code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
##===-----------------------------------------------------------------------------*- Python -*-===##
##
## S E R I A L B O X
##
## This file is distributed under terms of BSD license.
## See LICENSE.txt for more information.
##
##===------------------------------------------------------------------------------------------===##
##
## This example demonstrates the asynchronous API of Serialbox which can improve the throughput of
## read operations.
##
##===------------------------------------------------------------------------------------------===##
#
# First, we have to make sure Python finds the Serialbox module. Alternatively, you can also set the
# environment variable PYTHONPATH.
#
import os
import sys
import time
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../python')
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../../src/serialbox-python')
#
# Import Serialbox
#
import serialbox as ser
import numpy as np
def main():
N = 512; M = 512; K = 80
savepoint = ser.Savepoint('sp')
#
# First, we write some data to disk ...
#
serializer_write = ser.Serializer(ser.OpenModeKind.Write, "./async", "Field", "Binary")
field_1 = np.random.rand(N, M, K)
field_2 = np.random.rand(N, M, K)
field_3 = np.random.rand(N, M, K)
field_4 = np.random.rand(N, M, K)
field_5 = np.random.rand(N, M, K)
field_6 = np.random.rand(N, M, K)
serializer_write.write('field_1', savepoint, field_1)
serializer_write.write('field_2', savepoint, field_2)
serializer_write.write('field_3', savepoint, field_3)
serializer_write.write('field_4', savepoint, field_4)
serializer_write.write('field_5', savepoint, field_5)
serializer_write.write('field_6', savepoint, field_6)
#
# ... and read it again.
#
serializer_read = ser.Serializer(ser.OpenModeKind.Read, "./async", "Field", "Binary")
start = time.time()
field_1_rd = serializer_read.read('field_1', savepoint)
field_2_rd = serializer_read.read('field_2', savepoint)
field_3_rd = serializer_read.read('field_3', savepoint)
field_4_rd = serializer_read.read('field_4', savepoint)
field_5_rd = serializer_read.read('field_5', savepoint)
field_6_rd = serializer_read.read('field_6', savepoint)
print("Serializer.read : %8.2f s" % (time.time() - start))
#
# Read operations are usually embarrassingly parallel and we can leverage this parallelism by
# launching the operations asynchronously. If the archive is not thread-safe or if the library
# was not configured with `SERIALBOX_ASYNC_API` the method falls back to synchronous execution.
# To synchronize the tasks in the end, we can add a blocking Serializer.wait_for_all().
#
start = time.time()
field_1_rd_async = serializer_read.read_async('field_1', savepoint)
field_2_rd_async = serializer_read.read_async('field_2', savepoint)
field_3_rd_async = serializer_read.read_async('field_3', savepoint)
field_4_rd_async = serializer_read.read_async('field_4', savepoint)
field_5_rd_async = serializer_read.read_async('field_5', savepoint)
field_6_rd_async = serializer_read.read_async('field_6', savepoint)
serializer_read.wait_for_all()
print("Serializer.read_async : %8.2f s" % (time.time() - start))
#
# Finally, we verify the read operations actually do the same.
#
assert(np.allclose(field_1_rd, field_1_rd_async))
assert(np.allclose(field_2_rd, field_2_rd_async))
assert(np.allclose(field_3_rd, field_3_rd_async))
assert(np.allclose(field_4_rd, field_4_rd_async))
assert(np.allclose(field_5_rd, field_5_rd_async))
assert(np.allclose(field_6_rd, field_6_rd_async))
#
# Remove directory
#
import shutil
shutil.rmtree("./async")
if __name__ == '__main__':
main()
|
[
"numpy.allclose",
"numpy.random.rand",
"shutil.rmtree",
"os.path.realpath",
"time.time",
"serialbox.Savepoint",
"serialbox.Serializer"
] |
[((1139, 1158), 'serialbox.Savepoint', 'ser.Savepoint', (['"""sp"""'], {}), "('sp')\n", (1152, 1158), True, 'import serialbox as ser\n'), ((1244, 1312), 'serialbox.Serializer', 'ser.Serializer', (['ser.OpenModeKind.Write', '"""./async"""', '"""Field"""', '"""Binary"""'], {}), "(ser.OpenModeKind.Write, './async', 'Field', 'Binary')\n", (1258, 1312), True, 'import serialbox as ser\n'), ((1330, 1353), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1344, 1353), True, 'import numpy as np\n'), ((1369, 1392), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1383, 1392), True, 'import numpy as np\n'), ((1408, 1431), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1422, 1431), True, 'import numpy as np\n'), ((1447, 1470), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1461, 1470), True, 'import numpy as np\n'), ((1486, 1509), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1500, 1509), True, 'import numpy as np\n'), ((1525, 1548), 'numpy.random.rand', 'np.random.rand', (['N', 'M', 'K'], {}), '(N, M, K)\n', (1539, 1548), True, 'import numpy as np\n'), ((1974, 2041), 'serialbox.Serializer', 'ser.Serializer', (['ser.OpenModeKind.Read', '"""./async"""', '"""Field"""', '"""Binary"""'], {}), "(ser.OpenModeKind.Read, './async', 'Field', 'Binary')\n", (1988, 2041), True, 'import serialbox as ser\n'), ((2057, 2068), 'time.time', 'time.time', ([], {}), '()\n', (2066, 2068), False, 'import time\n'), ((2931, 2942), 'time.time', 'time.time', ([], {}), '()\n', (2940, 2942), False, 'import time\n'), ((3587, 3628), 'numpy.allclose', 'np.allclose', (['field_1_rd', 'field_1_rd_async'], {}), '(field_1_rd, field_1_rd_async)\n', (3598, 3628), True, 'import numpy as np\n'), ((3642, 3683), 'numpy.allclose', 'np.allclose', (['field_2_rd', 'field_2_rd_async'], {}), '(field_2_rd, field_2_rd_async)\n', (3653, 3683), True, 'import numpy as np\n'), ((3697, 3738), 'numpy.allclose', 'np.allclose', (['field_3_rd', 'field_3_rd_async'], {}), '(field_3_rd, field_3_rd_async)\n', (3708, 3738), True, 'import numpy as np\n'), ((3752, 3793), 'numpy.allclose', 'np.allclose', (['field_4_rd', 'field_4_rd_async'], {}), '(field_4_rd, field_4_rd_async)\n', (3763, 3793), True, 'import numpy as np\n'), ((3807, 3848), 'numpy.allclose', 'np.allclose', (['field_5_rd', 'field_5_rd_async'], {}), '(field_5_rd, field_5_rd_async)\n', (3818, 3848), True, 'import numpy as np\n'), ((3862, 3903), 'numpy.allclose', 'np.allclose', (['field_6_rd', 'field_6_rd_async'], {}), '(field_6_rd, field_6_rd_async)\n', (3873, 3903), True, 'import numpy as np\n'), ((3969, 3993), 'shutil.rmtree', 'shutil.rmtree', (['"""./async"""'], {}), "('./async')\n", (3982, 3993), False, 'import shutil\n'), ((864, 890), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (880, 890), False, 'import os\n'), ((941, 967), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (957, 967), False, 'import os\n'), ((2487, 2498), 'time.time', 'time.time', ([], {}), '()\n', (2496, 2498), False, 'import time\n'), ((3469, 3480), 'time.time', 'time.time', ([], {}), '()\n', (3478, 3480), False, 'import time\n')]
|
'''
File: discretizer.py
Description: function definition
History:
Date Programmer SAR# - Description
---------- ---------- ----------------------------
Author: <NAME> 29Apr2016 - Created
'''
import numpy as np
from . import pinm as pinm
from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot
from matplotlib import colors as Colors
from matplotlib.widgets import Button
import matplotlib.cm as cmx
def stlImport(filePath,coords):
# Create a new plot
figure = pyplot.figure()
pyplot.subplots_adjust(bottom=0.2)
axes = mplot3d.Axes3D(figure)
# Load the STL files and add the vectors to the plot
modelMesh = mesh.Mesh.from_file(filePath)
indexedTri=[]
for n in range(len(modelMesh.vectors)):
indexedTri.append(mplot3d.art3d.Poly3DCollection([modelMesh.vectors[n]],facecolors='b'))
axes.add_collection3d(indexedTri[n])
indexedTri[0].set_facecolor('k')
scale = modelMesh.points.flatten(-1)
axes.auto_scale_xyz(scale, scale, scale)
callback = DomainSelector(indexedTri)
axprev = pyplot.axes([0.7, 0.05, 0.1, 0.075])
axnext = pyplot.axes([0.81, 0.05, 0.1, 0.075])
axselect = pyplot.axes([0.05, 0.05, 0.15, 0.075])
axaddToDomain = pyplot.axes([0.05, 0.85, 0.15, 0.075])
axswapSelected = pyplot.axes([0.8, 0.85, 0.15, 0.075])
bnext = Button(axnext, 'Next')
bnext.on_clicked(callback.next)
bprev = Button(axprev, 'Previous')
bprev.on_clicked(callback.prev)
bselect = Button(axselect, '(un)Select')
bselect.on_clicked(callback.select)
baddToDomain = Button(axaddToDomain, 'Add Domain')
baddToDomain.on_clicked(callback.addToDomain)
bswapSelected = Button(axswapSelected, 'Swap Selected')
bswapSelected.on_clicked(callback.swapSelected)
# Show the plot to the screen
#pyplot.connect('key_press_event', callback.keyPressed)
pyplot.show()
maindomain=pinm.Domain('')
subdomain=[]
for domainNumber in range(callback.domainCount):
subdomain.append(pinm.Domain(''))
maindomain.addNode(subdomain[domainNumber])
normalVector=[]
vertices=[]
minvert={}
maxvert={}
for n in range(len(modelMesh.normals)):
normalVector.append({})
vertices.append([])
for keyIndex in range(len(coords)):
normalVector[n][coords[keyIndex]]=modelMesh.normals[n][keyIndex]
for m in range(3):
temp_vert={}
for keyIndex in range(len(coords)):
if coords[keyIndex] not in minvert:
minvert[coords[keyIndex]]=modelMesh.vectors[n][m][keyIndex]
else:
minvert[coords[keyIndex]]=min(minvert[coords[keyIndex]],modelMesh.vectors[n][m][keyIndex])
if coords[keyIndex] not in maxvert:
maxvert[coords[keyIndex]]=modelMesh.vectors[n][m][keyIndex]
else:
maxvert[coords[keyIndex]]=max(maxvert[coords[keyIndex]],modelMesh.vectors[n][m][keyIndex])
temp_vert[coords[keyIndex]]=modelMesh.vectors[n][m][keyIndex]
vertices[n].append(temp_vert)
domainVertices=[]
for n in range(8):
temp_domainVertices={}
for key in range(len(coords)):
if (key==0 and (n in [1,2,5,6])) or (key==1 and (n in [2,3,6,7])) or (key==2 and (n in [4,5,6,7])):
temp_domainVertices[coords[key]]=maxvert[coords[key]]
else:
temp_domainVertices[coords[key]]=minvert[coords[key]]
domainVertices.append(temp_domainVertices)
for n in range(len(callback.domainInfo)):
temp_sub2domain=pinm.Domain('',norm=normalVector[n])
temp_sub2domain.setCentroid(vertices[n])
subdomain[callback.domainInfo[n]].addNode(temp_sub2domain)
maindomain.setCentroid(domainVertices)
return (maindomain,subdomain)
def createMainDomain(minvert,maxvert,coords):
maindomain=pinm.Domain('')
domainVertices=[]
for n in range(8):
temp_domainVertices={}
for key in range(len(coords)):
if (key==0 and (n in [1,2,5,6])) or (key==1 and (n in [2,3,6,7])) or (key==2 and (n in [4,5,6,7])):
temp_domainVertices[coords[key]]=maxvert[coords[key]]
else:
temp_domainVertices[coords[key]]=minvert[coords[key]]
domainVertices.append(temp_domainVertices)
maindomain.setCentroid(domainVertices)
return maindomain
def filterNodes(domainList,nodalDistribution,closeness=0.2): #first in list is prioritized to keep
nodes=[]
for domain in domainList:
for node in domain.nodes():
nodes.append(node)
for n in range(len(nodes)):
if nodes[n].domain!=None:
nodalSpacing=nodalDistribution(nodes[n].pos)
closeNodalSpacing=multiplyDictionary(nodalSpacing,closeness)
linkedNodes=findNodes(nodes[n].pos,domainList,distance=closeNodalSpacing,searchDepth=-1.)
for temp_linkNode in linkedNodes:
if temp_linkNode is not nodes[n]:
temp_domain=temp_linkNode.domain
temp_domain.removeNode(temp_linkNode)
temp_linkNode.domain=None
while len(temp_domain.subDomain)==0:
if temp_domain.superDomain==None:
break
else:
temp2_domain=temp_domain.superDomain
temp2_domain.removeNode(temp_domain)
temp_domain=temp2_domain
return;
def secondaryLinkNode(targetNode,primarylinkIdentifier,secondarylinkIdentifier='secondary'):
nodes=[]
targetNode.addLink(secondarylinkIdentifier,targetNode)
for node in targetNode.link[primarylinkIdentifier]:
for temp_node in node.link[primarylinkIdentifier]:
targetNode.addLink(secondarylinkIdentifier,node)
return;
def primaryLinkNodes(domainList,nodalDistribution,linkIdentifier='primary',closeness=1.5):#influence is function with dictionary input and output
nodes=[]
for domain in domainList:
for node in domain.nodes():
nodes.append(node)
for n in range(len(nodes)):
nodalSpacing=nodalDistribution(nodes[n].pos)
expandedNodalSpacing=multiplyDictionary(nodalSpacing,closeness)
linkedNodes=findNodes(nodes[n].pos,domainList,distance=expandedNodalSpacing,searchDepth=-1.)
addNodesToLink=[]
for temp_linkNode in linkedNodes:
if temp_linkNode is not nodes[n]:
addNodesToLink.append(temp_linkNode)
addNodesToLink.insert(0,nodes[n])
nodes[n].addLink(linkIdentifier,addNodesToLink)
return;
def duplicateNode(coordinateIdentifier,value,nodePorting,newNodes,domainList,targetDomain):
nodeInDomain=[]
for domain in domainList:
if type(domain) is pinm.Node:
new_pos=node.pos.copy()
new_pos[coordinateIdentifier]=value
newNode=pinm.Node(new_pos)
tempCopy=domain.variable.copy()
for key in tempCopy:
newNode.addvariable(key,tempCopy[key])
newNode.addLink('copied from',domain)
tempCopy=node.linkBasis.copy()
for key in tempCopy:
newNode.setLinkBasis(key,tempCopy[key])
newNode.setNorm(node.norm.copy())
newNode.setNormLink(node.normLink)
for n in range(len(node.material)):
newNode.addMaterial(n,node.material[n])
tempCopy=node.variableLink.copy()
for key in tempCopy:
newNode.setVariableLink(key,tempCopy[key])
nodePorting[domain]=newNode
newNodes.append(newNode)
nodeInDomain.append(newNode)
else:
newDomain=pinm.Domain('')
newDomain.pos=domain.pos.copy()
newDomain.maxDistance=domain.maxDistance.copy()
newDomain.pos[coordinateIdentifier]=value
newDomain.maxDistance[coordinateIdentifier]=0.
nodeInDomain.append(newDomain)
duplicateNode(coordinateIdentifier,value,nodePorting,newNodes,domain.subDomain,newDomain)
targetDomain.addNode(nodeInDomain)
return nodeInDomain
def extrudeDimension(domainList,coordinateIdentifier,valueList,prevLinkIdentifier='',nextLinkIdentifier=''):
newDomain=[]
prevNodes=[]
for m in range(len(valueList)):
newNodes=[]
nodePorting={}
newDomain.append([])
for domain in domainList:
tempDomain=pinm.Domain('')
tempDomain.pos=domain.pos.copy()
tempDomain.maxDistance=domain.maxDistance.copy()
tempDomain.pos[coordinateIdentifier]=value
tempDomain.maxDistance[coordinateIdentifier]=0.
newDomain[-1].append(tempDomain)
duplicateNode(coordinateIdentifier,value,nodePorting,newNodes,domain.subDomain,tempDomain)
for new_node in newNodes:
for temp_linkIdentifier in new_node.link['copied from'][0].link:
if temp_linkIdentifier!='copied from':
tempList=[]
for linkNode in new_node.link['copied from'][0].link[temp_linkIdentifier]:
tempList.append(nodePorting[linkNode])
new_node.addLink(temp_linkIdentifier,tempList)
if (prevLinkIdentifier!='' or nextLinkIdentifier!='') and len(prevNodes)!=0:
for n in range(len(newNodes)):
if prevLinkIdentifier!='':
prevNodes[n].addLink(linkIdentifier,newNodes[n])
if nextLinkIdentifier!='':
newNodes[n].addLink(linkIdentifier,prevNodes[n])
prevNodes=newNodes[:]
return newDomain
def arrangeExtrudeDimension(domainList,coordinateIdentifier,valueList,prevLinkIdentifier='',nextLinkIdentifier='',newDomainNameAddOn=' new',firstDomainNameAddOn='',lastDomainNameAddOn=''):
nameList=[]
for domain in domainList:
nameList.append(domain.name)
subDomain=extrudeDimension(domainList,coordinateIdentifier,valueList,prevLinkIdentifier=prevLinkIdentifier,nextLinkIdentifier=nextLinkIdentifier)
newDomain=[]
startDomain=[]
endDomain=[]
for n in range(len(subDomain[0])):
startCount=0
endCountReduce=0
if firstDomainNameAddOn!='':
if firstDomainNameAddOn!=lastDomainNameAddOn:
subDomain[0][n].setDomainName(nameList[n]+firstDomainNameAddOn)
startDomain.append(subDomain[0][n])
startCount=1
if lastDomainNameAddOn!='':
if firstDomainNameAddOn!=lastDomainNameAddOn:
subDomain[-1][n].setDomainName(nameList[n]+lastDomainNameAddOn)
else:
domainGroup=pinm.Domain(nameList[n]+firstDomainNameAddOn)
domainGroup.addNode([subDomain[0][n],subDomain[-1][n]])
endDomain.append(subDomain[-1][n])
endCountReduce=1
leftOverDomain=[]
for m in range(startCount,len(subDomain)-endCountReduce):
leftOverDomain.append(subDomain[m][n])
if len(leftOverDomain)!=0:
tempDomain=pinm.Domain(nameList[n]+newDomainNameAddOn)
tempDomain.addNode(leftOverDomain)
newDomain.append(tempDomain)
return (newDomain,startDomain,endDomain)
def meshSurfaceDomainTriangle(subDomain,nodalDistribution):
for domain in subDomain:
for sub2domain in domain.subDomain:
toBeFurtherMeshed=meshTriangleSpliting(sub2domain,nodalDistribution)
while len(toBeFurtherMeshed)>0:
copy_toBeFurtherMeshed=toBeFurtherMeshed
toBeFurtherMeshed=[]
for new_domain in copy_toBeFurtherMeshed:
for temp_domain in meshTriangleSpliting(new_domain,nodalDistribution):
toBeFurtherMeshed.append(temp_domain)
return;
def meshMainDomain(mainDomain,boundaryDomainList,nodalDistribution,meshOuterNode=False):
innerNodesDomain=pinm.Domain('')
innerNodesDomain.setCentroid(mainDomain.vertices)
mainDomain.addNode(innerNodesDomain)
toBeFurtherMeshed=meshVolume(innerNodesDomain,boundaryDomainList,nodalDistribution,meshOuter=meshOuterNode)
while len(toBeFurtherMeshed)>0:
copy_toBeFurtherMeshed=toBeFurtherMeshed
toBeFurtherMeshed=[]
for new_domain in copy_toBeFurtherMeshed:
for temp_domain in meshVolume(new_domain,boundaryDomainList,nodalDistribution,meshOuter=meshOuterNode):
toBeFurtherMeshed.append(temp_domain)
return innerNodesDomain
def meshTriangleSpliting(domain,nodalDistribution): #nodalDistribution is a function with both i/o dictionary objects
toBeFurtherMeshed=[]
subDomain=[]
#check for odd triangle
sidelength=[0.,0.,0.]
maxSideLength=0.
minSideLength=float('inf')
maxSideIndex=-1
minSideIndex=-1
for n in range(len(domain.vertices)):
for coord in domain.vertices[0]:
sidelength[n]+=(domain.vertices[n][coord]-domain.vertices[n-1][coord])**2.
sidelength[n]=np.sqrt(sidelength[n])
if sidelength[n]>maxSideLength:
maxSideLength=sidelength[n]
maxSideIndex=n
if sidelength[n]<minSideLength:
minSideLength=sidelength[n]
minSideIndex=n
NodeSpacing=nodalDistribution(domain.pos)
newPoint=multiplyDictionary(addDictionary([domain.vertices[maxSideIndex],domain.vertices[maxSideIndex-1]]),0.5)
tri1Domain=pinm.Domain('',norm=domain.normalVector)
tri1Domain.setCentroid([newPoint,domain.vertices[maxSideIndex],domain.vertices[maxSideIndex-2]])
tri2Domain=pinm.Domain('',norm=domain.normalVector)
tri2Domain.setCentroid([newPoint,domain.vertices[maxSideIndex-2],domain.vertices[maxSideIndex-1]])
temp_total=0.
for coord in NodeSpacing:
temp_total+=NodeSpacing[coord]**2.
nodeDis=np.sqrt(temp_total)
if nodeDis<(sum(sidelength)/3.):
subDomain.append(tri1Domain)
subDomain.append(tri2Domain)
toBeFurtherMeshed.append(tri1Domain)
toBeFurtherMeshed.append(tri2Domain)
else:
subDomain.append(pinm.Node(tri1Domain.pos,norm=domain.normalVector))
subDomain.append(pinm.Node(tri2Domain.pos,norm=domain.normalVector))
domain.addNode(subDomain)
return toBeFurtherMeshed
def meshVolume(domain,boundaryDomainList,nodalDistribution,meshOuter=False): #nodalDistribution is a function with both i/o dictionary objects
if meshOuter:
meshOuterCoef=-1.
else:
meshOuterCoef=1.
NodeSpacing=nodalDistribution(domain.pos)
addNodeInstead=1
for coord in domain.maxDistance:
if domain.maxDistance[coord]>NodeSpacing[coord]:
addNodeInstead=0
centerPlane=[]
centerPlaneMidPoints=[]
for n in range(4):
centerPlane.append(multiplyDictionary(addDictionary([domain.vertices[n],domain.vertices[4+n]]),0.5))
for n in range(3):
centerPlaneMidPoints.append(multiplyDictionary(addDictionary([centerPlane[n],centerPlane[n+1]]),0.5))
centerPlaneMidPoints.append(multiplyDictionary(addDictionary([centerPlane[3],centerPlane[0]]),0.5))
planeCentroid=[]
midPoints=[]
for m in range(2):
midPoints.append([])
for n in range(3):
midPoints[m].append(multiplyDictionary(addDictionary([domain.vertices[m*4+n],domain.vertices[m*4+n+1]]),0.5))
midPoints[m].append(multiplyDictionary(addDictionary([domain.vertices[m*4+3],domain.vertices[m*4]]),0.5))
for m in range(2):
planeCentroid.append(multiplyDictionary(addDictionary([midPoints[m][0],midPoints[m][2]]),0.5))
subDomain=[]
toBeFurtherMeshed=[]
for m in range(2):
for n in range(4):
temp_subdomain=pinm.Domain('')
temp_vertices=[midPoints[m][n-1],domain.vertices[4*m+n],midPoints[m][n],planeCentroid[m],
centerPlaneMidPoints[n-1],centerPlane[n],centerPlaneMidPoints[n],domain.pos]
temp_subdomain.setCentroid(temp_vertices)
temp_boundaryNode=findNodes(temp_subdomain.pos,boundaryDomainList)
distancebetween={}
for coord in temp_boundaryNode.pos:
distancebetween[coord]=np.absolute(temp_boundaryNode.pos[coord]-temp_subdomain.pos[coord])
boundaryNodes=findNodes(temp_subdomain.pos,boundaryDomainList,distance=distancebetween)
innerNode=True
for boundaryNode in boundaryNodes:
boundaryNodeCentroid=boundaryNode.pos
boundaryNodeNorm=boundaryNode.norm
dotProduct=0.
normamplitude=0.
for coords in temp_subdomain.pos:
dotProduct+= (temp_subdomain.pos[coords]-boundaryNodeCentroid[coords])*boundaryNodeNorm[coords]
normamplitude+=boundaryNodeNorm[coords]**2.
dotProduct=dotProduct/np.sqrt(normamplitude)
for coords in temp_subdomain.maxDistance:
if (temp_subdomain.maxDistance[coords]*(1-addNodeInstead))<(meshOuterCoef*dotProduct):
innerNode=False
break
if innerNode==False:
break
if innerNode:
if addNodeInstead==1:
temp_node=pinm.Node(temp_subdomain.pos,norm=domain.normalVector)
subDomain.append(temp_node)
else:
toBeFurtherMeshed.append(temp_subdomain)
subDomain.append(temp_subdomain)
domain.addNode(subDomain)
return toBeFurtherMeshed;
def findNodes(position,domainList,distance=None,searchDepth=-1.):#assign search depth to -1 for nodes
temp_searchDepth=searchDepth
if distance==None:
findNearest=True
else:
findNearest=False
if findNearest:
referenceDomain=None
minDistanceSq=float("inf")
otherDomain=[]
for domain in domainList:
temp_distSq=0.
if bool(domain.pos):
for coords in position:
temp_distSq+=(position[coords]-domain.pos[coords])**2.
if minDistanceSq>temp_distSq:
minDistanceSq=temp_distSq
referenceDomain=domain
else:
for allDomain in domain.subDomain:
otherDomain.append(allDomain)
if len(otherDomain)!=0:
if type(referenceDomain) is pinm.Domain:
for includeDomain in referenceDomain.subDomain:
otherDomain.append(includeDomain)
elif type(referenceDomain) is pinm.Node:
otherDomain.append(referenceDomain)
nodes=findNodes(position,otherDomain,searchDepth=temp_searchDepth)
elif (type(referenceDomain) is not pinm.Node) and searchDepth!=0:
nodes=findNodes(position,referenceDomain.subDomain,searchDepth=(temp_searchDepth-1))
else:
nodes=referenceDomain
return nodes
else:
nodes=[]
for domain in domainList:
toAdd=True
if bool(domain.pos):
if type(domain) is not pinm.Node:
maxDistance=domain.maxDistance
else:
maxDistance={}
for coords in position:
maxDistance[coords]=0.
for coords in position:
if np.absolute(position[coords]-domain.pos[coords])>(maxDistance[coords]+distance[coords]):
toAdd=False
if toAdd:
if type(domain) is not pinm.Node:
for temp_nodes in findNodes(position,domain.subDomain,distance):
nodes.append(temp_nodes)
else:
nodes.append(domain)
return nodes
def addDictionary(a):
result={}
for dicts in a:
for key in dicts:
if key in result:
result[key]+=dicts[key]
else:
result[key]=dicts[key]
return result
def multiplyDictionary(a,b):
result={}
for key in a:
result[key]=a[key]*b
return result
def plotNodes(nodes,coordinate=['x','y','z'],variableIdentifier='',complex='real'):
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)
coordinateKey=[]
var=[]
numOfNodes=len(nodes)
coords=np.zeros((3,numOfNodes))
for n in range(numOfNodes):
for m in range(len(coords)):
coords[m][n]=nodes[n].pos[coordinate[m]]
if variableIdentifier!='':
if complex=='real':
var.append(nodes[n].variable[variableIdentifier].real)
elif complex=='imag':
var.append(nodes[n].variable[variableIdentifier].imag)
elif complex=='abs':
var.append(np.absolute(nodes[n].variable[variableIdentifier]))
if variableIdentifier!='':
cm = pyplot.get_cmap('jet')
cNorm = Colors.Normalize(vmin=min(var), vmax=max(var))
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
axes.scatter(coords[0], coords[1], coords[2],c=scalarMap.to_rgba(var))
scalarMap.set_array(var)
figure.colorbar(scalarMap)
else:
axes.scatter(coords[0], coords[1], coords[2])
pyplot.show()
class DomainSelector:
def __init__(self,collectionList):
self.ind = 0
self.collectionList=collectionList
self.selectedIndex=[]
self.domainInfo=[]
self.domainCount=1
self.end=False
self.keyFunc={'l':self.nextFunc,
'k':self.prevFunc,
's':self.selectFunc,
'a':self.addToDomainFunc}
for n in collectionList:
self.selectedIndex.append(False)
self.domainInfo.append(0)
self.maxIndex=len(collectionList)-1
def next(self, event):
self.nextFunc()
def prev(self, event):
self.prevFunc()
def select(self, event):
self.selectFunc()
self.nextFunc()
def addToDomain(self, event):
self.addToDomainFunc()
def swapSelected(self, event):
self.swapSelectedFunc()
# def keyPressed(self,event):
# self.keyFunc[event.key]() #find code error
def nextFunc(self):
if not(self.end):
if self.selectedIndex[self.ind]:
self.collectionList[self.ind].set_facecolor('g')
else:
self.collectionList[self.ind].set_facecolor('b')
self.ind += 1
if self.ind>self.maxIndex:
self.ind = 0
while self.domainInfo[self.ind]!=0:
self.ind += 1
if self.ind>self.maxIndex:
self.ind = 0
if self.selectedIndex[self.ind]:
self.collectionList[self.ind].set_facecolor('r')
else:
self.collectionList[self.ind].set_facecolor('k')
pyplot.draw()
def prevFunc(self):
if not(self.end):
if self.selectedIndex[self.ind]:
self.collectionList[self.ind].set_facecolor('g')
else:
self.collectionList[self.ind].set_facecolor('b')
self.ind -= 1
if self.ind<0:
self.ind = self.maxIndex
while self.domainInfo[self.ind]!=0:
self.ind -= 1
if self.ind<0:
self.ind = self.maxIndex
if self.selectedIndex[self.ind]:
self.collectionList[self.ind].set_facecolor('r')
else:
self.collectionList[self.ind].set_facecolor('k')
pyplot.draw()
def selectFunc(self):
if not(self.end):
if self.selectedIndex[self.ind]:
self.collectionList[self.ind].set_facecolor('k')
self.selectedIndex[self.ind]=False
else:
self.collectionList[self.ind].set_facecolor('r')
self.selectedIndex[self.ind]=True
pyplot.draw()
def addToDomainFunc(self):
for n in range(len(self.selectedIndex)):
if self.selectedIndex[n]:
self.selectedIndex[n]=False
self.domainInfo[n]=self.domainCount
self.collectionList[n].set_facecolor('none')
self.domainCount +=1
self.end=True
for n in range(len(self.domainInfo)):
if self.domainInfo[n]==0:
self.ind = n
self.collectionList[self.ind].set_facecolor('k')
self.end=False
break
pyplot.draw()
def swapSelectedFunc(self):
for n in range(len(self.selectedIndex)):
if self.domainInfo[n]==0:
if self.selectedIndex[n]:
self.selectedIndex[n]=False
if n==self.ind:
self.collectionList[n].set_facecolor('k')
else:
self.collectionList[n].set_facecolor('b')
else:
self.selectedIndex[n]=True
if n==self.ind:
self.collectionList[n].set_facecolor('r')
else:
self.collectionList[n].set_facecolor('g')
pyplot.draw()
|
[
"mpl_toolkits.mplot3d.art3d.Poly3DCollection",
"matplotlib.pyplot.subplots_adjust",
"matplotlib.pyplot.draw",
"numpy.sqrt",
"matplotlib.pyplot.show",
"numpy.absolute",
"matplotlib.widgets.Button",
"matplotlib.pyplot.figure",
"numpy.zeros",
"matplotlib.pyplot.axes",
"matplotlib.cm.ScalarMappable",
"matplotlib.pyplot.get_cmap",
"mpl_toolkits.mplot3d.Axes3D",
"stl.mesh.Mesh.from_file"
] |
[((522, 537), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (535, 537), False, 'from matplotlib import pyplot\n'), ((542, 576), 'matplotlib.pyplot.subplots_adjust', 'pyplot.subplots_adjust', ([], {'bottom': '(0.2)'}), '(bottom=0.2)\n', (564, 576), False, 'from matplotlib import pyplot\n'), ((588, 610), 'mpl_toolkits.mplot3d.Axes3D', 'mplot3d.Axes3D', (['figure'], {}), '(figure)\n', (602, 610), False, 'from mpl_toolkits import mplot3d\n'), ((684, 713), 'stl.mesh.Mesh.from_file', 'mesh.Mesh.from_file', (['filePath'], {}), '(filePath)\n', (703, 713), False, 'from stl import mesh\n'), ((1119, 1155), 'matplotlib.pyplot.axes', 'pyplot.axes', (['[0.7, 0.05, 0.1, 0.075]'], {}), '([0.7, 0.05, 0.1, 0.075])\n', (1130, 1155), False, 'from matplotlib import pyplot\n'), ((1169, 1206), 'matplotlib.pyplot.axes', 'pyplot.axes', (['[0.81, 0.05, 0.1, 0.075]'], {}), '([0.81, 0.05, 0.1, 0.075])\n', (1180, 1206), False, 'from matplotlib import pyplot\n'), ((1222, 1260), 'matplotlib.pyplot.axes', 'pyplot.axes', (['[0.05, 0.05, 0.15, 0.075]'], {}), '([0.05, 0.05, 0.15, 0.075])\n', (1233, 1260), False, 'from matplotlib import pyplot\n'), ((1281, 1319), 'matplotlib.pyplot.axes', 'pyplot.axes', (['[0.05, 0.85, 0.15, 0.075]'], {}), '([0.05, 0.85, 0.15, 0.075])\n', (1292, 1319), False, 'from matplotlib import pyplot\n'), ((1341, 1378), 'matplotlib.pyplot.axes', 'pyplot.axes', (['[0.8, 0.85, 0.15, 0.075]'], {}), '([0.8, 0.85, 0.15, 0.075])\n', (1352, 1378), False, 'from matplotlib import pyplot\n'), ((1391, 1413), 'matplotlib.widgets.Button', 'Button', (['axnext', '"""Next"""'], {}), "(axnext, 'Next')\n", (1397, 1413), False, 'from matplotlib.widgets import Button\n'), ((1462, 1488), 'matplotlib.widgets.Button', 'Button', (['axprev', '"""Previous"""'], {}), "(axprev, 'Previous')\n", (1468, 1488), False, 'from matplotlib.widgets import Button\n'), ((1539, 1569), 'matplotlib.widgets.Button', 'Button', (['axselect', '"""(un)Select"""'], {}), "(axselect, '(un)Select')\n", (1545, 1569), False, 'from matplotlib.widgets import Button\n'), ((1629, 1664), 'matplotlib.widgets.Button', 'Button', (['axaddToDomain', '"""Add Domain"""'], {}), "(axaddToDomain, 'Add Domain')\n", (1635, 1664), False, 'from matplotlib.widgets import Button\n'), ((1735, 1774), 'matplotlib.widgets.Button', 'Button', (['axswapSelected', '"""Swap Selected"""'], {}), "(axswapSelected, 'Swap Selected')\n", (1741, 1774), False, 'from matplotlib.widgets import Button\n'), ((1930, 1943), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (1941, 1943), False, 'from matplotlib import pyplot\n'), ((14065, 14084), 'numpy.sqrt', 'np.sqrt', (['temp_total'], {}), '(temp_total)\n', (14072, 14084), True, 'import numpy as np\n'), ((20515, 20530), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (20528, 20530), False, 'from matplotlib import pyplot\n'), ((20542, 20564), 'mpl_toolkits.mplot3d.Axes3D', 'mplot3d.Axes3D', (['figure'], {}), '(figure)\n', (20556, 20564), False, 'from mpl_toolkits import mplot3d\n'), ((20634, 20659), 'numpy.zeros', 'np.zeros', (['(3, numOfNodes)'], {}), '((3, numOfNodes))\n', (20642, 20659), True, 'import numpy as np\n'), ((21549, 21562), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (21560, 21562), False, 'from matplotlib import pyplot\n'), ((13247, 13269), 'numpy.sqrt', 'np.sqrt', (['sidelength[n]'], {}), '(sidelength[n])\n', (13254, 13269), True, 'import numpy as np\n'), ((21180, 21202), 'matplotlib.pyplot.get_cmap', 'pyplot.get_cmap', (['"""jet"""'], {}), "('jet')\n", (21195, 21202), False, 'from matplotlib import pyplot\n'), ((21286, 21325), 'matplotlib.cm.ScalarMappable', 'cmx.ScalarMappable', ([], {'norm': 'cNorm', 'cmap': 'cm'}), '(norm=cNorm, cmap=cm)\n', (21304, 21325), True, 'import matplotlib.cm as cmx\n'), ((24903, 24916), 'matplotlib.pyplot.draw', 'pyplot.draw', ([], {}), '()\n', (24914, 24916), False, 'from matplotlib import pyplot\n'), ((25591, 25604), 'matplotlib.pyplot.draw', 'pyplot.draw', ([], {}), '()\n', (25602, 25604), False, 'from matplotlib import pyplot\n'), ((802, 872), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'mplot3d.art3d.Poly3DCollection', (['[modelMesh.vectors[n]]'], {'facecolors': '"""b"""'}), "([modelMesh.vectors[n]], facecolors='b')\n", (832, 872), False, 'from mpl_toolkits import mplot3d\n'), ((23238, 23251), 'matplotlib.pyplot.draw', 'pyplot.draw', ([], {}), '()\n', (23249, 23251), False, 'from matplotlib import pyplot\n'), ((23952, 23965), 'matplotlib.pyplot.draw', 'pyplot.draw', ([], {}), '()\n', (23963, 23965), False, 'from matplotlib import pyplot\n'), ((24324, 24337), 'matplotlib.pyplot.draw', 'pyplot.draw', ([], {}), '()\n', (24335, 24337), False, 'from matplotlib import pyplot\n'), ((16417, 16486), 'numpy.absolute', 'np.absolute', (['(temp_boundaryNode.pos[coord] - temp_subdomain.pos[coord])'], {}), '(temp_boundaryNode.pos[coord] - temp_subdomain.pos[coord])\n', (16428, 16486), True, 'import numpy as np\n'), ((17095, 17117), 'numpy.sqrt', 'np.sqrt', (['normamplitude'], {}), '(normamplitude)\n', (17102, 17117), True, 'import numpy as np\n'), ((19654, 19704), 'numpy.absolute', 'np.absolute', (['(position[coords] - domain.pos[coords])'], {}), '(position[coords] - domain.pos[coords])\n', (19665, 19704), True, 'import numpy as np\n'), ((21084, 21134), 'numpy.absolute', 'np.absolute', (['nodes[n].variable[variableIdentifier]'], {}), '(nodes[n].variable[variableIdentifier])\n', (21095, 21134), True, 'import numpy as np\n')]
|
import csv
import json
import matplotlib.pyplot as plt
import numpy as np
if __name__ == '__main__':
formats = ['png', 'pdf', 'svg', 'eps']
metrics = [
{'gmetric': 'groc', 'lmetric': 'lroc', 'metric': 'AUC'},
{'gmetric': 'gauc', 'lmetric': 'lauc', 'metric': 'PRAUC'},
]
datasets = [
{'name': 'HCC', 'file': '../../results/evaluation/hcc_multi_sites_100_each.csv'},
{'name': 'ILPD', 'file': '../../results/evaluation/ilpd_multi_sites_100_each.csv'},
{'name': 'LTD', 'file': '../../results/evaluation/tumor_multi_sites_100_each.csv'},
{'name': 'BCD', 'file': '../../results/evaluation/diag_multi_sites_100_each.csv'},
]
for metric in metrics:
gmetric = metric['gmetric']
lmetric = metric['lmetric']
metric = metric['metric']
for ds in datasets:
file = ds['file']
name = ds['name']
title = f'{name} | Multiple Local Models'
stats = {}
xs = ['1', '2', '5', '10', '20', '50', '100']
with open(file, newline='') as csvfile:
data = csv.reader(csvfile, delimiter=';')
headers = next(data)
gauc_idx = headers.index(gmetric)
lauc_idx = headers.index(lmetric)
for row in data:
stat = stats.get(row[1])
if not stat:
stat = {
gmetric: [],
lmetric: [],
}
stats[row[1]] = stat
# xs.append(row[1])
gvals = json.loads(row[gauc_idx])
lvals = json.loads(row[lauc_idx])
stat[gmetric].append(gvals)
if len(lvals) > 0:
stat[lmetric].extend(lvals)
else:
stat[lmetric].append(gvals)
# datainfo = str(len(stats['100'][gmetric]))
# title += ' | ' + datainfo
y_gauc_median = [np.median(stats[x][gmetric]) for x in xs]
y_gauc_q25 = [np.quantile(stats[x][gmetric], 0.25) for x in xs]
y_gauc_q75 = [np.quantile(stats[x][gmetric], 0.75) for x in xs]
y_lauc_median = [np.median(stats[x][lmetric]) for x in xs]
y_lauc_q25 = [np.quantile(stats[x][lmetric], 0.25) for x in xs]
y_lauc_q75 = [np.quantile(stats[x][lmetric], 0.75) for x in xs]
xs = [int(x) for x in xs]
regular_col = '#b0b0b0'
global_col = '#424ef5'
local_col = '#f57542'
alpha_mean = 1.0
alpha_q = 0.25
alpha_area = 0.2
fig = plt.figure(figsize=(6, 4.5))
ax = fig.add_subplot()
ax.hlines(y_gauc_q25[0], 1, 100, linestyles='dotted', colors=[regular_col])
ax.hlines(y_gauc_median[0], 1, 100, label='Centralized', colors=[regular_col])
ax.hlines(y_gauc_q75[0], 1, 100, linestyles='dotted', colors=[regular_col])
ax.fill_between(xs, y_gauc_q25, y_gauc_median, color=global_col, alpha=alpha_area)
ax.fill_between(xs, y_gauc_q75, y_gauc_median, color=global_col, alpha=alpha_area)
ax.fill_between(xs, y_lauc_q25, y_lauc_median, color=local_col, alpha=alpha_area)
ax.fill_between(xs, y_lauc_q75, y_lauc_median, color=local_col, alpha=alpha_area)
ax.plot(xs, y_gauc_q25, '_', color=global_col, alpha=alpha_q)
ax.plot(xs, y_gauc_median, '.', label='Combined', color=global_col, alpha=alpha_mean)
ax.plot(xs, y_gauc_q75, '_', color=global_col, alpha=alpha_q)
ax.plot(xs, y_lauc_q25, '_', color=local_col, alpha=alpha_q)
ax.plot(xs, y_lauc_median, '.', label='Local', color=local_col, alpha=alpha_mean)
ax.plot(xs, y_lauc_q75, '_', color=local_col, alpha=alpha_q)
plt.yticks([0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
plt.xscale('log')
plt.xticks([1, 2, 5, 10, 20, 50, 100], ['Centralized', '2', '5', '10', '20', '50', '100'])
plt.ylabel(metric)
plt.xlabel('Number of Sites')
plt.legend()
plt.title(title)
for format in formats:
plt.savefig(f'../../results/plots/{name}_{metric}_sites.{format}', format=format, bbox_inches='tight')
|
[
"json.loads",
"numpy.median",
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.xticks",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.figure",
"numpy.quantile",
"matplotlib.pyplot.yticks",
"matplotlib.pyplot.title",
"csv.reader",
"matplotlib.pyplot.xscale"
] |
[((2763, 2791), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 4.5)'}), '(figsize=(6, 4.5))\n', (2773, 2791), True, 'import matplotlib.pyplot as plt\n'), ((3977, 4019), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]'], {}), '([0.5, 0.6, 0.7, 0.8, 0.9, 1.0])\n', (3987, 4019), True, 'import matplotlib.pyplot as plt\n'), ((4032, 4049), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (4042, 4049), True, 'import matplotlib.pyplot as plt\n'), ((4062, 4156), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[1, 2, 5, 10, 20, 50, 100]', "['Centralized', '2', '5', '10', '20', '50', '100']"], {}), "([1, 2, 5, 10, 20, 50, 100], ['Centralized', '2', '5', '10', '20',\n '50', '100'])\n", (4072, 4156), True, 'import matplotlib.pyplot as plt\n'), ((4165, 4183), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['metric'], {}), '(metric)\n', (4175, 4183), True, 'import matplotlib.pyplot as plt\n'), ((4196, 4225), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Sites"""'], {}), "('Number of Sites')\n", (4206, 4225), True, 'import matplotlib.pyplot as plt\n'), ((4238, 4250), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4248, 4250), True, 'import matplotlib.pyplot as plt\n'), ((4263, 4279), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (4272, 4279), True, 'import matplotlib.pyplot as plt\n'), ((1126, 1160), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""";"""'}), "(csvfile, delimiter=';')\n", (1136, 1160), False, 'import csv\n'), ((2095, 2123), 'numpy.median', 'np.median', (['stats[x][gmetric]'], {}), '(stats[x][gmetric])\n', (2104, 2123), True, 'import numpy as np\n'), ((2163, 2199), 'numpy.quantile', 'np.quantile', (['stats[x][gmetric]', '(0.25)'], {}), '(stats[x][gmetric], 0.25)\n', (2174, 2199), True, 'import numpy as np\n'), ((2239, 2275), 'numpy.quantile', 'np.quantile', (['stats[x][gmetric]', '(0.75)'], {}), '(stats[x][gmetric], 0.75)\n', (2250, 2275), True, 'import numpy as np\n'), ((2319, 2347), 'numpy.median', 'np.median', (['stats[x][lmetric]'], {}), '(stats[x][lmetric])\n', (2328, 2347), True, 'import numpy as np\n'), ((2387, 2423), 'numpy.quantile', 'np.quantile', (['stats[x][lmetric]', '(0.25)'], {}), '(stats[x][lmetric], 0.25)\n', (2398, 2423), True, 'import numpy as np\n'), ((2463, 2499), 'numpy.quantile', 'np.quantile', (['stats[x][lmetric]', '(0.75)'], {}), '(stats[x][lmetric], 0.75)\n', (2474, 2499), True, 'import numpy as np\n'), ((4332, 4439), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""../../results/plots/{name}_{metric}_sites.{format}"""'], {'format': 'format', 'bbox_inches': '"""tight"""'}), "(f'../../results/plots/{name}_{metric}_sites.{format}', format=\n format, bbox_inches='tight')\n", (4343, 4439), True, 'import matplotlib.pyplot as plt\n'), ((1669, 1694), 'json.loads', 'json.loads', (['row[gauc_idx]'], {}), '(row[gauc_idx])\n', (1679, 1694), False, 'import json\n'), ((1723, 1748), 'json.loads', 'json.loads', (['row[lauc_idx]'], {}), '(row[lauc_idx])\n', (1733, 1748), False, 'import json\n')]
|
"""
# !/usr/bin/env python
# -*- coding: utf-8 -*-
@Time : 2022/2/24 20:12
@Author : <EMAIL>
@ProjectName : udacity-program_self_driving_car_engineer_v1.0_source.0
@File : full_pipeline.py
"""
import numpy as np
import cv2
import os
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import glob
from moviepy.editor import VideoFileClip
# Load in the chessboard calibration images to a list
cal_image_loc = glob.glob('camera_cal/calibration*.jpg')
# Prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6 * 9, 3), np.float32)
objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)
# Arrays for later storing object points and image points
obj_points = [] # 3d points in real world space
img_points = [] # 2d points in image plane.
# Make a list of calibration images
calibration_images = []
for im in cal_image_loc:
img = mpimg.imread(im)
calibration_images.append(img)
verbose = False
# Iterate through images for their points
for image in calibration_images:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
pattern_found, corners = cv2.findChessboardCorners(gray, (9, 6), None)
if pattern_found is True:
obj_points.append(objp)
img_points.append(corners)
if verbose:
# Draw and display the corners
img = cv2.drawChessboardCorners(image, (9, 6), corners, pattern_found)
cv2.imshow('img', img)
cv2.waitKey(500)
if verbose:
cv2.destroyAllWindows()
# Returns camera calibration
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, gray.shape[::-1], None, None)
class Left_Line():
"""
the left line
"""
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# recent polynomial coefficients
self.recent_fit = []
# polynomial coefficients averaged over the last n iterations
self.best_fit = None
# polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
# difference in fit coefficients between last and new fits
self.diffs = np.array([0, 0, 0], dtype='float')
# x values for detected line pixels
self.allx = None
# y values for detected line pixels
self.ally = None
# counter to reset after 5 iterations if issues arise
self.counter = 0
class Right_Line():
"""
the right line
"""
def __init__(self):
# was the line detected in the last iteration?
self.detected = False
# recent polynomial coefficients
self.recent_fit = []
# polynomial coefficients averaged over the last n iterations
self.best_fit = None
# polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
# difference in fit coefficients between last and new fits
self.diffs = np.array([0, 0, 0], dtype='float')
# x values for detected line pixels
self.allx = None
# y values for detected line pixels
self.ally = None
# counter to reset after 5 iterations if issues arise
self.counter = 0
def pipeline(img, s_thresh=(125, 255), sx_thresh=(10, 100), R_thresh=(200, 255), sobel_kernel=3):
""" Pipeline to create binary image.
This version uses thresholds on the R & S color channels and Sobelx.
Binary activation occurs where any two of the three are activated.
"""
distorted_img = np.copy(img)
dst = cv2.undistort(distorted_img, mtx, dist, None, mtx)
# Pull R
R = dst[:, :, 0]
# Convert to HLS colorspace
hls = cv2.cvtColor(dst, cv2.COLOR_RGB2HLS).astype(np.float)
h_channel = hls[:, :, 0]
l_channel = hls[:, :, 1]
s_channel = hls[:, :, 2]
# Sobelx - takes the derivate in x, absolute value, then rescale
sobelx = cv2.Sobel(l_channel, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
abs_sobelx = np.absolute(sobelx)
scaled_sobelx = np.uint8(255 * abs_sobelx / np.max(abs_sobelx))
# Threshold x gradient
sxbinary = np.zeros_like(scaled_sobelx)
sxbinary[(scaled_sobelx >= sx_thresh[0]) & (scaled_sobelx <= sx_thresh[1])] = 1
# Threshold R color channel
R_binary = np.zeros_like(R)
R_binary[(R >= R_thresh[0]) & (R <= R_thresh[1])] = 1
# Threshold color channel
s_binary = np.zeros_like(s_channel)
s_binary[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1
# If two of the three are activated, activate in the binary image
combined_binary = np.zeros_like(sxbinary)
combined_binary[((s_binary == 1) & (sxbinary == 1)) | ((sxbinary == 1) & (R_binary == 1))
| ((s_binary == 1) & (R_binary == 1))] = 1
return combined_binary
def birds_eye(img, mtx, dist):
""" Birds eye first undistorts the image, using the calibration from earlier.
Next, using defined source image points and destination points,
it will transform the image as if the road was viewed from above,
like a bird would see. Returns the birds eye image and transform matrix.
"""
# Put the image through the pipeline to get the binary image
binary_img = pipeline(img)
# Undistort
undist = cv2.undistort(binary_img, mtx, dist, None, mtx)
# Grab the image shape
img_size = (undist.shape[1], undist.shape[0])
# Source points - defined area of lane line edges
src = np.float32([[690, 450], [1110, img_size[1]], [175, img_size[1]], [595, 450]])
# 4 destination points to transfer
offset = 300 # offset for dst points
dst = np.float32([[img_size[0] - offset, 0], [img_size[0] - offset, img_size[1]],
[offset, img_size[1]], [offset, 0]])
# Use cv2.getPerspectiveTransform() to get M, the transform matrix
M = cv2.getPerspectiveTransform(src, dst)
# Use cv2.warpPerspective() to warp the image to a top-down view
top_down = cv2.warpPerspective(undist, M, img_size)
return top_down, M
def count_check(line):
""" Resets to using new sliding windows below if
upon failing five times in a row.
"""
if line.counter >= 5:
line.detected = False
def first_lines(img, mtx, dist):
""" First Lines uses the birds eye image from above,
creates a histogram of where the binary activations occur,
and uses sliding windows along the peak areas to estimate
where the lane lines are.
"""
# Load the birds eye image and transform matrix from birds_eye
binary_warped, perspective_M = birds_eye(img, mtx, dist)
# Histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0] / 2:, :], axis=0)
# Output image an to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] / 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window + 1) * window_height
win_y_high = binary_warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (
nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (
nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
# The challenge videos sometimes throw errors, so the below try first
# Upon the error being thrown, set line.detected to False
# Left line first
try:
n = 5
left_line.current_fit = np.polyfit(lefty, leftx, 2)
left_line.all_x = leftx
left_line.all_y = lefty
left_line.recent_fit.append(left_line.current_fit)
if len(left_line.recent_fit) > 1:
left_line.diffs = (left_line.recent_fit[-2] - left_line.recent_fit[-1]) / left_line.recent_fit[-2]
left_line.recent_fit = left_line.recent_fit[-n:]
left_line.best_fit = np.mean(left_line.recent_fit, axis=0)
left_fit = left_line.current_fit
left_line.detected = True
left_line.counter = 0
except TypeError:
left_fit = left_line.best_fit
left_line.detected = False
except np.linalg.LinAlgError:
left_fit = left_line.best_fit
left_line.detected = False
# Next, right line
try:
n = 5
right_line.current_fit = np.polyfit(righty, rightx, 2)
right_line.all_x = rightx
right_line.all_y = righty
right_line.recent_fit.append(right_line.current_fit)
if len(right_line.recent_fit) > 1:
right_line.diffs = (right_line.recent_fit[-2] - right_line.recent_fit[-1]) / right_line.recent_fit[-2]
right_line.recent_fit = right_line.recent_fit[-n:]
right_line.best_fit = np.mean(right_line.recent_fit, axis=0)
right_fit = right_line.current_fit
right_line.detected = True
right_line.counter = 0
except TypeError:
right_fit = right_line.best_fit
right_line.detected = False
except np.linalg.LinAlgError:
right_fit = right_line.best_fit
right_line.detected = False
def second_ord_poly(line, val):
""" Simple function being used to help calculate distance from center.
Only used within Draw Lines below. Finds the base of the line at the
bottom of the image.
"""
a = line[0]
b = line[1]
c = line[2]
formula = (a * val ** 2) + (b * val) + c
return formula
def draw_lines(img, mtx, dist):
""" Draw Lines will first check whether the lines are detected.
If not, go back up to First Lines. If they are, we do not have to search
the whole image for the lines. We can then draw the lines,
as well as detect where the car is in relation to the middle of the lane,
and what type of curvature it is driving at.
"""
# Pull in the image
binary_warped, perspective_M = birds_eye(img, mtx, dist)
# Check if lines were last detected; if not, re-run first_lines
if left_line.detected == False | right_line.detected == False:
first_lines(img, mtx, dist)
# Set the fit as the current fit for now
left_fit = left_line.current_fit
right_fit = right_line.current_fit
# Again, find the lane indicators
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
margin = 100
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (
nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + margin)))
right_lane_inds = (
(nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (
nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + margin)))
# Set the x and y values of points on each line
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each again.
# Similar to first_lines, need to try in case of errors
# Left line first
try:
n = 5
left_line.current_fit = np.polyfit(lefty, leftx, 2)
left_line.all_x = leftx
left_line.all_y = lefty
left_line.recent_fit.append(left_line.current_fit)
if len(left_line.recent_fit) > 1:
left_line.diffs = (left_line.recent_fit[-2] - left_line.recent_fit[-1]) / left_line.recent_fit[-2]
left_line.recent_fit = left_line.recent_fit[-n:]
left_line.best_fit = np.mean(left_line.recent_fit, axis=0)
left_fit = left_line.current_fit
left_line.detected = True
left_line.counter = 0
except TypeError:
left_fit = left_line.best_fit
count_check(left_line)
except np.linalg.LinAlgError:
left_fit = left_line.best_fit
count_check(left_line)
# Now right line
try:
n = 5
right_line.current_fit = np.polyfit(righty, rightx, 2)
right_line.all_x = rightx
right_line.all_y = righty
right_line.recent_fit.append(right_line.current_fit)
if len(right_line.recent_fit) > 1:
right_line.diffs = (right_line.recent_fit[-2] - right_line.recent_fit[-1]) / right_line.recent_fit[-2]
right_line.recent_fit = right_line.recent_fit[-n:]
right_line.best_fit = np.mean(right_line.recent_fit, axis=0)
right_fit = right_line.current_fit
right_line.detected = True
right_line.counter = 0
except TypeError:
right_fit = right_line.best_fit
count_check(right_line)
except np.linalg.LinAlgError:
right_fit = right_line.best_fit
count_check(right_line)
# Generate x and y values for plotting
fity = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
fit_leftx = left_fit[0] * fity ** 2 + left_fit[1] * fity + left_fit[2]
fit_rightx = right_fit[0] * fity ** 2 + right_fit[1] * fity + right_fit[2]
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
window_img = np.zeros_like(out_img)
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([fit_leftx - margin, fity]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([fit_leftx + margin, fity])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([fit_rightx - margin, fity]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([fit_rightx + margin, fity])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Calculate the pixel curve radius
y_eval = np.max(fity)
left_curverad = ((1 + (2 * left_fit[0] * y_eval + left_fit[1]) ** 2) ** 1.5) / np.absolute(2 * left_fit[0])
right_curverad = ((1 + (2 * right_fit[0] * y_eval + right_fit[1]) ** 2) ** 1.5) / np.absolute(2 * right_fit[0])
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(left_line.all_y * ym_per_pix, left_line.all_x * xm_per_pix, 2)
right_fit_cr = np.polyfit(right_line.all_y * ym_per_pix, right_line.all_x * xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * left_fit_cr[0])
right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * right_fit_cr[0])
avg_rad = round(np.mean([left_curverad, right_curverad]), 0)
rad_text = "Radius of Curvature = {}(m)".format(avg_rad)
# Calculating middle of the image, aka where the car camera is
middle_of_image = img.shape[1] / 2
car_position = middle_of_image * xm_per_pix
# Calculating middle of the lane
left_line_base = second_ord_poly(left_fit_cr, img.shape[0] * ym_per_pix)
right_line_base = second_ord_poly(right_fit_cr, img.shape[0] * ym_per_pix)
lane_mid = (left_line_base + right_line_base) / 2
# Calculate distance from center and list differently based on left or right
dist_from_center = lane_mid - car_position
if dist_from_center >= 0:
center_text = "{} meters left of center".format(round(dist_from_center, 2))
else:
center_text = "{} meters right of center".format(round(-dist_from_center, 2))
# List car's position in relation to middle on the image and radius of curvature
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, center_text, (10, 50), font, 1, (255, 255, 255), 2)
cv2.putText(img, rad_text, (10, 100), font, 1, (255, 255, 255), 2)
# Invert the transform matrix from birds_eye (to later make the image back to normal below)
Minv = np.linalg.inv(perspective_M)
# Create an image to draw the lines on
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([fit_leftx, fity]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([fit_rightx, fity])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (img.shape[1], img.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(img, 1, newwarp, 0.3, 0)
return result
def process_image(image):
""" This processes through everything above.
Will return the image with car position, lane curvature, and lane lines drawn.
"""
result = draw_lines(image, mtx, dist)
return result
# Set the class lines equal to the variables used above
left_line = Left_Line()
right_line = Right_Line()
# Convert to video
# vid_output is where the image will be saved to
vid_output = 'project_video_detected.mp4'
# The file referenced in clip1 is the original video before anything has been done to it
# clip1 = VideoFileClip("project_video.mp4")
# NOTE: this function expects color images
# vid_clip = clip1.fl_image(process_image)
# vid_clip.write_videofile(vid_output, audio=False)
test_img_dir = 'test_images'
for test_img in os.listdir(test_img_dir):
frame = cv2.imread(os.path.join(test_img_dir, test_img))
blend = process_image(frame)
cv2.imwrite('output_images/{}'.format(test_img), blend)
plt.imshow(cv2.cvtColor(blend, code=cv2.COLOR_BGR2RGB))
plt.show()
|
[
"cv2.rectangle",
"numpy.hstack",
"numpy.polyfit",
"matplotlib.image.imread",
"cv2.imshow",
"numpy.array",
"cv2.warpPerspective",
"cv2.destroyAllWindows",
"cv2.calibrateCamera",
"cv2.findChessboardCorners",
"numpy.mean",
"os.listdir",
"cv2.undistort",
"numpy.max",
"cv2.addWeighted",
"numpy.linspace",
"numpy.vstack",
"numpy.concatenate",
"cv2.waitKey",
"glob.glob",
"cv2.getPerspectiveTransform",
"numpy.argmax",
"cv2.putText",
"cv2.cvtColor",
"numpy.int_",
"numpy.int",
"matplotlib.pyplot.show",
"numpy.copy",
"numpy.dstack",
"numpy.absolute",
"os.path.join",
"numpy.sum",
"numpy.zeros",
"numpy.linalg.inv",
"cv2.drawChessboardCorners",
"numpy.zeros_like",
"numpy.float32",
"cv2.Sobel"
] |
[((442, 482), 'glob.glob', 'glob.glob', (['"""camera_cal/calibration*.jpg"""'], {}), "('camera_cal/calibration*.jpg')\n", (451, 482), False, 'import glob\n'), ((560, 592), 'numpy.zeros', 'np.zeros', (['(6 * 9, 3)', 'np.float32'], {}), '((6 * 9, 3), np.float32)\n', (568, 592), True, 'import numpy as np\n'), ((1607, 1680), 'cv2.calibrateCamera', 'cv2.calibrateCamera', (['obj_points', 'img_points', 'gray.shape[::-1]', 'None', 'None'], {}), '(obj_points, img_points, gray.shape[::-1], None, None)\n', (1626, 1680), False, 'import cv2\n'), ((20630, 20654), 'os.listdir', 'os.listdir', (['test_img_dir'], {}), '(test_img_dir)\n', (20640, 20654), False, 'import os\n'), ((892, 908), 'matplotlib.image.imread', 'mpimg.imread', (['im'], {}), '(im)\n', (904, 908), True, 'import matplotlib.image as mpimg\n'), ((1048, 1087), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (1060, 1087), False, 'import cv2\n'), ((1152, 1197), 'cv2.findChessboardCorners', 'cv2.findChessboardCorners', (['gray', '(9, 6)', 'None'], {}), '(gray, (9, 6), None)\n', (1177, 1197), False, 'import cv2\n'), ((1522, 1545), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1543, 1545), False, 'import cv2\n'), ((3568, 3580), 'numpy.copy', 'np.copy', (['img'], {}), '(img)\n', (3575, 3580), True, 'import numpy as np\n'), ((3591, 3641), 'cv2.undistort', 'cv2.undistort', (['distorted_img', 'mtx', 'dist', 'None', 'mtx'], {}), '(distorted_img, mtx, dist, None, mtx)\n', (3604, 3641), False, 'import cv2\n'), ((3943, 4001), 'cv2.Sobel', 'cv2.Sobel', (['l_channel', 'cv2.CV_64F', '(1)', '(0)'], {'ksize': 'sobel_kernel'}), '(l_channel, cv2.CV_64F, 1, 0, ksize=sobel_kernel)\n', (3952, 4001), False, 'import cv2\n'), ((4019, 4038), 'numpy.absolute', 'np.absolute', (['sobelx'], {}), '(sobelx)\n', (4030, 4038), True, 'import numpy as np\n'), ((4150, 4178), 'numpy.zeros_like', 'np.zeros_like', (['scaled_sobelx'], {}), '(scaled_sobelx)\n', (4163, 4178), True, 'import numpy as np\n'), ((4311, 4327), 'numpy.zeros_like', 'np.zeros_like', (['R'], {}), '(R)\n', (4324, 4327), True, 'import numpy as np\n'), ((4432, 4456), 'numpy.zeros_like', 'np.zeros_like', (['s_channel'], {}), '(s_channel)\n', (4445, 4456), True, 'import numpy as np\n'), ((4624, 4647), 'numpy.zeros_like', 'np.zeros_like', (['sxbinary'], {}), '(sxbinary)\n', (4637, 4647), True, 'import numpy as np\n'), ((5297, 5344), 'cv2.undistort', 'cv2.undistort', (['binary_img', 'mtx', 'dist', 'None', 'mtx'], {}), '(binary_img, mtx, dist, None, mtx)\n', (5310, 5344), False, 'import cv2\n'), ((5488, 5565), 'numpy.float32', 'np.float32', (['[[690, 450], [1110, img_size[1]], [175, img_size[1]], [595, 450]]'], {}), '([[690, 450], [1110, img_size[1]], [175, img_size[1]], [595, 450]])\n', (5498, 5565), True, 'import numpy as np\n'), ((5658, 5774), 'numpy.float32', 'np.float32', (['[[img_size[0] - offset, 0], [img_size[0] - offset, img_size[1]], [offset,\n img_size[1]], [offset, 0]]'], {}), '([[img_size[0] - offset, 0], [img_size[0] - offset, img_size[1]],\n [offset, img_size[1]], [offset, 0]])\n', (5668, 5774), True, 'import numpy as np\n'), ((5873, 5910), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (5900, 5910), False, 'import cv2\n'), ((5996, 6036), 'cv2.warpPerspective', 'cv2.warpPerspective', (['undist', 'M', 'img_size'], {}), '(undist, M, img_size)\n', (6015, 6036), False, 'import cv2\n'), ((6688, 6749), 'numpy.sum', 'np.sum', (['binary_warped[binary_warped.shape[0] / 2:, :]'], {'axis': '(0)'}), '(binary_warped[binary_warped.shape[0] / 2:, :], axis=0)\n', (6694, 6749), True, 'import numpy as np\n'), ((7036, 7066), 'numpy.int', 'np.int', (['(histogram.shape[0] / 2)'], {}), '(histogram.shape[0] / 2)\n', (7042, 7066), True, 'import numpy as np\n'), ((7084, 7115), 'numpy.argmax', 'np.argmax', (['histogram[:midpoint]'], {}), '(histogram[:midpoint])\n', (7093, 7115), True, 'import numpy as np\n'), ((7287, 7328), 'numpy.int', 'np.int', (['(binary_warped.shape[0] / nwindows)'], {}), '(binary_warped.shape[0] / nwindows)\n', (7293, 7328), True, 'import numpy as np\n'), ((7455, 7475), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (7463, 7475), True, 'import numpy as np\n'), ((7491, 7511), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (7499, 7511), True, 'import numpy as np\n'), ((9563, 9593), 'numpy.concatenate', 'np.concatenate', (['left_lane_inds'], {}), '(left_lane_inds)\n', (9577, 9593), True, 'import numpy as np\n'), ((9616, 9647), 'numpy.concatenate', 'np.concatenate', (['right_lane_inds'], {}), '(right_lane_inds)\n', (9630, 9647), True, 'import numpy as np\n'), ((12861, 12881), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (12869, 12881), True, 'import numpy as np\n'), ((12897, 12917), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (12905, 12917), True, 'import numpy as np\n'), ((15427, 15493), 'numpy.linspace', 'np.linspace', (['(0)', '(binary_warped.shape[0] - 1)', 'binary_warped.shape[0]'], {}), '(0, binary_warped.shape[0] - 1, binary_warped.shape[0])\n', (15438, 15493), True, 'import numpy as np\n'), ((15818, 15840), 'numpy.zeros_like', 'np.zeros_like', (['out_img'], {}), '(out_img)\n', (15831, 15840), True, 'import numpy as np\n'), ((16386, 16435), 'numpy.hstack', 'np.hstack', (['(left_line_window1, left_line_window2)'], {}), '((left_line_window1, left_line_window2))\n', (16395, 16435), True, 'import numpy as np\n'), ((16648, 16699), 'numpy.hstack', 'np.hstack', (['(right_line_window1, right_line_window2)'], {}), '((right_line_window1, right_line_window2))\n', (16657, 16699), True, 'import numpy as np\n'), ((16753, 16765), 'numpy.max', 'np.max', (['fity'], {}), '(fity)\n', (16759, 16765), True, 'import numpy as np\n'), ((17249, 17322), 'numpy.polyfit', 'np.polyfit', (['(left_line.all_y * ym_per_pix)', '(left_line.all_x * xm_per_pix)', '(2)'], {}), '(left_line.all_y * ym_per_pix, left_line.all_x * xm_per_pix, 2)\n', (17259, 17322), True, 'import numpy as np\n'), ((17342, 17417), 'numpy.polyfit', 'np.polyfit', (['(right_line.all_y * ym_per_pix)', '(right_line.all_x * xm_per_pix)', '(2)'], {}), '(right_line.all_y * ym_per_pix, right_line.all_x * xm_per_pix, 2)\n', (17352, 17417), True, 'import numpy as np\n'), ((18746, 18814), 'cv2.putText', 'cv2.putText', (['img', 'center_text', '(10, 50)', 'font', '(1)', '(255, 255, 255)', '(2)'], {}), '(img, center_text, (10, 50), font, 1, (255, 255, 255), 2)\n', (18757, 18814), False, 'import cv2\n'), ((18819, 18885), 'cv2.putText', 'cv2.putText', (['img', 'rad_text', '(10, 100)', 'font', '(1)', '(255, 255, 255)', '(2)'], {}), '(img, rad_text, (10, 100), font, 1, (255, 255, 255), 2)\n', (18830, 18885), False, 'import cv2\n'), ((18994, 19022), 'numpy.linalg.inv', 'np.linalg.inv', (['perspective_M'], {}), '(perspective_M)\n', (19007, 19022), True, 'import numpy as np\n'), ((19146, 19190), 'numpy.dstack', 'np.dstack', (['(warp_zero, warp_zero, warp_zero)'], {}), '((warp_zero, warp_zero, warp_zero))\n', (19155, 19190), True, 'import numpy as np\n'), ((19425, 19457), 'numpy.hstack', 'np.hstack', (['(pts_left, pts_right)'], {}), '((pts_left, pts_right))\n', (19434, 19457), True, 'import numpy as np\n'), ((19670, 19737), 'cv2.warpPerspective', 'cv2.warpPerspective', (['color_warp', 'Minv', '(img.shape[1], img.shape[0])'], {}), '(color_warp, Minv, (img.shape[1], img.shape[0]))\n', (19689, 19737), False, 'import cv2\n'), ((19801, 19841), 'cv2.addWeighted', 'cv2.addWeighted', (['img', '(1)', 'newwarp', '(0.3)', '(0)'], {}), '(img, 1, newwarp, 0.3, 0)\n', (19816, 19841), False, 'import cv2\n'), ((20876, 20886), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20884, 20886), True, 'import matplotlib.pyplot as plt\n'), ((2207, 2241), 'numpy.array', 'np.array', (['[0, 0, 0]'], {'dtype': '"""float"""'}), "([0, 0, 0], dtype='float')\n", (2215, 2241), True, 'import numpy as np\n'), ((2995, 3029), 'numpy.array', 'np.array', (['[0, 0, 0]'], {'dtype': '"""float"""'}), "([0, 0, 0], dtype='float')\n", (3003, 3029), True, 'import numpy as np\n'), ((6823, 6879), 'numpy.dstack', 'np.dstack', (['(binary_warped, binary_warped, binary_warped)'], {}), '((binary_warped, binary_warped, binary_warped))\n', (6832, 6879), True, 'import numpy as np\n'), ((7134, 7165), 'numpy.argmax', 'np.argmax', (['histogram[midpoint:]'], {}), '(histogram[midpoint:])\n', (7143, 7165), True, 'import numpy as np\n'), ((8438, 8538), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_xleft_low, win_y_low)', '(win_xleft_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(out_img, (win_xleft_low, win_y_low), (win_xleft_high,\n win_y_high), (0, 255, 0), 2)\n', (8451, 8538), False, 'import cv2\n'), ((8543, 8645), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_xright_low, win_y_low)', '(win_xright_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(out_img, (win_xright_low, win_y_low), (win_xright_high,\n win_y_high), (0, 255, 0), 2)\n', (8556, 8645), False, 'import cv2\n'), ((10109, 10136), 'numpy.polyfit', 'np.polyfit', (['lefty', 'leftx', '(2)'], {}), '(lefty, leftx, 2)\n', (10119, 10136), True, 'import numpy as np\n'), ((10499, 10536), 'numpy.mean', 'np.mean', (['left_line.recent_fit'], {'axis': '(0)'}), '(left_line.recent_fit, axis=0)\n', (10506, 10536), True, 'import numpy as np\n'), ((10924, 10953), 'numpy.polyfit', 'np.polyfit', (['righty', 'rightx', '(2)'], {}), '(righty, rightx, 2)\n', (10934, 10953), True, 'import numpy as np\n'), ((11330, 11368), 'numpy.mean', 'np.mean', (['right_line.recent_fit'], {'axis': '(0)'}), '(right_line.recent_fit, axis=0)\n', (11337, 11368), True, 'import numpy as np\n'), ((13813, 13840), 'numpy.polyfit', 'np.polyfit', (['lefty', 'leftx', '(2)'], {}), '(lefty, leftx, 2)\n', (13823, 13840), True, 'import numpy as np\n'), ((14203, 14240), 'numpy.mean', 'np.mean', (['left_line.recent_fit'], {'axis': '(0)'}), '(left_line.recent_fit, axis=0)\n', (14210, 14240), True, 'import numpy as np\n'), ((14618, 14647), 'numpy.polyfit', 'np.polyfit', (['righty', 'rightx', '(2)'], {}), '(righty, rightx, 2)\n', (14628, 14647), True, 'import numpy as np\n'), ((15024, 15062), 'numpy.mean', 'np.mean', (['right_line.recent_fit'], {'axis': '(0)'}), '(right_line.recent_fit, axis=0)\n', (15031, 15062), True, 'import numpy as np\n'), ((15738, 15794), 'numpy.dstack', 'np.dstack', (['(binary_warped, binary_warped, binary_warped)'], {}), '((binary_warped, binary_warped, binary_warped))\n', (15747, 15794), True, 'import numpy as np\n'), ((16849, 16877), 'numpy.absolute', 'np.absolute', (['(2 * left_fit[0])'], {}), '(2 * left_fit[0])\n', (16860, 16877), True, 'import numpy as np\n'), ((16964, 16993), 'numpy.absolute', 'np.absolute', (['(2 * right_fit[0])'], {}), '(2 * right_fit[0])\n', (16975, 16993), True, 'import numpy as np\n'), ((17564, 17595), 'numpy.absolute', 'np.absolute', (['(2 * left_fit_cr[0])'], {}), '(2 * left_fit_cr[0])\n', (17575, 17595), True, 'import numpy as np\n'), ((17710, 17742), 'numpy.absolute', 'np.absolute', (['(2 * right_fit_cr[0])'], {}), '(2 * right_fit_cr[0])\n', (17721, 17742), True, 'import numpy as np\n'), ((17772, 17812), 'numpy.mean', 'np.mean', (['[left_curverad, right_curverad]'], {}), '([left_curverad, right_curverad])\n', (17779, 17812), True, 'import numpy as np\n'), ((19536, 19550), 'numpy.int_', 'np.int_', (['[pts]'], {}), '([pts])\n', (19543, 19550), True, 'import numpy as np\n'), ((20679, 20715), 'os.path.join', 'os.path.join', (['test_img_dir', 'test_img'], {}), '(test_img_dir, test_img)\n', (20691, 20715), False, 'import os\n'), ((20827, 20870), 'cv2.cvtColor', 'cv2.cvtColor', (['blend'], {'code': 'cv2.COLOR_BGR2RGB'}), '(blend, code=cv2.COLOR_BGR2RGB)\n', (20839, 20870), False, 'import cv2\n'), ((1376, 1440), 'cv2.drawChessboardCorners', 'cv2.drawChessboardCorners', (['image', '(9, 6)', 'corners', 'pattern_found'], {}), '(image, (9, 6), corners, pattern_found)\n', (1401, 1440), False, 'import cv2\n'), ((1453, 1475), 'cv2.imshow', 'cv2.imshow', (['"""img"""', 'img'], {}), "('img', img)\n", (1463, 1475), False, 'import cv2\n'), ((1488, 1504), 'cv2.waitKey', 'cv2.waitKey', (['(500)'], {}), '(500)\n', (1499, 1504), False, 'import cv2\n'), ((2100, 2117), 'numpy.array', 'np.array', (['[False]'], {}), '([False])\n', (2108, 2117), True, 'import numpy as np\n'), ((2888, 2905), 'numpy.array', 'np.array', (['[False]'], {}), '([False])\n', (2896, 2905), True, 'import numpy as np\n'), ((3719, 3755), 'cv2.cvtColor', 'cv2.cvtColor', (['dst', 'cv2.COLOR_RGB2HLS'], {}), '(dst, cv2.COLOR_RGB2HLS)\n', (3731, 3755), False, 'import cv2\n'), ((4087, 4105), 'numpy.max', 'np.max', (['abs_sobelx'], {}), '(abs_sobelx)\n', (4093, 4105), True, 'import numpy as np\n'), ((19083, 19111), 'numpy.zeros_like', 'np.zeros_like', (['binary_warped'], {}), '(binary_warped)\n', (19096, 19111), True, 'import numpy as np\n'), ((9352, 9385), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (9359, 9385), True, 'import numpy as np\n'), ((9465, 9499), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (9472, 9499), True, 'import numpy as np\n'), ((16226, 16263), 'numpy.vstack', 'np.vstack', (['[fit_leftx - margin, fity]'], {}), '([fit_leftx - margin, fity])\n', (16235, 16263), True, 'import numpy as np\n'), ((16484, 16522), 'numpy.vstack', 'np.vstack', (['[fit_rightx - margin, fity]'], {}), '([fit_rightx - margin, fity])\n', (16493, 16522), True, 'import numpy as np\n'), ((19300, 19328), 'numpy.vstack', 'np.vstack', (['[fit_leftx, fity]'], {}), '([fit_leftx, fity])\n', (19309, 19328), True, 'import numpy as np\n'), ((16324, 16361), 'numpy.vstack', 'np.vstack', (['[fit_leftx + margin, fity]'], {}), '([fit_leftx + margin, fity])\n', (16333, 16361), True, 'import numpy as np\n'), ((16584, 16622), 'numpy.vstack', 'np.vstack', (['[fit_rightx + margin, fity]'], {}), '([fit_rightx + margin, fity])\n', (16593, 16622), True, 'import numpy as np\n'), ((19381, 19410), 'numpy.vstack', 'np.vstack', (['[fit_rightx, fity]'], {}), '([fit_rightx, fity])\n', (19390, 19410), True, 'import numpy as np\n')]
|
# ---------------------------------------------------------------------------------
# QKeithleySweep -> QVisaApplication
# Copyright (C) 2019 <NAME>
# github: https://github.com/mesoic
# email: <EMAIL>
# ---------------------------------------------------------------------------------
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#!/usr/bin/env python
import os
import sys
import time
import threading
# Import numpy
import numpy as np
# Import QVisaApplication
from PyQtVisa import QVisaApplication
# Import PyQtVisa widgets
from PyQtVisa.widgets import QVisaUnitSelector
from PyQtVisa.widgets import QVisaDynamicPlot
# Import QT backends
from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy
from PyQt5.QtCore import Qt, QStateMachine, QState, QObject
from PyQt5.QtCore import Qt, QStateMachine, QState, QObject
from PyQt5.QtGui import QIcon
# Container class to construct sweep measurement widget
class QKeithleySweep(QVisaApplication.QVisaApplication):
def __init__(self, _config):
# Inherits QVisaApplication -> QWidget
super(QKeithleySweep, self).__init__(_config)
# Generate Main Layout
self.gen_main_layout()
#####################################
# APPLICATION HELPER METHODS
#
# Wrapper method to get keitley write handle
# Returns the pyVisaDevice object
def keithley(self, __widget__):
return self.get_device_by_name( __widget__.currentText() )
# Method to refresh the widget
def refresh(self):
# If add insturments have been initialized
if self.get_devices() is not None:
# Reset the widget and add insturments
self.sweep_inst.refresh( self )
self.step_inst.refresh( self )
# Plot control widgets
self.plot_x_inst.refresh( self )
self.plot_y_inst.refresh( self )
# Update sweep parameters and enable output button
self.meas_button.setEnabled(True)
self.update_meas_params()
else:
# Disable output button
self.meas_button.setEnabled(False)
# Method to set sweep parameters
def set_sweep_params(self, start, stop, npts):
# No hysteresis
if self.sweep_hist.currentText() == "None":
sp = np.linspace(float(start), float(stop), int(npts) )
self._set_app_metadata("__sweep__", sp)
# Prepare reverse sweep
if self.sweep_hist.currentText() == "Reverse-sweep":
# Sweep centered hysteresis
sp = np.linspace(float(start), float(stop), int(npts) )
sp = np.concatenate( (sp, sp[-2::-1]) )
self._set_app_metadata("__sweep__", sp)
# Prepare a zero centered hysteresis
if self.sweep_hist.currentText() == "Zero-centered":
# Create a linspace
sp = np.linspace(float(start), float(stop), int(npts) )
# Extract positive slice
pos = np.where(sp > 0, sp, np.nan)
pos = pos[~np.isnan(pos)]
# Extract negative slice
neg = np.where(sp < 0, sp, np.nan)
neg = neg[~np.isnan(neg)]
# Create the zero centered hysteresis re-insert zeros
# Forward sweep, zero crossing
if (start < 0.) and (stop > 0.) and (start < stop):
sp = np.concatenate( ([0.0], pos, pos[-2::-1], [0.0], neg[::-1], neg[1::], [0.0]) )
# Reverse sweep, zero crossing
elif (start > 0.) and (stop < 0.) and (start > stop):
sp = np.concatenate( ([0.0], neg, neg[-2::-1], [0.0], pos[::-1], pos[1::], [0.0]) )
print(sp)
# If not zero crossing, default to "Reverse-sweep" case
else:
sp = np.concatenate( (sp, sp[-2::-1]) )
# Set meta field
self._set_app_metadata( "__sweep__", sp)
# Method to set step parameters
def set_step_params(self, start, stop, npts):
# No hysteresis
sp = np.linspace(float(start), float(stop), int(npts) )
self._set_app_metadata("__step__", sp)
#####################################
# MAIN LAYOUT
#
def gen_main_layout(self):
# Create Icon for QMessageBox
self._set_icon( QIcon(os.path.join(os.path.dirname(os.path.realpath(__file__)), "python.ico")))
# Create layout objects and set layout
self.layout = QHBoxLayout()
self.layout.addWidget(self.gen_main_ctrl(), 1)
self.layout.addWidget(self.gen_main_plot(), 3)
self.setLayout(self.layout)
#####################################
# MAIN LAYOUT
#
# Main controls:
# a) Measure button and state machine
# b) V-Step mode on/off state machine
# c) IV-sweep and V-step configure pages
# d) Save button
def gen_main_ctrl(self):
# Main control widget
self.meas_ctrl = QWidget()
self.meas_ctrl_layout = QVBoxLayout()
#####################################
# MEASURE STATE MACHINE AND BUTTON
#
# Measurement Button. This will be a state machine which
# alternates between 'measure' and 'abort' states
self.meas_state = QStateMachine()
self.meas_button = QPushButton()
self.meas_button.setStyleSheet(
"background-color: #dddddd; border-style: solid; border-width: 1px; border-color: #aaaaaa; padding: 7px;" )
# Create measurement states
self.meas_run = QState()
self.meas_stop = QState()
# Assign state properties and transitions
self.meas_run.assignProperty(self.meas_button, 'text', 'Abort Sweep')
self.meas_run.addTransition(self.meas_button.clicked, self.meas_stop)
self.meas_run.entered.connect(self.exec_meas_run)
self.meas_stop.assignProperty(self.meas_button, 'text', 'Measure Sweep')
self.meas_stop.addTransition(self.meas_button.clicked, self.meas_run)
self.meas_stop.entered.connect(self.exec_meas_stop)
# Add states, set initial state, and state machine
self.meas_state.addState(self.meas_run)
self.meas_state.addState(self.meas_stop)
self.meas_state.setInitialState(self.meas_stop)
self.meas_state.start()
# Meas pages
self.meas_pages = QStackedWidget()
self.meas_pages.addWidget(self.gen_sweep_ctrl())
self.meas_pages.addWidget(self.gen_step_ctrl())
self.meas_pages.addWidget(self.gen_plot_ctrl())
# Meta widget for trace description
self.meta_widget_label = QLabel("<b>Trace Description</b>")
self.meta_widget = self._gen_meta_widget()
self.meta_widget.set_meta_subkey("__desc__")
# Save widget
self.save_widget = self._gen_save_widget()
# Pack widgets into layout
self.meas_ctrl_layout.addWidget(self.meas_button)
self.meas_ctrl_layout.addWidget(self.gen_config_ctrl())
self.meas_ctrl_layout.addWidget(self.meas_pages)
# Add save widget
self.meas_ctrl_layout.addStretch(1)
self.meas_ctrl_layout.addWidget(self.meta_widget_label)
self.meas_ctrl_layout.addWidget(self.meta_widget)
self.meas_ctrl_layout.addWidget(self.save_widget)
# Set layout and return widget reference
self.meas_ctrl.setLayout(self.meas_ctrl_layout)
return self.meas_ctrl
#####################################
# CONFIGURE WIDGET
#
def gen_config_ctrl(self):
self.meas_config = QWidget()
self.meas_config_layout = QVBoxLayout()
# Current/Voltage Sweep Mode
self.meas_config_page_label = QLabel("<b>Configure Parameters</b>")
self.meas_config_page = QComboBox()
self.meas_config_page.setFixedWidth(200)
self.meas_config_page.addItems(["IV-sweep", "IV-step", "IV-plot"])
self.meas_config_page.currentTextChanged.connect(self.update_config_page)
# Add some space for layout clarity
self.meas_config_layout.setContentsMargins(0,10,0,10)
self.meas_config_layout.addWidget(self._gen_vbox_widget([self.meas_config_page_label, self.meas_config_page]))
# Pack config layout and return reference
self.meas_config.setLayout(self.meas_config_layout)
return self.meas_config
# Sweep control layout
def gen_sweep_ctrl(self):
self.sweep_ctrl = QWidget()
self.sweep_ctrl_layout = QVBoxLayout()
# Main control label
self.sweep_ctrl_label = QLabel("<b>IV-sweep Parameters</b>")
#####################################
# SWEEP INST SELECT
#
# Insturement selector and save widget
self.sweep_inst_label = QLabel("Select Device")
self.sweep_inst = self._gen_device_select()
self.sweep_inst.setFixedWidth(200)
#####################################
# SWEEP MEASUREMENT CONFIGURATION
#
# Current/Voltage Sweep Mode
self.sweep_src_label = QLabel("Sweep Type")
self.sweep_src = QComboBox()
self.sweep_src.setFixedWidth(200)
self.sweep_src.addItems(["Voltage", "Current"])
self.sweep_src.currentTextChanged.connect(self.update_sweep_ctrl)
# Generate voltage and current source widgets
self.gen_voltage_sweep() # self.voltage_sweep
self.gen_current_sweep() # self.current_sweep
# Add to stacked widget
self.sweep_pages = QStackedWidget()
self.sweep_pages.addWidget(self.voltage_sweep)
self.sweep_pages.addWidget(self.current_sweep)
self.sweep_pages.setCurrentIndex(0)
# Hysteresis mode
self.sweep_hist_label = QLabel("Hysteresis Mode")
self.sweep_hist = QComboBox()
self.sweep_hist.setFixedWidth(200)
self.sweep_hist.addItems(["None", "Reverse-sweep", "Zero-centered"])
#####################################
# ADD CONTROLS
#
# Sweep configuration controls
self.sweep_ctrl_layout.addWidget(self.sweep_ctrl_label)
self.sweep_ctrl_layout.addWidget(self._gen_hbox_widget([self.sweep_inst,self.sweep_inst_label]))
self.sweep_ctrl_layout.addWidget(self._gen_hbox_widget([self.sweep_src, self.sweep_src_label]))
self.sweep_ctrl_layout.addWidget(self._gen_hbox_widget([self.sweep_hist, self.sweep_hist_label]))
self.sweep_ctrl_layout.addWidget(self.sweep_pages)
# Positioning
self.sweep_ctrl.setLayout(self.sweep_ctrl_layout)
return self.sweep_ctrl
# Step control layout
def gen_step_ctrl(self):
self.step_ctrl = QWidget()
self.step_ctrl_layout = QVBoxLayout()
# Step control label
self.step_ctrl_label = QLabel("<b>V-step Parameters</b>")
# Voltage step instruement selector
self.step_inst_label = QLabel("Select Device")
self.step_inst = self._gen_device_select()
self.step_inst.setFixedWidth(200)
# Step control mode selector
self.step_src_label = QLabel("Step Type")
self.step_src = QComboBox()
self.step_src.setFixedWidth(200)
self.step_src.addItems(["Voltage", "Current"])
self.step_src.currentTextChanged.connect(self.update_step_ctrl)
# Generate voltage and current source widgets
self.gen_voltage_step() # self.voltage_step
self.gen_current_step() # self.current_step
# Add step modes to step_pages widget
self.step_pages = QStackedWidget()
self.step_pages.addWidget(self.voltage_step)
self.step_pages.addWidget(self.current_step)
self.step_pages.setCurrentIndex(0)
# Step control state machine
self.step_state = QStateMachine()
self.step_button = QPushButton()
self.step_button.setStyleSheet(
"background-color: #dddddd; border-style: solid; border-width: 1px; border-color: #aaaaaa; padding: 7px;" )
# Create measurement states
self.step_on = QState()
self.step_off = QState()
# Assign state properties and transitions
self.step_on.assignProperty(self.step_button, 'text', 'Step Bias ON')
self.step_on.addTransition(self.step_button.clicked, self.step_off)
self.step_on.entered.connect(self.exec_step_on)
self.step_off.assignProperty(self.step_button, 'text', 'Step Bias OFF')
self.step_off.addTransition(self.step_button.clicked, self.step_on)
self.step_off.entered.connect(self.exec_step_off)
# Add states, set initial state, and state machine
self.step_state.addState(self.step_on)
self.step_state.addState(self.step_off)
self.step_state.setInitialState(self.step_off)
self.step_state.start()
# Pack widgets
self.step_ctrl_layout.addWidget(self.step_ctrl_label)
self.step_ctrl_layout.addWidget(self._gen_hbox_widget([self.step_inst,self.step_inst_label]))
self.step_ctrl_layout.addWidget(self._gen_hbox_widget([self.step_src, self.step_src_label]))
self.step_ctrl_layout.addWidget(self.step_pages)
self.step_ctrl_layout.addWidget(self.step_button)
self.step_ctrl_layout.addStretch(1)
# Set layout and return reference
self.step_ctrl.setLayout(self.step_ctrl_layout)
return self.step_ctrl
# Plot control layout
def gen_plot_ctrl(self):
self.plot_ctrl = QWidget()
self.plot_ctrl_layout = QVBoxLayout()
# Voltage step instruement selector
self.plot_x_inst_label = QLabel("<b>Configure x-axis</b>")
self.plot_x_inst = self._gen_device_select()
self.plot_x_inst.setFixedWidth(200)
self.plot_x_inst.set_callback("update_plot_ctrl")
self.plot_x_data = QComboBox()
self.plot_x_data.setFixedWidth(100)
self.plot_x_data.addItems(["Voltage", "Current"])
self.plot_x_data.currentTextChanged.connect( self.update_plot_ctrl )
# Voltage step instruement selector
self.plot_y_inst_label = QLabel("<b>Configure y-axis</b>")
self.plot_y_inst = self._gen_device_select()
self.plot_y_inst.setFixedWidth(200)
self.plot_y_inst.set_callback("update_plot_ctrl")
self.plot_y_data = QComboBox()
self.plot_y_data.setFixedWidth(100)
self.plot_y_data.addItems(["Voltage", "Current"])
self.plot_y_data.setCurrentIndex(1)
self.plot_y_data.currentTextChanged.connect( self.update_plot_ctrl )
# Add widgets
self.plot_ctrl_layout.addWidget( self.plot_x_inst_label )
self.plot_ctrl_layout.addWidget( self._gen_hbox_widget( [self.plot_x_inst,self.plot_x_data]) )
self.plot_ctrl_layout.addWidget( self.plot_y_inst_label )
self.plot_ctrl_layout.addWidget( self._gen_hbox_widget( [self.plot_y_inst,self.plot_y_data]) )
self.plot_ctrl_layout.addStretch(1)
# Set layout and return reference
self.plot_ctrl.setLayout(self.plot_ctrl_layout)
return self.plot_ctrl
# Generate voltage sweep widget
def gen_voltage_sweep(self):
# New QWidget
self.voltage_sweep = QWidget()
self.voltage_sweep_layout = QVBoxLayout()
# Sweep Start
self.voltage_sweep_start_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Sweep Start (V)",
"signed" : True,
"limit" : [20.0, ""],
"default" : [0.00, ""]
}
self.voltage_sweep_start = QVisaUnitSelector.QVisaUnitSelector(self.voltage_sweep_start_config)
# Sweep Stop
self.voltage_sweep_stop_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Sweep Stop (V)",
"signed" : True,
"limit" : [20.0, ""],
"default" : [1.00, ""]
}
self.voltage_sweep_stop = QVisaUnitSelector.QVisaUnitSelector(self.voltage_sweep_stop_config)
# Compliance Spinbox
self.voltage_sweep_cmpl_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Compliance (A)",
"signed" : False,
"limit" : [1.0, "" ],
"default" : [150, "m"]
}
self.voltage_sweep_cmpl = QVisaUnitSelector.QVisaUnitSelector(self.voltage_sweep_cmpl_config)
# Number of points
self.voltage_sweep_npts_config={
"unit" : "__INT__",
"label" : "Number of Points",
"signed" : False,
"limit" : [512],
"default" : [51]
}
self.voltage_sweep_npts = QVisaUnitSelector.QVisaUnitSelector(self.voltage_sweep_npts_config)
# Measurement Delay
self.voltage_sweep_delay_config={
"unit" : "__DOUBLE__",
"label" : "Measurement Interval (s)",
"signed" : False,
"limit" : [60.0],
"default" : [0.10]
}
self.voltage_sweep_delay = QVisaUnitSelector.QVisaUnitSelector(self.voltage_sweep_delay_config)
# Pack selectors into layout
self.voltage_sweep_layout.addWidget(self.voltage_sweep_start)
self.voltage_sweep_layout.addWidget(self.voltage_sweep_stop)
self.voltage_sweep_layout.addWidget(self.voltage_sweep_cmpl)
self.voltage_sweep_layout.addWidget(self.voltage_sweep_npts)
self.voltage_sweep_layout.addWidget(self.voltage_sweep_delay)
self.voltage_sweep_layout.setContentsMargins(0,0,0,0)
# Set layout
self.voltage_sweep.setLayout(self.voltage_sweep_layout)
# Generate current sweep widget
def gen_current_sweep(self):
# New QWidget
self.current_sweep = QWidget()
self.current_sweep_layout = QVBoxLayout()
# Sweep Start
self.current_sweep_start_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Sweep Start (A)",
"signed" : True,
"limit" : [1.0, "" ],
"default" : [0.0, "m"]
}
self.current_sweep_start = QVisaUnitSelector.QVisaUnitSelector(self.current_sweep_start_config)
# Sweep Stop
self.current_sweep_stop_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Sweep Stop (A)",
"signed" : True,
"limit" : [1.0, "" ],
"default" : [100, "m"]
}
self.current_sweep_stop = QVisaUnitSelector.QVisaUnitSelector(self.current_sweep_stop_config)
# Compliance Spinbox
self.current_sweep_cmpl_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Compliance (V)",
"signed" : False,
"limit" : [20., ""],
"default" : [1.0, ""]
}
self.current_sweep_cmpl = QVisaUnitSelector.QVisaUnitSelector(self.current_sweep_cmpl_config)
# Number of points
self.current_sweep_npts_config={
"unit" : "__INT__",
"label" : "Number of Points",
"signed" : False,
"limit" : [256],
"default" : [11]
}
self.current_sweep_npts = QVisaUnitSelector.QVisaUnitSelector(self.current_sweep_npts_config)
# Measurement Delay
self.current_sweep_delay_config={
"unit" : "__DOUBLE__",
"label" : "Measurement Interval (s)",
"signed" : False,
"limit" : [60.0],
"default" : [0.1]
}
self.current_sweep_delay = QVisaUnitSelector.QVisaUnitSelector(self.current_sweep_delay_config)
# Pack selectors into layout
self.current_sweep_layout.addWidget(self.current_sweep_start)
self.current_sweep_layout.addWidget(self.current_sweep_stop)
self.current_sweep_layout.addWidget(self.current_sweep_cmpl)
self.current_sweep_layout.addWidget(self.current_sweep_npts)
self.current_sweep_layout.addWidget(self.current_sweep_delay)
self.current_sweep_layout.setContentsMargins(0,0,0,0)
# Set layout
self.current_sweep.setLayout(self.current_sweep_layout)
# Generate voltage step widget
def gen_voltage_step(self):
# New QWidget
self.voltage_step= QWidget()
self.voltage_step_layout = QVBoxLayout()
# Step Start
self.voltage_step_start_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Step Start (V)",
"signed" : True,
"limit" : [20.0, ""],
"default" : [0.00, ""]
}
self.voltage_step_start = QVisaUnitSelector.QVisaUnitSelector(self.voltage_step_start_config)
# Step Stop
self.voltage_step_stop_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Step Stop (V)",
"signed" : True,
"limit" : [20.0, ""],
"default" : [1.00, ""]
}
self.voltage_step_stop = QVisaUnitSelector.QVisaUnitSelector(self.voltage_step_stop_config)
# Step Compliance Spinbox
self.voltage_step_cmpl_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Compliance (A)",
"signed" : False,
"limit" : [1.0, "" ],
"default" : [150, "m"]
}
self.voltage_step_cmpl = QVisaUnitSelector.QVisaUnitSelector(self.voltage_step_cmpl_config)
# Step Number of points
self.voltage_step_npts_config={
"unit" : "__INT__",
"label" : "Number of Points",
"signed" : False,
"limit" : [256],
"default" : [5]
}
self.voltage_step_npts = QVisaUnitSelector.QVisaUnitSelector(self.voltage_step_npts_config)
# Pack selectors into layout
self.voltage_step_layout.addWidget(self.voltage_step_start)
self.voltage_step_layout.addWidget(self.voltage_step_stop)
self.voltage_step_layout.addWidget(self.voltage_step_cmpl)
self.voltage_step_layout.addWidget(self.voltage_step_npts)
self.voltage_step_layout.setContentsMargins(0,0,0,0)
# Set layout
self.voltage_step.setLayout(self.voltage_step_layout)
# Generate current step widget
def gen_current_step(self):
# New QWidget
self.current_step = QWidget()
self.current_step_layout = QVBoxLayout()
# Step Start
self.current_step_start_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Step Start (A)",
"signed" : True,
"limit" : [1.0, "" ],
"default" : [0.0, "m"]
}
self.current_step_start = QVisaUnitSelector.QVisaUnitSelector(self.current_step_start_config)
# Step Stop
self.current_step_stop_config={
"unit" : "A",
"min" : "u",
"max" : "",
"label" : "Step Stop (A)",
"signed" : True,
"limit" : [1.0, "" ],
"default" : [1.0, "m"]
}
self.current_step_stop = QVisaUnitSelector.QVisaUnitSelector(self.current_step_stop_config)
# Step Compliance Spinbox
self.current_step_cmpl_config={
"unit" : "V",
"min" : "u",
"max" : "",
"label" : "Compliance (V)",
"signed" : False,
"limit" : [20.0, ""],
"default" : [1.00, ""]
}
self.current_step_cmpl = QVisaUnitSelector.QVisaUnitSelector(self.current_step_cmpl_config)
# Step Number of points
self.current_step_npts_config={
"unit" : "__INT__",
"label" : "Number of Points",
"signed" : False,
"limit" : [256],
"default" : [5]
}
self.current_step_npts = QVisaUnitSelector.QVisaUnitSelector(self.current_step_npts_config)
# Pack selectors into layout
self.current_step_layout.addWidget(self.current_step_start)
self.current_step_layout.addWidget(self.current_step_stop)
self.current_step_layout.addWidget(self.current_step_cmpl)
self.current_step_layout.addWidget(self.current_step_npts)
self.current_step_layout.addStretch(1)
self.current_step_layout.setContentsMargins(0,0,0,0)
# Set layout
self.current_step.setLayout(self.current_step_layout)
# Ádd dynamic plot
def gen_main_plot(self):
# Create QVisaDynamicPlot object (inherits QWidget)
self.plot = QVisaDynamicPlot.QVisaDynamicPlot(self)
self.plot.add_subplot(111)
self.plot.add_origin_lines("111", "both")
self.plot.set_axes_labels("111", "Voltage (V)", "Current (A)")
# Refresh canvas
self.plot.refresh_canvas(supress_warning=True)
# Sync plot clear data button with application data
self.plot.sync_application_data(True)
# Sync meta widget when clearing data
self.plot.set_mpl_refresh_callback("_sync_meta_widget_to_data_object")
# Return the plot
return self.plot
# Sync meta widget
def _sync_meta_widget_to_data_object(self):
# Application keys
_data_keys = self._get_data_object().keys()
_widget_keys = self.meta_widget.get_meta_keys()
# Check if widget keys are not in data keys
for _key in _widget_keys:
# If not then delete the key from meta_widget
if _key not in _data_keys:
self.meta_widget.del_meta_key(_key)
#####################################
# UPDATE CONFIG PAGE
#
def update_config_page(self):
if self.meas_config_page.currentText() == "IV-sweep":
self.meas_pages.setCurrentIndex(0)
if self.meas_config_page.currentText() == "IV-step":
self.meas_pages.setCurrentIndex(1)
if self.meas_config_page.currentText() == "IV-plot":
self.meas_pages.setCurrentIndex(2)
#####################################
# SWEEP CONTROL UPDATE METHODS
#
# Sweep control dynamic update
def update_sweep_ctrl(self):
# Switch to voltage sweep page
if self.sweep_src.currentText() == "Voltage":
self.sweep_pages.setCurrentIndex(0)
self.update_meas_params()
# Switch to current sweep page
if self.sweep_src.currentText() == "Current":
self.sweep_pages.setCurrentIndex(1)
self.update_meas_params()
# Sweep control dynamic update
def update_step_ctrl(self):
# Switch to voltage sweep page
if self.step_src.currentText() == "Voltage":
self.step_pages.setCurrentIndex(0)
self.update_meas_params()
# Switch to current sweep page
if self.step_src.currentText() == "Current":
self.step_pages.setCurrentIndex(1)
self.update_meas_params()
# Update plot axes when we change configuration
def update_plot_ctrl(self):
# Extract correct unit labels
x_unit = "(V)" if self.plot_x_data.currentText() == "Voltage" else "(A)"
y_unit = "(V)" if self.plot_y_data.currentText() == "Voltage" else "(A)"
# Update axes
self.plot.set_axes_labels("111",
"%s %s : %s"%(self.plot_x_data.currentText(), x_unit ,self.plot_x_inst.currentText()),
"%s %s : %s"%(self.plot_y_data.currentText(), y_unit ,self.plot_y_inst.currentText())
)
self.plot.update_canvas()
# Create Measurement
def update_meas_params(self):
# Set up v-source(i-compliance) on keithley
if self.sweep_src.currentText() == "Voltage":
# Set sweeep paramaters
self.set_sweep_params(
self.voltage_sweep_start.value(),
self.voltage_sweep_stop.value(),
self.voltage_sweep_npts.value())
# Set keithley as voltage source
if self.keithley(self.sweep_inst) is not None:
self.keithley(self.sweep_inst).voltage_src()
self.keithley(self.sweep_inst).set_voltage(0.0)
self.keithley(self.sweep_inst).current_cmp(self.voltage_sweep_cmpl.value())
# Set up i-source(v-compliance) on keithley
if self.sweep_src.currentText() == "Current":
# Set sweeep paramaters
self.set_sweep_params(
self.current_sweep_start.value(),
self.current_sweep_stop.value(),
self.current_sweep_npts.value())
# Set keithley as voltage source
if self.keithley(self.sweep_inst) is not None:
self.keithley(self.sweep_inst).current_src()
self.keithley(self.sweep_inst).set_current(0.0)
self.keithley(self.sweep_inst).voltage_cmp(self.current_sweep_cmpl.value())
# Set step keithley as voltage source. Also ensure that we are not initializing
# the the sweep keithely with step params if doubly selected.
if ( ( self.keithley(self.step_inst) is not None) and
(self.keithley(self.step_inst) != self.keithley(self.sweep_inst) ) ):
# Set up v-source(i-compliance) on keithley
if self.step_src.currentText() == "Voltage":
# Set sweeep paramaters
self.set_step_params(
self.voltage_step_start.value(),
self.voltage_step_stop.value(),
self.voltage_step_npts.value())
# Set keithley as voltage source
if self.keithley(self.step_inst) is not None:
self.keithley(self.step_inst).voltage_src()
self.keithley(self.step_inst).set_voltage(0.0)
self.keithley(self.step_inst).current_cmp(self.voltage_step_cmpl.value())
# Set up i-source(v-compliance) on keithley
if self.step_src.currentText() == "Current":
# Set sweeep paramaters
self.set_step_params(
self.current_step_start.value(),
self.current_step_stop.value(),
self.current_step_npts.value())
# Set keithley as voltage source
if self.keithley(self.step_inst) is not None:
self.keithley(self.step_inst).current_src()
self.keithley(self.step_inst).set_current(0.0)
self.keithley(self.step_inst).voltage_cmp(self.current_step_cmpl.value())
#####################################
# MEASUREMENT EXECUTION THREADS
#
# Function we run when we enter run state
def exec_step_on(self):
# Update UI button to abort
self.step_button.setStyleSheet(
"background-color: #cce6ff; border-style: solid; border-width: 1px; border-color: #1a75ff; padding: 7px;")
# Check if no insturments are initialized
if self.sweep_inst.currentText() == "" and self.step_inst.currentText() == "":
# Message box to warn the user
msg = QMessageBox()
msg.setIcon(QMessageBox.Warning)
msg.setText("No devices initialized")
msg.setWindowTitle("QKeithleySweep")
msg.setWindowIcon(self._icon)
msg.setStandardButtons(QMessageBox.Ok)
msg.exec_()
# Set app meta and revert state
self._set_app_metadata("__exec_step__", False)
self.step_button.click()
# Check if the same insturment is initialized
elif self.sweep_inst.currentText() == self.step_inst.currentText():
# Message box to warn the user
msg = QMessageBox()
msg.setIcon(QMessageBox.Warning)
msg.setText("Same device %s selected for sweep and step parameters. Proceed?"%self.step_inst.currentText())
msg.setWindowTitle("QKeithleySweep")
msg.setWindowIcon(self._icon)
msg.setStandardButtons(QMessageBox.Ok)
msg.setStandardButtons(QMessageBox.Yes | QMessageBox.No)
self.msg_clear = msg.exec_()
# Expose this for testing
if self.msg_clear == QMessageBox.Yes:
self._set_app_metadata("__exec_step__", True)
else:
self._set_app_metadata("__exec_step__", False)
self.step_button.click()
else:
self._set_app_metadata("__exec_step__", True)
# Function we run when we enter run state
def exec_step_off(self):
# Update UI button to abort
self.step_button.setStyleSheet(
"background-color: #dddddd; border-style: solid; border-width: 1px; border-color: #aaaaaa; padding: 7px;" )
self._set_app_metadata("__exec_step__", False)
# Execute Sweep-Step Measurement
def exec_sweep_step_thread(self):
# Generate function pointer for sweep voltage/current mode
if self.sweep_src.currentText() == "Voltage":
__sweep_func__ = self.keithley(self.sweep_inst).set_voltage
__sweep_delay__ = self.voltage_sweep_delay.value()
if self.sweep_src.currentText() == "Current":
__sweep_func__ = self.keithley(self.sweep_inst).set_current
__sweep_delay__ = self.current_sweep_delay.value()
# Clear plot and zero arrays
start = time.time()
# Use generator function so all traces have same color
_c = self.plot.gen_next_color()
_handle_index = 0
# Get data object
data = self._get_data_object()
# Master key
_root = data.add_hash_key("iv-sweep-v-step")
# Set metatata for root
if self.step_src.currentText() == "Voltage":
data.set_metadata(_root, "__type__", "iv-sweep-v-step")
if self.step_src.currentText() == "Current":
data.set_metadata(_root, "__type__", "iv-sweep-v-step")
# Add key to meta widget
self.meta_widget.add_meta_key(_root)
# Create internal data structure for buffers
buffers = {
"__sweep__" : {"inst" : self.sweep_inst, "data" : None},
"__step__" : {"inst" : self.step_inst , "data" : None},
"__plotx__" : None,
"__ploty__" : None
}
# plot-axis insturments
for plot_key, plot_inst in zip(["__plotx__", "__ploty__" ], [ self.plot_x_inst, self.plot_y_inst] ):
if self.sweep_inst.currentText() == plot_inst.currentText():
buffers[ plot_key ] = {"inst" : "__sweep__", "data" : None }
elif self.step_inst.currentText() == plot_inst.currentText():
buffers[ plot_key ] = {"inst" : "__step__", "data" : None }
else:
buffers[ plot_key ] = {"inst" : plot_inst, "data" : None}
# Loop throgh all insurments and enable outputs
for _key, _buffer in buffers.items():
if _buffer["inst"] not in ["__sweep__", "__step__"]:
self.keithley( _buffer["inst"] ).output_on()
# Loop through step variables and generate subkeys
for _step in self._get_app_metadata("__step__"):
# If thread is running
if self.thread_running:
# A hash is generated for each voltage/current step for ease of data processing
# Generate function pointer for step voltage/current mode
if self.step_src.currentText() == "Voltage":
__step_func__ = self.keithley(self.step_inst).set_voltage
# Generate data key and set metadata
data = self._get_data_object()
key = data.add_hash_key("iv-sweep-v-step%s"%_step)
# Add keys and metadata to data object
data.set_metadata(key, "__root__", _root)
data.set_metadata(key, "__step__", _step)
data.set_subkeys(key, ["t", "V0", "I0", "P0", "V1", "I1", "P1"])
# Current Mode
if self.step_src.currentText() == "Current":
__step_func__ = self.keithley(self.step_inst).set_current
key = data.add_hash_key("iv-sweep-i-step%s"%_step)
# Add keys and metadata to data object
data.set_metadata(key, "__root__", _root)
data.set_metadata(key, "__step__", _step)
data.set_subkeys(key, ["t", "V0", "I0", "P0", "V1", "I1", "P1"])
# Set step voltage/current
__step_func__(_step)
# Add axes handle to root
self.plot.add_axes_handle("111", _root, _color=_c)
# Bias settle
if __sweep_delay__ != 0:
time.sleep(__sweep_delay__)
# Loop through sweep variables
for _bias in self._get_app_metadata("__sweep__"):
# If thread is running
if self.thread_running:
# Set voltage/current bias
__sweep_func__(_bias)
# Get data from buffer
# Populate buffers
buffers["__sweep__"]["data"] = self.keithley( buffers["__sweep__"]["inst"] ).meas().split(",")
buffers["__step__"]["data"] = self.keithley( buffers["__step__"]["inst"] ).meas().split(",")
# Plot insturments will copy sweep data or meas() if needed
for plot_buffer in ["__plotx__", "__ploty__"]:
if buffers[plot_buffer]["inst"] == "__sweep__":
buffers[plot_buffer]["data"] = buffers["__sweep__"]["data"]
elif buffers[plot_buffer]["inst"] == "__step__":
buffers[plot_buffer]["data"] = buffers["__step__"]["data"]
else:
buffers[plot_buffer]["data"] = self.keithley( buffers[plot_buffer]["inst"] ).meas().split(",")
# Apply delay
if __sweep_delay__ != 0:
time.sleep(__sweep_delay__)
# Extract data from buffer
_now = float(time.time() - start)
# Append measured values to data arrays
data.append_subkey_data(key,"t", _now )
data.append_subkey_data(key,"V0", float( buffers["__sweep__"]["data"][0]) )
data.append_subkey_data(key,"I0", float( buffers["__sweep__"]["data"][1]) )
data.append_subkey_data(key,"P0", float( buffers["__sweep__"]["data"][0]) * float(buffers["__sweep__"]["data"][1]) )
data.append_subkey_data(key,"V1", float( buffers["__step__"]["data"][0]) )
data.append_subkey_data(key,"I1", float( buffers["__step__"]["data"][1]) )
data.append_subkey_data(key,"P1", float( buffers["__step__"]["data"][0]) * float(buffers["__step__"]["data"][1]) )
# Sync x-axis data
if self.plot_x_data.currentText() == "Voltage":
p0 = buffers["__plotx__"]["data"][0]
if self.plot_x_data.currentText() == "Current":
p0 = buffers["__plotx__"]["data"][1]
# Sync y-axis data
if self.plot_y_data.currentText() == "Voltage":
p1 = buffers["__ploty__"]["data"][0]
if self.plot_y_data.currentText() == "Current":
p1 = buffers["__ploty__"]["data"][1]
# Update the data
self.plot.append_handle_data("111", _root, float(p0), float(p1), _handle_index)
self.plot.update_canvas()
else:
break
# Increment handle index
_handle_index += 1
else:
break
# Reset active keithleys
__sweep_func__(0.0)
__step_func__(0.0)
# Loop throgh all insurments and disable outputs
for _key, _buffer in buffers.items():
if _buffer["inst"] not in ["__sweep__", "__step__"]:
self.keithley( _buffer["inst"] ).output_off()
# Reset sweep control and update measurement state to stop.
# Post a button click event to the QStateMachine to trigger
# a state transition if thread is still running (not aborted)
if self.thread_running:
self.meas_button.click()
# Execute Sweep Measurement
def exec_sweep_thread(self):
# Generate data key
data = self._get_data_object()
key = data.add_hash_key("iv-sweep")
# Add data fields to key
data.set_subkeys(key, ["t", "V", "I", "P"])
data.set_metadata(key, "__type__", "iv-sweep")
# Add key to meta widget
self.meta_widget.add_meta_key(key)
# Generate function pointer for voltage/current mode
if self.sweep_src.currentText() == "Voltage":
__sweep_func__ = self.keithley(self.sweep_inst).set_voltage
__sweep_delay__ = self.voltage_sweep_delay.value()
if self.sweep_src.currentText() == "Current":
__sweep_func__ = self.keithley(self.sweep_inst).set_current
__sweep_delay__ = self.current_sweep_delay.value()
# Clear plot and zero arrays
handle = self.plot.add_axes_handle("111", key)
start = time.time()
# Create internal data structure for buffers
buffers = {
"__sweep__" : {"inst" : self.sweep_inst, "data" : None},
"__plotx__" : None,
"__ploty__" : None
}
# x-axis insturment
for plot_key, plot_inst in zip( ["__plotx__", "__ploty__" ], [self.plot_x_inst, self.plot_y_inst] ):
if self.sweep_inst.currentText() == plot_inst.currentText():
buffers[plot_key] = {"inst" : "__sweep__", "data" : None }
else:
buffers[plot_key] = {"inst" : plot_inst, "data" : None}
# Loop throgh all insurments and enable outputs
for _key, _buffer in buffers.items():
if _buffer["inst"] not in ["__sweep__"]:
self.keithley( _buffer["inst"] ).output_on()
# Loop through sweep variables
for _bias in self._get_app_metadata("__sweep__"):
# If thread is running
if self.thread_running:
# Set voltage/current bias
__sweep_func__(_bias)
# Populate buffers
buffers["__sweep__"]["data"] = self.keithley( buffers["__sweep__"]["inst"] ).meas().split(",")
# Plot insturments will copy sweep data or meas() if needed
for plot_buffer in ["__plotx__", "__ploty__"]:
if buffers[plot_buffer]["inst"] == "__sweep__":
buffers[plot_buffer]["data"] = buffers["__sweep__"]["data"]
else:
buffers[plot_buffer]["data"] = self.keithley( buffers[plot_buffer]["inst"] ).meas().split(",")
if __sweep_delay__ != 0:
time.sleep(__sweep_delay__)
# Extract data from buffer
_now = float(time.time() - start)
# Append measured values to data arrays
data.append_subkey_data(key,"t", _now )
data.append_subkey_data(key,"V", float( buffers["__sweep__"]["data"][0]) )
data.append_subkey_data(key,"I", float( buffers["__sweep__"]["data"][1]) )
data.append_subkey_data(key,"P", float( buffers["__sweep__"]["data"][0]) * float(buffers["__sweep__"]["data"][1]) )
# Sync x-axis data
if self.plot_x_data.currentText() == "Voltage":
p0 = buffers["__plotx__"]["data"][0]
if self.plot_x_data.currentText() == "Current":
p0 = buffers["__plotx__"]["data"][1]
# Sync y-axis data
if self.plot_y_data.currentText() == "Voltage":
p1 = buffers["__ploty__"]["data"][0]
if self.plot_y_data.currentText() == "Current":
p1 = buffers["__ploty__"]["data"][1]
# Update the data
self.plot.append_handle_data("111", key, float(p0), float(p1))
self.plot.update_canvas()
# Reset Keithley
__sweep_func__(0.0)
# Loop throgh all insurments and enable outputs
for _key, _buffer in buffers.items():
if _buffer["inst"] not in ["__sweep__"]:
self.keithley( _buffer["inst"] ).output_off()
# Reset sweep control and update measurement state to stop.
# Post a button click event to the QStateMachine to trigger
# a state transition if thread is still running (not aborted)
if self.thread_running:
self.meas_button.click()
# Function we run when we enter run state
def exec_meas_run(self):
# Update sweep and step params
self.update_meas_params()
# For startup protection
if self.keithley(self.sweep_inst) is not None:
# Update UI button to abort
self.meas_button.setStyleSheet(
"background-color: #ffcccc; border-style: solid; border-width: 1px; border-color: #800000; padding: 7px;")
# Disable controls (sweep)
self.sweep_src.setEnabled(False)
self.sweep_inst.setEnabled(False)
# Disable controls (step)
self.step_src.setEnabled(False)
self.step_inst.setEnabled(False)
self.step_button.setEnabled(False)
# Disable controls (save)
self.save_widget.setEnabled(False)
# Plot contollers (plots)
self.plot.mpl_refresh_setEnabled(False)
self.plot_x_inst.setEnabled(False)
self.plot_x_data.setEnabled(False)
self.plot_y_inst.setEnabled(False)
self.plot_y_data.setEnabled(False)
# Check app meta and run sweep or sweep-step tread
if self._get_app_metadata("__exec_step__") == True:
self.thread = threading.Thread(target=self.exec_sweep_step_thread, args=())
else:
self.thread = threading.Thread(target=self.exec_sweep_thread, args=())
self.thread.daemon = True # Daemonize thread
self.thread.start() # Start the execution
self.thread_running = True
# Function we run when we enter abort state
def exec_meas_stop(self):
# For startup protection
if self.keithley(self.sweep_inst) is not None:
# Update UI button to start state
self.meas_button.setStyleSheet(
"background-color: #dddddd; border-style: solid; border-width: 1px; border-color: #aaaaaa; padding: 7px;" )
# Enable controls (sweep)
self.sweep_src.setEnabled(True)
self.sweep_inst.setEnabled(True)
# Enable controls (step)
self.step_src.setEnabled(True)
self.step_inst.setEnabled(True)
self.step_button.setEnabled(True)
# Enable controls (save)
self.save_widget.setEnabled(True)
# Plot contollers
self.plot.mpl_refresh_setEnabled(True)
self.plot_x_inst.setEnabled(True)
self.plot_x_data.setEnabled(True)
self.plot_y_inst.setEnabled(True)
self.plot_y_data.setEnabled(True)
# Kill measurement thread
self.thread_running = False
self.thread.join() # Waits for thread to complete
|
[
"PyQt5.QtWidgets.QMessageBox",
"time.sleep",
"PyQt5.QtWidgets.QStackedWidget",
"PyQt5.QtWidgets.QVBoxLayout",
"PyQt5.QtWidgets.QComboBox",
"numpy.where",
"PyQt5.QtWidgets.QLabel",
"PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector",
"numpy.concatenate",
"PyQt5.QtWidgets.QPushButton",
"PyQt5.QtWidgets.QWidget",
"PyQtVisa.widgets.QVisaDynamicPlot.QVisaDynamicPlot",
"PyQt5.QtWidgets.QHBoxLayout",
"PyQt5.QtCore.QStateMachine",
"numpy.isnan",
"time.time",
"os.path.realpath",
"PyQt5.QtCore.QState",
"threading.Thread"
] |
[((5102, 5115), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (5113, 5115), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((5533, 5542), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (5540, 5542), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((5569, 5582), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (5580, 5582), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((5799, 5814), 'PyQt5.QtCore.QStateMachine', 'QStateMachine', ([], {}), '()\n', (5812, 5814), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((5836, 5849), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', ([], {}), '()\n', (5847, 5849), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((6046, 6054), 'PyQt5.QtCore.QState', 'QState', ([], {}), '()\n', (6052, 6054), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((6074, 6082), 'PyQt5.QtCore.QState', 'QState', ([], {}), '()\n', (6080, 6082), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((6778, 6794), 'PyQt5.QtWidgets.QStackedWidget', 'QStackedWidget', ([], {}), '()\n', (6792, 6794), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((7012, 7046), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>Trace Description</b>"""'], {}), "('<b>Trace Description</b>')\n", (7018, 7046), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((7846, 7855), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (7853, 7855), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((7884, 7897), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (7895, 7897), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((7963, 8000), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>Configure Parameters</b>"""'], {}), "('<b>Configure Parameters</b>')\n", (7969, 8000), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((8027, 8038), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (8036, 8038), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((8636, 8645), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (8643, 8645), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((8673, 8686), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (8684, 8686), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((8739, 8775), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>IV-sweep Parameters</b>"""'], {}), "('<b>IV-sweep Parameters</b>')\n", (8745, 8775), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((8913, 8936), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Select Device"""'], {}), "('Select Device')\n", (8919, 8936), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((9162, 9182), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Sweep Type"""'], {}), "('Sweep Type')\n", (9168, 9182), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((9202, 9213), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (9211, 9213), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((9564, 9580), 'PyQt5.QtWidgets.QStackedWidget', 'QStackedWidget', ([], {}), '()\n', (9578, 9580), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((9765, 9790), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Hysteresis Mode"""'], {}), "('Hysteresis Mode')\n", (9771, 9790), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((9811, 9822), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (9820, 9822), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((10605, 10614), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (10612, 10614), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((10641, 10654), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (10652, 10654), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((10704, 10738), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>V-step Parameters</b>"""'], {}), "('<b>V-step Parameters</b>')\n", (10710, 10738), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((10804, 10827), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Select Device"""'], {}), "('Select Device')\n", (10810, 10827), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((10965, 10984), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Step Type"""'], {}), "('Step Type')\n", (10971, 10984), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((11003, 11014), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (11012, 11014), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((11372, 11388), 'PyQt5.QtWidgets.QStackedWidget', 'QStackedWidget', ([], {}), '()\n', (11386, 11388), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((11573, 11588), 'PyQt5.QtCore.QStateMachine', 'QStateMachine', ([], {}), '()\n', (11586, 11588), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((11610, 11623), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', ([], {}), '()\n', (11621, 11623), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((11818, 11826), 'PyQt5.QtCore.QState', 'QState', ([], {}), '()\n', (11824, 11826), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((11845, 11853), 'PyQt5.QtCore.QState', 'QState', ([], {}), '()\n', (11851, 11853), False, 'from PyQt5.QtCore import Qt, QStateMachine, QState, QObject\n'), ((13091, 13100), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (13098, 13100), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((13127, 13140), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (13138, 13140), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((13207, 13240), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>Configure x-axis</b>"""'], {}), "('<b>Configure x-axis</b>')\n", (13213, 13240), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((13400, 13411), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (13409, 13411), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((13640, 13673), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""<b>Configure y-axis</b>"""'], {}), "('<b>Configure y-axis</b>')\n", (13646, 13673), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((13833, 13844), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (13842, 13844), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((14632, 14641), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (14639, 14641), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((14672, 14685), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (14683, 14685), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((14931, 14999), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_sweep_start_config'], {}), '(self.voltage_sweep_start_config)\n', (14966, 14999), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((15240, 15307), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_sweep_stop_config'], {}), '(self.voltage_sweep_stop_config)\n', (15275, 15307), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((15559, 15626), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_sweep_cmpl_config'], {}), '(self.voltage_sweep_cmpl_config)\n', (15594, 15626), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((15839, 15906), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_sweep_npts_config'], {}), '(self.voltage_sweep_npts_config)\n', (15874, 15906), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((16136, 16204), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_sweep_delay_config'], {}), '(self.voltage_sweep_delay_config)\n', (16171, 16204), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((16793, 16802), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (16800, 16802), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((16833, 16846), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (16844, 16846), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((17092, 17160), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_sweep_start_config'], {}), '(self.current_sweep_start_config)\n', (17127, 17160), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((17401, 17468), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_sweep_stop_config'], {}), '(self.current_sweep_stop_config)\n', (17436, 17468), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((17717, 17784), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_sweep_cmpl_config'], {}), '(self.current_sweep_cmpl_config)\n', (17752, 17784), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((17996, 18063), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_sweep_npts_config'], {}), '(self.current_sweep_npts_config)\n', (18031, 18063), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((18291, 18359), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_sweep_delay_config'], {}), '(self.current_sweep_delay_config)\n', (18326, 18359), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((18946, 18955), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (18953, 18955), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((18985, 18998), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (18996, 18998), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((19239, 19306), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_step_start_config'], {}), '(self.voltage_step_start_config)\n', (19274, 19306), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((19543, 19609), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_step_stop_config'], {}), '(self.voltage_step_stop_config)\n', (19578, 19609), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((19864, 19930), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_step_cmpl_config'], {}), '(self.voltage_step_cmpl_config)\n', (19899, 19930), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((20146, 20212), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.voltage_step_npts_config'], {}), '(self.voltage_step_npts_config)\n', (20181, 20212), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((20721, 20730), 'PyQt5.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (20728, 20730), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((20760, 20773), 'PyQt5.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (20771, 20773), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((21014, 21081), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_step_start_config'], {}), '(self.current_step_start_config)\n', (21049, 21081), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((21318, 21384), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_step_stop_config'], {}), '(self.current_step_stop_config)\n', (21353, 21384), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((21638, 21704), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_step_cmpl_config'], {}), '(self.current_step_cmpl_config)\n', (21673, 21704), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((21919, 21985), 'PyQtVisa.widgets.QVisaUnitSelector.QVisaUnitSelector', 'QVisaUnitSelector.QVisaUnitSelector', (['self.current_step_npts_config'], {}), '(self.current_step_npts_config)\n', (21954, 21985), False, 'from PyQtVisa.widgets import QVisaUnitSelector\n'), ((22554, 22593), 'PyQtVisa.widgets.QVisaDynamicPlot.QVisaDynamicPlot', 'QVisaDynamicPlot.QVisaDynamicPlot', (['self'], {}), '(self)\n', (22587, 22593), False, 'from PyQtVisa.widgets import QVisaDynamicPlot\n'), ((30091, 30102), 'time.time', 'time.time', ([], {}), '()\n', (30100, 30102), False, 'import time\n'), ((36810, 36821), 'time.time', 'time.time', ([], {}), '()\n', (36819, 36821), False, 'import time\n'), ((3549, 3581), 'numpy.concatenate', 'np.concatenate', (['(sp, sp[-2::-1])'], {}), '((sp, sp[-2::-1]))\n', (3563, 3581), True, 'import numpy as np\n'), ((3846, 3874), 'numpy.where', 'np.where', (['(sp > 0)', 'sp', 'np.nan'], {}), '(sp > 0, sp, np.nan)\n', (3854, 3874), True, 'import numpy as np\n'), ((3944, 3972), 'numpy.where', 'np.where', (['(sp < 0)', 'sp', 'np.nan'], {}), '(sp < 0, sp, np.nan)\n', (3952, 3972), True, 'import numpy as np\n'), ((28147, 28160), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ([], {}), '()\n', (28158, 28160), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((4159, 4234), 'numpy.concatenate', 'np.concatenate', (['([0.0], pos, pos[-2::-1], [0.0], neg[::-1], neg[1:], [0.0])'], {}), '(([0.0], pos, pos[-2::-1], [0.0], neg[::-1], neg[1:], [0.0]))\n', (4173, 4234), True, 'import numpy as np\n'), ((28645, 28658), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ([], {}), '()\n', (28656, 28658), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QHBoxLayout, QMessageBox, QComboBox, QSpinBox, QDoubleSpinBox, QPushButton, QCheckBox, QLabel, QLineEdit, QStackedWidget, QSizePolicy\n'), ((40793, 40854), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.exec_sweep_step_thread', 'args': '()'}), '(target=self.exec_sweep_step_thread, args=())\n', (40809, 40854), False, 'import threading\n'), ((40884, 40940), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.exec_sweep_thread', 'args': '()'}), '(target=self.exec_sweep_thread, args=())\n', (40900, 40940), False, 'import threading\n'), ((3891, 3904), 'numpy.isnan', 'np.isnan', (['pos'], {}), '(pos)\n', (3899, 3904), True, 'import numpy as np\n'), ((3988, 4001), 'numpy.isnan', 'np.isnan', (['neg'], {}), '(neg)\n', (3996, 4001), True, 'import numpy as np\n'), ((4342, 4417), 'numpy.concatenate', 'np.concatenate', (['([0.0], neg, neg[-2::-1], [0.0], pos[::-1], pos[1:], [0.0])'], {}), '(([0.0], neg, neg[-2::-1], [0.0], pos[::-1], pos[1:], [0.0]))\n', (4356, 4417), True, 'import numpy as np\n'), ((4519, 4551), 'numpy.concatenate', 'np.concatenate', (['(sp, sp[-2::-1])'], {}), '((sp, sp[-2::-1]))\n', (4533, 4551), True, 'import numpy as np\n'), ((32926, 32953), 'time.sleep', 'time.sleep', (['__sweep_delay__'], {}), '(__sweep_delay__)\n', (32936, 32953), False, 'import time\n'), ((38230, 38257), 'time.sleep', 'time.sleep', (['__sweep_delay__'], {}), '(__sweep_delay__)\n', (38240, 38257), False, 'import time\n'), ((4996, 5022), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (5012, 5022), False, 'import os\n'), ((38307, 38318), 'time.time', 'time.time', ([], {}), '()\n', (38316, 38318), False, 'import time\n'), ((33985, 34012), 'time.sleep', 'time.sleep', (['__sweep_delay__'], {}), '(__sweep_delay__)\n', (33995, 34012), False, 'import time\n'), ((34066, 34077), 'time.time', 'time.time', ([], {}), '()\n', (34075, 34077), False, 'import time\n')]
|
#!/usr/bin/python3
# RS-274X per standard Revision 2021.02
import re
import copy
import numpy as np
import vertices
# TODO replace all vertices with outline class
# Meant for extracting substrings only
# Cast to int or float will catch invalid strings
RE_INT = r'[+-]?[0-9]+'
RE_DEC = r'[+-]?[0-9\.]+?'
