code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np import math from scipy.optimize import minimize class Optimize(): def __init__(self): self.c_rad2deg = 180.0 / np.pi self.c_deg2rad = np.pi / 180.0 def isRotationMatrix(self, R) : Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) # print('n: ' + str(n)) return n < 1e-6 def Rot_Matrix_2_Euler_Angles(self, R): assert(self.isRotationMatrix(R)) pitch = -math.asin(R[1, 2]) roll = -math.atan2(R[1, 0], R[1, 1]) yaw = -math.atan2(R[0, 2], R[2, 2]) return np.array([roll, pitch, yaw]) def Get_Init_Guess(self, l_vec, b_vec, f_vec): f_vec = np.cross(b_vec, l_vec) l_vec = np.cross(f_vec, b_vec) l_norm = np.linalg.norm(l_vec) l_vec /= l_norm b_norm = np.linalg.norm(b_vec) b_vec /= b_norm f_norm = np.linalg.norm(f_vec) f_vec /= f_norm l_vec = l_vec.reshape(3, 1) b_vec = b_vec.reshape(3, 1) f_vec = f_vec.reshape(3, 1) l = np.array([1, 0, 0]).reshape(1, 3) b = np.array([0, 1, 0]).reshape(1, 3) f = np.array([0, 0, 1]).reshape(1, 3) R = l_vec @ l + b_vec @ b + f_vec @ f assert (R.shape == (3, 3)) roll, pitch, yaw = self.Rot_Matrix_2_Euler_Angles(R) return np.array([roll, pitch, yaw]) def Euler_Angles_2_Vectors(self, rx, ry, rz): ''' rx: pitch ry: yaw rz: roll ''' ry *= -1 rz *= -1 R_x = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(rx), -np.sin(rx)], [0.0, np.sin(rx), np.cos(rx)]]) R_y = np.array([[np.cos(ry), 0.0, np.sin(ry)], [0.0, 1.0, 0.0], [-np.sin(ry), 0.0, np.cos(ry)]]) R_z = np.array([[np.cos(rz), -np.sin(rz), 0.0], [np.sin(rz), np.cos(rz), 0.0], [0.0, 0.0, 1.0]]) R = R_y @ R_x @ R_z l_vec = R @ np.array([1, 0, 0]) b_vec = R @ np.array([0, 1, 0]) f_vec = R @ np.array([0, 0, 1]) return np.array([l_vec, b_vec, f_vec]) def Objective(self, x, l_vec, b_vec, f_vec): rx = x[0] ry = x[1] rz = x[2] l_hat, b_hat, f_hat = self.Euler_Angles_2_Vectors(rx, ry, rz) l_vec_dot = np.clip(l_hat[0] * l_vec[0] + l_hat[1] * l_vec[1] + l_hat[2] * l_vec[2], -1, 1) b_vec_dot = np.clip(b_hat[0] * b_vec[0] + b_hat[1] * b_vec[1] + b_hat[2] * b_vec[2], -1, 1) f_vec_dot = np.clip(f_hat[0] * f_vec[0] + f_hat[1] * f_vec[1] + f_hat[2] * f_vec[2], -1, 1) return math.acos(l_vec_dot) ** 2 + math.acos(b_vec_dot) ** 2 + math.acos(f_vec_dot) ** 2 def Get_Ortho_Vectors(self, l_vec, b_vec, f_vec): x0 = self.Get_Init_Guess(l_vec, b_vec, f_vec) sol = minimize(self.Objective, x0, args=(l_vec, b_vec, f_vec), method='nelder-mead', options={'xatol': 1e-7, 'disp': False}) pitch_rad, yaw_rad, roll_rad = sol.x v1, v2, v3 = self.Euler_Angles_2_Vectors(pitch_rad, yaw_rad, roll_rad) return np.array([v1, v2, v3])
[ "numpy.identity", "numpy.clip", "numpy.cross", "math.acos", "scipy.optimize.minimize", "math.asin", "numpy.array", "numpy.dot", "math.atan2", "numpy.cos", "numpy.linalg.norm", "numpy.sin", "numpy.transpose" ]
[((246, 261), 'numpy.transpose', 'np.transpose', (['R'], {}), '(R)\n', (258, 261), True, 'import numpy as np\n'), ((289, 302), 'numpy.dot', 'np.dot', (['Rt', 'R'], {}), '(Rt, R)\n', (295, 302), True, 'import numpy as np\n'), ((315, 344), 'numpy.identity', 'np.identity', (['(3)'], {'dtype': 'R.dtype'}), '(3, dtype=R.dtype)\n', (326, 344), True, 'import numpy as np\n'), ((359, 395), 'numpy.linalg.norm', 'np.linalg.norm', (['(I - shouldBeIdentity)'], {}), '(I - shouldBeIdentity)\n', (373, 395), True, 'import numpy as np\n'), ((680, 708), 'numpy.array', 'np.array', (['[roll, pitch, yaw]'], {}), '([roll, pitch, yaw])\n', (688, 708), True, 'import numpy as np\n'), ((778, 800), 'numpy.cross', 'np.cross', (['b_vec', 'l_vec'], {}), '(b_vec, l_vec)\n', (786, 800), True, 'import numpy as np\n'), ((817, 839), 'numpy.cross', 'np.cross', (['f_vec', 'b_vec'], {}), '(f_vec, b_vec)\n', (825, 839), True, 'import numpy as np\n'), ((866, 887), 'numpy.linalg.norm', 'np.linalg.norm', (['l_vec'], {}), '(l_vec)\n', (880, 887), True, 'import numpy as np\n'), ((929, 950), 'numpy.linalg.norm', 'np.linalg.norm', (['b_vec'], {}), '(b_vec)\n', (943, 950), True, 'import numpy as np\n'), ((992, 1013), 'numpy.linalg.norm', 'np.linalg.norm', (['f_vec'], {}), '(f_vec)\n', (1006, 1013), True, 'import numpy as np\n'), ((1487, 1515), 'numpy.array', 'np.array', (['[roll, pitch, yaw]'], {}), '([roll, pitch, yaw])\n', (1495, 1515), True, 'import numpy as np\n'), ((2325, 2356), 'numpy.array', 'np.array', (['[l_vec, b_vec, f_vec]'], {}), '([l_vec, b_vec, f_vec])\n', (2333, 2356), True, 'import numpy as np\n'), ((2554, 2633), 'numpy.clip', 'np.clip', (['(l_hat[0] * l_vec[0] + l_hat[1] * l_vec[1] + l_hat[2] * l_vec[2])', '(-1)', '(1)'], {}), '(l_hat[0] * l_vec[0] + l_hat[1] * l_vec[1] + l_hat[2] * l_vec[2], -1, 1)\n', (2561, 2633), True, 'import numpy as np\n'), ((2654, 2733), 'numpy.clip', 'np.clip', (['(b_hat[0] * b_vec[0] + b_hat[1] * b_vec[1] + b_hat[2] * b_vec[2])', '(-1)', '(1)'], {}), '(b_hat[0] * b_vec[0] + b_hat[1] * b_vec[1] + b_hat[2] * b_vec[2], -1, 1)\n', (2661, 2733), True, 'import numpy as np\n'), ((2755, 2834), 'numpy.clip', 'np.clip', (['(f_hat[0] * f_vec[0] + f_hat[1] * f_vec[1] + f_hat[2] * f_vec[2])', '(-1)', '(1)'], {}), '(f_hat[0] * f_vec[0] + f_hat[1] * f_vec[1] + f_hat[2] * f_vec[2], -1, 1)\n', (2762, 2834), True, 'import numpy as np\n'), ((3074, 3198), 'scipy.optimize.minimize', 'minimize', (['self.Objective', 'x0'], {'args': '(l_vec, b_vec, f_vec)', 'method': '"""nelder-mead"""', 'options': "{'xatol': 1e-07, 'disp': False}"}), "(self.Objective, x0, args=(l_vec, b_vec, f_vec), method=\n 'nelder-mead', options={'xatol': 1e-07, 'disp': False})\n", (3082, 3198), False, 'from scipy.optimize import minimize\n'), ((3335, 3357), 'numpy.array', 'np.array', (['[v1, v2, v3]'], {}), '([v1, v2, v3])\n', (3343, 3357), True, 'import numpy as np\n'), ((556, 574), 'math.asin', 'math.asin', (['R[1, 2]'], {}), '(R[1, 2])\n', (565, 574), False, 'import math\n'), ((591, 619), 'math.atan2', 'math.atan2', (['R[1, 0]', 'R[1, 1]'], {}), '(R[1, 0], R[1, 1])\n', (601, 619), False, 'import math\n'), ((635, 663), 'math.atan2', 'math.atan2', (['R[0, 2]', 'R[2, 2]'], {}), '(R[0, 2], R[2, 2])\n', (645, 663), False, 'import math\n'), ((2210, 2229), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (2218, 2229), True, 'import numpy as np\n'), ((2250, 2269), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (2258, 2269), True, 'import numpy as np\n'), ((2290, 2309), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (2298, 2309), True, 'import numpy as np\n'), ((1168, 1187), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (1176, 1187), True, 'import numpy as np\n'), ((1214, 1233), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (1222, 1233), True, 'import numpy as np\n'), ((1260, 1279), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (1268, 1279), True, 'import numpy as np\n'), ((2915, 2935), 'math.acos', 'math.acos', (['f_vec_dot'], {}), '(f_vec_dot)\n', (2924, 2935), False, 'import math\n'), ((1747, 1757), 'numpy.cos', 'np.cos', (['rx'], {}), '(rx)\n', (1753, 1757), True, 'import numpy as np\n'), ((1803, 1813), 'numpy.sin', 'np.sin', (['rx'], {}), '(rx)\n', (1809, 1813), True, 'import numpy as np\n'), ((1815, 1825), 'numpy.cos', 'np.cos', (['rx'], {}), '(rx)\n', (1821, 1825), True, 'import numpy as np\n'), ((1855, 1865), 'numpy.cos', 'np.cos', (['ry'], {}), '(ry)\n', (1861, 1865), True, 'import numpy as np\n'), ((1872, 1882), 'numpy.sin', 'np.sin', (['ry'], {}), '(ry)\n', (1878, 1882), True, 'import numpy as np\n'), ((1969, 1979), 'numpy.cos', 'np.cos', (['ry'], {}), '(ry)\n', (1975, 1979), True, 'import numpy as np\n'), ((2009, 2019), 'numpy.cos', 'np.cos', (['rz'], {}), '(rz)\n', (2015, 2019), True, 'import numpy as np\n'), ((2065, 2075), 'numpy.sin', 'np.sin', (['rz'], {}), '(rz)\n', (2071, 2075), True, 'import numpy as np\n'), ((2077, 2087), 'numpy.cos', 'np.cos', (['rz'], {}), '(rz)\n', (2083, 2087), True, 'import numpy as np\n'), ((2859, 2879), 'math.acos', 'math.acos', (['l_vec_dot'], {}), '(l_vec_dot)\n', (2868, 2879), False, 'import math\n'), ((2887, 2907), 'math.acos', 'math.acos', (['b_vec_dot'], {}), '(b_vec_dot)\n', (2896, 2907), False, 'import math\n'), ((1760, 1770), 'numpy.sin', 'np.sin', (['rx'], {}), '(rx)\n', (1766, 1770), True, 'import numpy as np\n'), ((1952, 1962), 'numpy.sin', 'np.sin', (['ry'], {}), '(ry)\n', (1958, 1962), True, 'import numpy as np\n'), ((2022, 2032), 'numpy.sin', 'np.sin', (['rz'], {}), '(rz)\n', (2028, 2032), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np from flatland.core.grid.grid4_utils import get_new_position from flatland.envs.agent_utils import TrainState from flatland.utils.rendertools import RenderTool, AgentRenderVariant from utils.fast_methods import fast_count_nonzero, fast_argmax class AgentCanChooseHelper: def __init__(self): self.render_debug_information = False def reset(self, env): self.env = env if self.env is not None: self.env.dev_obs_dict = {} self.switches = {} self.switches_neighbours = {} self.switch_cluster = {} self.switch_cluster_occupied = {} self.switch_cluster_lock = {} self.switch_cluster_grid = None self.agent_positions = None self.reset_swicht_cluster_lock() self.reset_switch_cluster_occupied() if self.env is not None: self.find_all_cell_where_agent_can_choose() self.calculate_agent_positions() def get_agent_positions(self): return self.agent_positions def calculate_agent_positions(self): self.agent_positions: np.ndarray = np.full((self.env.height, self.env.width), -1) for agent_handle in self.env.get_agent_handles(): agent = self.env.agents[agent_handle] if