'}), '(img_io, as_attachment=True, attachment_filename=out_filename)\n', (3619, 3681), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((3825, 3845), 'cStringIO.StringIO', 'cStringIO.StringIO', ([], {}), '()\n', (3843, 3845), False, 'import cStringIO\n'), ((4637, 4734), 'flask.render_template', 'render_template', (['"""min-error.html"""'], {'error_msg': "('Unable to erase the texture (%s).' % e.message)"}), "('min-error.html', error_msg=\n 'Unable to erase the texture (%s).' % e.message)\n", (4652, 4734), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((2110, 2150), 'SeamErasure.lib.weight_data.read_tex_from_file', 'weight_data.read_tex_from_file', (['tex_file'], {}), '(tex_file)\n', (2140, 2150), False, 'from SeamErasure.lib import weight_data\n'), ((4006, 4077), 'flask.send_file', 'send_file', (['img_io'], {'as_attachment': '(True)', 'attachment_filename': 'out_filename'}), '(img_io, as_attachment=True, attachment_filename=out_filename)\n', (4015, 4077), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((3746, 3766), 'PIL.Image.fromarray', 'Image.fromarray', (['out'], {}), '(out)\n', (3761, 3766), False, 'from PIL import Image\n'), ((4491, 4562), 'flask.send_file', 'send_file', (['img_io'], {'as_attachment': '(True)', 'attachment_filename': 'out_filename'}), '(img_io, as_attachment=True, attachment_filename=out_filename)\n', (4500, 4562), False, 'from flask import Flask, request, render_template, url_for, flash, redirect, send_file\n'), ((2270, 2290), 'PIL.Image.open', 'Image.open', (['tex_file'], {}), '(tex_file)\n', (2280, 2290), False, 'from PIL import Image\n'), ((4335, 4346), 'time.time', 'time.time', ([], {}), '()\n', (4344, 4346), False, 'import time\n')]
# Copyright 2018 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ DDPG implementation in Tensorflow Eager Execution """ import numpy as np import tensorflow as tf from utils import PytorchInitializer layers = tf.keras.layers regularizers = tf.keras.regularizers losses = tf.keras.losses class Actor(tf.keras.Model): def __init__(self, state_dim, action_dim, max_action, name="Actor"): super().__init__(name=name) self.l1 = layers.Dense(400, kernel_initializer=PytorchInitializer(), name="L1") self.l2 = layers.Dense(300, kernel_initializer=PytorchInitializer(), name="L2") self.l3 = layers.Dense(action_dim, kernel_initializer=PytorchInitializer(), name="L3") self.max_action = max_action # 後段の処理のために早めにshapeを確定させる dummy_state = tf.constant(np.zeros(shape=[1, state_dim], dtype=np.float32)) self(dummy_state) def call(self, inputs): with tf.device("/gpu:0"): features = tf.nn.relu(self.l1(inputs)) features = tf.nn.relu(self.l2(features)) features = self.l3(features) action = self.max_action * tf.nn.tanh(features) return action class Critic(tf.keras.Model): def __init__(self, state_dim, action_dim, wd=1e-2, name="Critic"): super().__init__(name=name) self.l1 = layers.Dense(400, kernel_initializer=PytorchInitializer(), kernel_regularizer=regularizers.l2(wd), bias_regularizer=regularizers.l2(wd), name="L1") self.l2 = layers.Dense(300, kernel_initializer=PytorchInitializer(), kernel_regularizer=regularizers.l2(wd), bias_regularizer=regularizers.l2(wd), name="L2") self.l3 = layers.Dense(1, kernel_initializer=PytorchInitializer(), kernel_regularizer=regularizers.l2(wd), bias_regularizer=regularizers.l2(wd), name="L3") dummy_state = tf.constant(np.zeros(shape=[1, state_dim], dtype=np.float32)) dummy_action = tf.constant(np.zeros(shape=[1, action_dim], dtype=np.float32)) self([dummy_state, dummy_action]) def call(self, inputs): with tf.device("/gpu:0"): x, u = inputs x = tf.nn.relu(self.l1(x)) inner_feat = tf.concat([x, u], axis=1) x = tf.nn.relu(self.l2(inner_feat)) x = self.l3(x) return x class DDPG(tf.contrib.checkpoint.Checkpointable): def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action) self.actor_target = Actor(state_dim, action_dim, max_action) # initialize target network for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(param) self.actor_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4) self.critic = Critic(state_dim, action_dim) self.critic_target = Critic(state_dim, action_dim) # initialize target network for param, target_param in zip(self.critic.weights, self.critic_target.weights): target_param.assign(param) self.critic_optimizer = tf.train.AdamOptimizer(learning_rate=1e-3) def select_action(self, state): """ :param np.ndarray state: :return: """ assert isinstance(state, np.ndarray) assert len(state.shape) == 1 state = np.expand_dims(state, axis=0).astype(np.float32) action = self.actor(state).numpy() return action[0] def train(self, replay_buffer, iterations, batch_size=64, discount=0.99, tau=0.001): for it in range(iterations): state, next_state, action, reward, done = replay_buffer.sample(batch_size) state = np.array(state, dtype=np.float32) next_state = np.array(next_state, dtype=np.float32) action = np.array(action, dtype=np.float32) reward = np.array(reward, dtype=np.float32) done = np.array(done, dtype=np.float32) not_done = 1 - done with tf.device("/gpu:0"): with tf.GradientTape() as tape: target_Q = self.critic_target([next_state, self.actor_target(next_state)]) target_Q = reward + (not_done * discount * target_Q) # detach => stop_gradient target_Q = tf.stop_gradient(target_Q) current_Q = self.critic([state, action]) # Compute critic loss + L2 loss critic_loss = tf.reduce_mean(losses.MSE(current_Q, target_Q)) + 0.5*tf.add_n(self.critic.losses) critic_grad = tape.gradient(critic_loss, self.critic.trainable_variables) self.critic_optimizer.apply_gradients(zip(critic_grad, self.critic.trainable_variables)) with tf.GradientTape() as tape: next_action = self.actor(state) actor_loss = -tf.reduce_mean(self.critic([state, next_action])) actor_grad = tape.gradient(actor_loss, self.actor.trainable_variables) self.actor_optimizer.apply_gradients(zip(actor_grad, self.actor.trainable_variables)) # Update target networks for param, target_param in zip(self.critic.weights, self.critic_target.weights): target_param.assign(tau * param + (1 - tau) * target_param) for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(tau * param + (1 - tau) * target_param) class DDPG_fast(tf.contrib.checkpoint.Checkpointable): def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action) self.actor_target = Actor(state_dim, action_dim, max_action) self.actor_optimizer = tf.train.AdamOptimizer(learning_rate=1e-4) # initialize target network for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(param) self.critic = Critic(state_dim, action_dim) self.critic_target = Critic(state_dim, action_dim) self.critic_optimizer = tf.train.AdamOptimizer(learning_rate=1e-3) # initialize target network for param, target_param in zip(self.critic.weights, self.critic_target.weights): target_param.assign(param) def select_action(self, state): """ :param np.ndarray state: :return: """ assert isinstance(state, np.ndarray) assert len(state.shape) == 1 state = np.expand_dims(state, axis=0).astype(np.float32) action = self._select_action_body(tf.constant(state)) return action.numpy()[0] @tf.contrib.eager.defun def _select_action_body(self, state): """ :param np.ndarray state: :return: """ action = self.actor(state) return action def train(self, replay_buffer, iterations, batch_size=64, discount=0.99, tau=0.001): for it in range(iterations): state, next_state, action, reward, done = replay_buffer.sample(batch_size) state = np.array(state, dtype=np.float32) next_state = np.array(next_state, dtype=np.float32) action = np.array(action, dtype=np.float32) reward = np.array(reward, dtype=np.float32) done = np.array(done, dtype=np.float32) not_done = 1 - done self._train_body(state, next_state, action, reward, not_done, discount, tau) @tf.contrib.eager.defun def _train_body(self, state, next_state, action, reward, not_done, discount, tau): with tf.device("/gpu:0"): with tf.GradientTape() as tape: target_Q = self.critic_target([next_state, self.actor_target(next_state)]) target_Q = reward + (not_done * discount * target_Q) # detach => stop_gradient target_Q = tf.stop_gradient(target_Q) current_Q = self.critic([state, action]) # Compute critic loss + L2 loss critic_loss = tf.reduce_mean(losses.MSE(current_Q, target_Q)) + 0.5*tf.add_n(self.critic.losses) critic_grad = tape.gradient(critic_loss, self.critic.trainable_variables) self.critic_optimizer.apply_gradients(zip(critic_grad, self.critic.trainable_variables)) with tf.GradientTape() as tape: next_action = self.actor(state) actor_loss = -tf.reduce_mean(self.critic([state, next_action])) actor_grad = tape.gradient(actor_loss, self.actor.trainable_variables) self.actor_optimizer.apply_gradients(zip(actor_grad, self.actor.trainable_variables)) # Update target networks for param, target_param in zip(self.critic.weights, self.critic_target.weights): target_param.assign(tau * param + (1 - tau) * target_param) for param, target_param in zip(self.actor.weights, self.actor_target.weights): target_param.assign(tau * param + (1 - tau) * target_param)
[ "tensorflow.device", "tensorflow.nn.tanh", "utils.PytorchInitializer", "tensorflow.GradientTape", "numpy.array", "tensorflow.concat", "numpy.zeros", "tensorflow.constant", "tensorflow.stop_gradient", "numpy.expand_dims", "tensorflow.add_n", "tensorflow.train.AdamOptimizer" ]
[((3624, 3668), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0001)'}), '(learning_rate=0.0001)\n', (3646, 3668), True, 'import tensorflow as tf\n'), ((3977, 4020), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (3999, 4020), True, 'import tensorflow as tf\n'), ((6716, 6760), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0001)'}), '(learning_rate=0.0001)\n', (6738, 6760), True, 'import tensorflow as tf\n'), ((7066, 7109), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.001)'}), '(learning_rate=0.001)\n', (7088, 7109), True, 'import tensorflow as tf\n'), ((1514, 1562), 'numpy.zeros', 'np.zeros', ([], {'shape': '[1, state_dim]', 'dtype': 'np.float32'}), '(shape=[1, state_dim], dtype=np.float32)\n', (1522, 1562), True, 'import numpy as np\n'), ((1632, 1651), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (1641, 1651), True, 'import tensorflow as tf\n'), ((2737, 2785), 'numpy.zeros', 'np.zeros', ([], {'shape': '[1, state_dim]', 'dtype': 'np.float32'}), '(shape=[1, state_dim], dtype=np.float32)\n', (2745, 2785), True, 'import numpy as np\n'), ((2822, 2871), 'numpy.zeros', 'np.zeros', ([], {'shape': '[1, action_dim]', 'dtype': 'np.float32'}), '(shape=[1, action_dim], dtype=np.float32)\n', (2830, 2871), True, 'import numpy as np\n'), ((2957, 2976), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (2966, 2976), True, 'import tensorflow as tf\n'), ((3069, 3094), 'tensorflow.concat', 'tf.concat', (['[x, u]'], {'axis': '(1)'}), '([x, u], axis=1)\n', (3078, 3094), True, 'import tensorflow as tf\n'), ((4586, 4619), 'numpy.array', 'np.array', (['state'], {'dtype': 'np.float32'}), '(state, dtype=np.float32)\n', (4594, 4619), True, 'import numpy as np\n'), ((4645, 4683), 'numpy.array', 'np.array', (['next_state'], {'dtype': 'np.float32'}), '(next_state, dtype=np.float32)\n', (4653, 4683), True, 'import numpy as np\n'), ((4705, 4739), 'numpy.array', 'np.array', (['action'], {'dtype': 'np.float32'}), '(action, dtype=np.float32)\n', (4713, 4739), True, 'import numpy as np\n'), ((4761, 4795), 'numpy.array', 'np.array', (['reward'], {'dtype': 'np.float32'}), '(reward, dtype=np.float32)\n', (4769, 4795), True, 'import numpy as np\n'), ((4815, 4847), 'numpy.array', 'np.array', (['done'], {'dtype': 'np.float32'}), '(done, dtype=np.float32)\n', (4823, 4847), True, 'import numpy as np\n'), ((7576, 7594), 'tensorflow.constant', 'tf.constant', (['state'], {}), '(state)\n', (7587, 7594), True, 'import tensorflow as tf\n'), ((8069, 8102), 'numpy.array', 'np.array', (['state'], {'dtype': 'np.float32'}), '(state, dtype=np.float32)\n', (8077, 8102), True, 'import numpy as np\n'), ((8128, 8166), 'numpy.array', 'np.array', (['next_state'], {'dtype': 'np.float32'}), '(next_state, dtype=np.float32)\n', (8136, 8166), True, 'import numpy as np\n'), ((8188, 8222), 'numpy.array', 'np.array', (['action'], {'dtype': 'np.float32'}), '(action, dtype=np.float32)\n', (8196, 8222), True, 'import numpy as np\n'), ((8244, 8278), 'numpy.array', 'np.array', (['reward'], {'dtype': 'np.float32'}), '(reward, dtype=np.float32)\n', (8252, 8278), True, 'import numpy as np\n'), ((8298, 8330), 'numpy.array', 'np.array', (['done'], {'dtype': 'np.float32'}), '(done, dtype=np.float32)\n', (8306, 8330), True, 'import numpy as np\n'), ((8581, 8600), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (8590, 8600), True, 'import tensorflow as tf\n'), ((1097, 1117), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (1115, 1117), False, 'from utils import PytorchInitializer\n'), ((1216, 1236), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (1234, 1236), False, 'from utils import PytorchInitializer\n'), ((1342, 1362), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (1360, 1362), False, 'from utils import PytorchInitializer\n'), ((1837, 1857), 'tensorflow.nn.tanh', 'tf.nn.tanh', (['features'], {}), '(features)\n', (1847, 1857), True, 'import tensorflow as tf\n'), ((2075, 2095), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (2093, 2095), False, 'from utils import PytorchInitializer\n'), ((2303, 2323), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (2321, 2323), False, 'from utils import PytorchInitializer\n'), ((2529, 2549), 'utils.PytorchInitializer', 'PytorchInitializer', ([], {}), '()\n', (2547, 2549), False, 'from utils import PytorchInitializer\n'), ((4232, 4261), 'numpy.expand_dims', 'np.expand_dims', (['state'], {'axis': '(0)'}), '(state, axis=0)\n', (4246, 4261), True, 'import numpy as np\n'), ((4898, 4917), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (4907, 4917), True, 'import tensorflow as tf\n'), ((7485, 7514), 'numpy.expand_dims', 'np.expand_dims', (['state'], {'axis': '(0)'}), '(state, axis=0)\n', (7499, 7514), True, 'import numpy as np\n'), ((8620, 8637), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (8635, 8637), True, 'import tensorflow as tf\n'), ((8876, 8902), 'tensorflow.stop_gradient', 'tf.stop_gradient', (['target_Q'], {}), '(target_Q)\n', (8892, 8902), True, 'import tensorflow as tf\n'), ((9329, 9346), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (9344, 9346), True, 'import tensorflow as tf\n'), ((4941, 4958), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (4956, 4958), True, 'import tensorflow as tf\n'), ((5213, 5239), 'tensorflow.stop_gradient', 'tf.stop_gradient', (['target_Q'], {}), '(target_Q)\n', (5229, 5239), True, 'import tensorflow as tf\n'), ((5690, 5707), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (5705, 5707), True, 'import tensorflow as tf\n'), ((9094, 9122), 'tensorflow.add_n', 'tf.add_n', (['self.critic.losses'], {}), '(self.critic.losses)\n', (9102, 9122), True, 'import tensorflow as tf\n'), ((5443, 5471), 'tensorflow.add_n', 'tf.add_n', (['self.critic.losses'], {}), '(self.critic.losses)\n', (5451, 5471), True, 'import tensorflow as tf\n')]
import numpy as np from scipy.io import loadmat import os import logging from scipy.signal import butter, filtfilt def mat2npy(mat_chanmap_dir): mat_chanmap = loadmat(mat_chanmap_dir) x = mat_chanmap['xcoords'] y = mat_chanmap['ycoords'] npy_chanmap = np.hstack([x,y]) #np.save('chanmap.npy', npy_chanmap) # you can't just go saving this wherever return npy_chanmap def merge_filtered_files(filtered_location, output_directory, delete=True): filenames = os.listdir(filtered_location) filenames_sorted = sorted(filenames) f_out = os.path.join(output_directory, "standardized.bin") f = open(f_out, 'wb') for fname in filenames_sorted: if '.ipynb' in fname or 'standardized' in fname: continue res = np.load(os.path.join(filtered_location, fname)).astype('int16') # was float32 res.tofile(f) if delete: os.remove(os.path.join(filtered_location, fname)) # Added functions from yass to avoid mandatory yass install """ Filtering functions """ def _butterworth(ts, low_frequency, high_factor, order, sampling_frequency): """Butterworth filter Parameters ---------- ts: np.array T numpy array, where T is the number of time samples low_frequency: int Low pass frequency (Hz) high_factor: float High pass factor (proportion of sampling rate) order: int Order of Butterworth filter sampling_frequency: int Sampling frequency (Hz) Notes ----- This function can only be applied to a one dimensional array, to apply it to multiple channels use butterworth Raises ------ NotImplementedError If a multidmensional array is passed """ low = float(low_frequency) / sampling_frequency * 2 high = float(high_factor) * 2 b, a = butter(order, low, btype='high', analog=False) if ts.ndim == 1: return filtfilt(b, a, ts) else: T, C = ts.shape output = np.zeros((T, C), 'float32') for c in range(C): output[:, c] = filtfilt(b, a, ts[:, c]) return output def _mean_standard_deviation(rec, centered=False): """Determine standard deviation of noise in each channel Parameters ---------- rec : matrix [length of recording, number of channels] centered : bool if not standardized, center it Returns ------- sd : vector [number of channels] standard deviation in each channel """ # find standard deviation using robust method if not centered: centers = np.mean(rec, axis=0) rec = rec - centers[None] else: centers = np.zeros(rec.shape[1], 'float32') return np.median(np.abs(rec), 0) / 0.6745, centers def _standardize(rec, sd=None, centers=None): """Determine standard deviation of noise in each channel Parameters ---------- rec : matrix [length of recording, number of channels] recording sd : vector [number of chnanels,] standard deviation centered : bool if not standardized, center it Returns ------- matrix [length of recording, number of channels] standardized recording """ # find standard deviation using robust method if (sd is None) or (centers is None): sd, centers = _mean_standard_deviation(rec, centered=False) # standardize all channels with SD> 0.1 (Voltage?) units # Cat: TODO: ensure that this is actually correct for all types of channels idx1 = np.where(sd >= 0.1)[0] rec[:, idx1] = np.divide(rec[:, idx1] - centers[idx1][None], sd[idx1]) # zero out bad channels idx2 = np.where(sd < 0.1)[0] rec[:, idx2] = 0. return rec # return np.divide(rec, sd) def filter_standardize_batch(batch_id, reader, fname_mean_sd, apply_filter, out_dtype, output_directory, low_frequency=None, high_factor=None, order=None, sampling_frequency=None): """Butterworth filter for a one dimensional time series Parameters ---------- ts: np.array T numpy array, where T is the number of time samples low_frequency: int Low pass frequency (Hz) high_factor: float High pass factor (proportion of sampling rate) order: int Order of Butterworth filter sampling_frequency: int Sampling frequency (Hz) Notes ----- This function can only be applied to a one dimensional array, to apply it to multiple channels use butterworth Raises ------ NotImplementedError If a multidmensional array is passed """ logger = logging.getLogger(__name__) # filter if apply_filter: # read a batch ts = reader.read_data_batch(batch_id, add_buffer=True) ts = _butterworth(ts, low_frequency, high_factor, order, sampling_frequency) ts = ts[reader.buffer:-reader.buffer] else: ts = reader.read_data_batch(batch_id, add_buffer=False) # standardize temp = np.load(fname_mean_sd) sd = temp['sd'] centers = temp['centers'] ts = _standardize(ts, sd, centers) # save fname = os.path.join( output_directory, "standardized_{}.npy".format( str(batch_id).zfill(6))) np.save(fname, ts.astype(out_dtype)) # fname = os.path.join( # output_directory, # "standardized_{}.bin".format( # str(batch_id).zfill(6))) # f = open(fname, 'wb') # f.write(ts.astype(out_dtype)) def get_std(ts, sampling_frequency, fname, apply_filter=False, low_frequency=None, high_factor=None, order=None): """Butterworth filter for a one dimensional time series Parameters ---------- ts: np.array T numpy array, where T is the number of time samples low_frequency: int Low pass frequency (Hz) high_factor: float High pass factor (proportion of sampling rate) order: int Order of Butterworth filter sampling_frequency: int Sampling frequency (Hz) Notes ----- This function can only be applied to a one dimensional array, to apply it to multiple channels use butterworth Raises ------ NotImplementedError If a multidmensional array is passed """ # filter if apply_filter: ts = _butterworth(ts, low_frequency, high_factor, order, sampling_frequency) # standardize sd, centers = _mean_standard_deviation(ts) # save np.savez(fname, centers=centers, sd=sd)
[ "logging.getLogger", "numpy.mean", "numpy.savez", "os.listdir", "numpy.abs", "numpy.hstack", "scipy.signal.filtfilt", "numpy.where", "scipy.io.loadmat", "os.path.join", "scipy.signal.butter", "numpy.zeros", "numpy.load", "numpy.divide" ]
[((164, 188), 'scipy.io.loadmat', 'loadmat', (['mat_chanmap_dir'], {}), '(mat_chanmap_dir)\n', (171, 188), False, 'from scipy.io import loadmat\n'), ((274, 291), 'numpy.hstack', 'np.hstack', (['[x, y]'], {}), '([x, y])\n', (283, 291), True, 'import numpy as np\n'), ((495, 524), 'os.listdir', 'os.listdir', (['filtered_location'], {}), '(filtered_location)\n', (505, 524), False, 'import os\n'), ((578, 628), 'os.path.join', 'os.path.join', (['output_directory', '"""standardized.bin"""'], {}), "(output_directory, 'standardized.bin')\n", (590, 628), False, 'import os\n'), ((1853, 1899), 'scipy.signal.butter', 'butter', (['order', 'low'], {'btype': '"""high"""', 'analog': '(False)'}), "(order, low, btype='high', analog=False)\n", (1859, 1899), False, 'from scipy.signal import butter, filtfilt\n'), ((3591, 3646), 'numpy.divide', 'np.divide', (['(rec[:, idx1] - centers[idx1][None])', 'sd[idx1]'], {}), '(rec[:, idx1] - centers[idx1][None], sd[idx1])\n', (3600, 3646), True, 'import numpy as np\n'), ((4715, 4742), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4732, 4742), False, 'import logging\n'), ((5125, 5147), 'numpy.load', 'np.load', (['fname_mean_sd'], {}), '(fname_mean_sd)\n', (5132, 5147), True, 'import numpy as np\n'), ((6683, 6722), 'numpy.savez', 'np.savez', (['fname'], {'centers': 'centers', 'sd': 'sd'}), '(fname, centers=centers, sd=sd)\n', (6691, 6722), True, 'import numpy as np\n'), ((1937, 1955), 'scipy.signal.filtfilt', 'filtfilt', (['b', 'a', 'ts'], {}), '(b, a, ts)\n', (1945, 1955), False, 'from scipy.signal import butter, filtfilt\n'), ((2007, 2034), 'numpy.zeros', 'np.zeros', (['(T, C)', '"""float32"""'], {}), "((T, C), 'float32')\n", (2015, 2034), True, 'import numpy as np\n'), ((2603, 2623), 'numpy.mean', 'np.mean', (['rec'], {'axis': '(0)'}), '(rec, axis=0)\n', (2610, 2623), True, 'import numpy as np\n'), ((2686, 2719), 'numpy.zeros', 'np.zeros', (['rec.shape[1]', '"""float32"""'], {}), "(rec.shape[1], 'float32')\n", (2694, 2719), True, 'import numpy as np\n'), ((3549, 3568), 'numpy.where', 'np.where', (['(sd >= 0.1)'], {}), '(sd >= 0.1)\n', (3557, 3568), True, 'import numpy as np\n'), ((3687, 3705), 'numpy.where', 'np.where', (['(sd < 0.1)'], {}), '(sd < 0.1)\n', (3695, 3705), True, 'import numpy as np\n'), ((2089, 2113), 'scipy.signal.filtfilt', 'filtfilt', (['b', 'a', 'ts[:, c]'], {}), '(b, a, ts[:, c])\n', (2097, 2113), False, 'from scipy.signal import butter, filtfilt\n'), ((923, 961), 'os.path.join', 'os.path.join', (['filtered_location', 'fname'], {}), '(filtered_location, fname)\n', (935, 961), False, 'import os\n'), ((2742, 2753), 'numpy.abs', 'np.abs', (['rec'], {}), '(rec)\n', (2748, 2753), True, 'import numpy as np\n'), ((790, 828), 'os.path.join', 'os.path.join', (['filtered_location', 'fname'], {}), '(filtered_location, fname)\n', (802, 828), False, 'import os\n')]