EXPOSURE_ON = 1
EXPOSURE_OFF = 0
class Gerber():
def __init__(self):
self.format_num_int = None
self.format_num_dec = None
self.unit = None
self.current_point = None
self.current_aperture = None
# Interpolation should be None, but not all files have G01
self.interpolation = 'linear'
self.region = None
self.transform = ApertureTransform()
self.apertures = {}
self.templates = {
'C': Circle(1.0),
'R': Rectangle(1.0, 1.0),
'O': Obround(1.0, 1.0),
'P': Polygon(1.0, 3, 0.0)
}
self.objects = []
self.objects_list_stack = [self.objects]
self.reached_eof = False
def add_object(self, new_obj):
self.objects_list_stack[-1].append(new_obj)
def comment(self, statement: str):
pass
def ignore(self, statement: str):
pass
def not_implemented(self, statement: str):
raise NotImplementedError('Command not implemented: ' + statement)
def begin_region(self, statement: str):
# TODO is self.region required?
self.region = Region(self.transform)
self.objects_list_stack.append(self.region)
def end_region(self, statement: str):
self.region.end_contour()
self.objects_list_stack.pop()
self.add_object(self.region)
self.region = None
def get_command_function(self, statement: str):
commands = {
'G04': self.comment,
'MO': self.set_mode,
'FS': self.set_format,
'AD': self.aperture_define,
'AM': self.aperture_macro,
'Dnn': self.set_current_aperture,
'D01': self.interpolate_operation,
'D02': self.move_operation,
'D03': self.flash_operation,
'G01': self.set_interpolation,
'G02': self.set_interpolation,
'G03': self.set_interpolation,
'G74': self.not_implemented,
'G75': self.ignore,
'LP': self.load_polarity,
'LM': self.load_mirroring,
'LR': self.load_rotation,
'LS': self.load_scaling,
'G36': self.begin_region,
'G37': self.end_region,
'AB': self.aperture_block,
'SR': self.step_and_repeat,
'TF': self.ignore,
'TA': self.ignore,
'TO': self.ignore,
'TD': self.ignore,
'M02': self.set_eof
}
# Extended commands
# e.g.
# %MOMM*%
# %AMDonut*
# 1,1,$1,$2,$3*
# $4=$1x0.75*
# 1,0,$4,$2,$3*
# %
# %ADD11Donut,0.30X0X0*%
code = None
if statement.startswith('%'):
code = statement[1:3]
else:
# Word commands
# e.g.
# G04 comment *
# D10*
# X0Y0D02*
match = re.search(r'[GDM](\d\d)', statement)
if match:
code = match.group()
if code[0] == 'D' and int(match.group(1)) >= 10:
code = 'Dnn'
try:
return commands[code]
except KeyError:
raise KeyError(f'Unrecognized statement: {statement}')
def set_eof(self, statement: str):
if statement != 'M02*':
raise ValueError('Invalid EOF statement')
self.reached_eof = True
def parse(self, filename: str):
with open(filename, 'r') as f:
delimiter = False
for line_num, line in enumerate(f):
if line.isspace():
continue
if line.startswith('%'):
delimiter = True
statement = ''
if delimiter:
statement += line
else:
statement = line
if line.endswith('%\n'):
delimiter = False
if not delimiter:
statement = statement.strip()
try:
command = self.get_command_function(statement)
command(statement)
except (ValueError, KeyError) as ex:
raise ValueError(f'Error line {line_num + 1}: {ex}')
if not self.reached_eof:
raise ValueError('File did not contain EOF marker')
def set_mode(self, statement: str):
# Set unit of measurement to metric or imperial
if statement == '%MOMM*%':
self.unit = 'mm'
elif statement == '%MOIN*%':
self.unit = 'in'
else:
raise ValueError(f'Unrecognized mode statement: {statement}')
def set_format(self, statement: str):
# Set coordinates and distances in operations
# %FSLAX36Y36*% sets 3 integer digits, 6 decimal digits
# 6 decimal digits implies 10^-6 is increment
if self.format_num_dec is not None or self.format_num_int is not None:
raise ValueError('Format must be set exactly once')
match = re.search(r'%FSLAX([1-6])([3-6])Y([1-6])([3-6])\*%', statement)
if match is None:
raise ValueError(f'Unrecognized format statement: {statement}')
if match.group(1) != match.group(3):
raise ValueError(f'Mismatched format X, Y integer digits: {statement}')
if match.group(2) != match.group(4):
raise ValueError(f'Mismatched format X, Y decimal digits: {statement}')
self.format_num_int = int(match.group(1))
self.format_num_dec = int(match.group(2))
self.format_scale = 10**(-self.format_num_dec)
def set_interpolation(self, statement: str):
# Set interpolation state to linear or circular
if statement == 'G01*':
self.interpolation = 'linear'
elif statement == 'G02*':
self.interpolation = 'cw_circular'
elif statement == 'G03*':
self.interpolation = 'ccw_circular'
else:
raise ValueError(f'Unrecognized interpolation statement: {statement}')
def create_aperture(self):
if self.current_aperture is not None:
return self.apertures[self.current_aperture].clone()
else:
return None
def get_new_point(self, x: str, y: str):
# Parse strings, e.g. X2152000 and Y1215000
if x and y:
return (int(x[1:]), int(y[1:]))
elif x:
return (int(x[1:]), self.current_point[1])
elif y:
return (self.current_point[0], int(y[1:]))
else:
raise ValueError('Invalid x and y')
def interpolate_operation(self, statement: str):
# D01 linear/circular line segment
match = re.search(rf'(X{RE_INT})?(Y{RE_INT})?(I{RE_INT})?(J{RE_INT})?D01\*', statement)
if match is not None:
x = match.group(1)
y = match.group(2)
i = match.group(3)
j = match.group(4)
new_point = self.get_new_point(x, y)
if self.interpolation == 'linear':
self.add_object(Draw(self.create_aperture(), self.transform,
self.current_point, new_point))
elif self.interpolation in ('cw_circular', 'ccw_circular'):
if i and j:
offset = (int(i[1:]), int(j[1:]))
else:
raise ValueError(f'Missing offset: I {i}, J {j}')
is_cw = (self.interpolation == 'cw_circular')
self.add_object(Arc(self.create_aperture(), self.transform,
self.current_point, new_point,
offset, is_cw))
else:
raise ValueError(f'Invalid interpolation: {self.interpolation}')
self.current_point = new_point
else:
raise ValueError(f'Unrecognized interpolate operation: {statement}')
def move_operation(self, statement: str):
# D02 move operation
match = re.search(rf'(X{RE_INT})?(Y{RE_INT})?D02\*', statement)
if match is not None:
x = match.group(1)
y = match.group(2)
self.current_point = self.get_new_point(x, y)
else:
raise ValueError(f'Unrecognized move operation: {statement}')
def flash_operation(self, statement: str):
# D03 create flash object
match = re.search(rf'(X{RE_INT})?(Y{RE_INT})?D03\*', statement)
if match is not None:
x = match.group(1)
y = match.group(2)
new_point = self.get_new_point(x, y)
aperture = self.create_aperture()
self.add_object(Flash(aperture, self.transform, new_point))
self.current_point = new_point
else:
raise ValueError(f'Unrecognized flash operation: {statement}')
def load_polarity(self, statement: str):
# Polarity is either clear or dark
if statement == '%LPC*%':
self.transform.polarity = 'clear'
elif statement == '%LPD*%':
self.transform.polarity = 'dark'
else:
raise ValueError(f'Unrecognized polarity statement: {statement}')
def load_mirroring(self, statement: str):
# Mirror either N, X, Y or XY
match = re.search(r'%LM(N|X|Y|XY)\*%', statement)
if match is not None:
self.transform.mirroring = match.group(1)
else:
raise ValueError(f'Unrecognized mirroring statement: {statement}')
def load_rotation(self, statement: str):
# Rotation in degrees counterclockwise
match = re.search(r'%LR(\S+)\*%', statement)
if match is not None:
self.transform.rotation = float(match.group(1))
else:
raise ValueError(f'Unrecognized rotation statement: {statement}')
def load_scaling(self, statement: str):
# Scaling where 1.0 is no scaling
match = re.search(r'%LS(\S+)\*%', statement)
if match is not None:
self.transform.scaling = float(match.group(1))
else:
raise ValueError(f'Unrecognized scaling statement: {statement}')
def aperture_define(self, statement: str):
# Parse e.g. %ADD100C,1.5*%
# AD, D100, C, 1.5
# cmd, ident, template
match = re.search(r'%AD(D[0-9]{2,})([\w\.\$]+)(,\S*)?\*%', statement)
if match is not None:
ident = match.group(1)
template_name = match.group(2)
parameters = match.group(3)
if parameters:
parameters = parameters.lstrip(',')
if ident in self.apertures:
raise ValueError(f'Aperture {ident} already defined')
if template_name in self.templates:
self.apertures[ident] = self.templates[template_name].derive_from(parameters)
else:
raise KeyError(f'Aperture template {template_name} not defined')
else:
raise ValueError(f'Unrecognized aperture define statement: {statement}')
def aperture_macro(self, statement: str):
# %AMCIRC*\n1,1,1.5,0,0,0*%
match = re.search(r'%AM([\w\.\$]+)', statement)
if match is not None:
ident = match.group(1)
if ident in self.templates:
raise ValueError(f'Aperture {ident} template already defined')
self.templates[ident] = Macro.parse(statement)
else:
raise ValueError(f'Unrecognized aperture macro statement: {statement}')
def aperture_block(self, statement: str):
# %ABD12*%
# %ADD11C,0.5*%
# D10*
# G01*
# X-2500000Y-1000000D03*
# Y1000000D03*
# %LPC*%
# ...
# G01*
# %AB*%
match = re.search(r'%AB(D[0-9]{2,})?\*%', statement)
if match is not None:
ident = match.group(1)
if ident is None: # Close Block
self.objects_list_stack.pop()
else: # Open new Block
if ident in self.apertures:
raise ValueError(f'Aperture {ident} already defined')
self.apertures[ident] = BlockAperture()
self.objects_list_stack.append(self.apertures[ident])
else:
raise ValueError(f'Unrecognized aperture block statement: {statement}')
def set_current_aperture(self, statement: str):
# D10*
# select aperture D10
match = re.search(r'(D[0-9]{2,})\*', statement)
if match is not None:
ident = match.group(1)
if ident in self.apertures:
self.current_aperture = ident
else:
raise KeyError(f'Aperture {ident} is not defined')
else:
raise ValueError(f'Unrecognized set current aperture statement: {statement}')
def step_and_repeat(self, statement: str):
# %SRX3Y2I5.0J4.0*%
# ...
# %SR*%
# Step and repeat all enclosed statements
if statement == '%SR*%':
self.objects_list_stack.pop()
else:
match = re.search(rf'%SRX(\d+)Y(\d+)I({RE_DEC})J({RE_DEC})\*%', statement)
if match is not None:
x = int(match.group(1))
y = int(match.group(2))
i = float(match.group(3))
j = float(match.group(4))
sr = StepAndRepeat(x, y, i, j)
self.add_object(sr)
self.objects_list_stack.append(sr)
else:
raise ValueError(f'Unrecognized step and repeat statement: {statement}')
class ApertureTransform():
def __init__(self,
polarity: str = 'dark', mirroring: str = 'N',
rotation: float = 0.0, scaling: float = 1.0):
self.polarity = polarity
self.mirroring = mirroring
self.rotation = rotation
self.scaling = scaling
class Aperture():
def __init__(self):
pass
def derive_from(self, statement: str):
if statement is None:
raise ValueError('Missing parameters statement')
tokens = statement.split('X')
return type(self)(*[float(token) for token in tokens])
def clone(self):
new = copy.copy(self)
return new
def get_hole_vertices(self, dest: list = None):
hole_pts = None
if self.hole_diameter:
hole_pts = vertices.circle(self.hole_diameter)
hole_pts = np.flip(hole_pts, 0)
if dest is not None:
dest.append(hole_pts)
return hole_pts
def get_outline(self, dest: list = None):
raise NotImplementedError('get_outline not implemented')
class Circle(Aperture):
def __init__(self, diameter: float, hole_diameter: float = None):
super().__init__()
self.diameter = diameter
self.hole_diameter = hole_diameter
def get_outline(self, dest: list = None):
pts = vertices.circle(self.diameter)
holes = []
self.get_hole_vertices(holes)
outline = vertices.OutlineVertices(pts, holes)
if dest is not None:
dest.append(outline)
return outline
class Rectangle(Aperture):
def __init__(self, x_size: float, y_size: float,
hole_diameter: float = None):
super().__init__()
self.x_size = x_size
self.y_size = y_size
self.hole_diameter = hole_diameter
def get_outline(self, dest: list = None):
pts = vertices.rectangle(self.x_size, self.y_size)
holes = []
self.get_hole_vertices(holes)
outline = vertices.OutlineVertices(pts, holes)
if dest is not None:
dest.append(outline)
return outline
class Obround(Aperture):
def __init__(self, x_size: float, y_size: float,
hole_diameter: float = None):
super().__init__()
self.x_size = x_size
self.y_size = y_size
self.hole_diameter = hole_diameter
def get_outline(self, dest: list = None):
w = min(self.x_size, self.y_size)
z = 0.5 * (max(self.x_size, self.y_size) - w)
if self.x_size > self.y_size:
x1, x2 = -z, z
y1, y2 = 0, 0
else:
x1, x2 = 0, 0
y1, y2 = -z, z
pts = vertices.rounded_line(w, x1, y1, x2, y2)
holes = []
self.get_hole_vertices(holes)
outline = vertices.OutlineVertices(pts, holes)
if dest is not None:
dest.append(outline)
return outline
class Polygon(Aperture):
def __init__(self, outer_diameter: float, vertices: int,
rotation: float = 0.0, hole_diameter: float = None):
super().__init__()
self.outer_diameter = outer_diameter
self.vertices = int(vertices)
self.rotation = rotation
self.hole_diameter = hole_diameter
if self.vertices not in range(3, 13):
raise ValueError('Polygon vertices must be from 3 to 12')
def get_outline(self, dest: list = None):
pts = vertices.regular_poly(self.outer_diameter, self.vertices)
vertices.rotate(pts, self.rotation)
holes = []
self.get_hole_vertices(holes)
outline = vertices.OutlineVertices(pts, holes)
if dest is not None:
dest.append(outline)
return outline
class Macro(Aperture):
def __init__(self, template_str: str, primitives: list):
super().__init__()
self.template_str = template_str
self.primitives = primitives
def get_outline(self, dest: list = None):
outlines = []
for prim in self.primitives:
outlines.append(prim.get_outline(dest))
return outlines
def derive_from(self, statement: str):
# Collect parameter values from creation statement
params = {}
if statement is not None:
for i, token in enumerate(statement.split('X')):
params[i + 1] = float(token)
# Create primitives by parsing template string
primitives = []
blocks = self.template_str.replace('\n', '').split('*')
for block in blocks:
# Ignore open/close block or comment
if block.startswith('%') or block.startswith('0'):
continue
# Resolve new variables
if block.startswith('$'):
expr = re.search(r'\$(\d+)\s*=([^*]+)*', block)
expr_p = expr.group(1)
expr_e = expr.group(2)
for p, v in params.items():
expr_e = expr_e.replace(f'${p}', str(v))
params[expr_p] = Macro.eval_expression(expr_e)
# Attempt to create a primitive
else:
code = block.split(',')[0]
for p, v in params.items():
block = block.replace(f'${p}', str(v))
missing = re.search(r'\$\d+', block)
if missing:
raise KeyError('Unfulfilled macro parameter ' +
missing.group())
try:
primitives.append(Macro.primtypes(code).parse(block))
except KeyError:
raise KeyError('Unrecognized macro code ' + str(code))
return type(self)(self.template_str, primitives)
@staticmethod
def primtypes(code):
prims = {
'1': MacroCircle,
'20': MacroVectorLine,
'21': MacroCenterLine,
'4': MacroOutline,
'5': MacroPolygon,
'6': MacroMoire,
'7': MacroThermal
}
return prims[code]
@classmethod
def parse(cls, statement: str):
if not statement.startswith('%AM'):
raise ValueError('Invalid define macro statement')
# TODO validate template
return cls(statement, [])
@staticmethod
def eval_expression(expr: str):
legal = set('0123456789()-+/x.')
chars = set(expr)
illegal = chars.difference(legal)
if len(illegal) > 0:
raise ValueError('Illegal characters in expression: ' + expr)
expr = expr.replace('x', '*') # Multiplication
return eval(expr)
class MacroPrimitive():
def __init__(self, exposure, x, y, rotation):
if exposure not in (EXPOSURE_OFF, EXPOSURE_ON):
raise ValueError('Invalid exposure value')
self.exposure = exposure
self.x = x
self.y = y
self.rotation = rotation
def get_outline(self, dest: list = None):
raise NotImplementedError('get_vertices not implemented')
@classmethod
def parse(cls, statement: str):
if statement is None:
raise ValueError('Missing parameters statement')
tokens = statement.split(',')[1:] # Discard first token (shape code)
return cls(*[Macro.eval_expression(token) for token in tokens])
class MacroCircle(MacroPrimitive):
def __init__(self, exposure, diameter, x, y, rotation=0.0):
super().__init__(exposure, x, y, rotation)
self.diameter = diameter
def get_outline(self, dest: list = None):
pts = vertices.circle(self.diameter)
outline = vertices.OutlineVertices(pts)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroVectorLine(MacroPrimitive):
def __init__(self, exposure, width, x1, y1, x2, y2, rotation=0.0):
super().__init__(exposure, 0, 0, rotation)
self.width = width
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
def get_outline(self, dest: list = None):
pts = vertices.thick_line(self.width,
self.x1, self.y1,
self.x2, self.y2)
outline = vertices.OutlineVertices(pts)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroCenterLine(MacroPrimitive):
def __init__(self, exposure, width, height, x, y, rotation=0.0):
super().__init__(exposure, x, y, rotation)
self.width = width
self.height = height
def get_outline(self, dest: list = None):
pts = vertices.rectangle(self.width, self.height)
outline = vertices.OutlineVertices(pts)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroPolygon(MacroPrimitive):
def __init__(self, exposure, vertices, x, y, diameter, rotation=0.0):
super().__init__(exposure, x, y, rotation)
self.vertices = vertices
self.diameter = diameter
def get_outline(self, dest: list = None):
pts = vertices.regular_poly(self.diameter, self.vertices)
outline = vertices.OutlineVertices(pts)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroThermal(MacroPrimitive):
def __init__(self, x, y, outer_diameter, inner_diameter,
gap, rotation=0.0):
super().__init__(EXPOSURE_ON, x, y, rotation)
self.outer_diameter = outer_diameter
self.inner_diameter = inner_diameter
self.gap = gap
def get_outline(self, dest: list = None):
pts = vertices.circle(self.outer_diameter)
hole_pts = vertices.circle(self.inner_diameter)
holes = [np.flip(hole_pts, 0)]
# TODO add gaps
outline = vertices.OutlineVertices(pts, holes)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroMoire(MacroPrimitive):
def __init__(self, x, y, outer_diameter, ring_thickness,
gap, num_rings, crosshair_thickness, crosshair_length,
rotation=0.0):
super().__init__(EXPOSURE_ON, x, y, rotation)
self.outer_diameter = outer_diameter
self.ring_thickness = ring_thickness
self.gap = gap
self.num_rings = num_rings
self.crosshair_thickness = crosshair_thickness
self.crosshair_length = crosshair_length
def get_outline(self, dest: list = None):
pts = vertices.circle(self.outer_diameter)
holes = [vertices.circle(self.inner_diameter)]
# TODO implement properly
outline = vertices.OutlineVertices(pts, holes)
outline.positive = self.exposure == 1
outline.translate(self.x, self.y)
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class MacroOutline(MacroPrimitive):
def __init__(self, exposure, vertices, x, y, *args):
N = 2 * vertices + 1
if len(args) == N:
super().__init__(exposure, x, y, rotation=float(args[-1]))
self.vertices = vertices
self.coordinates = [*args[:-1]]
else:
raise ValueError(f'Expected {N} parameters but received {len(args)}')
def get_outline(self, dest: list = None):
N = int(len(self.coordinates) / 2)
pts = np.array(self.coordinates)
pts.resize((N, 2))
outline = vertices.OutlineVertices(pts)
outline.positive = self.exposure == 1
outline.rotate(self.rotation)
if dest is not None:
dest.append(outline)
return outline
class BlockAperture(Aperture):
def __init__(self):
super().__init__()
self.objects = []
def append(self, object):
self.objects.append(object)
class GraphicalObject():
def __init__(self, aperture, transform, origin: tuple):
self.aperture = aperture
self.transform = copy.copy(transform)
self.origin = origin
def translate(self, translation):
dx, dy = translation
x0, y0 = self.origin
self.origin = (x0 + dx, y0 + dy)
def get_outline(self, dest: list = None, scale: float = 1e-6):
raise NotImplementedError('get_outline not implemented')
class Draw(GraphicalObject):
def __init__(self, aperture, transform, origin: tuple, endpoint: tuple):
super().__init__(aperture, transform, origin)
self.endpoint = endpoint
def translate(self, translation):
dx, dy = translation
x0, y0 = self.origin
x1, y1 = self.endpoint
self.origin = (x0 + dx, y0 + dy)
self.endpoint = (x1 + dx, y1 + dy)
def get_outline(self, dest: list = None, scale: float = 1e-6):
x0, y0 = scale * np.array(self.origin)
x1, y1 = scale * np.array(self.endpoint)
pts = vertices.rounded_line(self.aperture.diameter, x0, y0, x1, y1)
outline = vertices.OutlineVertices(pts)
# TODO apply transform
if dest is not None:
dest.append(outline)
return outline
# TODO Arc needs quadrant mode
class Arc(GraphicalObject):
def __init__(self, aperture, transform, origin: tuple, endpoint: tuple,
offset: tuple, is_cw: bool = True):
super().__init__(aperture, transform, origin)
self.endpoint = endpoint
self.offset = offset
self.is_cw = is_cw
def translate(self, translation):
dx, dy = translation
x0, y0 = self.origin
x1, y1 = self.endpoint
self.origin = (x0 + dx, y0 + dy)
self.endpoint = (x1 + dx, y1 + dy)
def get_outline(self, dest: list = None, scale: float = 1e-6):
dx, dy = scale * np.array(self.offset)
x1, y1 = scale * np.array(self.origin)
x2, y2 = scale * np.array(self.endpoint)
x0, y0 = x1 + dx, y1 + dy
pts = vertices.rounded_arc(self.aperture.diameter, x0, y0, x1, y1, x2, y2)
vertices.translate(pts, x0, y0)
outline = vertices.OutlineVertices(pts)
# TODO apply transform
if dest is not None:
dest.append(outline)
return outline
class Flash(GraphicalObject):
def __init__(self, aperture, transform, origin: tuple):
super().__init__(aperture, transform, origin)
def get_outline(self, dest: list = None, scale: float = 1e-6):
outlines = self.aperture.get_outline(dest)
if type(outlines) != list:
outlines = [outlines]
x0, y0 = scale * np.array(self.origin)
# TODO replace with apply transform function
for outline in outlines:
outline.positive = self.transform.polarity == 'dark'
outline.rotate(self.transform.rotation)
outline.translate(x0, y0)
return outlines
class Region(GraphicalObject):
def __init__(self, transform):
super().__init__(None, transform, None)
self.objects = []
self.contours = []
def end_contour(self):
if len(self.contours) > 0:
prev_start, prev_len = self.contours[-1]
new_start = prev_start + prev_len
self.contours.append((new_start, len(self.objects) - new_start))
else:
self.contours.append((0, len(self.objects)))
def append(self, object):
if not isinstance(object, (Draw, Arc)):
raise TypeError('Region only supports Draw and Arc objects')
if len(self.objects) > 0 and object.origin != self.objects[-1].endpoint:
self.end_contour()
self.objects.append(object)
class StepAndRepeat():
def __init__(self, nx: int, ny: int, step_x: float, step_y: float):
if nx < 1 or ny < 1:
raise ValueError('Repeat must be 1 or greater')
if step_x < 0.0 or step_y < 0.0:
raise ValueError('Step size must be positive')
self.nx = nx
self.ny = ny
self.step_x = step_x
self.step_y = step_y
self.objects = []
def append(self, object):
self.objects.append(object)
|
[
"vertices.rotate",
"numpy.flip",
"vertices.rounded_arc",
"vertices.thick_line",
"vertices.translate",
"vertices.regular_poly",
"vertices.rounded_line",
"vertices.OutlineVertices",
"vertices.circle",
"numpy.array",
"vertices.rectangle",
"copy.copy",
"re.search"
] |
[((5454, 5517), 're.search', 're.search', (['"""%FSLAX([1-6])([3-6])Y([1-6])([3-6])\\\\*%"""', 'statement'], {}), "('%FSLAX([1-6])([3-6])Y([1-6])([3-6])\\\\*%', statement)\n", (5463, 5517), False, 'import re\n'), ((7133, 7212), 're.search', 're.search', (['f"""(X{RE_INT})?(Y{RE_INT})?(I{RE_INT})?(J{RE_INT})?D01\\\\*"""', 'statement'], {}), "(f'(X{RE_INT})?(Y{RE_INT})?(I{RE_INT})?(J{RE_INT})?D01\\\\*', statement)\n", (7142, 7212), False, 'import re\n'), ((8441, 8496), 're.search', 're.search', (['f"""(X{RE_INT})?(Y{RE_INT})?D02\\\\*"""', 'statement'], {}), "(f'(X{RE_INT})?(Y{RE_INT})?D02\\\\*', statement)\n", (8450, 8496), False, 'import re\n'), ((8833, 8888), 're.search', 're.search', (['f"""(X{RE_INT})?(Y{RE_INT})?D03\\\\*"""', 'statement'], {}), "(f'(X{RE_INT})?(Y{RE_INT})?D03\\\\*', statement)\n", (8842, 8888), False, 'import re\n'), ((9723, 9764), 're.search', 're.search', (['"""%LM(N|X|Y|XY)\\\\*%"""', 'statement'], {}), "('%LM(N|X|Y|XY)\\\\*%', statement)\n", (9732, 9764), False, 'import re\n'), ((10051, 10088), 're.search', 're.search', (['"""%LR(\\\\S+)\\\\*%"""', 'statement'], {}), "('%LR(\\\\S+)\\\\*%', statement)\n", (10060, 10088), False, 'import re\n'), ((10373, 10410), 're.search', 're.search', (['"""%LS(\\\\S+)\\\\*%"""', 'statement'], {}), "('%LS(\\\\S+)\\\\*%', statement)\n", (10382, 10410), False, 'import re\n'), ((10748, 10813), 're.search', 're.search', (['"""%AD(D[0-9]{2,})([\\\\w\\\\.\\\\$]+)(,\\\\S*)?\\\\*%"""', 'statement'], {}), "('%AD(D[0-9]{2,})([\\\\w\\\\.\\\\$]+)(,\\\\S*)?\\\\*%', statement)\n", (10757, 10813), False, 'import re\n'), ((11588, 11629), 're.search', 're.search', (['"""%AM([\\\\w\\\\.\\\\$]+)"""', 'statement'], {}), "('%AM([\\\\w\\\\.\\\\$]+)', statement)\n", (11597, 11629), False, 'import re\n'), ((12223, 12267), 're.search', 're.search', (['"""%AB(D[0-9]{2,})?\\\\*%"""', 'statement'], {}), "('%AB(D[0-9]{2,})?\\\\*%', statement)\n", (12232, 12267), False, 'import re\n'), ((12916, 12955), 're.search', 're.search', (['"""(D[0-9]{2,})\\\\*"""', 'statement'], {}), "('(D[0-9]{2,})\\\\*', statement)\n", (12925, 12955), False, 'import re\n'), ((14706, 14721), 'copy.copy', 'copy.copy', (['self'], {}), '(self)\n', (14715, 14721), False, 'import copy\n'), ((15419, 15449), 'vertices.circle', 'vertices.circle', (['self.diameter'], {}), '(self.diameter)\n', (15434, 15449), False, 'import vertices\n'), ((15525, 15561), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (15549, 15561), False, 'import vertices\n'), ((15965, 16009), 'vertices.rectangle', 'vertices.rectangle', (['self.x_size', 'self.y_size'], {}), '(self.x_size, self.y_size)\n', (15983, 16009), False, 'import vertices\n'), ((16085, 16121), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (16109, 16121), False, 'import vertices\n'), ((16777, 16817), 'vertices.rounded_line', 'vertices.rounded_line', (['w', 'x1', 'y1', 'x2', 'y2'], {}), '(w, x1, y1, x2, y2)\n', (16798, 16817), False, 'import vertices\n'), ((16893, 16929), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (16917, 16929), False, 'import vertices\n'), ((17536, 17593), 'vertices.regular_poly', 'vertices.regular_poly', (['self.outer_diameter', 'self.vertices'], {}), '(self.outer_diameter, self.vertices)\n', (17557, 17593), False, 'import vertices\n'), ((17602, 17637), 'vertices.rotate', 'vertices.rotate', (['pts', 'self.rotation'], {}), '(pts, self.rotation)\n', (17617, 17637), False, 'import vertices\n'), ((17713, 17749), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (17737, 17749), False, 'import vertices\n'), ((21675, 21705), 'vertices.circle', 'vertices.circle', (['self.diameter'], {}), '(self.diameter)\n', (21690, 21705), False, 'import vertices\n'), ((21724, 21753), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (21748, 21753), False, 'import vertices\n'), ((22300, 22367), 'vertices.thick_line', 'vertices.thick_line', (['self.width', 'self.x1', 'self.y1', 'self.x2', 'self.y2'], {}), '(self.width, self.x1, self.y1, self.x2, self.y2)\n', (22319, 22367), False, 'import vertices\n'), ((22454, 22483), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (22478, 22483), False, 'import vertices\n'), ((22973, 23016), 'vertices.rectangle', 'vertices.rectangle', (['self.width', 'self.height'], {}), '(self.width, self.height)\n', (22991, 23016), False, 'import vertices\n'), ((23035, 23064), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (23059, 23064), False, 'import vertices\n'), ((23566, 23617), 'vertices.regular_poly', 'vertices.regular_poly', (['self.diameter', 'self.vertices'], {}), '(self.diameter, self.vertices)\n', (23587, 23617), False, 'import vertices\n'), ((23636, 23665), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (23660, 23665), False, 'import vertices\n'), ((24241, 24277), 'vertices.circle', 'vertices.circle', (['self.outer_diameter'], {}), '(self.outer_diameter)\n', (24256, 24277), False, 'import vertices\n'), ((24297, 24333), 'vertices.circle', 'vertices.circle', (['self.inner_diameter'], {}), '(self.inner_diameter)\n', (24312, 24333), False, 'import vertices\n'), ((24415, 24451), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (24439, 24451), False, 'import vertices\n'), ((25231, 25267), 'vertices.circle', 'vertices.circle', (['self.outer_diameter'], {}), '(self.outer_diameter)\n', (25246, 25267), False, 'import vertices\n'), ((25375, 25411), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts', 'holes'], {}), '(pts, holes)\n', (25399, 25411), False, 'import vertices\n'), ((26126, 26152), 'numpy.array', 'np.array', (['self.coordinates'], {}), '(self.coordinates)\n', (26134, 26152), True, 'import numpy as np\n'), ((26198, 26227), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (26222, 26227), False, 'import vertices\n'), ((26719, 26739), 'copy.copy', 'copy.copy', (['transform'], {}), '(transform)\n', (26728, 26739), False, 'import copy\n'), ((27625, 27686), 'vertices.rounded_line', 'vertices.rounded_line', (['self.aperture.diameter', 'x0', 'y0', 'x1', 'y1'], {}), '(self.aperture.diameter, x0, y0, x1, y1)\n', (27646, 27686), False, 'import vertices\n'), ((27705, 27734), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (27729, 27734), False, 'import vertices\n'), ((28655, 28723), 'vertices.rounded_arc', 'vertices.rounded_arc', (['self.aperture.diameter', 'x0', 'y0', 'x1', 'y1', 'x2', 'y2'], {}), '(self.aperture.diameter, x0, y0, x1, y1, x2, y2)\n', (28675, 28723), False, 'import vertices\n'), ((28732, 28763), 'vertices.translate', 'vertices.translate', (['pts', 'x0', 'y0'], {}), '(pts, x0, y0)\n', (28750, 28763), False, 'import vertices\n'), ((28782, 28811), 'vertices.OutlineVertices', 'vertices.OutlineVertices', (['pts'], {}), '(pts)\n', (28806, 28811), False, 'import vertices\n'), ((3279, 3316), 're.search', 're.search', (['"""[GDM](\\\\d\\\\d)"""', 'statement'], {}), "('[GDM](\\\\d\\\\d)', statement)\n", (3288, 3316), False, 'import re\n'), ((13561, 13629), 're.search', 're.search', (['f"""%SRX(\\\\d+)Y(\\\\d+)I({RE_DEC})J({RE_DEC})\\\\*%"""', 'statement'], {}), "(f'%SRX(\\\\d+)Y(\\\\d+)I({RE_DEC})J({RE_DEC})\\\\*%', statement)\n", (13570, 13629), False, 'import re\n'), ((14872, 14907), 'vertices.circle', 'vertices.circle', (['self.hole_diameter'], {}), '(self.hole_diameter)\n', (14887, 14907), False, 'import vertices\n'), ((14931, 14951), 'numpy.flip', 'np.flip', (['hole_pts', '(0)'], {}), '(hole_pts, 0)\n', (14938, 14951), True, 'import numpy as np\n'), ((24351, 24371), 'numpy.flip', 'np.flip', (['hole_pts', '(0)'], {}), '(hole_pts, 0)\n', (24358, 24371), True, 'import numpy as np\n'), ((25285, 25321), 'vertices.circle', 'vertices.circle', (['self.inner_diameter'], {}), '(self.inner_diameter)\n', (25300, 25321), False, 'import vertices\n'), ((27540, 27561), 'numpy.array', 'np.array', (['self.origin'], {}), '(self.origin)\n', (27548, 27561), True, 'import numpy as np\n'), ((27587, 27610), 'numpy.array', 'np.array', (['self.endpoint'], {}), '(self.endpoint)\n', (27595, 27610), True, 'import numpy as np\n'), ((28489, 28510), 'numpy.array', 'np.array', (['self.offset'], {}), '(self.offset)\n', (28497, 28510), True, 'import numpy as np\n'), ((28536, 28557), 'numpy.array', 'np.array', (['self.origin'], {}), '(self.origin)\n', (28544, 28557), True, 'import numpy as np\n'), ((28583, 28606), 'numpy.array', 'np.array', (['self.endpoint'], {}), '(self.endpoint)\n', (28591, 28606), True, 'import numpy as np\n'), ((29287, 29308), 'numpy.array', 'np.array', (['self.origin'], {}), '(self.origin)\n', (29295, 29308), True, 'import numpy as np\n'), ((18877, 18919), 're.search', 're.search', (['"""\\\\$(\\\\d+)\\\\s*=([^*]+)*"""', 'block'], {}), "('\\\\$(\\\\d+)\\\\s*=([^*]+)*', block)\n", (18886, 18919), False, 'import re\n'), ((19398, 19425), 're.search', 're.search', (['"""\\\\$\\\\d+"""', 'block'], {}), "('\\\\$\\\\d+', block)\n", (19407, 19425), False, 'import re\n')]
|
"""A wrapper env that handles multiple tasks from different envs.
Useful while training multi-task reinforcement learning algorithms.
It provides observations augmented with one-hot representation of tasks.
"""
import random
import akro
import gym
import numpy as np
def round_robin_strategy(num_tasks, last_task=None):
"""A function for sampling tasks in round robin fashion.
Args:
num_tasks (int): Total number of tasks.
last_task (int): Previously sampled task.
Returns:
int: task id.
"""
if last_task is None:
return 0
return (last_task + 1) % num_tasks
def uniform_random_strategy(num_tasks, _):
"""A function for sampling tasks uniformly at random.
Args:
num_tasks (int): Total number of tasks.
_ (object): Ignored by this sampling strategy.
Returns:
int: task id.
"""
return random.randint(0, num_tasks - 1)
class MultiEnvWrapper(gym.Wrapper):
"""A wrapper class to handle multiple gym environments.
Args:
envs (list(gym.Env)):
A list of objects implementing gym.Env.
sample_strategy (function(int, int)):
Sample strategy to be used when sampling a new task.
"""
def __init__(self, envs, task_name=None, sample_strategy=uniform_random_strategy):
self._sample_strategy = sample_strategy
self._num_tasks = len(envs)
self._active_task_index = None
self._observation_space = None
self._envs_names_list = task_name or dict()
max_flat_dim = np.prod(envs[0].observation_space.shape)
for i, env in enumerate(envs):
assert len(env.observation_space.shape) == 1
if np.prod(env.observation_space.shape) >= max_flat_dim:
self.max_observation_space_index = i
max_flat_dim = np.prod(env.observation_space.shape)
self._max_plain_dim = max_flat_dim
super().__init__(envs[self.max_observation_space_index])
self._task_envs = []
for env in envs:
if env.action_space.shape != self.env.action_space.shape:
raise ValueError('Action space of all envs should be same.')
self._task_envs.append(env)
self.spec.observation_space = self.observation_space
@property
def num_tasks(self):
"""Total number of tasks.
Returns:
int: number of tasks.
"""
return len(self._task_envs)
@property
def task_space(self):
"""Task Space.
Returns:
akro.Box: Task space.
"""
one_hot_ub = np.ones(self.num_tasks)
one_hot_lb = np.zeros(self.num_tasks)
return akro.Box(one_hot_lb, one_hot_ub)
@property
def active_task_index(self):
"""Index of active task env.
Returns:
int: Index of active task.
"""
return self._active_task_index
@property
def observation_space(self):
"""Observation space.
Returns:
akro.Box: Observation space.
"""
task_lb, task_ub = self.task_space.bounds
env_lb, env_ub = self._observation_space.bounds
return akro.Box(np.concatenate([task_lb, env_lb]),
np.concatenate([task_ub, env_ub]))
@observation_space.setter
def observation_space(self, observation_space):
"""Observation space setter.
Args:
observation_space (akro.Box): Observation space.
"""
self._observation_space = observation_space
@property
def active_task_one_hot(self):
"""One-hot representation of active task.
Returns:
numpy.ndarray: one-hot representation of active task
"""
one_hot = np.zeros(self.task_space.shape)
index = self.active_task_index or 0
one_hot[index] = self.task_space.high[index]
return one_hot
def reset(self, **kwargs):
"""Sample new task and call reset on new task env.
Args:
kwargs (dict): Keyword arguments to be passed to gym.Env.reset
Returns:
numpy.ndarray: active task one-hot representation + observation
"""
self._active_task_index = self._sample_strategy(
self._num_tasks, self._active_task_index)
self.env = self._task_envs[self._active_task_index]
obs = self.env.reset(**kwargs)
obs = self._augment_observation(obs)
oh_obs = self._obs_with_one_hot(obs)
return oh_obs
def _augment_observation(self, obs):
# optionally zero-pad observation
if np.prod(obs.shape) < self._max_plain_dim:
zeros = np.zeros(
shape=(self._max_plain_dim - np.prod(obs.shape),)
)
obs = np.concatenate([obs, zeros])
return obs
def step(self, action):
"""gym.Env step for the active task env.
Args:
action (object): object to be passed in gym.Env.reset(action)
Returns:
object: agent's observation of the current environment
float: amount of reward returned after previous action
bool: whether the episode has ended
dict: contains auxiliary diagnostic information
"""
obs, reward, done, info = self.env.step(action)
obs = self._augment_observation(obs)
oh_obs = self._obs_with_one_hot(obs)
info['task_id'] = self._active_task_index
info['task_name'] = self._envs_names_list[self._active_task_index]
return oh_obs, reward, done, info
def close(self):
"""Close all task envs."""
for env in self._task_envs:
env.close()
def _obs_with_one_hot(self, obs):
"""Concatenate active task one-hot representation with observation.
Args:
obs (numpy.ndarray): observation
Returns:
numpy.ndarray: active task one-hot + observation
"""
oh_obs = np.concatenate([self.active_task_one_hot, obs])
return oh_obs
# """A wrapper env that handles multiple tasks from different envs.
# Useful while training multi-task reinforcement learning algorithms.
# It provides observations augmented with one-hot representation of tasks.
# """
# import random
# import akro
# import gym
# import numpy as np
# def round_robin_strategy(num_tasks, last_task=None):
# """A function for sampling tasks in round robin fashion.
# Args:
# num_tasks (int): Total number of tasks.
# last_task (int): Previously sampled task.
# Returns:
# int: task id.
# """
# if last_task is None:
# return 0
# return (last_task + 1) % num_tasks
# def uniform_random_strategy(num_tasks, _):
# """A function for sampling tasks uniformly at random.
# Args:
# num_tasks (int): Total number of tasks.
# _ (object): Ignored by this sampling strategy.
# Returns:
# int: task id.
# """
# return random.randint(0, num_tasks - 1)
# class MultiEnvWrapper(gym.Wrapper):
# """A wrapper class to handle multiple gym environments.
# Args:
# envs (list(gym.Env)):
# A list of objects implementing gym.Env.
# sample_strategy (function(int, int)):
# Sample strategy to be used when sampling a new task.
# """
# def __init__(self, envs, sample_strategy=uniform_random_strategy):
# self._sample_strategy = sample_strategy
# self._num_tasks = len(envs)
# self._active_task_index = None
# self._observation_space = None
# max_flat_dim = np.prod(envs[0].observation_space.shape)
# max_observation_space_index = 0
# for i, env in enumerate(envs):
# assert len(env.observation_space.shape) == 1
# if np.prod(env.observation_space.shape) >= max_flat_dim:
# self.max_observation_space_index = i
# max_flat_dim = np.prod(env.observation_space.shape)
# self._max_plain_dim = max_flat_dim
# super().__init__(envs[self.max_observation_space_index])
# self._task_envs = []
# for i, env in enumerate(envs):
# if env.action_space.shape != self.env.action_space.shape:
# raise ValueError('Action space of all envs should be same.')
# self._task_envs.append(env)
# self.env.spec.observation_space = self._task_envs[self.max_observation_space_index].observation_space
# @property
# def num_tasks(self):
# """Total number of tasks.
# Returns:
# int: number of tasks.
# """
# return len(self._task_envs)
# @property
# def task_space(self):
# """Task Space.
# Returns:
# akro.Box: Task space.
# """
# one_hot_ub = np.ones(self.num_tasks)
# one_hot_lb = np.zeros(self.num_tasks)
# return akro.Box(one_hot_lb, one_hot_ub)
# @property
# def active_task_index(self):
# """Index of active task env.
# Returns:
# int: Index of active task.
# """
# return self._active_task_index
# @property
# def observation_space(self):
# """Observation space.
# Returns:
# akro.Box: Observation space.
# """
# task_lb, task_ub = self.task_space.bounds
# env_lb, env_ub = self._observation_space.bounds
# return akro.Box(np.concatenate([task_lb, env_lb]),
# np.concatenate([task_ub, env_ub]))
# @observation_space.setter
# def observation_space(self, observation_space):
# """Observation space setter.
# Args:
# observation_space (akro.Box): Observation space.
# """
# self._observation_space = observation_space
# @property
# def active_task_one_hot(self):
# """One-hot representation of active task.
# Returns:
# numpy.ndarray: one-hot representation of active task
# """
# one_hot = np.zeros(self.task_space.shape)
# index = self.active_task_index or 0
# one_hot[index] = self.task_space.high[index]
# return one_hot
# def reset(self, **kwargs):
# """Sample new task and call reset on new task env.
# Args:
# kwargs (dict): Keyword arguments to be passed to gym.Env.reset
# Returns:
# numpy.ndarray: active task one-hot representation + observation
# """
# self._active_task_index = self._sample_strategy(
# self._num_tasks, self._active_task_index)
# self.env = self._task_envs[self._active_task_index]
# obs = self.env.reset(**kwargs)
# obs = self._augment_observation(obs)
# oh_obs = self._obs_with_one_hot(obs)
# return oh_obs
# def step(self, action):
# """gym.Env step for the active task env.
# Args:
# action (object): object to be passed in gym.Env.reset(action)
# Returns:
# object: agent's observation of the current environment
# float: amount of reward returned after previous action
# bool: whether the episode has ended
# dict: contains auxiliary diagnostic information
# """
# obs, reward, done, info = self.env.step(action)
# obs = self._augment_observation(obs)
# oh_obs = self._obs_with_one_hot(obs)
# info['task_id'] = self._active_task_index
# return oh_obs, reward, done, info
# def _augment_observation(self, obs):
# # optionally zero-pad observation
# if np.prod(obs.shape) < self._max_plain_dim:
# zeros = np.zeros(
# shape=(self._max_plain_dim - np.prod(obs.shape),)
# )
# obs = np.concatenate([obs, zeros])
# return obs
# def close(self):
# """Close all task envs."""
# for env in self._task_envs:
# env.close()
# def _obs_with_one_hot(self, obs):
# """Concatenate active task one-hot representation with observation.
# Args:
# obs (numpy.ndarray): observation
# Returns:
# numpy.ndarray: active task one-hot + observation
# """
# oh_obs = np.concatenate([self.active_task_one_hot, obs])
# return oh_obs
|
[
"numpy.prod",
"numpy.ones",
"numpy.zeros",
"numpy.concatenate",
"akro.Box",
"random.randint"
] |
[((896, 928), 'random.randint', 'random.randint', (['(0)', '(num_tasks - 1)'], {}), '(0, num_tasks - 1)\n', (910, 928), False, 'import random\n'), ((1566, 1606), 'numpy.prod', 'np.prod', (['envs[0].observation_space.shape'], {}), '(envs[0].observation_space.shape)\n', (1573, 1606), True, 'import numpy as np\n'), ((2630, 2653), 'numpy.ones', 'np.ones', (['self.num_tasks'], {}), '(self.num_tasks)\n', (2637, 2653), True, 'import numpy as np\n'), ((2675, 2699), 'numpy.zeros', 'np.zeros', (['self.num_tasks'], {}), '(self.num_tasks)\n', (2683, 2699), True, 'import numpy as np\n'), ((2715, 2747), 'akro.Box', 'akro.Box', (['one_hot_lb', 'one_hot_ub'], {}), '(one_hot_lb, one_hot_ub)\n', (2723, 2747), False, 'import akro\n'), ((3791, 3822), 'numpy.zeros', 'np.zeros', (['self.task_space.shape'], {}), '(self.task_space.shape)\n', (3799, 3822), True, 'import numpy as np\n'), ((6021, 6068), 'numpy.concatenate', 'np.concatenate', (['[self.active_task_one_hot, obs]'], {}), '([self.active_task_one_hot, obs])\n', (6035, 6068), True, 'import numpy as np\n'), ((3222, 3255), 'numpy.concatenate', 'np.concatenate', (['[task_lb, env_lb]'], {}), '([task_lb, env_lb])\n', (3236, 3255), True, 'import numpy as np\n'), ((3281, 3314), 'numpy.concatenate', 'np.concatenate', (['[task_ub, env_ub]'], {}), '([task_ub, env_ub])\n', (3295, 3314), True, 'import numpy as np\n'), ((4649, 4667), 'numpy.prod', 'np.prod', (['obs.shape'], {}), '(obs.shape)\n', (4656, 4667), True, 'import numpy as np\n'), ((4819, 4847), 'numpy.concatenate', 'np.concatenate', (['[obs, zeros]'], {}), '([obs, zeros])\n', (4833, 4847), True, 'import numpy as np\n'), ((1718, 1754), 'numpy.prod', 'np.prod', (['env.observation_space.shape'], {}), '(env.observation_space.shape)\n', (1725, 1754), True, 'import numpy as np\n'), ((1856, 1892), 'numpy.prod', 'np.prod', (['env.observation_space.shape'], {}), '(env.observation_space.shape)\n', (1863, 1892), True, 'import numpy as np\n'), ((4766, 4784), 'numpy.prod', 'np.prod', (['obs.shape'], {}), '(obs.shape)\n', (4773, 4784), True, 'import numpy as np\n')]
|
import numpy as np
np.random.seed(10)
import matplotlib.pyplot as plt
from mpi4py import MPI
# For shared memory deployment: `export OPENBLAS_NUM_THREADS=1`
# Method of snapshots
def generate_right_vectors(A):
'''
A - Snapshot matrix - shape: NxS
returns V - truncated right singular vectors
'''
new_mat = np.matmul(np.transpose(A),A)
w, v = np.linalg.eig(new_mat)
svals = np.sqrt(np.abs(w))
rval = np.argmax(svals<0.0001) # eps0
return v[:,:rval], np.sqrt(np.abs(w[:rval])) # Covariance eigenvectors, singular values
# Randomized SVD to accelerate
def low_rank_svd(A,K):
M = A.shape[0]
N = A.shape[1]
omega = np.random.normal(size=(N,2*K))
omega_pm = np.matmul(A,np.transpose(A))
Y = np.matmul(omega_pm,np.matmul(A,omega))
Qred, Rred = np.linalg.qr(Y)
B = np.matmul(np.transpose(Qred),A)
ustar, snew, _ = np.linalg.svd(B)
unew = np.matmul(Qred,ustar)
unew = unew[:,:K]
snew = snew[:K]
return unew, snew
# Check orthogonality
def check_ortho(modes,num_modes):
for m1 in range(num_modes):
for m2 in range(num_modes):
if m1 == m2:
s_ = np.sum(modes[:,m1]*modes[:,m2])
if not np.isclose(s_,1.0):
print('Orthogonality check failed')
break
else:
s_ = np.sum(modes[:,m1]*modes[:,m2])
if not np.isclose(s_,0.0):
print('Orthogonality check failed')
break
print('Orthogonality check passed successfully')
class online_svd_calculator(object):
"""
docstring for online_svd_calculator:
K : Number of modes to truncate
ff : Forget factor
"""
def __init__(self, K, ff, low_rank=False):
super(online_svd_calculator, self).__init__()
self.K = K
self.ff = ff
# Initialize MPI
self.comm = MPI.COMM_WORLD
self.rank = self.comm.Get_rank()
self.nprocs = self.comm.Get_size()
self.iteration = 0
self.low_rank = low_rank
# Initialize
def initialize(self, A):
self.ulocal, self.svalue = self.parallel_svd(A)
def parallel_qr(self,A):
# Perform the local QR
q, r = np.linalg.qr(A)
rlocal_shape_0 = r.shape[0]
rlocal_shape_1 = r.shape[1]
# Gather data at rank 0:
r_global = self.comm.gather(r,root=0)
# perform SVD at rank 0:
if self.rank == 0:
temp = r_global[0]
for i in range(self.nprocs-1):
temp = np.concatenate((temp,r_global[i+1]),axis=0)
r_global = temp
qglobal, rfinal = np.linalg.qr(r_global)
qglobal = -qglobal # Trick for consistency
rfinal = -rfinal
# For this rank
qlocal = np.matmul(q,qglobal[:rlocal_shape_0])
# send to other ranks
for rank in range(1,self.nprocs):
self.comm.send(qglobal[rank*rlocal_shape_0:(rank+1)*rlocal_shape_0], dest=rank, tag=rank+10)
# Step b of Levy-Lindenbaum - small operation
if self.low_rank:
# Low rank SVD
unew, snew = low_rank_svd(rfinal,self.K)
else:
unew, snew, _ = np.linalg.svd(rfinal)
else:
# Receive qglobal slices from other ranks
qglobal = self.comm.recv(source=0, tag=self.rank+10)
# For this rank
qlocal = np.matmul(q,qglobal)
# To receive new singular vectors
unew = None
snew = None
unew = self.comm.bcast(unew,root=0)
snew = self.comm.bcast(snew,root=0)
return qlocal, unew, snew
def parallel_svd(self,A):
vlocal, slocal = generate_right_vectors(A)
# Find Wr
wlocal = np.matmul(vlocal,np.diag(slocal).T)
# Gather data at rank 0:
wglobal = self.comm.gather(wlocal,root=0)
# perform SVD at rank 0:
if self.rank == 0:
temp = wglobal[0]
for i in range(self.nprocs-1):
temp = np.concatenate((temp,wglobal[i+1]),axis=-1)
wglobal = temp
if self.low_rank:
x, s = low_rank_svd(wglobal,self.K)
else:
x, s, y = np.linalg.svd(wglobal)
else:
x = None
s = None
x = self.comm.bcast(x,root=0)
s = self.comm.bcast(s,root=0)
# # Find truncation threshold
# s_ratio = np.cumsum(s)/np.sum(s)
# rval = np.argmax(1.0-s_ratio<0.0001) # eps1
# perform APMOS at each local rank
phi_local = []
for mode in range(self.K):
phi_temp = 1.0/s[mode]*np.matmul(A,x[:,mode:mode+1])
phi_local.append(phi_temp)
temp = phi_local[0]
for i in range(self.K-1):
temp = np.concatenate((temp,phi_local[i+1]),axis=-1)
return temp, s[:self.K] #
def incorporate_data(self,A):
self.iteration+=1
ll = self.ff*np.matmul(self.ulocal,np.diag(self.svalue))
ll = np.concatenate((ll,A),axis=-1)
qlocal, utemp, self.svalue = self.parallel_qr(ll)
self.ulocal = np.matmul(qlocal,utemp)
def gather_modes(self):
# Gather modes at rank 0
# This is automatically in order
phi_global = self.comm.gather(self.ulocal,root=0)
if self.rank == 0:
phi = phi_global[0]
for i in range(self.nprocs-1):
phi = np.concatenate((phi,phi_global[i+1]),axis=0)
np.save('Online_Parallel_POD.npy',phi)
np.save('Online_Parallel_SingularValues.npy',self.svalue)
# Validate
serial = np.load('Serial_Modes_MOS.npy')
parallel_online = np.load('Online_Parallel_POD.npy')
serial_online = np.load('Online_Serial_POD.npy')
plt.figure()
plt.plot(serial[:,0],label='serial one-shot')
plt.plot(parallel_online[:,0],label='parallel_online')
plt.plot(serial_online[:,0],label='serial_online')
plt.title('U comparison - column 0')
plt.xlabel('Domain')
plt.ylabel('U magnitude')
plt.legend()
plt.figure()
plt.plot(serial[:,2],label='serial one-shot')
plt.plot(parallel_online[:,2],label='parallel_online')
plt.plot(serial_online[:,2],label='serial_online')
plt.title('U comparison - column 2')
plt.xlabel('Domain')
plt.ylabel('U magnitude')
plt.legend()
serial_svs = np.load('Serial_SingularValues.npy')
serial_online_svs = np.load('Online_Serial_SingularValues.npy')
parallel_online_svs = np.load('Online_Parallel_SingularValues.npy')
plt.figure()
plt.plot(serial_svs[:self.K],label='serial one-shot')
plt.plot(parallel_online_svs[:self.K],label='parallel_online')
plt.plot(serial_online_svs[:self.K],label='serial_online')
plt.title('Singular values')
plt.xlabel('Index')
plt.ylabel('Magnitude')
plt.legend()
plt.show()
# Check orthogonality - should all be successful
check_ortho(serial,self.K)
check_ortho(serial_online,self.K)
check_ortho(parallel_online,self.K)
if __name__ == '__main__':
from time import time
# Initialize timer
start_time = time()
test_class = online_svd_calculator(10,1.0,low_rank=True)
iteration = 0
data = np.load('points_rank_'+str(test_class.rank)+'_batch_'+str(iteration)+'.npy')
test_class.initialize(data)
for iteration in range(1,4):
data = np.load('points_rank_'+str(test_class.rank)+'_batch_'+str(iteration)+'.npy')
test_class.incorporate_data(data)
end_time = time()
print('Time required for parallel streaming SVD (each rank):', end_time-start_time)
test_class.gather_modes()
|
[
"matplotlib.pyplot.ylabel",
"numpy.save",
"numpy.linalg.qr",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"numpy.matmul",
"numpy.random.seed",
"numpy.concatenate",
"numpy.random.normal",
"numpy.abs",
"numpy.linalg.eig",
"numpy.argmax",
"numpy.linalg.svd",
"matplotlib.pyplot.title",
"numpy.transpose",
"time.time",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.show",
"numpy.isclose",
"numpy.diag",
"numpy.sum",
"matplotlib.pyplot.figure",
"numpy.load"
] |
[((19, 37), 'numpy.random.seed', 'np.random.seed', (['(10)'], {}), '(10)\n', (33, 37), True, 'import numpy as np\n'), ((368, 390), 'numpy.linalg.eig', 'np.linalg.eig', (['new_mat'], {}), '(new_mat)\n', (381, 390), True, 'import numpy as np\n'), ((434, 459), 'numpy.argmax', 'np.argmax', (['(svals < 0.0001)'], {}), '(svals < 0.0001)\n', (443, 459), True, 'import numpy as np\n'), ((664, 697), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, 2 * K)'}), '(size=(N, 2 * K))\n', (680, 697), True, 'import numpy as np\n'), ((805, 820), 'numpy.linalg.qr', 'np.linalg.qr', (['Y'], {}), '(Y)\n', (817, 820), True, 'import numpy as np\n'), ((883, 899), 'numpy.linalg.svd', 'np.linalg.svd', (['B'], {}), '(B)\n', (896, 899), True, 'import numpy as np\n'), ((916, 938), 'numpy.matmul', 'np.matmul', (['Qred', 'ustar'], {}), '(Qred, ustar)\n', (925, 938), True, 'import numpy as np\n'), ((7592, 7598), 'time.time', 'time', ([], {}), '()\n', (7596, 7598), False, 'from time import time\n'), ((7984, 7990), 'time.time', 'time', ([], {}), '()\n', (7988, 7990), False, 'from time import time\n'), ((338, 353), 'numpy.transpose', 'np.transpose', (['A'], {}), '(A)\n', (350, 353), True, 'import numpy as np\n'), ((412, 421), 'numpy.abs', 'np.abs', (['w'], {}), '(w)\n', (418, 421), True, 'import numpy as np\n'), ((723, 738), 'numpy.transpose', 'np.transpose', (['A'], {}), '(A)\n', (735, 738), True, 'import numpy as np\n'), ((767, 786), 'numpy.matmul', 'np.matmul', (['A', 'omega'], {}), '(A, omega)\n', (776, 786), True, 'import numpy as np\n'), ((840, 858), 'numpy.transpose', 'np.transpose', (['Qred'], {}), '(Qred)\n', (852, 858), True, 'import numpy as np\n'), ((2280, 2295), 'numpy.linalg.qr', 'np.linalg.qr', (['A'], {}), '(A)\n', (2292, 2295), True, 'import numpy as np\n'), ((5170, 5202), 'numpy.concatenate', 'np.concatenate', (['(ll, A)'], {'axis': '(-1)'}), '((ll, A), axis=-1)\n', (5184, 5202), True, 'import numpy as np\n'), ((5283, 5307), 'numpy.matmul', 'np.matmul', (['qlocal', 'utemp'], {}), '(qlocal, utemp)\n', (5292, 5307), True, 'import numpy as np\n'), ((497, 513), 'numpy.abs', 'np.abs', (['w[:rval]'], {}), '(w[:rval])\n', (503, 513), True, 'import numpy as np\n'), ((2709, 2731), 'numpy.linalg.qr', 'np.linalg.qr', (['r_global'], {}), '(r_global)\n', (2721, 2731), True, 'import numpy as np\n'), ((2866, 2904), 'numpy.matmul', 'np.matmul', (['q', 'qglobal[:rlocal_shape_0]'], {}), '(q, qglobal[:rlocal_shape_0])\n', (2875, 2904), True, 'import numpy as np\n'), ((3527, 3548), 'numpy.matmul', 'np.matmul', (['q', 'qglobal'], {}), '(q, qglobal)\n', (3536, 3548), True, 'import numpy as np\n'), ((4949, 4998), 'numpy.concatenate', 'np.concatenate', (['(temp, phi_local[i + 1])'], {'axis': '(-1)'}), '((temp, phi_local[i + 1]), axis=-1)\n', (4963, 4998), True, 'import numpy as np\n'), ((5651, 5690), 'numpy.save', 'np.save', (['"""Online_Parallel_POD.npy"""', 'phi'], {}), "('Online_Parallel_POD.npy', phi)\n", (5658, 5690), True, 'import numpy as np\n'), ((5702, 5760), 'numpy.save', 'np.save', (['"""Online_Parallel_SingularValues.npy"""', 'self.svalue'], {}), "('Online_Parallel_SingularValues.npy', self.svalue)\n", (5709, 5760), True, 'import numpy as np\n'), ((5805, 5836), 'numpy.load', 'np.load', (['"""Serial_Modes_MOS.npy"""'], {}), "('Serial_Modes_MOS.npy')\n", (5812, 5836), True, 'import numpy as np\n'), ((5867, 5901), 'numpy.load', 'np.load', (['"""Online_Parallel_POD.npy"""'], {}), "('Online_Parallel_POD.npy')\n", (5874, 5901), True, 'import numpy as np\n'), ((5930, 5962), 'numpy.load', 'np.load', (['"""Online_Serial_POD.npy"""'], {}), "('Online_Serial_POD.npy')\n", (5937, 5962), True, 'import numpy as np\n'), ((5976, 5988), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5986, 5988), True, 'import matplotlib.pyplot as plt\n'), ((6001, 6048), 'matplotlib.pyplot.plot', 'plt.plot', (['serial[:, 0]'], {'label': '"""serial one-shot"""'}), "(serial[:, 0], label='serial one-shot')\n", (6009, 6048), True, 'import matplotlib.pyplot as plt\n'), ((6059, 6115), 'matplotlib.pyplot.plot', 'plt.plot', (['parallel_online[:, 0]'], {'label': '"""parallel_online"""'}), "(parallel_online[:, 0], label='parallel_online')\n", (6067, 6115), True, 'import matplotlib.pyplot as plt\n'), ((6126, 6178), 'matplotlib.pyplot.plot', 'plt.plot', (['serial_online[:, 0]'], {'label': '"""serial_online"""'}), "(serial_online[:, 0], label='serial_online')\n", (6134, 6178), True, 'import matplotlib.pyplot as plt\n'), ((6189, 6225), 'matplotlib.pyplot.title', 'plt.title', (['"""U comparison - column 0"""'], {}), "('U comparison - column 0')\n", (6198, 6225), True, 'import matplotlib.pyplot as plt\n'), ((6238, 6258), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Domain"""'], {}), "('Domain')\n", (6248, 6258), True, 'import matplotlib.pyplot as plt\n'), ((6271, 6296), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""U magnitude"""'], {}), "('U magnitude')\n", (6281, 6296), True, 'import matplotlib.pyplot as plt\n'), ((6309, 6321), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6319, 6321), True, 'import matplotlib.pyplot as plt\n'), ((6335, 6347), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6345, 6347), True, 'import matplotlib.pyplot as plt\n'), ((6360, 6407), 'matplotlib.pyplot.plot', 'plt.plot', (['serial[:, 2]'], {'label': '"""serial one-shot"""'}), "(serial[:, 2], label='serial one-shot')\n", (6368, 6407), True, 'import matplotlib.pyplot as plt\n'), ((6418, 6474), 'matplotlib.pyplot.plot', 'plt.plot', (['parallel_online[:, 2]'], {'label': '"""parallel_online"""'}), "(parallel_online[:, 2], label='parallel_online')\n", (6426, 6474), True, 'import matplotlib.pyplot as plt\n'), ((6485, 6537), 'matplotlib.pyplot.plot', 'plt.plot', (['serial_online[:, 2]'], {'label': '"""serial_online"""'}), "(serial_online[:, 2], label='serial_online')\n", (6493, 6537), True, 'import matplotlib.pyplot as plt\n'), ((6548, 6584), 'matplotlib.pyplot.title', 'plt.title', (['"""U comparison - column 2"""'], {}), "('U comparison - column 2')\n", (6557, 6584), True, 'import matplotlib.pyplot as plt\n'), ((6597, 6617), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Domain"""'], {}), "('Domain')\n", (6607, 6617), True, 'import matplotlib.pyplot as plt\n'), ((6630, 6655), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""U magnitude"""'], {}), "('U magnitude')\n", (6640, 6655), True, 'import matplotlib.pyplot as plt\n'), ((6668, 6680), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6678, 6680), True, 'import matplotlib.pyplot as plt\n'), ((6707, 6743), 'numpy.load', 'np.load', (['"""Serial_SingularValues.npy"""'], {}), "('Serial_SingularValues.npy')\n", (6714, 6743), True, 'import numpy as np\n'), ((6776, 6819), 'numpy.load', 'np.load', (['"""Online_Serial_SingularValues.npy"""'], {}), "('Online_Serial_SingularValues.npy')\n", (6783, 6819), True, 'import numpy as np\n'), ((6854, 6899), 'numpy.load', 'np.load', (['"""Online_Parallel_SingularValues.npy"""'], {}), "('Online_Parallel_SingularValues.npy')\n", (6861, 6899), True, 'import numpy as np\n'), ((6913, 6925), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6923, 6925), True, 'import matplotlib.pyplot as plt\n'), ((6938, 6992), 'matplotlib.pyplot.plot', 'plt.plot', (['serial_svs[:self.K]'], {'label': '"""serial one-shot"""'}), "(serial_svs[:self.K], label='serial one-shot')\n", (6946, 6992), True, 'import matplotlib.pyplot as plt\n'), ((7004, 7067), 'matplotlib.pyplot.plot', 'plt.plot', (['parallel_online_svs[:self.K]'], {'label': '"""parallel_online"""'}), "(parallel_online_svs[:self.K], label='parallel_online')\n", (7012, 7067), True, 'import matplotlib.pyplot as plt\n'), ((7079, 7138), 'matplotlib.pyplot.plot', 'plt.plot', (['serial_online_svs[:self.K]'], {'label': '"""serial_online"""'}), "(serial_online_svs[:self.K], label='serial_online')\n", (7087, 7138), True, 'import matplotlib.pyplot as plt\n'), ((7150, 7178), 'matplotlib.pyplot.title', 'plt.title', (['"""Singular values"""'], {}), "('Singular values')\n", (7159, 7178), True, 'import matplotlib.pyplot as plt\n'), ((7191, 7210), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Index"""'], {}), "('Index')\n", (7201, 7210), True, 'import matplotlib.pyplot as plt\n'), ((7223, 7246), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnitude"""'], {}), "('Magnitude')\n", (7233, 7246), True, 'import matplotlib.pyplot as plt\n'), ((7259, 7271), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7269, 7271), True, 'import matplotlib.pyplot as plt\n'), ((7284, 7294), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7292, 7294), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1210), 'numpy.sum', 'np.sum', (['(modes[:, m1] * modes[:, m2])'], {}), '(modes[:, m1] * modes[:, m2])\n', (1181, 1210), True, 'import numpy as np\n'), ((1372, 1407), 'numpy.sum', 'np.sum', (['(modes[:, m1] * modes[:, m2])'], {}), '(modes[:, m1] * modes[:, m2])\n', (1378, 1407), True, 'import numpy as np\n'), ((2606, 2653), 'numpy.concatenate', 'np.concatenate', (['(temp, r_global[i + 1])'], {'axis': '(0)'}), '((temp, r_global[i + 1]), axis=0)\n', (2620, 2653), True, 'import numpy as np\n'), ((3321, 3342), 'numpy.linalg.svd', 'np.linalg.svd', (['rfinal'], {}), '(rfinal)\n', (3334, 3342), True, 'import numpy as np\n'), ((3903, 3918), 'numpy.diag', 'np.diag', (['slocal'], {}), '(slocal)\n', (3910, 3918), True, 'import numpy as np\n'), ((4163, 4210), 'numpy.concatenate', 'np.concatenate', (['(temp, wglobal[i + 1])'], {'axis': '(-1)'}), '((temp, wglobal[i + 1]), axis=-1)\n', (4177, 4210), True, 'import numpy as np\n'), ((4361, 4383), 'numpy.linalg.svd', 'np.linalg.svd', (['wglobal'], {}), '(wglobal)\n', (4374, 4383), True, 'import numpy as np\n'), ((4798, 4831), 'numpy.matmul', 'np.matmul', (['A', 'x[:, mode:mode + 1]'], {}), '(A, x[:, mode:mode + 1])\n', (4807, 4831), True, 'import numpy as np\n'), ((5135, 5155), 'numpy.diag', 'np.diag', (['self.svalue'], {}), '(self.svalue)\n', (5142, 5155), True, 'import numpy as np\n'), ((5593, 5641), 'numpy.concatenate', 'np.concatenate', (['(phi, phi_global[i + 1])'], {'axis': '(0)'}), '((phi, phi_global[i + 1]), axis=0)\n', (5607, 5641), True, 'import numpy as np\n'), ((1231, 1250), 'numpy.isclose', 'np.isclose', (['s_', '(1.0)'], {}), '(s_, 1.0)\n', (1241, 1250), True, 'import numpy as np\n'), ((1428, 1447), 'numpy.isclose', 'np.isclose', (['s_', '(0.0)'], {}), '(s_, 0.0)\n', (1438, 1447), True, 'import numpy as np\n')]
|
'''
THis is the main training code.
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # set GPU id at the very begining
import argparse
import random
import math
import numpy as np
import torch
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.nn.functional as F
from torch.multiprocessing import freeze_support
import json
import sys
import time
import pdb
# internal package
from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom
from models.pan import PAN
from loss.loss import loss
from utils.helper import adjust_learning_rate, upsample
from utils.average_meter import AverageMeter
torch.set_num_threads(2)
# main function:
if __name__ == '__main__':
freeze_support()
parser = argparse.ArgumentParser()
parser.add_argument(
'--batch', type=int, default=16, help='input batch size')
parser.add_argument(
'--worker', type=int, default=4, help='number of data loading workers')
parser.add_argument(
'--epoch', type=int, default=601, help='number of epochs')
parser.add_argument('--output', type=str, default='outputs', help='output folder name')
parser.add_argument('--model', type=str, default='', help='model path')
parser.add_argument('--dataset_type', type=str, default='ctw', help="dataset type - ctw | tt | synthtext | msra | ic15 | custom")
parser.add_argument('--gpu', type=bool, default=False, help="GPU being used or not")
opt = parser.parse_args()
print(opt)
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed:", opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
# turn on GPU for models:
if opt.gpu == False:
device = torch.device("cpu")
print("CPU being used!")
else:
if torch.cuda.is_available() == True and opt.gpu == True:
device = torch.device("cuda")
print("GPU being used!")
else:
device = torch.device("cpu")
print("CPU being used!")
# set training parameters
batch_size = opt.batch
neck_channel = (64, 128, 256, 512)
pa_in_channels = 512
hidden_dim = 128
num_classes = 6
loss_text_weight = 1.0
loss_kernel_weight = 0.5
loss_emb_weight = 0.25
opt.optimizer = 'Adam'
opt.lr = 1e-3
opt.schedule = 'polylr'
epochs = opt.epoch
worker = opt.worker
dataset_type = opt.dataset_type
output_path = opt.output
trained_model_path = opt.model
# create dataset
print("Create dataset......")
if dataset_type == 'ctw': # ctw dataset
train_dataset = ctw1500.PAN_CTW(split='train',
is_transform=True,
img_size=640,
short_size=640,
kernel_scale=0.7,
report_speed=False)
elif dataset_type == 'tt': # totaltext dataset
train_dataset = totaltext.PAN_TT(split='train',
is_transform=True,
img_size=640,
short_size=640,
kernel_scale=0.7,
with_rec=False,
report_speed=False)
elif dataset_type == 'synthtext': # synthtext dataset
train_dataset = synthtext.PAN_Synth(is_transform=True,
img_size=640,
short_size=640,
kernel_scale=0.5,
with_rec=False)
elif dataset_type == 'msra': # msra dataset
train_dataset = msra.PAN_MSRA(split='train',
is_transform=True,
img_size=736,
short_size=736,
kernel_scale=0.7,
report_speed=False)
elif dataset_type == 'ic15': # msra dataset
train_dataset = ic15.PAN_IC15(split='train',
is_transform=True,
img_size=736,
short_size=736,
kernel_scale=0.5,
with_rec=False)
elif dataset_type == 'custom': # msra dataset
train_dataset = custom.PAN_CTW(split='train',
is_transform=True,
img_size=640,
short_size=640,
kernel_scale=0.7,
report_speed=False)
else:
print("Not supported yet!")
exit(1)
# make dataloader
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=int(worker),
drop_last=True,
pin_memory=True)
print("Length of train dataset is:", len(train_dataset))
# make model output folder
try:
os.makedirs(output_path)
except OSError:
pass
# create model
print("Create model......")
model = PAN(pretrained=False, neck_channel=neck_channel, pa_in_channels=pa_in_channels, hidden_dim=hidden_dim, num_classes=num_classes)
if trained_model_path != '':
if torch.cuda.is_available() == True and opt.gpu == True:
model.load_state_dict(torch.load(trained_model_path, map_location=lambda storage, loc: storage), strict=False)
model = torch.nn.DataParallel(model).to(device)
else:
model.load_state_dict(torch.load(trained_model_path, map_location=lambda storage, loc: storage), strict=False)
else:
if torch.cuda.is_available() == True and opt.gpu == True:
model = torch.nn.DataParallel(model).to(device)
else:
model = model.to(device)
if opt.optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.99, weight_decay=5e-4)
elif opt.optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
else:
print("Error: Please specify correct optimizer!")
exit(1)
# train, evaluate, and save model
print("Training starts......")
start_epoch = 0
for epoch in range(start_epoch, epochs):
print('Epoch: [%d | %d]' % (epoch + 1, epochs))
model.train()
# meters
losses = AverageMeter()
losses_text = AverageMeter()
losses_kernels = AverageMeter()
losses_emb = AverageMeter()
losses_rec = AverageMeter()
ious_text = AverageMeter()
ious_kernel = AverageMeter()
for iter, data in enumerate(train_dataloader):
# adjust learning rate
adjust_learning_rate(optimizer, train_dataloader, epoch, iter, opt.schedule, opt.lr, epochs)
outputs = dict()
# forward for detection output
det_out = model(data['imgs'].to(device))
det_out = upsample(det_out, data['imgs'].size())
# retreive ground truth labels
gt_texts = data['gt_texts'].to(device)
gt_kernels = data['gt_kernels'].to(device)
training_masks = data['training_masks'].to(device)
gt_instances = data['gt_instances'].to(device)
gt_bboxes = data['gt_bboxes'].to(device)
# calculate total loss
det_loss = loss(det_out, gt_texts, gt_kernels, training_masks, gt_instances, gt_bboxes, loss_text_weight, loss_kernel_weight, loss_emb_weight)
outputs.update(det_loss)
# detection loss
loss_text = torch.mean(outputs['loss_text'])
losses_text.update(loss_text.item())
loss_kernels = torch.mean(outputs['loss_kernels'])
losses_kernels.update(loss_kernels.item())
loss_emb = torch.mean(outputs['loss_emb'])
losses_emb.update(loss_emb.item())
loss_total = loss_text + loss_kernels + loss_emb
iou_text = torch.mean(outputs['iou_text'])
ious_text.update(iou_text.item())
iou_kernel = torch.mean(outputs['iou_kernel'])
ious_kernel.update(iou_kernel.item())
losses.update(loss_total.item())
# backward
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
# print log
#print("batch: {} / total batch: {}".format(iter+1, len(train_dataloader)))
if iter % 20 == 0:
output_log = '({batch}/{size}) LR: {lr:.6f} | ' \
'Loss: {loss:.3f} | ' \
'Loss (text/kernel/emb): {loss_text:.3f}/{loss_kernel:.3f}/{loss_emb:.3f} ' \
'| IoU (text/kernel): {iou_text:.3f}/{iou_kernel:.3f}'.format(
batch=iter + 1,
size=len(train_dataloader),
lr=optimizer.param_groups[0]['lr'],
loss_text=losses_text.avg,
loss_kernel=losses_kernels.avg,
loss_emb=losses_emb.avg,
loss=losses.avg,
iou_text=ious_text.avg,
iou_kernel=ious_kernel.avg,
)
print(output_log)
sys.stdout.flush()
with open(os.path.join(output_path,'statistics.txt'), 'a') as f:
f.write("{} {} {} {} {} {}\n".format(losses_text.avg, losses_kernels.avg, losses_emb.avg, losses.avg, ious_text.avg, ious_kernel.avg))
if epoch % 20 == 0:
print("Save model......")
if torch.cuda.is_available() == True and opt.gpu == True:
torch.save(model.module.state_dict(), '%s/model_epoch_%s.pth' % (output_path, str(epoch)))
else:
torch.save(model.state_dict(), '%s/model_epoch_%s.pth' % (output_path, str(epoch)))
|
[
"dataset.synthtext.PAN_Synth",
"torch.cuda.is_available",
"torch.multiprocessing.freeze_support",
"loss.loss.loss",
"argparse.ArgumentParser",
"models.pan.PAN",
"torch.mean",
"dataset.custom.PAN_CTW",
"torch.set_num_threads",
"numpy.random.seed",
"sys.stdout.flush",
"dataset.ic15.PAN_IC15",
"random.randint",
"utils.average_meter.AverageMeter",
"dataset.ctw1500.PAN_CTW",
"utils.helper.adjust_learning_rate",
"dataset.totaltext.PAN_TT",
"torch.device",
"dataset.msra.PAN_MSRA",
"torch.manual_seed",
"os.makedirs",
"torch.load",
"os.path.join",
"torch.nn.DataParallel",
"random.seed",
"torch.cuda.manual_seed"
] |
[((647, 671), 'torch.set_num_threads', 'torch.set_num_threads', (['(2)'], {}), '(2)\n', (668, 671), False, 'import torch\n'), ((720, 736), 'torch.multiprocessing.freeze_support', 'freeze_support', ([], {}), '()\n', (734, 736), False, 'from torch.multiprocessing import freeze_support\n'), ((750, 775), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (773, 775), False, 'import argparse\n'), ((1523, 1547), 'random.randint', 'random.randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (1537, 1547), False, 'import random\n'), ((1606, 1633), 'random.seed', 'random.seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (1617, 1633), False, 'import random\n'), ((1638, 1671), 'torch.manual_seed', 'torch.manual_seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (1655, 1671), False, 'import torch\n'), ((1676, 1714), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (1698, 1714), False, 'import torch\n'), ((1719, 1749), 'numpy.random.seed', 'np.random.seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (1733, 1749), True, 'import numpy as np\n'), ((5596, 5728), 'models.pan.PAN', 'PAN', ([], {'pretrained': '(False)', 'neck_channel': 'neck_channel', 'pa_in_channels': 'pa_in_channels', 'hidden_dim': 'hidden_dim', 'num_classes': 'num_classes'}), '(pretrained=False, neck_channel=neck_channel, pa_in_channels=\n pa_in_channels, hidden_dim=hidden_dim, num_classes=num_classes)\n', (5599, 5728), False, 'from models.pan import PAN\n'), ((1827, 1846), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (1839, 1846), False, 'import torch\n'), ((2718, 2840), 'dataset.ctw1500.PAN_CTW', 'ctw1500.PAN_CTW', ([], {'split': '"""train"""', 'is_transform': '(True)', 'img_size': '(640)', 'short_size': '(640)', 'kernel_scale': '(0.7)', 'report_speed': '(False)'}), "(split='train', is_transform=True, img_size=640, short_size=\n 640, kernel_scale=0.7, report_speed=False)\n", (2733, 2840), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n'), ((5474, 5498), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (5485, 5498), False, 'import os\n'), ((6892, 6906), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6904, 6906), False, 'from utils.average_meter import AverageMeter\n'), ((6929, 6943), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6941, 6943), False, 'from utils.average_meter import AverageMeter\n'), ((6969, 6983), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6981, 6983), False, 'from utils.average_meter import AverageMeter\n'), ((7005, 7019), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (7017, 7019), False, 'from utils.average_meter import AverageMeter\n'), ((7041, 7055), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (7053, 7055), False, 'from utils.average_meter import AverageMeter\n'), ((7076, 7090), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (7088, 7090), False, 'from utils.average_meter import AverageMeter\n'), ((7113, 7127), 'utils.average_meter.AverageMeter', 'AverageMeter', ([], {}), '()\n', (7125, 7127), False, 'from utils.average_meter import AverageMeter\n'), ((1977, 1997), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (1989, 1997), False, 'import torch\n'), ((2070, 2089), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2082, 2089), False, 'import torch\n'), ((3111, 3250), 'dataset.totaltext.PAN_TT', 'totaltext.PAN_TT', ([], {'split': '"""train"""', 'is_transform': '(True)', 'img_size': '(640)', 'short_size': '(640)', 'kernel_scale': '(0.7)', 'with_rec': '(False)', 'report_speed': '(False)'}), "(split='train', is_transform=True, img_size=640, short_size\n =640, kernel_scale=0.7, with_rec=False, report_speed=False)\n", (3127, 3250), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n'), ((7244, 7340), 'utils.helper.adjust_learning_rate', 'adjust_learning_rate', (['optimizer', 'train_dataloader', 'epoch', 'iter', 'opt.schedule', 'opt.lr', 'epochs'], {}), '(optimizer, train_dataloader, epoch, iter, opt.schedule,\n opt.lr, epochs)\n', (7264, 7340), False, 'from utils.helper import adjust_learning_rate, upsample\n'), ((7918, 8053), 'loss.loss.loss', 'loss', (['det_out', 'gt_texts', 'gt_kernels', 'training_masks', 'gt_instances', 'gt_bboxes', 'loss_text_weight', 'loss_kernel_weight', 'loss_emb_weight'], {}), '(det_out, gt_texts, gt_kernels, training_masks, gt_instances, gt_bboxes,\n loss_text_weight, loss_kernel_weight, loss_emb_weight)\n', (7922, 8053), False, 'from loss.loss import loss\n'), ((8153, 8185), 'torch.mean', 'torch.mean', (["outputs['loss_text']"], {}), "(outputs['loss_text'])\n", (8163, 8185), False, 'import torch\n'), ((8263, 8298), 'torch.mean', 'torch.mean', (["outputs['loss_kernels']"], {}), "(outputs['loss_kernels'])\n", (8273, 8298), False, 'import torch\n'), ((8378, 8409), 'torch.mean', 'torch.mean', (["outputs['loss_emb']"], {}), "(outputs['loss_emb'])\n", (8388, 8409), False, 'import torch\n'), ((8543, 8574), 'torch.mean', 'torch.mean', (["outputs['iou_text']"], {}), "(outputs['iou_text'])\n", (8553, 8574), False, 'import torch\n'), ((8646, 8679), 'torch.mean', 'torch.mean', (["outputs['iou_kernel']"], {}), "(outputs['iou_kernel'])\n", (8656, 8679), False, 'import torch\n'), ((1901, 1926), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1924, 1926), False, 'import torch\n'), ((3574, 3680), 'dataset.synthtext.PAN_Synth', 'synthtext.PAN_Synth', ([], {'is_transform': '(True)', 'img_size': '(640)', 'short_size': '(640)', 'kernel_scale': '(0.5)', 'with_rec': '(False)'}), '(is_transform=True, img_size=640, short_size=640,\n kernel_scale=0.5, with_rec=False)\n', (3593, 3680), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n'), ((5769, 5794), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5792, 5794), False, 'import torch\n'), ((5858, 5931), 'torch.load', 'torch.load', (['trained_model_path'], {'map_location': '(lambda storage, loc: storage)'}), '(trained_model_path, map_location=lambda storage, loc: storage)\n', (5868, 5931), False, 'import torch\n'), ((6055, 6128), 'torch.load', 'torch.load', (['trained_model_path'], {'map_location': '(lambda storage, loc: storage)'}), '(trained_model_path, map_location=lambda storage, loc: storage)\n', (6065, 6128), False, 'import torch\n'), ((6165, 6190), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6188, 6190), False, 'import torch\n'), ((9852, 9870), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9868, 9870), False, 'import sys\n'), ((3925, 4045), 'dataset.msra.PAN_MSRA', 'msra.PAN_MSRA', ([], {'split': '"""train"""', 'is_transform': '(True)', 'img_size': '(736)', 'short_size': '(736)', 'kernel_scale': '(0.7)', 'report_speed': '(False)'}), "(split='train', is_transform=True, img_size=736, short_size=\n 736, kernel_scale=0.7, report_speed=False)\n", (3938, 4045), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n'), ((5967, 5995), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (5988, 5995), False, 'import torch\n'), ((6240, 6268), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (6261, 6268), False, 'import torch\n'), ((10189, 10214), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (10212, 10214), False, 'import torch\n'), ((4303, 4419), 'dataset.ic15.PAN_IC15', 'ic15.PAN_IC15', ([], {'split': '"""train"""', 'is_transform': '(True)', 'img_size': '(736)', 'short_size': '(736)', 'kernel_scale': '(0.5)', 'with_rec': '(False)'}), "(split='train', is_transform=True, img_size=736, short_size=\n 736, kernel_scale=0.5, with_rec=False)\n", (4316, 4419), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n'), ((9897, 9940), 'os.path.join', 'os.path.join', (['output_path', '"""statistics.txt"""'], {}), "(output_path, 'statistics.txt')\n", (9909, 9940), False, 'import os\n'), ((4679, 4800), 'dataset.custom.PAN_CTW', 'custom.PAN_CTW', ([], {'split': '"""train"""', 'is_transform': '(True)', 'img_size': '(640)', 'short_size': '(640)', 'kernel_scale': '(0.7)', 'report_speed': '(False)'}), "(split='train', is_transform=True, img_size=640, short_size=\n 640, kernel_scale=0.7, report_speed=False)\n", (4693, 4800), False, 'from dataset import ctw1500, totaltext, synthtext, msra, ic15, custom\n')]
|
import os, sys
sys.path.append(os.getcwd())
import time
import numpy as np
import tensorflow as tf
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv2d
import tflib.ops.batchnorm
import tflib.ops.deconv2d
import tflib.save_images
import tflib.plot
import tflib.flow_handler as fh
import tflib.SINTELdata as sintel
MODE = 'wgan-gp' # Valid options are dcgan, wgan, or wgan-gp
DIM = 64 # This overfits substantially; you're probably better off with 64 # or 128?
LAMBDA = 10 # Gradient penalty lambda hyperparameter
CRITIC_ITERS = 5 # How many critic iterations per generator iteration
BATCH_SIZE = 64 # Batch size
ITERS = 100000 # How many generator iterations to train for # 200000 takes too long
IM_DIM = 32 # number of pixels along x and y (square assumed)
SQUARE_IM_DIM = IM_DIM*IM_DIM # 32*32 = 1024
OUTPUT_DIM = IM_DIM*IM_DIM*3 # Number of pixels (3*32*32) - rgb color
OUTPUT_DIM_FLOW = IM_DIM*IM_DIM*2 # Number of pixels (2*32*32) - uv direction
CONTINUE = False # Default False, set True if restoring from checkpoint
START_ITER = 0 # Default 0, set accordingly if restoring from checkpoint (100, 200, ...)
CURRENT_PATH = "sintel/flowcganuv5"
restore_path = "/home/linkermann/opticalFlow/opticalFlowGAN/results/" + CURRENT_PATH + "/model.ckpt"
lib.print_model_settings(locals().copy())
if(CONTINUE):
tf.reset_default_graph()
def LeakyReLU(x, alpha=0.2):
return tf.maximum(alpha*x, x)
def ReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(name+'.Linear', n_in, n_out, inputs)
return tf.nn.relu(output)
def LeakyReLULayer(name, n_in, n_out, inputs):
output = lib.ops.linear.Linear(name+'.Linear', n_in, n_out, inputs)
return LeakyReLU(output)
def Generator(n_samples, conditions, noise=None): # input conds additional to noise
if noise is None:
noise = tf.random_normal([n_samples, SQUARE_IM_DIM])
noise = tf.reshape(noise, [n_samples, 1, IM_DIM, IM_DIM])
# new conditional input: last frames
conds = tf.reshape(conditions, [n_samples, 6, IM_DIM, IM_DIM]) # conditions: (64,2*3072) TO conds: (64,6,32,32)
# for now just concat the inputs: noise as seventh dim of cond image
output = tf.concat([noise, conds], 1) # to: (BATCH_SIZE,7,32,32)
output = tf.reshape(output, [n_samples, SQUARE_IM_DIM*7]) # 32x32x4 = 4096; to: (BATCH_SIZE, 4096)
output = lib.ops.linear.Linear('Generator.Input', SQUARE_IM_DIM*7, 4*4*4*DIM, output) # 4*4*4*DIM = 64*64 = 4096
output = lib.ops.batchnorm.Batchnorm('Generator.BN1', [0], output)
output = tf.nn.relu(output)
output = tf.reshape(output, [-1, 4*DIM, 4, 4])
output = lib.ops.deconv2d.Deconv2D('Generator.2', 4*DIM, 2*DIM, 5, output)
output = lib.ops.batchnorm.Batchnorm('Generator.BN2', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.3', 2*DIM, DIM, 5, output)
output = lib.ops.batchnorm.Batchnorm('Generator.BN3', [0,2,3], output)
output = tf.nn.relu(output)
output = lib.ops.deconv2d.Deconv2D('Generator.5', DIM, 2, 5, output) # output flow in color --> dim is 2
output = tf.tanh(output)
return tf.reshape(output, [-1, OUTPUT_DIM_FLOW]) # output flow --> dim is 2
def Discriminator(inputs, conditions): # input conds as well
inputs = tf.reshape(inputs, [-1, 2, IM_DIM, IM_DIM]) # input flow --> dim is 2
conds = tf.reshape(conditions, [-1, 6, IM_DIM, IM_DIM]) # new conditional input: last frames
# for now just concat the inputs
ins = tf.concat([inputs, conds], 1) #to: (BATCH_SIZE, 8, 32, 32)
output = lib.ops.conv2d.Conv2D('Discriminator.1', 8, DIM, 5, ins, stride=2) # first dim is different: 8 now
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.2', DIM, 2*DIM, 5, output, stride=2)
if MODE != 'wgan-gp':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN2', [0,2,3], output)
output = LeakyReLU(output)
output = lib.ops.conv2d.Conv2D('Discriminator.3', 2*DIM, 4*DIM, 5, output, stride=2)
if MODE != 'wgan-gp':
output = lib.ops.batchnorm.Batchnorm('Discriminator.BN3', [0,2,3], output)
output = LeakyReLU(output)
#output = lib.ops.conv2d.Conv2D('Discriminator.4', 4*DIM, 8*DIM, 5, output, stride=2)
# if MODE != 'wgan-gp':
# output = lib.ops.batchnorm.Batchnorm('Discriminator.BN4', [0,2,3], output)
# output = LeakyReLU(output)
output = tf.reshape(output, [-1, 4*4*8*DIM]) # adjusted outcome
output = lib.ops.linear.Linear('Discriminator.Output', 4*4*8*DIM, 1, output)
return tf.reshape(output, [-1])
cond_data_int = tf.placeholder(tf.int32, shape=[BATCH_SIZE, 2*OUTPUT_DIM]) # cond input for G and D, 2 frames!
cond_data = 2*((tf.cast(cond_data_int, tf.float32)/255.)-.5) #normalized [-1,1]!
#real_data_int = tf.placeholder(tf.int32, shape=[BATCH_SIZE, OUTPUT_DIM_FLOW]) # real data is flow, dim 2!
real_data = tf.placeholder(tf.float32, shape=[BATCH_SIZE, OUTPUT_DIM_FLOW]) #already float, normalized [-1,1]!
fake_data = Generator(BATCH_SIZE, cond_data)
disc_real = Discriminator(real_data, cond_data)
disc_fake = Discriminator(fake_data, cond_data)
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
if MODE == 'wgan':
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(disc_cost, var_list=disc_params)
clip_ops = []
for var in disc_params:
clip_bounds = [-.01, .01]
clip_ops.append(
tf.assign(
var,
tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
)
)
clip_disc_weights = tf.group(*clip_ops)
elif MODE == 'wgan-gp':
# Standard WGAN loss
gen_cost = -tf.reduce_mean(disc_fake)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
# Gradient penalty
alpha = tf.random_uniform(
shape=[BATCH_SIZE,1],
minval=0.,
maxval=1.
)
differences = fake_data - real_data
interpolates = real_data + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates, cond_data), [interpolates])[0] #added cond here
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=disc_params)
elif MODE == 'dcgan':
gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake, tf.ones_like(disc_fake)))
disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_fake, tf.zeros_like(disc_fake)))
disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(disc_real, tf.ones_like(disc_real)))
disc_cost /= 2.
gen_train_op = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(gen_cost,
var_list=lib.params_with_name('Generator'))
disc_train_op = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(disc_cost,
var_list=lib.params_with_name('Discriminator.'))
# Dataset iterators
gen = sintel.load_train_gen(BATCH_SIZE, (IM_DIM,IM_DIM,3), (IM_DIM,IM_DIM,2)) # batch size, im size, im size flow
dev_gen = sintel.load_test_gen(BATCH_SIZE, (IM_DIM,IM_DIM,3), (IM_DIM,IM_DIM,2))
# For generating samples: define fixed noise and conditional input
fixed_cond_samples, fixed_flow_samples = next(gen) # shape: (batchsize, 3072)
fixed_cond_data_int = fixed_cond_samples[:,0:2*OUTPUT_DIM] # earlier frames as condition, cond samples shape (64,3*3072)
fixed_real_data = fixed_flow_samples[:,OUTPUT_DIM_FLOW:] # later flow for discr, flow samples shape (64,2048)
fixed_real_data_norm01 = tf.cast(fixed_real_data+1.0, tf.float32)/2.0 # [0,1]
fixed_cond_data_normalized = 2*((tf.cast(fixed_cond_data_int, tf.float32)/255.)-.5) #normalized [-1,1]!
fixed_viz_data_int = fixed_cond_samples[:,OUTPUT_DIM:2*OUTPUT_DIM] # each later frame for viz
if(CONTINUE):
fixed_noise = tf.get_variable("noise", shape=[BATCH_SIZE, SQUARE_IM_DIM]) # take same noise like saved model
else:
fixed_noise = tf.Variable(tf.random_normal(shape=[BATCH_SIZE, SQUARE_IM_DIM], dtype=tf.float32), name='noise') #variable: saved, for additional channel
fixed_noise_samples = Generator(BATCH_SIZE, fixed_cond_data_normalized, noise=fixed_noise) # Generator(n_samples,conds, noise):
def generate_image(frame, true_dist): # generates 64 (batch-size) samples next to each other in one image!
print("Iteration %d : \n" % frame)
samples = session.run(fixed_noise_samples, feed_dict={real_data: fixed_real_data, cond_data_int: fixed_cond_data_int}) # output range (-1.0,1.0), size=(BATCH_SIZE, OUT_DIM)
#samples_255 = ((samples+1.)*(255./2)).astype('int32') #(-1,1) to [0,255] for displaying
samples_01 = ((samples+1.)/2.).astype('float32') # [0,1] is a np.ndarray shape (64, 2048)
# print(fixed_real_data_norm01.eval()) # shape (64, 2048) # bigger areas with (almost) same flow
images2show = fixed_viz_data_int.reshape(BATCH_SIZE,3,IM_DIM,IM_DIM)
sample_flowimages, real_flowimages = [], []
for i in range(0, BATCH_SIZE):
real_flowimg, flowimg = [],[] # reset to be sure
flowimg = fh.computeFlowImg(samples[i,:].reshape((IM_DIM,IM_DIM,2))) # (32, 32, 3) # now color img!! :)
flowimg_T = np.transpose(flowimg, [2,0,1]) # (3, 32, 32)
# flowimage = flowimage_T.reshape((OUTPUT_DIM,)) # instead of flatten?
sample_flowimages.append(flowimg_T)
real_uvflow = fixed_real_data[i,:]
real_uvflow = real_uvflow.reshape((IM_DIM,IM_DIM,2))
real_flowimg = fh.computeFlowImg(real_uvflow) # (32, 32, 3) color img!
real_flowimg = real_flowimg.reshape(IM_DIM,IM_DIM,3).astype('int32') # (32, 32, 3)
real_flowimg_T = np.transpose(real_flowimg, [2,0,1]) # (3, 32, 32)
real_flowimages.append(real_flowimg_T) # or which one? # also save as .flo?
images2show = np.insert(images2show, i*2+1, flowimg_T, axis=0)
#samples_255[2*i+1,:] = flowimage # sample flow color image
# images2show.shape: (128, 3, 32, 32) = (2*BATCH_SIZE, 3, IM_DIM, IM_DIM)
# images.reshape((2*BATCH_SIZE, 3, IM_DIM, IM_DIM))
lib.save_images.save_images(images2show, 'samples_{}.jpg'.format(frame))
sample_flowims_np = np.asarray(sample_flowimages, np.int32)
real_flowims_np = np.asarray(real_flowimages, np.int32)
sample_flowims = tf.convert_to_tensor(sample_flowims_np, np.int32)
real_flowims = tf.convert_to_tensor(real_flowims_np, np.int32) # turn into tensor to reshape later
# tensor = tf.constant(np_array) # another way to create a tensor
# compare generated flow to real one # float..?
# u-v-component wise
real = tf.reshape(fixed_real_data_norm01, [BATCH_SIZE,IM_DIM,IM_DIM,2]) # use tf.reshape! Tensor! batch!
real_u = tf.slice(real, [0,0,0,0], [real.get_shape()[0],real.get_shape()[1],real.get_shape()[2], 1])
real_v = tf.slice(real, [0,0,0,1], [real.get_shape()[0],real.get_shape()[1],real.get_shape()[2], 1])
pred = tf.reshape(samples_01,[BATCH_SIZE,IM_DIM,IM_DIM,2]) # use tf reshape!
pred_u = tf.slice(pred, [0,0,0,0], [pred.get_shape()[0],pred.get_shape()[1],pred.get_shape()[2], 1])
pred_v = tf.slice(pred, [0,0,0,1], [pred.get_shape()[0],pred.get_shape()[1],pred.get_shape()[2], 1]) # shape (64, 32, 32) all of them
# mse & ssim on components
mseval_per_entry_u = tf.keras.metrics.mse(real_u, pred_u) # on gray, on [0,1], (64,32,32), small vals (^-1,-2,-3)
mseval_u = tf.reduce_mean(mseval_per_entry_u, [1,2]) # shape (64,) # diff numbers
mseval_per_entry_v = tf.keras.metrics.mse(real_v, pred_v) # on gray, on [0,1], (64,32,32), small vals (^-1,-2,-3)
mseval_v = tf.reduce_mean(mseval_per_entry_v, [1,2]) # shape (64,) # diff than per u entry
#ssimval_u = tf.image.ssim(real_u, pred_u, max_val=1.0) # in: tensor 64-batch, out: tensor ssimvals (64,)
#ssimval_v = tf.image.ssim(real_v, pred_v, max_val=1.0) # in: tensor 64-batch, out: tensor ssimvals (64,) # also minus vals, around 0, u and v differ
# avg: add and divide by 2
mseval_uv = tf.add(mseval_u, mseval_v) # tf.cast neccessary?
tensor2 = tf.constant(2.0, shape=[64])
#ssimval_uv = tf.add(ssimval_u, ssimval_v) # (64,)
mseval_uv = tf.div(mseval_uv, tensor2)
#ssimval_uv = tf.div(ssimval_uv, tensor2) # (64,), small around 0, up to 0.3 after first 100 iter
#ssimval_list_uv = ssimval_uv.eval() # to numpy array # (64,)
mseval_list_uv = mseval_uv.eval() # (64,)
print("mseval uv")
print(mseval_list_uv)
#print("ssimval uv")
#print(ssimval_list_uv)
# flow color ims to gray
real_flowims = tf.cast(real_flowims, tf.float32)/255. # to [0,1]
real_color = tf.reshape(real_flowims, [BATCH_SIZE,IM_DIM,IM_DIM,3])
real_gray = tf.image.rgb_to_grayscale(real_color) # tensor batch to gray; returns original dtype = float [0,1]
# print("real gray") # (64, 32, 32, 1)
sample_flowims = tf.cast(sample_flowims, tf.float32)/255. # to [0,1]
pred_color = tf.reshape(sample_flowims, [BATCH_SIZE,IM_DIM,IM_DIM,3]) # use tf.reshape! Tensor! batch!
pred_gray = tf.image.rgb_to_grayscale(pred_color) # (64, 32, 32, 1)
# mse & ssim on grayscale
mseval_per_entry_rgb = tf.keras.metrics.mse(real_gray, pred_gray) # on grayscale, on [0,1]..
mseval_rgb = tf.reduce_mean(mseval_per_entry_rgb, [1,2])
#ssimval_rgb = tf.image.ssim(real_gray, pred_gray, max_val=1.0) # in: tensor 64-batch, out: tensor ssimvals (64,)
#ssimval_list_rgb = ssimval_rgb.eval() # to numpy array # (64,)
mseval_list_rgb = mseval_rgb.eval() # (64,)
print("mseval rgb")
print(mseval_list_rgb)
#print("ssimval rgb")
#print(ssimval_list_rgb)
# print(ssimval_list)
# print(mseval_list)
for i in range (0,3):
#lib.plot.plot('SSIM uv for sample %d' % (i+1), ssimval_list_uv[i])
#lib.plot.plot('SSIM rgb for sample %d' % (i+1), ssimval_list_rgb[i])
lib.plot.plot('MSE uv for sample %d' % (i+1), mseval_list_uv[i])
lib.plot.plot('MSE rgb for sample %d' % (i+1), mseval_list_rgb[i])
print("sample %d \t MSE: %.5f \t %.5f\r\n" % (i, mseval_list_uv[i], mseval_list_rgb[i]))
#SSIM: %.5f \t %.5f\r\n" % (i, mseval_list_uv[i], mseval_list_rgb[i], ssimval_list_uv[i], ssimval_list_rgb[i]))
init_op = tf.global_variables_initializer() # op to initialize the variables.
saver = tf.train.Saver() # ops to save and restore all the variables.
# Train loop
with tf.Session() as session:
if(CONTINUE):
# Restore variables from disk.
saver.restore(session, restore_path)
print("Model restored.")
lib.plot.restore(START_ITER) # does not fully work, but makes plots start from newly started iteration
else:
session.run(init_op)
for iteration in range(START_ITER, ITERS): # START_ITER: 0 or from last checkpoint
start_time = time.time()
# Train generator
if iteration > 0:
_data, _ = next(gen) # shape: (batchsize, 6144), double output_dim now # flow as second argument not needed
_cond_data = _data[:, 0:2*OUTPUT_DIM] # earlier frames as conditional data, # flow for disc not needed here
_ = session.run(gen_train_op, feed_dict={cond_data_int: _cond_data})
# Train critic
if MODE == 'dcgan':
disc_iters = 1
else:
disc_iters = CRITIC_ITERS
for i in range(disc_iters):
_data, _flow = next(gen) # shape: (batchsize, 6144), double output_dim now # flow as second argument
_cond_data = _data[:, 0:2*OUTPUT_DIM] # earlier 2 frames as conditional data,
_real_data = _flow[:,OUTPUT_DIM_FLOW:] # later flow as real data for discriminator
_disc_cost, _ = session.run([disc_cost, disc_train_op], feed_dict={real_data: _real_data, cond_data_int: _cond_data})
if MODE == 'wgan':
_ = session.run(clip_disc_weights)
lib.plot.plot('train disc cost', _disc_cost)
lib.plot.plot('time', time.time() - start_time)
# Calculate dev loss and generate samples every 100 iters
if iteration % 100 == 99:
dev_disc_costs = []
_data, _flow = next(gen) # shape: (batchsize, 6144), double output_dim now # flow as second argument
_cond_data = _data[:, 0:2*OUTPUT_DIM] # earlier 2 frames as conditional data
_real_data = _flow[:,OUTPUT_DIM_FLOW:] # later flow as real data for discriminator
_dev_disc_cost = session.run(disc_cost, feed_dict={real_data: _real_data, cond_data_int: _cond_data})
dev_disc_costs.append(_dev_disc_cost)
lib.plot.plot('dev disc cost', np.mean(dev_disc_costs))
generate_image(iteration, _data)
# Save the variables to disk.
save_path = saver.save(session, restore_path)
print("Model saved in path: %s" % save_path)
# chkp.print_tensors_in_checkpoint_file("model.ckpt", tensor_name='', all_tensors=True)
# Save logs every 100 iters
if (iteration < 5) or (iteration % 100 == 99):
lib.plot.flush()
lib.plot.tick()
|
[
"tensorflow.div",
"tflib.plot.plot",
"tensorflow.get_variable",
"tensorflow.tanh",
"tensorflow.group",
"tflib.ops.linear.Linear",
"tflib.ops.deconv2d.Deconv2D",
"tensorflow.reduce_mean",
"tensorflow.ones_like",
"tensorflow.cast",
"numpy.mean",
"tensorflow.random_normal",
"tflib.ops.conv2d.Conv2D",
"tensorflow.placeholder",
"tensorflow.Session",
"numpy.asarray",
"tflib.flow_handler.computeFlowImg",
"tensorflow.concat",
"tensorflow.clip_by_value",
"tensorflow.maximum",
"tensorflow.convert_to_tensor",
"tensorflow.square",
"tensorflow.train.AdamOptimizer",
"tensorflow.zeros_like",
"tflib.plot.flush",
"tflib.params_with_name",
"tensorflow.image.rgb_to_grayscale",
"tflib.plot.restore",
"tensorflow.add",
"tflib.SINTELdata.load_train_gen",
"tensorflow.reshape",
"numpy.transpose",
"tflib.SINTELdata.load_test_gen",
"time.time",
"numpy.insert",
"tflib.ops.batchnorm.Batchnorm",
"tensorflow.reset_default_graph",
"tensorflow.keras.metrics.mse",
"tensorflow.nn.relu",
"tensorflow.train.RMSPropOptimizer",
"tensorflow.train.Saver",
"os.getcwd",
"tensorflow.global_variables_initializer",
"tensorflow.random_uniform",
"tflib.plot.tick",
"tensorflow.constant"
] |
[((4611, 4671), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[BATCH_SIZE, 2 * OUTPUT_DIM]'}), '(tf.int32, shape=[BATCH_SIZE, 2 * OUTPUT_DIM])\n', (4625, 4671), True, 'import tensorflow as tf\n'), ((4908, 4971), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[BATCH_SIZE, OUTPUT_DIM_FLOW]'}), '(tf.float32, shape=[BATCH_SIZE, OUTPUT_DIM_FLOW])\n', (4922, 4971), True, 'import tensorflow as tf\n'), ((5163, 5196), 'tflib.params_with_name', 'lib.params_with_name', (['"""Generator"""'], {}), "('Generator')\n", (5183, 5196), True, 'import tflib as lib\n'), ((5211, 5248), 'tflib.params_with_name', 'lib.params_with_name', (['"""Discriminator"""'], {}), "('Discriminator')\n", (5231, 5248), True, 'import tflib as lib\n'), ((7640, 7715), 'tflib.SINTELdata.load_train_gen', 'sintel.load_train_gen', (['BATCH_SIZE', '(IM_DIM, IM_DIM, 3)', '(IM_DIM, IM_DIM, 2)'], {}), '(BATCH_SIZE, (IM_DIM, IM_DIM, 3), (IM_DIM, IM_DIM, 2))\n', (7661, 7715), True, 'import tflib.SINTELdata as sintel\n'), ((7758, 7832), 'tflib.SINTELdata.load_test_gen', 'sintel.load_test_gen', (['BATCH_SIZE', '(IM_DIM, IM_DIM, 3)', '(IM_DIM, IM_DIM, 2)'], {}), '(BATCH_SIZE, (IM_DIM, IM_DIM, 3), (IM_DIM, IM_DIM, 2))\n', (7778, 7832), True, 'import tflib.SINTELdata as sintel\n'), ((14938, 14971), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (14969, 14971), True, 'import tensorflow as tf\n'), ((15016, 15032), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (15030, 15032), True, 'import tensorflow as tf\n'), ((31, 42), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (40, 42), False, 'import os, sys\n'), ((1332, 1356), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (1354, 1356), True, 'import tensorflow as tf\n'), ((1398, 1422), 'tensorflow.maximum', 'tf.maximum', (['(alpha * x)', 'x'], {}), '(alpha * x, x)\n', (1408, 1422), True, 'import tensorflow as tf\n'), ((1477, 1537), 'tflib.ops.linear.Linear', 'lib.ops.linear.Linear', (["(name + '.Linear')", 'n_in', 'n_out', 'inputs'], {}), "(name + '.Linear', n_in, n_out, inputs)\n", (1498, 1537), True, 'import tflib as lib\n'), ((1547, 1565), 'tensorflow.nn.relu', 'tf.nn.relu', (['output'], {}), '(output)\n', (1557, 1565), True, 'import tensorflow as tf\n'), ((1627, 1687), 'tflib.ops.linear.Linear', 'lib.ops.linear.Linear', (["(name + '.Linear')", 'n_in', 'n_out', 'inputs'], {}), "(name + '.Linear', n_in, n_out, inputs)\n", (1648, 1687), True, 'import tflib as lib\n'), ((1897, 1946), 'tensorflow.reshape', 'tf.reshape', (['noise', '[n_samples, 1, IM_DIM, IM_DIM]'], {}), '(noise, [n_samples, 1, IM_DIM, IM_DIM])\n', (1907, 1946), True, 'import tensorflow as tf\n'), ((2000, 2054), 'tensorflow.reshape', 'tf.reshape', (['conditions', '[n_samples, 6, IM_DIM, IM_DIM]'], {}), '(conditions, [n_samples, 6, IM_DIM, IM_DIM])\n', (2010, 2054), True, 'import tensorflow as tf\n'), ((2193, 2221), 'tensorflow.concat', 'tf.concat', (['[noise, conds]', '(1)'], {}), '([noise, conds], 1)\n', (2202, 2221), True, 'import tensorflow as tf\n'), ((2263, 2313), 'tensorflow.reshape', 'tf.reshape', (['output', '[n_samples, SQUARE_IM_DIM * 7]'], {}), '(output, [n_samples, SQUARE_IM_DIM * 7])\n', (2273, 2313), True, 'import tensorflow as tf\n'), ((2367, 2455), 'tflib.ops.linear.Linear', 'lib.ops.linear.Linear', (['"""Generator.Input"""', '(SQUARE_IM_DIM * 7)', '(4 * 4 * 4 * DIM)', 'output'], {}), "('Generator.Input', SQUARE_IM_DIM * 7, 4 * 4 * 4 * DIM,\n output)\n", (2388, 2455), True, 'import tflib as lib\n'), ((2484, 2541), 'tflib.ops.batchnorm.Batchnorm', 'lib.ops.batchnorm.Batchnorm', (['"""Generator.BN1"""', '[0]', 'output'], {}), "('Generator.BN1', [0], output)\n", (2511, 2541), True, 'import tflib as lib\n'), ((2555, 2573), 'tensorflow.nn.relu', 'tf.nn.relu', (['output'], {}), '(output)\n', (2565, 2573), True, 'import tensorflow as tf\n'), ((2587, 2626), 'tensorflow.reshape', 'tf.reshape', (['output', '[-1, 4 * DIM, 4, 4]'], {}), '(output, [-1, 4 * DIM, 4, 4])\n', (2597, 2626), True, 'import tensorflow as tf\n'), ((2639, 2708), 'tflib.ops.deconv2d.Deconv2D', 'lib.ops.deconv2d.Deconv2D', (['"""Generator.2"""', '(4 * DIM)', '(2 * DIM)', '(5)', 'output'], {}), "('Generator.2', 4 * DIM, 2 * DIM, 5, output)\n", (2664, 2708), True, 'import tflib as lib\n'), ((2718, 2781), 'tflib.ops.batchnorm.Batchnorm', 'lib.ops.batchnorm.Batchnorm', (['"""Generator.BN2"""', '[0, 2, 3]', 'output'], {}), "('Generator.BN2', [0, 2, 3], output)\n", (2745, 2781), True, 'import tflib as lib\n'), ((2793, 2811), 'tensorflow.nn.relu', 'tf.nn.relu', (['output'], {}), '(output)\n', (2803, 2811), True, 'import tensorflow as tf\n'), ((2826, 2891), 'tflib.ops.deconv2d.Deconv2D', 'lib.ops.deconv2d.Deconv2D', (['"""Generator.3"""', '(2 * DIM)', 'DIM', '(5)', 'output'], {}), "('Generator.3', 2 * DIM, DIM, 5, output)\n", (2851, 2891), True, 'import tflib as lib\n'), ((2903, 2966), 'tflib.ops.batchnorm.Batchnorm', 'lib.ops.batchnorm.Batchnorm', (['"""Generator.BN3"""', '[0, 2, 3]', 'output'], {}), "('Generator.BN3', [0, 2, 3], output)\n", (2930, 2966), True, 'import tflib as lib\n'), ((2978, 2996), 'tensorflow.nn.relu', 'tf.nn.relu', (['output'], {}), '(output)\n', (2988, 2996), True, 'import tensorflow as tf\n'), ((3011, 3070), 'tflib.ops.deconv2d.Deconv2D', 'lib.ops.deconv2d.Deconv2D', (['"""Generator.5"""', 'DIM', '(2)', '(5)', 'output'], {}), "('Generator.5', DIM, 2, 5, output)\n", (3036, 3070), True, 'import tflib as lib\n'), ((3122, 3137), 'tensorflow.tanh', 'tf.tanh', (['output'], {}), '(output)\n', (3129, 3137), True, 'import tensorflow as tf\n'), ((3150, 3191), 'tensorflow.reshape', 'tf.reshape', (['output', '[-1, OUTPUT_DIM_FLOW]'], {}), '(output, [-1, OUTPUT_DIM_FLOW])\n', (3160, 3191), True, 'import tensorflow as tf\n'), ((3295, 3338), 'tensorflow.reshape', 'tf.reshape', (['inputs', '[-1, 2, IM_DIM, IM_DIM]'], {}), '(inputs, [-1, 2, IM_DIM, IM_DIM])\n', (3305, 3338), True, 'import tensorflow as tf\n'), ((3379, 3426), 'tensorflow.reshape', 'tf.reshape', (['conditions', '[-1, 6, IM_DIM, IM_DIM]'], {}), '(conditions, [-1, 6, IM_DIM, IM_DIM])\n', (3389, 3426), True, 'import tensorflow as tf\n'), ((3512, 3541), 'tensorflow.concat', 'tf.concat', (['[inputs, conds]', '(1)'], {}), '([inputs, conds], 1)\n', (3521, 3541), True, 'import tensorflow as tf\n'), ((3585, 3651), 'tflib.ops.conv2d.Conv2D', 'lib.ops.conv2d.Conv2D', (['"""Discriminator.1"""', '(8)', 'DIM', '(5)', 'ins'], {'stride': '(2)'}), "('Discriminator.1', 8, DIM, 5, ins, stride=2)\n", (3606, 3651), True, 'import tflib as lib\n'), ((3730, 3805), 'tflib.ops.conv2d.Conv2D', 'lib.ops.conv2d.Conv2D', (['"""Discriminator.2"""', 'DIM', '(2 * DIM)', '(5)', 'output'], {'stride': '(2)'}), "('Discriminator.2', DIM, 2 * DIM, 5, output, stride=2)\n", (3751, 3805), True, 'import tflib as lib\n'), ((3958, 4037), 'tflib.ops.conv2d.Conv2D', 'lib.ops.conv2d.Conv2D', (['"""Discriminator.3"""', '(2 * DIM)', '(4 * DIM)', '(5)', 'output'], {'stride': '(2)'}), "('Discriminator.3', 2 * DIM, 4 * DIM, 5, output, stride=2)\n", (3979, 4037), True, 'import tflib as lib\n'), ((4421, 4462), 'tensorflow.reshape', 'tf.reshape', (['output', '[-1, 4 * 4 * 8 * DIM]'], {}), '(output, [-1, 4 * 4 * 8 * DIM])\n', (4431, 4462), True, 'import tensorflow as tf\n'), ((4489, 4562), 'tflib.ops.linear.Linear', 'lib.ops.linear.Linear', (['"""Discriminator.Output"""', '(4 * 4 * 8 * DIM)', '(1)', 'output'], {}), "('Discriminator.Output', 4 * 4 * 8 * DIM, 1, output)\n", (4510, 4562), True, 'import tflib as lib\n'), ((4569, 4593), 'tensorflow.reshape', 'tf.reshape', (['output', '[-1]'], {}), '(output, [-1])\n', (4579, 4593), True, 'import tensorflow as tf\n'), ((5864, 5883), 'tensorflow.group', 'tf.group', (['*clip_ops'], {}), '(*clip_ops)\n', (5872, 5883), True, 'import tensorflow as tf\n'), ((8234, 8276), 'tensorflow.cast', 'tf.cast', (['(fixed_real_data + 1.0)', 'tf.float32'], {}), '(fixed_real_data + 1.0, tf.float32)\n', (8241, 8276), True, 'import tensorflow as tf\n'), ((8518, 8577), 'tensorflow.get_variable', 'tf.get_variable', (['"""noise"""'], {'shape': '[BATCH_SIZE, SQUARE_IM_DIM]'}), "('noise', shape=[BATCH_SIZE, SQUARE_IM_DIM])\n", (8533, 8577), True, 'import tensorflow as tf\n'), ((10863, 10902), 'numpy.asarray', 'np.asarray', (['sample_flowimages', 'np.int32'], {}), '(sample_flowimages, np.int32)\n', (10873, 10902), True, 'import numpy as np\n'), ((10925, 10962), 'numpy.asarray', 'np.asarray', (['real_flowimages', 'np.int32'], {}), '(real_flowimages, np.int32)\n', (10935, 10962), True, 'import numpy as np\n'), ((10984, 11033), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['sample_flowims_np', 'np.int32'], {}), '(sample_flowims_np, np.int32)\n', (11004, 11033), True, 'import tensorflow as tf\n'), ((11053, 11100), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['real_flowims_np', 'np.int32'], {}), '(real_flowims_np, np.int32)\n', (11073, 11100), True, 'import tensorflow as tf\n'), ((11297, 11364), 'tensorflow.reshape', 'tf.reshape', (['fixed_real_data_norm01', '[BATCH_SIZE, IM_DIM, IM_DIM, 2]'], {}), '(fixed_real_data_norm01, [BATCH_SIZE, IM_DIM, IM_DIM, 2])\n', (11307, 11364), True, 'import tensorflow as tf\n'), ((11617, 11672), 'tensorflow.reshape', 'tf.reshape', (['samples_01', '[BATCH_SIZE, IM_DIM, IM_DIM, 2]'], {}), '(samples_01, [BATCH_SIZE, IM_DIM, IM_DIM, 2])\n', (11627, 11672), True, 'import tensorflow as tf\n'), ((11988, 12024), 'tensorflow.keras.metrics.mse', 'tf.keras.metrics.mse', (['real_u', 'pred_u'], {}), '(real_u, pred_u)\n', (12008, 12024), True, 'import tensorflow as tf\n'), ((12098, 12140), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['mseval_per_entry_u', '[1, 2]'], {}), '(mseval_per_entry_u, [1, 2])\n', (12112, 12140), True, 'import tensorflow as tf\n'), ((12194, 12230), 'tensorflow.keras.metrics.mse', 'tf.keras.metrics.mse', (['real_v', 'pred_v'], {}), '(real_v, pred_v)\n', (12214, 12230), True, 'import tensorflow as tf\n'), ((12304, 12346), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['mseval_per_entry_v', '[1, 2]'], {}), '(mseval_per_entry_v, [1, 2])\n', (12318, 12346), True, 'import tensorflow as tf\n'), ((12703, 12729), 'tensorflow.add', 'tf.add', (['mseval_u', 'mseval_v'], {}), '(mseval_u, mseval_v)\n', (12709, 12729), True, 'import tensorflow as tf\n'), ((12767, 12795), 'tensorflow.constant', 'tf.constant', (['(2.0)'], {'shape': '[64]'}), '(2.0, shape=[64])\n', (12778, 12795), True, 'import tensorflow as tf\n'), ((12867, 12893), 'tensorflow.div', 'tf.div', (['mseval_uv', 'tensor2'], {}), '(mseval_uv, tensor2)\n', (12873, 12893), True, 'import tensorflow as tf\n'), ((13327, 13384), 'tensorflow.reshape', 'tf.reshape', (['real_flowims', '[BATCH_SIZE, IM_DIM, IM_DIM, 3]'], {}), '(real_flowims, [BATCH_SIZE, IM_DIM, IM_DIM, 3])\n', (13337, 13384), True, 'import tensorflow as tf\n'), ((13399, 13436), 'tensorflow.image.rgb_to_grayscale', 'tf.image.rgb_to_grayscale', (['real_color'], {}), '(real_color)\n', (13424, 13436), True, 'import tensorflow as tf\n'), ((13631, 13690), 'tensorflow.reshape', 'tf.reshape', (['sample_flowims', '[BATCH_SIZE, IM_DIM, IM_DIM, 3]'], {}), '(sample_flowims, [BATCH_SIZE, IM_DIM, IM_DIM, 3])\n', (13641, 13690), True, 'import tensorflow as tf\n'), ((13738, 13775), 'tensorflow.image.rgb_to_grayscale', 'tf.image.rgb_to_grayscale', (['pred_color'], {}), '(pred_color)\n', (13763, 13775), True, 'import tensorflow as tf\n'), ((13853, 13895), 'tensorflow.keras.metrics.mse', 'tf.keras.metrics.mse', (['real_gray', 'pred_gray'], {}), '(real_gray, pred_gray)\n', (13873, 13895), True, 'import tensorflow as tf\n'), ((13942, 13986), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['mseval_per_entry_rgb', '[1, 2]'], {}), '(mseval_per_entry_rgb, [1, 2])\n', (13956, 13986), True, 'import tensorflow as tf\n'), ((15099, 15111), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (15109, 15111), True, 'import tensorflow as tf\n'), ((1838, 1882), 'tensorflow.random_normal', 'tf.random_normal', (['[n_samples, SQUARE_IM_DIM]'], {}), '([n_samples, SQUARE_IM_DIM])\n', (1854, 1882), True, 'import tensorflow as tf\n'), ((3847, 3914), 'tflib.ops.batchnorm.Batchnorm', 'lib.ops.batchnorm.Batchnorm', (['"""Discriminator.BN2"""', '[0, 2, 3]', 'output'], {}), "('Discriminator.BN2', [0, 2, 3], output)\n", (3874, 3914), True, 'import tflib as lib\n'), ((4077, 4144), 'tflib.ops.batchnorm.Batchnorm', 'lib.ops.batchnorm.Batchnorm', (['"""Discriminator.BN3"""', '[0, 2, 3]', 'output'], {}), "('Discriminator.BN3', [0, 2, 3], output)\n", (4104, 4144), True, 'import tflib as lib\n'), ((5285, 5310), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_fake'], {}), '(disc_fake)\n', (5299, 5310), True, 'import tensorflow as tf\n'), ((5327, 5352), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_fake'], {}), '(disc_fake)\n', (5341, 5352), True, 'import tensorflow as tf\n'), ((5355, 5380), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_real'], {}), '(disc_real)\n', (5369, 5380), True, 'import tensorflow as tf\n'), ((6082, 6146), 'tensorflow.random_uniform', 'tf.random_uniform', ([], {'shape': '[BATCH_SIZE, 1]', 'minval': '(0.0)', 'maxval': '(1.0)'}), '(shape=[BATCH_SIZE, 1], minval=0.0, maxval=1.0)\n', (6099, 6146), True, 'import tensorflow as tf\n'), ((6475, 6510), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['((slopes - 1.0) ** 2)'], {}), '((slopes - 1.0) ** 2)\n', (6489, 6510), True, 'import tensorflow as tf\n'), ((8649, 8718), 'tensorflow.random_normal', 'tf.random_normal', ([], {'shape': '[BATCH_SIZE, SQUARE_IM_DIM]', 'dtype': 'tf.float32'}), '(shape=[BATCH_SIZE, SQUARE_IM_DIM], dtype=tf.float32)\n', (8665, 8718), True, 'import tensorflow as tf\n'), ((9866, 9898), 'numpy.transpose', 'np.transpose', (['flowimg', '[2, 0, 1]'], {}), '(flowimg, [2, 0, 1])\n', (9878, 9898), True, 'import numpy as np\n'), ((10173, 10203), 'tflib.flow_handler.computeFlowImg', 'fh.computeFlowImg', (['real_uvflow'], {}), '(real_uvflow)\n', (10190, 10203), True, 'import tflib.flow_handler as fh\n'), ((10347, 10384), 'numpy.transpose', 'np.transpose', (['real_flowimg', '[2, 0, 1]'], {}), '(real_flowimg, [2, 0, 1])\n', (10359, 10384), True, 'import numpy as np\n'), ((10506, 10558), 'numpy.insert', 'np.insert', (['images2show', '(i * 2 + 1)', 'flowimg_T'], {'axis': '(0)'}), '(images2show, i * 2 + 1, flowimg_T, axis=0)\n', (10515, 10558), True, 'import numpy as np\n'), ((13260, 13293), 'tensorflow.cast', 'tf.cast', (['real_flowims', 'tf.float32'], {}), '(real_flowims, tf.float32)\n', (13267, 13293), True, 'import tensorflow as tf\n'), ((13562, 13597), 'tensorflow.cast', 'tf.cast', (['sample_flowims', 'tf.float32'], {}), '(sample_flowims, tf.float32)\n', (13569, 13597), True, 'import tensorflow as tf\n'), ((14568, 14634), 'tflib.plot.plot', 'lib.plot.plot', (["('MSE uv for sample %d' % (i + 1))", 'mseval_list_uv[i]'], {}), "('MSE uv for sample %d' % (i + 1), mseval_list_uv[i])\n", (14581, 14634), True, 'import tflib as lib\n'), ((14641, 14709), 'tflib.plot.plot', 'lib.plot.plot', (["('MSE rgb for sample %d' % (i + 1))", 'mseval_list_rgb[i]'], {}), "('MSE rgb for sample %d' % (i + 1), mseval_list_rgb[i])\n", (14654, 14709), True, 'import tflib as lib\n'), ((15271, 15299), 'tflib.plot.restore', 'lib.plot.restore', (['START_ITER'], {}), '(START_ITER)\n', (15287, 15299), True, 'import tflib as lib\n'), ((15527, 15538), 'time.time', 'time.time', ([], {}), '()\n', (15536, 15538), False, 'import time\n'), ((16605, 16649), 'tflib.plot.plot', 'lib.plot.plot', (['"""train disc cost"""', '_disc_cost'], {}), "('train disc cost', _disc_cost)\n", (16618, 16649), True, 'import tflib as lib\n'), ((17809, 17824), 'tflib.plot.tick', 'lib.plot.tick', ([], {}), '()\n', (17822, 17824), True, 'import tflib as lib\n'), ((4722, 4756), 'tensorflow.cast', 'tf.cast', (['cond_data_int', 'tf.float32'], {}), '(cond_data_int, tf.float32)\n', (4729, 4756), True, 'import tensorflow as tf\n'), ((5401, 5447), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', ([], {'learning_rate': '(5e-05)'}), '(learning_rate=5e-05)\n', (5426, 5447), True, 'import tensorflow as tf\n'), ((5507, 5553), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', ([], {'learning_rate': '(5e-05)'}), '(learning_rate=5e-05)\n', (5532, 5553), True, 'import tensorflow as tf\n'), ((5950, 5975), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_fake'], {}), '(disc_fake)\n', (5964, 5975), True, 'import tensorflow as tf\n'), ((5992, 6017), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_fake'], {}), '(disc_fake)\n', (6006, 6017), True, 'import tensorflow as tf\n'), ((6020, 6045), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['disc_real'], {}), '(disc_real)\n', (6034, 6045), True, 'import tensorflow as tf\n'), ((8320, 8360), 'tensorflow.cast', 'tf.cast', (['fixed_cond_data_int', 'tf.float32'], {}), '(fixed_cond_data_int, tf.float32)\n', (8327, 8360), True, 'import tensorflow as tf\n'), ((17783, 17799), 'tflib.plot.flush', 'lib.plot.flush', ([], {}), '()\n', (17797, 17799), True, 'import tflib as lib\n'), ((5762, 5815), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['var', 'clip_bounds[0]', 'clip_bounds[1]'], {}), '(var, clip_bounds[0], clip_bounds[1])\n', (5778, 5815), True, 'import tensorflow as tf\n'), ((6406, 6426), 'tensorflow.square', 'tf.square', (['gradients'], {}), '(gradients)\n', (6415, 6426), True, 'import tensorflow as tf\n'), ((6567, 6633), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0001)', 'beta1': '(0.5)', 'beta2': '(0.9)'}), '(learning_rate=0.0001, beta1=0.5, beta2=0.9)\n', (6589, 6633), True, 'import tensorflow as tf\n'), ((6692, 6758), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0001)', 'beta1': '(0.5)', 'beta2': '(0.9)'}), '(learning_rate=0.0001, beta1=0.5, beta2=0.9)\n', (6714, 6758), True, 'import tensorflow as tf\n'), ((16680, 16691), 'time.time', 'time.time', ([], {}), '()\n', (16689, 16691), False, 'import time\n'), ((17351, 17374), 'numpy.mean', 'np.mean', (['dev_disc_costs'], {}), '(dev_disc_costs)\n', (17358, 17374), True, 'import numpy as np\n'), ((6903, 6926), 'tensorflow.ones_like', 'tf.ones_like', (['disc_fake'], {}), '(disc_fake)\n', (6915, 6926), True, 'import tensorflow as tf\n'), ((7012, 7036), 'tensorflow.zeros_like', 'tf.zeros_like', (['disc_fake'], {}), '(disc_fake)\n', (7025, 7036), True, 'import tensorflow as tf\n'), ((7122, 7145), 'tensorflow.ones_like', 'tf.ones_like', (['disc_real'], {}), '(disc_real)\n', (7134, 7145), True, 'import tensorflow as tf\n'), ((7188, 7243), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0002)', 'beta1': '(0.5)'}), '(learning_rate=0.0002, beta1=0.5)\n', (7210, 7243), True, 'import tensorflow as tf\n'), ((7352, 7385), 'tflib.params_with_name', 'lib.params_with_name', (['"""Generator"""'], {}), "('Generator')\n", (7372, 7385), True, 'import tflib as lib\n'), ((7407, 7462), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0002)', 'beta1': '(0.5)'}), '(learning_rate=0.0002, beta1=0.5)\n', (7429, 7462), True, 'import tensorflow as tf\n'), ((7573, 7611), 'tflib.params_with_name', 'lib.params_with_name', (['"""Discriminator."""'], {}), "('Discriminator.')\n", (7593, 7611), True, 'import tflib as lib\n')]
|
"""
This file contains tests for plotter_utils.py.
@author: <NAME>
"""
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.figure import Figure
from gdef_reporter.plotter_styles import get_plotter_style_histogram
from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, \
_extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot
from tests.conftest import AUTO_SHOW
ORIGINAL_FIGURE_SIZE = (4, 3.5)
ORIGINAL_DPI = 300
def auto_show(fig):
if AUTO_SHOW:
fig.show()
# tests for functions to plot a 2D area map
class TestAreaPlots:
def test_plot_to_ax(self, data_test_cases):
fig1, ax1 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)
plot_to_ax(ax1, data_test_cases, pixel_width=1.0)
auto_show(fig1)
assert type(fig1) is Figure
assert fig1.axes[1].get_title() == "nm" # default unit for z-values should be nm
fig2, ax2 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)
pixel_width = 5.0
title = f"{type(data_test_cases).__name__}\npixel_width={pixel_width}"
plot_to_ax(ax2, data_test_cases, pixel_width=pixel_width, title=title)
auto_show(fig2)
assert ax2.get_title() == title
fig3, ax3 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)
z_factor = 1.0
title = f"{type(data_test_cases).__name__}\nz_unit: [m] - z_factor={z_factor}"
plot_to_ax(ax3, data_test_cases, pixel_width=5.0, z_unit="µm", title=title)
auto_show(fig3)
assert fig3.axes[1].get_title() == "\u03BCm"
def test_create_plot(self, data_test_cases):
fig1 = create_plot(data_test_cases, 1e-6, "default value for cropped (True)", ORIGINAL_FIGURE_SIZE,
ORIGINAL_DPI)
auto_show(fig1)
assert np.any(comparison := (fig1.get_size_inches() < ORIGINAL_FIGURE_SIZE)) and not np.all(comparison)
assert fig1.dpi == ORIGINAL_DPI
fig2 = create_plot(data_test_cases, 1e-6, "cropped=False", max_figure_size=ORIGINAL_FIGURE_SIZE, cropped=False)
assert np.all(fig2.get_size_inches() == ORIGINAL_FIGURE_SIZE)
auto_show(fig2)
class Test1DPlotZHistogram:
def test_plot_z_histogram_to_ax__defaults(self, data_test_cases):
# first, check default behaviour of parameters title, , n_bins, units and add_norm
fig1, ax1 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE, constrained_layout=True)
plot_z_histogram_to_ax(ax1, data_test_cases, title="")
auto_show(fig1)
assert len(ax1.lines) == 0 # no Gauss fit (expected default behaviour)
assert ax1.get_title().startswith("\u03BC=") # default title starts with mu=...
assert ax1.get_xlabel() == "z [\u03BCm]" # default units should be µm; note: µ == \u03BC is False!
assert len(ax1.containers[0]) == 200 # default n_bins should be 200
def test_plot_z_histogram_to_ax__defaults_multiple(self, multiple_data_test_cases):
# first, check default behaviour of parameters title, , n_bins, units and add_norm
fig1, ax1 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE, constrained_layout=True)
if isinstance(multiple_data_test_cases, dict):
if (_list := len([data for data in multiple_data_test_cases.values() if isinstance(data, np.ndarray)]) > 0)\
and _list < len(multiple_data_test_cases):
with pytest.raises(AssertionError):
plot_z_histogram_to_ax(ax1, multiple_data_test_cases)
return
plot_z_histogram_to_ax(ax1, multiple_data_test_cases, title="")
auto_show(fig1)
assert len(ax1.lines) == 0 # no Gauss fit (expected default behaviour)
if len(multiple_data_test_cases) == 1:
assert ax1.get_title().startswith("\u03BC=") # default title for one data set shows mu=...
else:
assert ax1.get_title() == "" # no default title if no data or more than one dataset
assert ax1.get_xlabel() == "z [\u03BCm]" # default units should be µm; note: µ == \u03BC is False!
for container in ax1.containers:
assert len(container.patches) == 200 # default n_bins should be 200
def test_plot_z_histogram_to_ax__set_parameters(self, data_test_cases):
# first, check setting a title, selecting units µm, set n_bins and draw normal distribution fit
fig1, ax1 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE, constrained_layout=True)
title = "Use [µm] and Gauss fit"
n_bins = 20
plot_z_histogram_to_ax(ax1, data_test_cases, n_bins=n_bins, units="nm", title=title, add_norm=True)
auto_show(fig1)
assert len(ax1.lines) == 1 # Gauss fit (add_norm=True)
assert ax1.get_title() == title
assert str(ax1.get_xlabel()) == str(f"z [nm]") # note: comparison between µ and \u03BC is False!
assert len(ax1.containers[0]) == n_bins # default n_bins should be 200
# second, check no title via title=None
fig2, ax2 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE, constrained_layout=True)
title = None
plot_z_histogram_to_ax(ax2, data_test_cases, n_bins=20, units="µm", title=title)
auto_show(fig2)
assert ax2.get_title() == "" # expected for title=None
def test_plot_z_histogram_to_ax__multiple(self, multiple_data_test_cases):
fig1, ax1 = plt.subplots(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE, constrained_layout=True)
pixel_width = None
if isinstance(multiple_data_test_cases, dict):
pixel_width = 0.5e-6
plot_z_histogram_to_ax(ax1, multiple_data_test_cases, pixel_width=pixel_width, title="", add_norm=True)
auto_show(fig1)
assert isinstance(fig1, Figure)
assert len(fig1.axes[0].containers) == len(multiple_data_test_cases)
assert len(fig1.axes[0].lines) == len(multiple_data_test_cases) # Gauss fits (add_norm=True)
def test_create_z_histogram_plot__defaults(self, data_test_cases):
# check setting figure_size and dpi and also default of parameters title, n_bins, units and add_norm
fig1 = create_z_histogram_plot(data_test_cases)
auto_show(fig1)
assert type(fig1) is Figure
assert len(fig1.axes[0].lines) == 0 # no Gauss fit (expected default behaviour)
assert fig1.axes[0].get_title().startswith("\u03BC=") # default title starts with mu=...
assert fig1.axes[0].get_xlabel() == "z [\u03BCm]" # default units should be µm; note: µ == \u03BC is False!
assert len(fig1.axes[0].containers[0]) == 200 # default n_bins should be 200
def test_create_z_histogram_plot__set_paramaters(self, data_test_cases):
# first, check setting label, a title, selecting units µm, set n_bins and draw normal distribution fit
labels = type(data_test_cases).__name__
title = "Use [nm] and Gauss fit"
n_bins = 20
plotter_style = get_plotter_style_histogram(ORIGINAL_DPI, ORIGINAL_FIGURE_SIZE)
fig1 = create_z_histogram_plot(data_test_cases, labels, n_bins=n_bins, title=title, units="nm", add_norm=True,
plotter_style=plotter_style)
auto_show(fig1)
assert len(fig1.axes[0].lines) == 1 # Gauss fit (add_norm=True)
assert np.any(fig1.get_size_inches() == ORIGINAL_FIGURE_SIZE)
assert fig1.dpi == ORIGINAL_DPI
assert fig1._suptitle.get_text() == title
assert fig1.axes[0].get_title() == ""
assert str(fig1.axes[0].get_xlabel()) == str(f"z [nm]") # note: comparison between µ and \u03BC is False!
assert len(fig1.axes[0].containers[0]) == n_bins # default n_bins should be 200
# second, check no title via title=None
fig2 = create_z_histogram_plot(data_test_cases, title=None)
auto_show(fig2)
assert fig2._suptitle is None
assert fig2.axes[0].get_title() == ""
def test_create_z_histogram_plot__multiple(self, multiple_data_test_cases):
labels = None
pixel_width = 0.5e-6
if isinstance(multiple_data_test_cases, list):
labels = []
for i, data in enumerate(multiple_data_test_cases):
labels.append(f"{i} - {type(data).__name__}")
fig1 = create_z_histogram_plot(multiple_data_test_cases, pixel_width=pixel_width, labels=labels, title="",
add_norm=True)
auto_show(fig1)
assert len(fig1.axes[0].containers) == len(multiple_data_test_cases)
assert len(fig1.axes[0].lines) == len(multiple_data_test_cases) # Gauss fits (add_norm=True)
class Test1DPlotRMS:
def test_plot_rms_to_ax(self):
pass
def test_create_rms_plot__default(self, data_test_cases):
fig = create_rms_plot(data_test_cases)
assert isinstance(fig, Figure)
if isinstance(data_test_cases, np.ndarray):
assert fig.axes[0].get_xlabel() == "x [px]"
else:
assert fig.axes[0].get_xlabel() == "x [\u03BCm]"
assert fig.axes[0].legend_ is None
auto_show(fig)
def test_create_rms_plot__set_parameters(self, data_test_cases):
pixel_width = 0.5e-9 # define a length scale for np.ndarray
labels = f"{type(data_test_cases).__name__}"
fig = create_rms_plot(data_test_cases, label_list=labels, pixel_width=pixel_width, moving_average_n=1,
subtract_average=True, x_units="nm")
assert isinstance(fig, Figure)
assert fig.axes[0].get_xlabel() == "x [nm]"
assert fig.axes[0].legend_ is not None
auto_show(fig)
def test_create_rms_plot__multiple_default(self, multiple_data_test_cases):
if isinstance(multiple_data_test_cases, dict):
if (_list := len([data for data in multiple_data_test_cases.values() if isinstance(data, np.ndarray)]) > 0)\
and _list < len(multiple_data_test_cases):
with pytest.raises(AssertionError):
create_rms_plot(multiple_data_test_cases)
return
fig = create_rms_plot(multiple_data_test_cases)
assert len(multiple_data_test_cases) == len(fig.axes[0].lines)
auto_show(fig)
def test_create_rms_plot__multiple_set_parameter(self, multiple_data_test_cases):
labels = None
pixel_width = 0.5e-6
title = type(multiple_data_test_cases).__name__
if isinstance(multiple_data_test_cases, list):
labels = [f"{type(data).__name__}" for data in multiple_data_test_cases]
fig = create_rms_plot(multiple_data_test_cases, label_list=labels, pixel_width=pixel_width, moving_average_n=1,
subtract_average=False, x_units="nm", title=title)
assert fig.axes[0].legend_ is not None or len(multiple_data_test_cases) == 0
assert len(multiple_data_test_cases) == len(fig.axes[0].lines)
assert fig.axes[0].get_xlabel() == "x [nm]"
auto_show(fig)
class Test1DPlotRMSWithError:
def test_create_rms_with_error_plot(self, data_test_cases):
fig = create_rms_with_error_plot(data_test_cases)
if isinstance(data_test_cases, np.ndarray):
assert fig.axes[0].get_xlabel() == "x [px]"
else:
assert fig.axes[0].get_xlabel() == "x [\u03BCm]"
auto_show(fig)
def test_create_rms_with_error_plot__multiple(self, multiple_data_test_cases):
pixel_width = None
if isinstance(multiple_data_test_cases, dict):
if (_list := len([data for data in multiple_data_test_cases.values() if isinstance(data, np.ndarray)]) > 0)\
and _list < len(multiple_data_test_cases):
with pytest.raises(AssertionError):
create_rms_with_error_plot(multiple_data_test_cases)
pixel_width = 0.5e-6 # setting a pixel_width, np.ndarray has a length scale -> no AssertionError
fig = create_rms_with_error_plot(multiple_data_test_cases, pixel_width=pixel_width)
assert fig.axes[0].get_xlabel() == "x [\u03BCm]"
auto_show(fig)
class TestSummaryPlot:
def test_create_summary_plot(self, multiple_data_test_cases):
pixel_width = 0.5e-6
title = f"{type(multiple_data_test_cases).__name__}"
fig = create_summary_plot(multiple_data_test_cases, pixel_width=pixel_width, title=title)
assert isinstance(fig, Figure)
auto_show(fig)
class TestSpecialFunctions:
def test_extract_ndarray_and_pixel_width(self, data_test_cases):
pixel_width = 1
ndarray2d, px_width = _extract_ndarray_and_pixel_width(data_test_cases, pixel_width=pixel_width)
assert type(ndarray2d) is np.ndarray
if isinstance(data_test_cases, np.ndarray):
assert np.all(data_test_cases == ndarray2d)
assert px_width == pixel_width
else:
assert np.all(data_test_cases.values == ndarray2d)
assert data_test_cases.pixel_width == px_width
def test_save_figure(self, tmp_path):
fig, _ = plt.subplots(1, 1, dpi=72, figsize=(1, 1), constrained_layout=True)
# first try saving in existing folder with default settings
assert tmp_path.exists()
filename = "default"
save_figure(fig, tmp_path, filename)
png_file = tmp_path / f"{filename}.png" # should be saved by default
pdf_file = tmp_path / f"{filename}.pdf" # should not be saved by default
assert png_file.exists()
assert not pdf_file.exists()
# second, save nothing:
filename = "save_nothing"
save_figure(fig, tmp_path, filename, png=False, pdf=False)
png_file = tmp_path / f"{filename}.png" # should be saved by default
pdf_file = tmp_path / f"{filename}.pdf" # should not be saved by default
assert not png_file.exists()
assert not pdf_file.exists()
# third, only save pdf
filename = "save_pdf"
save_figure(fig, tmp_path, filename, png=False, pdf=True)
png_file = tmp_path / f"{filename}.png" # should be saved by default
pdf_file = tmp_path / f"{filename}.pdf" # should not be saved by default
assert not png_file.exists()
assert pdf_file.exists()
# fourth, use folder that does not exist jet and save both png and pdf
new_tmp_path = tmp_path / "new/"
assert not new_tmp_path.exists()
filename = "save_pdf_and_png"
save_figure(fig, new_tmp_path, filename, png=True, pdf=True)
png_file = new_tmp_path / f"{filename}.png" # should be saved by default
pdf_file = new_tmp_path / f"{filename}.pdf" # should not be saved by default
assert png_file.exists()
assert pdf_file.exists()
|
[
"gdef_reporter.plotter_utils.save_figure",
"gdef_reporter.plotter_utils.create_summary_plot",
"gdef_reporter.plotter_styles.get_plotter_style_histogram",
"gdef_reporter.plotter_utils.create_z_histogram_plot",
"gdef_reporter.plotter_utils.create_rms_plot",
"gdef_reporter.plotter_utils.plot_to_ax",
"gdef_reporter.plotter_utils._extract_ndarray_and_pixel_width",
"pytest.raises",
"gdef_reporter.plotter_utils.create_plot",
"gdef_reporter.plotter_utils.plot_z_histogram_to_ax",
"numpy.all",
"gdef_reporter.plotter_utils.create_rms_with_error_plot",
"matplotlib.pyplot.subplots"
] |
[((759, 825), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)\n', (771, 825), True, 'import matplotlib.pyplot as plt\n'), ((834, 883), 'gdef_reporter.plotter_utils.plot_to_ax', 'plot_to_ax', (['ax1', 'data_test_cases'], {'pixel_width': '(1.0)'}), '(ax1, data_test_cases, pixel_width=1.0)\n', (844, 883), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((1055, 1121), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)\n', (1067, 1121), True, 'import matplotlib.pyplot as plt\n'), ((1235, 1305), 'gdef_reporter.plotter_utils.plot_to_ax', 'plot_to_ax', (['ax2', 'data_test_cases'], {'pixel_width': 'pixel_width', 'title': 'title'}), '(ax2, data_test_cases, pixel_width=pixel_width, title=title)\n', (1245, 1305), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((1391, 1457), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE)\n', (1403, 1457), True, 'import matplotlib.pyplot as plt\n'), ((1576, 1651), 'gdef_reporter.plotter_utils.plot_to_ax', 'plot_to_ax', (['ax3', 'data_test_cases'], {'pixel_width': '(5.0)', 'z_unit': '"""µm"""', 'title': 'title'}), "(ax3, data_test_cases, pixel_width=5.0, z_unit='µm', title=title)\n", (1586, 1651), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((1794, 1905), 'gdef_reporter.plotter_utils.create_plot', 'create_plot', (['data_test_cases', '(1e-06)', '"""default value for cropped (True)"""', 'ORIGINAL_FIGURE_SIZE', 'ORIGINAL_DPI'], {}), "(data_test_cases, 1e-06, 'default value for cropped (True)',\n ORIGINAL_FIGURE_SIZE, ORIGINAL_DPI)\n", (1805, 1905), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((2120, 2230), 'gdef_reporter.plotter_utils.create_plot', 'create_plot', (['data_test_cases', '(1e-06)', '"""cropped=False"""'], {'max_figure_size': 'ORIGINAL_FIGURE_SIZE', 'cropped': '(False)'}), "(data_test_cases, 1e-06, 'cropped=False', max_figure_size=\n ORIGINAL_FIGURE_SIZE, cropped=False)\n", (2131, 2230), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((2530, 2625), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE', 'constrained_layout': '(True)'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE,\n constrained_layout=True)\n', (2542, 2625), True, 'import matplotlib.pyplot as plt\n'), ((2630, 2684), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax1', 'data_test_cases'], {'title': '""""""'}), "(ax1, data_test_cases, title='')\n", (2652, 2684), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((3264, 3359), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE', 'constrained_layout': '(True)'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE,\n constrained_layout=True)\n', (3276, 3359), True, 'import matplotlib.pyplot as plt\n'), ((3754, 3817), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax1', 'multiple_data_test_cases'], {'title': '""""""'}), "(ax1, multiple_data_test_cases, title='')\n", (3776, 3817), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((4618, 4713), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE', 'constrained_layout': '(True)'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE,\n constrained_layout=True)\n', (4630, 4713), True, 'import matplotlib.pyplot as plt\n'), ((4779, 4882), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax1', 'data_test_cases'], {'n_bins': 'n_bins', 'units': '"""nm"""', 'title': 'title', 'add_norm': '(True)'}), "(ax1, data_test_cases, n_bins=n_bins, units='nm',\n title=title, add_norm=True)\n", (4801, 4882), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((5262, 5357), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE', 'constrained_layout': '(True)'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE,\n constrained_layout=True)\n', (5274, 5357), True, 'import matplotlib.pyplot as plt\n'), ((5383, 5468), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax2', 'data_test_cases'], {'n_bins': '(20)', 'units': '"""µm"""', 'title': 'title'}), "(ax2, data_test_cases, n_bins=20, units='µm', title=title\n )\n", (5405, 5468), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((5652, 5747), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': 'ORIGINAL_DPI', 'figsize': 'ORIGINAL_FIGURE_SIZE', 'constrained_layout': '(True)'}), '(1, 1, dpi=ORIGINAL_DPI, figsize=ORIGINAL_FIGURE_SIZE,\n constrained_layout=True)\n', (5664, 5747), True, 'import matplotlib.pyplot as plt\n'), ((5868, 5976), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax1', 'multiple_data_test_cases'], {'pixel_width': 'pixel_width', 'title': '""""""', 'add_norm': '(True)'}), "(ax1, multiple_data_test_cases, pixel_width=\n pixel_width, title='', add_norm=True)\n", (5890, 5976), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((6412, 6452), 'gdef_reporter.plotter_utils.create_z_histogram_plot', 'create_z_histogram_plot', (['data_test_cases'], {}), '(data_test_cases)\n', (6435, 6452), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((7226, 7289), 'gdef_reporter.plotter_styles.get_plotter_style_histogram', 'get_plotter_style_histogram', (['ORIGINAL_DPI', 'ORIGINAL_FIGURE_SIZE'], {}), '(ORIGINAL_DPI, ORIGINAL_FIGURE_SIZE)\n', (7253, 7289), False, 'from gdef_reporter.plotter_styles import get_plotter_style_histogram\n'), ((7305, 7441), 'gdef_reporter.plotter_utils.create_z_histogram_plot', 'create_z_histogram_plot', (['data_test_cases', 'labels'], {'n_bins': 'n_bins', 'title': 'title', 'units': '"""nm"""', 'add_norm': '(True)', 'plotter_style': 'plotter_style'}), "(data_test_cases, labels, n_bins=n_bins, title=title,\n units='nm', add_norm=True, plotter_style=plotter_style)\n", (7328, 7441), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((8048, 8100), 'gdef_reporter.plotter_utils.create_z_histogram_plot', 'create_z_histogram_plot', (['data_test_cases'], {'title': 'None'}), '(data_test_cases, title=None)\n', (8071, 8100), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((8562, 8680), 'gdef_reporter.plotter_utils.create_z_histogram_plot', 'create_z_histogram_plot', (['multiple_data_test_cases'], {'pixel_width': 'pixel_width', 'labels': 'labels', 'title': '""""""', 'add_norm': '(True)'}), "(multiple_data_test_cases, pixel_width=pixel_width,\n labels=labels, title='', add_norm=True)\n", (8585, 8680), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((9067, 9099), 'gdef_reporter.plotter_utils.create_rms_plot', 'create_rms_plot', (['data_test_cases'], {}), '(data_test_cases)\n', (9082, 9099), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((9594, 9731), 'gdef_reporter.plotter_utils.create_rms_plot', 'create_rms_plot', (['data_test_cases'], {'label_list': 'labels', 'pixel_width': 'pixel_width', 'moving_average_n': '(1)', 'subtract_average': '(True)', 'x_units': '"""nm"""'}), "(data_test_cases, label_list=labels, pixel_width=pixel_width,\n moving_average_n=1, subtract_average=True, x_units='nm')\n", (9609, 9731), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((10391, 10432), 'gdef_reporter.plotter_utils.create_rms_plot', 'create_rms_plot', (['multiple_data_test_cases'], {}), '(multiple_data_test_cases)\n', (10406, 10432), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((10875, 11040), 'gdef_reporter.plotter_utils.create_rms_plot', 'create_rms_plot', (['multiple_data_test_cases'], {'label_list': 'labels', 'pixel_width': 'pixel_width', 'moving_average_n': '(1)', 'subtract_average': '(False)', 'x_units': '"""nm"""', 'title': 'title'}), "(multiple_data_test_cases, label_list=labels, pixel_width=\n pixel_width, moving_average_n=1, subtract_average=False, x_units='nm',\n title=title)\n", (10890, 11040), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((11403, 11446), 'gdef_reporter.plotter_utils.create_rms_with_error_plot', 'create_rms_with_error_plot', (['data_test_cases'], {}), '(data_test_cases)\n', (11429, 11446), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((12257, 12334), 'gdef_reporter.plotter_utils.create_rms_with_error_plot', 'create_rms_with_error_plot', (['multiple_data_test_cases'], {'pixel_width': 'pixel_width'}), '(multiple_data_test_cases, pixel_width=pixel_width)\n', (12283, 12334), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((12610, 12697), 'gdef_reporter.plotter_utils.create_summary_plot', 'create_summary_plot', (['multiple_data_test_cases'], {'pixel_width': 'pixel_width', 'title': 'title'}), '(multiple_data_test_cases, pixel_width=pixel_width,\n title=title)\n', (12629, 12697), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((12909, 12983), 'gdef_reporter.plotter_utils._extract_ndarray_and_pixel_width', '_extract_ndarray_and_pixel_width', (['data_test_cases'], {'pixel_width': 'pixel_width'}), '(data_test_cases, pixel_width=pixel_width)\n', (12941, 12983), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((13376, 13443), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'dpi': '(72)', 'figsize': '(1, 1)', 'constrained_layout': '(True)'}), '(1, 1, dpi=72, figsize=(1, 1), constrained_layout=True)\n', (13388, 13443), True, 'import matplotlib.pyplot as plt\n'), ((13583, 13619), 'gdef_reporter.plotter_utils.save_figure', 'save_figure', (['fig', 'tmp_path', 'filename'], {}), '(fig, tmp_path, filename)\n', (13594, 13619), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((13925, 13983), 'gdef_reporter.plotter_utils.save_figure', 'save_figure', (['fig', 'tmp_path', 'filename'], {'png': '(False)', 'pdf': '(False)'}), '(fig, tmp_path, filename, png=False, pdf=False)\n', (13936, 13983), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((14288, 14345), 'gdef_reporter.plotter_utils.save_figure', 'save_figure', (['fig', 'tmp_path', 'filename'], {'png': '(False)', 'pdf': '(True)'}), '(fig, tmp_path, filename, png=False, pdf=True)\n', (14299, 14345), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((14784, 14844), 'gdef_reporter.plotter_utils.save_figure', 'save_figure', (['fig', 'new_tmp_path', 'filename'], {'png': '(True)', 'pdf': '(True)'}), '(fig, new_tmp_path, filename, png=True, pdf=True)\n', (14795, 14844), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((13100, 13136), 'numpy.all', 'np.all', (['(data_test_cases == ndarray2d)'], {}), '(data_test_cases == ndarray2d)\n', (13106, 13136), True, 'import numpy as np\n'), ((13213, 13256), 'numpy.all', 'np.all', (['(data_test_cases.values == ndarray2d)'], {}), '(data_test_cases.values == ndarray2d)\n', (13219, 13256), True, 'import numpy as np\n'), ((2045, 2063), 'numpy.all', 'np.all', (['comparison'], {}), '(comparison)\n', (2051, 2063), True, 'import numpy as np\n'), ((3617, 3646), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3630, 3646), False, 'import pytest\n'), ((3668, 3721), 'gdef_reporter.plotter_utils.plot_z_histogram_to_ax', 'plot_z_histogram_to_ax', (['ax1', 'multiple_data_test_cases'], {}), '(ax1, multiple_data_test_cases)\n', (3690, 3721), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((10260, 10289), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (10273, 10289), False, 'import pytest\n'), ((10311, 10352), 'gdef_reporter.plotter_utils.create_rms_plot', 'create_rms_plot', (['multiple_data_test_cases'], {}), '(multiple_data_test_cases)\n', (10326, 10352), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n'), ((12024, 12053), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (12037, 12053), False, 'import pytest\n'), ((12075, 12127), 'gdef_reporter.plotter_utils.create_rms_with_error_plot', 'create_rms_with_error_plot', (['multiple_data_test_cases'], {}), '(multiple_data_test_cases)\n', (12101, 12127), False, 'from gdef_reporter.plotter_utils import plot_to_ax, create_plot, plot_z_histogram_to_ax, create_z_histogram_plot, _extract_ndarray_and_pixel_width, save_figure, create_rms_plot, create_rms_with_error_plot, create_summary_plot\n')]
|
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import minmax_scale
import matplotlib.pyplot as plt
from model.loss import CategoricalCrossEntropy
from model.layers.dense import Dense
from model.layers.relu import LeakyReLU
from model.layers.softmax import Softmax
from model.neural_network import NeuralNetwork
def spiral_data(points, classes):
X = np.zeros((points * classes, 2))
y = np.zeros(points * classes, dtype='uint8')
for class_number in range(classes):
ix = range(points * class_number, points * (class_number + 1))
r = np.linspace(0.0, 1, points) # radius
t = np.linspace(class_number * 4, (class_number + 1) * 4, points) + np.random.randn(points) * 0.2
X[ix] = np.c_[r * np.sin(t * 2.5), r * np.cos(t * 2.5)]
y[ix] = class_number
return X, y
# ------------------------------------ DATASET
N = 200 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X, y = spiral_data(points=N, classes=K)
print("Scale values")
print('Min: %.3f, Max: %.3f' % (X.min(), X.max()))
X = minmax_scale(X, feature_range=(0, 1))
print('Min: %.3f, Max: %.3f' % (X.min(), X.max()))
# plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
# plt.show()
# ------------------------------------ SPLIT DATA
"""X_train, X_test, y_train, y_test = train_test_split(X,
y,
test_size=0.1,
random_state=65)"""
# ------------------------------------ HYPER PARAMETERS
STEP_SIZE = 1e-1
N_EPOCHS = 2000
BATCH_SIZE = 32
# ------------------------------------ BUILD THE MODEL
nn = NeuralNetwork([
Dense(200), LeakyReLU(),
Dense(100), LeakyReLU(),
Dense(50), LeakyReLU(),
Dense(K), Softmax()
], CategoricalCrossEntropy())
# ------------------------------------ FIT THE MODEL
nn.train(dataset=X,
labels=y,
epochs=N_EPOCHS,
batch_size=BATCH_SIZE,
step_size=STEP_SIZE)
# ------------------------------------ EVALUATE THE MODEL
train_loss = nn.metrics.history['train_loss']
val_loss = nn.metrics.history['val_loss']
epochs = range(0, N_EPOCHS)
plt.plot(epochs, train_loss, 'g', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='validation loss')
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
print(f"train loss: {train_loss}")
print(f"val loss: {val_loss}")
train_acc = nn.metrics.history['train_acc']
val_acc = nn.metrics.history['val_acc']
epochs = range(0, N_EPOCHS)
plt.plot(epochs, train_acc, 'g', label='Training accuracy')
plt.plot(epochs, val_acc, 'b', label='validation accuracy')
plt.title('Training and Validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
print(f"train acc: {train_acc}")
print(f"val acc: {val_acc}")
|
[
"model.loss.CategoricalCrossEntropy",
"model.layers.relu.LeakyReLU",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"model.layers.dense.Dense",
"numpy.zeros",
"numpy.linspace",
"sklearn.preprocessing.minmax_scale",
"model.layers.softmax.Softmax",
"numpy.cos",
"numpy.sin",
"matplotlib.pyplot.title",
"numpy.random.randn",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.show"
] |
[((1123, 1160), 'sklearn.preprocessing.minmax_scale', 'minmax_scale', (['X'], {'feature_range': '(0, 1)'}), '(X, feature_range=(0, 1))\n', (1135, 1160), False, 'from sklearn.preprocessing import minmax_scale\n'), ((2273, 2329), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'train_loss', '"""g"""'], {'label': '"""Training loss"""'}), "(epochs, train_loss, 'g', label='Training loss')\n", (2281, 2329), True, 'import matplotlib.pyplot as plt\n'), ((2330, 2386), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'val_loss', '"""b"""'], {'label': '"""validation loss"""'}), "(epochs, val_loss, 'b', label='validation loss')\n", (2338, 2386), True, 'import matplotlib.pyplot as plt\n'), ((2387, 2428), 'matplotlib.pyplot.title', 'plt.title', (['"""Training and Validation loss"""'], {}), "('Training and Validation loss')\n", (2396, 2428), True, 'import matplotlib.pyplot as plt\n'), ((2429, 2449), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (2439, 2449), True, 'import matplotlib.pyplot as plt\n'), ((2450, 2468), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (2460, 2468), True, 'import matplotlib.pyplot as plt\n'), ((2469, 2481), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2479, 2481), True, 'import matplotlib.pyplot as plt\n'), ((2482, 2492), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2490, 2492), True, 'import matplotlib.pyplot as plt\n'), ((2673, 2732), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'train_acc', '"""g"""'], {'label': '"""Training accuracy"""'}), "(epochs, train_acc, 'g', label='Training accuracy')\n", (2681, 2732), True, 'import matplotlib.pyplot as plt\n'), ((2733, 2792), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs', 'val_acc', '"""b"""'], {'label': '"""validation accuracy"""'}), "(epochs, val_acc, 'b', label='validation accuracy')\n", (2741, 2792), True, 'import matplotlib.pyplot as plt\n'), ((2793, 2838), 'matplotlib.pyplot.title', 'plt.title', (['"""Training and Validation accuracy"""'], {}), "('Training and Validation accuracy')\n", (2802, 2838), True, 'import matplotlib.pyplot as plt\n'), ((2839, 2859), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (2849, 2859), True, 'import matplotlib.pyplot as plt\n'), ((2860, 2882), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {}), "('Accuracy')\n", (2870, 2882), True, 'import matplotlib.pyplot as plt\n'), ((2883, 2895), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2893, 2895), True, 'import matplotlib.pyplot as plt\n'), ((2896, 2906), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2904, 2906), True, 'import matplotlib.pyplot as plt\n'), ((408, 439), 'numpy.zeros', 'np.zeros', (['(points * classes, 2)'], {}), '((points * classes, 2))\n', (416, 439), True, 'import numpy as np\n'), ((448, 489), 'numpy.zeros', 'np.zeros', (['(points * classes)'], {'dtype': '"""uint8"""'}), "(points * classes, dtype='uint8')\n", (456, 489), True, 'import numpy as np\n'), ((1890, 1915), 'model.loss.CategoricalCrossEntropy', 'CategoricalCrossEntropy', ([], {}), '()\n', (1913, 1915), False, 'from model.loss import CategoricalCrossEntropy\n'), ((613, 640), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1)', 'points'], {}), '(0.0, 1, points)\n', (624, 640), True, 'import numpy as np\n'), ((1781, 1791), 'model.layers.dense.Dense', 'Dense', (['(200)'], {}), '(200)\n', (1786, 1791), False, 'from model.layers.dense import Dense\n'), ((1793, 1804), 'model.layers.relu.LeakyReLU', 'LeakyReLU', ([], {}), '()\n', (1802, 1804), False, 'from model.layers.relu import LeakyReLU\n'), ((1810, 1820), 'model.layers.dense.Dense', 'Dense', (['(100)'], {}), '(100)\n', (1815, 1820), False, 'from model.layers.dense import Dense\n'), ((1822, 1833), 'model.layers.relu.LeakyReLU', 'LeakyReLU', ([], {}), '()\n', (1831, 1833), False, 'from model.layers.relu import LeakyReLU\n'), ((1839, 1848), 'model.layers.dense.Dense', 'Dense', (['(50)'], {}), '(50)\n', (1844, 1848), False, 'from model.layers.dense import Dense\n'), ((1850, 1861), 'model.layers.relu.LeakyReLU', 'LeakyReLU', ([], {}), '()\n', (1859, 1861), False, 'from model.layers.relu import LeakyReLU\n'), ((1867, 1875), 'model.layers.dense.Dense', 'Dense', (['K'], {}), '(K)\n', (1872, 1875), False, 'from model.layers.dense import Dense\n'), ((1877, 1886), 'model.layers.softmax.Softmax', 'Softmax', ([], {}), '()\n', (1884, 1886), False, 'from model.layers.softmax import Softmax\n'), ((663, 724), 'numpy.linspace', 'np.linspace', (['(class_number * 4)', '((class_number + 1) * 4)', 'points'], {}), '(class_number * 4, (class_number + 1) * 4, points)\n', (674, 724), True, 'import numpy as np\n'), ((727, 750), 'numpy.random.randn', 'np.random.randn', (['points'], {}), '(points)\n', (742, 750), True, 'import numpy as np\n'), ((783, 798), 'numpy.sin', 'np.sin', (['(t * 2.5)'], {}), '(t * 2.5)\n', (789, 798), True, 'import numpy as np\n'), ((804, 819), 'numpy.cos', 'np.cos', (['(t * 2.5)'], {}), '(t * 2.5)\n', (810, 819), True, 'import numpy as np\n')]
|
import json
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from model import NeuralNetwork
from nltk_utils import stem, tokenize, bag_of_words
with open('./data/data.json', 'r') as f:
data = json.load(f)
all_words = []
tags = []
xy = []
for intents in data['intents']:
tag = intents['tag']
tags.append(tag)
for pattern in intents['patterns']:
w = tokenize(pattern)
all_words.extend(w)
xy.append((w, tag))
ignore_words = ['?', '!', '.', ',']
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
print(tags)
x_train = []
y_train = []
for (pattern_sentence, tag) in xy:
bag = bag_of_words(pattern_sentence, all_words)
x_train.append(bag)
label = tags.index(tag)
y_train.append(label)
x_train = np.array(x_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self) -> None:
self.n_samples = len(x_train)
self.x_data = x_train
self.y_data = y_train
#dataset[index]
def __getitem__(self, index: int) -> None:
return self.x_data[index], self.y_data[index]
def __len__(self) -> int:
return self.n_samples
# Hyperparams
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(x_train[0])
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=2)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNetwork(input_size, hidden_size, output_size).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(device)
outputs = model(words)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print(f'epoch [{epoch+1}/{num_epochs}], loss: {loss.item():.4f}')
print(f'final loss: {loss.item():.4f}')
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"all_words": all_words,
"tags": tags
}
FILE = './data/data.pth'
torch.save(data, FILE)
print(f'training complete. file saved to {FILE}')
print(x_train)
|
[
"torch.nn.CrossEntropyLoss",
"numpy.array",
"nltk_utils.bag_of_words",
"nltk_utils.tokenize",
"torch.cuda.is_available",
"torch.save",
"torch.utils.data.DataLoader",
"json.load",
"model.NeuralNetwork",
"nltk_utils.stem"
] |
[((896, 913), 'numpy.array', 'np.array', (['x_train'], {}), '(x_train)\n', (904, 913), True, 'import numpy as np\n'), ((924, 941), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (932, 941), True, 'import numpy as np\n'), ((1468, 1547), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'dataset', 'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': '(2)'}), '(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=2)\n', (1478, 1547), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1703, 1724), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1722, 1724), True, 'import torch.nn as nn\n'), ((2456, 2478), 'torch.save', 'torch.save', (['data', 'FILE'], {}), '(data, FILE)\n', (2466, 2478), False, 'import torch\n'), ((255, 267), 'json.load', 'json.load', (['f'], {}), '(f)\n', (264, 267), False, 'import json\n'), ((564, 571), 'nltk_utils.stem', 'stem', (['w'], {}), '(w)\n', (568, 571), False, 'from nltk_utils import stem, tokenize, bag_of_words\n'), ((763, 804), 'nltk_utils.bag_of_words', 'bag_of_words', (['pattern_sentence', 'all_words'], {}), '(pattern_sentence, all_words)\n', (775, 804), False, 'from nltk_utils import stem, tokenize, bag_of_words\n'), ((440, 457), 'nltk_utils.tokenize', 'tokenize', (['pattern'], {}), '(pattern)\n', (448, 457), False, 'from nltk_utils import stem, tokenize, bag_of_words\n'), ((1581, 1606), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1604, 1606), False, 'import torch\n'), ((1627, 1678), 'model.NeuralNetwork', 'NeuralNetwork', (['input_size', 'hidden_size', 'output_size'], {}), '(input_size, hidden_size, output_size)\n', (1640, 1678), False, 'from model import NeuralNetwork\n')]
|
import os
import sys
import syglass as sy
from syglass import pyglass
import numpy as np
import tifffile
import subprocess
def extract(projectPath):
project = sy.get_project(projectPath)
head, tail = os.path.split(projectPath)
# Get a dictionary showing the number of blocks in each level
#codebreak()
resolution_map = project.get_resolution_map()
# Calculate the index of the highest resolution level
max_resolution_level = len(resolution_map) - 1
# Determine the number of blocks in this level
block_count = resolution_map[max_resolution_level]
# get size of project
total_size = project.get_size(max_resolution_level)
xsize = total_size[1]
ysize = total_size[2]
zslices = total_size[0]
dimensions = np.asarray([1,xsize, ysize])
offset = np.asarray([0,0,0])
os.chdir(os.path.dirname(projectPath))
for slice in range(zslices):
s = str(slice).zfill(5)
offset[0] = slice
block = project.get_custom_block(0, max_resolution_level, offset, dimensions)
data = block.data
print(s + ".tiff")
tifffile.imwrite(tail + "_" + s + ".tiff", data)
subprocess.run(['explorer', head])
def main():
print("Image Extractor, by <NAME>")
print("Attempts to extract the original data volume from a syGlass project")
print("and write it to a series of TIFF files")
print("---------------------------------------")
print("Usage: Highlight a project and use the Script Launcher in syGlass.")
print("---------------------------------------")
print(sys.argv)
for syGlassProjectPath in sys.argv:
print("Extracting project from: " + syGlassProjectPath)
extract(syGlassProjectPath)
if __name__== "__main__":
main()
|
[
"subprocess.run",
"numpy.asarray",
"os.path.split",
"os.path.dirname",
"syglass.get_project",
"tifffile.imwrite"
] |
[((162, 189), 'syglass.get_project', 'sy.get_project', (['projectPath'], {}), '(projectPath)\n', (176, 189), True, 'import syglass as sy\n'), ((204, 230), 'os.path.split', 'os.path.split', (['projectPath'], {}), '(projectPath)\n', (217, 230), False, 'import os\n'), ((736, 765), 'numpy.asarray', 'np.asarray', (['[1, xsize, ysize]'], {}), '([1, xsize, ysize])\n', (746, 765), True, 'import numpy as np\n'), ((775, 796), 'numpy.asarray', 'np.asarray', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (785, 796), True, 'import numpy as np\n'), ((1084, 1118), 'subprocess.run', 'subprocess.run', (["['explorer', head]"], {}), "(['explorer', head])\n", (1098, 1118), False, 'import subprocess\n'), ((805, 833), 'os.path.dirname', 'os.path.dirname', (['projectPath'], {}), '(projectPath)\n', (820, 833), False, 'import os\n'), ((1034, 1082), 'tifffile.imwrite', 'tifffile.imwrite', (["(tail + '_' + s + '.tiff')", 'data'], {}), "(tail + '_' + s + '.tiff', data)\n", (1050, 1082), False, 'import tifffile\n')]
|
import os
import sys
from dataclasses import dataclass
import click
import numpy as np
import xgboost as xgb
from rich import print, traceback
WD = os.path.dirname(__file__)
@click.command()
@click.option('-i', '--input', required=True, type=str, help='Path to data file to predict.')