agent.state in [TrainState.MOVING, TrainState.STOPPED, TrainState.MALFUNCTION]: position = agent.position if position is None: position = agent.initial_position self.agent_positions[position] = agent_handle def clear_switch_cluster_lock(self): ''' clean up switch cluster lock ''' self.switch_cluster_lock = {} def clear_switch_cluster_occupied(self): ''' clean up switch cluster occupied ''' self.switch_cluster_occupied = {} def lock_switch_cluster(self, handle, agent_pos, agent_dir): ''' Lock the switch cluster if possible :param handle: Agent handle :param agent_pos: position to lock :param agent_dir: direction :return: True if lock is successfully done otherwise false (it might still have a lock) ''' cluster_id, grid_cell_members = self.get_switch_cluster(agent_pos) if cluster_id < 1: return True lock_handle = self.switch_cluster_lock.get(cluster_id, None) if lock_handle is None: self.switch_cluster_lock.update({cluster_id: handle}) return True if lock_handle == handle: return True return False def unlock_switch_cluster(self, handle, agent_pos, agent_dir): ''' Lock the switch cluster if possible :param handle: Agent handle :param agent_pos: position to lock :param agent_dir: direction :return: True if unlock is successfully done otherwise false (it might still have a lock own by another agent) ''' cluster_id, grid_cell_members = self.get_switch_cluster(agent_pos) if cluster_id < 1: return True lock_handle = self.switch_cluster_lock.get(cluster_id, None) if lock_handle == handle: self.switch_cluster_lock.update({cluster_id, None}) return True return False def get_agent_position_and_direction(self, handle): ''' Returns the agent position - if not yet started (active) it returns the initial position :param handle: agent reference (handle) :return: agent_pos, agent_dir, agent_state ''' agent = self.env.agents[handle] agent_pos = agent.position agent_dir = agent.direction if agent_pos is None: agent_pos = agent.initial_position agent_dir = agent.initial_direction return agent_pos, agent_dir, agent.state, agent.target def has_agent_switch_cluster_lock(self, handle, agent_pos=None, agent_dir=None): ''' Checks if the agent passed by the handle has the switch cluster lock :param handle: agent reference (handle) :param agent_pos: position to check :param agent_dir: direction property :return: True if handle owns the lock otherwise false ''' if agent_pos is None or agent_dir is None: agent_pos, agent_dir, agent_state, agent_target = self.get_agent_position_and_direction(handle) cluster_id, grid_cell_members = self.get_switch_cluster(agent_pos) if cluster_id < 1: return False lock_handle = self.switch_cluster_lock.get(cluster_id, None) return lock_handle == handle def get_switch_cluster_occupiers_next_cell(self, handle, agent_pos, agent_dir): ''' Returns all occupiers for the next cell :param handle: agent reference (handle) :param agent_pos: position to check :param agent_dir: direction property :return: a list of all agents (handles) which occupied the next cell switch cluster ''' possible_transitions = self.env.rail.get_transitions(*agent_pos, agent_dir) occupiers = [] for new_direction in range(4): if possible_transitions[new_direction] == 1: new_position = get_new_position(agent_pos, new_direction) occupiers += self.get_switch_cluster_occupiers(handle, new_position, new_direction) return occupiers def mark_switch_next_cluster_occupied(self, handle): agent_position, agent_direciton, agent_state, agent_target = \ self.get_agent_position_and_direction(handle) possible_transitions = self.env.rail.get_transitions(*agent_position, agent_direciton) for new_direction in range(4): if possible_transitions[new_direction] == 1: new_position = get_new_position(agent_position, new_direction) self.mark_switch_cluster_occupied(handle, new_position, new_direction) def can_agent_enter_next_cluster(self, handle): agent_position, agent_direciton, agent_state, agent_target = \ self.get_agent_position_and_direction(handle) occupiers = self.get_switch_cluster_occupiers_next_cell(handle, agent_position, agent_direciton) if len(occupiers) > 0 and handle not in occupiers: return False return True def get_switch_cluster_occupiers(self, handle, agent_pos, agent_dir): ''' :param handle: agent reference (handle) :param agent_pos: position to check :param agent_dir: direction property :return: a list of all agents (handles) which occupied the switch cluster ''' cluster_id, grid_cell_members = self.get_switch_cluster(agent_pos) if cluster_id < 1: return [] return self.switch_cluster_occupied.get(cluster_id, []) def mark_switch_cluster_occupied(self, handle, agent_pos, agent_dir): ''' Add the agent handle to the switch cluster occupied data. Set the agent (handle) as occupier :param handle: agent reference (handle) :param agent_pos: position to check :param agent_dir: direction property :return: ''' cluster_id, grid_cell_members = self.get_switch_cluster(agent_pos) if cluster_id < 1: return agent_handles = self.switch_cluster_occupied.get(cluster_id, []) agent_handles.append(handle) self.switch_cluster_occupied.update({cluster_id: agent_handles}) def reset_swicht_cluster_lock(self): ''' Reset the explicit lock data switch_cluster_lock ''' self.clear_switch_cluster_lock() def reset_switch_cluster_occupied(self, handle_only_active_agents=False): ''' Reset the occupied flag by recomputing the switch_cluster_occupied map :param handle_only_active_agents: if true only agent with status ACTIVE will be mapped ''' self.clear_switch_cluster_occupied() for handle in range(self.env.get_num_agents()): agent_pos, agent_dir, agent_state, agent_target = self.get_agent_position_and_direction(handle) if handle_only_active_agents: if agent_state in [TrainState.MOVING, TrainState.STOPPED, TrainState.MALFUNCTION]: self.mark_switch_cluster_occupied(handle, agent_pos, agent_dir) else: if agent_state < TrainState.DONE: self.mark_switch_cluster_occupied(handle, agent_pos, agent_dir) def get_switch_cluster(self, pos): ''' Returns the switch cluster at position pos :param pos: the position for which the switch cluster must be returned :return: if the position is not None and the switch cluster are computed it returns the cluster_id and the grid cell members otherwise -1 and an empty list ''' if pos is None: return -1, [] if self.switch_cluster_grid is None: return -1, [] cluster_id = self.switch_cluster_grid[pos] grid_cell_members = self.switch_cluster.get(cluster_id, []) return cluster_id, grid_cell_members def find_all_switches(self): ''' Search the environment (rail grid) for all switch cells. A switch is a cell where more than one tranisation exists and collect all direction where the switch is a switch. ''' self.switches = {} for h in range(self.env.height): for w in range(self.env.width): pos = (h, w) for dir in range(4): possible_transitions = self.env.rail.get_transitions(*pos, dir) num_transitions = fast_count_nonzero(possible_transitions) if num_transitions > 1: directions = self.switches.get(pos, []) directions.append(dir) self.switches.update({pos: directions}) def find_all_switch_neighbours(self): ''' Collect all cells where is a neighbour to a switch cell. All cells are neighbour where the agent can make just one step and he stands on a switch. A switch is a cell where the agents has more than one transition. ''' self.switches_neighbours = {} for h in range(self.env.height): for w in range(self.env.width): # look one step forward for dir in range(4): pos = (h, w) possible_transitions = self.env.rail.get_transitions(*pos, dir) for d in range(4): if possible_transitions[d] == 1: new_cell = get_new_position(pos, d) if new_cell in self.switches.keys(): directions = self.switches_neighbours.get(pos, []) directions.append(dir) self.switches_neighbours.update({pos: directions}) def find_cluster_label(self, in_label) -> int: label = int(in_label) while 0 != self.label_dict[label]: label = self.label_dict[label] return label def union_cluster_label(self, root, slave) -> None: root_label = self.find_cluster_label(root) slave_label = self.find_cluster_label(slave) if slave_label != root_label: self.label_dict[slave_label] = root_label def find_connected_clusters_and_label(self, binary_image): padded_binary_image = np.pad(binary_image, ((1, 0), (1, 0)), 'constant', constant_values=(0, 0)) w = np.size(binary_image, 1) h = np.size(binary_image, 0) self.label_dict = [int(i) for i in np.zeros(w * h)] label = 1 # first pass for cow in range(1, h + 1): for col in range(1, w + 1): working_position = (cow, col) working_pixel = padded_binary_image[working_position] if working_pixel != 0: left_pixel_pos = (cow, col - 1) up_pixel_pos = (cow - 1, col) left_pixel = padded_binary_image[left_pixel_pos] up_pixel = padded_binary_image[up_pixel_pos] # Use connections (rails) for clustering (only real connected pixels builds a real cluster) if (cow < self.env.height) and (col < self.env.width): left_ok = 0 up_ok = 0 # correct padded image position (railenv) t_working_position = (working_position[0] - 1, working_position[1] - 1) t_left_pixel_pos = (left_pixel_pos[0] - 1, left_pixel_pos[1] - 1) t_up_pixel_pos = (up_pixel_pos[0] - 1, up_pixel_pos[1] - 1) for direction_loop in range(4): possible_transitions = self.env.rail.get_transitions(*t_working_position, direction_loop) orientation = direction_loop if fast_count_nonzero(possible_transitions) == 1: orientation = fast_argmax(possible_transitions) for