# # Copyright (c) 2021 Idiap Research Institute, https://www.idiap.ch/ # Written by <NAME> <<EMAIL>> # """ Computes the proportion of novel bigrams in the summary. """ import numpy as np import pandas as pd from interface import Evaluation from eval_utils import preprocess_article, preprocess_summary class NovelBigrams(Evaluation): def __init__(self, input_dir, sent_sep='<q>'): super().__init__(input_dir) self.name = 'novel_bigrams' self.sent_sep = sent_sep def run(self): # read articles and summaries articles = self.read_articles() summaries = self.read_candidate_summaries() assert len(articles) == len(summaries) # compute novel bigrams for each article-summary pair novel_bigrams = [] for article, summary in zip(articles, summaries): article_words = preprocess_article(article) summary_tokenized_sents = preprocess_summary(summary, self.sent_sep) novel_bigrams.append(NovelBigrams.compute_novel_bigrams(article_words, summary_tokenized_sents)) novel_bigrams = [score for score in novel_bigrams if score is not None] # filter bad summaries # write results df = pd.DataFrame({'novel_bigrams': np.mean(novel_bigrams)}, index=[0]) df.to_csv(self.get_output_path(), index=False) @staticmethod def compute_novel_bigrams(article_words, summary_tokenized_sents): """ Computes the proportion of novel bigrams in the summary. """ bigrams_article = set((article_words[i], article_words[i + 1]) for i in range(len(article_words) - 1)) bigrams_summary = set() for sentence_words in summary_tokenized_sents: bigrams_summary |= set((sentence_words[i], sentence_words[i + 1]) for i in range(len(sentence_words) - 1)) return len(bigrams_summary - bigrams_article) / len(bigrams_summary) if len(bigrams_summary) > 0 else None if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Computes the proportion of novel bigrams in the summary.') parser.add_argument('--eval_dir', required=True, help='Evaluation directory') args = parser.parse_args() NovelBigrams(args.eval_dir).run()
[ "numpy.mean", "eval_utils.preprocess_summary", "eval_utils.preprocess_article", "argparse.ArgumentParser" ]
[((2008, 2108), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Computes the proportion of novel bigrams in the summary."""'}), "(description=\n 'Computes the proportion of novel bigrams in the summary.')\n", (2031, 2108), False, 'import argparse\n'), ((869, 896), 'eval_utils.preprocess_article', 'preprocess_article', (['article'], {}), '(article)\n', (887, 896), False, 'from eval_utils import preprocess_article, preprocess_summary\n'), ((935, 977), 'eval_utils.preprocess_summary', 'preprocess_summary', (['summary', 'self.sent_sep'], {}), '(summary, self.sent_sep)\n', (953, 977), False, 'from eval_utils import preprocess_article, preprocess_summary\n'), ((1260, 1282), 'numpy.mean', 'np.mean', (['novel_bigrams'], {}), '(novel_bigrams)\n', (1267, 1282), True, 'import numpy as np\n')]
from scipy.special import factorial from itertools import count import numpy as np from tmps.utils import pauli, fock def get_boson_boson_dim(alpha, cutoff_coh): """ Find the cutoff for the local dimension (identical everywhere) from the chosen accuracy alpha for the impurity coherent state. """ # pop = lambda x: np.exp(-np.abs(alpha) ** 2 / 2) * alpha ** x / np.sqrt(factorial(x, exact=True)) cutoff_dim = 2 for n in count(cutoff_dim, 1): if np.abs(pop(n))**2 < cutoff_coh: cutoff_dim = n break return cutoff_dim def get_spin_boson_chain_hamiltonian(omega_0, c0, omega, t, bath_local_dim, finite_T=False): """ Returns local and coupling parts of the Spin-Boson model chain Hamiltonian used in Sec. 4.4.1 and 4.4.2 of the thesis. :param omega_0: Spin energy :param c0: Spin-Bath coupling :param omega: Bath energies :param t: Bath-bath couplings :param bath_local_dim: Local dimension of the bath :param finite_T: If set True builds the Hamiltonian for Sec. 4.4.2. If False builds the Hamiltonian for Sec. 4.4.1 :returns: List of local Hamiltonians, List of coupling Hamiltonians """ if not finite_T: # Local Hamiltonian of the System: spin_loc = omega_0 / 2 * pauli.X # Coupling between System and bath: spin_coupl = pauli.Z else: # Local Hamiltonian of the System: spin_loc = omega_0 / 2 * pauli.Z # Coupling between System and bath: spin_coupl = np.array([[0, 0], [1, 0]], dtype=np.complex128) # Local Hamiltonian of the bath fock_n = fock.n(bath_local_dim) bath_loc = [energy * fock_n for energy in omega] # Bath coupling bath_coupling_op = np.kron(fock.a(bath_local_dim), fock.a_dag(bath_local_dim)) + \ np.kron(fock.a_dag(bath_local_dim), fock.a(bath_local_dim)) bath_bath_coupl = [coupling * bath_coupling_op for coupling in t] # Spin-Bath coupling spin_bath_coupl = c0 * (np.kron(spin_coupl, fock.a_dag(bath_local_dim)) + np.kron(spin_coupl.conj().T, fock.a(bath_local_dim))) return [spin_loc] + bath_loc, [spin_bath_coupl] + bath_bath_coupl def get_spin_boson_star_hamiltonian(omega_0, system_index, gamma, xi, bath_local_dim, finite_T=False): """ Returns local and coupling parts of the Spin-Boson model star Hamiltonian used in Sec. 4.4.1 and 4.4.2 of the thesis. :param omega_0: Spin energy :param system_index: Index of the system in the auxiliary chain :param gamma: System-Bath couplings :param xi: Bath energies :param bath_local_dim: Local dimension of the bath :param finite_T: If set True uses the Hamiltonian for Sec. 4.4.2. If False builds the Hamiltonian for Sec. 4.4.1 :returns: List of local Hamiltonians, List of coupling Hamiltonians """ if not finite_T: # Local Hamiltonian of the System: spin_loc = omega_0 / 2 * pauli.X # Coupling between System and bath: spin_coupl = pauli.Z else: # Local Hamiltonian of the System: spin_loc = omega_0 / 2 * pauli.Z # Coupling between System and bath: spin_coupl = np.array([[0, 0], [1, 0]], dtype=np.complex128) # Local Hamiltonian of the bath fock_n = fock.n(bath_local_dim) bath_loc = [energy * fock_n for energy in xi] # Coupling operators for the bath to the left of the system left_bath_coupling_op = np.kron(fock.a(bath_local_dim), spin_coupl.conj().T) + \ np.kron(fock.a_dag(bath_local_dim), spin_coupl) left_bath_coupl = [coupling * left_bath_coupling_op for coupling in gamma[:system_index]] # Coupling operators for the bath to the right of the system right_bath_coupling_op = np.kron(spin_coupl.conj().T, fock.a(bath_local_dim)) + \ np.kron(spin_coupl, fock.a_dag(bath_local_dim)) right_bath_coupl = [coupling * right_bath_coupling_op for coupling in gamma[system_index:]] return bath_loc[:system_index] + [spin_loc] + bath_loc[system_index:], left_bath_coupl + right_bath_coupl def get_boson_boson_chain_hamiltonian(omega_0, c0, omega, t, cutoff_dim): """ Returns local and coupling parts of the Spin-Boson model chain Hamiltonian used in Sec. 4.4.3 of the thesis. :param omega_0: Spin energy :param c0: Spin-Bath coupling :param omega: Bath energies :param t: Bath-bath couplings :param cutoff_dim: Local dimension of the impurity and bath :returns: List of local Hamiltonians, List of coupling Hamiltonians """ # Local Hamiltonian of the System: sys_loc = omega_0 * fock.n(cutoff_dim) # Coupling between System and bath: sys_coupl = fock.a(cutoff_dim) # Local Hamiltonian of the bath fock_n = fock.n(cutoff_dim) bath_loc = [energy * fock_n for energy in omega] # Bath coupling bath_coupling_op = np.kron(fock.a(cutoff_dim), fock.a_dag(cutoff_dim)) + \ np.kron(fock.a_dag(cutoff_dim), fock.a(cutoff_dim)) bath_bath_coupl = [coupling * bath_coupling_op for coupling in t] # Spin-Bath coupling spin_bath_coupl = c0 * (np.kron(sys_coupl, fock.a_dag(cutoff_dim)) + np.kron(sys_coupl.conj().T, fock.a(cutoff_dim))) return [sys_loc] + bath_loc, [spin_bath_coupl] + bath_bath_coupl def get_boson_boson_star_hamiltonian(omega_0, system_index, gamma, xi, cutoff_dim): """ Returns local and coupling parts of the Spin-Boson model star Hamiltonian used in Sec. 4.4.3 of the thesis. :param omega_0: Spin energy :param system_index: Index of the system in the auxiliary chain :param gamma: System-Bath couplings :param xi: Bath energies :param cutoff_dim: Local dimension of the impurity and bath :returns: List of local Hamiltonians, List of coupling Hamiltonians """ # Local Hamiltonian of the System: sys_loc = omega_0 * fock.n(cutoff_dim) # Coupling between System and bath: sys_coupl = fock.a(cutoff_dim) # Local Hamiltonian of the bath fock_n = fock.n(cutoff_dim) bath_loc = [energy * fock_n for energy in xi] # Coupling operators for the bath to the left of the system left_bath_coupling_op = np.kron(fock.a(cutoff_dim), sys_coupl.conj().T) + \ np.kron(fock.a_dag(cutoff_dim), sys_coupl) left_bath_coupl = [coupling * left_bath_coupling_op for coupling in gamma[:system_index]] # Coupling operators for the bath to the right of the system right_bath_coupling_op = np.kron(sys_coupl.conj().T, fock.a(cutoff_dim)) + \ np.kron(sys_coupl, fock.a_dag(cutoff_dim)) right_bath_coupl = [coupling * right_bath_coupling_op for coupling in gamma[system_index:]] return bath_loc[:system_index] + [sys_loc] + bath_loc[system_index:], left_bath_coupl + right_bath_coupl
[ "tmps.utils.fock.a_dag", "numpy.abs", "scipy.special.factorial", "numpy.array", "tmps.utils.fock.n", "tmps.utils.fock.a", "itertools.count" ]
[((462, 482), 'itertools.count', 'count', (['cutoff_dim', '(1)'], {}), '(cutoff_dim, 1)\n', (467, 482), False, 'from itertools import count\n'), ((1654, 1676), 'tmps.utils.fock.n', 'fock.n', (['bath_local_dim'], {}), '(bath_local_dim)\n', (1660, 1676), False, 'from tmps.utils import pauli, fock\n'), ((3352, 3374), 'tmps.utils.fock.n', 'fock.n', (['bath_local_dim'], {}), '(bath_local_dim)\n', (3358, 3374), False, 'from tmps.utils import pauli, fock\n'), ((4803, 4821), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (4809, 4821), False, 'from tmps.utils import pauli, fock\n'), ((4872, 4890), 'tmps.utils.fock.n', 'fock.n', (['cutoff_dim'], {}), '(cutoff_dim)\n', (4878, 4890), False, 'from tmps.utils import pauli, fock\n'), ((6104, 6122), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6110, 6122), False, 'from tmps.utils import pauli, fock\n'), ((6173, 6191), 'tmps.utils.fock.n', 'fock.n', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6179, 6191), False, 'from tmps.utils import pauli, fock\n'), ((1557, 1604), 'numpy.array', 'np.array', (['[[0, 0], [1, 0]]'], {'dtype': 'np.complex128'}), '([[0, 0], [1, 0]], dtype=np.complex128)\n', (1565, 1604), True, 'import numpy as np\n'), ((3254, 3301), 'numpy.array', 'np.array', (['[[0, 0], [1, 0]]'], {'dtype': 'np.complex128'}), '([[0, 0], [1, 0]], dtype=np.complex128)\n', (3262, 3301), True, 'import numpy as np\n'), ((4727, 4745), 'tmps.utils.fock.n', 'fock.n', (['cutoff_dim'], {}), '(cutoff_dim)\n', (4733, 4745), False, 'from tmps.utils import pauli, fock\n'), ((6028, 6046), 'tmps.utils.fock.n', 'fock.n', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6034, 6046), False, 'from tmps.utils import pauli, fock\n'), ((1782, 1804), 'tmps.utils.fock.a', 'fock.a', (['bath_local_dim'], {}), '(bath_local_dim)\n', (1788, 1804), False, 'from tmps.utils import pauli, fock\n'), ((1806, 1832), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['bath_local_dim'], {}), '(bath_local_dim)\n', (1816, 1832), False, 'from tmps.utils import pauli, fock\n'), ((1869, 1895), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['bath_local_dim'], {}), '(bath_local_dim)\n', (1879, 1895), False, 'from tmps.utils import pauli, fock\n'), ((1897, 1919), 'tmps.utils.fock.a', 'fock.a', (['bath_local_dim'], {}), '(bath_local_dim)\n', (1903, 1919), False, 'from tmps.utils import pauli, fock\n'), ((3526, 3548), 'tmps.utils.fock.a', 'fock.a', (['bath_local_dim'], {}), '(bath_local_dim)\n', (3532, 3548), False, 'from tmps.utils import pauli, fock\n'), ((3611, 3637), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['bath_local_dim'], {}), '(bath_local_dim)\n', (3621, 3637), False, 'from tmps.utils import pauli, fock\n'), ((3868, 3890), 'tmps.utils.fock.a', 'fock.a', (['bath_local_dim'], {}), '(bath_local_dim)\n', (3874, 3890), False, 'from tmps.utils import pauli, fock\n'), ((3945, 3971), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['bath_local_dim'], {}), '(bath_local_dim)\n', (3955, 3971), False, 'from tmps.utils import pauli, fock\n'), ((4996, 5014), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5002, 5014), False, 'from tmps.utils import pauli, fock\n'), ((5016, 5038), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5026, 5038), False, 'from tmps.utils import pauli, fock\n'), ((5075, 5097), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5085, 5097), False, 'from tmps.utils import pauli, fock\n'), ((5099, 5117), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5105, 5117), False, 'from tmps.utils import pauli, fock\n'), ((6343, 6361), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6349, 6361), False, 'from tmps.utils import pauli, fock\n'), ((6423, 6445), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6433, 6445), False, 'from tmps.utils import pauli, fock\n'), ((6674, 6692), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6680, 6692), False, 'from tmps.utils import pauli, fock\n'), ((6746, 6768), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['cutoff_dim'], {}), '(cutoff_dim)\n', (6756, 6768), False, 'from tmps.utils import pauli, fock\n'), ((404, 428), 'scipy.special.factorial', 'factorial', (['x'], {'exact': '(True)'}), '(x, exact=True)\n', (413, 428), False, 'from scipy.special import factorial\n'), ((2065, 2091), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['bath_local_dim'], {}), '(bath_local_dim)\n', (2075, 2091), False, 'from tmps.utils import pauli, fock\n'), ((2152, 2174), 'tmps.utils.fock.a', 'fock.a', (['bath_local_dim'], {}), '(bath_local_dim)\n', (2158, 2174), False, 'from tmps.utils import pauli, fock\n'), ((5262, 5284), 'tmps.utils.fock.a_dag', 'fock.a_dag', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5272, 5284), False, 'from tmps.utils import pauli, fock\n'), ((5344, 5362), 'tmps.utils.fock.a', 'fock.a', (['cutoff_dim'], {}), '(cutoff_dim)\n', (5350, 5362), False, 'from tmps.utils import pauli, fock\n'), ((357, 370), 'numpy.abs', 'np.abs', (['alpha'], {}), '(alpha)\n', (363, 370), True, 'import numpy as np\n')]
import numpy as np class Material: """send color as list of 3 floats in range of 0-1""" def __init__(self, color, reflection=0, transparency=0, emission=np.array((0, 0, 0)), refraction_ind=1): self.color = np.array(color) self.emission = emission # only for light sources self.reflection = reflection self.transparency = transparency self.refraction_ind = refraction_ind
[ "numpy.array" ]
[((164, 183), 'numpy.array', 'np.array', (['(0, 0, 0)'], {}), '((0, 0, 0))\n', (172, 183), True, 'import numpy as np\n'), ((225, 240), 'numpy.array', 'np.array', (['color'], {}), '(color)\n', (233, 240), True, 'import numpy as np\n')]
import gym from gym import error, spaces, utils from gym.utils import seeding from eplus.envs import pyEp import socket from eplus.envs.socket_builder import socket_builder import numpy as np import os class DataCenterEnv(gym.Env): def __init__(self, config): #timestep=12, days=1, eplus_path=None, # weather_file = 'weather/SPtMasterTable_587017_2012_amy.epw'): cur_dir = os.path.dirname(__file__) #print("File directory: ", cur_dir) # buildings/1ZoneDataCenter/1ZoneDataCenter.idf is the EnergyPlus file # used for this environment. The 1ZoneDataCenter folder also contains # variables.cfg which configures the external input and output # variables self.idf_file = cur_dir + '/buildings/1ZoneDataCenter/1ZoneDataCenter.idf' # EnergyPlus weather file if "weather_file" in config: self.weather_file = cur_dir + '/' + config["weather_file"] else: self.weather_file = cur_dir + '/weather/SPtMasterTable_587017_2012_amy.epw' #self.weather_file = cur_dir + '/weather/SPtMasterTable_587017_2012_amy.epw' if "eplus_path" in config: self.eplus_path = config["eplus_path"] else: # Using EnergyPlus version 8.80, path to the executable # Assuming Mac self.eplus_path = '/Applications/EnergyPlus-8-8-0/' # EnergyPlus number of timesteps in an hour if "timestep" in config: self.epTimeStep = config["timestep"] else: self.epTimeStep = 12 # EnergyPlus number of simulation days if "days" in config: self.simDays = config["days"] else: self.simDays = 1 # Number of steps per day self.DAYSTEPS = int(24 * self.epTimeStep) # Total number of steps self.MAXSTEPS = int(self.simDays * self.DAYSTEPS) # Time difference between each step in seconds self.deltaT = (60/self.epTimeStep)*60 # Outputs given by EnergyPlus, defined in variables.cfg self.outputs = [] # Inputs expected by EnergyPlus, defined in variables.cfg self.inputs = [] # Current step of the simulation self.kStep = 0 # Instance of EnergyPlus simulation self.ep = None # state can be all the inputs required to make a control decision # getting all the outputs coming from EnergyPlus for the time being self.observation_space = spaces.Box(np.array([0, -50, 0]), #zone temp, outdoor drybulb temp, relative humidity np.array([60, 70, 100]), dtype=np.float32) # actions are all the control inputs #self.action_space = spaces.Tuple(( #spaces.Box(low=22, high=27, shape=(1,),dtype=np.float32), #cooling setpoint # spaces.Box(low=6, high=7, shape=(1,),dtype=np.float32), #chiller setpoint # spaces.Box(low=0, high=1, shape=(1,),dtype=np.float32) #lighting setpoint # )) self.clg_min = 20 #cooling setpoint min in celcius self.clg_max = 35 #cooling setpoint max in celcius self.htg_min = 5 #heating setpoint min in celcius self.htg_max = 20 #heating setpoint max in celcius #self.action_space = spaces.Box(np.array([self.clg_min,self.htg_min]), # np.array([self.clg_max, self.htg_max]), dtype=np.float32) # Normalized action space self.action_space = spaces.Box(np.array([0,0]), np.array([1,1]), dtype=np.float32) def step(self, action): # while(self.kStep < self.MAXSTEPS): # current time from start of simulation time = self.kStep * self.deltaT # current time from start of day dayTime = time % 86400 if dayTime == 0: print("Day: ", int(self.kStep/self.DAYSTEPS)+1) #inputs should be same as actions #bring the actions in the correct range #For Ray: assuming mean 0 and std dev 1 by ray #action[0] = action[0]*(self.clg_max - self.clg_min)+(self.clg_min+self.clg_max)/2.0 #action[1] = action[1]*(self.htg_max - self.htg_min)+(self.htg_min+self.htg_max)/2.0 #For Coach: input is 0 to 1 range action[0] = action[0]*(self.clg_max - self.clg_min)+(self.clg_min) action[1] = action[1]*(self.htg_max - self.htg_min)+(self.htg_min) #force action to be within limits cooling_setpoint = np.clip(action, self.clg_min, self.clg_max)[0] heating_setpoint = np.clip(action, self.htg_min, self.htg_max)[1] self.inputs = [cooling_setpoint, heating_setpoint] input_packet = self.ep.encode_packet_simple(self.inputs, time) self.ep.write(input_packet) #after EnergyPlus runs the simulation step, it returns the outputs output_packet = self.ep.read() self.outputs = self.ep.decode_packet_simple(output_packet) #print("Outputs:", self.outputs) if not self.outputs: print("Outputs:", self.outputs) print("Actions:", action) next_state = self.reset() return next_state, 0, False, {} # reward needs to be a combination of energy and comfort requirement energy_coeff = -0.00001 heating_coeff = -100 cooling_coeff = -100 energy = self.outputs[0] zone_temperature = self.outputs[1] #taking mid-zone 2 as an example heating_setpoint = 15 #fixed lower limit in celcius cooling_setpoint = 30 #fixed upper limit in celcius heating_penalty = max(heating_setpoint - zone_temperature, 0) cooling_penalty = max(zone_temperature - cooling_setpoint, 0) # punish if action is out of limits action_penalty_coeff = -100 max_penalty = max(self.clg_min - action[0], 0) min_penalty = max(action[0] - self.clg_max, 0) action_penalty = action_penalty_coeff * (max_penalty + min_penalty) max_penalty = max(self.htg_min - action[1], 0) min_penalty = max(action[1] - self.htg_max, 0) action_penalty += action_penalty_coeff * (max_penalty + min_penalty) # final reward reward = energy_coeff * energy \ + heating_coeff * heating_penalty \ + cooling_coeff * cooling_penalty \ + action_penalty # state can be all the inputs required to make a control decision # zone temp, outside drybulb temp, outside wetbulb temp, relative humidity next_state = np.array([self.outputs[1], self.outputs[2], self.outputs[4]]) # fake state space #next_state = np.array([3, 2, 1, 0]) #print("energy: %.2f, reward: %.2f, action: %.2f, %.2f" \ # % (energy, reward, action[0], action[1])) #print("zone temp: %.2f, drybulb: %.2f, humidity: %.2f"\ # %tuple(next_state)) # increment simulation step count self.kStep += 1 # done when number of steps of simulation reaches its maximum (e.g. 1 day) done = False if self.kStep >= (self.MAXSTEPS): #requires one more step to close the simulation input_packet = self.ep.encode_packet_simple(self.inputs, time) self.ep.write(input_packet) #output is empty in the final step #but it is required to read this output for termination output_packet = self.ep.read() last_output = self.ep.decode_packet_simple(output_packet) print("Finished simulation") print("Last action: ", action) print("Last reward: ", reward) done = True self.ep.close() self.ep = None # extra information we want to pass info = {} # print("State:", next_state, "Reward:", reward) return next_state, reward, done, info def reset(self): # stop existing energyplus simulation if self.ep: print("Closing the old simulation and socket.") self.ep.close() #needs testing: check if it stops the simulation self.ep = None # start new simulation print("Starting a new simulation..") self.kStep = 0 idf_dir = os.path.dirname(self.idf_file) builder = socket_builder(idf_dir) configs = builder.build() self.ep = pyEp.ep_process('localhost', configs[0], self.idf_file, self.weather_file, self.eplus_path) # read the initial outputs from EnergyPlus # these outputs are from warmup phase, so this does not count as a simulation step self.outputs = self.ep.decode_packet_simple(self.ep.read()) return np.array([self.outputs[1], self.outputs[2], self.outputs[4]]) #return np.array([3,2,1,0]) def render(self, mode='human', close=False): pass
[ "eplus.envs.pyEp.ep_process", "numpy.clip", "eplus.envs.socket_builder.socket_builder", "os.path.dirname", "numpy.array" ]
[((425, 450), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (440, 450), False, 'import os\n'), ((6761, 6822), 'numpy.array', 'np.array', (['[self.outputs[1], self.outputs[2], self.outputs[4]]'], {}), '([self.outputs[1], self.outputs[2], self.outputs[4]])\n', (6769, 6822), True, 'import numpy as np\n'), ((8513, 8543), 'os.path.dirname', 'os.path.dirname', (['self.idf_file'], {}), '(self.idf_file)\n', (8528, 8543), False, 'import os\n'), ((8562, 8585), 'eplus.envs.socket_builder.socket_builder', 'socket_builder', (['idf_dir'], {}), '(idf_dir)\n', (8576, 8585), False, 'from eplus.envs.socket_builder import socket_builder\n'), ((8640, 8735), 'eplus.envs.pyEp.ep_process', 'pyEp.ep_process', (['"""localhost"""', 'configs[0]', 'self.idf_file', 'self.weather_file', 'self.eplus_path'], {}), "('localhost', configs[0], self.idf_file, self.weather_file,\n self.eplus_path)\n", (8655, 8735), False, 'from eplus.envs import pyEp\n'), ((8958, 9019), 'numpy.array', 'np.array', (['[self.outputs[1], self.outputs[2], self.outputs[4]]'], {}), '([self.outputs[1], self.outputs[2], self.outputs[4]])\n', (8966, 9019), True, 'import numpy as np\n'), ((2563, 2584), 'numpy.array', 'np.array', (['[0, -50, 0]'], {}), '([0, -50, 0])\n', (2571, 2584), True, 'import numpy as np\n'), ((2682, 2705), 'numpy.array', 'np.array', (['[60, 70, 100]'], {}), '([60, 70, 100])\n', (2690, 2705), True, 'import numpy as np\n'), ((3657, 3673), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (3665, 3673), True, 'import numpy as np\n'), ((3709, 3725), 'numpy.array', 'np.array', (['[1, 1]'], {}), '([1, 1])\n', (3717, 3725), True, 'import numpy as np\n'), ((4671, 4714), 'numpy.clip', 'np.clip', (['action', 'self.clg_min', 'self.clg_max'], {}), '(action, self.clg_min, self.clg_max)\n', (4678, 4714), True, 'import numpy as np\n'), ((4745, 4788), 'numpy.clip', 'np.clip', (['action', 'self.htg_min', 'self.htg_max'], {}), '(action, self.htg_min, self.htg_max)\n', (4752, 4788), True, 'import numpy as np\n')]