@click.option('-m', '--model', type=str, help='Path to an already trained XGBoost model. If not passed a default model will be loaded.')
@click.option('-c/-nc', '--cuda/--no-cuda', type=bool, default=False, help='Whether to enable cuda or not')
@click.option('-o', '--output', type=str, help='Path to write the output to')
def main(input: str, model: str, cuda: bool, output: str):
"""Command-line interface for {{ cookiecutter.project_name }}"""
print(r"""[bold blue]
{{ cookiecutter.project_name }}
""")
print('[bold blue]Run [green]{{ cookiecutter.project_name }} --help [blue]for an overview of all commands\n')
if not model:
model = get_xgboost_model(f'{WD}/models/xgboost_test_model.xgb')
else:
model = get_xgboost_model(model)
if cuda:
model.set_param({'predictor': 'gpu_predictor'})
print('[bold blue] Parsing data')
data_to_predict = parse_data_to_predict(input)
print('[bold blue] Performing predictions')
predictions = np.round(model.predict(data_to_predict.DM))
print(predictions)
if output:
print(f'[bold blue]Writing predictions to {output}')
write_results(predictions, output)
@dataclass
class Dataset:
X: np.ndarray
y: list
DM: xgb.DMatrix
gene_names: list
sample_names: list
def parse_data_to_predict(path_to_data_to_predict: str) -> Dataset:
"""
Parses the data to predict and returns a full Dataset include the DMatrix
:param path_to_data_to_predict: Path to the data on which predictions should be performed on
"""
X = []
y = []
gene_names = []
sample_names = []
with open(path_to_data_to_predict, "r") as file:
all_runs_info = next(file).split("\n")[0].split("\t")[2:]
for run_info in all_runs_info:
split_info = run_info.split("_")
y.append(int(split_info[0]))
sample_names.append(split_info[1])
for line in file:
split = line.split("\n")[0].split("\t")
X.append([float(x) for x in split[2:]])
gene_names.append(split[:2])
X = [list(i) for i in zip(*X)]
X_np = np.array(X)
DM = xgb.DMatrix(X_np, label=y)
return Dataset(X_np, y, DM, gene_names, sample_names)
def write_results(predictions: np.ndarray, path_to_write_to) -> None:
"""
Writes the predictions into a human readable file.
:param predictions: Predictions as a numpy array
:param path_to_write_to: Path to write the predictions to
"""
np.savetxt(path_to_write_to, predictions, delimiter=',')
def get_xgboost_model(path_to_xgboost_model: str):
"""
Fetches the model of choice and creates a booster from it.
:param path_to_xgboost_model: Path to the xgboost model1
"""
model = xgb.Booster()
model.load_model(os.path.abspath(path_to_xgboost_model))
return model
if __name__ == "__main__":
traceback.install()
sys.exit(main()) # pragma: no cover
|
[
"rich.traceback.install",
"click.option",
"os.path.dirname",
"rich.print",
"numpy.array",
"xgboost.Booster",
"numpy.savetxt",
"os.path.abspath",
"xgboost.DMatrix",
"click.command"
] |
[((150, 175), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (165, 175), False, 'import os\n'), ((179, 194), 'click.command', 'click.command', ([], {}), '()\n', (192, 194), False, 'import click\n'), ((196, 293), 'click.option', 'click.option', (['"""-i"""', '"""--input"""'], {'required': '(True)', 'type': 'str', 'help': '"""Path to data file to predict."""'}), "('-i', '--input', required=True, type=str, help=\n 'Path to data file to predict.')\n", (208, 293), False, 'import click\n'), ((290, 435), 'click.option', 'click.option', (['"""-m"""', '"""--model"""'], {'type': 'str', 'help': '"""Path to an already trained XGBoost model. If not passed a default model will be loaded."""'}), "('-m', '--model', type=str, help=\n 'Path to an already trained XGBoost model. If not passed a default model will be loaded.'\n )\n", (302, 435), False, 'import click\n'), ((427, 538), 'click.option', 'click.option', (['"""-c/-nc"""', '"""--cuda/--no-cuda"""'], {'type': 'bool', 'default': '(False)', 'help': '"""Whether to enable cuda or not"""'}), "('-c/-nc', '--cuda/--no-cuda', type=bool, default=False, help=\n 'Whether to enable cuda or not')\n", (439, 538), False, 'import click\n'), ((535, 611), 'click.option', 'click.option', (['"""-o"""', '"""--output"""'], {'type': 'str', 'help': '"""Path to write the output to"""'}), "('-o', '--output', type=str, help='Path to write the output to')\n", (547, 611), False, 'import click\n'), ((745, 818), 'rich.print', 'print', (['"""[bold blue]\n {{ cookiecutter.project_name }}\n """'], {}), '("""[bold blue]\n {{ cookiecutter.project_name }}\n """)\n', (750, 818), False, 'from rich import print, traceback\n'), ((825, 947), 'rich.print', 'print', (['"""[bold blue]Run [green]{{ cookiecutter.project_name }} --help [blue]for an overview of all commands\n"""'], {}), '(\n """[bold blue]Run [green]{{ cookiecutter.project_name }} --help [blue]for an overview of all commands\n"""\n )\n', (830, 947), False, 'from rich import print, traceback\n'), ((1150, 1183), 'rich.print', 'print', (['"""[bold blue] Parsing data"""'], {}), "('[bold blue] Parsing data')\n", (1155, 1183), False, 'from rich import print, traceback\n'), ((1239, 1282), 'rich.print', 'print', (['"""[bold blue] Performing predictions"""'], {}), "('[bold blue] Performing predictions')\n", (1244, 1282), False, 'from rich import print, traceback\n'), ((1349, 1367), 'rich.print', 'print', (['predictions'], {}), '(predictions)\n', (1354, 1367), False, 'from rich import print, traceback\n'), ((2444, 2455), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (2452, 2455), True, 'import numpy as np\n'), ((2465, 2491), 'xgboost.DMatrix', 'xgb.DMatrix', (['X_np'], {'label': 'y'}), '(X_np, label=y)\n', (2476, 2491), True, 'import xgboost as xgb\n'), ((2813, 2869), 'numpy.savetxt', 'np.savetxt', (['path_to_write_to', 'predictions'], {'delimiter': '""","""'}), "(path_to_write_to, predictions, delimiter=',')\n", (2823, 2869), True, 'import numpy as np\n'), ((3075, 3088), 'xgboost.Booster', 'xgb.Booster', ([], {}), '()\n', (3086, 3088), True, 'import xgboost as xgb\n'), ((3201, 3220), 'rich.traceback.install', 'traceback.install', ([], {}), '()\n', (3218, 3220), False, 'from rich import print, traceback\n'), ((1391, 1443), 'rich.print', 'print', (['f"""[bold blue]Writing predictions to {output}"""'], {}), "(f'[bold blue]Writing predictions to {output}')\n", (1396, 1443), False, 'from rich import print, traceback\n'), ((3110, 3148), 'os.path.abspath', 'os.path.abspath', (['path_to_xgboost_model'], {}), '(path_to_xgboost_model)\n', (3125, 3148), False, 'import os\n')]
|
from __future__ import division, absolute_import, print_function
from past.builtins import xrange
import unittest
import numpy.testing as testing
import numpy as np
import fitsio
import os
from numpy import random
from redmapper import Cluster
from redmapper import Configuration
from redmapper import CenteringWcenZred, CenteringBCG, CenteringRandom, CenteringRandomSatellite
from redmapper import GalaxyCatalog
from redmapper import RedSequenceColorPar
from redmapper import Background
from redmapper import ZredBackground
from redmapper import ZlambdaCorrectionPar
class CenteringTestCase(unittest.TestCase):
"""
Test application of the centering models (CenteringWcenZred, CenteringBCG,
CenteringRandom, CenteringRandomSatelliate).
"""
def test_wcenzred(self):
"""
Test running of CenteringWcenZred.
"""
file_path = 'data_for_tests'
cluster = self._setup_cluster()
tempcat = fitsio.read(os.path.join(file_path, 'test_wcen_zred_data.fit'))
corr_filename = 'test_dr8_zlambdacorr.fit'
zlambda_corr = ZlambdaCorrectionPar(os.path.join(file_path, 'test_dr8_zlambdacorr.fit'), zlambda_pivot=30.0)
zlambda_corr = ZlambdaCorrectionPar(file_path + '/' + corr_filename, zlambda_pivot=30.0)
# And the meat of it...
cent = CenteringWcenZred(cluster, zlambda_corr=zlambda_corr)
cent.find_center()
testing.assert_almost_equal(cent.p_cen, tempcat[0]['PCEN'][tempcat[0]['GOOD']], 5)
testing.assert_almost_equal(cent.q_cen, tempcat[0]['QCEN'][tempcat[0]['GOOD']], 4)
testing.assert_almost_equal(cent.p_sat, tempcat[0]['PSAT'], 4)
testing.assert_almost_equal(cent.p_fg, tempcat[0]['PFG'], 4)
testing.assert_array_equal(cent.index, tempcat[0]['USE'][tempcat[0]['GOOD']])
def test_bcg(self):
"""
Test running of CenteringBcg.
"""
cluster = self._setup_cluster()
cent = CenteringBCG(cluster)
cent.find_center()
self.assertEqual(cent.maxind, 72)
self.assertEqual(cent.ngood, 1)
testing.assert_almost_equal(cent.ra, 150.55890608)
testing.assert_almost_equal(cent.dec, 20.53794937)
testing.assert_almost_equal(cent.p_cen[0], 1.0)
testing.assert_almost_equal(cent.q_cen[0], 1.0)
testing.assert_almost_equal(cent.p_sat[0], 0.0)
def test_random(self):
"""
Test running of CenteringRandom.
"""
random.seed(seed=12345)
cluster = self._setup_cluster()
cent = CenteringRandom(cluster)
cent.find_center()
self.assertEqual(cent.maxind, -1)
self.assertEqual(cent.ngood, 1)
testing.assert_almost_equal(cent.ra[0], 150.57049502423266)
testing.assert_almost_equal(cent.dec[0], 20.604521924053167)
testing.assert_almost_equal(cent.p_cen[0], 1.0)
testing.assert_almost_equal(cent.q_cen[0], 1.0)
testing.assert_almost_equal(cent.p_sat[0], 0.0)
def test_randsat(self):
"""
Test running of CenteringRandomSatellite.
"""
random.seed(seed=12345)
cluster = self._setup_cluster()
cent = CenteringRandomSatellite(cluster)
cent.find_center()
# Confirmed that the distribution is correct, this just checks for regression
self.assertEqual(cent.maxind, 721)
self.assertEqual(cent.ngood, 1)
testing.assert_almost_equal(cent.ra[0], 150.67510227)
testing.assert_almost_equal(cent.dec[0], 20.48011092)
testing.assert_almost_equal(cent.p_cen[0], 1.0)
testing.assert_almost_equal(cent.q_cen[0], 1.0)
testing.assert_almost_equal(cent.p_sat[0], 0.0)
def _setup_cluster(self):
"""
Set up the cluster to run through the centering code.
"""
file_path = 'data_for_tests'
cluster = Cluster()
cluster.config = Configuration(os.path.join(file_path, 'testconfig.yaml'))
tempcat = fitsio.read(os.path.join(file_path, 'test_wcen_zred_data.fit'))
temp_neighbors = np.zeros(tempcat[0]['RAS'].size,
dtype = [('RA', 'f8'),
('DEC', 'f8'),
('DIST', 'f4'),
('R', 'f4'),
('P', 'f4'),
('PFREE', 'f4'),
('PMEM', 'f4'),
('MAG', 'f4', 5),
('MAG_ERR', 'f4', 5),
('REFMAG', 'f4'),
('REFMAG_ERR', 'f4'),
('CHISQ', 'f4'),
('ZRED', 'f4'),
('ZRED_E', 'f4'),
('ZRED_CHISQ', 'f4')])
temp_neighbors['RA'] = tempcat[0]['RAS']
temp_neighbors['DEC'] = tempcat[0]['DECS']
temp_neighbors['R'] = tempcat[0]['R']
temp_neighbors['P'] = tempcat[0]['PVALS']
temp_neighbors['PFREE'] = tempcat[0]['WVALS']
temp_neighbors['PMEM'] = tempcat[0]['WTVALS']
temp_neighbors['REFMAG'] = tempcat[0]['REFMAG_TOTAL']
temp_neighbors['ZRED'] = tempcat[0]['GZREDS']
temp_neighbors['ZRED_E'] = tempcat[0]['GZREDE']
temp_neighbors['ZRED_CHISQ'] = tempcat[0]['GCHISQ']
temp_neighbors['DIST'] = tempcat[0]['R'] / (np.radians(1.) * cluster.config.cosmo.Da(0, tempcat[0]['ZCLUSTER']))
neighbors = GalaxyCatalog(temp_neighbors)
cluster.set_neighbors(neighbors)
zred_filename = 'test_dr8_pars.fit'
cluster.zredstr = RedSequenceColorPar(os.path.join(file_path, 'test_dr8_pars.fit'), fine=True, zrange=[0.25, 0.35])
cluster.bkg = Background(os.path.join(file_path, 'test_bkg.fit'))
cluster.zredbkg = ZredBackground(os.path.join(file_path, 'test_bkg.fit'))
cluster.redshift = tempcat[0]['ZCLUSTER']
cluster.ra = tempcat[0]['RAC']
cluster.dec = tempcat[0]['DECC']
cluster.r_lambda = 1.0 * (tempcat[0]['LAMBDA'] / 100.0)**0.2
cluster.Lambda = tempcat[0]['LAMBDA']
cluster.scaleval = tempcat[0]['SCALEVAL']
return cluster
if __name__=='__main__':
unittest.main()
|
[
"numpy.radians",
"redmapper.Cluster",
"redmapper.CenteringWcenZred",
"os.path.join",
"numpy.testing.assert_almost_equal",
"numpy.zeros",
"redmapper.ZlambdaCorrectionPar",
"redmapper.CenteringRandom",
"redmapper.CenteringBCG",
"numpy.random.seed",
"unittest.main",
"redmapper.GalaxyCatalog",
"numpy.testing.assert_array_equal",
"redmapper.CenteringRandomSatellite"
] |
[((6462, 6477), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6475, 6477), False, 'import unittest\n'), ((1209, 1282), 'redmapper.ZlambdaCorrectionPar', 'ZlambdaCorrectionPar', (["(file_path + '/' + corr_filename)"], {'zlambda_pivot': '(30.0)'}), "(file_path + '/' + corr_filename, zlambda_pivot=30.0)\n", (1229, 1282), False, 'from redmapper import ZlambdaCorrectionPar\n'), ((1332, 1385), 'redmapper.CenteringWcenZred', 'CenteringWcenZred', (['cluster'], {'zlambda_corr': 'zlambda_corr'}), '(cluster, zlambda_corr=zlambda_corr)\n', (1349, 1385), False, 'from redmapper import CenteringWcenZred, CenteringBCG, CenteringRandom, CenteringRandomSatellite\n'), ((1422, 1509), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_cen', "tempcat[0]['PCEN'][tempcat[0]['GOOD']]", '(5)'], {}), "(cent.p_cen, tempcat[0]['PCEN'][tempcat[0][\n 'GOOD']], 5)\n", (1449, 1509), True, 'import numpy.testing as testing\n'), ((1513, 1600), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.q_cen', "tempcat[0]['QCEN'][tempcat[0]['GOOD']]", '(4)'], {}), "(cent.q_cen, tempcat[0]['QCEN'][tempcat[0][\n 'GOOD']], 4)\n", (1540, 1600), True, 'import numpy.testing as testing\n'), ((1604, 1666), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_sat', "tempcat[0]['PSAT']", '(4)'], {}), "(cent.p_sat, tempcat[0]['PSAT'], 4)\n", (1631, 1666), True, 'import numpy.testing as testing\n'), ((1675, 1735), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_fg', "tempcat[0]['PFG']", '(4)'], {}), "(cent.p_fg, tempcat[0]['PFG'], 4)\n", (1702, 1735), True, 'import numpy.testing as testing\n'), ((1744, 1821), 'numpy.testing.assert_array_equal', 'testing.assert_array_equal', (['cent.index', "tempcat[0]['USE'][tempcat[0]['GOOD']]"], {}), "(cent.index, tempcat[0]['USE'][tempcat[0]['GOOD']])\n", (1770, 1821), True, 'import numpy.testing as testing\n'), ((1965, 1986), 'redmapper.CenteringBCG', 'CenteringBCG', (['cluster'], {}), '(cluster)\n', (1977, 1986), False, 'from redmapper import CenteringWcenZred, CenteringBCG, CenteringRandom, CenteringRandomSatellite\n'), ((2105, 2155), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.ra', '(150.55890608)'], {}), '(cent.ra, 150.55890608)\n', (2132, 2155), True, 'import numpy.testing as testing\n'), ((2164, 2214), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.dec', '(20.53794937)'], {}), '(cent.dec, 20.53794937)\n', (2191, 2214), True, 'import numpy.testing as testing\n'), ((2223, 2270), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_cen[0]', '(1.0)'], {}), '(cent.p_cen[0], 1.0)\n', (2250, 2270), True, 'import numpy.testing as testing\n'), ((2279, 2326), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.q_cen[0]', '(1.0)'], {}), '(cent.q_cen[0], 1.0)\n', (2306, 2326), True, 'import numpy.testing as testing\n'), ((2335, 2382), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_sat[0]', '(0.0)'], {}), '(cent.p_sat[0], 0.0)\n', (2362, 2382), True, 'import numpy.testing as testing\n'), ((2485, 2508), 'numpy.random.seed', 'random.seed', ([], {'seed': '(12345)'}), '(seed=12345)\n', (2496, 2508), False, 'from numpy import random\n'), ((2566, 2590), 'redmapper.CenteringRandom', 'CenteringRandom', (['cluster'], {}), '(cluster)\n', (2581, 2590), False, 'from redmapper import CenteringWcenZred, CenteringBCG, CenteringRandom, CenteringRandomSatellite\n'), ((2709, 2768), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.ra[0]', '(150.57049502423266)'], {}), '(cent.ra[0], 150.57049502423266)\n', (2736, 2768), True, 'import numpy.testing as testing\n'), ((2777, 2837), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.dec[0]', '(20.604521924053167)'], {}), '(cent.dec[0], 20.604521924053167)\n', (2804, 2837), True, 'import numpy.testing as testing\n'), ((2846, 2893), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_cen[0]', '(1.0)'], {}), '(cent.p_cen[0], 1.0)\n', (2873, 2893), True, 'import numpy.testing as testing\n'), ((2902, 2949), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.q_cen[0]', '(1.0)'], {}), '(cent.q_cen[0], 1.0)\n', (2929, 2949), True, 'import numpy.testing as testing\n'), ((2958, 3005), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_sat[0]', '(0.0)'], {}), '(cent.p_sat[0], 0.0)\n', (2985, 3005), True, 'import numpy.testing as testing\n'), ((3118, 3141), 'numpy.random.seed', 'random.seed', ([], {'seed': '(12345)'}), '(seed=12345)\n', (3129, 3141), False, 'from numpy import random\n'), ((3199, 3232), 'redmapper.CenteringRandomSatellite', 'CenteringRandomSatellite', (['cluster'], {}), '(cluster)\n', (3223, 3232), False, 'from redmapper import CenteringWcenZred, CenteringBCG, CenteringRandom, CenteringRandomSatellite\n'), ((3439, 3492), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.ra[0]', '(150.67510227)'], {}), '(cent.ra[0], 150.67510227)\n', (3466, 3492), True, 'import numpy.testing as testing\n'), ((3501, 3554), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.dec[0]', '(20.48011092)'], {}), '(cent.dec[0], 20.48011092)\n', (3528, 3554), True, 'import numpy.testing as testing\n'), ((3563, 3610), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_cen[0]', '(1.0)'], {}), '(cent.p_cen[0], 1.0)\n', (3590, 3610), True, 'import numpy.testing as testing\n'), ((3619, 3666), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.q_cen[0]', '(1.0)'], {}), '(cent.q_cen[0], 1.0)\n', (3646, 3666), True, 'import numpy.testing as testing\n'), ((3675, 3722), 'numpy.testing.assert_almost_equal', 'testing.assert_almost_equal', (['cent.p_sat[0]', '(0.0)'], {}), '(cent.p_sat[0], 0.0)\n', (3702, 3722), True, 'import numpy.testing as testing\n'), ((3896, 3905), 'redmapper.Cluster', 'Cluster', ([], {}), '()\n', (3903, 3905), False, 'from redmapper import Cluster\n'), ((4099, 4415), 'numpy.zeros', 'np.zeros', (["tempcat[0]['RAS'].size"], {'dtype': "[('RA', 'f8'), ('DEC', 'f8'), ('DIST', 'f4'), ('R', 'f4'), ('P', 'f4'), (\n 'PFREE', 'f4'), ('PMEM', 'f4'), ('MAG', 'f4', 5), ('MAG_ERR', 'f4', 5),\n ('REFMAG', 'f4'), ('REFMAG_ERR', 'f4'), ('CHISQ', 'f4'), ('ZRED', 'f4'),\n ('ZRED_E', 'f4'), ('ZRED_CHISQ', 'f4')]"}), "(tempcat[0]['RAS'].size, dtype=[('RA', 'f8'), ('DEC', 'f8'), (\n 'DIST', 'f4'), ('R', 'f4'), ('P', 'f4'), ('PFREE', 'f4'), ('PMEM', 'f4'\n ), ('MAG', 'f4', 5), ('MAG_ERR', 'f4', 5), ('REFMAG', 'f4'), (\n 'REFMAG_ERR', 'f4'), ('CHISQ', 'f4'), ('ZRED', 'f4'), ('ZRED_E', 'f4'),\n ('ZRED_CHISQ', 'f4')])\n", (4107, 4415), True, 'import numpy as np\n'), ((5714, 5743), 'redmapper.GalaxyCatalog', 'GalaxyCatalog', (['temp_neighbors'], {}), '(temp_neighbors)\n', (5727, 5743), False, 'from redmapper import GalaxyCatalog\n'), ((965, 1015), 'os.path.join', 'os.path.join', (['file_path', '"""test_wcen_zred_data.fit"""'], {}), "(file_path, 'test_wcen_zred_data.fit')\n", (977, 1015), False, 'import os\n'), ((1113, 1164), 'os.path.join', 'os.path.join', (['file_path', '"""test_dr8_zlambdacorr.fit"""'], {}), "(file_path, 'test_dr8_zlambdacorr.fit')\n", (1125, 1164), False, 'import os\n'), ((3946, 3988), 'os.path.join', 'os.path.join', (['file_path', '"""testconfig.yaml"""'], {}), "(file_path, 'testconfig.yaml')\n", (3958, 3988), False, 'import os\n'), ((4021, 4071), 'os.path.join', 'os.path.join', (['file_path', '"""test_wcen_zred_data.fit"""'], {}), "(file_path, 'test_wcen_zred_data.fit')\n", (4033, 4071), False, 'import os\n'), ((5876, 5920), 'os.path.join', 'os.path.join', (['file_path', '"""test_dr8_pars.fit"""'], {}), "(file_path, 'test_dr8_pars.fit')\n", (5888, 5920), False, 'import os\n'), ((5988, 6027), 'os.path.join', 'os.path.join', (['file_path', '"""test_bkg.fit"""'], {}), "(file_path, 'test_bkg.fit')\n", (6000, 6027), False, 'import os\n'), ((6070, 6109), 'os.path.join', 'os.path.join', (['file_path', '"""test_bkg.fit"""'], {}), "(file_path, 'test_bkg.fit')\n", (6082, 6109), False, 'import os\n'), ((5624, 5639), 'numpy.radians', 'np.radians', (['(1.0)'], {}), '(1.0)\n', (5634, 5639), True, 'import numpy as np\n')]
|
"""Classes for use with Yambo
Representation of a spectrum.
Main functionality is to read from Yambo output, o.qp files
and also netcdf databases.
"""
import re
import copy as cp
import numpy as np
import asetk.atomistic.fundamental as fu
import asetk.atomistic.constants as atc
from . import cube
class Dispersion:
"""A Dispersion holds the k-points belonging to one spin"""
def __init__(self, energylevels=None, kvectors=None, weights=None):
"""Set up spectrum from a list of EnergyLevels."""
self.__energylevels = energylevels
self.__kvectors = kvectors
self.__weights = weights
@property
def energylevels(self):
"""Returns energylevelsi of all k-points."""
return self.__energylevels
@property
def kvectors(self):
return self.__kvectors
@property
def weights(self):
return self.__weights
@property
def energies(self):
"""Returns list of energy levels of all k-points."""
list = [el.energies for el in self.__energylevels]
return np.concatenate(list)
@property
def occupations(self):
"""Returns list of level occupations of all k-points."""
os = []
for el in self.__energylevels:
os = os + list(el.occupations)
return os
def copy(self, dispersion):
"""Performs deep copy of dispersion."""
self.__energylevels = [ el.copy() for el in dispersion.__energylevels ]
self.__kvectors = cp.copy(spectrum.__kvectors)
self.__weights = cp.copy(spectrum.__weights)
def shift(self, de):
for levels in self.__energylevels:
levels.shift(de)
def __str__(self):
text = "Dispersion containing {} k-points\n".format(len(self.__energylevels))
for i in range(len(self.__energylevels)):
e = self.__energylevels[i]
k = self.__kvectors[i]
text += 'k = ({:6.3f}, {:6.3f}, {:6.3f})'.format(k[0], k[1], k[2])
if self.__weights:
w = self.__weights[i]
text += ', w = {}'.format(w)
text += ' : {}\n'.format(e.__str__())
return text
def __getitem__(self, index):
return self.__energylevels[index]
@property
def nk(self):
return len(self.energylevels)
class Spectrum(object):
"""A Spectrum holds the data belonging to all spins"""
def __init__(self, energylevels=None):
"""Set up spectrum from a list of EnergyLevels."""
self.dispersions = [ Dispersion(energylevels) ]
@classmethod
def from_output(cls, fname, mode='QP'):
"""Creates Spectrum from Yambo output file"""
tmp = Spectrum()
tmp.read_from_output(fname, mode)
return tmp
@classmethod
def from_qp(cls, fname=None, mode='QP'):
"""Creates Spectrum from Yambo o.qp file"""
tmp = Spectrum()
tmp.read_from_qp(fname, mode)
return tmp
@classmethod
def from_netcdf_db(cls, fname=None, mode='QP'):
"""Creates Spectrum from Yambo netcdf database"""
tmp = Spectrum()
tmp.read_from_netcdf_db(fname, mode=mode)
return tmp
@property
def energies(self):
"""Returns list of energies e[ispin][ibnd]."""
list = [disp.energies for disp in self.dispersions]
return list
@property
def energylevels(self):
"""Returns list of Energylevels l[ispin][ibnd]."""
list = []
for d in self.dispersions:
sum = fu.Energylevels()
for el in d.energylevels:
sum += el
list.append(sum)
return list
@property
def occupations(self):
"""Returns list of level occupations of all spins."""
os = []
for disp in self.dispersions:
os = os + disp.occupations
return os
@property
def nspin(self):
return len(self.dispersions)
def copy(self, spectrum):
"""Performs deep copy of spectrum."""
self.dispersions = [ el.copy() for el in spectrum.dispersions ]
self.spins = cp.copy(spectrum.spins)
def shift(self, de):
for disp in self.dispersions:
disp.shift(de)
def __str__(self):
text = "Spectrum containing {} spins\n".format(len(self.dispersions))
for i in range(len(self.dispersions)):
d = self.dispersions[i]
s = self.spins[i]
text += 'spin {} : {}\n'.format(s+1, d.__str__())
return text
def __getitem__(self, index):
return self.levels[index]
def read_from_output(self, fname, mode=None):
s = open(fname, 'r').read()
floatregex = '-?\d+\.\d+'
lineregex='[^\r\n]*\r?\n'
#blanklineregex='(?:^\s*$)'
if mode == 'DFT' or mode == None:
kptregex = 'X\* K.*?: ({f})\s*({f})\s*({f}).*?weight\s*({f}){l}(.*?)[\*\[]'\
.format(f=floatregex,l=lineregex)
fermiregex='Fermi Level.*?:(\s*[\-\d\.]+)'
elif mode == 'QP':
kptregex = 'Q?P \[eV\].*?:\s*({f})\s+({f})\s+({f})(.*?)[Q\[]'\
.format(f=floatregex)
self.spins=[]
self.dispersions=[]
# No spin for the moment, but shouldn't be too difficult to extend
for spin in [0]:
disp = Dispersion()
matches=re.findall(kptregex, s, re.DOTALL)
if mode == 'DFT' or mode == None:
fermi = float(re.search(fermiregex, s).group(1))
energylevels = []
kvectors = []
weights = []
for match in matches:
kx, ky, kz, weight, ldata = match
kvectors.append( np.array([kx, ky, kz], dtype=float) )
weights.append( float(weight) )
energies = re.findall('({f})'.format(f=floatregex), ldata, re.DOTALL)
energies = np.array(energies, dtype=float)
levels = fu.EnergyLevels(energies=energies,occupations=None, fermi=fermi)
energylevels.append(levels)
disp = Dispersion(energylevels=energylevels, kvectors=kvectors, weights=weights)
elif mode == 'QP':
energylevels = []
kvectors = []
for match in matches:
kx, ky, kz, ldata = match
kvectors.append( np.array([kx, ky, kz], dtype=float) )
energies = re.findall('E=\s*({f})'.format(f=floatregex), ldata, re.DOTALL)
energies = np.array(energies, dtype=float)
levels = fu.EnergyLevels(energies=energies)
energylevels.append(levels)
disp = Dispersion(energylevels=energylevels, kvectors=kvectors)
self.dispersions.append(disp)
self.spins.append(spin)
def read_from_qp(self, fname="o.qp", ihomo=None):
"""Read from o.qp output (has more digits than in report.
Anyhow, the proper way would be to read the database"""
s = open(fname, 'r').read()
data = np.genfromtxt(fname, dtype=float)
energies = data[:,2] + data[:,3]
# setting HOMO to zero
if ihomo:
energies -= energies[ihomo]
self.spins=[]
self.dispersions=[]
# No spin for the moment, but shouldn't be too difficult to extend
for spin in [0]:
levels = fu.EnergyLevels(energies=energies,occupations=None)
disp = Dispersion(energylevels=[levels], kvectors = [ (0,0,0) ] )
self.dispersions.append(disp)
self.spins.append(spin)
def read_from_netcdf_db(self, fname="ndb.QP", mode="QP"):
"""Read from netCDF database
requires netCDF4 python module"""
from netCDF4 import Dataset
f = Dataset(fname, 'r')
SPIN_VARS = f.variables['SPIN_VARS'][:]
QP_kpts = f.variables['QP_kpts'][:]
QP_table = f.variables['QP_table'][:]
QP_E_Eo_Z = f.variables['QP_E_Eo_Z'][:]
f.close()
nspin = len(SPIN_VARS)
nk = QP_kpts.shape[1]
kpts = [ QP_kpts[:,ik] for ik in range(nk) ]
ibnds, dum, iks, ispins = QP_table
nbnd = len(ibnds) / (nspin * nk)
if mode == "QP":
iener = 0
elif mode == "DFT":
iener = 1
else:
print("Error: Did not recognize mode '{}'.".format(mode))
self.spins=[]
self.dispersions=[]
for ispin in range(nspin):
is_spin = np.where(ispins == SPIN_VARS[ispin])[0]
energylevels = []
kvectors = []
for ik in range(nk):
k = kpts[ik]
is_k = np.where(iks == ik+1)[0]
# still need to figure out the first index
# is it real vs. complex?
e = QP_E_Eo_Z[0, np.intersect1d(is_spin,is_k), iener] * atc.Ha / atc.eV
levels = fu.EnergyLevels(energies=e,occupations=None)
kvectors.append(k)
energylevels.append(levels)
disp = Dispersion(energylevels=energylevels, kvectors = kvectors)
self.dispersions.append(disp)
self.spins.append(ispin)
## setting HOMO to zero
#if ihomo:
# energies -= energies[ihomo]
|
[
"numpy.intersect1d",
"numpy.where",
"netCDF4.Dataset",
"asetk.atomistic.fundamental.Energylevels",
"re.findall",
"numpy.array",
"numpy.concatenate",
"copy.copy",
"numpy.genfromtxt",
"asetk.atomistic.fundamental.EnergyLevels",
"re.search"
] |
[((1070, 1090), 'numpy.concatenate', 'np.concatenate', (['list'], {}), '(list)\n', (1084, 1090), True, 'import numpy as np\n'), ((1501, 1529), 'copy.copy', 'cp.copy', (['spectrum.__kvectors'], {}), '(spectrum.__kvectors)\n', (1508, 1529), True, 'import copy as cp\n'), ((1555, 1582), 'copy.copy', 'cp.copy', (['spectrum.__weights'], {}), '(spectrum.__weights)\n', (1562, 1582), True, 'import copy as cp\n'), ((4129, 4152), 'copy.copy', 'cp.copy', (['spectrum.spins'], {}), '(spectrum.spins)\n', (4136, 4152), True, 'import copy as cp\n'), ((7232, 7265), 'numpy.genfromtxt', 'np.genfromtxt', (['fname'], {'dtype': 'float'}), '(fname, dtype=float)\n', (7245, 7265), True, 'import numpy as np\n'), ((7987, 8006), 'netCDF4.Dataset', 'Dataset', (['fname', '"""r"""'], {}), "(fname, 'r')\n", (7994, 8006), False, 'from netCDF4 import Dataset\n'), ((3540, 3557), 'asetk.atomistic.fundamental.Energylevels', 'fu.Energylevels', ([], {}), '()\n', (3555, 3557), True, 'import asetk.atomistic.fundamental as fu\n'), ((5402, 5436), 're.findall', 're.findall', (['kptregex', 's', 're.DOTALL'], {}), '(kptregex, s, re.DOTALL)\n', (5412, 5436), False, 'import re\n'), ((7585, 7637), 'asetk.atomistic.fundamental.EnergyLevels', 'fu.EnergyLevels', ([], {'energies': 'energies', 'occupations': 'None'}), '(energies=energies, occupations=None)\n', (7600, 7637), True, 'import asetk.atomistic.fundamental as fu\n'), ((8712, 8748), 'numpy.where', 'np.where', (['(ispins == SPIN_VARS[ispin])'], {}), '(ispins == SPIN_VARS[ispin])\n', (8720, 8748), True, 'import numpy as np\n'), ((9134, 9179), 'asetk.atomistic.fundamental.EnergyLevels', 'fu.EnergyLevels', ([], {'energies': 'e', 'occupations': 'None'}), '(energies=e, occupations=None)\n', (9149, 9179), True, 'import asetk.atomistic.fundamental as fu\n'), ((5987, 6018), 'numpy.array', 'np.array', (['energies'], {'dtype': 'float'}), '(energies, dtype=float)\n', (5995, 6018), True, 'import numpy as np\n'), ((6048, 6113), 'asetk.atomistic.fundamental.EnergyLevels', 'fu.EnergyLevels', ([], {'energies': 'energies', 'occupations': 'None', 'fermi': 'fermi'}), '(energies=energies, occupations=None, fermi=fermi)\n', (6063, 6113), True, 'import asetk.atomistic.fundamental as fu\n'), ((8895, 8918), 'numpy.where', 'np.where', (['(iks == ik + 1)'], {}), '(iks == ik + 1)\n', (8903, 8918), True, 'import numpy as np\n'), ((5774, 5809), 'numpy.array', 'np.array', (['[kx, ky, kz]'], {'dtype': 'float'}), '([kx, ky, kz], dtype=float)\n', (5782, 5809), True, 'import numpy as np\n'), ((6661, 6692), 'numpy.array', 'np.array', (['energies'], {'dtype': 'float'}), '(energies, dtype=float)\n', (6669, 6692), True, 'import numpy as np\n'), ((6722, 6756), 'asetk.atomistic.fundamental.EnergyLevels', 'fu.EnergyLevels', ([], {'energies': 'energies'}), '(energies=energies)\n', (6737, 6756), True, 'import asetk.atomistic.fundamental as fu\n'), ((5515, 5539), 're.search', 're.search', (['fermiregex', 's'], {}), '(fermiregex, s)\n', (5524, 5539), False, 'import re\n'), ((6496, 6531), 'numpy.array', 'np.array', (['[kx, ky, kz]'], {'dtype': 'float'}), '([kx, ky, kz], dtype=float)\n', (6504, 6531), True, 'import numpy as np\n'), ((9054, 9083), 'numpy.intersect1d', 'np.intersect1d', (['is_spin', 'is_k'], {}), '(is_spin, is_k)\n', (9068, 9083), True, 'import numpy as np\n')]
|
import itertools
import numpy as np
from jspp_imageutils.image.types import GenImgArray, GenImgBatch
from typing import Tuple, Iterable, Iterator
# TODO: fix everywhere the x and y axis nomenclature
"""
chunk_image_on_position -> returns images
chunk_image_generator -> returns images
chunk_data_image_generator -> returns batches of data
"""
def chunk_image_on_position(arr_img: GenImgArray,
x_pos: Iterable[int], y_pos: Iterable[int],
dimensions: Tuple[int, int] = (50, 50),
warn_leftovers=True) -> \
Iterator[Tuple[int, int, GenImgArray]]:
# TODO decide if this should handle centering the points ...
x_ends = [x + dimensions[0] for x in x_pos]
y_ends = [y + dimensions[1] for y in y_pos]
i = 0
# TODO find a better way to indent this ...
for y_start, y_end, x_start, x_end in \
zip(y_pos, y_ends, x_pos, x_ends):
temp_arr_img = arr_img[x_start:x_end, y_start:y_end, ]
if temp_arr_img.shape[0:2] == dimensions:
yield x_start, y_start, temp_arr_img
i += 1
else:
if warn_leftovers:
print("skipping chunk due to weird size",
str(temp_arr_img.shape))
print("Image generator yielded ", str(i), " images")
def chunk_image_generator(img,
chunk_size: Tuple[int, int] = (500, 500),
displacement: Tuple[int, int] = (250, 250),
warn_leftovers=True) -> \
Iterator[Tuple[int, int, GenImgArray]]:
"""
Gets an image read with tensorflow.keras.preprocessing.image.load_img
and returns a generator that iterates over rectangular areas of it.
chunks are of dims (chunk_size, colors)
"""
# TODO unify the input for this guy ...
arr_img = np.asarray(img)
dims = arr_img.shape
x_starts = [
displacement[0] * x for x in range(dims[0] // displacement[0])
]
x_starts = [x for x in x_starts if
x >= 0 & (x + chunk_size[0]) < dims[0]]
y_starts = [
displacement[1] * y for y in range(dims[1] // displacement[1])
]
y_starts = [y for y in y_starts if
y >= 0 & (y + chunk_size[1]) < dims[1]]
coord_pairs = itertools.product(x_starts, y_starts)
coord_pairs = np.array(list(coord_pairs))
my_gen = chunk_image_on_position(
arr_img, coord_pairs[:, 0], coord_pairs[:, 1],
dimensions=chunk_size, warn_leftovers=warn_leftovers)
for chunk in my_gen:
yield(chunk)
def chunk_data_image_generator(img: GenImgArray,
chunk_size: Tuple[int, int] = (500, 500),
displacement: Tuple[int, int] = (250, 250),
batch: int = 16) -> GenImgBatch:
"""
chunk_data_image_generator [summary]
Gets an image read with tensorflow.keras.preprocessing.image.load_img
and returns a generator that iterates over BATCHES of rectangular
areas of it
dimensions are (batch, chunk_size, colors)
:param img: [description]
:type img: GenImgArray
:param chunk_size: [description], defaults to (500, 500)
:type chunk_size: Tuple[int, int], optional
:param displacement: [description], defaults to (250, 250)
:type displacement: Tuple[int, int], optional
:param batch: [description], defaults to 16
:type batch: int, optional
:return: [description]
:rtype: GenImgBatch
"""
# np.concatenate((a1, a2))
img_generator = chunk_image_generator(
img=img, chunk_size=chunk_size,
displacement=displacement)
counter = 0
img_buffer = []
for _, _, temp_arr_img in img_generator:
tmp_arr_dims = temp_arr_img.shape
temp_arr_img = temp_arr_img.reshape(1, *tmp_arr_dims)
img_buffer.append(temp_arr_img)
counter += 1
if counter == batch:
yield(np.concatenate(img_buffer))
counter = 0
img_buffer = []
yield(np.concatenate(img_buffer))
|
[
"itertools.product",
"numpy.asarray",
"numpy.concatenate"
] |
[((1915, 1930), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (1925, 1930), True, 'import numpy as np\n'), ((2354, 2391), 'itertools.product', 'itertools.product', (['x_starts', 'y_starts'], {}), '(x_starts, y_starts)\n', (2371, 2391), False, 'import itertools\n'), ((4118, 4144), 'numpy.concatenate', 'np.concatenate', (['img_buffer'], {}), '(img_buffer)\n', (4132, 4144), True, 'import numpy as np\n'), ((4026, 4052), 'numpy.concatenate', 'np.concatenate', (['img_buffer'], {}), '(img_buffer)\n', (4040, 4052), True, 'import numpy as np\n')]
|
"""Compute ordinary Voronoi diagrams in Shapely geometries."""
import operator
import numpy
import scipy.spatial
import shapely.geometry
import shapely.geometry.base
import shapely.prepared
def pointset_bounds(coords):
return (
min(coords, key=operator.itemgetter(0))[0],
min(coords, key=operator.itemgetter(1))[1],
max(coords, key=operator.itemgetter(0))[0],
max(coords, key=operator.itemgetter(1))[1],
)
def bounds_to_limiting_generators(minx, miny, maxx, maxy):
addx = maxx - minx
addy = maxy - miny
return [
(minx - addx, miny - addy),
(maxx + addx, miny - addy),
(minx - addx, maxy + addy),
(maxx + addx, maxy + addy),
]
def cells(points, extent=None):
if extent is None:
bbox = pointset_bounds(points)
extent_prep = None
else:
if not isinstance(extent, shapely.geometry.base.BaseGeometry):
extent = shapely.geometry.box(*extent)
bbox = extent.bounds
extent_prep = shapely.prepared.prep(extent)
boundgens = bounds_to_limiting_generators(*bbox)
diagram = scipy.spatial.Voronoi(numpy.concatenate((points, boundgens)))
for reg_i in diagram.point_region[:-len(boundgens)]:
coords = diagram.vertices[diagram.regions[reg_i]]
poly = shapely.geometry.Polygon(coords)
if extent_prep is None or extent_prep.contains(poly):
yield poly
else:
yield extent.intersection(poly)
def cells_shapely(points, extent=None):
return cells(numpy.array([pt.coords[0] for pt in points]), extent=extent)
|
[
"numpy.array",
"operator.itemgetter",
"numpy.concatenate"
] |
[((1145, 1183), 'numpy.concatenate', 'numpy.concatenate', (['(points, boundgens)'], {}), '((points, boundgens))\n', (1162, 1183), False, 'import numpy\n'), ((1550, 1594), 'numpy.array', 'numpy.array', (['[pt.coords[0] for pt in points]'], {}), '([pt.coords[0] for pt in points])\n', (1561, 1594), False, 'import numpy\n'), ((260, 282), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (279, 282), False, 'import operator\n'), ((312, 334), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (331, 334), False, 'import operator\n'), ((364, 386), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (383, 386), False, 'import operator\n'), ((416, 438), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (435, 438), False, 'import operator\n')]
|
"""Plots composite saliency map."""
import argparse
import numpy
import matplotlib
matplotlib.use('agg')
from matplotlib import pyplot
from gewittergefahr.gg_utils import general_utils as gg_general_utils
from gewittergefahr.gg_utils import file_system_utils
from gewittergefahr.plotting import imagemagick_utils
from ml4tc.utils import normalization
from ml4tc.machine_learning import saliency
from ml4tc.machine_learning import neural_net
from ml4tc.plotting import plotting_utils
from ml4tc.plotting import satellite_plotting
from ml4tc.plotting import predictor_plotting
MAX_COLOUR_PERCENTILE = 99.
SHIPS_BUILTIN_LAG_TIMES_HOURS = numpy.array([numpy.nan, 0, 1.5, 3])
COLOUR_BAR_FONT_SIZE = 12
SCALAR_SATELLITE_FONT_SIZE = 20
LAGGED_SHIPS_FONT_SIZE = 20
FORECAST_SHIPS_FONT_SIZE = 10
FIGURE_RESOLUTION_DPI = 300
PANEL_SIZE_PX = int(2.5e6)
SALIENCY_FILE_ARG_NAME = 'input_saliency_file_name'
NORMALIZATION_FILE_ARG_NAME = 'input_normalization_file_name'
PLOT_INPUT_GRAD_ARG_NAME = 'plot_input_times_grad'
SPATIAL_COLOUR_MAP_ARG_NAME = 'spatial_colour_map_name'
NONSPATIAL_COLOUR_MAP_ARG_NAME = 'nonspatial_colour_map_name'
SMOOTHING_RADIUS_ARG_NAME = 'smoothing_radius_px'
OUTPUT_DIR_ARG_NAME = 'output_dir_name'
SALIENCY_FILE_HELP_STRING = (
'Path to saliency file. Will be read by `saliency.read_composite_file`.'
)
NORMALIZATION_FILE_HELP_STRING = (
'Path to file with normalization params (will be used to denormalize '
'brightness-temperature maps before plotting). Will be read by '
'`normalization.read_file`.'
)
PLOT_INPUT_GRAD_HELP_STRING = (
'Boolean flag. If 1 (0), will plot input * gradient (saliency).'
)
SPATIAL_COLOUR_MAP_HELP_STRING = (
'Name of colour scheme for spatial saliency maps. Must be accepted by '
'`matplotlib.pyplot.get_cmap`.'
)
NONSPATIAL_COLOUR_MAP_HELP_STRING = (
'Name of colour scheme for non-spatial saliency maps. Must be accepted by '
'`matplotlib.pyplot.get_cmap`.'
)
SMOOTHING_RADIUS_HELP_STRING = (
'Smoothing radius (number of pixels) for saliency maps. If you do not want'
' to smooth, make this 0 or negative.'
)
OUTPUT_DIR_HELP_STRING = 'Name of output directory. Images will be saved here.'
INPUT_ARG_PARSER = argparse.ArgumentParser()
INPUT_ARG_PARSER.add_argument(
'--' + SALIENCY_FILE_ARG_NAME, type=str, required=True,
help=SALIENCY_FILE_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + NORMALIZATION_FILE_ARG_NAME, type=str, required=True,
help=NORMALIZATION_FILE_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + PLOT_INPUT_GRAD_ARG_NAME, type=int, required=True,
help=PLOT_INPUT_GRAD_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + SPATIAL_COLOUR_MAP_ARG_NAME, type=str, required=False,
default='BuGn', help=SPATIAL_COLOUR_MAP_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + NONSPATIAL_COLOUR_MAP_ARG_NAME, type=str, required=False,
default='binary', help=NONSPATIAL_COLOUR_MAP_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + SMOOTHING_RADIUS_ARG_NAME, type=float, required=False, default=-1,
help=SMOOTHING_RADIUS_HELP_STRING
)
INPUT_ARG_PARSER.add_argument(
'--' + OUTPUT_DIR_ARG_NAME, type=str, required=True,
help=OUTPUT_DIR_HELP_STRING
)
def _plot_brightness_temp_saliency(
saliency_dict, model_metadata_dict, normalization_table_xarray,
colour_map_object, plot_input_times_grad, output_dir_name):
"""Plots saliency for brightness temp for each lag time at one init time.
:param saliency_dict: See doc for `_plot_scalar_satellite_saliency`.
:param model_metadata_dict: Same.
:param normalization_table_xarray: xarray table returned by
`normalization.read_file`.
:param colour_map_object: See doc for `_plot_scalar_satellite_saliency`.
:param plot_input_times_grad: Same.
:param output_dir_name: Same.
"""
predictor_matrices = [
None if p is None else numpy.expand_dims(p, axis=0)
for p in saliency_dict[saliency.THREE_PREDICTORS_KEY]
]
if plot_input_times_grad:
this_key = saliency.THREE_INPUT_GRAD_KEY
else:
this_key = saliency.THREE_SALIENCY_KEY
saliency_matrices = [
None if p is None else numpy.expand_dims(p, axis=0)
for p in saliency_dict[this_key]
]
num_lag_times = predictor_matrices[0].shape[3]
grid_latitudes_deg_n = numpy.linspace(
-10, 10, num=predictor_matrices[0].shape[1], dtype=float
)
grid_latitude_matrix_deg_n = numpy.expand_dims(grid_latitudes_deg_n, axis=1)
grid_latitude_matrix_deg_n = numpy.repeat(
grid_latitude_matrix_deg_n, axis=1, repeats=num_lag_times
)
grid_longitudes_deg_e = numpy.linspace(
300, 320, num=predictor_matrices[0].shape[2], dtype=float
)
grid_longitude_matrix_deg_e = numpy.expand_dims(
grid_longitudes_deg_e, axis=1
)
grid_longitude_matrix_deg_e = numpy.repeat(
grid_longitude_matrix_deg_e, axis=1, repeats=num_lag_times
)
figure_objects, axes_objects, pathless_output_file_names = (
predictor_plotting.plot_brightness_temp_one_example(
predictor_matrices_one_example=predictor_matrices,
model_metadata_dict=model_metadata_dict,
cyclone_id_string='2005AL12', init_time_unix_sec=0,
grid_latitude_matrix_deg_n=grid_latitude_matrix_deg_n,
grid_longitude_matrix_deg_e=grid_longitude_matrix_deg_e,
normalization_table_xarray=normalization_table_xarray,
border_latitudes_deg_n=numpy.array([20.]),
border_longitudes_deg_e=numpy.array([330.])
)
)
validation_option_dict = (
model_metadata_dict[neural_net.VALIDATION_OPTIONS_KEY]
)
num_model_lag_times = len(
validation_option_dict[neural_net.SATELLITE_LAG_TIMES_KEY]
)
all_saliency_values = numpy.concatenate([
numpy.ravel(s) for s in saliency_matrices if s is not None
])
min_abs_contour_value = numpy.percentile(
numpy.absolute(all_saliency_values), 100. - MAX_COLOUR_PERCENTILE
)
max_abs_contour_value = numpy.percentile(
numpy.absolute(all_saliency_values), MAX_COLOUR_PERCENTILE
)
panel_file_names = [''] * num_model_lag_times
for k in range(num_model_lag_times):
min_abs_contour_value, max_abs_contour_value = (
satellite_plotting.plot_saliency(
saliency_matrix=saliency_matrices[0][0, ..., k, 0],
axes_object=axes_objects[k],
latitude_array_deg_n=grid_latitude_matrix_deg_n[:, k],
longitude_array_deg_e=grid_longitude_matrix_deg_e[:, k],
min_abs_contour_value=min_abs_contour_value,
max_abs_contour_value=max_abs_contour_value,
half_num_contours=10,
colour_map_object=colour_map_object
)
)
panel_file_names[k] = '{0:s}/{1:s}'.format(
output_dir_name, pathless_output_file_names[k]
)
print('Saving figure to file: "{0:s}"...'.format(
panel_file_names[k]
))
figure_objects[k].savefig(
panel_file_names[k], dpi=FIGURE_RESOLUTION_DPI,
pad_inches=0, bbox_inches='tight'
)
pyplot.close(figure_objects[k])
imagemagick_utils.resize_image(
input_file_name=panel_file_names[k],
output_file_name=panel_file_names[k],
output_size_pixels=PANEL_SIZE_PX
)
concat_figure_file_name = '{0:s}/brightness_temp_concat.jpg'.format(
output_dir_name
)
plotting_utils.concat_panels(
panel_file_names=panel_file_names,
concat_figure_file_name=concat_figure_file_name
)
this_cmap_object, this_cnorm_object = (
satellite_plotting.get_colour_scheme()
)
plotting_utils.add_colour_bar(
figure_file_name=concat_figure_file_name,
colour_map_object=this_cmap_object,
colour_norm_object=this_cnorm_object,
orientation_string='vertical', font_size=COLOUR_BAR_FONT_SIZE,
cbar_label_string='Brightness temp (K)',
tick_label_format_string='{0:d}'
)
colour_norm_object = pyplot.Normalize(
vmin=min_abs_contour_value, vmax=max_abs_contour_value
)
label_string = 'Absolute {0:s}'.format(
'input times gradient' if plot_input_times_grad else 'saliency'
)
plotting_utils.add_colour_bar(
figure_file_name=concat_figure_file_name,
colour_map_object=colour_map_object,
colour_norm_object=colour_norm_object,
orientation_string='vertical', font_size=COLOUR_BAR_FONT_SIZE,
cbar_label_string=label_string, tick_label_format_string='{0:.2g}'
)
def _run(saliency_file_name, normalization_file_name, plot_input_times_grad,
spatial_colour_map_name, nonspatial_colour_map_name,
smoothing_radius_px, output_dir_name):
"""Plots composite saliency map.
This is effectively the main method.
:param saliency_file_name: See documentation at top of file.
:param normalization_file_name: Same.
:param plot_input_times_grad: Same.
:param spatial_colour_map_name: Same.
:param nonspatial_colour_map_name: Same.
:param smoothing_radius_px: Same.
:param output_dir_name: Same.
"""
spatial_colour_map_object = pyplot.get_cmap(spatial_colour_map_name)
nonspatial_colour_map_object = pyplot.get_cmap(nonspatial_colour_map_name)
file_system_utils.mkdir_recursive_if_necessary(
directory_name=output_dir_name
)
# Read files.
print('Reading data from: "{0:s}"...'.format(saliency_file_name))
saliency_dict = saliency.read_composite_file(saliency_file_name)
if plot_input_times_grad:
this_key = saliency.THREE_INPUT_GRAD_KEY
else:
this_key = saliency.THREE_SALIENCY_KEY
if smoothing_radius_px > 0 and saliency_dict[this_key][0] is not None:
print((
'Smoothing maps with Gaussian filter (e-folding radius of {0:.1f} '
'pixels)...'
).format(smoothing_radius_px))
num_lag_times = saliency_dict[this_key][0].shape[-2]
for k in range(num_lag_times):
saliency_dict[this_key][0][..., k, 0] = (
gg_general_utils.apply_gaussian_filter(
input_matrix=saliency_dict[this_key][0][..., k, 0],
e_folding_radius_grid_cells=smoothing_radius_px
)
)
model_file_name = saliency_dict[saliency.MODEL_FILE_KEY]
model_metafile_name = neural_net.find_metafile(
model_file_name=model_file_name, raise_error_if_missing=True
)
print('Reading metadata from: "{0:s}"...'.format(model_metafile_name))
model_metadata_dict = neural_net.read_metafile(model_metafile_name)
print('Reading data from: "{0:s}"...'.format(normalization_file_name))
normalization_table_xarray = normalization.read_file(
normalization_file_name
)
# Plot saliency map.
_plot_brightness_temp_saliency(
saliency_dict=saliency_dict, model_metadata_dict=model_metadata_dict,
normalization_table_xarray=normalization_table_xarray,
colour_map_object=spatial_colour_map_object,
plot_input_times_grad=plot_input_times_grad,
output_dir_name=output_dir_name
)
if __name__ == '__main__':
INPUT_ARG_OBJECT = INPUT_ARG_PARSER.parse_args()
_run(
saliency_file_name=getattr(INPUT_ARG_OBJECT, SALIENCY_FILE_ARG_NAME),
normalization_file_name=getattr(
INPUT_ARG_OBJECT, NORMALIZATION_FILE_ARG_NAME
),
plot_input_times_grad=bool(getattr(
INPUT_ARG_OBJECT, PLOT_INPUT_GRAD_ARG_NAME
)),
spatial_colour_map_name=getattr(
INPUT_ARG_OBJECT, SPATIAL_COLOUR_MAP_ARG_NAME
),
nonspatial_colour_map_name=getattr(
INPUT_ARG_OBJECT, NONSPATIAL_COLOUR_MAP_ARG_NAME
),
smoothing_radius_px=getattr(
INPUT_ARG_OBJECT, SMOOTHING_RADIUS_ARG_NAME
),
output_dir_name=getattr(INPUT_ARG_OBJECT, OUTPUT_DIR_ARG_NAME)
)
|
[
"ml4tc.plotting.plotting_utils.concat_panels",
"numpy.array",
"numpy.ravel",
"gewittergefahr.gg_utils.general_utils.apply_gaussian_filter",
"numpy.repeat",
"argparse.ArgumentParser",
"matplotlib.pyplot.Normalize",
"matplotlib.pyplot.close",
"numpy.linspace",
"ml4tc.machine_learning.neural_net.find_metafile",
"ml4tc.plotting.satellite_plotting.plot_saliency",
"ml4tc.plotting.satellite_plotting.get_colour_scheme",
"ml4tc.machine_learning.neural_net.read_metafile",
"ml4tc.utils.normalization.read_file",
"matplotlib.use",
"ml4tc.machine_learning.saliency.read_composite_file",
"matplotlib.pyplot.get_cmap",
"ml4tc.plotting.plotting_utils.add_colour_bar",
"numpy.absolute",
"gewittergefahr.gg_utils.file_system_utils.mkdir_recursive_if_necessary",
"numpy.expand_dims",
"gewittergefahr.plotting.imagemagick_utils.resize_image"
] |
[((84, 105), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (98, 105), False, 'import matplotlib\n'), ((637, 672), 'numpy.array', 'numpy.array', (['[numpy.nan, 0, 1.5, 3]'], {}), '([numpy.nan, 0, 1.5, 3])\n', (648, 672), False, 'import numpy\n'), ((2217, 2242), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2240, 2242), False, 'import argparse\n'), ((4362, 4434), 'numpy.linspace', 'numpy.linspace', (['(-10)', '(10)'], {'num': 'predictor_matrices[0].shape[1]', 'dtype': 'float'}), '(-10, 10, num=predictor_matrices[0].shape[1], dtype=float)\n', (4376, 4434), False, 'import numpy\n'), ((4482, 4529), 'numpy.expand_dims', 'numpy.expand_dims', (['grid_latitudes_deg_n'], {'axis': '(1)'}), '(grid_latitudes_deg_n, axis=1)\n', (4499, 4529), False, 'import numpy\n'), ((4563, 4634), 'numpy.repeat', 'numpy.repeat', (['grid_latitude_matrix_deg_n'], {'axis': '(1)', 'repeats': 'num_lag_times'}), '(grid_latitude_matrix_deg_n, axis=1, repeats=num_lag_times)\n', (4575, 4634), False, 'import numpy\n'), ((4678, 4751), 'numpy.linspace', 'numpy.linspace', (['(300)', '(320)'], {'num': 'predictor_matrices[0].shape[2]', 'dtype': 'float'}), '(300, 320, num=predictor_matrices[0].shape[2], dtype=float)\n', (4692, 4751), False, 'import numpy\n'), ((4800, 4848), 'numpy.expand_dims', 'numpy.expand_dims', (['grid_longitudes_deg_e'], {'axis': '(1)'}), '(grid_longitudes_deg_e, axis=1)\n', (4817, 4848), False, 'import numpy\n'), ((4897, 4969), 'numpy.repeat', 'numpy.repeat', (['grid_longitude_matrix_deg_e'], {'axis': '(1)', 'repeats': 'num_lag_times'}), '(grid_longitude_matrix_deg_e, axis=1, repeats=num_lag_times)\n', (4909, 4969), False, 'import numpy\n'), ((7598, 7714), 'ml4tc.plotting.plotting_utils.concat_panels', 'plotting_utils.concat_panels', ([], {'panel_file_names': 'panel_file_names', 'concat_figure_file_name': 'concat_figure_file_name'}), '(panel_file_names=panel_file_names,\n concat_figure_file_name=concat_figure_file_name)\n', (7626, 7714), False, 'from ml4tc.plotting import plotting_utils\n'), ((7786, 7824), 'ml4tc.plotting.satellite_plotting.get_colour_scheme', 'satellite_plotting.get_colour_scheme', ([], {}), '()\n', (7822, 7824), False, 'from ml4tc.plotting import satellite_plotting\n'), ((7835, 8136), 'ml4tc.plotting.plotting_utils.add_colour_bar', 'plotting_utils.add_colour_bar', ([], {'figure_file_name': 'concat_figure_file_name', 'colour_map_object': 'this_cmap_object', 'colour_norm_object': 'this_cnorm_object', 'orientation_string': '"""vertical"""', 'font_size': 'COLOUR_BAR_FONT_SIZE', 'cbar_label_string': '"""Brightness temp (K)"""', 'tick_label_format_string': '"""{0:d}"""'}), "(figure_file_name=concat_figure_file_name,\n colour_map_object=this_cmap_object, colour_norm_object=\n this_cnorm_object, orientation_string='vertical', font_size=\n COLOUR_BAR_FONT_SIZE, cbar_label_string='Brightness temp (K)',\n tick_label_format_string='{0:d}')\n", (7864, 8136), False, 'from ml4tc.plotting import plotting_utils\n'), ((8199, 8271), 'matplotlib.pyplot.Normalize', 'pyplot.Normalize', ([], {'vmin': 'min_abs_contour_value', 'vmax': 'max_abs_contour_value'}), '(vmin=min_abs_contour_value, vmax=max_abs_contour_value)\n', (8215, 8271), False, 'from matplotlib import pyplot\n'), ((8412, 8708), 'ml4tc.plotting.plotting_utils.add_colour_bar', 'plotting_utils.add_colour_bar', ([], {'figure_file_name': 'concat_figure_file_name', 'colour_map_object': 'colour_map_object', 'colour_norm_object': 'colour_norm_object', 'orientation_string': '"""vertical"""', 'font_size': 'COLOUR_BAR_FONT_SIZE', 'cbar_label_string': 'label_string', 'tick_label_format_string': '"""{0:.2g}"""'}), "(figure_file_name=concat_figure_file_name,\n colour_map_object=colour_map_object, colour_norm_object=\n colour_norm_object, orientation_string='vertical', font_size=\n COLOUR_BAR_FONT_SIZE, cbar_label_string=label_string,\n tick_label_format_string='{0:.2g}')\n", (8441, 8708), False, 'from ml4tc.plotting import plotting_utils\n'), ((9353, 9393), 'matplotlib.pyplot.get_cmap', 'pyplot.get_cmap', (['spatial_colour_map_name'], {}), '(spatial_colour_map_name)\n', (9368, 9393), False, 'from matplotlib import pyplot\n'), ((9429, 9472), 'matplotlib.pyplot.get_cmap', 'pyplot.get_cmap', (['nonspatial_colour_map_name'], {}), '(nonspatial_colour_map_name)\n', (9444, 9472), False, 'from matplotlib import pyplot\n'), ((9477, 9555), 'gewittergefahr.gg_utils.file_system_utils.mkdir_recursive_if_necessary', 'file_system_utils.mkdir_recursive_if_necessary', ([], {'directory_name': 'output_dir_name'}), '(directory_name=output_dir_name)\n', (9523, 9555), False, 'from gewittergefahr.gg_utils import file_system_utils\n'), ((9679, 9727), 'ml4tc.machine_learning.saliency.read_composite_file', 'saliency.read_composite_file', (['saliency_file_name'], {}), '(saliency_file_name)\n', (9707, 9727), False, 'from ml4tc.machine_learning import saliency\n'), ((10573, 10663), 'ml4tc.machine_learning.neural_net.find_metafile', 'neural_net.find_metafile', ([], {'model_file_name': 'model_file_name', 'raise_error_if_missing': '(True)'}), '(model_file_name=model_file_name,\n raise_error_if_missing=True)\n', (10597, 10663), False, 'from ml4tc.machine_learning import neural_net\n'), ((10775, 10820), 'ml4tc.machine_learning.neural_net.read_metafile', 'neural_net.read_metafile', (['model_metafile_name'], {}), '(model_metafile_name)\n', (10799, 10820), False, 'from ml4tc.machine_learning import neural_net\n'), ((10930, 10978), 'ml4tc.utils.normalization.read_file', 'normalization.read_file', (['normalization_file_name'], {}), '(normalization_file_name)\n', (10953, 10978), False, 'from ml4tc.utils import normalization\n'), ((6001, 6036), 'numpy.absolute', 'numpy.absolute', (['all_saliency_values'], {}), '(all_saliency_values)\n', (6015, 6036), False, 'import numpy\n'), ((6127, 6162), 'numpy.absolute', 'numpy.absolute', (['all_saliency_values'], {}), '(all_saliency_values)\n', (6141, 6162), False, 'import numpy\n'), ((6354, 6751), 'ml4tc.plotting.satellite_plotting.plot_saliency', 'satellite_plotting.plot_saliency', ([], {'saliency_matrix': 'saliency_matrices[0][0, ..., k, 0]', 'axes_object': 'axes_objects[k]', 'latitude_array_deg_n': 'grid_latitude_matrix_deg_n[:, k]', 'longitude_array_deg_e': 'grid_longitude_matrix_deg_e[:, k]', 'min_abs_contour_value': 'min_abs_contour_value', 'max_abs_contour_value': 'max_abs_contour_value', 'half_num_contours': '(10)', 'colour_map_object': 'colour_map_object'}), '(saliency_matrix=saliency_matrices[0][0,\n ..., k, 0], axes_object=axes_objects[k], latitude_array_deg_n=\n grid_latitude_matrix_deg_n[:, k], longitude_array_deg_e=\n grid_longitude_matrix_deg_e[:, k], min_abs_contour_value=\n min_abs_contour_value, max_abs_contour_value=max_abs_contour_value,\n half_num_contours=10, colour_map_object=colour_map_object)\n', (6386, 6751), False, 'from ml4tc.plotting import satellite_plotting\n'), ((7263, 7294), 'matplotlib.pyplot.close', 'pyplot.close', (['figure_objects[k]'], {}), '(figure_objects[k])\n', (7275, 7294), False, 'from matplotlib import pyplot\n'), ((7304, 7447), 'gewittergefahr.plotting.imagemagick_utils.resize_image', 'imagemagick_utils.resize_image', ([], {'input_file_name': 'panel_file_names[k]', 'output_file_name': 'panel_file_names[k]', 'output_size_pixels': 'PANEL_SIZE_PX'}), '(input_file_name=panel_file_names[k],\n output_file_name=panel_file_names[k], output_size_pixels=PANEL_SIZE_PX)\n', (7334, 7447), False, 'from gewittergefahr.plotting import imagemagick_utils\n'), ((3915, 3943), 'numpy.expand_dims', 'numpy.expand_dims', (['p'], {'axis': '(0)'}), '(p, axis=0)\n', (3932, 3943), False, 'import numpy\n'), ((4207, 4235), 'numpy.expand_dims', 'numpy.expand_dims', (['p'], {'axis': '(0)'}), '(p, axis=0)\n', (4224, 4235), False, 'import numpy\n'), ((5529, 5548), 'numpy.array', 'numpy.array', (['[20.0]'], {}), '([20.0])\n', (5540, 5548), False, 'import numpy\n'), ((5585, 5605), 'numpy.array', 'numpy.array', (['[330.0]'], {}), '([330.0])\n', (5596, 5605), False, 'import numpy\n'), ((5881, 5895), 'numpy.ravel', 'numpy.ravel', (['s'], {}), '(s)\n', (5892, 5895), False, 'import numpy\n'), ((10273, 10417), 'gewittergefahr.gg_utils.general_utils.apply_gaussian_filter', 'gg_general_utils.apply_gaussian_filter', ([], {'input_matrix': 'saliency_dict[this_key][0][..., k, 0]', 'e_folding_radius_grid_cells': 'smoothing_radius_px'}), '(input_matrix=saliency_dict[this_key]\n [0][..., k, 0], e_folding_radius_grid_cells=smoothing_radius_px)\n', (10311, 10417), True, 'from gewittergefahr.gg_utils import general_utils as gg_general_utils\n')]
|
import numpy as np
def import_accuracy(y_test, predictions):
errors = abs(predictions - y_test)
mape = 100 * (errors / y_test)
accuracy = 100 - np.mean(mape)
return accuracy
|
[
"numpy.mean"
] |
[((148, 161), 'numpy.mean', 'np.mean', (['mape'], {}), '(mape)\n', (155, 161), True, 'import numpy as np\n')]
|
import numpy as np
import os
import torch
import torch.utils.data as data
import pdb
import pickle
from pathlib import Path
from scipy import signal
import librosa
import scipy
from itertools import permutations
from numpy.linalg import solve
import numpy as np
import soundfile as sf
from convolutive_prediction import Apply_ConvolutivePrediction
class AudioDataset(data.Dataset):
def __init__(self,trainMode, functionMode, num_spks, num_ch, pickle_dir, ref_ch, model,device,cudaUse,check_audio,dereverb_Info,**STFT_args):
super(AudioDataset, self).__init__()
self.trainMode = trainMode
self.functionMode = functionMode
self.model = model
self.fs = STFT_args['fs']
self.window = STFT_args['window']
self.nperseg = STFT_args['length']
self.noverlap = STFT_args['overlap']
self.num_spks = num_spks
self.num_ch = num_ch
self.device = device
self.cudaUse = cudaUse
self.pickle_dir = list(Path(pickle_dir).glob('**/**/**/**/*.pickle'))
hann_win = scipy.signal.get_window('hann', self.nperseg)
self.scale = np.sqrt(1.0 / hann_win.sum()**2)
self.check_audio = check_audio
self.ref_ch = ref_ch
self.dereverb_flag = dereverb_Info[0]
self.predictionType = dereverb_Info[1]
self.tapDelay = dereverb_Info[2]
self.nTap = dereverb_Info[3]
self.reverb_variance_flowValue = dereverb_Info[4]
# self.pickle_dir = self.pickle_dir[0:10]
# # check chunked audio signal
# MAX_INT16 = np.iinfo(np.int16).max
# test= ref2 * MAX_INT16
# test = test.astype(np.int16)
# wf.write('sample_ref2.wav',16000,test)
def STFT(self,time_sig):
'''
input : [T,Nch]
output : [Nch,F,T]
'''
assert time_sig.shape[0] > time_sig.shape[1], "Please check the STFT input dimension, input = [T,Nch] "
num_ch = time_sig.shape[1]
for num_ch in range(num_ch):
# scipy.signal.stft : output : [F range, T range, FxT components]
_,_,stft_ch = signal.stft(time_sig[:,num_ch],fs=self.fs,window=self.window,nperseg=self.nperseg,noverlap=self.noverlap)
# output : [FxT]
stft_ch = np.expand_dims(stft_ch,axis=0)
if num_ch == 0:
stft_chcat = stft_ch
else:
stft_chcat = np.append(stft_chcat,stft_ch,axis=0)
return stft_chcat
def __getitem__(self,index):
with open(self.pickle_dir[index], 'rb') as f:
data_infos = pickle.load(f)
f.close()
mix = data_infos['mix']
mix_stft = self.STFT(mix)
mix_stft = mix_stft/self.scale # scale equality between scipy stft and matlab stft
##################### Todo #########################################################################################################
###################### reference ch로 하도록 mix stft, ref_stft등 circular shift 해야됨.
##############################################################################################################################
assert self.num_spks+1 == len(data_infos), "[ERROR] Check the number of speakers"
ref_stft = [[] for spk_idx in range(self.num_spks)]
for spk_idx in range(self.num_spks):
ref_sig = data_infos['ref'+str(spk_idx+1)]
if len(ref_sig.shape) == 1:
ref_sig = np.expand_dims(ref_sig,axis=1)
ref_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(ref_sig)),[0,2,1])
ref_stft[spk_idx] = ref_stft[spk_idx]/self.scale # scale equality between scipy stft and matlab stft
# numpy to torch & reshpae [C,F,T] ->[C,T,F]
mix_stft = torch.permute( torch.from_numpy(mix_stft),[0,2,1])
if self.functionMode == 'Separate':
"""
Output :
mix_stft : [Mic,T,F]
ref_stft : [Mic,T,F]
"""
return torch.roll(mix_stft,-self.ref_ch,dims=0), torch.roll(ref_stft,-self.ref_ch,dims=0)
elif self.functionMode == 'Beamforming':
"""
Output :
mix_stft : [Mic,T,F]
ref_stft : [Mic,T,F]
"""
BeamOutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','Beamforming')
MISO1OutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','MISO1')
return mix_stft, ref_stft, BeamOutSaveDir, MISO1OutSaveDir
elif 'Enhance' in self.functionMode:
"""
Output :
mix_stft : [Mic,T,F]
ref_stft_1ch, list, [Mic,T,F]
MISO1_stft, list, [Mic,T,F]
Beamform_stft, list, [Mic,T,F]
"""
if len(mix_stft.shape)==3:
mix_stft = torch.unsqueeze(mix_stft,dim=0)
if self.cudaUse:
mix_stft = mix_stft.cuda(self.device)
ref_stft_1ch = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
if len(ref_stft[spk_idx].shape) == 3:
ref_stft[spk_idx] = torch.unsqueeze(ref_stft[spk_idx], dim=0)
ref_stft_1ch[spk_idx] = ref_stft[spk_idx][:,self.ref_ch,:,:] # select reference mic channel
ref_stft_1ch[spk_idx] = torch.unsqueeze(ref_stft_1ch[spk_idx], dim=1)
B, Mic, T, F = mix_stft.size()
"""
Apply Source Separation
"""
if self.functionMode == 'Enhance_Load_MISO1_Output' or self.functionMode == 'Enhance_Load_MISO1_MVDR_Output':
MISO1OutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','MISO1')
MISO1_stft = [[] for _ in range(self.num_spks)]
# Load MISO1 Output
for spk_idx in range(self.num_spks):
spk_name = '_s{}.wav'.format(spk_idx+1)
MISO1_sig, fs = librosa.load(MISO1OutSaveDir.replace('.pickle',spk_name), mono= False, sr= 8000)
if MISO1_sig.shape[1] != self.num_ch:
MISO1_sig = MISO1_sig.T
assert fs == self.fs, 'Check sampling rate'
if len(MISO1_sig.shape) == 1:
MISO1_sig = np.expand_dims(MISO1_sig, axis=1)
MISO1_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(MISO1_sig)),[0,2,1])
MISO1_stft[spk_idx] = MISO1_stft[spk_idx]/self.scale
# MISO1_spk1 = torch.unsqueeze(MISO1_stft[0],dim=0)
# MISO1_spk2 = torch.unsqueeze(MISO1_stft[1],dim=0)
else:
MISO1_stft = self.MISO1_Inference(mix_stft, ref_ch = self.ref_ch)
if self.cudaUse:
mix_stft = mix_stft.detach().cpu()
for spk_idx in range(self.num_spks):
MISO1_stft[spk_idx] = MISO1_stft[spk_idx].detach().cpu()
"""
Source Alignment between Clean reference signal and MISO1 signal
calculate magnitude distance between ref mic(ch0) and target signal(reference mic : ch0)
"""
for spk_idx in range(self.num_spks):
if spk_idx == 0 :
ref_ = ref_stft_1ch[spk_idx]
s_MISO1 = MISO1_stft[spk_idx][:,0,:,:] # [B,T,F]
else:
ref_ = torch.cat((ref_,ref_stft_1ch[spk_idx]), dim=1)
s_MISO1 = torch.stack((s_MISO1, MISO1_stft[spk_idx][:,0,:,:]), dim=1)
s_MISO1_ = torch.unsqueeze(s_MISO1,dim=2) #[B,Spks,1,T,F]
magnitude_MISO1 = torch.abs(torch.sqrt(s_MISO1_.real**2 + s_MISO1_.imag**2)) #[B,Spks,1,T,F]
s_ref = torch.unsqueeze(ref_, dim=1)
magnitude_distance = torch.sum(torch.abs(magnitude_MISO1 - abs(s_ref)),[3,4])
perms = ref_.new_tensor(list(permutations(range(self.num_spks))), dtype=torch.long) #[[0,1],[1,0]]
index_ = torch.unsqueeze(perms, dim=2)
perms_one_hot = ref_.new_zeros((*perms.size(), self.num_spks), dtype=torch.float).scatter_(2,index_,1)
batchwise_distance = torch.einsum('bij,pij->bp',[magnitude_distance, perms_one_hot])
min_distance_idx = torch.argmin(batchwise_distance, dim=1)
for batch_idx in range(B):
align_index = torch.argmax(perms_one_hot[min_distance_idx[batch_idx]], dim=1)
for spk_idx in range(self.num_spks):
target_index = align_index[spk_idx]
ref_stft_1ch[spk_idx] = torch.unsqueeze(ref_[batch_idx,target_index,...],dim=0)
"""
Apply Dereverberation Method
1. WPE : weighted prediction error
2. ICP : inverse convolutive prediction
3. FCP : forward convolutive prediction
4. cFCP : combine forward convolutive prediction
"""
if self.dereverb_flag :
dereverb_stft = [[] for _ in range(self.num_spks)]
observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy()
if self.predictionType == 'cFCP':
source = [torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() for spk_idx in range(self.num_spks)]
dereverb_stft = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue)
elif self.predictionType == 'test':
source = [torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() for spk_idx in range(self.num_spks)]
dereverb_stft = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue)
else:
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy()
dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue)
#################################
########### Testcode ###########
#################################
# WPE
DNN_WPE_dereverb_stft = [[] for _ in range(self.num_spks)]
FCP_dereverb_stft = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy()
DNN_WPE_dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,'DNN_WPE',self.tapDelay,self.nTap,self.reverb_variance_flowValue)
# FCP
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy()
FCP_dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,'FCP',self.tapDelay,self.nTap,self.reverb_variance_flowValue)
#################################
########### Testcode ###########
#################################
"""
Apply MVDR Beamforming
"""
if self.functionMode == 'Enhance_Load_MVDR_Output' or self.functionMode == 'Enhance_Load_MISO1_MVDR_Output':
BeamformSaveDir = str(self.pickle_dir[index]).replace('CleanMix','Beamforming')
Beamform_stft = [[] for _ in range(self.num_spks)]
# Load MISO1 Output
for spk_idx in range(self.num_spks):
spk_name = '_s{}.wav'.format(spk_idx+1)
Beamform_sig, fs = librosa.load(BeamformSaveDir.replace('.pickle',spk_name), mono= False, sr= 8000)
if len(Beamform_sig.shape) == 1:
Beamform_sig = np.expand_dims(Beamform_sig, axis=1)
assert fs == self.fs, 'Check sampling rate'
Beamform_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(Beamform_sig)),[0,2,1])
Beamform_stft[spk_idx] = Beamform_stft[spk_idx]/self.scale
else:
Beamform_stft = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
if self.dereverb_flag :
observe = torch.permute(dereverb_stft[spk_idx],[0,3,1,2])
else:
observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu()
Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe)
#################################
########### Testcode ###########
#################################
DNN_WPE_Beamform_stft = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(DNN_WPE_dereverb_stft[spk_idx],[0,3,1,2])
DNN_WPE_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe)
FCP_Beamform_stft = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(FCP_dereverb_stft[spk_idx],[0,3,1,2])
FCP_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe)
Origin_Beamform_stft = [[] for _ in range(self.num_spks)]
for spk_idx in range(self.num_spks):
source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy()
observe = torch.permute(mix_stft,[0,3,1,2])
Origin_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe)
#################################
########### Testcode ###########
#################################
if len(mix_stft.shape)== 4:
mix_stft = torch.squeeze(mix_stft)
for spk_idx in range(self.num_spks):
if len(MISO1_stft[spk_idx].shape)== 4:
MISO1_stft[spk_idx] = torch.squeeze(MISO1_stft[spk_idx])
if len(dereverb_stft[spk_idx].shape)==4:
dereverb_stft[spk_idx] = torch.squeeze(dereverb_stft[spk_idx])
if self.check_audio:
''' Check the result of MISO1 '''
self.save_audio(np.transpose(mix_stft, [0,2,1]), 'mix')
for spk_idx in range(self.num_spks):
self.save_audio(np.transpose(ref_stft_1ch[spk_idx], [0,2,1]), 'ref_s{}'.format(spk_idx))
self.save_audio(np.transpose(MISO1_stft[spk_idx], [0,2,1]), 'MISO1_s{}'.format(spk_idx))
if self.dereverb_flag:
self.save_audio(np.transpose(dereverb_stft[spk_idx], [0,2,1]), self.predictionType+'_s{}'.format(spk_idx))
self.save_audio(np.transpose(Beamform_stft[spk_idx], [0,2,1]), self.predictionType+'_Beamform_s{}'.format(spk_idx))
else:
self.save_audio(np.transpose(Beamform_stft[spk_idx], [0,2,1]), 'Beamform_s{}'.format(spk_idx))
#################################
########### Testcode ###########
#################################
#WPE
self.save_audio(np.transpose(np.squeeze(DNN_WPE_dereverb_stft[spk_idx],axis=0), [0,2,1]), 'DNN_WPE_s{}'.format(spk_idx))
self.save_audio(np.transpose(DNN_WPE_Beamform_stft[spk_idx], [0,2,1]), 'DNN_WPE_Beamform_s{}'.format(spk_idx))
#FCP
self.save_audio(np.transpose(np.squeeze(FCP_dereverb_stft[spk_idx],axis=0), [0,2,1]), 'FCP_s{}'.format(spk_idx))
self.save_audio(np.transpose(FCP_Beamform_stft[spk_idx], [0,2,1]), 'FCP_Beamform_s{}'.format(spk_idx))
#Origin Beamforming
self.save_audio(np.transpose(Origin_Beamform_stft[spk_idx], [0,2,1]), 'Origin_Beamform_s{}'.format(spk_idx))
#################################
########### Testcode ###########
#################################
pdb.set_trace()
return mix_stft, ref_stft_1ch, MISO1_stft, Beamform_stft
else:
assert -1, '[Error] Choose correct train mode'
def save_audio(self,signal, wavname):
'''
Input:
signal : [Ch,F,T]
wavename : str, wav name to save
'''
hann_win = scipy.signal.get_window(self.window, self.nperseg)
scale = np.sqrt(1.0 / hann_win.sum()**2)
MAX_INT16 = np.iinfo(np.int16).max
signal = signal * scale
t_sig = self.ISTFT(signal)
t_sig= t_sig * MAX_INT16
t_sig = t_sig.astype(np.int16)
sf.write('{}.wav'.format(wavname),t_sig.T, self.fs,'PCM_24')
def ISTFT(self,FT_sig):
'''
input : [F,T]
output : [T,C]
'''
# if FT_sig.shape[1] != self.config['ISTFT']['length']+1:
# FT_sig = np.transpose(FT_sig,(0,1)) # [C,T,F] -> [C,F,T]
_, t_sig = signal.istft(FT_sig,fs=self.fs, window=self.window, nperseg=self.nperseg, noverlap=self.noverlap) #[C,F,T] -> [T,C]
return t_sig
def MISO1_Inference(self,mix_stft,ref_ch=0):
"""
Input:
mix_stft : observe STFT, size - [B, Mic, T, F]
Output:
MISO1_stft : list of separated source, - [B, reference Mic, T, F]
1. circular shift the microphone array at run time for the prediction of each microphone signal
If the microphones are arranged uniformly on a circle, Select the reference microphone by circular shifting the microphone. e.g reference mic q -> [Yq, Yq+1, ..., Yp, Y1, ..., Yq-1]
2. Using Permutation Invariance Alignmnet method to match between clean target signal and estimated signal
"""
B, M, T, F = mix_stft.size()
MISO1_stft = [torch.empty(B,M,T,F, dtype=torch.complex64) for _ in range(self.num_spks)]
Mic_array = [x for x in range(M)]
Mic_array = np.roll(Mic_array, -ref_ch) # [ref_ch, ref_ch+1, ..., 0, 1, ..., ref_ch-1]
# print('Mic_array : ', Mic_array)
with torch.no_grad():
mix_stft_refCh = torch.roll(mix_stft,-ref_ch, dims=1)
MISO1_refCh = self.model(mix_stft_refCh)
for spk_idx in range(self.num_spks):
MISO1_stft[spk_idx][:,ref_ch,...] = MISO1_refCh[:,spk_idx,...]
# MISO1_spk1[:,ref_ch,...] = MISO1_refCh[:,0,...]
# MISO1_spk2[:,ref_ch,...] = MISO1_refCh[:,1,...]
s_MISO1_refCh = torch.unsqueeze(MISO1_refCh, dim=2)
s_Magnitude_refCh = torch.abs(torch.sqrt(s_MISO1_refCh.real**2 + s_MISO1_refCh.imag**2)) # [B,Spks,1,T,F]
with torch.no_grad():
for shiftIdx in Mic_array[1:]:
# print('shift Micnumber', shiftIdx)
mix_stft_shift = torch.roll(mix_stft,-shiftIdx, dims=1)
MISO1_chShift = self.model(mix_stft_shift)
s_MISO1_chShift = torch.unsqueeze(MISO1_chShift, dim=1) #[B,1,Spks,T,F]
s_magnitude_chShift = torch.sum(torch.abs(s_Magnitude_refCh - abs(s_MISO1_chShift)),[3,4]) #[B,Spks,Spks,T,F]
perms = MISO1_chShift.new_tensor(list(permutations(range(self.num_spks))), dtype=torch.long)
index_ = torch.unsqueeze(perms, dim=2)
perms_one_hot = MISO1_chShift.new_zeros((*perms.size(), self.num_spks), dtype=torch.float).scatter_(2,index_,1)
batchwise_distance = torch.einsum('bij,pij->bp', [s_magnitude_chShift, perms_one_hot])
min_distance_idx = torch.argmin(batchwise_distance,dim=1)
for batch_idx in range(B):
align_index = torch.argmax(perms_one_hot[min_distance_idx[batch_idx]],dim=1)
for spk_idx in range(self.num_spks):
target_index = align_index[spk_idx]
MISO1_stft[spk_idx][:,shiftIdx,...] = MISO1_chShift[batch_idx,target_index,...]
return MISO1_stft
def Apply_Beamforming(self, source_stft, mix_stft, epsi=1e-6):
"""
Input :
mix_stft : observe STFT, size - [B, F, Ch, T], np.ndarray
source_stft : estimated source STFT, size - [B, F, Ch, T], np.ndarray
Output :
Beamform_stft : MVDR Beamforming output, size - [B, 1, T, F], np.ndarray
1. estimate target steering using EigenValue decomposition
2. get source, noise Spatial Covariance Matrix, S = 1/T * xx_h
3. MVDR Beamformer
"""
B, F, M, T = source_stft.shape
# Apply small Diagonal matrix to prevent matrix inversion error
eye = np.eye(M)
eye = eye.reshape(1,1,M,M)
delta = epsi * np.tile(eye,[B,F,1,1])
''' Source '''
source_SCM = self.get_spatial_covariance_matrix(source_stft,normalize=True) # target covariance matrix, size : [B,F,C,C]
source_SCM = 0.5 * (source_SCM + np.conj(source_SCM.swapaxes(-1,-2))) # verify hermitian symmetric
''' Noise Spatial Covariance '''
noise_signal = mix_stft - source_stft
# s1_noise_signal = mix_stft #MPDR
noise_SCM = self.get_spatial_covariance_matrix(noise_signal,normalize = True) # noise covariance matrix, size : [B,F,C,C]
# s1_SCMn = self.condition_covariance(s1_SCMn, 1e-6)
# s1_SCMn /= np.trace(s1_SCMn, axis1=-2, axis2= -1)[...,None, None]
noise_SCM = 0.5 * (noise_SCM + np.conj(noise_SCM.swapaxes(-1,-2))) # verify hermitian symmetric
''' Get Steering vector : Eigen-decomposition '''
shape = source_SCM.shape
source_steering = np.empty(shape[:-1], dtype=np.complex)
# s1_SCMs += delta
source_SCM = np.reshape(source_SCM, (-1,) + shape[-2:])
eigenvals, eigenvecs = np.linalg.eigh(source_SCM)
# Find max eigenvals
vals = np.argmax(eigenvals, axis=-1)
# Select eigenvec for max eigenval
source_steering = np.array([eigenvecs[i,:,vals[i]] for i in range(eigenvals.shape[0])])
# s1_steering = np.array([eigenvecs[i,:,vals[i]] * np.sqrt(Mic/np.linalg.norm(eigenvecs[i,:,vals[i]])) for i in range(eigenvals.shape[0])]) # [B*F,Ch,Ch]
source_steering = np.reshape(source_steering, shape[:-1]) # [B,F,Ch]
source_SCM = np.reshape(source_SCM, shape)
''' steering normalize with respect to the reference microphone '''
# ver 1
source_steering = source_steering / np.expand_dims(source_steering[:,:,0], axis=2)
for b_idx in range(0,B):
for f_idx in range(0,F):
# s1_steering[b_idx,f_idx,:] = s1_steering[b_idx,f_idx,:] / s1_steering[b_idx,f_idx,0]
source_steering[b_idx,f_idx,:] = source_steering[b_idx,f_idx,:] * np.sqrt(M/(np.linalg.norm(source_steering[b_idx,f_idx,:])))
# ver 2
# s1_steering = self.normalize(s1_steering)
source_steering = self.PhaseCorrection(source_steering)
beamformer = self.get_mvdr_beamformer(source_steering, noise_SCM, delta)
# s1_beamformer = self.blind_analytic_normalization(s1_beamformer,s1_SCMn)
source_bf = self.apply_beamformer(beamformer,mix_stft)
source_bf = torch.permute(torch.from_numpy(source_bf), [0,2,1])
return source_bf
def get_spatial_covariance_matrix(self,observation,normalize):
'''
Input :
observation : complex
size : [B,F,C,T]
Return :
R : double
size : [B,F,C,C]
'''
B,F,C,T = observation.shape
R = np.einsum('...dt,...et-> ...de', observation, observation.conj())
if normalize:
normalization = np.sum(np.ones((B,F,1,T)),axis=-1, keepdims=True)
R /= normalization
return R
def PhaseCorrection(self,W): #Matlab과 동일
"""
Phase correction to reduce distortions due to phase inconsistencies.
Input:
W : steering vector
size : [B,F,Ch]
"""
w = W.copy()
B, F, Ch = w.shape
for b_idx in range(0,B):
for f in range(1, F):
w[b_idx,f, :] *= np.exp(-1j*np.angle(
np.sum(w[b_idx,f, :] * w[b_idx,f-1, :].conj(), axis=-1, keepdims=True)))
return w
def condition_covariance(self,x,gamma):
"""see https://stt.msu.edu/users/mauryaas/Ashwini_JPEN.pdf (2.3)"""
B,F,_,_ = x.shape
for b_idx in range(0,B):
scale = gamma * np.trace(x[b_idx,...]) / x[b_idx,...].shape[-1]
scaled_eye = np.eye(x.shape[-1]) * scale
x[b_idx,...] = (x[b_idx,...]+scaled_eye) / (1+gamma)
return x
def normalize(self,vector):
B,F,Ch = vector.shape
for b_idx in range(0,B):
for ii in range(0,F):
weight = np.matmul(np.conjugate(vector[b_idx,ii,:]).reshape(1,-1), vector[b_idx,ii,:])
vector[b_idx,ii,:] = (vector[b_idx,ii,:] / weight)
return vector
def blind_analytic_normalization(self,vector, noise_psd_matrix, eps=0):
"""Reduces distortions in beamformed ouptput.
:param vector: Beamforming vector
with shape (..., sensors)
:param noise_psd_matrix:
with shape (..., sensors, sensors)
:return: Scaled Deamforming vector
with shape (..., sensors)
"""
nominator = np.einsum(
'...a,...ab,...bc,...c->...',
vector.conj(), noise_psd_matrix, noise_psd_matrix, vector
)
nominator = np.abs(np.sqrt(nominator))
denominator = np.einsum(
'...a,...ab,...b->...', vector.conj(), noise_psd_matrix, vector
)
denominator = np.abs(denominator)
normalization = nominator / (denominator + eps)
return vector * normalization[..., np.newaxis]
def get_mvdr_beamformer(self, steering_vector, R_noise, delta):
"""
Returns the MVDR beamformers vector
Input :
steering_vector : Acoustic transfer function vector
shape : [B, F, Ch]
R_noise : Noise spatial covariance matrix
shape : [B, F, Ch, Ch]
"""
R_noise += delta
numer = solve(R_noise, steering_vector)
denom = np.einsum('...d,...d->...', steering_vector.conj(), numer)
beamformer = numer / np.expand_dims(denom, axis=-1)
return beamformer
def apply_beamformer(self, beamformer, mixture):
return np.einsum('...a,...at->...t',beamformer.conj(), mixture)
def __len__(self):
return len(self.pickle_dir)
|
[
"numpy.trace",
"numpy.sqrt",
"torch.sqrt",
"numpy.iinfo",
"torch.from_numpy",
"convolutive_prediction.Apply_ConvolutivePrediction",
"torch.squeeze",
"numpy.linalg.norm",
"scipy.signal.get_window",
"numpy.reshape",
"pathlib.Path",
"torch.unsqueeze",
"numpy.conjugate",
"numpy.empty",
"torch.permute",
"numpy.linalg.eigh",
"torch.roll",
"torch.argmax",
"numpy.abs",
"numpy.eye",
"numpy.tile",
"numpy.ones",
"pickle.load",
"numpy.argmax",
"numpy.squeeze",
"torch.einsum",
"torch.argmin",
"numpy.transpose",
"torch.empty",
"torch.cat",
"numpy.linalg.solve",
"numpy.roll",
"scipy.signal.istft",
"scipy.signal.stft",
"torch.stack",
"numpy.append",
"numpy.expand_dims",
"pdb.set_trace",
"torch.no_grad"
] |
[((1067, 1112), 'scipy.signal.get_window', 'scipy.signal.get_window', (['"""hann"""', 'self.nperseg'], {}), "('hann', self.nperseg)\n", (1090, 1112), False, 'import scipy\n'), ((17637, 17687), 'scipy.signal.get_window', 'scipy.signal.get_window', (['self.window', 'self.nperseg'], {}), '(self.window, self.nperseg)\n', (17660, 17687), False, 'import scipy\n'), ((18248, 18350), 'scipy.signal.istft', 'signal.istft', (['FT_sig'], {'fs': 'self.fs', 'window': 'self.window', 'nperseg': 'self.nperseg', 'noverlap': 'self.noverlap'}), '(FT_sig, fs=self.fs, window=self.window, nperseg=self.nperseg,\n noverlap=self.noverlap)\n', (18260, 18350), False, 'from scipy import signal\n'), ((19264, 19291), 'numpy.roll', 'np.roll', (['Mic_array', '(-ref_ch)'], {}), '(Mic_array, -ref_ch)\n', (19271, 19291), True, 'import numpy as np\n'), ((19808, 19843), 'torch.unsqueeze', 'torch.unsqueeze', (['MISO1_refCh'], {'dim': '(2)'}), '(MISO1_refCh, dim=2)\n', (19823, 19843), False, 'import torch\n'), ((22043, 22052), 'numpy.eye', 'np.eye', (['M'], {}), '(M)\n', (22049, 22052), True, 'import numpy as np\n'), ((23026, 23064), 'numpy.empty', 'np.empty', (['shape[:-1]'], {'dtype': 'np.complex'}), '(shape[:-1], dtype=np.complex)\n', (23034, 23064), True, 'import numpy as np\n'), ((23114, 23156), 'numpy.reshape', 'np.reshape', (['source_SCM', '((-1,) + shape[-2:])'], {}), '(source_SCM, (-1,) + shape[-2:])\n', (23124, 23156), True, 'import numpy as np\n'), ((23189, 23215), 'numpy.linalg.eigh', 'np.linalg.eigh', (['source_SCM'], {}), '(source_SCM)\n', (23203, 23215), True, 'import numpy as np\n'), ((23260, 23289), 'numpy.argmax', 'np.argmax', (['eigenvals'], {'axis': '(-1)'}), '(eigenvals, axis=-1)\n', (23269, 23289), True, 'import numpy as np\n'), ((23617, 23656), 'numpy.reshape', 'np.reshape', (['source_steering', 'shape[:-1]'], {}), '(source_steering, shape[:-1])\n', (23627, 23656), True, 'import numpy as np\n'), ((23689, 23718), 'numpy.reshape', 'np.reshape', (['source_SCM', 'shape'], {}), '(source_SCM, shape)\n', (23699, 23718), True, 'import numpy as np\n'), ((27234, 27253), 'numpy.abs', 'np.abs', (['denominator'], {}), '(denominator)\n', (27240, 27253), True, 'import numpy as np\n'), ((27794, 27825), 'numpy.linalg.solve', 'solve', (['R_noise', 'steering_vector'], {}), '(R_noise, steering_vector)\n', (27799, 27825), False, 'from numpy.linalg import solve\n'), ((2118, 2233), 'scipy.signal.stft', 'signal.stft', (['time_sig[:, num_ch]'], {'fs': 'self.fs', 'window': 'self.window', 'nperseg': 'self.nperseg', 'noverlap': 'self.noverlap'}), '(time_sig[:, num_ch], fs=self.fs, window=self.window, nperseg=\n self.nperseg, noverlap=self.noverlap)\n', (2129, 2233), False, 'from scipy import signal\n'), ((2275, 2306), 'numpy.expand_dims', 'np.expand_dims', (['stft_ch'], {'axis': '(0)'}), '(stft_ch, axis=0)\n', (2289, 2306), True, 'import numpy as np\n'), ((2617, 2631), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2628, 2631), False, 'import pickle\n'), ((3824, 3850), 'torch.from_numpy', 'torch.from_numpy', (['mix_stft'], {}), '(mix_stft)\n', (3840, 3850), False, 'import torch\n'), ((17757, 17775), 'numpy.iinfo', 'np.iinfo', (['np.int16'], {}), '(np.int16)\n', (17765, 17775), True, 'import numpy as np\n'), ((19118, 19164), 'torch.empty', 'torch.empty', (['B', 'M', 'T', 'F'], {'dtype': 'torch.complex64'}), '(B, M, T, F, dtype=torch.complex64)\n', (19129, 19164), False, 'import torch\n'), ((19397, 19412), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (19410, 19412), False, 'import torch\n'), ((19443, 19480), 'torch.roll', 'torch.roll', (['mix_stft', '(-ref_ch)'], {'dims': '(1)'}), '(mix_stft, -ref_ch, dims=1)\n', (19453, 19480), False, 'import torch\n'), ((19882, 19943), 'torch.sqrt', 'torch.sqrt', (['(s_MISO1_refCh.real ** 2 + s_MISO1_refCh.imag ** 2)'], {}), '(s_MISO1_refCh.real ** 2 + s_MISO1_refCh.imag ** 2)\n', (19892, 19943), False, 'import torch\n'), ((19980, 19995), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (19993, 19995), False, 'import torch\n'), ((22111, 22137), 'numpy.tile', 'np.tile', (['eye', '[B, F, 1, 1]'], {}), '(eye, [B, F, 1, 1])\n', (22118, 22137), True, 'import numpy as np\n'), ((23865, 23913), 'numpy.expand_dims', 'np.expand_dims', (['source_steering[:, :, 0]'], {'axis': '(2)'}), '(source_steering[:, :, 0], axis=2)\n', (23879, 23913), True, 'import numpy as np\n'), ((24630, 24657), 'torch.from_numpy', 'torch.from_numpy', (['source_bf'], {}), '(source_bf)\n', (24646, 24657), False, 'import torch\n'), ((27072, 27090), 'numpy.sqrt', 'np.sqrt', (['nominator'], {}), '(nominator)\n', (27079, 27090), True, 'import numpy as np\n'), ((27930, 27960), 'numpy.expand_dims', 'np.expand_dims', (['denom'], {'axis': '(-1)'}), '(denom, axis=-1)\n', (27944, 27960), True, 'import numpy as np\n'), ((2418, 2456), 'numpy.append', 'np.append', (['stft_chcat', 'stft_ch'], {'axis': '(0)'}), '(stft_chcat, stft_ch, axis=0)\n', (2427, 2456), True, 'import numpy as np\n'), ((3492, 3523), 'numpy.expand_dims', 'np.expand_dims', (['ref_sig'], {'axis': '(1)'}), '(ref_sig, axis=1)\n', (3506, 3523), True, 'import numpy as np\n'), ((4092, 4134), 'torch.roll', 'torch.roll', (['mix_stft', '(-self.ref_ch)'], {'dims': '(0)'}), '(mix_stft, -self.ref_ch, dims=0)\n', (4102, 4134), False, 'import torch\n'), ((4134, 4176), 'torch.roll', 'torch.roll', (['ref_stft', '(-self.ref_ch)'], {'dims': '(0)'}), '(ref_stft, -self.ref_ch, dims=0)\n', (4144, 4176), False, 'import torch\n'), ((20143, 20182), 'torch.roll', 'torch.roll', (['mix_stft', '(-shiftIdx)'], {'dims': '(1)'}), '(mix_stft, -shiftIdx, dims=1)\n', (20153, 20182), False, 'import torch\n'), ((20276, 20313), 'torch.unsqueeze', 'torch.unsqueeze', (['MISO1_chShift'], {'dim': '(1)'}), '(MISO1_chShift, dim=1)\n', (20291, 20313), False, 'import torch\n'), ((20590, 20619), 'torch.unsqueeze', 'torch.unsqueeze', (['perms'], {'dim': '(2)'}), '(perms, dim=2)\n', (20605, 20619), False, 'import torch\n'), ((20785, 20850), 'torch.einsum', 'torch.einsum', (['"""bij,pij->bp"""', '[s_magnitude_chShift, perms_one_hot]'], {}), "('bij,pij->bp', [s_magnitude_chShift, perms_one_hot])\n", (20797, 20850), False, 'import torch\n'), ((20886, 20925), 'torch.argmin', 'torch.argmin', (['batchwise_distance'], {'dim': '(1)'}), '(batchwise_distance, dim=1)\n', (20898, 20925), False, 'import torch\n'), ((25157, 25178), 'numpy.ones', 'np.ones', (['(B, F, 1, T)'], {}), '((B, F, 1, T))\n', (25164, 25178), True, 'import numpy as np\n'), ((26050, 26069), 'numpy.eye', 'np.eye', (['x.shape[-1]'], {}), '(x.shape[-1])\n', (26056, 26069), True, 'import numpy as np\n'), ((1001, 1017), 'pathlib.Path', 'Path', (['pickle_dir'], {}), '(pickle_dir)\n', (1005, 1017), False, 'from pathlib import Path\n'), ((7817, 7848), 'torch.unsqueeze', 'torch.unsqueeze', (['s_MISO1'], {'dim': '(2)'}), '(s_MISO1, dim=2)\n', (7832, 7848), False, 'import torch\n'), ((8002, 8030), 'torch.unsqueeze', 'torch.unsqueeze', (['ref_'], {'dim': '(1)'}), '(ref_, dim=1)\n', (8017, 8030), False, 'import torch\n'), ((8253, 8282), 'torch.unsqueeze', 'torch.unsqueeze', (['perms'], {'dim': '(2)'}), '(perms, dim=2)\n', (8268, 8282), False, 'import torch\n'), ((8431, 8495), 'torch.einsum', 'torch.einsum', (['"""bij,pij->bp"""', '[magnitude_distance, perms_one_hot]'], {}), "('bij,pij->bp', [magnitude_distance, perms_one_hot])\n", (8443, 8495), False, 'import torch\n'), ((8526, 8565), 'torch.argmin', 'torch.argmin', (['batchwise_distance'], {'dim': '(1)'}), '(batchwise_distance, dim=1)\n', (8538, 8565), False, 'import torch\n'), ((21033, 21096), 'torch.argmax', 'torch.argmax', (['perms_one_hot[min_distance_idx[batch_idx]]'], {'dim': '(1)'}), '(perms_one_hot[min_distance_idx[batch_idx]], dim=1)\n', (21045, 21096), False, 'import torch\n'), ((25977, 26000), 'numpy.trace', 'np.trace', (['x[b_idx, ...]'], {}), '(x[b_idx, ...])\n', (25985, 26000), True, 'import numpy as np\n'), ((4978, 5010), 'torch.unsqueeze', 'torch.unsqueeze', (['mix_stft'], {'dim': '(0)'}), '(mix_stft, dim=0)\n', (4993, 5010), False, 'import torch\n'), ((5499, 5544), 'torch.unsqueeze', 'torch.unsqueeze', (['ref_stft_1ch[spk_idx]'], {'dim': '(1)'}), '(ref_stft_1ch[spk_idx], dim=1)\n', (5514, 5544), False, 'import torch\n'), ((7904, 7955), 'torch.sqrt', 'torch.sqrt', (['(s_MISO1_.real ** 2 + s_MISO1_.imag ** 2)'], {}), '(s_MISO1_.real ** 2 + s_MISO1_.imag ** 2)\n', (7914, 7955), False, 'import torch\n'), ((8636, 8699), 'torch.argmax', 'torch.argmax', (['perms_one_hot[min_distance_idx[batch_idx]]'], {'dim': '(1)'}), '(perms_one_hot[min_distance_idx[batch_idx]], dim=1)\n', (8648, 8699), False, 'import torch\n'), ((14926, 14949), 'torch.squeeze', 'torch.squeeze', (['mix_stft'], {}), '(mix_stft)\n', (14939, 14949), False, 'import torch\n'), ((17244, 17259), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (17257, 17259), False, 'import pdb\n'), ((5298, 5339), 'torch.unsqueeze', 'torch.unsqueeze', (['ref_stft[spk_idx]'], {'dim': '(0)'}), '(ref_stft[spk_idx], dim=0)\n', (5313, 5339), False, 'import torch\n'), ((7656, 7703), 'torch.cat', 'torch.cat', (['(ref_, ref_stft_1ch[spk_idx])'], {'dim': '(1)'}), '((ref_, ref_stft_1ch[spk_idx]), dim=1)\n', (7665, 7703), False, 'import torch\n'), ((7733, 7795), 'torch.stack', 'torch.stack', (['(s_MISO1, MISO1_stft[spk_idx][:, 0, :, :])'], {'dim': '(1)'}), '((s_MISO1, MISO1_stft[spk_idx][:, 0, :, :]), dim=1)\n', (7744, 7795), False, 'import torch\n'), ((8853, 8911), 'torch.unsqueeze', 'torch.unsqueeze', (['ref_[batch_idx, target_index, ...]'], {'dim': '(0)'}), '(ref_[batch_idx, target_index, ...], dim=0)\n', (8868, 8911), False, 'import torch\n'), ((9641, 9784), 'convolutive_prediction.Apply_ConvolutivePrediction', 'Apply_ConvolutivePrediction', (['observe', 'source', 'self.num_spks', 'self.predictionType', 'self.tapDelay', 'self.nTap', 'self.reverb_variance_flowValue'], {}), '(observe, source, self.num_spks, self.\n predictionType, self.tapDelay, self.nTap, self.reverb_variance_flowValue)\n', (9668, 9784), False, 'from convolutive_prediction import Apply_ConvolutivePrediction\n'), ((11162, 11295), 'convolutive_prediction.Apply_ConvolutivePrediction', 'Apply_ConvolutivePrediction', (['observe', 'source', 'self.num_spks', '"""DNN_WPE"""', 'self.tapDelay', 'self.nTap', 'self.reverb_variance_flowValue'], {}), "(observe, source, self.num_spks, 'DNN_WPE', self\n .tapDelay, self.nTap, self.reverb_variance_flowValue)\n", (11189, 11295), False, 'from convolutive_prediction import Apply_ConvolutivePrediction\n'), ((11562, 11691), 'convolutive_prediction.Apply_ConvolutivePrediction', 'Apply_ConvolutivePrediction', (['observe', 'source', 'self.num_spks', '"""FCP"""', 'self.tapDelay', 'self.nTap', 'self.reverb_variance_flowValue'], {}), "(observe, source, self.num_spks, 'FCP', self.\n tapDelay, self.nTap, self.reverb_variance_flowValue)\n", (11589, 11691), False, 'from convolutive_prediction import Apply_ConvolutivePrediction\n'), ((13797, 13856), 'torch.permute', 'torch.permute', (['DNN_WPE_dereverb_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(DNN_WPE_dereverb_stft[spk_idx], [0, 3, 1, 2])\n', (13810, 13856), False, 'import torch\n'), ((14183, 14238), 'torch.permute', 'torch.permute', (['FCP_dereverb_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(FCP_dereverb_stft[spk_idx], [0, 3, 1, 2])\n', (14196, 14238), False, 'import torch\n'), ((14581, 14618), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (14594, 14618), False, 'import torch\n'), ((15096, 15130), 'torch.squeeze', 'torch.squeeze', (['MISO1_stft[spk_idx]'], {}), '(MISO1_stft[spk_idx])\n', (15109, 15130), False, 'import torch\n'), ((15233, 15270), 'torch.squeeze', 'torch.squeeze', (['dereverb_stft[spk_idx]'], {}), '(dereverb_stft[spk_idx])\n', (15246, 15270), False, 'import torch\n'), ((15387, 15420), 'numpy.transpose', 'np.transpose', (['mix_stft', '[0, 2, 1]'], {}), '(mix_stft, [0, 2, 1])\n', (15399, 15420), True, 'import numpy as np\n'), ((24178, 24226), 'numpy.linalg.norm', 'np.linalg.norm', (['source_steering[b_idx, f_idx, :]'], {}), '(source_steering[b_idx, f_idx, :])\n', (24192, 24226), True, 'import numpy as np\n'), ((26332, 26366), 'numpy.conjugate', 'np.conjugate', (['vector[b_idx, ii, :]'], {}), '(vector[b_idx, ii, :])\n', (26344, 26366), True, 'import numpy as np\n'), ((6502, 6535), 'numpy.expand_dims', 'np.expand_dims', (['MISO1_sig'], {'axis': '(1)'}), '(MISO1_sig, axis=1)\n', (6516, 6535), True, 'import numpy as np\n'), ((9982, 10125), 'convolutive_prediction.Apply_ConvolutivePrediction', 'Apply_ConvolutivePrediction', (['observe', 'source', 'self.num_spks', 'self.predictionType', 'self.tapDelay', 'self.nTap', 'self.reverb_variance_flowValue'], {}), '(observe, source, self.num_spks, self.\n predictionType, self.tapDelay, self.nTap, self.reverb_variance_flowValue)\n', (10009, 10125), False, 'from convolutive_prediction import Apply_ConvolutivePrediction\n'), ((12548, 12584), 'numpy.expand_dims', 'np.expand_dims', (['Beamform_sig'], {'axis': '(1)'}), '(Beamform_sig, axis=1)\n', (12562, 12584), True, 'import numpy as np\n'), ((13149, 13200), 'torch.permute', 'torch.permute', (['dereverb_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(dereverb_stft[spk_idx], [0, 3, 1, 2])\n', (13162, 13200), False, 'import torch\n'), ((15516, 15562), 'numpy.transpose', 'np.transpose', (['ref_stft_1ch[spk_idx]', '[0, 2, 1]'], {}), '(ref_stft_1ch[spk_idx], [0, 2, 1])\n', (15528, 15562), True, 'import numpy as np\n'), ((15625, 15669), 'numpy.transpose', 'np.transpose', (['MISO1_stft[spk_idx]', '[0, 2, 1]'], {}), '(MISO1_stft[spk_idx], [0, 2, 1])\n', (15637, 15669), True, 'import numpy as np\n'), ((16521, 16576), 'numpy.transpose', 'np.transpose', (['DNN_WPE_Beamform_stft[spk_idx]', '[0, 2, 1]'], {}), '(DNN_WPE_Beamform_stft[spk_idx], [0, 2, 1])\n', (16533, 16576), True, 'import numpy as np\n'), ((16810, 16861), 'numpy.transpose', 'np.transpose', (['FCP_Beamform_stft[spk_idx]', '[0, 2, 1]'], {}), '(FCP_Beamform_stft[spk_idx], [0, 2, 1])\n', (16822, 16861), True, 'import numpy as np\n'), ((16973, 17027), 'numpy.transpose', 'np.transpose', (['Origin_Beamform_stft[spk_idx]', '[0, 2, 1]'], {}), '(Origin_Beamform_stft[spk_idx], [0, 2, 1])\n', (16985, 17027), True, 'import numpy as np\n'), ((10421, 10564), 'convolutive_prediction.Apply_ConvolutivePrediction', 'Apply_ConvolutivePrediction', (['observe', 'source', 'self.num_spks', 'self.predictionType', 'self.tapDelay', 'self.nTap', 'self.reverb_variance_flowValue'], {}), '(observe, source, self.num_spks, self.\n predictionType, self.tapDelay, self.nTap, self.reverb_variance_flowValue)\n', (10448, 10564), False, 'from convolutive_prediction import Apply_ConvolutivePrediction\n'), ((10969, 11017), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (10982, 11017), False, 'import torch\n'), ((11373, 11421), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (11386, 11421), False, 'import torch\n'), ((13018, 13066), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (13031, 13066), False, 'import torch\n'), ((13714, 13762), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (13727, 13762), False, 'import torch\n'), ((14100, 14148), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (14113, 14148), False, 'import torch\n'), ((14498, 14546), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (14511, 14546), False, 'import torch\n'), ((15781, 15828), 'numpy.transpose', 'np.transpose', (['dereverb_stft[spk_idx]', '[0, 2, 1]'], {}), '(dereverb_stft[spk_idx], [0, 2, 1])\n', (15793, 15828), True, 'import numpy as np\n'), ((15912, 15959), 'numpy.transpose', 'np.transpose', (['Beamform_stft[spk_idx]', '[0, 2, 1]'], {}), '(Beamform_stft[spk_idx], [0, 2, 1])\n', (15924, 15959), True, 'import numpy as np\n'), ((16078, 16125), 'numpy.transpose', 'np.transpose', (['Beamform_stft[spk_idx]', '[0, 2, 1]'], {}), '(Beamform_stft[spk_idx], [0, 2, 1])\n', (16090, 16125), True, 'import numpy as np\n'), ((16393, 16443), 'numpy.squeeze', 'np.squeeze', (['DNN_WPE_dereverb_stft[spk_idx]'], {'axis': '(0)'}), '(DNN_WPE_dereverb_stft[spk_idx], axis=0)\n', (16403, 16443), True, 'import numpy as np\n'), ((16690, 16736), 'numpy.squeeze', 'np.squeeze', (['FCP_dereverb_stft[spk_idx]'], {'axis': '(0)'}), '(FCP_dereverb_stft[spk_idx], axis=0)\n', (16700, 16736), True, 'import numpy as np\n'), ((9515, 9563), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (9528, 9563), False, 'import torch\n'), ((9856, 9904), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (9869, 9904), False, 'import torch\n'), ((10228, 10276), 'torch.permute', 'torch.permute', (['MISO1_stft[spk_idx]', '[0, 3, 1, 2]'], {}), '(MISO1_stft[spk_idx], [0, 3, 1, 2])\n', (10241, 10276), False, 'import torch\n'), ((9378, 9415), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (9391, 9415), False, 'import torch\n'), ((13257, 13294), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (13270, 13294), False, 'import torch\n'), ((11052, 11089), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (11065, 11089), False, 'import torch\n'), ((11456, 11493), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (11469, 11493), False, 'import torch\n'), ((10315, 10352), 'torch.permute', 'torch.permute', (['mix_stft', '[0, 3, 1, 2]'], {}), '(mix_stft, [0, 3, 1, 2])\n', (10328, 10352), False, 'import torch\n')]
|
import argparse
import os
import shutil
import numpy as np
import torch as t
from torch.optim import Adam
from utils.batch_loader import BatchLoader
from utils.parameters import Parameters
from model.rvae_dilated import RVAE_dilated
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='RVAE_dilated')
parser.add_argument('--num-epochs', type=int, default=25000, metavar='ES',
help='num epochs (default: 25000)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='E',
help='manual epoch index (useful on restarts)')
parser.add_argument('--batch-size', type=int, default=45, metavar='BS',
help='batch size (default: 45)')
parser.add_argument('--use-cuda', type=bool, default=True, metavar='CUDA',
help='use cuda (default: True)')
parser.add_argument('--learning-rate', type=float, default=0.0005, metavar='LR',
help='learning rate (default: 0.0005)')
parser.add_argument('--dropout', type=float, default=0.3, metavar='DR',
help='dropout (default: 0.3)')
parser.add_argument('--use-trained', default='', metavar='UT',
help='load pretrained model (default: None)')
parser.add_argument('--ret-result', default='', metavar='CE',
help='ce result path (default: '')')
parser.add_argument('--kld-result', default='', metavar='KLD',
help='ce result path (default: '')')
args = parser.parse_args()
prefix = 'poem'
word_is_char = True
batch_loader = BatchLoader('', prefix, word_is_char)
best_ret = 9999999
is_best = False
if not os.path.exists('data/' + batch_loader.prefix + 'word_embeddings.npy'):
raise FileNotFoundError("word embeddings file was't found")
parameters = Parameters(batch_loader.max_word_len,
batch_loader.max_seq_len,
batch_loader.words_vocab_size,
batch_loader.chars_vocab_size, word_is_char)
rvae = RVAE_dilated(parameters, batch_loader.prefix)
optimizer = Adam(rvae.learnable_parameters(), args.learning_rate)
if args.use_trained:
checkpoint = t.load(args.use_trained)
args.start_epoch = checkpoint['epoch']
best_ret = checkpoint['best_ret']
rvae.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if args.use_cuda and t.cuda.is_available():
rvae = rvae.cuda()
train_step = rvae.trainer(optimizer, batch_loader)
validate = rvae.validater(batch_loader)
ret_result = []
kld_result = []
for epoch in range(args.start_epoch, args.num_epochs):
train_ret, train_kld, train_kld_coef = train_step(epoch, args.batch_size, args.use_cuda and t.cuda.is_available(), args.dropout)
train_ret = train_ret.data.cpu().numpy()[0]
train_kld = train_kld.data.cpu().numpy()[0]
valid_ret, valid_kld = validate(args.batch_size, args.use_cuda and t.cuda.is_available())
valid_ret = valid_ret.data.cpu().numpy()[0]
valid_kld = valid_kld.data.cpu().numpy()[0]
ret_result += [valid_ret]
kld_result += [valid_kld]
is_best = valid_ret < best_ret
best_ret = min(valid_ret, best_ret)
print('[%s]---TRAIN-ret[%s]kld[%s]------VALID-ret[%s]kld[%s]'%(epoch, train_ret, train_kld, valid_ret, valid_kld))
if epoch != 1 and epoch % 10 == 9:
seed = np.random.normal(size=[1, parameters.latent_variable_size])
sample = rvae.sample(batch_loader, 50, seed, args.use_cuda and t.cuda.is_available(), None, 1)
print('[%s]---SAMPLE: %s'%(epoch, sample))
if epoch != 0 and epoch % 100 == 99:
checkpoint_filename = './data/%strained_%s_RVAE'%(batch_loader.prefix, epoch+1)
t.save({'epoch': epoch+1,
'state_dict': rvae.state_dict(),
'best_ret': best_ret,
'optimizer': optimizer.state_dict()}, checkpoint_filename)
oldest = epoch+1-3*100
oldest_checkpoint_filename = './data/%strained_%s_RVAE'%(batch_loader.prefix, oldest) if oldest>0 else None
if oldest_checkpoint_filename and os.path.isfile(oldest_checkpoint_filename):
os.remove(oldest_checkpoint_filename)
if is_best:
shutil.copyfile(checkpoint_filename, './data/'+batch_loader.prefix+'trained_best_RVAE')
t.save({'epoch': args.num_epochs,
'state_dict': rvae.state_dict(),
'best_ret': best_ret,
'optimizer': optimizer.state_dict()}, './data/'+batch_loader.prefix+'trained_last_RVAE')
np.save(batch_loader.prefix+'ret_result_{}.npy'.format(args.ret_result), np.array(ret_result))
np.save(batch_loader.prefix+'kld_result_npy_{}'.format(args.kld_result), np.array(kld_result))
|
[
"numpy.random.normal",
"os.path.exists",
"utils.batch_loader.BatchLoader",
"argparse.ArgumentParser",
"torch.load",
"os.path.isfile",
"numpy.array",
"utils.parameters.Parameters",
"torch.cuda.is_available",
"shutil.copyfile",
"model.rvae_dilated.RVAE_dilated",
"os.remove"
] |
[((281, 332), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""RVAE_dilated"""'}), "(description='RVAE_dilated')\n", (304, 332), False, 'import argparse\n'), ((1653, 1690), 'utils.batch_loader.BatchLoader', 'BatchLoader', (['""""""', 'prefix', 'word_is_char'], {}), "('', prefix, word_is_char)\n", (1664, 1690), False, 'from utils.batch_loader import BatchLoader\n'), ((1904, 2047), 'utils.parameters.Parameters', 'Parameters', (['batch_loader.max_word_len', 'batch_loader.max_seq_len', 'batch_loader.words_vocab_size', 'batch_loader.chars_vocab_size', 'word_is_char'], {}), '(batch_loader.max_word_len, batch_loader.max_seq_len,\n batch_loader.words_vocab_size, batch_loader.chars_vocab_size, word_is_char)\n', (1914, 2047), False, 'from utils.parameters import Parameters\n'), ((2140, 2185), 'model.rvae_dilated.RVAE_dilated', 'RVAE_dilated', (['parameters', 'batch_loader.prefix'], {}), '(parameters, batch_loader.prefix)\n', (2152, 2185), False, 'from model.rvae_dilated import RVAE_dilated\n'), ((1747, 1816), 'os.path.exists', 'os.path.exists', (["('data/' + batch_loader.prefix + 'word_embeddings.npy')"], {}), "('data/' + batch_loader.prefix + 'word_embeddings.npy')\n", (1761, 1816), False, 'import os\n'), ((2303, 2327), 'torch.load', 't.load', (['args.use_trained'], {}), '(args.use_trained)\n', (2309, 2327), True, 'import torch as t\n'), ((2564, 2585), 'torch.cuda.is_available', 't.cuda.is_available', ([], {}), '()\n', (2583, 2585), True, 'import torch as t\n'), ((4890, 4910), 'numpy.array', 'np.array', (['ret_result'], {}), '(ret_result)\n', (4898, 4910), True, 'import numpy as np\n'), ((4989, 5009), 'numpy.array', 'np.array', (['kld_result'], {}), '(kld_result)\n', (4997, 5009), True, 'import numpy as np\n'), ((3600, 3659), 'numpy.random.normal', 'np.random.normal', ([], {'size': '[1, parameters.latent_variable_size]'}), '(size=[1, parameters.latent_variable_size])\n', (3616, 3659), True, 'import numpy as np\n'), ((2916, 2937), 'torch.cuda.is_available', 't.cuda.is_available', ([], {}), '()\n', (2935, 2937), True, 'import torch as t\n'), ((3133, 3154), 'torch.cuda.is_available', 't.cuda.is_available', ([], {}), '()\n', (3152, 3154), True, 'import torch as t\n'), ((4364, 4406), 'os.path.isfile', 'os.path.isfile', (['oldest_checkpoint_filename'], {}), '(oldest_checkpoint_filename)\n', (4378, 4406), False, 'import os\n'), ((4424, 4461), 'os.remove', 'os.remove', (['oldest_checkpoint_filename'], {}), '(oldest_checkpoint_filename)\n', (4433, 4461), False, 'import os\n'), ((4502, 4597), 'shutil.copyfile', 'shutil.copyfile', (['checkpoint_filename', "('./data/' + batch_loader.prefix + 'trained_best_RVAE')"], {}), "(checkpoint_filename, './data/' + batch_loader.prefix +\n 'trained_best_RVAE')\n", (4517, 4597), False, 'import shutil\n'), ((3735, 3756), 'torch.cuda.is_available', 't.cuda.is_available', ([], {}), '()\n', (3754, 3756), True, 'import torch as t\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: <NAME>
"""
import sys
sys.path.insert(0, '../PGP/')
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from parametric_GP import PGP
if __name__ == "__main__":
# Import the data
data = pd.read_pickle('airline.pickle')
# Convert time of day from hhmm to minutes since midnight
data.ArrTime = 60*np.floor(data.ArrTime/100)+np.mod(data.ArrTime, 100)
data.DepTime = 60*np.floor(data.DepTime/100)+np.mod(data.DepTime, 100)
# Pick out the data
Y = data['ArrDelay'].values
names = ['Month', 'DayofMonth', 'DayOfWeek', 'plane_age', 'AirTime', 'Distance', 'ArrTime', 'DepTime']
X = data[names].values
N = len(data)
np.random.seed(N)
# Shuffle the data and only consider a subset of it
perm = np.random.permutation(N)
X = X[perm]
Y = Y[perm]
XT = X[int(2*N/3):N]
YT = Y[int(2*N/3):N]
X = X[:int(2*N/3)]
Y = Y[:int(2*N/3)]
# Normalize Y scale and offset
Ymean = Y.mean()
Ystd = Y.std()
Y = (Y - Ymean) / Ystd
Y = Y.reshape(-1, 1)
YT = (YT - Ymean) / Ystd
YT = YT.reshape(-1, 1)
# Normalize X on [0, 1]
Xmin, Xmax = X.min(0), X.max(0)
X = (X - Xmin) / (Xmax - Xmin)
XT = (XT - Xmin) / (Xmax - Xmin)
# Model creation
M = 500
pgp = PGP(X, Y, M, max_iter = 10000, N_batch = 1000,
monitor_likelihood = 10, lrate = 1e-3)
# Training
pgp.train()
# Prediction
mean_star, var_star = pgp.predict(XT)
# MSE
print('MSE: %f' % ((mean_star-YT)**2).mean())
print('MSE_mean: %f' % ((Y.mean()-YT)**2).mean())
# ARD
ARD = 1/np.sqrt(np.exp(pgp.hyp[1:-1]))
ARD_x = np.arange(len(ARD))
fig, ax = plt.subplots(figsize=(10,5))
plt.rcParams.update({'font.size': 16})
ax.barh(ARD_x,ARD)
ax.set_yticks(ARD_x)
ax.set_yticklabels(names)
ax.set_xlabel('ARD weights')
plt.savefig('../Fig/Flights.eps', format='eps', dpi=1000)
#####
# MSE: 0.832810
# MSE_mean: 0.999799
|
[
"pandas.read_pickle",
"sys.path.insert",
"matplotlib.pyplot.savefig",
"parametric_GP.PGP",
"numpy.floor",
"numpy.exp",
"matplotlib.pyplot.rcParams.update",
"numpy.random.seed",
"numpy.mod",
"matplotlib.pyplot.subplots",
"numpy.random.permutation"
] |
[((83, 112), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""../PGP/"""'], {}), "(0, '../PGP/')\n", (98, 112), False, 'import sys\n'), ((285, 317), 'pandas.read_pickle', 'pd.read_pickle', (['"""airline.pickle"""'], {}), "('airline.pickle')\n", (299, 317), True, 'import pandas as pd\n'), ((749, 766), 'numpy.random.seed', 'np.random.seed', (['N'], {}), '(N)\n', (763, 766), True, 'import numpy as np\n'), ((835, 859), 'numpy.random.permutation', 'np.random.permutation', (['N'], {}), '(N)\n', (856, 859), True, 'import numpy as np\n'), ((1357, 1435), 'parametric_GP.PGP', 'PGP', (['X', 'Y', 'M'], {'max_iter': '(10000)', 'N_batch': '(1000)', 'monitor_likelihood': '(10)', 'lrate': '(0.001)'}), '(X, Y, M, max_iter=10000, N_batch=1000, monitor_likelihood=10, lrate=0.001)\n', (1360, 1435), False, 'from parametric_GP import PGP\n'), ((1789, 1818), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (1801, 1818), True, 'import matplotlib.pyplot as plt\n'), ((1822, 1860), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 16}"], {}), "({'font.size': 16})\n", (1841, 1860), True, 'import matplotlib.pyplot as plt\n'), ((1981, 2038), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""../Fig/Flights.eps"""'], {'format': '"""eps"""', 'dpi': '(1000)'}), "('../Fig/Flights.eps', format='eps', dpi=1000)\n", (1992, 2038), True, 'import matplotlib.pyplot as plt\n'), ((430, 455), 'numpy.mod', 'np.mod', (['data.ArrTime', '(100)'], {}), '(data.ArrTime, 100)\n', (436, 455), True, 'import numpy as np\n'), ((505, 530), 'numpy.mod', 'np.mod', (['data.DepTime', '(100)'], {}), '(data.DepTime, 100)\n', (511, 530), True, 'import numpy as np\n'), ((403, 431), 'numpy.floor', 'np.floor', (['(data.ArrTime / 100)'], {}), '(data.ArrTime / 100)\n', (411, 431), True, 'import numpy as np\n'), ((478, 506), 'numpy.floor', 'np.floor', (['(data.DepTime / 100)'], {}), '(data.DepTime / 100)\n', (486, 506), True, 'import numpy as np\n'), ((1719, 1740), 'numpy.exp', 'np.exp', (['pgp.hyp[1:-1]'], {}), '(pgp.hyp[1:-1])\n', (1725, 1740), True, 'import numpy as np\n')]
|
import rospy
from styx_msgs.msg import TrafficLight
import numpy as np
from keras.models import Model
from keras import applications
from keras.models import load_model
from keras.preprocessing import image as img_preprocessing
import cv2
# load the trained model
from keras.utils.generic_utils import CustomObjectScope
model_filepath = 'saved_models/model.MobileNet-3-classes.h5'
n_classes = 3
class TLClassifier(object):
def __init__(self):
# load classifier
# load keras libraies and load the MobileNet model
self.model_loaded = False
def load_model(self):
rospy.loginfo("TLClassifier: Loading model...")
with CustomObjectScope({'relu6': applications.mobilenet.relu6,'DepthwiseConv2D': applications.mobilenet.DepthwiseConv2D}):
self.model = load_model(model_filepath)
self.model._make_predict_function() # Otherwise there is a "Tensor %s is not an element of this grap..." when predicting
self.model_loaded = True
rospy.loginfo("TLClassifier: Model loaded - READY")
def get_classification(self, image):
"""Determines the color of the traffic light in the image
Args:
image (cv::Mat): image containing the traffic light
Returns:
int: ID of traffic light color (specified in styx_msgs/TrafficLight)
"""
# Implement light color prediction
if not self.model_loaded:
rospy.logwarn("Model not loaded yet, clssification not possible!")
return TrafficLight.UNKNOWN
# The model was trained with RGB images.
# So the image needs to be provided as RGB:
# self.bridge.imgmsg_to_cv2(self.camera_image, "rgb8")
# Otherwise a conversion would be necessary
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# The model expects RGB images in (224, 224) as input
image = cv2.resize(image,(224,224))
# to tensors and normalize it
x = img_preprocessing.img_to_array(image)
x = np.expand_dims(x, axis=0).astype('float32')/255
# get index of predicted signal sign for the image
signal_prediction = np.argmax(self.model.predict(x))
return signal_prediction
|
[
"keras.preprocessing.image.img_to_array",
"keras.models.load_model",
"rospy.logwarn",
"keras.utils.generic_utils.CustomObjectScope",
"numpy.expand_dims",
"cv2.resize",
"rospy.loginfo"
] |
[((605, 652), 'rospy.loginfo', 'rospy.loginfo', (['"""TLClassifier: Loading model..."""'], {}), "('TLClassifier: Loading model...')\n", (618, 652), False, 'import rospy\n'), ((1010, 1061), 'rospy.loginfo', 'rospy.loginfo', (['"""TLClassifier: Model loaded - READY"""'], {}), "('TLClassifier: Model loaded - READY')\n", (1023, 1061), False, 'import rospy\n'), ((1918, 1947), 'cv2.resize', 'cv2.resize', (['image', '(224, 224)'], {}), '(image, (224, 224))\n', (1928, 1947), False, 'import cv2\n'), ((2005, 2042), 'keras.preprocessing.image.img_to_array', 'img_preprocessing.img_to_array', (['image'], {}), '(image)\n', (2035, 2042), True, 'from keras.preprocessing import image as img_preprocessing\n'), ((666, 787), 'keras.utils.generic_utils.CustomObjectScope', 'CustomObjectScope', (["{'relu6': applications.mobilenet.relu6, 'DepthwiseConv2D': applications.\n mobilenet.DepthwiseConv2D}"], {}), "({'relu6': applications.mobilenet.relu6, 'DepthwiseConv2D':\n applications.mobilenet.DepthwiseConv2D})\n", (683, 787), False, 'from keras.utils.generic_utils import CustomObjectScope\n'), ((809, 835), 'keras.models.load_model', 'load_model', (['model_filepath'], {}), '(model_filepath)\n', (819, 835), False, 'from keras.models import load_model\n'), ((1450, 1516), 'rospy.logwarn', 'rospy.logwarn', (['"""Model not loaded yet, clssification not possible!"""'], {}), "('Model not loaded yet, clssification not possible!')\n", (1463, 1516), False, 'import rospy\n'), ((2055, 2080), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (2069, 2080), True, 'import numpy as np\n')]
|
###############################################################################
# Copyright (C) 2016 <NAME>
# This is part of <NAME>'s PoDoCo project.
#
# This file is licensed under the MIT License.
###############################################################################
"""
Particle filters for tracking the incoming traffic intensity.