dir_loop, new_direction in enumerate( [(orientation + dir_loop) % 4 for dir_loop in range(-1, 3)]): if possible_transitions[new_direction] == 1: new_pos = get_new_position(t_working_position, new_direction) if new_pos == t_left_pixel_pos: left_ok = 1 if new_pos == t_up_pixel_pos: up_ok = 1 left_pixel *= left_ok up_pixel *= up_ok # build clusters if left_pixel == 0 and up_pixel == 0: padded_binary_image[working_position] = label label += 1 if left_pixel != 0 and up_pixel != 0: smaller = left_pixel if left_pixel < up_pixel else up_pixel bigger = left_pixel if left_pixel > up_pixel else up_pixel padded_binary_image[working_position] = smaller self.union_cluster_label(smaller, bigger) if up_pixel != 0 and left_pixel == 0: padded_binary_image[working_position] = up_pixel if up_pixel == 0 and left_pixel != 0: padded_binary_image[working_position] = left_pixel for cow in range(1, h + 1): for col in range(1, w + 1): root = self.find_cluster_label(padded_binary_image[cow][col]) padded_binary_image[cow][col] = root self.switch_cluster_grid = padded_binary_image[1:, 1:] for h in range(self.env.height): for w in range(self.env.width): working_position = (h, w) root = self.switch_cluster_grid[working_position] if root > 0: pos_data = self.switch_cluster.get(root, []) pos_data.append(working_position) self.switch_cluster.update({root: pos_data}) def cluster_all_switches(self): info_image = np.zeros((self.env.height, self.env.width)) # for h in range(self.env.height): # for w in range(self.env.width): # # look one step forward # if self.env.rail.grid[h][w] > 0: # info_image[(h,w)] = -1 for key in self.switches.keys(): info_image[key] = 1 # build clusters self.find_connected_clusters_and_label(info_image) if self.render_debug_information: # Setup renderer env_renderer = RenderTool(self.env, gl="PGL", agent_render_variant=AgentRenderVariant.AGENT_SHOWS_OPTIONS_AND_BOX) env_renderer.set_new_rail() env_renderer.render_env( show=True, frames=False, show_observations=True, show_predictions=False ) plt.subplot(1, 2, 1) plt.imshow(info_image) plt.subplot(1, 2, 2) plt.imshow(self.switch_cluster_grid) plt.show() plt.pause(0.01) def find_all_cell_where_agent_can_choose(self): ''' prepare the memory - collect all cells where the agent can choose more than FORWARD/STOP. ''' self.find_all_switches() self.find_all_switch_neighbours() self.cluster_all_switches() def check_agent_decision(self, position, direction): ''' Decide whether the agent is - on a switch - at a switch neighbour (near to switch). The switch must be a switch where the agent has more option than FORWARD/STOP - all switch : doesn't matter whether the agent has more options than FORWARD/STOP - all switch neightbors : doesn't matter the agent has more then one options (transistion) when he reach the switch :param position: (x,y) cell coordinate :param direction: Flatland direction :return: agents_on_switch, agents_near_to_switch, agents_near_to_switch_all, agents_on_switch_all ''' agents_on_switch = False agents_on_switch_all = False agents_near_to_switch = False agents_near_to_switch_all = False if position in self.switches.keys(): agents_on_switch = direction in self.switches[position] agents_on_switch_all = True if position in self.switches_neighbours.keys(): new_cell = get_new_position(position, direction) if new_cell in self.switches.keys(): if not direction in self.switches[new_cell]: agents_near_to_switch = direction in self.switches_neighbours[position] else: agents_near_to_switch = direction in self.switches_neighbours[position] agents_near_to_switch_all = direction in self.switches_neighbours[position] return agents_on_switch, agents_near_to_switch, agents_near_to_switch_all, agents_on_switch_all def requires_agent_decision(self): ''' Returns for all agents its check_agent_decision values :return: dicts with check_agent_decision values stored (each agents) ''' agents_can_choose = {} agents_on_switch = {} agents_on_switch_all = {} agents_near_to_switch = {} agents_near_to_switch_all = {} for a in range(self.env.get_num_agents()): ret_agents_on_switch, ret_agents_near_to_switch, ret_agents_near_to_switch_all, ret_agents_on_switch_all = \ self.check_agent_decision( self.env.agents[a].position, self.env.agents[a].direction) agents_on_switch.update({a: ret_agents_on_switch}) agents_on_switch_all.update({a: ret_agents_on_switch_all}) ready_to_depart = self.env.agents[a].state == TrainState.READY_TO_DEPART agents_near_to_switch.update({a: (ret_agents_near_to_switch and not ready_to_depart)}) agents_can_choose.update({a: agents_on_switch[a] or agents_near_to_switch[a]}) agents_near_to_switch_all.update({a: (ret_agents_near_to_switch_all and not ready_to_depart)}) return agents_can_choose, agents_on_switch, agents_near_to_switch, agents_near_to_switch_all, agents_on_switch_all
[ "matplotlib.pyplot.imshow", "numpy.size", "utils.fast_methods.fast_count_nonzero", "numpy.zeros", "flatland.utils.rendertools.RenderTool", "utils.fast_methods.fast_argmax", "matplotlib.pyplot.pause", "numpy.full", "numpy.pad", "flatland.core.grid.grid4_utils.get_new_position", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((1145, 1191), 'numpy.full', 'np.full', (['(self.env.height, self.env.width)', '(-1)'], {}), '((self.env.height, self.env.width), -1)\n', (1152, 1191), True, 'import numpy as np\n'), ((11908, 11982), 'numpy.pad', 'np.pad', (['binary_image', '((1, 0), (1, 0))', '"""constant"""'], {'constant_values': '(0, 0)'}), "(binary_image, ((1, 0), (1, 0)), 'constant', constant_values=(0, 0))\n", (11914, 11982), True, 'import numpy as np\n'), ((11995, 12019), 'numpy.size', 'np.size', (['binary_image', '(1)'], {}), '(binary_image, 1)\n', (12002, 12019), True, 'import numpy as np\n'), ((12032, 12056), 'numpy.size', 'np.size', (['binary_image', '(0)'], {}), '(binary_image, 0)\n', (12039, 12056), True, 'import numpy as np\n'), ((15842, 15885), 'numpy.zeros', 'np.zeros', (['(self.env.height, self.env.width)'], {}), '((self.env.height, self.env.width))\n', (15850, 15885), True, 'import numpy as np\n'), ((16370, 16474), 'flatland.utils.rendertools.RenderTool', 'RenderTool', (['self.env'], {'gl': '"""PGL"""', 'agent_render_variant': 'AgentRenderVariant.AGENT_SHOWS_OPTIONS_AND_BOX'}), "(self.env, gl='PGL', agent_render_variant=AgentRenderVariant.\n AGENT_SHOWS_OPTIONS_AND_BOX)\n", (16380, 16474), False, 'from flatland.utils.rendertools import RenderTool, AgentRenderVariant\n'), ((16748, 16768), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (16759, 16768), True, 'import matplotlib.pyplot as plt\n'), ((16781, 16803), 'matplotlib.pyplot.imshow', 'plt.imshow', (['info_image'], {}), '(info_image)\n', (16791, 16803), True, 'import matplotlib.pyplot as plt\n'), ((16816, 16836), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (16827, 16836), True, 'import matplotlib.pyplot as plt\n'), ((16849, 16885), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.switch_cluster_grid'], {}), '(self.switch_cluster_grid)\n', (16859, 16885), True, 'import matplotlib.pyplot as plt\n'), ((16898, 16908), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16906, 16908), True, 'import matplotlib.pyplot as plt\n'), ((16921, 16936), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.01)'], {}), '(0.01)\n', (16930, 16936), True, 'import matplotlib.pyplot as plt\n'), ((18314, 18351), 'flatland.core.grid.grid4_utils.get_new_position', 'get_new_position', (['position', 'direction'], {}), '(position, direction)\n', (18330, 18351), False, 'from flatland.core.grid.grid4_utils import get_new_position\n'), ((5307, 5349), 'flatland.core.grid.grid4_utils.get_new_position', 'get_new_position', (['agent_pos', 'new_direction'], {}), '(agent_pos, new_direction)\n', (5323, 5349), False, 'from flatland.core.grid.grid4_utils import get_new_position\n'), ((6011, 6058), 'flatland.core.grid.grid4_utils.get_new_position', 'get_new_position', (['agent_position', 'new_direction'], {}), '(agent_position, new_direction)\n', (6027, 6058), False, 'from flatland.core.grid.grid4_utils import get_new_position\n'), ((12100, 12115), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (12108, 12115), True, 'import numpy as np\n'), ((10053, 10093), 'utils.fast_methods.fast_count_nonzero', 'fast_count_nonzero', (['possible_transitions'], {}), '(possible_transitions)\n', (10071, 10093), False, 'from utils.fast_methods import fast_count_nonzero, fast_argmax\n'), ((11061, 11085), 'flatland.core.grid.grid4_utils.get_new_position', 'get_new_position', (['pos', 'd'], {}), '(pos, d)\n', (11077, 11085), False, 'from flatland.core.grid.grid4_utils import get_new_position\n'), ((13481, 13521), 'utils.fast_methods.fast_count_nonzero', 'fast_count_nonzero', (['possible_transitions'], {}), '(possible_transitions)\n', (13499, 13521), False, 'from utils.fast_methods import fast_count_nonzero, fast_argmax\n'), ((13574, 13607), 'utils.fast_methods.fast_argmax', 'fast_argmax', (['possible_transitions'], {}), '(possible_transitions)\n', (13585, 13607), False, 'from utils.fast_methods import fast_count_nonzero, fast_argmax\n'), ((13899, 13950), 'flatland.core.grid.grid4_utils.get_new_position', 'get_new_position', (['t_working_position', 'new_direction'], {}), '(t_working_position, new_direction)\n', (13915, 13950), False, 'from flatland.core.grid.grid4_utils import get_new_position\n')]