# Copyright (c) 2019-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np import math import os import random from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types import nvidia.dali as dali from test_utils import compare_pipelines from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb test_data_root = os.environ['DALI_EXTRA_PATH'] caffe_db_folder = os.path.join(test_data_root, 'db', 'lmdb') def get_output_size(angle, input_size, parity_correction=True): cosa = abs(math.cos(angle)) sina = abs(math.sin(angle)) (h, w) = input_size[0:2] eps = 1e-2 out_w = int(math.ceil(w*cosa + h*sina - eps)) out_h = int(math.ceil(h*cosa + w*sina - eps)) if not parity_correction: return (out_h, out_w) if sina <= cosa: if out_w % 2 != w % 2: out_w += 1 if out_h % 2 != h % 2: out_h += 1 else: if out_w % 2 != h % 2: out_w += 1 if out_h % 2 != w % 2: out_h += 1 return (out_h, out_w) def get_3d_lin_rotation(angle, axis): # mirrors transform.h:rotation3D if not angle: return np.eye((3, 3), dtype=np.float32) axis_norm = np.linalg.norm(axis) axis = [dim / axis_norm for dim in axis] u, v, w = axis cosa = math.cos(angle) sina = math.sin(angle) return np.array([ [u*u + (v*v+w*w)*cosa, u*v*(1-cosa) - w*sina, u*w*(1-cosa) + v*sina], [u*v*(1-cosa) + w*sina, v*v + (u*u+w*w)*cosa, v*w*(1-cosa) - u*sina], [u*w*(1-cosa) - v*sina, v*w*(1-cosa) + u*sina, w*w + (u*u+v*v)*cosa], ], dtype=np.float32) def get_3d_output_size(angle, axis, input_size, parity_correction=False): transform = np.abs(get_3d_lin_rotation(angle, axis)) eps = 1e-2 in_size = np.array(input_size[2::-1], dtype=np.int32) out_size = np.int32(np.ceil(np.matmul(transform, in_size) - eps)) if parity_correction: dominant_axis = np.argmax(transform, axis=1) out_size += (out_size % 2) ^ (in_size[dominant_axis] % 2) return out_size[::-1] def get_transform(angle, input_size, output_size): cosa = math.cos(angle) sina = math.sin(angle) (out_h, out_w) = output_size[0:2] (in_h, in_w) = input_size[0:2] t1 = np.array([ [1, 0, -out_w*0.5], [0, 1, -out_h*0.5], [0, 0, 1]]) r = np.array([ [cosa, -sina, 0], [sina, cosa, 0], [0, 0, 1]]) t2 = np.array([ [1, 0, in_w*0.5], [0, 1, in_h*0.5], [0, 0, 1]]) return (np.matmul(t2, np.matmul(r, t1)))[0:2,0:3] def ToCVMatrix(matrix): offset = np.matmul(matrix, np.array([[0.5], [0.5], [1]])) result = matrix.copy() result[0][2] = offset[0] - 0.5 result[1][2] = offset[1] - 0.5 return result def CVRotate(output_type, input_type, fixed_size): def warp_fn(img, angle): in_size = img.shape[0:2] angle = math.radians(angle) out_size = fixed_size if fixed_size is not None else get_output_size(angle, in_size) matrix = get_transform(angle, in_size, out_size) matrix = ToCVMatrix(matrix) if output_type == dali.types.FLOAT or input_type == dali.types.FLOAT: img = np.float32(img) out_size_wh = (out_size[1], out_size[0]) out = cv2.warpAffine(img, matrix, out_size_wh, borderMode = cv2.BORDER_CONSTANT, borderValue = [42,42,42], flags = (cv2.INTER_LINEAR|cv2.WARP_INVERSE_MAP)) if output_type == dali.types.UINT8 and input_type == dali.types.FLOAT: out = np.uint8(np.clip(out, 0, 255)) return out return warp_fn class RotatePipeline(Pipeline): def __init__(self, device, batch_size, output_type, input_type, fixed_size=None, num_threads=3, device_id=0, num_gpus=1): super(RotatePipeline, self).__init__(batch_size, num_threads, device_id, seed=7865, exec_async=False, exec_pipelined=False) self.name = device self.input = ops.readers.Caffe(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.decoders.Image(device = "cpu", output_type = types.RGB) if input_type != dali.types.UINT8: self.cast = ops.Cast(device = device, dtype = input_type) else: self.cast = None self.uniform = ops.random.Uniform(range = (-180.0, 180.0), seed = 42) self.rotate = ops.Rotate(device = device, size=fixed_size, fill_value = 42, dtype = output_type) def define_graph(self): self.jpegs, self.labels = self.input(name = "Reader") images = self.decode(self.jpegs) if self.rotate.device == "gpu": images = images.gpu() if self.cast: images = self.cast(images) outputs = self.rotate(images, angle = self.uniform()) return outputs class CVPipeline(Pipeline): def __init__(self, batch_size, output_type, input_type, fixed_size, num_threads=3, device_id=0, num_gpus=1): super(CVPipeline, self).__init__(batch_size, num_threads, device_id, seed=7865, exec_async=False, exec_pipelined=False) self.name = "cv" self.input = ops.readers.Caffe(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.decoders.Image(device = "cpu", output_type = types.RGB) self.rotate = ops.PythonFunction(function=CVRotate(output_type, input_type, fixed_size), output_layouts="HWC") self.uniform = ops.random.Uniform(range = (-180.0, 180.0), seed = 42) self.iter = 0 def define_graph(self): self.jpegs, self.labels = self.input(name = "Reader") images = self.decode(self.jpegs) angles = self.uniform() outputs = self.rotate(images, angles) return outputs def compare(pipe1, pipe2, eps): pipe1.build() pipe2.build() epoch_size = pipe1.epoch_size("Reader") batch_size = pipe1.max_batch_size niter = 1 if batch_size >= epoch_size else 2 compare_pipelines(pipe1, pipe2, batch_size, niter, eps) io_types = [ (dali.types.UINT8, dali.types.UINT8), (dali.types.UINT8, dali.types.FLOAT), (dali.types.FLOAT, dali.types.UINT8), (dali.types.FLOAT, dali.types.FLOAT) ] def create_pipeline(backend, *args): if backend == "cv": return CVPipeline(*args) else: return RotatePipeline(backend, *args) def run_cases(backend1, backend2, epsilon): for batch_size in [1, 4, 19]: for output_size in [None, (160,240)]: for (itype, otype) in io_types: def run_case(backend1, backend2, *args): pipe1 = create_pipeline(backend1, *args) pipe2 = create_pipeline(backend2, *args) compare(pipe1, pipe2, epsilon) yield run_case, backend1, backend2, batch_size, otype, itype, output_size def test_gpu_vs_cv(): for test in run_cases("gpu", "cv", 8): yield test def test_cpu_vs_cv(): for test in run_cases("cpu", "cv", 8): yield test def test_gpu_vs_cpu(): for test in run_cases("gpu", "cpu", 1): yield test def infer_sequence_size(input_shapes, angles, axes=None): assert(len(input_shapes) == len(angles)) assert(axes is None or len(axes) == len(angles)) if axes is None: no_correction_shapes = [ np.array(get_output_size(math.radians(angle), shape, False), dtype=np.int32) for shape, angle in zip(input_shapes, angles)] corrected_shapes = [ np.array(get_output_size(math.radians(angle), shape, True), dtype=np.int32) for shape, angle in zip(input_shapes, angles)] else: no_correction_shapes = [ np.array(get_3d_output_size(math.radians(angle), axis, shape, False), dtype=np.int32) for shape, angle, axis in zip(input_shapes, angles, axes)] corrected_shapes = [ np.array(get_3d_output_size(math.radians(angle), axis, shape, True), dtype=np.int32) for shape, angle, axis in zip(input_shapes, angles, axes)] max_shape = np.max(no_correction_shapes, axis=0) parity = np.sum(np.array(corrected_shapes, dtype=np.int32) % 2, axis=0) for i in range(len(max_shape)): if max_shape[i] % 2 != (2 * parity[i] > len(input_shapes)): max_shape[i] += 1 return max_shape def sequence_batch_output_size(unfolded_extents, input_batch, angle_batch, axis_batch=None): def iter_by_groups(): assert(sum(unfolded_extents) == len(input_batch)) assert(len(input_batch) == len(angle_batch)) assert(axis_batch is None or len(axis_batch) == len(angle_batch)) offset = 0 for group in unfolded_extents: yield input_batch[offset:offset + group], angle_batch[offset:offset + group],\ None if axis_batch is None else axis_batch[offset:offset + group] offset += group sequence_output_shape = [ infer_sequence_size([frame.shape for frame in input_frames], angles, axes) for input_frames, angles, axes in iter_by_groups()] return [ output_shape for output_shape, num_frames in zip(sequence_output_shape, unfolded_extents) for _ in range(num_frames)] class RotatePerFrameParamsProvider(ParamsProvider): """ Provides per frame angle argument input to the video rotate operator test. The expanded baseline pipeline must be provided with additional argument ``size`` to make allowance for coalescing of inferred frames sizes """ def __init__(self, input_params): super().__init__(input_params) def expand_params(self): assert(self.num_expand == 1) expanded_params = super().expand_params() params_dict = {param_data.desc.name: param_data for param_data in expanded_params} expanded_angles = params_dict.get('angle') expanded_axis = params_dict.get('axis') assert expanded_angles is not None and 'size' not in self.fixed_params and 'size' not in params_dict sequence_extents = [ [sample.shape[0] for sample in input_batch] for input_batch in self.input_data] output_size_params = (sequence_extents, self.unfolded_input, expanded_angles.data) if expanded_axis is not None: output_size_params += (expanded_axis.data,) output_sizes = [ sequence_batch_output_size(*args) for args in zip(*output_size_params)] expanded_params.append(ArgData(ArgDesc("size", False, "cpu"), output_sizes)) return expanded_params def __repr__(self): return "{}({})".format(repr(self.__class__), repr(self.input_params)) def test_video(): def small_angle(sample_desc): return np.array(sample_desc.rng.uniform(-44., 44.), dtype=np.float32) def random_angle(sample_desc): return np.array(sample_desc.rng.uniform(-180., 180.), dtype=np.float32) def random_output(sample_desc): return np.array([sample_desc.rng.randint(300, 400), rng.randint(300, 400)]) video_test_cases = [ (dali.fn.rotate, {'angle': 45.}, []), (dali.fn.rotate, {}, [ArgCb("angle", small_angle, False)]), (dali.fn.rotate, {}, [ArgCb("angle", random_angle, False)]), (dali.fn.rotate, {}, RotatePerFrameParamsProvider([ArgCb("angle", small_angle, True)])), (dali.fn.rotate, {}, RotatePerFrameParamsProvider([ArgCb("angle", random_angle, True)])), (dali.fn.rotate, {}, [ArgCb("angle", small_angle, True), ArgCb("size", random_output, False)]), ] rng = random.Random(42) video_cases = get_video_input_cases("FHWC", rng, larger_shape=(512, 287)) input_cases = [("FHWC", input_data) for input_data in video_cases] yield from sequence_suite_helper(rng, "F", input_cases, video_test_cases) def test_3d_sequence(): rng = random.Random(42) num_batches = 4 max_batch_size = 8 max_frames_num = 32 input_layout = "FDHWC" np_rng = np.random.default_rng(42) def get_random_sample(): num_frames = rng.randint(1, max_frames_num) d, h, w = tuple(rng.randint(10, 50) for _ in range(3)) return np.int32(np_rng.uniform(0, 255, (num_frames, d, h, w, 3))) def get_random_batch(): return [get_random_sample() for _ in range(rng.randint(1, max_batch_size))] input_cases = [(input_layout, [get_random_batch() for _ in range(num_batches)])] def random_angle(sample_desc): return np.array(sample_desc.rng.uniform(-180., 180.), dtype=np.float32) def random_axis(sample_desc): return np.array([sample_desc.rng.uniform(-1, 1) for _ in range(3)], dtype=np.float32) test_cases = [ (dali.fn.rotate, {'angle': 45., 'axis': np.array([1, 0, 0], dtype=np.float32)}, []), (dali.fn.rotate, {'size': (50, 30, 20)}, [ArgCb("angle", random_angle, True), ArgCb("axis", random_axis, True)]), (dali.fn.rotate, {}, RotatePerFrameParamsProvider([ArgCb("angle", random_angle, True), ArgCb("axis", random_axis, True)])), ] yield from sequence_suite_helper(rng, "F", input_cases, test_cases)
[ "numpy.clip", "numpy.random.default_rng", "math.cos", "numpy.array", "nvidia.dali.ops.readers.Caffe", "numpy.linalg.norm", "sequences_test_utils.ArgDesc", "random.Random", "numpy.max", "math.sin", "numpy.matmul", "test_utils.compare_pipelines", "sequences_test_utils.get_video_input_cases", "numpy.eye", "cv2.warpAffine", "nvidia.dali.ops.decoders.Image", "numpy.argmax", "nvidia.dali.ops.Cast", "math.radians", "sequences_test_utils.ArgCb", "math.ceil", "sequences_test_utils.sequence_suite_helper", "os.path.join", "nvidia.dali.ops.random.Uniform", "nvidia.dali.ops.Rotate", "numpy.float32" ]
[((1055, 1097), 'os.path.join', 'os.path.join', (['test_data_root', '"""db"""', '"""lmdb"""'], {}), "(test_data_root, 'db', 'lmdb')\n", (1067, 1097), False, 'import os\n'), ((1829, 1849), 'numpy.linalg.norm', 'np.linalg.norm', (['axis'], {}), '(axis)\n', (1843, 1849), True, 'import numpy as np\n'), ((1919, 1934), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (1927, 1934), False, 'import math\n'), ((1944, 1959), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (1952, 1959), False, 'import math\n'), ((1969, 2302), 'numpy.array', 'np.array', (['[[u * u + (v * v + w * w) * cosa, u * v * (1 - cosa) - w * sina, u * w * (1 -\n cosa) + v * sina], [u * v * (1 - cosa) + w * sina, v * v + (u * u + w *\n w) * cosa, v * w * (1 - cosa) - u * sina], [u * w * (1 - cosa) - v *\n sina, v * w * (1 - cosa) + u * sina, w * w + (u * u + v * v) * cosa]]'], {'dtype': 'np.float32'}), '([[u * u + (v * v + w * w) * cosa, u * v * (1 - cosa) - w * sina, u *\n w * (1 - cosa) + v * sina], [u * v * (1 - cosa) + w * sina, v * v + (u *\n u + w * w) * cosa, v * w * (1 - cosa) - u * sina], [u * w * (1 - cosa) -\n v * sina, v * w * (1 - cosa) + u * sina, w * w + (u * u + v * v) * cosa\n ]], dtype=np.float32)\n', (1977, 2302), True, 'import numpy as np\n'), ((2381, 2424), 'numpy.array', 'np.array', (['input_size[2::-1]'], {'dtype': 'np.int32'}), '(input_size[2::-1], dtype=np.int32)\n', (2389, 2424), True, 'import numpy as np\n'), ((2718, 2733), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (2726, 2733), False, 'import math\n'), ((2745, 2760), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (2753, 2760), False, 'import math\n'), ((2844, 2909), 'numpy.array', 'np.array', (['[[1, 0, -out_w * 0.5], [0, 1, -out_h * 0.5], [0, 0, 1]]'], {}), '([[1, 0, -out_w * 0.5], [0, 1, -out_h * 0.5], [0, 0, 1]])\n', (2852, 2909), True, 'import numpy as np\n'), ((2939, 2995), 'numpy.array', 'np.array', (['[[cosa, -sina, 0], [sina, cosa, 0], [0, 0, 1]]'], {}), '([[cosa, -sina, 0], [sina, cosa, 0], [0, 0, 1]])\n', (2947, 2995), True, 'import numpy as np\n'), ((3030, 3091), 'numpy.array', 'np.array', (['[[1, 0, in_w * 0.5], [0, 1, in_h * 0.5], [0, 0, 1]]'], {}), '([[1, 0, in_w * 0.5], [0, 1, in_h * 0.5], [0, 0, 1]])\n', (3038, 3091), True, 'import numpy as np\n'), ((6502, 6557), 'test_utils.compare_pipelines', 'compare_pipelines', (['pipe1', 'pipe2', 'batch_size', 'niter', 'eps'], {}), '(pipe1, pipe2, batch_size, niter, eps)\n', (6519, 6557), False, 'from test_utils import compare_pipelines\n'), ((8445, 8481), 'numpy.max', 'np.max', (['no_correction_shapes'], {'axis': '(0)'}), '(no_correction_shapes, axis=0)\n', (8451, 8481), True, 'import numpy as np\n'), ((11767, 11784), 'random.Random', 'random.Random', (['(42)'], {}), '(42)\n', (11780, 11784), False, 'import random\n'), ((11803, 11862), 'sequences_test_utils.get_video_input_cases', 'get_video_input_cases', (['"""FHWC"""', 'rng'], {'larger_shape': '(512, 287)'}), "('FHWC', rng, larger_shape=(512, 287))\n", (11824, 11862), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((12046, 12063), 'random.Random', 'random.Random', (['(42)'], {}), '(42)\n', (12059, 12063), False, 'import random\n'), ((12161, 12186), 'numpy.random.default_rng', 'np.random.default_rng', (['(42)'], {}), '(42)\n', (12182, 12186), True, 'import numpy as np\n'), ((1179, 1194), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (1187, 1194), False, 'import math\n'), ((1211, 1226), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (1219, 1226), False, 'import math\n'), ((1288, 1324), 'math.ceil', 'math.ceil', (['(w * cosa + h * sina - eps)'], {}), '(w * cosa + h * sina - eps)\n', (1297, 1324), False, 'import math\n'), ((1338, 1374), 'math.ceil', 'math.ceil', (['(h * cosa + w * sina - eps)'], {}), '(h * cosa + w * sina - eps)\n', (1347, 1374), False, 'import math\n'), ((1782, 1814), 'numpy.eye', 'np.eye', (['(3, 3)'], {'dtype': 'np.float32'}), '((3, 3), dtype=np.float32)\n', (1788, 1814), True, 'import numpy as np\n'), ((2538, 2566), 'numpy.argmax', 'np.argmax', (['transform'], {'axis': '(1)'}), '(transform, axis=1)\n', (2547, 2566), True, 'import numpy as np\n'), ((3222, 3251), 'numpy.array', 'np.array', (['[[0.5], [0.5], [1]]'], {}), '([[0.5], [0.5], [1]])\n', (3230, 3251), True, 'import numpy as np\n'), ((3480, 3499), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (3492, 3499), False, 'import math\n'), ((3831, 3980), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'matrix', 'out_size_wh'], {'borderMode': 'cv2.BORDER_CONSTANT', 'borderValue': '[42, 42, 42]', 'flags': '(cv2.INTER_LINEAR | cv2.WARP_INVERSE_MAP)'}), '(img, matrix, out_size_wh, borderMode=cv2.BORDER_CONSTANT,\n borderValue=[42, 42, 42], flags=cv2.INTER_LINEAR | cv2.WARP_INVERSE_MAP)\n', (3845, 3980), False, 'import cv2\n'), ((4477, 4562), 'nvidia.dali.ops.readers.Caffe', 'ops.readers.Caffe', ([], {'path': 'caffe_db_folder', 'shard_id': 'device_id', 'num_shards': 'num_gpus'}), '(path=caffe_db_folder, shard_id=device_id, num_shards=num_gpus\n )\n', (4494, 4562), True, 'import nvidia.dali.ops as ops\n'), ((4586, 4641), 'nvidia.dali.ops.decoders.Image', 'ops.decoders.Image', ([], {'device': '"""cpu"""', 'output_type': 'types.RGB'}), "(device='cpu', output_type=types.RGB)\n", (4604, 4641), True, 'import nvidia.dali.ops as ops\n'), ((4822, 4872), 'nvidia.dali.ops.random.Uniform', 'ops.random.Uniform', ([], {'range': '(-180.0, 180.0)', 'seed': '(42)'}), '(range=(-180.0, 180.0), seed=42)\n', (4840, 4872), True, 'import nvidia.dali.ops as ops\n'), ((4899, 4975), 'nvidia.dali.ops.Rotate', 'ops.Rotate', ([], {'device': 'device', 'size': 'fixed_size', 'fill_value': '(42)', 'dtype': 'output_type'}), '(device=device, size=fixed_size, fill_value=42, dtype=output_type)\n', (4909, 4975), True, 'import nvidia.dali.ops as ops\n'), ((5647, 5732), 'nvidia.dali.ops.readers.Caffe', 'ops.readers.Caffe', ([], {'path': 'caffe_db_folder', 'shard_id': 'device_id', 'num_shards': 'num_gpus'}), '(path=caffe_db_folder, shard_id=device_id, num_shards=num_gpus\n )\n', (5664, 5732), True, 'import nvidia.dali.ops as ops\n'), ((5756, 5811), 'nvidia.dali.ops.decoders.Image', 'ops.decoders.Image', ([], {'device': '"""cpu"""', 'output_type': 'types.RGB'}), "(device='cpu', output_type=types.RGB)\n", (5774, 5811), True, 'import nvidia.dali.ops as ops\n'), ((5999, 6049), 'nvidia.dali.ops.random.Uniform', 'ops.random.Uniform', ([], {'range': '(-180.0, 180.0)', 'seed': '(42)'}), '(range=(-180.0, 180.0), seed=42)\n', (6017, 6049), True, 'import nvidia.dali.ops as ops\n'), ((11949, 12011), 'sequences_test_utils.sequence_suite_helper', 'sequence_suite_helper', (['rng', '"""F"""', 'input_cases', 'video_test_cases'], {}), "(rng, 'F', input_cases, video_test_cases)\n", (11970, 12011), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((13186, 13242), 'sequences_test_utils.sequence_suite_helper', 'sequence_suite_helper', (['rng', '"""F"""', 'input_cases', 'test_cases'], {}), "(rng, 'F', input_cases, test_cases)\n", (13207, 13242), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((3140, 3156), 'numpy.matmul', 'np.matmul', (['r', 't1'], {}), '(r, t1)\n', (3149, 3156), True, 'import numpy as np\n'), ((3760, 3775), 'numpy.float32', 'np.float32', (['img'], {}), '(img)\n', (3770, 3775), True, 'import numpy as np\n'), ((4711, 4752), 'nvidia.dali.ops.Cast', 'ops.Cast', ([], {'device': 'device', 'dtype': 'input_type'}), '(device=device, dtype=input_type)\n', (4719, 4752), True, 'import nvidia.dali.ops as ops\n'), ((8500, 8542), 'numpy.array', 'np.array', (['corrected_shapes'], {'dtype': 'np.int32'}), '(corrected_shapes, dtype=np.int32)\n', (8508, 8542), True, 'import numpy as np\n'), ((2455, 2484), 'numpy.matmul', 'np.matmul', (['transform', 'in_size'], {}), '(transform, in_size)\n', (2464, 2484), True, 'import numpy as np\n'), ((4083, 4103), 'numpy.clip', 'np.clip', (['out', '(0)', '(255)'], {}), '(out, 0, 255)\n', (4090, 4103), True, 'import numpy as np\n'), ((10709, 10738), 'sequences_test_utils.ArgDesc', 'ArgDesc', (['"""size"""', '(False)', '"""cpu"""'], {}), "('size', False, 'cpu')\n", (10716, 10738), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((11344, 11378), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'small_angle', '(False)'], {}), "('angle', small_angle, False)\n", (11349, 11378), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((11412, 11447), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'random_angle', '(False)'], {}), "('angle', random_angle, False)\n", (11417, 11447), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((11676, 11709), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'small_angle', '(True)'], {}), "('angle', small_angle, True)\n", (11681, 11709), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((11711, 11746), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""size"""', 'random_output', '(False)'], {}), "('size', random_output, False)\n", (11716, 11746), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((12878, 12915), 'numpy.array', 'np.array', (['[1, 0, 0]'], {'dtype': 'np.float32'}), '([1, 0, 0], dtype=np.float32)\n', (12886, 12915), True, 'import numpy as np\n'), ((12969, 13003), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'random_angle', '(True)'], {}), "('angle', random_angle, True)\n", (12974, 13003), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((13005, 13037), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""axis"""', 'random_axis', '(True)'], {}), "('axis', random_axis, True)\n", (13010, 13037), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((7777, 7796), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (7789, 7796), False, 'import math\n'), ((7942, 7961), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (7954, 7961), False, 'import math\n'), ((8121, 8140), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (8133, 8140), False, 'import math\n'), ((8307, 8326), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (8319, 8326), False, 'import math\n'), ((11510, 11543), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'small_angle', '(True)'], {}), "('angle', small_angle, True)\n", (11515, 11543), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((11607, 11641), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'random_angle', '(True)'], {}), "('angle', random_angle, True)\n", (11612, 11641), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((13096, 13130), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""angle"""', 'random_angle', '(True)'], {}), "('angle', random_angle, True)\n", (13101, 13130), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n'), ((13132, 13164), 'sequences_test_utils.ArgCb', 'ArgCb', (['"""axis"""', 'random_axis', '(True)'], {}), "('axis', random_axis, True)\n", (13137, 13164), False, 'from sequences_test_utils import ArgData, ArgDesc, get_video_input_cases, ParamsProvider, sequence_suite_helper, ArgCb\n')]