See, the files script_test_poisson_1.py and script_test_negbin.py for
usage.
"""
import numpy as np
import resampling # resampling (c) <NAME> Jr (MIT License)
from scipy.special import gammaln
def pf_init(Nrep, params):
"""
Initialize particle filter from MCMC samples.
"""
for key in params.keys():
params[key] = np.tile(params[key], Nrep)
N = params['A_x'].shape[0]
W = np.repeat(1/N, N)
x = np.random.normal(params['base'][0, :],
params['sqrtQ_x'] / np.sqrt((1 - params['A_x']**2)))
return x, params, W
def pf_update_poisson(y, x, params, W):
"""Update weights according to measurement"""
logW = np.log(W) + y * np.log(np.exp(x)) - np.exp(x)
W = np.exp(logW - np.max(logW))
W = W / sum(W)
return params, W
def pf_step_poisson(y, x, params, W, resample=True):
"""One step (measurement) of the particle filter, Poisson obs. model
(Resample)
Propagate the particles using the prior model,
Update weights
Remove the first elements of baselines
"""
N = W.shape[0]
if resample:
ind = resampling.residual_resample(W)
x = x[ind]
params['base'] = params['base'][:, ind]
params['sqrtQ_x'] = params['sqrtQ_x'][ind]
params['A_x'] = params['A_x'][ind]
W = np.repeat(1/N, N)
x = np.random.normal(params['base'][1, :] + params['A_x'] *
(x - params['base'][0, :]), params['sqrtQ_x'])
params = trim_base(params)
params, W = pf_update_poisson(y, x, params, W)
return x, params, W
def predict_mean(x, params, W):
"""Expected value of the next observation after the update step"""
return np.sum(W * (np.exp(params['base'][1, :] + params['A_x'] *
(x - params['base'][0, :]) + 0.5 * params['sqrtQ_x']**2)))
def trim_base(params):
"""Cuts the first component of base"""
params['base'] = params['base'][1:, :]
return params
def pf_update_negbin(y, x, params, W):
"""Update weights per measurement, NegBin obs. model"""
phi = np.exp(x) / (params['omega'] - 1)
logW = (gammaln(y + phi) - gammaln(phi) +
y * (np.log(params['omega'] - 1) - np.log(params['omega'])) -
phi * (np.log(params['omega'])))
W = np.exp(logW - np.max(logW))
W = W / sum(W)
return params, W
def pf_step_negbin(y, x, params, W, resample=True):
"""
One step (measurement) of the particle filter, NegBin obs. model
(Resample)
Propagate the particles using the prior model,
Update weights
Remove the first elements of baselines
"""
N = W.shape[0]
if resample:
ind = resampling.residual_resample(W)
x = x[ind]
params['base'] = params['base'][:, ind]
params['sqrtQ_x'] = params['sqrtQ_x'][ind]
params['A_x'] = params['A_x'][ind]
params['omega'] = params['omega'][ind]
W = np.repeat(1/N, N)
x = np.random.normal(params['base'][1, :] + params['A_x'] *
(x - params['base'][0, :]), params['sqrtQ_x'])
params = trim_base(params)
params, W = pf_update_negbin(y, x, params, W)
return x, params, W
|
[
"numpy.random.normal",
"numpy.tile",
"numpy.repeat",
"numpy.sqrt",
"numpy.log",
"numpy.max",
"numpy.exp",
"scipy.special.gammaln",
"resampling.residual_resample"
] |
[((755, 774), 'numpy.repeat', 'np.repeat', (['(1 / N)', 'N'], {}), '(1 / N, N)\n', (764, 774), True, 'import numpy as np\n'), ((1700, 1807), 'numpy.random.normal', 'np.random.normal', (["(params['base'][1, :] + params['A_x'] * (x - params['base'][0, :]))", "params['sqrtQ_x']"], {}), "(params['base'][1, :] + params['A_x'] * (x - params['base']\n [0, :]), params['sqrtQ_x'])\n", (1716, 1807), True, 'import numpy as np\n'), ((3303, 3410), 'numpy.random.normal', 'np.random.normal', (["(params['base'][1, :] + params['A_x'] * (x - params['base'][0, :]))", "params['sqrtQ_x']"], {}), "(params['base'][1, :] + params['A_x'] * (x - params['base']\n [0, :]), params['sqrtQ_x'])\n", (3319, 3410), True, 'import numpy as np\n'), ((688, 714), 'numpy.tile', 'np.tile', (['params[key]', 'Nrep'], {}), '(params[key], Nrep)\n', (695, 714), True, 'import numpy as np\n'), ((1062, 1071), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1068, 1071), True, 'import numpy as np\n'), ((1468, 1499), 'resampling.residual_resample', 'resampling.residual_resample', (['W'], {}), '(W)\n', (1496, 1499), False, 'import resampling\n'), ((1673, 1692), 'numpy.repeat', 'np.repeat', (['(1 / N)', 'N'], {}), '(1 / N, N)\n', (1682, 1692), True, 'import numpy as np\n'), ((2429, 2438), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (2435, 2438), True, 'import numpy as np\n'), ((3024, 3055), 'resampling.residual_resample', 'resampling.residual_resample', (['W'], {}), '(W)\n', (3052, 3055), False, 'import resampling\n'), ((3276, 3295), 'numpy.repeat', 'np.repeat', (['(1 / N)', 'N'], {}), '(1 / N, N)\n', (3285, 3295), True, 'import numpy as np\n'), ((866, 897), 'numpy.sqrt', 'np.sqrt', (["(1 - params['A_x'] ** 2)"], {}), "(1 - params['A_x'] ** 2)\n", (873, 897), True, 'import numpy as np\n'), ((1026, 1035), 'numpy.log', 'np.log', (['W'], {}), '(W)\n', (1032, 1035), True, 'import numpy as np\n'), ((1094, 1106), 'numpy.max', 'np.max', (['logW'], {}), '(logW)\n', (1100, 1106), True, 'import numpy as np\n'), ((2065, 2174), 'numpy.exp', 'np.exp', (["(params['base'][1, :] + params['A_x'] * (x - params['base'][0, :]) + 0.5 * \n params['sqrtQ_x'] ** 2)"], {}), "(params['base'][1, :] + params['A_x'] * (x - params['base'][0, :]) + \n 0.5 * params['sqrtQ_x'] ** 2)\n", (2071, 2174), True, 'import numpy as np\n'), ((2603, 2626), 'numpy.log', 'np.log', (["params['omega']"], {}), "(params['omega'])\n", (2609, 2626), True, 'import numpy as np\n'), ((2652, 2664), 'numpy.max', 'np.max', (['logW'], {}), '(logW)\n', (2658, 2664), True, 'import numpy as np\n'), ((2476, 2492), 'scipy.special.gammaln', 'gammaln', (['(y + phi)'], {}), '(y + phi)\n', (2483, 2492), False, 'from scipy.special import gammaln\n'), ((2495, 2507), 'scipy.special.gammaln', 'gammaln', (['phi'], {}), '(phi)\n', (2502, 2507), False, 'from scipy.special import gammaln\n'), ((1049, 1058), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1055, 1058), True, 'import numpy as np\n'), ((2527, 2554), 'numpy.log', 'np.log', (["(params['omega'] - 1)"], {}), "(params['omega'] - 1)\n", (2533, 2554), True, 'import numpy as np\n'), ((2557, 2580), 'numpy.log', 'np.log', (["params['omega']"], {}), "(params['omega'])\n", (2563, 2580), True, 'import numpy as np\n')]
|
import os
import numpy as np
import pandas as pd
from Base import Train, Predict
def getTest(boolNormalize, boolDeep, boolBias, strProjectFolder):
if boolNormalize:
if boolDeep:
strOutputPath = "02-Output/" + "Deep" + "Normal"
else:
if boolBias:
strOutputPath = "02-Output/" + "Bias" + "Normal"
else:
strOutputPath = "02-Output/" + "unBias" + "Normal"
else:
if boolDeep:
strOutputPath = "02-Output/" + "Deep"
else:
if boolBias:
strOutputPath = "02-Output/" + "Bias"
else:
strOutputPath = "02-Output/" + "unBias"
strOutputPath = strOutputPath + "Test"
DataTrain = pd.read_csv(os.path.join(strProjectFolder, "01-Data/Train.csv"))
DataTest = pd.read_csv(os.path.join(strProjectFolder, "01-Data/Test.csv"))
submisson = pd.read_csv(os.path.join(strProjectFolder, "01-Data/SampleSubmisson.csv"))
DataTrain = DataTrain.sample(frac=1)
intUserSize = len(DataTrain["UserID"].drop_duplicates())
intMovieSize = len(DataTrain["MovieID"].drop_duplicates())
arrayUsers = DataTrain["UserID"].values
arrayMovies = DataTrain["MovieID"].values
arrayRate = DataTrain["Rating"].values
arrayTestUsers = DataTest["UserID"].values
arrayTestMovies = DataTest["MovieID"].values
intLatentSize = 32
if boolNormalize:
arrayRateAvg = np.mean(arrayRate)
arrayRateStd = np.std(arrayRate)
arrayRate = (arrayRate - arrayRateAvg)/arrayRateStd
Train.getTrain(arrayTrainUser=arrayUsers, arrayTrainMovie=arrayMovies, arrayTrainRate=arrayRate
, arrayValidUser=arrayUsers, arrayValidMovie=arrayMovies, arrayValidRate=arrayRate
, intUserSize=intUserSize
, intMovieSize=intMovieSize
, intLatentSize=intLatentSize
, boolBias=boolBias
, boolDeep=boolDeep
, strProjectFolder=strProjectFolder, strOutputPath=strOutputPath)
arrayPredict = Predict.makePredict(arrayTestUsers, arrayTestMovies, strProjectFolder, strOutputPath)
if boolNormalize:
arrayPredict = (arrayPredict * arrayRateStd) + arrayRateAvg
submisson["Rating"] = pd.DataFrame(arrayPredict)
submisson.to_csv(os.path.join(strProjectFolder, strOutputPath + "submission.csv"), index=False)
if __name__ == "__main__":
strProjectFolder = os.path.dirname(__file__)
getTest(boolNormalize=True, boolDeep=False, boolBias=True, strProjectFolder=strProjectFolder)
|
[
"numpy.mean",
"os.path.join",
"Base.Predict.makePredict",
"os.path.dirname",
"Base.Train.getTrain",
"numpy.std",
"pandas.DataFrame"
] |
[((1585, 1968), 'Base.Train.getTrain', 'Train.getTrain', ([], {'arrayTrainUser': 'arrayUsers', 'arrayTrainMovie': 'arrayMovies', 'arrayTrainRate': 'arrayRate', 'arrayValidUser': 'arrayUsers', 'arrayValidMovie': 'arrayMovies', 'arrayValidRate': 'arrayRate', 'intUserSize': 'intUserSize', 'intMovieSize': 'intMovieSize', 'intLatentSize': 'intLatentSize', 'boolBias': 'boolBias', 'boolDeep': 'boolDeep', 'strProjectFolder': 'strProjectFolder', 'strOutputPath': 'strOutputPath'}), '(arrayTrainUser=arrayUsers, arrayTrainMovie=arrayMovies,\n arrayTrainRate=arrayRate, arrayValidUser=arrayUsers, arrayValidMovie=\n arrayMovies, arrayValidRate=arrayRate, intUserSize=intUserSize,\n intMovieSize=intMovieSize, intLatentSize=intLatentSize, boolBias=\n boolBias, boolDeep=boolDeep, strProjectFolder=strProjectFolder,\n strOutputPath=strOutputPath)\n', (1599, 1968), False, 'from Base import Train, Predict\n'), ((2093, 2182), 'Base.Predict.makePredict', 'Predict.makePredict', (['arrayTestUsers', 'arrayTestMovies', 'strProjectFolder', 'strOutputPath'], {}), '(arrayTestUsers, arrayTestMovies, strProjectFolder,\n strOutputPath)\n', (2112, 2182), False, 'from Base import Train, Predict\n'), ((2298, 2324), 'pandas.DataFrame', 'pd.DataFrame', (['arrayPredict'], {}), '(arrayPredict)\n', (2310, 2324), True, 'import pandas as pd\n'), ((2478, 2503), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2493, 2503), False, 'import os\n'), ((770, 821), 'os.path.join', 'os.path.join', (['strProjectFolder', '"""01-Data/Train.csv"""'], {}), "(strProjectFolder, '01-Data/Train.csv')\n", (782, 821), False, 'import os\n'), ((850, 900), 'os.path.join', 'os.path.join', (['strProjectFolder', '"""01-Data/Test.csv"""'], {}), "(strProjectFolder, '01-Data/Test.csv')\n", (862, 900), False, 'import os\n'), ((930, 991), 'os.path.join', 'os.path.join', (['strProjectFolder', '"""01-Data/SampleSubmisson.csv"""'], {}), "(strProjectFolder, '01-Data/SampleSubmisson.csv')\n", (942, 991), False, 'import os\n'), ((1460, 1478), 'numpy.mean', 'np.mean', (['arrayRate'], {}), '(arrayRate)\n', (1467, 1478), True, 'import numpy as np\n'), ((1502, 1519), 'numpy.std', 'np.std', (['arrayRate'], {}), '(arrayRate)\n', (1508, 1519), True, 'import numpy as np\n'), ((2346, 2410), 'os.path.join', 'os.path.join', (['strProjectFolder', "(strOutputPath + 'submission.csv')"], {}), "(strProjectFolder, strOutputPath + 'submission.csv')\n", (2358, 2410), False, 'import os\n')]
|
from abc import ABCMeta, abstractmethod
import numpy as np
__all__ = ['Law', 'Bin', 'Poi', 'Gau']
class Law(metaclass=ABCMeta):
@staticmethod
@abstractmethod
def sample(n, d):
pass
@staticmethod
@abstractmethod
def loglikely(n, d, k):
pass
@staticmethod
def likelihood(n, d, k):
return np.exp(loglikely(n, d, k))
class Bin(Law):
def sample(n, d):
return np.random.binomial(n, d)
def loglikely(n, d, k):
return k*np.log(d) + (n-k)*np.log(1-d)
class Poi(Law):
def sample(n, d):
return np.random.poisson(n*d)
def loglikely(n, d, k):
return k*np.log(n*d) - n*d + k - k*np.log(1+k) # - np.sum(np.log(np.arange(k)+1))
class Gau(Law):
def sample(n, d=1):
return n * (1 + 0.1*np.random.randn())
def loglikely(n, d, k):
return -50 * np.log(k/n)**2
|
[
"numpy.random.poisson",
"numpy.log",
"numpy.random.randn",
"numpy.random.binomial"
] |
[((432, 456), 'numpy.random.binomial', 'np.random.binomial', (['n', 'd'], {}), '(n, d)\n', (450, 456), True, 'import numpy as np\n'), ((592, 616), 'numpy.random.poisson', 'np.random.poisson', (['(n * d)'], {}), '(n * d)\n', (609, 616), True, 'import numpy as np\n'), ((507, 516), 'numpy.log', 'np.log', (['d'], {}), '(d)\n', (513, 516), True, 'import numpy as np\n'), ((525, 538), 'numpy.log', 'np.log', (['(1 - d)'], {}), '(1 - d)\n', (531, 538), True, 'import numpy as np\n'), ((691, 704), 'numpy.log', 'np.log', (['(1 + k)'], {}), '(1 + k)\n', (697, 704), True, 'import numpy as np\n'), ((885, 898), 'numpy.log', 'np.log', (['(k / n)'], {}), '(k / n)\n', (891, 898), True, 'import numpy as np\n'), ((812, 829), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (827, 829), True, 'import numpy as np\n'), ((665, 678), 'numpy.log', 'np.log', (['(n * d)'], {}), '(n * d)\n', (671, 678), True, 'import numpy as np\n')]
|
__all__ = ['plot_cum_error_dist']
import numpy as np
# import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from mpl_toolkits.axes_grid.inset_locator import inset_axes
import itertools
from . import palettes
# colors = itertools.cycle(npl.palettes.color_palette(palette="sweet", n_colors=15))
# from ..core import *
# from ..auxiliary import *
from .. import decoding
# from . import utils # import plotting/utils
def plot_cum_error_dist(*, cumhist=None, bincenters=None,
bst=None, extern=None, decodefunc=None,
k=None, transfunc=None, n_extern=None,
n_bins = None, extmin=None, extmax=None,
sigma=None, lw=None, ax=None, inset=True,
inset_ax=None, color=None, **kwargs):
"""Plot (and optionally compute) the cumulative distribution of
decoding errors, evaluated using a cross-validation procedure.
See Fig 3.(b) of "Analysis of Hippocampal Memory Replay Using Neural
Population Decoding", <NAME>, 2012.
Parameters
----------
Returns
-------
"""
if ax is None:
ax = plt.gca()
if lw is None:
lw=1.5
if decodefunc is None:
decodefunc = decoding.decode1D
if k is None:
k=5
if n_extern is None:
n_extern=100
if n_bins is None:
n_bins = 200
if extmin is None:
extmin=0
if extmax is None:
extmax=100
if sigma is None:
sigma = 3
# Get the color from the current color cycle
if color is None:
line, = ax.plot(0, 0.5)
color = line.get_color()
line.remove()
# if cumhist or bincenters are NOT provided, then compute them
if cumhist is None or bincenters is None:
assert bst is not None, "if cumhist and bincenters are not given, then bst must be provided to recompute them!"
assert extern is not None, "if cumhist and bincenters are not given, then extern must be provided to recompute them!"
cumhist, bincenters = \
decoding.cumulative_dist_decoding_error_using_xval(
bst=bst,
extern=extern,
decodefunc=decoding.decode1D,
k=k,
transfunc=transfunc,
n_extern=n_extern,
extmin=extmin,
extmax=extmax,
sigma=sigma,
n_bins=n_bins)
# now plot results
ax.plot(bincenters, cumhist, lw=lw, color=color, **kwargs)
ax.set_xlim(bincenters[0], bincenters[-1])
ax.set_xlabel('error [cm]')
ax.set_ylabel('cumulative probability')
ax.set_ylim(0)
if inset:
if inset_ax is None:
inset_ax = inset_axes(parent_axes=ax,
width="60%",
height="50%",
loc=4,
borderpad=2)
inset_ax.plot(bincenters, cumhist, lw=lw, color=color, **kwargs)
# annotate inset
thresh1 = 0.7
bcidx = np.asscalar(np.argwhere(cumhist>thresh1)[0]-1)
inset_ax.hlines(thresh1, 0, bincenters[bcidx], color=color, alpha=0.9, linestyle='--')
inset_ax.vlines(bincenters[bcidx], 0, thresh1, color=color, alpha=0.9, linestyle='--')
inset_ax.set_xlim(0,12*np.ceil(bincenters[bcidx]/10))
thresh2 = 0.5
bcidx = np.asscalar(np.argwhere(cumhist>thresh2)[0]-1)
inset_ax.hlines(thresh2, 0, bincenters[bcidx], color=color, alpha=0.6, linestyle='--')
inset_ax.vlines(bincenters[bcidx], 0, thresh2, color=color, alpha=0.6, linestyle='--')
inset_ax.set_yticks((0,thresh1, thresh2, 1))
inset_ax.set_ylim(0)
return ax, inset_ax
return ax
|
[
"matplotlib.pyplot.gca",
"numpy.ceil",
"mpl_toolkits.axes_grid.inset_locator.inset_axes",
"numpy.argwhere"
] |
[((1188, 1197), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1195, 1197), True, 'import matplotlib.pyplot as plt\n'), ((2724, 2797), 'mpl_toolkits.axes_grid.inset_locator.inset_axes', 'inset_axes', ([], {'parent_axes': 'ax', 'width': '"""60%"""', 'height': '"""50%"""', 'loc': '(4)', 'borderpad': '(2)'}), "(parent_axes=ax, width='60%', height='50%', loc=4, borderpad=2)\n", (2734, 2797), False, 'from mpl_toolkits.axes_grid.inset_locator import inset_axes\n'), ((3341, 3372), 'numpy.ceil', 'np.ceil', (['(bincenters[bcidx] / 10)'], {}), '(bincenters[bcidx] / 10)\n', (3348, 3372), True, 'import numpy as np\n'), ((3084, 3114), 'numpy.argwhere', 'np.argwhere', (['(cumhist > thresh1)'], {}), '(cumhist > thresh1)\n', (3095, 3114), True, 'import numpy as np\n'), ((3423, 3453), 'numpy.argwhere', 'np.argwhere', (['(cumhist > thresh2)'], {}), '(cumhist > thresh2)\n', (3434, 3453), True, 'import numpy as np\n')]
|
import pandas as pd
import numpy as np
from model.helper_functions import build_playlist_features
print('Reading data into memory')
pid_list = np.genfromtxt('../data/train_pids.csv', skip_header=1, dtype=int)
playlistfile = '../data/playlists.csv'
playlist_df = pd.read_csv(playlistfile)
trackfile = '../data/songs_100000_feat_cleaned.csv'
track_df = pd.read_csv(trackfile, index_col='track_uri')
print('Finding playlist features')
playlist_features = build_playlist_features(pid_list, playlist_df, track_df)
playlist_features.to_csv('../data/playlist_features_train.csv')
print('Finding top artists')
# Find the top artists who dominate playlists
top_playlist_defining_artists = playlist_features.artist_uri_top.value_counts(normalize=False)
top_playlist_defining_artists.to_csv('../data/top_playlist_defining_artists_train_all.csv', header=True)
top_playlist_defining_artists = playlist_features.artist_uri_top.value_counts().index.values[:50]
np.savetxt('../data/top_playlist_defining_artists_train.csv', top_playlist_defining_artists, delimiter=',', fmt="%s")
# Keep only those artists who dominate playlists and one hot encode
artists_to_keep = playlist_features.artist_uri_top.isin(top_playlist_defining_artists)
playlist_features.artist_uri_top = playlist_features.artist_uri_top[artists_to_keep]
playlist_features.artist_uri_freq = playlist_features.artist_uri_freq[artists_to_keep]
playlist_features.artist_uri_freq.fillna(0, inplace=True)
top_artist_dummies = pd.get_dummies(playlist_features.artist_uri_top)
playlist_features = pd.concat([playlist_features, top_artist_dummies], axis=1)
playlist_features.drop(['artist_uri_top'], axis=1, inplace=True)
playlist_features.to_csv('../data/playlist_features_with_artists_train.csv')
|
[
"pandas.read_csv",
"model.helper_functions.build_playlist_features",
"pandas.concat",
"numpy.savetxt",
"pandas.get_dummies",
"numpy.genfromtxt"
] |
[((144, 209), 'numpy.genfromtxt', 'np.genfromtxt', (['"""../data/train_pids.csv"""'], {'skip_header': '(1)', 'dtype': 'int'}), "('../data/train_pids.csv', skip_header=1, dtype=int)\n", (157, 209), True, 'import numpy as np\n'), ((263, 288), 'pandas.read_csv', 'pd.read_csv', (['playlistfile'], {}), '(playlistfile)\n', (274, 288), True, 'import pandas as pd\n'), ((352, 397), 'pandas.read_csv', 'pd.read_csv', (['trackfile'], {'index_col': '"""track_uri"""'}), "(trackfile, index_col='track_uri')\n", (363, 397), True, 'import pandas as pd\n'), ((454, 510), 'model.helper_functions.build_playlist_features', 'build_playlist_features', (['pid_list', 'playlist_df', 'track_df'], {}), '(pid_list, playlist_df, track_df)\n', (477, 510), False, 'from model.helper_functions import build_playlist_features\n'), ((949, 1070), 'numpy.savetxt', 'np.savetxt', (['"""../data/top_playlist_defining_artists_train.csv"""', 'top_playlist_defining_artists'], {'delimiter': '""","""', 'fmt': '"""%s"""'}), "('../data/top_playlist_defining_artists_train.csv',\n top_playlist_defining_artists, delimiter=',', fmt='%s')\n", (959, 1070), True, 'import numpy as np\n'), ((1475, 1523), 'pandas.get_dummies', 'pd.get_dummies', (['playlist_features.artist_uri_top'], {}), '(playlist_features.artist_uri_top)\n', (1489, 1523), True, 'import pandas as pd\n'), ((1544, 1602), 'pandas.concat', 'pd.concat', (['[playlist_features, top_artist_dummies]'], {'axis': '(1)'}), '([playlist_features, top_artist_dummies], axis=1)\n', (1553, 1602), True, 'import pandas as pd\n')]
|
import numpy as np
import sys
import scipy.interpolate as interpolate
import asdf
from .function import *
from .basic_func import Basic
class Func:
'''
The list of (possible) `Func` attributes is given below:
Attributes
----------
'''
def __init__(self, MB, dust_model=0):
'''
Parameters
----------
dust_model : int
0 for Calzetti.
'''
self.ID = MB.ID
self.ZZ = MB.Zall
self.age = MB.age
self.AA = MB.nage
self.tau0 = MB.tau0
self.MB = MB
self.dust_model = dust_model
self.DIR_TMP = MB.DIR_TMP
if MB.f_dust:
self.Temp = MB.Temp
try:
self.filts = MB.filts
self.DIR_FIL = MB.DIR_FILT
except:
pass
# Already Read or not;
self.f_af = False
self.f_af0 = False
def demo(self):
ZZ = self.ZZ
AA = self.AA
return ZZ, AA
#############################
# Load template in obs range.
#############################
def open_spec_fits(self, fall=0, orig=False):
'''
'''
ID0 = self.MB.ID
tau0= self.MB.tau0 #[0.01,0.02,0.03]
from astropy.io import fits
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
# ASDF;
if fall == 0:
app = ''
hdu0 = self.MB.af['spec']
elif fall == 1:
app = 'all_'
hdu0 = self.MB.af['spec_full']
DIR_TMP = self.DIR_TMP
for pp in range(len(tau0)):
for zz in range(len(ZZ)):
Z = ZZ[zz]
NZ = bfnc.Z2NZ(Z)
if zz == 0 and pp == 0:
nr = hdu0['colnum']
xx = hdu0['wavelength']
lib = np.zeros((len(nr), 2+len(AA)*len(ZZ)*len(tau0)), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
for aa in range(len(AA)):
coln = int(2 + aa)
if orig:
colname = 'fspec_orig_' + str(zz) + '_' + str(aa) + '_' + str(pp)
else:
colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp)
colnall = int(2 + pp*len(ZZ)*len(AA) + zz*len(AA) + aa) # 2 takes account of wavelength and AV columns.
lib[:,colnall] = hdu0[colname]
return lib
def open_spec_dust_fits(self, fall=0):
'''
Loads dust template in obs range.
'''
ID0 = self.MB.ID
tau0= self.MB.tau0 #[0.01,0.02,0.03]
from astropy.io import fits
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')
self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf')
if fall == 0:
app = ''
hdu0 = self.MB.af['spec_dust']
elif fall == 1:
app = 'all_'
hdu0 = self.MB.af['spec_dust_full']
DIR_TMP = self.DIR_TMP
nr = hdu0['colnum']
xx = hdu0['wavelength']
lib = np.zeros((len(nr), 2+len(self.Temp)), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
for aa in range(len(self.Temp)):
coln = int(2 + aa)
colname = 'fspec_' + str(aa)
colnall = int(2 + aa) # 2 takes account of wavelength and AV columns.
lib[:,colnall] = hdu0[colname]
if fall==1 and False:
import matplotlib.pyplot as plt
plt.close()
plt.plot(lib[:,1],lib[:,coln],linestyle='-')
plt.show()
return lib
def open_spec_fits_dir(self, nage, nz, kk, Av00, zgal, A00):
'''
Load template in obs range.
But for weird template.
'''
from astropy.io import fits
tau0= self.tau0 #[0.01,0.02,0.03]
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')
self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf')
app = 'all'
hdu0 = self.MB.af['spec_full']
DIR_TMP = self.DIR_TMP #'./templates/'
pp = 0
zz = nz
# Luminosity
mshdu = self.MB.af0['ML']
Ls = mshdu['Ls_%d'%nz]
xx = hdu0['wavelength'] # at RF;
nr = np.arange(0,len(xx),1) #hdu0.data['colnum']
lib = np.zeros((len(nr), 2+1), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
aa = nage
coln = int(2 + aa)
colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp)
yy0 = hdu0[colname]/Ls[aa]
yy = flamtonu(xx, yy0)
lib[:,2] = yy[:]
if self.dust_model == 0: # Calzetti
yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr)
elif self.dust_model == 1: # MW
yyd, xxd, nrd = dust_mw(xx, yy, Av00, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx, yy, Av00, nr, Rv=4.05, gamma=-0.2)
else:
print('No entry. Dust model is set to Calzetti')
yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr)
xxd *= (1.+zgal)
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
b = nrd_yyd
nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)]
yyd_sort = nrd_yyd_sort[:,1]
xxd_sort = nrd_yyd_sort[:,2]
return A00 * yyd_sort, xxd_sort
def get_template(self, lib, Amp=1.0, T=1.0, Av=0.0, Z=0.0, zgal=1.0, f_bb=False):
'''
Gets an element template given a set of parameters.
Not necessarily the most efficient way, but easy to use.
Parameters:
-----------
lib : dict
library dictionary.
Amp : float
Amplitude of the target template. Note that each template has Lbol = 1e10Lsun.
T : float
Age, in Gyr.
Av : float
Dust attenuation, in mag.
Z : float
Metallicity, in log(Z/Zsun).
zgal : float
Redshift.
f_bb: bool
If calculate bb photometry for the spectrum requested.
Returns
flux : float array. Flux in Fnu.
wavelength : float array. Wave in AA.
lcen, lflux : , if f_bb==True.
'''
bfnc = self.MB.bfnc
DIR_TMP = self.MB.DIR_TMP
NZ = bfnc.Z2NZ(Z)
pp0 = np.random.uniform(low=0, high=len(self.tau0), size=(1,))
pp = int(pp0[0])
if pp>=len(self.tau0):
pp += -1
nmodel = np.argmin(np.abs(T-self.age[:]))
if T - self.age[nmodel] != 0:
print('T=%.2f is not found in age library. T=%.2f is used.'%(T,self.age[nmodel]))
coln= int(2 + pp*len(self.ZZ)*len(self.AA) + NZ*len(self.AA) + nmodel)
nr = lib[:, 0]
xx = lib[:, 1] # This is OBSERVED wavelength range at z=zgal
yy = lib[:, coln]
if self.dust_model == 0:
yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr)
elif self.dust_model == 1:
yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.2)
else:
yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr)
xxd *= (1.+zgal)
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
b = nrd_yyd
nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)]
yyd_sort = nrd_yyd_sort[:,1]
xxd_sort = nrd_yyd_sort[:,2]
if f_bb:
#fil_cen, fil_flux = filconv(self.filts, xxd_sort, Amp * yyd_sort, self.DIR_FIL)
fil_cen, fil_flux = filconv_fast(self.MB, xxd_sort, Amp * yyd_sort)
return Amp * yyd_sort, xxd_sort, fil_flux, fil_cen
else:
return Amp * yyd_sort, xxd_sort
def tmp03(self, A00, Av00, nmodel, Z, zgal, lib):
'''
'''
tau0= self.tau0 #[0.01,0.02,0.03]
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
DIR_TMP = self.MB.DIR_TMP #'./templates/'
NZ = bfnc.Z2NZ(Z)
pp0 = np.random.uniform(low=0, high=len(tau0), size=(1,))
pp = int(pp0[0])
if pp>=len(tau0):
pp += -1
coln= int(2 + pp*len(ZZ)*len(AA) + NZ*len(AA) + nmodel)
nr = lib[:,0]
xx = lib[:,1] # This is OBSERVED wavelength range at z=zgal
yy = lib[:,coln]
if self.dust_model == 0:
yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr)
elif self.dust_model == 1:
yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av00, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.2)
else:
yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr)
xxd *= (1.+zgal)
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
b = nrd_yyd
nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)]
yyd_sort = nrd_yyd_sort[:,1]
xxd_sort = nrd_yyd_sort[:,2]
return A00 * yyd_sort, xxd_sort
def tmp04(self, par, f_Alog=True, nprec=1, f_val=False, lib_all=False, f_nrd=False):
'''
Makes model template with a given param set.
Also dust attenuation.
Parameters
----------
nprec : int
Precision when redshift is refined.
'''
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc
Mtot = 0
if f_val:
par = par.params
if self.MB.fzmc == 1:
try:
zmc = par['zmc'].value
except:
zmc = self.MB.zgal
else:
zmc = self.MB.zgal
pp = 0
# AV limit;
if par['Av'] < self.MB.Avmin:
par['Av'] = self.MB.Avmin
if par['Av'] > self.MB.Avmax:
par['Av'] = self.MB.Avmax
Av00 = par['Av']
for aa in range(len(AA)):
if self.MB.ZEVOL==1 or aa == 0:
Z = par['Z'+str(aa)]
NZ = bfnc.Z2NZ(Z)
else:
pass
# Check limit;
if par['A'+str(aa)] < self.MB.Amin:
par['A'+str(aa)] = self.MB.Amin
if par['A'+str(aa)] > self.MB.Amax:
par['A'+str(aa)] = self.MB.Amax
# Z limit:
if aa == 0 or self.MB.ZEVOL == 1:
if par['Z%d'%aa] < self.MB.Zmin:
par['Z%d'%aa] = self.MB.Zmin
if par['Z%d'%aa] > self.MB.Zmax:
par['Z%d'%aa] = self.MB.Zmax
# Is A in logspace?
if f_Alog:
A00 = 10**par['A'+str(aa)]
else:
A00 = par['A'+str(aa)]
coln = int(2 + pp*len(ZZ)*len(AA) + NZ*len(AA) + aa)
sedpar = self.MB.af['ML'] # For M/L
mslist = sedpar['ML_'+str(NZ)][aa]
Mtot += 10**(par['A%d'%aa] + np.log10(mslist))
if lib_all:
if aa == 0:
nr = self.MB.lib_all[:, 0]
xx = self.MB.lib_all[:, 1] # This is OBSERVED wavelength range at z=zgal
yy = A00 * self.MB.lib_all[:, coln]
else:
yy += A00 * self.MB.lib_all[:, coln]
else:
if aa == 0:
nr = self.MB.lib[:, 0]
xx = self.MB.lib[:, 1] # This is OBSERVED wavelength range at z=zgal
yy = A00 * self.MB.lib[:, coln]
else:
yy += A00 * self.MB.lib[:, coln]
self.MB.logMtmp = np.log10(Mtot)
if round(zmc,nprec) != round(self.MB.zgal,nprec):
xx_s = xx / (1+self.MB.zgal) * (1+zmc)
fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate")
yy_s = fint(xx_s)
else:
xx_s = xx
yy_s = yy
xx = xx_s
yy = yy_s
if self.dust_model == 0:
yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr)
elif self.dust_model == 1:
yyd, xxd, nrd = dust_mw(xx/(1.+zmc), yy, Av00, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.2)
else:
yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr)
xxd *= (1.+zmc)
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
nrd_yyd_sort = nrd_yyd[nrd_yyd[:,0].argsort()]
if not f_nrd:
return nrd_yyd_sort[:,1],nrd_yyd_sort[:,2]
else:
return nrd_yyd_sort[:,0],nrd_yyd_sort[:,1],nrd_yyd_sort[:,2]
def tmp04_dust(self, par, nprec=1):
'''
Makes model template with a given param setself.
Also dust attenuation.
'''
tau0= self.tau0
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc
DIR_TMP = self.MB.DIR_TMP
try:
m_dust = par['MDUST']
t_dust = par['TDUST']
except: # This is exception for initial minimizing;
m_dust = -99
t_dust = 0
nr = self.MB.lib_dust[:,0]
xx = self.MB.lib_dust[:,1] # This is OBSERVED wavelength range at z=zgal
coln= 2+int(t_dust+0.5)
yy = 10**m_dust * self.MB.lib_dust[:,coln]
if self.MB.fzmc == 1:
zmc = par.params['zmc'].value
else:
zmc = self.MB.zgal
# How much does this cost in time?
if round(zmc,nprec) != round(self.MB.zgal,nprec):
xx_s = xx / (1+self.MB.zgal) * (1+zmc)
fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate")
yy_s = fint(xx_s)
else:
xx_s = xx
yy_s = yy
return yy_s, xx_s
class Func_tau:
'''
'''
def __init__(self, MB, dust_model=0):
'''
Parameters:
-----------
dust_model : int
0 for Calzetti. 1 for MW. 4 for Kriek Conroy
'''
self.MB = MB
self.ID = MB.ID
self.ZZ = MB.Zall
self.AA = MB.nage
self.tau = MB.tau
self.dust_model = dust_model
self.DIR_TMP = MB.DIR_TMP
if MB.f_dust:
self.Temp = MB.Temp
try:
self.filts = MB.filts
self.DIR_FIL = MB.DIR_FILT
except:
pass
# Already Read or not;
self.f_af = False
self.f_af0 = False
def demo(self):
ZZ = self.ZZ
AA = self.AA
return ZZ, AA
def open_spec_fits(self, fall=0, orig=False):
'''
Loads template in obs range.
'''
ID0 = self.MB.ID
from astropy.io import fits
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc
# ASDF;
if fall == 0:
app = ''
hdu0 = self.MB.af['spec']
elif fall == 1:
app = 'all_'
hdu0 = self.MB.af['spec_full']
DIR_TMP = self.DIR_TMP
NZ = len(ZZ)
NT = self.MB.ntau
NA = self.MB.nage
for zz,Z in enumerate(ZZ):
for tt,TT in enumerate(self.MB.tau):
for ss,TA in enumerate(self.MB.ageparam):
if zz == 0 and tt == 0 and ss == 0:
nr = hdu0['colnum']
xx = hdu0['wavelength']
coln = int(2 + NZ * NT * NA) # + self.MB.ntau * self.MB.nage + NA)
lib = np.zeros((len(nr), coln), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
if orig:
colname = 'fspec_orig_' + str(zz) + '_' + str(tt) + '_' + str(ss)
else:
colname = 'fspec_' + str(zz) + '_' + str(tt) + '_' + str(ss)
colnall = int(2 + zz * NT * NA + tt * NA + ss) # 2 takes account of wavelength and AV columns.
lib[:,colnall] = hdu0[colname]
return lib
def open_spec_dust_fits(self, fall=0):
'''
Load dust template in obs range.
'''
ID0 = self.MB.ID
tau0= self.MB.tau0 #[0.01,0.02,0.03]
from astropy.io import fits
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')
self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf')
if fall == 0:
app = ''
hdu0 = self.MB.af['spec_dust']
elif fall == 1:
app = 'all_'
hdu0 = self.MB.af['spec_dust_full']
DIR_TMP = self.DIR_TMP
nr = hdu0['colnum']
xx = hdu0['wavelength']
lib = np.zeros((len(nr), 2+len(self.Temp)), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
for aa in range(len(self.Temp)):
coln = int(2 + aa)
colname = 'fspec_' + str(aa)
colnall = int(2 + aa) # 2 takes account of wavelength and AV columns.
lib[:,colnall] = hdu0[colname]
if fall==1 and False:
import matplotlib.pyplot as plt
plt.close()
plt.plot(lib[:,1],lib[:,coln],linestyle='-')
plt.show()
return lib
def open_spec_fits_dir(self, nage, nz, kk, Av00, zgal, A00):
'''
Loads template in obs range.
But for weird template.
'''
from astropy.io import fits
tau0= self.tau0 #[0.01,0.02,0.03]
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc #Basic(ZZ)
self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')
self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf')
app = 'all'
hdu0 = self.MB.af['spec_full']
DIR_TMP = self.DIR_TMP #'./templates/'
pp = 0
zz = nz
# Luminosity
mshdu = self.MB.af0['ML']
Ls = mshdu['Ls_%d'%nz]
xx = hdu0['wavelength'] # at RF;
nr = np.arange(0,len(xx),1) #hdu0.data['colnum']
lib = np.zeros((len(nr), 2+1), dtype='float')
lib[:,0] = nr[:]
lib[:,1] = xx[:]
aa = nage
coln = int(2 + aa)
colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp)
yy0 = hdu0[colname]/Ls[aa]
yy = flamtonu(xx, yy0)
lib[:,2] = yy[:]
if self.dust_model == 0: # Calzetti
yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr)
elif self.dust_model == 1: # MW
yyd, xxd, nrd = dust_mw(xx, yy, Av00, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx, yy, Av00, nr, Rv=4.05, gamma=-0.2)
else:
print('No entry. Dust model is set to Calzetti')
yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr)
xxd *= (1.+zgal)
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
b = nrd_yyd
nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)]
yyd_sort = nrd_yyd_sort[:,1]
xxd_sort = nrd_yyd_sort[:,2]
return A00 * yyd_sort, xxd_sort
def tmp04(self, par, f_Alog=True, nprec=1, f_val=False, check_bound=False, lib_all=False, f_nrd=False):
'''
Makes model template with a given param set.
Also dust attenuation.
Parameters:
-----------
nprec : int
Precision when redshift is refined.
'''
ZZ = self.ZZ
AA = self.AA
bfnc = self.MB.bfnc
Mtot = 0
pp = 0
if f_val:
par = par.params
if self.MB.fzmc == 1:
try:
zmc = par['zmc'].value
except:
zmc = self.MB.zgal
else:
zmc = self.MB.zgal
if check_bound:
# AV limit;
if par['Av'] < self.MB.Avmin:
par['Av'] = self.MB.Avmin
if par['Av'] > self.MB.Avmax:
par['Av'] = self.MB.Avmax
Av00 = par['Av']
for aa in range(self.MB.npeak):
if self.MB.ZEVOL==1 or aa == 0:
if check_bound:
# Z limit:
if par['Z%d'%aa] < self.MB.Zmin:
par['Z%d'%aa] = self.MB.Zmin
if par['Z%d'%aa] > self.MB.Zmax:
par['Z%d'%aa] = self.MB.Zmax
Z = par['Z%d'%aa]
else:
pass
if check_bound:
# A
if par['A'+str(aa)] < self.MB.Amin:
par['A'+str(aa)] = self.MB.Amin
if par['A'+str(aa)] > self.MB.Amax:
par['A'+str(aa)] = self.MB.Amax
if par['TAU'+str(aa)] < self.MB.taumin:
par['TAU'+str(aa)] = self.MB.taumin
if par['TAU'+str(aa)] > self.MB.taumax:
par['TAU'+str(aa)] = self.MB.taumax
if par['AGE'+str(aa)] < self.MB.agemin:
par['AGE'+str(aa)] = self.MB.agemin
if par['AGE'+str(aa)] > self.MB.agemax:
par['AGE'+str(aa)] = self.MB.agemax
# Is A in logspace?
if f_Alog:
A00 = 10**par['A'+str(aa)]
else:
A00 = par['A'+str(aa)]
tau,age = par['TAU%d'%aa],par['AGE%d'%aa]
NZ, NT, NA = bfnc.Z2NZ(Z,tau,age)
coln = int(2 + NZ*self.MB.ntau*self.MB.nage + NT*self.MB.nage + NA)
mslist = self.MB.af['ML']['ML_'+str(NZ)+'_'+str(NT)][NA]
Mtot += 10**(par['A%d'%aa] + np.log10(mslist))
if lib_all:
if aa == 0:
nr = self.MB.lib_all[:, 0]
xx = self.MB.lib_all[:, 1] # This is OBSERVED wavelength range at z=zgal
yy = A00 * self.MB.lib_all[:, coln]
else:
yy += A00 * self.MB.lib_all[:, coln]
else:
if aa == 0:
nr = self.MB.lib[:, 0]
xx = self.MB.lib[:, 1] # This is OBSERVED wavelength range at z=zgal
yy = A00 * self.MB.lib[:, coln]
else:
yy += A00 * self.MB.lib[:, coln]
# Keep logM
self.MB.logMtmp = np.log10(Mtot)
# Redshift refinement;
if round(zmc,nprec) != round(self.MB.zgal,nprec): # Not sure how much this costs in time.
xx_s = xx / (1+self.MB.zgal) * (1+zmc)
fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate")
yy_s = fint(xx_s)
else:
xx_s = xx
yy_s = yy
xx = xx_s
yy = yy_s
if self.dust_model == 0:
yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr)
elif self.dust_model == 1:
yyd, xxd, nrd = dust_mw(xx/(1.+zmc), yy, Av00, nr)
elif self.dust_model == 2: # LMC
yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8)
elif self.dust_model == 3: # SMC
yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0)
elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2
yyd, xxd, nrd = dust_kc(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.2)
else:
yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr)
xxd *= (1.+zmc)
if self.dust_model == 0:
if not f_nrd:
return yyd,xxd
else:
return nrd,yyd,xxd
else:
nrd_yyd = np.zeros((len(nrd),3), dtype='float')
nrd_yyd[:,0] = nrd[:]
nrd_yyd[:,1] = yyd[:]
nrd_yyd[:,2] = xxd[:]
nrd_yyd_sort = nrd_yyd[nrd_yyd[:,0].argsort()]
if not f_nrd:
return nrd_yyd_sort[:,1],nrd_yyd_sort[:,2]
else:
return nrd_yyd_sort[:,0],nrd_yyd_sort[:,1],nrd_yyd_sort[:,2]
def tmp04_dust(self, par, nprec=1):
'''
Makes model template with a given param setself.
Also dust attenuation.
'''
bfnc = self.MB.bfnc #Basic(ZZ)
DIR_TMP = self.MB.DIR_TMP #'./templates/'
try:
m_dust = par['MDUST']
t_dust = par['TDUST']
except: # This is exception for initial minimizing;
m_dust = -99
t_dust = 0
nr = self.MB.lib_dust[:,0]
xx = self.MB.lib_dust[:,1] # This is OBSERVED wavelength range at z=zgal
coln= 2+int(t_dust+0.5)
yy = 10**m_dust * self.MB.lib_dust[:,coln]
if self.MB.fzmc == 1:
zmc = par.params['zmc'].value
else:
zmc = self.MB.zgal
# How much does this cost in time?
if round(zmc,nprec) != round(self.MB.zgal,nprec):
xx_s = xx / (1+self.MB.zgal) * (1+zmc)
fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate")
yy_s = fint(xx_s)
else:
xx_s = xx
yy_s = yy
return yy_s, xx_s
|
[
"numpy.abs",
"numpy.log10",
"matplotlib.pyplot.plot",
"scipy.interpolate.interp1d",
"matplotlib.pyplot.close",
"numpy.lexsort",
"asdf.open",
"matplotlib.pyplot.show"
] |
[((2825, 2882), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')"], {}), "(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')\n", (2834, 2882), False, 'import asdf\n'), ((2905, 2946), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all.asdf')"], {}), "(self.DIR_TMP + 'spec_all.asdf')\n", (2914, 2946), False, 'import asdf\n'), ((4146, 4203), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')"], {}), "(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')\n", (4155, 4203), False, 'import asdf\n'), ((4226, 4267), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all.asdf')"], {}), "(self.DIR_TMP + 'spec_all.asdf')\n", (4235, 4267), False, 'import asdf\n'), ((13083, 13097), 'numpy.log10', 'np.log10', (['Mtot'], {}), '(Mtot)\n', (13091, 13097), True, 'import numpy as np\n'), ((18228, 18285), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')"], {}), "(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')\n", (18237, 18285), False, 'import asdf\n'), ((18308, 18349), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all.asdf')"], {}), "(self.DIR_TMP + 'spec_all.asdf')\n", (18317, 18349), False, 'import asdf\n'), ((19549, 19606), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')"], {}), "(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf')\n", (19558, 19606), False, 'import asdf\n'), ((19629, 19670), 'asdf.open', 'asdf.open', (["(self.DIR_TMP + 'spec_all.asdf')"], {}), "(self.DIR_TMP + 'spec_all.asdf')\n", (19638, 19670), False, 'import asdf\n'), ((24598, 24612), 'numpy.log10', 'np.log10', (['Mtot'], {}), '(Mtot)\n', (24606, 24612), True, 'import numpy as np\n'), ((5848, 5886), 'numpy.lexsort', 'np.lexsort', (['([-1, 1] * b[:, [1, 0]]).T'], {}), '(([-1, 1] * b[:, [1, 0]]).T)\n', (5858, 5886), True, 'import numpy as np\n'), ((7152, 7175), 'numpy.abs', 'np.abs', (['(T - self.age[:])'], {}), '(T - self.age[:])\n', (7158, 7175), True, 'import numpy as np\n'), ((8417, 8455), 'numpy.lexsort', 'np.lexsort', (['([-1, 1] * b[:, [1, 0]]).T'], {}), '(([-1, 1] * b[:, [1, 0]]).T)\n', (8427, 8455), True, 'import numpy as np\n'), ((10371, 10409), 'numpy.lexsort', 'np.lexsort', (['([-1, 1] * b[:, [1, 0]]).T'], {}), '(([-1, 1] * b[:, [1, 0]]).T)\n', (10381, 10409), True, 'import numpy as np\n'), ((13227, 13297), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['xx', 'yy'], {'kind': '"""nearest"""', 'fill_value': '"""extrapolate"""'}), "(xx, yy, kind='nearest', fill_value='extrapolate')\n", (13247, 13297), True, 'import scipy.interpolate as interpolate\n'), ((15470, 15540), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['xx', 'yy'], {'kind': '"""nearest"""', 'fill_value': '"""extrapolate"""'}), "(xx, yy, kind='nearest', fill_value='extrapolate')\n", (15490, 15540), True, 'import scipy.interpolate as interpolate\n'), ((21246, 21284), 'numpy.lexsort', 'np.lexsort', (['([-1, 1] * b[:, [1, 0]]).T'], {}), '(([-1, 1] * b[:, [1, 0]]).T)\n', (21256, 21284), True, 'import numpy as np\n'), ((24813, 24883), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['xx', 'yy'], {'kind': '"""nearest"""', 'fill_value': '"""extrapolate"""'}), "(xx, yy, kind='nearest', fill_value='extrapolate')\n", (24833, 24883), True, 'import scipy.interpolate as interpolate\n'), ((27211, 27281), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['xx', 'yy'], {'kind': '"""nearest"""', 'fill_value': '"""extrapolate"""'}), "(xx, yy, kind='nearest', fill_value='extrapolate')\n", (27231, 27281), True, 'import scipy.interpolate as interpolate\n'), ((3687, 3698), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3696, 3698), True, 'import matplotlib.pyplot as plt\n'), ((3715, 3763), 'matplotlib.pyplot.plot', 'plt.plot', (['lib[:, 1]', 'lib[:, coln]'], {'linestyle': '"""-"""'}), "(lib[:, 1], lib[:, coln], linestyle='-')\n", (3723, 3763), True, 'import matplotlib.pyplot as plt\n'), ((3776, 3786), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3784, 3786), True, 'import matplotlib.pyplot as plt\n'), ((19090, 19101), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (19099, 19101), True, 'import matplotlib.pyplot as plt\n'), ((19118, 19166), 'matplotlib.pyplot.plot', 'plt.plot', (['lib[:, 1]', 'lib[:, coln]'], {'linestyle': '"""-"""'}), "(lib[:, 1], lib[:, coln], linestyle='-')\n", (19126, 19166), True, 'import matplotlib.pyplot as plt\n'), ((19179, 19189), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19187, 19189), True, 'import matplotlib.pyplot as plt\n'), ((12397, 12413), 'numpy.log10', 'np.log10', (['mslist'], {}), '(mslist)\n', (12405, 12413), True, 'import numpy as np\n'), ((23900, 23916), 'numpy.log10', 'np.log10', (['mslist'], {}), '(mslist)\n', (23908, 23916), True, 'import numpy as np\n')]
|
import numpy as np
import torch
from torch import optim
from torch.nn import functional
import torch.nn as nn
import torch.utils.data
from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential,Sigmoid
from torch.nn import functional as F
from opendp.smartnoise.synthesizers.base import SDGYMBaseSynthesizer
import ctgan
from ctgan.transformer import DataTransformer
from ctgan.conditional import ConditionalGenerator
from ctgan.models import Generator
from ctgan.sampler import Sampler
from ctgan import CTGANSynthesizer
import opacus
from opacus import autograd_grad_sample
from opacus import PrivacyEngine, utils
class Discriminator(Module):
def calc_gradient_penalty(self, real_data, fake_data, device='cpu', pac=10, lambda_=10):
alpha = torch.rand(real_data.size(0) // pac, 1, 1, device=device)
alpha = alpha.repeat(1, pac, real_data.size(1))
alpha = alpha.view(-1, real_data.size(1))
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
disc_interpolates = self(interpolates)
gradients = torch.autograd.grad(
outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=device),
create_graph=True, retain_graph=True, only_inputs=True
)[0]
gradient_penalty = ((
gradients.view(-1, pac * real_data.size(1)).norm(2, dim=1) - 1
) ** 2).mean() * lambda_
return gradient_penalty
def __init__(self, input_dim, dis_dims, loss, pack):
super(Discriminator, self).__init__()
torch.cuda.manual_seed(0)
torch.manual_seed(0)
dim = input_dim * pack
# print ('now dim is {}'.format(dim))
self.pack = pack
self.packdim = dim
seq = []
for item in list(dis_dims):
seq += [Linear(dim, item), LeakyReLU(0.2), Dropout(0.5)]
dim = item
seq += [Linear(dim, 1)]
if loss == 'cross_entropy':
seq += [Sigmoid()]
self.seq = Sequential(*seq)
def forward(self, input):
assert input.size()[0] % self.pack == 0
return self.seq(input.view(-1, self.packdim))
# custom for calcuate grad_sample for multiple loss.backward()
def _custom_create_or_extend_grad_sample(
param: torch.Tensor, grad_sample: torch.Tensor, batch_dim: int
) -> None:
"""
Create a 'grad_sample' attribute in the given parameter, or accumulate it
if the 'grad_sample' attribute already exists.
This custom code will not work when using optimizer.virtual_step()
"""
#print ("now this happen")
if hasattr(param, "grad_sample"):
param.grad_sample = param.grad_sample + grad_sample
#param.grad_sample = torch.cat((param.grad_sample, grad_sample), batch_dim)
else:
param.grad_sample = grad_sample
class DPCTGAN(CTGANSynthesizer):
"""Differential Private Conditional Table GAN Synthesizer
This code adds Differential Privacy to CTGANSynthesizer from https://github.com/sdv-dev/CTGAN
"""
def __init__(self,
embedding_dim=128,
gen_dim=(256, 256),
dis_dim=(256, 256),
l2scale=1e-6,
batch_size=500,
epochs=300,
pack=1,
log_frequency=True,
disabled_dp=False,
target_delta=None,
sigma = 5,
max_per_sample_grad_norm=1.0,
epsilon = 1,
verbose=True,
loss = 'cross_entropy'):
# CTGAN model specific parameters
self.embedding_dim = embedding_dim
self.gen_dim = gen_dim
self.dis_dim = dis_dim
self.l2scale = l2scale
self.batch_size = batch_size
self.epochs = epochs
self.pack=pack
self.log_frequency = log_frequency
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# opacus parameters
self.sigma = sigma
self.disabled_dp = disabled_dp
self.target_delta = target_delta
self.max_per_sample_grad_norm = max_per_sample_grad_norm
self.epsilon = epsilon
self.epsilon_list = []
self.alpha_list = []
self.loss_d_list = []
self.loss_g_list = []
self.verbose=verbose
self.loss=loss
if self.loss != "cross_entropy":
# Monkeypatches the _create_or_extend_grad_sample function when calling opacus
opacus.supported_layers_grad_samplers._create_or_extend_grad_sample = _custom_create_or_extend_grad_sample
def train(self, data, categorical_columns=None, ordinal_columns=None, update_epsilon=None):
if update_epsilon:
self.epsilon = update_epsilon
self.transformer = DataTransformer()
self.transformer.fit(data, discrete_columns=categorical_columns)
train_data = self.transformer.transform(data)
data_sampler = Sampler(train_data, self.transformer.output_info)
data_dim = self.transformer.output_dimensions
self.cond_generator = ConditionalGenerator(train_data, self.transformer.output_info, self.log_frequency)
self.generator = Generator(
self.embedding_dim + self.cond_generator.n_opt,
self.gen_dim,
data_dim).to(self.device)
discriminator = Discriminator(
data_dim + self.cond_generator.n_opt,
self.dis_dim,
self.loss,
self.pack).to(self.device)
optimizerG = optim.Adam(
self.generator.parameters(), lr=2e-4, betas=(0.5, 0.9), weight_decay=self.l2scale)
optimizerD = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0.5, 0.9))
privacy_engine = opacus.PrivacyEngine(
discriminator,
batch_size=self.batch_size,
sample_size=train_data.shape[0],
alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)),
noise_multiplier=self.sigma,
max_grad_norm=self.max_per_sample_grad_norm,
clip_per_layer=True
)
if not self.disabled_dp:
privacy_engine.attach(optimizerD)
one = torch.tensor(1, dtype=torch.float).to(self.device)
mone = one * -1
REAL_LABEL = 1
FAKE_LABEL = 0
criterion = nn.BCELoss()
assert self.batch_size % 2 == 0
mean = torch.zeros(self.batch_size, self.embedding_dim, device=self.device)
std = mean + 1
steps_per_epoch = len(train_data) // self.batch_size
for i in range(self.epochs):
for id_ in range(steps_per_epoch):
fakez = torch.normal(mean=mean, std=std)
condvec = self.cond_generator.sample(self.batch_size)
if condvec is None:
c1, m1, col, opt = None, None, None, None
real = data_sampler.sample(self.batch_size, col, opt)
else:
c1, m1, col, opt = condvec
c1 = torch.from_numpy(c1).to(self.device)
m1 = torch.from_numpy(m1).to(self.device)
fakez = torch.cat([fakez, c1], dim=1)
perm = np.arange(self.batch_size)
np.random.shuffle(perm)
real = data_sampler.sample(self.batch_size, col[perm], opt[perm])
c2 = c1[perm]
fake = self.generator(fakez)
fakeact = self._apply_activate(fake)
real = torch.from_numpy(real.astype('float32')).to(self.device)
if c1 is not None:
fake_cat = torch.cat([fakeact, c1], dim=1)
real_cat = torch.cat([real, c2], dim=1)
else:
real_cat = real
fake_cat = fake
optimizerD.zero_grad()
if self.loss == 'cross_entropy':
y_fake = discriminator(fake_cat)
# print ('y_fake is {}'.format(y_fake))
label_fake = torch.full((int(self.batch_size/self.pack),), FAKE_LABEL, dtype=torch.float, device=self.device)
# print ('label_fake is {}'.format(label_fake))
errD_fake = criterion(y_fake, label_fake)
errD_fake.backward()
optimizerD.step()
# train with real
label_true = torch.full((int(self.batch_size/self.pack),), REAL_LABEL, dtype=torch.float, device=self.device)
y_real = discriminator(real_cat)
errD_real = criterion(y_real, label_true)
errD_real.backward()
optimizerD.step()
loss_d = errD_real + errD_fake
else:
y_fake = discriminator(fake_cat)
mean_fake = torch.mean(y_fake)
mean_fake.backward(one)
y_real = discriminator(real_cat)
mean_real = torch.mean(y_real)
mean_real.backward(mone)
optimizerD.step()
loss_d = -(mean_real - mean_fake)
max_grad_norm = []
for p in discriminator.parameters():
param_norm = p.grad.data.norm(2).item()
max_grad_norm.append(param_norm)
#pen = calc_gradient_penalty(discriminator, real_cat, fake_cat, self.device)
#pen.backward(retain_graph=True)
#loss_d.backward()
#optimizerD.step()
fakez = torch.normal(mean=mean, std=std)
condvec = self.cond_generator.sample(self.batch_size)
if condvec is None:
c1, m1, col, opt = None, None, None, None
else:
c1, m1, col, opt = condvec
c1 = torch.from_numpy(c1).to(self.device)
m1 = torch.from_numpy(m1).to(self.device)
fakez = torch.cat([fakez, c1], dim=1)
fake = self.generator(fakez)
fakeact = self._apply_activate(fake)
if c1 is not None:
y_fake = discriminator(torch.cat([fakeact, c1], dim=1))
else:
y_fake = discriminator(fakeact)
#if condvec is None:
cross_entropy = 0
#else:
# cross_entropy = self._cond_loss(fake, c1, m1)
if self.loss=='cross_entropy':
label_g = torch.full((int(self.batch_size/self.pack),), REAL_LABEL,
dtype=torch.float, device=self.device)
#label_g = torch.full(int(self.batch_size/self.pack,),1,device=self.device)
loss_g = criterion(y_fake, label_g)
loss_g = loss_g + cross_entropy
else:
loss_g = -torch.mean(y_fake) + cross_entropy
optimizerG.zero_grad()
loss_g.backward()
optimizerG.step()
if not self.disabled_dp:
#if self.loss == 'cross_entropy':
# autograd_grad_sample.clear_backprops(discriminator)
#else:
for p in discriminator.parameters():
if hasattr(p, "grad_sample"):
del p.grad_sample
if self.target_delta is None:
self.target_delta = 1/train_data.shape[0]
epsilon, best_alpha = optimizerD.privacy_engine.get_privacy_spent(self.target_delta)
self.epsilon_list.append(epsilon)
self.alpha_list.append(best_alpha)
#if self.verbose:
if not self.disabled_dp:
if self.epsilon < epsilon:
break
self.loss_d_list.append(loss_d)
self.loss_g_list.append(loss_g)
if self.verbose:
print("Epoch %d, Loss G: %.4f, Loss D: %.4f" %
(i + 1, loss_g.detach().cpu(), loss_d.detach().cpu()),
flush=True)
print ('epsilon is {e}, alpha is {a}'.format(e=epsilon, a = best_alpha))
return self.loss_d_list, self.loss_g_list, self.epsilon_list, self.alpha_list
def generate(self, n):
self.generator.eval()
#output_info = self.transformer.output_info
steps = n // self.batch_size + 1
data = []
for i in range(steps):
mean = torch.zeros(self.batch_size, self.embedding_dim)
std = mean + 1
fakez = torch.normal(mean=mean, std=std).to(self.device)
condvec = self.cond_generator.sample_zero(self.batch_size)
if condvec is None:
pass
else:
c1 = condvec
c1 = torch.from_numpy(c1).to(self.device)
fakez = torch.cat([fakez, c1], dim=1)
fake = self.generator(fakez)
fakeact = self._apply_activate(fake)
data.append(fakeact.detach().cpu().numpy())
data = np.concatenate(data, axis=0)
data = data[:n]
return self.transformer.inverse_transform(data, None)
|
[
"ctgan.models.Generator",
"torch.nn.Dropout",
"torch.nn.Sequential",
"ctgan.sampler.Sampler",
"torch.from_numpy",
"ctgan.conditional.ConditionalGenerator",
"torch.cuda.is_available",
"torch.normal",
"numpy.arange",
"torch.nn.Sigmoid",
"torch.mean",
"numpy.concatenate",
"torch.nn.LeakyReLU",
"ctgan.transformer.DataTransformer",
"torch.cat",
"torch.manual_seed",
"torch.tensor",
"torch.nn.BCELoss",
"torch.nn.Linear",
"torch.cuda.manual_seed",
"torch.zeros",
"numpy.random.shuffle"
] |
[((1613, 1638), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(0)'], {}), '(0)\n', (1635, 1638), False, 'import torch\n'), ((1647, 1667), 'torch.manual_seed', 'torch.manual_seed', (['(0)'], {}), '(0)\n', (1664, 1667), False, 'import torch\n'), ((2061, 2077), 'torch.nn.Sequential', 'Sequential', (['*seq'], {}), '(*seq)\n', (2071, 2077), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((4866, 4883), 'ctgan.transformer.DataTransformer', 'DataTransformer', ([], {}), '()\n', (4881, 4883), False, 'from ctgan.transformer import DataTransformer\n'), ((5035, 5084), 'ctgan.sampler.Sampler', 'Sampler', (['train_data', 'self.transformer.output_info'], {}), '(train_data, self.transformer.output_info)\n', (5042, 5084), False, 'from ctgan.sampler import Sampler\n'), ((5170, 5257), 'ctgan.conditional.ConditionalGenerator', 'ConditionalGenerator', (['train_data', 'self.transformer.output_info', 'self.log_frequency'], {}), '(train_data, self.transformer.output_info, self.\n log_frequency)\n', (5190, 5257), False, 'from ctgan.conditional import ConditionalGenerator\n'), ((6425, 6437), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (6435, 6437), True, 'import torch.nn as nn\n'), ((6494, 6562), 'torch.zeros', 'torch.zeros', (['self.batch_size', 'self.embedding_dim'], {'device': 'self.device'}), '(self.batch_size, self.embedding_dim, device=self.device)\n', (6505, 6562), False, 'import torch\n'), ((13355, 13383), 'numpy.concatenate', 'np.concatenate', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (13369, 13383), True, 'import numpy as np\n'), ((1959, 1973), 'torch.nn.Linear', 'Linear', (['dim', '(1)'], {}), '(dim, 1)\n', (1965, 1973), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((12763, 12811), 'torch.zeros', 'torch.zeros', (['self.batch_size', 'self.embedding_dim'], {}), '(self.batch_size, self.embedding_dim)\n', (12774, 12811), False, 'import torch\n'), ((1870, 1887), 'torch.nn.Linear', 'Linear', (['dim', 'item'], {}), '(dim, item)\n', (1876, 1887), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((1889, 1903), 'torch.nn.LeakyReLU', 'LeakyReLU', (['(0.2)'], {}), '(0.2)\n', (1898, 1903), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((1905, 1917), 'torch.nn.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (1912, 1917), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((2031, 2040), 'torch.nn.Sigmoid', 'Sigmoid', ([], {}), '()\n', (2038, 2040), False, 'from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential, Sigmoid\n'), ((3978, 4003), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4001, 4003), False, 'import torch\n'), ((5279, 5364), 'ctgan.models.Generator', 'Generator', (['(self.embedding_dim + self.cond_generator.n_opt)', 'self.gen_dim', 'data_dim'], {}), '(self.embedding_dim + self.cond_generator.n_opt, self.gen_dim,\n data_dim)\n', (5288, 5364), False, 'from ctgan.models import Generator\n'), ((6283, 6317), 'torch.tensor', 'torch.tensor', (['(1)'], {'dtype': 'torch.float'}), '(1, dtype=torch.float)\n', (6295, 6317), False, 'import torch\n'), ((6756, 6788), 'torch.normal', 'torch.normal', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (6768, 6788), False, 'import torch\n'), ((9753, 9785), 'torch.normal', 'torch.normal', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (9765, 9785), False, 'import torch\n'), ((13162, 13191), 'torch.cat', 'torch.cat', (['[fakez, c1]'], {'dim': '(1)'}), '([fakez, c1], dim=1)\n', (13171, 13191), False, 'import torch\n'), ((7253, 7282), 'torch.cat', 'torch.cat', (['[fakez, c1]'], {'dim': '(1)'}), '([fakez, c1], dim=1)\n', (7262, 7282), False, 'import torch\n'), ((7311, 7337), 'numpy.arange', 'np.arange', (['self.batch_size'], {}), '(self.batch_size)\n', (7320, 7337), True, 'import numpy as np\n'), ((7358, 7381), 'numpy.random.shuffle', 'np.random.shuffle', (['perm'], {}), '(perm)\n', (7375, 7381), True, 'import numpy as np\n'), ((7749, 7780), 'torch.cat', 'torch.cat', (['[fakeact, c1]'], {'dim': '(1)'}), '([fakeact, c1], dim=1)\n', (7758, 7780), False, 'import torch\n'), ((7812, 7840), 'torch.cat', 'torch.cat', (['[real, c2]'], {'dim': '(1)'}), '([real, c2], dim=1)\n', (7821, 7840), False, 'import torch\n'), ((9003, 9021), 'torch.mean', 'torch.mean', (['y_fake'], {}), '(y_fake)\n', (9013, 9021), False, 'import torch\n'), ((9153, 9171), 'torch.mean', 'torch.mean', (['y_real'], {}), '(y_real)\n', (9163, 9171), False, 'import torch\n'), ((10176, 10205), 'torch.cat', 'torch.cat', (['[fakez, c1]'], {'dim': '(1)'}), '([fakez, c1], dim=1)\n', (10185, 10205), False, 'import torch\n'), ((12859, 12891), 'torch.normal', 'torch.normal', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (12871, 12891), False, 'import torch\n'), ((10384, 10415), 'torch.cat', 'torch.cat', (['[fakeact, c1]'], {'dim': '(1)'}), '([fakeact, c1], dim=1)\n', (10393, 10415), False, 'import torch\n'), ((13101, 13121), 'torch.from_numpy', 'torch.from_numpy', (['c1'], {}), '(c1)\n', (13117, 13121), False, 'import torch\n'), ((7126, 7146), 'torch.from_numpy', 'torch.from_numpy', (['c1'], {}), '(c1)\n', (7142, 7146), False, 'import torch\n'), ((7188, 7208), 'torch.from_numpy', 'torch.from_numpy', (['m1'], {}), '(m1)\n', (7204, 7208), False, 'import torch\n'), ((10049, 10069), 'torch.from_numpy', 'torch.from_numpy', (['c1'], {}), '(c1)\n', (10065, 10069), False, 'import torch\n'), ((10111, 10131), 'torch.from_numpy', 'torch.from_numpy', (['m1'], {}), '(m1)\n', (10127, 10131), False, 'import torch\n'), ((11104, 11122), 'torch.mean', 'torch.mean', (['y_fake'], {}), '(y_fake)\n', (11114, 11122), False, 'import torch\n')]
|
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: <NAME>
## Email: <EMAIL>
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNet variants"""
import os
import math
import torch
import numpy as np
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
from models.attention_map import SEModule, SpatialCGNL, SAModule
from models.feature_extraction.splat import SplAtConv2d
from models.utils import gen_adj_num, gen_adj
from models.common import conv1x1
_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth'
_model_sha256 = {name: checksum for checksum, name in
[('528c19ca', 'resnest50'), ('22405ba7', 'resnest101'), ('75117900', 'resnest200'),
('0cc87c48', 'resnest269'), ]}
def short_hash(name):
if name not in _model_sha256:
raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
return _model_sha256[name][:8]
resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for name in
_model_sha256.keys()}
__all__ = ['ResNet', 'Bottleneck']
class DropBlock2D(object):
def __init__(self, *args, **kwargs):
raise NotImplementedError
class Bottleneck(nn.Module):
"""ResNet Bottleneck
"""
# pylint: disable=unused-argument
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1,
bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False,
rectified_conv=False, rectify_avg=False, norm_layer=None, dropblock_prob=0.0,
last_gamma=False, use_se=False):
super(Bottleneck, self).__init__()
group_width = int(planes * (bottleneck_width / 64.)) * cardinality
self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False)
self.bn1 = norm_layer(group_width)
self.dropblock_prob = dropblock_prob
self.radix = radix
self.avd = avd and (stride > 1 or is_first)
self.avd_first = avd_first
if self.avd:
self.avd_layer = nn.AvgPool2d(3, stride, padding=1)
stride = 1
if dropblock_prob > 0.0:
self.dropblock1 = DropBlock2D(dropblock_prob, 3)
if radix == 1:
self.dropblock2 = DropBlock2D(dropblock_prob, 3)
self.dropblock3 = DropBlock2D(dropblock_prob, 3)
if radix >= 1:
self.conv2 = SplAtConv2d(group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, groups=cardinality,
bias=False, radix=radix, rectify=rectified_conv,
rectify_avg=rectify_avg, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
elif rectified_conv:
from rfconv import RFConv2d
self.conv2 = RFConv2d(group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, groups=cardinality,
bias=False, average_mode=rectify_avg)
self.bn2 = norm_layer(group_width)
else:
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride,
padding=dilation, dilation=dilation, groups=cardinality,
bias=False)
self.bn2 = norm_layer(group_width)
self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False)
self.bn3 = norm_layer(planes * 4)
if last_gamma:
from torch.nn.init import zeros_
zeros_(self.bn3.weight)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
self.use_se = use_se
if use_se:
self.se = SEModule(planes * 4)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
if self.dropblock_prob > 0.0:
out = self.dropblock1(out)
out = self.relu(out)
if self.avd and self.avd_first:
out = self.avd_layer(out)
out = self.conv2(out)
if self.radix == 0:
out = self.bn2(out)
if self.dropblock_prob > 0.0:
out = self.dropblock2(out)
out = self.relu(out)
if self.avd and not self.avd_first:
out = self.avd_layer(out)
out = self.conv3(out)
out = self.bn3(out)
if self.dropblock_prob > 0.0:
out = self.dropblock3(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.use_se:
out = self.se(out) + residual
else:
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
"""ResNet Variants
Parameters
----------
block : Block
Class for the residual block. Options are BasicBlockV1, BottleneckV1.
layers : list of int
Numbers of layers in each block
classes : int, default 1000
Number of classification classes.
dilated : bool, default False
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
typically used in Semantic Segmentation.
norm_layer : object
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
for Synchronized Cross-GPU BachNormalization).
Reference:
- <NAME>, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- <NAME>, and <NAME>. "Multi-scale context aggregation by dilated convolutions."
"""
# pylint: disable=unused-variable
def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, num_classes=1000,
dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False,
rectified_conv=False, rectify_avg=False, avd=False, avd_first=False,
final_drop=0.0, dropblock_prob=0, last_gamma=False, use_se=False, in_channels=300,
word_file='/workspace/Projects/cxr/models/feature_extraction/diseases_embeddings.npy',
# word_file='diseases_embeddings.npy',
# word_file='/home/hoangvu/Projects/cxr/models/feature_extraction/diseases_embeddings.npy',
extract_fields='0,1,2,3,4,5', agree_rate=0.5, csv_path='',
norm_layer=nn.BatchNorm2d):
self.cardinality = groups
self.bottleneck_width = bottleneck_width
# ResNet-D params
self.inplanes = stem_width * 2 if deep_stem else 64
self.avg_down = avg_down
self.last_gamma = last_gamma
# ResNeSt params
self.radix = radix
self.avd = avd
self.avd_first = avd_first
self.use_se = use_se
super(ResNet, self).__init__()
self.rectified_conv = rectified_conv
self.rectify_avg = rectify_avg
if rectified_conv:
from rfconv import RFConv2d
conv_layer = RFConv2d
else:
conv_layer = nn.Conv2d
conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {}
if deep_stem:
self.conv1 = nn.Sequential(
conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False,
**conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False,
**conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True),
conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1,
bias=False, **conv_kwargs), )
else:
self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False,
**conv_kwargs)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
if dilated or dilation == 4:
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2,
norm_layer=norm_layer, dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4,
norm_layer=norm_layer, dropblock_prob=dropblock_prob)
elif dilation == 2:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilation=1,
norm_layer=norm_layer, dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2,
norm_layer=norm_layer, dropblock_prob=dropblock_prob)
else:
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer,
dropblock_prob=dropblock_prob)
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None
# self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, norm_layer):
m.weight.data.fill_(1)
m.bias.data.zero_()
num_classes = len(extract_fields.split(','))
_adj = gen_adj_num(labels=extract_fields, agree_rate=agree_rate, csv_path=csv_path)
self.adj = Parameter(torch.from_numpy(_adj).float())
if not os.path.exists(word_file):
word = np.random.randn(num_classes, 300)
print('graph input: random')
else:
with open(word_file, 'rb') as point:
word = np.load(point)
print('graph input: loaded from {}'.format(word_file))
self.word = Parameter(torch.from_numpy(word).float())
self.gc0 = GraphConvolution(in_channels, 128, bias=True)
self.gc1 = GraphConvolution(128, 256, bias=True)
self.gc2 = GraphConvolution(256, 512, bias=True)
self.gc3 = GraphConvolution(512, 1024, bias=True)
self.gc4 = GraphConvolution(1024, 2048, bias=True)
self.gc_relu = nn.LeakyReLU(0.2)
self.gc_tanh = nn.Tanh()
self.merge_conv0 = nn.Conv2d(num_classes, 128, kernel_size=1, stride=1, bias=False)
self.merge_conv1 = nn.Conv2d(num_classes, 256, kernel_size=1, stride=1, bias=False)
self.merge_conv2 = nn.Conv2d(num_classes, 512, kernel_size=1, stride=1, bias=False)
self.merge_conv3 = nn.Conv2d(num_classes, 1024, kernel_size=1, stride=1, bias=False)
self.conv1x1 = conv1x1(in_channels=2048, out_channels=num_classes, bias=True)
# self.spatial_attention = SAModule(2048)
# self.spatial_attention = SpatialCGNL(2048, 1024)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None,
dropblock_prob=0.0, is_first=True):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
down_layers = []
if self.avg_down:
if dilation == 1:
down_layers.append(
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True,
count_include_pad=False))
else:
down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True,
count_include_pad=False))
down_layers.append(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1,
bias=False))
else:
down_layers.append(
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride,
bias=False))
down_layers.append(norm_layer(planes * block.expansion))
downsample = nn.Sequential(*down_layers)
layers = []
if dilation == 1 or dilation == 2:
layers.append(
block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix,
cardinality=self.cardinality, bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first,
rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma, use_se=self.use_se))
elif dilation == 4:
layers.append(
block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix,
cardinality=self.cardinality, bottleneck_width=self.bottleneck_width,
avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first,
rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma, use_se=self.use_se))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(self.inplanes, planes, radix=self.radix, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width, avd=self.avd,
avd_first=self.avd_first, dilation=dilation,
rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg,
norm_layer=norm_layer, dropblock_prob=dropblock_prob,
last_gamma=self.last_gamma, use_se=self.use_se))
return nn.Sequential(*layers)
def forward(self, feature):
adj = gen_adj(self.adj).detach()
word = self.word.detach()
feature = self.conv1(feature)
feature = self.bn1(feature)
feature = self.relu(feature)
feature = self.maxpool(feature)
x_raw = self.gc0(word, adj)
x = self.gc_tanh(x_raw)
feature = merge_gcn_residual(feature, x, self.merge_conv0)
feature = self.layer1(feature)
x = self.gc_relu(x_raw)
x_raw = self.gc1(x, adj)
x = self.gc_tanh(x_raw)
feature = merge_gcn_residual(feature, x, self.merge_conv1)
feature = self.layer2(feature)
x = self.gc_relu(x_raw)
x_raw = self.gc2(x, adj)
x = self.gc_tanh(x_raw)
feature = merge_gcn_residual(feature, x, self.merge_conv2)
feature = self.layer3(feature)
x = self.gc_relu(x_raw)
x_raw = self.gc3(x, adj)
x = self.gc_tanh(x_raw)
feature = merge_gcn_residual(feature, x, self.merge_conv3)
feature = self.layer4(feature)
# feature = self.spatial_attention(feature)
feature_raw = self.global_pool(feature)
if self.drop is not None:
feature_raw = self.drop(feature_raw)
feature = feature_raw.view(feature_raw.size(0), -1)
x = self.gc_relu(x_raw)
x = self.gc4(x, adj)
x = self.gc_tanh(x)
x = x.transpose(0, 1)
x = torch.matmul(feature, x)
y = self.conv1x1(feature_raw)
y = y.view(y.size(0), -1)
x = x + y
return x
def gcn_resnest200(cfg=None, **kwargs):
model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False,
use_se=cfg.use_se, extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate,
csv_path=cfg.csv_path, **kwargs)
# model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64,
# deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False,
# use_se=False, extract_fields='0,1,2,3,4,5', agree_rate=0.5,
# csv_path='D:/Dataset/Vinmec/Noise/train_sss.csv', **kwargs)
if cfg.pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(resnest_model_urls['resnest200'], progress=True),
strict=False)
return model
def gcn_resnest101(cfg=None, **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64,
deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False,
use_se=cfg.use_se, extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate,
csv_path=cfg.csv_path, **kwargs)
if cfg.pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(resnest_model_urls['resnest101'], progress=True),
strict=False)
return model
def gcn_resnest50(cfg=None, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True,
stem_width=32, avg_down=True, avd=True, avd_first=False, use_se=cfg.use_se,
extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate,
csv_path=cfg.csv_path, **kwargs)
if cfg.pretrained:
model.load_state_dict(
torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'], progress=True),
strict=False)
return model
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=False):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
middle_features = max(32, (in_features + out_features) // 16)
self.weight1 = Parameter(torch.Tensor(in_features, middle_features))
self.weight2 = Parameter(torch.Tensor(middle_features, out_features))
if bias:
self.bias = Parameter(torch.Tensor(1, out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight1.size(1))
self.weight1.data.uniform_(-stdv, stdv)
stdv = 1. / math.sqrt(self.weight2.size(1))
self.weight2.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.matmul(input, self.weight1)
support = torch.matmul(support, self.weight2)
output = torch.matmul(adj, support)
if self.bias is not None:
output = output + self.bias
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(
self.out_features) + ')'
class GraphAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout=0, alpha=0.2, concat=True, bias=False):
super(GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
if bias:
self.bias = Parameter(torch.Tensor(1, out_features))
else:
self.register_parameter('bias', None)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(1))
self.W.data.uniform_(-stdv, stdv)
stdv = 1. / math.sqrt(self.a.size(1))
self.a.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
h = torch.mm(input, self.W)
N = h.size()[0]
a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1,
2 * self.out_features)
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.bias is not None:
h_prime = h_prime + self.bias
if self.concat:
return F.elu(h_prime)
else:
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(
self.out_features) + ')'
def merge_gcn_residual(feature, x, merge_conv):
feature_raw = feature
feature = feature_raw.transpose(1, 2)
feature = feature.transpose(2, 3).contiguous()
feature = feature.view(-1, feature.shape[-1])
reshape_x = x.transpose(0, 1)
feature = torch.matmul(feature, reshape_x)
feature = feature.view(feature_raw.shape[0], feature_raw.shape[2], feature_raw.shape[3], -1)
feature = feature.transpose(2, 3)
feature = feature.transpose(1, 2)
feature = merge_conv(feature)
return feature_raw + feature
if __name__ == "__main__":
import torchsummary
x = torch.randn([2, 3, 224, 224])
model = gcn_resnest200(num_classes=6, word_file='diseases_embeddings.npy')
logits = model(x)
# print(torchsummary.summary(model, input_size=(3, 512, 512), device='cpu'))
print(logits)
# x = torch.randn([2, 2048, 7, 7])
# word = torch.randn([6, 300])
# adj = torch.randn([6, 6]) #
# # gcn = GraphConvolution(in_features=300, out_features=256, bias=True)
# gcn = GraphAttentionLayer(in_features=300, out_features=256, bias=True)
# output = gcn(word, adj)
# print(output)
# feature = torch.randn([2, 128, 56, 56]) # x = torch.randn([11, 128]) # merge_conv = nn.Conv2d(11, 128, kernel_size=1, stride=1, bias=False) # # output = merge_gcn_residual(feature, x, merge_conv) # print(output.size())
|
[
"models.attention_map.SEModule",
"torch.nn.ReLU",
"torch.nn.Dropout",
"torch.nn.Tanh",
"torch.nn.Sequential",
"rfconv.RFConv2d",
"math.sqrt",
"models.utils.gen_adj",
"torch.from_numpy",
"torch.nn.AvgPool2d",
"torch.nn.functional.softmax",
"os.path.exists",
"torch.nn.init.xavier_uniform_",
"torch.nn.init.zeros_",
"torch.hub.load_state_dict_from_url",
"models.utils.gen_adj_num",
"torch.matmul",
"torch.nn.AdaptiveAvgPool2d",
"torch.randn",
"torch.ones_like",
"torch.nn.LeakyReLU",
"torch.Tensor",
"torch.nn.functional.dropout",
"numpy.random.randn",
"models.feature_extraction.splat.SplAtConv2d",
"torch.where",
"models.common.conv1x1",
"torch.nn.functional.elu",
"torch.nn.Conv2d",
"torch.mm",
"torch.nn.MaxPool2d",
"numpy.load",
"torch.zeros"
] |
[((22501, 22533), 'torch.matmul', 'torch.matmul', (['feature', 'reshape_x'], {}), '(feature, reshape_x)\n', (22513, 22533), False, 'import torch\n'), ((22837, 22866), 'torch.randn', 'torch.randn', (['[2, 3, 224, 224]'], {}), '([2, 3, 224, 224])\n', (22848, 22866), False, 'import torch\n'), ((1961, 2020), 'torch.nn.Conv2d', 'nn.Conv2d', (['inplanes', 'group_width'], {'kernel_size': '(1)', 'bias': '(False)'}), '(inplanes, group_width, kernel_size=1, bias=False)\n', (1970, 2020), True, 'import torch.nn as nn\n'), ((3712, 3773), 'torch.nn.Conv2d', 'nn.Conv2d', (['group_width', '(planes * 4)'], {'kernel_size': '(1)', 'bias': '(False)'}), '(group_width, planes * 4, kernel_size=1, bias=False)\n', (3721, 3773), True, 'import torch.nn as nn\n'), ((3941, 3962), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3948, 3962), True, 'import torch.nn as nn\n'), ((8378, 8399), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (8385, 8399), True, 'import torch.nn as nn\n'), ((8423, 8471), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)'}), '(kernel_size=3, stride=2, padding=1)\n', (8435, 8471), True, 'import torch.nn as nn\n'), ((9859, 9887), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1, 1)'], {}), '((1, 1))\n', (9879, 9887), True, 'import torch.nn as nn\n'), ((10423, 10499), 'models.utils.gen_adj_num', 'gen_adj_num', ([], {'labels': 'extract_fields', 'agree_rate': 'agree_rate', 'csv_path': 'csv_path'}), '(labels=extract_fields, agree_rate=agree_rate, csv_path=csv_path)\n', (10434, 10499), False, 'from models.utils import gen_adj_num, gen_adj\n'), ((11252, 11269), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)'], {}), '(0.2)\n', (11264, 11269), True, 'import torch.nn as nn\n'), ((11293, 11302), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (11300, 11302), True, 'import torch.nn as nn\n'), ((11330, 11394), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_classes', '(128)'], {'kernel_size': '(1)', 'stride': '(1)', 'bias': '(False)'}), '(num_classes, 128, kernel_size=1, stride=1, bias=False)\n', (11339, 11394), True, 'import torch.nn as nn\n'), ((11422, 11486), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_classes', '(256)'], {'kernel_size': '(1)', 'stride': '(1)', 'bias': '(False)'}), '(num_classes, 256, kernel_size=1, stride=1, bias=False)\n', (11431, 11486), True, 'import torch.nn as nn\n'), ((11514, 11578), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_classes', '(512)'], {'kernel_size': '(1)', 'stride': '(1)', 'bias': '(False)'}), '(num_classes, 512, kernel_size=1, stride=1, bias=False)\n', (11523, 11578), True, 'import torch.nn as nn\n'), ((11606, 11671), 'torch.nn.Conv2d', 'nn.Conv2d', (['num_classes', '(1024)'], {'kernel_size': '(1)', 'stride': '(1)', 'bias': '(False)'}), '(num_classes, 1024, kernel_size=1, stride=1, bias=False)\n', (11615, 11671), True, 'import torch.nn as nn\n'), ((11695, 11757), 'models.common.conv1x1', 'conv1x1', ([], {'in_channels': '(2048)', 'out_channels': 'num_classes', 'bias': '(True)'}), '(in_channels=2048, out_channels=num_classes, bias=True)\n', (11702, 11757), False, 'from models.common import conv1x1\n'), ((14946, 14968), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (14959, 14968), True, 'import torch.nn as nn\n'), ((16393, 16417), 'torch.matmul', 'torch.matmul', (['feature', 'x'], {}), '(feature, x)\n', (16405, 16417), False, 'import torch\n'), ((19654, 19687), 'torch.matmul', 'torch.matmul', (['input', 'self.weight1'], {}), '(input, self.weight1)\n', (19666, 19687), False, 'import torch\n'), ((19706, 19741), 'torch.matmul', 'torch.matmul', (['support', 'self.weight2'], {}), '(support, self.weight2)\n', (19718, 19741), False, 'import torch\n'), ((19759, 19785), 'torch.matmul', 'torch.matmul', (['adj', 'support'], {}), '(adj, support)\n', (19771, 19785), False, 'import torch\n'), ((20558, 20606), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['self.W.data'], {'gain': '(1.414)'}), '(self.W.data, gain=1.414)\n', (20581, 20606), True, 'import torch.nn as nn\n'), ((20686, 20734), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['self.a.data'], {'gain': '(1.414)'}), '(self.a.data, gain=1.414)\n', (20709, 20734), True, 'import torch.nn as nn\n'), ((20908, 20932), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['self.alpha'], {}), '(self.alpha)\n', (20920, 20932), True, 'import torch.nn as nn\n'), ((21308, 21331), 'torch.mm', 'torch.mm', (['input', 'self.W'], {}), '(input, self.W)\n', (21316, 21331), False, 'import torch\n'), ((21703, 21736), 'torch.where', 'torch.where', (['(adj > 0)', 'e', 'zero_vec'], {}), '(adj > 0, e, zero_vec)\n', (21714, 21736), False, 'import torch\n'), ((21757, 21784), 'torch.nn.functional.softmax', 'F.softmax', (['attention'], {'dim': '(1)'}), '(attention, dim=1)\n', (21766, 21784), True, 'import torch.nn.functional as F\n'), ((21805, 21863), 'torch.nn.functional.dropout', 'F.dropout', (['attention', 'self.dropout'], {'training': 'self.training'}), '(attention, self.dropout, training=self.training)\n', (21814, 21863), True, 'import torch.nn.functional as F\n'), ((21882, 21908), 'torch.matmul', 'torch.matmul', (['attention', 'h'], {}), '(attention, h)\n', (21894, 21908), False, 'import torch\n'), ((2274, 2308), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['(3)', 'stride'], {'padding': '(1)'}), '(3, stride, padding=1)\n', (2286, 2308), True, 'import torch.nn as nn\n'), ((2629, 2896), 'models.feature_extraction.splat.SplAtConv2d', 'SplAtConv2d', (['group_width', 'group_width'], {'kernel_size': '(3)', 'stride': 'stride', 'padding': 'dilation', 'dilation': 'dilation', 'groups': 'cardinality', 'bias': '(False)', 'radix': 'radix', 'rectify': 'rectified_conv', 'rectify_avg': 'rectify_avg', 'norm_layer': 'norm_layer', 'dropblock_prob': 'dropblock_prob'}), '(group_width, group_width, kernel_size=3, stride=stride, padding\n =dilation, dilation=dilation, groups=cardinality, bias=False, radix=\n radix, rectify=rectified_conv, rectify_avg=rectify_avg, norm_layer=\n norm_layer, dropblock_prob=dropblock_prob)\n', (2640, 2896), False, 'from models.feature_extraction.splat import SplAtConv2d\n'), ((3897, 3920), 'torch.nn.init.zeros_', 'zeros_', (['self.bn3.weight'], {}), '(self.bn3.weight)\n', (3903, 3920), False, 'from torch.nn.init import zeros_\n'), ((4133, 4153), 'models.attention_map.SEModule', 'SEModule', (['(planes * 4)'], {}), '(planes * 4)\n', (4141, 4153), False, 'from models.attention_map import SEModule, SpatialCGNL, SAModule\n'), ((9908, 9930), 'torch.nn.Dropout', 'nn.Dropout', (['final_drop'], {}), '(final_drop)\n', (9918, 9930), True, 'import torch.nn as nn\n'), ((10577, 10602), 'os.path.exists', 'os.path.exists', (['word_file'], {}), '(word_file)\n', (10591, 10602), False, 'import os\n'), ((10623, 10656), 'numpy.random.randn', 'np.random.randn', (['num_classes', '(300)'], {}), '(num_classes, 300)\n', (10638, 10656), True, 'import numpy as np\n'), ((13051, 13078), 'torch.nn.Sequential', 'nn.Sequential', (['*down_layers'], {}), '(*down_layers)\n', (13064, 13078), True, 'import torch.nn as nn\n'), ((17310, 17397), 'torch.hub.load_state_dict_from_url', 'torch.hub.load_state_dict_from_url', (["resnest_model_urls['resnest200']"], {'progress': '(True)'}), "(resnest_model_urls['resnest200'],\n progress=True)\n", (17344, 17397), False, 'import torch\n'), ((17876, 17963), 'torch.hub.load_state_dict_from_url', 'torch.hub.load_state_dict_from_url', (["resnest_model_urls['resnest101']"], {'progress': '(True)'}), "(resnest_model_urls['resnest101'],\n progress=True)\n", (17910, 17963), False, 'import torch\n'), ((18440, 18526), 'torch.hub.load_state_dict_from_url', 'torch.hub.load_state_dict_from_url', (["resnest_model_urls['resnest50']"], {'progress': '(True)'}), "(resnest_model_urls['resnest50'],\n progress=True)\n", (18474, 18526), False, 'import torch\n'), ((18982, 19024), 'torch.Tensor', 'torch.Tensor', (['in_features', 'middle_features'], {}), '(in_features, middle_features)\n', (18994, 19024), False, 'import torch\n'), ((19059, 19102), 'torch.Tensor', 'torch.Tensor', (['middle_features', 'out_features'], {}), '(middle_features, out_features)\n', (19071, 19102), False, 'import torch\n'), ((20503, 20548), 'torch.zeros', 'torch.zeros', ([], {'size': '(in_features, out_features)'}), '(size=(in_features, out_features))\n', (20514, 20548), False, 'import torch\n'), ((20637, 20676), 'torch.zeros', 'torch.zeros', ([], {'size': '(2 * out_features, 1)'}), '(size=(2 * out_features, 1))\n', (20648, 20676), False, 'import torch\n'), ((21664, 21682), 'torch.ones_like', 'torch.ones_like', (['e'], {}), '(e)\n', (21679, 21682), False, 'import torch\n'), ((22030, 22044), 'torch.nn.functional.elu', 'F.elu', (['h_prime'], {}), '(h_prime)\n', (22035, 22044), True, 'import torch.nn.functional as F\n'), ((3124, 3292), 'rfconv.RFConv2d', 'RFConv2d', (['group_width', 'group_width'], {'kernel_size': '(3)', 'stride': 'stride', 'padding': 'dilation', 'dilation': 'dilation', 'groups': 'cardinality', 'bias': '(False)', 'average_mode': 'rectify_avg'}), '(group_width, group_width, kernel_size=3, stride=stride, padding=\n dilation, dilation=dilation, groups=cardinality, bias=False,\n average_mode=rectify_avg)\n', (3132, 3292), False, 'from rfconv import RFConv2d\n'), ((3438, 3577), 'torch.nn.Conv2d', 'nn.Conv2d', (['group_width', 'group_width'], {'kernel_size': '(3)', 'stride': 'stride', 'padding': 'dilation', 'dilation': 'dilation', 'groups': 'cardinality', 'bias': '(False)'}), '(group_width, group_width, kernel_size=3, stride=stride, padding=\n dilation, dilation=dilation, groups=cardinality, bias=False)\n', (3447, 3577), True, 'import torch.nn as nn\n'), ((7797, 7818), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (7804, 7818), True, 'import torch.nn as nn\n'), ((7986, 8007), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (7993, 8007), True, 'import torch.nn as nn\n'), ((10784, 10798), 'numpy.load', 'np.load', (['point'], {}), '(point)\n', (10791, 10798), True, 'import numpy as np\n'), ((15016, 15033), 'models.utils.gen_adj', 'gen_adj', (['self.adj'], {}), '(self.adj)\n', (15023, 15033), False, 'from models.utils import gen_adj_num, gen_adj\n'), ((19155, 19184), 'torch.Tensor', 'torch.Tensor', (['(1)', 'out_features'], {}), '(1, out_features)\n', (19167, 19184), False, 'import torch\n'), ((20787, 20816), 'torch.Tensor', 'torch.Tensor', (['(1)', 'out_features'], {}), '(1, out_features)\n', (20799, 20816), False, 'import torch\n'), ((10216, 10234), 'math.sqrt', 'math.sqrt', (['(2.0 / n)'], {}), '(2.0 / n)\n', (10225, 10234), False, 'import math\n'), ((10529, 10551), 'torch.from_numpy', 'torch.from_numpy', (['_adj'], {}), '(_adj)\n', (10545, 10551), False, 'import torch\n'), ((10900, 10922), 'torch.from_numpy', 'torch.from_numpy', (['word'], {}), '(word)\n', (10916, 10922), False, 'import torch\n'), ((12640, 12731), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.inplanes', '(planes * block.expansion)'], {'kernel_size': '(1)', 'stride': '(1)', 'bias': '(False)'}), '(self.inplanes, planes * block.expansion, kernel_size=1, stride=1,\n bias=False)\n', (12649, 12731), True, 'import torch.nn as nn\n'), ((12833, 12930), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.inplanes', '(planes * block.expansion)'], {'kernel_size': '(1)', 'stride': 'stride', 'bias': '(False)'}), '(self.inplanes, planes * block.expansion, kernel_size=1, stride=\n stride, bias=False)\n', (12842, 12930), True, 'import torch.nn as nn\n'), ((21594, 21623), 'torch.matmul', 'torch.matmul', (['a_input', 'self.a'], {}), '(a_input, self.a)\n', (21606, 21623), False, 'import torch\n'), ((12264, 12356), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', ([], {'kernel_size': 'stride', 'stride': 'stride', 'ceil_mode': '(True)', 'count_include_pad': '(False)'}), '(kernel_size=stride, stride=stride, ceil_mode=True,\n count_include_pad=False)\n', (12276, 12356), True, 'import torch.nn as nn\n'), ((12452, 12530), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', ([], {'kernel_size': '(1)', 'stride': '(1)', 'ceil_mode': '(True)', 'count_include_pad': '(False)'}), '(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)\n', (12464, 12530), True, 'import torch.nn as nn\n')]
|
# https://stackoverflow.com/questions/47295473/how-to-plot-using-matplotlib-python-colahs-deformed-grid
"""
这个形状仍然不对。靠近坐标轴的地方变化太大。不管是横轴还是纵轴。应该是以原点为圆心,各个网格均匀分担才对
而不管是否靠近坐标轴
变形的目标,是在某处给定一个球体或者立方体,整个坐标中的网格,靠近这个物体的,受到变形影响,距离越远,影响
越小,直到可以忽略不计
但有个要求是靠近物体的网格,是均匀的受到影响,不能有的多,有的少
或许用极坐标是更好的选择?但是也不行。极坐标如何体现原有的坐标系呢?
极坐标没有平直的地方,到处都不均匀。
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
EDGE = 5
STEP = 2 * EDGE + 1
def plot_grid(x, y, ax=None, **kwargs):
ax = ax or plt.gca()
segs1 = np.stack((x, y), axis=2)
segs2 = segs1.transpose(1, 0, 2)
ax.add_collection(LineCollection(segs1, **kwargs))
ax.add_collection(LineCollection(segs2, **kwargs))
ax.autoscale()
def sig(i):
# return 1
return -1 if (i < 0) else 1
def f1(x: np.array, y: np.array):
u = []
v = []
for i in range(0, len(x)):
ui = []
vi = []
for j in range(0, len(x[i])):
# 这样取到的是网格中每个点的坐标,逐行取,从左到右。
xx = x[i][j]
yy = y[i][j]
print("x=", xx, "y=", yy)
expn = - 0.2 * (xx ** 2 + yy ** 2)
# 坐标越远离中心,delta越小。当x=+-1或者y=+-1,
delta = np.exp(expn)
print(expn)
uu = xx if xx == 0 else xx + sig(xx) * delta
vv = yy if yy == 0 else yy + sig(yy) * delta
print("uu=", uu, "vv=", vv)
ui.append(uu)
vi.append(vv)
# vi.append(yy)
# ui.append(xx)
u.append(ui)
v.append(vi)
return u, v
fig, ax = plt.subplots()
ax.set_aspect('equal')
grid_x, grid_y = np.meshgrid(np.linspace(-EDGE, EDGE, STEP), np.linspace(-EDGE, EDGE, STEP))
plot_grid(grid_x, grid_y, ax=ax, color="lightgrey")
distx, disty = f1(grid_x, grid_y)
plot_grid(distx, disty, ax=ax, color="C0")
plt.show()
|
[
"matplotlib.pyplot.gca",
"matplotlib.collections.LineCollection",
"numpy.exp",
"numpy.stack",
"numpy.linspace",
"matplotlib.pyplot.subplots",
"matplotlib.pyplot.show"
] |
[((1565, 1579), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1577, 1579), True, 'import matplotlib.pyplot as plt\n'), ((1827, 1837), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1835, 1837), True, 'import matplotlib.pyplot as plt\n'), ((544, 568), 'numpy.stack', 'np.stack', (['(x, y)'], {'axis': '(2)'}), '((x, y), axis=2)\n', (552, 568), True, 'import numpy as np\n'), ((1632, 1662), 'numpy.linspace', 'np.linspace', (['(-EDGE)', 'EDGE', 'STEP'], {}), '(-EDGE, EDGE, STEP)\n', (1643, 1662), True, 'import numpy as np\n'), ((1664, 1694), 'numpy.linspace', 'np.linspace', (['(-EDGE)', 'EDGE', 'STEP'], {}), '(-EDGE, EDGE, STEP)\n', (1675, 1694), True, 'import numpy as np\n'), ((522, 531), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (529, 531), True, 'import matplotlib.pyplot as plt\n'), ((628, 659), 'matplotlib.collections.LineCollection', 'LineCollection', (['segs1'], {}), '(segs1, **kwargs)\n', (642, 659), False, 'from matplotlib.collections import LineCollection\n'), ((683, 714), 'matplotlib.collections.LineCollection', 'LineCollection', (['segs2'], {}), '(segs2, **kwargs)\n', (697, 714), False, 'from matplotlib.collections import LineCollection\n'), ((1195, 1207), 'numpy.exp', 'np.exp', (['expn'], {}), '(expn)\n', (1201, 1207), True, 'import numpy as np\n')]
|
import argparse
from os import listdir, path
import numpy as np
def convert(main_folder, output):
ret = []
for label, class_folder in listdir(main_folder):
class_folder_path = path.join(main_folder, class_folder)
for img_name in listdir(class_folder_path):
image_path = path.join(class_folder, img_name)
ret.append([image_path, str(label)])
np.savetxt(output, ret, delimiter=" ", fmt="%s %i")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Folder with classes subfolders to a file to train."
)
parser.add_argument("--folder", "-f", help="Folder to convert.")
parser.add_argument("--output", "-o", help="Output file.")
args = parser.parse_args()
convert(args.folder, args.output)
|
[
"os.path.join",
"os.listdir",
"argparse.ArgumentParser",
"numpy.savetxt"
] |
[((146, 166), 'os.listdir', 'listdir', (['main_folder'], {}), '(main_folder)\n', (153, 166), False, 'from os import listdir, path\n'), ((399, 450), 'numpy.savetxt', 'np.savetxt', (['output', 'ret'], {'delimiter': '""" """', 'fmt': '"""%s %i"""'}), "(output, ret, delimiter=' ', fmt='%s %i')\n", (409, 450), True, 'import numpy as np\n'), ((493, 587), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Folder with classes subfolders to a file to train."""'}), "(description=\n 'Folder with classes subfolders to a file to train.')\n", (516, 587), False, 'import argparse\n'), ((196, 232), 'os.path.join', 'path.join', (['main_folder', 'class_folder'], {}), '(main_folder, class_folder)\n', (205, 232), False, 'from os import listdir, path\n'), ((258, 284), 'os.listdir', 'listdir', (['class_folder_path'], {}), '(class_folder_path)\n', (265, 284), False, 'from os import listdir, path\n'), ((311, 344), 'os.path.join', 'path.join', (['class_folder', 'img_name'], {}), '(class_folder, img_name)\n', (320, 344), False, 'from os import listdir, path\n')]
|
# Copyright 2018 <NAME> and <NAME>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import scipy.sparse as sp
from sklearn.base import BaseEstimator, ClusterMixin
class NormalizedKMeans(BaseEstimator, ClusterMixin):
def __init__(self, iterations=20, center_num=5):
self.center_num = center_num
self.iterations = iterations
def fit(self, X, k_center):
self.k_center, self.ya = self.k_means(X, self.iterations, self.center_num, k_center, X.shape[0])
return self
def k_means(self, data, iterations, center_num, k_center, rows):
all_one = np.matrix([1] * rows).T
all_one_k = np.matrix([1] * center_num)
all_one_c = np.matrix([1] * k_center.shape[0]).T
if sp.issparse(data):
t2 = (data.power(2)).sum(axis=1).dot(all_one_k)
else:
t2 = (np.power(data, 2)).sum(axis=1).reshape((-1, 1)) * all_one_k
t22 = data * 2
ya = None
for _ in range(iterations):
dist = t2 - t22 * k_center + all_one * np.power(k_center, 2).sum(axis=0)
ya = (dist == (np.amin(dist) * all_one_k))
k_center = (data.T * ya) / (all_one_c * ya.sum(axis=0))
return k_center, ya
|
[
"numpy.matrix",
"numpy.amin",
"scipy.sparse.issparse",
"numpy.power"
] |
[((1145, 1172), 'numpy.matrix', 'np.matrix', (['([1] * center_num)'], {}), '([1] * center_num)\n', (1154, 1172), True, 'import numpy as np\n'), ((1241, 1258), 'scipy.sparse.issparse', 'sp.issparse', (['data'], {}), '(data)\n', (1252, 1258), True, 'import scipy.sparse as sp\n'), ((1101, 1122), 'numpy.matrix', 'np.matrix', (['([1] * rows)'], {}), '([1] * rows)\n', (1110, 1122), True, 'import numpy as np\n'), ((1193, 1227), 'numpy.matrix', 'np.matrix', (['([1] * k_center.shape[0])'], {}), '([1] * k_center.shape[0])\n', (1202, 1227), True, 'import numpy as np\n'), ((1602, 1615), 'numpy.amin', 'np.amin', (['dist'], {}), '(dist)\n', (1609, 1615), True, 'import numpy as np\n'), ((1541, 1562), 'numpy.power', 'np.power', (['k_center', '(2)'], {}), '(k_center, 2)\n', (1549, 1562), True, 'import numpy as np\n'), ((1352, 1369), 'numpy.power', 'np.power', (['data', '(2)'], {}), '(data, 2)\n', (1360, 1369), True, 'import numpy as np\n')]
|
import numpy as np
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql as psql
from sqlalchemy.orm import relationship
from sqlalchemy.ext.hybrid import hybrid_property
from sqlalchemy.schema import UniqueConstraint
from astropy import units as u
from .core import Base
from .constants import APER_KEY, APERTURE_RADIUS
__all__ = ['ForcedPhotometry', 'raw_aperture_photometry', 'aperture_photometry']
class ForcedPhotometry(Base):
id = sa.Column(sa.Integer, primary_key=True)
__tablename__ = 'forcedphotometry'
flags = sa.Column(sa.Integer)
ra = sa.Column(psql.DOUBLE_PRECISION)
dec = sa.Column(psql.DOUBLE_PRECISION)
@property
def mag(self):
return -2.5 * np.log10(self.flux) + self.image.header['MAGZP'] + \
self.image.header[self.apcorkey]
@property
def magerr(self):
return 1.08573620476 * self.fluxerr / self.flux
image_id = sa.Column(sa.Integer, sa.ForeignKey('calibratedimages.id',
ondelete='CASCADE'),
index=True)
image = relationship('CalibratedImage', back_populates='forced_photometry',
cascade='all')
# thumbnails = relationship('Thumbnail', cascade='all')
source_id = sa.Column(sa.Text,
sa.ForeignKey('sources.id', ondelete='CASCADE'),
index=True)
source = relationship('Source', cascade='all')
apcorkey='APCOR5'
flux = sa.Column(sa.Float)
fluxerr = sa.Column(sa.Float)
zp = sa.Column(sa.Float)
filtercode = sa.Column(sa.Text)
obsjd = sa.Column(sa.Float)
uniq = UniqueConstraint(image_id, source_id)
reverse_idx = sa.Index('source_image', source_id, image_id)
@hybrid_property
def snr(self):
return self.flux / self.fluxerr
def raw_aperture_photometry(sci_path, rms_path, mask_path, ra, dec,
apply_calibration=False):
import photutils
from astropy.coordinates import SkyCoord
from astropy.io import fits
from astropy.table import vstack
from astropy.wcs import WCS
ra = np.atleast_1d(ra)
dec = np.atleast_1d(dec)
coord = SkyCoord(ra, dec, unit='deg')
with fits.open(sci_path, memmap=False) as shdu:
header = shdu[0].header
swcs = WCS(header)
scipix = shdu[0].data
with fits.open(rms_path, memmap=False) as rhdu:
rmspix = rhdu[0].data
with fits.open(mask_path, memmap=False) as mhdu:
maskpix = mhdu[0].data
apertures = photutils.SkyCircularAperture(coord, r=APERTURE_RADIUS)
phot_table = photutils.aperture_photometry(scipix, apertures,
error=rmspix,
wcs=swcs)
pixap = apertures.to_pixel(swcs)
annulus_masks = pixap.to_mask(method='center')
maskpix = [annulus_mask.cutout(maskpix) for annulus_mask in annulus_masks]
magzp = header['MAGZP']
apcor = header[APER_KEY]
# check for invalid photometry on masked pixels
phot_table['flags'] = [int(np.bitwise_or.reduce(m, axis=(0, 1))) for
m in maskpix]
phot_table['zp'] = magzp + apcor
phot_table['obsjd'] = header['OBSJD']
phot_table['filtercode'] = 'z' + header['FILTER'][-1]
# rename some columns
phot_table.rename_column('aperture_sum', 'flux')
phot_table.rename_column('aperture_sum_err', 'fluxerr')
return phot_table
def aperture_photometry(calibratable, ra, dec, apply_calibration=False,
assume_background_subtracted=False, use_cutout=False,
direct_load=None, survey='ZTF',apfactor=1.0,seeing=1.0):
import photutils
from astropy.coordinates import SkyCoord
from astropy.io import fits
from astropy.table import vstack
from astropy.wcs import WCS
ra = np.atleast_1d(ra)
dec = np.atleast_1d(dec)
coord = SkyCoord(ra, dec, unit='deg')
if not use_cutout:
wcs = calibratable.wcs
if seeing*3*apfactor < 2.5:
apcorkey='APCOR1'
aprad=2.0
elif seeing*3*apfactor >=2.5 and seeing*3*apfactor<3.5:
apcorkey='APCOR2'
aprad=3.0
elif seeing*3*apfactor >=3.5 and 3*apfactor*seeing<5.0:
apcorkey='APCOR3'
aprad=4.0
elif seeing*3*apfactor >=5.0 and 3*apfactor*seeing<8.0:
apcorkey='APCOR4'
aprad=6.0
elif seeing*3*apfactor >=8.0 and 3*apfactor*seeing<12.0:
apcorkey='APCOR5'
aprad=10.0
elif seeing*3*apfactor >=12.0:
apcorkey='APCOR6'
aprad=14
aprad=aprad*u.pixel
apertures = photutils.SkyCircularAperture(coord, r=aprad)#APERTURE_RADIUS*apfactor*seeing)
# something that is photometerable implements mask, background, and wcs
if not assume_background_subtracted:
pixels_bkgsub = calibratable.background_subtracted_image.data
else:
pixels_bkgsub = calibratable.data
bkgrms = calibratable.rms_image.data
mask = calibratable.mask_image.data
phot_table = photutils.aperture_photometry(pixels_bkgsub, apertures,
error=bkgrms,
wcs=wcs)
if survey=='PTF':
phot_table['zp'] = calibratable.header['IMAGEZPT']#['LMGAPCZP']# + calibratable.header['APCOR4']
else:
phot_table['zp'] = calibratable.header['MAGZP'] + calibratable.header[apcorkey]#'APCOR4']
phot_table['obsjd'] = calibratable.header['OBSJD']
phot_table['filtercode'] = 'z' + calibratable.header['FILTER'][-1]
pixap = apertures.to_pixel(wcs)
annulus_masks = pixap.to_mask(method='center')
maskpix = [annulus_mask.cutout(mask.data) for annulus_mask in annulus_masks]
else:
phot_table = []
maskpix = []
for s in coord:
if direct_load is not None and 'sci' in direct_load:
sci_path = direct_load['sci']
else:
if assume_background_subtracted:
sci_path = calibratable.local_path
else:
sci_path = calibratable.background_subtracted_image.local_path
if direct_load is not None and 'mask' in direct_load:
mask_path = direct_load['mask']
else:
mask_path = calibratable.mask_image.local_path
if direct_load is not None and 'rms' in direct_load:
rms_path = direct_load['rms']
else:
rms_path = calibratable.rms_image.local_path
with fits.open(
sci_path,
memmap=True
) as f:
wcs = WCS(f[0].header)
pixcoord = wcs.all_world2pix([[s.ra.deg, s.dec.deg]], 0)[0]
pixx, pixy = pixcoord
nx = calibratable.header['NAXIS1']
ny = calibratable.header['NAXIS2']
xmin = max(0, pixx - 1.5 * aprad)#APERTURE_RADIUS.value * seeing * apfactor)
xmax = min(nx, pixx + 1.5 * aprad)#APERTURE_RADIUS.value * seeing * apfactor)
ymin = max(0, pixy - 1.5 * aprad)#APERTURE_RADIUS.value * seeing * apfactor)
ymax = min(ny, pixy + 1.5 * aprad)#APERTURE_RADIUS.value * seeing * apfactor)
ixmin = int(np.floor(xmin))
ixmax = int(np.ceil(xmax))
iymin = int(np.floor(ymin))
iymax = int(np.ceil(ymax))
ap = photutils.CircularAperture([pixx - ixmin, pixy - iymin],
aprad)#APERTURE_RADIUS.value * seeing * apfactor)
# something that is photometerable implements mask, background, and wcs
with fits.open(
sci_path,
memmap=True
) as f:
pixels_bkgsub = f[0].data[iymin:iymax, ixmin:ixmax]
with fits.open(rms_path, memmap=True) as f:
bkgrms = f[0].data[iymin:iymax, ixmin:ixmax]
with fits.open(mask_path, memmap=True) as f:
mask = f[0].data[iymin:iymax, ixmin:ixmax]
pt = photutils.aperture_photometry(pixels_bkgsub, ap, error=bkgrms)
annulus_mask = ap.to_mask(method='center')
mp = annulus_mask.cutout(mask.data)
maskpix.append(mp)
phot_table.append(pt)
phot_table = vstack(phot_table)
if apply_calibration:
if survey=='PTF':
magzp = calibratable.header['IMAGEZPT']
#apcor = calibratable.header[APER_KEY]
phot_table['mag'] = -2.5 * np.log10(phot_table['aperture_sum']) + magzp# + apcor
phot_table['magerr'] = 1.0826 * phot_table['aperture_sum_err'] / phot_table['aperture_sum']
else:
magzp = calibratable.header['MAGZP']
apcor = calibratable.header[apcorkey]#APER_KEY]
phot_table['mag'] = -2.5 * np.log10(phot_table['aperture_sum']) + magzp + apcor
phot_table['magerr'] = 1.0826 * phot_table['aperture_sum_err'] / phot_table['aperture_sum']
# check for invalid photometry on masked pixels
phot_table['flags'] = [int(np.bitwise_or.reduce(m, axis=(0, 1))) for
m in maskpix]
# rename some columns
phot_table.rename_column('aperture_sum', 'flux')
phot_table.rename_column('aperture_sum_err', 'fluxerr')
return phot_table
|
[
"sqlalchemy.orm.relationship",
"numpy.ceil",
"numpy.log10",
"astropy.table.vstack",
"sqlalchemy.ForeignKey",
"astropy.coordinates.SkyCoord",
"photutils.aperture_photometry",
"astropy.wcs.WCS",
"numpy.floor",
"photutils.CircularAperture",
"numpy.bitwise_or.reduce",
"sqlalchemy.Index",
"sqlalchemy.schema.UniqueConstraint",
"photutils.SkyCircularAperture",
"astropy.io.fits.open",
"sqlalchemy.Column",
"numpy.atleast_1d"
] |
[((458, 497), 'sqlalchemy.Column', 'sa.Column', (['sa.Integer'], {'primary_key': '(True)'}), '(sa.Integer, primary_key=True)\n', (467, 497), True, 'import sqlalchemy as sa\n'), ((550, 571), 'sqlalchemy.Column', 'sa.Column', (['sa.Integer'], {}), '(sa.Integer)\n', (559, 571), True, 'import sqlalchemy as sa\n'), ((581, 613), 'sqlalchemy.Column', 'sa.Column', (['psql.DOUBLE_PRECISION'], {}), '(psql.DOUBLE_PRECISION)\n', (590, 613), True, 'import sqlalchemy as sa\n'), ((624, 656), 'sqlalchemy.Column', 'sa.Column', (['psql.DOUBLE_PRECISION'], {}), '(psql.DOUBLE_PRECISION)\n', (633, 656), True, 'import sqlalchemy as sa\n'), ((1103, 1190), 'sqlalchemy.orm.relationship', 'relationship', (['"""CalibratedImage"""'], {'back_populates': '"""forced_photometry"""', 'cascade': '"""all"""'}), "('CalibratedImage', back_populates='forced_photometry', cascade\n ='all')\n", (1115, 1190), False, 'from sqlalchemy.orm import relationship\n'), ((1434, 1471), 'sqlalchemy.orm.relationship', 'relationship', (['"""Source"""'], {'cascade': '"""all"""'}), "('Source', cascade='all')\n", (1446, 1471), False, 'from sqlalchemy.orm import relationship\n'), ((1510, 1529), 'sqlalchemy.Column', 'sa.Column', (['sa.Float'], {}), '(sa.Float)\n', (1519, 1529), True, 'import sqlalchemy as sa\n'), ((1544, 1563), 'sqlalchemy.Column', 'sa.Column', (['sa.Float'], {}), '(sa.Float)\n', (1553, 1563), True, 'import sqlalchemy as sa\n'), ((1574, 1593), 'sqlalchemy.Column', 'sa.Column', (['sa.Float'], {}), '(sa.Float)\n', (1583, 1593), True, 'import sqlalchemy as sa\n'), ((1611, 1629), 'sqlalchemy.Column', 'sa.Column', (['sa.Text'], {}), '(sa.Text)\n', (1620, 1629), True, 'import sqlalchemy as sa\n'), ((1642, 1661), 'sqlalchemy.Column', 'sa.Column', (['sa.Float'], {}), '(sa.Float)\n', (1651, 1661), True, 'import sqlalchemy as sa\n'), ((1674, 1711), 'sqlalchemy.schema.UniqueConstraint', 'UniqueConstraint', (['image_id', 'source_id'], {}), '(image_id, source_id)\n', (1690, 1711), False, 'from sqlalchemy.schema import UniqueConstraint\n'), ((1730, 1775), 'sqlalchemy.Index', 'sa.Index', (['"""source_image"""', 'source_id', 'image_id'], {}), "('source_image', source_id, image_id)\n", (1738, 1775), True, 'import sqlalchemy as sa\n'), ((2160, 2177), 'numpy.atleast_1d', 'np.atleast_1d', (['ra'], {}), '(ra)\n', (2173, 2177), True, 'import numpy as np\n'), ((2188, 2206), 'numpy.atleast_1d', 'np.atleast_1d', (['dec'], {}), '(dec)\n', (2201, 2206), True, 'import numpy as np\n'), ((2219, 2248), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['ra', 'dec'], {'unit': '"""deg"""'}), "(ra, dec, unit='deg')\n", (2227, 2248), False, 'from astropy.coordinates import SkyCoord\n'), ((2577, 2632), 'photutils.SkyCircularAperture', 'photutils.SkyCircularAperture', (['coord'], {'r': 'APERTURE_RADIUS'}), '(coord, r=APERTURE_RADIUS)\n', (2606, 2632), False, 'import photutils\n'), ((2650, 2722), 'photutils.aperture_photometry', 'photutils.aperture_photometry', (['scipix', 'apertures'], {'error': 'rmspix', 'wcs': 'swcs'}), '(scipix, apertures, error=rmspix, wcs=swcs)\n', (2679, 2722), False, 'import photutils\n'), ((3925, 3942), 'numpy.atleast_1d', 'np.atleast_1d', (['ra'], {}), '(ra)\n', (3938, 3942), True, 'import numpy as np\n'), ((3953, 3971), 'numpy.atleast_1d', 'np.atleast_1d', (['dec'], {}), '(dec)\n', (3966, 3971), True, 'import numpy as np\n'), ((3984, 4013), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['ra', 'dec'], {'unit': '"""deg"""'}), "(ra, dec, unit='deg')\n", (3992, 4013), False, 'from astropy.coordinates import SkyCoord\n'), ((945, 1001), 'sqlalchemy.ForeignKey', 'sa.ForeignKey', (['"""calibratedimages.id"""'], {'ondelete': '"""CASCADE"""'}), "('calibratedimages.id', ondelete='CASCADE')\n", (958, 1001), True, 'import sqlalchemy as sa\n'), ((1334, 1381), 'sqlalchemy.ForeignKey', 'sa.ForeignKey', (['"""sources.id"""'], {'ondelete': '"""CASCADE"""'}), "('sources.id', ondelete='CASCADE')\n", (1347, 1381), True, 'import sqlalchemy as sa\n'), ((2259, 2292), 'astropy.io.fits.open', 'fits.open', (['sci_path'], {'memmap': '(False)'}), '(sci_path, memmap=False)\n', (2268, 2292), False, 'from astropy.io import fits\n'), ((2349, 2360), 'astropy.wcs.WCS', 'WCS', (['header'], {}), '(header)\n', (2352, 2360), False, 'from astropy.wcs import WCS\n'), ((2401, 2434), 'astropy.io.fits.open', 'fits.open', (['rms_path'], {'memmap': '(False)'}), '(rms_path, memmap=False)\n', (2410, 2434), False, 'from astropy.io import fits\n'), ((2484, 2518), 'astropy.io.fits.open', 'fits.open', (['mask_path'], {'memmap': '(False)'}), '(mask_path, memmap=False)\n', (2493, 2518), False, 'from astropy.io import fits\n'), ((4782, 4827), 'photutils.SkyCircularAperture', 'photutils.SkyCircularAperture', (['coord'], {'r': 'aprad'}), '(coord, r=aprad)\n', (4811, 4827), False, 'import photutils\n'), ((5234, 5312), 'photutils.aperture_photometry', 'photutils.aperture_photometry', (['pixels_bkgsub', 'apertures'], {'error': 'bkgrms', 'wcs': 'wcs'}), '(pixels_bkgsub, apertures, error=bkgrms, wcs=wcs)\n', (5263, 5312), False, 'import photutils\n'), ((8602, 8620), 'astropy.table.vstack', 'vstack', (['phot_table'], {}), '(phot_table)\n', (8608, 8620), False, 'from astropy.table import vstack\n'), ((3129, 3165), 'numpy.bitwise_or.reduce', 'np.bitwise_or.reduce', (['m'], {'axis': '(0, 1)'}), '(m, axis=(0, 1))\n', (3149, 3165), True, 'import numpy as np\n'), ((7688, 7751), 'photutils.CircularAperture', 'photutils.CircularAperture', (['[pixx - ixmin, pixy - iymin]', 'aprad'], {}), '([pixx - ixmin, pixy - iymin], aprad)\n', (7714, 7751), False, 'import photutils\n'), ((8347, 8409), 'photutils.aperture_photometry', 'photutils.aperture_photometry', (['pixels_bkgsub', 'ap'], {'error': 'bkgrms'}), '(pixels_bkgsub, ap, error=bkgrms)\n', (8376, 8409), False, 'import photutils\n'), ((9404, 9440), 'numpy.bitwise_or.reduce', 'np.bitwise_or.reduce', (['m'], {'axis': '(0, 1)'}), '(m, axis=(0, 1))\n', (9424, 9440), True, 'import numpy as np\n'), ((6824, 6856), 'astropy.io.fits.open', 'fits.open', (['sci_path'], {'memmap': '(True)'}), '(sci_path, memmap=True)\n', (6833, 6856), False, 'from astropy.io import fits\n'), ((6931, 6947), 'astropy.wcs.WCS', 'WCS', (['f[0].header'], {}), '(f[0].header)\n', (6934, 6947), False, 'from astropy.wcs import WCS\n'), ((7535, 7549), 'numpy.floor', 'np.floor', (['xmin'], {}), '(xmin)\n', (7543, 7549), True, 'import numpy as np\n'), ((7575, 7588), 'numpy.ceil', 'np.ceil', (['xmax'], {}), '(xmax)\n', (7582, 7588), True, 'import numpy as np\n'), ((7615, 7629), 'numpy.floor', 'np.floor', (['ymin'], {}), '(ymin)\n', (7623, 7629), True, 'import numpy as np\n'), ((7655, 7668), 'numpy.ceil', 'np.ceil', (['ymax'], {}), '(ymax)\n', (7662, 7668), True, 'import numpy as np\n'), ((7941, 7973), 'astropy.io.fits.open', 'fits.open', (['sci_path'], {'memmap': '(True)'}), '(sci_path, memmap=True)\n', (7950, 7973), False, 'from astropy.io import fits\n'), ((8112, 8144), 'astropy.io.fits.open', 'fits.open', (['rms_path'], {'memmap': '(True)'}), '(rms_path, memmap=True)\n', (8121, 8144), False, 'from astropy.io import fits\n'), ((8230, 8263), 'astropy.io.fits.open', 'fits.open', (['mask_path'], {'memmap': '(True)'}), '(mask_path, memmap=True)\n', (8239, 8263), False, 'from astropy.io import fits\n'), ((713, 732), 'numpy.log10', 'np.log10', (['self.flux'], {}), '(self.flux)\n', (721, 732), True, 'import numpy as np\n'), ((8839, 8875), 'numpy.log10', 'np.log10', (["phot_table['aperture_sum']"], {}), "(phot_table['aperture_sum'])\n", (8847, 8875), True, 'import numpy as np\n'), ((9162, 9198), 'numpy.log10', 'np.log10', (["phot_table['aperture_sum']"], {}), "(phot_table['aperture_sum'])\n", (9170, 9198), True, 'import numpy as np\n')]
|
"""
Purpose of this file is to give examples of structured arrays
This script is partially dirived from the LinkedIn learning course
https://www.linkedin.com/learning/numpy-data-science-essential-training/create-arrays-from-python-structures
"""
import numpy as np
person_data_def = [('name', 'S6'), ('height', 'f8'), ('weight', 'f8'), ('age', 'i8')]
# create a structured array
people_array = np.zeros(4, dtype=person_data_def)
print(f'The structured array is of type {type(people_array)}\n{people_array}')
# let us change some the data values
# note that any int for height or weight will processed as default
people_array[2] = ('Cat', 130, 56, 22)
people_array[0] = ('Amy', 126, 60, 25)
people_array[1] = ('Bell', 146, 60, 20)
people_array[3] = ('Amy', 140, 80, 55)
print(people_array)
# we can print the information for name, height, weight and age
ages = people_array['age']
print(f'the ages of the people are {ages}')
print(f'The names of the people are {people_array["name"]}')
print(f'The heights of the people are {people_array["height"]}')
print(f'The weights of the people are {people_array["weight"]}')
youthful = ages/2
print(f'The young ages are {youthful}')
# Note that youthful does not change the original data
print(f'The original ages are {ages}')
print(people_array[['name', 'age']])
# Record array is a thin wrapper around structured array
person_record_array = np.rec.array([('a', 100, 80, 50), ('b', 190, 189, 20)])
print(type(person_record_array[0]))
|
[
"numpy.zeros",
"numpy.rec.array"
] |
[((398, 432), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': 'person_data_def'}), '(4, dtype=person_data_def)\n', (406, 432), True, 'import numpy as np\n'), ((1396, 1451), 'numpy.rec.array', 'np.rec.array', (["[('a', 100, 80, 50), ('b', 190, 189, 20)]"], {}), "([('a', 100, 80, 50), ('b', 190, 189, 20)])\n", (1408, 1451), True, 'import numpy as np\n')]
|
import numpy as np
import matplotlib.pyplot as plt
plt.close('all')
# From section 3.8.3 of wind energy explained
# Prandlt tip loss calc
B = 3 # number of blades
R = 1 # blade length
phi = np.deg2rad(10) # relative wind angle
r = np.linspace(0,R,100)
F = 2/np.pi * np.arccos(np.exp(-((B/2)*(1-(r/R)))/((r/R)*np.sin(phi))))
plt.figure(num='Tip loss for phi = %2.1f deg and %d blades' % (np.rad2deg(phi), B))
plt.plot(r,F)
plt.xlabel('Non-Dimensional Blade Radius (r/R)')
plt.ylabel('Tip Loss Factor')
|
[
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.close",
"numpy.deg2rad",
"numpy.linspace",
"numpy.sin",
"numpy.rad2deg"
] |
[((51, 67), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (60, 67), True, 'import matplotlib.pyplot as plt\n'), ((191, 205), 'numpy.deg2rad', 'np.deg2rad', (['(10)'], {}), '(10)\n', (201, 205), True, 'import numpy as np\n'), ((232, 254), 'numpy.linspace', 'np.linspace', (['(0)', 'R', '(100)'], {}), '(0, R, 100)\n', (243, 254), True, 'import numpy as np\n'), ((410, 424), 'matplotlib.pyplot.plot', 'plt.plot', (['r', 'F'], {}), '(r, F)\n', (418, 424), True, 'import matplotlib.pyplot as plt\n'), ((424, 472), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Non-Dimensional Blade Radius (r/R)"""'], {}), "('Non-Dimensional Blade Radius (r/R)')\n", (434, 472), True, 'import matplotlib.pyplot as plt\n'), ((473, 502), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Tip Loss Factor"""'], {}), "('Tip Loss Factor')\n", (483, 502), True, 'import matplotlib.pyplot as plt\n'), ((389, 404), 'numpy.rad2deg', 'np.rad2deg', (['phi'], {}), '(phi)\n', (399, 404), True, 'import numpy as np\n'), ((310, 321), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (316, 321), True, 'import numpy as np\n')]
|
# Project: SwarmAggregation
# Filename: exp.py
# Authors: <NAME> (<EMAIL>) and <NAME>
# (<EMAIL>).
"""
exp: A flexible, unifying framework for defining and running experiments for
swarm aggregation.
"""
import argparse
from aggregation import aggregation, ideal
from itertools import product
from math import sin, cos, hypot, ceil
from matplotlib.animation import FFMpegWriter, ArtistAnimation
import matplotlib.cm as cm
from matplotlib.collections import LineCollection, PatchCollection, PolyCollection
import matplotlib.pyplot as plt
from metrics import *
import numpy as np
import pickle
from tqdm import tqdm
class Experiment(object):
"""
A flexible, unifying framework for experiments.
"""
def __init__(self, id, params={}, iters=1, savehist=True, seed=None):
"""
Inputs:
- id (str): identifier for the experiment
- params (dict): the full parameter set for the simulation runs
{
'N' : [int > 0] number of robots,
'R' : [float > 0] radius of rotation (m),
'r' : [float > 0] radius of a robot (m),
'm' : [float > 0] mass of a robot (kg),
'w0' : [float] rot. speed of a robot about its center (rad/s),
'w1' : [float] rot. speed of a robot in place (rad/s),
'sensor' : [0 <= float <= pi] size of the sight sensor (rad),
'noise' : [(str, float)] either ('err', p) for error probability
with probability p or ('mot', f) for motion noise with
maximum force f (N),
'time' : [float > 0] wall-clock duration of simulation (s),
'step' : [float > 0] wall-clock duration of a time step (s),
'stop' : [float >= 0] if not None, simulation stops if system's
dispersion is within stop% of the ideal value,
'init' : ['rand', 'symm'] initialization mode
}
- iters (int): the number of iterated runs for each parameter setting
- savehist (bool): True if a run's history should be saved
- seed (int): random seed
"""
# Unpack singular parameters.
self.id, self.iters, self.savehist, self.seed, = id, iters, savehist, seed
# Unpack aggregation parameters.
defaults = {'N' : [100], 'R' : [0.1445], 'r' : [0.037], 'm' : [0.125], \
'w0' : [-0.75], 'w1' : [-5.02], 'sensor' : [0], \
'noise' : [('err', 0)], 'time' : [300], 'step' : [0.005], \
'stop' : [None], 'init' : ['rand']}
plist = [params[p] if p in params else defaults[p] for p in defaults]
self.params = list(product(*plist))
# Set up data and results filenames.
self.fname = 'exp_{}_{}'.format(self.id, self.seed)
# Instantiate a list to hold runs data. This data will have shape
# A x B x [S x N x 3, 1] where A is the number of runs (i.e., unique
# parameter combinations), B is the number of iterations per run, S is
# the number of time steps simulated, N is the number of robots, and 3
# represents each robot's X/Y/Theta data.
self.runs_data = [[] for p in self.params]
def run(self):
"""
Run this experiment according to the input parameters.
"""
tqdm.write('Running Experiment ' + self.id + '...')
# Set up random seeds for iterated runs.
rng = np.random.default_rng(self.seed)
run_seeds = rng.integers(0, 2**32, size=self.iters)
# For each parameter combination, do iterated runs of aggregation.
silent = len(self.params) > 1 or self.iters > 1
for i, param in enumerate(tqdm(self.params, desc='Simulating runs')):
N, R, r, m, w0, w1, sensor, noise, time, step, stop, init = param
for seed in tqdm(run_seeds, desc='Iterating run', \
leave=bool(i == len(self.params) - 1)):
run_data = aggregation(N, R, r, m, w0, w1, sensor, noise, time,\
step, stop, init, seed, silent)
if not self.savehist:
# Only save the final configuration.
history, final = run_data
self.runs_data[i].append((np.copy(history[final-1]), final))
else:
# Save the entire configuration history.
self.runs_data[i].append(run_data)
def save(self):
"""
Saves this experiment, including all parameters and run data, to a file
named according to the experiment's ID and seed.
"""
tqdm.write('Saving Experiment ' + self.id + '...')
with open('data/' + self.fname + '.pkl', 'wb') as f:
pickle.dump(self, f)
def plot_evo(self, runs, iters, metrics=['sed', 'hull', 'disp', 'clus'], \
labels=None, title='', anno=''):
"""
Takes indices of either (i) one run and multiple iterations or (ii) one
iteration of multiple runs and plots the given metrics against time.
"""
tqdm.write('Plotting metrics over time...')
# Sanity checks and setup. Assumes N, r, time, and step are static.
assert self.savehist, 'ERROR: No history to calculate metrics per step'
assert len(runs) == 1 or len(iters) == 1, 'ERROR: One run or one iter'
runits = [i for i in product(runs, iters)]
# Set up colors.
cmap = np.vectorize(lambda x : cm.inferno(x))
c = np.array(cmap(np.linspace(0, 1, len(runits) + 2))).T
# Plot metrics over time for each run/iteration.
names = {'sed' : 'Smallest Enclosing Disc Circumference', \
'hull' : 'Convex Hull Perimeter', \
'disp' : 'Dispersion', \
'clus' : 'Cluster Fraction'}
for metric in metrics:
fig, ax = plt.subplots()
for i, runit in enumerate(tqdm(runits)):
# Plot the given metric over time.
N, r, time, step = [self.params[runit[0]][j] for j in [0,2,8,9]]
configs, final = self.runs_data[runit[0]][runit[1]]
x = np.arange(0, time + step, step)[:final]
y = []
for config in tqdm(configs, desc='Calculating '+names[metric]):
if metric == 'sed':
y.append(sed_circumference(config))
elif metric == 'hull':
y.append(hull_perimeter(config))
elif metric == 'disp':
y.append(dispersion(config))
else: # metric == 'clus'
y.append(cluster_fraction(config, r))
if labels != None:
ax.plot(x, y, color=c[i+1], label=labels[i], zorder=4)
else:
ax.plot(x, y, color=c[i+1], zorder=4)
# Plot the minimum value for this metric as a dashed line.
if metric == 'sed':
metric_min = sed_circumference(ideal(N, r))
elif metric == 'hull':
metric_min = hull_perimeter(ideal(N, r))
elif metric == 'disp':
metric_min = dispersion(ideal(N, r))
else: # metric == 'clus'
metric_min = cluster_fraction(ideal(N, r), r)
ax.plot(x, np.full(len(x), metric_min), color=c[i+1], \
linestyle='dashed', zorder=3)
# Save figure.
ax.set(title=title, xlabel='Time (s)', ylabel=names[metric])
ax.set_ylim(bottom=0)
ax.grid()
if labels != None:
ax.legend(loc='upper right')
plt.tight_layout()
fig.savefig('figs/' + self.fname + '_' + metric + anno + '.png', \
dpi=300)
plt.close()
def plot_aggtime(self, N, ps, plabel, title='', anno=''):
"""
Plots final and average time to aggregation per parameter value per
number of robots. Assumes that the only parameters that are varied are
the number of robots (N) and one non-time related parameter.
"""
tqdm.write('Plotting average time to aggregation...')
# Set up figure and colors.
fig, ax = plt.subplots()
cmap = np.vectorize(lambda x : cm.inferno(x))
c = np.array(cmap(np.linspace(0, 1, len(N) + 2))).T
# Plot simulation time cutoff as a dashed line.
time, step = self.params[0][8], self.params[0][9]
ax.plot(ps, np.full(len(ps), time), color='k', linestyle='dashed')
# Plot iteration times as a scatter plot and averages as lines.
for i, ni in enumerate(N):
xs, ys, aves = [], [], []
for j, run in enumerate(self.runs_data[i*len(ps):(i+1)*len(ps)]):
agg_times = []
for iter in run:
xs.append(ps[j])
agg_times.append(iter[1] * step)
ys += agg_times
aves.append(np.mean(agg_times))
ax.scatter(xs, ys, color=c[i+1], s=15, alpha=0.4)
ax.plot(ps, aves, color=c[i+1], label='{} robots'.format(ni))
# Save figure.
ax.set(title=title, xlabel=plabel, ylabel='Aggregation Time (s)')
ax.set_ylim(bottom=0)
ax.grid()
ax.legend(loc='upper left')
plt.tight_layout()
fig.savefig('figs/' + self.fname + '_aggtime' + anno + '.png', dpi=300)
plt.close()
def animate(self, run, iter, frame=25, anno=''):
"""
Animate the robots' movement over time.
"""
tqdm.write('Animating robots\' movement...')
# Check that a configuration history exists.
assert self.savehist, 'ERROR: No history to animate'
# Check that the desired frame rate is valid.
assert frame > 0, 'ERROR: Frame rate must be positive value'
# Get data and parameters.
configs, final = self.runs_data[run][iter]
N, r, sensor, time, step = [self.params[run][i] for i in [0,2,6,8,9]]
# Set up plot.
fig, ax = plt.subplots(figsize=(5,5), dpi=300)
all_xy = configs[:,:,:2].flatten()
fig_min, fig_max = np.min(all_xy) - r, np.max(all_xy) + r
ax.set(xlim=[fig_min, fig_max], ylim=[fig_min, fig_max])
# Set up colors for the various robots.
cmap = np.vectorize(lambda x : cm.inferno(x))
c = np.array(cmap(np.linspace(0, 0.9, N))).T
# Set up frame rate to target at most 'frame' fps in real time.
frame_step = 1 if step >= 1 / frame else ceil(1 / frame / step)
interval = (step * frame_step) * 1000 # ms
ims = []
max_dist = hypot(*np.full(2, fig_max-fig_min))
for s in tqdm(np.arange(0, min(len(configs), final), frame_step)):
title = plt.text(1.0, 1.02, '{:.2f}s of {}s'.format(s*step, time), \
ha='right', va='bottom', transform=ax.transAxes)
robots, lines, cones = [], [], []
for i in range(N):
xy, theta = configs[s][i][:2], configs[s][i][2]
sensor_xy = xy + np.array([r * cos(theta), r * sin(theta)])
# Add this robot's circle artist.
robots.append(plt.Circle(xy, radius=r, linewidth=0, color=c[i]))
# Add this robot's sight sensor direction artist.
vec = max_dist * np.array([cos(theta), sin(theta)])
lines.append([sensor_xy, sensor_xy + vec])
# Add this robot's cone-of-sight polygon artist.
if sensor > 0:
cw, ccw = theta - sensor / 2, theta + sensor / 2
vec_cw = max_dist * np.array([cos(cw), sin(cw)])
vec_ccw = max_dist * np.array([cos(ccw), sin(ccw)])
tri_pts = [sensor_xy, sensor_xy+vec_cw, sensor_xy+vec_ccw]
cones.append(plt.Polygon(tri_pts, color=c[i], alpha=0.15))
# Add this step's artists to the list of artists.
robots = PatchCollection(robots, match_original=True, zorder=3)
lines = LineCollection(lines, linewidths=0.5, colors=c, alpha=0.75,\
zorder=2)
cones = PatchCollection(cones, match_original=True, zorder=1)
ims.append([title, ax.add_collection(robots), \
ax.add_collection(lines), ax.add_collection(cones)])
# Animate.
ani = ArtistAnimation(fig, ims, interval=interval, blit=True)
ani.save('anis/' + self.fname + '_ani' + anno + '.mp4')
plt.close()
def load_exp(fname):
"""
Load an experiment from the specified file.
"""
with open(fname, 'rb') as f:
exp = pickle.load(f)
return exp
### DATA EXPERIMENTS ###
def exp_base(seed=None):
"""
With default parameters, investigate aggregation over time.
"""
params = {} # This uses all default values.
exp = Experiment('base', params, seed=seed)
exp.run()
exp.save()
exp.plot_evo(runs=[0], iters=[0])
exp.animate(run=0, iter=0)
def exp_symm(seed=None):
"""
With default parameters and symmetric initialization, investigate
aggregation over time for a few system sizes.