import logging import numpy as np from gunpowder.nodes.batch_filter import BatchFilter logger = logging.getLogger(__name__) class TanhSaturate(BatchFilter): '''Saturate the values of an array to be floats between -1 and 1 by applying the tanh function. Args: array (:class:`ArrayKey`): The key of the array to modify. factor (scalar, optional): The factor to divide by before applying the tanh, controls how quickly the values saturate to -1, 1. ''' def __init__(self, array, scale=None): self.array = array if scale is not None: self.scale = scale else: self.scale = 1. def process(self, batch, request): if self.array not in batch.arrays: return array = batch.arrays[self.array] array.data = np.tanh(array.data/self.scale)
[ "logging.getLogger", "numpy.tanh" ]
[((98, 125), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (115, 125), False, 'import logging\n'), ((852, 884), 'numpy.tanh', 'np.tanh', (['(array.data / self.scale)'], {}), '(array.data / self.scale)\n', (859, 884), True, 'import numpy as np\n')]
""" Core functionality for feature computation <NAME> Copyright (c) 2021. Pfizer Inc. All rights reserved. """ from abc import ABC, abstractmethod from collections.abc import Iterator, Sequence import json from warnings import warn from pandas import DataFrame from numpy import float_, asarray, zeros, sum, moveaxis __all__ = ["Bank"] class ArrayConversionError(Exception): pass def get_n_feats(size, index): if isinstance(index, int): return 1 elif isinstance(index, (Iterator, Sequence)): return len(index) elif isinstance(index, slice): return len(range(*index.indices(size))) elif isinstance(index, type(Ellipsis)): return size def partial_index_check(index): if index is None: index = ... if not isinstance(index, (int, Iterator, Sequence, type(...), slice)): raise IndexError(f"Index type ({type(index)}) not understood.") if isinstance(index, str): raise IndexError("Index type (str) not understood.") return index def normalize_indices(nfeat, index): if index is None: return [...] * nfeat elif not isinstance(index, (Iterator, Sequence)): # slice, single integer, etc return [partial_index_check(index)] * nfeat elif all([isinstance(i, int) for i in index]): # iterable of ints return [index] * nfeat elif isinstance(index, Sequence): # able to be indexed return [partial_index_check(i) for i in index] else: # pragma: no cover return IndexError(f"Index type ({type(index)}) not understood.") def normalize_axes(ndim, axis, ind_axis): """ Normalize input axes to be positive/correct for how the swapping has to work """ if axis == ind_axis: raise ValueError("axis and index_axis cannot be the same") if ndim == 1: return 0, None elif ndim >= 2: """ | shape | ax | ia | move1 | ax | ia | res | ax | ia | res move | |--------|----|----|--------|----|----|-------|----|----|----------| | (a, b) | 0 | 1 | (b, a) | 0 | 0 | (bf,) | | | | | (a, b) | 0 | N | (b, a) | 0 | N | (f, b)| | | | | (a, b) | 1 | 0 | | | | (3a,) | | | | | (a, b) | 1 | N | | | | (f, a)| | | | | shape | ax| ia | move1 | ax| ia| move2 | res | | ia| res move | |----------|---|------|----------|---|---|----------|----------|----|---|----------| | (a, b, c)| 0 | 1(0) | (b, c, a)| | | | (bf, c) | 0 | 0 | | | (a, b, c)| 0 | 2(1) | (b, c, a)| | 1 | (c, b, a)| (cf, b) | 0 | 1 | (b, cf) | | (a, b, c)| 0 | N | (b, c, a)| | | | (f, b, c)| | | | | (a, b, c)| 1 | 0 | (a, c, b)| | | | (af, c) | 0 | 0 | | | (a, b, c)| 1 | 2(1) | (a, c, b)| | 1 | (c, a, b)| (cf, a) | 0 | 1 | (a, cf) | | (a, b, c)| 1 | N | (a, c, b)| | | | (f, a, c)| | | | | (a, b, c)| 2 | 0 | (a, b, c)| | | | (af, b) | 0 | 0 | | | (a, b, c)| 2 | 1 | (a, b, c)| | 1 | (b, a, c)| (bf, a) | 0 | 1 | (a, bf) | | (a, b, c)| 2 | N | (a, b, c)| | | | (f, a, b)| | | | | shape | ax| ia | move1 | ia| move2 | res | | ia| res move | |------------|---|------|-------------|---|-------------|-------------|---|---|-----------| |(a, b, c, d)| 0 | 1(0) | (b, c, d, a)| | | (bf, c, d) | 0 | 0 | | |(a, b, c, d)| 0 | 2(1) | (b, c, d, a)| 1 | (c, b, d, a)| (cf, b, d) | 0 | 1 | (b, cf, d)| |(a, b, c, d)| 0 | 3(2) | (b, c, d, a)| 2 | (d, b, c, a)| (df, b, c) | 0 | 2 | (d, c, df)| |(a, b, c, d)| 0 | N | (b, c, d, a)| | | (f, b, c, d)| | | | |(a, b, c, d)| 1 | 0 | (a, c, d, b)| | | (af, c, d) | | | | |(a, b, c, d)| 1 | 2(1) | (a, c, d, b)| 1 | (c, a, d, b)| (cf, a, d) | 0 | 1 | (a, cf, d)| |(a, b, c, d)| 1 | 3(2) | (a, c, d, b)| 2 | (d, a, c, b)| (df, a, c) | 0 | 2 | (a, c, df)| |(a, b, c, d)| 1 | N | (a, c, d, b)| | | (f, a, c, d)| | | | |(a, b, c, d)| 2 | 0 | (a, b, d, c)| | | (af, b, d) | | | | |(a, b, c, d)| 2 | 1 | (a, b, d, c)| 1 | (b, a, d, c)| (bf, a, d) | 0 | 1 | (a, bf, d)| |(a, b, c, d)| 2 | 3(2) | (a, b, d, c)| 2 | (d, a, b, c)| (df, a, b) | 0 | 2 | (a, b, df)| |(a, b, c, d)| 2 | N | (a, b, d, c)| | | (f, a, b, d)| | | | |(a, b, c, d)| 3 | 0 | (a, b, c, d)| | | (af, b, c) | | | | |(a, b, c, d)| 3 | 1 | (a, b, c, d)| 1 | (b, a, c, d)| (bf, a, c) | 0 | 1 | (a, bf, c)| |(a, b, c, d)| 3 | 2 | (a, b, c, d)| 2 | (c, a, b, d)| (cf, a, b) | 0 | 2 | (a, b, cf)| |(a, b, c, d)| 3 | N | (a, b, c, d)| | | (f, a, b, c)| | | | """ ax = axis if axis >= 0 else ndim + axis if ind_axis is None: return ax, None ia = ind_axis if ind_axis >= 0 else ndim + ind_axis if ia > ax: ia -= 1 return ax, ia class Bank: """ A feature bank object for ease in creating a table or pipeline of features to be computed. Parameters ---------- bank_file : {None, path-like}, optional Path to a saved bank file to load. Optional Examples -------- """ __slots__ = ("_feats", "_indices") def __str__(self): return "Bank" def __repr__(self): s = "Bank[" for f in self._feats: s += f"\n\t{f!r}," s += "\n]" return s def __contains__(self, item): return item in self._feats def __len__(self): return len(self._feats) def __init__(self, bank_file=None): # initialize some variables self._feats = [] self._indices = [] if bank_file is not None: self.load(bank_file) def add(self, features, index=None): """ Add a feature or features to the pipeline. Parameters ---------- features : {Feature, list} Single signal Feature, or list of signal Features to add to the feature Bank index : {int, slice, list}, optional Index to be applied to data input to each features. Either a index that will apply to every feature, or a list of features corresponding to each feature being added. """ if isinstance(features, Feature): if features in self: warn( f"Feature {features!s} already in the Bank, will be duplicated.", UserWarning, ) self._indices.append(partial_index_check(index)) self._feats.append(features) elif all([isinstance(i, Feature) for i in features]): if any([ft in self for ft in features]): warn("Feature already in the Bank, will be duplicated.", UserWarning) self._indices.extend(normalize_indices(len(features), index)) self._feats.extend(features) def save(self, file): """ Save the feature Bank to a file for a persistent object that can be loaded later to create the same Bank as before Parameters ---------- file : path-like File to be saved to. Creates a new file or overwrites an existing file. """ out = [] for i, ft in enumerate(self._feats): idx = "Ellipsis" if self._indices[i] is Ellipsis else self._indices[i] out.append( {ft.__class__.__name__: {"Parameters": ft._params, "Index": idx}} ) with open(file, "w") as f: json.dump(out, f) def load(self, file): """ Load a previously saved feature Bank from a json file. Parameters ---------- file : path-like File to be read to create the feature Bank. """ # the import must be here, otherwise a circular import error occurs from skdh.features import lib with open(file, "r") as f: feats = json.load(f) for ft in feats: name = list(ft.keys())[0] params = ft[name]["Parameters"] index = ft[name]["Index"] if index == "Ellipsis": index = Ellipsis # add it to the feature bank self.add(getattr(lib, name)(**params), index=index) def compute( self, signal, fs=1.0, *, axis=-1, index_axis=None, indices=None, columns=None ): """ Compute the specified features for the given signal Parameters ---------- signal : {array-like} Array-like signal to have features computed for. fs : float, optional Sampling frequency in Hz. Default is 1Hz axis : int, optional Axis along which to compute the features. Default is -1. index_axis : {None, int}, optional Axis corresponding to the indices specified in `Bank.add` or `indices`. Default is None, which assumes that this axis is not part of the signal. Note that setting this to None means values for `indices` or the indices set in `Bank.add` will be ignored. indices : {None, int, list-like, slice, ellipsis}, optional Indices to apply to the input signal. Either None, a integer, list-like, slice to apply to each feature, or a list-like of lists/objects with a 1:1 correspondence to the features present in the Bank. If provided, takes precedence over any values given in `Bank.add`. Default is None, which will use indices from `Bank.add`. columns : {None, list}, optional Columns to use if providing a dataframe. Default is None (uses all columns). Returns ------- feats : numpy.ndarray Computed features. """ # standardize the input signal if isinstance(signal, DataFrame): columns = columns if columns is not None else signal.columns x = signal[columns].values.astype(float_) else: try: x = asarray(signal, dtype=float_) except ValueError as e: raise ArrayConversionError("Error converting signal to ndarray") from e axis, index_axis = normalize_axes(x.ndim, axis, index_axis) if index_axis is None: indices = [...] * len(self) else: if indices is None: indices = self._indices else: indices = normalize_indices(len(self), indices) # get the number of features that will results. Needed to allocate the feature array if index_axis is None: # don't have to move any other axes than the computation axis x = moveaxis(x, axis, -1) # number of feats is 1 per n_feats = [1] * len(self) feats = zeros((sum(n_feats),) + x.shape[:-1], dtype=float_) else: # move both the computation and index axis. do this in two steps to allow for undoing # just the index axis swap later. The index_axis has been adjusted appropriately # to match this axis move in 2 steps x = moveaxis(x, axis, -1) x = moveaxis(x, index_axis, 0) n_feats = [] for ind in indices: n_feats.append(get_n_feats(x.shape[0], ind)) feats = zeros((sum(n_feats),) + x.shape[1:-1], dtype=float_) feat_i = 0 # keep track of where in the feature array we are for i, ft in enumerate(self._feats): feats[feat_i : feat_i + n_feats[i]] = ft.compute( x[indices[i]], fs=fs, axis=-1 ) feat_i += n_feats[i] # Move the shape back to the correct one. # only have to do this if there is an index axis, because otherwise the array is still in # the same order as originally if index_axis is not None: feats = moveaxis(feats, 0, index_axis) # undo the previous swap/move return feats class Feature(ABC): """ Base feature class """ def __str__(self): return self.