#%% import os print(os.getcwd()) from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD from dataset_utils import load_mnist import numpy as np from convolution_layer import ConvLayer from maxpool_layer import MaxPool2x2 from flatten_layer import FlattenLayer import sys def iterate_minibatches(x, y, batch_size=16, verbose=True): assert len(x) == len(y) indices = np.arange(len(x)) np.random.shuffle(indices) for i, start_idx in enumerate(range(0, len(x) - batch_size + 1, batch_size)): if verbose: print('\rBatch: {}/{}'.format(i + 1, len(x) // batch_size), end='') sys.stdout.flush() excerpt = indices[start_idx:start_idx + batch_size] yield x[excerpt], y[excerpt] def get_cnn(): nn = SequentialNN() nn.add(ConvLayer(1, 2, filter_size=3)) # The output is of size N_obj 2 28 28 nn.add(ReLU()) # The output is of size N_obj 2 28 28 nn.add(MaxPool2x2()) # The output is of size N_obj 2 14 14 nn.add(ConvLayer(2, 4, filter_size=3)) # The output is of size N_obj 4 14 14 nn.add(ReLU()) # The output is of size N_obj 4 14 14 nn.add(MaxPool2x2()) # The output is of size N_obj 4 7 7 nn.add(FlattenLayer()) # The output is of size N_obj 196 nn.add(Dense(4 * 7 * 7, 32)) nn.add(ReLU()) nn.add(Dense(32, 1)) return nn nn = get_cnn() loss = Hinge() optimizer = SGD(nn) train = list(load_mnist(dataset='training', path='.')) train_images = np.array([im[1] for im in train]) train_targets = np.array([im[0] for im in train]) # We will train a 0 vs. 1 classifier x_train = train_images[train_targets < 2][:1000] y_train = train_targets[train_targets < 2][:1000] y_train = y_train * 2 - 1 y_train = y_train.reshape((-1, 1)) x_train = x_train.astype('float32') / 255.0 x_train = x_train.reshape((-1, 1, 28, 28)) # It will train for about 5 minutes num_epochs = 3 batch_size = 32 # We will store the results here history = {'loss': [], 'accuracy': []} # `num_epochs` represents the number of iterations for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch + 1, num_epochs)) # We perform iteration a one-by-one iteration of the mini-batches for x_batch, y_batch in iterate_minibatches(x_train, y_train, batch_size): # Predict the target value y_pred = nn.forward(x_batch) # Compute the gradient of the loss loss_grad = loss.backward(y_pred, y_batch) # Perform backwards pass nn.backward(x_batch, loss_grad) # Update the params optimizer.update_params() # Save loss and accuracy values history['loss'].append(loss.forward(y_pred, y_batch)) prediction_is_correct = (y_pred > 0) == (y_batch > 0) history['accuracy'].append(np.mean(prediction_is_correct)) print() #%% import matplotlib.pyplot as plt # Let's plot the results to get a better insight plt.figure(figsize=(8, 5)) ax_1 = plt.subplot() ax_1.plot(history['loss'], c='g', lw=2, label='train loss') ax_1.set_ylabel('loss', fontsize=16) ax_1.set_xlabel('#batches', fontsize=16) ax_2 = plt.twinx(ax_1) ax_2.plot(history['accuracy'], lw=3, label='train accuracy') ax_2.set_ylabel('accuracy', fontsize=16)
[ "flatten_layer.FlattenLayer", "numpy.mean", "convolution_layer.ConvLayer", "Blocks.SGD", "Blocks.SequentialNN", "maxpool_layer.MaxPool2x2", "matplotlib.pyplot.twinx", "os.getcwd", "numpy.array", "matplotlib.pyplot.figure", "Blocks.Dense", "Blocks.Hinge", "Blocks.ReLU", "sys.stdout.flush", "matplotlib.pyplot.subplot", "dataset_utils.load_mnist", "numpy.random.shuffle" ]
[((1357, 1364), 'Blocks.Hinge', 'Hinge', ([], {}), '()\n', (1362, 1364), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1377, 1384), 'Blocks.SGD', 'SGD', (['nn'], {}), '(nn)\n', (1380, 1384), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1456, 1489), 'numpy.array', 'np.array', (['[im[1] for im in train]'], {}), '([im[1] for im in train])\n', (1464, 1489), True, 'import numpy as np\n'), ((1506, 1539), 'numpy.array', 'np.array', (['[im[0] for im in train]'], {}), '([im[0] for im in train])\n', (1514, 1539), True, 'import numpy as np\n'), ((2887, 2913), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 5)'}), '(figsize=(8, 5))\n', (2897, 2913), True, 'import matplotlib.pyplot as plt\n'), ((2922, 2935), 'matplotlib.pyplot.subplot', 'plt.subplot', ([], {}), '()\n', (2933, 2935), True, 'import matplotlib.pyplot as plt\n'), ((3082, 3097), 'matplotlib.pyplot.twinx', 'plt.twinx', (['ax_1'], {}), '(ax_1)\n', (3091, 3097), True, 'import matplotlib.pyplot as plt\n'), ((20, 31), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (29, 31), False, 'import os\n'), ((400, 426), 'numpy.random.shuffle', 'np.random.shuffle', (['indices'], {}), '(indices)\n', (417, 426), True, 'import numpy as np\n'), ((764, 778), 'Blocks.SequentialNN', 'SequentialNN', ([], {}), '()\n', (776, 778), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1399, 1439), 'dataset_utils.load_mnist', 'load_mnist', ([], {'dataset': '"""training"""', 'path': '"""."""'}), "(dataset='training', path='.')\n", (1409, 1439), False, 'from dataset_utils import load_mnist\n'), ((791, 821), 'convolution_layer.ConvLayer', 'ConvLayer', (['(1)', '(2)'], {'filter_size': '(3)'}), '(1, 2, filter_size=3)\n', (800, 821), False, 'from convolution_layer import ConvLayer\n'), ((872, 878), 'Blocks.ReLU', 'ReLU', ([], {}), '()\n', (876, 878), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((929, 941), 'maxpool_layer.MaxPool2x2', 'MaxPool2x2', ([], {}), '()\n', (939, 941), False, 'from maxpool_layer import MaxPool2x2\n'), ((993, 1023), 'convolution_layer.ConvLayer', 'ConvLayer', (['(2)', '(4)'], {'filter_size': '(3)'}), '(2, 4, filter_size=3)\n', (1002, 1023), False, 'from convolution_layer import ConvLayer\n'), ((1074, 1080), 'Blocks.ReLU', 'ReLU', ([], {}), '()\n', (1078, 1080), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1131, 1143), 'maxpool_layer.MaxPool2x2', 'MaxPool2x2', ([], {}), '()\n', (1141, 1143), False, 'from maxpool_layer import MaxPool2x2\n'), ((1193, 1207), 'flatten_layer.FlattenLayer', 'FlattenLayer', ([], {}), '()\n', (1205, 1207), False, 'from flatten_layer import FlattenLayer\n'), ((1254, 1274), 'Blocks.Dense', 'Dense', (['(4 * 7 * 7)', '(32)'], {}), '(4 * 7 * 7, 32)\n', (1259, 1274), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1287, 1293), 'Blocks.ReLU', 'ReLU', ([], {}), '()\n', (1291, 1293), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((1306, 1318), 'Blocks.Dense', 'Dense', (['(32)', '(1)'], {}), '(32, 1)\n', (1311, 1318), False, 'from Blocks import ReLU, SequentialNN, Dense, Hinge, SGD\n'), ((622, 640), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (638, 640), False, 'import sys\n'), ((2756, 2786), 'numpy.mean', 'np.mean', (['prediction_is_correct'], {}), '(prediction_is_correct)\n', (2763, 2786), True, 'import numpy as np\n')]
# Normal-exponential using out-of-band probes # normex: negative control probes # noob: ‘out-of-band’ Infinium I probes # Lib import logging import numpy as np import pandas as pd from statsmodels import robust from scipy.stats import norm, lognorm # App from ..models import ControlType, ArrayType from ..models.sketchy_probes import qualityMask450, qualityMaskEPIC, qualityMaskEPICPLUS, qualityMaskmouse __all__ = ['preprocess_noob'] LOGGER = logging.getLogger(__name__) def preprocess_noob(container, offset=15, pval_probes_df=None, quality_mask_df=None, nonlinear_dye_correction=True, debug=False, unit_test_oob=False): # v1.4.5+ """ NOOB pythonized copy of https://github.com/zwdzwd/sesame/blob/master/R/background_correction.R - The function takes a SigSet and returns a modified SigSet with the background subtracted. - Background is modelled in a normal distribution and true signal in an exponential distribution. - The Norm-Exp deconvolution is parameterized using Out-Of-Band (oob) probes. - includes snps, but not control probes yet - output should replace the container instead of returning debug dataframes - II RED and II GREEN both have data, but manifest doesn't have a way to track this, so function tracks it. - keep IlmnID as index for meth/unmeth snps, and convert fg_green if nonlinear_dye_correction=True, this uses a sesame method in place of minfi method, in a later step. if unit_test_oob==True, returns the intermediate data instead of updating the SigSet/SampleDataContainer. """ if debug: print(f"DEBUG NOOB {debug} nonlinear_dye_correction={nonlinear_dye_correction}, pval_probes_df={pval_probes_df.shape if isinstance(pval_probes_df,pd.DataFrame) else 'None'}, quality_mask_df={quality_mask_df.shape if isinstance(quality_mask_df,pd.DataFrame) else 'None'}") # stack- need one long list of values, regardless of Meth/Uneth ibG = pd.concat([ container.ibG.reset_index().rename(columns={'Meth': 'mean_value'}).assign(used='M'), container.ibG.reset_index().rename(columns={'Unmeth': 'mean_value'}).assign(used='U') ]) ibG = ibG[ ~ibG['mean_value'].isna() ].drop(columns=['Meth','Unmeth']) ibR = pd.concat([ container.ibR.reset_index().rename(columns={'Meth': 'mean_value'}).assign(used='M'), #.drop(columns=['Meth','Unmeth']), container.ibR.reset_index().rename(columns={'Unmeth': 'mean_value'}).assign(used='U') #.drop(columns=['Meth','Unmeth']) ]) ibR = ibR[ ~ibR['mean_value'].isna() ].drop(columns=['Meth','Unmeth']) # out-of-band is Green-Unmeth and Red-Meth # exclude failing probes pval = pval_probes_df.loc[ pval_probes_df['poobah_pval'] > container.poobah_sig ].index if isinstance(pval_probes_df, pd.DataFrame) else [] qmask = quality_mask_df.loc[ quality_mask_df['quality_mask'] == 0 ].index if isinstance(quality_mask_df, pd.DataFrame) else [] # the ignored errors here should only be from probes that are both pval failures and qmask failures. Rmeth = list(container.oobR['Meth'].drop(index=pval, errors='ignore').drop(index=qmask, errors='ignore')) Runmeth = list(container.oobR['Unmeth'].drop(index=pval, errors='ignore').drop(index=qmask, errors='ignore')) oobR = pd.DataFrame( Rmeth + Runmeth, columns=['mean_value']) Gmeth = list(container.oobG['Meth'].drop(index=pval, errors='ignore').drop(index=qmask, errors='ignore')) Gunmeth = list(container.oobG['Unmeth'].drop(index=pval, errors='ignore').drop(index=qmask, errors='ignore')) oobG = pd.DataFrame( Gmeth + Gunmeth, columns=['mean_value']) # minfi test # ref fg_green = 442614 | vs ibG 442672 = 396374 + 46240 # ref fg_red = 528410 | vs ibR 528482 = 439279 + 89131 # ref oob_green = 178374 # ref oob_red = 92578 #oobR = pd.DataFrame( data={'mean_value': container.oobR['Meth']}) #oobG = pd.DataFrame( data={'mean_value': container.oobG['Unmeth']}) #print(f" oobR {oobR.shape} oobG {oobG.shape}") #import pdb;pdb.set_trace() debug_warnings = "" if oobR['mean_value'].isna().sum() > 0: debug_warnings += f" NOOB: oobG had {oobG['mean_value'].isna().sum()} NaNs" oobR = oobR.dropna() if oobG['mean_value'].isna().sum() > 0: debug_warnings += f" NOOB: oobG had {oobG['mean_value'].isna().sum()} NaNs" oobG = oobG.dropna() if ibG['mean_value'].isna().sum() > 0 or ibR['mean_value'].isna().sum() > 0: raise ValueError("ibG or ibR is missing probe intensities. need to filter them out.") if debug: print(f"ibG {len(ibG)} ibR {len(ibR)} oobG {len(oobG)} oobR {len(oobR)} | {debug_warnings}") # set minimum intensity to 1 ibG_affected = len(ibG.loc[ ibG['mean_value'] < 1 ].index) ibR_affected = len(ibR.loc[ ibR['mean_value'] < 1 ].index) ibG.loc[ ibG['mean_value'] < 1, 'mean_value'] = 1 ibR.loc[ ibR['mean_value'] < 1, 'mean_value'] = 1 oobG_affected = len(oobG[ oobG['mean_value'] < 1]) oobR_affected = len(oobR[ oobR['mean_value'] < 1]) oobG.loc[ oobG.mean_value < 1, 'mean_value'] = 1 oobR.loc[ oobR.mean_value < 1, 'mean_value'] = 1 if debug: if ibR_affected > 0 or ibR_affected > 0: print(f"ib: Set {ibR_affected} red and {ibG_affected} green to 1.0 ({len(ibR[ ibR['mean_value'] == 1 ].index)}, {len(ibG[ ibG['mean_value'] == 1 ].index)})") if oobG_affected > 0 or oobR_affected > 0: print(f"oob: Set {oobR_affected} red and {oobG_affected} green to 1.0 ({len(oobR[ oobR['mean_value'] == 1 ].index)}, {len(oobG[ oobG['mean_value'] == 1 ].index)})") # do background correction in each channel; returns "normalized in-band signal" ibG_nl, params_green = normexp_bg_corrected(ibG, oobG, offset, sample_name=container.sample.name) ibR_nl, params_red = normexp_bg_corrected(ibR, oobR, offset, sample_name=container.sample.name) noob_green = ibG_nl.round({'bg_corrected':0}) noob_red = ibR_nl.round({'bg_corrected':0}) if unit_test_oob: return { 'oobR': oobR, 'oobG': oobG, 'noob_green': noob_green, 'noob_red': noob_red, } # by default, this last step is omitted for sesame if nonlinear_dye_correction == True: # update() expects noob_red/green to have IlmnIDs in index, and contain bg_corrected for ALL probes. container.update_probe_means(noob_green, noob_red) elif nonlinear_dye_correction == False: # this "linear" method may be anologous to the ratio quantile normalization described in Nature: https://www.nature.com/articles/s41598-020-72664-6 normexp_bg_correct_control(container.ctrl_green, params_green) normexp_bg_correct_control(container.ctrl_red, params_red) mask_green = container.ctrl_green['Control_Type'].isin(ControlType.normalization_green()) mask_red = container.ctrl_red['Control_Type'].isin(ControlType.normalization_red()) avg_green = container.ctrl_green[mask_green]['bg_corrected'].mean() avg_red = container.ctrl_red[mask_red]['bg_corrected'].mean() rg_ratios = avg_red / avg_green red_factor = 1 / rg_ratios container.update_probe_means(noob_green, noob_red, red_factor) container._SigSet__minfi_noob = True elif nonlinear_dye_correction is None: if debug: LOGGER.info("skipping linear/nonlinear dye-bias correction step") # skips the minfi-linear step and won't trigger the sesame nonlinear dye bias step downstream, if you REALLY want it uncorrected. Mostly for debugging / benchmarking. container.update_probe_means(noob_green, noob_red) class BackgroundCorrectionParams(): """ used in apply_bg_correction """ __slots__ = ( 'bg_mean', 'bg_mad', 'mean_signal', 'offset', ) def __init__(self, bg_mean, bg_mad, mean_signal, offset): # note: default offset was 15. In v1.3.3 (Jan 2020) I kept 15, after finding this made results match sesame's NOOB output exactly, if dye step ommitted. # offset is specified in the preprocess_noob() function. self.bg_mean = bg_mean self.bg_mad = bg_mad self.mean_signal = mean_signal self.offset = offset def normexp_bg_corrected(fg_probes, ctrl_probes, offset, sample_name=None): """ analogous to sesame's backgroundCorrectionNoobCh1 """ fg_means = fg_probes['mean_value'] if fg_means.min() == fg_means.max(): LOGGER.error(f"{sample_name}: min and max intensity are same. Sample probably bad.") params = BackgroundCorrectionParams(bg_mean=1.0, bg_mad=1.0, mean_signal=1.0, offset=15) fg_probes['bg_corrected'] = 1.0 return fg_probes, params fg_mean, _fg_mad = huber(fg_means) bg_mean, bg_mad = huber(ctrl_probes['mean_value']) mean_signal = np.maximum(fg_mean - bg_mean, 10) # "alpha" in sesame function params = BackgroundCorrectionParams(bg_mean, bg_mad, mean_signal, offset) corrected_signals = apply_bg_correction(fg_means, params) fg_probes['bg_corrected'] = corrected_signals fg_probes['bg_corrected'] = fg_probes['bg_corrected'].round(1) return fg_probes, params def normexp_bg_correct_control(control_probes, params): """Function for getting xcs controls for preprocessNoob""" control_means = control_probes['mean_value'] corrected_signals = apply_bg_correction(control_means, params) control_probes['bg_corrected'] = corrected_signals return control_probes def apply_bg_correction(mean_values, params): """ this function won't work with float16 in practice (underflow). limits use to float32 """ if not isinstance(params, BackgroundCorrectionParams): raise ValueError('params is not a BackgroundCorrectionParams instance') np.seterr(under='ignore') # 'raise to explore fixing underflow warning here' bg_mean = params.bg_mean #mu bg_mad = params.bg_mad #sigma mean_signal = params.mean_signal #alpha offset = params.offset mu_sf = mean_values - bg_mean - (bg_mad ** 2) / mean_signal #try: # signal_part_one = mu_sf + (bg_mad ** 2) # signal_part_two = np.exp(norm(mu_sf, bg_mad).logpdf(0) - norm(mu_sf, bg_mad).logsf(0)) # signal = signal_part_one * signal_part_two #except: # print(signal_part_one, norm(mu_sf, bg_mad).logpdf(0), norm(mu_sf, bg_mad).logsf(0)) # norm is from scipy.stats signal = mu_sf + (bg_mad ** 2) * np.exp(norm(mu_sf, bg_mad).logpdf(0) - norm(mu_sf, bg_mad).logsf(0)) """ COMPARE with sesame: signal <- mu.sf + sigma2 * exp( dnorm(0, mean = mu.sf, sd = sigma, log = TRUE) - pnorm( 0, mean = mu.sf, sd = sigma, lower.tail = FALSE, log.p = TRUE)) """ # sesame: "Limit of numerical accuracy reached with very low intensity or very high background: # setting adjusted intensities to small value" signal = np.maximum(signal, 1e-6) true_signal = signal + offset return true_signal def huber(vector): """Huber function. Designed to mirror MASS huber function in R Parameters ---------- vector: list list of float values Returns ------- local_median: float calculated mu value mad_scale: float calculated s value """ num_values = len(vector) positive_factor = 1.5 convergence_tol = 1.0e-6 mad_scale = robust.mad(vector) local_median = np.median(vector) init_local_median = local_median if not (local_median or mad_scale): return local_median, mad_scale while True: yy = np.minimum( np.maximum( local_median - positive_factor * mad_scale, vector, ), local_median + positive_factor * mad_scale, ) init_local_median = sum(yy) / num_values if abs(local_median - init_local_median) < convergence_tol * mad_scale: return local_median, mad_scale local_median = init_local_median def _apply_sesame_quality_mask(data_container): """ adapted from sesame's qualityMask function, which is applied just after poobah to remove probes Wanding thinks are sketchy. OUTPUT: this pandas DataFrame will have NaNs for probes to be excluded and 0.0 for probes to be retained. NaNs converted to 1.0 in final processing output. SESAME: masked <- sesameDataGet(paste0(sset@platform, '.probeInfo'))$mask to use TCGA masking, only applies to HM450 """ if data_container.array_type not in ( # ArrayType.ILLUMINA_27K, ArrayType.ILLUMINA_450K, ArrayType.ILLUMINA_EPIC, ArrayType.ILLUMINA_EPIC_PLUS, ArrayType.ILLUMINA_MOUSE): LOGGER.info(f"Quality masking is not supported for {data_container.array_type}.") return # load set of probes to remove from local file if data_container.array_type == ArrayType.ILLUMINA_450K: probes = qualityMask450 elif data_container.array_type == ArrayType.ILLUMINA_EPIC: probes = qualityMaskEPIC elif data_container.array_type == ArrayType.ILLUMINA_EPIC_PLUS: # this is a bit of a hack; probe names don't match epic, so I'm temporarily renaming, then filtering, then reverting. probes = qualityMaskEPICPLUS elif data_container.array_type == ArrayType.ILLUMINA_MOUSE: probes = qualityMaskmouse # v1.6+: the 1.0s are good probes and the 0.0 are probes to be excluded. cgs = pd.DataFrame( np.zeros((len(data_container.man.index), 1)), index=data_container.man.index, columns=['quality_mask']) cgs['quality_mask'] = 1.0 snps = pd.DataFrame( np.zeros((len(data_container.snp_man.index), 1)), index=data_container.snp_man.index, columns=['quality_mask']) snps['quality_mask'] = 1.0 df = pd.concat([cgs, snps]) df.loc[df.index.isin(probes), 'quality_mask'] = 0 #LOGGER.info(f"DEBUG quality_mask: {df.shape}, {df['quality_mask'].value_counts()} from {probes.shape} probes") return df """ ##### DEPRECATED (<v1.5.0) ##### def _old_reprocess_noob_sesame_v144(container, offset=15, debug=False): ''' NOOB pythonized copy of https://github.com/zwdzwd/sesame/blob/master/R/background_correction.R - The function takes a SigSet and returns a modified SigSet with that background subtracted. - Background is modelled in a normal distribution and true signal in an exponential distribution. - The Norm-Exp deconvolution is parameterized using Out-Of-Band (oob) probes. - includes snps, but not control probes yet - output should replace the container instead of returning debug dataframes - II RED and II GREEN both have data, but manifest doesn't have a way to track this, so function tracks it. ''' # get in-band red and green channel probe means #ibR <- c(IR(sset), II(sset)[,'U']) # in-band red signal = IR_meth + IR_unmeth + II[unmeth] #ibG <- c(IG(sset), II(sset)[,'M']) # in-band green signal = IG_meth + IG_unmeth + II[meth] # cols: mean_value, IlmnID, probe_type (I,II); index: illumina_id #CHECKED: AddressA or AddressB for each probe subtype matches probes.py raw = container.snp_methylated.data_frame snp_IR_meth = (raw[(raw['Infinium_Design_Type'] == 'I') & (raw['Color_Channel'] == 'Red')][['mean_value','AddressB_ID']] .reset_index().rename(columns={'AddressB_ID':'illumina_id'}).set_index('illumina_id')) snp_IR_meth['Channel'] = 'Red' snp_IG_meth = (raw[(raw['Infinium_Design_Type'] == 'I') & (raw['Color_Channel'] == 'Grn')][['mean_value','AddressB_ID']] .reset_index().rename(columns={'AddressB_ID':'illumina_id'}).set_index('illumina_id')) snp_IG_meth['Channel'] = 'Grn' snp_II_meth = (raw[(raw['Infinium_Design_Type'] == 'II')][['mean_value','AddressA_ID']] .reset_index().rename(columns={'AddressA_ID':'illumina_id'}).set_index('illumina_id')) snp_II_meth['Channel'] = 'Grn' raw = container.snp_unmethylated.data_frame snp_IR_unmeth = (raw[(raw['Infinium_Design_Type'] == 'I') & (raw['Color_Channel'] == 'Red')][['mean_value','AddressA_ID']] .reset_index().rename(columns={'AddressA_ID':'illumina_id'}).set_index('illumina_id')) snp_IR_unmeth['Channel'] = 'Red' snp_IG_unmeth = (raw[(raw['Infinium_Design_Type'] == 'I') & (raw['Color_Channel'] == 'Grn')][['mean_value','AddressA_ID']] .reset_index().rename(columns={'AddressA_ID':'illumina_id'}).set_index('illumina_id')) snp_IG_unmeth['Channel'] = 'Grn' snp_II_unmeth = (raw[(raw['Infinium_Design_Type'] == 'II')][['mean_value','AddressA_ID']] .reset_index().rename(columns={'AddressA_ID':'illumina_id'}).set_index('illumina_id')) snp_II_unmeth['Channel'] = 'Red' if debug: print('snp probes:', snp_IR_meth.shape, snp_IG_unmeth.shape, snp_II_meth.shape, snp_II_unmeth.shape) #--> copy over snps, but first get snps with illumina_id in index # swap index on all snps from IlmnID to illumina_id ## note: 350076 II + 89203 IR + 46298 IG = 485577 (including rs probes, but excl controls) ibG = container.fg_green # --> self.raw_dataset.get_fg_values(self.manifest, Channel.GREEN) ibG['Channel'] = 'Grn' ibG.index.name = 'illumina_id' ibR = container.fg_red # --> self.raw_dataset.get_fg_values(self.manifest, Channel.RED) ibR['Channel'] = 'Red' ibR.index.name = 'illumina_id' # to match sesame, extra probes are IR_unmeth and IG_unmeth in ibR red and ibG green, respectively. ibG = pd.concat([ibG, snp_IG_meth, snp_IG_unmeth, snp_II_meth ], sort=True).drop('probe_type', axis=1) # sort=True, because column order varies ibR = pd.concat([ibR, snp_IR_meth, snp_IR_unmeth, snp_II_unmeth ], sort=True).drop('probe_type', axis=1) if debug: print('in-bound Green:', ibG.shape) # green IG is AddressB, (meth) according to PROBE_SUBSETS print('in-bound Red:', ibR.shape) # red IR is AddressA (unmeth) according to PROBE_SUBSETS ### at this point, ibG ibR probe counts match sesame EXACTLY # set minimum intensity to 1 ibR_affected = len(ibR.loc[ ibR['mean_value'] < 1 ].index) ibG_affected = len(ibG.loc[ ibG['mean_value'] < 1 ].index) ibR.loc[ ibR['mean_value'] < 1, 'mean_value'] = 1 ibG.loc[ ibG['mean_value'] < 1, 'mean_value'] = 1 if debug: print(f"IB: Set {ibR_affected} red and {ibG_affected} green to 1.0 ({len(ibR[ ibR['mean_value'] == 1 ].index)}, {len(ibG[ ibG['mean_value'] == 1 ].index)})") red_dupes = len(ibR.index)-len(ibR.drop_duplicates().index) grn_dupes = len(ibG.index)-len(ibG.drop_duplicates().index) if debug and (red_dupes or grn_dupes): print(f"duplicate probes: {red_dupes} red and {grn_dupes} green") ref = container.manifest.data_frame # [['Infinium_Design_Type','Color_Channel']] # using a copy .oobG and .oobR here; does not update the idat or other source data probe_means # adopted from raw_dataset.filter_oob_probes here oobR = (container.oobR.merge(container.manifest.data_frame[['AddressB_ID']], how='left', left_index=True, right_index=True) .reset_index() .rename(columns={'AddressB_ID':'illumina_id', 'Unnamed: 0': 'IlmnID'}) .set_index('illumina_id') ) oobR = pd.DataFrame(list(oobR['meth']) + list(oobR['unmeth']), columns=['mean_value']) oobG = (container.oobG.merge(container.manifest.data_frame[['AddressA_ID']], how='left', left_index=True, right_index=True) .reset_index() .rename(columns={'AddressA_ID':'illumina_id', 'Unnamed: 0': 'IlmnID'}) .set_index('illumina_id') ) oobG = pd.DataFrame(list(oobG['meth']) + list(oobG['unmeth']), columns=['mean_value']) oobG_affected = len(oobG[ oobG['mean_value'] < 1]) oobG.loc[ oobG.mean_value < 1, 'mean_value'] = 1 