"""
N = [3, 5, 10]
params = {'N' : N, 'init' : ['symm']}
exp = Experiment('symm', params, seed=seed)
exp.run()
exp.save()
exp.plot_evo(runs=np.arange(len(exp.params)), iters=[0], metrics=['disp'], \
labels=['{} robots'.format(i) for i in N], \
title='Symmetric Initial Configuration')
def exp_errprob(seed=None):
"""
With default parameters and a range of error probabilities, investigate
average time to aggregation with a 15% stopping condition.
"""
N = [10, 25, 50, 100]
errprob = np.arange(0, 0.501, 0.0125)
params = {'N' : N, 'noise' : [('err', p) for p in errprob], 'stop' : [0.15]}
exp = Experiment('errprob', params, iters=25, savehist=False, seed=seed)
exp.run()
exp.save()
exp.plot_aggtime(N, errprob, 'Error Probability')
def exp_motion(seed=None):
"""
With default parameters and a range of motion noise strengths, investigate
average time to aggregation with a 15% stopping condition.
"""
N = [10, 25, 50, 100]
fmax = np.arange(0, 40.1, 1.25)
params = {'N' : N, 'noise' : [('mot', f) for f in fmax], 'stop' : [0.15]}
exp = Experiment('motion', params, iters=25, savehist=False, seed=seed)
exp.run()
exp.save()
exp.plot_aggtime(N, fmax, 'Max. Noise Force (N)')
def exp_cone(seed=None):
"""
With default parameters and a range of sight sensor sizes, investigate
average time to aggregation with a 15% stopping condition.
"""
N = [10, 25, 50, 100]
sensor = np.arange(0, np.pi, 0.1)
params = {'N' : N, 'sensor' : sensor, 'stop' : [0.15]}
exp = Experiment('cone', params, iters=25, savehist=False, seed=seed)
exp.run()
exp.save()
exp.plot_aggtime(N, sensor, 'Sight Sensor Size (rad)')
### CALIBRATION EXPERIMENTS ###
def exp_step(seed=None):
"""
With default parameters and a range of time step durations, investigate
aggregation over time.
"""
step = [0.0005, 0.001, 0.005, 0.01, 0.025]
params = {'N' : [50], 'time' : [120], 'step' : step}
exp = Experiment('step', params, seed=seed)
exp.run()
exp.save()
exp.plot_evo(runs=np.arange(len(exp.params)), iters=[0], metrics=['disp'], \
labels=['{}s'.format(i) for i in step])
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-E', '--exps', type=str, nargs='+', required=True, \
help='IDs of experiments to run')
parser.add_argument('-R', '--rand_seed', type=int, default=None, \
help='Seed for random number generation')
args = parser.parse_args()
# Run selected experiments.
exps = {'base' : exp_base, 'symm' : exp_symm, 'errprob' : exp_errprob, \
'motion' : exp_motion, 'cone' : exp_cone, 'step' : exp_step}
for id in args.exps:
exps[id](args.rand_seed)
|
[
"numpy.random.default_rng",
"matplotlib.pyplot.Polygon",
"matplotlib.collections.LineCollection",
"math.cos",
"aggregation.aggregation",
"aggregation.ideal",
"numpy.arange",
"numpy.mean",
"argparse.ArgumentParser",
"tqdm.tqdm.write",
"itertools.product",
"numpy.max",
"matplotlib.pyplot.close",
"numpy.linspace",
"numpy.min",
"matplotlib.pyplot.Circle",
"pickle.load",
"matplotlib.cm.inferno",
"numpy.copy",
"pickle.dump",
"math.ceil",
"tqdm.tqdm",
"matplotlib.collections.PatchCollection",
"matplotlib.animation.ArtistAnimation",
"matplotlib.pyplot.tight_layout",
"numpy.full",
"math.sin",
"matplotlib.pyplot.subplots"
] |
[((14036, 14063), 'numpy.arange', 'np.arange', (['(0)', '(0.501)', '(0.0125)'], {}), '(0, 0.501, 0.0125)\n', (14045, 14063), True, 'import numpy as np\n'), ((14529, 14553), 'numpy.arange', 'np.arange', (['(0)', '(40.1)', '(1.25)'], {}), '(0, 40.1, 1.25)\n', (14538, 14553), True, 'import numpy as np\n'), ((15011, 15035), 'numpy.arange', 'np.arange', (['(0)', 'np.pi', '(0.1)'], {}), '(0, np.pi, 0.1)\n', (15020, 15035), True, 'import numpy as np\n'), ((15833, 15877), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (15856, 15877), False, 'import argparse\n'), ((3384, 3435), 'tqdm.tqdm.write', 'tqdm.write', (["('Running Experiment ' + self.id + '...')"], {}), "('Running Experiment ' + self.id + '...')\n", (3394, 3435), False, 'from tqdm import tqdm\n'), ((3500, 3532), 'numpy.random.default_rng', 'np.random.default_rng', (['self.seed'], {}), '(self.seed)\n', (3521, 3532), True, 'import numpy as np\n'), ((4717, 4767), 'tqdm.tqdm.write', 'tqdm.write', (["('Saving Experiment ' + self.id + '...')"], {}), "('Saving Experiment ' + self.id + '...')\n", (4727, 4767), False, 'from tqdm import tqdm\n'), ((5182, 5225), 'tqdm.tqdm.write', 'tqdm.write', (['"""Plotting metrics over time..."""'], {}), "('Plotting metrics over time...')\n", (5192, 5225), False, 'from tqdm import tqdm\n'), ((8330, 8383), 'tqdm.tqdm.write', 'tqdm.write', (['"""Plotting average time to aggregation..."""'], {}), "('Plotting average time to aggregation...')\n", (8340, 8383), False, 'from tqdm import tqdm\n'), ((8439, 8453), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8451, 8453), True, 'import matplotlib.pyplot as plt\n'), ((9542, 9560), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9558, 9560), True, 'import matplotlib.pyplot as plt\n'), ((9649, 9660), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9658, 9660), True, 'import matplotlib.pyplot as plt\n'), ((9796, 9839), 'tqdm.tqdm.write', 'tqdm.write', (['"""Animating robots\' movement..."""'], {}), '("Animating robots\' movement...")\n', (9806, 9839), False, 'from tqdm import tqdm\n'), ((10287, 10324), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 5)', 'dpi': '(300)'}), '(figsize=(5, 5), dpi=300)\n', (10299, 10324), True, 'import matplotlib.pyplot as plt\n'), ((12676, 12731), 'matplotlib.animation.ArtistAnimation', 'ArtistAnimation', (['fig', 'ims'], {'interval': 'interval', 'blit': '(True)'}), '(fig, ims, interval=interval, blit=True)\n', (12691, 12731), False, 'from matplotlib.animation import FFMpegWriter, ArtistAnimation\n'), ((12804, 12815), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (12813, 12815), True, 'import matplotlib.pyplot as plt\n'), ((12950, 12964), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (12961, 12964), False, 'import pickle\n'), ((2734, 2749), 'itertools.product', 'product', (['*plist'], {}), '(*plist)\n', (2741, 2749), False, 'from itertools import product\n'), ((3759, 3800), 'tqdm.tqdm', 'tqdm', (['self.params'], {'desc': '"""Simulating runs"""'}), "(self.params, desc='Simulating runs')\n", (3763, 3800), False, 'from tqdm import tqdm\n'), ((4841, 4861), 'pickle.dump', 'pickle.dump', (['self', 'f'], {}), '(self, f)\n', (4852, 4861), False, 'import pickle\n'), ((5979, 5993), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5991, 5993), True, 'import matplotlib.pyplot as plt\n'), ((7855, 7873), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7871, 7873), True, 'import matplotlib.pyplot as plt\n'), ((7998, 8009), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8007, 8009), True, 'import matplotlib.pyplot as plt\n'), ((10776, 10798), 'math.ceil', 'ceil', (['(1 / frame / step)'], {}), '(1 / frame / step)\n', (10780, 10798), False, 'from math import sin, cos, hypot, ceil\n'), ((12250, 12304), 'matplotlib.collections.PatchCollection', 'PatchCollection', (['robots'], {'match_original': '(True)', 'zorder': '(3)'}), '(robots, match_original=True, zorder=3)\n', (12265, 12304), False, 'from matplotlib.collections import LineCollection, PatchCollection, PolyCollection\n'), ((12325, 12394), 'matplotlib.collections.LineCollection', 'LineCollection', (['lines'], {'linewidths': '(0.5)', 'colors': 'c', 'alpha': '(0.75)', 'zorder': '(2)'}), '(lines, linewidths=0.5, colors=c, alpha=0.75, zorder=2)\n', (12339, 12394), False, 'from matplotlib.collections import LineCollection, PatchCollection, PolyCollection\n'), ((12451, 12504), 'matplotlib.collections.PatchCollection', 'PatchCollection', (['cones'], {'match_original': '(True)', 'zorder': '(1)'}), '(cones, match_original=True, zorder=1)\n', (12466, 12504), False, 'from matplotlib.collections import LineCollection, PatchCollection, PolyCollection\n'), ((4041, 4129), 'aggregation.aggregation', 'aggregation', (['N', 'R', 'r', 'm', 'w0', 'w1', 'sensor', 'noise', 'time', 'step', 'stop', 'init', 'seed', 'silent'], {}), '(N, R, r, m, w0, w1, sensor, noise, time, step, stop, init, seed,\n silent)\n', (4052, 4129), False, 'from aggregation import aggregation, ideal\n'), ((5491, 5511), 'itertools.product', 'product', (['runs', 'iters'], {}), '(runs, iters)\n', (5498, 5511), False, 'from itertools import product\n'), ((5578, 5591), 'matplotlib.cm.inferno', 'cm.inferno', (['x'], {}), '(x)\n', (5588, 5591), True, 'import matplotlib.cm as cm\n'), ((6032, 6044), 'tqdm.tqdm', 'tqdm', (['runits'], {}), '(runits)\n', (6036, 6044), False, 'from tqdm import tqdm\n'), ((6360, 6410), 'tqdm.tqdm', 'tqdm', (['configs'], {'desc': "('Calculating ' + names[metric])"}), "(configs, desc='Calculating ' + names[metric])\n", (6364, 6410), False, 'from tqdm import tqdm\n'), ((8493, 8506), 'matplotlib.cm.inferno', 'cm.inferno', (['x'], {}), '(x)\n', (8503, 8506), True, 'import matplotlib.cm as cm\n'), ((10394, 10408), 'numpy.min', 'np.min', (['all_xy'], {}), '(all_xy)\n', (10400, 10408), True, 'import numpy as np\n'), ((10414, 10428), 'numpy.max', 'np.max', (['all_xy'], {}), '(all_xy)\n', (10420, 10428), True, 'import numpy as np\n'), ((10586, 10599), 'matplotlib.cm.inferno', 'cm.inferno', (['x'], {}), '(x)\n', (10596, 10599), True, 'import matplotlib.cm as cm\n'), ((10895, 10924), 'numpy.full', 'np.full', (['(2)', '(fig_max - fig_min)'], {}), '(2, fig_max - fig_min)\n', (10902, 10924), True, 'import numpy as np\n'), ((6267, 6298), 'numpy.arange', 'np.arange', (['(0)', '(time + step)', 'step'], {}), '(0, time + step, step)\n', (6276, 6298), True, 'import numpy as np\n'), ((9196, 9214), 'numpy.mean', 'np.mean', (['agg_times'], {}), '(agg_times)\n', (9203, 9214), True, 'import numpy as np\n'), ((10627, 10649), 'numpy.linspace', 'np.linspace', (['(0)', '(0.9)', 'N'], {}), '(0, 0.9, N)\n', (10638, 10649), True, 'import numpy as np\n'), ((11456, 11505), 'matplotlib.pyplot.Circle', 'plt.Circle', (['xy'], {'radius': 'r', 'linewidth': '(0)', 'color': 'c[i]'}), '(xy, radius=r, linewidth=0, color=c[i])\n', (11466, 11505), True, 'import matplotlib.pyplot as plt\n'), ((7167, 7178), 'aggregation.ideal', 'ideal', (['N', 'r'], {}), '(N, r)\n', (7172, 7178), False, 'from aggregation import aggregation, ideal\n'), ((12120, 12164), 'matplotlib.pyplot.Polygon', 'plt.Polygon', (['tri_pts'], {'color': 'c[i]', 'alpha': '(0.15)'}), '(tri_pts, color=c[i], alpha=0.15)\n', (12131, 12164), True, 'import matplotlib.pyplot as plt\n'), ((4353, 4380), 'numpy.copy', 'np.copy', (['history[final - 1]'], {}), '(history[final - 1])\n', (4360, 4380), True, 'import numpy as np\n'), ((7267, 7278), 'aggregation.ideal', 'ideal', (['N', 'r'], {}), '(N, r)\n', (7272, 7278), False, 'from aggregation import aggregation, ideal\n'), ((11617, 11627), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (11620, 11627), False, 'from math import sin, cos, hypot, ceil\n'), ((11629, 11639), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (11632, 11639), False, 'from math import sin, cos, hypot, ceil\n'), ((7363, 7374), 'aggregation.ideal', 'ideal', (['N', 'r'], {}), '(N, r)\n', (7368, 7374), False, 'from aggregation import aggregation, ideal\n'), ((7468, 7479), 'aggregation.ideal', 'ideal', (['N', 'r'], {}), '(N, r)\n', (7473, 7479), False, 'from aggregation import aggregation, ideal\n'), ((11346, 11356), 'math.cos', 'cos', (['theta'], {}), '(theta)\n', (11349, 11356), False, 'from math import sin, cos, hypot, ceil\n'), ((11362, 11372), 'math.sin', 'sin', (['theta'], {}), '(theta)\n', (11365, 11372), False, 'from math import sin, cos, hypot, ceil\n'), ((11917, 11924), 'math.cos', 'cos', (['cw'], {}), '(cw)\n', (11920, 11924), False, 'from math import sin, cos, hypot, ceil\n'), ((11926, 11933), 'math.sin', 'sin', (['cw'], {}), '(cw)\n', (11929, 11933), False, 'from math import sin, cos, hypot, ceil\n'), ((11987, 11995), 'math.cos', 'cos', (['ccw'], {}), '(ccw)\n', (11990, 11995), False, 'from math import sin, cos, hypot, ceil\n'), ((11997, 12005), 'math.sin', 'sin', (['ccw'], {}), '(ccw)\n', (12000, 12005), False, 'from math import sin, cos, hypot, ceil\n')]
|
from abc import ABCMeta, abstractmethod
import numpy as np
class BaseSubspace(metaclass=ABCMeta):
def __init__(self, measurements=None, A=None, k=None, rank=None, pks=[], name=''):
# Check A
if A is None:
self.__A = np.asarray(a=1, dtype=measurements.dtype)
else:
# Check the type and number of dimensions of A
if not (type(A) is np.ndarray):
raise ValueError('A must be an array')
else:
if not (len(A.shape) == 2):
raise ValueError("Dimensions of A must be 2")
self.__A = np.asarray(A)
# Shape of A
m, n = A.shape
self.__At = np.transpose(np.conjugate(self.__A))
# Check measurements
if measurements is None:
self._measurements = np.asarray(1)
else:
if not (type(measurements) is np.ndarray):
raise ValueError('measurements must be an array')
# Check the dimensions of the measurements
if not (measurements.shape[0] == A.shape[0]):
raise ValueError("The dimension of y is not consistent with the dimensions of A")
self.__measurements = np.asarray(a=measurements, dtype=measurements.dtype)
# Control of the value of k
if k is None:
print('WARNING: Unknown sparsity considered. Some of the algorithms may not be applicable.')
self.__k = k
else:
if k > self.A.shape[1]:
raise ValueError("k cannot be larger than the number of atoms")
else:
self.__k = k
# Assign the given rank
if rank is not None:
if rank < 0:
raise ValueError('rank must be positive.')
self._rank = rank
# Check the partially known support
if not(type(pks) is list):
self._pks = pks.tolist()
else:
self._pks = pks
# Create the solution
self.sol = np.zeros(shape=(n, measurements.shape[1]), dtype=measurements.dtype)
self.support_sol = []
# Assign the name
self.__name = name
@abstractmethod
def solve(self, threshold):
pass
@property
def A(self):
return self.__A
@property
def At(self):
return self.__At
@property
def measurements(self):
return self.__measurements
@property
def k(self):
return self.__k
@property
def name(self):
return self.__name
@property
def rank(self):
return self._rank
@property
def pks(self):
return self._pks
def estimate_measurement_rank(self):
return np.linalg.matrix_rank(M=self.measurements, tol=None, hermitian=False)
def compute_covariance_matrix(self):
return np.matmul(self.measurements, np.conjugate(self.measurements.T)) / self.measurements.shape[1]
def estimate_signal_subspace(self, threshold=0.01):
# Compute the covariance matrix
gamma = self.compute_covariance_matrix()
# EVD
eig_vals, eig_vecs = np.linalg.eigh(gamma, UPLO='L')
eig_vals = eig_vals[::-1]
eig_vecs = eig_vecs[:, ::-1]
# If the rank is not known - Estimate the rank
if self._rank is None:
# Shape of the measurements
m = self.measurements.shape[0]
# Estimate the dimension of the signal subspace
eig_diff = np.abs(np.diff(eig_vals))
ind = np.where(eig_diff >= threshold*eig_vals[0])[0][-1]
self._rank = m - ind
# r dominant eigenvectors of the covariance matrix
U = eig_vecs[:,:self._rank]
# Projection matrix
P = np.matmul(U, np.conjugate(U.T))
return P
def estimate_noise_subspace(self, threshold=0.1):
# Compute the covariance matrix
gamma = self.compute_covariance_matrix()
# EVD
eig_vals, eig_vecs = np.linalg.eigh(gamma, UPLO='L')
eig_vals = eig_vals[::-1]
eig_vecs = eig_vecs[:, ::-1]
# If the rank is not known - Estimate the rank
if self._rank is None:
# Shape of the measurements
m = self.measurements.shape[0]
# Estimate the dimension of the signal subspace
eig_diff = np.diff(eig_vals)
ind = np.where(eig_diff >= threshold*eig_vals[0])[0]
self._rank = m - ind
# n-r lowest eigenvectors of the covariance matrix
U = eig_vecs[:,self.rank:]
# Projection matrix
P = np.matmul(U, np.conjugate(U.T))
return P
|
[
"numpy.linalg.matrix_rank",
"numpy.where",
"numpy.conjugate",
"numpy.asarray",
"numpy.diff",
"numpy.zeros",
"numpy.linalg.eigh"
] |
[((2029, 2097), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n, measurements.shape[1])', 'dtype': 'measurements.dtype'}), '(shape=(n, measurements.shape[1]), dtype=measurements.dtype)\n', (2037, 2097), True, 'import numpy as np\n'), ((2735, 2804), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', ([], {'M': 'self.measurements', 'tol': 'None', 'hermitian': '(False)'}), '(M=self.measurements, tol=None, hermitian=False)\n', (2756, 2804), True, 'import numpy as np\n'), ((3145, 3176), 'numpy.linalg.eigh', 'np.linalg.eigh', (['gamma'], {'UPLO': '"""L"""'}), "(gamma, UPLO='L')\n", (3159, 3176), True, 'import numpy as np\n'), ((4005, 4036), 'numpy.linalg.eigh', 'np.linalg.eigh', (['gamma'], {'UPLO': '"""L"""'}), "(gamma, UPLO='L')\n", (4019, 4036), True, 'import numpy as np\n'), ((249, 290), 'numpy.asarray', 'np.asarray', ([], {'a': '(1)', 'dtype': 'measurements.dtype'}), '(a=1, dtype=measurements.dtype)\n', (259, 290), True, 'import numpy as np\n'), ((614, 627), 'numpy.asarray', 'np.asarray', (['A'], {}), '(A)\n', (624, 627), True, 'import numpy as np\n'), ((713, 735), 'numpy.conjugate', 'np.conjugate', (['self.__A'], {}), '(self.__A)\n', (725, 735), True, 'import numpy as np\n'), ((833, 846), 'numpy.asarray', 'np.asarray', (['(1)'], {}), '(1)\n', (843, 846), True, 'import numpy as np\n'), ((1229, 1281), 'numpy.asarray', 'np.asarray', ([], {'a': 'measurements', 'dtype': 'measurements.dtype'}), '(a=measurements, dtype=measurements.dtype)\n', (1239, 1281), True, 'import numpy as np\n'), ((3780, 3797), 'numpy.conjugate', 'np.conjugate', (['U.T'], {}), '(U.T)\n', (3792, 3797), True, 'import numpy as np\n'), ((4362, 4379), 'numpy.diff', 'np.diff', (['eig_vals'], {}), '(eig_vals)\n', (4369, 4379), True, 'import numpy as np\n'), ((4627, 4644), 'numpy.conjugate', 'np.conjugate', (['U.T'], {}), '(U.T)\n', (4639, 4644), True, 'import numpy as np\n'), ((2891, 2924), 'numpy.conjugate', 'np.conjugate', (['self.measurements.T'], {}), '(self.measurements.T)\n', (2903, 2924), True, 'import numpy as np\n'), ((3509, 3526), 'numpy.diff', 'np.diff', (['eig_vals'], {}), '(eig_vals)\n', (3516, 3526), True, 'import numpy as np\n'), ((4398, 4443), 'numpy.where', 'np.where', (['(eig_diff >= threshold * eig_vals[0])'], {}), '(eig_diff >= threshold * eig_vals[0])\n', (4406, 4443), True, 'import numpy as np\n'), ((3546, 3591), 'numpy.where', 'np.where', (['(eig_diff >= threshold * eig_vals[0])'], {}), '(eig_diff >= threshold * eig_vals[0])\n', (3554, 3591), True, 'import numpy as np\n')]
|
import os
import pytest
import numpy as np
from laserembeddings import Laser
SIMILARITY_TEST = os.getenv('SIMILARITY_TEST')
def test_laser():
with open(Laser.DEFAULT_ENCODER_FILE, 'rb') as f_encoder:
laser = Laser(
Laser.DEFAULT_BPE_CODES_FILE,
None,
f_encoder,
)
assert laser.embed_sentences(
['hello world!', 'i hope the tests are passing'],
lang='en').shape == (2, 1024)
def test_similarity(test_data):
if not SIMILARITY_TEST:
pytest.skip("SIMILARITY_TEST not set")
if not test_data:
raise FileNotFoundError(
'laserembeddings-test-data.npz is missing, run "python -m laserembeddings download-test-data" to fix that 🔧'
)
report = os.path.join(os.path.dirname(os.path.realpath(__file__)),
'report', 'comparison-with-LASER.md')
laser = Laser()
with open(report, 'w', encoding='utf-8') as f_report:
f_report.write(
'# Comparison of the embeddings computed with original LASER with the embeddings computed with this package\n'
)
f_report.write(
'| |language|avg. cosine similarity|min. cosine similarity|\n')
f_report.write(
'|-|--------|----------------------|----------------------|\n')
for lang in test_data['langs']:
if lang in ('cmn', 'wuu', 'yue', 'zh', 'jpn', 'ja', 'el'):
# language not supported, ignoring
continue
sents = test_data[f'{lang}_sentences']
orig_embeddings = test_data[f'{lang}_embeddings']
embeddings = laser.embed_sentences(sents, lang)
assert embeddings.shape == orig_embeddings.shape
cosine_similarities = np.sum(
orig_embeddings * embeddings,
axis=1) / (np.linalg.norm(orig_embeddings, axis=1) *
np.linalg.norm(embeddings, axis=1))
similarity_mean = np.mean(cosine_similarities)
similarity_min = np.min(cosine_similarities)
f_report.write(
f'|{"✅" if similarity_min > 0.99999 else "⚠️" if similarity_mean > 0.99 else "❌"}|{lang}|{similarity_mean:.5f}|{similarity_min:.5f}|\n'
)
|
[
"numpy.mean",
"os.getenv",
"numpy.linalg.norm",
"os.path.realpath",
"numpy.sum",
"numpy.min",
"pytest.skip",
"laserembeddings.Laser"
] |
[((98, 126), 'os.getenv', 'os.getenv', (['"""SIMILARITY_TEST"""'], {}), "('SIMILARITY_TEST')\n", (107, 126), False, 'import os\n'), ((912, 919), 'laserembeddings.Laser', 'Laser', ([], {}), '()\n', (917, 919), False, 'from laserembeddings import Laser\n'), ((225, 277), 'laserembeddings.Laser', 'Laser', (['Laser.DEFAULT_BPE_CODES_FILE', 'None', 'f_encoder'], {}), '(Laser.DEFAULT_BPE_CODES_FILE, None, f_encoder)\n', (230, 277), False, 'from laserembeddings import Laser\n'), ((537, 575), 'pytest.skip', 'pytest.skip', (['"""SIMILARITY_TEST not set"""'], {}), "('SIMILARITY_TEST not set')\n", (548, 575), False, 'import pytest\n'), ((806, 832), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (822, 832), False, 'import os\n'), ((2014, 2042), 'numpy.mean', 'np.mean', (['cosine_similarities'], {}), '(cosine_similarities)\n', (2021, 2042), True, 'import numpy as np\n'), ((2072, 2099), 'numpy.min', 'np.min', (['cosine_similarities'], {}), '(cosine_similarities)\n', (2078, 2099), True, 'import numpy as np\n'), ((1797, 1841), 'numpy.sum', 'np.sum', (['(orig_embeddings * embeddings)'], {'axis': '(1)'}), '(orig_embeddings * embeddings, axis=1)\n', (1803, 1841), True, 'import numpy as np\n'), ((1878, 1917), 'numpy.linalg.norm', 'np.linalg.norm', (['orig_embeddings'], {'axis': '(1)'}), '(orig_embeddings, axis=1)\n', (1892, 1917), True, 'import numpy as np\n'), ((1947, 1981), 'numpy.linalg.norm', 'np.linalg.norm', (['embeddings'], {'axis': '(1)'}), '(embeddings, axis=1)\n', (1961, 1981), True, 'import numpy as np\n')]
|
# --------------
# Importing header files
import numpy as np
# Path of the file has been stored in variable called 'path'
#New record
new_record=[[50, 9, 4, 1, 0, 0, 40, 0]]
#Code starts here
data_file='subset_1000.csv'
data=np.genfromtxt(path,delimiter=",",skip_header=1)
print(data)
census=np.concatenate((new_record,data),axis=0)
print(census)
# --------------
#Code starts here
age=census[:,0]
max_age=np.max(age)
min_age=np.min(age)
age_mean=np.mean(age)
age_std=np.std(age)
# --------------
#Code starts here
race_0=census[census[:,2]==0]
race_1=census[census[:,2]==1]
race_2=census[census[:,2]==2]
race_3=census[census[:,2]==3]
race_4=census[census[:,2]==4]
len_0=len(race_0)
len_1=len(race_1)
len_2=len(race_2)
len_3=len(race_3)
len_4=len(race_4)
print(len_0,len_1,len_2,len_3,len_4)
minority_race=3
# --------------
#Code starts here
senior_citizens=census[census[:,0]>60]
working_hours_sum=senior_citizens.sum(axis=0)[6]
senior_citizens_len=len(senior_citizens)
avg_working_hours=working_hours_sum/senior_citizens_len
print(avg_working_hours)
# --------------
#Code starts here
high=census[census[:,1]>10]
low=census[census[:,1]<=10]
avg_pay_high=round(high.mean(axis=0)[7],2)
avg_pay_low=round(low.mean(axis=0)[7],2)
print(avg_pay_high,avg_pay_low)
a=avg_pay_high-avg_pay_low
print(a)
|
[
"numpy.mean",
"numpy.std",
"numpy.max",
"numpy.concatenate",
"numpy.min",
"numpy.genfromtxt"
] |
[((244, 293), 'numpy.genfromtxt', 'np.genfromtxt', (['path'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(path, delimiter=',', skip_header=1)\n", (257, 293), True, 'import numpy as np\n'), ((313, 355), 'numpy.concatenate', 'np.concatenate', (['(new_record, data)'], {'axis': '(0)'}), '((new_record, data), axis=0)\n', (327, 355), True, 'import numpy as np\n'), ((432, 443), 'numpy.max', 'np.max', (['age'], {}), '(age)\n', (438, 443), True, 'import numpy as np\n'), ((453, 464), 'numpy.min', 'np.min', (['age'], {}), '(age)\n', (459, 464), True, 'import numpy as np\n'), ((475, 487), 'numpy.mean', 'np.mean', (['age'], {}), '(age)\n', (482, 487), True, 'import numpy as np\n'), ((497, 508), 'numpy.std', 'np.std', (['age'], {}), '(age)\n', (503, 508), True, 'import numpy as np\n')]
|
import numpy as np
from matplotlib import pyplot as plt
"""
https://stackoverflow.com/questions/42750910/convert-rgb-image-to-index-image/62980021#62980021
convert semantic labels from RGB coding to index coding
Steps:
1. define COLORS (see below)
2. hash colors
3. run rgb2index(segmentation_rgb)
see example below
TODO: apparently, using cv2.LUT is much simpler (and maybe faster?)
"""
COLORS = np.array([[0, 0, 0], [0, 0, 255], [255, 0, 0], [0, 255, 0]])
W = np.power(255, [0, 1, 2])
HASHES = np.sum(W * COLORS, axis=-1)
HASH2COLOR = {h: c for h, c in zip(HASHES, COLORS)}
HASH2IDX = {h: i for i, h in enumerate(HASHES)}
def rgb2index(segmentation_rgb):
"""
turn a 3 channel RGB color to 1 channel index color
"""
s_shape = segmentation_rgb.shape
s_hashes = np.sum(W * segmentation_rgb, axis=-1)
print(np.unique(segmentation_rgb.reshape((-1, 3)), axis=0))
func = lambda x: HASH2IDX[int(x)] # noqa
segmentation_idx = np.apply_along_axis(func, 0, s_hashes.reshape((1, -1)))
segmentation_idx = segmentation_idx.reshape(s_shape[:2])
return segmentation_idx
segmentation = np.array([[0, 0, 0], [0, 0, 255], [255, 0, 0]] * 3).reshape((3, 3, 3))
segmentation_idx = rgb2index(segmentation)
print(segmentation)
print(segmentation_idx)
fig, axes = plt.subplots(1, 2, figsize=(6, 3))
axes[0].imshow(segmentation)
axes[0].set_title("Segmentation RGB")
axes[1].imshow(segmentation_idx)
axes[1].set_title("Segmentation IDX")
plt.show()
|
[
"numpy.power",
"numpy.array",
"numpy.sum",
"matplotlib.pyplot.subplots",
"matplotlib.pyplot.show"
] |
[((402, 462), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 255], [255, 0, 0], [0, 255, 0]]'], {}), '([[0, 0, 0], [0, 0, 255], [255, 0, 0], [0, 255, 0]])\n', (410, 462), True, 'import numpy as np\n'), ((467, 491), 'numpy.power', 'np.power', (['(255)', '[0, 1, 2]'], {}), '(255, [0, 1, 2])\n', (475, 491), True, 'import numpy as np\n'), ((502, 529), 'numpy.sum', 'np.sum', (['(W * COLORS)'], {'axis': '(-1)'}), '(W * COLORS, axis=-1)\n', (508, 529), True, 'import numpy as np\n'), ((1294, 1328), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(6, 3)'}), '(1, 2, figsize=(6, 3))\n', (1306, 1328), True, 'from matplotlib import pyplot as plt\n'), ((1467, 1477), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1475, 1477), True, 'from matplotlib import pyplot as plt\n'), ((789, 826), 'numpy.sum', 'np.sum', (['(W * segmentation_rgb)'], {'axis': '(-1)'}), '(W * segmentation_rgb, axis=-1)\n', (795, 826), True, 'import numpy as np\n'), ((1122, 1173), 'numpy.array', 'np.array', (['([[0, 0, 0], [0, 0, 255], [255, 0, 0]] * 3)'], {}), '([[0, 0, 0], [0, 0, 255], [255, 0, 0]] * 3)\n', (1130, 1173), True, 'import numpy as np\n')]
|
import os
import wandb
import torch
import warnings
import numpy as np
import torchvision.transforms
from fvcore.nn import FlopCountAnalysis
from dpt.models import DPTDepthModel
def get_flops(model, x, unit="G", quiet=True):
_prefix = {'k': 1e3, # kilo
'M': 1e6, # mega
'G': 1e9, # giga
'T': 1e12, # tera
'P': 1e15, # peta
}
flops = FlopCountAnalysis(model, x)
num_flops = flops.total() / _prefix[unit]
if not quiet:
print(f"Model FLOPs: {num_flops:.2f} {unit}FLOPs")
return num_flops
def get_model_size(model):
torch.save(model.state_dict(), "tmp.pt")
model_size = os.path.getsize("tmp.pt")/1e6
os.remove('tmp.pt')
return model_size
# Hyperparameters and config
# Input
net_w, net_h = 640, 192
h_kitti, w_kitti = 352, 1216
# Model architecture
backbone = "vitb_rn50_384" # "vitb_effb0"
transformer_hooks = "str:8,11"
attention_variant = None # "performer"
attention_heads = 12
mixed_precision = False
config_dict = {
"input_size": f"{net_h},{net_w}",
"downsampling": "Resize image along w and h",
"mixed_precision": mixed_precision,
"backbone": backbone,
"transformer_hooks": transformer_hooks,
"attention_variant": attention_variant,
"attention_heads": attention_heads,
}
if __name__ == "__main__":
warnings.simplefilter("ignore", UserWarning)
# Init wandb
wandb.init(config=config_dict)
config = wandb.config
# Re-read config for wandb-sweep-managed inference
mixed_precision = config["mixed_precision"]
backbone = config["backbone"]
transformer_hooks = config["transformer_hooks"]
attention_variant = config["attention_variant"]
if attention_variant == "None":
attention_variant = None
attention_heads = config["attention_heads"]
input_size = config["input_size"]
net_h = int(input_size.split(",")[0])
net_w = int(input_size.split(",")[1])
# Convert str hooks to list (wandb hacky solution to display hooks correctly)
assert isinstance(transformer_hooks, str) and transformer_hooks[:4] == "str:", \
'Hooks are not in the format "str:[att_hook1, att_hook2]"'
conv_hooks = {"vitb_rn50_384": [0, 1], "vitb_effb0": [1, 2]}[backbone]
transformer_hooks = [int(hook) for hook in transformer_hooks.split(":")[-1].split(",")]
hooks = conv_hooks + transformer_hooks
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
# Create model
model = DPTDepthModel(
path=None,
scale=0.00006016, # KITTI
shift=0.00579,
invert=True,
backbone=backbone,
attention_heads=attention_heads,
hooks=hooks,
non_negative=True,
enable_attention_hooks=False,
attention_variant=attention_variant).to(device)
n_inferences = 500
wandb.log({"num_inferences": n_inferences})
measures = np.zeros((n_inferences, 1))
x = torch.rand(1, 3, h_kitti, w_kitti).to(device)
print(f"Kitti size: {h_kitti}, {w_kitti} | Network input size: {net_h}, {net_w}")
# Cuda events
t0 = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
# Measure inference time
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=mixed_precision):
dummy = torchvision.transforms.Resize((net_h, net_w))(x)
_ = model(dummy) # Warm-up
for i in range(n_inferences):
t0.record()
if net_h != h_kitti or net_w != w_kitti:
x = torchvision.transforms.Resize((net_h, net_w))(x)
y = model(x)
if net_h != h_kitti or net_w != w_kitti:
_ = torch.nn.functional.interpolate(y.unsqueeze(1),
size=(h_kitti, w_kitti),
mode="bicubic",
align_corners=True)
end.record()
torch.cuda.synchronize()
measures[i] = t0.elapsed_time(end)
mean_ms = np.mean(measures)
std_ms = np.std(measures)
fps = 1000/measures
mean_fps = np.mean(fps)
std_fps = np.std(fps)
GFLOPs = get_flops(model.to("cpu"), x.to("cpu"))
model_MB = get_model_size(model)
wandb.log({"FPS": mean_fps, "std_fps": std_fps, "ms": mean_ms, "std_ms": std_ms, "GFLOPs": GFLOPs, "MB": model_MB})
print(f"FPS: {mean_fps:.2f} +- {1/std_fps:.2f} || Inference speed (ms): {mean_ms:.4f} +- {std_ms:.4f}")
print(f"GFLOPs: {GFLOPs:.3f} || Model size (MB): {model_MB:.2f}")
|
[
"torch.cuda.Event",
"numpy.mean",
"os.path.getsize",
"wandb.log",
"fvcore.nn.FlopCountAnalysis",
"wandb.init",
"torch.cuda.synchronize",
"numpy.zeros",
"torch.cuda.is_available",
"torch.cuda.amp.autocast",
"numpy.std",
"warnings.simplefilter",
"torch.no_grad",
"dpt.models.DPTDepthModel",
"torch.rand",
"os.remove"
] |
[((424, 451), 'fvcore.nn.FlopCountAnalysis', 'FlopCountAnalysis', (['model', 'x'], {}), '(model, x)\n', (441, 451), False, 'from fvcore.nn import FlopCountAnalysis\n'), ((721, 740), 'os.remove', 'os.remove', (['"""tmp.pt"""'], {}), "('tmp.pt')\n", (730, 740), False, 'import os\n'), ((1369, 1413), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (1390, 1413), False, 'import warnings\n'), ((1436, 1466), 'wandb.init', 'wandb.init', ([], {'config': 'config_dict'}), '(config=config_dict)\n', (1446, 1466), False, 'import wandb\n'), ((3111, 3154), 'wandb.log', 'wandb.log', (["{'num_inferences': n_inferences}"], {}), "({'num_inferences': n_inferences})\n", (3120, 3154), False, 'import wandb\n'), ((3170, 3197), 'numpy.zeros', 'np.zeros', (['(n_inferences, 1)'], {}), '((n_inferences, 1))\n', (3178, 3197), True, 'import numpy as np\n'), ((3366, 3402), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3382, 3402), False, 'import torch\n'), ((3413, 3449), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3429, 3449), False, 'import torch\n'), ((4400, 4417), 'numpy.mean', 'np.mean', (['measures'], {}), '(measures)\n', (4407, 4417), True, 'import numpy as np\n'), ((4431, 4447), 'numpy.std', 'np.std', (['measures'], {}), '(measures)\n', (4437, 4447), True, 'import numpy as np\n'), ((4487, 4499), 'numpy.mean', 'np.mean', (['fps'], {}), '(fps)\n', (4494, 4499), True, 'import numpy as np\n'), ((4514, 4525), 'numpy.std', 'np.std', (['fps'], {}), '(fps)\n', (4520, 4525), True, 'import numpy as np\n'), ((4621, 4740), 'wandb.log', 'wandb.log', (["{'FPS': mean_fps, 'std_fps': std_fps, 'ms': mean_ms, 'std_ms': std_ms,\n 'GFLOPs': GFLOPs, 'MB': model_MB}"], {}), "({'FPS': mean_fps, 'std_fps': std_fps, 'ms': mean_ms, 'std_ms':\n std_ms, 'GFLOPs': GFLOPs, 'MB': model_MB})\n", (4630, 4740), False, 'import wandb\n'), ((687, 712), 'os.path.getsize', 'os.path.getsize', (['"""tmp.pt"""'], {}), "('tmp.pt')\n", (702, 712), False, 'import os\n'), ((2484, 2509), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2507, 2509), False, 'import torch\n'), ((3489, 3504), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3502, 3504), False, 'import torch\n'), ((2680, 2913), 'dpt.models.DPTDepthModel', 'DPTDepthModel', ([], {'path': 'None', 'scale': '(6.016e-05)', 'shift': '(0.00579)', 'invert': '(True)', 'backbone': 'backbone', 'attention_heads': 'attention_heads', 'hooks': 'hooks', 'non_negative': '(True)', 'enable_attention_hooks': '(False)', 'attention_variant': 'attention_variant'}), '(path=None, scale=6.016e-05, shift=0.00579, invert=True,\n backbone=backbone, attention_heads=attention_heads, hooks=hooks,\n non_negative=True, enable_attention_hooks=False, attention_variant=\n attention_variant)\n', (2693, 2913), False, 'from dpt.models import DPTDepthModel\n'), ((3206, 3240), 'torch.rand', 'torch.rand', (['(1)', '(3)', 'h_kitti', 'w_kitti'], {}), '(1, 3, h_kitti, w_kitti)\n', (3216, 3240), False, 'import torch\n'), ((3519, 3567), 'torch.cuda.amp.autocast', 'torch.cuda.amp.autocast', ([], {'enabled': 'mixed_precision'}), '(enabled=mixed_precision)\n', (3542, 3567), False, 'import torch\n'), ((4310, 4334), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (4332, 4334), False, 'import torch\n')]
|
# -*- coding: utf-8 -*-
import json
import os
import numpy as np
import tensorflow.compat.v1 as tf
from src import model, sample, encoder
from flask import Flask
from flask import request, jsonify
import time
######model
def interact_model(
model_name='run1',
seed=None,
nsamples=1,
batch_size=1,
length=None,
temperature=1,
top_k=0,
top_p=1,
models_dir='checkpoint',
):
models_dir = os.path.expanduser(os.path.expandvars(models_dir))
if batch_size is None:
batch_size = 1
assert nsamples % batch_size == 0
enc = encoder.get_encoder(model_name, models_dir)
hparams = model.default_hparams()
with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if length is None:
length = hparams.n_ctx // 2
elif length > hparams.n_ctx:
raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)
with tf.Session(graph=tf.Graph()) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
output = sample.sample_sequence(
hparams=hparams, length=length,
context=context,
batch_size=batch_size,
temperature=temperature, top_k=top_k, top_p=top_p
)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, "run1"))
saver.restore(sess, ckpt)
yield sess, context, output, enc
def output_something(bio, sess, context, output, enc):
raw_text = bio#input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
generated = 0
out = sess.run(output, feed_dict={
context: [context_tokens for _ in range(1)]
})[:, len(context_tokens):] #Get samples
text = enc.decode(out[0]) #decodes samples
print(text)
return text
########API
gen = interact_model()
sess, context, output, enc = next(gen)
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def welcome():
start_time = time.time()
bio = request.args.get('bio')
res = output_something(bio, sess, context, output, enc)
sentences = res.split("\n")[:3]
print("----------------------------------------------------------- %s seconds ----------------------------------------------" % (time.time() - start_time))
return jsonify(sentences=sentences)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=105)
|
[
"tensorflow.compat.v1.placeholder",
"flask.request.args.get",
"src.model.default_hparams",
"src.encoder.get_encoder",
"tensorflow.compat.v1.Graph",
"flask.Flask",
"os.path.expandvars",
"os.path.join",
"numpy.random.seed",
"tensorflow.compat.v1.set_random_seed",
"src.sample.sample_sequence",
"json.load",
"time.time",
"tensorflow.compat.v1.train.Saver",
"flask.jsonify"
] |
[((2062, 2077), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (2067, 2077), False, 'from flask import Flask\n'), ((583, 626), 'src.encoder.get_encoder', 'encoder.get_encoder', (['model_name', 'models_dir'], {}), '(model_name, models_dir)\n', (602, 626), False, 'from src import model, sample, encoder\n'), ((641, 664), 'src.model.default_hparams', 'model.default_hparams', ([], {}), '()\n', (662, 664), False, 'from src import model, sample, encoder\n'), ((2152, 2163), 'time.time', 'time.time', ([], {}), '()\n', (2161, 2163), False, 'import time\n'), ((2175, 2198), 'flask.request.args.get', 'request.args.get', (['"""bio"""'], {}), "('bio')\n", (2191, 2198), False, 'from flask import request, jsonify\n'), ((2471, 2499), 'flask.jsonify', 'jsonify', ([], {'sentences': 'sentences'}), '(sentences=sentences)\n', (2478, 2499), False, 'from flask import request, jsonify\n'), ((452, 482), 'os.path.expandvars', 'os.path.expandvars', (['models_dir'], {}), '(models_dir)\n', (470, 482), False, 'import os\n'), ((1037, 1081), 'tensorflow.compat.v1.placeholder', 'tf.placeholder', (['tf.int32', '[batch_size, None]'], {}), '(tf.int32, [batch_size, None])\n', (1051, 1081), True, 'import tensorflow.compat.v1 as tf\n'), ((1090, 1110), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1104, 1110), True, 'import numpy as np\n'), ((1119, 1143), 'tensorflow.compat.v1.set_random_seed', 'tf.set_random_seed', (['seed'], {}), '(seed)\n', (1137, 1143), True, 'import tensorflow.compat.v1 as tf\n'), ((1161, 1310), 'src.sample.sample_sequence', 'sample.sample_sequence', ([], {'hparams': 'hparams', 'length': 'length', 'context': 'context', 'batch_size': 'batch_size', 'temperature': 'temperature', 'top_k': 'top_k', 'top_p': 'top_p'}), '(hparams=hparams, length=length, context=context,\n batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p)\n', (1183, 1310), False, 'from src import model, sample, encoder\n'), ((1382, 1398), 'tensorflow.compat.v1.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (1396, 1398), True, 'import tensorflow.compat.v1 as tf\n'), ((679, 731), 'os.path.join', 'os.path.join', (['models_dir', 'model_name', '"""hparams.json"""'], {}), "(models_dir, model_name, 'hparams.json')\n", (691, 731), False, 'import os\n'), ((774, 786), 'json.load', 'json.load', (['f'], {}), '(f)\n', (783, 786), False, 'import json\n'), ((1441, 1473), 'os.path.join', 'os.path.join', (['models_dir', '"""run1"""'], {}), "(models_dir, 'run1')\n", (1453, 1473), False, 'import os\n'), ((998, 1008), 'tensorflow.compat.v1.Graph', 'tf.Graph', ([], {}), '()\n', (1006, 1008), True, 'import tensorflow.compat.v1 as tf\n'), ((2433, 2444), 'time.time', 'time.time', ([], {}), '()\n', (2442, 2444), False, 'import time\n')]
|
import numpy as np
from copy import copy
from .utils.thresholdcurator import ThresholdCurator
from .quality_metric import QualityMetric
import spiketoolkit as st
import spikemetrics.metrics as metrics
from spikemetrics.utils import printProgressBar
from collections import OrderedDict
from sklearn.neighbors import NearestNeighbors
from .parameter_dictionaries import update_all_param_dicts_with_kwargs
class NoiseOverlap(QualityMetric):
installed = True # check at class level if installed or not
installation_mesg = "" # err
params = OrderedDict([('max_spikes_per_unit_for_noise_overlap', 1000), ('num_features', 10),
('num_knn', 6)])
curator_name = "ThresholdNoiseOverlaps"
def __init__(self, metric_data):
QualityMetric.__init__(self, metric_data, metric_name="noise_overlap")
if not metric_data.has_recording():
raise ValueError("MetricData object must have a recording")
def compute_metric(self, max_spikes_per_unit_for_noise_overlap, num_features, num_knn, **kwargs):
params_dict = update_all_param_dicts_with_kwargs(kwargs)
save_property_or_features = params_dict['save_property_or_features']
seed = params_dict['seed']
waveforms = st.postprocessing.get_unit_waveforms(
self._metric_data._recording,
self._metric_data._sorting,
unit_ids=self._metric_data._unit_ids,
max_spikes_per_unit=max_spikes_per_unit_for_noise_overlap,
**kwargs
)
if seed is not None:
np.random.seed(seed)
noise_overlaps = []
for i_u, unit in enumerate(self._metric_data._unit_ids):
if self._metric_data.verbose:
printProgressBar(i_u + 1, len(self._metric_data._unit_ids))
wfs = waveforms[i_u]
times = self._metric_data._sorting.get_unit_spike_train(unit_id=unit)
if len(wfs) > max_spikes_per_unit_for_noise_overlap:
selecte_idxs = np.random.choice(times, size=max_spikes_per_unit_for_noise_overlap)
wfs = wfs[selecte_idxs]
# get clip_size from waveforms shape
clip_size = wfs.shape[-1]
num_clips = len(wfs)
min_time = np.min(times)
max_time = np.max(times)
times_control = np.random.choice(np.arange(min_time, max_time), size=num_clips)
clips = copy(wfs)
clips_control = np.stack(self._metric_data._recording.get_snippets(snippet_len=clip_size,
reference_frames=times_control))
template = np.median(wfs, axis=0)
max_ind = np.unravel_index(np.argmax(np.abs(template)), template.shape)
chmax = max_ind[0]
tmax = max_ind[1]
max_val = template[chmax, tmax]
weighted_clips_control = np.zeros(clips_control.shape)
weights = np.zeros(num_clips)
for j in range(num_clips):
clip0 = clips_control[j, :, :]
val0 = clip0[chmax, tmax]
weight0 = val0 * max_val
weights[j] = weight0
weighted_clips_control[j, :, :] = clip0 * weight0
noise_template = np.sum(weighted_clips_control, axis=0)
noise_template = noise_template / np.sum(np.abs(noise_template)) * np.sum(np.abs(template))
for j in range(num_clips):
clips[j, :, :] = _subtract_clip_component(clips[j, :, :], noise_template)
clips_control[j, :, :] = _subtract_clip_component(clips_control[j, :, :], noise_template)
all_clips = np.concatenate([clips, clips_control], axis=0)
num_channels_wfs = all_clips.shape[1]
num_samples_wfs = all_clips.shape[2]
all_features = _compute_pca_features(all_clips.reshape((num_clips * 2,
num_channels_wfs * num_samples_wfs)), num_features)
num_all_clips=len(all_clips)
distances, indices = NearestNeighbors(n_neighbors=min(num_knn + 1, num_all_clips - 1), algorithm='auto').fit(
all_features.T).kneighbors()
group_id = np.zeros((num_clips * 2))
group_id[0:num_clips] = 1
group_id[num_clips:] = 2
num_match = 0
total = 0
for j in range(num_clips * 2):
for k in range(1, min(num_knn + 1, num_all_clips - 1)):
ind = indices[j][k]
if group_id[j] == group_id[ind]:
num_match = num_match + 1
total = total + 1
pct_match = num_match / total
noise_overlap = 1 - pct_match
noise_overlaps.append(noise_overlap)
noise_overlaps = np.asarray(noise_overlaps)
if save_property_or_features:
self.save_property_or_features(self._metric_data._sorting, noise_overlaps, self._metric_name)
return noise_overlaps
def threshold_metric(self, threshold, threshold_sign, max_spikes_per_unit_for_noise_overlap,
num_features, num_knn, **kwargs):
noise_overlaps = self.compute_metric(max_spikes_per_unit_for_noise_overlap, num_features, num_knn, **kwargs)
threshold_curator = ThresholdCurator(sorting=self._metric_data._sorting, metric=noise_overlaps)
threshold_curator.threshold_sorting(threshold=threshold, threshold_sign=threshold_sign)
return threshold_curator
def _compute_pca_features(X, num_components):
u, s, vt = np.linalg.svd(X)
return u[:, :num_components].T
def _subtract_clip_component(clip1, component):
V1 = clip1.flatten()
V2 = component.flatten()
V1 = V1 - np.mean(V1)
V2 = V2 - np.mean(V2)
V1 = V1 - V2 * np.dot(V1, V2) / np.dot(V2, V2)
return V1.reshape(clip1.shape)
|
[
"numpy.mean",
"collections.OrderedDict",
"spiketoolkit.postprocessing.get_unit_waveforms",
"numpy.median",
"numpy.abs",
"numpy.random.choice",
"numpy.asarray",
"numpy.max",
"numpy.sum",
"numpy.zeros",
"numpy.dot",
"numpy.random.seed",
"numpy.concatenate",
"numpy.min",
"numpy.linalg.svd",
"copy.copy",
"numpy.arange"
] |
[((552, 657), 'collections.OrderedDict', 'OrderedDict', (["[('max_spikes_per_unit_for_noise_overlap', 1000), ('num_features', 10), (\n 'num_knn', 6)]"], {}), "([('max_spikes_per_unit_for_noise_overlap', 1000), (\n 'num_features', 10), ('num_knn', 6)])\n", (563, 657), False, 'from collections import OrderedDict\n'), ((5662, 5678), 'numpy.linalg.svd', 'np.linalg.svd', (['X'], {}), '(X)\n', (5675, 5678), True, 'import numpy as np\n'), ((1258, 1468), 'spiketoolkit.postprocessing.get_unit_waveforms', 'st.postprocessing.get_unit_waveforms', (['self._metric_data._recording', 'self._metric_data._sorting'], {'unit_ids': 'self._metric_data._unit_ids', 'max_spikes_per_unit': 'max_spikes_per_unit_for_noise_overlap'}), '(self._metric_data._recording, self.\n _metric_data._sorting, unit_ids=self._metric_data._unit_ids,\n max_spikes_per_unit=max_spikes_per_unit_for_noise_overlap, **kwargs)\n', (1294, 1468), True, 'import spiketoolkit as st\n'), ((4891, 4917), 'numpy.asarray', 'np.asarray', (['noise_overlaps'], {}), '(noise_overlaps)\n', (4901, 4917), True, 'import numpy as np\n'), ((5832, 5843), 'numpy.mean', 'np.mean', (['V1'], {}), '(V1)\n', (5839, 5843), True, 'import numpy as np\n'), ((5858, 5869), 'numpy.mean', 'np.mean', (['V2'], {}), '(V2)\n', (5865, 5869), True, 'import numpy as np\n'), ((1572, 1592), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1586, 1592), True, 'import numpy as np\n'), ((2270, 2283), 'numpy.min', 'np.min', (['times'], {}), '(times)\n', (2276, 2283), True, 'import numpy as np\n'), ((2307, 2320), 'numpy.max', 'np.max', (['times'], {}), '(times)\n', (2313, 2320), True, 'import numpy as np\n'), ((2433, 2442), 'copy.copy', 'copy', (['wfs'], {}), '(wfs)\n', (2437, 2442), False, 'from copy import copy\n'), ((2680, 2702), 'numpy.median', 'np.median', (['wfs'], {'axis': '(0)'}), '(wfs, axis=0)\n', (2689, 2702), True, 'import numpy as np\n'), ((2929, 2958), 'numpy.zeros', 'np.zeros', (['clips_control.shape'], {}), '(clips_control.shape)\n', (2937, 2958), True, 'import numpy as np\n'), ((2981, 3000), 'numpy.zeros', 'np.zeros', (['num_clips'], {}), '(num_clips)\n', (2989, 3000), True, 'import numpy as np\n'), ((3303, 3341), 'numpy.sum', 'np.sum', (['weighted_clips_control'], {'axis': '(0)'}), '(weighted_clips_control, axis=0)\n', (3309, 3341), True, 'import numpy as np\n'), ((3707, 3753), 'numpy.concatenate', 'np.concatenate', (['[clips, clips_control]'], {'axis': '(0)'}), '([clips, clips_control], axis=0)\n', (3721, 3753), True, 'import numpy as np\n'), ((4288, 4311), 'numpy.zeros', 'np.zeros', (['(num_clips * 2)'], {}), '(num_clips * 2)\n', (4296, 4311), True, 'import numpy as np\n'), ((5906, 5920), 'numpy.dot', 'np.dot', (['V2', 'V2'], {}), '(V2, V2)\n', (5912, 5920), True, 'import numpy as np\n'), ((2017, 2084), 'numpy.random.choice', 'np.random.choice', (['times'], {'size': 'max_spikes_per_unit_for_noise_overlap'}), '(times, size=max_spikes_per_unit_for_noise_overlap)\n', (2033, 2084), True, 'import numpy as np\n'), ((2366, 2395), 'numpy.arange', 'np.arange', (['min_time', 'max_time'], {}), '(min_time, max_time)\n', (2375, 2395), True, 'import numpy as np\n'), ((5889, 5903), 'numpy.dot', 'np.dot', (['V1', 'V2'], {}), '(V1, V2)\n', (5895, 5903), True, 'import numpy as np\n'), ((2752, 2768), 'numpy.abs', 'np.abs', (['template'], {}), '(template)\n', (2758, 2768), True, 'import numpy as np\n'), ((3428, 3444), 'numpy.abs', 'np.abs', (['template'], {}), '(template)\n', (3434, 3444), True, 'import numpy as np\n'), ((3395, 3417), 'numpy.abs', 'np.abs', (['noise_template'], {}), '(noise_template)\n', (3401, 3417), True, 'import numpy as np\n')]
|
# Open3D: www.open3d.org
# The MIT License (MIT)
# See license file or visit www.open3d.org for details
# examples/Python/Advanced/global_registration.py
import open3d as o3d
import numpy as np
import copy
def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
source_temp.paint_uniform_color([1, 0.706, 0])
target_temp.paint_uniform_color([0, 0.651, 0.929])
source_temp.transform(transformation)
o3d.visualization.draw_geometries([source_temp, target_temp])
def preprocess_point_cloud(pcd, voxel_size):
print(":: Downsample with a voxel size %.3f." % voxel_size)
pcd_down = pcd.voxel_down_sample(voxel_size)
radius_normal = voxel_size * 2
print(":: Estimate normal with search radius %.3f." % radius_normal)
pcd_down.estimate_normals(
o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
radius_feature = voxel_size * 5
print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
pcd_fpfh = o3d.registration.compute_fpfh_feature(
pcd_down,
o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))
return pcd_down, pcd_fpfh
def prepare_dataset(voxel_size):
print(":: Load two point clouds and disturb initial pose.")
source = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_0.pcd")
target = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_1.pcd")
trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]])
source.transform(trans_init)
draw_registration_result(source, target, np.identity(4))
source_down, source_fpfh = preprocess_point_cloud(source, voxel_size)
target_down, target_fpfh = preprocess_point_cloud(target, voxel_size)
return source, target, source_down, target_down, source_fpfh, target_fpfh
def execute_global_registration(source_down, target_down, source_fpfh,
target_fpfh, voxel_size):
distance_threshold = voxel_size * 1.5
print(":: RANSAC registration on downsampled point clouds.")
print(" Since the downsampling voxel size is %.3f," % voxel_size)
print(" we use a liberal distance threshold %.3f." % distance_threshold)
result = o3d.registration.registration_ransac_based_on_feature_matching(
source_down, target_down, source_fpfh, target_fpfh, distance_threshold,
o3d.registration.TransformationEstimationPointToPoint(False), 4, [
o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
o3d.registration.CorrespondenceCheckerBasedOnDistance(
distance_threshold)
], o3d.registration.RANSACConvergenceCriteria(4000000, 500))
return result
def refine_registration(source, target, source_fpfh, target_fpfh, voxel_size):
distance_threshold = voxel_size * 0.4
print(":: Point-to-plane ICP registration is applied on original point")
print(" clouds to refine the alignment. This time we use a strict")
print(" distance threshold %.3f." % distance_threshold)
result = o3d.registration.registration_icp(
source, target, distance_threshold, result_ransac.transformation,
o3d.registration.TransformationEstimationPointToPlane())
return result
if __name__ == "__main__":
voxel_size = 0.05 # means 5cm for the dataset
source, target, source_down, target_down, source_fpfh, target_fpfh = \
prepare_dataset(voxel_size)
result_ransac = execute_global_registration(source_down, target_down,
source_fpfh, target_fpfh,
voxel_size)
print(result_ransac)
draw_registration_result(source_down, target_down,
result_ransac.transformation)
result_icp = refine_registration(source, target, source_fpfh, target_fpfh,
voxel_size)
print(result_icp)
draw_registration_result(source, target, result_icp.transformation)
|
[
"numpy.identity",
"open3d.registration.TransformationEstimationPointToPlane",
"open3d.registration.CorrespondenceCheckerBasedOnEdgeLength",
"numpy.asarray",
"open3d.geometry.KDTreeSearchParamHybrid",
"open3d.registration.RANSACConvergenceCriteria",
"open3d.visualization.draw_geometries",
"open3d.io.read_point_cloud",
"copy.deepcopy",
"open3d.registration.TransformationEstimationPointToPoint",
"open3d.registration.CorrespondenceCheckerBasedOnDistance"
] |
[((290, 311), 'copy.deepcopy', 'copy.deepcopy', (['source'], {}), '(source)\n', (303, 311), False, 'import copy\n'), ((330, 351), 'copy.deepcopy', 'copy.deepcopy', (['target'], {}), '(target)\n', (343, 351), False, 'import copy\n'), ((504, 565), 'open3d.visualization.draw_geometries', 'o3d.visualization.draw_geometries', (['[source_temp, target_temp]'], {}), '([source_temp, target_temp])\n', (537, 565), True, 'import open3d as o3d\n'), ((1356, 1417), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../../TestData/ICP/cloud_bin_0.pcd"""'], {}), "('../../TestData/ICP/cloud_bin_0.pcd')\n", (1379, 1417), True, 'import open3d as o3d\n'), ((1431, 1492), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../../TestData/ICP/cloud_bin_1.pcd"""'], {}), "('../../TestData/ICP/cloud_bin_1.pcd')\n", (1454, 1492), True, 'import open3d as o3d\n'), ((1510, 1615), 'numpy.asarray', 'np.asarray', (['[[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 1.0]]'], {}), '([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0\n ], [0.0, 0.0, 0.0, 1.0]])\n', (1520, 1615), True, 'import numpy as np\n'), ((874, 943), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'radius_normal', 'max_nn': '(30)'}), '(radius=radius_normal, max_nn=30)\n', (910, 943), True, 'import open3d as o3d\n'), ((1141, 1212), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'radius_feature', 'max_nn': '(100)'}), '(radius=radius_feature, max_nn=100)\n', (1177, 1212), True, 'import open3d as o3d\n'), ((1718, 1732), 'numpy.identity', 'np.identity', (['(4)'], {}), '(4)\n', (1729, 1732), True, 'import numpy as np\n'), ((2515, 2575), 'open3d.registration.TransformationEstimationPointToPoint', 'o3d.registration.TransformationEstimationPointToPoint', (['(False)'], {}), '(False)\n', (2568, 2575), True, 'import open3d as o3d\n'), ((2770, 2826), 'open3d.registration.RANSACConvergenceCriteria', 'o3d.registration.RANSACConvergenceCriteria', (['(4000000)', '(500)'], {}), '(4000000, 500)\n', (2812, 2826), True, 'import open3d as o3d\n'), ((3312, 3367), 'open3d.registration.TransformationEstimationPointToPlane', 'o3d.registration.TransformationEstimationPointToPlane', ([], {}), '()\n', (3365, 3367), True, 'import open3d as o3d\n'), ((2594, 2654), 'open3d.registration.CorrespondenceCheckerBasedOnEdgeLength', 'o3d.registration.CorrespondenceCheckerBasedOnEdgeLength', (['(0.9)'], {}), '(0.9)\n', (2649, 2654), True, 'import open3d as o3d\n'), ((2668, 2741), 'open3d.registration.CorrespondenceCheckerBasedOnDistance', 'o3d.registration.CorrespondenceCheckerBasedOnDistance', (['distance_threshold'], {}), '(distance_threshold)\n', (2721, 2741), True, 'import open3d as o3d\n')]
|
# ===============================================================================
# Copyright 2019 ross
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
from numpy import linspace
from traits.api import HasTraits, Int, Float, Instance, on_trait_change
from traitsui.api import View, VGroup, UItem, Item, HGroup
from pychron.graph.graph import Graph
from pychron.processing.argon_calculations import calculate_fractional_loss
class FractionalLossCalculator(HasTraits):
graph = Instance(Graph)
temp = Float(475)
min_age = Int(1)
max_age = Int(1000)
radius = Float(0.1)
def __init__(self, *args, **kw):
super(FractionalLossCalculator, self).__init__(*args, **kw)
self.graph = g = Graph()
g.new_plot()
xs, ys = self._calculate_data()
g.new_series(xs, ys)
def _calculate_data(self):
xs = linspace(self.min_age, self.max_age)
fs = [calculate_fractional_loss(ti, self.temp, self.radius) for ti in xs]
return xs, fs
@on_trait_change("temp, radius, max_age, min_age")
def _replot(self):
xs, ys = self._calculate_data()
self.graph.set_data(xs)
self.graph.set_data(ys, axis=1)
def traits_view(self):
a = HGroup(Item("temp"), Item("radius"), Item("min_age"), Item("max_age"))
v = View(VGroup(a, UItem("graph", style="custom")))
return v
if __name__ == "__main__":
f = FractionalLossCalculator()
f.configure_traits()
# ============= EOF =============================================
|
[
"traits.api.Instance",
"traits.api.on_trait_change",
"pychron.graph.graph.Graph",
"traitsui.api.Item",
"numpy.linspace",
"traits.api.Int",
"traitsui.api.UItem",
"pychron.processing.argon_calculations.calculate_fractional_loss",
"traits.api.Float"
] |
[((1058, 1073), 'traits.api.Instance', 'Instance', (['Graph'], {}), '(Graph)\n', (1066, 1073), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1085, 1095), 'traits.api.Float', 'Float', (['(475)'], {}), '(475)\n', (1090, 1095), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1110, 1116), 'traits.api.Int', 'Int', (['(1)'], {}), '(1)\n', (1113, 1116), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1131, 1140), 'traits.api.Int', 'Int', (['(1000)'], {}), '(1000)\n', (1134, 1140), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1154, 1164), 'traits.api.Float', 'Float', (['(0.1)'], {}), '(0.1)\n', (1159, 1164), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1588, 1637), 'traits.api.on_trait_change', 'on_trait_change', (['"""temp, radius, max_age, min_age"""'], {}), "('temp, radius, max_age, min_age')\n", (1603, 1637), False, 'from traits.api import HasTraits, Int, Float, Instance, on_trait_change\n'), ((1297, 1304), 'pychron.graph.graph.Graph', 'Graph', ([], {}), '()\n', (1302, 1304), False, 'from pychron.graph.graph import Graph\n'), ((1441, 1477), 'numpy.linspace', 'linspace', (['self.min_age', 'self.max_age'], {}), '(self.min_age, self.max_age)\n', (1449, 1477), False, 'from numpy import linspace\n'), ((1492, 1545), 'pychron.processing.argon_calculations.calculate_fractional_loss', 'calculate_fractional_loss', (['ti', 'self.temp', 'self.radius'], {}), '(ti, self.temp, self.radius)\n', (1517, 1545), False, 'from pychron.processing.argon_calculations import calculate_fractional_loss\n'), ((1821, 1833), 'traitsui.api.Item', 'Item', (['"""temp"""'], {}), "('temp')\n", (1825, 1833), False, 'from traitsui.api import View, VGroup, UItem, Item, HGroup\n'), ((1835, 1849), 'traitsui.api.Item', 'Item', (['"""radius"""'], {}), "('radius')\n", (1839, 1849), False, 'from traitsui.api import View, VGroup, UItem, Item, HGroup\n'), ((1851, 1866), 'traitsui.api.Item', 'Item', (['"""min_age"""'], {}), "('min_age')\n", (1855, 1866), False, 'from traitsui.api import View, VGroup, UItem, Item, HGroup\n'), ((1868, 1883), 'traitsui.api.Item', 'Item', (['"""max_age"""'], {}), "('max_age')\n", (1872, 1883), False, 'from traitsui.api import View, VGroup, UItem, Item, HGroup\n'), ((1912, 1942), 'traitsui.api.UItem', 'UItem', (['"""graph"""'], {'style': '"""custom"""'}), "('graph', style='custom')\n", (1917, 1942), False, 'from traitsui.api import View, VGroup, UItem, Item, HGroup\n')]
|
# main imports
import numpy as np
import sys
# image transform imports
from PIL import Image
from skimage import color
from sklearn.decomposition import FastICA
from sklearn.decomposition import IncrementalPCA
from sklearn.decomposition import TruncatedSVD
from numpy.linalg import svd as lin_svd
from scipy.signal import medfilt2d, wiener, cwt
import pywt
import cv2
from ipfml.processing import transform, compression, segmentation
from ipfml.filters import convolution, kernels
from ipfml import utils
# modules and config imports
sys.path.insert(0, '') # trick to enable import of main folder module
import custom_config as cfg
from modules.utils import data as dt
def get_image_features(data_type, block):
"""
Method which returns the data type expected
"""
if data_type == 'lab':
block_file_path = '/tmp/lab_img.png'
block.save(block_file_path)
data = transform.get_LAB_L_SVD_s(Image.open(block_file_path))
if data_type == 'mscn':
img_mscn_revisited = transform.rgb_to_mscn(block)
# save tmp as img
img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
img_output.save(mscn_revisited_file_path)
img_block = Image.open(mscn_revisited_file_path)
# extract from temp image
data = compression.get_SVD_s(img_block)
"""if data_type == 'mscn':
img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
img_mscn = transform.calculate_mscn_coefficients(img_gray, 7)
img_mscn_norm = transform.normalize_2D_arr(img_mscn)
img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
data = compression.get_SVD_s(img_mscn_gray)
"""
if data_type == 'low_bits_6':
low_bits_6 = transform.rgb_to_LAB_L_low_bits(block, 6)
data = compression.get_SVD_s(low_bits_6)
if data_type == 'low_bits_5':
low_bits_5 = transform.rgb_to_LAB_L_low_bits(block, 5)
data = compression.get_SVD_s(low_bits_5)
if data_type == 'low_bits_4':
low_bits_4 = transform.rgb_to_LAB_L_low_bits(block, 4)
data = compression.get_SVD_s(low_bits_4)
if data_type == 'low_bits_3':
low_bits_3 = transform.rgb_to_LAB_L_low_bits(block, 3)
data = compression.get_SVD_s(low_bits_3)
if data_type == 'low_bits_2':
low_bits_2 = transform.rgb_to_LAB_L_low_bits(block, 2)
data = compression.get_SVD_s(low_bits_2)
if data_type == 'low_bits_4_shifted_2':
data = compression.get_SVD_s(transform.rgb_to_LAB_L_bits(block, (3, 6)))
if data_type == 'sub_blocks_stats':
block = np.asarray(block)
width, height, _= block.shape
sub_width, sub_height = int(width / 4), int(height / 4)
sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
data = []
for sub_b in sub_blocks:
# by default use the whole lab L canal
l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
# get information we want from svd
data.append(np.mean(l_svd_data))
data.append(np.median(l_svd_data))
data.append(np.percentile(l_svd_data, 25))
data.append(np.percentile(l_svd_data, 75))
data.append(np.var(l_svd_data))
area_under_curve = utils.integral_area_trapz(l_svd_data, dx=100)
data.append(area_under_curve)
# convert into numpy array after computing all stats
data = np.asarray(data)
if data_type == 'sub_blocks_stats_reduced':
block = np.asarray(block)
width, height, _= block.shape
sub_width, sub_height = int(width / 4), int(height / 4)
sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
data = []
for sub_b in sub_blocks:
# by default use the whole lab L canal
l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
# get information we want from svd
data.append(np.mean(l_svd_data))
data.append(np.median(l_svd_data))
data.append(np.percentile(l_svd_data, 25))
data.append(np.percentile(l_svd_data, 75))
data.append(np.var(l_svd_data))
# convert into numpy array after computing all stats
data = np.asarray(data)
if data_type == 'sub_blocks_area':
block = np.asarray(block)
width, height, _= block.shape
sub_width, sub_height = int(width / 8), int(height / 8)
sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
data = []
for sub_b in sub_blocks:
# by default use the whole lab L canal
l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
data.append(area_under_curve)
# convert into numpy array after computing all stats
data = np.asarray(data)
if data_type == 'sub_blocks_area_normed':
block = np.asarray(block)
width, height, _= block.shape
sub_width, sub_height = int(width / 8), int(height / 8)
sub_blocks = segmentation.divide_in_blocks(block, (sub_width, sub_height))
data = []
for sub_b in sub_blocks:
# by default use the whole lab L canal
l_svd_data = np.array(transform.get_LAB_L_SVD_s(sub_b))
l_svd_data = utils.normalize_arr(l_svd_data)
area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
data.append(area_under_curve)
# convert into numpy array after computing all stats
data = np.asarray(data)
if data_type == 'mscn_var_4':
data = _get_mscn_variance(block, (100, 100))
if data_type == 'mscn_var_16':
data = _get_mscn_variance(block, (50, 50))
if data_type == 'mscn_var_64':
data = _get_mscn_variance(block, (25, 25))
if data_type == 'mscn_var_16_max':
data = _get_mscn_variance(block, (50, 50))
data = np.asarray(data)
size = int(len(data) / 4)
indices = data.argsort()[-size:][::-1]
data = data[indices]
if data_type == 'mscn_var_64_max':
data = _get_mscn_variance(block, (25, 25))
data = np.asarray(data)
size = int(len(data) / 4)
indices = data.argsort()[-size:][::-1]
data = data[indices]
if data_type == 'ica_diff':
current_image = transform.get_LAB_L(block)
ica = FastICA(n_components=50)
ica.fit(current_image)
image_ica = ica.fit_transform(current_image)
image_restored = ica.inverse_transform(image_ica)
final_image = utils.normalize_2D_arr(image_restored)
final_image = np.array(final_image * 255, 'uint8')
sv_values = utils.normalize_arr(compression.get_SVD_s(current_image))
ica_sv_values = utils.normalize_arr(compression.get_SVD_s(final_image))
data = abs(np.array(sv_values) - np.array(ica_sv_values))
if data_type == 'svd_trunc_diff':
current_image = transform.get_LAB_L(block)
svd = TruncatedSVD(n_components=30, n_iter=100, random_state=42)
transformed_image = svd.fit_transform(current_image)
restored_image = svd.inverse_transform(transformed_image)
reduced_image = (current_image - restored_image)
U, s, V = compression.get_SVD(reduced_image)
data = s
if data_type == 'ipca_diff':
current_image = transform.get_LAB_L(block)
transformer = IncrementalPCA(n_components=20, batch_size=25)
transformed_image = transformer.fit_transform(current_image)
restored_image = transformer.inverse_transform(transformed_image)
reduced_image = (current_image - restored_image)
U, s, V = compression.get_SVD(reduced_image)
data = s
if data_type == 'svd_reconstruct':
reconstructed_interval = (90, 200)
begin, end = reconstructed_interval
lab_img = transform.get_LAB_L(block)
lab_img = np.array(lab_img, 'uint8')
U, s, V = lin_svd(lab_img, full_matrices=True)
smat = np.zeros((end-begin, end-begin), dtype=complex)
smat[:, :] = np.diag(s[begin:end])
output_img = np.dot(U[:, begin:end], np.dot(smat, V[begin:end, :]))
output_img = np.array(output_img, 'uint8')
data = compression.get_SVD_s(output_img)
if 'sv_std_filters' in data_type:
# convert into lab by default to apply filters
lab_img = transform.get_LAB_L(block)
arr = np.array(lab_img)
images = []
# Apply list of filter on arr
images.append(medfilt2d(arr, [3, 3]))
images.append(medfilt2d(arr, [5, 5]))
images.append(wiener(arr, [3, 3]))
images.append(wiener(arr, [5, 5]))
# By default computation of current block image
s_arr = compression.get_SVD_s(arr)
sv_vector = [s_arr]
# for each new image apply SVD and get SV
for img in images:
s = compression.get_SVD_s(img)
sv_vector.append(s)
sv_array = np.array(sv_vector)
_, length = sv_array.shape
sv_std = []
# normalize each SV vectors and compute standard deviation for each sub vectors
for i in range(length):
sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
sv_std.append(np.std(sv_array[:, i]))
indices = []
if 'lowest' in data_type:
indices = utils.get_indices_of_lowest_values(sv_std, 200)
if 'highest' in data_type:
indices = utils.get_indices_of_highest_values(sv_std, 200)
# data are arranged following std trend computed
data = s_arr[indices]
# with the use of wavelet
if 'wave_sv_std_filters' in data_type:
# convert into lab by default to apply filters
lab_img = transform.get_LAB_L(block)
arr = np.array(lab_img)
images = []
# Apply list of filter on arr
images.append(medfilt2d(arr, [3, 3]))
# By default computation of current block image
s_arr = compression.get_SVD_s(arr)
sv_vector = [s_arr]
# for each new image apply SVD and get SV
for img in images:
s = compression.get_SVD_s(img)
sv_vector.append(s)
sv_array = np.array(sv_vector)
_, length = sv_array.shape
sv_std = []
# normalize each SV vectors and compute standard deviation for each sub vectors
for i in range(length):
sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
sv_std.append(np.std(sv_array[:, i]))
indices = []
if 'lowest' in data_type:
indices = utils.get_indices_of_lowest_values(sv_std, 200)
if 'highest' in data_type:
indices = utils.get_indices_of_highest_values(sv_std, 200)
# data are arranged following std trend computed
data = s_arr[indices]
# with the use of wavelet
if 'sv_std_filters_full' in data_type:
# convert into lab by default to apply filters
lab_img = transform.get_LAB_L(block)
arr = np.array(lab_img)
images = []
# Apply list of filter on arr
kernel = np.ones((3,3),np.float32)/9
images.append(cv2.filter2D(arr,-1,kernel))
kernel = np.ones((5,5),np.float32)/25
images.append(cv2.filter2D(arr,-1,kernel))
images.append(cv2.GaussianBlur(arr, (3, 3), 0.5))
images.append(cv2.GaussianBlur(arr, (3, 3), 1))
images.append(cv2.GaussianBlur(arr, (3, 3), 1.5))
images.append(cv2.GaussianBlur(arr, (5, 5), 0.5))
images.append(cv2.GaussianBlur(arr, (5, 5), 1))
images.append(cv2.GaussianBlur(arr, (5, 5), 1.5))
images.append(medfilt2d(arr, [3, 3]))
images.append(medfilt2d(arr, [5, 5]))
images.append(wiener(arr, [3, 3]))
images.append(wiener(arr, [5, 5]))
wave = w2d(arr, 'db1', 2)
images.append(np.array(wave, 'float64'))
# By default computation of current block image
s_arr = compression.get_SVD_s(arr)
sv_vector = [s_arr]
# for each new image apply SVD and get SV
for img in images:
s = compression.get_SVD_s(img)
sv_vector.append(s)
sv_array = np.array(sv_vector)
_, length = sv_array.shape
sv_std = []
# normalize each SV vectors and compute standard deviation for each sub vectors
for i in range(length):
sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
sv_std.append(np.std(sv_array[:, i]))
indices = []
if 'lowest' in data_type:
indices = utils.get_indices_of_lowest_values(sv_std, 200)
if 'highest' in data_type:
indices = utils.get_indices_of_highest_values(sv_std, 200)
# data are arranged following std trend computed
data = s_arr[indices]
if 'sv_entropy_std_filters' in data_type:
lab_img = transform.get_LAB_L(block)
arr = np.array(lab_img)
images = []
kernel = np.ones((3,3),np.float32)/9
images.append(cv2.filter2D(arr,-1,kernel))
kernel = np.ones((5,5),np.float32)/25
images.append(cv2.filter2D(arr,-1,kernel))
images.append(cv2.GaussianBlur(arr, (3, 3), 0.5))
images.append(cv2.GaussianBlur(arr, (3, 3), 1))
images.append(cv2.GaussianBlur(arr, (3, 3), 1.5))
images.append(cv2.GaussianBlur(arr, (5, 5), 0.5))
images.append(cv2.GaussianBlur(arr, (5, 5), 1))
images.append(cv2.GaussianBlur(arr, (5, 5), 1.5))
images.append(medfilt2d(arr, [3, 3]))
images.append(medfilt2d(arr, [5, 5]))
images.append(wiener(arr, [3, 3]))
images.append(wiener(arr, [5, 5]))
wave = w2d(arr, 'db1', 2)
images.append(np.array(wave, 'float64'))
sv_vector = []
sv_entropy_list = []
# for each new image apply SVD and get SV
for img in images:
s = compression.get_SVD_s(img)
sv_vector.append(s)
sv_entropy = [utils.get_entropy_contribution_of_i(s, id_sv) for id_sv, sv in enumerate(s)]
sv_entropy_list.append(sv_entropy)
sv_std = []
sv_array = np.array(sv_vector)
_, length = sv_array.shape
# normalize each SV vectors and compute standard deviation for each sub vectors
for i in range(length):
sv_array[:, i] = utils.normalize_arr(sv_array[:, i])
sv_std.append(np.std(sv_array[:, i]))
indices = []
if 'lowest' in data_type:
indices = utils.get_indices_of_lowest_values(sv_std, 200)
if 'highest' in data_type:
indices = utils.get_indices_of_highest_values(sv_std, 200)
# data are arranged following std trend computed
s_arr = compression.get_SVD_s(arr)
data = s_arr[indices]
if 'convolutional_kernels' in data_type:
sub_zones = segmentation.divide_in_blocks(block, (20, 20))
data = []
diff_std_list_3 = []
diff_std_list_5 = []
diff_mean_list_3 = []
diff_mean_list_5 = []
plane_std_list_3 = []
plane_std_list_5 = []
plane_mean_list_3 = []
plane_mean_list_5 = []
plane_max_std_list_3 = []
plane_max_std_list_5 = []
plane_max_mean_list_3 = []
plane_max_mean_list_5 = []
for sub_zone in sub_zones:
l_img = transform.get_LAB_L(sub_zone)
normed_l_img = utils.normalize_2D_arr(l_img)
# bilateral with window of size (3, 3)
normed_diff = convolution.convolution2D(normed_l_img, kernels.min_bilateral_diff, (3, 3))
std_diff = np.std(normed_diff)
mean_diff = np.mean(normed_diff)
diff_std_list_3.append(std_diff)
diff_mean_list_3.append(mean_diff)
# bilateral with window of size (5, 5)
normed_diff = convolution.convolution2D(normed_l_img, kernels.min_bilateral_diff, (5, 5))
std_diff = np.std(normed_diff)
mean_diff = np.mean(normed_diff)
diff_std_list_5.append(std_diff)
diff_mean_list_5.append(mean_diff)
# plane mean with window of size (3, 3)
normed_plane_mean = convolution.convolution2D(normed_l_img, kernels.plane_mean, (3, 3))
std_plane_mean = np.std(normed_plane_mean)
mean_plane_mean = np.mean(normed_plane_mean)
plane_std_list_3.append(std_plane_mean)
plane_mean_list_3.append(mean_plane_mean)
# plane mean with window of size (5, 5)
normed_plane_mean = convolution.convolution2D(normed_l_img, kernels.plane_mean, (5, 5))
std_plane_mean = np.std(normed_plane_mean)
mean_plane_mean = np.mean(normed_plane_mean)
plane_std_list_5.append(std_plane_mean)
plane_mean_list_5.append(mean_plane_mean)
# plane max error with window of size (3, 3)
normed_plane_max = convolution.convolution2D(normed_l_img, kernels.plane_max_error, (3, 3))
std_plane_max = np.std(normed_plane_max)
mean_plane_max = np.mean(normed_plane_max)
plane_max_std_list_3.append(std_plane_max)
plane_max_mean_list_3.append(mean_plane_max)
# plane max error with window of size (5, 5)
normed_plane_max = convolution.convolution2D(normed_l_img, kernels.plane_max_error, (5, 5))
std_plane_max = np.std(normed_plane_max)
mean_plane_max = np.mean(normed_plane_max)
plane_max_std_list_5.append(std_plane_max)
plane_max_mean_list_5.append(mean_plane_max)
diff_std_list_3 = np.array(diff_std_list_3)
diff_std_list_5 = np.array(diff_std_list_5)
diff_mean_list_3 = np.array(diff_mean_list_3)
diff_mean_list_5 = np.array(diff_mean_list_5)
plane_std_list_3 = np.array(plane_std_list_3)
plane_std_list_5 = np.array(plane_std_list_5)
plane_mean_list_3 = np.array(plane_mean_list_3)
plane_mean_list_5 = np.array(plane_mean_list_5)
plane_max_std_list_3 = np.array(plane_max_std_list_3)
plane_max_std_list_5 = np.array(plane_max_std_list_5)
plane_max_mean_list_3 = np.array(plane_max_mean_list_3)
plane_max_mean_list_5 = np.array(plane_max_mean_list_5)
if 'std_max_blocks' in data_type:
data.append(np.std(diff_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(diff_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(diff_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.std(diff_mean_list_5[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_mean_list_5[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_max_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_max_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_max_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.std(plane_max_mean_list_5[0:int(len(sub_zones)/5)]))
if 'mean_max_blocks' in data_type:
data.append(np.mean(diff_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(diff_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(diff_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.mean(diff_mean_list_5[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_mean_list_5[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_max_std_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_max_mean_list_3[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_max_std_list_5[0:int(len(sub_zones)/5)]))
data.append(np.mean(plane_max_mean_list_5[0:int(len(sub_zones)/5)]))
if 'std_normed' in data_type:
data.append(np.std(diff_std_list_3))
data.append(np.std(diff_mean_list_3))
data.append(np.std(diff_std_list_5))
data.append(np.std(diff_mean_list_5))
data.append(np.std(plane_std_list_3))
data.append(np.std(plane_mean_list_3))
data.append(np.std(plane_std_list_5))
data.append(np.std(plane_mean_list_5))
data.append(np.std(plane_max_std_list_3))
data.append(np.std(plane_max_mean_list_3))
data.append(np.std(plane_max_std_list_5))
data.append(np.std(plane_max_mean_list_5))
if 'mean_normed' in data_type:
data.append(np.mean(diff_std_list_3))
data.append(np.mean(diff_mean_list_3))
data.append(np.mean(diff_std_list_5))
data.append(np.mean(diff_mean_list_5))
data.append(np.mean(plane_std_list_3))
data.append(np.mean(plane_mean_list_3))
data.append(np.mean(plane_std_list_5))
data.append(np.mean(plane_mean_list_5))
data.append(np.mean(plane_max_std_list_3))
data.append(np.mean(plane_max_mean_list_3))
data.append(np.mean(plane_max_std_list_5))
data.append(np.mean(plane_max_mean_list_5))
data = np.array(data)
if data_type == 'convolutional_kernel_stats_svd':
l_img = transform.get_LAB_L(block)
normed_l_img = utils.normalize_2D_arr(l_img)
# bilateral with window of size (5, 5)
normed_diff = convolution.convolution2D(normed_l_img, kernels.min_bilateral_diff, (5, 5))
# getting sigma vector from SVD compression
s = compression.get_SVD_s(normed_diff)
data = s
if data_type == 'svd_entropy':
l_img = transform.get_LAB_L(block)
blocks = segmentation.divide_in_blocks(l_img, (20, 20))
values = []
for b in blocks:
sv = compression.get_SVD_s(b)
values.append(utils.get_entropy(sv))
data = np.array(values)
if data_type == 'svd_entropy_20':
l_img = transform.get_LAB_L(block)
blocks = segmentation.divide_in_blocks(l_img, (20, 20))
values = []
for b in blocks:
sv = compression.get_SVD_s(b)
values.append(utils.get_entropy(sv))
data = np.array(values)
if data_type == 'svd_entropy_noise_20':
l_img = transform.get_LAB_L(block)
blocks = segmentation.divide_in_blocks(l_img, (20, 20))
values = []
for b in blocks:
sv = compression.get_SVD_s(b)
sv_size = len(sv)
values.append(utils.get_entropy(sv[int(sv_size / 4):]))
data = np.array(values)
return data
def w2d(arr, mode='haar', level=1):
#convert to float
imArray = arr
np.divide(imArray, 255)
# compute coefficients
coeffs=pywt.wavedec2(imArray, mode, level=level)
#Process Coefficients
coeffs_H=list(coeffs)
coeffs_H[0] *= 0
# reconstruction
imArray_H = pywt.waverec2(coeffs_H, mode)
imArray_H *= 255
imArray_H = np.uint8(imArray_H)
return imArray_H
def _get_mscn_variance(block, sub_block_size=(50, 50)):
blocks = segmentation.divide_in_blocks(block, sub_block_size)
data = []
for block in blocks:
mscn_coefficients = transform.get_mscn_coefficients(block)
flat_coeff = mscn_coefficients.flatten()
data.append(np.var(flat_coeff))
return np.sort(data)
|
[
"numpy.uint8",
"sys.path.insert",
"ipfml.utils.get_entropy_contribution_of_i",
"ipfml.utils.normalize_2D_arr",
"ipfml.utils.get_indices_of_lowest_values",
"cv2.filter2D",
"numpy.array",
"sklearn.decomposition.FastICA",
"pywt.waverec2",
"ipfml.processing.transform.rgb_to_mscn",
"numpy.divide",
"ipfml.processing.segmentation.divide_in_blocks",
"numpy.mean",
"pywt.wavedec2",
"numpy.sort",
"numpy.asarray",
"ipfml.processing.transform.get_LAB_L_SVD_s",
"numpy.dot",
"ipfml.processing.transform.get_LAB_L",
"ipfml.utils.get_indices_of_highest_values",
"sklearn.decomposition.IncrementalPCA",
"ipfml.utils.integral_area_trapz",
"scipy.signal.medfilt2d",
"numpy.ones",
"ipfml.utils.normalize_arr",
"ipfml.processing.transform.rgb_to_LAB_L_low_bits",
"sklearn.decomposition.TruncatedSVD",
"ipfml.filters.convolution.convolution2D",
"ipfml.processing.transform.rgb_to_LAB_L_bits",
"ipfml.processing.transform.get_mscn_coefficients",
"numpy.std",
"numpy.linalg.svd",
"cv2.GaussianBlur",
"PIL.Image.open",
"numpy.median",
"ipfml.processing.compression.get_SVD",
"numpy.diag",
"ipfml.processing.compression.get_SVD_s",
"numpy.zeros",
"numpy.percentile",
"scipy.signal.wiener",
"numpy.var",
"ipfml.utils.get_entropy"
] |
[((538, 560), 'sys.path.insert', 'sys.path.insert', (['(0)', '""""""'], {}), "(0, '')\n", (553, 560), False, 'import sys\n'), ((23763, 23786), 'numpy.divide', 'np.divide', (['imArray', '(255)'], {}), '(imArray, 255)\n', (23772, 23786), True, 'import numpy as np\n'), ((23827, 23868), 'pywt.wavedec2', 'pywt.wavedec2', (['imArray', 'mode'], {'level': 'level'}), '(imArray, mode, level=level)\n', (23840, 23868), False, 'import pywt\n'), ((23983, 24012), 'pywt.waverec2', 'pywt.waverec2', (['coeffs_H', 'mode'], {}), '(coeffs_H, mode)\n', (23996, 24012), False, 'import pywt\n'), ((24050, 24069), 'numpy.uint8', 'np.uint8', (['imArray_H'], {}), '(imArray_H)\n', (24058, 24069), True, 'import numpy as np\n'), ((24163, 24215), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', 'sub_block_size'], {}), '(block, sub_block_size)\n', (24192, 24215), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((24425, 24438), 'numpy.sort', 'np.sort', (['data'], {}), '(data)\n', (24432, 24438), True, 'import numpy as np\n'), ((1021, 1049), 'ipfml.processing.transform.rgb_to_mscn', 'transform.rgb_to_mscn', (['block'], {}), '(block)\n', (1042, 1049), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((1290, 1326), 'PIL.Image.open', 'Image.open', (['mscn_revisited_file_path'], {}), '(mscn_revisited_file_path)\n', (1300, 1326), False, 'from PIL import Image\n'), ((1377, 1409), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['img_block'], {}), '(img_block)\n', (1398, 1409), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((1830, 1871), 'ipfml.processing.transform.rgb_to_LAB_L_low_bits', 'transform.rgb_to_LAB_L_low_bits', (['block', '(6)'], {}), '(block, 6)\n', (1861, 1871), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((1887, 1920), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['low_bits_6'], {}), '(low_bits_6)\n', (1908, 1920), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((1978, 2019), 'ipfml.processing.transform.rgb_to_LAB_L_low_bits', 'transform.rgb_to_LAB_L_low_bits', (['block', '(5)'], {}), '(block, 5)\n', (2009, 2019), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2035, 2068), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['low_bits_5'], {}), '(low_bits_5)\n', (2056, 2068), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2126, 2167), 'ipfml.processing.transform.rgb_to_LAB_L_low_bits', 'transform.rgb_to_LAB_L_low_bits', (['block', '(4)'], {}), '(block, 4)\n', (2157, 2167), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2183, 2216), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['low_bits_4'], {}), '(low_bits_4)\n', (2204, 2216), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2274, 2315), 'ipfml.processing.transform.rgb_to_LAB_L_low_bits', 'transform.rgb_to_LAB_L_low_bits', (['block', '(3)'], {}), '(block, 3)\n', (2305, 2315), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2331, 2364), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['low_bits_3'], {}), '(low_bits_3)\n', (2352, 2364), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2422, 2463), 'ipfml.processing.transform.rgb_to_LAB_L_low_bits', 'transform.rgb_to_LAB_L_low_bits', (['block', '(2)'], {}), '(block, 2)\n', (2453, 2463), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2479, 2512), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['low_bits_2'], {}), '(low_bits_2)\n', (2500, 2512), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((2698, 2715), 'numpy.asarray', 'np.asarray', (['block'], {}), '(block)\n', (2708, 2715), True, 'import numpy as np\n'), ((2840, 2901), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', '(sub_width, sub_height)'], {}), '(block, (sub_width, sub_height))\n', (2869, 2901), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((3566, 3582), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (3576, 3582), True, 'import numpy as np\n'), ((3649, 3666), 'numpy.asarray', 'np.asarray', (['block'], {}), '(block)\n', (3659, 3666), True, 'import numpy as np\n'), ((3791, 3852), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', '(sub_width, sub_height)'], {}), '(block, (sub_width, sub_height))\n', (3820, 3852), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((4397, 4413), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (4407, 4413), True, 'import numpy as np\n'), ((4471, 4488), 'numpy.asarray', 'np.asarray', (['block'], {}), '(block)\n', (4481, 4488), True, 'import numpy as np\n'), ((4613, 4674), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', '(sub_width, sub_height)'], {}), '(block, (sub_width, sub_height))\n', (4642, 4674), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((5044, 5060), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (5054, 5060), True, 'import numpy as np\n'), ((5125, 5142), 'numpy.asarray', 'np.asarray', (['block'], {}), '(block)\n', (5135, 5142), True, 'import numpy as np\n'), ((5267, 5328), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', '(sub_width, sub_height)'], {}), '(block, (sub_width, sub_height))\n', (5296, 5328), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((5755, 5771), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (5765, 5771), True, 'import numpy as np\n'), ((6144, 6160), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (6154, 6160), True, 'import numpy as np\n'), ((6378, 6394), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (6388, 6394), True, 'import numpy as np\n'), ((6562, 6588), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (6581, 6588), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((6604, 6628), 'sklearn.decomposition.FastICA', 'FastICA', ([], {'n_components': '(50)'}), '(n_components=50)\n', (6611, 6628), False, 'from sklearn.decomposition import FastICA\n'), ((6795, 6833), 'ipfml.utils.normalize_2D_arr', 'utils.normalize_2D_arr', (['image_restored'], {}), '(image_restored)\n', (6817, 6833), False, 'from ipfml import utils\n'), ((6856, 6892), 'numpy.array', 'np.array', (['(final_image * 255)', '"""uint8"""'], {}), "(final_image * 255, 'uint8')\n", (6864, 6892), True, 'import numpy as np\n'), ((7183, 7209), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (7202, 7209), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((7225, 7283), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': '(30)', 'n_iter': '(100)', 'random_state': '(42)'}), '(n_components=30, n_iter=100, random_state=42)\n', (7237, 7283), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((7488, 7522), 'ipfml.processing.compression.get_SVD', 'compression.get_SVD', (['reduced_image'], {}), '(reduced_image)\n', (7507, 7522), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((7599, 7625), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (7618, 7625), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((7649, 7695), 'sklearn.decomposition.IncrementalPCA', 'IncrementalPCA', ([], {'n_components': '(20)', 'batch_size': '(25)'}), '(n_components=20, batch_size=25)\n', (7663, 7695), False, 'from sklearn.decomposition import IncrementalPCA\n'), ((7916, 7950), 'ipfml.processing.compression.get_SVD', 'compression.get_SVD', (['reduced_image'], {}), '(reduced_image)\n', (7935, 7950), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((8115, 8141), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (8134, 8141), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((8160, 8186), 'numpy.array', 'np.array', (['lab_img', '"""uint8"""'], {}), "(lab_img, 'uint8')\n", (8168, 8186), True, 'import numpy as np\n'), ((8206, 8242), 'numpy.linalg.svd', 'lin_svd', (['lab_img'], {'full_matrices': '(True)'}), '(lab_img, full_matrices=True)\n', (8213, 8242), True, 'from numpy.linalg import svd as lin_svd\n'), ((8259, 8310), 'numpy.zeros', 'np.zeros', (['(end - begin, end - begin)'], {'dtype': 'complex'}), '((end - begin, end - begin), dtype=complex)\n', (8267, 8310), True, 'import numpy as np\n'), ((8328, 8349), 'numpy.diag', 'np.diag', (['s[begin:end]'], {}), '(s[begin:end])\n', (8335, 8349), True, 'import numpy as np\n'), ((8449, 8478), 'numpy.array', 'np.array', (['output_img', '"""uint8"""'], {}), "(output_img, 'uint8')\n", (8457, 8478), True, 'import numpy as np\n'), ((8495, 8528), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['output_img'], {}), '(output_img)\n', (8516, 8528), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((8642, 8668), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (8661, 8668), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((8683, 8700), 'numpy.array', 'np.array', (['lab_img'], {}), '(lab_img)\n', (8691, 8700), True, 'import numpy as np\n'), ((9027, 9053), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['arr'], {}), '(arr)\n', (9048, 9053), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((9268, 9287), 'numpy.array', 'np.array', (['sv_vector'], {}), '(sv_vector)\n', (9276, 9287), True, 'import numpy as np\n'), ((10083, 10109), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (10102, 10109), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((10124, 10141), 'numpy.array', 'np.array', (['lab_img'], {}), '(lab_img)\n', (10132, 10141), True, 'import numpy as np\n'), ((10336, 10362), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['arr'], {}), '(arr)\n', (10357, 10362), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((10577, 10596), 'numpy.array', 'np.array', (['sv_vector'], {}), '(sv_vector)\n', (10585, 10596), True, 'import numpy as np\n'), ((11392, 11418), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (11411, 11418), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((11433, 11450), 'numpy.array', 'np.array', (['lab_img'], {}), '(lab_img)\n', (11441, 11450), True, 'import numpy as np\n'), ((12409, 12435), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['arr'], {}), '(arr)\n', (12430, 12435), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((12650, 12669), 'numpy.array', 'np.array', (['sv_vector'], {}), '(sv_vector)\n', (12658, 12669), True, 'import numpy as np\n'), ((13383, 13409), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (13402, 13409), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((13424, 13441), 'numpy.array', 'np.array', (['lab_img'], {}), '(lab_img)\n', (13432, 13441), True, 'import numpy as np\n'), ((14697, 14716), 'numpy.array', 'np.array', (['sv_vector'], {}), '(sv_vector)\n', (14705, 14716), True, 'import numpy as np\n'), ((15312, 15338), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['arr'], {}), '(arr)\n', (15333, 15338), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((15436, 15482), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['block', '(20, 20)'], {}), '(block, (20, 20))\n', (15465, 15482), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((18233, 18258), 'numpy.array', 'np.array', (['diff_std_list_3'], {}), '(diff_std_list_3)\n', (18241, 18258), True, 'import numpy as np\n'), ((18285, 18310), 'numpy.array', 'np.array', (['diff_std_list_5'], {}), '(diff_std_list_5)\n', (18293, 18310), True, 'import numpy as np\n'), ((18339, 18365), 'numpy.array', 'np.array', (['diff_mean_list_3'], {}), '(diff_mean_list_3)\n', (18347, 18365), True, 'import numpy as np\n'), ((18393, 18419), 'numpy.array', 'np.array', (['diff_mean_list_5'], {}), '(diff_mean_list_5)\n', (18401, 18419), True, 'import numpy as np\n'), ((18448, 18474), 'numpy.array', 'np.array', (['plane_std_list_3'], {}), '(plane_std_list_3)\n', (18456, 18474), True, 'import numpy as np\n'), ((18502, 18528), 'numpy.array', 'np.array', (['plane_std_list_5'], {}), '(plane_std_list_5)\n', (18510, 18528), True, 'import numpy as np\n'), ((18558, 18585), 'numpy.array', 'np.array', (['plane_mean_list_3'], {}), '(plane_mean_list_3)\n', (18566, 18585), True, 'import numpy as np\n'), ((18614, 18641), 'numpy.array', 'np.array', (['plane_mean_list_5'], {}), '(plane_mean_list_5)\n', (18622, 18641), True, 'import numpy as np\n'), ((18674, 18704), 'numpy.array', 'np.array', (['plane_max_std_list_3'], {}), '(plane_max_std_list_3)\n', (18682, 18704), True, 'import numpy as np\n'), ((18736, 18766), 'numpy.array', 'np.array', (['plane_max_std_list_5'], {}), '(plane_max_std_list_5)\n', (18744, 18766), True, 'import numpy as np\n'), ((18800, 18831), 'numpy.array', 'np.array', (['plane_max_mean_list_3'], {}), '(plane_max_mean_list_3)\n', (18808, 18831), True, 'import numpy as np\n'), ((18864, 18895), 'numpy.array', 'np.array', (['plane_max_mean_list_5'], {}), '(plane_max_mean_list_5)\n', (18872, 18895), True, 'import numpy as np\n'), ((22222, 22236), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (22230, 22236), True, 'import numpy as np\n'), ((22309, 22335), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (22328, 22335), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((22359, 22388), 'ipfml.utils.normalize_2D_arr', 'utils.normalize_2D_arr', (['l_img'], {}), '(l_img)\n', (22381, 22388), False, 'from ipfml import utils\n'), ((22459, 22534), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.min_bilateral_diff', '(5, 5)'], {}), '(normed_l_img, kernels.min_bilateral_diff, (5, 5))\n', (22484, 22534), False, 'from ipfml.filters import convolution, kernels\n'), ((22600, 22634), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['normed_diff'], {}), '(normed_diff)\n', (22621, 22634), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((22705, 22731), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (22724, 22731), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((22750, 22796), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['l_img', '(20, 20)'], {}), '(l_img, (20, 20))\n', (22779, 22796), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((22949, 22965), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (22957, 22965), True, 'import numpy as np\n'), ((23021, 23047), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (23040, 23047), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23066, 23112), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['l_img', '(20, 20)'], {}), '(l_img, (20, 20))\n', (23095, 23112), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23265, 23281), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (23273, 23281), True, 'import numpy as np\n'), ((23343, 23369), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['block'], {}), '(block)\n', (23362, 23369), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23388, 23434), 'ipfml.processing.segmentation.divide_in_blocks', 'segmentation.divide_in_blocks', (['l_img', '(20, 20)'], {}), '(l_img, (20, 20))\n', (23417, 23434), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23636, 23652), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (23644, 23652), True, 'import numpy as np\n'), ((24285, 24323), 'ipfml.processing.transform.get_mscn_coefficients', 'transform.get_mscn_coefficients', (['block'], {}), '(block)\n', (24316, 24323), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((933, 960), 'PIL.Image.open', 'Image.open', (['block_file_path'], {}), '(block_file_path)\n', (943, 960), False, 'from PIL import Image\n'), ((2596, 2638), 'ipfml.processing.transform.rgb_to_LAB_L_bits', 'transform.rgb_to_LAB_L_bits', (['block', '(3, 6)'], {}), '(block, (3, 6))\n', (2623, 2638), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((3401, 3446), 'ipfml.utils.integral_area_trapz', 'utils.integral_area_trapz', (['l_svd_data'], {'dx': '(100)'}), '(l_svd_data, dx=100)\n', (3426, 3446), False, 'from ipfml import utils\n'), ((4880, 4924), 'ipfml.utils.integral_area_trapz', 'utils.integral_area_trapz', (['l_svd_data'], {'dx': '(50)'}), '(l_svd_data, dx=50)\n', (4905, 4924), False, 'from ipfml import utils\n'), ((5527, 5558), 'ipfml.utils.normalize_arr', 'utils.normalize_arr', (['l_svd_data'], {}), '(l_svd_data)\n', (5546, 5558), False, 'from ipfml import utils\n'), ((5591, 5635), 'ipfml.utils.integral_area_trapz', 'utils.integral_area_trapz', (['l_svd_data'], {'dx': '(50)'}), '(l_svd_data, dx=50)\n', (5616, 5635), False, 'from ipfml import utils\n'), ((6934, 6970), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['current_image'], {}), '(current_image)\n', (6955, 6970), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((7016, 7050), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['final_image'], {}), '(final_image)\n', (7037, 7050), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((8396, 8425), 'numpy.dot', 'np.dot', (['smat', 'V[begin:end, :]'], {}), '(smat, V[begin:end, :])\n', (8402, 8425), True, 'import numpy as np\n'), ((8790, 8812), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (8799, 8812), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((8836, 8858), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (8845, 8858), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((8882, 8901), 'scipy.signal.wiener', 'wiener', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (8888, 8901), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((8925, 8944), 'scipy.signal.wiener', 'wiener', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (8931, 8944), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((9177, 9203), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['img'], {}), '(img)\n', (9198, 9203), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((9519, 9554), 'ipfml.utils.normalize_arr', 'utils.normalize_arr', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (9538, 9554), False, 'from ipfml import utils\n'), ((9692, 9739), 'ipfml.utils.get_indices_of_lowest_values', 'utils.get_indices_of_lowest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (9726, 9739), False, 'from ipfml import utils\n'), ((9798, 9846), 'ipfml.utils.get_indices_of_highest_values', 'utils.get_indices_of_highest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (9833, 9846), False, 'from ipfml import utils\n'), ((10231, 10253), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (10240, 10253), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((10486, 10512), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['img'], {}), '(img)\n', (10507, 10512), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((10828, 10863), 'ipfml.utils.normalize_arr', 'utils.normalize_arr', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (10847, 10863), False, 'from ipfml import utils\n'), ((11001, 11048), 'ipfml.utils.get_indices_of_lowest_values', 'utils.get_indices_of_lowest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (11035, 11048), False, 'from ipfml import utils\n'), ((11107, 11155), 'ipfml.utils.get_indices_of_highest_values', 'utils.get_indices_of_highest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (11142, 11155), False, 'from ipfml import utils\n'), ((11535, 11562), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.float32'], {}), '((3, 3), np.float32)\n', (11542, 11562), True, 'import numpy as np\n'), ((11585, 11614), 'cv2.filter2D', 'cv2.filter2D', (['arr', '(-1)', 'kernel'], {}), '(arr, -1, kernel)\n', (11597, 11614), False, 'import cv2\n'), ((11632, 11659), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.float32'], {}), '((5, 5), np.float32)\n', (11639, 11659), True, 'import numpy as np\n'), ((11683, 11712), 'cv2.filter2D', 'cv2.filter2D', (['arr', '(-1)', 'kernel'], {}), '(arr, -1, kernel)\n', (11695, 11712), False, 'import cv2\n'), ((11735, 11769), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(0.5)'], {}), '(arr, (3, 3), 0.5)\n', (11751, 11769), False, 'import cv2\n'), ((11794, 11826), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(1)'], {}), '(arr, (3, 3), 1)\n', (11810, 11826), False, 'import cv2\n'), ((11851, 11885), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(1.5)'], {}), '(arr, (3, 3), 1.5)\n', (11867, 11885), False, 'import cv2\n'), ((11910, 11944), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(0.5)'], {}), '(arr, (5, 5), 0.5)\n', (11926, 11944), False, 'import cv2\n'), ((11969, 12001), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(1)'], {}), '(arr, (5, 5), 1)\n', (11985, 12001), False, 'import cv2\n'), ((12026, 12060), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(1.5)'], {}), '(arr, (5, 5), 1.5)\n', (12042, 12060), False, 'import cv2\n'), ((12085, 12107), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (12094, 12107), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((12132, 12154), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (12141, 12154), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((12179, 12198), 'scipy.signal.wiener', 'wiener', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (12185, 12198), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((12223, 12242), 'scipy.signal.wiener', 'wiener', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (12229, 12242), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((12301, 12326), 'numpy.array', 'np.array', (['wave', '"""float64"""'], {}), "(wave, 'float64')\n", (12309, 12326), True, 'import numpy as np\n'), ((12559, 12585), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['img'], {}), '(img)\n', (12580, 12585), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((12901, 12936), 'ipfml.utils.normalize_arr', 'utils.normalize_arr', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (12920, 12936), False, 'from ipfml import utils\n'), ((13074, 13121), 'ipfml.utils.get_indices_of_lowest_values', 'utils.get_indices_of_lowest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (13108, 13121), False, 'from ipfml import utils\n'), ((13180, 13228), 'ipfml.utils.get_indices_of_highest_values', 'utils.get_indices_of_highest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (13215, 13228), False, 'from ipfml import utils\n'), ((13481, 13508), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.float32'], {}), '((3, 3), np.float32)\n', (13488, 13508), True, 'import numpy as np\n'), ((13531, 13560), 'cv2.filter2D', 'cv2.filter2D', (['arr', '(-1)', 'kernel'], {}), '(arr, -1, kernel)\n', (13543, 13560), False, 'import cv2\n'), ((13578, 13605), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.float32'], {}), '((5, 5), np.float32)\n', (13585, 13605), True, 'import numpy as np\n'), ((13629, 13658), 'cv2.filter2D', 'cv2.filter2D', (['arr', '(-1)', 'kernel'], {}), '(arr, -1, kernel)\n', (13641, 13658), False, 'import cv2\n'), ((13681, 13715), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(0.5)'], {}), '(arr, (3, 3), 0.5)\n', (13697, 13715), False, 'import cv2\n'), ((13740, 13772), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(1)'], {}), '(arr, (3, 3), 1)\n', (13756, 13772), False, 'import cv2\n'), ((13797, 13831), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(3, 3)', '(1.5)'], {}), '(arr, (3, 3), 1.5)\n', (13813, 13831), False, 'import cv2\n'), ((13856, 13890), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(0.5)'], {}), '(arr, (5, 5), 0.5)\n', (13872, 13890), False, 'import cv2\n'), ((13915, 13947), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(1)'], {}), '(arr, (5, 5), 1)\n', (13931, 13947), False, 'import cv2\n'), ((13972, 14006), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['arr', '(5, 5)', '(1.5)'], {}), '(arr, (5, 5), 1.5)\n', (13988, 14006), False, 'import cv2\n'), ((14031, 14053), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (14040, 14053), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((14078, 14100), 'scipy.signal.medfilt2d', 'medfilt2d', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (14087, 14100), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((14125, 14144), 'scipy.signal.wiener', 'wiener', (['arr', '[3, 3]'], {}), '(arr, [3, 3])\n', (14131, 14144), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((14169, 14188), 'scipy.signal.wiener', 'wiener', (['arr', '[5, 5]'], {}), '(arr, [5, 5])\n', (14175, 14188), False, 'from scipy.signal import medfilt2d, wiener, cwt\n'), ((14247, 14272), 'numpy.array', 'np.array', (['wave', '"""float64"""'], {}), "(wave, 'float64')\n", (14255, 14272), True, 'import numpy as np\n'), ((14430, 14456), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['img'], {}), '(img)\n', (14451, 14456), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((14910, 14945), 'ipfml.utils.normalize_arr', 'utils.normalize_arr', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (14929, 14945), False, 'from ipfml import utils\n'), ((15083, 15130), 'ipfml.utils.get_indices_of_lowest_values', 'utils.get_indices_of_lowest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (15117, 15130), False, 'from ipfml import utils\n'), ((15189, 15237), 'ipfml.utils.get_indices_of_highest_values', 'utils.get_indices_of_highest_values', (['sv_std', '(200)'], {}), '(sv_std, 200)\n', (15224, 15237), False, 'from ipfml import utils\n'), ((15939, 15968), 'ipfml.processing.transform.get_LAB_L', 'transform.get_LAB_L', (['sub_zone'], {}), '(sub_zone)\n', (15958, 15968), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((15996, 16025), 'ipfml.utils.normalize_2D_arr', 'utils.normalize_2D_arr', (['l_img'], {}), '(l_img)\n', (16018, 16025), False, 'from ipfml import utils\n'), ((16104, 16179), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.min_bilateral_diff', '(3, 3)'], {}), '(normed_l_img, kernels.min_bilateral_diff, (3, 3))\n', (16129, 16179), False, 'from ipfml.filters import convolution, kernels\n'), ((16203, 16222), 'numpy.std', 'np.std', (['normed_diff'], {}), '(normed_diff)\n', (16209, 16222), True, 'import numpy as np\n'), ((16247, 16267), 'numpy.mean', 'np.mean', (['normed_diff'], {}), '(normed_diff)\n', (16254, 16267), True, 'import numpy as np\n'), ((16439, 16514), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.min_bilateral_diff', '(5, 5)'], {}), '(normed_l_img, kernels.min_bilateral_diff, (5, 5))\n', (16464, 16514), False, 'from ipfml.filters import convolution, kernels\n'), ((16538, 16557), 'numpy.std', 'np.std', (['normed_diff'], {}), '(normed_diff)\n', (16544, 16557), True, 'import numpy as np\n'), ((16582, 16602), 'numpy.mean', 'np.mean', (['normed_diff'], {}), '(normed_diff)\n', (16589, 16602), True, 'import numpy as np\n'), ((16781, 16848), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.plane_mean', '(3, 3)'], {}), '(normed_l_img, kernels.plane_mean, (3, 3))\n', (16806, 16848), False, 'from ipfml.filters import convolution, kernels\n'), ((16878, 16903), 'numpy.std', 'np.std', (['normed_plane_mean'], {}), '(normed_plane_mean)\n', (16884, 16903), True, 'import numpy as np\n'), ((16934, 16960), 'numpy.mean', 'np.mean', (['normed_plane_mean'], {}), '(normed_plane_mean)\n', (16941, 16960), True, 'import numpy as np\n'), ((17153, 17220), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.plane_mean', '(5, 5)'], {}), '(normed_l_img, kernels.plane_mean, (5, 5))\n', (17178, 17220), False, 'from ipfml.filters import convolution, kernels\n'), ((17250, 17275), 'numpy.std', 'np.std', (['normed_plane_mean'], {}), '(normed_plane_mean)\n', (17256, 17275), True, 'import numpy as np\n'), ((17306, 17332), 'numpy.mean', 'np.mean', (['normed_plane_mean'], {}), '(normed_plane_mean)\n', (17313, 17332), True, 'import numpy as np\n'), ((17529, 17601), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.plane_max_error', '(3, 3)'], {}), '(normed_l_img, kernels.plane_max_error, (3, 3))\n', (17554, 17601), False, 'from ipfml.filters import convolution, kernels\n'), ((17630, 17654), 'numpy.std', 'np.std', (['normed_plane_max'], {}), '(normed_plane_max)\n', (17636, 17654), True, 'import numpy as np\n'), ((17684, 17709), 'numpy.mean', 'np.mean', (['normed_plane_max'], {}), '(normed_plane_max)\n', (17691, 17709), True, 'import numpy as np\n'), ((17912, 17984), 'ipfml.filters.convolution.convolution2D', 'convolution.convolution2D', (['normed_l_img', 'kernels.plane_max_error', '(5, 5)'], {}), '(normed_l_img, kernels.plane_max_error, (5, 5))\n', (17937, 17984), False, 'from ipfml.filters import convolution, kernels\n'), ((18013, 18037), 'numpy.std', 'np.std', (['normed_plane_max'], {}), '(normed_plane_max)\n', (18019, 18037), True, 'import numpy as np\n'), ((18067, 18092), 'numpy.mean', 'np.mean', (['normed_plane_max'], {}), '(normed_plane_max)\n', (18074, 18092), True, 'import numpy as np\n'), ((22860, 22884), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['b'], {}), '(b)\n', (22881, 22884), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23176, 23200), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['b'], {}), '(b)\n', (23197, 23200), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((23498, 23522), 'ipfml.processing.compression.get_SVD_s', 'compression.get_SVD_s', (['b'], {}), '(b)\n', (23519, 23522), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((24393, 24411), 'numpy.var', 'np.var', (['flat_coeff'], {}), '(flat_coeff)\n', (24399, 24411), True, 'import numpy as np\n'), ((3041, 3073), 'ipfml.processing.transform.get_LAB_L_SVD_s', 'transform.get_LAB_L_SVD_s', (['sub_b'], {}), '(sub_b)\n', (3066, 3073), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((3147, 3166), 'numpy.mean', 'np.mean', (['l_svd_data'], {}), '(l_svd_data)\n', (3154, 3166), True, 'import numpy as np\n'), ((3192, 3213), 'numpy.median', 'np.median', (['l_svd_data'], {}), '(l_svd_data)\n', (3201, 3213), True, 'import numpy as np\n'), ((3239, 3268), 'numpy.percentile', 'np.percentile', (['l_svd_data', '(25)'], {}), '(l_svd_data, 25)\n', (3252, 3268), True, 'import numpy as np\n'), ((3294, 3323), 'numpy.percentile', 'np.percentile', (['l_svd_data', '(75)'], {}), '(l_svd_data, 75)\n', (3307, 3323), True, 'import numpy as np\n'), ((3349, 3367), 'numpy.var', 'np.var', (['l_svd_data'], {}), '(l_svd_data)\n', (3355, 3367), True, 'import numpy as np\n'), ((3992, 4024), 'ipfml.processing.transform.get_LAB_L_SVD_s', 'transform.get_LAB_L_SVD_s', (['sub_b'], {}), '(sub_b)\n', (4017, 4024), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((4098, 4117), 'numpy.mean', 'np.mean', (['l_svd_data'], {}), '(l_svd_data)\n', (4105, 4117), True, 'import numpy as np\n'), ((4143, 4164), 'numpy.median', 'np.median', (['l_svd_data'], {}), '(l_svd_data)\n', (4152, 4164), True, 'import numpy as np\n'), ((4190, 4219), 'numpy.percentile', 'np.percentile', (['l_svd_data', '(25)'], {}), '(l_svd_data, 25)\n', (4203, 4219), True, 'import numpy as np\n'), ((4245, 4274), 'numpy.percentile', 'np.percentile', (['l_svd_data', '(75)'], {}), '(l_svd_data, 75)\n', (4258, 4274), True, 'import numpy as np\n'), ((4300, 4318), 'numpy.var', 'np.var', (['l_svd_data'], {}), '(l_svd_data)\n', (4306, 4318), True, 'import numpy as np\n'), ((4814, 4846), 'ipfml.processing.transform.get_LAB_L_SVD_s', 'transform.get_LAB_L_SVD_s', (['sub_b'], {}), '(sub_b)\n', (4839, 4846), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((5468, 5500), 'ipfml.processing.transform.get_LAB_L_SVD_s', 'transform.get_LAB_L_SVD_s', (['sub_b'], {}), '(sub_b)\n', (5493, 5500), False, 'from ipfml.processing import transform, compression, segmentation\n'), ((7072, 7091), 'numpy.array', 'np.array', (['sv_values'], {}), '(sv_values)\n', (7080, 7091), True, 'import numpy as np\n'), ((7094, 7117), 'numpy.array', 'np.array', (['ica_sv_values'], {}), '(ica_sv_values)\n', (7102, 7117), True, 'import numpy as np\n'), ((9581, 9603), 'numpy.std', 'np.std', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (9587, 9603), True, 'import numpy as np\n'), ((10890, 10912), 'numpy.std', 'np.std', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (10896, 10912), True, 'import numpy as np\n'), ((12963, 12985), 'numpy.std', 'np.std', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (12969, 12985), True, 'import numpy as np\n'), ((14516, 14561), 'ipfml.utils.get_entropy_contribution_of_i', 'utils.get_entropy_contribution_of_i', (['s', 'id_sv'], {}), '(s, id_sv)\n', (14551, 14561), False, 'from ipfml import utils\n'), ((14972, 14994), 'numpy.std', 'np.std', (['sv_array[:, i]'], {}), '(sv_array[:, i])\n', (14978, 14994), True, 'import numpy as np\n'), ((20913, 20936), 'numpy.std', 'np.std', (['diff_std_list_3'], {}), '(diff_std_list_3)\n', (20919, 20936), True, 'import numpy as np\n'), ((20962, 20986), 'numpy.std', 'np.std', (['diff_mean_list_3'], {}), '(diff_mean_list_3)\n', (20968, 20986), True, 'import numpy as np\n'), ((21012, 21035), 'numpy.std', 'np.std', (['diff_std_list_5'], {}), '(diff_std_list_5)\n', (21018, 21035), True, 'import numpy as np\n'), ((21061, 21085), 'numpy.std', 'np.std', (['diff_mean_list_5'], {}), '(diff_mean_list_5)\n', (21067, 21085), True, 'import numpy as np\n'), ((21112, 21136), 'numpy.std', 'np.std', (['plane_std_list_3'], {}), '(plane_std_list_3)\n', (21118, 21136), True, 'import numpy as np\n'), ((21162, 21187), 'numpy.std', 'np.std', (['plane_mean_list_3'], {}), '(plane_mean_list_3)\n', (21168, 21187), True, 'import numpy as np\n'), ((21213, 21237), 'numpy.std', 'np.std', (['plane_std_list_5'], {}), '(plane_std_list_5)\n', (21219, 21237), True, 'import numpy as np\n'), ((21263, 21288), 'numpy.std', 'np.std', (['plane_mean_list_5'], {}), '(plane_mean_list_5)\n', (21269, 21288), True, 'import numpy as np\n'), ((21327, 21355), 'numpy.std', 'np.std', (['plane_max_std_list_3'], {}), '(plane_max_std_list_3)\n', (21333, 21355), True, 'import numpy as np\n'), ((21381, 21410), 'numpy.std', 'np.std', (['plane_max_mean_list_3'], {}), '(plane_max_mean_list_3)\n', (21387, 21410), True, 'import numpy as np\n'), ((21436, 21464), 'numpy.std', 'np.std', (['plane_max_std_list_5'], {}), '(plane_max_std_list_5)\n', (21442, 21464), True, 'import numpy as np\n'), ((21490, 21519), 'numpy.std', 'np.std', (['plane_max_mean_list_5'], {}), '(plane_max_mean_list_5)\n', (21496, 21519), True, 'import numpy as np\n'), ((21586, 21610), 'numpy.mean', 'np.mean', (['diff_std_list_3'], {}), '(diff_std_list_3)\n', (21593, 21610), True, 'import numpy as np\n'), ((21636, 21661), 'numpy.mean', 'np.mean', (['diff_mean_list_3'], {}), '(diff_mean_list_3)\n', (21643, 21661), True, 'import numpy as np\n'), ((21687, 21711), 'numpy.mean', 'np.mean', (['diff_std_list_5'], {}), '(diff_std_list_5)\n', (21694, 21711), True, 'import numpy as np\n'), ((21737, 21762), 'numpy.mean', 'np.mean', (['diff_mean_list_5'], {}), '(diff_mean_list_5)\n', (21744, 21762), True, 'import numpy as np\n'), ((21789, 21814), 'numpy.mean', 'np.mean', (['plane_std_list_3'], {}), '(plane_std_list_3)\n', (21796, 21814), True, 'import numpy as np\n'), ((21840, 21866), 'numpy.mean', 'np.mean', (['plane_mean_list_3'], {}), '(plane_mean_list_3)\n', (21847, 21866), True, 'import numpy as np\n'), ((21892, 21917), 'numpy.mean', 'np.mean', (['plane_std_list_5'], {}), '(plane_std_list_5)\n', (21899, 21917), True, 'import numpy as np\n'), ((21943, 21969), 'numpy.mean', 'np.mean', (['plane_mean_list_5'], {}), '(plane_mean_list_5)\n', (21950, 21969), True, 'import numpy as np\n'), ((22008, 22037), 'numpy.mean', 'np.mean', (['plane_max_std_list_3'], {}), '(plane_max_std_list_3)\n', (22015, 22037), True, 'import numpy as np\n'), ((22063, 22093), 'numpy.mean', 'np.mean', (['plane_max_mean_list_3'], {}), '(plane_max_mean_list_3)\n', (22070, 22093), True, 'import numpy as np\n'), ((22119, 22148), 'numpy.mean', 'np.mean', (['plane_max_std_list_5'], {}), '(plane_max_std_list_5)\n', (22126, 22148), True, 'import numpy as np\n'), ((22174, 22204), 'numpy.mean', 'np.mean', (['plane_max_mean_list_5'], {}), '(plane_max_mean_list_5)\n', (22181, 22204), True, 'import numpy as np\n'), ((22911, 22932), 'ipfml.utils.get_entropy', 'utils.get_entropy', (['sv'], {}), '(sv)\n', (22928, 22932), False, 'from ipfml import utils\n'), ((23227, 23248), 'ipfml.utils.get_entropy', 'utils.get_entropy', (['sv'], {}), '(sv)\n', (23244, 23248), False, 'from ipfml import utils\n')]
|
# Code apapted from https://github.com/mseitzer/pytorch-fid
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectively.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import time
import numpy as np
import torch
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
from util import tools
def get_activations(dataset, model, size=1000, batch_size=50, dims=2048, device='cpu'):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
if batch_size > size:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = size
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, drop_last=False)
pred_arr = np.empty((size, dims))
start_idx = 0
for batch, _ in dataloader:
if batch.shape[1] == 1:
batch = torch.cat((batch, batch, batch), 1)
batch = batch.to(device)
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
pred_arr[start_idx:start_idx + pred.shape[0]] = pred
start_idx = start_idx + pred.shape[0]
if start_idx >= size:
break
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by <NAME>.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
start_time = time.time()
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
print("FID: sqrtm --- %s seconds ---" % (time.time() - start_time))
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
# raise ValueError('Imaginary component {}'.format(m))
print('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calculate_activation_statistics(dataset, model, size=1000, batch_size=50, dims=2048):
act = get_activations(dataset, model, size, batch_size, dims, tools.device_name())
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
|
[
"numpy.atleast_2d",
"numpy.trace",
"numpy.mean",
"torch.nn.functional.adaptive_avg_pool2d",
"numpy.eye",
"numpy.abs",
"numpy.diagonal",
"util.tools.device_name",
"numpy.iscomplexobj",
"numpy.empty",
"numpy.isfinite",
"torch.utils.data.DataLoader",
"torch.no_grad",
"numpy.cov",
"time.time",
"torch.cat",
"numpy.atleast_1d"
] |
[((2677, 2772), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'drop_last': '(False)'}), '(dataset, batch_size=batch_size, shuffle=False,\n drop_last=False)\n', (2704, 2772), False, 'import torch\n'), ((2785, 2807), 'numpy.empty', 'np.empty', (['(size, dims)'], {}), '((size, dims))\n', (2793, 2807), True, 'import numpy as np\n'), ((4443, 4461), 'numpy.atleast_1d', 'np.atleast_1d', (['mu1'], {}), '(mu1)\n', (4456, 4461), True, 'import numpy as np\n'), ((4472, 4490), 'numpy.atleast_1d', 'np.atleast_1d', (['mu2'], {}), '(mu2)\n', (4485, 4490), True, 'import numpy as np\n'), ((4505, 4526), 'numpy.atleast_2d', 'np.atleast_2d', (['sigma1'], {}), '(sigma1)\n', (4518, 4526), True, 'import numpy as np\n'), ((4540, 4561), 'numpy.atleast_2d', 'np.atleast_2d', (['sigma2'], {}), '(sigma2)\n', (4553, 4561), True, 'import numpy as np\n'), ((4832, 4843), 'time.time', 'time.time', ([], {}), '()\n', (4841, 4843), False, 'import time\n'), ((5346, 5370), 'numpy.iscomplexobj', 'np.iscomplexobj', (['covmean'], {}), '(covmean)\n', (5361, 5370), True, 'import numpy as np\n'), ((5656, 5673), 'numpy.trace', 'np.trace', (['covmean'], {}), '(covmean)\n', (5664, 5673), True, 'import numpy as np\n'), ((5943, 5963), 'numpy.mean', 'np.mean', (['act'], {'axis': '(0)'}), '(act, axis=0)\n', (5950, 5963), True, 'import numpy as np\n'), ((5976, 6001), 'numpy.cov', 'np.cov', (['act'], {'rowvar': '(False)'}), '(act, rowvar=False)\n', (5982, 6001), True, 'import numpy as np\n'), ((5913, 5932), 'util.tools.device_name', 'tools.device_name', ([], {}), '()\n', (5930, 5932), False, 'from util import tools\n'), ((2911, 2946), 'torch.cat', 'torch.cat', (['(batch, batch, batch)', '(1)'], {}), '((batch, batch, batch), 1)\n', (2920, 2946), False, 'import torch\n'), ((2993, 3008), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3006, 3008), False, 'import torch\n'), ((3265, 3310), 'torch.nn.functional.adaptive_avg_pool2d', 'adaptive_avg_pool2d', (['pred'], {'output_size': '(1, 1)'}), '(pred, output_size=(1, 1))\n', (3284, 3310), False, 'from torch.nn.functional import adaptive_avg_pool2d\n'), ((5177, 5200), 'numpy.eye', 'np.eye', (['sigma1.shape[0]'], {}), '(sigma1.shape[0])\n', (5183, 5200), True, 'import numpy as np\n'), ((5721, 5737), 'numpy.trace', 'np.trace', (['sigma2'], {}), '(sigma2)\n', (5729, 5737), True, 'import numpy as np\n'), ((4951, 4962), 'time.time', 'time.time', ([], {}), '()\n', (4960, 4962), False, 'import time\n'), ((4989, 5009), 'numpy.isfinite', 'np.isfinite', (['covmean'], {}), '(covmean)\n', (5000, 5009), True, 'import numpy as np\n'), ((5464, 5484), 'numpy.abs', 'np.abs', (['covmean.imag'], {}), '(covmean.imag)\n', (5470, 5484), True, 'import numpy as np\n'), ((5702, 5718), 'numpy.trace', 'np.trace', (['sigma1'], {}), '(sigma1)\n', (5710, 5718), True, 'import numpy as np\n'), ((5399, 5419), 'numpy.diagonal', 'np.diagonal', (['covmean'], {}), '(covmean)\n', (5410, 5419), True, 'import numpy as np\n')]
|
import torch
import torch.nn as nn
import numpy as np
import cv2
import os
import shutil
from matplotlib import pyplot as plt
from Model_Definition import VC3D
from mypath import NICKNAME, DATA_DIR, PATH
# TODO: Now can display images with plt.show(), need to solve display on cloud instance
OUT_DIR = PATH + os.path.sep + 'Result'
DEMO_DIR = PATH + os.path.sep + 'Demo'
# %%
def check_folder_exist(folder_name):
if os.path.exists(folder_name):
shutil.rmtree(folder_name)
os.makedirs(folder_name)
else:
os.makedirs(folder_name)
check_folder_exist(OUT_DIR)
# %%
def center_crop(frame):
frame = frame[:120, 22:142, :]
return np.array(frame).astype(np.uint8)
# %%
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device being used:", device)
with open('ucf_9_labels.txt', 'r') as f:
class_names = f.readlines()
f.close()
# init model
model = VC3D()
checkpoint = torch.load(f'model_{NICKNAME}.pt', map_location=device)
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
# read video
video_name = 'PlayingGuitar'
video = DATA_DIR + os.path.sep + video_name + os.path.sep + 'v_' + video_name + '_g09_c04.avi'
# video = DEMO_DIR + os.path.sep + video_name + '.mp4'
cap = cv2.VideoCapture(video)
retaining = True
fps = int(cap.get(5))
size = (int(cap.get(3)),
int(cap.get(4)))
fourcc = int(cap.get(6))
frames_num = cap.get(7)
print('Video Readed, with fps %s, size %s and format %s' % (fps, size,
chr(fourcc & 0xFF) + chr((fourcc >> 8) & 0xFF) + chr(
(fourcc >> 16) & 0xFF) + chr(
(fourcc >> 24) & 0xFF)))
out = cv2.VideoWriter(os.path.join(OUT_DIR, video_name + '_result.mp4'), 1983148141, fps, size)
clip = []
count = 0
while retaining:
count += 1
retaining, frame = cap.read()
if not retaining and frame is None:
continue
tmp_ = center_crop(cv2.resize(frame, (171, 128)))
tmp = tmp_ - np.array([[[90.0, 98.0, 102.0]]])
clip.append(tmp)
if len(clip) == 16:
inputs = np.array(clip).astype(np.float32)
inputs = np.expand_dims(inputs, axis=0)
inputs = np.transpose(inputs, (0, 4, 1, 2, 3))
inputs = torch.from_numpy(inputs)
inputs = torch.autograd.Variable(inputs, requires_grad=False).to(device)
with torch.no_grad():
outputs = model.forward(inputs)
probs = nn.Softmax(dim=1)(outputs)
label = torch.max(probs, 1)[1].detach().cpu().numpy()[0]
cv2.putText(frame, class_names[label].split(' ')[-1].strip(), (20, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(0, 0, 255), 1)
cv2.putText(frame, "prob: %.4f" % probs[0][label], (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(0, 0, 255), 1)
out.write(frame)
clip.pop(0)
if count % 10 == 0:
print(str(count / frames_num * 100) + '%')
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# cv2.imshow('result', frame)
# cv2.waitKey(30)
# plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# plt.title('result')
# plt.show()
out.release()
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
|
[
"Model_Definition.VC3D",
"torch.max",
"torch.from_numpy",
"numpy.array",
"torch.cuda.is_available",
"cv2.destroyAllWindows",
"os.path.exists",
"torch.autograd.Variable",
"cv2.waitKey",
"cv2.putText",
"cv2.resize",
"numpy.transpose",
"os.makedirs",
"torch.nn.Softmax",
"torch.load",
"os.path.join",
"cv2.VideoCapture",
"numpy.expand_dims",
"shutil.rmtree",
"torch.no_grad"
] |
[((424, 451), 'os.path.exists', 'os.path.exists', (['folder_name'], {}), '(folder_name)\n', (438, 451), False, 'import os\n'), ((967, 973), 'Model_Definition.VC3D', 'VC3D', ([], {}), '()\n', (971, 973), False, 'from Model_Definition import VC3D\n'), ((991, 1046), 'torch.load', 'torch.load', (['f"""model_{NICKNAME}.pt"""'], {'map_location': 'device'}), "(f'model_{NICKNAME}.pt', map_location=device)\n", (1001, 1046), False, 'import torch\n'), ((1342, 1365), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video'], {}), '(video)\n', (1358, 1365), False, 'import cv2\n'), ((3628, 3651), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3649, 3651), False, 'import cv2\n'), ((461, 487), 'shutil.rmtree', 'shutil.rmtree', (['folder_name'], {}), '(folder_name)\n', (474, 487), False, 'import shutil\n'), ((496, 520), 'os.makedirs', 'os.makedirs', (['folder_name'], {}), '(folder_name)\n', (507, 520), False, 'import os\n'), ((539, 563), 'os.makedirs', 'os.makedirs', (['folder_name'], {}), '(folder_name)\n', (550, 563), False, 'import os\n'), ((1938, 1987), 'os.path.join', 'os.path.join', (['OUT_DIR', "(video_name + '_result.mp4')"], {}), "(OUT_DIR, video_name + '_result.mp4')\n", (1950, 1987), False, 'import os\n'), ((670, 685), 'numpy.array', 'np.array', (['frame'], {}), '(frame)\n', (678, 685), True, 'import numpy as np\n'), ((760, 785), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (783, 785), False, 'import torch\n'), ((2210, 2239), 'cv2.resize', 'cv2.resize', (['frame', '(171, 128)'], {}), '(frame, (171, 128))\n', (2220, 2239), False, 'import cv2\n'), ((2262, 2295), 'numpy.array', 'np.array', (['[[[90.0, 98.0, 102.0]]]'], {}), '([[[90.0, 98.0, 102.0]]])\n', (2270, 2295), True, 'import numpy as np\n'), ((2425, 2455), 'numpy.expand_dims', 'np.expand_dims', (['inputs'], {'axis': '(0)'}), '(inputs, axis=0)\n', (2439, 2455), True, 'import numpy as np\n'), ((2477, 2514), 'numpy.transpose', 'np.transpose', (['inputs', '(0, 4, 1, 2, 3)'], {}), '(inputs, (0, 4, 1, 2, 3))\n', (2489, 2514), True, 'import numpy as np\n'), ((2536, 2560), 'torch.from_numpy', 'torch.from_numpy', (['inputs'], {}), '(inputs)\n', (2552, 2560), False, 'import torch\n'), ((3037, 3149), 'cv2.putText', 'cv2.putText', (['frame', "('prob: %.4f' % probs[0][label])", '(20, 40)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.6)', '(0, 0, 255)', '(1)'], {}), "(frame, 'prob: %.4f' % probs[0][label], (20, 40), cv2.\n FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)\n", (3048, 3149), False, 'import cv2\n'), ((2663, 2678), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2676, 2678), False, 'import torch\n'), ((2749, 2766), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (2759, 2766), True, 'import torch.nn as nn\n'), ((2370, 2384), 'numpy.array', 'np.array', (['clip'], {}), '(clip)\n', (2378, 2384), True, 'import numpy as np\n'), ((2582, 2634), 'torch.autograd.Variable', 'torch.autograd.Variable', (['inputs'], {'requires_grad': '(False)'}), '(inputs, requires_grad=False)\n', (2605, 2634), False, 'import torch\n'), ((3352, 3366), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3363, 3366), False, 'import cv2\n'), ((2796, 2815), 'torch.max', 'torch.max', (['probs', '(1)'], {}), '(probs, 1)\n', (2805, 2815), False, 'import torch\n')]
|
"""Transform signaling data to smoothed trajectories."""
import sys
import numpy
import pandas as pd
import geopandas as gpd
import shapely.geometry
import matplotlib.patches
import matplotlib.pyplot as plt
import mobilib.voronoi
SAMPLING = pd.Timedelta('00:01:00')
STD = pd.Timedelta('00:05:00')
def smoothen(array, std_quant):
return pd.Series(array).rolling(
int(numpy.ceil(8 * std_quant)),
min_periods=0,
center=True,
win_type='gaussian'
).mean(std=std_quant)
def trajectory(df, xcol, ycol, sampling, std):
ts = pd.date_range(df.index.min(), df.index.max(), freq=sampling)
obs_ind = ts.searchsorted(df.index)
xs_src = numpy.full(ts.size, numpy.nan)
xs_src[obs_ind] = df[xcol]
ys_src = numpy.full(ts.size, numpy.nan)
ys_src[obs_ind] = df[ycol]
std_quant = std / sampling
return smoothen(xs_src, std_quant), smoothen(ys_src, std_quant), ts
if __name__ == '__main__':
signals = pd.read_csv(sys.argv[1], sep=';')
signals = signals[signals['phone_nr'] == int(sys.argv[3])]
signals['pos_time'] = pd.to_datetime(signals['pos_time'])
timeweights = (1 / signals.groupby('pos_time')['phone_nr'].count()).reset_index().rename(columns={'phone_nr' : 'weight'})
signals = pd.merge(signals, timeweights, on='pos_time')
antennas = pd.read_csv(sys.argv[2], sep=';')
siglocs = pd.merge(signals, antennas, on='cell_name').groupby('pos_time').agg({
'xcent': 'mean',
'ycent': 'mean',
})
xpos, ypos, tpos = trajectory(siglocs, 'xcent', 'ycent', sampling=SAMPLING, std=STD)
plt.plot(xpos, ypos)
plt.scatter(antennas.xcent, antennas.ycent, s=9, color='orange')
plt.gca().set_aspect('equal')
plt.show()
pd.DataFrame({'x': xpos, 'y': ypos, 't': tpos}).to_csv(sys.argv[4], sep=';', index=False)
|
[
"pandas.Series",
"numpy.ceil",
"pandas.read_csv",
"matplotlib.pyplot.gca",
"pandas.Timedelta",
"pandas.merge",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.scatter",
"pandas.DataFrame",
"numpy.full",
"pandas.to_datetime",
"matplotlib.pyplot.show"
] |
[((246, 270), 'pandas.Timedelta', 'pd.Timedelta', (['"""00:01:00"""'], {}), "('00:01:00')\n", (258, 270), True, 'import pandas as pd\n'), ((277, 301), 'pandas.Timedelta', 'pd.Timedelta', (['"""00:05:00"""'], {}), "('00:05:00')\n", (289, 301), True, 'import pandas as pd\n'), ((683, 713), 'numpy.full', 'numpy.full', (['ts.size', 'numpy.nan'], {}), '(ts.size, numpy.nan)\n', (693, 713), False, 'import numpy\n'), ((758, 788), 'numpy.full', 'numpy.full', (['ts.size', 'numpy.nan'], {}), '(ts.size, numpy.nan)\n', (768, 788), False, 'import numpy\n'), ((966, 999), 'pandas.read_csv', 'pd.read_csv', (['sys.argv[1]'], {'sep': '""";"""'}), "(sys.argv[1], sep=';')\n", (977, 999), True, 'import pandas as pd\n'), ((1089, 1124), 'pandas.to_datetime', 'pd.to_datetime', (["signals['pos_time']"], {}), "(signals['pos_time'])\n", (1103, 1124), True, 'import pandas as pd\n'), ((1265, 1310), 'pandas.merge', 'pd.merge', (['signals', 'timeweights'], {'on': '"""pos_time"""'}), "(signals, timeweights, on='pos_time')\n", (1273, 1310), True, 'import pandas as pd\n'), ((1326, 1359), 'pandas.read_csv', 'pd.read_csv', (['sys.argv[2]'], {'sep': '""";"""'}), "(sys.argv[2], sep=';')\n", (1337, 1359), True, 'import pandas as pd\n'), ((1594, 1614), 'matplotlib.pyplot.plot', 'plt.plot', (['xpos', 'ypos'], {}), '(xpos, ypos)\n', (1602, 1614), True, 'import matplotlib.pyplot as plt\n'), ((1619, 1683), 'matplotlib.pyplot.scatter', 'plt.scatter', (['antennas.xcent', 'antennas.ycent'], {'s': '(9)', 'color': '"""orange"""'}), "(antennas.xcent, antennas.ycent, s=9, color='orange')\n", (1630, 1683), True, 'import matplotlib.pyplot as plt\n'), ((1722, 1732), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1730, 1732), True, 'import matplotlib.pyplot as plt\n'), ((1688, 1697), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1695, 1697), True, 'import matplotlib.pyplot as plt\n'), ((1737, 1784), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': xpos, 'y': ypos, 't': tpos}"], {}), "({'x': xpos, 'y': ypos, 't': tpos})\n", (1749, 1784), True, 'import pandas as pd\n'), ((347, 363), 'pandas.Series', 'pd.Series', (['array'], {}), '(array)\n', (356, 363), True, 'import pandas as pd\n'), ((385, 410), 'numpy.ceil', 'numpy.ceil', (['(8 * std_quant)'], {}), '(8 * std_quant)\n', (395, 410), False, 'import numpy\n'), ((1374, 1417), 'pandas.merge', 'pd.merge', (['signals', 'antennas'], {'on': '"""cell_name"""'}), "(signals, antennas, on='cell_name')\n", (1382, 1417), True, 'import pandas as pd\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 3 17:20:06 2018
@author: chrispedder
A routine to crop sections from the images of different manuscripts in the two
datasets to the same size, and with the same magnification, so that the average
script size doesn't create a feature that the neural networks can learn.
Reading the data description of the CLaMM dataset, we find that the images
are 150mm*100mm, so we need to take similar-sized crops from our new target
data. Looking at the bar on the left, we find that 6000px =(341-47) = 294mm
So 1mm = 20.41px. We therefore need to crop 3062 * 2041px from the original
However, to not give away too much, we need to make this crop a little
random. Looking at the test images, 1) Their heights vary by around 100px
AFTER downsampling, so around 170px BEFORE downsampling. 2) Their widths
vary by proportionately less, around 65px AFTER, so 110px BEFORE.
We define a crop function below which achieves precisely this.
To run this routine, call something like `python -m src.data.data_processing
--thow_input_path data/raw/MS157/ --thow_output_path data/external/thow_out
--clamm_input_path data/raw/ICDAR2017_CLaMM_Training/
--clamm_output_path data/external/clamm_out`
The four command line args given here are all required.