__class__.__name__ def __repr__(self): s = self.__class__.__name__ + "(" for p in self._params: s += f"{p}={self._params[p]!r}, " if len(self._params) > 0: s = s[:-2] return s + ")" def __eq__(self, other): if isinstance(other, type(self)): # double check the name eq = str(other) == str(self) # check the parameters eq &= other._params == self._params return eq else: return False __slots__ = ("_params",) def __init__(self, **params): self._params = params @abstractmethod def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the signal feature. Parameters ---------- signal : array-like Signal to compute the feature over. fs : float, optional Sampling frequency in Hz. Default is 1.0 axis : int, optional Axis over which to compute the feature. Default is -1 (last dimension) Returns ------- feat : numpy.ndarray ndarray of the computed feature """ # move the computation axis to the end return moveaxis(asarray(signal, dtype=float_), axis, -1)
[ "numpy.asarray", "numpy.moveaxis", "numpy.sum", "json.load", "warnings.warn", "json.dump" ]
[((8060, 8077), 'json.dump', 'json.dump', (['out', 'f'], {}), '(out, f)\n', (8069, 8077), False, 'import json\n'), ((8482, 8494), 'json.load', 'json.load', (['f'], {}), '(f)\n', (8491, 8494), False, 'import json\n'), ((11254, 11275), 'numpy.moveaxis', 'moveaxis', (['x', 'axis', '(-1)'], {}), '(x, axis, -1)\n', (11262, 11275), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((11695, 11716), 'numpy.moveaxis', 'moveaxis', (['x', 'axis', '(-1)'], {}), '(x, axis, -1)\n', (11703, 11716), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((11733, 11759), 'numpy.moveaxis', 'moveaxis', (['x', 'index_axis', '(0)'], {}), '(x, index_axis, 0)\n', (11741, 11759), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((12468, 12498), 'numpy.moveaxis', 'moveaxis', (['feats', '(0)', 'index_axis'], {}), '(feats, 0, index_axis)\n', (12476, 12498), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((13906, 13935), 'numpy.asarray', 'asarray', (['signal'], {'dtype': 'float_'}), '(signal, dtype=float_)\n', (13913, 13935), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((6856, 6943), 'warnings.warn', 'warn', (['f"""Feature {features!s} already in the Bank, will be duplicated."""', 'UserWarning'], {}), "(f'Feature {features!s} already in the Bank, will be duplicated.',\n UserWarning)\n", (6860, 6943), False, 'from warnings import warn\n'), ((10576, 10605), 'numpy.asarray', 'asarray', (['signal'], {'dtype': 'float_'}), '(signal, dtype=float_)\n', (10583, 10605), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((7232, 7301), 'warnings.warn', 'warn', (['"""Feature already in the Bank, will be duplicated."""', 'UserWarning'], {}), "('Feature already in the Bank, will be duplicated.', UserWarning)\n", (7236, 7301), False, 'from warnings import warn\n'), ((11380, 11392), 'numpy.sum', 'sum', (['n_feats'], {}), '(n_feats)\n', (11383, 11392), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n'), ((11907, 11919), 'numpy.sum', 'sum', (['n_feats'], {}), '(n_feats)\n', (11910, 11919), False, 'from numpy import float_, asarray, zeros, sum, moveaxis\n')]
from __future__ import division import io import matplotlib as mpl import matplotlib.pyplot as plt import networkx as nx import numpy import os import tensorflow as tf def figure_to_buff(figure): """Converts the matplotlib plot specified by 'figure' to a PNG image and returns it. The supplied figure is closed and inaccessible after this call.""" # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format='png') # Closing the figure prevents it from being displayed directly inside # the notebook. plt.close(figure) buf.seek(0) return buf def generate_edge_weight_buffer(nodes): b_nodes = list(nodes.values()) print(b_nodes) G = nx.DiGraph() total_stake = sum([node.stake for node in b_nodes]) # Build node sizes in proportion to stake held within the graph. node_sizes = [] node_labels = {} for node in b_nodes: G.add_node(node.identity) node_sizes.append(25 + 500 * (node.stake / total_stake)) node_labels[node.identity] = str(node.identity) # Edge colors (alphas and weight) reflect attribution wieghts of each # connection. edge_colors = {} edge_labels = {} for node in b_nodes: for edge in node.edges: if (node.identity, edge['first']) not in edge_labels: G.add_edge(node.identity, edge['first']) edge_colors[(node.identity, edge['first'])] = float(edge['second']) if node.identity != edge['first']: edge_labels[( node.identity, edge['first'])] = "%.3f" % float(edge['second']) else: edge_labels[(node.identity, edge['first'])] = "" # Set edge weights. for u, v, d in G.edges(data=True): d['weight'] = edge_colors[(u, v)] edges, weights = zip(*nx.get_edge_attributes(G, 'weight').items()) # Clear Matplot lib buffer and create new figure. plt.cla() plt.clf() figure = plt.figure(figsize=(20, 15)) pos = nx.layout.circular_layout(G) nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='blue') edges = nx.draw_networkx_edges(G, pos, arrowstyle='->', arrowsize=15, edge_color=weights, edge_cmap=plt.cm.Blues, width=5) edge_labels = nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, with_labels=True, label_pos=0.3) for node in b_nodes: pos[node.identity] = pos[node.identity] + numpy.array([0, 0.1]) labels = nx.draw_networkx_labels(G, pos, node_labels) # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format='png') # Closing the figure prevents it from being displayed directly inside # the notebook. plt.close(figure) buf.seek(0) return buf
[ "networkx.draw_networkx_edges", "matplotlib.pyplot.savefig", "networkx.draw_networkx_edge_labels", "networkx.get_edge_attributes", "networkx.DiGraph", "io.BytesIO", "matplotlib.pyplot.clf", "matplotlib.pyplot.close", "networkx.draw_networkx_nodes", "matplotlib.pyplot.figure", "networkx.draw_networkx_labels", "numpy.array", "matplotlib.pyplot.cla", "networkx.layout.circular_layout" ]
[((406, 418), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (416, 418), False, 'import io\n'), ((423, 453), 'matplotlib.pyplot.savefig', 'plt.savefig', (['buf'], {'format': '"""png"""'}), "(buf, format='png')\n", (434, 453), True, 'import matplotlib.pyplot as plt\n'), ((552, 569), 'matplotlib.pyplot.close', 'plt.close', (['figure'], {}), '(figure)\n', (561, 569), True, 'import matplotlib.pyplot as plt\n'), ((705, 717), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (715, 717), True, 'import networkx as nx\n'), ((2018, 2027), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (2025, 2027), True, 'import matplotlib.pyplot as plt\n'), ((2032, 2041), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2039, 2041), True, 'import matplotlib.pyplot as plt\n'), ((2055, 2083), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 15)'}), '(figsize=(20, 15))\n', (2065, 2083), True, 'import matplotlib.pyplot as plt\n'), ((2095, 2123), 'networkx.layout.circular_layout', 'nx.layout.circular_layout', (['G'], {}), '(G)\n', (2120, 2123), True, 'import networkx as nx\n'), ((2136, 2207), 'networkx.draw_networkx_nodes', 'nx.draw_networkx_nodes', (['G', 'pos'], {'node_size': 'node_sizes', 'node_color': '"""blue"""'}), "(G, pos, node_size=node_sizes, node_color='blue')\n", (2158, 2207), True, 'import networkx as nx\n'), ((2325, 2444), 'networkx.draw_networkx_edges', 'nx.draw_networkx_edges', (['G', 'pos'], {'arrowstyle': '"""->"""', 'arrowsize': '(15)', 'edge_color': 'weights', 'edge_cmap': 'plt.cm.Blues', 'width': '(5)'}), "(G, pos, arrowstyle='->', arrowsize=15, edge_color=\n weights, edge_cmap=plt.cm.Blues, width=5)\n", (2347, 2444), True, 'import networkx as nx\n'), ((2669, 2768), 'networkx.draw_networkx_edge_labels', 'nx.draw_networkx_edge_labels', (['G', 'pos'], {'edge_labels': 'edge_labels', 'with_labels': '(True)', 'label_pos': '(0.3)'}), '(G, pos, edge_labels=edge_labels, with_labels=\n True, label_pos=0.3)\n', (2697, 2768), True, 'import networkx as nx\n'), ((3063, 3107), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['G', 'pos', 'node_labels'], {}), '(G, pos, node_labels)\n', (3086, 3107), True, 'import networkx as nx\n'), ((3159, 3171), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3169, 3171), False, 'import io\n'), ((3176, 3206), 'matplotlib.pyplot.savefig', 'plt.savefig', (['buf'], {'format': '"""png"""'}), "(buf, format='png')\n", (3187, 3206), True, 'import matplotlib.pyplot as plt\n'), ((3305, 3322), 'matplotlib.pyplot.close', 'plt.close', (['figure'], {}), '(figure)\n', (3314, 3322), True, 'import matplotlib.pyplot as plt\n'), ((3028, 3049), 'numpy.array', 'numpy.array', (['[0, 0.1]'], {}), '([0, 0.1])\n', (3039, 3049), False, 'import numpy\n'), ((1914, 1949), 'networkx.get_edge_attributes', 'nx.get_edge_attributes', (['G', '"""weight"""'], {}), "(G, 'weight')\n", (1936, 1949), True, 'import networkx as nx\n')]