oobR_affected = len(oobR[ oobR['mean_value'] < 1]) oobR.loc[ oobR.mean_value < 1, 'mean_value'] = 1 # here: do bg_subtract AND normalization step here ... ## do background correction in each channel; returns "normalized in-band signal" ibR_nl, params_red = normexp_bg_corrected(ibR, oobR, offset, sample_name=container.sample.name) #<- .backgroundCorrectionNoobCh1(ibR, oobR(sset), ctl(sset)$R, getBackgroundR(sset, bgR), offset=offset) ibG_nl, params_green = normexp_bg_corrected(ibG, oobG, offset, sample_name=container.sample.name) # <- .backgroundCorrectionNoobCh1(ibG, oobG(sset), ctl(sset)$G, getBackgroundG(sset, bgG), offset=offset) ibG_nl = ibG_nl.round({'bg_corrected':0}) ibR_nl = ibR_nl.round({'bg_corrected':0}) #print('ibG_nl', ibG_nl.shape) #print('ibR_nl', ibR_nl.shape) noob_green = ibG_nl noob_red = ibR_nl if debug: print(f"OOB: Set {oobR_affected} red and {oobG_affected} green to 1.0; shapes: {oobG.shape}, {oobR.shape}") print(f"noob_red with Grn: {len(noob_red[noob_red['Channel'] == 'Grn'])} noob_green with Red: {len(noob_green[noob_green['Channel'] == 'Red'])}") ref_IG = ref[(ref['Color_Channel']=='Grn') & (ref['Infinium_Design_Type']=='I')] ref_IR = ref[(ref['Color_Channel']=='Red') & (ref['Infinium_Design_Type']=='I')] ref_II = ref[ref['Infinium_Design_Type']=='II'] # II channel is NaN, but BOTH channels have data print(f"from manifest: ref_IG {ref_IG.shape} ref_IR {ref_IR.shape} ref_II {ref_II.shape}") # Combine and return red (IG + IR + II_unmeth) and green (IG + IR + II_meth) # ibR_nl has IlmnID and illumina_id (index); ref has IlmnID as index # ref_meth/ref_unmeth from probes.py ref_meth = pd.concat([ ref[(ref['Color_Channel'].isna()) & (ref['Infinium_Design_Type']=='II')]['AddressA_ID'].reset_index().rename(columns={'AddressA_ID':'illumina_id'}), ref[(ref['Color_Channel']=='Grn') & (ref['Infinium_Design_Type']== 'I')]['AddressB_ID'].reset_index().rename(columns={'AddressB_ID':'illumina_id'}), ref[(ref['Color_Channel']=='Red') & (ref['Infinium_Design_Type']== 'I')]['AddressB_ID'].reset_index().rename(columns={'AddressB_ID':'illumina_id'}), ]) #.set_index('illumina_id') # .drop('illumina_id', axis=1) ref_unmeth = pd.concat([ ref[(ref['Color_Channel'].isna()) & (ref['Infinium_Design_Type']=='II')]['AddressA_ID'].reset_index().rename(columns={'AddressA_ID':'illumina_id'}), ref[(ref['Color_Channel']=='Grn') & (ref['Infinium_Design_Type']== 'I')]['AddressA_ID'].reset_index().rename(columns={'AddressA_ID':'illumina_id'}), ref[(ref['Color_Channel']=='Red') & (ref['Infinium_Design_Type']== 'I')]['AddressA_ID'].reset_index().rename(columns={'AddressA_ID':'illumina_id'}), ]) #.set_index('illumina_id') # .drop('illumina_id', axis=1) noob_meth_G = noob_green[noob_green.index.isin(ref_meth['illumina_id'])] noob_unmeth_G = noob_green[noob_green.index.isin(ref_unmeth['illumina_id'])] noob_meth_R = noob_red[noob_red.index.isin(ref_meth['illumina_id'])] noob_unmeth_R = noob_red[noob_red.index.isin(ref_unmeth['illumina_id'])] noob_meth_dupes = pd.concat([noob_meth_G, noob_meth_R]) noob_unmeth_dupes = pd.concat([noob_unmeth_G, noob_unmeth_R]) # CONFIRMED: this dedupe method below matches sesame's output exactly for noob_meth noob_meth = (noob_meth_dupes[~noob_meth_dupes.index.duplicated(keep='first')] .set_index('IlmnID') .sort_index() .rename(columns={'bg_corrected':'meth'}) ) # conveniently, the FIRST value of each duplicate probe appears to be the one we want for both meth/unmeth R/G channels noob_unmeth = (noob_unmeth_dupes[~noob_unmeth_dupes.index.duplicated(keep='first')] .set_index('IlmnID') .sort_index() .rename(columns={'bg_corrected':'unmeth'}) ) # update II, IG, IR, oobR, oobG, ctrl_red, ctrl_green # --> --> probes.py subsets concatenate these: # fg_green # GREEN + AddressA + II # GREEN + AddressA + IG # GREEN + AddressB + IG # oob_green # RED + AddressA + IR # fg_red # RED + AddressA + II # RED + AddressA + IR # RED + AddressB + IR # oob_red # GREEN + AddressB + IG # # methylated # GREEN + AddressA + II # GREEN + AddressB + I # RED + AddressB + I # unmethylated # RED + AddressA + II # GREEN + AddressA + I # RED + AddressA + I # RETROFITTING BELOW -- may not work, as sesame works with noob_meth / noob_unmeth instead try: container.methylated.set_bg_corrected(noob_green, noob_red) container.unmethylated.set_bg_corrected(noob_green, noob_red) container.methylated.set_noob(1.0) container.unmethylated.set_noob(1.0) except ValueError as e: print(e) if debug: LOGGER.warning("could not update container methylated / unmethylated noob values, because preprocess_sesame_noob has already run once.") # output df should have sample meth or unmeth in a column with sample name and IlmnID as index. 485512 rows if debug: return { 'noob_meth': noob_meth, 'noob_unmeth': noob_unmeth, 'oobR': oobR, 'oobG': oobG, 'noob_green': noob_green, 'noob_red': noob_red, 'dupe_meth': noob_meth_dupes, 'dupe_unmeth': noob_unmeth_dupes, } return # noob_meth, noob_unmeth """
[ "logging.getLogger", "numpy.median", "scipy.stats.norm", "statsmodels.robust.mad", "pandas.concat", "pandas.DataFrame", "numpy.maximum", "numpy.seterr" ]
[((450, 477), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (467, 477), False, 'import logging\n'), ((3266, 3319), 'pandas.DataFrame', 'pd.DataFrame', (['(Rmeth + Runmeth)'], {'columns': "['mean_value']"}), "(Rmeth + Runmeth, columns=['mean_value'])\n", (3278, 3319), True, 'import pandas as pd\n'), ((3556, 3609), 'pandas.DataFrame', 'pd.DataFrame', (['(Gmeth + Gunmeth)'], {'columns': "['mean_value']"}), "(Gmeth + Gunmeth, columns=['mean_value'])\n", (3568, 3609), True, 'import pandas as pd\n'), ((8862, 8895), 'numpy.maximum', 'np.maximum', (['(fg_mean - bg_mean)', '(10)'], {}), '(fg_mean - bg_mean, 10)\n', (8872, 8895), True, 'import numpy as np\n'), ((9820, 9845), 'numpy.seterr', 'np.seterr', ([], {'under': '"""ignore"""'}), "(under='ignore')\n", (9829, 9845), True, 'import numpy as np\n'), ((10964, 10989), 'numpy.maximum', 'np.maximum', (['signal', '(1e-06)'], {}), '(signal, 1e-06)\n', (10974, 10989), True, 'import numpy as np\n'), ((11444, 11462), 'statsmodels.robust.mad', 'robust.mad', (['vector'], {}), '(vector)\n', (11454, 11462), False, 'from statsmodels import robust\n'), ((11482, 11499), 'numpy.median', 'np.median', (['vector'], {}), '(vector)\n', (11491, 11499), True, 'import numpy as np\n'), ((13859, 13881), 'pandas.concat', 'pd.concat', (['[cgs, snps]'], {}), '([cgs, snps])\n', (13868, 13881), True, 'import pandas as pd\n'), ((11671, 11733), 'numpy.maximum', 'np.maximum', (['(local_median - positive_factor * mad_scale)', 'vector'], {}), '(local_median - positive_factor * mad_scale, vector)\n', (11681, 11733), True, 'import numpy as np\n'), ((10491, 10510), 'scipy.stats.norm', 'norm', (['mu_sf', 'bg_mad'], {}), '(mu_sf, bg_mad)\n', (10495, 10510), False, 'from scipy.stats import norm, lognorm\n'), ((10523, 10542), 'scipy.stats.norm', 'norm', (['mu_sf', 'bg_mad'], {}), '(mu_sf, bg_mad)\n', (10527, 10542), False, 'from scipy.stats import norm, lognorm\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List import numpy as np from pydantic import BaseModel, validator from ray.rllib.agents.dqn import ApexTrainer, R2D2Trainer # noqa from ray.rllib.agents.impala import ImpalaTrainer # noqa from ray.rllib.agents.ppo import PPOTrainer # noqa from compiler_gym.datasets import BenchmarkUri from compiler_gym.envs import CompilerEnv from compiler_gym.util.timer import Timer logger = logging.getLogger(__name__) class InferenceResult(BaseModel): """Represents the result of running an RL agent on a problem.""" # The benchmark URI. benchmark: str inference_walltime_seconds: float commandline: str episode_len: int instruction_count_init: int instruction_count_final: int instruction_count_oz: int instruction_count_reduction: float """The final instruction count, normalized to -Oz.""" object_size_init: int object_size_final: int object_size_oz: int object_size_reduction: float """The final object size, normalized to -Oz.""" runtimes_init: List[float] runtimes_final: List[float] runtimes_o3: List[float] runtime_reduction: float """The final runtime, normalized to -Oz.""" @classmethod def from_agent( cls, env: CompilerEnv, agent, runtime: bool = True, runtimes_count: int = 30 ): # We calculate our own reward at the end, no need for incremental # rewards during inference. env.reward_space = None # Run inference on the environment. observation, done = env.reset(), False with Timer() as inference_timer: while not done: action = agent.compute_action(observation) observation, _, done, _ = env.step(action) instruction_count_init = env.unwrapped.observation["IrInstructionCountO0"] instruction_count_final = env.unwrapped.observation["IrInstructionCount"] instruction_count_oz = env.unwrapped.observation["IrInstructionCountOz"] object_size_init = env.unwrapped.observation["ObjectTextSizeO0"] object_size_final = env.unwrapped.observation["ObjectTextSizeBytes"] object_size_oz = env.unwrapped.observation["ObjectTextSizeOz"] runtimes_init = [] runtimes_o3 = [] runtimes_final = [] try: if runtime and env.unwrapped.observation["IsRunnable"]: env.send_param( "llvm.set_runtimes_per_observation_count", str(runtimes_count) ) env.unwrapped.observation["Runtime"] # warmup runtimes_final = env.unwrapped.observation["Runtime"].tolist() assert ( len(runtimes_final) == runtimes_count ), f"{len(runtimes_final)} != {runtimes_count}" env.reset() env.send_param( "llvm.set_runtimes_per_observation_count", str(runtimes_count) ) env.unwrapped.observation["Runtime"] # warmup runtimes_init = env.unwrapped.observation["Runtime"].tolist() assert ( len(runtimes_init) == runtimes_count ), f"{len(runtimes_init)} != {runtimes_count}" env.send_param("llvm.apply_baseline_optimizations", "-O3") env.unwrapped.observation["Runtime"] # warmup runtimes_o3 = env.unwrapped.observation["Runtime"].tolist() assert ( len(runtimes_o3) == runtimes_count ), f"{len(runtimes_o3)} != {runtimes_count}" except Exception as e: # pylint: disable=broad-except logger.warning("Failed to compute runtime: %s", e) return cls( benchmark=env.benchmark.uri, inference_walltime_seconds=inference_timer.time, commandline=env.commandline(), episode_len=len(env.actions), instruction_count_init=instruction_count_init, instruction_count_final=instruction_count_final, instruction_count_oz=instruction_count_oz, instruction_count_reduction=instruction_count_oz / max(instruction_count_final, 1), object_size_init=object_size_init, object_size_final=object_size_final, object_size_oz=object_size_oz, object_size_reduction=object_size_oz / max(object_size_final, 1), runtimes_init=runtimes_init, runtimes_final=runtimes_final, runtimes_o3=runtimes_o3, runtime_reduction=np.median(runtimes_o3 or [0]) / max(np.median(runtimes_final or [0]), 1), ) @validator("benchmark", pre=True) def validate_benchmark(cls, value): if isinstance(value, BenchmarkUri): return str(value) return value
[ "logging.getLogger", "numpy.median", "compiler_gym.util.timer.Timer", "pydantic.validator" ]
[((596, 623), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (613, 623), False, 'import logging\n'), ((4873, 4905), 'pydantic.validator', 'validator', (['"""benchmark"""'], {'pre': '(True)'}), "('benchmark', pre=True)\n", (4882, 4905), False, 'from pydantic import BaseModel, validator\n'), ((1754, 1761), 'compiler_gym.util.timer.Timer', 'Timer', ([], {}), '()\n', (1759, 1761), False, 'from compiler_gym.util.timer import Timer\n'), ((4771, 4800), 'numpy.median', 'np.median', (['(runtimes_o3 or [0])'], {}), '(runtimes_o3 or [0])\n', (4780, 4800), True, 'import numpy as np\n'), ((4819, 4851), 'numpy.median', 'np.median', (['(runtimes_final or [0])'], {}), '(runtimes_final or [0])\n', (4828, 4851), True, 'import numpy as np\n')]
""" TO DO: 1. Lot of edge cases not accounted for 2. Could use some unit testing scripts for sanity check 3. What are the bounds for years? """ import mysql from mysql.connector import Error import re import numpy as np def reject_outliers(data, m = 6.): d = np.abs(data - np.median(data)) mdev = np.median(d) s = d/mdev if mdev else 0. return data[s<m] def tag_year(): try: conn = mysql.connector.connect(host='127.0.0.1',port = 3307,database='explorer_db',user='root',password = '') if conn.is_connected(): print("Connection successful: ",conn.get_server_info()) cur = conn.cursor(buffered = True) cur1 = conn.cursor() cur.execute("SELECT event_key,htext FROM event WHERE htext IS NOT NULL AND event_year IS NULL") count = 0 cent = {"first":"1st","second":"2nd","third":"3rd","fourth":"4th","fifth":"5th","sixth":"6th","seventh":"7th","eighth":"8th","ninth":"9th","tenth":"10th", "eleventh":"11th","twelfth":"12th","thirteenth":"13th","fourteenth":"14th","fifteenth":"15th", "sixteenth":"16th","seventeenth":"17th","eighteenth":"18th","nineteenth":"19th","twentieth":"20th","twentyfirst":"21st"} mylist = list() for row in cur: text = row[1].lower() pos = text.find("references[edit]") pos2 = text.find("further reading[edit]") if pos!=0: sub1 = text[:pos] sub2 = text[pos2:] text = sub1+sub2 #print(text,"\n\n") if "century" in text: #print("YES\n\n") mylist = re.findall("\d+[a-z][a-z]\s*-*century",text) #print(mylist) sec_list = re.findall("[f,s,t,e,n][a-z][a-z]+\s*-*century",text) #print(sec_list) sec_list = [i.replace(i[:i.find(" century")],cent[i[:i.find(" century")]]) for i in sec_list if (i[:i.find(" century")]) in cent] mylist = mylist+sec_list #print(mylist) mylist = [re.sub(r"[a-z][a-z]\s*-*century","00",i) for i in mylist] #print(mylist) years = re.findall('([1][0-9][0-9][0-9])',row[1]) years2 = re.findall('([2][0-1][0-2][0-9])',row[1]) years = years+years2 + mylist if not years: allyear = "NULL" else: allyear = np.array([int(i) for i in years]) allyear = reject_outliers(allyear) cur1.execute('''UPDATE event set event_year = %s WHERE event_key = %s''',(str(allyear[0]),row[0])) #print(allyear) print(len(allyear),count) count+=1 conn.commit() cur.close() cur1.close() conn.close() print(count,"rows") print("Done check database!") except Error as e: print("Error while connecting to MySQL", e)
[ "re.sub", "re.findall", "mysql.connector.connect", "numpy.median" ]
[((330, 342), 'numpy.median', 'np.median', (['d'], {}), '(d)\n', (339, 342), True, 'import numpy as np\n'), ((438, 544), 'mysql.connector.connect', 'mysql.connector.connect', ([], {'host': '"""127.0.0.1"""', 'port': '(3307)', 'database': '"""explorer_db"""', 'user': '"""root"""', 'password': '""""""'}), "(host='127.0.0.1', port=3307, database='explorer_db',\n user='root', password='')\n", (461, 544), False, 'import mysql\n'), ((302, 317), 'numpy.median', 'np.median', (['data'], {}), '(data)\n', (311, 317), True, 'import numpy as np\n'), ((2220, 2262), 're.findall', 're.findall', (['"""([1][0-9][0-9][0-9])"""', 'row[1]'], {}), "('([1][0-9][0-9][0-9])', row[1])\n", (2230, 2262), False, 'import re\n'), ((2283, 2325), 're.findall', 're.findall', (['"""([2][0-1][0-2][0-9])"""', 'row[1]'], {}), "('([2][0-1][0-2][0-9])', row[1])\n", (2293, 2325), False, 'import re\n'), ((1664, 1711), 're.findall', 're.findall', (['"""\\\\d+[a-z][a-z]\\\\s*-*century"""', 'text'], {}), "('\\\\d+[a-z][a-z]\\\\s*-*century', text)\n", (1674, 1711), False, 'import re\n'), ((1767, 1822), 're.findall', 're.findall', (['"""[f,s,t,e,n][a-z][a-z]+\\\\s*-*century"""', 'text'], {}), "('[f,s,t,e,n][a-z][a-z]+\\\\s*-*century', text)\n", (1777, 1822), False, 'import re\n'), ((2098, 2140), 're.sub', 're.sub', (['"""[a-z][a-z]\\\\s*-*century"""', '"""00"""', 'i'], {}), "('[a-z][a-z]\\\\s*-*century', '00', i)\n", (2104, 2140), False, 'import re\n')]
""" Implements Pseudo-outcome based Two-step Nets, namely the DR-learner, the PW-learner and the RA-learner. """ # Author: <NAME> from typing import Callable, Optional, Tuple import jax.numpy as jnp import numpy as onp import pandas as pd from sklearn.model_selection import StratifiedKFold import catenets.logger as log from catenets.models.constants import ( DEFAULT_AVG_OBJECTIVE, DEFAULT_BATCH_SIZE, DEFAULT_CF_FOLDS, DEFAULT_LAYERS_OUT, DEFAULT_LAYERS_OUT_T, DEFAULT_LAYERS_R, DEFAULT_LAYERS_R_T, DEFAULT_N_ITER, DEFAULT_N_ITER_MIN, DEFAULT_N_ITER_PRINT, DEFAULT_NONLIN, DEFAULT_PATIENCE, DEFAULT_PENALTY_L2, DEFAULT_SEED, DEFAULT_STEP_SIZE, DEFAULT_STEP_SIZE_T, DEFAULT_UNITS_OUT, DEFAULT_UNITS_OUT_T, DEFAULT_UNITS_R, DEFAULT_UNITS_R_T, DEFAULT_VAL_SPLIT, ) from catenets.models.jax.base import BaseCATENet, train_output_net_only from catenets.models.jax.disentangled_nets import predict_snet3, train_snet3 from catenets.models.jax.flextenet import predict_flextenet, train_flextenet from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np from catenets.models.jax.offsetnet import predict_offsetnet, train_offsetnet from catenets.models.jax.representation_nets import ( predict_snet1, predict_snet2, train_snet1, train_snet2, ) from catenets.models.jax.snet import predict_snet, train_snet from catenets.models.jax.tnet import predict_t_net, train_tnet from catenets.models.jax.transformation_utils import ( DR_TRANSFORMATION, PW_TRANSFORMATION, RA_TRANSFORMATION, _get_transformation_function, ) T_STRATEGY = "T" S1_STRATEGY = "Tar" S2_STRATEGY = "S2" S3_STRATEGY = "S3" S_STRATEGY = "S" OFFSET_STRATEGY = "Offset" FLEX_STRATEGY = "Flex" ALL_STRATEGIES = [ T_STRATEGY, S1_STRATEGY, S2_STRATEGY, S3_STRATEGY, S_STRATEGY, FLEX_STRATEGY, OFFSET_STRATEGY, ] class PseudoOutcomeNet(BaseCATENet): """ Class implements TwoStepLearners based on pseudo-outcome regression as discussed in Curth &<NAME> (2021): RA-learner, PW-learner and DR-learner Parameters ---------- first_stage_strategy: str, default 't' which nuisance estimator to use in first stage first_stage_args: dict Any additional arguments to pass to first stage training function data_split: bool, default False Whether to split the data in two folds for estimation cross_fit: bool, default False Whether to perform cross fitting n_cf_folds: int Number of crossfitting folds to use transformation: str, default 'AIPW' pseudo-outcome to use ('AIPW' for DR-learner, 'HT' for PW learner, 'RA' for RA-learner) binary_y: bool, default False Whether the outcome is binary n_layers_out: int First stage Number of hypothesis layers (n_layers_out x n_units_out + 1 x Dense layer) n_units_out: int First stage Number of hidden units in each hypothesis layer n_layers_r: int First stage Number of representation layers before hypothesis layers (distinction between hypothesis layers and representation layers is made to match TARNet & SNets) n_units_r: int First stage Number of hidden units in each representation layer n_layers_out_t: int Second stage Number of hypothesis layers (n_layers_out x n_units_out + 1 x Dense layer) n_units_out_t: int Second stage Number of hidden units in each hypothesis layer n_layers_r_t: int Second stage Number of representation layers before hypothesis layers (distinction between hypothesis layers and representation layers is made to match TARNet & SNets) n_units_r_t: int Second stage Number of hidden units in each representation layer penalty_l2: float First stage l2 (ridge) penalty penalty_l2_t: float Second stage l2 (ridge) penalty step_size: float First stage learning rate for optimizer step_size_t: float Second stage learning rate for optimizer n_iter: int Maximum number of iterations batch_size: int Batch size val_split_prop: float Proportion of samples used for validation split (can be 0) early_stopping: bool, default True Whether to use early stopping patience: int Number of iterations to wait before early stopping after decrease in validation loss n_iter_min: int Minimum number of iterations to go through before starting early stopping n_iter_print: int Number of iterations after which to print updates seed: int Seed used nonlin: string, default 'elu' Nonlinearity to use in NN """ def __init__( self, first_stage_strategy: str = T_STRATEGY, first_stage_args: Optional[dict] = None, data_split: bool = False, cross_fit: bool = False, n_cf_folds: int = DEFAULT_CF_FOLDS, transformation: str = DR_TRANSFORMATION, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_layers_out_t: int = DEFAULT_LAYERS_OUT_T, n_layers_r_t: int = DEFAULT_LAYERS_R_T, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, n_units_out_t: int = DEFAULT_UNITS_OUT_T, n_units_r_t: int = DEFAULT_UNITS_R_T, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_l2_t: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, step_size_t: float = DEFAULT_STEP_SIZE_T, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, n_iter_min: int = DEFAULT_N_ITER_MIN, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, rescale_transformation: bool = False, nonlin: str = DEFAULT_NONLIN, ) -> None: # settings self.first_stage_strategy = first_stage_strategy self.first_stage_args = first_stage_args self.binary_y = binary_y self.transformation = transformation self.data_split = data_split self.cross_fit = cross_fit self.n_cf_folds = n_cf_folds # model architecture hyperparams self.n_layers_out = n_layers_out self.n_layers_out_t = n_layers_out_t self.n_layers_r = n_layers_r self.n_layers_r_t = n_layers_r_t self.n_units_out = n_units_out self.n_units_out_t = n_units_out_t self.n_units_r = n_units_r self.n_units_r_t = n_units_r_t self.nonlin = nonlin # other hyperparameters self.penalty_l2 = penalty_l2 self.penalty_l2_t = penalty_l2_t self.step_size = step_size self.step_size_t = step_size_t self.n_iter = n_iter self.batch_size = batch_size self.n_iter_print = n_iter_print self.seed = seed self.val_split_prop = val_split_prop self.early_stopping = early_stopping self.patience = patience self.n_iter_min = n_iter_min self.rescale_transformation = rescale_transformation def _get_train_function(self) -> Callable: return train_pseudooutcome_net def fit( self, X: jnp.ndarray, y: jnp.ndarray, w: jnp.ndarray, p: Optional[jnp.ndarray] = None, ) -> "PseudoOutcomeNet": # overwrite super so we can pass p as extra param # some quick input checks X = check_X_is_np(X) self._check_inputs(w, p) train_func = self._get_train_function() train_params = self.get_params() if "transformation" not in train_params.keys(): train_params.update({"transformation": self.transformation}) if self.rescale_transformation: self._params, self._predict_funs, self._scale_factor = train_func( X, y, w, p, **train_params ) else: self._params, self._predict_funs = train_func(X, y, w, p, **train_params) return self def _get_predict_function(self) -> Callable: # Two step nets do not need this pass def predict( self, X: jnp.ndarray, return_po: bool = False, return_prop: bool = False ) -> jnp.ndarray: # check input if return_po: raise NotImplementedError( "TwoStepNets have no Potential outcome predictors." ) if return_prop: raise NotImplementedError("TwoStepNets have no Propensity predictors.") if isinstance(X, pd.DataFrame): X = X.values if self.rescale_transformation: return 1 / self._scale_factor * self._predict_funs(self._params, X) else: return self._predict_funs(self._params, X) class DRNet(PseudoOutcomeNet): """Wrapper for DR-learner using PseudoOutcomeNet""" def __init__( self, first_stage_strategy: str = T_STRATEGY, data_split: bool = False, cross_fit: bool = False, n_cf_folds: int = DEFAULT_CF_FOLDS, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_layers_out_t: int = DEFAULT_LAYERS_OUT_T, n_layers_r_t: int = DEFAULT_LAYERS_R_T, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, n_units_out_t: int = DEFAULT_UNITS_OUT_T, n_units_r_t: int = DEFAULT_UNITS_R_T, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_l2_t: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, step_size_t: float = DEFAULT_STEP_SIZE_T, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, n_iter_min: int = DEFAULT_N_ITER_MIN, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, rescale_transformation: bool = False, nonlin: str = DEFAULT_NONLIN, first_stage_args: Optional[dict] = None, ) -> None: super().