"""
import numpy as np
import scipy.io
import random
import scipy.ndimage
import glob
import os
import argparse
from PIL import Image
from random import randint
from typing import List
# helper function to clean up file list for scraped THoW filenames
def clean_THoW_file_list(file_list: List):
# clean out folio views etc, whose filenames start with a letter
# rather than a number
cleaned_THoW_list = [element for element in file_list if not
element[-5].isalpha()]
return cleaned_THoW_list
class ImageProcessor(object):
def __init__(self, args):
# Crop images from point CORNER, to size given by DIM
self.CORNER = [1000,1400]
self.DIM = [3062,2041]
# To match the training data, we need to downsample images by a
# factor of 1.7
self.SCALE = 1.7
# Set size of training tiles here (we could pick 224*224 to match the
# expected input size of VGG16 here too)
self.IM_HEIGHT = 300
self.IM_WIDTH = 300
# Set random seed to get the same train-test split when run
self.SEED = 42
random.seed(self.SEED)
self.args = args
def read_raw_from_dir(self, filename):
"""
Define function to read bytes directly from tar by filename.
"""
x = Image.open(filename)
x = x.convert('L')
# makes it greyscale - CLaMM data is already grayscale
y = np.asarray(x.getdata(), dtype='uint8')
return y.reshape((x.size[1], x.size[0]))
def image_oc_crop(self, img):
"""
Makes a crop of an img, with coordinates of the top left corner
top_left_pt and of side lengths "dimensions" using numpy slicing.
"""
lh, lw = self.CORNER
dim_x, dim_y = self.DIM
cropped_img = img[lh:lh+dim_x,lw:lw+dim_y]
return cropped_img
def resample_image(self, img):
"""
Resample scraped images to make them a similar number of pixels to
CLaMM dataset images.
"""
# retain a single image channel, use cubic splines for resampling
resampled = scipy.ndimage.zoom(img, 1/self.SCALE, order=3)
output = resampled.astype('uint8')
return output
def prepare_raw_bytes_for_model(self, input_path):
"""
Put everything together into one function to read, crop & scale data
"""
input_image = self.read_raw_from_dir(input_path)
cropped_input = self.image_oc_crop(input_image)
img = self.resample_image(cropped_input)
return img
def tile_crop(self, array):
"""
function to crop tile_height by tile_width sections from the original
cropped files.
"""
array_height, array_width = array.shape
height_tiles_number = array_height//self.IM_HEIGHT
width_tiles_number = array_width//self.IM_WIDTH
tile_list = []
for i in range(height_tiles_number):
for j in range(width_tiles_number):
new_tile = array[i * self.IM_HEIGHT: (i + 1) * self.IM_HEIGHT,
j * self.IM_WIDTH: (j + 1)* self.IM_WIDTH]
tile_list.append(new_tile)
return tile_list
def write_input_data_to_jpg(self, input_path, output_path, THOW=False):
"""
Read files, process and write out processed files to an external folder,
defined by the argparse args
"""
counter = 0
file_suffix = '*.jpg' if THOW else '*.tif'
file_name = 'THOW' if THOW else 'CLaMM'
# get list of files in the raw data directory
input_files_list = sorted(glob.glob(input_path + file_suffix))
if THOW:
input_files_list = clean_THoW_file_list(input_files_list)
else:
input_files_list = input_files_list[:500]
#check output directory exists, if not create it
if not os.path.exists(output_path):
os.mkdir(output_path)
for element in input_files_list:
image = self.prepare_raw_bytes_for_model(element)
new_tile_list = self.tile_crop(image)
for i, tile in enumerate(new_tile_list):
# define file names for training example
tile_file_name = os.path.join(
output_path,
file_name + str(counter + i) + ".jpg")
# write three copies of the grayscale image to three separate
# layers as the VGG16 net expects an RGB input
tensorized = np.dstack([tile] * 3)
# create image from tensorized array
im = Image.fromarray(tensorized)
# save to path specified in arguments
im.save(tile_file_name)
print(
"Tile with name {} written to disk".format(tile_file_name))
counter += len(new_tile_list)
print("So far {} files written".format(counter))
print("File writing completed")
def process_all_files(self):
print(f'Reading data from {self.args.thow_input_path}, writing to\
{self.args.thow_output_path}')
self.write_input_data_to_jpg(self.args.thow_input_path,
self.args.thow_output_path,
THOW=True)
print(f'Reading data from {self.args.clamm_input_path}, writing to\
{self.args.clamm_output_path}')
self.write_input_data_to_jpg(self.args.clamm_input_path,
self.args.clamm_output_path)
print('All files processed and written to file')
def parse_args():
parser = argparse.ArgumentParser(description='Command line options for '
'processing the data files needed to train the model.')
parser.add_argument('--thow_input_path', type=str, required=True,
help='give the path to the THOW raw files')
parser.add_argument('--thow_output_path', type=str, required=True,
help='path to where we should write the processed THOW tile files')
parser.add_argument('--clamm_input_path', type=str, required=True,
help='give the path to the CLaMM raw files')
parser.add_argument('--clamm_output_path', type=str, required=True,
help='path to where we should write the processed CLaMM tile files')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
processor = ImageProcessor(args)
processor.process_all_files()
|
[
"os.path.exists",
"numpy.dstack",
"PIL.Image.open",
"PIL.Image.fromarray",
"argparse.ArgumentParser",
"random.seed",
"os.mkdir",
"glob.glob"
] |
[((7029, 7155), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Command line options for processing the data files needed to train the model."""'}), "(description=\n 'Command line options for processing the data files needed to train the model.'\n )\n", (7052, 7155), False, 'import argparse\n'), ((2434, 2456), 'random.seed', 'random.seed', (['self.SEED'], {}), '(self.SEED)\n', (2445, 2456), False, 'import random\n'), ((2632, 2652), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (2642, 2652), False, 'from PIL import Image\n'), ((4987, 5022), 'glob.glob', 'glob.glob', (['(input_path + file_suffix)'], {}), '(input_path + file_suffix)\n', (4996, 5022), False, 'import glob\n'), ((5252, 5279), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (5266, 5279), False, 'import os\n'), ((5297, 5318), 'os.mkdir', 'os.mkdir', (['output_path'], {}), '(output_path)\n', (5305, 5318), False, 'import os\n'), ((5893, 5914), 'numpy.dstack', 'np.dstack', (['([tile] * 3)'], {}), '([tile] * 3)\n', (5902, 5914), True, 'import numpy as np\n'), ((5989, 6016), 'PIL.Image.fromarray', 'Image.fromarray', (['tensorized'], {}), '(tensorized)\n', (6004, 6016), False, 'from PIL import Image\n')]
|
import time
import random
import pygame
import pygame.midi
import numpy as np
from typing import Tuple
__author__ = "<NAME>"
AV_SIZE = 20
WIN_X = 30 * AV_SIZE
WIN_Y = 30 * AV_SIZE
DIFF_MAX = np.sqrt(WIN_X**2 + WIN_Y**2)
def adapt_avatar_position(event, user_x_pos:int, user_y_pos:int) -> Tuple[int, int]:
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
if user_x_pos >= AV_SIZE:
user_x_pos -= AV_SIZE
if event.key == pygame.K_RIGHT:
if user_x_pos < WIN_X-AV_SIZE:
user_x_pos += AV_SIZE
if event.key == pygame.K_UP:
if user_y_pos >= AV_SIZE:
user_y_pos -= AV_SIZE
if event.key == pygame.K_DOWN:
if user_y_pos < WIN_Y-AV_SIZE:
user_y_pos += AV_SIZE
return user_x_pos, user_y_pos
def calculate_difference(win_position:tuple, user_x_pos:int, user_y_pos:int):
difference = abs(win_position[0] - user_x_pos), abs(win_position[1] - user_y_pos)
return np.sqrt(np.sqrt(difference[0]**2 + difference[1]**2) / DIFF_MAX)
def main():
# setup
pygame.init()
pygame.midi.init()
player = pygame.midi.Output(0)
player.set_instrument(0)
current_note = random.randint(60,84)
window = pygame.display.set_mode((WIN_X,WIN_Y))
user_x_pos, user_y_pos = int(WIN_X/2), int(WIN_Y/2)
pos_x = [ii for ii in range(0,WIN_X-AV_SIZE,AV_SIZE)]
pos_y = [ii for ii in range(0,WIN_Y-AV_SIZE,AV_SIZE)]
win_position = (random.choice(pos_x), random.choice(pos_y))
difference = calculate_difference(win_position, user_x_pos, user_y_pos)
player.note_on(current_note, int(127*(1-difference)))
old_time = time.time()
# program loop
running = True
while running:
if win_position == (user_x_pos, user_y_pos):
window.fill((255,255,0))
else:
window.fill((255,255,255))
difference = calculate_difference(win_position, user_x_pos, user_y_pos)
pygame.draw.rect(window,(0,50,255,50),(user_x_pos,user_y_pos,AV_SIZE,AV_SIZE)) # Rect(left, top, width, height)
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
user_x_pos, user_y_pos = adapt_avatar_position(event, user_x_pos, user_y_pos)
pygame.display.flip() # Documentation: Update the full display Surface to the screen
if time.time()-old_time > 1:
player.note_off(current_note)
current_note = random.randint(60,84)
player.note_on(current_note, int(127*(1-difference)))
old_time = time.time()
# teardown
del player
pygame.midi.quit()
if __name__=="__main__":
main()
|
[
"random.choice",
"numpy.sqrt",
"pygame.init",
"pygame.midi.quit",
"pygame.event.get",
"pygame.display.set_mode",
"pygame.display.flip",
"pygame.midi.init",
"pygame.draw.rect",
"pygame.midi.Output",
"time.time",
"random.randint"
] |
[((200, 232), 'numpy.sqrt', 'np.sqrt', (['(WIN_X ** 2 + WIN_Y ** 2)'], {}), '(WIN_X ** 2 + WIN_Y ** 2)\n', (207, 232), True, 'import numpy as np\n'), ((1126, 1139), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1137, 1139), False, 'import pygame\n'), ((1145, 1163), 'pygame.midi.init', 'pygame.midi.init', ([], {}), '()\n', (1161, 1163), False, 'import pygame\n'), ((1177, 1198), 'pygame.midi.Output', 'pygame.midi.Output', (['(0)'], {}), '(0)\n', (1195, 1198), False, 'import pygame\n'), ((1247, 1269), 'random.randint', 'random.randint', (['(60)', '(84)'], {}), '(60, 84)\n', (1261, 1269), False, 'import random\n'), ((1287, 1326), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WIN_X, WIN_Y)'], {}), '((WIN_X, WIN_Y))\n', (1310, 1326), False, 'import pygame\n'), ((1719, 1730), 'time.time', 'time.time', ([], {}), '()\n', (1728, 1730), False, 'import time\n'), ((2705, 2723), 'pygame.midi.quit', 'pygame.midi.quit', ([], {}), '()\n', (2721, 2723), False, 'import pygame\n'), ((1520, 1540), 'random.choice', 'random.choice', (['pos_x'], {}), '(pos_x)\n', (1533, 1540), False, 'import random\n'), ((1542, 1562), 'random.choice', 'random.choice', (['pos_y'], {}), '(pos_y)\n', (1555, 1562), False, 'import random\n'), ((2022, 2112), 'pygame.draw.rect', 'pygame.draw.rect', (['window', '(0, 50, 255, 50)', '(user_x_pos, user_y_pos, AV_SIZE, AV_SIZE)'], {}), '(window, (0, 50, 255, 50), (user_x_pos, user_y_pos, AV_SIZE,\n AV_SIZE))\n', (2038, 2112), False, 'import pygame\n'), ((2158, 2176), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2174, 2176), False, 'import pygame\n'), ((2350, 2371), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (2369, 2371), False, 'import pygame\n'), ((1039, 1087), 'numpy.sqrt', 'np.sqrt', (['(difference[0] ** 2 + difference[1] ** 2)'], {}), '(difference[0] ** 2 + difference[1] ** 2)\n', (1046, 1087), True, 'import numpy as np\n'), ((2543, 2565), 'random.randint', 'random.randint', (['(60)', '(84)'], {}), '(60, 84)\n', (2557, 2565), False, 'import random\n'), ((2654, 2665), 'time.time', 'time.time', ([], {}), '()\n', (2663, 2665), False, 'import time\n'), ((2448, 2459), 'time.time', 'time.time', ([], {}), '()\n', (2457, 2459), False, 'import time\n')]
|
import abc
import os
import pandas as pd
import numpy as np
from EoraReader import EoraReader
class PrimaryInputs(EoraReader):
def __init__(self, file_path):
super().__init__(file_path)
self.df = None
def get_dataset(self, extended = False):
"""
Returns a pandas dataframe containing domestic transactions from the input-output table
"""
value_add_coefficients = []
primary_inputs = []
industry_count = self.industry_header.count("Industries")
primary_inputs_pos = 0
line = self.file.readline().strip().split('\t')
while line[2] != "Primary Inputs":
line = self.file.readline().strip().split('\t')
while line[2] == "Primary Inputs":
primary_inputs.append(line[3])
value_add_coefficients.append(line[4:(4 + industry_count)])
line = self.file.readline().strip().split('\t')
numpy_data = np.array(value_add_coefficients)
df = pd.DataFrame(data = numpy_data, index = primary_inputs)
df.columns = self.industries[0:industry_count]
if extended:
df.loc[:, 'year'] = self.year
df.loc[:, 'country'] = self.country
self.df = df
self.extended = extended
return df
|
[
"pandas.DataFrame",
"numpy.array"
] |
[((948, 980), 'numpy.array', 'np.array', (['value_add_coefficients'], {}), '(value_add_coefficients)\n', (956, 980), True, 'import numpy as np\n'), ((994, 1045), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'numpy_data', 'index': 'primary_inputs'}), '(data=numpy_data, index=primary_inputs)\n', (1006, 1045), True, 'import pandas as pd\n')]
|
import attr
import types
from typing import Union
from enum import Enum
import numpy as np
from scipy.optimize import differential_evolution
import pygmo as pg
class OptimizationMethod(Enum):
"""
Available optimization solvers.
"""
SCIPY_DE = 1
PYGMO_DE1220 = 2
@attr.s(auto_attribs=True)
class ScipyDifferentialEvolutionSettings:
"""
Optional arguments to pass for SciPy's differential evolution caller.
Members
----------------
:ivar str strategy:
The differential evolution strategy to use. Should be one of: - 'best1bin' - 'best1exp' - 'rand1exp' -
'randtobest1exp' - 'currenttobest1exp' - 'best2exp' - 'rand2exp' - 'randtobest1bin' - 'currenttobest1bin' -
'best2bin' - 'rand2bin' - 'rand1bin' The default is 'best1bin'.
:ivar float recombination:
The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover
probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the
next generation, but at the risk of population stability.
:ivar float mutation:
The mutation constant. In the literature this is also known as differential weight, being denoted by F. If
specified as a float it should be in the range [0, 2].
:ivar float tol:
Relative tolerance for convergence, the solving stops when `np.std(pop) = atol + tol * np.abs(np.mean(population_energies))`,
where and `atol` and `tol` are the absolute and relative tolerance respectively.
:ivar int|numpy.random.RandomState seed:
If `seed` is not specified the `np.RandomState` singleton is used. If `seed` is an int, a new
`np.random.RandomState` instance is used, seeded with seed. If `seed` is already a `np.random.RandomState instance`,
then that `np.random.RandomState` instance is used. Specify `seed` for repeatable minimizations.
:ivar int workers:
If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel
(uses `multiprocessing.Pool`). Supply -1 to use all available CPU cores. Alternatively supply a map-like
callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is
carried out as `workers(func, iterable)`.
:ivar bool disp:
Display status messages during optimization iterations.
:ivar polish:
If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B` method is used to polish the best
population member at the end, which can improve the minimization slightly.
"""
number_of_decision_variables: int
strategy: str = 'best1bin'
recombination: float = 0.3
mutation: float = 0.6
tol: float = 1e-5
seed: Union[np.random.RandomState, int] = np.random.RandomState()
workers: int = 1
disp: bool = False
polish: bool = True
popsize: int = None
population_size_for_each_variable: int = 15
total_population_size_limit: int = 100
def __attrs_post_init__(self):
if self.popsize is None:
self.popsize = self._estimate_population_size()
elif self.popsize <= 0:
raise ValueError('Number of individuals must be greater than 0.')
if type(self.popsize) != int:
raise TypeError('Population size must be an integer number.')
if not 0 < self.recombination <= 1:
raise ValueError('Recombination must be a value between 0 and 1.')
if type(self.mutation) == tuple:
mutation_dithering_array = np.array(self.mutation)
if len(self.mutation) > 2:
raise ValueError('Mutation can be a tuple with two numbers, not more.')
if mutation_dithering_array.min() < 0 or mutation_dithering_array.max() > 2:
raise ValueError('Mutation must be floats between 0 and 2.')
elif mutation_dithering_array.min() == mutation_dithering_array.max():
raise ValueError("Values for mutation dithering can't be equal.")
else:
if type(self.mutation) != int and type(self.mutation) != float:
raise TypeError('When mutation is provided as a single number, it must be a float or an int.')
if not 0 < self.mutation < 2:
raise ValueError('Mutation must be a number between 0 and 2.')
if self.tol < 0:
raise ValueError('Tolerance must be a positive float.')
def _estimate_population_size(self):
population_size = self.population_size_for_each_variable * self.number_of_decision_variables
if population_size > self.total_population_size_limit:
population_size = self.total_population_size_limit
return population_size
@attr.s(auto_attribs=True)
class PygmoSelfAdaptiveDESettings:
# TODO: docs and validations
gen: int
popsize: int
allowed_variants: list = [2, 6, 7]
variant_adptv: int = 2
ftol: float = 1e-6
xtol: float = 1e-6
memory: bool = True
seed: int = int(np.random.randint(0, 2000))
polish: bool = True
polish_method: str = 'tnewton_precond_restart'
parallel_execution: bool = False
number_of_islands: int = 2
archipelago_gen: int = 50
@attr.s(auto_attribs=True)
class PygmoOptimizationProblemWrapper:
# TODO: docs and validations
objective_function: types.FunctionType
bounds: list
args: list = []
def fitness(self, x):
return [self.objective_function(x, *self.args)]
def get_bounds(self):
return self._transform_bounds_to_pygmo_standard
def gradient(self, x):
return pg.estimate_gradient_h(lambda x: self.fitness(x), x)
@property
def _transform_bounds_to_pygmo_standard(self):
bounds_numpy = np.array(self.bounds, dtype=np.float64)
lower_bounds = list(bounds_numpy[:, 0])
upper_bounds = list(bounds_numpy[:, 1])
return lower_bounds, upper_bounds
@attr.s(auto_attribs=True)
class PygmoSolutionWrapperSerial:
# TODO: docs and validations
solution: pg.core.population
@property
def fun(self):
return self.solution.champion_f
@property
def x(self):
return self.solution.champion_x
@attr.s(auto_attribs=True)
class PygmoSolutionWrapperParallel:
# TODO: docs and validations
champion_x: np.ndarray
champion_f: Union[float, np.float64, np.ndarray]
@property
def fun(self):
return self.champion_f
@property
def x(self):
return self.champion_x
@attr.s(auto_attribs=True)
class OptimizationProblem:
"""
This class stores and solve optimization problems with the available solvers.
"""
# TODO: docs and validations
objective_function: types.FunctionType
bounds: list
optimization_method: OptimizationMethod
solver_args: Union[ScipyDifferentialEvolutionSettings, PygmoSelfAdaptiveDESettings]
args: list = []
def __attrs_post_init__(self):
if self.optimization_method == OptimizationMethod.SCIPY_DE and self.solver_args is None:
self.solver_args = ScipyDifferentialEvolutionSettings(self._number_of_decision_variables)
@property
def _number_of_decision_variables(self):
return len(self.bounds)
def solve_minimization(self):
if self.optimization_method == OptimizationMethod.SCIPY_DE:
result = differential_evolution(
self.objective_function,
bounds=self.bounds,
args=self.args,
strategy=self.solver_args.strategy,
popsize=self.solver_args.popsize,
recombination=self.solver_args.recombination,
mutation=self.solver_args.mutation,
tol=self.solver_args.tol,
disp=self.solver_args.disp,
polish=self.solver_args.polish,
seed=self.solver_args.seed,
workers=self.solver_args.workers
)
return result
elif self.optimization_method == OptimizationMethod.PYGMO_DE1220:
problem_wrapper = PygmoOptimizationProblemWrapper(
objective_function=self.objective_function,
bounds=self.bounds,
args=self.args
)
pygmo_algorithm = pg.algorithm(
pg.de1220(
gen=self.solver_args.gen,
allowed_variants=self.solver_args.allowed_variants,
variant_adptv=self.solver_args.variant_adptv,
ftol=self.solver_args.ftol,
xtol=self.solver_args.xtol,
memory=self.solver_args.memory,
seed=self.solver_args.seed
)
)
pygmo_problem = pg.problem(problem_wrapper)
if self.solver_args.parallel_execution:
solution_wrapper = self._run_pygmo_parallel(
pygmo_algorithm,
pygmo_problem,
number_of_islands=self.solver_args.number_of_islands,
archipelago_gen=self.solver_args.archipelago_gen
)
else:
pygmo_solution = self._run_pygmo_serial(pygmo_algorithm, pygmo_problem)
if self.solver_args.polish:
pygmo_solution = self._polish_pygmo_population(pygmo_solution)
solution_wrapper = PygmoSolutionWrapperSerial(pygmo_solution)
return solution_wrapper
else:
raise NotImplementedError('Unavailable optimization method.')
@staticmethod
def _select_best_pygmo_archipelago_solution(champions_x, champions_f):
best_index = np.argmin(champions_f)
return champions_x[best_index], champions_f[best_index]
def _run_pygmo_parallel(self, algorithm, problem, number_of_islands=2, archipelago_gen=50):
pygmo_archipelago = pg.archipelago(
n=number_of_islands,
algo=algorithm,
prob=problem,
pop_size=self.solver_args.popsize,
seed=self.solver_args.seed
)
pygmo_archipelago.evolve(n=archipelago_gen)
pygmo_archipelago.wait()
champions_x = pygmo_archipelago.get_champions_x()
champions_f = pygmo_archipelago.get_champions_f()
champion_x, champion_f = self._select_best_pygmo_archipelago_solution(champions_x, champions_f)
return PygmoSolutionWrapperParallel(champion_x=champion_x, champion_f=champion_f)
def _run_pygmo_serial(self, algorithm, problem):
population = pg.population(
prob=problem,
size=self.solver_args.popsize,
seed=self.solver_args.seed
)
solution = algorithm.evolve(population)
return solution
def _polish_pygmo_population(self, population):
pygmo_nlopt_wrapper = pg.nlopt(self.solver_args.polish_method)
nlopt_algorithm = pg.algorithm(pygmo_nlopt_wrapper)
solution_wrapper = nlopt_algorithm.evolve(population)
return solution_wrapper
|
[
"attr.s",
"pygmo.archipelago",
"scipy.optimize.differential_evolution",
"pygmo.problem",
"pygmo.population",
"numpy.array",
"numpy.random.randint",
"pygmo.algorithm",
"pygmo.de1220",
"numpy.argmin",
"numpy.random.RandomState",
"pygmo.nlopt"
] |
[((287, 312), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (293, 312), False, 'import attr\n'), ((4837, 4862), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (4843, 4862), False, 'import attr\n'), ((5322, 5347), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (5328, 5347), False, 'import attr\n'), ((6033, 6058), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (6039, 6058), False, 'import attr\n'), ((6309, 6334), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (6315, 6334), False, 'import attr\n'), ((6616, 6641), 'attr.s', 'attr.s', ([], {'auto_attribs': '(True)'}), '(auto_attribs=True)\n', (6622, 6641), False, 'import attr\n'), ((2875, 2898), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (2896, 2898), True, 'import numpy as np\n'), ((5118, 5144), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2000)'], {}), '(0, 2000)\n', (5135, 5144), True, 'import numpy as np\n'), ((5852, 5891), 'numpy.array', 'np.array', (['self.bounds'], {'dtype': 'np.float64'}), '(self.bounds, dtype=np.float64)\n', (5860, 5891), True, 'import numpy as np\n'), ((9796, 9818), 'numpy.argmin', 'np.argmin', (['champions_f'], {}), '(champions_f)\n', (9805, 9818), True, 'import numpy as np\n'), ((10008, 10141), 'pygmo.archipelago', 'pg.archipelago', ([], {'n': 'number_of_islands', 'algo': 'algorithm', 'prob': 'problem', 'pop_size': 'self.solver_args.popsize', 'seed': 'self.solver_args.seed'}), '(n=number_of_islands, algo=algorithm, prob=problem, pop_size=\n self.solver_args.popsize, seed=self.solver_args.seed)\n', (10022, 10141), True, 'import pygmo as pg\n'), ((10677, 10768), 'pygmo.population', 'pg.population', ([], {'prob': 'problem', 'size': 'self.solver_args.popsize', 'seed': 'self.solver_args.seed'}), '(prob=problem, size=self.solver_args.popsize, seed=self.\n solver_args.seed)\n', (10690, 10768), True, 'import pygmo as pg\n'), ((10965, 11005), 'pygmo.nlopt', 'pg.nlopt', (['self.solver_args.polish_method'], {}), '(self.solver_args.polish_method)\n', (10973, 11005), True, 'import pygmo as pg\n'), ((11032, 11065), 'pygmo.algorithm', 'pg.algorithm', (['pygmo_nlopt_wrapper'], {}), '(pygmo_nlopt_wrapper)\n', (11044, 11065), True, 'import pygmo as pg\n'), ((3636, 3659), 'numpy.array', 'np.array', (['self.mutation'], {}), '(self.mutation)\n', (3644, 3659), True, 'import numpy as np\n'), ((7463, 7870), 'scipy.optimize.differential_evolution', 'differential_evolution', (['self.objective_function'], {'bounds': 'self.bounds', 'args': 'self.args', 'strategy': 'self.solver_args.strategy', 'popsize': 'self.solver_args.popsize', 'recombination': 'self.solver_args.recombination', 'mutation': 'self.solver_args.mutation', 'tol': 'self.solver_args.tol', 'disp': 'self.solver_args.disp', 'polish': 'self.solver_args.polish', 'seed': 'self.solver_args.seed', 'workers': 'self.solver_args.workers'}), '(self.objective_function, bounds=self.bounds, args=\n self.args, strategy=self.solver_args.strategy, popsize=self.solver_args\n .popsize, recombination=self.solver_args.recombination, mutation=self.\n solver_args.mutation, tol=self.solver_args.tol, disp=self.solver_args.\n disp, polish=self.solver_args.polish, seed=self.solver_args.seed,\n workers=self.solver_args.workers)\n', (7485, 7870), False, 'from scipy.optimize import differential_evolution\n'), ((8868, 8895), 'pygmo.problem', 'pg.problem', (['problem_wrapper'], {}), '(problem_wrapper)\n', (8878, 8895), True, 'import pygmo as pg\n'), ((8418, 8682), 'pygmo.de1220', 'pg.de1220', ([], {'gen': 'self.solver_args.gen', 'allowed_variants': 'self.solver_args.allowed_variants', 'variant_adptv': 'self.solver_args.variant_adptv', 'ftol': 'self.solver_args.ftol', 'xtol': 'self.solver_args.xtol', 'memory': 'self.solver_args.memory', 'seed': 'self.solver_args.seed'}), '(gen=self.solver_args.gen, allowed_variants=self.solver_args.\n allowed_variants, variant_adptv=self.solver_args.variant_adptv, ftol=\n self.solver_args.ftol, xtol=self.solver_args.xtol, memory=self.\n solver_args.memory, seed=self.solver_args.seed)\n', (8427, 8682), True, 'import pygmo as pg\n')]
|
#!/usr/bin/env python3
import fire
import json
import os
import numpy as np
import tensorflow as tf
import model, sample, encoder
def interact_model(
model_name='117M',
seed=None,
nsamples=1000,
batch_size=1,
length=None,
temperature=1,
top_k=0,
top_p=0.0
):
"""
Interactively run the model
:model_name=117M : String, which model to use
:seed=None : Integer seed for random number generators, fix seed to reproduce
results
:nsamples=1 : Number of samples to return total
:batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples.
:length=None : Number of tokens in generated text, if None (default), is
determined by model hyperparameters
:temperature=1 : Float value controlling randomness in boltzmann
distribution. Lower temperature results in less random completions. As the
temperature approaches zero, the model will become deterministic and
repetitive. Higher temperature results in more random completions.
:top_k=0 : Integer value controlling diversity. 1 means only 1 word is
considered for each step (token), resulting in deterministic completions,
while 40 means 40 words are considered at each step. 0 (default) is a
special setting meaning no restrictions. 40 generally is a good value.
:top_p=0.0 : Float value controlling diversity. Implements nucleus sampling,
overriding top_k if set to a value > 0. A good setting is 0.9.
"""
if batch_size is None:
batch_size = 1
assert nsamples % batch_size == 0
enc = encoder.get_encoder(model_name)
hparams = model.default_hparams()
with open(os.path.join('models', model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
if length is None:
length = hparams.n_ctx // 2
print(length)
#elif length > hparams.n_ctx:
# raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)
#config = tf.ConfigProto(device_count={'GPU': 0})
config = tf.ConfigProto()
with tf.Session(graph=tf.Graph(),config=config) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
raw_text = """Model {"""
#input("Model prompt >>> ")
context_tokens = enc.encode(raw_text)
output = sample.sample_sequence(
hparams=hparams, length=length,
context=context,
batch_size=batch_size,
temperature=temperature, top_k=top_k, top_p=top_p
)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name))
saver.restore(sess, ckpt)
from datetime import datetime
#while True:
generated = 0
import time
grand_start = time.time()
for cnt in range(nsamples // batch_size):
start_per_sample = time.time()
output_text = raw_text
text = raw_text
context_tokens = enc.encode(text)
#raw_text = input("Model prompt >>> ")
# while not raw_text:
# print('Prompt should not be empty!')
# raw_text = input("Model prompt >>> ")
#print(context_tokens)
#file_to_save.write(raw_text)
#for cnt in range(nsamples // batch_size):
while "<|endoftext|>" not in text:
out = sess.run(output, feed_dict={context: [context_tokens for _ in range(batch_size)]})[:,
len(context_tokens):]
for i in range(batch_size):
#generated += 1
text = enc.decode(out[i])
if "<|endoftext|>" in text:
sep = "<|endoftext|>"
rest = text.split(sep, 1)[0]
output_text += rest
break
context_tokens = enc.encode(text)
output_text += text
print("=" * 40 + " SAMPLE " + str(cnt+12) + " " + "=" * 40)
minutes, seconds = divmod(time.time() - start_per_sample, 60)
print("Output Done : {:0>2}:{:05.2f}".format(int(minutes),seconds) )
print("=" * 80)
with open("Simulink_sample/sample__"+str(cnt+12)+".mdl","w+") as f:
f.write(output_text)
elapsed_total = time.time()-grand_start
hours, rem = divmod(elapsed_total,3600)
minutes, seconds = divmod(rem, 60)
print("Total time to generate 1000 samples :{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
if __name__ == '__main__':
fire.Fire(interact_model)
|
[
"tensorflow.Graph",
"encoder.get_encoder",
"fire.Fire",
"tensorflow.placeholder",
"tensorflow.train.Saver",
"os.path.join",
"sample.sample_sequence",
"model.default_hparams",
"numpy.random.seed",
"json.load",
"tensorflow.ConfigProto",
"tensorflow.set_random_seed",
"time.time"
] |
[((1595, 1626), 'encoder.get_encoder', 'encoder.get_encoder', (['model_name'], {}), '(model_name)\n', (1614, 1626), False, 'import model, sample, encoder\n'), ((1641, 1664), 'model.default_hparams', 'model.default_hparams', ([], {}), '()\n', (1662, 1664), False, 'import model, sample, encoder\n'), ((2059, 2075), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (2073, 2075), True, 'import tensorflow as tf\n'), ((4691, 4716), 'fire.Fire', 'fire.Fire', (['interact_model'], {}), '(interact_model)\n', (4700, 4716), False, 'import fire\n'), ((2155, 2199), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32', '[batch_size, None]'], {}), '(tf.int32, [batch_size, None])\n', (2169, 2199), True, 'import tensorflow as tf\n'), ((2208, 2228), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2222, 2228), True, 'import numpy as np\n'), ((2237, 2261), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['seed'], {}), '(seed)\n', (2255, 2261), True, 'import tensorflow as tf\n'), ((2405, 2554), 'sample.sample_sequence', 'sample.sample_sequence', ([], {'hparams': 'hparams', 'length': 'length', 'context': 'context', 'batch_size': 'batch_size', 'temperature': 'temperature', 'top_k': 'top_k', 'top_p': 'top_p'}), '(hparams=hparams, length=length, context=context,\n batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p)\n', (2427, 2554), False, 'import model, sample, encoder\n'), ((2626, 2642), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2640, 2642), True, 'import tensorflow as tf\n'), ((2878, 2889), 'time.time', 'time.time', ([], {}), '()\n', (2887, 2889), False, 'import time\n'), ((1679, 1729), 'os.path.join', 'os.path.join', (['"""models"""', 'model_name', '"""hparams.json"""'], {}), "('models', model_name, 'hparams.json')\n", (1691, 1729), False, 'import os\n'), ((1772, 1784), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1781, 1784), False, 'import json\n'), ((2685, 2719), 'os.path.join', 'os.path.join', (['"""models"""', 'model_name'], {}), "('models', model_name)\n", (2697, 2719), False, 'import os\n'), ((2971, 2982), 'time.time', 'time.time', ([], {}), '()\n', (2980, 2982), False, 'import time\n'), ((4428, 4439), 'time.time', 'time.time', ([], {}), '()\n', (4437, 4439), False, 'import time\n'), ((2102, 2112), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2110, 2112), True, 'import tensorflow as tf\n'), ((4142, 4153), 'time.time', 'time.time', ([], {}), '()\n', (4151, 4153), False, 'import time\n')]
|
#!/usr/bin/python3
from typing import Dict
import optparse
import numpy as np
import rasterio
from rasterio import features
def main(county_pop_file, spatial_dist_file, fname_out, no_data_val=-9999):
'''
county_pop_file: County level population estimates
spatial_dist_file: Spatial projection of population distribution
'''
# -------------------------------------
# Open and read raster file with county
# level population estimates
# -------------------------------------
with rasterio.open(county_pop_file) as rastf:
county_pop = rastf.read()
nodatacp = rastf.nodata
# --------------------------------------------------------------
# Open and read raster file with spatial population distribution
# --------------------------------------------------------------
with rasterio.open(spatial_dist_file) as rastf:
pop_dist = rastf.read()
nodatasp = rastf.nodata
prf = rastf.profile
county_pop = np.squeeze(county_pop)
pop_dist = np.squeeze(pop_dist)
pop_est = np.ones(pop_dist.shape)*no_data_val
ind1 = np.where(county_pop.flatten() != nodatacp)[0]
ind2 = np.where(pop_dist.flatten() != nodatasp)[0]
ind = np.intersect1d(ind1, ind2)
ind2d = np.unravel_index(ind, pop_dist.shape)
pop_est[ind2d] = county_pop[ind2d] * pop_dist[ind2d]
pop_est[ind2d] = np.round(pop_est[ind2d])
# Update raster meta-data
prf.update(nodata=no_data_val)
# Write out spatially distributed population estimate to raster
with open(fname_out, "wb") as fout:
with rasterio.open(fout.name, 'w', **prf) as out_raster:
out_raster.write(pop_est.astype(rasterio.float32), 1)
argparser = optparse.OptionParser()
argparser.add_option('--population-file', action='store', dest='pop_file',
help='County level population estimates')
argparser.add_option('--dist-file', action='store', dest='dist_file',
help='Spatial projection of population distribution')
argparser.add_option('--out-file', action='store', dest='out_file',
help='Filename of the output')
(options, args) = argparser.parse_args()
if not options.pop_file:
print('Please specify a population file with --population-file')
sys.exit(1)
if not options.dist_file:
print('Please specify a distribution file with --dist-file')
sys.exit(1)
if not options.out_file:
print('Please specify the name of the output with --out-file')
sys.exit(1)
main(options.pop_file, options.dist_file, options.out_file)
|
[
"numpy.intersect1d",
"numpy.ones",
"rasterio.open",
"optparse.OptionParser",
"numpy.squeeze",
"numpy.unravel_index",
"numpy.round"
] |
[((1730, 1753), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (1751, 1753), False, 'import optparse\n'), ((996, 1018), 'numpy.squeeze', 'np.squeeze', (['county_pop'], {}), '(county_pop)\n', (1006, 1018), True, 'import numpy as np\n'), ((1034, 1054), 'numpy.squeeze', 'np.squeeze', (['pop_dist'], {}), '(pop_dist)\n', (1044, 1054), True, 'import numpy as np\n'), ((1229, 1255), 'numpy.intersect1d', 'np.intersect1d', (['ind1', 'ind2'], {}), '(ind1, ind2)\n', (1243, 1255), True, 'import numpy as np\n'), ((1268, 1305), 'numpy.unravel_index', 'np.unravel_index', (['ind', 'pop_dist.shape'], {}), '(ind, pop_dist.shape)\n', (1284, 1305), True, 'import numpy as np\n'), ((1385, 1409), 'numpy.round', 'np.round', (['pop_est[ind2d]'], {}), '(pop_est[ind2d])\n', (1393, 1409), True, 'import numpy as np\n'), ((519, 549), 'rasterio.open', 'rasterio.open', (['county_pop_file'], {}), '(county_pop_file)\n', (532, 549), False, 'import rasterio\n'), ((843, 875), 'rasterio.open', 'rasterio.open', (['spatial_dist_file'], {}), '(spatial_dist_file)\n', (856, 875), False, 'import rasterio\n'), ((1070, 1093), 'numpy.ones', 'np.ones', (['pop_dist.shape'], {}), '(pop_dist.shape)\n', (1077, 1093), True, 'import numpy as np\n'), ((1598, 1634), 'rasterio.open', 'rasterio.open', (['fout.name', '"""w"""'], {}), "(fout.name, 'w', **prf)\n", (1611, 1634), False, 'import rasterio\n')]
|
import os
import math
from pathlib import Path
import clip
import torch
from PIL import Image
import numpy as np
import pandas as pd
from common import common_path
# Set the path to the photos
# dataset_version = "lite" # Use "lite" or "full"
# photos_path = Path("unsplash-dataset") / dataset_version / "photos"
photos_path = os.path.join(common_path.project_dir, 'unsplash-dataset/lite/photos')
# List all JPGs in the folder
photos_files = list(Path(photos_path).glob("*.jpg"))
# Print some statistics
print(f"Photos found: {len(photos_files)}")
# Load the open CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
# Function that computes the feature vectors for a batch of images
def compute_clip_features(photos_batch):
# Load all the photos from the files
photos = [Image.open(photo_file) for photo_file in photos_batch]
# Preprocess all photos
photos_preprocessed = torch.stack([preprocess(photo) for photo in photos]).to(device)
with torch.no_grad():
# Encode the photos batch to compute the feature vectors and normalize them
photos_features = model.encode_image(photos_preprocessed)
photos_features /= photos_features.norm(dim=-1, keepdim=True)
# Transfer the feature vectors back to the CPU and convert to numpy
return photos_features.cpu().numpy()
# Define the batch size so that it fits on your GPU. You can also do the processing on the CPU, but it will be slower.
batch_size = 16
# Path where the feature vectors will be stored
features_path = os.path.join(common_path.project_dir, 'unsplash-dataset/lite/features')
# Compute how many batches are needed
batches = math.ceil(len(photos_files) / batch_size)
# Process each batch
for i in range(batches):
print(f"Processing batch {i + 1}/{batches}")
batch_ids_path = os.path.join(features_path, f"{i:010d}.csv")
batch_features_path = os.path.join(features_path, f"{i:010d}.npy")
# Only do the processing if the batch wasn't processed yet
if not os.path.exists(batch_features_path):
try:
# Select the photos for the current batch
batch_files = photos_files[i * batch_size: (i + 1) * batch_size]
# Compute the features and save to a numpy file
batch_features = compute_clip_features(batch_files)
np.save(batch_features_path, batch_features)
# Save the photo IDs to a CSV file
photo_ids = [photo_file.name.split(".")[0] for photo_file in batch_files]
photo_ids_data = pd.DataFrame(photo_ids, columns=['photo_id'])
photo_ids_data.to_csv(batch_ids_path, index=False)
except:
# Catch problems with the processing to make the process more robust
print(f'Problem with batch {i}')
# Load all numpy files
features_list = [np.load(features_file) for features_file in sorted(Path(features_path).glob("*.npy"))]
# Concatenate the features and store in a merged file
features = np.concatenate(features_list)
np.save(os.path.join(features_path, "features.npy"), features)
# Load all the photo IDs
photo_ids = pd.concat([pd.read_csv(ids_file) for ids_file in sorted(Path(features_path).glob("*.csv"))])
photo_ids.to_csv(os.path.join(features_path, "photo_ids.csv"), index=False)
|
[
"os.path.exists",
"PIL.Image.open",
"pandas.read_csv",
"pathlib.Path",
"os.path.join",
"torch.cuda.is_available",
"numpy.concatenate",
"clip.load",
"pandas.DataFrame",
"torch.no_grad",
"numpy.load",
"numpy.save"
] |
[((332, 401), 'os.path.join', 'os.path.join', (['common_path.project_dir', '"""unsplash-dataset/lite/photos"""'], {}), "(common_path.project_dir, 'unsplash-dataset/lite/photos')\n", (344, 401), False, 'import os\n'), ((659, 695), 'clip.load', 'clip.load', (['"""ViT-B/32"""'], {'device': 'device'}), "('ViT-B/32', device=device)\n", (668, 695), False, 'import clip\n'), ((1598, 1669), 'os.path.join', 'os.path.join', (['common_path.project_dir', '"""unsplash-dataset/lite/features"""'], {}), "(common_path.project_dir, 'unsplash-dataset/lite/features')\n", (1610, 1669), False, 'import os\n'), ((3041, 3070), 'numpy.concatenate', 'np.concatenate', (['features_list'], {}), '(features_list)\n', (3055, 3070), True, 'import numpy as np\n'), ((602, 627), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (625, 627), False, 'import torch\n'), ((1879, 1923), 'os.path.join', 'os.path.join', (['features_path', 'f"""{i:010d}.csv"""'], {}), "(features_path, f'{i:010d}.csv')\n", (1891, 1923), False, 'import os\n'), ((1950, 1994), 'os.path.join', 'os.path.join', (['features_path', 'f"""{i:010d}.npy"""'], {}), "(features_path, f'{i:010d}.npy')\n", (1962, 1994), False, 'import os\n'), ((2888, 2910), 'numpy.load', 'np.load', (['features_file'], {}), '(features_file)\n', (2895, 2910), True, 'import numpy as np\n'), ((3079, 3122), 'os.path.join', 'os.path.join', (['features_path', '"""features.npy"""'], {}), "(features_path, 'features.npy')\n", (3091, 3122), False, 'import os\n'), ((3282, 3326), 'os.path.join', 'os.path.join', (['features_path', '"""photo_ids.csv"""'], {}), "(features_path, 'photo_ids.csv')\n", (3294, 3326), False, 'import os\n'), ((861, 883), 'PIL.Image.open', 'Image.open', (['photo_file'], {}), '(photo_file)\n', (871, 883), False, 'from PIL import Image\n'), ((1045, 1060), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1058, 1060), False, 'import torch\n'), ((2070, 2105), 'os.path.exists', 'os.path.exists', (['batch_features_path'], {}), '(batch_features_path)\n', (2084, 2105), False, 'import os\n'), ((3183, 3204), 'pandas.read_csv', 'pd.read_csv', (['ids_file'], {}), '(ids_file)\n', (3194, 3204), True, 'import pandas as pd\n'), ((453, 470), 'pathlib.Path', 'Path', (['photos_path'], {}), '(photos_path)\n', (457, 470), False, 'from pathlib import Path\n'), ((2388, 2432), 'numpy.save', 'np.save', (['batch_features_path', 'batch_features'], {}), '(batch_features_path, batch_features)\n', (2395, 2432), True, 'import numpy as np\n'), ((2596, 2641), 'pandas.DataFrame', 'pd.DataFrame', (['photo_ids'], {'columns': "['photo_id']"}), "(photo_ids, columns=['photo_id'])\n", (2608, 2641), True, 'import pandas as pd\n'), ((2939, 2958), 'pathlib.Path', 'Path', (['features_path'], {}), '(features_path)\n', (2943, 2958), False, 'from pathlib import Path\n'), ((3228, 3247), 'pathlib.Path', 'Path', (['features_path'], {}), '(features_path)\n', (3232, 3247), False, 'from pathlib import Path\n')]
|
import numpy as np
import datajoint as dj
from treadmill_pipeline import project_database_prefix
from ephys.utilities import ingestion, time_sync
from ephys import get_schema_name
schema = dj.schema(project_database_prefix + 'treadmill_pipeline')
reference = dj.create_virtual_module('reference', get_schema_name('reference'))
acquisition = dj.create_virtual_module('acquisition', get_schema_name('acquisition'))
behavior = dj.create_virtual_module('behavior', get_schema_name('behavior'))
@schema
class TreadmillTracking(dj.Imported):
definition = """ # session-level tracking data from the treadmill_pipeline(s) employed in the experiment
-> acquisition.Session
treadmill_tracking_time: datetime # start time of this treadmill_pipeline speed recording
---
treadmill_tracking_name: varchar(40) # user-assign name of this treadmill_pipeline tracking (e.g. 27032019laserSess1)
treadmill_timestamps: blob@ephys_store # (s) timestamps of the treadmill_pipeline speed samples
"""
class TreadmillSync(dj.Part):
definition = """
-> master
---
sync_master_clock: varchar(128) # name of the sync-master
track_sync_data=null: blob@ephys_store # sync data (binary)
track_time_zero=null: float # (s) the first time point of this tracking
track_sync_timestamps=null: blob@ephys_store # (s) timestamps of sync data in tracking clock
track_sync_master_timestamps=null: blob@ephys_store # (s) timestamps of sync data in master clock
"""
class Speed(dj.Part):
definition = """
-> master
treadmill_name: varchar(32)
---
treadmill_speed: blob@ephys_store # (s) treadmill_pipeline speed at each timestamp
"""
key_source = acquisition.Session & acquisition.Recording # wait for recording to be ingested first before tracking
def make(self, key):
input_dir = ingestion.find_input_directory(key)
if not input_dir:
print(f'{input_dir} not found in this machine, skipping...')
return
rec_type, recordings = ingestion.get_recordings(input_dir)
if rec_type in ('neuropixels', 'neurologger'): # if 'neuropixels' recording, check for OptiTrack's `motive` or `.csv`
opti_list = ingestion.get_optitrack(input_dir)
if not opti_list:
raise FileNotFoundError('No OptiTrack "matmot.mtv" or ".csv" found')
for opti in opti_list:
if 'Format Version' not in opti.meta:
raise NotImplementedError('Treadmill data ingest from type other than "optitrack.csv" not implemented')
secondary_data = opti.secondary_data
if 'Treadmill' not in secondary_data:
raise KeyError('No "Treadmill" found in the secondary data of optitrack.csv')
treadmill_key = dict(key, treadmill_tracking_time=opti.recording_time)
self.insert1(dict(treadmill_key,
treadmill_tracking_name=opti.tracking_name, # name of the session folder
treadmill_timestamps=secondary_data['t']))
if hasattr(opti, 'sync_data'):
self.TreadmillSync.insert1(dict(treadmill_key,
sync_master_clock=opti.sync_data['master_name'],
track_time_zero=secondary_data['t'][0],
track_sync_timestamps=opti.sync_data['slave'],
track_sync_master_timestamps=opti.sync_data['master']))
else: # data presynced with tracking-recording pair,
# still need for a linear shift from session start to the recording this tracking is synced to
self.TrackingSync.insert1(time_sync.create_tracking_sync_data(
treadmill_key, np.array([secondary_data['t'][0], secondary_data['t'][-1]])))
self.Speed.insert1([dict(treadmill_key, treadmill_name=k, treadmill_speed=v['speed'])
for k, v in secondary_data['Treadmill'].items()])
print(f'Insert {len(opti_list)} treadmill_pipeline tracking(s): {input_dir.stem}')
else:
raise NotImplementedError(f'Treadmill Tracking ingestion for recording type {rec_type} not implemented')
|
[
"ephys.utilities.ingestion.find_input_directory",
"ephys.utilities.ingestion.get_optitrack",
"numpy.array",
"ephys.utilities.ingestion.get_recordings",
"datajoint.schema",
"ephys.get_schema_name"
] |
[((192, 249), 'datajoint.schema', 'dj.schema', (["(project_database_prefix + 'treadmill_pipeline')"], {}), "(project_database_prefix + 'treadmill_pipeline')\n", (201, 249), True, 'import datajoint as dj\n'), ((301, 329), 'ephys.get_schema_name', 'get_schema_name', (['"""reference"""'], {}), "('reference')\n", (316, 329), False, 'from ephys import get_schema_name\n'), ((385, 415), 'ephys.get_schema_name', 'get_schema_name', (['"""acquisition"""'], {}), "('acquisition')\n", (400, 415), False, 'from ephys import get_schema_name\n'), ((465, 492), 'ephys.get_schema_name', 'get_schema_name', (['"""behavior"""'], {}), "('behavior')\n", (480, 492), False, 'from ephys import get_schema_name\n'), ((2041, 2076), 'ephys.utilities.ingestion.find_input_directory', 'ingestion.find_input_directory', (['key'], {}), '(key)\n', (2071, 2076), False, 'from ephys.utilities import ingestion, time_sync\n'), ((2227, 2262), 'ephys.utilities.ingestion.get_recordings', 'ingestion.get_recordings', (['input_dir'], {}), '(input_dir)\n', (2251, 2262), False, 'from ephys.utilities import ingestion, time_sync\n'), ((2415, 2449), 'ephys.utilities.ingestion.get_optitrack', 'ingestion.get_optitrack', (['input_dir'], {}), '(input_dir)\n', (2438, 2449), False, 'from ephys.utilities import ingestion, time_sync\n'), ((4133, 4192), 'numpy.array', 'np.array', (["[secondary_data['t'][0], secondary_data['t'][-1]]"], {}), "([secondary_data['t'][0], secondary_data['t'][-1]])\n", (4141, 4192), True, 'import numpy as np\n')]
|
"Test list input."
# For support of python 2.5
from __future__ import with_statement
import numpy as np
from numpy.testing import assert_equal, assert_array_almost_equal
import bottleneck as bn
# ---------------------------------------------------------------------------
# Check that functions can handle list input
def lists():
"Iterator that yields lists to use for unit testing."
ss = {}
ss[1] = {'size': 4, 'shapes': [(4,)]}
ss[2] = {'size': 6, 'shapes': [(1, 6), (2, 3)]}
ss[3] = {'size': 6, 'shapes': [(1, 2, 3)]}
ss[4] = {'size': 24, 'shapes': [(1, 2, 3, 4)]} # Unaccelerated
for ndim in ss:
size = ss[ndim]['size']
shapes = ss[ndim]['shapes']
a = np.arange(size)
for shape in shapes:
a = a.reshape(shape)
yield a.tolist()
def unit_maker(func, func0, args=tuple()):
"Test that bn.xxx gives the same output as bn.slow.xxx for list input."
msg = '\nfunc %s | input %s | shape %s\n'
msg += '\nInput array:\n%s\n'
for i, arr in enumerate(lists()):
argsi = tuple([list(arr)] + list(args))
actual = func(*argsi)
desired = func0(*argsi)
tup = (func.__name__, 'a'+str(i), str(np.array(arr).shape), arr)
err_msg = msg % tup
assert_array_almost_equal(actual, desired, err_msg=err_msg)
def test_nansum():
"Test nansum."
yield unit_maker, bn.nansum, bn.slow.nansum
def test_nanmax():
"Test nanmax."
yield unit_maker, bn.nanmax, bn.slow.nanmax
def test_nanargmin():
"Test nanargmin."
yield unit_maker, bn.nanargmin, bn.slow.nanargmin
def test_nanargmax():
"Test nanargmax."
yield unit_maker, bn.nanargmax, bn.slow.nanargmax
def test_nanmin():
"Test nanmin."
yield unit_maker, bn.nanmin, bn.slow.nanmin
def test_nanmean():
"Test nanmean."
yield unit_maker, bn.nanmean, bn.slow.nanmean
def test_nanstd():
"Test nanstd."
yield unit_maker, bn.nanstd, bn.slow.nanstd
def test_nanvar():
"Test nanvar."
yield unit_maker, bn.nanvar, bn.slow.nanvar
def test_median():
"Test median."
yield unit_maker, bn.median, bn.slow.median
def test_nanmedian():
"Test nanmedian."
yield unit_maker, bn.nanmedian, bn.slow.nanmedian
def test_rankdata():
"Test rankdata."
yield unit_maker, bn.rankdata, bn.slow.rankdata
def test_nanrankdata():
"Test nanrankdata."
yield unit_maker, bn.nanrankdata, bn.slow.nanrankdata
def test_partsort():
"Test partsort."
yield unit_maker, bn.partsort, bn.slow.partsort, (2,)
def test_argpartsort():
"Test argpartsort."
yield unit_maker, bn.argpartsort, bn.slow.argpartsort, (2,)
def test_ss():
"Test ss."
yield unit_maker, bn.ss, bn.slow.ss
def test_nn():
"Test nn."
a = [[1, 2], [3, 4]]
a0 = [1, 2]
assert_equal(bn.nn(a, a0), bn.slow.nn(a, a0))
def test_anynan():
"Test anynan."
yield unit_maker, bn.anynan, bn.slow.anynan
def test_allnan():
"Test allnan."
yield unit_maker, bn.allnan, bn.slow.allnan
def test_move_sum():
"Test move_sum."
yield unit_maker, bn.move_sum, bn.slow.move_sum, (2,)
def test_move_nansum():
"Test move_nansum."
yield unit_maker, bn.move_nansum, bn.slow.move_nansum, (2,)
def test_move_mean():
"Test move_mean."
yield unit_maker, bn.move_mean, bn.slow.move_mean, (2,)
def test_move_median():
"Test move_median."
yield unit_maker, bn.move_median, bn.slow.move_median, (2,)
def test_move_nanmean():
"Test move_nanmean."
yield unit_maker, bn.move_nanmean, bn.slow.move_nanmean, (2,)
def test_move_std():
"Test move_std."
yield unit_maker, bn.move_std, bn.slow.move_std, (2,)
def test_move_nanstd():
"Test move_nanstd."
yield unit_maker, bn.move_nanstd, bn.slow.move_nanstd, (2,)
def test_move_min():
"Test move_min."
yield unit_maker, bn.move_min, bn.slow.move_min, (2,)
def test_move_max():
"Test move_max."
yield unit_maker, bn.move_max, bn.slow.move_max, (2,)
def test_move_nanmin():
"Test move_nanmin."
yield unit_maker, bn.move_nanmin, bn.slow.move_nanmin, (2,)
def test_move_nanmax():
"Test move_nanmax."
yield unit_maker, bn.move_nanmax, bn.slow.move_nanmax, (2,)
|
[
"numpy.testing.assert_array_almost_equal",
"bottleneck.slow.nn",
"numpy.array",
"numpy.arange",
"bottleneck.nn"
] |
[((717, 732), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (726, 732), True, 'import numpy as np\n'), ((1282, 1341), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['actual', 'desired'], {'err_msg': 'err_msg'}), '(actual, desired, err_msg=err_msg)\n', (1307, 1341), False, 'from numpy.testing import assert_equal, assert_array_almost_equal\n'), ((2844, 2856), 'bottleneck.nn', 'bn.nn', (['a', 'a0'], {}), '(a, a0)\n', (2849, 2856), True, 'import bottleneck as bn\n'), ((2858, 2875), 'bottleneck.slow.nn', 'bn.slow.nn', (['a', 'a0'], {}), '(a, a0)\n', (2868, 2875), True, 'import bottleneck as bn\n'), ((1219, 1232), 'numpy.array', 'np.array', (['arr'], {}), '(arr)\n', (1227, 1232), True, 'import numpy as np\n')]
|
import os
from functools import partial
from multiprocessing import Pool
from typing import Any, Callable, Dict, List, Optional
import numpy as np
import pandas as pd
from tqdm import tqdm
from src.dataset.utils.waveform_preprocessings import preprocess_strain
def id_2_path(
image_id: str,
is_train: bool = True,
data_dir: str = "../input/g2net-gravitational-wave-detection",
) -> str:
"""
modify from https://www.kaggle.com/ihelon/g2net-eda-and-modeling
"""
folder = "train" if is_train else "test"
return "{}/{}/{}/{}/{}/{}.npy".format(
data_dir, folder, image_id[0], image_id[1], image_id[2], image_id
)
def path_2_id(path: str) -> str:
return os.path.basename(path).replace(".npy", "")
def add_dir(df: pd.DataFrame) -> pd.DataFrame:
df["top_dir"] = df["id"].apply(lambda x: x[0])
df["bottom_dir"] = df["id"].apply(lambda x: x[:3])
return df
def add_data_path(
df: pd.DataFrame,
is_train: bool = False,
data_dir: str = "../input/g2net-gravitational-wave-detection",
) -> pd.DataFrame:
df = add_dir(df=df)
df["path"] = df["id"].apply(
lambda x: id_2_path(image_id=x, is_train=is_train, data_dir=data_dir)
)
return df
def get_agg_feats(
path: str,
interp_psd: Optional[Callable] = None,
psds: Optional[np.ndarray] = None,
window: str = "tukey",
fs: int = 2048,
fband: List[int] = [10, 912],
psd_cache_path_suffix: Optional[str] = None,
T: float = 2.0,
) -> Dict[str, Any]:
sample_data = np.load(path)
data_id = path_2_id(path)
if interp_psd is None:
for i, strain in enumerate(sample_data):
_, strain_bp = preprocess_strain(
strain=strain,
interp_psd=interp_psd,
psd=psds[i],
window=window,
fs=fs,
fband=fband,
)
sample_data[i] = strain_bp
mean = sample_data.mean(axis=-1)
std = sample_data.std(axis=-1)
minim = sample_data.min(axis=-1)
maxim = sample_data.max(axis=-1)
ene = (sample_data ** 2).sum(axis=-1)
agg_dict = {
"id": data_id,
"mean_site0": mean[0],
"mean_site1": mean[1],
"mean_site2": mean[2],
"std_site0": std[0],
"std_site1": std[1],
"std_site2": std[2],
"min_site0": minim[0],
"min_site1": minim[1],
"min_site2": minim[2],
"max_site0": maxim[0],
"max_site1": maxim[1],
"max_site2": maxim[2],
"ene_site0": ene[0],
"ene_site1": ene[1],
"ene_site2": ene[2],
}
if psd_cache_path_suffix is not None:
cache_path = path.replace(".npy", psd_cache_path_suffix)
if os.path.exists(cache_path):
psd = np.load(cache_path)
psd_ranges = [10, 35, 350, 500, 912]
psd_hz_begin = 0
for psd_hz_end in psd_ranges:
psd_mean = psd[:, int(psd_hz_begin * T) : int(psd_hz_end * T)].mean(
axis=-1
)
for site_id, psd_mean_for_site in enumerate(psd_mean):
agg_dict[
f"psd_{psd_hz_begin}-{psd_hz_end}hz_site{site_id}"
] = psd_mean_for_site
psd_hz_begin = psd_hz_end
for site_id, psd_mean_for_site in enumerate(psd.mean(axis=-1)):
agg_dict[f"psd_all-hz_site{site_id}"] = psd_mean_for_site
return agg_dict
def get_site_metrics(
df: pd.DataFrame,
interp_psd: Optional[Callable] = None,
psds: Optional[np.ndarray] = None,
window: str = "tukey",
fs: int = 2048,
fband: List[int] = [10, 912],
psd_cache_path_suffix: Optional[str] = None,
num_workers: int = 8,
):
"""
Compute for each id the metrics for each site.
df: the complete df
modify from
https://www.kaggle.com/andradaolteanu/g2net-searching-the-sky-pytorch-effnet-w-meta
"""
func_ = partial(
get_agg_feats,
interp_psd=interp_psd,
psds=psds,
window=window,
fs=fs,
fband=fband,
psd_cache_path_suffix=psd_cache_path_suffix,
)
if num_workers > 1:
with Pool(processes=num_workers) as pool:
agg_dicts = list(
tqdm(
pool.imap(func_, df["path"].tolist()),
total=len(df),
)
)
else:
agg_dicts = []
for ID, path in tqdm(zip(df["id"].values, df["path"].values)):
# First extract the cronological info
agg_dict = func_(path=path)
agg_dicts.append(agg_dict)
agg_df = pd.DataFrame(agg_dicts)
df = pd.merge(df, agg_df, on="id")
return df
|
[
"os.path.exists",
"src.dataset.utils.waveform_preprocessings.preprocess_strain",
"pandas.merge",
"functools.partial",
"os.path.basename",
"multiprocessing.Pool",
"pandas.DataFrame",
"numpy.load"
] |
[((1533, 1546), 'numpy.load', 'np.load', (['path'], {}), '(path)\n', (1540, 1546), True, 'import numpy as np\n'), ((3986, 4127), 'functools.partial', 'partial', (['get_agg_feats'], {'interp_psd': 'interp_psd', 'psds': 'psds', 'window': 'window', 'fs': 'fs', 'fband': 'fband', 'psd_cache_path_suffix': 'psd_cache_path_suffix'}), '(get_agg_feats, interp_psd=interp_psd, psds=psds, window=window, fs=\n fs, fband=fband, psd_cache_path_suffix=psd_cache_path_suffix)\n', (3993, 4127), False, 'from functools import partial\n'), ((4686, 4709), 'pandas.DataFrame', 'pd.DataFrame', (['agg_dicts'], {}), '(agg_dicts)\n', (4698, 4709), True, 'import pandas as pd\n'), ((4720, 4749), 'pandas.merge', 'pd.merge', (['df', 'agg_df'], {'on': '"""id"""'}), "(df, agg_df, on='id')\n", (4728, 4749), True, 'import pandas as pd\n'), ((2741, 2767), 'os.path.exists', 'os.path.exists', (['cache_path'], {}), '(cache_path)\n', (2755, 2767), False, 'import os\n'), ((702, 724), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (718, 724), False, 'import os\n'), ((1680, 1788), 'src.dataset.utils.waveform_preprocessings.preprocess_strain', 'preprocess_strain', ([], {'strain': 'strain', 'interp_psd': 'interp_psd', 'psd': 'psds[i]', 'window': 'window', 'fs': 'fs', 'fband': 'fband'}), '(strain=strain, interp_psd=interp_psd, psd=psds[i], window\n =window, fs=fs, fband=fband)\n', (1697, 1788), False, 'from src.dataset.utils.waveform_preprocessings import preprocess_strain\n'), ((2787, 2806), 'numpy.load', 'np.load', (['cache_path'], {}), '(cache_path)\n', (2794, 2806), True, 'import numpy as np\n'), ((4224, 4251), 'multiprocessing.Pool', 'Pool', ([], {'processes': 'num_workers'}), '(processes=num_workers)\n', (4228, 4251), False, 'from multiprocessing import Pool\n')]
|
import unittest
import shutil
import tempfile
import numpy as np
# import pandas as pd
# import pymc3 as pm
# from pymc3 import summary
# from sklearn.mixture import BayesianGaussianMixture as skBayesianGaussianMixture
from sklearn.model_selection import train_test_split
from pmlearn.exceptions import NotFittedError
from pmlearn.mixture import DirichletProcessMixture
class DirichletProcessMixtureTestCase(unittest.TestCase):
def setUp(self):
self.num_truncate = 3
self.num_components = 3
self.num_pred = 1
self.num_training_samples = 100
self.pi = np.array([0.35, 0.4, 0.25])
self.means = np.array([0, 5, 10])
self.sigmas = np.array([0.5, 0.5, 1.0])
self.components = np.random.randint(0,
self.num_components,
self.num_training_samples)
X = np.random.normal(loc=self.means[self.components],
scale=self.sigmas[self.components])
X.shape = (self.num_training_samples, 1)
self.X_train, self.X_test = train_test_split(X, test_size=0.3)
self.test_DPMM = DirichletProcessMixture()
self.test_nuts_DPMM = DirichletProcessMixture()
self.test_dir = tempfile.mkdtemp()
def tearDown(self):
shutil.rmtree(self.test_dir)
# class DirichletProcessMixtureFitTestCase(DirichletProcessMixtureTestCase):
# def test_advi_fit_returns_correct_model(self):
# # This print statement ensures PyMC3 output won't overwrite the test name
# print('')
# self.test_DPMM.fit(self.X_train)
#
# self.assertEqual(self.num_pred, self.test_DPMM.num_pred)
# self.assertEqual(self.num_components, self.test_DPMM.num_components)
# self.assertEqual(self.num_truncate, self.test_DPMM.num_truncate)
#
# self.assertAlmostEqual(self.pi[0],
# self.test_DPMM.summary['mean']['pi__0'],
# 0)
# self.assertAlmostEqual(self.pi[1],
# self.test_DPMM.summary['mean']['pi__1'],
# 0)
# self.assertAlmostEqual(self.pi[2],
# self.test_DPMM.summary['mean']['pi__2'],
# 0)
#
# self.assertAlmostEqual(
# self.means[0],
# self.test_DPMM.summary['mean']['cluster_center_0__0'],
# 0)
# self.assertAlmostEqual(
# self.means[1],
# self.test_DPMM.summary['mean']['cluster_center_1__0'],
# 0)
# self.assertAlmostEqual(
# self.means[2],
# self.test_DPMM.summary['mean']['cluster_center_2__0'],
# 0)
#
# self.assertAlmostEqual(
# self.sigmas[0],
# self.test_DPMM.summary['mean']['cluster_variance_0__0'],
# 0)
# self.assertAlmostEqual(
# self.sigmas[1],
# self.test_DPMM.summary['mean']['cluster_variance_1__0'],
# 0)
# self.assertAlmostEqual(
# self.sigmas[2],
# self.test_DPMM.summary['mean']['cluster_variance_2__0'],
# 0)
#
# def test_nuts_fit_returns_correct_model(self):
# # This print statement ensures PyMC3 output won't overwrite the test name
# print('')
# self.test_nuts_DPMM.fit(self.X_train,
# inference_type='nuts',
# inference_args={'draws': 1000,
# 'chains': 2})
#
# self.assertEqual(self.num_pred, self.test_nuts_DPMM.num_pred)
# self.assertEqual(self.num_components, self.test_nuts_DPMM.num_components)
# self.assertEqual(self.num_components, self.test_nuts_DPMM.num_truncate)
#
# self.assertAlmostEqual(self.pi[0],
# self.test_nuts_DPMM.summary['mean']['pi__0'],
# 0)
# self.assertAlmostEqual(self.pi[1],
# self.test_nuts_DPMM.summary['mean']['pi__1'],
# 0)
# self.assertAlmostEqual(self.pi[2],
# self.test_nuts_DPMM.summary['mean']['pi__2'],
# 0)
#
# self.assertAlmostEqual(
# self.means[0],
# self.test_nuts_DPMM.summary['mean']['cluster_center_0__0'],
# 0)
# self.assertAlmostEqual(
# self.means[1],
# self.test_nuts_DPMM.summary['mean']['cluster_center_1__0'],
# 0)
# self.assertAlmostEqual(
# self.means[2],
# self.test_nuts_DPMM.summary['mean']['cluster_center_2__0'],
# 0)
#
# self.assertAlmostEqual(
# self.sigmas[0],
# self.test_nuts_DPMM.summary['mean']['cluster_variance_0__0'],
# 0)
# self.assertAlmostEqual(
# self.sigmas[1],
# self.test_nuts_DPMM.summary['mean']['cluster_variance_1__0'],
# 0)
# self.assertAlmostEqual(
# self.sigmas[2],
# self.test_nuts_DPMM.summary['mean']['cluster_variance_2__0'],
# 0)
#
#
class DirichletProcessMixturePredictTestCase(DirichletProcessMixtureTestCase):
# def test_predict_returns_predictions(self):
# print('')
# self.test_DPMM.fit(self.X_train, self.y_train)
# preds = self.test_DPMM.predict(self.X_test)
# self.assertEqual(self.y_test.shape, preds.shape)
# def test_predict_returns_mean_predictions_and_std(self):
# print('')
# self.test_DPMM.fit(self.X_train, self.y_train)
# preds, stds = self.test_DPMM.predict(self.X_test, return_std=True)
# self.assertEqual(self.y_test.shape, preds.shape)
# self.assertEqual(self.y_test.shape, stds.shape)
def test_predict_raises_error_if_not_fit(self):
print('')
with self.assertRaises(NotFittedError) as no_fit_error:
test_DPMM = DirichletProcessMixture()
test_DPMM.predict(self.X_train)
expected = 'Run fit on the model before predict.'
self.assertEqual(str(no_fit_error.exception), expected)
# class DirichletProcessMixtureScoreTestCase(DirichletProcessMixtureTestCase):
# def test_score_matches_sklearn_performance(self):
# print('')
# skDPMM = skBayesianGaussianMixture(n_components=3)
# skDPMM.fit(self.X_train)
# skDPMM_score = skDPMM.score(self.X_test)
#
# self.test_DPMM.fit(self.X_train)
# test_DPMM_score = self.test_DPMM.score(self.X_test)
#
# self.assertAlmostEqual(skDPMM_score, test_DPMM_score, 0)
#
#
# class DirichletProcessMixtureSaveAndLoadTestCase(DirichletProcessMixtureTestCase):
# def test_save_and_load_work_correctly(self):
# print('')
# self.test_DPMM.fit(self.X_train)
# score1 = self.test_DPMM.score(self.X_test)
# self.test_DPMM.save(self.test_dir)
#
# DPMM2 = DirichletProcessMixture()
# DPMM2.load(self.test_dir)
#
# self.assertEqual(self.test_DPMM.inference_type, DPMM2.inference_type)
# self.assertEqual(self.test_DPMM.num_pred, DPMM2.num_pred)
# self.assertEqual(self.test_DPMM.num_training_samples,
# DPMM2.num_training_samples)
# self.assertEqual(self.test_DPMM.num_truncate, DPMM2.num_truncate)
#
# pd.testing.assert_frame_equal(summary(self.test_DPMM.trace),
# summary(DPMM2.trace))
#
# score2 = DPMM2.score(self.X_test)
# self.assertAlmostEqual(score1, score2, 0)
|
[
"numpy.random.normal",
"sklearn.model_selection.train_test_split",
"numpy.array",
"numpy.random.randint",
"tempfile.mkdtemp",
"shutil.rmtree",
"pmlearn.mixture.DirichletProcessMixture"
] |
[((601, 628), 'numpy.array', 'np.array', (['[0.35, 0.4, 0.25]'], {}), '([0.35, 0.4, 0.25])\n', (609, 628), True, 'import numpy as np\n'), ((650, 670), 'numpy.array', 'np.array', (['[0, 5, 10]'], {}), '([0, 5, 10])\n', (658, 670), True, 'import numpy as np\n'), ((693, 718), 'numpy.array', 'np.array', (['[0.5, 0.5, 1.0]'], {}), '([0.5, 0.5, 1.0])\n', (701, 718), True, 'import numpy as np\n'), ((746, 814), 'numpy.random.randint', 'np.random.randint', (['(0)', 'self.num_components', 'self.num_training_samples'], {}), '(0, self.num_components, self.num_training_samples)\n', (763, 814), True, 'import numpy as np\n'), ((916, 1006), 'numpy.random.normal', 'np.random.normal', ([], {'loc': 'self.means[self.components]', 'scale': 'self.sigmas[self.components]'}), '(loc=self.means[self.components], scale=self.sigmas[self.\n components])\n', (932, 1006), True, 'import numpy as np\n'), ((1117, 1151), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X'], {'test_size': '(0.3)'}), '(X, test_size=0.3)\n', (1133, 1151), False, 'from sklearn.model_selection import train_test_split\n'), ((1178, 1203), 'pmlearn.mixture.DirichletProcessMixture', 'DirichletProcessMixture', ([], {}), '()\n', (1201, 1203), False, 'from pmlearn.mixture import DirichletProcessMixture\n'), ((1234, 1259), 'pmlearn.mixture.DirichletProcessMixture', 'DirichletProcessMixture', ([], {}), '()\n', (1257, 1259), False, 'from pmlearn.mixture import DirichletProcessMixture\n'), ((1284, 1302), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (1300, 1302), False, 'import tempfile\n'), ((1336, 1364), 'shutil.rmtree', 'shutil.rmtree', (['self.test_dir'], {}), '(self.test_dir)\n', (1349, 1364), False, 'import shutil\n'), ((6110, 6135), 'pmlearn.mixture.DirichletProcessMixture', 'DirichletProcessMixture', ([], {}), '()\n', (6133, 6135), False, 'from pmlearn.mixture import DirichletProcessMixture\n')]
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from skimage import draw
from skimage import measure
from astropy.io import fits
from astropy import units as u
from astropy import wcs, coordinates
from scipy.ndimage.filters import gaussian_filter
def standard(X):
"""
standard : This function makes data ragbe between 0 and 1.
Arguments:
X (numoy array) : input data.
--------
Returns:
standard data.
"""
xmin = X.min()
X = X-xmin
xmax = X.max()
X = X/xmax
return X
def fetch_data(image_file,model_file,do_standard=True,ignore_error=False):
"""
fetch_data : This function reads image and model.
Arguments:
image_file (string) : path to image file.
model_file (string) : path to model file.
do_standard (logical) (default=True) : if true, minimum/maximum value of image will be set to 0/1.
--------
Returns:
image, x coordinates, y coordinates
"""
with fits.open(image_file) as hdulist:
data = hdulist[0].data
header = hdulist[0].header
lx = header['NAXIS1']
ly = header['NAXIS2']
coord_sys = wcs.WCS(header)
model_file = model_file
sources = np.loadtxt(model_file, dtype={'names': ('name', 'ra', 'dec', 'I'),
'formats': ('S10', 'f4', 'f4', 'f4')})
ra, dec = sources['ra'],sources['dec']
num_sources = len(ra)
radec_coords = coordinates.SkyCoord(ra, dec, unit='deg', frame='fk5')
coords_ar = np.vstack([radec_coords.ra*u.deg, radec_coords.dec*u.deg,
np.zeros(num_sources), np.zeros(num_sources)]).T
xy_coords = coord_sys.wcs_world2pix(coords_ar, 0)
x_coords, y_coords = xy_coords[:,0], xy_coords[:,1]
filt = (0<=x_coords) & (x_coords<lx) & (0<=y_coords) & (y_coords<ly)
if ignore_error:
x_coords, y_coords = x_coords[filt], y_coords[filt]
else:
assert np.sum(filt)==num_sources,'There are some sources out of images! The problem might be in coordinate conversion system or simulation!'
if do_standard==True:
data = standard(data)
return np.moveaxis(data, 0, -1), x_coords, y_coords
def fetch_data_3ch(image_file,model_file,do_standard=True):
"""
fetch_data_3ch : This function reads 3 images of 3 robust and model.
Arguments:
image_file (string) : path to robust 0 image file.
model_file (string) : path to model file.
do_standard (logical) (default=True) : if true, minimum/maximum value of image will be set to 0/1.
--------
Returns:
image, x coordinates, y coordinates
"""
data0, x_coords, y_coords = fetch_data(image_file,model_file,do_standard=do_standard)
# lx,ly = data0[0,:,:,0].shape
try:
data1, x_coords, y_coords = fetch_data(image_file.replace('robust-0','robust-1'),model_file,do_standard=do_standard)
except:
assert 0,'Robust 1 does not exist.'
try:
data2, x_coords, y_coords = fetch_data(image_file.replace('robust-0','robust-2'),model_file,do_standard=do_standard)
except:
assert 0,'Robust 1 does not exist.'
return np.concatenate((data0,data1,data2), axis=-1), x_coords, y_coords
def cat2map(lx,ly,x_coords,y_coords):
"""
cat2map : This function converts a catalog to a 0/1 map which are representing background/point source.
Arguments:
lx (int): number of pixels of the image in first dimension.
ly (int): number of pixels of the image in second dimension.
x_coords (numpy array): list of the first dimension of point source positions.
y_coords (numpy array): list of the second dimension of point source positions.
--------
Returns:
catalog image as nupmy array.
"""
cat = np.zeros((lx,ly))
for i,j in zip(x_coords.astype(int), y_coords.astype(int)):
cat[j, i] = 1
return cat
def magnifier(y,radius=15,value=1):
"""
magnifier (numpy array): This function magnifies any pixel with value one by a given value.
Arguments:
y : input 2D map.
radius (int) (default=15) : radius of magnification.
value (float) (default=True) : the value you want to use in magnified pixels.
--------
Returns:
image with magnified objects as numpy array.
"""
mag = np.zeros(y.shape)
for i,j in np.argwhere(y==1):
rr, cc = draw.circle(i, j, radius=radius, shape=mag.shape)
mag[rr, cc] = value
return mag
def circle(y,radius=15):
"""
circle : This function add some circles around any pixel with value one.
Arguments:
y (numpy array): input 2D map.
radius (int) (default=15): circle radius.
--------
Returns:
image with circles around objects.
"""
mag = np.zeros(y.shape)
for i,j in np.argwhere(y==1):
rr, cc = draw.circle_perimeter(i, j, radius=radius, shape=mag.shape)
mag[rr, cc] = 1
return mag
def horn_kernel(y,radius=10,step_height=1):
"""
horn_kernel : Horn shape kernel.
Arguments:
y (numpy array): input 2D map.
radius (int) (default=15): effective radius of kernel.
--------
Returns:
kerneled image.
"""
mag = np.zeros(y.shape)
for r in range(1,radius):
for i,j in np.argwhere(y==1):
rr, cc = draw.circle(i, j, radius=r, shape=mag.shape)
mag[rr, cc] += 1.*step_height/radius
return mag
def gaussian_kernel(y,sigma=7):
"""
gaussian_kernel: Gaussian filter.
Arguments:
y (numpy array): input 2D map.
sigma (float) (default=7): effective length of Gaussian smoothing.
--------
Returns:
kerneled image.
"""
return gaussian_filter(y, sigma)
def ch_mkdir(directory):
"""
ch_mkdir : This function creates a directory if it does not exist.
Arguments:
directory (string): Path to the directory.
--------
Returns:
null.
"""
if not os.path.exists(directory):
os.makedirs(directory)
def the_print(text,style='bold',tc='gray',bgc='red'):
"""
prints table of formatted text format options
"""
colors = ['black','red','green','yellow','blue','purple','skyblue','gray']
if style == 'bold':
style = 1
elif style == 'underlined':
style = 4
else:
style = 0
fg = 30+colors.index(tc)
bg = 40+colors.index(bgc)
form = ';'.join([str(style), str(fg), str(bg)])
print('\x1b[%sm %s \x1b[0m' % (form, text))
#def ps_extract(xp):
# xp = xp-xp.min()
# xp = xp/xp.max()
# nb = []
# for trsh in np.linspace(0,0.2,200):
# blobs = measure.label(xp>trsh)
# nn = np.unique(blobs).shape[0]
# nb.append(nn)
# nb = np.array(nb)
# nb = np.diff(nb)
# trshs = np.linspace(0,0.2,200)[:-1]
# thrsl = trshs[~((-5<nb) & (nb<5))]
# if thrsl.shape[0]==0:
# trsh = 0.1
# else:
# trsh = thrsl[-1]
#2: 15, 20
#3: 30,10
#4: 50, 10
# nnp = 0
# for tr in np.linspace(1,0,1000):
# blobs = measure.label(xp>tr)
# nn = np.unique(blobs).shape[0]
# if nn-nnp>50:
# break
# nnp = nn
# trsh = tr
# blobs = measure.label(xp>trsh)
# xl = []
# yl = []
# pl = []
# for v in np.unique(blobs)[1:]:
# filt = blobs==v
# pnt = np.round(np.mean(np.argwhere(filt),axis=0)).astype(int)
# if filt.sum()>10:
# xl.append(pnt[1])
# yl.append(pnt[0])
# pl.append(np.mean(xp[blobs==v]))
# return np.array([xl,yl]).T,np.array(pl)
|
[
"skimage.draw.circle",
"os.path.exists",
"scipy.ndimage.filters.gaussian_filter",
"os.makedirs",
"astropy.coordinates.SkyCoord",
"numpy.sum",
"numpy.zeros",
"numpy.argwhere",
"skimage.draw.circle_perimeter",
"numpy.concatenate",
"astropy.io.fits.open",
"numpy.moveaxis",
"numpy.loadtxt",
"astropy.wcs.WCS"
] |
[((1351, 1460), 'numpy.loadtxt', 'np.loadtxt', (['model_file'], {'dtype': "{'names': ('name', 'ra', 'dec', 'I'), 'formats': ('S10', 'f4', 'f4', 'f4')}"}), "(model_file, dtype={'names': ('name', 'ra', 'dec', 'I'),\n 'formats': ('S10', 'f4', 'f4', 'f4')})\n", (1361, 1460), True, 'import numpy as np\n'), ((1583, 1637), 'astropy.coordinates.SkyCoord', 'coordinates.SkyCoord', (['ra', 'dec'], {'unit': '"""deg"""', 'frame': '"""fk5"""'}), "(ra, dec, unit='deg', frame='fk5')\n", (1603, 1637), False, 'from astropy import wcs, coordinates\n'), ((3975, 3993), 'numpy.zeros', 'np.zeros', (['(lx, ly)'], {}), '((lx, ly))\n', (3983, 3993), True, 'import numpy as np\n'), ((4536, 4553), 'numpy.zeros', 'np.zeros', (['y.shape'], {}), '(y.shape)\n', (4544, 4553), True, 'import numpy as np\n'), ((4569, 4588), 'numpy.argwhere', 'np.argwhere', (['(y == 1)'], {}), '(y == 1)\n', (4580, 4588), True, 'import numpy as np\n'), ((5014, 5031), 'numpy.zeros', 'np.zeros', (['y.shape'], {}), '(y.shape)\n', (5022, 5031), True, 'import numpy as np\n'), ((5047, 5066), 'numpy.argwhere', 'np.argwhere', (['(y == 1)'], {}), '(y == 1)\n', (5058, 5066), True, 'import numpy as np\n'), ((5471, 5488), 'numpy.zeros', 'np.zeros', (['y.shape'], {}), '(y.shape)\n', (5479, 5488), True, 'import numpy as np\n'), ((5986, 6011), 'scipy.ndimage.filters.gaussian_filter', 'gaussian_filter', (['y', 'sigma'], {}), '(y, sigma)\n', (6001, 6011), False, 'from scipy.ndimage.filters import gaussian_filter\n'), ((1102, 1123), 'astropy.io.fits.open', 'fits.open', (['image_file'], {}), '(image_file)\n', (1111, 1123), False, 'from astropy.io import fits\n'), ((1292, 1307), 'astropy.wcs.WCS', 'wcs.WCS', (['header'], {}), '(header)\n', (1299, 1307), False, 'from astropy import wcs, coordinates\n'), ((2283, 2307), 'numpy.moveaxis', 'np.moveaxis', (['data', '(0)', '(-1)'], {}), '(data, 0, -1)\n', (2294, 2307), True, 'import numpy as np\n'), ((3334, 3380), 'numpy.concatenate', 'np.concatenate', (['(data0, data1, data2)'], {'axis': '(-1)'}), '((data0, data1, data2), axis=-1)\n', (3348, 3380), True, 'import numpy as np\n'), ((4607, 4656), 'skimage.draw.circle', 'draw.circle', (['i', 'j'], {'radius': 'radius', 'shape': 'mag.shape'}), '(i, j, radius=radius, shape=mag.shape)\n', (4618, 4656), False, 'from skimage import draw\n'), ((5085, 5144), 'skimage.draw.circle_perimeter', 'draw.circle_perimeter', (['i', 'j'], {'radius': 'radius', 'shape': 'mag.shape'}), '(i, j, radius=radius, shape=mag.shape)\n', (5106, 5144), False, 'from skimage import draw\n'), ((5538, 5557), 'numpy.argwhere', 'np.argwhere', (['(y == 1)'], {}), '(y == 1)\n', (5549, 5557), True, 'import numpy as np\n'), ((6264, 6289), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (6278, 6289), False, 'import os\n'), ((6301, 6323), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (6312, 6323), False, 'import os\n'), ((2080, 2092), 'numpy.sum', 'np.sum', (['filt'], {}), '(filt)\n', (2086, 2092), True, 'import numpy as np\n'), ((5582, 5626), 'skimage.draw.circle', 'draw.circle', (['i', 'j'], {'radius': 'r', 'shape': 'mag.shape'}), '(i, j, radius=r, shape=mag.shape)\n', (5593, 5626), False, 'from skimage import draw\n'), ((1741, 1762), 'numpy.zeros', 'np.zeros', (['num_sources'], {}), '(num_sources)\n', (1749, 1762), True, 'import numpy as np\n'), ((1764, 1785), 'numpy.zeros', 'np.zeros', (['num_sources'], {}), '(num_sources)\n', (1772, 1785), True, 'import numpy as np\n')]
|
import os
import cv2
from Segmentation import CombinedHist, get_histograms, HistQueue
import matplotlib.pyplot as plt
import numpy as np
listofFiles = os.listdir('generated_frames')
# change the size of queue accordingly
queue_of_hists = HistQueue.HistQueue(25)
x = []
y_r = []
y_g = []
y_b = []
def compare(current_hist, frame_no):
avg_histr = queue_of_hists.getAverageHist()
red_result = cv2.compareHist(current_hist.getRedHistr(), avg_histr.getRedHistr(), 0)
green_result = cv2.compareHist(current_hist.getGreenHistr(), avg_histr.getGreenHistr(), 0)
blue_result = cv2.compareHist(current_hist.getBlueHistr(), avg_histr.getBlueHistr(), 0)
x.append(i)
y_r.append(red_result)
y_g.append(green_result)
y_b.append(blue_result)
# print(red_result)
for i in range(0, 4000):
blue_histr, green_histr, red_histr = get_histograms.get_histograms('generated_frames/frame' + str(i) + ".jpg")
hist_of_image = CombinedHist.CombinedHist(blue_histr, green_histr, red_histr)
compare(hist_of_image, i)
queue_of_hists.insert_histr(hist_of_image)
print("frame" + str(i) + ".jpg")
fig = plt.figure(figsize=(18, 5))
y = np.add(np.add(y_r, y_g), y_b) / 3
value = np.percentile(y, 5)
median = np.median(y)
minimum = np.amin(y)
y_sorted = np.sort(y)
getting_index = y_sorted[8]
print("quartile" + str(value))
print("median" + str(median))
plt.plot(x, y, color='k')
plt.axhline(y=value, color='r', linestyle='-')
plt.xticks(np.arange(min(x), max(x) + 1, 100.0))
plt.show()
|
[
"numpy.median",
"os.listdir",
"numpy.amin",
"Segmentation.CombinedHist.CombinedHist",
"numpy.add",
"numpy.sort",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.axhline",
"matplotlib.pyplot.figure",
"Segmentation.HistQueue.HistQueue",
"numpy.percentile",
"matplotlib.pyplot.show"
] |
[((152, 182), 'os.listdir', 'os.listdir', (['"""generated_frames"""'], {}), "('generated_frames')\n", (162, 182), False, 'import os\n'), ((239, 262), 'Segmentation.HistQueue.HistQueue', 'HistQueue.HistQueue', (['(25)'], {}), '(25)\n', (258, 262), False, 'from Segmentation import CombinedHist, get_histograms, HistQueue\n'), ((1131, 1158), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(18, 5)'}), '(figsize=(18, 5))\n', (1141, 1158), True, 'import matplotlib.pyplot as plt\n'), ((1206, 1225), 'numpy.percentile', 'np.percentile', (['y', '(5)'], {}), '(y, 5)\n', (1219, 1225), True, 'import numpy as np\n'), ((1236, 1248), 'numpy.median', 'np.median', (['y'], {}), '(y)\n', (1245, 1248), True, 'import numpy as np\n'), ((1259, 1269), 'numpy.amin', 'np.amin', (['y'], {}), '(y)\n', (1266, 1269), True, 'import numpy as np\n'), ((1281, 1291), 'numpy.sort', 'np.sort', (['y'], {}), '(y)\n', (1288, 1291), True, 'import numpy as np\n'), ((1381, 1406), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'color': '"""k"""'}), "(x, y, color='k')\n", (1389, 1406), True, 'import matplotlib.pyplot as plt\n'), ((1407, 1453), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'value', 'color': '"""r"""', 'linestyle': '"""-"""'}), "(y=value, color='r', linestyle='-')\n", (1418, 1453), True, 'import matplotlib.pyplot as plt\n'), ((1503, 1513), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1511, 1513), True, 'import matplotlib.pyplot as plt\n'), ((948, 1009), 'Segmentation.CombinedHist.CombinedHist', 'CombinedHist.CombinedHist', (['blue_histr', 'green_histr', 'red_histr'], {}), '(blue_histr, green_histr, red_histr)\n', (973, 1009), False, 'from Segmentation import CombinedHist, get_histograms, HistQueue\n'), ((1171, 1187), 'numpy.add', 'np.add', (['y_r', 'y_g'], {}), '(y_r, y_g)\n', (1177, 1187), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# vim: set fileencoding=utf-8 ts=4 sts=4 sw=4 et tw=80 :
#
# Extract and save extended object catalogs from the specified data and
# uncertainty images. This version of the script jointly analyzes all
# images from a specific AOR/channel to enable more sophisticated
# analysis.
#
# <NAME>
# Created: 2021-02-02
# Last modified: 2021-08-24
#--------------------------------------------------------------------------
#**************************************************************************
#--------------------------------------------------------------------------
## Logging setup:
import logging
#logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
#logger.setLevel(logging.DEBUG)
logger.setLevel(logging.INFO)
## Current version:
__version__ = "0.3.5"
## Python version-agnostic module reloading:
try:
reload # Python 2.7
except NameError:
try:
from importlib import reload # Python 3.4+
except ImportError:
from imp import reload # Python 3.0 - 3.3
## Modules:
import argparse
import shutil
#import resource
#import signal
import glob
#import gc
import os
import sys
import time
import numpy as np
#from numpy.lib.recfunctions import append_fields
#import datetime as dt
#from dateutil import parser as dtp
#from functools import partial
#from collections import OrderedDict
#from collections.abc import Iterable
#import multiprocessing as mp
#np.set_printoptions(suppress=True, linewidth=160)
_have_np_vers = float('.'.join(np.__version__.split('.')[:2]))
##--------------------------------------------------------------------------##
## Disable buffering on stdout/stderr:
class Unbuffered(object):
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
sys.stdout = Unbuffered(sys.stdout)
sys.stderr = Unbuffered(sys.stderr)
##--------------------------------------------------------------------------##
## Spitzer pipeline filesystem helpers:
try:
import spitz_fs_helpers
reload(spitz_fs_helpers)
except ImportError:
logger.error("failed to import spitz_fs_helpers module!")
sys.exit(1)
sfh = spitz_fs_helpers
## Spitzer pipeline cross-correlation:
try:
import spitz_xcorr_stacking
reload(spitz_xcorr_stacking)
except ImportError:
logger.error("failed to import spitz_xcor_stacking module!")
sys.exit(1)
sxc = spitz_xcorr_stacking.SpitzerXCorr()
## Catalog pruning helpers:
try:
import catalog_tools
reload(catalog_tools)
except ImportError:
logger.error("failed to import catalog_tools module!")
sys.exit(1)
xcp = catalog_tools.XCorrPruner()
## Spitzer star detection routine:
try:
import spitz_extract
reload(spitz_extract)
spf = spitz_extract.SpitzFind()
except ImportError:
logger.error("spitz_extract module not found!")
sys.exit(1)
## Hybrid stack+individual position calculator:
try:
import spitz_stack_astrom
reload(spitz_stack_astrom)
ha = spitz_stack_astrom.HybridAstrom()
except ImportError:
logger.error("failed to import spitz_stack_astrom module!")
sys.exit(1)
## HORIZONS ephemeris tools:
try:
import jpl_eph_helpers
reload(jpl_eph_helpers)
except ImportError:
logger.error("failed to import jpl_eph_helpers module!")
sys.exit(1)
eee = jpl_eph_helpers.EphTool()
##--------------------------------------------------------------------------##
## Fast FITS I/O:
try:
import fitsio
except ImportError:
logger.error("fitsio module not found! Install and retry.")
sys.stderr.write("\nError: fitsio module not found!\n")
sys.exit(1)
## Save FITS image with clobber (fitsio):
def qsave(iname, idata, header=None, **kwargs):
this_func = sys._getframe().f_code.co_name
parent_func = sys._getframe(1).f_code.co_name
sys.stderr.write("Writing to '%s' ... " % iname)
fitsio.write(iname, idata, clobber=True, header=header, **kwargs)
sys.stderr.write("done.\n")
##--------------------------------------------------------------------------##
##------------------ Parse Command Line ----------------##
##--------------------------------------------------------------------------##
## Dividers:
halfdiv = '-' * 40
fulldiv = '-' * 80
## Parse arguments and run script:
class MyParser(argparse.ArgumentParser):
def error(self, message):
sys.stderr.write('error: %s\n' % message)
self.print_help()
sys.exit(2)
## Enable raw text AND display of defaults:
class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter,
argparse.RawDescriptionHelpFormatter):
pass
## Parse the command line:
if __name__ == '__main__':
# ------------------------------------------------------------------
prog_name = os.path.basename(__file__)
descr_txt = """
Extract catalogs from the listed Spitzer data/uncertainty images.
Version: %s
""" % __version__
parser = MyParser(prog=prog_name, description=descr_txt)
#formatter_class=argparse.RawTextHelpFormatter)
# ------------------------------------------------------------------
parser.set_defaults(imtype=None) #'cbcd') #'clean')
#parser.set_defaults(sigthresh=3.0)
parser.set_defaults(sigthresh=2.0)
parser.set_defaults(skip_existing=True)
parser.set_defaults(save_registered=True)
#parser.set_defaults(save_reg_subdir=None)
# ------------------------------------------------------------------
#parser.add_argument('firstpos', help='first positional argument')
#parser.add_argument('-w', '--whatever', required=False, default=5.0,
# help='some option with default [def: %(default)s]', type=float)
# ------------------------------------------------------------------
# ------------------------------------------------------------------
iogroup = parser.add_argument_group('File I/O')
iogroup.add_argument('--overwrite', required=False, dest='skip_existing',
action='store_false', help='overwrite existing catalogs')
#iogroup.add_argument('-E', '--ephem_data', default=None, required=True,
# help='CSV file with SST ephemeris data', type=str)
iogroup.add_argument('-I', '--input_folder', default=None, required=True,
help='where to find input images', type=str)
iogroup.add_argument('-O', '--output_folder', default=None, required=False,
help='where to save extended catalog outputs', type=str)
iogroup.add_argument('-W', '--walk', default=False, action='store_true',
help='recursively walk subfolders to find CBCD images')
imtype = iogroup.add_mutually_exclusive_group()
#imtype.add_argument('--cbcd', required=False, action='store_const',
# dest='imtype', const='cbcd', help='use cbcd images')
imtype.add_argument('--hcfix', required=False, action='store_const',
dest='imtype', const='hcfix', help='use hcfix images')
imtype.add_argument('--clean', required=False, action='store_const',
dest='imtype', const='clean', help='use clean images')
imtype.add_argument('--nudge', required=False, action='store_const',
dest='imtype', const='nudge', help='use nudge images')
#iogroup.add_argument('-R', '--ref_image', default=None, required=True,
# help='KELT image with WCS')
# ------------------------------------------------------------------
# ------------------------------------------------------------------
# Miscellany:
miscgroup = parser.add_argument_group('Miscellany')
miscgroup.add_argument('--debug', dest='debug', default=False,
help='Enable extra debugging messages', action='store_true')
miscgroup.add_argument('-q', '--quiet', action='count', default=0,
help='less progress/status reporting')
miscgroup.add_argument('-v', '--verbose', action='count', default=0,
help='more progress/status reporting')
# ------------------------------------------------------------------
context = parser.parse_args()
context.vlevel = 99 if context.debug else (context.verbose-context.quiet)
context.prog_name = prog_name
# Unless otherwise specified, output goes into input folder:
if not context.output_folder:
context.output_folder = context.input_folder
# Ensure an image type is selected:
if not context.imtype:
sys.stderr.write("\nNo image type selected!\n\n")
sys.exit(1)
## Use imtype-specific folder for registered file output:
#if not context.save_reg_subdir:
# context.save_reg_subdir = 'aligned_%s' % context.imtype
##--------------------------------------------------------------------------##
##------------------ Make Input Image List ----------------##
##--------------------------------------------------------------------------##
tstart = time.time()
sys.stderr.write("Listing %s frames ... " % context.imtype)
#im_wildpath = 'SPITZ*%s.fits' % context.imtype
#im_wildcard = os.path.join(context.input_folder, 'SPIT*'
#_img_types = ['cbcd', 'clean', 'cbunc']
#_type_suff = dict([(x, x+'.fits') for x in _im_types])
#img_list = {}
#for imsuff in suffixes:
# wpath = '%s/SPITZ*%s.fits' % (context.input_folder, imsuff)
# img_list[imsuff] = sorted(glob.glob(os.path.join(context.
#img_files = sorted(glob.glob(os.path.join(context.input_folder, im_wildpath)))
if context.walk:
img_files = sfh.get_files_walk(context.input_folder, flavor=context.imtype)
else:
img_files = sfh.get_files_single(context.input_folder, flavor=context.imtype)
sys.stderr.write("done.\n")
## Abort in case of no input:
if not img_files:
sys.stderr.write("No input (%s) files found in folder:\n" % context.imtype)
sys.stderr.write("--> %s\n\n" % context.input_folder)
sys.exit(1)
n_images = len(img_files)
## List of uncertainty frames (warn if any missing):
#unc_files = [x.replace(context.imtype, 'cbunc') for x in img_files]
#sys.stderr.write("Checking error-images ... ")
#have_unc = [os.path.isfile(x) for x in unc_files]
#if not all(have_unc):
# sys.stderr.write("WARNING: some uncertainty frames missing!\n")
#else:
# sys.stderr.write("done.\n")
##--------------------------------------------------------------------------##
##------------------ Load SST Ephemeris Data ----------------##
##--------------------------------------------------------------------------##
### Ephemeris data file must exist:
#if not context.ephem_data:
# logger.error("context.ephem_data not set?!?!")
# sys.exit(1)
#if not os.path.isfile(context.ephem_data):
# logger.error("Ephemeris file not found: %s" % context.ephem_data)
# sys.exit(1)
#
### Load ephemeris data:
#eee.load(context.ephem_data)
##--------------------------------------------------------------------------##
##------------------ Unique AOR/Channel Combos ----------------##
##--------------------------------------------------------------------------##
unique_tags = sorted(list(set([sfh.get_irac_aor_tag(x) for x in img_files])))
images_by_tag = {x:[] for x in unique_tags}
for ii in img_files:
images_by_tag[sfh.get_irac_aor_tag(ii)].append(ii)
##--------------------------------------------------------------------------##
##------------------ Diagnostic Region Files ----------------##
##--------------------------------------------------------------------------##
def regify_excat_pix(data, rpath, win=False, rr=2.0):
colnames = ('wx', 'wy') if win else ('x', 'y')
xpix, ypix = [data[x] for x in colnames]
with open(rpath, 'w') as rfile:
for xx,yy in zip(xpix, ypix):
rfile.write("image; circle(%8.3f, %8.3f, %8.3f)\n" % (xx, yy, rr))
return
##--------------------------------------------------------------------------##
##------------------ ExtendedCatalog Ephem Format ----------------##
##--------------------------------------------------------------------------##
#def reformat_ephem(edata):
##--------------------------------------------------------------------------##
##------------------ Stack/Image Comparison ----------------##
##--------------------------------------------------------------------------##
#def xcheck(idata, sdata):
# nstack = len(sdata)
# nimage = len(idata)
# sys.stderr.write("nstack: %d\n" % nstack)
# sys.stderr.write("nimage: %d\n" % nimage)
# return
##--------------------------------------------------------------------------##
##------------------ Process All Images ----------------##
##--------------------------------------------------------------------------##
ntodo = 0
nproc = 0
ntotal = len(img_files)
min_sobj = 10 # bark if fewer than this many found in stack
skip_stuff = False
#context.save_registered = False
#context.skip_existing = False
## Reduce bright pixel threshold:
#sxc.set_bp_thresh(10.0)
#sxc.set_bp_thresh(5.0)
sxc.set_bp_thresh(10.0)
#sxc.set_vlevel(10)
sxc.set_roi_rfrac(0.90)
sxc.set_roi_rfrac(2.00)
#sys.exit(0)
#for aor_tag,tag_files in images_by_tag.items():
for aor_tag in unique_tags:
sys.stderr.write("\n\nProcessing images from %s ...\n" % aor_tag)
tag_files = images_by_tag[aor_tag]
n_tagged = len(tag_files)
if n_tagged < 2:
sys.stderr.write("WARNING: only %d images with tag %s\n"
% (n_tagged, aor_tag))
sys.stderr.write("This case is not currently handled ...\n")
sys.exit(1)
# File/folder paths:
aor_dir = os.path.dirname(tag_files[0])
stack_ibase = '%s_%s_stack.fits' % (aor_tag, context.imtype)
stack_cbase = '%s_%s_stack.fcat' % (aor_tag, context.imtype)
medze_ibase = '%s_%s_medze.fits' % (aor_tag, context.imtype)
stack_ipath = os.path.join(aor_dir, stack_ibase)
stack_cpath = os.path.join(aor_dir, stack_cbase)
medze_ipath = os.path.join(aor_dir, medze_ibase)
#sys.stderr.write("stack_ibase: %s\n" % stack_ibase)
#sys.stderr.write("As of this point ...\n")
#sys.stderr.write("sxc._roi_rfrac: %.5f\n" % sxc._roi_rfrac)
sys.stderr.write("Cross-correlating and stacking ... ")
result = sxc.shift_and_stack(tag_files)
sys.stderr.write("done.\n")
sxc.save_istack(stack_ipath)
#sys.exit(0)
#istack = sxc.get_stacked()
#qsave(stack_ipath, istack)
# Dump registered data to disk:
if context.save_registered:
save_reg_subdir = 'aligned_%s_%s' % (aor_tag, context.imtype)
sys.stderr.write("Saving registered frames for inspection ...\n")
#reg_dir = os.path.join(aor_dir, context.save_reg_subdir)
reg_dir = os.path.join(aor_dir, save_reg_subdir)
if os.path.isdir(reg_dir):
shutil.rmtree(reg_dir)
os.mkdir(reg_dir)
sxc.dump_registered_images(reg_dir)
sxc.dump_bright_pixel_masks(reg_dir)
sys.stderr.write("\n")
# Extract stars from stacked image:
spf.use_images(ipath=stack_ipath)
stack_cat = spf.find_stars(context.sigthresh)
sdata = stack_cat.get_catalog()
nsobj = len(sdata)
sys.stderr.write(" \nFound %d sources in stacked image.\n\n" % nsobj)
if (nsobj < min_sobj):
sys.stderr.write("Fewer than %d objects found in stack ... \n" % min_sobj)
sys.stderr.write("Found %d objects.\n\n" % nsobj)
sys.stderr.write("--> %s\n\n" % stack_ipath)
sys.exit(1)
stack_cat.save_as_fits(stack_cpath, overwrite=True)
# region file for diagnostics:
stack_rfile = stack_ipath + '.reg'
regify_excat_pix(sdata, stack_rfile, win=True)
# Make/save 'medianize' stack for comparison:
sxc.make_mstack()
sxc.save_mstack(medze_ipath)
# Set up pruning system:
xshifts, yshifts = sxc.get_stackcat_offsets()
xcp.set_master_catalog(sdata)
xcp.set_image_offsets(xshifts, yshifts)
# Set up hybrid astrometry system:
ha.set_stack_excat(stack_cat) # catalog of detections
ha.set_xcorr_metadata(sxc) # pixel offsets by image
## Stop here for now ...
#if skip_stuff:
# continue
# process individual files with cross-correlation help:
for ii,img_ipath in enumerate(tag_files, 1):
sys.stderr.write("%s\n" % fulldiv)
unc_ipath = img_ipath.replace(context.imtype, 'cbunc')
if not os.path.isfile(unc_ipath):
sys.stderr.write("WARNING: file not found:\n--> %s\n" % unc_ipath)
continue
img_ibase = os.path.basename(img_ipath)
#cat_ibase = img_ibase.replace(context.imtype, 'fcat')
cat_fbase = img_ibase + '.fcat'
cat_pbase = img_ibase + '.pcat'
cat_mbase = img_ibase + '.mcat'
### FIXME ###
### context.output_folder is not appropriate for walk mode ...
save_dir = context.output_folder # NOT FOR WALK MODE
save_dir = os.path.dirname(img_ipath)
cat_fpath = os.path.join(save_dir, cat_fbase)
cat_ppath = os.path.join(save_dir, cat_pbase)
cat_mpath = os.path.join(save_dir, cat_mbase)
### FIXME ###
sys.stderr.write("Catalog %s ... " % cat_fpath)
if context.skip_existing:
if os.path.isfile(cat_mpath):
sys.stderr.write("exists! Skipping ... \n")
continue
nproc += 1
sys.stderr.write("not found ... creating ...\n")
spf.use_images(ipath=img_ipath, upath=unc_ipath)
result = spf.find_stars(context.sigthresh)
## FIXME: this just grabs the ephemeris from the header content
## of the first ExtendedCatalog produced. This should be obtained
## separately to make things easier to follow (and to eliminate
## the need to pre-modify the image headers ...)
eph_data = eee.eph_from_header(result.get_header())
result.set_ephem(eph_data)
result.save_as_fits(cat_fpath, overwrite=True)
nfound = len(result.get_catalog())
frame_rfile = img_ipath + '.reg'
regify_excat_pix(result.get_catalog(), frame_rfile, win=True)
# prune sources not detected in stacked frame:
pruned = xcp.prune_spurious(result.get_catalog(), img_ipath)
npruned = len(pruned)
sys.stderr.write("nfound: %d, npruned: %d\n" % (nfound, npruned))
if (len(pruned) < 5):
sys.stderr.write("BARKBARKBARK\n")
sys.exit(1)
result.set_catalog(pruned)
result.save_as_fits(cat_ppath, overwrite=True)
# build and save hybrid catalog:
mcat = ha.make_hybrid_excat(result)
mcat.set_ephem(eph_data)
mcat.save_as_fits(cat_mpath, overwrite=True)
mxcat_rfile = img_ipath + '.mcat.reg'
#regify_excat_pix(mcat.get_catalog(), mxcat_rfile, win=True)
# stop early if requested:
if (ntodo > 0) and (nproc >= ntodo):
break
#break
#sys.exit(0)
if (ntodo > 0) and (nproc >= ntodo):
break
tstop = time.time()
ttook = tstop - tstart
sys.stderr.write("Extraction completed in %.3f seconds.\n" % ttook)
#import astropy.io.fits as pf
#
#imra = np.array([hh['CRVAL1'] for hh in sxc._im_hdrs])
#imde = np.array([hh['CRVAL2'] for hh in sxc._im_hdrs])
#
##sys.stderr.write("\n\n\n")
##sys.stderr.write("sxc.shift_and_stack(tag_files)\n")
##result = sxc.shift_and_stack(tag_files)
#sys.exit(0)
#
#layers = sxc.pad_and_shift(sxc._im_data, sxc._x_shifts, sxc._y_shifts)
#tstack = sxc.dumb_stack(layers)
#pf.writeto('tstack.fits', tstack, overwrite=True)
#
#tdir = 'zzz'
#if not os.path.isdir(tdir):
# os.mkdir(tdir)
#
##tag_bases = [os.path.basename(x) for x in tag_files]
##for ibase,idata in zip(tag_bases, layers):
## tsave = os.path.join(tdir, 'r' + ibase)
## sys.stderr.write("Saving %s ... \n" % tsave)
## pf.writeto(tsave, idata, overwrite=True)
#
#sys.stderr.write("\n\n\n")
#sys.stderr.write("visual inspection with:\n")
#sys.stderr.write("flztfs %s\n" % ' '.join(tag_files))
##--------------------------------------------------------------------------##
######################################################################
# CHANGELOG (07_spitzer_aor_extraction.py):
#---------------------------------------------------------------------
#
# 2021-02-02:
# -- Increased __version__ to 0.1.0.
# -- First created 07_spitzer_aor_extraction.py.
#
|
[
"logging.getLogger",
"sys.exit",
"jpl_eph_helpers.EphTool",
"sys._getframe",
"os.path.isdir",
"os.mkdir",
"spitz_extract.SpitzFind",
"imp.reload",
"os.path.isfile",
"sys.stderr.write",
"catalog_tools.XCorrPruner",
"os.path.dirname",
"time.time",
"logging.basicConfig",
"numpy.__version__.split",
"spitz_stack_astrom.HybridAstrom",
"fitsio.write",
"os.path.join",
"spitz_xcorr_stacking.SpitzerXCorr",
"os.path.basename",
"shutil.rmtree"
] |
[((672, 711), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (691, 711), False, 'import logging\n'), ((721, 748), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (738, 748), False, 'import logging\n'), ((2585, 2620), 'spitz_xcorr_stacking.SpitzerXCorr', 'spitz_xcorr_stacking.SpitzerXCorr', ([], {}), '()\n', (2618, 2620), False, 'import spitz_xcorr_stacking\n'), ((2807, 2834), 'catalog_tools.XCorrPruner', 'catalog_tools.XCorrPruner', ([], {}), '()\n', (2832, 2834), False, 'import catalog_tools\n'), ((3502, 3527), 'jpl_eph_helpers.EphTool', 'jpl_eph_helpers.EphTool', ([], {}), '()\n', (3525, 3527), False, 'import jpl_eph_helpers\n'), ((9088, 9099), 'time.time', 'time.time', ([], {}), '()\n', (9097, 9099), False, 'import time\n'), ((9100, 9159), 'sys.stderr.write', 'sys.stderr.write', (["('Listing %s frames ... ' % context.imtype)"], {}), "('Listing %s frames ... ' % context.imtype)\n", (9116, 9159), False, 'import sys\n'), ((9798, 9825), 'sys.stderr.write', 'sys.stderr.write', (['"""done.\n"""'], {}), "('done.\\n')\n", (9814, 9825), False, 'import sys\n'), ((19163, 19174), 'time.time', 'time.time', ([], {}), '()\n', (19172, 19174), False, 'import time\n'), ((19198, 19265), 'sys.stderr.write', 'sys.stderr.write', (["('Extraction completed in %.3f seconds.\\n' % ttook)"], {}), "('Extraction completed in %.3f seconds.\\n' % ttook)\n", (19214, 19265), False, 'import sys\n'), ((2222, 2246), 'imp.reload', 'reload', (['spitz_fs_helpers'], {}), '(spitz_fs_helpers)\n', (2228, 2246), False, 'from imp import reload\n'), ((2449, 2477), 'imp.reload', 'reload', (['spitz_xcorr_stacking'], {}), '(spitz_xcorr_stacking)\n', (2455, 2477), False, 'from imp import reload\n'), ((2684, 2705), 'imp.reload', 'reload', (['catalog_tools'], {}), '(catalog_tools)\n', (2690, 2705), False, 'from imp import reload\n'), ((2905, 2926), 'imp.reload', 'reload', (['spitz_extract'], {}), '(spitz_extract)\n', (2911, 2926), False, 'from imp import reload\n'), ((2937, 2962), 'spitz_extract.SpitzFind', 'spitz_extract.SpitzFind', ([], {}), '()\n', (2960, 2962), False, 'import spitz_extract\n'), ((3139, 3165), 'imp.reload', 'reload', (['spitz_stack_astrom'], {}), '(spitz_stack_astrom)\n', (3145, 3165), False, 'from imp import reload\n'), ((3175, 3208), 'spitz_stack_astrom.HybridAstrom', 'spitz_stack_astrom.HybridAstrom', ([], {}), '()\n', (3206, 3208), False, 'import spitz_stack_astrom\n'), ((3375, 3398), 'imp.reload', 'reload', (['jpl_eph_helpers'], {}), '(jpl_eph_helpers)\n', (3381, 3398), False, 'from imp import reload\n'), ((4002, 4050), 'sys.stderr.write', 'sys.stderr.write', (['("Writing to \'%s\' ... " % iname)'], {}), '("Writing to \'%s\' ... " % iname)\n', (4018, 4050), False, 'import sys\n'), ((4055, 4120), 'fitsio.write', 'fitsio.write', (['iname', 'idata'], {'clobber': '(True)', 'header': 'header'}), '(iname, idata, clobber=True, header=header, **kwargs)\n', (4067, 4120), False, 'import fitsio\n'), ((4125, 4152), 'sys.stderr.write', 'sys.stderr.write', (['"""done.\n"""'], {}), "('done.\\n')\n", (4141, 4152), False, 'import sys\n'), ((4970, 4996), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (4986, 4996), False, 'import os\n'), ((9879, 9954), 'sys.stderr.write', 'sys.stderr.write', (["('No input (%s) files found in folder:\\n' % context.imtype)"], {}), "('No input (%s) files found in folder:\\n' % context.imtype)\n", (9895, 9954), False, 'import sys\n'), ((9959, 10012), 'sys.stderr.write', 'sys.stderr.write', (["('--> %s\\n\\n' % context.input_folder)"], {}), "('--> %s\\n\\n' % context.input_folder)\n", (9975, 10012), False, 'import sys\n'), ((10017, 10028), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (10025, 10028), False, 'import sys\n'), ((13359, 13425), 'sys.stderr.write', 'sys.stderr.write', (['("""\n\nProcessing images from %s ...\n""" % aor_tag)'], {}), '("""\n\nProcessing images from %s ...\n""" % aor_tag)\n', (13375, 13425), False, 'import sys\n'), ((13749, 13778), 'os.path.dirname', 'os.path.dirname', (['tag_files[0]'], {}), '(tag_files[0])\n', (13764, 13778), False, 'import os\n'), ((13992, 14026), 'os.path.join', 'os.path.join', (['aor_dir', 'stack_ibase'], {}), '(aor_dir, stack_ibase)\n', (14004, 14026), False, 'import os\n'), ((14045, 14079), 'os.path.join', 'os.path.join', (['aor_dir', 'stack_cbase'], {}), '(aor_dir, stack_cbase)\n', (14057, 14079), False, 'import os\n'), ((14098, 14132), 'os.path.join', 'os.path.join', (['aor_dir', 'medze_ibase'], {}), '(aor_dir, medze_ibase)\n', (14110, 14132), False, 'import os\n'), ((14309, 14364), 'sys.stderr.write', 'sys.stderr.write', (['"""Cross-correlating and stacking ... """'], {}), "('Cross-correlating and stacking ... ')\n", (14325, 14364), False, 'import sys\n'), ((14413, 14440), 'sys.stderr.write', 'sys.stderr.write', (['"""done.\n"""'], {}), "('done.\\n')\n", (14429, 14440), False, 'import sys\n'), ((15299, 15369), 'sys.stderr.write', 'sys.stderr.write', (['(""" \nFound %d sources in stacked image.\n\n""" % nsobj)'], {}), '(""" \nFound %d sources in stacked image.\n\n""" % nsobj)\n', (15315, 15369), False, 'import sys\n'), ((2333, 2344), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2341, 2344), False, 'import sys\n'), ((2567, 2578), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2575, 2578), False, 'import sys\n'), ((2789, 2800), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2797, 2800), False, 'import sys\n'), ((3039, 3050), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3047, 3050), False, 'import sys\n'), ((3297, 3308), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3305, 3308), False, 'import sys\n'), ((3484, 3495), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3492, 3495), False, 'import sys\n'), ((3738, 3795), 'sys.stderr.write', 'sys.stderr.write', (['"""\nError: fitsio module not found!\n"""'], {}), '("""\nError: fitsio module not found!\n""")\n', (3754, 3795), False, 'import sys\n'), ((3798, 3809), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3806, 3809), False, 'import sys\n'), ((4558, 4599), 'sys.stderr.write', 'sys.stderr.write', (["('error: %s\\n' % message)"], {}), "('error: %s\\n' % message)\n", (4574, 4599), False, 'import sys\n'), ((4634, 4645), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (4642, 4645), False, 'import sys\n'), ((8604, 8654), 'sys.stderr.write', 'sys.stderr.write', (['"""\nNo image type selected!\n\n"""'], {}), '("""\nNo image type selected!\n\n""")\n', (8620, 8654), False, 'import sys\n'), ((8662, 8673), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8670, 8673), False, 'import sys\n'), ((13524, 13603), 'sys.stderr.write', 'sys.stderr.write', (["('WARNING: only %d images with tag %s\\n' % (n_tagged, aor_tag))"], {}), "('WARNING: only %d images with tag %s\\n' % (n_tagged, aor_tag))\n", (13540, 13603), False, 'import sys\n'), ((13628, 13688), 'sys.stderr.write', 'sys.stderr.write', (['"""This case is not currently handled ...\n"""'], {}), "('This case is not currently handled ...\\n')\n", (13644, 13688), False, 'import sys\n'), ((13697, 13708), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13705, 13708), False, 'import sys\n'), ((14702, 14767), 'sys.stderr.write', 'sys.stderr.write', (['"""Saving registered frames for inspection ...\n"""'], {}), "('Saving registered frames for inspection ...\\n')\n", (14718, 14767), False, 'import sys\n'), ((14852, 14890), 'os.path.join', 'os.path.join', (['aor_dir', 'save_reg_subdir'], {}), '(aor_dir, save_reg_subdir)\n', (14864, 14890), False, 'import os\n'), ((14902, 14924), 'os.path.isdir', 'os.path.isdir', (['reg_dir'], {}), '(reg_dir)\n', (14915, 14924), False, 'import os\n'), ((14969, 14986), 'os.mkdir', 'os.mkdir', (['reg_dir'], {}), '(reg_dir)\n', (14977, 14986), False, 'import os\n'), ((15084, 15106), 'sys.stderr.write', 'sys.stderr.write', (['"""\n"""'], {}), "('\\n')\n", (15100, 15106), False, 'import sys\n'), ((15404, 15478), 'sys.stderr.write', 'sys.stderr.write', (["('Fewer than %d objects found in stack ... \\n' % min_sobj)"], {}), "('Fewer than %d objects found in stack ... \\n' % min_sobj)\n", (15420, 15478), False, 'import sys\n'), ((15487, 15536), 'sys.stderr.write', 'sys.stderr.write', (["('Found %d objects.\\n\\n' % nsobj)"], {}), "('Found %d objects.\\n\\n' % nsobj)\n", (15503, 15536), False, 'import sys\n'), ((15545, 15589), 'sys.stderr.write', 'sys.stderr.write', (["('--> %s\\n\\n' % stack_ipath)"], {}), "('--> %s\\n\\n' % stack_ipath)\n", (15561, 15589), False, 'import sys\n'), ((15598, 15609), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (15606, 15609), False, 'import sys\n'), ((16412, 16446), 'sys.stderr.write', 'sys.stderr.write', (["('%s\\n' % fulldiv)"], {}), "('%s\\n' % fulldiv)\n", (16428, 16446), False, 'import sys\n'), ((16672, 16699), 'os.path.basename', 'os.path.basename', (['img_ipath'], {}), '(img_ipath)\n', (16688, 16699), False, 'import os\n'), ((17060, 17086), 'os.path.dirname', 'os.path.dirname', (['img_ipath'], {}), '(img_ipath)\n', (17075, 17086), False, 'import os\n'), ((17107, 17140), 'os.path.join', 'os.path.join', (['save_dir', 'cat_fbase'], {}), '(save_dir, cat_fbase)\n', (17119, 17140), False, 'import os\n'), ((17161, 17194), 'os.path.join', 'os.path.join', (['save_dir', 'cat_pbase'], {}), '(save_dir, cat_pbase)\n', (17173, 17194), False, 'import os\n'), ((17215, 17248), 'os.path.join', 'os.path.join', (['save_dir', 'cat_mbase'], {}), '(save_dir, cat_mbase)\n', (17227, 17248), False, 'import os\n'), ((17280, 17327), 'sys.stderr.write', 'sys.stderr.write', (["('Catalog %s ... ' % cat_fpath)"], {}), "('Catalog %s ... ' % cat_fpath)\n", (17296, 17327), False, 'import sys\n'), ((17517, 17565), 'sys.stderr.write', 'sys.stderr.write', (['"""not found ... creating ...\n"""'], {}), "('not found ... creating ...\\n')\n", (17533, 17565), False, 'import sys\n'), ((18419, 18484), 'sys.stderr.write', 'sys.stderr.write', (["('nfound: %d, npruned: %d\\n' % (nfound, npruned))"], {}), "('nfound: %d, npruned: %d\\n' % (nfound, npruned))\n", (18435, 18484), False, 'import sys\n'), ((1599, 1624), 'numpy.__version__.split', 'np.__version__.split', (['"""."""'], {}), "('.')\n", (1619, 1624), True, 'import numpy as np\n'), ((3917, 3932), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (3930, 3932), False, 'import sys\n'), ((3966, 3982), 'sys._getframe', 'sys._getframe', (['(1)'], {}), '(1)\n', (3979, 3982), False, 'import sys\n'), ((14938, 14960), 'shutil.rmtree', 'shutil.rmtree', (['reg_dir'], {}), '(reg_dir)\n', (14951, 14960), False, 'import shutil\n'), ((16525, 16550), 'os.path.isfile', 'os.path.isfile', (['unc_ipath'], {}), '(unc_ipath)\n', (16539, 16550), False, 'import os\n'), ((16564, 16632), 'sys.stderr.write', 'sys.stderr.write', (['("""WARNING: file not found:\n--> %s\n""" % unc_ipath)'], {}), '("""WARNING: file not found:\n--> %s\n""" % unc_ipath)\n', (16580, 16632), False, 'import sys\n'), ((17377, 17402), 'os.path.isfile', 'os.path.isfile', (['cat_mpath'], {}), '(cat_mpath)\n', (17391, 17402), False, 'import os\n'), ((18527, 18561), 'sys.stderr.write', 'sys.stderr.write', (['"""BARKBARKBARK\n"""'], {}), "('BARKBARKBARK\\n')\n", (18543, 18561), False, 'import sys\n'), ((18574, 18585), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (18582, 18585), False, 'import sys\n'), ((17420, 17464), 'sys.stderr.write', 'sys.stderr.write', (['"""exists! Skipping ... \n"""'], {}), "('exists! Skipping ... \\n')\n", (17436, 17464), False, 'import sys\n')]
|
# Copyright 2020 Toyota Research Institute. All rights reserved.
"""
Geometry utilities
"""
import numpy as np
def invert_pose_numpy(T):
"""
'Invert' 4x4 extrinsic matrix
Parameters
----------
T: 4x4 matrix (world to camera)
Returns
-------
4x4 matrix (camera to world)
"""
Tc = np.copy(T)
R, t = Tc[:3, :3], Tc[:3, 3]
Tc[:3, :3], Tc[:3, 3] = R.T, - np.matmul(R.T, t)
return Tc
|
[
"numpy.copy",
"numpy.matmul"
] |
[((326, 336), 'numpy.copy', 'np.copy', (['T'], {}), '(T)\n', (333, 336), True, 'import numpy as np\n'), ((405, 422), 'numpy.matmul', 'np.matmul', (['R.T', 't'], {}), '(R.T, t)\n', (414, 422), True, 'import numpy as np\n')]
|
import numpy as np
from tests.test_utils import run_track_tests
from mirdata import annotations
from mirdata.datasets import tonas
TEST_DATA_HOME = "tests/resources/mir_datasets/tonas"
def test_track():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
track = dataset.track(default_trackid)
expected_attributes = {
"singer": "<NAME>",
"style": "Debla",
"title": "<NAME>",
"tuning_frequency": 451.0654725341684,
"f0_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.f0.Corrected",
"notes_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.notes.Corrected",
"audio_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.wav",
"track_id": "01-D_AMairena",
}
expected_property_types = {
"f0": annotations.F0Data,
"f0_automatic": annotations.F0Data,
"f0_corrected": annotations.F0Data,
"notes": annotations.NoteData,
"audio": tuple,
"singer": str,
"style": str,
"title": str,
"tuning_frequency": float,
}
run_track_tests(track, expected_attributes, expected_property_types)
def test_to_jams():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
track = dataset.track(default_trackid)
jam = track.to_jams()
# Validate cante100 jam schema
assert jam.validate()
# Validate melody
f0 = jam.search(namespace="pitch_contour")[0]["data"]
assert [note.time for note in f0] == [0.197, 0.209, 0.221, 0.232]
assert [note.duration for note in f0] == [0.0, 0.0, 0.0, 0.0]
assert [note.value for note in f0] == [
{"index": 0, "frequency": 0.0, "voiced": False},
{"index": 0, "frequency": 379.299, "voiced": True},
{"index": 0, "frequency": 379.299, "voiced": True},
{"index": 0, "frequency": 379.299, "voiced": True},
]
print([note.confidence for note in f0])
assert [note.confidence for note in f0] == [3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05]
# Validate note transciption
notes = jam.search(namespace="note_hz")[0]["data"]
assert [note.time for note in notes] == [
0.216667,
0.65,
2.183333,
2.566667,
]
assert [note.duration for note in notes] == [
0.433333,
1.016667,
0.3833329999999999,
0.3333330000000001,
]
assert [note.value for note in notes] == [
388.8382625732775,
411.9597888711769,
388.8382625732775,
411.9597888711769,
]
assert [note.confidence for note in notes] == [None, None, None, None]
def test_load_melody():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
track = dataset.track(default_trackid)
f0_path = track.f0_path
f0_data_corrected = tonas.load_f0(f0_path, True)
f0_data_automatic = tonas.load_f0(f0_path, False)
# check types
assert type(f0_data_corrected) == annotations.F0Data
assert type(f0_data_corrected.times) is np.ndarray
assert type(f0_data_corrected.frequencies) is np.ndarray
assert type(f0_data_corrected.voicing) is np.ndarray
assert type(f0_data_corrected._confidence) is np.ndarray
assert type(f0_data_automatic) == annotations.F0Data
assert type(f0_data_automatic.times) is np.ndarray
assert type(f0_data_automatic.frequencies) is np.ndarray
assert type(f0_data_corrected.voicing) is np.ndarray
assert type(f0_data_automatic._confidence) is np.ndarray
# check values
assert np.array_equal(
f0_data_corrected.times,
np.array([0.197, 0.209, 0.221, 0.232]),
)
assert np.array_equal(
f0_data_corrected.frequencies, np.array([0.000, 379.299, 379.299, 379.299])
)
assert np.array_equal(
f0_data_corrected.voicing,
np.array([0.0, 1.0, 1.0, 1.0]),
)
assert np.array_equal(
f0_data_corrected._confidence,
np.array([3.090e-06, 0.00000286, 0.00000715, 0.00001545]),
)
# check values
assert np.array_equal(
f0_data_automatic.times,
np.array([0.197, 0.209, 0.221, 0.232]),
)
assert np.array_equal(
f0_data_automatic.frequencies,
np.array(
[
0.000,
0.000,
143.918,
143.918,
]
),
)
assert np.array_equal(
f0_data_automatic.voicing,
np.array([0.0, 0.0, 1.0, 1.0]),
)
assert np.array_equal(
f0_data_automatic._confidence,
np.array([3.090e-06, 2.860e-06, 0.00000715, 0.00001545]),
)
def test_load_notes():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
track = dataset.track(default_trackid)
notes_path = track.notes_path
notes_data = tonas.load_notes(notes_path)
tuning_frequency = tonas._load_tuning_frequency(notes_path)
# check types
assert type(notes_data) == annotations.NoteData
assert type(notes_data.intervals) is np.ndarray
assert type(notes_data.pitches) is np.ndarray
assert type(notes_data.confidence) is np.ndarray
assert type(tuning_frequency) is float
# check tuning frequency
assert tuning_frequency == 451.0654725341684
# check values
assert np.array_equal(
notes_data.intervals[:, 0], np.array([0.216667, 0.65, 2.183333, 2.566667])
)
assert np.array_equal(
notes_data.intervals[:, 1], np.array([0.65, 1.666667, 2.566666, 2.9])
)
assert np.array_equal(
notes_data.pitches,
np.array(
[388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769]
),
)
assert np.array_equal(
notes_data.confidence,
np.array(
[
0.018007,
0.010794,
0.00698,
0.03265,
]
),
)
def test_load_audio():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
track = dataset.track(default_trackid)
audio_path = track.audio_path
audio, sr = tonas.load_audio(audio_path)
assert sr == 44100
assert type(audio) is np.ndarray
def test_metadata():
default_trackid = "01-D_AMairena"
dataset = tonas.Dataset(TEST_DATA_HOME)
metadata = dataset._metadata
assert metadata[default_trackid] == {
"title": "En el barrio de Triana",
"style": "Debla",
"singer": "<NAME>",
}
|
[
"mirdata.datasets.tonas.Dataset",
"mirdata.datasets.tonas.load_audio",
"mirdata.datasets.tonas._load_tuning_frequency",
"mirdata.datasets.tonas.load_f0",
"numpy.array",
"tests.test_utils.run_track_tests",
"mirdata.datasets.tonas.load_notes"
] |
[((260, 289), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (273, 289), False, 'from mirdata.datasets import tonas\n'), ((1137, 1205), 'tests.test_utils.run_track_tests', 'run_track_tests', (['track', 'expected_attributes', 'expected_property_types'], {}), '(track, expected_attributes, expected_property_types)\n', (1152, 1205), False, 'from tests.test_utils import run_track_tests\n'), ((1280, 1309), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (1293, 1309), False, 'from mirdata.datasets import tonas\n'), ((2749, 2778), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (2762, 2778), False, 'from mirdata.datasets import tonas\n'), ((2874, 2902), 'mirdata.datasets.tonas.load_f0', 'tonas.load_f0', (['f0_path', '(True)'], {}), '(f0_path, True)\n', (2887, 2902), False, 'from mirdata.datasets import tonas\n'), ((2927, 2956), 'mirdata.datasets.tonas.load_f0', 'tonas.load_f0', (['f0_path', '(False)'], {}), '(f0_path, False)\n', (2940, 2956), False, 'from mirdata.datasets import tonas\n'), ((4739, 4768), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (4752, 4768), False, 'from mirdata.datasets import tonas\n'), ((4863, 4891), 'mirdata.datasets.tonas.load_notes', 'tonas.load_notes', (['notes_path'], {}), '(notes_path)\n', (4879, 4891), False, 'from mirdata.datasets import tonas\n'), ((4915, 4955), 'mirdata.datasets.tonas._load_tuning_frequency', 'tonas._load_tuning_frequency', (['notes_path'], {}), '(notes_path)\n', (4943, 4955), False, 'from mirdata.datasets import tonas\n'), ((6030, 6059), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (6043, 6059), False, 'from mirdata.datasets import tonas\n'), ((6153, 6181), 'mirdata.datasets.tonas.load_audio', 'tonas.load_audio', (['audio_path'], {}), '(audio_path)\n', (6169, 6181), False, 'from mirdata.datasets import tonas\n'), ((6317, 6346), 'mirdata.datasets.tonas.Dataset', 'tonas.Dataset', (['TEST_DATA_HOME'], {}), '(TEST_DATA_HOME)\n', (6330, 6346), False, 'from mirdata.datasets import tonas\n'), ((3647, 3685), 'numpy.array', 'np.array', (['[0.197, 0.209, 0.221, 0.232]'], {}), '([0.197, 0.209, 0.221, 0.232])\n', (3655, 3685), True, 'import numpy as np\n'), ((3759, 3801), 'numpy.array', 'np.array', (['[0.0, 379.299, 379.299, 379.299]'], {}), '([0.0, 379.299, 379.299, 379.299])\n', (3767, 3801), True, 'import numpy as np\n'), ((3880, 3910), 'numpy.array', 'np.array', (['[0.0, 1.0, 1.0, 1.0]'], {}), '([0.0, 1.0, 1.0, 1.0])\n', (3888, 3910), True, 'import numpy as np\n'), ((3992, 4043), 'numpy.array', 'np.array', (['[3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05]'], {}), '([3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05])\n', (4000, 4043), True, 'import numpy as np\n'), ((4145, 4183), 'numpy.array', 'np.array', (['[0.197, 0.209, 0.221, 0.232]'], {}), '([0.197, 0.209, 0.221, 0.232])\n', (4153, 4183), True, 'import numpy as np\n'), ((4265, 4303), 'numpy.array', 'np.array', (['[0.0, 0.0, 143.918, 143.918]'], {}), '([0.0, 0.0, 143.918, 143.918])\n', (4273, 4303), True, 'import numpy as np\n'), ((4486, 4516), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0, 1.0]'], {}), '([0.0, 0.0, 1.0, 1.0])\n', (4494, 4516), True, 'import numpy as np\n'), ((4598, 4649), 'numpy.array', 'np.array', (['[3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05]'], {}), '([3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05])\n', (4606, 4649), True, 'import numpy as np\n'), ((5387, 5433), 'numpy.array', 'np.array', (['[0.216667, 0.65, 2.183333, 2.566667]'], {}), '([0.216667, 0.65, 2.183333, 2.566667])\n', (5395, 5433), True, 'import numpy as np\n'), ((5503, 5544), 'numpy.array', 'np.array', (['[0.65, 1.666667, 2.566666, 2.9]'], {}), '([0.65, 1.666667, 2.566666, 2.9])\n', (5511, 5544), True, 'import numpy as np\n'), ((5614, 5705), 'numpy.array', 'np.array', (['[388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769]'], {}), '([388.8382625732775, 411.9597888711769, 388.8382625732775, \n 411.9597888711769])\n', (5622, 5705), True, 'import numpy as np\n'), ((5796, 5844), 'numpy.array', 'np.array', (['[0.018007, 0.010794, 0.00698, 0.03265]'], {}), '([0.018007, 0.010794, 0.00698, 0.03265])\n', (5804, 5844), True, 'import numpy as np\n')]
|
import argparse
import csv
import matplotlib
import matplotlib.ticker as tck
import matplotlib.pyplot as plt
import numpy as np
# Matplotlib export settings
matplotlib.use('pgf')
import matplotlib.pyplot as plt
matplotlib.rcParams.update({
'pgf.texsystem': 'pdflatex',
'font.size': 10,
'font.family': 'serif', # use serif/main font for text elements
'text.usetex': True, # use inline math for ticks
'pgf.rcfonts': False # don't setup fonts from rc parameters
})
# Main function
def main(args):
C_zero = 7.5240e-03 * 1e-6 # Farads/km
C_pos = 1.2027e-02 * 1e-6 # Farads/km
G_zero = 2.0000e-08 # Mhos/km
G_pos = 2.0000e-08 # Mhos/km
length = 300 # km
FREQ_INDEX = 0
R_ZERO_INDEX = 1
L_ZERO_INDEX = 2
R_POS_INDEX = 3
L_POS_INDEX = 4
MAGNITUDE_INDEX = 0
PHASE_INDEX = 1
# prepopulate data with a list of five empty lists
data = [[] for i in range(5)]
# Read in PSCAD .CSV data
print('*** Opening assignment 4 CSV data file...')
with open('data_assign04.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
# Read in row data
for row in csv_reader:
if line_count == 0:
print('Column names are: ' + ', '.join(row))
line_count += 1
else:
data[FREQ_INDEX].append(float(row[0]))
data[R_ZERO_INDEX].append(float(row[1])) # Ohms/km
data[L_ZERO_INDEX].append(float(row[2]) * 1e-3) # Henries/km
data[R_POS_INDEX].append(float(row[3])) # Ohms/km
data[L_POS_INDEX].append(float(row[4]) * 1e-3) # Henries/km
line_count += 1
# Figure out when break switched
print('Processed ' + str(line_count) + ' lines.')