#!/usr/bin/env python ''' Calculating the emissions from deposits in Platypus stable accounts ''' import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter from strategy_const import * from const import * def boosted_pool_emission_rate(your_stable_deposit, vePTP_held, other_deposit_weights): ''' proportion of boosted pool emissions your deposits and vePTP earn ''' your_boosted_pool_weight = np.sqrt(your_stable_deposit * vePTP_held) return your_boosted_pool_weight / other_deposit_weights def base_pool_emission_rate(your_stable_deposit, other_stable_deposits): ''' proportion of base pool emissions your deposits earn ''' total_deposits = other_stable_deposits + your_stable_deposit return your_stable_deposit / total_deposits # define function with vectorize decorator for extensibility @np.vectorize def total_emissions_rate(stable_bankroll, ptp_marketbuy_proportion): ''' :stable_bankroll: total USD value of the stables you'd invest in the Platypus protocol :ptp_marketbuy_proportion: proportion of stable_bankroll you'd use to marketbuy PTP for staking to vePTP returns the number of PTP tokens you'd rececive given defined constants earlier in the notebook. ''' n_PTP = (stable_bankroll * ptp_marketbuy_proportion) / PTP_PRICE n_vePTP = HOURS_SPENT_STAKING * HOURLY_STAKED_PTP_vePTP_YIELD * n_PTP stable_deposit = stable_bankroll * (1 - ptp_marketbuy_proportion) # calculating lower bound on total deposit weights: # assume all other deposits are from one wallet with all other staked PTP # and it's been staking as long as you have total_deposit_weights = GLOBAL_PTP_STAKED * HOURLY_STAKED_PTP_vePTP_YIELD * HOURS_SPENT_STAKING boosted = boosted_pool_emission_rate(stable_deposit, n_vePTP, total_deposit_weights) base = base_pool_emission_rate(stable_deposit, TVL - stable_deposit) return (BOOSTING_POOL_ALLOCATION * boosted) + (BASE_POOL_ALLOCATION * base) def plot_2d_returns(stable_bankroll, ptp_proportion, returns_array, as_percents = True): """Use matplotlib to plot the slope of returns across different bankroll strategies """ fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, figsize=(18,9)) manifold = ax.plot_surface(stable_bankroll, ptp_proportion, returns_array, cmap=cm.plasma, linewidth=0.5, antialiased=False) # labels, titles, and axes ax.set_title(f"Monthly Strategy Emissions given PTP staking for {round(HOURS_SPENT_STAKING / 24)} Days") ax.xaxis.set_major_formatter(EngFormatter(unit="$", places=1, sep="\N{THIN SPACE}")) ax.set_xlabel("Strategy Bankroll") ax.yaxis.set_major_formatter(PercentFormatter(xmax=1, decimals=1)) ax.set_ylabel("Percent Market-Bought and Staked") ax.zaxis.set_major_locator(LinearLocator(9)) ax.zaxis.set_major_formatter(PercentFormatter(xmax=1, decimals=4)) ax.set_zlabel("Percent of Emissions for Strategy") # colorbar for scale fig.colorbar(manifold, shrink=0.5, aspect=5, format=PercentFormatter(xmax=1, decimals=4)) plt.show() def main(): print(f"Emissions calculations consider PTP/USD: ${round(PTP_PRICE, 3)}\n" + f"Reflecting a FDMC of \t${round(FDMC / 10**6)}MM " + f"({round(PERCENT_COINS_CIRCULATING * 100)}% of coins available)\n" + f"and implying TVL of \t${round(TVL / 10**6)}MM " + f"(Mcap/TVL: {round(1 / TVL_TO_CMC_RATIO, 4)})\n" + f"with {round(GLOBAL_PTP_STAKED / 10**6, 2)}MM PTP staked for vePTP ({round(PERCENT_PTP_STAKED * 100)}%)") # Create the mesh and calculate return rates stable_bankroll, ptp_proportion = np.meshgrid(stable_deposit_range, ptp_market_buy_bankroll_proportion) returns = total_emissions_rate(stable_bankroll, ptp_proportion) # plotting time plot_2d_returns(stable_bankroll, ptp_proportion, returns) if __name__ == '__main__': main()
[ "numpy.sqrt", "matplotlib.ticker.PercentFormatter", "matplotlib.ticker.LinearLocator", "matplotlib.ticker.EngFormatter", "numpy.meshgrid", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((504, 545), 'numpy.sqrt', 'np.sqrt', (['(your_stable_deposit * vePTP_held)'], {}), '(your_stable_deposit * vePTP_held)\n', (511, 545), True, 'import numpy as np\n'), ((2317, 2379), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}", 'figsize': '(18, 9)'}), "(subplot_kw={'projection': '3d'}, figsize=(18, 9))\n", (2329, 2379), True, 'import matplotlib.pyplot as plt\n'), ((3214, 3224), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3222, 3224), True, 'import matplotlib.pyplot as plt\n'), ((3813, 3882), 'numpy.meshgrid', 'np.meshgrid', (['stable_deposit_range', 'ptp_market_buy_bankroll_proportion'], {}), '(stable_deposit_range, ptp_market_buy_bankroll_proportion)\n', (3824, 3882), True, 'import numpy as np\n'), ((2694, 2740), 'matplotlib.ticker.EngFormatter', 'EngFormatter', ([], {'unit': '"""$"""', 'places': '(1)', 'sep': '"""\u2009"""'}), "(unit='$', places=1, sep='\\u2009')\n", (2706, 2740), False, 'from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter\n'), ((2822, 2858), 'matplotlib.ticker.PercentFormatter', 'PercentFormatter', ([], {'xmax': '(1)', 'decimals': '(1)'}), '(xmax=1, decimals=1)\n', (2838, 2858), False, 'from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter\n'), ((2945, 2961), 'matplotlib.ticker.LinearLocator', 'LinearLocator', (['(9)'], {}), '(9)\n', (2958, 2961), False, 'from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter\n'), ((2996, 3032), 'matplotlib.ticker.PercentFormatter', 'PercentFormatter', ([], {'xmax': '(1)', 'decimals': '(4)'}), '(xmax=1, decimals=4)\n', (3012, 3032), False, 'from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter\n'), ((3171, 3207), 'matplotlib.ticker.PercentFormatter', 'PercentFormatter', ([], {'xmax': '(1)', 'decimals': '(4)'}), '(xmax=1, decimals=4)\n', (3187, 3207), False, 'from matplotlib.ticker import LinearLocator, EngFormatter, PercentFormatter\n')]
from types import FunctionType import numpy as np import pandas as pd from functools import partial from multiprocessing import Pool, cpu_count def get_levenshtein_distance(str1: str, str2: str) -> float: """ Computes the Levenshtein distance between two strings :param str1: first string :param str2: second string :return: the distance between the two params """ size_x = len(str1) + 1 size_y = len(str2) + 1 matrix = np.zeros((size_x, size_y)) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if str1[x - 1] == str2[y - 1]: matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x - 1, y - 1], matrix[x, y - 1] + 1 ) else: matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x - 1, y - 1] + 1, matrix[x, y - 1] + 1 ) return matrix[size_x - 1, size_y - 1] def add_distance_column(filename: str, df: pd.DataFrame) -> pd.DataFrame: """ Add new column to df which contains distance computed using filename :param filename: filename to compare to df :param df: df with artist or tracks names :return: df with new column """ df['distances'] = df.applymap(lambda x: get_levenshtein_distance(filename, x)) return df def parallelize_dataframe(df: pd.DataFrame, func: FunctionType, word: str, n_cores: int = cpu_count() - 1) -> pd.DataFrame: """ Apply certain func against dataframe parallelling the application :param df: DataFrame which contains the required by func :param func: func that will be parallelize through df :param word: to compute the distance using :param n_cores: thread to parallelize the function :return: DataFrame after func applied """ df_split = np.array_split(df, n_cores) # TODO: add df length check to get n_cores pool = Pool(n_cores) f = partial(func, word) df = pd.concat(pool.map(f, df_split)) pool.close() pool.join() return df
[ "multiprocessing.cpu_count", "numpy.array_split", "numpy.zeros", "functools.partial", "multiprocessing.Pool" ]
[((462, 488), 'numpy.zeros', 'np.zeros', (['(size_x, size_y)'], {}), '((size_x, size_y))\n', (470, 488), True, 'import numpy as np\n'), ((2007, 2034), 'numpy.array_split', 'np.array_split', (['df', 'n_cores'], {}), '(df, n_cores)\n', (2021, 2034), True, 'import numpy as np\n'), ((2090, 2103), 'multiprocessing.Pool', 'Pool', (['n_cores'], {}), '(n_cores)\n', (2094, 2103), False, 'from multiprocessing import Pool, cpu_count\n'), ((2112, 2131), 'functools.partial', 'partial', (['func', 'word'], {}), '(func, word)\n', (2119, 2131), False, 'from functools import partial\n'), ((1607, 1618), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (1616, 1618), False, 'from multiprocessing import Pool, cpu_count\n')]