__init__( first_stage_strategy=first_stage_strategy, data_split=data_split, cross_fit=cross_fit, n_cf_folds=n_cf_folds, transformation=DR_TRANSFORMATION, binary_y=binary_y, n_layers_out=n_layers_out, n_layers_r=n_layers_r, n_layers_out_t=n_layers_out_t, n_layers_r_t=n_layers_r_t, n_units_out=n_units_out, n_units_r=n_units_r, n_units_out_t=n_units_out_t, n_units_r_t=n_units_r_t, penalty_l2=penalty_l2, penalty_l2_t=penalty_l2_t, step_size=step_size, step_size_t=step_size_t, n_iter=n_iter, batch_size=batch_size, n_iter_min=n_iter_min, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, rescale_transformation=rescale_transformation, first_stage_args=first_stage_args, ) class RANet(PseudoOutcomeNet): """Wrapper for RA-learner using PseudoOutcomeNet""" def __init__( self, first_stage_strategy: str = T_STRATEGY, data_split: bool = False, cross_fit: bool = False, n_cf_folds: int = DEFAULT_CF_FOLDS, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_layers_out_t: int = DEFAULT_LAYERS_OUT_T, n_layers_r_t: int = DEFAULT_LAYERS_R_T, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, n_units_out_t: int = DEFAULT_UNITS_OUT_T, n_units_r_t: int = DEFAULT_UNITS_R_T, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_l2_t: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, step_size_t: float = DEFAULT_STEP_SIZE_T, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, n_iter_min: int = DEFAULT_N_ITER_MIN, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, rescale_transformation: bool = False, nonlin: str = DEFAULT_NONLIN, first_stage_args: Optional[dict] = None, ) -> None: super().__init__( first_stage_strategy=first_stage_strategy, data_split=data_split, cross_fit=cross_fit, n_cf_folds=n_cf_folds, transformation=RA_TRANSFORMATION, binary_y=binary_y, n_layers_out=n_layers_out, n_layers_r=n_layers_r, n_layers_out_t=n_layers_out_t, n_layers_r_t=n_layers_r_t, n_units_out=n_units_out, n_units_r=n_units_r, n_units_out_t=n_units_out_t, n_units_r_t=n_units_r_t, penalty_l2=penalty_l2, penalty_l2_t=penalty_l2_t, step_size=step_size, step_size_t=step_size_t, n_iter=n_iter, batch_size=batch_size, n_iter_min=n_iter_min, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, rescale_transformation=rescale_transformation, first_stage_args=first_stage_args, ) class PWNet(PseudoOutcomeNet): """Wrapper for PW-learner using PseudoOutcomeNet""" def __init__( self, first_stage_strategy: str = T_STRATEGY, data_split: bool = False, cross_fit: bool = False, n_cf_folds: int = DEFAULT_CF_FOLDS, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_layers_out_t: int = DEFAULT_LAYERS_OUT_T, n_layers_r_t: int = DEFAULT_LAYERS_R_T, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, n_units_out_t: int = DEFAULT_UNITS_OUT_T, n_units_r_t: int = DEFAULT_UNITS_R_T, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_l2_t: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, step_size_t: float = DEFAULT_STEP_SIZE_T, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, n_iter_min: int = DEFAULT_N_ITER_MIN, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, rescale_transformation: bool = False, nonlin: str = DEFAULT_NONLIN, first_stage_args: Optional[dict] = None, ) -> None: super().__init__( first_stage_strategy=first_stage_strategy, data_split=data_split, cross_fit=cross_fit, n_cf_folds=n_cf_folds, transformation=PW_TRANSFORMATION, binary_y=binary_y, n_layers_out=n_layers_out, n_layers_r=n_layers_r, n_layers_out_t=n_layers_out_t, n_layers_r_t=n_layers_r_t, n_units_out=n_units_out, n_units_r=n_units_r, n_units_out_t=n_units_out_t, n_units_r_t=n_units_r_t, penalty_l2=penalty_l2, penalty_l2_t=penalty_l2_t, step_size=step_size, step_size_t=step_size_t, n_iter=n_iter, batch_size=batch_size, n_iter_min=n_iter_min, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, rescale_transformation=rescale_transformation, first_stage_args=first_stage_args, ) def train_pseudooutcome_net( X: jnp.ndarray, y: jnp.ndarray, w: jnp.ndarray, p: Optional[jnp.ndarray] = None, first_stage_strategy: str = T_STRATEGY, data_split: bool = False, cross_fit: bool = False, n_cf_folds: int = DEFAULT_CF_FOLDS, transformation: str = DR_TRANSFORMATION, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_layers_r_t: int = DEFAULT_LAYERS_R_T, n_layers_out_t: int = DEFAULT_LAYERS_OUT_T, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, n_units_out_t: int = DEFAULT_UNITS_OUT_T, n_units_r_t: int = DEFAULT_UNITS_R_T, penalty_l2: float = DEFAULT_PENALTY_L2, penalty_l2_t: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, step_size_t: float = DEFAULT_STEP_SIZE_T, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_min: int = DEFAULT_N_ITER_MIN, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, rescale_transformation: bool = False, return_val_loss: bool = False, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = DEFAULT_AVG_OBJECTIVE, first_stage_args: Optional[dict] = None, ) -> Tuple: # get shape of data n, d = X.shape if p is not None: p = check_shape_1d_data(p) # get transformation function transformation_function = _get_transformation_function(transformation) # get strategy name if first_stage_strategy not in ALL_STRATEGIES: raise ValueError( "Parameter first stage should be in " "catenets.models.pseudo_outcome_nets.ALL_STRATEGIES. " "You passed {}".format(first_stage_strategy) ) # split data as wanted if p is None or transformation is not PW_TRANSFORMATION: if not cross_fit: if not data_split: log.debug("Training first stage with all data (no data splitting)") # use all data for both fit_mask = onp.ones(n, dtype=bool) pred_mask = onp.ones(n, dtype=bool) else: log.debug("Training first stage with half of the data (data splitting)") # split data in half fit_idx = onp.random.choice(n, int(onp.round(n / 2))) fit_mask = onp.zeros(n, dtype=bool) fit_mask[fit_idx] = 1 pred_mask = ~fit_mask mu_0, mu_1, pi_hat = _train_and_predict_first_stage( X, y, w, fit_mask, pred_mask, first_stage_strategy=first_stage_strategy, binary_y=binary_y, n_layers_out=n_layers_out, n_layers_r=n_layers_r, n_units_out=n_units_out, n_units_r=n_units_r, penalty_l2=penalty_l2, step_size=step_size, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, avg_objective=avg_objective, transformation=transformation, first_stage_args=first_stage_args, ) if data_split: # keep only prediction data X, y, w = X[pred_mask, :], y[pred_mask, :], w[pred_mask, :] if p is not None: p = p[pred_mask, :] else: log.debug(f"Training first stage in {n_cf_folds} folds (cross-fitting)") # do cross fitting mu_0, mu_1, pi_hat = onp.zeros((n, 1)), onp.zeros((n, 1)), onp.zeros((n, 1)) splitter = StratifiedKFold( n_splits=n_cf_folds, shuffle=True, random_state=seed ) fold_count = 1 for train_idx, test_idx in splitter.split(X, w): log.debug(f"Training fold {fold_count}.") fold_count = fold_count + 1 pred_mask = onp.zeros(n, dtype=bool) pred_mask[test_idx] = 1 fit_mask = ~pred_mask ( mu_0[pred_mask], mu_1[pred_mask], pi_hat[pred_mask], ) = _train_and_predict_first_stage( X, y, w, fit_mask, pred_mask, first_stage_strategy=first_stage_strategy, binary_y=binary_y, n_layers_out=n_layers_out, n_layers_r=n_layers_r, n_units_out=n_units_out, n_units_r=n_units_r, penalty_l2=penalty_l2, step_size=step_size, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, avg_objective=avg_objective, transformation=transformation, first_stage_args=first_stage_args, ) log.debug("Training second stage.") if p is not None: # use known propensity score p = check_shape_1d_data(p) pi_hat = p # second stage y, w = check_shape_1d_data(y), check_shape_1d_data(w) # transform data and fit on transformed data if transformation is PW_TRANSFORMATION: mu_0 = None mu_1 = None pseudo_outcome = transformation_function(y=y, w=w, p=pi_hat, mu_0=mu_0, mu_1=mu_1) if rescale_transformation: scale_factor = onp.std(y) / onp.std(pseudo_outcome) if scale_factor > 1: scale_factor = 1 else: pseudo_outcome = scale_factor * pseudo_outcome params, predict_funs = train_output_net_only( X, pseudo_outcome, binary_y=False, n_layers_out=n_layers_out_t, n_units_out=n_units_out_t, n_layers_r=n_layers_r_t, n_units_r=n_units_r_t, penalty_l2=penalty_l2_t, step_size=step_size_t, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, return_val_loss=return_val_loss, nonlin=nonlin, avg_objective=avg_objective, ) return params, predict_funs, scale_factor else: return train_output_net_only( X, pseudo_outcome, binary_y=False, n_layers_out=n_layers_out_t, n_units_out=n_units_out_t, n_layers_r=n_layers_r_t, n_units_r=n_units_r_t, penalty_l2=penalty_l2_t, step_size=step_size_t, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, return_val_loss=return_val_loss, nonlin=nonlin, avg_objective=avg_objective, ) def _train_and_predict_first_stage( X: jnp.ndarray, y: jnp.ndarray, w: jnp.ndarray, fit_mask: jnp.ndarray, pred_mask: jnp.ndarray, first_stage_strategy: str, binary_y: bool = False, n_layers_out: int = DEFAULT_LAYERS_OUT, n_layers_r: int = DEFAULT_LAYERS_R, n_units_out: int = DEFAULT_UNITS_OUT, n_units_r: int = DEFAULT_UNITS_R, penalty_l2: float = DEFAULT_PENALTY_L2, step_size: float = DEFAULT_STEP_SIZE, n_iter: int = DEFAULT_N_ITER, batch_size: int = DEFAULT_BATCH_SIZE, val_split_prop: float = DEFAULT_VAL_SPLIT, early_stopping: bool = True, patience: int = DEFAULT_PATIENCE, n_iter_min: int = DEFAULT_N_ITER_MIN, n_iter_print: int = DEFAULT_N_ITER_PRINT, seed: int = DEFAULT_SEED, nonlin: str = DEFAULT_NONLIN, avg_objective: bool = False, transformation: str = DR_TRANSFORMATION, first_stage_args: Optional[dict] = None, ) -> Tuple: if len(w.shape) > 1: w = w.reshape((len(w),)) if first_stage_args is None: first_stage_args = {} # split the data X_fit, y_fit, w_fit = X[fit_mask, :], y[fit_mask], w[fit_mask] X_pred = X[pred_mask, :] train_fun: Callable predict_fun: Callable if first_stage_strategy == T_STRATEGY: train_fun, predict_fun = train_tnet, predict_t_net elif first_stage_strategy == S_STRATEGY: train_fun, predict_fun = train_snet, predict_snet elif first_stage_strategy == S1_STRATEGY: train_fun, predict_fun = train_snet1, predict_snet1 elif first_stage_strategy == S2_STRATEGY: train_fun, predict_fun = train_snet2, predict_snet2 elif first_stage_strategy == S3_STRATEGY: train_fun, predict_fun = train_snet3, predict_snet3 elif first_stage_strategy == OFFSET_STRATEGY: train_fun, predict_fun = train_offsetnet, predict_offsetnet elif first_stage_strategy == FLEX_STRATEGY: train_fun, predict_fun = train_flextenet, predict_flextenet else: raise ValueError( "{} is not a valid first stage strategy for a PseudoOutcomeNet".format( first_stage_strategy ) ) log.debug("Training PO estimators") trained_params, pred_fun = train_fun( X_fit, y_fit, w_fit, binary_y=binary_y, n_layers_r=n_layers_r, n_units_r=n_units_r, n_layers_out=n_layers_out, n_units_out=n_units_out, penalty_l2=penalty_l2, step_size=step_size, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, avg_objective=avg_objective, **first_stage_args, ) if first_stage_strategy in [S_STRATEGY, S2_STRATEGY, S3_STRATEGY]: _, mu_0, mu_1, pi_hat = predict_fun( X_pred, trained_params, pred_fun, return_po=True, return_prop=True ) else: if transformation is not PW_TRANSFORMATION: _, mu_0, mu_1 = predict_fun( X_pred, trained_params, pred_fun, return_po=True ) else: mu_0, mu_1 = onp.nan, onp.nan if transformation is not RA_TRANSFORMATION: log.debug("Training propensity net") params_prop, predict_fun_prop = train_output_net_only( X_fit, w_fit, binary_y=True, n_layers_out=n_layers_out, n_units_out=n_units_out, n_layers_r=n_layers_r, n_units_r=n_units_r, penalty_l2=penalty_l2, step_size=step_size, n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=n_iter_print, seed=seed, nonlin=nonlin, avg_objective=avg_objective, ) pi_hat = predict_fun_prop(params_prop, X_pred) else: pi_hat = onp.nan return mu_0, mu_1, pi_hat
[ "catenets.logger.debug", "catenets.models.jax.model_utils.check_shape_1d_data", "numpy.ones", "catenets.models.jax.transformation_utils._get_transformation_function", "sklearn.model_selection.StratifiedKFold", "numpy.zeros", "numpy.std", "catenets.models.jax.base.train_output_net_only", "numpy.round", "catenets.models.jax.model_utils.check_X_is_np" ]
[((18080, 18124), 'catenets.models.jax.transformation_utils._get_transformation_function', '_get_transformation_function', (['transformation'], {}), '(transformation)\n', (18108, 18124), False, 'from catenets.models.jax.transformation_utils import DR_TRANSFORMATION, PW_TRANSFORMATION, RA_TRANSFORMATION, _get_transformation_function\n'), ((22247, 22282), 'catenets.logger.debug', 'log.debug', (['"""Training second stage."""'], {}), "('Training second stage.')\n", (22256, 22282), True, 'import catenets.logger as log\n'), ((26636, 26671), 'catenets.logger.debug', 'log.debug', (['"""Training PO estimators"""'], {}), "('Training PO estimators')\n", (26645, 26671), True, 'import catenets.logger as log\n'), ((7687, 7703), 'catenets.models.jax.model_utils.check_X_is_np', 'check_X_is_np', (['X'], {}), '(X)\n', (7700, 7703), False, 'from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np\n'), ((17992, 18014), 'catenets.models.jax.model_utils.check_shape_1d_data', 'check_shape_1d_data', (['p'], {}), '(p)\n', (18011, 18014), False, 'from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np\n'), ((22355, 22377), 'catenets.models.jax.model_utils.check_shape_1d_data', 'check_shape_1d_data', (['p'], {}), '(p)\n', (22374, 22377), False, 'from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np\n'), ((22428, 22450), 'catenets.models.jax.model_utils.check_shape_1d_data', 'check_shape_1d_data', (['y'], {}), '(y)\n', (22447, 22450), False, 'from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np\n'), ((22452, 22474), 'catenets.models.jax.model_utils.check_shape_1d_data', 'check_shape_1d_data', (['w'], {}), '(w)\n', (22471, 22474), False, 'from catenets.models.jax.model_utils import check_shape_1d_data, check_X_is_np\n'), ((22949, 23439), 'catenets.models.jax.base.train_output_net_only', 'train_output_net_only', (['X', 'pseudo_outcome'], {'binary_y': '(False)', 'n_layers_out': 'n_layers_out_t', 'n_units_out': 'n_units_out_t', 'n_layers_r': 'n_layers_r_t', 'n_units_r': 'n_units_r_t', 'penalty_l2': 'penalty_l2_t', 'step_size': 'step_size_t', 'n_iter': 'n_iter', 'batch_size': 'batch_size', 'val_split_prop': 'val_split_prop', 'early_stopping': 'early_stopping', 'patience': 'patience', 'n_iter_min': 'n_iter_min', 'n_iter_print': 'n_iter_print', 'seed': 'seed', 'return_val_loss': 'return_val_loss', 'nonlin': 'nonlin', 'avg_objective': 'avg_objective'}), '(X, pseudo_outcome, binary_y=False, n_layers_out=\n n_layers_out_t, n_units_out=n_units_out_t, n_layers_r=n_layers_r_t,\n n_units_r=n_units_r_t, penalty_l2=penalty_l2_t, step_size=step_size_t,\n n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop,\n early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min,\n n_iter_print=n_iter_print, seed=seed, return_val_loss=return_val_loss,\n nonlin=nonlin, avg_objective=avg_objective)\n', (22970, 23439), False, 'from catenets.models.jax.base import BaseCATENet, train_output_net_only\n'), ((23741, 24231), 'catenets.models.jax.base.train_output_net_only', 'train_output_net_only', (['X', 'pseudo_outcome'], {'binary_y': '(False)', 'n_layers_out': 'n_layers_out_t', 'n_units_out': 'n_units_out_t', 'n_layers_r': 'n_layers_r_t', 'n_units_r': 'n_units_r_t', 'penalty_l2': 'penalty_l2_t', 'step_size': 'step_size_t', 'n_iter': 'n_iter', 'batch_size': 'batch_size', 'val_split_prop': 'val_split_prop', 'early_stopping': 'early_stopping', 'patience': 'patience', 'n_iter_min': 'n_iter_min', 'n_iter_print': 'n_iter_print', 'seed': 'seed', 'return_val_loss': 'return_val_loss', 'nonlin': 'nonlin', 'avg_objective': 'avg_objective'}), '(X, pseudo_outcome, binary_y=False, n_layers_out=\n n_layers_out_t, n_units_out=n_units_out_t, n_layers_r=n_layers_r_t,\n n_units_r=n_units_r_t, penalty_l2=penalty_l2_t, step_size=step_size_t,\n n_iter=n_iter, batch_size=batch_size, val_split_prop=val_split_prop,\n early_stopping=early_stopping, patience=patience, n_iter_min=n_iter_min,\n n_iter_print=n_iter_print, seed=seed, return_val_loss=return_val_loss,\n nonlin=nonlin, avg_objective=avg_objective)\n', (23762, 24231), False, 'from catenets.models.jax.base import BaseCATENet, train_output_net_only\n'), ((20378, 20450), 'catenets.logger.debug', 'log.debug', (['f"""Training first stage in {n_cf_folds} folds (cross-fitting)"""'], {}), "(f'Training first stage in {n_cf_folds} folds (cross-fitting)')\n", (20387, 20450), True, 'import catenets.logger as log\n'), ((20594, 20663), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'n_cf_folds', 'shuffle': '(True)', 'random_state': 'seed'}), '(n_splits=n_cf_folds, shuffle=True, random_state=seed)\n', (20609, 20663), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((22750, 22760), 'numpy.std', 'onp.std', (['y'], {}), '(y)\n', (22757, 22760), True, 'import numpy as onp\n'), ((22763, 22786), 'numpy.std', 'onp.std', (['pseudo_outcome'], {}), '(pseudo_outcome)\n', (22770, 22786), True, 'import numpy as onp\n'), ((27821, 27857), 'catenets.logger.debug', 'log.debug', (['"""Training propensity net"""'], {}), "('Training propensity net')\n", (27830, 27857), True, 'import catenets.logger as log\n'), ((27902, 28340), 'catenets.models.jax.base.train_output_net_only', 'train_output_net_only', (['X_fit', 'w_fit'], {'binary_y': '(True)', 'n_layers_out': 'n_layers_out', 'n_units_out': 'n_units_out', 'n_layers_r': 'n_layers_r', 'n_units_r': 'n_units_r', 'penalty_l2': 'penalty_l2', 'step_size': 'step_size', 'n_iter': 'n_iter', 'batch_size': 'batch_size', 'val_split_prop': 'val_split_prop', 'early_stopping': 'early_stopping', 'patience': 'patience', 'n_iter_min': 'n_iter_min', 'n_iter_print': 'n_iter_print', 'seed': 'seed', 'nonlin': 'nonlin', 'avg_objective': 'avg_objective'}), '(X_fit, w_fit, binary_y=True, n_layers_out=\n n_layers_out, n_units_out=n_units_out, n_layers_r=n_layers_r, n_units_r\n =n_units_r, penalty_l2=penalty_l2, step_size=step_size, n_iter=n_iter,\n batch_size=batch_size, val_split_prop=val_split_prop, early_stopping=\n early_stopping, patience=patience, n_iter_min=n_iter_min, n_iter_print=\n n_iter_print, seed=seed, nonlin=nonlin, avg_objective=avg_objective)\n', (27923, 28340), False, 'from catenets.models.jax.base import BaseCATENet, train_output_net_only\n'), ((18573, 18640), 'catenets.logger.debug', 'log.debug', (['"""Training first stage with all data (no data splitting)"""'], {}), "('Training first stage with all data (no data splitting)')\n", (18582, 18640), True, 'import catenets.logger as log\n'), ((18708, 18731), 'numpy.ones', 'onp.ones', (['n'], {'dtype': 'bool'}), '(n, dtype=bool)\n', (18716, 18731), True, 'import numpy as onp\n'), ((18760, 18783), 'numpy.ones', 'onp.ones', (['n'], {'dtype': 'bool'}), '(n, dtype=bool)\n', (18768, 18783), True, 'import numpy as onp\n'), ((18818, 18890), 'catenets.logger.debug', 'log.debug', (['"""Training first stage with half of the data (data splitting)"""'], {}), "('Training first stage with half of the data (data splitting)')\n", (18827, 18890), True, 'import catenets.logger as log\n'), ((19025, 19049), 'numpy.zeros', 'onp.zeros', (['n'], {'dtype': 'bool'}), '(n, dtype=bool)\n', (19034, 19049), True, 'import numpy as onp\n'), ((20515, 20532), 'numpy.zeros', 'onp.zeros', (['(n, 1)'], {}), '((n, 1))\n', (20524, 20532), True, 'import numpy as onp\n'), ((20534, 20551), 'numpy.zeros', 'onp.zeros', (['(n, 1)'], {}), '((n, 1))\n', (20543, 20551), True, 'import numpy as onp\n'), ((20553, 20570), 'numpy.zeros', 'onp.zeros', (['(n, 1)'], {}), '((n, 1))\n', (20562, 20570), True, 'import numpy as onp\n'), ((20800, 20841), 'catenets.logger.debug', 'log.debug', (['f"""Training fold {fold_count}."""'], {}), "(f'Training fold {fold_count}.')\n", (20809, 20841), True, 'import catenets.logger as log\n'), ((20915, 20939), 'numpy.zeros', 'onp.zeros', (['n'], {'dtype': 'bool'}), '(n, dtype=bool)\n', (20924, 20939), True, 'import numpy as onp\n'), ((18979, 18995), 'numpy.round', 'onp.round', (['(n / 2)'], {}), '(n / 2)\n', (18988, 18995), True, 'import numpy as onp\n')]
from io import StringIO import itertools import numpy as np import numpy.ma as ma inputfile = './input/day9.txt' # inputfile = StringIO('''2199943210 # 3987894921 # 9856789892 # 8767896789 # 9899965678''') def neighbors(ar, i, j): return {ar[i-1,j], ar[i+1,j], ar[i,j-1], ar[i,j+1]} a = np.genfromtxt(inputfile, dtype='i', delimiter=1) nRows, nCols = a.shape b = np.pad(a, ((1, 1), (1, 1)), constant_values=10) lowPoints = [] for i, j in itertools.product(range(1, nRows+1), range(1, nCols+1)): if all(b[i,j] < foo for foo in neighbors(b,i,j)): lowPoints.append(b[i,j]) print(sum(1+n for n in lowPoints))
[ "numpy.pad", "numpy.genfromtxt" ]
[((333, 381), 'numpy.genfromtxt', 'np.genfromtxt', (['inputfile'], {'dtype': '"""i"""', 'delimiter': '(1)'}), "(inputfile, dtype='i', delimiter=1)\n", (346, 381), True, 'import numpy as np\n'), ((409, 456), 'numpy.pad', 'np.pad', (['a', '((1, 1), (1, 1))'], {'constant_values': '(10)'}), '(a, ((1, 1), (1, 1)), constant_values=10)\n', (415, 456), True, 'import numpy as np\n')]
"""Check the feasibility of a bipartite graph by using SSLAP's feasibility module""" import numpy as np from sslap import hopcroft_solve # All 3 methods will use the same input bipartite graph: # i = 0 connects to j = 0, 1 # i = 1 connects to j = 1, 2 # i = 2 connects to j = 1, 4 # i = 3 connects to j = 2 # i = 4 connects to j = 3 # which has a maximum matching of 5 # eg i:j of 0:0, 1:1, 2:4, 3:2, 4:3 def dict_usage(): lookup = {0: [0, 1], 1: [1, 2], 2: [1, 4], 3: [2], 4: [3]} res = hopcroft_solve(lookup=lookup) print(res) def mat_usage(): mat = - np.ones((5, 5)) # all invalid, except mat[[0, 0, 1, 1, 2, 2, 3, 4], [0, 1, 1, 2, 1, 4, 2, 3]] = 1 # for valid edges res = hopcroft_solve(mat=mat) print(res) def loc_usage(): loc = np.array([[0, 0], [0, 1], [1, 1], [1, 2], [2, 1], [2, 4], [3, 2], [4, 3]]) # (i, j) for each edge res = hopcroft_solve(loc=loc) print(res) if __name__ == "__main__": dict_usage() mat_usage() loc_usage()
[ "numpy.array", "numpy.ones", "sslap.hopcroft_solve" ]
[((494, 523), 'sslap.hopcroft_solve', 'hopcroft_solve', ([], {'lookup': 'lookup'}), '(lookup=lookup)\n', (508, 523), False, 'from sslap import hopcroft_solve\n'), ((690, 713), 'sslap.hopcroft_solve', 'hopcroft_solve', ([], {'mat': 'mat'}), '(mat=mat)\n', (704, 713), False, 'from sslap import hopcroft_solve\n'), ((752, 826), 'numpy.array', 'np.array', (['[[0, 0], [0, 1], [1, 1], [1, 2], [2, 1], [2, 4], [3, 2], [4, 3]]'], {}), '([[0, 0], [0, 1], [1, 1], [1, 2], [2, 1], [2, 4], [3, 2], [4, 3]])\n', (760, 826), True, 'import numpy as np\n'), ((858, 881), 'sslap.hopcroft_solve', 'hopcroft_solve', ([], {'loc': 'loc'}), '(loc=loc)\n', (872, 881), False, 'from sslap import hopcroft_solve\n'), ((564, 579), 'numpy.ones', 'np.ones', (['(5, 5)'], {}), '((5, 5))\n', (571, 579), True, 'import numpy as np\n')]