num_data_points = len(data[FREQ_INDEX])
# Prepare values for Z(w) magnitude and phase
impedance_zero = [[],[]]
impedance_pos = [[],[]]
for index in range(num_data_points):
omega = 2*np.pi*data[FREQ_INDEX][index]
impedance_zero_val = np.sqrt((data[R_ZERO_INDEX][index] + (1j*omega*data[L_ZERO_INDEX][index]))/(G_zero + (1j*omega*C_zero)))
impedance_pos_val = np.sqrt((data[R_POS_INDEX][index] + (1j*omega*data[L_POS_INDEX][index])) /(G_pos + (1j*omega*C_pos)))
# print("F: " + str(data[FREQ_INDEX][index]))
# print("Omega: " + str(omega))
# print("R_0: " + str(data[R_ZERO_INDEX][index]))
# print("L_0: " + str(data[L_ZERO_INDEX][index]))
# print("C_0: " + str(C_zero))
# print("G_0: " + str(G_zero))
# print("R_+: " + str(data[R_POS_INDEX][index]))
# print("L_+: " + str(data[L_POS_INDEX][index]))
# print("C_+: " + str(C_pos))
# print("G_+: " + str(G_pos))
# print("Zc_0: " + str(impedance_zero_val))
# print("Zc_0 mag: " + str(np.absolute(impedance_zero_val)))
# print("Zc_+: " + str(impedance_pos_val))
# print("Zc_+ mag: " + str(np.absolute(impedance_pos_val)))
impedance_zero[MAGNITUDE_INDEX].append(np.absolute(impedance_zero_val))
impedance_zero[PHASE_INDEX].append(np.angle(impedance_zero_val))
impedance_pos[MAGNITUDE_INDEX].append(np.absolute(impedance_pos_val))
impedance_pos[PHASE_INDEX].append(np.angle(impedance_pos_val))
print("\r\n")
# Prepare values for propagation function magnitude and phase as well
# Prepare values for attenuation alpha(w) (nepers/km)
# Prepare values for phase displacement beta(w) (radians/km)
# Prepare values for propagation speed a(w) (km/s)
propagation_zero = [[],[]]
propagation_pos = [[],[]]
attenuation_zero = []
attenuation_pos = []
phase_zero = []
phase_pos = []
propagation_speed_zero = []
propagation_speed_pos = []
for index in range(num_data_points):
omega = 2*np.pi*data[FREQ_INDEX][index]
gamma_zero = np.sqrt((data[R_ZERO_INDEX][index] + 1j*omega*data[L_ZERO_INDEX][index])*(G_zero + 1j*omega*C_zero))
gamma_pos = np.sqrt((data[R_POS_INDEX][index] + 1j*omega*data[L_POS_INDEX][index])*(G_pos + 1j*omega*C_pos))
# propagation function magnitude and phase
propagation_zero[MAGNITUDE_INDEX].append(np.absolute(np.exp(-1*gamma_zero*length)))
propagation_zero[PHASE_INDEX].append(-np.imag(gamma_zero)*length)
propagation_pos[MAGNITUDE_INDEX].append(np.absolute(np.exp(-1*gamma_pos*length)))
propagation_pos[PHASE_INDEX].append(-np.imag(gamma_pos)*length)
# attenuation (real component of gamma) (nepers/km)
attenuation_zero.append(np.real(gamma_zero))
attenuation_pos.append(np.real(gamma_pos))
# phase displacement (imaginary component of gamma) (radians/km)
phase_zero.append(np.imag(gamma_zero))
phase_pos.append(np.imag(gamma_pos))
# propagation speed (omega/phase_displacement) (km/s)
propagation_speed_zero.append(omega/phase_zero[-1])
propagation_speed_pos.append(omega/phase_pos[-1])
# propagation_speed_zero.append(1/np.sqrt(data[L_ZERO_INDEX][index]*C_zero))
# propagation_speed_pos.append(1/np.sqrt(data[L_POS_INDEX][index]*C_pos))
# Plots for publication
legend_font_size = 6
# Plot Z(w) magnitude and phase
fig, ax = plt.subplots(2)
ax[0].plot(data[FREQ_INDEX], impedance_zero[MAGNITUDE_INDEX], color='b', label='zero sequence')
ax[0].plot(data[FREQ_INDEX], impedance_pos[MAGNITUDE_INDEX], color='g', label='positive sequence')
ax[0].set(xlabel='Frequency $Hz$', ylabel='Magnitude ($\Omega/km$)', title='$Z_c$ - Magnitude vs. Frequency')
ax[0].grid()
ax[0].set_xscale('log')
ax[0].legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
ax[1].plot(data[FREQ_INDEX], impedance_zero[PHASE_INDEX], color='b', label='zero sequence')
ax[1].plot(data[FREQ_INDEX], impedance_pos[PHASE_INDEX], color='g', label='positive sequence')
ax[1].yaxis.set_major_formatter(tck.FormatStrFormatter('%1.1f $\pi$'))
ax[1].yaxis.set_major_locator(tck.MultipleLocator(base=1/5))
ax[1].set(xlabel='Frequency $Hz$', ylabel='Phase ($rad$)', title='$Z_c$ - Phase vs. Frequency')
ax[1].grid()
ax[1].set_xscale('log')
ax[1].legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,8)
fig.tight_layout()
fig.savefig('zc_magnitude_phase_plots.pgf')
fig.savefig('zc_magnitude_phase_plots.png')
# Plot propagation function magnitude and phase
fig, ax = plt.subplots(2)
ax[0].plot(data[FREQ_INDEX], propagation_zero[MAGNITUDE_INDEX], color='b', label='zero sequence')
ax[0].plot(data[FREQ_INDEX], propagation_pos[MAGNITUDE_INDEX], color='g', label='positive sequence')
ax[0].set(xlabel='Frequency $Hz$', ylabel=r'Magnitude $\left|e^{-\gamma{}l}\right|$', title='$e^{-\gamma{}l}$ - Magnitude vs. Frequency')
ax[0].grid()
ax[0].set_xscale('log')
ax[0].legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
ax[1].plot(data[FREQ_INDEX], propagation_zero[PHASE_INDEX], color='b', label='zero sequence')
ax[1].plot(data[FREQ_INDEX], propagation_pos[PHASE_INDEX], color='g', label='positive sequence')
ax[1].set(xlabel='Frequency $Hz$', ylabel=r'Phase $\phi{}=\beta{}l=\omega{}\tau$ ($rad$)', title='$e^{-\gamma{}l}$ - Phase vs. Frequency')
ax[1].grid()
ax[1].set_xscale('log')
ax[1].legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,8)
fig.tight_layout()
fig.savefig('prop_magnitude_phase_plots.pgf')
fig.savefig('prop_magnitude_phase_plots.png')
# Plot propagation function magnitude and phase (no long for frequency)
fig, ax = plt.subplots(1)
ax.plot(data[FREQ_INDEX], propagation_zero[PHASE_INDEX], color='b', label='zero sequence')
ax.plot(data[FREQ_INDEX], propagation_pos[PHASE_INDEX], color='g', label='positive sequence')
ax.set(xlabel='Frequency $Hz$', ylabel=r'Phase $\phi{}=\beta{}l=\omega{}\tau$ ($rad$)', title='$e^{-\gamma{}l}$ - Phase vs. Frequency')
ax.grid()
ax.legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,3.5)
fig.tight_layout()
fig.savefig('prop_phase_plot_nolog.pgf')
fig.savefig('prop_phase_plot_nolog.png')
# Plot attenuation (real component of gamma) (nepers/km)
fig, ax = plt.subplots()
ax.plot(data[FREQ_INDEX], attenuation_zero, color='b', label='zero sequence')
ax.plot(data[FREQ_INDEX], attenuation_pos, color='g', label='positive sequence')
ax.set(xlabel='Frequency $Hz$', ylabel=r'Attenuation $\alpha{}(\omega)$ $(nepers/km)$', title=r'Attenuation $\alpha{}(\omega)$ vs. Frequency')
ax.grid()
ax.set_xscale('log')
ax.legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,3.5)
fig.tight_layout()
fig.savefig('attenuation_plots.pgf')
fig.savefig('attenuation_plots.png')
# Plot phase displacement beta(w) (radians/km)
fig, ax = plt.subplots()
ax.plot(data[FREQ_INDEX], phase_zero, color='b', label='zero sequence')
ax.plot(data[FREQ_INDEX], phase_pos, color='g', label='positive sequence')
ax.set(xlabel='Frequency $Hz$', ylabel=r'Phase Displacement $\beta{}(\omega)$ $(rad/km)$', title=r'Phase Displacement $\beta{}(\omega)$ vs. Frequency')
ax.grid()
ax.set_xscale('log')
ax.legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,3.5)
fig.tight_layout()
fig.savefig('phase_displacement_plots.pgf')
fig.savefig('phase_displacement_plots.png')
# Plot propagation speed a(w) (km/s)
fig, ax = plt.subplots()
ax.plot(data[FREQ_INDEX], propagation_speed_zero, color='b', label='zero sequence')
ax.plot(data[FREQ_INDEX], propagation_speed_pos, color='g', label='positive sequence')
ax.set(xlabel='Frequency $Hz$', ylabel=r'Propagation Speed $a(\omega)$ $(km/s)$', title=r'Propagation Speed $a(\omega)$ vs. Frequency')
ax.grid()
ax.set_xscale('log')
ax.legend(loc='best', prop={'size':legend_font_size}, fancybox=True, shadow=True)
fig.set_size_inches(6.5,3.5)
fig.tight_layout()
fig.savefig('propagation_speed_plots.pgf')
fig.savefig('propagation_speed_plots.png')
if __name__ == '__main__':
# the following sets up the argument parser for the program
parser = argparse.ArgumentParser(description='Assignment 4 solution generator')
args = parser.parse_args()
main(args)
|
[
"numpy.sqrt",
"argparse.ArgumentParser",
"matplotlib.rcParams.update",
"matplotlib.use",
"matplotlib.ticker.MultipleLocator",
"numpy.absolute",
"numpy.imag",
"numpy.angle",
"numpy.exp",
"numpy.real",
"matplotlib.ticker.FormatStrFormatter",
"csv.reader",
"matplotlib.pyplot.subplots"
] |
[((160, 181), 'matplotlib.use', 'matplotlib.use', (['"""pgf"""'], {}), "('pgf')\n", (174, 181), False, 'import matplotlib\n'), ((214, 359), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'pgf.texsystem': 'pdflatex', 'font.size': 10, 'font.family': 'serif',\n 'text.usetex': True, 'pgf.rcfonts': False}"], {}), "({'pgf.texsystem': 'pdflatex', 'font.size': 10,\n 'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False})\n", (240, 359), False, 'import matplotlib\n'), ((5331, 5346), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {}), '(2)\n', (5343, 5346), True, 'import matplotlib.pyplot as plt\n'), ((6585, 6600), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {}), '(2)\n', (6597, 6600), True, 'import matplotlib.pyplot as plt\n'), ((7805, 7820), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (7817, 7820), True, 'import matplotlib.pyplot as plt\n'), ((8476, 8490), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8488, 8490), True, 'import matplotlib.pyplot as plt\n'), ((9134, 9148), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9146, 9148), True, 'import matplotlib.pyplot as plt\n'), ((9793, 9807), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9805, 9807), True, 'import matplotlib.pyplot as plt\n'), ((10507, 10577), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Assignment 4 solution generator"""'}), "(description='Assignment 4 solution generator')\n", (10530, 10577), False, 'import argparse\n'), ((1094, 1129), 'csv.reader', 'csv.reader', (['csv_file'], {'delimiter': '""","""'}), "(csv_file, delimiter=',')\n", (1104, 1129), False, 'import csv\n'), ((2097, 2216), 'numpy.sqrt', 'np.sqrt', (['((data[R_ZERO_INDEX][index] + 1.0j * omega * data[L_ZERO_INDEX][index]) / (\n G_zero + 1.0j * omega * C_zero))'], {}), '((data[R_ZERO_INDEX][index] + 1.0j * omega * data[L_ZERO_INDEX][\n index]) / (G_zero + 1.0j * omega * C_zero))\n', (2104, 2216), True, 'import numpy as np\n'), ((2231, 2346), 'numpy.sqrt', 'np.sqrt', (['((data[R_POS_INDEX][index] + 1.0j * omega * data[L_POS_INDEX][index]) / (\n G_pos + 1.0j * omega * C_pos))'], {}), '((data[R_POS_INDEX][index] + 1.0j * omega * data[L_POS_INDEX][index]\n ) / (G_pos + 1.0j * omega * C_pos))\n', (2238, 2346), True, 'import numpy as np\n'), ((3954, 4073), 'numpy.sqrt', 'np.sqrt', (['((data[R_ZERO_INDEX][index] + 1.0j * omega * data[L_ZERO_INDEX][index]) * (\n G_zero + 1.0j * omega * C_zero))'], {}), '((data[R_ZERO_INDEX][index] + 1.0j * omega * data[L_ZERO_INDEX][\n index]) * (G_zero + 1.0j * omega * C_zero))\n', (3961, 4073), True, 'import numpy as np\n'), ((4075, 4190), 'numpy.sqrt', 'np.sqrt', (['((data[R_POS_INDEX][index] + 1.0j * omega * data[L_POS_INDEX][index]) * (\n G_pos + 1.0j * omega * C_pos))'], {}), '((data[R_POS_INDEX][index] + 1.0j * omega * data[L_POS_INDEX][index]\n ) * (G_pos + 1.0j * omega * C_pos))\n', (4082, 4190), True, 'import numpy as np\n'), ((6030, 6068), 'matplotlib.ticker.FormatStrFormatter', 'tck.FormatStrFormatter', (['"""%1.1f $\\\\pi$"""'], {}), "('%1.1f $\\\\pi$')\n", (6052, 6068), True, 'import matplotlib.ticker as tck\n'), ((6103, 6134), 'matplotlib.ticker.MultipleLocator', 'tck.MultipleLocator', ([], {'base': '(1 / 5)'}), '(base=1 / 5)\n', (6122, 6134), True, 'import matplotlib.ticker as tck\n'), ((3100, 3131), 'numpy.absolute', 'np.absolute', (['impedance_zero_val'], {}), '(impedance_zero_val)\n', (3111, 3131), True, 'import numpy as np\n'), ((3176, 3204), 'numpy.angle', 'np.angle', (['impedance_zero_val'], {}), '(impedance_zero_val)\n', (3184, 3204), True, 'import numpy as np\n'), ((3252, 3282), 'numpy.absolute', 'np.absolute', (['impedance_pos_val'], {}), '(impedance_pos_val)\n', (3263, 3282), True, 'import numpy as np\n'), ((3326, 3353), 'numpy.angle', 'np.angle', (['impedance_pos_val'], {}), '(impedance_pos_val)\n', (3334, 3353), True, 'import numpy as np\n'), ((4643, 4662), 'numpy.real', 'np.real', (['gamma_zero'], {}), '(gamma_zero)\n', (4650, 4662), True, 'import numpy as np\n'), ((4695, 4713), 'numpy.real', 'np.real', (['gamma_pos'], {}), '(gamma_pos)\n', (4702, 4713), True, 'import numpy as np\n'), ((4814, 4833), 'numpy.imag', 'np.imag', (['gamma_zero'], {}), '(gamma_zero)\n', (4821, 4833), True, 'import numpy as np\n'), ((4860, 4878), 'numpy.imag', 'np.imag', (['gamma_pos'], {}), '(gamma_pos)\n', (4867, 4878), True, 'import numpy as np\n'), ((4284, 4316), 'numpy.exp', 'np.exp', (['(-1 * gamma_zero * length)'], {}), '(-1 * gamma_zero * length)\n', (4290, 4316), True, 'import numpy as np\n'), ((4449, 4480), 'numpy.exp', 'np.exp', (['(-1 * gamma_pos * length)'], {}), '(-1 * gamma_pos * length)\n', (4455, 4480), True, 'import numpy as np\n'), ((4361, 4380), 'numpy.imag', 'np.imag', (['gamma_zero'], {}), '(gamma_zero)\n', (4368, 4380), True, 'import numpy as np\n'), ((4524, 4542), 'numpy.imag', 'np.imag', (['gamma_pos'], {}), '(gamma_pos)\n', (4531, 4542), True, 'import numpy as np\n')]
|
import unittest
from cosymlib import file_io
from numpy import testing
from cosymlib.molecule.geometry import Geometry
import os
data_dir = os.path.join(os.path.dirname(__file__), 'data')
class TestSymgroupFchk(unittest.TestCase):
def setUp(self):
self._structure = file_io.read_generic_structure_file(data_dir + '/wfnsym/tih4_5d.fchk')
self._geometry = self._structure.geometry
def test_symmetry_measure(self):
# print(self._structure.geometry)
measure = self._geometry.get_symmetry_measure('C3', central_atom=1)
self.assertAlmostEqual(measure, 0)
class TestSymgroupCycles(unittest.TestCase):
def setUp(self):
self._geometry = Geometry(positions=[[ 0.506643354, -1.227657970, 0.000000000],
[ 1.303068499, 0.000000000, 0.000000000],
[ 0.506643354, 1.227657970, 0.000000000],
[-0.926250976, 0.939345948, 0.000000000],
[-0.926250976, -0.939345948, 0.000000000]],
# name='test',
symbols=['C', 'C', 'C', 'C', 'C'],
connectivity_thresh=1.5,
)
def test_symmetry_measure(self):
measure = self._geometry.get_symmetry_measure('C5')
self.assertAlmostEqual(measure, 0.8247502, places=6)
measure = self._geometry.get_symmetry_measure('C2')
self.assertAlmostEqual(measure, 0.0, places=6)
measure = self._geometry.get_symmetry_measure('C3')
self.assertAlmostEqual(measure, 33.482451, places=6)
#def test_symmetry_measure_permutation(self):
# measure = self._geometry.get_symmetry_measure('C5', fix_permutation=True)
# self.assertAlmostEqual(measure, 0.8247502, places=6)
def test_symmetry_nearest(self):
nearest = self._geometry.get_symmetry_nearest_structure('C5').get_positions()
# print(nearest)
reference = [[ 4.05078542e-01, -1.24670356e+00, 0.00000000e+00],
[ 1.31086170e+00, -1.33226763e-16, 0.00000000e+00],
[ 4.05078542e-01, 1.24670356e+00, 0.00000000e+00],
[-1.06050939e+00, 7.70505174e-01, 0.00000000e+00],
[-1.06050939e+00, -7.70505174e-01, 0.00000000e+00]]
testing.assert_array_almost_equal(nearest, reference, decimal=6)
|
[
"os.path.dirname",
"numpy.testing.assert_array_almost_equal",
"cosymlib.molecule.geometry.Geometry",
"cosymlib.file_io.read_generic_structure_file"
] |
[((155, 180), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (170, 180), False, 'import os\n'), ((283, 353), 'cosymlib.file_io.read_generic_structure_file', 'file_io.read_generic_structure_file', (["(data_dir + '/wfnsym/tih4_5d.fchk')"], {}), "(data_dir + '/wfnsym/tih4_5d.fchk')\n", (318, 353), False, 'from cosymlib import file_io\n'), ((697, 950), 'cosymlib.molecule.geometry.Geometry', 'Geometry', ([], {'positions': '[[0.506643354, -1.22765797, 0.0], [1.303068499, 0.0, 0.0], [0.506643354, \n 1.22765797, 0.0], [-0.926250976, 0.939345948, 0.0], [-0.926250976, -\n 0.939345948, 0.0]]', 'symbols': "['C', 'C', 'C', 'C', 'C']", 'connectivity_thresh': '(1.5)'}), "(positions=[[0.506643354, -1.22765797, 0.0], [1.303068499, 0.0, 0.0\n ], [0.506643354, 1.22765797, 0.0], [-0.926250976, 0.939345948, 0.0], [-\n 0.926250976, -0.939345948, 0.0]], symbols=['C', 'C', 'C', 'C', 'C'],\n connectivity_thresh=1.5)\n", (705, 950), False, 'from cosymlib.molecule.geometry import Geometry\n'), ((2444, 2508), 'numpy.testing.assert_array_almost_equal', 'testing.assert_array_almost_equal', (['nearest', 'reference'], {'decimal': '(6)'}), '(nearest, reference, decimal=6)\n', (2477, 2508), False, 'from numpy import testing\n')]
|
import matplotlib.pyplot as plt
import numpy as np
def plot_chains(chain, fileout=None, tracers=0, labels=None, delay=0, ymax=200000, thin=100, num_xticks=7, truths=None):
if chain.ndim < 3:
print("You must include a multiple chains")
return
n_chains, length, n_var = chain.shape
print(n_chains, length, n_var)
if (labels is not None) and (len(labels) != n_var):
print("You must provide the correct number of variable labels.")
return
if (truths is not None) and (len(truths) != n_var):
print("You must provide the correct number of truths.")
return
fig, ax = plt.subplots(int(n_var/2) + n_var%2, 2, figsize=(8, 0.8*n_var))
plt.subplots_adjust(left=0.09, bottom=0.07, right=0.96, top=0.96, hspace=0)
color = np.empty(n_chains, dtype=str)
color[:] = 'k'
alpha = 0.01 * np.ones(n_chains)
zorder = np.ones(n_chains)
if tracers > 0:
idx = np.random.choice(n_chains, tracers, replace=False)
color[idx] = 'r'
alpha[idx] = 1.0
zorder[idx] = 2.0
for i in range(n_var):
ix = int(i/2)
iy = i%2
for j in range(n_chains):
xvals = (np.arange(length)*thin - delay) / 1000.0
ax[ix,iy].plot(xvals, chain[j,:,i], color=color[j], alpha=alpha[j], rasterized=True, zorder=zorder[j])
if ymax is None: ymax = (length*thin-delay)
ax[ix,iy].set_xlim(-delay/1000.0, ymax/1000.0)
ax[ix,iy].set_xticks(np.linspace(-delay/1000.0,ymax/1000.0,num_xticks))
ax[ix,iy].set_xticklabels([])
# Add y-axis labels if provided by use
if labels is not None: ax[ix,iy].set_ylabel(labels[i])
if delay != 0: ax[ix,iy].axvline(0, color='k', linestyle='dashed', linewidth=2.0, zorder=9)
if truths is not None: ax[ix,iy].axhline(truths[i], color='C0', linestyle='dashed', linewidth=2.0, zorder=10)
# plt.tight_layout()
ax[-1,0].set_xticklabels(np.linspace(-delay/1000.0,ymax/1000.0,num_xticks).astype('i8').astype('U'))
ax[-1,1].set_xticklabels(np.linspace(-delay/1000.0,ymax/1000.0,num_xticks).astype('i8').astype('U'))
ax[-1,0].set_xlabel(r'Steps ($\times$1000)')
ax[-1,1].set_xlabel(r'Steps ($\times$1000)')
if fileout is None:
plt.show()
else:
plt.savefig(fileout, rasterized=True)
return
# from dart_board import plotting
# import numpy as np
# import pickle
# chains = pickle.load(open("../data/HMXB_chain.obj", "rb"))
# plotting.plot_chains(chains)
|
[
"matplotlib.pyplot.savefig",
"numpy.ones",
"numpy.arange",
"numpy.random.choice",
"numpy.linspace",
"numpy.empty",
"matplotlib.pyplot.subplots_adjust",
"matplotlib.pyplot.show"
] |
[((708, 783), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.09)', 'bottom': '(0.07)', 'right': '(0.96)', 'top': '(0.96)', 'hspace': '(0)'}), '(left=0.09, bottom=0.07, right=0.96, top=0.96, hspace=0)\n', (727, 783), True, 'import matplotlib.pyplot as plt\n'), ((798, 827), 'numpy.empty', 'np.empty', (['n_chains'], {'dtype': 'str'}), '(n_chains, dtype=str)\n', (806, 827), True, 'import numpy as np\n'), ((897, 914), 'numpy.ones', 'np.ones', (['n_chains'], {}), '(n_chains)\n', (904, 914), True, 'import numpy as np\n'), ((866, 883), 'numpy.ones', 'np.ones', (['n_chains'], {}), '(n_chains)\n', (873, 883), True, 'import numpy as np\n'), ((949, 999), 'numpy.random.choice', 'np.random.choice', (['n_chains', 'tracers'], {'replace': '(False)'}), '(n_chains, tracers, replace=False)\n', (965, 999), True, 'import numpy as np\n'), ((2285, 2295), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2293, 2295), True, 'import matplotlib.pyplot as plt\n'), ((2314, 2351), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fileout'], {'rasterized': '(True)'}), '(fileout, rasterized=True)\n', (2325, 2351), True, 'import matplotlib.pyplot as plt\n'), ((1494, 1549), 'numpy.linspace', 'np.linspace', (['(-delay / 1000.0)', '(ymax / 1000.0)', 'num_xticks'], {}), '(-delay / 1000.0, ymax / 1000.0, num_xticks)\n', (1505, 1549), True, 'import numpy as np\n'), ((1200, 1217), 'numpy.arange', 'np.arange', (['length'], {}), '(length)\n', (1209, 1217), True, 'import numpy as np\n'), ((1972, 2027), 'numpy.linspace', 'np.linspace', (['(-delay / 1000.0)', '(ymax / 1000.0)', 'num_xticks'], {}), '(-delay / 1000.0, ymax / 1000.0, num_xticks)\n', (1983, 2027), True, 'import numpy as np\n'), ((2077, 2132), 'numpy.linspace', 'np.linspace', (['(-delay / 1000.0)', '(ymax / 1000.0)', 'num_xticks'], {}), '(-delay / 1000.0, ymax / 1000.0, num_xticks)\n', (2088, 2132), True, 'import numpy as np\n')]
|
##
## Evaluation Script
##
import numpy as np
import time
from sample_model import Model
from data_loader import data_loader
from generator import Generator
def evaluate(label_indices = {'brick': 0, 'ball': 1, 'cylinder': 2},
channel_means = np.array([147.12697, 160.21092, 167.70029]),
data_path = '../data',
minibatch_size = 32,
num_batches_to_test = 10,
checkpoint_dir = 'tf_data/sample_model'):
print("1. Loading data")
data = data_loader(label_indices = label_indices,
channel_means = channel_means,
train_test_split = 0.5,
data_path = data_path)
print("2. Instantiating the model")
M = Model(mode = 'test')
#Evaluate on test images:
GT = Generator(data.test.X, data.test.y, minibatch_size = minibatch_size)
num_correct = 0
num_total = 0
print("3. Evaluating on test images")
for i in range(num_batches_to_test):
GT.generate()
yhat = M.predict(X = GT.X, checkpoint_dir = checkpoint_dir)
correct_predictions = (np.argmax(yhat, axis = 1) == np.argmax(GT.y, axis = 1))
num_correct += np.sum(correct_predictions)
num_total += len(correct_predictions)
accuracy = round(num_correct/num_total,4)
return accuracy
def calculate_score(accuracy):
score = 0
if accuracy >= 0.92:
score = 10
elif accuracy >= 0.9:
score = 9
elif accuracy >= 0.85:
score = 8
elif accuracy >= 0.8:
score = 7
elif accuracy >= 0.75:
score = 6
elif accuracy >= 0.70:
score = 5
else:
score = 4
return score
if __name__ == '__main__':
program_start = time.time()
accuracy = evaluate()
score = calculate_score(accuracy)
program_end = time.time()
total_time = round(program_end - program_start,2)
print()
print("Execution time (seconds) = ", total_time)
print('Accuracy = ' + str(accuracy))
print("Score = ", score)
print()
|
[
"generator.Generator",
"sample_model.Model",
"data_loader.data_loader",
"numpy.argmax",
"numpy.array",
"numpy.sum",
"time.time"
] |
[((258, 301), 'numpy.array', 'np.array', (['[147.12697, 160.21092, 167.70029]'], {}), '([147.12697, 160.21092, 167.70029])\n', (266, 301), True, 'import numpy as np\n'), ((513, 629), 'data_loader.data_loader', 'data_loader', ([], {'label_indices': 'label_indices', 'channel_means': 'channel_means', 'train_test_split': '(0.5)', 'data_path': 'data_path'}), '(label_indices=label_indices, channel_means=channel_means,\n train_test_split=0.5, data_path=data_path)\n', (524, 629), False, 'from data_loader import data_loader\n'), ((745, 763), 'sample_model.Model', 'Model', ([], {'mode': '"""test"""'}), "(mode='test')\n", (750, 763), False, 'from sample_model import Model\n'), ((806, 872), 'generator.Generator', 'Generator', (['data.test.X', 'data.test.y'], {'minibatch_size': 'minibatch_size'}), '(data.test.X, data.test.y, minibatch_size=minibatch_size)\n', (815, 872), False, 'from generator import Generator\n'), ((1755, 1766), 'time.time', 'time.time', ([], {}), '()\n', (1764, 1766), False, 'import time\n'), ((1849, 1860), 'time.time', 'time.time', ([], {}), '()\n', (1858, 1860), False, 'import time\n'), ((1206, 1233), 'numpy.sum', 'np.sum', (['correct_predictions'], {}), '(correct_predictions)\n', (1212, 1233), True, 'import numpy as np\n'), ((1127, 1150), 'numpy.argmax', 'np.argmax', (['yhat'], {'axis': '(1)'}), '(yhat, axis=1)\n', (1136, 1150), True, 'import numpy as np\n'), ((1156, 1179), 'numpy.argmax', 'np.argmax', (['GT.y'], {'axis': '(1)'}), '(GT.y, axis=1)\n', (1165, 1179), True, 'import numpy as np\n')]
|
import matplotlib.pyplot as plt
import distance
from matplotlib import style
from clustering_algorithms.affinity_propagation import AffinityPropagation
from clustering_algorithms.custom_k_means import KMeans
from clustering_algorithms.custom_mean_shift import MeanShift
from clustering_algorithms.custom_mean_shift_string_edition import MeanShiftStringEdition
from clustering_algorithms.dbscan import DbScan
from prepare_data.format_sequences import format_sequences_from_student
from utils.e_mine import e_mine_find_common_scanpath
from utils.string_compare_algorithm import levenstein_sequence_similarity, is_string_similar, needleman_wunsch, \
needleman_wunsch_with_penalty
import numpy as np
# def initialize_2D_number_data_and_plot_them():
# number_data = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11], [8, 2], [10, 2], [9, 3]])
# # plot data
# plt.scatter(number_data[:, 0], number_data[:, 1])
# plt.show()
# return number_data
#
#
# def test_k_means_with_numbers_then_plot_results():
# clf = KMeans(k=3)
# clf.fit(number_data)
#
# for centroid in clf.centroids:
# plt.scatter(clf.centroids[centroid][0], clf.centroids[centroid][1],
# marker="o", color="k", s=150, linewidths=5)
#
# for classification in clf.classifications:
# color = colors[classification]
# for featureset in clf.classifications[classification]:
# plt.scatter(featureset[0], featureset[1], marker="x", color=color,
# s=150, linewidths=5)
# plt.show()
#
#
# def test_mean_shift_with_numbers_then_plot_results():
# clf_ms = MeanShift()
# clf_ms.fit(number_data)
# plt.scatter(number_data[:, 0], number_data[:, 1], s=150)
# centroids = clf_ms.centroids
# for c in centroids:
# plt.scatter(centroids[c][0], centroids[c][1], color='k', marker="*", s=150)
# plt.show()
def initialize_string_sequences(student_name):
# print(format_sequences_from_student(student_name))
return format_sequences_from_student(student_name)
# return ["ACCAEF", "ACCEF", "AACF", "CCCEF", "CCAACCF", "CCACF"]
def print_description():
print("***************************************************")
print("NAME OF ALGORITHM")
print("- *CLUSTER REPRESENTER* [CLUSTER MEMBER, CLUSTER MEMBER, CLUSTER MEMBER]")
print("***************************************************")
def test_and_print_results_string_k_means_with_levenshtein_distance():
kmeans_alg = KMeans(k=3, distance_function=distance.levenshtein, find_average_function=e_mine_find_common_scanpath,
check_is_optimized_function=is_string_similar)
kmeans_alg.fit(string_data)
print_k_means_results(kmeans_alg, "Levenshtein")
def test_and_print_results_string_k_means_with_needleman_wunsch_distance():
kmeans_alg = KMeans(k=3, distance_function=needleman_wunsch, find_average_function=e_mine_find_common_scanpath,
check_is_optimized_function=is_string_similar)
kmeans_alg.fit(string_data)
print_k_means_results(kmeans_alg, "Needleman-Wunsch")
def test_and_print_results_string_k_means_with_needleman_wunsch_distance_with_extra_penalty_points():
kmeans_alg = KMeans(k=3, distance_function=needleman_wunsch_with_penalty,
find_average_function=e_mine_find_common_scanpath,
check_is_optimized_function=is_string_similar)
kmeans_alg.fit(string_data)
print_k_means_results(kmeans_alg, "Needleman-Wunsch with additional penalty")
def print_k_means_results(kmeans_alg, distance_algorithm):
centroid_cluster_map_kmeans = {}
for i in range(0, len(kmeans_alg.centroids)):
centroid_cluster_map_kmeans[kmeans_alg.centroids[i]] = kmeans_alg.classifications[i]
print()
print("K Means string edition with %s distance algorithm" % distance_algorithm)
for centroid in centroid_cluster_map_kmeans:
print(" - *%s* %s" % (centroid, centroid_cluster_map_kmeans[centroid]))
def test_and_print_results_string_mean_shift_with_levenshtein_distance():
mean_shift_string_edition = MeanShiftStringEdition()
mean_shift_string_edition.fit(string_data)
print_mean_shift_results(mean_shift_string_edition, "Levenshtein")
def test_and_print_results_string_mean_shift_with_needleman_wunsch_distance():
mean_shift_string_edition = MeanShiftStringEdition(distance_function=needleman_wunsch)
mean_shift_string_edition.fit(string_data)
print_mean_shift_results(mean_shift_string_edition, "Needleman-Wunsch")
def test_and_print_results_string_mean_shift_with_needleman_wunsch_distance_with_extra_penalty_points():
mean_shift_string_edition = MeanShiftStringEdition(distance_function=needleman_wunsch_with_penalty)
mean_shift_string_edition.fit(string_data)
print_mean_shift_results(mean_shift_string_edition, "Needleman-Wunsch with additional penalty")
def print_mean_shift_results(mean_shift_string_edition, distance_algorithm):
print()
print("Mean Shift string edition with %s distance algorithm" % distance_algorithm)
for centroid in mean_shift_string_edition.centroids:
print(" - *%s*" % mean_shift_string_edition.centroids[centroid])
def test_and_print_results_string_affinity_propagation_with_levenstein_distance():
data_as_array = np.asarray(string_data)
lev_similarity_scores = -1 * np.array(
[[distance.levenshtein(w1, w2) for w1 in data_as_array] for w2 in data_as_array])
affinity_propagation_alg = AffinityPropagation()
affinity_propagation_alg.fit(lev_similarity_scores)
print_affinity_propagation_results(affinity_propagation_alg, data_as_array, "Levenshtein")
def test_and_print_results_string_affinity_propagation_with_needleman_wunsch_distance():
data_as_array = np.asarray(string_data)
lev_similarity_scores = -1 * np.array(
[[needleman_wunsch(w1, w2) for w1 in data_as_array] for w2 in data_as_array])
affinity_propagation_alg = AffinityPropagation()
affinity_propagation_alg.fit(lev_similarity_scores)
print_affinity_propagation_results(affinity_propagation_alg, data_as_array, "Needleman-Wunsch")
def test_and_print_results_string_affinity_propagation_with_needleman_wunsch_distance_with_extra_penalty_points():
data_as_array = np.asarray(string_data)
lev_similarity_scores = -1 * np.array(
[[needleman_wunsch_with_penalty(w1, w2) for w1 in data_as_array] for w2 in data_as_array])
affinity_propagation_alg = AffinityPropagation()
affinity_propagation_alg.fit(lev_similarity_scores)
print_affinity_propagation_results(affinity_propagation_alg, data_as_array, "Needleman-Wunsch with additional penalty")
def print_affinity_propagation_results(affinity_propagation_alg, data_as_array, distance_algorithm):
print()
print('Affinity Propagation with %s distance algorithm' % distance_algorithm)
exemplar_features_map = affinity_propagation_alg.get_exemplars_and_their_features(data_as_array)
for exemplar in exemplar_features_map:
print(" - *%s* %s" % (exemplar, exemplar_features_map[exemplar]))
def test_and_print_results_string_db_scan_with_levenstein_distance():
def lev_metric(x, y):
i, j = int(x[0]), int(y[0]) # extract indices
return distance.levenshtein(string_data[i], string_data[j])
db_scan = DbScan()
db_scan.fit(lev_metric, string_data)
print_db_scan_results(db_scan, "Levenshtein")
def test_and_print_results_string_db_scan_with_needleman_wunsch_distance():
def lev_metric(x, y):
i, j = int(x[0]), int(y[0]) # extract indices
return needleman_wunsch(string_data[i], string_data[j])
db_scan = DbScan()
db_scan.fit(lev_metric, string_data)
print_db_scan_results(db_scan, "Needleman-Wunsch")
def test_and_print_results_string_db_scan_with_needleman_wunsch_distance_with_extra_penalty_points():
def lev_metric(x, y):
i, j = int(x[0]), int(y[0]) # extract indices
return needleman_wunsch_with_penalty(string_data[i], string_data[j])
db_scan = DbScan()
db_scan.fit(lev_metric, string_data)
print_db_scan_results(db_scan, "Needleman-Wunsch with additional penalty")
def print_db_scan_results(db_scan, distance_algorithm):
print()
print('DB Scan with %s distance algorithm' % distance_algorithm)
for cluster in db_scan.get_clusters():
cluster_representer = e_mine_find_common_scanpath(db_scan.get_clusters()[cluster])
print(" - *%s* %s" % (cluster_representer, db_scan.get_clusters()[cluster]))
'''
1# Initialize number collection and plot style
'''
# style.use('ggplot')
# number_data = initialize_2D_number_data_and_plot_them()
# colors = 10 * ["g", "r", "c", "b", "k"]
'''
Test classification algorithms with numbers
'''
# test_k_means_with_numbers_then_plot_results()
# test_mean_shift_with_numbers_then_plot_results()
'''
2# Initialize string collection and print description on printed form
'''
student_name = "student_1"
string_data = initialize_string_sequences(student_name)
print_description()
'''
Test classification algorithms with strings
'''
test_and_print_results_string_k_means_with_levenshtein_distance()
test_and_print_results_string_k_means_with_needleman_wunsch_distance()
test_and_print_results_string_k_means_with_needleman_wunsch_distance_with_extra_penalty_points()
test_and_print_results_string_mean_shift_with_levenshtein_distance()
test_and_print_results_string_mean_shift_with_needleman_wunsch_distance()
test_and_print_results_string_mean_shift_with_needleman_wunsch_distance_with_extra_penalty_points()
test_and_print_results_string_affinity_propagation_with_levenstein_distance()
test_and_print_results_string_affinity_propagation_with_needleman_wunsch_distance()
test_and_print_results_string_affinity_propagation_with_needleman_wunsch_distance_with_extra_penalty_points()
test_and_print_results_string_db_scan_with_levenstein_distance()
test_and_print_results_string_db_scan_with_needleman_wunsch_distance()
test_and_print_results_string_db_scan_with_needleman_wunsch_distance_with_extra_penalty_points()
|
[
"utils.string_compare_algorithm.needleman_wunsch_with_penalty",
"prepare_data.format_sequences.format_sequences_from_student",
"numpy.asarray",
"clustering_algorithms.affinity_propagation.AffinityPropagation",
"clustering_algorithms.custom_k_means.KMeans",
"distance.levenshtein",
"clustering_algorithms.custom_mean_shift_string_edition.MeanShiftStringEdition",
"utils.string_compare_algorithm.needleman_wunsch",
"clustering_algorithms.dbscan.DbScan"
] |
[((2032, 2075), 'prepare_data.format_sequences.format_sequences_from_student', 'format_sequences_from_student', (['student_name'], {}), '(student_name)\n', (2061, 2075), False, 'from prepare_data.format_sequences import format_sequences_from_student\n'), ((2510, 2664), 'clustering_algorithms.custom_k_means.KMeans', 'KMeans', ([], {'k': '(3)', 'distance_function': 'distance.levenshtein', 'find_average_function': 'e_mine_find_common_scanpath', 'check_is_optimized_function': 'is_string_similar'}), '(k=3, distance_function=distance.levenshtein, find_average_function=\n e_mine_find_common_scanpath, check_is_optimized_function=is_string_similar)\n', (2516, 2664), False, 'from clustering_algorithms.custom_k_means import KMeans\n'), ((2864, 3014), 'clustering_algorithms.custom_k_means.KMeans', 'KMeans', ([], {'k': '(3)', 'distance_function': 'needleman_wunsch', 'find_average_function': 'e_mine_find_common_scanpath', 'check_is_optimized_function': 'is_string_similar'}), '(k=3, distance_function=needleman_wunsch, find_average_function=\n e_mine_find_common_scanpath, check_is_optimized_function=is_string_similar)\n', (2870, 3014), False, 'from clustering_algorithms.custom_k_means import KMeans\n'), ((3245, 3411), 'clustering_algorithms.custom_k_means.KMeans', 'KMeans', ([], {'k': '(3)', 'distance_function': 'needleman_wunsch_with_penalty', 'find_average_function': 'e_mine_find_common_scanpath', 'check_is_optimized_function': 'is_string_similar'}), '(k=3, distance_function=needleman_wunsch_with_penalty,\n find_average_function=e_mine_find_common_scanpath,\n check_is_optimized_function=is_string_similar)\n', (3251, 3411), False, 'from clustering_algorithms.custom_k_means import KMeans\n'), ((4140, 4164), 'clustering_algorithms.custom_mean_shift_string_edition.MeanShiftStringEdition', 'MeanShiftStringEdition', ([], {}), '()\n', (4162, 4164), False, 'from clustering_algorithms.custom_mean_shift_string_edition import MeanShiftStringEdition\n'), ((4397, 4455), 'clustering_algorithms.custom_mean_shift_string_edition.MeanShiftStringEdition', 'MeanShiftStringEdition', ([], {'distance_function': 'needleman_wunsch'}), '(distance_function=needleman_wunsch)\n', (4419, 4455), False, 'from clustering_algorithms.custom_mean_shift_string_edition import MeanShiftStringEdition\n'), ((4719, 4790), 'clustering_algorithms.custom_mean_shift_string_edition.MeanShiftStringEdition', 'MeanShiftStringEdition', ([], {'distance_function': 'needleman_wunsch_with_penalty'}), '(distance_function=needleman_wunsch_with_penalty)\n', (4741, 4790), False, 'from clustering_algorithms.custom_mean_shift_string_edition import MeanShiftStringEdition\n'), ((5352, 5375), 'numpy.asarray', 'np.asarray', (['string_data'], {}), '(string_data)\n', (5362, 5375), True, 'import numpy as np\n'), ((5540, 5561), 'clustering_algorithms.affinity_propagation.AffinityPropagation', 'AffinityPropagation', ([], {}), '()\n', (5559, 5561), False, 'from clustering_algorithms.affinity_propagation import AffinityPropagation\n'), ((5825, 5848), 'numpy.asarray', 'np.asarray', (['string_data'], {}), '(string_data)\n', (5835, 5848), True, 'import numpy as np\n'), ((6009, 6030), 'clustering_algorithms.affinity_propagation.AffinityPropagation', 'AffinityPropagation', ([], {}), '()\n', (6028, 6030), False, 'from clustering_algorithms.affinity_propagation import AffinityPropagation\n'), ((6325, 6348), 'numpy.asarray', 'np.asarray', (['string_data'], {}), '(string_data)\n', (6335, 6348), True, 'import numpy as np\n'), ((6522, 6543), 'clustering_algorithms.affinity_propagation.AffinityPropagation', 'AffinityPropagation', ([], {}), '()\n', (6541, 6543), False, 'from clustering_algorithms.affinity_propagation import AffinityPropagation\n'), ((7376, 7384), 'clustering_algorithms.dbscan.DbScan', 'DbScan', ([], {}), '()\n', (7382, 7384), False, 'from clustering_algorithms.dbscan import DbScan\n'), ((7714, 7722), 'clustering_algorithms.dbscan.DbScan', 'DbScan', ([], {}), '()\n', (7720, 7722), False, 'from clustering_algorithms.dbscan import DbScan\n'), ((8096, 8104), 'clustering_algorithms.dbscan.DbScan', 'DbScan', ([], {}), '()\n', (8102, 8104), False, 'from clustering_algorithms.dbscan import DbScan\n'), ((7308, 7360), 'distance.levenshtein', 'distance.levenshtein', (['string_data[i]', 'string_data[j]'], {}), '(string_data[i], string_data[j])\n', (7328, 7360), False, 'import distance\n'), ((7650, 7698), 'utils.string_compare_algorithm.needleman_wunsch', 'needleman_wunsch', (['string_data[i]', 'string_data[j]'], {}), '(string_data[i], string_data[j])\n', (7666, 7698), False, 'from utils.string_compare_algorithm import levenstein_sequence_similarity, is_string_similar, needleman_wunsch, needleman_wunsch_with_penalty\n'), ((8019, 8080), 'utils.string_compare_algorithm.needleman_wunsch_with_penalty', 'needleman_wunsch_with_penalty', (['string_data[i]', 'string_data[j]'], {}), '(string_data[i], string_data[j])\n', (8048, 8080), False, 'from utils.string_compare_algorithm import levenstein_sequence_similarity, is_string_similar, needleman_wunsch, needleman_wunsch_with_penalty\n'), ((5429, 5457), 'distance.levenshtein', 'distance.levenshtein', (['w1', 'w2'], {}), '(w1, w2)\n', (5449, 5457), False, 'import distance\n'), ((5902, 5926), 'utils.string_compare_algorithm.needleman_wunsch', 'needleman_wunsch', (['w1', 'w2'], {}), '(w1, w2)\n', (5918, 5926), False, 'from utils.string_compare_algorithm import levenstein_sequence_similarity, is_string_similar, needleman_wunsch, needleman_wunsch_with_penalty\n'), ((6402, 6439), 'utils.string_compare_algorithm.needleman_wunsch_with_penalty', 'needleman_wunsch_with_penalty', (['w1', 'w2'], {}), '(w1, w2)\n', (6431, 6439), False, 'from utils.string_compare_algorithm import levenstein_sequence_similarity, is_string_similar, needleman_wunsch, needleman_wunsch_with_penalty\n')]
|
# !/usr/bin/env python
# -*- coding: utf-8 -*-
"""Conversion between single-channel integer value to 3-channels color image.
Mostly used for semantic segmentation.
"""
from __future__ import annotations
import numpy as np
import torch
from multipledispatch import dispatch
from torch import Tensor
from onevision.cv.core import get_num_channels
from onevision.cv.core import to_channel_first
from onevision.type import TensorOrArray
__all__ = [
"integer_to_color",
"is_color_image",
]
# MARK: - Functional
def _integer_to_color(image: np.ndarray, colors: list) -> np.ndarray:
"""Convert the integer-encoded image to color image. Fill an image with
labels' colors.
Args:
image (np.ndarray):
An image in either one-hot or integer.
colors (list):
List of all colors.
Returns:
color (np.ndarray):
Colored image.
"""
if len(colors) <= 0:
raise ValueError(f"No colors are provided.")
# NOTE: Convert to channel-first
image = to_channel_first(image)
# NOTE: Squeeze dims to 2
if image.ndim == 3:
image = np.squeeze(image)
# NOTE: Draw color
r = np.zeros_like(image).astype(np.uint8)
g = np.zeros_like(image).astype(np.uint8)
b = np.zeros_like(image).astype(np.uint8)
for l in range(0, len(colors)):
idx = image == l
r[idx] = colors[l][0]
g[idx] = colors[l][1]
b[idx] = colors[l][2]
rgb = np.stack([r, g, b], axis=0)
return rgb
@dispatch(Tensor, list)
def integer_to_color(image: Tensor, colors: list) -> Tensor:
mask_np = image.numpy()
mask_np = integer_to_color(mask_np, colors)
color = torch.from_numpy(mask_np)
return color
@dispatch(np.ndarray, list)
def integer_to_color(image: np.ndarray, colors: list) -> np.ndarray:
# [C, H, W]
if image.ndim == 3:
return _integer_to_color(image, colors)
# [B, C, H, W]
if image.ndim == 4:
colors = [_integer_to_color(i, colors) for i in image]
colors = np.stack(colors).astype(np.uint8)
return colors
raise ValueError(f"`image.ndim` must be 3 or 4. But got: {image.ndim}.")
def is_color_image(image: TensorOrArray) -> bool:
"""Check if the given image is color encoded."""
if get_num_channels(image) in [3, 4]:
return True
return False
|
[
"torch.from_numpy",
"numpy.squeeze",
"numpy.stack",
"multipledispatch.dispatch",
"onevision.cv.core.to_channel_first",
"numpy.zeros_like",
"onevision.cv.core.get_num_channels"
] |
[((1527, 1549), 'multipledispatch.dispatch', 'dispatch', (['Tensor', 'list'], {}), '(Tensor, list)\n', (1535, 1549), False, 'from multipledispatch import dispatch\n'), ((1747, 1773), 'multipledispatch.dispatch', 'dispatch', (['np.ndarray', 'list'], {}), '(np.ndarray, list)\n', (1755, 1773), False, 'from multipledispatch import dispatch\n'), ((1037, 1060), 'onevision.cv.core.to_channel_first', 'to_channel_first', (['image'], {}), '(image)\n', (1053, 1060), False, 'from onevision.cv.core import to_channel_first\n'), ((1481, 1508), 'numpy.stack', 'np.stack', (['[r, g, b]'], {'axis': '(0)'}), '([r, g, b], axis=0)\n', (1489, 1508), True, 'import numpy as np\n'), ((1701, 1726), 'torch.from_numpy', 'torch.from_numpy', (['mask_np'], {}), '(mask_np)\n', (1717, 1726), False, 'import torch\n'), ((1136, 1153), 'numpy.squeeze', 'np.squeeze', (['image'], {}), '(image)\n', (1146, 1153), True, 'import numpy as np\n'), ((2309, 2332), 'onevision.cv.core.get_num_channels', 'get_num_channels', (['image'], {}), '(image)\n', (2325, 2332), False, 'from onevision.cv.core import get_num_channels\n'), ((1190, 1210), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (1203, 1210), True, 'import numpy as np\n'), ((1236, 1256), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (1249, 1256), True, 'import numpy as np\n'), ((1282, 1302), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (1295, 1302), True, 'import numpy as np\n'), ((2059, 2075), 'numpy.stack', 'np.stack', (['colors'], {}), '(colors)\n', (2067, 2075), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
import sys
from os.path import exists
import numpy as np
import pylab
import scipy.interpolate
def read_fortran(filename):
""" Reads Fortran style binary data and returns a numpy array.
"""
with open(filename, 'rb') as f:
# read size of record
f.seek(0)
n = np.fromfile(f, dtype='int32', count=1)[0]
# read contents of record
f.seek(4)
v = np.fromfile(f, dtype='float32')
return v[:-1]
def mesh2grid(v, x, z):
""" Interpolates from an unstructured coordinates (mesh) to a structured
coordinates (grid)
"""
lx = x.max() - x.min()
lz = z.max() - z.min()
nn = v.size
mesh = _stack(x, z)
nx = np.around(np.sqrt(nn*lx/lz))
nz = np.around(np.sqrt(nn*lz/lx))
dx = lx/nx
dz = lz/nz
# construct structured grid
x = np.linspace(x.min(), x.max(), nx)
z = np.linspace(z.min(), z.max(), nz)
X, Z = np.meshgrid(x, z)
grid = _stack(X.flatten(), Z.flatten())
# interpolate to structured grid
V = scipy.interpolate.griddata(mesh, v, grid, 'linear')
# workaround edge issues
if np.any(np.isnan(V)):
W = scipy.interpolate.griddata(mesh, v, grid, 'nearest')
for i in np.where(np.isnan(V)):
V[i] = W[i]
return np.reshape(V, (int(nz), int(nx))), x, z
def _stack(*args):
return np.column_stack(args)
if __name__ == '__main__':
""" Plots data on 2-D unstructured mesh
Modified from a script for specfem2d:
http://tigress-web.princeton.edu/~rmodrak/visualize/plot2d
Can be used to plot models or kernels created by inv.cu
SYNTAX
plot_model.py folder_name component_name||file_name (time_step)
e.g. ./plot_model.py output vx 1000
./plot_model.py output proc001000_vx.bin
./plot_model.py example/model/checker vs
"""
istr = ''
if len(sys.argv) > 3:
istr = str(sys.argv[3])
while len(istr) < 6:
istr = '0' + istr
else:
istr = '000000'
# parse command line arguments
x_coords_file = '%s/proc000000_x.bin' % sys.argv[1]
z_coords_file = '%s/proc000000_z.bin' % sys.argv[1]
# check that files actually exist
assert exists(x_coords_file)
assert exists(z_coords_file)
database_file = "%s/%s" % (sys.argv[1], sys.argv[2])
if not exists(database_file):
database_file = "%s/%s.bin" % (sys.argv[1], sys.argv[2])
if not exists(database_file):
database_file = "%s/proc%s_%s.bin" % (sys.argv[1], istr, sys.argv[2])
assert exists(database_file)
# read mesh coordinates
#try:
if True:
x = read_fortran(x_coords_file)
z = read_fortran(z_coords_file)
#except:
# raise Exception('Error reading mesh coordinates.')
# read database file
try:
v = read_fortran(database_file)
except:
raise Exception('Error reading database file: %s' % database_file)
# check mesh dimensions
assert x.shape == z.shape == v.shape, 'Inconsistent mesh dimensions.'
# interpolate to uniform rectangular grid
V, X, Z = mesh2grid(v, x, z)
# display figure
pylab.pcolor(X, Z, V)
locs = np.arange(X.min(), X.max() + 1, (X.max() - X.min()) / 5)
pylab.xticks(locs, map(lambda x: "%g" % x, locs / 1e3))
locs = np.arange(Z.min(), Z.max() + 1, (Z.max() - Z.min()) / 5)
pylab.yticks(locs, map(lambda x: "%g" % x, locs / 1e3))
pylab.colorbar()
pylab.xlabel('x / km')
pylab.ylabel('z / km')
pylab.gca().invert_yaxis()
pylab.show()
|
[
"os.path.exists",
"numpy.fromfile",
"numpy.sqrt",
"pylab.gca",
"pylab.xlabel",
"numpy.column_stack",
"pylab.colorbar",
"numpy.isnan",
"numpy.meshgrid",
"pylab.pcolor",
"pylab.ylabel",
"pylab.show"
] |
[((849, 866), 'numpy.meshgrid', 'np.meshgrid', (['x', 'z'], {}), '(x, z)\n', (860, 866), True, 'import numpy as np\n'), ((1239, 1260), 'numpy.column_stack', 'np.column_stack', (['args'], {}), '(args)\n', (1254, 1260), True, 'import numpy as np\n'), ((2029, 2050), 'os.path.exists', 'exists', (['x_coords_file'], {}), '(x_coords_file)\n', (2035, 2050), False, 'from os.path import exists\n'), ((2059, 2080), 'os.path.exists', 'exists', (['z_coords_file'], {}), '(z_coords_file)\n', (2065, 2080), False, 'from os.path import exists\n'), ((2338, 2359), 'os.path.exists', 'exists', (['database_file'], {}), '(database_file)\n', (2344, 2359), False, 'from os.path import exists\n'), ((2871, 2892), 'pylab.pcolor', 'pylab.pcolor', (['X', 'Z', 'V'], {}), '(X, Z, V)\n', (2883, 2892), False, 'import pylab\n'), ((3138, 3154), 'pylab.colorbar', 'pylab.colorbar', ([], {}), '()\n', (3152, 3154), False, 'import pylab\n'), ((3156, 3178), 'pylab.xlabel', 'pylab.xlabel', (['"""x / km"""'], {}), "('x / km')\n", (3168, 3178), False, 'import pylab\n'), ((3180, 3202), 'pylab.ylabel', 'pylab.ylabel', (['"""z / km"""'], {}), "('z / km')\n", (3192, 3202), False, 'import pylab\n'), ((3232, 3244), 'pylab.show', 'pylab.show', ([], {}), '()\n', (3242, 3244), False, 'import pylab\n'), ((382, 413), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '"""float32"""'}), "(f, dtype='float32')\n", (393, 413), True, 'import numpy as np\n'), ((655, 676), 'numpy.sqrt', 'np.sqrt', (['(nn * lx / lz)'], {}), '(nn * lx / lz)\n', (662, 676), True, 'import numpy as np\n'), ((690, 711), 'numpy.sqrt', 'np.sqrt', (['(nn * lz / lx)'], {}), '(nn * lz / lx)\n', (697, 711), True, 'import numpy as np\n'), ((1038, 1049), 'numpy.isnan', 'np.isnan', (['V'], {}), '(V)\n', (1046, 1049), True, 'import numpy as np\n'), ((2144, 2165), 'os.path.exists', 'exists', (['database_file'], {}), '(database_file)\n', (2150, 2165), False, 'from os.path import exists\n'), ((2234, 2255), 'os.path.exists', 'exists', (['database_file'], {}), '(database_file)\n', (2240, 2255), False, 'from os.path import exists\n'), ((293, 331), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '"""int32"""', 'count': '(1)'}), "(f, dtype='int32', count=1)\n", (304, 331), True, 'import numpy as np\n'), ((1131, 1142), 'numpy.isnan', 'np.isnan', (['V'], {}), '(V)\n', (1139, 1142), True, 'import numpy as np\n'), ((3204, 3215), 'pylab.gca', 'pylab.gca', ([], {}), '()\n', (3213, 3215), False, 'import pylab\n')]
|
# with the TRACKBAR gui component
# we can perform some action my moving cursor
import cv2
import numpy as np
def funk(): # create one funciton # Now we are not adding any action in it . # just pass
pass
def main():
img1 = np.zeros((512,512,3) , np.uint8) # create a imgae of size 512 x512
windowName = 'openCV BGR color Palette' # give the name to window which will appear after the execution ofthis program
cv2.namedWindow(windowName) # putting it (name) into the command
# create just labels
# make a Trackbar (we can scroll and change the color manually upto range 0 -255)
# just create scroll label
cv2.createTrackbar('B',windowName , 0 , 255 , funk)
cv2.createTrackbar('G',windowName , 0 , 255 , funk)
cv2.createTrackbar('R',windowName , 0 , 255 , funk)
while(True):
cv2.imshow(windowName , img1) # display the image on the window which we have created earlier
#exit from the loop
if cv2.waitKey(20)>0: # enter the any key to close the window
break
# put/ decide the colors on the labels corresponding windowNmae
# when scroll will move then track position will also be changed ., so corresponding to that position these below commands will perform some action
blue = cv2.getTrackbarPos('B' , windowName)
green = cv2.getTrackbarPos('R' , windowName)
red = cv2. getTrackbarPos('G' , windowName)
img1[:]= [blue ,green , red] # correspoding to cordinates this image will be shown
print(blue , green , red)
cv2.destroyAllWindows()
if __name__ == "__main__":
main()
|
[
"cv2.imshow",
"numpy.zeros",
"cv2.waitKey",
"cv2.destroyAllWindows",
"cv2.getTrackbarPos",
"cv2.createTrackbar",
"cv2.namedWindow"
] |
[((250, 283), 'numpy.zeros', 'np.zeros', (['(512, 512, 3)', 'np.uint8'], {}), '((512, 512, 3), np.uint8)\n', (258, 283), True, 'import numpy as np\n'), ((451, 478), 'cv2.namedWindow', 'cv2.namedWindow', (['windowName'], {}), '(windowName)\n', (466, 478), False, 'import cv2\n'), ((673, 722), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""B"""', 'windowName', '(0)', '(255)', 'funk'], {}), "('B', windowName, 0, 255, funk)\n", (691, 722), False, 'import cv2\n'), ((733, 782), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""G"""', 'windowName', '(0)', '(255)', 'funk'], {}), "('G', windowName, 0, 255, funk)\n", (751, 782), False, 'import cv2\n'), ((790, 839), 'cv2.createTrackbar', 'cv2.createTrackbar', (['"""R"""', 'windowName', '(0)', '(255)', 'funk'], {}), "('R', windowName, 0, 255, funk)\n", (808, 839), False, 'import cv2\n'), ((1636, 1659), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1657, 1659), False, 'import cv2\n'), ((871, 899), 'cv2.imshow', 'cv2.imshow', (['windowName', 'img1'], {}), '(windowName, img1)\n', (881, 899), False, 'import cv2\n'), ((1338, 1373), 'cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""B"""', 'windowName'], {}), "('B', windowName)\n", (1356, 1373), False, 'import cv2\n'), ((1398, 1433), 'cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""R"""', 'windowName'], {}), "('R', windowName)\n", (1416, 1433), False, 'import cv2\n'), ((1450, 1485), 'cv2.getTrackbarPos', 'cv2.getTrackbarPos', (['"""G"""', 'windowName'], {}), "('G', windowName)\n", (1468, 1485), False, 'import cv2\n'), ((1007, 1022), 'cv2.waitKey', 'cv2.waitKey', (['(20)'], {}), '(20)\n', (1018, 1022), False, 'import cv2\n')]
|
from configs import cfg
from src.utils.record_log import _logger
import numpy as np
import tensorflow as tf
import scipy.stats as stats
class Evaluator(object):
def __init__(self, model):
self.model = model
self.global_step = model.global_step
## ---- summary----
self.build_summary()
self.writer = tf.summary.FileWriter(cfg.summary_dir)
def get_evaluation(self, sess, dataset_obj, global_step=None):
_logger.add()
_logger.add('getting evaluation result for %s' % dataset_obj.data_type)
logits_list, loss_list = [], []
target_score_list, predicted_score_list = [], []
for sample_batch, _, _, _ in dataset_obj.generate_batch_sample_iter():
feed_dict = self.model.get_feed_dict(sample_batch, 'dev')
logits, loss, predicted_score = sess.run([self.model.logits, self.model.loss,
self.model.predicted_score], feed_dict)
logits_list.append(np.argmax(logits, -1))
loss_list.append(loss)
predicted_score_list.append(predicted_score)
for sample in sample_batch:
target_score_list.append(sample['relatedness_score'])
logits_array = np.concatenate(logits_list, 0)
loss_value = np.mean(loss_list)
target_scores = np.array(target_score_list)
predicted_scores = np.concatenate(predicted_score_list, 0)
# pearson, spearman, mse
pearson_value = stats.pearsonr(target_scores, predicted_scores)[0]
spearman_value = stats.spearmanr(target_scores, predicted_scores)[0]
mse_value = np.mean((target_scores - predicted_scores) ** 2)
# todo: analysis
# analysis_save_dir = cfg.mkdir(cfg.answer_dir, 'gs_%d' % global_step or 0)
# OutputAnalysis.do_analysis(dataset_obj, logits_array, accu_array, analysis_save_dir,
# cfg.fine_grained)
if global_step is not None:
if dataset_obj.data_type == 'train':
summary_feed_dict = {
self.train_loss: loss_value,
self.train_pearson: pearson_value,
self.train_spearman: spearman_value,
self.train_mse: mse_value,
}
summary = sess.run(self.train_summaries, summary_feed_dict)
self.writer.add_summary(summary, global_step)
elif dataset_obj.data_type == 'dev':
summary_feed_dict = {
self.dev_loss: loss_value,
self.dev_pearson: pearson_value,
self.dev_spearman: spearman_value,
self.dev_mse: mse_value,
}
summary = sess.run(self.dev_summaries, summary_feed_dict)
self.writer.add_summary(summary, global_step)
else:
summary_feed_dict = {
self.test_loss: loss_value,
self.test_pearson: pearson_value,
self.test_spearman: spearman_value,
self.test_mse: mse_value,
}
summary = sess.run(self.test_summaries, summary_feed_dict)
self.writer.add_summary(summary, global_step)
return loss_value, (pearson_value, spearman_value, mse_value)
# --- internal use ------
def build_summary(self):
with tf.name_scope('train_summaries'):
self.train_loss = tf.placeholder(tf.float32, [], 'train_loss')
self.train_pearson = tf.placeholder(tf.float32, [], 'train_pearson')
self.train_spearman = tf.placeholder(tf.float32, [], 'train_spearman')
self.train_mse = tf.placeholder(tf.float32, [], 'train_mse')
tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_loss', self.train_loss))
tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_pearson', self.train_pearson))
tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_spearman', self.train_spearman))
tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_mse', self.train_mse))
self.train_summaries = tf.summary.merge_all('train_summaries_collection')
with tf.name_scope('dev_summaries'):
self.dev_loss = tf.placeholder(tf.float32, [], 'dev_loss')
self.dev_pearson = tf.placeholder(tf.float32, [], 'dev_pearson')
self.dev_spearman = tf.placeholder(tf.float32, [], 'dev_spearman')
self.dev_mse = tf.placeholder(tf.float32, [], 'dev_mse')
tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_loss',self.dev_loss))
tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_pearson', self.dev_pearson))
tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_spearman', self.dev_spearman))
tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_mse', self.dev_mse))
self.dev_summaries = tf.summary.merge_all('dev_summaries_collection')
with tf.name_scope('test_summaries'):
self.test_loss = tf.placeholder(tf.float32, [], 'test_loss')
self.test_pearson = tf.placeholder(tf.float32, [], 'test_pearson')
self.test_spearman = tf.placeholder(tf.float32, [], 'test_spearman')
self.test_mse = tf.placeholder(tf.float32, [], 'test_mse')
tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_loss',self.test_loss))
tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_pearson', self.test_pearson))
tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_spearman', self.test_spearman))
tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_mse', self.test_mse))
self.test_summaries = tf.summary.merge_all('test_summaries_collection')
|
[
"src.utils.record_log._logger.add",
"numpy.mean",
"tensorflow.summary.merge_all",
"tensorflow.placeholder",
"numpy.argmax",
"tensorflow.summary.scalar",
"numpy.array",
"tensorflow.name_scope",
"numpy.concatenate",
"scipy.stats.pearsonr",
"scipy.stats.spearmanr",
"tensorflow.summary.FileWriter"
] |
[((346, 384), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['cfg.summary_dir'], {}), '(cfg.summary_dir)\n', (367, 384), True, 'import tensorflow as tf\n'), ((461, 474), 'src.utils.record_log._logger.add', '_logger.add', ([], {}), '()\n', (472, 474), False, 'from src.utils.record_log import _logger\n'), ((483, 554), 'src.utils.record_log._logger.add', '_logger.add', (["('getting evaluation result for %s' % dataset_obj.data_type)"], {}), "('getting evaluation result for %s' % dataset_obj.data_type)\n", (494, 554), False, 'from src.utils.record_log import _logger\n'), ((1256, 1286), 'numpy.concatenate', 'np.concatenate', (['logits_list', '(0)'], {}), '(logits_list, 0)\n', (1270, 1286), True, 'import numpy as np\n'), ((1308, 1326), 'numpy.mean', 'np.mean', (['loss_list'], {}), '(loss_list)\n', (1315, 1326), True, 'import numpy as np\n'), ((1351, 1378), 'numpy.array', 'np.array', (['target_score_list'], {}), '(target_score_list)\n', (1359, 1378), True, 'import numpy as np\n'), ((1406, 1445), 'numpy.concatenate', 'np.concatenate', (['predicted_score_list', '(0)'], {}), '(predicted_score_list, 0)\n', (1420, 1445), True, 'import numpy as np\n'), ((1651, 1699), 'numpy.mean', 'np.mean', (['((target_scores - predicted_scores) ** 2)'], {}), '((target_scores - predicted_scores) ** 2)\n', (1658, 1699), True, 'import numpy as np\n'), ((1503, 1550), 'scipy.stats.pearsonr', 'stats.pearsonr', (['target_scores', 'predicted_scores'], {}), '(target_scores, predicted_scores)\n', (1517, 1550), True, 'import scipy.stats as stats\n'), ((1579, 1627), 'scipy.stats.spearmanr', 'stats.spearmanr', (['target_scores', 'predicted_scores'], {}), '(target_scores, predicted_scores)\n', (1594, 1627), True, 'import scipy.stats as stats\n'), ((3449, 3481), 'tensorflow.name_scope', 'tf.name_scope', (['"""train_summaries"""'], {}), "('train_summaries')\n", (3462, 3481), True, 'import tensorflow as tf\n'), ((3513, 3557), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""train_loss"""'], {}), "(tf.float32, [], 'train_loss')\n", (3527, 3557), True, 'import tensorflow as tf\n'), ((3591, 3638), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""train_pearson"""'], {}), "(tf.float32, [], 'train_pearson')\n", (3605, 3638), True, 'import tensorflow as tf\n'), ((3673, 3721), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""train_spearman"""'], {}), "(tf.float32, [], 'train_spearman')\n", (3687, 3721), True, 'import tensorflow as tf\n'), ((3751, 3794), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""train_mse"""'], {}), "(tf.float32, [], 'train_mse')\n", (3765, 3794), True, 'import tensorflow as tf\n'), ((4294, 4344), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', (['"""train_summaries_collection"""'], {}), "('train_summaries_collection')\n", (4314, 4344), True, 'import tensorflow as tf\n'), ((4359, 4389), 'tensorflow.name_scope', 'tf.name_scope', (['"""dev_summaries"""'], {}), "('dev_summaries')\n", (4372, 4389), True, 'import tensorflow as tf\n'), ((4419, 4461), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""dev_loss"""'], {}), "(tf.float32, [], 'dev_loss')\n", (4433, 4461), True, 'import tensorflow as tf\n'), ((4493, 4538), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""dev_pearson"""'], {}), "(tf.float32, [], 'dev_pearson')\n", (4507, 4538), True, 'import tensorflow as tf\n'), ((4571, 4617), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""dev_spearman"""'], {}), "(tf.float32, [], 'dev_spearman')\n", (4585, 4617), True, 'import tensorflow as tf\n'), ((4645, 4686), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""dev_mse"""'], {}), "(tf.float32, [], 'dev_mse')\n", (4659, 4686), True, 'import tensorflow as tf\n'), ((5159, 5207), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', (['"""dev_summaries_collection"""'], {}), "('dev_summaries_collection')\n", (5179, 5207), True, 'import tensorflow as tf\n'), ((5222, 5253), 'tensorflow.name_scope', 'tf.name_scope', (['"""test_summaries"""'], {}), "('test_summaries')\n", (5235, 5253), True, 'import tensorflow as tf\n'), ((5284, 5327), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""test_loss"""'], {}), "(tf.float32, [], 'test_loss')\n", (5298, 5327), True, 'import tensorflow as tf\n'), ((5360, 5406), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""test_pearson"""'], {}), "(tf.float32, [], 'test_pearson')\n", (5374, 5406), True, 'import tensorflow as tf\n'), ((5440, 5487), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""test_spearman"""'], {}), "(tf.float32, [], 'test_spearman')\n", (5454, 5487), True, 'import tensorflow as tf\n'), ((5516, 5558), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]', '"""test_mse"""'], {}), "(tf.float32, [], 'test_mse')\n", (5530, 5558), True, 'import tensorflow as tf\n'), ((6044, 6093), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', (['"""test_summaries_collection"""'], {}), "('test_summaries_collection')\n", (6064, 6093), True, 'import tensorflow as tf\n'), ((1006, 1027), 'numpy.argmax', 'np.argmax', (['logits', '(-1)'], {}), '(logits, -1)\n', (1015, 1027), True, 'import numpy as np\n'), ((3858, 3906), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""train_loss"""', 'self.train_loss'], {}), "('train_loss', self.train_loss)\n", (3875, 3906), True, 'import tensorflow as tf\n'), ((3971, 4025), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""train_pearson"""', 'self.train_pearson'], {}), "('train_pearson', self.train_pearson)\n", (3988, 4025), True, 'import tensorflow as tf\n'), ((4090, 4146), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""train_spearman"""', 'self.train_spearman'], {}), "('train_spearman', self.train_spearman)\n", (4107, 4146), True, 'import tensorflow as tf\n'), ((4211, 4257), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""train_mse"""', 'self.train_mse'], {}), "('train_mse', self.train_mse)\n", (4228, 4257), True, 'import tensorflow as tf\n'), ((4748, 4792), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""dev_loss"""', 'self.dev_loss'], {}), "('dev_loss', self.dev_loss)\n", (4765, 4792), True, 'import tensorflow as tf\n'), ((4854, 4904), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""dev_pearson"""', 'self.dev_pearson'], {}), "('dev_pearson', self.dev_pearson)\n", (4871, 4904), True, 'import tensorflow as tf\n'), ((4967, 5019), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""dev_spearman"""', 'self.dev_spearman'], {}), "('dev_spearman', self.dev_spearman)\n", (4984, 5019), True, 'import tensorflow as tf\n'), ((5082, 5124), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""dev_mse"""', 'self.dev_mse'], {}), "('dev_mse', self.dev_mse)\n", (5099, 5124), True, 'import tensorflow as tf\n'), ((5621, 5667), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""test_loss"""', 'self.test_loss'], {}), "('test_loss', self.test_loss)\n", (5638, 5667), True, 'import tensorflow as tf\n'), ((5730, 5782), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""test_pearson"""', 'self.test_pearson'], {}), "('test_pearson', self.test_pearson)\n", (5747, 5782), True, 'import tensorflow as tf\n'), ((5846, 5900), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""test_spearman"""', 'self.test_spearman'], {}), "('test_spearman', self.test_spearman)\n", (5863, 5900), True, 'import tensorflow as tf\n'), ((5964, 6008), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""test_mse"""', 'self.test_mse'], {}), "('test_mse', self.test_mse)\n", (5981, 6008), True, 'import tensorflow as tf\n')]
|
#coding=utf-8
import matplotlib
matplotlib.use("Agg")
import tensorflow as tf
import argparse
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,MaxPooling2D,UpSampling2D,BatchNormalization,Reshape,Permute,Activation
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.callbacks import ModelCheckpoint
from sklearn.preprocessing import LabelEncoder
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import random
import os
from tqdm import tqdm
seed = 7
np.random.seed(seed)
#设置图像大小
img_w = 32
img_h = 32
#分类
n_label=6
classes=[0.0,17.0,34.0,51.0,68.0,255.0]
labelencoder = LabelEncoder()
labelencoder.fit(classes)
#训练批次和每次数据量
EPOCHS = 5
BS = 32
#图像最大值
divisor=255.0
#图像根路径
filepath ='C:\\Users\Administrator\Desktop\Project\src\\'
#读取图片
def load_img(path, grayscale=False):
if grayscale:
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
else:
img = cv2.imread(path)
img = np.array(img,dtype="float") / divisor
return img
#获取训练数据和测试数据地址
def get_train_val(val_rate = 0.25):
train_url = []
train_set = []
val_set = []
for pic in os.listdir(filepath + 'train'):
train_url.append(pic)
random.shuffle(train_url)
total_num = len(train_url)
val_num = int(val_rate * total_num)
for i in range(len(train_url)):
if i < val_num:
val_set.append(train_url[i])
else:
train_set.append(train_url[i])
return train_set,val_set
# 生成训练数据
def generateData(batch_size,data=[]):
while True:
train_data = []
train_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'train/' + url)
img = img_to_array(img)
train_data.append(img)
label = load_img(filepath + 'label/' + url, grayscale=True)
label = img_to_array(label).reshape((img_w * img_h,))
train_label.append(label)
if batch % batch_size==0:
train_data = np.array(train_data)
train_label = np.array(train_label).flatten() #拍平
train_label = labelencoder.transform(train_label)
train_label = to_categorical(train_label, num_classes=n_label) #编码输出便签
train_label = train_label.reshape((batch_size,img_w,img_h,n_label))
yield (train_data,train_label)
train_data = []
train_label = []
batch = 0
#生成测试的数据
def generateValidData(batch_size,data=[]):
while True:
valid_data = []
valid_label = []
batch = 0
for i in (range(len(data))):
url = data[i]
batch += 1
img = load_img(filepath + 'train/' + url)
img = img_to_array(img)
valid_data.append(img)
label = load_img(filepath + 'label/' + url, grayscale=True)
label = img_to_array(label).reshape((img_w * img_h,))
valid_label.append(label)
if batch % batch_size==0:
valid_data = np.array(valid_data)
valid_label = np.array(valid_label).flatten()
valid_label = labelencoder.transform(valid_label)
valid_label = to_categorical(valid_label, num_classes=n_label)
valid_label = valid_label.reshape((batch_size,img_w,img_h,n_label))
yield (valid_data,valid_label)
valid_data = []
valid_label = []
batch = 0
#定义模型-网络模型
def SegNet():
model = Sequential()
#encoder
model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(img_w,img_h,3),padding='same',activation='relu',data_format='channels_last'))
model.add(BatchNormalization())
model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
#(128,128)
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
#(64,64)
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(32,32)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(16,16)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
#(8,8)
#decoder
model.add(UpSampling2D(size=(2,2)))
#(16,16)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(32,32)
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(512, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(64,64)
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(256, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(128,128)
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(128, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(UpSampling2D(size=(2, 2)))
#(256,256)
model.add(Conv2D(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h,3), padding='same', activation='relu',data_format='channels_last'))
model.add(BatchNormalization())
model.add(Conv2D(64, (3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(n_label, (1, 1), strides=(1, 1), padding='same'))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='sgd',metrics=['accuracy'])
model.summary()
return model
#开始训练
def train(args):
model = SegNet()
modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')
callable = [modelcheck,tf.keras.callbacks.TensorBoard(log_dir='.')]
train_set,val_set = get_train_val()
train_numb = len(train_set)
valid_numb = len(val_set)
print ("the number of train data is",train_numb)
print ("the number of val data is",valid_numb)
H = model.fit(x=generateData(BS,train_set),steps_per_epoch=(train_numb//BS),epochs=EPOCHS,verbose=2,
validation_data=generateValidData(BS,val_set),validation_steps=(valid_numb//BS),callbacks=callable)
# plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
N = EPOCHS
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on SegNet Satellite Seg")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])
#获取参数
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-a", "--augment", help="using data augment or not",
action="store_true", default=False)
ap.add_argument("-m", "--model", required=False,default="segnet.h5",
help="path to output model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
help="path to output accuracy/loss plot")
args = vars(ap.parse_args())
return args
#运行程序
if __name__=='__main__':
args = args_parse()
train(args)
print("完成")
#predict()
|
[
"sklearn.preprocessing.LabelEncoder",
"matplotlib.pyplot.ylabel",
"tensorflow.keras.layers.BatchNormalization",
"numpy.array",
"numpy.arange",
"os.listdir",
"tensorflow.keras.layers.Conv2D",
"argparse.ArgumentParser",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.style.use",
"numpy.random.seed",
"tensorflow.keras.preprocessing.image.img_to_array",
"tensorflow.keras.models.Sequential",
"tensorflow.keras.utils.to_categorical",
"matplotlib.pyplot.savefig",
"random.shuffle",
"tensorflow.keras.layers.UpSampling2D",
"tensorflow.keras.callbacks.TensorBoard",
"matplotlib.use",
"matplotlib.pyplot.title",
"cv2.imread",
"matplotlib.pyplot.legend",
"tensorflow.keras.layers.MaxPooling2D",
"matplotlib.pyplot.figure",
"tensorflow.keras.callbacks.ModelCheckpoint",
"tensorflow.keras.layers.Activation"
] |
[((34, 55), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (48, 55), False, 'import matplotlib\n'), ((650, 670), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (664, 670), True, 'import numpy as np\n'), ((785, 799), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (797, 799), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((1318, 1348), 'os.listdir', 'os.listdir', (["(filepath + 'train')"], {}), "(filepath + 'train')\n", (1328, 1348), False, 'import os\n'), ((1386, 1411), 'random.shuffle', 'random.shuffle', (['train_url'], {}), '(train_url)\n', (1400, 1411), False, 'import random\n'), ((3970, 3982), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3980, 3982), False, 'from tensorflow.keras.models import Sequential\n'), ((8382, 8469), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (["args['model']"], {'monitor': '"""val_acc"""', 'save_best_only': '(True)', 'mode': '"""max"""'}), "(args['model'], monitor='val_acc', save_best_only=True, mode\n ='max')\n", (8397, 8469), False, 'from tensorflow.keras.callbacks import ModelCheckpoint\n'), ((9031, 9054), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (9044, 9054), True, 'import matplotlib.pyplot as plt\n'), ((9060, 9072), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9070, 9072), True, 'import matplotlib.pyplot as plt\n'), ((9374, 9437), 'matplotlib.pyplot.title', 'plt.title', (['"""Training Loss and Accuracy on SegNet Satellite Seg"""'], {}), "('Training Loss and Accuracy on SegNet Satellite Seg')\n", (9383, 9437), True, 'import matplotlib.pyplot as plt\n'), ((9443, 9464), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch #"""'], {}), "('Epoch #')\n", (9453, 9464), True, 'import matplotlib.pyplot as plt\n'), ((9470, 9497), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss/Accuracy"""'], {}), "('Loss/Accuracy')\n", (9480, 9497), True, 'import matplotlib.pyplot as plt\n'), ((9503, 9531), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""'}), "(loc='lower left')\n", (9513, 9531), True, 'import matplotlib.pyplot as plt\n'), ((9537, 9562), 'matplotlib.pyplot.savefig', 'plt.savefig', (["args['plot']"], {}), "(args['plot'])\n", (9548, 9562), True, 'import matplotlib.pyplot as plt\n'), ((9661, 9686), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (9684, 9686), False, 'import argparse\n'), ((1034, 1072), 'cv2.imread', 'cv2.imread', (['path', 'cv2.IMREAD_GRAYSCALE'], {}), '(path, cv2.IMREAD_GRAYSCALE)\n', (1044, 1072), False, 'import cv2\n'), ((1098, 1114), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (1108, 1114), False, 'import cv2\n'), ((4016, 4150), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'strides': '(1, 1)', 'input_shape': '(img_w, img_h, 3)', 'padding': '"""same"""', 'activation': '"""relu"""', 'data_format': '"""channels_last"""'}), "(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h, 3), padding=\n 'same', activation='relu', data_format='channels_last')\n", (4022, 4150), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4152, 4172), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4170, 4172), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4191, 4260), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4197, 4260), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4273, 4293), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4291, 4293), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4312, 4342), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4324, 4342), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4378, 4448), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4384, 4448), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4467, 4487), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4485, 4487), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4506, 4576), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4512, 4576), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4595, 4615), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4613, 4615), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4634, 4664), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (4646, 4664), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4696, 4766), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4702, 4766), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4785, 4805), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4803, 4805), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4824, 4894), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4830, 4894), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4913, 4933), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4931, 4933), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((4952, 5022), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (4958, 5022), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5041, 5061), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5059, 5061), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5080, 5110), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (5092, 5110), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5145, 5215), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5151, 5215), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5234, 5254), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5252, 5254), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5273, 5343), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5279, 5343), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5362, 5382), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5380, 5382), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5401, 5471), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5407, 5471), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5490, 5510), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5508, 5510), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5529, 5559), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (5541, 5559), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5594, 5664), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5600, 5664), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5683, 5703), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5701, 5703), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5722, 5792), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5728, 5792), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5811, 5831), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5829, 5831), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5850, 5920), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (5856, 5920), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5939, 5959), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5957, 5959), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((5978, 6008), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (5990, 6008), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6057, 6082), 'tensorflow.keras.layers.UpSampling2D', 'UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (6069, 6082), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6116, 6186), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6122, 6186), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6205, 6225), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6223, 6225), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6244, 6314), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6250, 6314), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6333, 6353), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6351, 6353), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6372, 6442), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6378, 6442), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6461, 6481), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6479, 6481), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6500, 6525), 'tensorflow.keras.layers.UpSampling2D', 'UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (6512, 6525), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6560, 6630), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6566, 6630), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6649, 6669), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6667, 6669), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6688, 6758), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6694, 6758), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6777, 6797), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6795, 6797), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6816, 6886), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (6822, 6886), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6905, 6925), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (6923, 6925), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((6944, 6969), 'tensorflow.keras.layers.UpSampling2D', 'UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (6956, 6969), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7004, 7074), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7010, 7074), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7093, 7113), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7111, 7113), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7132, 7202), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7138, 7202), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7221, 7241), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7239, 7241), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7260, 7330), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7266, 7330), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7349, 7369), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7367, 7369), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7388, 7413), 'tensorflow.keras.layers.UpSampling2D', 'UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (7400, 7413), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7450, 7520), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7456, 7520), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7539, 7559), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7557, 7559), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7578, 7648), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7584, 7648), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7667, 7687), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7685, 7687), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7706, 7731), 'tensorflow.keras.layers.UpSampling2D', 'UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (7718, 7731), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7768, 7902), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'strides': '(1, 1)', 'input_shape': '(img_w, img_h, 3)', 'padding': '"""same"""', 'activation': '"""relu"""', 'data_format': '"""channels_last"""'}), "(64, (3, 3), strides=(1, 1), input_shape=(img_w, img_h, 3), padding=\n 'same', activation='relu', data_format='channels_last')\n", (7774, 7902), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7912, 7932), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (7930, 7932), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((7951, 8020), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'strides': '(1, 1)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, (3, 3), strides=(1, 1), padding='same', activation='relu')\n", (7957, 8020), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((8039, 8059), 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (8057, 8059), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((8078, 8133), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['n_label', '(1, 1)'], {'strides': '(1, 1)', 'padding': '"""same"""'}), "(n_label, (1, 1), strides=(1, 1), padding='same')\n", (8084, 8133), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((8152, 8173), 'tensorflow.keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (8162, 8173), False, 'from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Reshape, Permute, Activation\n'), ((8490, 8533), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': '"""."""'}), "(log_dir='.')\n", (8520, 8533), True, 'import tensorflow as tf\n'), ((9103, 9118), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (9112, 9118), True, 'import numpy as np\n'), ((9173, 9188), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (9182, 9188), True, 'import numpy as np\n'), ((9245, 9260), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (9254, 9260), True, 'import numpy as np\n'), ((9313, 9328), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (9322, 9328), True, 'import numpy as np\n'), ((1130, 1158), 'numpy.array', 'np.array', (['img'], {'dtype': '"""float"""'}), "(img, dtype='float')\n", (1138, 1158), True, 'import numpy as np\n'), ((1990, 2007), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (2002, 2007), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((3128, 3145), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['img'], {}), '(img)\n', (3140, 3145), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((2300, 2320), 'numpy.array', 'np.array', (['train_data'], {}), '(train_data)\n', (2308, 2320), True, 'import numpy as np\n'), ((2495, 2543), 'tensorflow.keras.utils.to_categorical', 'to_categorical', (['train_label'], {'num_classes': 'n_label'}), '(train_label, num_classes=n_label)\n', (2509, 2543), False, 'from tensorflow.keras.utils import to_categorical\n'), ((3440, 3460), 'numpy.array', 'np.array', (['valid_data'], {}), '(valid_data)\n', (3448, 3460), True, 'import numpy as np\n'), ((3628, 3676), 'tensorflow.keras.utils.to_categorical', 'to_categorical', (['valid_label'], {'num_classes': 'n_label'}), '(valid_label, num_classes=n_label)\n', (3642, 3676), False, 'from tensorflow.keras.utils import to_categorical\n'), ((2141, 2160), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['label'], {}), '(label)\n', (2153, 2160), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((3280, 3299), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['label'], {}), '(label)\n', (3292, 3299), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((2354, 2375), 'numpy.array', 'np.array', (['train_label'], {}), '(train_label)\n', (2362, 2375), True, 'import numpy as np\n'), ((3494, 3515), 'numpy.array', 'np.array', (['valid_label'], {}), '(valid_label)\n', (3502, 3515), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
import math
from typing import Tuple, Union
import numpy as np
from .cutting_plane import CUTStatus
Arr = Union[np.ndarray]
class ell_stable:
"""Ellipsoid Search Space
ell_stable = {x | (x − xc)' Q^−1 (x − xc) ≤ κ}
Returns:
[type] -- [description]
"""
# __slots__ = ('_n', '_c1', '_kappa', '_rho', '_sigma', '_delta', '_tsq',
# '_xc', '_Q', 'use_parallel_cut', 'no_defer_trick')
def __init__(self, val: Union[Arr, float], x: Arr):
"""Construct a new ell_stable object
Arguments:
val (Union[Arr, float]): [description]
x (Arr): [description]
"""
self.use_parallel_cut = True
self.no_defer_trick = False
self._n = n = len(x)
self._nSq = float(n * n)
self._nPlus1 = float(n + 1)
self._nMinus1 = float(n - 1)
self._halfN = float(n) / 2.0
self._halfNplus1 = self._nPlus1 / 2.0
self._halfNminus1 = self._nMinus1 / 2.0
self._c1 = self._nSq / (self._nSq - 1)
self._c2 = 2.0 / self._nPlus1
self._c3 = float(n) / self._nPlus1
self._xc = x
self._kappa = 1.0
if np.isscalar(val):
self._Q = np.eye(n)
if self.no_defer_trick:
self._Q *= val
else:
self._kappa = val
else:
self._Q = np.diag(val)
def copy(self):
"""[summary]
Returns:
ell_stable: [description]
"""
E = ell_stable(self._kappa, self.xc)
E._Q = self._Q.copy()
# E._c1 = self._c1
E.use_parallel_cut = self.use_parallel_cut
E.no_defer_trick = self.no_defer_trick
return E
@property
def xc(self):
"""copy the whole array anyway
Returns:
[type]: [description]
"""
return self._xc
@xc.setter
def xc(self, x: Arr):
"""Set the xc object
Arguments:
x ([type]): [description]
"""
self._xc = x
# @property
# def use_parallel_cut(self) -> bool:
# """[summary]
# Returns:
# bool: [description]
# """
# return self._use_parallel_cut
# @use_parallel_cut.setter
# def use_parallel_cut(self, b: bool):
# """[summary]
# Arguments:
# b (bool): [description]
# """
# self._use_parallel_cut = b
# Reference: Gill, Murray, and Wright, "Practical Optimization", p43.
# Author: <NAME> (<EMAIL>)
def update(self, cut) -> Tuple[int, float]:
g, beta = cut
# calculate inv(L)*g: (n-1)*n/2 multiplications
invLg = g.copy() # initially
for i in range(1, self._n):
for j in range(i):
self._Q[i, j] = self._Q[j, i] * invLg[j]
# keep for rank-one update
invLg[i] -= self._Q[i, j]
# calculate inv(D)*inv(L)*g: n
invDinvLg = invLg.copy() # initially
for i in range(self._n):
invDinvLg[i] *= self._Q[i, i]
# calculate omega: n
gQg = invDinvLg * invLg
omega = sum(gQg)
self._tsq = self._kappa * omega
status = self._calc_ll(beta)
if status != CUTStatus.success:
return status, self._tsq
# calculate Q*g = inv(L')*inv(D)*inv(L)*g : (n-1)*n/2
Qg = invDinvLg.copy() # initially
for i in range(self._n - 1, 0, -1):
for j in range(i, self._n):
Qg[i - 1] -= self._Q[i, j] * Qg[j] # ???
# calculate xc: n
self._xc -= (self._rho / omega) * Qg
# rank-one update: 3*n + (n-1)*n/2
# r = self._sigma / omega
mu = self._sigma / (1.0 - self._sigma)
oldt = omega / mu # initially
m = self._n - 1
for j in range(m):
# p=sqrt(k)*vv(j)
# p = invLg[j]
# mup = mu * p
t = oldt + gQg[j]
# self._Q[j, j] /= t # update invD
beta2 = invDinvLg[j] / t
self._Q[j, j] *= oldt / t # update invD
for k in range(j + 1, self._n):
# v(k) -= p * self._Q[j, k]
self._Q[j, k] += beta2 * self._Q[k, j]
oldt = t
# p = invLg(n1)
# mup = mu * p
t = oldt + gQg[m]
self._Q[m, m] *= oldt / t # update invD
self._kappa *= self._delta
# if (self.no_defer_trick)
# {
# self._Q *= self._kappa
# self._kappa = 1.
# }
return status, self._tsq
def _calc_ll(self, beta) -> CUTStatus:
"""parallel or deep cut
Arguments:
beta ([type]): [description]
Returns:
int: [description]
"""
if np.isscalar(beta):
return self._calc_dc(beta)
if len(beta) < 2: # unlikely
return self._calc_dc(beta[0])
return self._calc_ll_core(beta[0], beta[1])
def _calc_ll_core(self, b0: float, b1: float) -> CUTStatus:
"""Calculate new ellipsoid under Parallel Cut
g' (x − xc) + β0 ≤ 0
g' (x − xc) + β1 ≥ 0
Arguments:
b0 (float): [description]
b1 (float): [description]
Returns:
int: [description]
"""
b1sqn = b1 * (b1 / self._tsq)
t1n = 1 - b1sqn
if t1n < 0 or not self.use_parallel_cut:
return self._calc_dc(b0)
bdiff = b1 - b0
if bdiff < 0:
return CUTStatus.nosoln # no sol'n
if b0 == 0:
self._calc_ll_cc(b1, b1sqn)
return CUTStatus.success
b0b1n = b0 * (b1 / self._tsq)
if self._n * b0b1n < -1: # unlikely
return CUTStatus.noeffect # no effect
# parallel cut
t0n = 1.0 - b0 * (b0 / self._tsq)
# t1 = self._tsq - b1sq
bsum = b0 + b1
bsumn = bsum / self._tsq
bav = bsum / 2.0
tempn = self._halfN * bsumn * bdiff
xi = math.sqrt(t0n * t1n + tempn * tempn)
self._sigma = self._c3 + (1.0 - b0b1n - xi) / (bsumn * bav * self._nPlus1)
self._rho = self._sigma * bav
self._delta = self._c1 * ((t0n + t1n) / 2 + xi / self._n)
return CUTStatus.success
def _calc_ll_cc(self, b1: float, b1sqn: float):
"""Calculate new ellipsoid under Parallel Cut, one of them is central
g' (x − xc) ≤ 0
g' (x − xc) + β1 ≥ 0
Arguments:
b1 (float): [description]
b1sq (float): [description]
"""
n = self._n
xi = math.sqrt(1 - b1sqn + (self._halfN * b1sqn) ** 2)
self._sigma = self._c3 + self._c2 * (1.0 - xi) / b1sqn
self._rho = self._sigma * b1 / 2.0
self._delta = self._c1 * (1.0 - b1sqn / 2.0 + xi / n)
def _calc_dc(self, beta: float) -> CUTStatus:
"""Calculate new ellipsoid under Deep Cut
g' (x − xc) + β ≤ 0
Arguments:
beta (float): [description]
Returns:
int: [description]
"""
try:
tau = math.sqrt(self._tsq)
except ValueError:
print("Warning: tsq is negative: {}".format(self._tsq))
self._tsq = 0.0
tau = 0.0
bdiff = tau - beta
if bdiff < 0.0:
return CUTStatus.nosoln # no sol'n
if beta == 0.0:
self._calc_cc(tau)
return CUTStatus.success
n = self._n
gamma = tau + n * beta
if gamma < 0.0:
return CUTStatus.noeffect # no effect, unlikely
self._mu = (bdiff / gamma) * self._halfNminus1
self._rho = gamma / self._nPlus1
self._sigma = 2.0 * self._rho / (tau + beta)
self._delta = self._c1 * (1.0 - beta * (beta / self._tsq))
return CUTStatus.success
def _calc_cc(self, tau: float):
"""Calculate new ellipsoid under Central Cut
Arguments:
tau (float): [description]
"""
self._mu = self._halfNminus1
self._sigma = self._c2
self._rho = tau / self._nPlus1
self._delta = self._c1
|
[
"numpy.eye",
"math.sqrt",
"numpy.isscalar",
"numpy.diag"
] |
[((1213, 1229), 'numpy.isscalar', 'np.isscalar', (['val'], {}), '(val)\n', (1224, 1229), True, 'import numpy as np\n'), ((4841, 4858), 'numpy.isscalar', 'np.isscalar', (['beta'], {}), '(beta)\n', (4852, 4858), True, 'import numpy as np\n'), ((6096, 6132), 'math.sqrt', 'math.sqrt', (['(t0n * t1n + tempn * tempn)'], {}), '(t0n * t1n + tempn * tempn)\n', (6105, 6132), False, 'import math\n'), ((6701, 6750), 'math.sqrt', 'math.sqrt', (['(1 - b1sqn + (self._halfN * b1sqn) ** 2)'], {}), '(1 - b1sqn + (self._halfN * b1sqn) ** 2)\n', (6710, 6750), False, 'import math\n'), ((1253, 1262), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (1259, 1262), True, 'import numpy as np\n'), ((1418, 1430), 'numpy.diag', 'np.diag', (['val'], {}), '(val)\n', (1425, 1430), True, 'import numpy as np\n'), ((7211, 7231), 'math.sqrt', 'math.sqrt', (['self._tsq'], {}), '(self._tsq)\n', (7220, 7231), False, 'import math\n')]
|
from .. import global_vars as g
from ..window import Window
import numpy as np
from ..roi import makeROI
class TestSettings():
def test_random_roi_color(self):
initial = g.settings['roi_color']
g.settings['roi_color'] = 'random'
w1 = Window(np.random.random([10, 10, 10]))
roi1 = makeROI('rectangle', [[1, 1], [3, 3]])
roi2 = makeROI('rectangle', [[2, 2], [3, 3]])
assert roi1.pen.color().name() != roi2.pen.color().name(), 'Random ROI color is the same. This could be a random chance. Run repeatedly.'
g.settings['roi_color'] = '#00ff00'
roi3 = makeROI('rectangle', [[3, 3], [3, 3]])
assert roi3.pen.color().name() == "#00ff00", 'ROI color set. all rois are same color'
g.settings['roi_color'] = initial
def test_multitrace(self):
initial = g.settings['multipleTraceWindows']
g.settings['multipleTraceWindows'] = False
w1 = Window(np.random.random([10, 10, 10]))
roi1 = makeROI('rectangle', [[1, 1], [3, 3]])
roi1.plot()
roi2 = makeROI('rectangle', [[2, 2], [3, 3]])
roi2.plot()
assert roi1.traceWindow == roi2.traceWindow, 'Traces not plotted together.'
g.settings['multipleTraceWindows'] = True
roi3 = makeROI('rectangle', [[3, 3], [3, 3]])
roi3.plot()
assert roi3.traceWindow != roi1.traceWindow, 'Multiple trace windows'
g.settings['multipleTraceWindows'] = initial
|
[
"numpy.random.random"
] |
[((250, 280), 'numpy.random.random', 'np.random.random', (['[10, 10, 10]'], {}), '([10, 10, 10])\n', (266, 280), True, 'import numpy as np\n'), ((868, 898), 'numpy.random.random', 'np.random.random', (['[10, 10, 10]'], {}), '([10, 10, 10])\n', (884, 898), True, 'import numpy as np\n')]
|
"""
NCL_bar_2.py
===============
This script illustrates the following concepts:
- Drawing bars instead of curves in an XY plot
- Changing the aspect ratio of a bar plot
- Drawing filled bars up or down based on a Y reference value
- Setting the minimum/maximum value of the Y axis in a bar plot
- Using named colors to indicate a fill color
- Creating array of dates to use as x-axis tick labels
- Creating a main title
See following URLs to see the reproduced NCL plot & script:
- Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/bar_2.ncl
- Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/bar_2_lg.png
"""
import geocat.datafiles as gdf
import matplotlib.pyplot as plt
###############################################################################
# Import packages:
import numpy as np
import xarray as xr
from geocat.viz import util as gvutil
###############################################################################
# Read in data:
# Open a netCDF data file using xarray default engine and load the data into xarrays
ds = xr.open_dataset(gdf.get("netcdf_files/soi.nc"))
dsoik = ds.DSOI_KET
date = ds.date
num_months = np.shape(date)[0]
# Dates in the file are represented by year and month (YYYYMM)
# representing them fractionally will make ploting the data easier
# This produces the same results as NCL's yyyymm_to_yyyyfrac() function
date_frac = np.empty_like(date)
for n in np.arange(0, num_months, 1):
yyyy = int(date[n] / 100)
mon = (date[n] / 100 - yyyy) * 100
date_frac[n] = yyyy + (mon - 1) / 12
###############################################################################
# Plot
# Generate figure (set its size (width, height) in inches) and axes
plt.figure(figsize=(12, 6))
ax = plt.axes()
# Create a list of colors based on the color bar values
colors = ['red' if (value > 0) else 'blue' for value in dsoik[::8]]
plt.bar(date_frac[::8],
dsoik[::8],
align='edge',
edgecolor='black',
color=colors,
width=8 / 12,
linewidth=.6)
# Use geocat.viz.util convenience function to add minor and major tick lines
gvutil.add_major_minor_ticks(ax,
x_minor_per_major=4,
y_minor_per_major=5,
labelsize=20)
# Use geocat.viz.util convenience function to set axes parameters
gvutil.set_axes_limits_and_ticks(ax,
ylim=(-3, 3),
yticks=np.linspace(-3, 3, 7),
yticklabels=np.linspace(-3, 3, 7),
xlim=(date_frac[40], date_frac[-16]),
xticks=np.linspace(1900, 1980, 5))
# Use geocat.viz.util convenience function to set titles and labels
gvutil.set_titles_and_labels(ax,
maintitle="Darwin Southern Oscillation Index",
ylabel='Anomalies',
maintitlefontsize=28,
labelfontsize=20)
plt.show()
|
[
"geocat.datafiles.get",
"geocat.viz.util.add_major_minor_ticks",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.bar",
"matplotlib.pyplot.axes",
"numpy.empty_like",
"numpy.linspace",
"numpy.shape",
"geocat.viz.util.set_titles_and_labels",
"numpy.arange",
"matplotlib.pyplot.show"
] |
[((1430, 1449), 'numpy.empty_like', 'np.empty_like', (['date'], {}), '(date)\n', (1443, 1449), True, 'import numpy as np\n'), ((1459, 1486), 'numpy.arange', 'np.arange', (['(0)', 'num_months', '(1)'], {}), '(0, num_months, 1)\n', (1468, 1486), True, 'import numpy as np\n'), ((1755, 1782), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (1765, 1782), True, 'import matplotlib.pyplot as plt\n'), ((1788, 1798), 'matplotlib.pyplot.axes', 'plt.axes', ([], {}), '()\n', (1796, 1798), True, 'import matplotlib.pyplot as plt\n'), ((1924, 2040), 'matplotlib.pyplot.bar', 'plt.bar', (['date_frac[::8]', 'dsoik[::8]'], {'align': '"""edge"""', 'edgecolor': '"""black"""', 'color': 'colors', 'width': '(8 / 12)', 'linewidth': '(0.6)'}), "(date_frac[::8], dsoik[::8], align='edge', edgecolor='black', color=\n colors, width=8 / 12, linewidth=0.6)\n", (1931, 2040), True, 'import matplotlib.pyplot as plt\n'), ((2161, 2253), 'geocat.viz.util.add_major_minor_ticks', 'gvutil.add_major_minor_ticks', (['ax'], {'x_minor_per_major': '(4)', 'y_minor_per_major': '(5)', 'labelsize': '(20)'}), '(ax, x_minor_per_major=4, y_minor_per_major=5,\n labelsize=20)\n', (2189, 2253), True, 'from geocat.viz import util as gvutil\n'), ((2827, 2975), 'geocat.viz.util.set_titles_and_labels', 'gvutil.set_titles_and_labels', (['ax'], {'maintitle': '"""Darwin Southern Oscillation Index"""', 'ylabel': '"""Anomalies"""', 'maintitlefontsize': '(28)', 'labelfontsize': '(20)'}), "(ax, maintitle=\n 'Darwin Southern Oscillation Index', ylabel='Anomalies',\n maintitlefontsize=28, labelfontsize=20)\n", (2855, 2975), True, 'from geocat.viz import util as gvutil\n'), ((3084, 3094), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3092, 3094), True, 'import matplotlib.pyplot as plt\n'), ((1117, 1147), 'geocat.datafiles.get', 'gdf.get', (['"""netcdf_files/soi.nc"""'], {}), "('netcdf_files/soi.nc')\n", (1124, 1147), True, 'import geocat.datafiles as gdf\n'), ((1197, 1211), 'numpy.shape', 'np.shape', (['date'], {}), '(date)\n', (1205, 1211), True, 'import numpy as np\n'), ((2528, 2549), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(7)'], {}), '(-3, 3, 7)\n', (2539, 2549), True, 'import numpy as np\n'), ((2596, 2617), 'numpy.linspace', 'np.linspace', (['(-3)', '(3)', '(7)'], {}), '(-3, 3, 7)\n', (2607, 2617), True, 'import numpy as np\n'), ((2730, 2756), 'numpy.linspace', 'np.linspace', (['(1900)', '(1980)', '(5)'], {}), '(1900, 1980, 5)\n', (2741, 2756), True, 'import numpy as np\n')]
|
import os.path
import numpy as np
import pickle
from .common import Benchmark
from refnx.analysis import CurveFitter, Objective, Parameter
import refnx.reflect
from refnx.reflect._creflect import abeles as c_abeles
from refnx.reflect._reflect import abeles
from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity
from refnx.dataset import ReflectDataset as RD
class Abeles(Benchmark):
def setup(self):
self.q = np.linspace(0.005, 0.5, 50000)
self.layers = np.array([[0, 2.07, 0, 3],
[50, 3.47, 0.0001, 4],
[200, -0.5, 1e-5, 5],
[50, 1, 0, 3],
[0, 6.36, 0, 3]])
self.repeat = 20
self.number = 10
def time_cabeles(self):
c_abeles(self.q, self.layers)
def time_abeles(self):
abeles(self.q, self.layers)
def time_reflectivity_constant_dq_q(self):
reflectivity(self.q, self.layers)
def time_reflectivity_pointwise_dq(self):
reflectivity(self.q, self.layers, dq=0.05 * self.q)
class Reflect(Benchmark):
timeout = 120.
# repeat = 2
def setup(self):
pth = os.path.dirname(os.path.abspath(refnx.reflect.__file__))
e361 = RD(os.path.join(pth, 'test', 'e361r.txt'))
sio2 = SLD(3.47, name='SiO2')
si = SLD(2.07, name='Si')
d2o = SLD(6.36, name='D2O')
polymer = SLD(1, name='polymer')
# e361 is an older dataset, but well characterised
structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3)
model361 = ReflectModel(structure361, bkg=2e-5)
model361.scale.vary = True
model361.bkg.vary = True
model361.scale.range(0.1, 2)
model361.bkg.range(0, 5e-5)
model361.dq = 5.
# d2o
structure361[-1].sld.real.vary = True
structure361[-1].sld.real.range(6, 6.36)
self.p = structure361[1].thick
structure361[1].thick.vary = True
structure361[1].thick.range(5, 20)
structure361[2].thick.vary = True
structure361[2].thick.range(100, 220)
structure361[2].sld.real.vary = True
structure361[2].sld.real.range(0.2, 1.5)
self.structure361 = structure361
self.model361 = model361
# e361.x_err = None
self.objective = Objective(self.model361,
e361)
self.fitter = CurveFitter(self.objective, nwalkers=200)
self.fitter.initialise('jitter')
def time_reflect_emcee(self):
# test how fast the emcee sampler runs in serial mode
self.fitter.sampler.run_mcmc(self.fitter._state, 30)
def time_reflect_sampling_parallel(self):
# discrepancies in different runs may be because of different numbers
# of processors
self.model361.threads = 1
self.fitter.sample(30, pool=-1)
def time_pickle_objective(self):
# time taken to pickle an objective
s = pickle.dumps(self.objective)
pickle.loads(s)
def time_pickle_model(self):
# time taken to pickle a model
s = pickle.dumps(self.model361)
pickle.loads(s)
def time_pickle_model(self):
# time taken to pickle a parameter
s = pickle.dumps(self.p)
pickle.loads(s)
def time_structure_slabs(self):
self.structure361.slabs()
|
[
"refnx.reflect.ReflectModel",
"refnx.reflect._reflect.abeles",
"refnx.reflect.SLD",
"pickle.dumps",
"refnx.analysis.Objective",
"numpy.array",
"refnx.reflect.reflectivity",
"numpy.linspace",
"pickle.loads",
"refnx.analysis.CurveFitter",
"refnx.reflect._creflect.abeles"
] |
[((446, 476), 'numpy.linspace', 'np.linspace', (['(0.005)', '(0.5)', '(50000)'], {}), '(0.005, 0.5, 50000)\n', (457, 476), True, 'import numpy as np\n'), ((499, 609), 'numpy.array', 'np.array', (['[[0, 2.07, 0, 3], [50, 3.47, 0.0001, 4], [200, -0.5, 1e-05, 5], [50, 1, 0, \n 3], [0, 6.36, 0, 3]]'], {}), '([[0, 2.07, 0, 3], [50, 3.47, 0.0001, 4], [200, -0.5, 1e-05, 5], [\n 50, 1, 0, 3], [0, 6.36, 0, 3]])\n', (507, 609), True, 'import numpy as np\n'), ((819, 848), 'refnx.reflect._creflect.abeles', 'c_abeles', (['self.q', 'self.layers'], {}), '(self.q, self.layers)\n', (827, 848), True, 'from refnx.reflect._creflect import abeles as c_abeles\n'), ((885, 912), 'refnx.reflect._reflect.abeles', 'abeles', (['self.q', 'self.layers'], {}), '(self.q, self.layers)\n', (891, 912), False, 'from refnx.reflect._reflect import abeles\n'), ((969, 1002), 'refnx.reflect.reflectivity', 'reflectivity', (['self.q', 'self.layers'], {}), '(self.q, self.layers)\n', (981, 1002), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1058, 1109), 'refnx.reflect.reflectivity', 'reflectivity', (['self.q', 'self.layers'], {'dq': '(0.05 * self.q)'}), '(self.q, self.layers, dq=0.05 * self.q)\n', (1070, 1109), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1341, 1363), 'refnx.reflect.SLD', 'SLD', (['(3.47)'], {'name': '"""SiO2"""'}), "(3.47, name='SiO2')\n", (1344, 1363), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1377, 1397), 'refnx.reflect.SLD', 'SLD', (['(2.07)'], {'name': '"""Si"""'}), "(2.07, name='Si')\n", (1380, 1397), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1412, 1433), 'refnx.reflect.SLD', 'SLD', (['(6.36)'], {'name': '"""D2O"""'}), "(6.36, name='D2O')\n", (1415, 1433), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1452, 1474), 'refnx.reflect.SLD', 'SLD', (['(1)'], {'name': '"""polymer"""'}), "(1, name='polymer')\n", (1455, 1474), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((1624, 1661), 'refnx.reflect.ReflectModel', 'ReflectModel', (['structure361'], {'bkg': '(2e-05)'}), '(structure361, bkg=2e-05)\n', (1636, 1661), False, 'from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity\n'), ((2375, 2405), 'refnx.analysis.Objective', 'Objective', (['self.model361', 'e361'], {}), '(self.model361, e361)\n', (2384, 2405), False, 'from refnx.analysis import CurveFitter, Objective, Parameter\n'), ((2463, 2504), 'refnx.analysis.CurveFitter', 'CurveFitter', (['self.objective'], {'nwalkers': '(200)'}), '(self.objective, nwalkers=200)\n', (2474, 2504), False, 'from refnx.analysis import CurveFitter, Objective, Parameter\n'), ((3021, 3049), 'pickle.dumps', 'pickle.dumps', (['self.objective'], {}), '(self.objective)\n', (3033, 3049), False, 'import pickle\n'), ((3058, 3073), 'pickle.loads', 'pickle.loads', (['s'], {}), '(s)\n', (3070, 3073), False, 'import pickle\n'), ((3159, 3186), 'pickle.dumps', 'pickle.dumps', (['self.model361'], {}), '(self.model361)\n', (3171, 3186), False, 'import pickle\n'), ((3195, 3210), 'pickle.loads', 'pickle.loads', (['s'], {}), '(s)\n', (3207, 3210), False, 'import pickle\n'), ((3300, 3320), 'pickle.dumps', 'pickle.dumps', (['self.p'], {}), '(self.p)\n', (3312, 3320), False, 'import pickle\n'), ((3329, 3344), 'pickle.loads', 'pickle.loads', (['s'], {}), '(s)\n', (3341, 3344), False, 'import pickle\n')]
|
import tensorflow as tf
import numpy as np
from self_implement_learning_to_adapt.model import construct_fc_weights,construct_inputs,construct_loss,forward_fc
from self_implement_learning_to_adapt.batch_sampler import ParrallelSampler
from self_implement_learning_to_adapt.vectorized_sampler import VectorizedSampler
from rllab.misc import ext
import matplotlib.pyplot as plt
import scipy.signal as signal
from rllab.sampler.stateful_pool import singleton_pool
class MAML(object):
def __init__(self,
step_size,
env,
batch_size,
meta_batch_size,
seed,
n_itr,
max_path_length,
num_grad_updates,
baseline,
policy,
num_samples = 1000,
scope = None,
sess = None,
center_adv=True,
positive_adv=False,
store_paths=False,
whole_paths=True,
fixed_horizon=False,
load_policy = False,
fake_env = None,
save_video = False,
fast_lr = 0.1,
lr = 0.001,
discount = 0.99,
gae_lambda = 1,
):
self.step_size = step_size
self.env = env
self.fake_env = fake_env
self.batch_size = batch_size
self.meta_batch_size = meta_batch_size
self.seed = seed
self.n_itr = n_itr
self.max_path_length = max_path_length
self.num_grad_updates = num_grad_updates
self.discount = discount
self.baseline = baseline
self.gae_lambda = gae_lambda
self.policy = policy
self.center_adv = center_adv
self.positive_adv = positive_adv
self.store_paths = store_paths
self.whole_paths = whole_paths
self.fixed_horizon = fixed_horizon
self.load_policy = load_policy
self.scope = scope
self.num_samples = num_samples
self.s_size = self.env.observation_space.shape[0]
self.a_size = self.env.action_space.shape[0]
print(self.s_size, self.a_size)
self.lr = lr
self.fast_lr = fast_lr
self.loss_list = []
self.reward_list = []
self.fig = None
self.save_video = save_video
self.train_action_inputs, self.train_state_inputs, self.train_goal_inputs = [], [], []
self.test_action_inputs, self.test_state_inputs, self.test_goal_inputs = [], [], []
# select sampler
if singleton_pool.n_parallel >1:
self.sampler = ParrallelSampler(self, n_envs= self.meta_batch_size)
else:
self.sampler = VectorizedSampler(self, n_envs= self.meta_batch_size)
# define trainer
self.trainer = tf.train.AdamOptimizer(learning_rate=self.lr)
# this is a hacker
self.f_action_inputs, self.f_state_inputs, self.f_goal = construct_inputs(self.s_size, self.a_size, "first_test")
with tf.variable_scope("meta_rl_global"):
self.old_params = construct_fc_weights(self.s_size, self.s_size+ self.a_size, num_hidden= 512)
self.first_outputs = forward_fc(self.f_action_inputs, self.f_state_inputs, self.old_params, reuse= False)
self.f_loss = construct_loss(self.first_outputs, self.f_goal)
self.f_optimizer = self.trainer.minimize(self.f_loss)
# construct input tensors
self.construct_tensor_graph()
self.saver = tf.train.Saver()
def construct_tensor_graph(self):
'''
build maml final graph, directly optimize the initial prior model
:return:
'''
self.test_outputs, self.train_outputs, self.new_params, self.train_goal_inputs = [], [], [], []
# construct inputs and network for each meta task
for i in range(self.meta_batch_size):
tensor_action_inputs, tensor_state_inputs, tensor_goal_inputs = construct_inputs(a_size=self.a_size, s_size=self.s_size,
scpoe="train_inputs" + str(i))
outputs = forward_fc(tensor_action_inputs, tensor_state_inputs, weights=self.old_params,
reuse=True)
self.train_action_inputs.append(tensor_action_inputs)
self.train_state_inputs.append(tensor_state_inputs)
self.train_goal_inputs.append(tensor_goal_inputs)
self.train_outputs.append(outputs)
# maml train case, do first gradients
for i in range(self.meta_batch_size):
loss = construct_loss(self.train_outputs[i], self.train_goal_inputs[i])
grads = tf.gradients(loss, list(self.old_params.values()))
gradients = dict(zip(self.old_params.keys(), grads))
# save the params
self.new_params.append(dict(zip(self.old_params.keys(),
[self.old_params[key] - self.fast_lr * gradients[key] for key in
self.old_params.keys()])))
# maml test case, second order gradients
for i in range(self.meta_batch_size):
tensor_action_inputs, tensor_state_inputs, tensor_goal_inputs = construct_inputs(a_size=self.a_size, s_size=self.s_size,
scpoe="test_inputs" + str(i))
outputs = forward_fc(tensor_action_inputs, tensor_state_inputs, weights=self.new_params[i],
reuse=True)
self.test_action_inputs.append(tensor_action_inputs)
self.test_state_inputs.append(tensor_state_inputs)
self.test_goal_inputs.append(tensor_goal_inputs)
self.test_outputs.append(outputs)
self.cur_params = [self.old_params for i in range(self.meta_batch_size)]
# define total loss
self.total_loss_list = []
for i in range(self.meta_batch_size):
# save the params
self.total_loss_list.append(construct_loss(self.test_outputs[i], self.test_goal_inputs[i]))
with tf.variable_scope("total_loss"):
self.total_loss_before = tf.reduce_mean(tf.stack(self.total_loss_list))
self.second_gradients = self.trainer.minimize(self.total_loss_before, var_list= self.old_params)
def obtain_samples(self, itr, init_state, reset_args ):
paths = self.sampler.obtain_samples(itr,init_state = init_state,reset_args= reset_args, return_dict= True)
return paths
def process_samples(self, itr, path):
return self.sampler.process_samples(itr, path, log = False)
def update_target_graph(self, params, to_scope):
to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)
op_holder = []
for from_var, to_var in zip(params, to_vars):
op_holder.append(to_var.assign(from_var))
return op_holder
def cheetah_cost_fn(self,state, action, next_state):
if len(state.shape) > 1:
heading_penalty_factor = 10
scores = np.zeros((state.shape[0],))
# dont move front shin back so far that you tilt forward
front_leg = state[:, 5]
my_range = 0.2
scores[front_leg >= my_range] += heading_penalty_factor
front_shin = state[:, 6]
my_range = 0
scores[front_shin >= my_range] += heading_penalty_factor
front_foot = state[:, 7]
my_range = 0
scores[front_foot >= my_range] += heading_penalty_factor
scores -= (next_state[:, 17] - state[:, 17]) / 0.01 + 0.1 * (np.sum(action**2, axis=1))
return scores
heading_penalty_factor = 10
score = 0
# dont move front shin back so far that you tilt forward
front_leg = state[5]
my_range = 0.2
if front_leg >= my_range:
score += heading_penalty_factor
front_shin = state[6]
my_range = 0
if front_shin >= my_range:
score += heading_penalty_factor
front_foot = state[7]
my_range = 0
if front_foot >= my_range:
score += heading_penalty_factor
score -= (next_state[17] - state[17]) / 0.01 + 0.1 * (np.sum(action**2))
return score
def MPC(self,itr, num_samples, init_state, goal):
'''
# disable multiple joints
adv_list = np.zeros([num_samples])
old_obs = np.asarray([init_state for i in range(num_samples)])
new_obs = old_obs
for i in range(self.batch_size):
action = (np.random.rand(num_samples, self.a_size)-0.5)*2
action[:, goal] = 0.0
if i == 0:
action_list = action
diff = self.sess.run(self.first_outputs, feed_dict={self.f_state_inputs: np.asarray(new_obs).reshape([-1,self.s_size]),
self.f_action_inputs: np.asarray(action).reshape([-1,self.a_size])})
new_obs = diff + old_obs
rewards = diff[:,17]/0.01 - 0.05 * np.sum(np.square(action),axis=1)
adv_list[:] += rewards
index = np.argmax(adv_list)
return action_list[index]
'''
# multi friction
adv_list = np.zeros([num_samples])
old_obs = np.asarray([init_state for i in range(num_samples)])
new_obs = old_obs
for i in range(self.batch_size):
action = (np.random.rand(num_samples, self.a_size)-0.5)*2
if i == 0:
action_list = action
diff = self.sess.run(self.first_outputs, feed_dict={self.f_state_inputs: np.asarray(new_obs).reshape([-1,self.s_size]),
self.f_action_inputs: np.asarray(action).reshape([-1,self.a_size])})
new_obs = diff + old_obs
#angle = np.arccos(old_obs[:,0]/goal)
#rewards = -((((angle+np.pi) % (2*np.pi)) - np.pi) **2 + old_obs[:,2]**2*0.1 + 0.001* np.sum((action)**2))
rewards = diff[:,17]/0.01 - 0.05 * np.sum(np.square(action), axis=1)#self.cheetah_cost_fn(old_obs, action, new_obs)
adv_list[:] += rewards
index = np.argmax(adv_list)
return action_list[index]
def meta_online_train(self, goal):
'''
meta online adaption: load prior meta model, select action by doing MPC, adapt model in each step
:param goal: sample task
:return:
'''
self.goal = goal
self.sess = tf.Session()
with self.sess as sess:
self.summary_writer = tf.summary.FileWriter("./graph/", self.sess.graph)
loss_plot = None
loss_summary = tf.Summary()
loss_summary.value.add(tag='loss', simple_value=loss_plot)
reward_plot = None
reward_summary = tf.Summary()
reward_summary.value.add(tag = 'reward', simple_value = reward_plot)
diff_plot = None
diff_summary = tf.Summary()
diff_summary.value.add(tag='state_difference', simple_value=diff_plot)
if self.load_policy:
sess.run(tf.global_variables_initializer())
self.saver.restore(sess, tf.train.latest_checkpoint('./half_cheetah_model/'))
self.sampler.start_worker()
else:
sess.run(tf.global_variables_initializer())
self.sampler.start_worker()
self.env = self.env.wrapped_env
self.env.reset(reset_args=goal) # set the goal for env
nstep = 0
for itr in range(self.n_itr):
rewards = []
obs, act, diffs, images = [], [], [], []
new_state = self.env.reset()
for step in range(self.max_path_length):
#if step>int(self.max_path_length)*0.7:
# self.env.render()
if len(act) > 0:
indices = np.random.randint(0, len(act), len(act))
_ = sess.run([ self.f_optimizer],
feed_dict={self.f_action_inputs: np.asarray(act)[indices,:],
self.f_state_inputs: np.asarray(obs)[indices,:],
self.f_goal: np.asarray(diffs)[indices,:]})
loss, output = sess.run([self.f_loss,self.first_outputs], feed_dict={self.f_action_inputs: np.asarray(act)[indices,:],
self.f_state_inputs: np.asarray(obs)[indices,:],
self.f_goal: np.asarray(diffs)[indices,:]})
#diff = np.mean(abs(np.asarray(obs[1:-1])-np.asarray(obs[0:-2]) - output[0:-2]))
#diff_summary.value[0].simple_value = diff
loss_summary.value[0].simple_value = loss
self.summary_writer.add_summary(loss_summary, nstep)
self.summary_writer.add_summary(diff_summary, nstep)
obs.append(new_state)
if step%100 == 0:
print("Doing MPC, step:", step)
action = self.MPC(itr = itr, num_samples= self.num_samples, goal= goal, init_state= new_state)
new_obs, reward, done,_= self.env.step(action)
act.append(action)
diffs.append(new_obs - new_state)
rewards.append(reward)
nstep +=1
new_state = new_obs
if done:
break
if self.save_video:
from PIL import Image
image = self.env.wrapped_env.get_viewer().get_image()
pil_image = Image.frombytes('RGB', (image[1], image[2]), image[0])
images.append(np.flipud(np.array(pil_image)))
if self.save_video and itr == self.n_itr -1 :
import moviepy.editor as mpy
clip = mpy.ImageSequenceClip(images, fps=20 * 1)
clip.write_videofile("./video/half_cheetah/", fps=20 * 1)
self.saver.save(sess, './MPC_model/mpc_model.cpkt', global_step=itr)
if itr >= 0:
sum_rewards = np.sum(np.asarray(rewards))
print(sum_rewards)
self.reward_list.append(sum_rewards)
reward_summary.value[0].simple_value = sum_rewards
self.summary_writer.add_summary(reward_summary, itr)
if self.fig == None :
self.fig = plt.figure()
self.fig.set_size_inches(12, 6)
self.fig1= plt.figure()
else:
self.show_rewards(self.reward_list, self.fig, "rewards")
def train(self):
'''
meta training of transition model : sample trajectories based on different tasks, doing optimization
:return:
'''
self.sess = tf.Session()
with self.sess as sess:
self.summary_writer = tf.summary.FileWriter("./graph/", self.sess.graph)
if self.load_policy:
sess.run(tf.global_variables_initializer())
self.saver.restore(sess, tf.train.latest_checkpoint('./half_cheetah_model/'))
self.sampler.start_worker()
else:
sess.run(tf.global_variables_initializer())
self.sampler.start_worker()
self.env = self.env.wrapped_env
loss_plot = None
loss_summary = tf.Summary()
loss_summary.value.add(tag='loss', simple_value=loss_plot)
reward_plot = None
reward_summary = tf.Summary()
reward_summary.value.add(tag = 'reward', simple_value = reward_plot)
for itr in range(self.n_itr):
if itr>0:
print("------------------ total loss: %f" % total_loss_before)
print("------------------ total loss: %f" % total_loss)
# set goals of meta tasks
learner_goals = self.env.sample_goals(self.meta_batch_size)
obs_list, action_list, adv_list, newobs_list, newaction_list, newadv_list = [], [], [], [], [], []
for step in range(self.num_grad_updates+1):
print("-------------------- step: " + str(step))
print("-------------------- obtaining samples :")
paths = self.obtain_samples(itr, reset_args= learner_goals,init_state= None)
print("-------------------- processing samples :")
samples = {}
for key in paths.keys():
samples[key] = self.process_samples(itr, paths[key])
if step == 0:
for i in range(self.meta_batch_size):
inputs = ext.extract(
samples[i],
"observations", "actions", "rewards"
)
obs_list.append(inputs[0])
action_list.append(inputs[1])
adv_list.append(np.asarray(inputs[2]).reshape([-1,1]))
else:
for i in range(self.meta_batch_size):
inputs = ext.extract(
samples[i],
"observations", "actions", "rewards"
)
newobs_list.append(inputs[0])
newaction_list.append(inputs[1])
newadv_list.append(np.asarray(inputs[2]).reshape([-1,1]))
#if step == 0:
# print("-------------------- Compute local gradients : ")
# # apply first gradients, optimize original params
# assign_op = []
print("-------------------------- optimize policy :")
feedict = {}
for i in range(self.meta_batch_size):
feedict.update({self.train_action_inputs[i]: action_list[i][0:-1]})
feedict.update({self.train_state_inputs[i]: obs_list[i][0:-1]})
feedict.update({self.train_goal_inputs[i]: obs_list[i][1::] - obs_list[i][0:-1]})
feedict.update({self.test_action_inputs[i]: newaction_list[i][0:-1]})
feedict.update({self.test_state_inputs[i]: newobs_list[i][0:-1]})
feedict.update({self.test_goal_inputs[i]: newobs_list[i][1::] - newobs_list[i][0:-1] })
total_loss_before= sess.run(self.total_loss_before, feed_dict= feedict)
_ = sess.run([ self.second_gradients], feed_dict= feedict)
total_loss = sess.run(self.total_loss_before,
feed_dict=feedict)
if itr > 0:
self.loss_list.append(total_loss_before)
reward_summary.value[0].simple_value = total_loss_before
self.summary_writer.add_summary(reward_summary, itr)
if self.fig == None :
self.fig = plt.figure()
self.fig.set_size_inches(12, 6)
else:
self.show_rewards(self.loss_list, self.fig, "loss")
if itr%1 == 0:
save_path = self.saver.save(sess, './half_cheetah_model/maml_model.ckpt', global_step = itr)
print("-------------save model : %s " % save_path)
self.sampler.shutdown_worker()
def show_rewards(self, rewards, fig, name,width=12, height=6, window_size=1000):
# sanity checks for plotting
assert (fig is not None)
#if len(rewards) == 0:
# return
plt.figure(fig.number)
plt.clf()
moving_avg = self.compute_moving_average(rewards, window_size)
gcf = plt.gcf()
ax = plt.gca()
gcf.set_size_inches(width, height)
plt.xlim((0, len(rewards)))
r, = plt.plot(rewards, color='red', linestyle='-', linewidth=0.5, label=name, alpha=0.5)
ave_r, = plt.plot(moving_avg, color='blue', linestyle='-', linewidth=0.8, label='avg_' + name)
# e, = plt.plot(epsilons, color='blue', linestyle='--', alpha=0.5, label='epsilon')
plt.legend([r, ave_r], [name, 'average '+ name])
plt.ylabel(name)
plt.xlabel('Episode #')
plt.savefig(name+' fig')
#plt.pause(0.1)
def compute_moving_average(self, rewards, window):
cur_window_size = 1
moving_average = []
for i in range(len(rewards) - 1):
lower_idx = max(0, i - cur_window_size)
average = sum(rewards[lower_idx:i + 1]) / cur_window_size
moving_average.append(average)
cur_window_size += 1
if cur_window_size > window:
cur_window_size = window
return moving_average
def get_param_values(self):
all_params = self.old_params
param_values = tf.get_default_session().run(all_params)
return param_values
def set_param_values(self, params):
tf.get_default_session().run(self.update_target_graph(params, "meta_rl" + str(i)))
def _discount(self, x, gamma):
return signal.lfilter([1.0], [1.0, gamma], x[::-1])[::-1]
def add_params(self, param_1, param_2):
if len(param_1) == 0:
return param_2
return [param_1[i] + param_2[i] for i in range(len(param_1))]
def sub_params(self, param_1, param_2):
return [param_1[i] - param_2[i] for i in range(len(param_1))]
def mult_params(self, param_1, param_2 ):
return [param_1[i] - param_2[i] for i in range(len(param_1))]
def divide_nums(self, param_1, num):
return [param_1[i]/num for i in range(len(param_1))]
|
[
"numpy.random.rand",
"matplotlib.pyplot.ylabel",
"tensorflow.get_default_session",
"numpy.array",
"self_implement_learning_to_adapt.model.construct_inputs",
"self_implement_learning_to_adapt.vectorized_sampler.VectorizedSampler",
"matplotlib.pyplot.xlabel",
"tensorflow.Session",
"matplotlib.pyplot.plot",
"numpy.asarray",
"self_implement_learning_to_adapt.model.forward_fc",
"rllab.misc.ext.extract",
"tensorflow.train.AdamOptimizer",
"self_implement_learning_to_adapt.model.construct_fc_weights",
"tensorflow.stack",
"matplotlib.pyplot.savefig",
"tensorflow.variable_scope",
"matplotlib.pyplot.gcf",
"matplotlib.pyplot.gca",
"moviepy.editor.ImageSequenceClip",
"numpy.argmax",
"self_implement_learning_to_adapt.model.construct_loss",
"numpy.square",
"tensorflow.train.latest_checkpoint",
"PIL.Image.frombytes",
"tensorflow.summary.FileWriter",
"matplotlib.pyplot.legend",
"tensorflow.Summary",
"tensorflow.train.Saver",
"matplotlib.pyplot.clf",
"tensorflow.global_variables_initializer",
"numpy.sum",
"numpy.zeros",
"matplotlib.pyplot.figure",
"scipy.signal.lfilter",
"self_implement_learning_to_adapt.batch_sampler.ParrallelSampler",
"tensorflow.get_collection"
] |
[((2881, 2926), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'self.lr'}), '(learning_rate=self.lr)\n', (2903, 2926), True, 'import tensorflow as tf\n'), ((3020, 3076), 'self_implement_learning_to_adapt.model.construct_inputs', 'construct_inputs', (['self.s_size', 'self.a_size', '"""first_test"""'], {}), "(self.s_size, self.a_size, 'first_test')\n", (3036, 3076), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((3263, 3350), 'self_implement_learning_to_adapt.model.forward_fc', 'forward_fc', (['self.f_action_inputs', 'self.f_state_inputs', 'self.old_params'], {'reuse': '(False)'}), '(self.f_action_inputs, self.f_state_inputs, self.old_params,\n reuse=False)\n', (3273, 3350), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((3370, 3417), 'self_implement_learning_to_adapt.model.construct_loss', 'construct_loss', (['self.first_outputs', 'self.f_goal'], {}), '(self.first_outputs, self.f_goal)\n', (3384, 3417), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((3575, 3591), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3589, 3591), True, 'import tensorflow as tf\n'), ((6827, 6888), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES', 'to_scope'], {}), '(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope)\n', (6844, 6888), True, 'import tensorflow as tf\n'), ((9426, 9449), 'numpy.zeros', 'np.zeros', (['[num_samples]'], {}), '([num_samples])\n', (9434, 9449), True, 'import numpy as np\n'), ((10365, 10384), 'numpy.argmax', 'np.argmax', (['adv_list'], {}), '(adv_list)\n', (10374, 10384), True, 'import numpy as np\n'), ((10685, 10697), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (10695, 10697), True, 'import tensorflow as tf\n'), ((15384, 15396), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (15394, 15396), True, 'import tensorflow as tf\n'), ((20367, 20389), 'matplotlib.pyplot.figure', 'plt.figure', (['fig.number'], {}), '(fig.number)\n', (20377, 20389), True, 'import matplotlib.pyplot as plt\n'), ((20398, 20407), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (20405, 20407), True, 'import matplotlib.pyplot as plt\n'), ((20493, 20502), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (20500, 20502), True, 'import matplotlib.pyplot as plt\n'), ((20516, 20525), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (20523, 20525), True, 'import matplotlib.pyplot as plt\n'), ((20618, 20705), 'matplotlib.pyplot.plot', 'plt.plot', (['rewards'], {'color': '"""red"""', 'linestyle': '"""-"""', 'linewidth': '(0.5)', 'label': 'name', 'alpha': '(0.5)'}), "(rewards, color='red', linestyle='-', linewidth=0.5, label=name,\n alpha=0.5)\n", (20626, 20705), True, 'import matplotlib.pyplot as plt\n'), ((20719, 20809), 'matplotlib.pyplot.plot', 'plt.plot', (['moving_avg'], {'color': '"""blue"""', 'linestyle': '"""-"""', 'linewidth': '(0.8)', 'label': "('avg_' + name)"}), "(moving_avg, color='blue', linestyle='-', linewidth=0.8, label=\n 'avg_' + name)\n", (20727, 20809), True, 'import matplotlib.pyplot as plt\n'), ((20905, 20954), 'matplotlib.pyplot.legend', 'plt.legend', (['[r, ave_r]', "[name, 'average ' + name]"], {}), "([r, ave_r], [name, 'average ' + name])\n", (20915, 20954), True, 'import matplotlib.pyplot as plt\n'), ((20962, 20978), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['name'], {}), '(name)\n', (20972, 20978), True, 'import matplotlib.pyplot as plt\n'), ((20987, 21010), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Episode #"""'], {}), "('Episode #')\n", (20997, 21010), True, 'import matplotlib.pyplot as plt\n'), ((21019, 21045), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(name + ' fig')"], {}), "(name + ' fig')\n", (21030, 21045), True, 'import matplotlib.pyplot as plt\n'), ((2684, 2735), 'self_implement_learning_to_adapt.batch_sampler.ParrallelSampler', 'ParrallelSampler', (['self'], {'n_envs': 'self.meta_batch_size'}), '(self, n_envs=self.meta_batch_size)\n', (2700, 2735), False, 'from self_implement_learning_to_adapt.batch_sampler import ParrallelSampler\n'), ((2778, 2830), 'self_implement_learning_to_adapt.vectorized_sampler.VectorizedSampler', 'VectorizedSampler', (['self'], {'n_envs': 'self.meta_batch_size'}), '(self, n_envs=self.meta_batch_size)\n', (2795, 2830), False, 'from self_implement_learning_to_adapt.vectorized_sampler import VectorizedSampler\n'), ((3090, 3125), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""meta_rl_global"""'], {}), "('meta_rl_global')\n", (3107, 3125), True, 'import tensorflow as tf\n'), ((3157, 3233), 'self_implement_learning_to_adapt.model.construct_fc_weights', 'construct_fc_weights', (['self.s_size', '(self.s_size + self.a_size)'], {'num_hidden': '(512)'}), '(self.s_size, self.s_size + self.a_size, num_hidden=512)\n', (3177, 3233), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((4213, 4308), 'self_implement_learning_to_adapt.model.forward_fc', 'forward_fc', (['tensor_action_inputs', 'tensor_state_inputs'], {'weights': 'self.old_params', 'reuse': '(True)'}), '(tensor_action_inputs, tensor_state_inputs, weights=self.\n old_params, reuse=True)\n', (4223, 4308), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((4687, 4751), 'self_implement_learning_to_adapt.model.construct_loss', 'construct_loss', (['self.train_outputs[i]', 'self.train_goal_inputs[i]'], {}), '(self.train_outputs[i], self.train_goal_inputs[i])\n', (4701, 4751), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((5522, 5620), 'self_implement_learning_to_adapt.model.forward_fc', 'forward_fc', (['tensor_action_inputs', 'tensor_state_inputs'], {'weights': 'self.new_params[i]', 'reuse': '(True)'}), '(tensor_action_inputs, tensor_state_inputs, weights=self.\n new_params[i], reuse=True)\n', (5532, 5620), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((6221, 6252), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""total_loss"""'], {}), "('total_loss')\n", (6238, 6252), True, 'import tensorflow as tf\n'), ((7198, 7225), 'numpy.zeros', 'np.zeros', (['(state.shape[0],)'], {}), '((state.shape[0],))\n', (7206, 7225), True, 'import numpy as np\n'), ((10765, 10815), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""./graph/"""', 'self.sess.graph'], {}), "('./graph/', self.sess.graph)\n", (10786, 10815), True, 'import tensorflow as tf\n'), ((10873, 10885), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (10883, 10885), True, 'import tensorflow as tf\n'), ((11017, 11029), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (11027, 11029), True, 'import tensorflow as tf\n'), ((11167, 11179), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (11177, 11179), True, 'import tensorflow as tf\n'), ((15464, 15514), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['"""./graph/"""', 'self.sess.graph'], {}), "('./graph/', self.sess.graph)\n", (15485, 15514), True, 'import tensorflow as tf\n'), ((15968, 15980), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (15978, 15980), True, 'import tensorflow as tf\n'), ((16112, 16124), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (16122, 16124), True, 'import tensorflow as tf\n'), ((21877, 21921), 'scipy.signal.lfilter', 'signal.lfilter', (['[1.0]', '[1.0, gamma]', 'x[::-1]'], {}), '([1.0], [1.0, gamma], x[::-1])\n', (21891, 21921), True, 'import scipy.signal as signal\n'), ((6144, 6206), 'self_implement_learning_to_adapt.model.construct_loss', 'construct_loss', (['self.test_outputs[i]', 'self.test_goal_inputs[i]'], {}), '(self.test_outputs[i], self.test_goal_inputs[i])\n', (6158, 6206), False, 'from self_implement_learning_to_adapt.model import construct_fc_weights, construct_inputs, construct_loss, forward_fc\n'), ((6306, 6336), 'tensorflow.stack', 'tf.stack', (['self.total_loss_list'], {}), '(self.total_loss_list)\n', (6314, 6336), True, 'import tensorflow as tf\n'), ((8397, 8416), 'numpy.sum', 'np.sum', (['(action ** 2)'], {}), '(action ** 2)\n', (8403, 8416), True, 'import numpy as np\n'), ((21625, 21649), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (21647, 21649), True, 'import tensorflow as tf\n'), ((21743, 21767), 'tensorflow.get_default_session', 'tf.get_default_session', ([], {}), '()\n', (21765, 21767), True, 'import tensorflow as tf\n'), ((7767, 7794), 'numpy.sum', 'np.sum', (['(action ** 2)'], {'axis': '(1)'}), '(action ** 2, axis=1)\n', (7773, 7794), True, 'import numpy as np\n'), ((9610, 9650), 'numpy.random.rand', 'np.random.rand', (['num_samples', 'self.a_size'], {}), '(num_samples, self.a_size)\n', (9624, 9650), True, 'import numpy as np\n'), ((11323, 11356), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (11354, 11356), True, 'import tensorflow as tf\n'), ((11399, 11450), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['"""./half_cheetah_model/"""'], {}), "('./half_cheetah_model/')\n", (11425, 11450), True, 'import tensorflow as tf\n'), ((11539, 11572), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (11570, 11572), True, 'import tensorflow as tf\n'), ((14351, 14392), 'moviepy.editor.ImageSequenceClip', 'mpy.ImageSequenceClip', (['images'], {'fps': '(20 * 1)'}), '(images, fps=20 * 1)\n', (14372, 14392), True, 'import moviepy.editor as mpy\n'), ((15573, 15606), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (15604, 15606), True, 'import tensorflow as tf\n'), ((15649, 15700), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['"""./half_cheetah_model/"""'], {}), "('./half_cheetah_model/')\n", (15675, 15700), True, 'import tensorflow as tf\n'), ((15789, 15822), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (15820, 15822), True, 'import tensorflow as tf\n'), ((10239, 10256), 'numpy.square', 'np.square', (['action'], {}), '(action)\n', (10248, 10256), True, 'import numpy as np\n'), ((14087, 14141), 'PIL.Image.frombytes', 'Image.frombytes', (['"""RGB"""', '(image[1], image[2])', 'image[0]'], {}), "('RGB', (image[1], image[2]), image[0])\n", (14102, 14141), False, 'from PIL import Image\n'), ((14627, 14646), 'numpy.asarray', 'np.asarray', (['rewards'], {}), '(rewards)\n', (14637, 14646), True, 'import numpy as np\n'), ((14967, 14979), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (14977, 14979), True, 'import matplotlib.pyplot as plt\n'), ((15071, 15083), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15081, 15083), True, 'import matplotlib.pyplot as plt\n'), ((19720, 19732), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (19730, 19732), True, 'import matplotlib.pyplot as plt\n'), ((17331, 17392), 'rllab.misc.ext.extract', 'ext.extract', (['samples[i]', '"""observations"""', '"""actions"""', '"""rewards"""'], {}), "(samples[i], 'observations', 'actions', 'rewards')\n", (17342, 17392), False, 'from rllab.misc import ext\n'), ((17809, 17870), 'rllab.misc.ext.extract', 'ext.extract', (['samples[i]', '"""observations"""', '"""actions"""', '"""rewards"""'], {}), "(samples[i], 'observations', 'actions', 'rewards')\n", (17820, 17870), False, 'from rllab.misc import ext\n'), ((9803, 9822), 'numpy.asarray', 'np.asarray', (['new_obs'], {}), '(new_obs)\n', (9813, 9822), True, 'import numpy as np\n'), ((9932, 9950), 'numpy.asarray', 'np.asarray', (['action'], {}), '(action)\n', (9942, 9950), True, 'import numpy as np\n'), ((14190, 14209), 'numpy.array', 'np.array', (['pil_image'], {}), '(pil_image)\n', (14198, 14209), True, 'import numpy as np\n'), ((12332, 12347), 'numpy.asarray', 'np.asarray', (['act'], {}), '(act)\n', (12342, 12347), True, 'import numpy as np\n'), ((12436, 12451), 'numpy.asarray', 'np.asarray', (['obs'], {}), '(obs)\n', (12446, 12451), True, 'import numpy as np\n'), ((12532, 12549), 'numpy.asarray', 'np.asarray', (['diffs'], {}), '(diffs)\n', (12542, 12549), True, 'import numpy as np\n'), ((12678, 12693), 'numpy.asarray', 'np.asarray', (['act'], {}), '(act)\n', (12688, 12693), True, 'import numpy as np\n'), ((12782, 12797), 'numpy.asarray', 'np.asarray', (['obs'], {}), '(obs)\n', (12792, 12797), True, 'import numpy as np\n'), ((12878, 12895), 'numpy.asarray', 'np.asarray', (['diffs'], {}), '(diffs)\n', (12888, 12895), True, 'import numpy as np\n'), ((17644, 17665), 'numpy.asarray', 'np.asarray', (['inputs[2]'], {}), '(inputs[2])\n', (17654, 17665), True, 'import numpy as np\n'), ((18131, 18152), 'numpy.asarray', 'np.asarray', (['inputs[2]'], {}), '(inputs[2])\n', (18141, 18152), True, 'import numpy as np\n')]
|
import cv2
import numpy as np
from numpy.linalg import norm
import requests
def _get_image_frame(camera) -> np.ndarray:
_, frame = camera.read()
return frame
def _convert_frame_to_hsv(frame: np.ndarray) -> np.ndarray:
return cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
def _post_to_michi() -> None:
try:
requests.post("https://tbaum.duckdns.org/api/webhook/awesome-leanix")
except Exception:
_post_to_michi()
def main() -> None:
camera = cv2.VideoCapture(0)
while True:
frame = _get_image_frame(camera)
hsv_img = _convert_frame_to_hsv(frame)
if np.average(norm(hsv_img, axis=2)) / np.sqrt(3) > 110:
_post_to_michi()
break
print("Success!")