# -*- coding: utf-8 -*- import os import datetime import logging import requests import numpy import cv2 import zbar from Queue import Queue from threading import Thread from PIL import Image logger = logging.getLogger(__name__) TEMP_DIR = os.path.join(os.getcwd(), 'temp') def get_temp_dir(): """Create TEMP_DIR if it doesn't exist""" if not os.path.exists(TEMP_DIR): os.mkdir(TEMP_DIR) return TEMP_DIR def thumbnail(picture, size=0.50): """Thumbnail the picture""" width, height = picture.size w, h = int(width * size), int(height * size) picture.thumbnail((w, h), Image.ANTIALIAS) return picture def save_picture(picture, path, filename): """Save picture to filesystem, return the path""" # Unfortunately, StringIO was unsatisfactory # StringIO size exceeds size of filesystem save. Why?? storage = os.path.join(path, filename) picture.save(storage, optimize=True, format='JPEG') return storage def delete_picture(path): """Delete the file, with a try except clause""" try: os.remove(path) # Gee! Thanks Windows except: pass def prepare_msg(qrcode, picture, timestamp): """Prepare message to send to server""" timestamp = datetime.datetime.strftime(timestamp, '%Y%m%d%H%M%S%f') filename = '{}.jpeg'.format(timestamp) temp_storage = save_picture(picture, get_temp_dir(), filename) data = dict(qrcode=qrcode, timestamp=timestamp) files = {'picture': temp_storage} return filename, data, files def server_auth(queue, url, qrcode, picture, timestamp, timeout=5): """Send message to server for auth""" filename, data, files = prepare_msg(qrcode, picture, timestamp) try: if logger.getEffectiveLevel() >= logging.INFO: # Profile the request start = datetime.datetime.now() r = requests.post(url, data=data, files=files, timeout=timeout) if logger.getEffectiveLevel >= logging.INFO: # Profile the request end = datetime.datetime.now() elapsed_time = (end - start).total_seconds() logger.info('Elapsed time was {} seconds'.format(elapsed_time)) except Exception as e: response = None # Did the request timeout? if isinstance(e, requests.exceptions.Timeout): response = dict(network_timeout=True) else: response = r.json() finally: delete_picture(os.path.join(get_temp_dir(), filename)) queue.put(response) class QRCodeScanner(object): def __init__( self, url=None, max_responses=2, timeout=5, ok_color=(0, 0, 255), not_ok_color=(255, 0, 0), box_width=1, debug=False ): self.url = url self.timeout = timeout self.max_responses self.thread = None self.queue = Queue() # Init zbar. self.scanner = zbar.ImageScanner() # Disable all zbar symbols. self.scanner.set_config(0, zbar.Config.ENABLE, 0) # Enable QRCodes. self.scanner.set_config(zbar.Symbol.QRCODE, zbar.Config.ENABLE, 1) # Highlight scanned QR Codes. self.ok_color = ok_color self.not_ok_color = not_ok_color self.box_width = box_width self.successes = 0 self.debug = debug def main(self, frame, timestamp): """Main function""" self.before_zbar(timestamp) frame, qrcodes = self.zbar(frame) if len(qrcodes) > 0: self.auth(frame, qrcodes, timestamp) frame = self.after_zbar(frame, qrcodes, timestamp) self.process_results_from_queue(timestamp) return frame def auth(self, frame, qrcodes, timestamp): """Auth with server""" if self.url is not None: qrcode = self.get_next_qrcode(frame, qrcodes) if qrcode is not None: if len(self.responses) > self.max_responses: frame = Image.fromarray(frame) self.launch_thread(self.url, qrcode, frame, timestamp) def get_next_qrcode(self, frame, qrcodes): """Returns the largest valid QR code, which is neither the active QR code nor throttled""" height, width = frame.shape[:2] frame_size = width * height target = None targets = [ dict( qrcode=qrcode, size=self.qrcode_size(qrcodes[qrcode]) ) for qrcode in qrcodes ] targets = sorted(targets, key=lambda k: k['size']) for target in targets: qrcode = target['qrcode'] qrcode_size = target['size'] / frame_size qrcode_size = round(qrcode_size, 4) if self.debug: logger.info('QRcode percent of frame: {}%'.format( qrcode_size )) # Throttle requests for the same QR code. if self.active_qrcode != qrcode: # Throttle requests for cached QR codes. if not self.is_qrcode_throttled(qrcode): # Ensure the QR code is valid. is_valid = self.is_valid_qrcode(qrcode) if self.debug: logger.info('QRcode is valid: {}'.format(is_valid)) if is_valid: if self.max_qrcode_size > 0: if qrcode_size > self.max_qrcode_size: self.max_size_exceeded = True break if not self.max_size_exceeded: return qrcode def is_valid_qrcode(self, qrcode): """Intended to be overriden by subclass.""" return True if qrcode is not None else False def is_qrcode_throttled(self, qrcode): for throttle in (self.ok_throttle_dict, self.not_ok_throttle_dict): if qrcode in throttle: return True def get_qrcode_size(self, qrcode): contour = numpy.array(qrcode, dtype=numpy.int32) return cv2.contourArea(contour) def before_zbar(self, timestamp): """Remove expired QR codes from throttle dict""" for throttle in (self.ok_throttle_dict, self.not_ok_throttle_dict): delete = [] for qrcode in throttle: expired = (throttle[qrcode] <= datetime.datetime.now()) if expired: delete.append(qrcode) for qrcode in delete: del throttle[qrcode] def zbar(self, frame): """Scan frame using ZBar""" qrcodes = {} # Convert to grayscale, as binarization requires gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) # Apply Otsu Binarization _, threshold = cv2.threshold( gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU ) try: # Convert to string, as ZBar requires pil_image = Image.fromarray(threshold) width, height = pil_image.size raw = pil_image.tostring() except: logger.error('Error converting to PIL image') else: try: image = zbar.Image(width, height, 'Y800', raw) except: logger.error('Error converting to ZBar image') else: self.scanner.scan(image) for qrcode in image: location = [] for point in qrcode.location: location.append(point) qrcodes[qrcode.data] = location if self.debug: self.successes += 1 if self.debug: frame = cv2.cvtColor(threshold, cv2.COLOR_GRAY2RGB) return frame, qrcodes def after_zbar(self, frame, qrcodes, timestamp): """Intended to be overridden by subclass. Currently, draws boxes around QR codes""" frame = self.draw_boxes(qrcodes, frame) return frame def draw_box(self, frame, location, color, width): """Draw a box around around QR code""" for index in range(len(location)): if (index + 1) == len(location): next_index = 0 else: next_index = index + 1 # From OpenCV 3.0.0, cv2.LINE_AA was renamed cv2.CV_AA if cv2.__version__ >= '3.0.0': cv2.line( frame, location[index], location[next_index], color, width, lineType=cv2.LINE_AA ) else: cv2.line( frame, location[index], location[next_index], color, width, cv2.CV_AA ) return frame def is_thread_running(self): """Check if the thread is running""" # Is a thread active? if self.thread is not None: if self.thread.is_alive(): return True def launch_thread(self, url, qrcode, frame, timestamp): """Launch a thread to auth against server with requests library""" try: self.thread = Thread( target=server_auth, args=( self.queue, url, qrcode, Image.fromarray(frame), timestamp ) ).start() except: logger.error('Thread failed to start') else: self.after_thread_started(qrcode, timestamp) def after_thread_started(self, qrcode, timestamp): """Runs after thread is started. Throttles not OK results""" # Throttle requests self.not_ok_throttle_dict[qrcode] = ( timestamp + datetime.timedelta(seconds=self.not_ok_throttle) ) self.active_qrcode = qrcode logger.info('Sent QRcode to server {}'.format(self.active_qrcode)) def process_results_from_queue(self, timestamp): """Throttles OK results. Prepares response for GUI""" if not self.queue.empty(): # Clear active qrcode self.active_qrcode = None response = self.queue.get() if response is not None: # Response is OK. Flag the QR code as OK, and throttle it if 'qrcode' in response: qrcode = response['qrcode'] ok_throttle = datetime.timedelta(seconds=self.ok_throttle) self.ok_throttle_dict[qrcode] = timestamp + ok_throttle self.responses.append(response)
[ "logging.getLogger", "requests.post", "numpy.array", "zbar.Image", "datetime.timedelta", "os.remove", "os.path.exists", "cv2.threshold", "cv2.line", "cv2.contourArea", "os.mkdir", "cv2.cvtColor", "PIL.Image.fromarray", "os.path.join", "os.getcwd", "zbar.ImageScanner", "datetime.datetime.now", "datetime.datetime.strftime", "Queue.Queue" ]
[((202, 229), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (219, 229), False, 'import logging\n'), ((254, 265), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (263, 265), False, 'import os\n'), ((865, 893), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (877, 893), False, 'import os\n'), ((1240, 1295), 'datetime.datetime.strftime', 'datetime.datetime.strftime', (['timestamp', '"""%Y%m%d%H%M%S%f"""'], {}), "(timestamp, '%Y%m%d%H%M%S%f')\n", (1266, 1295), False, 'import datetime\n'), ((354, 378), 'os.path.exists', 'os.path.exists', (['TEMP_DIR'], {}), '(TEMP_DIR)\n', (368, 378), False, 'import os\n'), ((388, 406), 'os.mkdir', 'os.mkdir', (['TEMP_DIR'], {}), '(TEMP_DIR)\n', (396, 406), False, 'import os\n'), ((1066, 1081), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (1075, 1081), False, 'import os\n'), ((1863, 1922), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'files': 'files', 'timeout': 'timeout'}), '(url, data=data, files=files, timeout=timeout)\n', (1876, 1922), False, 'import requests\n'), ((2880, 2887), 'Queue.Queue', 'Queue', ([], {}), '()\n', (2885, 2887), False, 'from Queue import Queue\n'), ((2932, 2951), 'zbar.ImageScanner', 'zbar.ImageScanner', ([], {}), '()\n', (2949, 2951), False, 'import zbar\n'), ((6076, 6114), 'numpy.array', 'numpy.array', (['qrcode'], {'dtype': 'numpy.int32'}), '(qrcode, dtype=numpy.int32)\n', (6087, 6114), False, 'import numpy\n'), ((6130, 6154), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (6145, 6154), False, 'import