import caffe import torch import numpy as np import argparse from collections import OrderedDict from torch.autograd import Variable import torch.nn as nn def arg_parse(): parser = argparse.ArgumentParser() parser.add_argument('--model', '-m', default='alexnet') parser.add_argument('--decimal', '-d', default=2) parser.add_argument('--gpu', '-gpu', action='store_true') args = parser.parse_args() return args def generate_random(shape, gpu=False): data_np = np.random.rand(np.prod(shape)).reshape(shape) data_torch = Variable(torch.Tensor(data_np)) if gpu: data_torch = data_torch.cuda() return [data_np], [data_torch] def get_input_size(caffe_net): input_name = caffe_net.inputs[0] return caffe_net.blobs[input_name].data.shape def forward_torch(net, data): blobs = OrderedDict() module2name = {} for layer_name, m in net.named_modules(): layer_name = layer_name.replace('.', '_') module2name[m] = layer_name # turn off all the inplace operation if hasattr(m, 'inplace'): m.inplace = False def forward_hook(m, i, o): o_np = o.data.cpu().numpy() blobs[module2name[m]] = o_np for m in net.modules(): m.register_forward_hook(forward_hook) output = net.forward(*data) if isinstance(output, tuple): outputs = [] for o in output: outputs.append(o.data.cpu().numpy()) else: outputs = [output.data.cpu().numpy()] return blobs, outputs def forward_caffe(net, data): for input_name, d in zip(net.inputs, data): net.blobs[input_name].data[...] = d rst = net.forward() blobs = OrderedDict() blob2layer = {} for layer_name, tops in net.top_names.items(): for top in tops: blob2layer[top] = layer_name for name, value in net.blobs.items(): layer_name = blob2layer[name] value = value.data if layer_name in blobs: blobs[layer_name].append(value) else: blobs[layer_name] = [value] outputs = [] for output_name in net.outputs: outputs.append(rst[output_name]) return blobs, outputs def test(net_caffe, net_torch, data_np, data_torch, args): blobs_caffe, rsts_caffe = forward_caffe(net_caffe, data_np) blobs_torch, rsts_torchs = forward_torch(net_torch, data_torch) # test the output of every layer for layer, value in blobs_caffe.items(): if layer in blobs_torch: value_torch = blobs_torch[layer] value = value[0] if value.size != value_torch.size: continue if 'relu' in layer: continue try: np.testing.assert_almost_equal(value, value_torch, decimal=args.decimal) print("TEST layer {}: PASS".format(layer)) except: print("TEST layer {}: FAIL".format(layer)) # np.testing.assert_almost_equal(np.clip(value, min=0), np.clip(value_torch, min=0)) # test the output print("TEST output") for rst_caffe, rst_torch in zip(rsts_caffe, rsts_torchs): np.testing.assert_almost_equal(rst_caffe, rst_torch, decimal=args.decimal) print("TEST output: PASS") if __name__ == '__main__': args = arg_parse() if args.model == 'alexnet': # Alexnet example from torchvision.models.alexnet import alexnet net_torch = alexnet(True).eval() if args.gpu: net_torch.cuda() try: net_caffe = caffe.Net('alexnet.prototxt', 'alexnet.caffemodel', caffe.TEST) except: raise ("Please run alexnet_pytorch_to_caffe.py first") shape = get_input_size(net_caffe) data_np, data_torch = generate_random(shape, args.gpu) test(net_caffe, net_torch, data_np, data_torch, args) elif args.model == 'resnet18': # ResNet example from torchvision.models.resnet import resnet18 net_torch = resnet18(True).eval() if args.gpu: net_torch.cuda() net_caffe = caffe.Net('resnet18.prototxt', 'resnet18.caffemodel', caffe.TEST) shape = get_input_size(net_caffe) data_np, data_torch = generate_random(shape, args.gpu) test(net_caffe, net_torch, data_np, data_torch, args) elif args.model == 'inception_v3': # Inception_v3 example from torchvision.models.inception import inception_v3 net_torch = inception_v3(True, transform_input=False).eval() if args.gpu: net_torch.cuda() net_caffe = caffe.Net('inception_v3.prototxt', 'inception_v3.caffemodel', caffe.TEST) shape = get_input_size(net_caffe) data_np, data_torch = generate_random(shape, args.gpu) test(net_caffe, net_torch, data_np, data_torch, args) else: raise NotImplementedError()
[ "numpy.prod", "collections.OrderedDict", "torchvision.models.inception.inception_v3", "argparse.ArgumentParser", "torchvision.models.resnet.resnet18", "torch.Tensor", "numpy.testing.assert_almost_equal", "caffe.Net", "torchvision.models.alexnet.alexnet" ]
[((187, 212), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (210, 212), False, 'import argparse\n'), ((836, 849), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (847, 849), False, 'from collections import OrderedDict\n'), ((1695, 1708), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1706, 1708), False, 'from collections import OrderedDict\n'), ((563, 584), 'torch.Tensor', 'torch.Tensor', (['data_np'], {}), '(data_np)\n', (575, 584), False, 'import torch\n'), ((3144, 3218), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['rst_caffe', 'rst_torch'], {'decimal': 'args.decimal'}), '(rst_caffe, rst_torch, decimal=args.decimal)\n', (3174, 3218), True, 'import numpy as np\n'), ((3545, 3608), 'caffe.Net', 'caffe.Net', (['"""alexnet.prototxt"""', '"""alexnet.caffemodel"""', 'caffe.TEST'], {}), "('alexnet.prototxt', 'alexnet.caffemodel', caffe.TEST)\n", (3554, 3608), False, 'import caffe\n'), ((4088, 4153), 'caffe.Net', 'caffe.Net', (['"""resnet18.prototxt"""', '"""resnet18.caffemodel"""', 'caffe.TEST'], {}), "('resnet18.prototxt', 'resnet18.caffemodel', caffe.TEST)\n", (4097, 4153), False, 'import caffe\n'), ((506, 520), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (513, 520), True, 'import numpy as np\n'), ((2715, 2787), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['value', 'value_torch'], {'decimal': 'args.decimal'}), '(value, value_torch, decimal=args.decimal)\n', (2745, 2787), True, 'import numpy as np\n'), ((3437, 3450), 'torchvision.models.alexnet.alexnet', 'alexnet', (['(True)'], {}), '(True)\n', (3444, 3450), False, 'from torchvision.models.alexnet import alexnet\n'), ((4593, 4666), 'caffe.Net', 'caffe.Net', (['"""inception_v3.prototxt"""', '"""inception_v3.caffemodel"""', 'caffe.TEST'], {}), "('inception_v3.prototxt', 'inception_v3.caffemodel', caffe.TEST)\n", (4602, 4666), False, 'import caffe\n'), ((3996, 4010), 'torchvision.models.resnet.resnet18', 'resnet18', (['(True)'], {}), '(True)\n', (4004, 4010), False, 'from torchvision.models.resnet import resnet18\n'), ((4474, 4515), 'torchvision.models.inception.inception_v3', 'inception_v3', (['(True)'], {'transform_input': '(False)'}), '(True, transform_input=False)\n', (4486, 4515), False, 'from torchvision.models.inception import inception_v3\n')]
# coding=utf-8 import logging import numpy as np import pandas as pd from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import LabelBinarizer from sklearn.utils import shuffle logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR) def classification(embedding, lbl_path, split_ratio=0.7, loop=100): eval_dict = { 'acc': 0.0, 'f1-micro': 0.0, 'f1-macro': 0.0, } label = pd.read_csv(lbl_path, header=None, sep=' ').values for _ in range(loop): labels_np = shuffle(label) nodes = labels_np[:, 0] labels = labels_np[:, 1] lb = LabelBinarizer() labels = lb.fit_transform(labels) train_size = int(labels_np.shape[0] * split_ratio) features = embedding[nodes] train_x = features[:train_size, :] train_y = labels[:train_size, :] test_x = features[train_size:, :] test_y = labels[train_size:, :] clf = OneVsRestClassifier( LogisticRegression(class_weight='balanced', solver='liblinear', n_jobs=-1)) clf.fit(train_x, train_y) y_pred = clf.predict_proba(test_x) y_pred = lb.transform(np.argmax(y_pred, 1)) acc = np.sum(np.argmax(y_pred, 1) == np.argmax(test_y, 1)) / len(y_pred) eval_dict['acc'] += acc eval_dict['f1-micro'] += metrics.f1_score(np.argmax(test_y, 1), np.argmax(y_pred, 1), average='micro') eval_dict['f1-macro'] += metrics.f1_score(np.argmax(test_y, 1), np.argmax(y_pred, 1), average='macro') for key in eval_dict.keys(): eval_dict[key] = round(1.0 * eval_dict[key] / loop, 4) print('split_ratio: {}'.format(split_ratio)) print(eval_dict) return eval_dict def _k_precision(embedding, lbl_path, k, lbl): label = pd.read_csv(lbl_path, header=None, sep=' ').values nodes = label[np.where(label[:, 1] == lbl)][:, 0] acc = 0.0 for node in nodes: distance = {} for i in range(embedding.shape[0]): if i == node: continue distance[i] = np.linalg.norm(embedding[i] - embedding[node]) distance = sorted(distance.items(), key=lambda x: x[1]) distance = np.array(distance)[:k] acc += distance[np.isin(distance[:, 0], nodes)].shape[0] / k acc /= len(nodes) return acc def k_precision(embedding, lbl_path, k=50): eval_dict = { 'precision': k, 'bots_acc': _k_precision(embedding, lbl_path, k, 1), 'admins_acc': _k_precision(embedding, lbl_path, k, 2) } print(eval_dict)
[ "logging.basicConfig", "sklearn.preprocessing.LabelBinarizer", "pandas.read_csv", "numpy.where", "sklearn.utils.shuffle", "numpy.argmax", "numpy.isin", "sklearn.linear_model.LogisticRegression", "numpy.array", "numpy.linalg.norm" ]
[((285, 361), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname)s:%(message)s"""', 'level': 'logging.ERROR'}), "(format='%(levelname)s:%(message)s', level=logging.ERROR)\n", (304, 361), False, 'import logging\n'), ((538, 581), 'pandas.read_csv', 'pd.read_csv', (['lbl_path'], {'header': 'None', 'sep': '""" """'}), "(lbl_path, header=None, sep=' ')\n", (549, 581), True, 'import pandas as pd\n'), ((635, 649), 'sklearn.utils.shuffle', 'shuffle', (['label'], {}), '(label)\n', (642, 649), False, 'from sklearn.utils import shuffle\n'), ((729, 745), 'sklearn.preprocessing.LabelBinarizer', 'LabelBinarizer', ([], {}), '()\n', (743, 745), False, 'from sklearn.preprocessing import LabelBinarizer\n'), ((1984, 2027), 'pandas.read_csv', 'pd.read_csv', (['lbl_path'], {'header': 'None', 'sep': '""" """'}), "(lbl_path, header=None, sep=' ')\n", (1995, 2027), True, 'import pandas as pd\n'), ((1096, 1170), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'class_weight': '"""balanced"""', 'solver': '"""liblinear"""', 'n_jobs': '(-1)'}), "(class_weight='balanced', solver='liblinear', n_jobs=-1)\n", (1114, 1170), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1279, 1299), 'numpy.argmax', 'np.argmax', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (1288, 1299), True, 'import numpy as np\n'), ((1464, 1484), 'numpy.argmax', 'np.argmax', (['test_y', '(1)'], {}), '(test_y, 1)\n', (1473, 1484), True, 'import numpy as np\n'), ((1486, 1506), 'numpy.argmax', 'np.argmax', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (1495, 1506), True, 'import numpy as np\n'), ((1625, 1645), 'numpy.argmax', 'np.argmax', (['test_y', '(1)'], {}), '(test_y, 1)\n', (1634, 1645), True, 'import numpy as np\n'), ((1647, 1667), 'numpy.argmax', 'np.argmax', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (1656, 1667), True, 'import numpy as np\n'), ((2053, 2081), 'numpy.where', 'np.where', (['(label[:, 1] == lbl)'], {}), '(label[:, 1] == lbl)\n', (2061, 2081), True, 'import numpy as np\n'), ((2269, 2315), 'numpy.linalg.norm', 'np.linalg.norm', (['(embedding[i] - embedding[node])'], {}), '(embedding[i] - embedding[node])\n', (2283, 2315), True, 'import numpy as np\n'), ((2399, 2417), 'numpy.array', 'np.array', (['distance'], {}), '(distance)\n', (2407, 2417), True, 'import numpy as np\n'), ((1322, 1342), 'numpy.argmax', 'np.argmax', (['y_pred', '(1)'], {}), '(y_pred, 1)\n', (1331, 1342), True, 'import numpy as np\n'), ((1346, 1366), 'numpy.argmax', 'np.argmax', (['test_y', '(1)'], {}), '(test_y, 1)\n', (1355, 1366), True, 'import numpy as np\n'), ((2446, 2476), 'numpy.isin', 'np.isin', (['distance[:, 0]', 'nodes'], {}), '(distance[:, 0], nodes)\n', (2453, 2476), True, 'import numpy as np\n')]
import csv import cv2 import numpy as np import pandas as pd import sys from datetime import datetime from numpy.random import RandomState import keras import tensorflow as tf from keras.models import Sequential from keras.callbacks import ModelCheckpoint from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D def DrivingNetV1(): model = Sequential() model.add( Cropping2D( cropping=( (90,20), (0,0) ), input_shape=( 160, 320, 3 ) ) ) model.add( Lambda( lambda x: (x/255.0) - 0.5 ) ) model.add( Flatten( ) ) model.add( Dense(1) ) return model def NVIDIANetV0( lr=1e-3): model = Sequential( name="NVIDIANetV0" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) #model.add( Dense(1164, activation='relu' ) ) #model.add( Dropout(0.2)) model.add( Dense(100, activation='linear' ) ) model.add( Dense(50, activation='linear' ) ) model.add( Dense(10, activation='linear' ) ) model.add( Dense(1, activation='linear') ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV1( lr=1e-3): model = Sequential( name="NVIDIANetV1" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) #model.add( Dense(1164, activation='relu' ) ) #model.add( Dropout(0.2)) model.add( Dense(100, activation='tanh' ) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV2( lr=1e-3): model = Sequential( name="NVIDIANetV2" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) model.add( Dense(100, activation='linear' ) ) model.add( Dense(50, activation='linear' ) ) model.add( Dense(10, activation='linear' ) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV3( lr=1e-3): model = Sequential( name="NVIDIANetV3" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) model.add( Dense(100, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV4( lr=1e-3): model = Sequential( name="NVIDIANetV4" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) #model.add( Dense(1164, activation='relu' ) ) #model.add( Dropout(0.2)) model.add( Dense(100, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dropout(0.25) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dropout(0.125) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV5( lr=1e-3): model = Sequential( name="NVIDIANetV5" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) model.add( Dense(100, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dropout(0.25) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def NVIDIANetV6( lr=1e-3): model = Sequential( name="NVIDIANetV6" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) model.add( Conv2D( 24, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 36, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 48, 5, 2, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Conv2D( 64, 3, activation='relu', padding='valid' ) ) model.add( Flatten( ) ) model.add( Dropout(0.5) ) model.add( Dense(100, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dropout(0.25) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def ModNVIDIANetV1( lr=1e-3): model = Sequential( name = "ModNVIDIANetV1" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) #Keeping padding as "same" and applygin a max model.add( Conv2D( 24, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 36, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 48, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( pool_size=(4, 2) ) ) #forcing to this output to become an "flat" model.add( Flatten( ) ) #model.add( Dense(1164, activation='relu' ) ) #model.add( Dropout(0.2)) model.add( Dense(300, activation='tanh' ) ) model.add( Dense(100, activation='tanh' ) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dense(1, activation='linear' ) ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def ModNVIDIANetV2( lr=1e-3): model = Sequential( name = "ModNVIDIANetV2" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) #Keeping padding as "same" and applygin a max model.add( Conv2D( 24, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 36, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 48, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( pool_size=(4, 2) ) ) #forcing to this output to become an "flat" model.add( Flatten( ) ) model.add( Dense(300, activation='linear' ) ) model.add( Dense(100, activation='linear' ) ) model.add( Dense(50, activation='linear' ) ) model.add( Dense(10, activation='linear' ) ) model.add( Dense(1, activation='linear' ) ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model def ModNVIDIANetV3( lr=1e-3): model = Sequential( name = "ModNVIDIANetV3" ) model.add( Lambda( lambda x: (x/255.0) - 0.5, input_shape=( 160, 320, 3 ) ) ) model.add( Cropping2D( cropping=( (70,25), (0,0) ) ) ) #Keeping padding as "same" and applygin a max model.add( Conv2D( 24, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 36, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 48, 5, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( ) ) model.add( Conv2D( 64, 3, 1, activation='relu', padding='same' ) ) model.add( MaxPool2D( pool_size=(4, 2) ) ) #forcing to this output to become an "flat" model.add( Flatten( ) ) model.add( Dense(100, activation='tanh' ) ) model.add( Dropout(0.5) ) model.add( Dense(50, activation='tanh' ) ) model.add( Dropout(0.25) ) model.add( Dense(10, activation='tanh' ) ) model.add( Dense(1, activation='linear') ) #Converting curvature to angle, assuming wheelbase of 2 meters, then going from rad to deg #The network output was supposed to be 1/R (r), the function then convert it to steering angle (alpha) [deg] # alpha = atan(l*r)*57.3. l = wheelbase, supossed to be 2 meters model.add( Lambda( lambda x: tf.multiply( tf.atan( tf.multiply( x, 2 ) ), 57.3 ) ) ) opt = keras.optimizers.Adam(learning_rate=lr ) model.compile( loss='mse', optimizer=opt ) return model #Hyper parameters BATCH_SIZE=64 LEARNING_RATE=1e-4 EPOCHS=5 model_name = sys.argv[1] model = Sequential() if( model_name == 'NVIDIANetV0'): model = NVIDIANetV0( LEARNING_RATE ) elif( model_name == 'NVIDIANetV1'): model = NVIDIANetV1( LEARNING_RATE ) elif( model_name == 'NVIDIANetV2' ): model = NVIDIANetV2( LEARNING_RATE ) elif( model_name == 'NVIDIANetV3' ): model = NVIDIANetV3( LEARNING_RATE ) elif( model_name == 'NVIDIANetV4' ): model = NVIDIANetV4( LEARNING_RATE ) elif( model_name == 'NVIDIANetV5' ): model = NVIDIANetV5( LEARNING_RATE ) elif( model_name == 'NVIDIANetV6' ): model = NVIDIANetV6( LEARNING_RATE ) elif( model_name == 'ModNVIDIANetV1' ): model = ModNVIDIANetV1( LEARNING_RATE ) elif( model_name == 'ModNVIDIANetV2' ): model = ModNVIDIANetV2( LEARNING_RATE ) elif( model_name == 'ModNVIDIANetV3' ): model = ModNVIDIANetV3( LEARNING_RATE ) else: raise Exception('Invalid model name') #Load data. Split data into train and validation df = pd.read_csv('data/driving_log.csv', names=['center', 'left', 'right', 'measurement', '1', '2', '3']) rng = RandomState() train = df.sample( frac=0.7, random_state=rng ) valid = df.loc[~df.index.isin(train.index) ] NUM_TRAIN_IMAGES = train.shape[0] NUM_TEST_IMAGES = valid.shape[0] #Deffining the generator def load_data( df, batch_size, augument=False ): i = 0 while True: images = [] measurements = [] while len(images) < batch_size: image_path = df.iloc[i,:]['center'].split('/')[-1] current_path = './data/IMG/' + image_path measurement = float( df.iloc[i,:]['measurement'] ) image = cv2.imread( current_path ) measurements.append( measurement ) images.append( image ) if( augument ): flipped_image = cv2.flip( image, 1 ) images.append( flipped_image ) measurements.append( -1.0*measurement ) # image_path = df.iloc[i,:]['left'].split('/')[-1] # current_path = './data/IMG/' + image_path # measurement = float( +0.9 ) # image = cv2.imread( current_path ) # measurements.append( measurement ) # images.append( image ) # image_path = df.iloc[i,:]['right'].split('/')[-1] # current_path = './data/IMG/' + image_path # measurement = float( -0.9 ) # image = cv2.imread( current_path ) # measurements.append( measurement ) # images.append( image ) i += 1 if( i == df.shape[0] ): i =0 yield ( np.array( images ), np.array( measurements ) ) #Define the generators trainGen = load_data( train, BATCH_SIZE, True) validGen = load_data( valid, BATCH_SIZE ) NUM_TRAIN_IMAGES = 2*NUM_TRAIN_IMAGES NUM_TEST_IMAGES = NUM_TEST_IMAGES print(model.summary()) #Using tensorboard logdir = "logs/scalars/" + model.name #defiining tensorboard callback tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) model.fit( x=trainGen, steps_per_epoch=NUM_TRAIN_IMAGES//BATCH_SIZE, verbose=1, validation_data=validGen, validation_steps=NUM_TEST_IMAGES//BATCH_SIZE, epochs=EPOCHS, callbacks=[tensorboard_callback] ) model.save( model.name + '.h5')
[ "keras.optimizers.Adam", "keras.layers.Conv2D", "keras.layers.Flatten", "pandas.read_csv", "cv2.flip", "keras.layers.Lambda", "tensorflow.multiply", "keras.callbacks.TensorBoard", "keras.models.Sequential", "numpy.array", "keras.layers.Dropout", "keras.layers.Dense", "keras.layers.MaxPool2D", "keras.layers.Cropping2D", "numpy.random.RandomState", "cv2.imread" ]
[((14357, 14369), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (14367, 14369), False, 'from keras.models import Sequential\n'), ((15282, 15386), 'pandas.read_csv', 'pd.read_csv', (['"""data/driving_log.csv"""'], {'names': "['center', 'left', 'right', 'measurement', '1', '2', '3']"}), "('data/driving_log.csv', names=['center', 'left', 'right',\n 'measurement', '1', '2', '3'])\n", (15293, 15386), True, 'import pandas as pd\n'), ((15389, 15402), 'numpy.random.RandomState', 'RandomState', ([], {}), '()\n', (15400, 15402), False, 'from numpy.random import RandomState\n'), ((17059, 17102), 'keras.callbacks.TensorBoard', 'keras.callbacks.TensorBoard', ([], {'log_dir': 'logdir'}), '(log_dir=logdir)\n', (17086, 17102), False, 'import keras\n'), ((378, 390), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (388, 390), False, 'from keras.models import Sequential\n'), ((627, 657), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV0"""'}), "(name='NVIDIANetV0')\n", (637, 657), False, 'from keras.models import Sequential\n'), ((1448, 1487), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (1469, 1487), False, 'import keras\n'), ((1585, 1615), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV1"""'}), "(name='NVIDIANetV1')\n", (1595, 1615), False, 'from keras.models import Sequential\n'), ((2757, 2796), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (2778, 2796), False, 'import keras\n'), ((2897, 2927), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV2"""'}), "(name='NVIDIANetV2')\n", (2907, 2927), False, 'from keras.models import Sequential\n'), ((4080, 4119), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (4101, 4119), False, 'import keras\n'), ((4223, 4253), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV3"""'}), "(name='NVIDIANetV3')\n", (4233, 4253), False, 'from keras.models import Sequential\n'), ((5401, 5440), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (5422, 5440), False, 'import keras\n'), ((5538, 5568), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV4"""'}), "(name='NVIDIANetV4')\n", (5548, 5568), False, 'from keras.models import Sequential\n'), ((6794, 6833), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (6815, 6833), False, 'import keras\n'), ((6931, 6961), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV5"""'}), "(name='NVIDIANetV5')\n", (6941, 6961), False, 'from keras.models import Sequential\n'), ((8083, 8122), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (8104, 8122), False, 'import keras\n'), ((8220, 8250), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""NVIDIANetV6"""'}), "(name='NVIDIANetV6')\n", (8230, 8250), False, 'from keras.models import Sequential\n'), ((9399, 9438), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (9420, 9438), False, 'import keras\n'), ((9539, 9572), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""ModNVIDIANetV1"""'}), "(name='ModNVIDIANetV1')\n", (9549, 9572), False, 'from keras.models import Sequential\n'), ((10996, 11035), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (11017, 11035), False, 'import keras\n'), ((11139, 11172), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""ModNVIDIANetV2"""'}), "(name='ModNVIDIANetV2')\n", (11149, 11172), False, 'from keras.models import Sequential\n'), ((12625, 12664), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (12646, 12664), False, 'import keras\n'), ((12771, 12804), 'keras.models.Sequential', 'Sequential', ([], {'name': '"""ModNVIDIANetV3"""'}), "(name='ModNVIDIANetV3')\n", (12781, 12804), False, 'from keras.models import Sequential\n'), ((14161, 14200), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (14182, 14200), False, 'import keras\n'), ((403, 469), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((90, 20), (0, 0))', 'input_shape': '(160, 320, 3)'}), '(cropping=((90, 20), (0, 0)), input_shape=(160, 320, 3))\n', (413, 469), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((489, 522), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {}), '(lambda x: x / 255.0 - 0.5)\n', (495, 522), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((539, 548), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (546, 548), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((564, 572), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (569, 572), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((674, 734), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (680, 734), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((753, 792), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (763, 792), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((811, 863), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (817, 863), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((882, 934), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (888, 934), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((953, 1005), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (959, 1005), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1024, 1073), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (1030, 1073), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1093, 1142), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (1099, 1142), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1163, 1172), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1170, 1172), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1263, 1294), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""linear"""'}), "(100, activation='linear')\n", (1268, 1294), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1311, 1341), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""linear"""'}), "(50, activation='linear')\n", (1316, 1341), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1358, 1388), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""linear"""'}), "(10, activation='linear')\n", (1363, 1388), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1406, 1435), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (1411, 1435), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1632, 1692), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (1638, 1692), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1711, 1750), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (1721, 1750), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1769, 1821), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (1775, 1821), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1840, 1892), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (1846, 1892), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1911, 1963), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (1917, 1963), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((1982, 2031), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (1988, 2031), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2051, 2100), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (2057, 2100), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2121, 2130), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2128, 2130), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2221, 2250), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (2226, 2250), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2267, 2295), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (2272, 2295), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2312, 2340), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (2317, 2340), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2358, 2387), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (2363, 2387), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((2950, 3010), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (2956, 3010), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3032, 3071), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (3042, 3071), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3096, 3148), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (3102, 3148), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3171, 3223), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (3177, 3223), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3246, 3298), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (3252, 3298), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3321, 3370), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (3327, 3370), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3396, 3445), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (3402, 3445), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3472, 3481), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3479, 3481), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3500, 3531), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""linear"""'}), "(100, activation='linear')\n", (3505, 3531), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3556, 3586), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""linear"""'}), "(50, activation='linear')\n", (3561, 3586), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3608, 3638), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""linear"""'}), "(10, activation='linear')\n", (3613, 3638), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((3660, 3689), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (3665, 3689), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4270, 4330), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (4276, 4330), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4349, 4388), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (4359, 4388), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4407, 4459), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (4413, 4459), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4478, 4530), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (4484, 4530), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4549, 4601), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (4555, 4601), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4620, 4669), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (4626, 4669), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4689, 4738), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (4695, 4738), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4759, 4768), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (4766, 4768), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4784, 4813), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (4789, 4813), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4830, 4842), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (4837, 4842), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4857, 4885), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (4862, 4885), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4902, 4914), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (4909, 4914), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4929, 4957), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (4934, 4957), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((4975, 4987), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (4982, 4987), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5002, 5031), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (5007, 5031), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5585, 5645), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (5591, 5645), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5664, 5703), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (5674, 5703), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5722, 5774), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (5728, 5774), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5793, 5845), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (5799, 5845), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5864, 5916), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (5870, 5916), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((5935, 5984), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (5941, 5984), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6004, 6053), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (6010, 6053), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6074, 6083), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (6081, 6083), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6174, 6203), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (6179, 6203), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6220, 6232), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (6227, 6232), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6247, 6275), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (6252, 6275), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6292, 6305), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (6299, 6305), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6320, 6348), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (6325, 6348), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6366, 6380), 'keras.layers.Dropout', 'Dropout', (['(0.125)'], {}), '(0.125)\n', (6373, 6380), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6395, 6424), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (6400, 6424), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((6978, 7038), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (6984, 7038), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7057, 7096), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (7067, 7096), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7115, 7167), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (7121, 7167), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7186, 7238), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (7192, 7238), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7257, 7309), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (7263, 7309), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7328, 7377), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (7334, 7377), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7397, 7446), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (7403, 7446), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7467, 7476), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (7474, 7476), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7492, 7521), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (7497, 7521), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7538, 7550), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (7545, 7550), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7565, 7593), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (7570, 7593), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7610, 7623), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (7617, 7623), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7638, 7666), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (7643, 7666), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((7684, 7713), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (7689, 7713), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8267, 8327), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (8273, 8327), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8346, 8385), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (8356, 8385), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8404, 8456), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(24, 5, 2, activation='relu', padding='valid')\n", (8410, 8456), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8475, 8527), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(36, 5, 2, activation='relu', padding='valid')\n", (8481, 8527), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8546, 8598), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(2)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(48, 5, 2, activation='relu', padding='valid')\n", (8552, 8598), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8617, 8666), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (8623, 8666), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8686, 8735), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(64, 3, activation='relu', padding='valid')\n", (8692, 8735), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8756, 8765), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (8763, 8765), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8781, 8793), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (8788, 8793), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8808, 8837), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (8813, 8837), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8854, 8866), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (8861, 8866), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8881, 8909), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (8886, 8909), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8926, 8939), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (8933, 8939), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((8954, 8982), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (8959, 8982), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9000, 9029), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (9005, 9029), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9591, 9651), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (9597, 9651), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9670, 9709), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (9680, 9709), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9775, 9826), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(24, 5, 1, activation='relu', padding='same')\n", (9781, 9826), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9844, 9855), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (9853, 9855), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9871, 9922), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(36, 5, 1, activation='relu', padding='same')\n", (9877, 9922), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9940, 9951), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (9949, 9951), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((9967, 10018), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(48, 5, 1, activation='relu', padding='same')\n", (9973, 10018), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10036, 10047), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (10045, 10047), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10063, 10114), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (10069, 10114), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10132, 10143), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (10141, 10143), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10159, 10210), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (10165, 10210), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10228, 10255), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'pool_size': '(4, 2)'}), '(pool_size=(4, 2))\n', (10237, 10255), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10317, 10326), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (10324, 10326), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10416, 10445), 'keras.layers.Dense', 'Dense', (['(300)'], {'activation': '"""tanh"""'}), "(300, activation='tanh')\n", (10421, 10445), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10462, 10491), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (10467, 10491), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10508, 10536), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (10513, 10536), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10553, 10581), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (10558, 10581), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((10598, 10627), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (10603, 10627), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11197, 11257), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (11203, 11257), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11279, 11318), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (11289, 11318), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11393, 11444), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(24, 5, 1, activation='relu', padding='same')\n", (11399, 11444), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11465, 11476), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (11474, 11476), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11495, 11546), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(36, 5, 1, activation='relu', padding='same')\n", (11501, 11546), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11567, 11578), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (11576, 11578), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11597, 11648), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(48, 5, 1, activation='relu', padding='same')\n", (11603, 11648), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11669, 11680), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (11678, 11680), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11699, 11750), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (11705, 11750), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11771, 11782), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (11780, 11782), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11801, 11852), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (11807, 11852), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11873, 11900), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'pool_size': '(4, 2)'}), '(pool_size=(4, 2))\n', (11882, 11900), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11966, 11975), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (11973, 11975), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((11994, 12025), 'keras.layers.Dense', 'Dense', (['(300)'], {'activation': '"""linear"""'}), "(300, activation='linear')\n", (11999, 12025), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12046, 12077), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""linear"""'}), "(100, activation='linear')\n", (12051, 12077), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12098, 12128), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""linear"""'}), "(50, activation='linear')\n", (12103, 12128), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12150, 12180), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""linear"""'}), "(10, activation='linear')\n", (12155, 12180), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12206, 12235), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (12211, 12235), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12822, 12882), 'keras.layers.Lambda', 'Lambda', (['(lambda x: x / 255.0 - 0.5)'], {'input_shape': '(160, 320, 3)'}), '(lambda x: x / 255.0 - 0.5, input_shape=(160, 320, 3))\n', (12828, 12882), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((12901, 12940), 'keras.layers.Cropping2D', 'Cropping2D', ([], {'cropping': '((70, 25), (0, 0))'}), '(cropping=((70, 25), (0, 0)))\n', (12911, 12940), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13005, 13056), 'keras.layers.Conv2D', 'Conv2D', (['(24)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(24, 5, 1, activation='relu', padding='same')\n", (13011, 13056), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13074, 13085), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (13083, 13085), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13101, 13152), 'keras.layers.Conv2D', 'Conv2D', (['(36)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(36, 5, 1, activation='relu', padding='same')\n", (13107, 13152), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13170, 13181), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (13179, 13181), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13197, 13248), 'keras.layers.Conv2D', 'Conv2D', (['(48)', '(5)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(48, 5, 1, activation='relu', padding='same')\n", (13203, 13248), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13266, 13277), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (13275, 13277), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13293, 13344), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (13299, 13344), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13362, 13373), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {}), '()\n', (13371, 13373), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13389, 13440), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3)', '(1)'], {'activation': '"""relu"""', 'padding': '"""same"""'}), "(64, 3, 1, activation='relu', padding='same')\n", (13395, 13440), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13458, 13485), 'keras.layers.MaxPool2D', 'MaxPool2D', ([], {'pool_size': '(4, 2)'}), '(pool_size=(4, 2))\n', (13467, 13485), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13548, 13557), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (13555, 13557), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13573, 13602), 'keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""tanh"""'}), "(100, activation='tanh')\n", (13578, 13602), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13619, 13631), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (13626, 13631), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13646, 13674), 'keras.layers.Dense', 'Dense', (['(50)'], {'activation': '"""tanh"""'}), "(50, activation='tanh')\n", (13651, 13674), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13691, 13704), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (13698, 13704), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13719, 13747), 'keras.layers.Dense', 'Dense', (['(10)'], {'activation': '"""tanh"""'}), "(10, activation='tanh')\n", (13724, 13747), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((13765, 13794), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""linear"""'}), "(1, activation='linear')\n", (13770, 13794), False, 'from keras.layers import Flatten, Dense, Lambda, Cropping2D, Conv2D, Dropout, MaxPool2D\n'), ((15903, 15927), 'cv2.imread', 'cv2.imread', (['current_path'], {}), '(current_path)\n', (15913, 15927), False, 'import cv2\n'), ((16035, 16053), 'cv2.flip', 'cv2.flip', (['image', '(1)'], {}), '(image, 1)\n', (16043, 16053), False, 'import cv2\n'), ((16686, 16702), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (16694, 16702), True, 'import numpy as np\n'), ((16706, 16728), 'numpy.array', 'np.array', (['measurements'], {}), '(measurements)\n', (16714, 16728), True, 'import numpy as np\n'), ((2712, 2729), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (2723, 2729), True, 'import tensorflow as tf\n'), ((4029, 4046), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (4040, 4046), True, 'import tensorflow as tf\n'), ((5356, 5373), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (5367, 5373), True, 'import tensorflow as tf\n'), ((6749, 6766), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (6760, 6766), True, 'import tensorflow as tf\n'), ((8038, 8055), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (8049, 8055), True, 'import tensorflow as tf\n'), ((9354, 9371), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (9365, 9371), True, 'import tensorflow as tf\n'), ((10953, 10970), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (10964, 10970), True, 'import tensorflow as tf\n'), ((12576, 12593), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (12587, 12593), True, 'import tensorflow as tf\n'), ((14119, 14136), 'tensorflow.multiply', 'tf.multiply', (['x', '(2)'], {}), '(x, 2)\n', (14130, 14136), True, 'import tensorflow as tf\n')]