if __name__ == "__main__":
main()
|
[
"requests.post",
"numpy.sqrt",
"cv2.VideoCapture",
"cv2.cvtColor",
"numpy.linalg.norm"
] |
[((239, 277), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (251, 277), False, 'import cv2\n'), ((477, 496), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (493, 496), False, 'import cv2\n'), ((326, 395), 'requests.post', 'requests.post', (['"""https://tbaum.duckdns.org/api/webhook/awesome-leanix"""'], {}), "('https://tbaum.duckdns.org/api/webhook/awesome-leanix')\n", (339, 395), False, 'import requests\n'), ((650, 660), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (657, 660), True, 'import numpy as np\n'), ((625, 646), 'numpy.linalg.norm', 'norm', (['hsv_img'], {'axis': '(2)'}), '(hsv_img, axis=2)\n', (629, 646), False, 'from numpy.linalg import norm\n')]
|
#%%
# read full assignment
# think algo before implementing
# dont use a dict when you need a list
# assignment is still = and not ==
# dont use itertools when you can use np.roll
# check mathemathical functions if the parentheses are ok
# networkx is awesome
# sometimes while true is better than just too small for loop
# networkx addes nodes when adding edge to nonexistent node
# %%
import os
import re
import numpy as np
try:
os.chdir(os.path.join(os.getcwd(), 'day 14'))
print(os.getcwd())
except:
pass
from functools import reduce
import operator
import networkx as nx
import numpy as np
# f = open('input.txt','r').read().strip()
def gethash(f):
lengths = [ord(l) for l in f]
lengths += [17, 31, 73, 47, 23]
circular = np.arange(256)
skip = 0
start = 0
for r in range(64):
for l in lengths:
circular = np.roll(circular,-start)
circular[:l]=circular[:l][::-1]
circular = np.roll(circular,+start)
start = (start + l + skip)%len(circular)
skip +=1
def densehash(inp):
return (reduce(lambda a,b : operator.xor(a,b),inp))
hashcode = ''
for i in range(16):
hashcode += hex(densehash(circular[i*16:i*16+16]))[2:].zfill(2)
return hashcode
def getbits(inp):
my_hexdata = inp
scale = 16 ## equals to hexadecimal
num_of_bits = 4
return bin(int(my_hexdata, scale))[2:].zfill(num_of_bits)
count= 0
f = 'stpzcrnm'
for r in range(128):
h = gethash('stpzcrnm-'+str(r))
count+=len(''.join([getbits(b) for b in h]).replace('0',''))
count
# %%
count= 0
grid = []
f = 'stpzcrnm'
for r in range(128):
h = gethash('stpzcrnm-'+str(r))
grid.append(list(''.join([getbits(b) for b in h])))
count+=len(''.join([getbits(b) for b in h]).replace('0',''))
# %%
grid = np.array(grid)
print(grid.shape)
G = nx.Graph()
for index,output in np.ndenumerate(grid):
if output == '1':
i,j = index[0], index[1]
G.add_edge((i,j),(i+1,j))
G.add_edge((i,j),(i-1,j))
G.add_edge((i,j),(i,j+1))
G.add_edge((i,j),(i,j-1))
for index,output in np.ndenumerate(grid):
if output == '0':
if G.has_node(index): G.remove_node(index)
nx.number_connected_components(G)
# %%
|
[
"numpy.roll",
"networkx.Graph",
"numpy.ndenumerate",
"os.getcwd",
"numpy.array",
"networkx.number_connected_components",
"operator.xor",
"numpy.arange"
] |
[((1816, 1830), 'numpy.array', 'np.array', (['grid'], {}), '(grid)\n', (1824, 1830), True, 'import numpy as np\n'), ((1853, 1863), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (1861, 1863), True, 'import networkx as nx\n'), ((1885, 1905), 'numpy.ndenumerate', 'np.ndenumerate', (['grid'], {}), '(grid)\n', (1899, 1905), True, 'import numpy as np\n'), ((2119, 2139), 'numpy.ndenumerate', 'np.ndenumerate', (['grid'], {}), '(grid)\n', (2133, 2139), True, 'import numpy as np\n'), ((2215, 2248), 'networkx.number_connected_components', 'nx.number_connected_components', (['G'], {}), '(G)\n', (2245, 2248), True, 'import networkx as nx\n'), ((746, 760), 'numpy.arange', 'np.arange', (['(256)'], {}), '(256)\n', (755, 760), True, 'import numpy as np\n'), ((486, 497), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (495, 497), False, 'import os\n'), ((455, 466), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (464, 466), False, 'import os\n'), ((861, 886), 'numpy.roll', 'np.roll', (['circular', '(-start)'], {}), '(circular, -start)\n', (868, 886), True, 'import numpy as np\n'), ((953, 978), 'numpy.roll', 'np.roll', (['circular', '(+start)'], {}), '(circular, +start)\n', (960, 978), True, 'import numpy as np\n'), ((1112, 1130), 'operator.xor', 'operator.xor', (['a', 'b'], {}), '(a, b)\n', (1124, 1130), False, 'import operator\n')]
|
import pygame
import numpy as np
from math import *
import json
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RAINBOW = (0, 0, 0)
rainbow = True
WIDTH, HEIGHT = 800, 600
#WIDTH, HEIGHT = 1600, 900
def drawLine(point1, point2, screen):
if rainbow:
pygame.draw.line(screen, RAINBOW, (point1[0], point1[1]), (point2[0], point2[1]))
else:
pygame.draw.line(screen, BLACK, (point1[0], point1[1]), (point2[0], point2[1]))
def rotateX(angle):
return np.matrix([
[1, 0, 0],
[0, cos(angle), -sin(angle)],
[0, sin(angle), cos(angle)]
])
def rotateY(angle):
return np.matrix([
[cos(angle), 0, sin(angle)],
[0, 1, 0],
[-sin(angle), 0, cos(angle)]
])
def rotateZ(angle):
return np.matrix([
[cos(angle), -sin(angle), 0],
[sin(angle), cos(angle), 0],
[0, 0, 1]
])
def projectPoint(point, angle, offset, scale):
rotated = point.reshape(3, 1)
rotated = np.dot(rotateX(pi / 2), rotated)
rotated = np.dot(rotateX(angle[0]), rotated)
rotated = np.dot(rotateY(angle[1]), rotated)
rotated = np.dot(rotateZ(angle[2]), rotated)
projected = np.dot(np.matrix([[1, 0, 0], [0, 1, 0]]), rotated)
x = int(projected[0][0] * scale) + WIDTH/2
y = int(projected[1][0] * scale) + HEIGHT/2
return [x, y]
def renderObject(objectPath, offset, angle, scale, screen):
f = open(objectPath)
data = json.load(f)
points = data.get("points")
if points:
temp = ""
for pointName in points:
point = points.get(pointName)
point = np.matrix(point)+np.matrix([offset])
temp += '"'+pointName+'":'+str(projectPoint(point, angle, offset, scale))+','
projectedPoints = json.loads('{'+temp[:-1]+'}')
lines = data.get("lines")
if lines:
for line in lines:
for p1name in line:
p1 = p1name
p2 = projectedPoints.get(line.get(p1))
p1 = projectedPoints.get(p1)
drawLine(p1, p2, screen)
objects = data.get("objects")
if objects:
for obj in objects:
renderObject(obj.get("objectPath"), np.squeeze(np.array(np.matrix(obj.get("offset"))+np.matrix(offset)*scale/obj.get("scale"))) ,np.squeeze(np.array(np.matrix(obj["angle"])+ angle)), obj.get("scale"), screen)
screen = pygame.display.set_mode((WIDTH, HEIGHT))
clock = pygame.time.Clock()
angle = 0
while True:
# so spin rate is not super fast/constant
clock.tick(60)
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
exit()
angle += 0.01
screen.fill(WHITE)
# type ur code here
renderObject("objects/2squares.json", [0, 0, 0], [angle, angle, angle], 100, screen)
renderObject("objects/square.json", [0, 0, 1], [angle, angle, angle], 100, screen)
pygame.display.update()
|
[
"json.loads",
"pygame.quit",
"pygame.draw.line",
"pygame.event.get",
"pygame.display.set_mode",
"pygame.time.Clock",
"json.load",
"pygame.display.update",
"numpy.matrix"
] |
[((2393, 2433), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WIDTH, HEIGHT)'], {}), '((WIDTH, HEIGHT))\n', (2416, 2433), False, 'import pygame\n'), ((2442, 2461), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (2459, 2461), False, 'import pygame\n'), ((1431, 1443), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1440, 1443), False, 'import json\n'), ((2566, 2584), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2582, 2584), False, 'import pygame\n'), ((2920, 2943), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (2941, 2943), False, 'import pygame\n'), ((259, 344), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'RAINBOW', '(point1[0], point1[1])', '(point2[0], point2[1])'], {}), '(screen, RAINBOW, (point1[0], point1[1]), (point2[0],\n point2[1]))\n', (275, 344), False, 'import pygame\n'), ((359, 438), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'BLACK', '(point1[0], point1[1])', '(point2[0], point2[1])'], {}), '(screen, BLACK, (point1[0], point1[1]), (point2[0], point2[1]))\n', (375, 438), False, 'import pygame\n'), ((1175, 1208), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0], [0, 1, 0]]'], {}), '([[1, 0, 0], [0, 1, 0]])\n', (1184, 1208), True, 'import numpy as np\n'), ((1757, 1790), 'json.loads', 'json.loads', (["('{' + temp[:-1] + '}')"], {}), "('{' + temp[:-1] + '}')\n", (1767, 1790), False, 'import json\n'), ((2636, 2649), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (2647, 2649), False, 'import pygame\n'), ((1604, 1620), 'numpy.matrix', 'np.matrix', (['point'], {}), '(point)\n', (1613, 1620), True, 'import numpy as np\n'), ((1621, 1640), 'numpy.matrix', 'np.matrix', (['[offset]'], {}), '([offset])\n', (1630, 1640), True, 'import numpy as np\n'), ((2322, 2345), 'numpy.matrix', 'np.matrix', (["obj['angle']"], {}), "(obj['angle'])\n", (2331, 2345), True, 'import numpy as np\n'), ((2258, 2275), 'numpy.matrix', 'np.matrix', (['offset'], {}), '(offset)\n', (2267, 2275), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import copy
import argparse
import cv2 as cv
import numpy as np
import mediapipe as mp
from utils import CvFpsCalc
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument("--max_num_faces", type=int, default=1)
parser.add_argument("--min_detection_confidence",
help='min_detection_confidence',
type=float,
default=0.7)
parser.add_argument("--min_tracking_confidence",
help='min_tracking_confidence',
type=int,
default=0.5)
parser.add_argument('--use_brect', action='store_true')
args = parser.parse_args()
return args
def main():
# 引数解析 #################################################################
args = get_args()
cap_device = args.device
cap_width = args.width
cap_height = args.height
max_num_faces = args.max_num_faces
min_detection_confidence = args.min_detection_confidence
min_tracking_confidence = args.min_tracking_confidence
use_brect = args.use_brect
# カメラ準備 ###############################################################
cap = cv.VideoCapture(cap_device)
cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height)
# モデルロード #############################################################
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
max_num_faces=max_num_faces,
min_detection_confidence=min_detection_confidence,
min_tracking_confidence=min_tracking_confidence,
)
# FPS計測モジュール ########################################################
cvFpsCalc = CvFpsCalc(buffer_len=10)
while True:
display_fps = cvFpsCalc.get()
# カメラキャプチャ #####################################################
ret, image = cap.read()
if not ret:
break
image = cv.flip(image, 1) # ミラー表示
debug_image = copy.deepcopy(image)
# 検出実施 #############################################################
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
results = face_mesh.process(image)
# 描画 ################################################################
if results.multi_face_landmarks is not None:
for face_landmarks in results.multi_face_landmarks:
# 外接矩形の計算
brect = calc_bounding_rect(debug_image, face_landmarks)
# 描画
debug_image = draw_landmarks(debug_image, face_landmarks)
debug_image = draw_bounding_rect(use_brect, debug_image, brect)
cv.putText(debug_image, "FPS:" + str(display_fps), (10, 30),
cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2, cv.LINE_AA)
# キー処理(ESC:終了) #################################################
key = cv.waitKey(1)
if key == 27: # ESC
break
# 画面反映 #############################################################
cv.imshow('MediaPipe Face Mesh Demo', debug_image)
cap.release()
cv.destroyAllWindows()
def calc_bounding_rect(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_array = np.empty((0, 2), int)
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
landmark_point = [np.array((landmark_x, landmark_y))]
landmark_array = np.append(landmark_array, landmark_point, axis=0)
x, y, w, h = cv.boundingRect(landmark_array)
return [x, y, x + w, y + h]
def draw_landmarks(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_point = []
for index, landmark in enumerate(landmarks.landmark):
if landmark.visibility < 0 or landmark.presence < 0:
continue
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
landmark_point.append((landmark_x, landmark_y))
cv.circle(image, (landmark_x, landmark_y), 1, (0, 255, 0), 1)
if len(landmark_point) > 0:
# 参考:https://github.com/tensorflow/tfjs-models/blob/master/facemesh/mesh_map.jpg
# 左眉毛(55:内側、46:外側)
cv.line(image, landmark_point[55], landmark_point[65], (0, 255, 0), 2)
cv.line(image, landmark_point[65], landmark_point[52], (0, 255, 0), 2)
cv.line(image, landmark_point[52], landmark_point[53], (0, 255, 0), 2)
cv.line(image, landmark_point[53], landmark_point[46], (0, 255, 0), 2)
# 右眉毛(285:内側、276:外側)
cv.line(image, landmark_point[285], landmark_point[295], (0, 255, 0),
2)
cv.line(image, landmark_point[295], landmark_point[282], (0, 255, 0),
2)
cv.line(image, landmark_point[282], landmark_point[283], (0, 255, 0),
2)
cv.line(image, landmark_point[283], landmark_point[276], (0, 255, 0),
2)
# 左目 (133:目頭、246:目尻)
cv.line(image, landmark_point[133], landmark_point[173], (0, 255, 0),
2)
cv.line(image, landmark_point[173], landmark_point[157], (0, 255, 0),
2)
cv.line(image, landmark_point[157], landmark_point[158], (0, 255, 0),
2)
cv.line(image, landmark_point[158], landmark_point[159], (0, 255, 0),
2)
cv.line(image, landmark_point[159], landmark_point[160], (0, 255, 0),
2)
cv.line(image, landmark_point[160], landmark_point[161], (0, 255, 0),
2)
cv.line(image, landmark_point[161], landmark_point[246], (0, 255, 0),
2)
cv.line(image, landmark_point[246], landmark_point[163], (0, 255, 0),
2)
cv.line(image, landmark_point[163], landmark_point[144], (0, 255, 0),
2)
cv.line(image, landmark_point[144], landmark_point[145], (0, 255, 0),
2)
cv.line(image, landmark_point[145], landmark_point[153], (0, 255, 0),
2)
cv.line(image, landmark_point[153], landmark_point[154], (0, 255, 0),
2)
cv.line(image, landmark_point[154], landmark_point[155], (0, 255, 0),
2)
cv.line(image, landmark_point[155], landmark_point[133], (0, 255, 0),
2)
# 右目 (362:目頭、466:目尻)
cv.line(image, landmark_point[362], landmark_point[398], (0, 255, 0),
2)
cv.line(image, landmark_point[398], landmark_point[384], (0, 255, 0),
2)
cv.line(image, landmark_point[384], landmark_point[385], (0, 255, 0),
2)
cv.line(image, landmark_point[385], landmark_point[386], (0, 255, 0),
2)
cv.line(image, landmark_point[386], landmark_point[387], (0, 255, 0),
2)
cv.line(image, landmark_point[387], landmark_point[388], (0, 255, 0),
2)
cv.line(image, landmark_point[388], landmark_point[466], (0, 255, 0),
2)
cv.line(image, landmark_point[466], landmark_point[390], (0, 255, 0),
2)
cv.line(image, landmark_point[390], landmark_point[373], (0, 255, 0),
2)
cv.line(image, landmark_point[373], landmark_point[374], (0, 255, 0),
2)
cv.line(image, landmark_point[374], landmark_point[380], (0, 255, 0),
2)
cv.line(image, landmark_point[380], landmark_point[381], (0, 255, 0),
2)
cv.line(image, landmark_point[381], landmark_point[382], (0, 255, 0),
2)
cv.line(image, landmark_point[382], landmark_point[362], (0, 255, 0),
2)
# 口 (308:右端、78:左端)
cv.line(image, landmark_point[308], landmark_point[415], (0, 255, 0),
2)
cv.line(image, landmark_point[415], landmark_point[310], (0, 255, 0),
2)
cv.line(image, landmark_point[310], landmark_point[311], (0, 255, 0),
2)
cv.line(image, landmark_point[311], landmark_point[312], (0, 255, 0),
2)
cv.line(image, landmark_point[312], landmark_point[13], (0, 255, 0), 2)
cv.line(image, landmark_point[13], landmark_point[82], (0, 255, 0), 2)
cv.line(image, landmark_point[82], landmark_point[81], (0, 255, 0), 2)
cv.line(image, landmark_point[81], landmark_point[80], (0, 255, 0), 2)
cv.line(image, landmark_point[80], landmark_point[191], (0, 255, 0), 2)
cv.line(image, landmark_point[191], landmark_point[78], (0, 255, 0), 2)
cv.line(image, landmark_point[78], landmark_point[95], (0, 255, 0), 2)
cv.line(image, landmark_point[95], landmark_point[88], (0, 255, 0), 2)
cv.line(image, landmark_point[88], landmark_point[178], (0, 255, 0), 2)
cv.line(image, landmark_point[178], landmark_point[87], (0, 255, 0), 2)
cv.line(image, landmark_point[87], landmark_point[14], (0, 255, 0), 2)
cv.line(image, landmark_point[14], landmark_point[317], (0, 255, 0), 2)
cv.line(image, landmark_point[317], landmark_point[402], (0, 255, 0),
2)
cv.line(image, landmark_point[402], landmark_point[318], (0, 255, 0),
2)
cv.line(image, landmark_point[318], landmark_point[324], (0, 255, 0),
2)
cv.line(image, landmark_point[324], landmark_point[308], (0, 255, 0),
2)
return image
def draw_bounding_rect(use_brect, image, brect):
if use_brect:
# 外接矩形
cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]),
(0, 255, 0), 2)
return image
if __name__ == '__main__':
main()
|
[
"cv2.rectangle",
"cv2.flip",
"argparse.ArgumentParser",
"cv2.boundingRect",
"cv2.line",
"cv2.imshow",
"numpy.append",
"numpy.array",
"cv2.circle",
"numpy.empty",
"cv2.destroyAllWindows",
"cv2.VideoCapture",
"copy.deepcopy",
"cv2.cvtColor",
"cv2.waitKey",
"utils.CvFpsCalc"
] |
[((194, 219), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (217, 219), False, 'import argparse\n'), ((1449, 1476), 'cv2.VideoCapture', 'cv.VideoCapture', (['cap_device'], {}), '(cap_device)\n', (1464, 1476), True, 'import cv2 as cv\n'), ((1982, 2006), 'utils.CvFpsCalc', 'CvFpsCalc', ([], {'buffer_len': '(10)'}), '(buffer_len=10)\n', (1991, 2006), False, 'from utils import CvFpsCalc\n'), ((3391, 3413), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (3411, 3413), True, 'import cv2 as cv\n'), ((3543, 3564), 'numpy.empty', 'np.empty', (['(0, 2)', 'int'], {}), '((0, 2), int)\n', (3551, 3564), True, 'import numpy as np\n'), ((3925, 3956), 'cv2.boundingRect', 'cv.boundingRect', (['landmark_array'], {}), '(landmark_array)\n', (3940, 3956), True, 'import cv2 as cv\n'), ((2222, 2239), 'cv2.flip', 'cv.flip', (['image', '(1)'], {}), '(image, 1)\n', (2229, 2239), True, 'import cv2 as cv\n'), ((2271, 2291), 'copy.deepcopy', 'copy.deepcopy', (['image'], {}), '(image)\n', (2284, 2291), False, 'import copy\n'), ((2386, 2422), 'cv2.cvtColor', 'cv.cvtColor', (['image', 'cv.COLOR_BGR2RGB'], {}), '(image, cv.COLOR_BGR2RGB)\n', (2397, 2422), True, 'import cv2 as cv\n'), ((3170, 3183), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (3180, 3183), True, 'import cv2 as cv\n'), ((3317, 3367), 'cv2.imshow', 'cv.imshow', (['"""MediaPipe Face Mesh Demo"""', 'debug_image'], {}), "('MediaPipe Face Mesh Demo', debug_image)\n", (3326, 3367), True, 'import cv2 as cv\n'), ((3857, 3906), 'numpy.append', 'np.append', (['landmark_array', 'landmark_point'], {'axis': '(0)'}), '(landmark_array, landmark_point, axis=0)\n', (3866, 3906), True, 'import numpy as np\n'), ((4474, 4535), 'cv2.circle', 'cv.circle', (['image', '(landmark_x, landmark_y)', '(1)', '(0, 255, 0)', '(1)'], {}), '(image, (landmark_x, landmark_y), 1, (0, 255, 0), 1)\n', (4483, 4535), True, 'import cv2 as cv\n'), ((4694, 4764), 'cv2.line', 'cv.line', (['image', 'landmark_point[55]', 'landmark_point[65]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[55], landmark_point[65], (0, 255, 0), 2)\n', (4701, 4764), True, 'import cv2 as cv\n'), ((4773, 4843), 'cv2.line', 'cv.line', (['image', 'landmark_point[65]', 'landmark_point[52]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[65], landmark_point[52], (0, 255, 0), 2)\n', (4780, 4843), True, 'import cv2 as cv\n'), ((4852, 4922), 'cv2.line', 'cv.line', (['image', 'landmark_point[52]', 'landmark_point[53]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[52], landmark_point[53], (0, 255, 0), 2)\n', (4859, 4922), True, 'import cv2 as cv\n'), ((4931, 5001), 'cv2.line', 'cv.line', (['image', 'landmark_point[53]', 'landmark_point[46]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[53], landmark_point[46], (0, 255, 0), 2)\n', (4938, 5001), True, 'import cv2 as cv\n'), ((5040, 5112), 'cv2.line', 'cv.line', (['image', 'landmark_point[285]', 'landmark_point[295]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[285], landmark_point[295], (0, 255, 0), 2)\n', (5047, 5112), True, 'import cv2 as cv\n'), ((5137, 5209), 'cv2.line', 'cv.line', (['image', 'landmark_point[295]', 'landmark_point[282]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[295], landmark_point[282], (0, 255, 0), 2)\n', (5144, 5209), True, 'import cv2 as cv\n'), ((5234, 5306), 'cv2.line', 'cv.line', (['image', 'landmark_point[282]', 'landmark_point[283]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[282], landmark_point[283], (0, 255, 0), 2)\n', (5241, 5306), True, 'import cv2 as cv\n'), ((5331, 5403), 'cv2.line', 'cv.line', (['image', 'landmark_point[283]', 'landmark_point[276]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[283], landmark_point[276], (0, 255, 0), 2)\n', (5338, 5403), True, 'import cv2 as cv\n'), ((5458, 5530), 'cv2.line', 'cv.line', (['image', 'landmark_point[133]', 'landmark_point[173]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[133], landmark_point[173], (0, 255, 0), 2)\n', (5465, 5530), True, 'import cv2 as cv\n'), ((5555, 5627), 'cv2.line', 'cv.line', (['image', 'landmark_point[173]', 'landmark_point[157]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[173], landmark_point[157], (0, 255, 0), 2)\n', (5562, 5627), True, 'import cv2 as cv\n'), ((5652, 5724), 'cv2.line', 'cv.line', (['image', 'landmark_point[157]', 'landmark_point[158]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[157], landmark_point[158], (0, 255, 0), 2)\n', (5659, 5724), True, 'import cv2 as cv\n'), ((5749, 5821), 'cv2.line', 'cv.line', (['image', 'landmark_point[158]', 'landmark_point[159]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[158], landmark_point[159], (0, 255, 0), 2)\n', (5756, 5821), True, 'import cv2 as cv\n'), ((5846, 5918), 'cv2.line', 'cv.line', (['image', 'landmark_point[159]', 'landmark_point[160]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[159], landmark_point[160], (0, 255, 0), 2)\n', (5853, 5918), True, 'import cv2 as cv\n'), ((5943, 6015), 'cv2.line', 'cv.line', (['image', 'landmark_point[160]', 'landmark_point[161]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[160], landmark_point[161], (0, 255, 0), 2)\n', (5950, 6015), True, 'import cv2 as cv\n'), ((6040, 6112), 'cv2.line', 'cv.line', (['image', 'landmark_point[161]', 'landmark_point[246]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[161], landmark_point[246], (0, 255, 0), 2)\n', (6047, 6112), True, 'import cv2 as cv\n'), ((6138, 6210), 'cv2.line', 'cv.line', (['image', 'landmark_point[246]', 'landmark_point[163]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[246], landmark_point[163], (0, 255, 0), 2)\n', (6145, 6210), True, 'import cv2 as cv\n'), ((6235, 6307), 'cv2.line', 'cv.line', (['image', 'landmark_point[163]', 'landmark_point[144]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[163], landmark_point[144], (0, 255, 0), 2)\n', (6242, 6307), True, 'import cv2 as cv\n'), ((6332, 6404), 'cv2.line', 'cv.line', (['image', 'landmark_point[144]', 'landmark_point[145]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[144], landmark_point[145], (0, 255, 0), 2)\n', (6339, 6404), True, 'import cv2 as cv\n'), ((6429, 6501), 'cv2.line', 'cv.line', (['image', 'landmark_point[145]', 'landmark_point[153]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[145], landmark_point[153], (0, 255, 0), 2)\n', (6436, 6501), True, 'import cv2 as cv\n'), ((6526, 6598), 'cv2.line', 'cv.line', (['image', 'landmark_point[153]', 'landmark_point[154]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[153], landmark_point[154], (0, 255, 0), 2)\n', (6533, 6598), True, 'import cv2 as cv\n'), ((6623, 6695), 'cv2.line', 'cv.line', (['image', 'landmark_point[154]', 'landmark_point[155]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[154], landmark_point[155], (0, 255, 0), 2)\n', (6630, 6695), True, 'import cv2 as cv\n'), ((6720, 6792), 'cv2.line', 'cv.line', (['image', 'landmark_point[155]', 'landmark_point[133]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[155], landmark_point[133], (0, 255, 0), 2)\n', (6727, 6792), True, 'import cv2 as cv\n'), ((6847, 6919), 'cv2.line', 'cv.line', (['image', 'landmark_point[362]', 'landmark_point[398]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[362], landmark_point[398], (0, 255, 0), 2)\n', (6854, 6919), True, 'import cv2 as cv\n'), ((6944, 7016), 'cv2.line', 'cv.line', (['image', 'landmark_point[398]', 'landmark_point[384]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[398], landmark_point[384], (0, 255, 0), 2)\n', (6951, 7016), True, 'import cv2 as cv\n'), ((7041, 7113), 'cv2.line', 'cv.line', (['image', 'landmark_point[384]', 'landmark_point[385]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[384], landmark_point[385], (0, 255, 0), 2)\n', (7048, 7113), True, 'import cv2 as cv\n'), ((7138, 7210), 'cv2.line', 'cv.line', (['image', 'landmark_point[385]', 'landmark_point[386]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[385], landmark_point[386], (0, 255, 0), 2)\n', (7145, 7210), True, 'import cv2 as cv\n'), ((7235, 7307), 'cv2.line', 'cv.line', (['image', 'landmark_point[386]', 'landmark_point[387]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[386], landmark_point[387], (0, 255, 0), 2)\n', (7242, 7307), True, 'import cv2 as cv\n'), ((7332, 7404), 'cv2.line', 'cv.line', (['image', 'landmark_point[387]', 'landmark_point[388]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[387], landmark_point[388], (0, 255, 0), 2)\n', (7339, 7404), True, 'import cv2 as cv\n'), ((7429, 7501), 'cv2.line', 'cv.line', (['image', 'landmark_point[388]', 'landmark_point[466]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[388], landmark_point[466], (0, 255, 0), 2)\n', (7436, 7501), True, 'import cv2 as cv\n'), ((7527, 7599), 'cv2.line', 'cv.line', (['image', 'landmark_point[466]', 'landmark_point[390]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[466], landmark_point[390], (0, 255, 0), 2)\n', (7534, 7599), True, 'import cv2 as cv\n'), ((7624, 7696), 'cv2.line', 'cv.line', (['image', 'landmark_point[390]', 'landmark_point[373]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[390], landmark_point[373], (0, 255, 0), 2)\n', (7631, 7696), True, 'import cv2 as cv\n'), ((7721, 7793), 'cv2.line', 'cv.line', (['image', 'landmark_point[373]', 'landmark_point[374]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[373], landmark_point[374], (0, 255, 0), 2)\n', (7728, 7793), True, 'import cv2 as cv\n'), ((7818, 7890), 'cv2.line', 'cv.line', (['image', 'landmark_point[374]', 'landmark_point[380]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[374], landmark_point[380], (0, 255, 0), 2)\n', (7825, 7890), True, 'import cv2 as cv\n'), ((7915, 7987), 'cv2.line', 'cv.line', (['image', 'landmark_point[380]', 'landmark_point[381]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[380], landmark_point[381], (0, 255, 0), 2)\n', (7922, 7987), True, 'import cv2 as cv\n'), ((8012, 8084), 'cv2.line', 'cv.line', (['image', 'landmark_point[381]', 'landmark_point[382]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[381], landmark_point[382], (0, 255, 0), 2)\n', (8019, 8084), True, 'import cv2 as cv\n'), ((8109, 8181), 'cv2.line', 'cv.line', (['image', 'landmark_point[382]', 'landmark_point[362]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[382], landmark_point[362], (0, 255, 0), 2)\n', (8116, 8181), True, 'import cv2 as cv\n'), ((8234, 8306), 'cv2.line', 'cv.line', (['image', 'landmark_point[308]', 'landmark_point[415]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[308], landmark_point[415], (0, 255, 0), 2)\n', (8241, 8306), True, 'import cv2 as cv\n'), ((8331, 8403), 'cv2.line', 'cv.line', (['image', 'landmark_point[415]', 'landmark_point[310]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[415], landmark_point[310], (0, 255, 0), 2)\n', (8338, 8403), True, 'import cv2 as cv\n'), ((8428, 8500), 'cv2.line', 'cv.line', (['image', 'landmark_point[310]', 'landmark_point[311]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[310], landmark_point[311], (0, 255, 0), 2)\n', (8435, 8500), True, 'import cv2 as cv\n'), ((8525, 8597), 'cv2.line', 'cv.line', (['image', 'landmark_point[311]', 'landmark_point[312]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[311], landmark_point[312], (0, 255, 0), 2)\n', (8532, 8597), True, 'import cv2 as cv\n'), ((8622, 8693), 'cv2.line', 'cv.line', (['image', 'landmark_point[312]', 'landmark_point[13]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[312], landmark_point[13], (0, 255, 0), 2)\n', (8629, 8693), True, 'import cv2 as cv\n'), ((8702, 8772), 'cv2.line', 'cv.line', (['image', 'landmark_point[13]', 'landmark_point[82]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[13], landmark_point[82], (0, 255, 0), 2)\n', (8709, 8772), True, 'import cv2 as cv\n'), ((8781, 8851), 'cv2.line', 'cv.line', (['image', 'landmark_point[82]', 'landmark_point[81]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[82], landmark_point[81], (0, 255, 0), 2)\n', (8788, 8851), True, 'import cv2 as cv\n'), ((8860, 8930), 'cv2.line', 'cv.line', (['image', 'landmark_point[81]', 'landmark_point[80]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[81], landmark_point[80], (0, 255, 0), 2)\n', (8867, 8930), True, 'import cv2 as cv\n'), ((8939, 9010), 'cv2.line', 'cv.line', (['image', 'landmark_point[80]', 'landmark_point[191]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[80], landmark_point[191], (0, 255, 0), 2)\n', (8946, 9010), True, 'import cv2 as cv\n'), ((9019, 9090), 'cv2.line', 'cv.line', (['image', 'landmark_point[191]', 'landmark_point[78]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[191], landmark_point[78], (0, 255, 0), 2)\n', (9026, 9090), True, 'import cv2 as cv\n'), ((9100, 9170), 'cv2.line', 'cv.line', (['image', 'landmark_point[78]', 'landmark_point[95]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[78], landmark_point[95], (0, 255, 0), 2)\n', (9107, 9170), True, 'import cv2 as cv\n'), ((9179, 9249), 'cv2.line', 'cv.line', (['image', 'landmark_point[95]', 'landmark_point[88]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[95], landmark_point[88], (0, 255, 0), 2)\n', (9186, 9249), True, 'import cv2 as cv\n'), ((9258, 9329), 'cv2.line', 'cv.line', (['image', 'landmark_point[88]', 'landmark_point[178]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[88], landmark_point[178], (0, 255, 0), 2)\n', (9265, 9329), True, 'import cv2 as cv\n'), ((9338, 9409), 'cv2.line', 'cv.line', (['image', 'landmark_point[178]', 'landmark_point[87]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[178], landmark_point[87], (0, 255, 0), 2)\n', (9345, 9409), True, 'import cv2 as cv\n'), ((9418, 9488), 'cv2.line', 'cv.line', (['image', 'landmark_point[87]', 'landmark_point[14]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[87], landmark_point[14], (0, 255, 0), 2)\n', (9425, 9488), True, 'import cv2 as cv\n'), ((9497, 9568), 'cv2.line', 'cv.line', (['image', 'landmark_point[14]', 'landmark_point[317]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[14], landmark_point[317], (0, 255, 0), 2)\n', (9504, 9568), True, 'import cv2 as cv\n'), ((9577, 9649), 'cv2.line', 'cv.line', (['image', 'landmark_point[317]', 'landmark_point[402]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[317], landmark_point[402], (0, 255, 0), 2)\n', (9584, 9649), True, 'import cv2 as cv\n'), ((9674, 9746), 'cv2.line', 'cv.line', (['image', 'landmark_point[402]', 'landmark_point[318]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[402], landmark_point[318], (0, 255, 0), 2)\n', (9681, 9746), True, 'import cv2 as cv\n'), ((9771, 9843), 'cv2.line', 'cv.line', (['image', 'landmark_point[318]', 'landmark_point[324]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[318], landmark_point[324], (0, 255, 0), 2)\n', (9778, 9843), True, 'import cv2 as cv\n'), ((9868, 9940), 'cv2.line', 'cv.line', (['image', 'landmark_point[324]', 'landmark_point[308]', '(0, 255, 0)', '(2)'], {}), '(image, landmark_point[324], landmark_point[308], (0, 255, 0), 2)\n', (9875, 9940), True, 'import cv2 as cv\n'), ((10067, 10146), 'cv2.rectangle', 'cv.rectangle', (['image', '(brect[0], brect[1])', '(brect[2], brect[3])', '(0, 255, 0)', '(2)'], {}), '(image, (brect[0], brect[1]), (brect[2], brect[3]), (0, 255, 0), 2)\n', (10079, 10146), True, 'import cv2 as cv\n'), ((3795, 3829), 'numpy.array', 'np.array', (['(landmark_x, landmark_y)'], {}), '((landmark_x, landmark_y))\n', (3803, 3829), True, 'import numpy as np\n')]
|
import keras
from keras import layers
from keras.layers import Dropout, Dense
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import tensorflow_hub as hub
import cv2
import pandas as p
IMAGE_SHAPE = (224, 224) #(HEIGHT, WIDTH)
TRAINING_DATA_DIRECTORY = '/content/drive/My Drive/Colab Notebooks/FlowerClassification/data/TrainingData'
datagen_kwargs = dict(rescale=1./255, validation_split=.2)
def get_validation_generator():
validation_datagen = ImageDataGenerator(**datagen_kwargs)
validation_generator = validation_datagen.flow_from_directory(
TRAINING_DATA_DIRECTORY,
subset='validation',
shuffle=True,
target_size=IMAGE_SHAPE
)
return validation_generator
def get_training_generator():
training_datagen = ImageDataGenerator(**datagen_kwargs)
training_generator = training_datagen.flow_from_directory(
TRAINING_DATA_DIRECTORY,
subset='training',
shuffle=True,
target_size=IMAGE_SHAPE
)
return training_generator
def get_mobile_net_model():
model = keras.Sequential()
model.add(hub.KerasLayer(
'https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4',
output_shape=[1280],
trainable=False)
)
model.add(Dropout(0.4))
model.add(Dense(training_generator.num_classes, activation='softmax'))
model.build([None, 224, 224, 3])
model.summary()
return model
def train_model(model, training_generator=None, validation_generator=None):
if (training_generator == None):
training_generator = get_training_generator()
if (validation_generator == None):
validation_generator = get_validation_generator()
optimizer = keras.optimizers.Adam(lr=1e-3)
model.compile(
optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['acc']
)
steps_per_epoch = np.ceil(
training_generator.samples / training_generator.batch_size
)
validation_steps_per_epoch = np.ceil(
validation_generator.samples / validation_generator.batch_size
)
hist = model.fit(
training_generator,
epochs=20,
verbose=1,
steps_per_epoch=steps_per_epoch,
validation_data=validation_generator,
validation_steps=validation_steps_per_epoch
).history
print('model trained')
model.save('/content/drive/My Drive/Colab Notebooks/FlowerClassification/model_100_epochs.h5')
print('model saved')
#converting history.history dictionary to pandas dataframe
hist_df = pd.DataFrame(history.history)
# save to json
hist_json_file = 'history_100_epochs.json'
with open(hist_json_file, mode='w') as f:
hist_df.to_json(f)
return model
def evaluate_model(model):
final_loss, final_accuracy = model.evaluate(validation_generator, steps = validation_steps_per_epoch)
print("Final Loss: ", final_loss)
print("Final accuracy: ", final_accuracy * 100)
if __name__ == '__main__':
model = get_mobile_net_model()
model = train_model(model)
evaluate_model(model)
|
[
"keras.optimizers.Adam",
"keras.Sequential",
"numpy.ceil",
"keras.preprocessing.image.ImageDataGenerator",
"keras.layers.Dense",
"tensorflow_hub.KerasLayer",
"keras.layers.Dropout"
] |
[((489, 525), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {}), '(**datagen_kwargs)\n', (507, 525), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((812, 848), 'keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {}), '(**datagen_kwargs)\n', (830, 848), False, 'from keras.preprocessing.image import ImageDataGenerator\n'), ((1111, 1129), 'keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (1127, 1129), False, 'import keras\n'), ((1774, 1805), 'keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (1795, 1805), False, 'import keras\n'), ((1948, 2015), 'numpy.ceil', 'np.ceil', (['(training_generator.samples / training_generator.batch_size)'], {}), '(training_generator.samples / training_generator.batch_size)\n', (1955, 2015), True, 'import numpy as np\n'), ((2064, 2135), 'numpy.ceil', 'np.ceil', (['(validation_generator.samples / validation_generator.batch_size)'], {}), '(validation_generator.samples / validation_generator.batch_size)\n', (2071, 2135), True, 'import numpy as np\n'), ((1144, 1275), 'tensorflow_hub.KerasLayer', 'hub.KerasLayer', (['"""https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4"""'], {'output_shape': '[1280]', 'trainable': '(False)'}), "(\n 'https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4',\n output_shape=[1280], trainable=False)\n", (1158, 1275), True, 'import tensorflow_hub as hub\n'), ((1313, 1325), 'keras.layers.Dropout', 'Dropout', (['(0.4)'], {}), '(0.4)\n', (1320, 1325), False, 'from keras.layers import Dropout, Dense\n'), ((1341, 1400), 'keras.layers.Dense', 'Dense', (['training_generator.num_classes'], {'activation': '"""softmax"""'}), "(training_generator.num_classes, activation='softmax')\n", (1346, 1400), False, 'from keras.layers import Dropout, Dense\n')]
|
"""
A set of functions for extracting header information from PSG objects
Typically only used internally in from unet.io.header.header_extractors
Each function takes some PSG or header-like object and returns a dictionary with at least
the following keys:
{
'n_channels': int,
'channel_names': list of strings,
'sample_rate': int
'date': datetime or None
'length': int
}
Note: length gives the number of samples, divide by sample_rate to get length_sec
"""
import logging
import warnings
import numpy as np
import h5py
from datetime import datetime
from psg_utils.errors import (MissingHeaderFieldError, HeaderFieldTypeError,
LengthZeroSignalError, H5VariableAttributesError,
VariableSampleRateError, FloatSampleRateWarning)
logger = logging.getLogger(__name__)
def _assert_header(header):
"""
Checks that a standardized header:
1) contains the right field names
2) each value has an expected type
3) the 'length' value is greater than 0
Args:
header: dict
Returns: dict
"""
field_requirements = [
("n_channels", [int]),
("channel_names", [list]),
("sample_rate", [int]),
("date", [datetime, type(None)]),
("length", [int])
]
for field, valid_types in field_requirements:
if field not in header:
raise MissingHeaderFieldError(f"Missing value '{field}' from header '{header}'. "
"This could be an error in the code implementation. "
"Please raise this issue on GitHub.")
type_ = type(header[field])
if type_ not in valid_types:
raise HeaderFieldTypeError(f"Field {field} of type {type_} was not expected, expected one of {valid_types}")
if header['length'] <= 0:
raise LengthZeroSignalError(f"Expected key 'length' to be a non-zero integer, "
f"but header {header} has value {header['length']}")
# Warn on duplicate channels
from psg_utils.io.channels.utils import check_duplicate_channels
check_duplicate_channels(header['channel_names'], raise_or_warn="warn")
return header
def _sample_rate_as_int(sample_rate, raise_or_warn='warn'):
"""
Returns the sample rate rounded to the nearest whole integer.
If the integer sample rate is not exactly (as determined by np.isclose) equal to the original,
possibly floating, value an warning is issued if raise_or_warn="warn" or an FloatSampleRateError
is raised if raise_or_warn="raise".
Raises ValueError if raise_or_warn not in ('raise', 'warn', 'warning').
Args:
sample_rate: int, float sample rate
Returns:
sample_rate, int
"""
new_sample_rate = int(np.round(sample_rate))
if not np.isclose(new_sample_rate, sample_rate):
s = f"The loaded file has a float sample rate of value {sample_rate} which is not exactly equal to the " \
f"rounded integer value of {new_sample_rate}. Please note: Integer value {new_sample_rate} will be used."
if raise_or_warn.lower() == "raise":
raise FloatSampleRateWarning(s)
elif raise_or_warn.lower() in ("warn", "warning"):
warnings.warn(s, FloatSampleRateWarning)
else:
raise ValueError("raise_or_warn argument must be one of 'raise' or 'warn'.")
return new_sample_rate
def _standardized_edf_header(raw_edf, channel_names_overwrite=None):
"""
Header extraction function for RawEDF and Raw objects.
Reads the number of channels, channel names and sample rate properties
If existing, reads the date information as well.
channel_names_overwrite allows passing a list of channel names to use instead of
those loaded by MNE per default. This is useful e.g. to set the raw EDF names in the
header instead of the truncated / renamed (on duplicates) used by MNE.
Returns:
Header information as dict
"""
# Each tuple below follows the format:
# 1) output name, 2) edf_obj name, 3) function to apply to the read
# value, 4) whether a missing value should raise an error.
header_map = [("n_channels", "nchan", int, True),
("channel_names", "ch_names", list, True),
("sample_rate", "sfreq", _sample_rate_as_int, True),
("date", "meas_date", datetime.utcfromtimestamp, False)]
if isinstance(raw_edf.info["meas_date"], (tuple, list)):
assert raw_edf.info["meas_date"][1] == 0
raw_edf.info["meas_date"] = raw_edf.info["meas_date"][0]
header = {}
for renamed, org, transform, raise_err in header_map:
value = raw_edf.info.get(org)
try:
value = transform(value)
except Exception as e:
if raise_err:
raise HeaderFieldTypeError("Missing or invalid value in EDF file for key {} "
"- got {}".format(org, value)) from e
header[renamed] = value
header["length"] = len(raw_edf)
header["channel_names"] = list(channel_names_overwrite) or header["channel_names"]
return _assert_header(header)
def _standardized_wfdb_header(wfdb_record):
"""
Header extraction function for WFDB Record objects.
Reads the number of channels, channel names and sample rate properties
If existing, reads the date information as well.
Returns:
Header information as dict
"""
# Each tuple below follows the format:
# 1) output name, 2) record_obj name, 3) function to apply to the read
# value, 4) whether a missing value should raise an error.
header_map = [("n_channels", "n_sig", int, True),
("channel_names", "sig_name", list, True),
("sample_rate", "fs", _sample_rate_as_int, True),
("date", "base_date", datetime.utcfromtimestamp, False),
("length", "sig_len", int, True)]
header = {}
for renamed, org, transform, raise_err in header_map:
value = getattr(wfdb_record, org, None)
try:
value = transform(value)
except Exception as e:
if raise_err:
raise HeaderFieldTypeError("Missing or invalid value in WFDB file for key {} "
"- got {}".format(org, value)) from e
header[renamed] = value
return _assert_header(header)
def _traverse_h5_file(root_node, attributes=None):
attributes = dict((attributes or {}))
attributes.update(root_node.attrs)
results = {}
if isinstance(root_node, h5py.Dataset):
# Leaf node
attributes["length"] = len(root_node)
results[root_node.name] = attributes
else:
for key in root_node:
results.update(_traverse_h5_file(root_node[key], attributes))
return results
def _get_unique_value(items):
"""
Takes a list of items, checks that all are equal (in value, ==) and returns the unique value.
Returns None if the list is empty.
Raises ValueError if not all items are not equal.
Args:
items: List
Returns:
The unique item in list
"""
if len(items) == 0:
return None
for item in items[1:]:
if item != items[0]:
raise H5VariableAttributesError(f"The input list '{items}' contains more than 1 unique value")
return items[0]
def _standardized_h5_header(h5_file, channel_group_name="channels"):
"""
Header extraction function for h5py.File objects.
The object must:
- Have an attribute 'sample_rate'
- Have a group named {channel_group_name} which stores the data for all channels as
Dataset entries under the group (can be nested in deeper groups too)
Can have:
- An attribute 'date' which gives a date string or unix timestamp integer
Currently raises an error if any attribute in ('date', 'sample_rate', 'length') are not equal among all
datasets in the archive.
All attributes may be set at any node, and will affect any non-attributed node deeper in the tree.
E.g. setting the 'sample_rate' attribute on the root note will have it affect all datasets, unless
the attribute is set on deeper nodes too in which case the later will overwrite the root attribute for
all its nested, un-attributed children.
Returns:
Header information as dict
"""
# Traverse the h5 archive for datasets and assigned attributes
h5_content = _traverse_h5_file(h5_file[channel_group_name], attributes=h5_file.attrs)
header = {
"channel_names": [],
"channel_paths": {}, # will store channel_name: channel path entries
"sample_rate": [],
"date": [],
"length": []
}
for channel_path, attributes in h5_content.items():
channel_name = channel_path.split("/")[-1]
header["channel_paths"][channel_name] = channel_path
header["channel_names"].append(channel_name)
header["sample_rate"].append(attributes.get("sample_rate"))
header["date"].append(attributes.get("date"))
header["length"].append(attributes.get("length"))
header["n_channels"] = len(h5_content)
# Ensure all dates, lengths and sample rate attributes are equal
# TODO: Remove this restriction at least for sample rates; requires handling at PSG loading time
try:
header["date"] = _get_unique_value(header["date"])
header["sample_rate"] = _sample_rate_as_int(_get_unique_value(header["sample_rate"]))
header["length"] = int(_get_unique_value(header["length"]))
except H5VariableAttributesError as e:
raise H5VariableAttributesError("Datasets stored in the specified H5 archive differ with respect to one or "
"multiple of the following attributes: 'date', 'sampling_rate', 'length'. "
"All datasets must currently match with respect to those attributes.") from e
# Get datetime date or set to None
date = header["date"]
if not isinstance(date, str) and (isinstance(date, int) or np.issubdtype(date, np.integer)):
date = datetime.utcfromtimestamp(date)
elif not isinstance(date, datetime):
date = None
header["date"] = date
return _assert_header(header)
def _standardized_bin_header(raw_header):
"""
Header extraction function for custom dict type headers for data in .bin files.
Raw header has structure:
{"CHX": [list of channel inds], "NAME": [list of channel names],
"TYPE": [list of channel types], "FS": [list of channel sample rates]}
All values stored in the header are strings and should be cast to ints. etc as appropriate
for header standardization.
Currently raises an error if all attribute in header["FS"] are not equal
(i.e., same sample rate is required for all channels).
Returns:
Header information as dict
"""
# Assert upper case keys
raw_header = {key.upper(): values for key, values in raw_header.items()}
# Order header entries according to CHX column
order = np.argsort(np.array(raw_header['CHX'], dtype=np.int))
raw_header = {key: ([entry[i] for i in order]
if isinstance(entry, (list, tuple, np.ndarray))
else entry)
for key, entry in raw_header.items()}
# Assert that all samples rates are equal
sample_rates = np.array(raw_header["FS"], dtype=np.int32)
if not (sample_rates[0] == sample_rates).all():
raise VariableSampleRateError(f"Sample rates in header {raw_header} are not "
f"all equal with rates: {sample_rates}. "
f"The data loaders for .bin formatted files currently "
f"support only files with all channels sampled at equal rates.")
# Build standardized header
header = {
"n_channels": len(raw_header["NAME"]),
"channel_names": list(raw_header["NAME"]),
"sample_rate": _sample_rate_as_int(sample_rates[0]),
"date": None,
"length": int(raw_header["LENGTH"]),
"channel_types": [type_.upper() for type_ in raw_header.get("TYPE", [])]
}
return _assert_header(header)
|
[
"logging.getLogger",
"datetime.datetime.utcfromtimestamp",
"psg_utils.errors.VariableSampleRateError",
"numpy.isclose",
"psg_utils.io.channels.utils.check_duplicate_channels",
"numpy.array",
"psg_utils.errors.HeaderFieldTypeError",
"numpy.issubdtype",
"psg_utils.errors.FloatSampleRateWarning",
"warnings.warn",
"psg_utils.errors.H5VariableAttributesError",
"psg_utils.errors.MissingHeaderFieldError",
"numpy.round",
"psg_utils.errors.LengthZeroSignalError"
] |
[((821, 848), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (838, 848), False, 'import logging\n'), ((2174, 2245), 'psg_utils.io.channels.utils.check_duplicate_channels', 'check_duplicate_channels', (["header['channel_names']"], {'raise_or_warn': '"""warn"""'}), "(header['channel_names'], raise_or_warn='warn')\n", (2198, 2245), False, 'from psg_utils.io.channels.utils import check_duplicate_channels\n'), ((11568, 11610), 'numpy.array', 'np.array', (["raw_header['FS']"], {'dtype': 'np.int32'}), "(raw_header['FS'], dtype=np.int32)\n", (11576, 11610), True, 'import numpy as np\n'), ((1905, 2037), 'psg_utils.errors.LengthZeroSignalError', 'LengthZeroSignalError', (['f"""Expected key \'length\' to be a non-zero integer, but header {header} has value {header[\'length\']}"""'], {}), '(\n f"Expected key \'length\' to be a non-zero integer, but header {header} has value {header[\'length\']}"\n )\n', (1926, 2037), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((2845, 2866), 'numpy.round', 'np.round', (['sample_rate'], {}), '(sample_rate)\n', (2853, 2866), True, 'import numpy as np\n'), ((2879, 2919), 'numpy.isclose', 'np.isclose', (['new_sample_rate', 'sample_rate'], {}), '(new_sample_rate, sample_rate)\n', (2889, 2919), True, 'import numpy as np\n'), ((10270, 10301), 'datetime.datetime.utcfromtimestamp', 'datetime.utcfromtimestamp', (['date'], {}), '(date)\n', (10295, 10301), False, 'from datetime import datetime\n'), ((11245, 11286), 'numpy.array', 'np.array', (["raw_header['CHX']"], {'dtype': 'np.int'}), "(raw_header['CHX'], dtype=np.int)\n", (11253, 11286), True, 'import numpy as np\n'), ((11677, 11909), 'psg_utils.errors.VariableSampleRateError', 'VariableSampleRateError', (['f"""Sample rates in header {raw_header} are not all equal with rates: {sample_rates}. The data loaders for .bin formatted files currently support only files with all channels sampled at equal rates."""'], {}), "(\n f'Sample rates in header {raw_header} are not all equal with rates: {sample_rates}. The data loaders for .bin formatted files currently support only files with all channels sampled at equal rates.'\n )\n", (11700, 11909), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((1415, 1586), 'psg_utils.errors.MissingHeaderFieldError', 'MissingHeaderFieldError', (['f"""Missing value \'{field}\' from header \'{header}\'. This could be an error in the code implementation. Please raise this issue on GitHub."""'], {}), '(\n f"Missing value \'{field}\' from header \'{header}\'. This could be an error in the code implementation. Please raise this issue on GitHub."\n )\n', (1438, 1586), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((1758, 1870), 'psg_utils.errors.HeaderFieldTypeError', 'HeaderFieldTypeError', (['f"""Field {field} of type {type_} was not expected, expected one of {valid_types}"""'], {}), "(\n f'Field {field} of type {type_} was not expected, expected one of {valid_types}'\n )\n", (1778, 1870), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((3217, 3242), 'psg_utils.errors.FloatSampleRateWarning', 'FloatSampleRateWarning', (['s'], {}), '(s)\n', (3239, 3242), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((7383, 7476), 'psg_utils.errors.H5VariableAttributesError', 'H5VariableAttributesError', (['f"""The input list \'{items}\' contains more than 1 unique value"""'], {}), '(\n f"The input list \'{items}\' contains more than 1 unique value")\n', (7408, 7476), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((9755, 10008), 'psg_utils.errors.H5VariableAttributesError', 'H5VariableAttributesError', (['"""Datasets stored in the specified H5 archive differ with respect to one or multiple of the following attributes: \'date\', \'sampling_rate\', \'length\'. All datasets must currently match with respect to those attributes."""'], {}), '(\n "Datasets stored in the specified H5 archive differ with respect to one or multiple of the following attributes: \'date\', \'sampling_rate\', \'length\'. All datasets must currently match with respect to those attributes."\n )\n', (9780, 10008), False, 'from psg_utils.errors import MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning\n'), ((10221, 10252), 'numpy.issubdtype', 'np.issubdtype', (['date', 'np.integer'], {}), '(date, np.integer)\n', (10234, 10252), True, 'import numpy as np\n'), ((3314, 3354), 'warnings.warn', 'warnings.warn', (['s', 'FloatSampleRateWarning'], {}), '(s, FloatSampleRateWarning)\n', (3327, 3354), False, 'import warnings\n')]
|
# setup.py
# This script will build the main subpackages
# See LICENSE for details
from __future__ import print_function, absolute_import
from numpy.distutils.misc_util import Configuration
from os.path import join
TTFORT_DIR = '../tt-fort'
EXPM_DIR = '../tt-fort/expm'
EXPOKIT_SRC = [
'explib.f90',
'normest.f90',
'expokit.f',
'dlacn1.f',
'dlapst.f',
'dlarpc.f',
'zlacn1.f',
]
TTKSL_SRC = [
'ttals.f90',
'tt_ksl.f90',
'tt_diag_ksl.f90'
]
def configuration(parent_package='', top_path=None):
expokit_src = [join(EXPM_DIR, x) for x in EXPOKIT_SRC]
ttksl_src = [join(TTFORT_DIR, x) for x in TTKSL_SRC]
ttksl_src.append('tt_ksl.pyf')
config = Configuration('ksl', parent_package, top_path)
config.add_library(
'expokit',
sources=expokit_src,
)
config.add_extension(
'dyn_tt',
sources=ttksl_src,
depends=[
'print_lib',
'expokit',
'mytt',
],
libraries=[
'print_lib',
'expokit',
'mytt',
],
)
return config
if __name__ == '__main__':
print('This is the wrong setup.py to run')
|
[
"os.path.join",
"numpy.distutils.misc_util.Configuration"
] |
[((711, 757), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['"""ksl"""', 'parent_package', 'top_path'], {}), "('ksl', parent_package, top_path)\n", (724, 757), False, 'from numpy.distutils.misc_util import Configuration\n'), ((564, 581), 'os.path.join', 'join', (['EXPM_DIR', 'x'], {}), '(EXPM_DIR, x)\n', (568, 581), False, 'from os.path import join\n'), ((622, 641), 'os.path.join', 'join', (['TTFORT_DIR', 'x'], {}), '(TTFORT_DIR, x)\n', (626, 641), False, 'from os.path import join\n')]
|
import numpy as np
from cdlib.evaluation.internal import onmi
from cdlib.evaluation.internal.omega import Omega
from nf1 import NF1
from collections import namedtuple, defaultdict
__all__ = [
"MatchingResult",
"normalized_mutual_information",
"overlapping_normalized_mutual_information_LFK",
"overlapping_normalized_mutual_information_MGH",
"omega",
"f1",
"nf1",
"adjusted_rand_index",
"adjusted_mutual_information",
"variation_of_information",
"partition_closeness_simple",
]
# MatchingResult = namedtuple("MatchingResult", ['mean', 'std'])
MatchingResult = namedtuple("MatchingResult", "score std")
MatchingResult.__new__.__defaults__ = (None,) * len(MatchingResult._fields)
def __check_partition_coverage(first_partition: object, second_partition: object):
nodes_first = {
node: None for community in first_partition.communities for node in community
}
nodes_second = {
node: None for community in second_partition.communities for node in community
}
if len(set(nodes_first.keys()) ^ set(nodes_second.keys())) != 0:
raise ValueError("Both partitions should cover the same node set")
def __check_partition_overlap(first_partition: object, second_partition: object):
if first_partition.overlap or second_partition.overlap:
raise ValueError("Not defined for overlapping partitions")
def normalized_mutual_information(
first_partition: object, second_partition: object
) -> MatchingResult:
"""
Normalized Mutual Information between two clusterings.
Normalized Mutual Information (NMI) is an normalization of the Mutual
Information (MI) score to scale the results between 0 (no mutual
information) and 1 (perfect correlation). In this function, mutual
information is normalized by ``sqrt(H(labels_true) * H(labels_pred))``
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.normalized_mutual_information(louvain_communities,leiden_communities)
"""
__check_partition_coverage(first_partition, second_partition)
__check_partition_overlap(first_partition, second_partition)
first_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(first_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
second_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(second_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
from sklearn.metrics import normalized_mutual_info_score
return MatchingResult(
score=normalized_mutual_info_score(first_partition_c, second_partition_c)
)
def overlapping_normalized_mutual_information_LFK(
first_partition: object, second_partition: object
) -> MatchingResult:
"""
Overlapping Normalized Mutual Information between two clusterings.
Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions.
This is the version proposed by Lancichinetti et al. (1)
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_LFK(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., <NAME>., & <NAME>. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015.
"""
return MatchingResult(
score=onmi.onmi(
[set(x) for x in first_partition.communities],
[set(x) for x in second_partition.communities],
)
)
def overlapping_normalized_mutual_information_MGH(
first_partition: object, second_partition: object, normalization: str = "max"
) -> MatchingResult:
"""
Overlapping Normalized Mutual Information between two clusterings.
Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions.
This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref.
for more details.
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:param normalization: one of "max" or "LFK". Default "max" (corresponds to the main method described in the article)
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., <NAME>., & <NAME>. (2011). Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago
"""
if normalization == "max":
variant = "MGH"
elif normalization == "LFK":
variant = "MGH_LFK"
else:
raise ValueError(
"Wrong 'normalization' value. Please specify one among [max, LFK]."
)
return MatchingResult(
score=onmi.onmi(
[set(x) for x in first_partition.communities],
[set(x) for x in second_partition.communities],
variant=variant,
)
)
def omega(first_partition: object, second_partition: object) -> MatchingResult:
"""
Index of resemblance for overlapping, complete coverage, network clusterings.
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.omega(louvain_communities,leiden_communities)
:Reference:
1. <NAME>, <NAME>, and <NAME>. 2012. `Using the omega index for evaluating abstractive algorithms detection. <https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/>`_ In Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg, PA, USA, 10-18.
"""
__check_partition_coverage(first_partition, second_partition)
first_partition = {k: v for k, v in enumerate(first_partition.communities)}
second_partition = {k: v for k, v in enumerate(second_partition.communities)}
om_idx = Omega(first_partition, second_partition)
return MatchingResult(score=om_idx.omega_score)
def f1(first_partition: object, second_partition: object) -> MatchingResult:
"""
Compute the average F1 score of the optimal algorithms matches among the partitions in input.
Works on overlapping/non-overlapping complete/partial coverage partitions.
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.f1(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., <NAME>., & <NAME>. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_ In Complex Networks VII (pp. 133-144). Springer, Cham.
"""
nf = NF1(first_partition.communities, second_partition.communities)
results = nf.summary()
return MatchingResult(
score=results["details"]["F1 mean"][0], std=results["details"]["F1 std"][0]
)
def nf1(first_partition: object, second_partition: object) -> MatchingResult:
"""
Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input.
Works on overlapping/non-overlapping complete/partial coverage partitions.
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.nf1(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., <NAME>., & <NAME>. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_
2. <NAME>. (2017). : `RDyn: graph benchmark handling algorithms dynamics. Journal of Complex Networks. <https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/>`_ 5(6), 893-912.
"""
nf = NF1(first_partition.communities, second_partition.communities)
results = nf.summary()
return MatchingResult(score=results["scores"].loc["NF1"][0])
def adjusted_rand_index(
first_partition: object, second_partition: object
) -> MatchingResult:
"""Rand index adjusted for chance.
The Rand Index computes a similarity measure between two clusterings
by considering all pairs of samples and counting pairs that are
assigned in the same or different clusters in the predicted and
true clusterings.
The raw RI score is then "adjusted for chance" into the ARI score
using the following scheme::
ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)
The adjusted Rand index is thus ensured to have a value close to
0.0 for random labeling independently of the number of clusters and
samples and exactly 1.0 when the clusterings are identical (up to
a permutation).
ARI is a symmetric measure::
adjusted_rand_index(a, b) == adjusted_rand_index(b, a)
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_rand_index(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., & <NAME>. (1985). `Comparing partitions. <https://link.springer.com/article/10.1007/BF01908075/>`_ Journal of classification, 2(1), 193-218.
"""
__check_partition_coverage(first_partition, second_partition)
__check_partition_overlap(first_partition, second_partition)
first_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(first_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
second_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(second_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
from sklearn.metrics import adjusted_rand_score
return MatchingResult(
score=adjusted_rand_score(first_partition_c, second_partition_c)
)
def adjusted_mutual_information(
first_partition: object, second_partition: object
) -> MatchingResult:
"""Adjusted Mutual Information between two clusterings.
Adjusted Mutual Information (AMI) is an adjustment of the Mutual
Information (MI) score to account for chance. It accounts for the fact that
the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared.
For two clusterings :math:`U` and :math:`V`, the AMI is given as::
AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))]
This metric is independent of the absolute values of the labels:
a permutation of the class or cluster label values won't change the
score value in any way.
This metric is furthermore symmetric: switching ``label_true`` with
``label_pred`` will return the same score value. This can be useful to
measure the agreement of two independent label assignments strategies
on the same dataset when the real ground truth is not known.
Be mindful that this function is an order of magnitude slower than other
metrics, such as the Adjusted Rand Index.
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.adjusted_mutual_information(louvain_communities,leiden_communities)
:Reference:
1. <NAME>., <NAME>., & <NAME>. (2010). `Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/>`_ Journal of Machine Learning Research, 11(Oct), 2837-2854.
"""
__check_partition_coverage(first_partition, second_partition)
__check_partition_overlap(first_partition, second_partition)
first_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(first_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
second_partition_c = [
x[1]
for x in sorted(
[
(node, nid)
for nid, cluster in enumerate(second_partition.communities)
for node in cluster
],
key=lambda x: x[0],
)
]
from sklearn.metrics import adjusted_mutual_info_score
return MatchingResult(
score=adjusted_mutual_info_score(first_partition_c, second_partition_c)
)
def variation_of_information(
first_partition: object, second_partition: object
) -> MatchingResult:
"""Variation of Information among two nodes partitions.
$$ H(p)+H(q)-2MI(p, q) $$
where MI is the mutual information, H the partition entropy and p,q are the algorithms sets
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.variation_of_information(louvain_communities,leiden_communities)
:Reference:
1. Meila, M. (2007). `Comparing clusterings - an information based distance. <https://www.sciencedirect.com/science/article/pii/S0047259X06002016/>`_ Journal of Multivariate Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013
"""
__check_partition_coverage(first_partition, second_partition)
__check_partition_overlap(first_partition, second_partition)
n = float(sum([len(c1) for c1 in first_partition.communities]))
sigma = 0.0
for c1 in first_partition.communities:
p = len(c1) / n
for c2 in second_partition.communities:
q = len(c2) / n
r = len(set(c1) & set(c2)) / n
if r > 0.0:
sigma += r * (np.log2(r / p) + np.log2(r / q))
return MatchingResult(score=abs(sigma))
def partition_closeness_simple(
first_partition: object, second_partition: object
) -> MatchingResult:
"""Community size density closeness.
Simple implementation that does not leverage kernel density estimator.
$$ S_G(A,B) = \frac{1}{2} \Sum_{i=1}^{r}\Sum_{j=1}^{s} min(\frac{n^a(x^a_i)}{N^a}, \frac{n^b_j(x^b_j)}{N^b}) \delta(x_i^a,x_j^b) $$
where:
$$ N^a $$ total number of communities in A of any size;
$$ x^a $$ ordered list of community sizes for A;
$$ n^a $$ multiplicity of community sizes for A.
(symmetrically for B)
:param first_partition: NodeClustering object
:param second_partition: NodeClustering object
:return: MatchingResult object
:Example:
>>> from cdlib import evaluation, algorithms
>>> g = nx.karate_club_graph()
>>> louvain_communities = algorithms.louvain(g)
>>> leiden_communities = algorithms.leiden(g)
>>> evaluation.partition_closeness_simple(louvain_communities,leiden_communities)
:Reference:
1. Dao, Vinh-Loc, <NAME>, and <NAME>. "Estimating the similarity of community detection methods based on cluster size distribution." International Conference on Complex Networks and their Applications. Springer, Cham, 2018.
"""
coms_a = sorted(list(set([len(c) for c in first_partition.communities])))
freq_a = defaultdict(int)
for a in coms_a:
freq_a[a] += 1
freq_a = [freq_a[a] for a in sorted(freq_a)]
n_a = sum([coms_a[i] * freq_a[i] for i in range(0, len(coms_a))])
coms_b = sorted(list(set([len(c) for c in second_partition.communities])))
freq_b = defaultdict(int)
for b in coms_b:
freq_b[b] += 1
freq_b = [freq_b[b] for b in sorted(freq_b)]
n_b = sum([coms_b[i] * freq_b[i] for i in range(0, len(coms_b))])
closeness = 0
for i in range(0, len(coms_a)):
for j in range(0, len(coms_b)):
if coms_a[i] == coms_b[j]:
closeness += min(
(coms_a[i] * freq_a[i]) / n_a, (coms_b[j] * freq_b[j]) / n_b
)
closeness *= 0.5
return MatchingResult(score=closeness)
|
[
"cdlib.evaluation.internal.omega.Omega",
"collections.namedtuple",
"sklearn.metrics.adjusted_mutual_info_score",
"numpy.log2",
"sklearn.metrics.adjusted_rand_score",
"collections.defaultdict",
"sklearn.metrics.normalized_mutual_info_score",
"nf1.NF1"
] |
[((606, 647), 'collections.namedtuple', 'namedtuple', (['"""MatchingResult"""', '"""score std"""'], {}), "('MatchingResult', 'score std')\n", (616, 647), False, 'from collections import namedtuple, defaultdict\n'), ((7282, 7322), 'cdlib.evaluation.internal.omega.Omega', 'Omega', (['first_partition', 'second_partition'], {}), '(first_partition, second_partition)\n', (7287, 7322), False, 'from cdlib.evaluation.internal.omega import Omega\n'), ((8383, 8445), 'nf1.NF1', 'NF1', (['first_partition.communities', 'second_partition.communities'], {}), '(first_partition.communities, second_partition.communities)\n', (8386, 8445), False, 'from nf1 import NF1\n'), ((9760, 9822), 'nf1.NF1', 'NF1', (['first_partition.communities', 'second_partition.communities'], {}), '(first_partition.communities, second_partition.communities)\n', (9763, 9822), False, 'from nf1 import NF1\n'), ((17907, 17923), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (17918, 17923), False, 'from collections import namedtuple, defaultdict\n'), ((18180, 18196), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (18191, 18196), False, 'from collections import namedtuple, defaultdict\n'), ((3107, 3174), 'sklearn.metrics.normalized_mutual_info_score', 'normalized_mutual_info_score', (['first_partition_c', 'second_partition_c'], {}), '(first_partition_c, second_partition_c)\n', (3135, 3174), False, 'from sklearn.metrics import normalized_mutual_info_score\n'), ((12174, 12232), 'sklearn.metrics.adjusted_rand_score', 'adjusted_rand_score', (['first_partition_c', 'second_partition_c'], {}), '(first_partition_c, second_partition_c)\n', (12193, 12232), False, 'from sklearn.metrics import adjusted_rand_score\n'), ((14986, 15051), 'sklearn.metrics.adjusted_mutual_info_score', 'adjusted_mutual_info_score', (['first_partition_c', 'second_partition_c'], {}), '(first_partition_c, second_partition_c)\n', (15012, 15051), False, 'from sklearn.metrics import adjusted_mutual_info_score\n'), ((16491, 16505), 'numpy.log2', 'np.log2', (['(r / p)'], {}), '(r / p)\n', (16498, 16505), True, 'import numpy as np\n'), ((16508, 16522), 'numpy.log2', 'np.log2', (['(r / q)'], {}), '(r / q)\n', (16515, 16522), True, 'import numpy as np\n')]
|
import math
from typing import List
import numpy as np
from datasets.Dataset import Dataset
from models.Solution import Solution
def calculate_avgValue(population: List[Solution]) -> float:
avgValue = 0
for ind in population:
avgValue += ind.compute_mono_objective_score()
avgValue /= len(population)
return avgValue
def calculate_bestAvgValue(population: List[Solution]) -> float:
bestAvgValue = 0
for ind in population:
if bestAvgValue < ind.compute_mono_objective_score():
bestAvgValue = ind.compute_mono_objective_score()
return bestAvgValue
def calculate_numSolutions(population: List[Solution]) -> int:
return len(set(population))
def calculate_spacing(population: List[Solution]) -> float:
n = len(population)
N = 2
spacing = 0
mean_objectives = []
objective = 0
for j in range(0, len(population)):
objective += population[j].total_cost
objective /= len(population)
mean_objectives.append(objective)
objective = 0
for j in range(0, len(population)):
objective += population[j].total_satisfaction
objective /= len(population)
mean_objectives.append(objective)
for j in range(0, len(population)):
aux_spacing = 0
for i in range(0, N):
di = mean_objectives[i]
if i == 0:
dij = population[j].total_cost
elif i == 1:
dij = population[j].total_satisfaction
aux = (1 - (abs(dij) / di)) ** 2
aux_spacing += aux
aux_spacing = math.sqrt(aux_spacing)
spacing += aux_spacing
spacing /= (n * N)
return spacing
def calculate_hypervolume(population: List[Solution]) -> float:
objectives_diff = []
aux_max_cost, aux_max_sat = population[0].get_max_cost_satisfactions()
aux_min_cost, aux_min_sat = population[0].get_min_cost_satisfactions()
aux_min = float('inf')
aux_max = 0
for ind in population:
if ind.total_cost < aux_min:
aux_min = ind.total_cost
if ind.total_cost > aux_max:
aux_max = ind.total_cost
aux_max_norm = (aux_max-aux_min_cost)/(aux_max_cost-aux_min_cost)
aux_min_norm = (aux_min-aux_min_cost)/(aux_max_cost-aux_min_cost)
aux_val = aux_max_norm-aux_min_norm
objectives_diff.append(aux_val)
aux_min = float('inf')
aux_max = 0
for ind in population:
if ind.total_satisfaction < aux_min:
aux_min = ind.total_satisfaction
if ind.total_satisfaction > aux_max:
aux_max = ind.total_satisfaction
aux_max_norm = (aux_max-aux_min_sat)/(aux_max_sat-aux_min_sat)
aux_min_norm = (aux_min-aux_min_sat)/(aux_max_sat-aux_min_sat)
aux_val = aux_max_norm-aux_min_norm
objectives_diff.append(aux_val)
hypervolume = 1
for i in range(0, len(objectives_diff)):
hypervolume *= objectives_diff[i]
return hypervolume
def eudis2(v1: float, v2: float) -> float:
return math.dist(v1, v2)
# return distance.euclidean(v1, v2)
def calculate_spread(population: List[Solution], dataset: Dataset) -> float:
MIN_OBJ1 = 0
MIN_OBJ2 = 0
MAX_OBJ1 = np.max(dataset.pbis_satisfaction_scaled)
MAX_OBJ2 = np.max(dataset.pbis_cost_scaled)
df = None
dl = None
davg = None
sum_dist = None
N = len(population)
spread = None
first_solution = population[0]
last_solution = population[len(population) - 1]
first_extreme = [MIN_OBJ1, MIN_OBJ2]
last_extreme = [MAX_OBJ1, MAX_OBJ2]
df = eudis2([first_solution.total_satisfaction,
first_solution.total_cost], first_extreme)
dl = eudis2([last_solution.total_satisfaction,
last_solution.total_cost], last_extreme)
davg = 0
dist_count = 0
for i in range(0, len(population)):
for j in range(0, len(population)):
# avoid distance from a point to itself
if i != j:
dist_count += 1
davg += eudis2([population[i].total_satisfaction, population[i].total_cost],
[population[j].total_satisfaction, population[j].total_cost])
davg /= dist_count
# calculate sumatory(i=1->N-1) |di-davg|
sum_dist = 0
for i in range(0, len(population) - 1):
di = eudis2([population[i].total_satisfaction, population[i].total_cost],
[population[i + 1].total_satisfaction, population[i + 1].total_cost])
sum_dist += abs(di - davg)
# spread formula
spread = (df + dl + sum_dist) / (df + dl + (N - 1) * davg)
return spread
def calculate_mean_bits_per_sol(solutions: List[Solution]) -> float:
genes = 0
n_sols = len(solutions)
for sol in solutions:
genes += np.count_nonzero(sol.selected)
return genes/n_sols
|
[
"numpy.count_nonzero",
"math.sqrt",
"math.dist",
"numpy.max"
] |
[((3003, 3020), 'math.dist', 'math.dist', (['v1', 'v2'], {}), '(v1, v2)\n', (3012, 3020), False, 'import math\n'), ((3190, 3230), 'numpy.max', 'np.max', (['dataset.pbis_satisfaction_scaled'], {}), '(dataset.pbis_satisfaction_scaled)\n', (3196, 3230), True, 'import numpy as np\n'), ((3246, 3278), 'numpy.max', 'np.max', (['dataset.pbis_cost_scaled'], {}), '(dataset.pbis_cost_scaled)\n', (3252, 3278), True, 'import numpy as np\n'), ((1581, 1603), 'math.sqrt', 'math.sqrt', (['aux_spacing'], {}), '(aux_spacing)\n', (1590, 1603), False, 'import math\n'), ((4782, 4812), 'numpy.count_nonzero', 'np.count_nonzero', (['sol.selected'], {}), '(sol.selected)\n', (4798, 4812), True, 'import numpy as np\n')]
|
import matplotlib
matplotlib.use("Agg")
from matplotlib import pyplot as plt
import numpy as np
import os
from nanopores.tools import fields
from scipy.interpolate import interp1d
HOME = os.path.expanduser("~")
DATADIR = os.path.join(HOME, "Dropbox", "nanopores", "fields")
fields.set_dir(DATADIR)
data = fields.get_fields("pugh_diff3D_cross", bulkbc=True, rMolecule=2.0779)
def smooth3(l):
A=np.array(l)
B=A[:]
ker=np.array([1./3,1./3,1./3])
n=int(ker.shape[0]/2.)
for i in range(n,A.shape[0]-n):
B[i]=np.inner(A[i-n:i+n+1],ker)
return list(B)
def smooth5(l):
A=np.array(l)
B=A[:]
ker=np.array([.2,.2,.2,.2,.2])
n=int(ker.shape[0]/2.)
for i in range(n,A.shape[0]-n):
B[i]=np.inner(A[i-n:i+n+1],ker)
return list(B)
def smootha(l):
A=np.array(l)
B=A[:]
ker=np.array([10.,12.,15.,12.,10.])
ker=ker/np.sum(ker)
n=int(ker.shape[0]/2.)
for i in range(n,A.shape[0]-n):
B[i]=np.inner(A[i-n:i+n+1],ker)
return list(B)
x = [z[0] for z in data["x"]]
data, x = fields._sorted(data, x)
eps=5e-3
x_=x[:]
#x_.extend([1.,1.+eps,1.+2*eps,1.+3*eps])
x.extend([(x[-1]+1.)/2.,1.,1.+eps,1.+2*eps,1.+3*eps,1.+4*eps,1.+5*eps])
dstr = ["x", "y", "z"]
Dxx = [D[0][0] for D in data["D"]]
Dyy = [D[1][1] for D in data["D"]]
Dzz = [D[2][2] for D in data["D"]]
Dxx_ = [D[0][0] for D in data["D"]]
Dyy_ = [D[1][1] for D in data["D"]]
Dzz_ = [D[2][2] for D in data["D"]]
Dxx.extend([0.,0.,0.,0.,0.,0.,0.])
Dyy.extend([Dyy[-1]/2.,0.,0.,0.,0.,0.,0.])
Dzz.extend([Dzz[-1]/2.,0.,0.,0.,0.,0.,0.])
#Dxx_.extend([0.,0.,0.,0.])
#Dyy_.extend([0.,0.,0.,0.])
#Dzz_.extend([0.,0.,0.,0.])
Dxx=smooth5(smooth3(Dxx))
Dyy=smooth5(smooth3(Dyy))
Dzz=smooth5(smooth3(Dzz))
Dx = interp1d(x,Dxx)
Dy = interp1d(x,Dyy)
Dz = interp1d(x,Dzz)
DDxx = [0.]+[(Dxx[i+1]-Dxx[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.]
DDyy = [0.]+[(Dyy[i+1]-Dyy[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.]
DDzz = [0.]+[(Dzz[i+1]-Dzz[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.]
dDx = interp1d(x,DDxx)
dDy = interp1d(x,DDyy)
dDz = interp1d(x,DDzz)
if __name__=='__main__':
xc=np.linspace(0.,1.,100)
plt.plot(x_,Dxx_,color='blue',linestyle=':')
plt.scatter(x_,Dxx_,color='blue')
plt.scatter(x,Dxx,color='blue')
#plt.plot(x,Dxx,color='blue')
plt.plot(xc,Dx(xc),color='blue',label=r"$D_{%s%s}$" % (dstr[0], dstr[0]))
plt.scatter(x,DDxx,color='blue')
#plt.plot(x,DDxx,color='blue')
plt.plot(xc,dDx(xc),color='blue')
plt.plot(x_,Dyy_,color='red',linestyle=':')
plt.scatter(x_,Dyy_,color='red')
plt.scatter(x,Dyy,color='red')
#plt.plot(x,Dyy,color='red')
plt.plot(xc,Dy(xc),color='red',label=r"$D_{%s%s}$" % (dstr[1], dstr[1]))
plt.scatter(x,DDyy,color='red')
#plt.plot(x,DDyy,color='red')
plt.plot(xc,dDy(xc),color='red')
plt.plot(x_,Dzz_,color='green',linestyle=':')
plt.scatter(x_,Dzz_,color='green')
plt.scatter(x,Dzz,color='green')
#plt.plot(x,Dzz,color='green')
plt.plot(xc,Dz(xc),color='green',label=r"$D_{%s%s}$" % (dstr[2], dstr[2]))
plt.scatter(x,DDzz,color='green')
#plt.plot(x,DDzz,color='green')
plt.plot(xc,dDz(xc),color='green')
plt.xlabel('distance from pore center [nm]')
plt.ylabel('diffusivity relative to bulk')
plt.legend(loc='lower left')
plt.tight_layout()
plt.savefig('get_new.png')
|
[
"nanopores.tools.fields.get_fields",
"matplotlib.pyplot.savefig",
"matplotlib.pyplot.ylabel",
"matplotlib.use",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.plot",
"os.path.join",
"scipy.interpolate.interp1d",
"numpy.inner",
"numpy.array",
"numpy.linspace",
"numpy.sum",
"nanopores.tools.fields._sorted",
"matplotlib.pyplot.scatter",
"matplotlib.pyplot.tight_layout",
"os.path.expanduser",
"nanopores.tools.fields.set_dir"
] |
[((18, 39), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (32, 39), False, 'import matplotlib\n'), ((188, 211), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (206, 211), False, 'import os\n'), ((222, 274), 'os.path.join', 'os.path.join', (['HOME', '"""Dropbox"""', '"""nanopores"""', '"""fields"""'], {}), "(HOME, 'Dropbox', 'nanopores', 'fields')\n", (234, 274), False, 'import os\n'), ((275, 298), 'nanopores.tools.fields.set_dir', 'fields.set_dir', (['DATADIR'], {}), '(DATADIR)\n', (289, 298), False, 'from nanopores.tools import fields\n'), ((307, 376), 'nanopores.tools.fields.get_fields', 'fields.get_fields', (['"""pugh_diff3D_cross"""'], {'bulkbc': '(True)', 'rMolecule': '(2.0779)'}), "('pugh_diff3D_cross', bulkbc=True, rMolecule=2.0779)\n", (324, 376), False, 'from nanopores.tools import fields\n'), ((1053, 1076), 'nanopores.tools.fields._sorted', 'fields._sorted', (['data', 'x'], {}), '(data, x)\n', (1067, 1076), False, 'from nanopores.tools import fields\n'), ((1732, 1748), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'Dxx'], {}), '(x, Dxx)\n', (1740, 1748), False, 'from scipy.interpolate import interp1d\n'), ((1753, 1769), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'Dyy'], {}), '(x, Dyy)\n', (1761, 1769), False, 'from scipy.interpolate import interp1d\n'), ((1774, 1790), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'Dzz'], {}), '(x, Dzz)\n', (1782, 1790), False, 'from scipy.interpolate import interp1d\n'), ((2044, 2061), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'DDxx'], {}), '(x, DDxx)\n', (2052, 2061), False, 'from scipy.interpolate import interp1d\n'), ((2067, 2084), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'DDyy'], {}), '(x, DDyy)\n', (2075, 2084), False, 'from scipy.interpolate import interp1d\n'), ((2090, 2107), 'scipy.interpolate.interp1d', 'interp1d', (['x', 'DDzz'], {}), '(x, DDzz)\n', (2098, 2107), False, 'from scipy.interpolate import interp1d\n'), ((399, 410), 'numpy.array', 'np.array', (['l'], {}), '(l)\n', (407, 410), True, 'import numpy as np\n'), ((430, 467), 'numpy.array', 'np.array', (['[1.0 / 3, 1.0 / 3, 1.0 / 3]'], {}), '([1.0 / 3, 1.0 / 3, 1.0 / 3])\n', (438, 467), True, 'import numpy as np\n'), ((601, 612), 'numpy.array', 'np.array', (['l'], {}), '(l)\n', (609, 612), True, 'import numpy as np\n'), ((632, 667), 'numpy.array', 'np.array', (['[0.2, 0.2, 0.2, 0.2, 0.2]'], {}), '([0.2, 0.2, 0.2, 0.2, 0.2])\n', (640, 667), True, 'import numpy as np\n'), ((803, 814), 'numpy.array', 'np.array', (['l'], {}), '(l)\n', (811, 814), True, 'import numpy as np\n'), ((834, 874), 'numpy.array', 'np.array', (['[10.0, 12.0, 15.0, 12.0, 10.0]'], {}), '([10.0, 12.0, 15.0, 12.0, 10.0])\n', (842, 874), True, 'import numpy as np\n'), ((2137, 2163), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', '(100)'], {}), '(0.0, 1.0, 100)\n', (2148, 2163), True, 'import numpy as np\n'), ((2161, 2208), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'Dxx_'], {'color': '"""blue"""', 'linestyle': '""":"""'}), "(x_, Dxx_, color='blue', linestyle=':')\n", (2169, 2208), True, 'from matplotlib import pyplot as plt\n'), ((2207, 2242), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_', 'Dxx_'], {'color': '"""blue"""'}), "(x_, Dxx_, color='blue')\n", (2218, 2242), True, 'from matplotlib import pyplot as plt\n'), ((2242, 2275), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'Dxx'], {'color': '"""blue"""'}), "(x, Dxx, color='blue')\n", (2253, 2275), True, 'from matplotlib import pyplot as plt\n'), ((2382, 2416), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'DDxx'], {'color': '"""blue"""'}), "(x, DDxx, color='blue')\n", (2393, 2416), True, 'from matplotlib import pyplot as plt\n'), ((2486, 2532), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'Dyy_'], {'color': '"""red"""', 'linestyle': '""":"""'}), "(x_, Dyy_, color='red', linestyle=':')\n", (2494, 2532), True, 'from matplotlib import pyplot as plt\n'), ((2531, 2565), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_', 'Dyy_'], {'color': '"""red"""'}), "(x_, Dyy_, color='red')\n", (2542, 2565), True, 'from matplotlib import pyplot as plt\n'), ((2565, 2597), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'Dyy'], {'color': '"""red"""'}), "(x, Dyy, color='red')\n", (2576, 2597), True, 'from matplotlib import pyplot as plt\n'), ((2702, 2735), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'DDyy'], {'color': '"""red"""'}), "(x, DDyy, color='red')\n", (2713, 2735), True, 'from matplotlib import pyplot as plt\n'), ((2803, 2851), 'matplotlib.pyplot.plot', 'plt.plot', (['x_', 'Dzz_'], {'color': '"""green"""', 'linestyle': '""":"""'}), "(x_, Dzz_, color='green', linestyle=':')\n", (2811, 2851), True, 'from matplotlib import pyplot as plt\n'), ((2850, 2886), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_', 'Dzz_'], {'color': '"""green"""'}), "(x_, Dzz_, color='green')\n", (2861, 2886), True, 'from matplotlib import pyplot as plt\n'), ((2886, 2920), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'Dzz'], {'color': '"""green"""'}), "(x, Dzz, color='green')\n", (2897, 2920), True, 'from matplotlib import pyplot as plt\n'), ((3029, 3064), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'DDzz'], {'color': '"""green"""'}), "(x, DDzz, color='green')\n", (3040, 3064), True, 'from matplotlib import pyplot as plt\n'), ((3136, 3180), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""distance from pore center [nm]"""'], {}), "('distance from pore center [nm]')\n", (3146, 3180), True, 'from matplotlib import pyplot as plt\n'), ((3182, 3224), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""diffusivity relative to bulk"""'], {}), "('diffusivity relative to bulk')\n", (3192, 3224), True, 'from matplotlib import pyplot as plt\n'), ((3226, 3254), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""'}), "(loc='lower left')\n", (3236, 3254), True, 'from matplotlib import pyplot as plt\n'), ((3256, 3274), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3272, 3274), True, 'from matplotlib import pyplot as plt\n'), ((3276, 3302), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""get_new.png"""'], {}), "('get_new.png')\n", (3287, 3302), True, 'from matplotlib import pyplot as plt\n'), ((533, 566), 'numpy.inner', 'np.inner', (['A[i - n:i + n + 1]', 'ker'], {}), '(A[i - n:i + n + 1], ker)\n', (541, 566), True, 'import numpy as np\n'), ((735, 768), 'numpy.inner', 'np.inner', (['A[i - n:i + n + 1]', 'ker'], {}), '(A[i - n:i + n + 1], ker)\n', (743, 768), True, 'import numpy as np\n'), ((878, 889), 'numpy.sum', 'np.sum', (['ker'], {}), '(ker)\n', (884, 889), True, 'import numpy as np\n'), ((966, 999), 'numpy.inner', 'np.inner', (['A[i - n:i + n + 1]', 'ker'], {}), '(A[i - n:i + n + 1], ker)\n', (974, 999), True, 'import numpy as np\n')]
|
import os
import nibabel
import numpy as np
import random
from scipy import ndimage
import SimpleITK as sitk
def load_nifty_volume_as_array(filename, with_header = False):
"""
load nifty image into numpy array, and transpose it based on the [z,y,x] axis order
The output array shape is like [Depth, Height, Width]
inputs:
filename: the input file name, should be *.nii or *.nii.gz
with_header: return affine and hearder infomation
outputs:
data: a numpy data array
"""
img = nibabel.load(filename)
data = img.get_data()
data = np.transpose(data, [2,1,0])
if(with_header):
return data, img.affine, img.header
else:
return data
def save_array_as_nifty_volume(data, filename, reference_name = None):
"""
save a numpy array as nifty image
inputs:
data: a numpy array with shape [Depth, Height, Width]
filename: the ouput file name
reference_name: file name of the reference image of which affine and header are used
outputs: None
"""
img = sitk.GetImageFromArray(data)
if(reference_name is not None):
img_ref = sitk.ReadImage(reference_name)
img.CopyInformation(img_ref)
sitk.WriteImage(img, filename)
|
[
"SimpleITK.GetImageFromArray",
"nibabel.load",
"SimpleITK.WriteImage",
"SimpleITK.ReadImage",
"numpy.transpose"
] |
[((529, 551), 'nibabel.load', 'nibabel.load', (['filename'], {}), '(filename)\n', (541, 551), False, 'import nibabel\n'), ((589, 618), 'numpy.transpose', 'np.transpose', (['data', '[2, 1, 0]'], {}), '(data, [2, 1, 0])\n', (601, 618), True, 'import numpy as np\n'), ((1071, 1099), 'SimpleITK.GetImageFromArray', 'sitk.GetImageFromArray', (['data'], {}), '(data)\n', (1093, 1099), True, 'import SimpleITK as sitk\n'), ((1226, 1256), 'SimpleITK.WriteImage', 'sitk.WriteImage', (['img', 'filename'], {}), '(img, filename)\n', (1241, 1256), True, 'import SimpleITK as sitk\n'), ((1154, 1184), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['reference_name'], {}), '(reference_name)\n', (1168, 1184), True, 'import SimpleITK as sitk\n')]
|
#!/usr/bin/env python
import rospy as rp
import numpy as np
import math as math
from geometry_msgs.msg import PoseStamped, TwistStamped
from styx_msgs.msg import Lane, Waypoint
from scipy.spatial import KDTree
from std_msgs.msg import Int32
'''
This node will publish waypoints from the car's current position to some `x` distance ahead.
As mentioned in the doc, you should ideally first implement a version which does not care
about traffic lights or obstacles.
Once you have created dbw_node, you will update this node to use the status of traffic lights too.
Please note that our simulator also provides the exact location of traffic lights and their
current status in `/vehicle/traffic_lights` message. You can use this message to build this node
as well as to verify your TL classifier.
TODO (for Yousuf and Aaron): Stopline location for each traffic light.
'''
# Number of waypoints we will publish.
LOOKAHEAD_WPS = 150
MAX_DECEL = 0.5
class MotionState( ):
Go, Stop = range( 2 )
class WaypointUpdater( object ):
def __init__( self ):
rp.init_node( 'waypoint_updater' )
# TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below
rp.Subscriber( '/current_pose', PoseStamped, self.pose_cb )
rp.Subscriber( '/base_waypoints', Lane, self.waypoints_cb )
rp.Subscriber( '/traffic_waypoint', Int32, self.traffic_cb )
rp.Subscriber( '/current_velocity', TwistStamped, self.velocity_cb )
self.final_waypoints_pub = rp.Publisher(
'final_waypoints',
Lane,
queue_size=1 )
# TODO: Add other member variables you need below
self.base_lane = None
self.pose = None
self.waypoints_2d = None
self.waypoint_tree = None
self.nearest_light = None
self.vehicle_velocity = None # in m/s
self.motion_state = MotionState.Go
self.deceleration_rate = None
self.acceleration_rate = 0.75 # m/s
self.previous_velocity = None
self.loop( )
def loop( self ):
rate = rp.Rate( 10 )
while not rp.is_shutdown( ):
if self.pose and self.base_lane and self.waypoint_tree:
# get closest waypoint
#closest_waypoint_index = self.get_closest_waypoint_id( )
self.publish_waypoints( )
self.previous_velocity = self.vehicle_velocity
rate.sleep( )
def publish_waypoints( self ):
self.final_waypoints_pub.publish( self.generate_lane( ) )
def generate_lane( self ):
lane = Lane( )
closest_idx = self.get_closest_waypoint_id( )
farthest_idx = closest_idx + LOOKAHEAD_WPS
base_waypoints = self.base_lane[ closest_idx:farthest_idx ]
if self.nearest_light != None and \
self.nearest_light <= farthest_idx and \
self.nearest_light >= closest_idx:
self.motion_state = MotionState.Stop
base_waypoints = self.decelerate( base_waypoints, closest_idx )
elif self.motion_state == MotionState.Stop:
self.motion_state = MotionState.Go
self.deceleration_rate = None
if self.motion_state == MotionState.Go:
if abs( self.vehicle_velocity - self.get_waypoint_velocity( \
base_waypoints[ 0 ] ) ) > 1.0:
if self.previous_velocity == None:
start_vel = self.vehicle_velocity
else:
start_vel = max(
self.previous_velocity + 0.2,
self.vehicle_velocity )
base_waypoints = self.accelerate( base_waypoints, start_vel )
else:
self.acceleration_start_velocity = None
lane.waypoints = base_waypoints
return lane
def accelerate( self, waypoints, start_velocity ):
new_waypoints = [ ]
for i, wp in enumerate( waypoints ):
p = Waypoint( )
p.pose = wp.pose
distance = self.distance( waypoints, 0, i )
target_vel = start_velocity + distance * self.acceleration_rate
if target_vel < 0.5:
target_vel = 0.5
p.twist.twist.linear.x = min(
target_vel,
self.get_waypoint_velocity( wp ) )
new_waypoints.append( p )
return new_waypoints
def decelerate( self, waypoints, start_idx ):
new_waypoints = [ ]
speed = self.vehicle_velocity
# two waypoints back from line so front of car stops earlier
stop_idx = self.nearest_light - start_idx - 2
for i, wp in enumerate( waypoints ):
p = Waypoint( )
p.pose = wp.pose
dist = self.distance( waypoints, i, stop_idx )
if i >= stop_idx:
target_vel = 0
elif dist < 15:
if self.deceleration_rate == None:
self.deceleration_rate = self.vehicle_velocity / dist
target_vel = self.deceleration_rate * dist
if target_vel <= 1.0:
target_vel = 0.0
target_vel = min( target_vel, self.get_waypoint_velocity( wp ) )
else:
target_vel = self.get_waypoint_velocity( wp )
p.twist.twist.linear.x = target_vel
new_waypoints.append( p )
return new_waypoints
def get_closest_waypoint_id( self ):
x = self.pose.pose.position.x
y = self.pose.pose.position.y
closest_idx = self.waypoint_tree.query( [x, y], 1 )[1]
# Check if closest waypoint is ahead or behind the vehicle
closest_wp = np.array( self.waypoints_2d[ closest_idx ] )
previous_wp = np.array( self.waypoints_2d[ closest_idx - 1 ] )
# Equation for hyperplane through closest_coords
waypoint_vector = closest_wp - previous_wp
position_vector = np.array( [x, y] ) - closest_wp
val = np.dot( waypoint_vector, position_vector )
if val > 0:
closest_idx = ( closest_idx + 1 ) % len( self.waypoints_2d )
return closest_idx
def pose_cb(self, msg):
# TODO: Implement
self.pose = msg
def waypoints_cb( self, waypoints ):
# TODO: Implement
self.base_lane = waypoints.waypoints
if not self.waypoints_2d:
self.waypoints_2d = [ [ waypoint.pose.pose.position.x,
waypoint.pose.pose.position.y ]
for waypoint in waypoints.waypoints ]
self.waypoint_tree = KDTree( self.waypoints_2d )
def traffic_cb( self, msg ):
# TODO: Callback for /traffic_waypoint message. Implement
if( msg.data == -1 ):
self.nearest_light = None
else:
self.nearest_light = msg.data
def velocity_cb( self, velocity ):
self.vehicle_velocity = velocity.twist.linear.x
def obstacle_cb(self, msg):
# TODO: Callback for /obstacle_waypoint message. We will implement it later
pass
def get_waypoint_velocity( self, waypoint ):
return waypoint.twist.twist.linear.x
def set_waypoint_velocity( self, waypoints, waypoint, velocity ):
waypoints[ waypoint ].twist.twist.linear.x = velocity
def distance(self, waypoints, wp1, wp2):
dist = 0
dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2)
for i in range(wp1, wp2+1):
dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position)
wp1 = i
return dist
if __name__ == '__main__':
try:
WaypointUpdater()
except rp.ROSInterruptException:
rp.logerr('Could not start waypoint updater node.')
|
[
"rospy.logerr",
"rospy.Subscriber",
"rospy.is_shutdown",
"rospy.init_node",
"scipy.spatial.KDTree",
"math.sqrt",
"numpy.array",
"numpy.dot",
"rospy.Rate",
"styx_msgs.msg.Waypoint",
"rospy.Publisher",
"styx_msgs.msg.Lane"
] |
[((1071, 1103), 'rospy.init_node', 'rp.init_node', (['"""waypoint_updater"""'], {}), "('waypoint_updater')\n", (1083, 1103), True, 'import rospy as rp\n'), ((1199, 1256), 'rospy.Subscriber', 'rp.Subscriber', (['"""/current_pose"""', 'PoseStamped', 'self.pose_cb'], {}), "('/current_pose', PoseStamped, self.pose_cb)\n", (1212, 1256), True, 'import rospy as rp\n'), ((1267, 1324), 'rospy.Subscriber', 'rp.Subscriber', (['"""/base_waypoints"""', 'Lane', 'self.waypoints_cb'], {}), "('/base_waypoints', Lane, self.waypoints_cb)\n", (1280, 1324), True, 'import rospy as rp\n'), ((1335, 1393), 'rospy.Subscriber', 'rp.Subscriber', (['"""/traffic_waypoint"""', 'Int32', 'self.traffic_cb'], {}), "('/traffic_waypoint', Int32, self.traffic_cb)\n", (1348, 1393), True, 'import rospy as rp\n'), ((1404, 1470), 'rospy.Subscriber', 'rp.Subscriber', (['"""/current_velocity"""', 'TwistStamped', 'self.velocity_cb'], {}), "('/current_velocity', TwistStamped, self.velocity_cb)\n", (1417, 1470), True, 'import rospy as rp\n'), ((1509, 1560), 'rospy.Publisher', 'rp.Publisher', (['"""final_waypoints"""', 'Lane'], {'queue_size': '(1)'}), "('final_waypoints', Lane, queue_size=1)\n", (1521, 1560), True, 'import rospy as rp\n'), ((2099, 2110), 'rospy.Rate', 'rp.Rate', (['(10)'], {}), '(10)\n', (2106, 2110), True, 'import rospy as rp\n'), ((2613, 2619), 'styx_msgs.msg.Lane', 'Lane', ([], {}), '()\n', (2617, 2619), False, 'from styx_msgs.msg import Lane, Waypoint\n'), ((5765, 5805), 'numpy.array', 'np.array', (['self.waypoints_2d[closest_idx]'], {}), '(self.waypoints_2d[closest_idx])\n', (5773, 5805), True, 'import numpy as np\n'), ((5832, 5876), 'numpy.array', 'np.array', (['self.waypoints_2d[closest_idx - 1]'], {}), '(self.waypoints_2d[closest_idx - 1])\n', (5840, 5876), True, 'import numpy as np\n'), ((6063, 6103), 'numpy.dot', 'np.dot', (['waypoint_vector', 'position_vector'], {}), '(waypoint_vector, position_vector)\n', (6069, 6103), True, 'import numpy as np\n'), ((2132, 2148), 'rospy.is_shutdown', 'rp.is_shutdown', ([], {}), '()\n', (2146, 2148), True, 'import rospy as rp\n'), ((4024, 4034), 'styx_msgs.msg.Waypoint', 'Waypoint', ([], {}), '()\n', (4032, 4034), False, 'from styx_msgs.msg import Lane, Waypoint\n'), ((4767, 4777), 'styx_msgs.msg.Waypoint', 'Waypoint', ([], {}), '()\n', (4775, 4777), False, 'from styx_msgs.msg import Lane, Waypoint\n'), ((6016, 6032), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (6024, 6032), True, 'import numpy as np\n'), ((6668, 6693), 'scipy.spatial.KDTree', 'KDTree', (['self.waypoints_2d'], {}), '(self.waypoints_2d)\n', (6674, 6693), False, 'from scipy.spatial import KDTree\n'), ((7468, 7533), 'math.sqrt', 'math.sqrt', (['((a.x - b.x) ** 2 + (a.y - b.y) ** 2 + (a.z - b.z) ** 2)'], {}), '((a.x - b.x) ** 2 + (a.y - b.y) ** 2 + (a.z - b.z) ** 2)\n', (7477, 7533), True, 'import math as math\n'), ((7799, 7850), 'rospy.logerr', 'rp.logerr', (['"""Could not start waypoint updater node."""'], {}), "('Could not start waypoint updater node.')\n", (7808, 7850), True, 'import rospy as rp\n')]
|
import unittest
import os
import numpy as np
from constants import (
del_test_dir,
gen_test_dir,
get_output_mode,
solution_domain_setup,
CHEM_DICT_REACT,
SOL_PRIM_IN_REACT,
TEST_DIR,
)
from perform.constants import REAL_TYPE
from perform.system_solver import SystemSolver
from perform.input_funcs import read_restart_file
from perform.gas_model.calorically_perfect_gas import CaloricallyPerfectGas
from perform.time_integrator.implicit_integrator import BDF
from perform.solution.solution_interior import SolutionInterior
class SolutionIntInitTestCase(unittest.TestCase):
def setUp(self):
self.output_mode, self.output_dir = get_output_mode()
# set chemistry
self.chem_dict = CHEM_DICT_REACT
self.gas = CaloricallyPerfectGas(self.chem_dict)
# set time integrator
self.param_dict = {}
self.param_dict["dt"] = 1e-7
self.param_dict["time_scheme"] = "bdf"
self.param_dict["time_order"] = 2
self.time_int = BDF(self.param_dict)
# generate working directory
gen_test_dir()
# generate input text files
solution_domain_setup()
# set SystemSolver
self.solver = SystemSolver(TEST_DIR)
self.num_cells = 2
self.num_reactions = 1
def tearDown(self):
del_test_dir()
def test_solution_int_init(self):
sol = SolutionInterior(
self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells, self.num_reactions, self.time_int
)
if self.output_mode:
np.save(os.path.join(self.output_dir, "sol_int_init_sol_cons.npy"), sol.sol_cons)
else:
self.assertTrue(np.array_equal(sol.sol_prim, SOL_PRIM_IN_REACT))
self.assertTrue(
np.allclose(sol.sol_cons, np.load(os.path.join(self.output_dir, "sol_int_init_sol_cons.npy")))
)
# TODO: a LOT of checking of other variables
class SolutionIntMethodsTestCase(unittest.TestCase):
def setUp(self):
self.output_mode, self.output_dir = get_output_mode()
# set chemistry
self.chem_dict = CHEM_DICT_REACT
self.gas = CaloricallyPerfectGas(self.chem_dict)
# set time integrator
self.param_dict = {}
self.param_dict["dt"] = 1e-7
self.param_dict["time_scheme"] = "bdf"
self.param_dict["time_order"] = 2
self.time_int = BDF(self.param_dict)
# generate working directory
gen_test_dir()
# generate input text files
solution_domain_setup()
# set SystemSolver
self.solver = SystemSolver(TEST_DIR)
self.num_cells = 2
self.num_reactions = 1
self.sol = SolutionInterior(
self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells, self.num_reactions, self.time_int
)
def tearDown(self):
del_test_dir()
def test_calc_sol_jacob(self):
sol_jacob = self.sol.calc_sol_jacob(inverse=False)
sol_jacob_inv = self.sol.calc_sol_jacob(inverse=True)
if self.output_mode:
np.save(os.path.join(self.output_dir, "sol_int_sol_jacob.npy"), sol_jacob)
np.save(os.path.join(self.output_dir, "sol_int_sol_jacob_inv.npy"), sol_jacob_inv)
else:
self.assertTrue(np.allclose(sol_jacob, np.load(os.path.join(self.output_dir, "sol_int_sol_jacob.npy"))))
self.assertTrue(
np.allclose(sol_jacob_inv, np.load(os.path.join(self.output_dir, "sol_int_sol_jacob_inv.npy")))
)
def test_update_snapshots(self):
# update the snapshot matrix
for self.solver.iter in range(1, self.solver.num_steps + 1):
if (self.solver.iter % self.solver.out_interval) == 0:
self.sol.update_snapshots(self.solver)
self.assertTrue(np.array_equal(self.sol.prim_snap, np.repeat(self.sol.sol_prim[:, :, None], 6, axis=2)))
self.assertTrue(np.array_equal(self.sol.cons_snap, np.repeat(self.sol.sol_cons[:, :, None], 6, axis=2)))
self.assertTrue(
np.array_equal(self.sol.reaction_source_snap, np.repeat(self.sol.reaction_source[:, :, None], 5, axis=2))
)
self.assertTrue(
np.array_equal(self.sol.heat_release_snap, np.repeat(self.sol.heat_release[:, None], 5, axis=1))
)
self.assertTrue(np.array_equal(self.sol.rhs_snap, np.repeat(self.sol.rhs[:, :, None], 5, axis=2)))
def test_snapshot_output(self):
for self.solver.iter in range(1, self.solver.num_steps + 1):
# update the snapshot matrix
if (self.solver.iter % self.solver.out_interval) == 0:
self.sol.update_snapshots(self.solver)
# write and check intermediate results
if ((self.solver.iter % self.solver.out_itmdt_interval) == 0) and (
self.solver.iter != self.solver.num_steps
):
self.sol.write_snapshots(self.solver, intermediate=True, failed=False)
sol_prim_itmdt = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_ITMDT.npy")
)
sol_cons_itmdt = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_ITMDT.npy")
)
source_itmdt = np.load(
os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_ITMDT.npy")
)
heat_release_itmdt = np.load(
os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_ITMDT.npy")
)
rhs_itmdt = np.load(
os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_ITMDT.npy")
)
self.assertTrue(np.array_equal(sol_prim_itmdt, np.repeat(self.sol.sol_prim[:, :, None], 3, axis=2)))
self.assertTrue(np.array_equal(sol_cons_itmdt, np.repeat(self.sol.sol_cons[:, :, None], 3, axis=2)))
self.assertTrue(
np.array_equal(source_itmdt, np.repeat(self.sol.reaction_source[:, :, None], 2, axis=2))
)
self.assertTrue(
np.array_equal(heat_release_itmdt, np.repeat(self.sol.heat_release[:, None], 2, axis=1))
)
self.assertTrue(np.array_equal(rhs_itmdt, np.repeat(self.sol.rhs[:, :, None], 2, axis=2)))
# write and check "failed" snapshots
if self.solver.iter == 7:
self.sol.write_snapshots(self.solver, intermediate=False, failed=True)
sol_prim_failed = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_FAILED.npy")
)
sol_cons_failed = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_FAILED.npy")
)
source_failed = np.load(
os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_FAILED.npy")
)
heat_release_failed = np.load(
os.path.join(
self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_FAILED.npy"
)
)
rhs_failed = np.load(
os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_FAILED.npy")
)
self.assertTrue(np.array_equal(sol_prim_failed, np.repeat(self.sol.sol_prim[:, :, None], 4, axis=2)))
self.assertTrue(np.array_equal(sol_cons_failed, np.repeat(self.sol.sol_cons[:, :, None], 4, axis=2)))
self.assertTrue(
np.array_equal(source_failed, np.repeat(self.sol.reaction_source[:, :, None], 3, axis=2))
)
self.assertTrue(
np.array_equal(heat_release_failed, np.repeat(self.sol.heat_release[:, None], 3, axis=1))
)
self.assertTrue(np.array_equal(rhs_failed, np.repeat(self.sol.rhs[:, :, None], 3, axis=2)))
# delete intermediate results and check that they deleted properly
self.sol.delete_itmdt_snapshots(self.solver)
self.assertFalse(
os.path.isfile(
os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_ITMDT.npy")
)
)
self.assertFalse(
os.path.isfile(
os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_ITMDT.npy")
)
)
self.assertFalse(
os.path.isfile(
os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_ITMDT.npy")
)
)
self.assertFalse(
os.path.isfile(
os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_ITMDT.npy")
)
)
self.assertFalse(
os.path.isfile(os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_ITMDT.npy"))
)
# write final snapshots
self.sol.write_snapshots(self.solver, intermediate=False, failed=False)
sol_prim_final = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + ".npy")
)
sol_cons_final = np.load(
os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + ".npy")
)
source_final = np.load(os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + ".npy"))
heat_release_final = np.load(
os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + ".npy")
)
rhs_final = np.load(os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + ".npy"))
self.assertTrue(np.array_equal(sol_prim_final, np.repeat(self.sol.sol_prim[:, :, None], 6, axis=2)))
self.assertTrue(np.array_equal(sol_cons_final, np.repeat(self.sol.sol_cons[:, :, None], 6, axis=2)))
self.assertTrue(np.array_equal(source_final, np.repeat(self.sol.reaction_source[:, :, None], 5, axis=2)))
self.assertTrue(np.array_equal(heat_release_final, np.repeat(self.sol.heat_release[:, None], 5, axis=1)))
self.assertTrue(np.array_equal(rhs_final, np.repeat(self.sol.rhs[:, :, None], 5, axis=2)))
def test_write_restart_file(self):
sol_cons = self.sol.sol_cons
self.solver.sol_time = 1e-4
self.solver.iter = 2
self.solver.restart_iter = 4
self.sol.write_restart_file(self.solver)
self.assertEqual(self.solver.restart_iter, 5)
# check restart files
restart_data = np.load(os.path.join(self.solver.restart_output_dir, "restart_file_4.npz"))
self.assertTrue(
np.array_equal(
restart_data["sol_prim"],
np.repeat(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1),
)
)
self.assertTrue(
np.array_equal(
restart_data["sol_cons"],
np.repeat(sol_cons[:, :, None], 2, axis=-1),
)
)
self.assertEqual(float(restart_data["sol_time"]), 1e-4)
# check iteration files
restart_iter = int(np.loadtxt(os.path.join(self.solver.restart_output_dir, "restart_iter.dat")))
self.assertEqual(restart_iter, 4)
def test_read_restart_file(self):
self.solver.sol_time = 1e-4
self.solver.iter = 2
self.solver.restart_iter = 4
self.sol.write_restart_file(self.solver)
sol_time, sol_prim, restart_iter = read_restart_file(self.solver)
self.assertEqual(sol_time, 1e-4)
self.assertEqual(restart_iter, 5) # 1 is added to avoid overwriting
self.assertTrue(
np.array_equal(
sol_prim,
np.repeat(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1),
)
)
def test_calc_d_sol_norms(self):
self.solver.iter = 3
self.sol.d_sol_norm_hist = np.zeros((self.solver.num_steps, 2), dtype=REAL_TYPE)
self.sol.sol_hist_prim[0] = self.sol.sol_prim * 2.0
self.sol.calc_d_sol_norms(self.solver, "implicit")
self.assertAlmostEqual(self.sol.d_sol_norm_hist[2, 0], 3.46573790883)
self.assertAlmostEqual(self.sol.d_sol_norm_hist[2, 1], 3.45416666667)
def test_calc_res_norms(self):
self.solver.iter = 3
self.sol.res = self.sol.sol_prim.copy()
self.sol.calc_res_norms(self.solver, 0)
self.assertAlmostEqual(self.sol.res_norm_hist[2, 0], 3.46573790883)
self.assertAlmostEqual(self.sol.res_norm_hist[2, 1], 3.45416666667)
|
[
"numpy.repeat",
"perform.input_funcs.read_restart_file",
"constants.del_test_dir",
"perform.solution.solution_interior.SolutionInterior",
"os.path.join",
"constants.gen_test_dir",
"constants.get_output_mode",
"perform.time_integrator.implicit_integrator.BDF",
"constants.solution_domain_setup",
"perform.system_solver.SystemSolver",
"numpy.zeros",
"numpy.array_equal",
"perform.gas_model.calorically_perfect_gas.CaloricallyPerfectGas"
] |
[((670, 687), 'constants.get_output_mode', 'get_output_mode', ([], {}), '()\n', (685, 687), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((773, 810), 'perform.gas_model.calorically_perfect_gas.CaloricallyPerfectGas', 'CaloricallyPerfectGas', (['self.chem_dict'], {}), '(self.chem_dict)\n', (794, 810), False, 'from perform.gas_model.calorically_perfect_gas import CaloricallyPerfectGas\n'), ((1021, 1041), 'perform.time_integrator.implicit_integrator.BDF', 'BDF', (['self.param_dict'], {}), '(self.param_dict)\n', (1024, 1041), False, 'from perform.time_integrator.implicit_integrator import BDF\n'), ((1088, 1102), 'constants.gen_test_dir', 'gen_test_dir', ([], {}), '()\n', (1100, 1102), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((1148, 1171), 'constants.solution_domain_setup', 'solution_domain_setup', ([], {}), '()\n', (1169, 1171), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((1222, 1244), 'perform.system_solver.SystemSolver', 'SystemSolver', (['TEST_DIR'], {}), '(TEST_DIR)\n', (1234, 1244), False, 'from perform.system_solver import SystemSolver\n'), ((1338, 1352), 'constants.del_test_dir', 'del_test_dir', ([], {}), '()\n', (1350, 1352), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((1407, 1520), 'perform.solution.solution_interior.SolutionInterior', 'SolutionInterior', (['self.gas', 'SOL_PRIM_IN_REACT', 'self.solver', 'self.num_cells', 'self.num_reactions', 'self.time_int'], {}), '(self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells,\n self.num_reactions, self.time_int)\n', (1423, 1520), False, 'from perform.solution.solution_interior import SolutionInterior\n'), ((2090, 2107), 'constants.get_output_mode', 'get_output_mode', ([], {}), '()\n', (2105, 2107), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((2193, 2230), 'perform.gas_model.calorically_perfect_gas.CaloricallyPerfectGas', 'CaloricallyPerfectGas', (['self.chem_dict'], {}), '(self.chem_dict)\n', (2214, 2230), False, 'from perform.gas_model.calorically_perfect_gas import CaloricallyPerfectGas\n'), ((2441, 2461), 'perform.time_integrator.implicit_integrator.BDF', 'BDF', (['self.param_dict'], {}), '(self.param_dict)\n', (2444, 2461), False, 'from perform.time_integrator.implicit_integrator import BDF\n'), ((2508, 2522), 'constants.gen_test_dir', 'gen_test_dir', ([], {}), '()\n', (2520, 2522), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((2568, 2591), 'constants.solution_domain_setup', 'solution_domain_setup', ([], {}), '()\n', (2589, 2591), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((2642, 2664), 'perform.system_solver.SystemSolver', 'SystemSolver', (['TEST_DIR'], {}), '(TEST_DIR)\n', (2654, 2664), False, 'from perform.system_solver import SystemSolver\n'), ((2744, 2857), 'perform.solution.solution_interior.SolutionInterior', 'SolutionInterior', (['self.gas', 'SOL_PRIM_IN_REACT', 'self.solver', 'self.num_cells', 'self.num_reactions', 'self.time_int'], {}), '(self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells,\n self.num_reactions, self.time_int)\n', (2760, 2857), False, 'from perform.solution.solution_interior import SolutionInterior\n'), ((2910, 2924), 'constants.del_test_dir', 'del_test_dir', ([], {}), '()\n', (2922, 2924), False, 'from constants import del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR\n'), ((12021, 12051), 'perform.input_funcs.read_restart_file', 'read_restart_file', (['self.solver'], {}), '(self.solver)\n', (12038, 12051), False, 'from perform.input_funcs import read_restart_file\n'), ((12446, 12499), 'numpy.zeros', 'np.zeros', (['(self.solver.num_steps, 2)'], {'dtype': 'REAL_TYPE'}), '((self.solver.num_steps, 2), dtype=REAL_TYPE)\n', (12454, 12499), True, 'import numpy as np\n'), ((9573, 9668), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_prim_' + self.solver.sim_type + '.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_prim_' + self.solver.\n sim_type + '.npy')\n", (9585, 9668), False, 'import os\n'), ((9720, 9815), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_cons_' + self.solver.sim_type + '.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_cons_' + self.solver.\n sim_type + '.npy')\n", (9732, 9815), False, 'import os\n'), ((9852, 9945), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('source_' + self.solver.sim_type + '.npy')"], {}), "(self.solver.unsteady_output_dir, 'source_' + self.solver.\n sim_type + '.npy')\n", (9864, 9945), False, 'import os\n'), ((9992, 10091), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('heat_release_' + self.solver.sim_type + '.npy')"], {}), "(self.solver.unsteady_output_dir, 'heat_release_' + self.solver\n .sim_type + '.npy')\n", (10004, 10091), False, 'import os\n'), ((10125, 10214), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('rhs_' + self.solver.sim_type + '.npy')"], {}), "(self.solver.unsteady_output_dir, 'rhs_' + self.solver.sim_type +\n '.npy')\n", (10137, 10214), False, 'import os\n'), ((11104, 11170), 'os.path.join', 'os.path.join', (['self.solver.restart_output_dir', '"""restart_file_4.npz"""'], {}), "(self.solver.restart_output_dir, 'restart_file_4.npz')\n", (11116, 11170), False, 'import os\n'), ((1590, 1648), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_init_sol_cons.npy"""'], {}), "(self.output_dir, 'sol_int_init_sol_cons.npy')\n", (1602, 1648), False, 'import os\n'), ((1708, 1755), 'numpy.array_equal', 'np.array_equal', (['sol.sol_prim', 'SOL_PRIM_IN_REACT'], {}), '(sol.sol_prim, SOL_PRIM_IN_REACT)\n', (1722, 1755), True, 'import numpy as np\n'), ((3134, 3188), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_sol_jacob.npy"""'], {}), "(self.output_dir, 'sol_int_sol_jacob.npy')\n", (3146, 3188), False, 'import os\n'), ((3221, 3279), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_sol_jacob_inv.npy"""'], {}), "(self.output_dir, 'sol_int_sol_jacob_inv.npy')\n", (3233, 3279), False, 'import os\n'), ((3911, 3962), 'numpy.repeat', 'np.repeat', (['self.sol.sol_prim[:, :, None]', '(6)'], {'axis': '(2)'}), '(self.sol.sol_prim[:, :, None], 6, axis=2)\n', (3920, 3962), True, 'import numpy as np\n'), ((4024, 4075), 'numpy.repeat', 'np.repeat', (['self.sol.sol_cons[:, :, None]', '(6)'], {'axis': '(2)'}), '(self.sol.sol_cons[:, :, None], 6, axis=2)\n', (4033, 4075), True, 'import numpy as np\n'), ((4161, 4219), 'numpy.repeat', 'np.repeat', (['self.sol.reaction_source[:, :, None]', '(5)'], {'axis': '(2)'}), '(self.sol.reaction_source[:, :, None], 5, axis=2)\n', (4170, 4219), True, 'import numpy as np\n'), ((4311, 4363), 'numpy.repeat', 'np.repeat', (['self.sol.heat_release[:, None]', '(5)'], {'axis': '(1)'}), '(self.sol.heat_release[:, None], 5, axis=1)\n', (4320, 4363), True, 'import numpy as np\n'), ((4433, 4479), 'numpy.repeat', 'np.repeat', (['self.sol.rhs[:, :, None]', '(5)'], {'axis': '(2)'}), '(self.sol.rhs[:, :, None], 5, axis=2)\n', (4442, 4479), True, 'import numpy as np\n'), ((8562, 8663), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_prim_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_prim_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (8574, 8663), False, 'import os\n'), ((8753, 8854), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_cons_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_cons_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (8765, 8854), False, 'import os\n'), ((8944, 9043), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('source_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'source_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (8956, 9043), False, 'import os\n'), ((9133, 9238), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('heat_release_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'heat_release_' + self.solver\n .sim_type + '_ITMDT.npy')\n", (9145, 9238), False, 'import os\n'), ((9311, 9406), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('rhs_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'rhs_' + self.solver.sim_type +\n '_ITMDT.npy')\n", (9323, 9406), False, 'import os\n'), ((10267, 10318), 'numpy.repeat', 'np.repeat', (['self.sol.sol_prim[:, :, None]', '(6)'], {'axis': '(2)'}), '(self.sol.sol_prim[:, :, None], 6, axis=2)\n', (10276, 10318), True, 'import numpy as np\n'), ((10376, 10427), 'numpy.repeat', 'np.repeat', (['self.sol.sol_cons[:, :, None]', '(6)'], {'axis': '(2)'}), '(self.sol.sol_cons[:, :, None], 6, axis=2)\n', (10385, 10427), True, 'import numpy as np\n'), ((10483, 10541), 'numpy.repeat', 'np.repeat', (['self.sol.reaction_source[:, :, None]', '(5)'], {'axis': '(2)'}), '(self.sol.reaction_source[:, :, None], 5, axis=2)\n', (10492, 10541), True, 'import numpy as np\n'), ((10603, 10655), 'numpy.repeat', 'np.repeat', (['self.sol.heat_release[:, None]', '(5)'], {'axis': '(1)'}), '(self.sol.heat_release[:, None], 5, axis=1)\n', (10612, 10655), True, 'import numpy as np\n'), ((10708, 10754), 'numpy.repeat', 'np.repeat', (['self.sol.rhs[:, :, None]', '(5)'], {'axis': '(2)'}), '(self.sol.rhs[:, :, None], 5, axis=2)\n', (10717, 10754), True, 'import numpy as np\n'), ((11284, 11336), 'numpy.repeat', 'np.repeat', (['SOL_PRIM_IN_REACT[:, :, None]', '(2)'], {'axis': '(-1)'}), '(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1)\n', (11293, 11336), True, 'import numpy as np\n'), ((11473, 11516), 'numpy.repeat', 'np.repeat', (['sol_cons[:, :, None]', '(2)'], {'axis': '(-1)'}), '(sol_cons[:, :, None], 2, axis=-1)\n', (11482, 11516), True, 'import numpy as np\n'), ((11677, 11741), 'os.path.join', 'os.path.join', (['self.solver.restart_output_dir', '"""restart_iter.dat"""'], {}), "(self.solver.restart_output_dir, 'restart_iter.dat')\n", (11689, 11741), False, 'import os\n'), ((12265, 12317), 'numpy.repeat', 'np.repeat', (['SOL_PRIM_IN_REACT[:, :, None]', '(2)'], {'axis': '(-1)'}), '(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1)\n', (12274, 12317), True, 'import numpy as np\n'), ((5108, 5209), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_prim_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_prim_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (5120, 5209), False, 'import os\n'), ((5285, 5386), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_cons_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_cons_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (5297, 5386), False, 'import os\n'), ((5460, 5559), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('source_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'source_' + self.solver.\n sim_type + '_ITMDT.npy')\n", (5472, 5559), False, 'import os\n'), ((5639, 5744), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('heat_release_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'heat_release_' + self.solver\n .sim_type + '_ITMDT.npy')\n", (5651, 5744), False, 'import os\n'), ((5815, 5910), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('rhs_' + self.solver.sim_type + '_ITMDT.npy')"], {}), "(self.solver.unsteady_output_dir, 'rhs_' + self.solver.sim_type +\n '_ITMDT.npy')\n", (5827, 5910), False, 'import os\n'), ((6825, 6927), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_prim_' + self.solver.sim_type + '_FAILED.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_prim_' + self.solver.\n sim_type + '_FAILED.npy')\n", (6837, 6927), False, 'import os\n'), ((7004, 7106), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('sol_cons_' + self.solver.sim_type + '_FAILED.npy')"], {}), "(self.solver.unsteady_output_dir, 'sol_cons_' + self.solver.\n sim_type + '_FAILED.npy')\n", (7016, 7106), False, 'import os\n'), ((7181, 7281), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('source_' + self.solver.sim_type + '_FAILED.npy')"], {}), "(self.solver.unsteady_output_dir, 'source_' + self.solver.\n sim_type + '_FAILED.npy')\n", (7193, 7281), False, 'import os\n'), ((7362, 7468), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('heat_release_' + self.solver.sim_type + '_FAILED.npy')"], {}), "(self.solver.unsteady_output_dir, 'heat_release_' + self.solver\n .sim_type + '_FAILED.npy')\n", (7374, 7468), False, 'import os\n'), ((7586, 7682), 'os.path.join', 'os.path.join', (['self.solver.unsteady_output_dir', "('rhs_' + self.solver.sim_type + '_FAILED.npy')"], {}), "(self.solver.unsteady_output_dir, 'rhs_' + self.solver.sim_type +\n '_FAILED.npy')\n", (7598, 7682), False, 'import os\n'), ((1836, 1894), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_init_sol_cons.npy"""'], {}), "(self.output_dir, 'sol_int_init_sol_cons.npy')\n", (1848, 1894), False, 'import os\n'), ((3371, 3425), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_sol_jacob.npy"""'], {}), "(self.output_dir, 'sol_int_sol_jacob.npy')\n", (3383, 3425), False, 'import os\n'), ((3509, 3567), 'os.path.join', 'os.path.join', (['self.output_dir', '"""sol_int_sol_jacob_inv.npy"""'], {}), "(self.output_dir, 'sol_int_sol_jacob_inv.npy')\n", (3521, 3567), False, 'import os\n'), ((5988, 6039), 'numpy.repeat', 'np.repeat', (['self.sol.sol_prim[:, :, None]', '(3)'], {'axis': '(2)'}), '(self.sol.sol_prim[:, :, None], 3, axis=2)\n', (5997, 6039), True, 'import numpy as np\n'), ((6105, 6156), 'numpy.repeat', 'np.repeat', (['self.sol.sol_cons[:, :, None]', '(3)'], {'axis': '(2)'}), '(self.sol.sol_cons[:, :, None], 3, axis=2)\n', (6114, 6156), True, 'import numpy as np\n'), ((6241, 6299), 'numpy.repeat', 'np.repeat', (['self.sol.reaction_source[:, :, None]', '(2)'], {'axis': '(2)'}), '(self.sol.reaction_source[:, :, None], 2, axis=2)\n', (6250, 6299), True, 'import numpy as np\n'), ((6407, 6459), 'numpy.repeat', 'np.repeat', (['self.sol.heat_release[:, None]', '(2)'], {'axis': '(1)'}), '(self.sol.heat_release[:, None], 2, axis=1)\n', (6416, 6459), True, 'import numpy as np\n'), ((6537, 6583), 'numpy.repeat', 'np.repeat', (['self.sol.rhs[:, :, None]', '(2)'], {'axis': '(2)'}), '(self.sol.rhs[:, :, None], 2, axis=2)\n', (6546, 6583), True, 'import numpy as np\n'), ((7761, 7812), 'numpy.repeat', 'np.repeat', (['self.sol.sol_prim[:, :, None]', '(4)'], {'axis': '(2)'}), '(self.sol.sol_prim[:, :, None], 4, axis=2)\n', (7770, 7812), True, 'import numpy as np\n'), ((7879, 7930), 'numpy.repeat', 'np.repeat', (['self.sol.sol_cons[:, :, None]', '(4)'], {'axis': '(2)'}), '(self.sol.sol_cons[:, :, None], 4, axis=2)\n', (7888, 7930), True, 'import numpy as np\n'), ((8016, 8074), 'numpy.repeat', 'np.repeat', (['self.sol.reaction_source[:, :, None]', '(3)'], {'axis': '(2)'}), '(self.sol.reaction_source[:, :, None], 3, axis=2)\n', (8025, 8074), True, 'import numpy as np\n'), ((8183, 8235), 'numpy.repeat', 'np.repeat', (['self.sol.heat_release[:, None]', '(3)'], {'axis': '(1)'}), '(self.sol.heat_release[:, None], 3, axis=1)\n', (8192, 8235), True, 'import numpy as np\n'), ((8314, 8360), 'numpy.repeat', 'np.repeat', (['self.sol.rhs[:, :, None]', '(3)'], {'axis': '(2)'}), '(self.sol.rhs[:, :, None], 3, axis=2)\n', (8323, 8360), True, 'import numpy as np\n')]
|
"""Test the module SMOTE ENN."""
# Authors: <NAME> <<EMAIL>>
# <NAME>
# License: MIT
import pytest
import numpy as np
from sklearn.utils.testing import assert_allclose, assert_array_equal
from imblearn.combine import SMOTEENN
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.over_sampling import SMOTE
RND_SEED = 0
X = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [
1.25192108, -0.22367336
], [0.53366841, -0.30312976], [1.52091956,
-0.49283504], [-0.28162401, -2.10400981],
[0.83680821,
1.72827342], [0.3084254, 0.33299982], [0.70472253, -0.73309052],
[0.28893132, -0.38761769], [1.15514042, 0.0129463], [
0.88407872, 0.35454207
], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [
-0.18410027, -0.45194484
], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [
-0.41635887, -0.38299653
], [0.08711622, 0.93259929], [1.70580611, -0.11219234]])
Y = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0])
R_TOL = 1e-4
def test_sample_regular():
smote = SMOTEENN(random_state=RND_SEED)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [
0.61319159, -0.11571667
], [0.66052536, -0.28246518], [-0.28162401, -2.10400981],
[0.83680821, 1.72827342], [0.08711622, 0.93259929]])
y_gt = np.array([0, 0, 0, 0, 1, 1, 1])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
def test_sample_regular_pass_smote_enn():
smote = SMOTEENN(
smote=SMOTE(sampling_strategy='auto', random_state=RND_SEED),
enn=EditedNearestNeighbours(sampling_strategy='all'),
random_state=RND_SEED)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [
0.61319159, -0.11571667
], [0.66052536, -0.28246518], [-0.28162401, -2.10400981],
[0.83680821, 1.72827342], [0.08711622, 0.93259929]])
y_gt = np.array([0, 0, 0, 0, 1, 1, 1])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
def test_sample_regular_half():
sampling_strategy = {0: 10, 1: 12}
smote = SMOTEENN(
sampling_strategy=sampling_strategy, random_state=RND_SEED)
X_resampled, y_resampled = smote.fit_resample(X, Y)
X_gt = np.array([[1.52091956, -0.49283504], [-0.28162401, -2.10400981],
[0.83680821, 1.72827342], [0.08711622, 0.93259929]])
y_gt = np.array([0, 1, 1, 1])
assert_allclose(X_resampled, X_gt)
assert_array_equal(y_resampled, y_gt)
def test_validate_estimator_init():
smote = SMOTE(random_state=RND_SEED)
enn = EditedNearestNeighbours(sampling_strategy='all')
smt = SMOTEENN(smote=smote, enn=enn, random_state=RND_SEED)
X_resampled, y_resampled = smt.fit_resample(X, Y)
X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [
0.61319159, -0.11571667
], [0.66052536, -0.28246518], [-0.28162401, -2.10400981],
[0.83680821, 1.72827342], [0.08711622, 0.93259929]])
y_gt = np.array([0, 0, 0, 0, 1, 1, 1])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
def test_validate_estimator_default():
smt = SMOTEENN(random_state=RND_SEED)
X_resampled, y_resampled = smt.fit_resample(X, Y)
X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [
0.61319159, -0.11571667
], [0.66052536, -0.28246518], [-0.28162401, -2.10400981],
[0.83680821, 1.72827342], [0.08711622, 0.93259929]])
y_gt = np.array([0, 0, 0, 0, 1, 1, 1])
assert_allclose(X_resampled, X_gt, rtol=R_TOL)
assert_array_equal(y_resampled, y_gt)
def test_parallelisation():
# Check if default job count is 1
smt = SMOTEENN(random_state=RND_SEED)
smt._validate_estimator()
assert smt.n_jobs == 1
assert smt.smote_.n_jobs == 1
assert smt.enn_.n_jobs == 1
# Check if job count is set
smt = SMOTEENN(random_state=RND_SEED, n_jobs=8)
smt._validate_estimator()
assert smt.n_jobs == 8
assert smt.smote_.n_jobs == 8
assert smt.enn_.n_jobs == 8
@pytest.mark.parametrize(
"smote_params, err_msg",
[({'smote': 'rnd'}, "smote needs to be a SMOTE"),
({'enn': 'rnd'}, "enn needs to be an ")]
)
def test_error_wrong_object(smote_params, err_msg):
smt = SMOTEENN(**smote_params)
with pytest.raises(ValueError, match=err_msg):
smt.fit_resample(X, Y)
|
[
"sklearn.utils.testing.assert_array_equal",
"imblearn.under_sampling.EditedNearestNeighbours",
"imblearn.over_sampling.SMOTE",
"imblearn.combine.SMOTEENN",
"numpy.array",
"pytest.mark.parametrize",
"pytest.raises",
"sklearn.utils.testing.assert_allclose"
] |
[((357, 935), 'numpy.array', 'np.array', (['[[0.11622591, -0.0317206], [0.77481731, 0.60935141], [1.25192108, -\n 0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [-\n 0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.3084254, \n 0.33299982], [0.70472253, -0.73309052], [0.28893132, -0.38761769], [\n 1.15514042, 0.0129463], [0.88407872, 0.35454207], [1.31301027, -\n 0.92648734], [-1.11515198, -0.93689695], [-0.18410027, -0.45194484], [\n 0.9281014, 0.53085498], [-0.14374509, 0.27370049], [-0.41635887, -\n 0.38299653], [0.08711622, 0.93259929], [1.70580611, -0.11219234]]'], {}), '([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [1.25192108, \n -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [-\n 0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.3084254, \n 0.33299982], [0.70472253, -0.73309052], [0.28893132, -0.38761769], [\n 1.15514042, 0.0129463], [0.88407872, 0.35454207], [1.31301027, -\n 0.92648734], [-1.11515198, -0.93689695], [-0.18410027, -0.45194484], [\n 0.9281014, 0.53085498], [-0.14374509, 0.27370049], [-0.41635887, -\n 0.38299653], [0.08711622, 0.93259929], [1.70580611, -0.11219234]])\n', (365, 935), True, 'import numpy as np\n'), ((1087, 1157), 'numpy.array', 'np.array', (['[0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0]'], {}), '([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0])\n', (1095, 1157), True, 'import numpy as np\n'), ((4433, 4577), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""smote_params, err_msg"""', "[({'smote': 'rnd'}, 'smote needs to be a SMOTE'), ({'enn': 'rnd'},\n 'enn needs to be an ')]"], {}), "('smote_params, err_msg', [({'smote': 'rnd'},\n 'smote needs to be a SMOTE'), ({'enn': 'rnd'}, 'enn needs to be an ')])\n", (4456, 4577), False, 'import pytest\n'), ((1212, 1243), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'random_state': 'RND_SEED'}), '(random_state=RND_SEED)\n', (1220, 1243), False, 'from imblearn.combine import SMOTEENN\n'), ((1312, 1519), 'numpy.array', 'np.array', (['[[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159, -\n 0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]]'], {}), '([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159,\n -0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]])\n', (1320, 1519), True, 'import numpy as np\n'), ((1557, 1588), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 1, 1, 1]'], {}), '([0, 0, 0, 0, 1, 1, 1])\n', (1565, 1588), True, 'import numpy as np\n'), ((1593, 1639), 'sklearn.utils.testing.assert_allclose', 'assert_allclose', (['X_resampled', 'X_gt'], {'rtol': 'R_TOL'}), '(X_resampled, X_gt, rtol=R_TOL)\n', (1608, 1639), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((1644, 1681), 'sklearn.utils.testing.assert_array_equal', 'assert_array_equal', (['y_resampled', 'y_gt'], {}), '(y_resampled, y_gt)\n', (1662, 1681), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((1979, 2186), 'numpy.array', 'np.array', (['[[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159, -\n 0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]]'], {}), '([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159,\n -0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]])\n', (1987, 2186), True, 'import numpy as np\n'), ((2224, 2255), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 1, 1, 1]'], {}), '([0, 0, 0, 0, 1, 1, 1])\n', (2232, 2255), True, 'import numpy as np\n'), ((2260, 2306), 'sklearn.utils.testing.assert_allclose', 'assert_allclose', (['X_resampled', 'X_gt'], {'rtol': 'R_TOL'}), '(X_resampled, X_gt, rtol=R_TOL)\n', (2275, 2306), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((2311, 2348), 'sklearn.utils.testing.assert_array_equal', 'assert_array_equal', (['y_resampled', 'y_gt'], {}), '(y_resampled, y_gt)\n', (2329, 2348), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((2434, 2502), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'sampling_strategy': 'sampling_strategy', 'random_state': 'RND_SEED'}), '(sampling_strategy=sampling_strategy, random_state=RND_SEED)\n', (2442, 2502), False, 'from imblearn.combine import SMOTEENN\n'), ((2580, 2702), 'numpy.array', 'np.array', (['[[1.52091956, -0.49283504], [-0.28162401, -2.10400981], [0.83680821, \n 1.72827342], [0.08711622, 0.93259929]]'], {}), '([[1.52091956, -0.49283504], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]])\n', (2588, 2702), True, 'import numpy as np\n'), ((2730, 2752), 'numpy.array', 'np.array', (['[0, 1, 1, 1]'], {}), '([0, 1, 1, 1])\n', (2738, 2752), True, 'import numpy as np\n'), ((2757, 2791), 'sklearn.utils.testing.assert_allclose', 'assert_allclose', (['X_resampled', 'X_gt'], {}), '(X_resampled, X_gt)\n', (2772, 2791), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((2796, 2833), 'sklearn.utils.testing.assert_array_equal', 'assert_array_equal', (['y_resampled', 'y_gt'], {}), '(y_resampled, y_gt)\n', (2814, 2833), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((2884, 2912), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': 'RND_SEED'}), '(random_state=RND_SEED)\n', (2889, 2912), False, 'from imblearn.over_sampling import SMOTE\n'), ((2923, 2971), 'imblearn.under_sampling.EditedNearestNeighbours', 'EditedNearestNeighbours', ([], {'sampling_strategy': '"""all"""'}), "(sampling_strategy='all')\n", (2946, 2971), False, 'from imblearn.under_sampling import EditedNearestNeighbours\n'), ((2982, 3035), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'smote': 'smote', 'enn': 'enn', 'random_state': 'RND_SEED'}), '(smote=smote, enn=enn, random_state=RND_SEED)\n', (2990, 3035), False, 'from imblearn.combine import SMOTEENN\n'), ((3101, 3308), 'numpy.array', 'np.array', (['[[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159, -\n 0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]]'], {}), '([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159,\n -0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]])\n', (3109, 3308), True, 'import numpy as np\n'), ((3346, 3377), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 1, 1, 1]'], {}), '([0, 0, 0, 0, 1, 1, 1])\n', (3354, 3377), True, 'import numpy as np\n'), ((3382, 3428), 'sklearn.utils.testing.assert_allclose', 'assert_allclose', (['X_resampled', 'X_gt'], {'rtol': 'R_TOL'}), '(X_resampled, X_gt, rtol=R_TOL)\n', (3397, 3428), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((3433, 3470), 'sklearn.utils.testing.assert_array_equal', 'assert_array_equal', (['y_resampled', 'y_gt'], {}), '(y_resampled, y_gt)\n', (3451, 3470), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((3522, 3553), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'random_state': 'RND_SEED'}), '(random_state=RND_SEED)\n', (3530, 3553), False, 'from imblearn.combine import SMOTEENN\n'), ((3619, 3826), 'numpy.array', 'np.array', (['[[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159, -\n 0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]]'], {}), '([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [0.61319159,\n -0.11571667], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [\n 0.83680821, 1.72827342], [0.08711622, 0.93259929]])\n', (3627, 3826), True, 'import numpy as np\n'), ((3864, 3895), 'numpy.array', 'np.array', (['[0, 0, 0, 0, 1, 1, 1]'], {}), '([0, 0, 0, 0, 1, 1, 1])\n', (3872, 3895), True, 'import numpy as np\n'), ((3900, 3946), 'sklearn.utils.testing.assert_allclose', 'assert_allclose', (['X_resampled', 'X_gt'], {'rtol': 'R_TOL'}), '(X_resampled, X_gt, rtol=R_TOL)\n', (3915, 3946), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((3951, 3988), 'sklearn.utils.testing.assert_array_equal', 'assert_array_equal', (['y_resampled', 'y_gt'], {}), '(y_resampled, y_gt)\n', (3969, 3988), False, 'from sklearn.utils.testing import assert_allclose, assert_array_equal\n'), ((4067, 4098), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'random_state': 'RND_SEED'}), '(random_state=RND_SEED)\n', (4075, 4098), False, 'from imblearn.combine import SMOTEENN\n'), ((4265, 4306), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {'random_state': 'RND_SEED', 'n_jobs': '(8)'}), '(random_state=RND_SEED, n_jobs=8)\n', (4273, 4306), False, 'from imblearn.combine import SMOTEENN\n'), ((4651, 4675), 'imblearn.combine.SMOTEENN', 'SMOTEENN', ([], {}), '(**smote_params)\n', (4659, 4675), False, 'from imblearn.combine import SMOTEENN\n'), ((4685, 4725), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'err_msg'}), '(ValueError, match=err_msg)\n', (4698, 4725), False, 'import pytest\n'), ((1762, 1816), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'sampling_strategy': '"""auto"""', 'random_state': 'RND_SEED'}), "(sampling_strategy='auto', random_state=RND_SEED)\n", (1767, 1816), False, 'from imblearn.over_sampling import SMOTE\n'), ((1830, 1878), 'imblearn.under_sampling.EditedNearestNeighbours', 'EditedNearestNeighbours', ([], {'sampling_strategy': '"""all"""'}), "(sampling_strategy='all')\n", (1853, 1878), False, 'from imblearn.under_sampling import EditedNearestNeighbours\n')]
|
# Copyright 2021 TileDB Inc.
# Licensed under the MIT License.
import numpy as np
import pytest
from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype
netCDF4 = pytest.importorskip("netCDF4")
@pytest.mark.parametrize(
"input_dtype,scale_factor,add_offset,output_dtype",
(
(np.int16, None, None, np.int16),
(np.int16, np.float32(1), None, np.float32),
(np.int16, None, np.float32(1), np.float32),
(np.int16, np.float64(1), np.float32(1), np.float64),
),
)
def test_unpacked_dtype(input_dtype, scale_factor, add_offset, output_dtype):
"""Tests computing the unpacked data type for a NetCDF variable."""
with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset:
dataset.createDimension("t", None)
variable = dataset.createVariable("x", dimensions=("t",), datatype=input_dtype)
if scale_factor is not None:
variable.setncattr("scale_factor", scale_factor)
if add_offset is not None:
variable.setncattr("add_offset", add_offset)
dtype = get_unpacked_dtype(variable)
assert dtype == output_dtype
def test_unpacked_dtype_unsupported_dtype_error():
"""Tests attempting to unpack a NetCDF variable with a data type that does not
support packing/unpacking."""
with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset:
variable = dataset.createVariable("x", dimensions=tuple(), datatype="S1")
with pytest.raises(ValueError):
get_unpacked_dtype(variable)
@pytest.mark.parametrize(
"value, expected_result",
(
(np.float64(1), np.float64(1)),
(np.array((1), dtype=np.float64), np.float64(1)),
(np.array([1], dtype=np.int32), np.int32(1)),
),
)
def test_get_netcdf_metadata_number(value, expected_result):
"""Tests computing the unpacked data type for a NetCDF variable."""
key = "name"
with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset:
dataset.setncattr(key, value)
result = get_netcdf_metadata(dataset, key, is_number=True)
assert result == expected_result
@pytest.mark.parametrize("value", (("",), (1, 2)))
def test_get_netcdf_metadata_number_with_warning(value):
"""Tests computing the unpacked data type for a NetCDF variable."""
key = "name"
with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset:
dataset.setncattr(key, value)
with pytest.warns(Warning):
result = get_netcdf_metadata(dataset, key, is_number=True)
assert result is None
|
[
"tiledb.cf.netcdf_engine._utils.get_unpacked_dtype",
"numpy.float64",
"numpy.int32",
"pytest.mark.parametrize",
"numpy.array",
"pytest.importorskip",
"tiledb.cf.netcdf_engine._utils.get_netcdf_metadata",
"pytest.raises",
"numpy.float32",
"pytest.warns"
] |
[((191, 221), 'pytest.importorskip', 'pytest.importorskip', (['"""netCDF4"""'], {}), "('netCDF4')\n", (210, 221), False, 'import pytest\n'), ((2153, 2202), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value"""', "(('',), (1, 2))"], {}), "('value', (('',), (1, 2)))\n", (2176, 2202), False, 'import pytest\n'), ((1090, 1118), 'tiledb.cf.netcdf_engine._utils.get_unpacked_dtype', 'get_unpacked_dtype', (['variable'], {}), '(variable)\n', (1108, 1118), False, 'from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype\n'), ((2059, 2108), 'tiledb.cf.netcdf_engine._utils.get_netcdf_metadata', 'get_netcdf_metadata', (['dataset', 'key'], {'is_number': '(True)'}), '(dataset, key, is_number=True)\n', (2078, 2108), False, 'from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype\n'), ((373, 386), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (383, 386), True, 'import numpy as np\n'), ((432, 445), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (442, 445), True, 'import numpy as np\n'), ((479, 492), 'numpy.float64', 'np.float64', (['(1)'], {}), '(1)\n', (489, 492), True, 'import numpy as np\n'), ((494, 507), 'numpy.float32', 'np.float32', (['(1)'], {}), '(1)\n', (504, 507), True, 'import numpy as np\n'), ((1489, 1514), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1502, 1514), False, 'import pytest\n'), ((1528, 1556), 'tiledb.cf.netcdf_engine._utils.get_unpacked_dtype', 'get_unpacked_dtype', (['variable'], {}), '(variable)\n', (1546, 1556), False, 'from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype\n'), ((1630, 1643), 'numpy.float64', 'np.float64', (['(1)'], {}), '(1)\n', (1640, 1643), True, 'import numpy as np\n'), ((1645, 1658), 'numpy.float64', 'np.float64', (['(1)'], {}), '(1)\n', (1655, 1658), True, 'import numpy as np\n'), ((1670, 1699), 'numpy.array', 'np.array', (['(1)'], {'dtype': 'np.float64'}), '(1, dtype=np.float64)\n', (1678, 1699), True, 'import numpy as np\n'), ((1703, 1716), 'numpy.float64', 'np.float64', (['(1)'], {}), '(1)\n', (1713, 1716), True, 'import numpy as np\n'), ((1728, 1757), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.int32'}), '([1], dtype=np.int32)\n', (1736, 1757), True, 'import numpy as np\n'), ((1759, 1770), 'numpy.int32', 'np.int32', (['(1)'], {}), '(1)\n', (1767, 1770), True, 'import numpy as np\n'), ((2472, 2493), 'pytest.warns', 'pytest.warns', (['Warning'], {}), '(Warning)\n', (2484, 2493), False, 'import pytest\n'), ((2516, 2565), 'tiledb.cf.netcdf_engine._utils.get_netcdf_metadata', 'get_netcdf_metadata', (['dataset', 'key'], {'is_number': '(True)'}), '(dataset, key, is_number=True)\n', (2535, 2565), False, 'from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype\n')]
|
import nose.tools
import unittest
import os
import json
import pandas as pd
import numpy as np
import mia
from mia.io_tools import *
from ..test_utils import get_file_path
class IOTests(unittest.TestCase):
@classmethod
def setupClass(cls):
cls._output_files = []
@classmethod
def teardownClass(cls):
for f in cls._output_files:
if os.path.isfile(f):
os.remove(f)
def test_iterate_directory(self):
img_directory = get_file_path("texture_patches")
expected_files = ['texture1.png', 'texture2.png', 'texture3.png',
'texture4.png', 'texture5.png']
expected_files = [os.path.join(img_directory, p) for p in expected_files]
dirs = list(iterate_directory(img_directory))
nose.tools.assert_equal(len(dirs), len(expected_files))
for img_path, expected in zip(dirs, expected_files):
nose.tools.assert_equal(img_path, expected)
def test_iterate_directories(self):
img_directory = get_file_path("texture_patches")
expected_files = ['texture1.png', 'texture2.png', 'texture3.png',
'texture4.png', 'texture5.png']
expected_files = [os.path.join(img_directory, p) for p in expected_files]
dirs = list(iterate_directories(img_directory, img_directory))
nose.tools.assert_equal(len(dirs), len(expected_files))
for (img_path, msk_path), expected in zip(dirs, expected_files):
nose.tools.assert_equal(img_path, expected)
nose.tools.assert_equal(msk_path, expected)
def test_check_is_file(self):
img_path = get_file_path("texture_patches/texture1.png")
nose.tools.assert_true(check_is_file(img_path, ".png"))
def test_check_is_file_multiple_images(self):
img_path = get_file_path("synthetic_patch.dcm")
nose.tools.assert_true(check_is_file(img_path, ".png", ".dcm"))
def test_check_is_file_wrong_extension(self):
img_path = get_file_path("blob_detection.csv")
nose.tools.assert_false(check_is_file(img_path, ".png", ".dcm"))
def test_check_is_image_raises_on_not_a_file(self):
img_path = get_file_path("texture_patches")
nose.tools.assert_false(check_is_file(img_path, ".png", ".dcm"))
def test_check_is_directory(self):
directory = get_file_path("texture_patches")
try:
check_is_directory(directory)
except:
self.fail("check_is_directory raised when it shouldn't have.")
def test_check_is_directory_raises(self):
img_path = get_file_path("texture_patches/not_a_directory")
nose.tools.assert_raises(ValueError, check_is_directory, img_path)
def test_dump_mapping_to_json(self):
output_file = 'test_data.json'
mapping = pd.DataFrame(np.ones((10, 2)), columns=['x', 'y'])
dump_mapping_to_json(mapping, ['x', 'y'], np.zeros(10), output_file)
nose.tools.assert_true(os.path.isfile(output_file))
with open(output_file, 'rb') as f:
data = json.load(f)
nose.tools.assert_equal(len(data), 1)
nose.tools.assert_equal(data[0]['name'], 'Class: 0')
nose.tools.assert_equal(len(data[0]['data']), 10)
self._output_files.append(output_file)
|
[
"numpy.ones",
"os.path.join",
"os.path.isfile",
"numpy.zeros",
"json.load",
"os.remove"
] |
[((380, 397), 'os.path.isfile', 'os.path.isfile', (['f'], {}), '(f)\n', (394, 397), False, 'import os\n'), ((683, 713), 'os.path.join', 'os.path.join', (['img_directory', 'p'], {}), '(img_directory, p)\n', (695, 713), False, 'import os\n'), ((1233, 1263), 'os.path.join', 'os.path.join', (['img_directory', 'p'], {}), '(img_directory, p)\n', (1245, 1263), False, 'import os\n'), ((2856, 2872), 'numpy.ones', 'np.ones', (['(10, 2)'], {}), '((10, 2))\n', (2863, 2872), True, 'import numpy as np\n'), ((2944, 2956), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (2952, 2956), True, 'import numpy as np\n'), ((3003, 3030), 'os.path.isfile', 'os.path.isfile', (['output_file'], {}), '(output_file)\n', (3017, 3030), False, 'import os\n'), ((3095, 3107), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3104, 3107), False, 'import json\n'), ((415, 427), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (424, 427), False, 'import os\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.