cv2\n'), ((6757, 6796), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_RGB2GRAY'], {}), '(frame, cv2.COLOR_RGB2GRAY)\n', (6769, 6796), False, 'import cv2\n'), ((6854, 6918), 'cv2.threshold', 'cv2.threshold', (['gray', '(0)', '(255)', '(cv2.THRESH_BINARY + cv2.THRESH_OTSU)'], {}), '(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)\n', (6867, 6918), False, 'import cv2\n'), ((1827, 1850), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1848, 1850), False, 'import datetime\n'), ((2028, 2051), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2049, 2051), False, 'import datetime\n'), ((7028, 7054), 'PIL.Image.fromarray', 'Image.fromarray', (['threshold'], {}), '(threshold)\n', (7043, 7054), False, 'from PIL import Image\n'), ((7790, 7833), 'cv2.cvtColor', 'cv2.cvtColor', (['threshold', 'cv2.COLOR_GRAY2RGB'], {}), '(threshold, cv2.COLOR_GRAY2RGB)\n', (7802, 7833), False, 'import cv2\n'), ((9968, 10016), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'self.not_ok_throttle'}), '(seconds=self.not_ok_throttle)\n', (9986, 10016), False, 'import datetime\n'), ((7266, 7304), 'zbar.Image', 'zbar.Image', (['width', 'height', '"""Y800"""', 'raw'], {}), "(width, height, 'Y800', raw)\n", (7276, 7304), False, 'import zbar\n'), ((8492, 8586), 'cv2.line', 'cv2.line', (['frame', 'location[index]', 'location[next_index]', 'color', 'width'], {'lineType': 'cv2.LINE_AA'}), '(frame, location[index], location[next_index], color, width,\n lineType=cv2.LINE_AA)\n', (8500, 8586), False, 'import cv2\n'), ((8735, 8814), 'cv2.line', 'cv2.line', (['frame', 'location[index]', 'location[next_index]', 'color', 'width', 'cv2.CV_AA'], {}), '(frame, location[index], location[next_index], color, width, cv2.CV_AA)\n', (8743, 8814), False, 'import cv2\n'), ((3996, 4018), 'PIL.Image.fromarray', 'Image.fromarray', (['frame'], {}), '(frame)\n', (4011, 4018), False, 'from PIL import Image\n'), ((6434, 6457), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6455, 6457), False, 'import datetime\n'), ((10635, 10679), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'self.ok_throttle'}), '(seconds=self.ok_throttle)\n', (10653, 10679), False, 'import datetime\n'), ((9513, 9535), 'PIL.Image.fromarray', 'Image.fromarray', (['frame'], {}), '(frame)\n', (9528, 9535), False, 'from PIL import Image\n')]
import tensorflow as tf import numpy as np import os import time from utils import random_batch, normalize, similarity, loss_cal, optim from configuration import get_config from tensorflow.contrib import rnn config = get_config() def train(path): tf.reset_default_graph() # reset graph # draw graph batch = tf.placeholder(shape= [None, config.N*config.M, 40], dtype=tf.float32) # input batch (time x batch x n_mel) lr = tf.placeholder(dtype= tf.float32) # learning rate global_step = tf.Variable(0, name='global_step', trainable=False) w = tf.get_variable("w", initializer= np.array([10], dtype=np.float32)) b = tf.get_variable("b", initializer= np.array([-5], dtype=np.float32)) # embedding lstm (3-layer default) with tf.variable_scope("lstm"): lstm_cells = [tf.contrib.rnn.LSTMCell(num_units=config.hidden, num_proj=config.proj) for i in range(config.num_layer)] lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells) # define lstm op and variables outputs, _ = tf.nn.dynamic_rnn(cell=lstm, inputs=batch, dtype=tf.float32, time_major=True) # for TI-VS must use dynamic rnn embedded = outputs[-1] # the last ouput is the embedded d-vector embedded = normalize(embedded) # normalize print("embedded size: ", embedded.shape) # loss sim_matrix = similarity(embedded, w, b) print("similarity matrix size: ", sim_matrix.shape) loss = loss_cal(sim_matrix, type=config.loss) # optimizer operation trainable_vars= tf.trainable_variables() # get variable list optimizer= optim(lr) # get optimizer (type is determined by configuration) grads, vars= zip(*optimizer.compute_gradients(loss)) # compute gradients of variables with respect to loss grads_clip, _ = tf.clip_by_global_norm(grads, 3.0) # l2 norm clipping by 3 grads_rescale= [0.01*grad for grad in grads_clip[:2]] + grads_clip[2:] # smaller gradient scale for w, b train_op= optimizer.apply_gradients(zip(grads_rescale, vars), global_step= global_step) # gradient update operation # check variables memory variable_count = np.sum(np.array([np.prod(np.array(v.get_shape().as_list())) for v in trainable_vars])) print("total variables :", variable_count) # record loss loss_summary = tf.summary.scalar("loss", loss) merged = tf.summary.merge_all() saver = tf.train.Saver() # training session with tf.Session() as sess: tf.global_variables_initializer().run() os.makedirs(os.path.join(path, "Check_Point"), exist_ok=True) # make folder to save model os.makedirs(os.path.join(path, "logs"), exist_ok=True) # make folder to save log writer = tf.summary.FileWriter(os.path.join(path, "logs"), sess.graph) epoch = 0 lr_factor = 1 # lr decay factor ( 1/2 per 10000 iteration) loss_acc = 0 # accumulated loss ( for running average of loss) for iter in range(config.iteration): # run forward and backward propagation and update parameters _, loss_cur, summary = sess.run([train_op, loss, merged], feed_dict={batch: random_batch(), lr: config.lr*lr_factor}) loss_acc += loss_cur # accumulated loss for each 100 iteration if iter % 10 == 0: writer.add_summary(summary, iter) # write at tensorboard if (iter+1) % 100 == 0: print("(iter : %d) loss: %.4f" % ((iter+1),loss_acc/100)) loss_acc = 0 # reset accumulated loss if (iter+1) % 10000 == 0: lr_factor /= 2 # lr decay print("learning rate is decayed! current lr : ", config.lr*lr_factor) if (iter+1) % 10000 == 0: saver.save(sess, os.path.join(path, "./Check_Point/model.ckpt"), global_step=iter//10000) print("model is saved!") # Test Session def test(path): tf.reset_default_graph() # draw graph enroll = tf.placeholder(shape=[None, config.N*config.M, 40], dtype=tf.float32) # enrollment batch (time x batch x n_mel) verif = tf.placeholder(shape=[None, config.N*config.M, 40], dtype=tf.float32) # verification batch (time x batch x n_mel) batch = tf.concat([enroll, verif], axis=1) # embedding lstm (3-layer default) with tf.variable_scope("lstm"): lstm_cells = [tf.contrib.rnn.LSTMCell(num_units=config.hidden, num_proj=config.proj) for i in range(config.num_layer)] lstm = tf.contrib.rnn.MultiRNNCell(lstm_cells) # make lstm op and variables outputs, _ = tf.nn.dynamic_rnn(cell=lstm, inputs=batch, dtype=tf.float32, time_major=True) # for TI-VS must use dynamic rnn embedded = outputs[-1] # the last ouput is the embedded d-vector embedded = normalize(embedded) # normalize print("embedded size: ", embedded.shape) # enrollment embedded vectors (speaker model) enroll_embed = normalize(tf.reduce_mean(tf.reshape(embedded[:config.N*config.M, :], shape= [config.N, config.M, -1]), axis=1)) # verification embedded vectors verif_embed = embedded[config.N*config.M:, :] similarity_matrix = similarity(embedded=verif_embed, w=1., b=0., center=enroll_embed) saver = tf.train.Saver(var_list=tf.global_variables()) with tf.Session() as sess: tf.global_variables_initializer().run() # load model print("model path :", path) ckpt = tf.train.get_checkpoint_state(checkpoint_dir=os.path.join(path, "Check_Point")) ckpt_list = ckpt.all_model_checkpoint_paths loaded = 0 for model in ckpt_list: if config.model_num == int(model.split('-')[-1]): # find ckpt file which matches configuration model number print("ckpt file is loaded !", model) loaded = 1 saver.restore(sess, model) # restore variables from selected ckpt file break if loaded == 0: raise AssertionError("ckpt file does not exist! Check config.model_num or config.model_path.") print("test file path : ", config.test_path) # return similarity matrix after enrollment and verification time1 = time.time() # for check inference time if config.tdsv: S = sess.run(similarity_matrix, feed_dict={enroll:random_batch(shuffle=False, noise_filenum=1), verif:random_batch(shuffle=False, noise_filenum=2)}) else: S = sess.run(similarity_matrix, feed_dict={enroll:random_batch(shuffle=False), verif:random_batch(shuffle=False, utter_start=config.M)}) S = S.reshape([config.N, config.M, -1]) time2 = time.time() np.set_printoptions(precision=2) print("inference time for %d utterences : %0.2fs"%(2*config.M*config.N, time2-time1)) print(S) # print similarity matrix # calculating EER diff = 1; EER=0; EER_thres = 0; EER_FAR=0; EER_FRR=0 # through thresholds calculate false acceptance ratio (FAR) and false reject ratio (FRR) for thres in [0.01*i+0.5 for i in range(50)]: S_thres = S>thres # False acceptance ratio = false acceptance / mismatched population (enroll speaker != verification speaker) FAR = sum([np.sum(S_thres[i])-np.sum(S_thres[i,:,i]) for i in range(config.N)])/(config.N-1)/config.M/config.N # False reject ratio = false reject / matched population (enroll speaker = verification speaker) FRR = sum([config.M-np.sum(S_thres[i][:,i]) for i in range(config.N)])/config.M/config.N # Save threshold when FAR = FRR (=EER) if diff> abs(FAR-FRR): diff = abs(FAR-FRR) EER = (FAR+FRR)/2 EER_thres = thres EER_FAR = FAR EER_FRR = FRR print("\nEER : %0.2f (thres:%0.2f, FAR:%0.2f, FRR:%0.2f)"%(EER,EER_thres,EER_FAR,EER_FRR))
[ "utils.random_batch", "numpy.array", "tensorflow.contrib.rnn.LSTMCell", "tensorflow.clip_by_global_norm", "tensorflow.placeholder", "tensorflow.Session", "tensorflow.nn.dynamic_rnn", "tensorflow.concat", "utils.similarity", "tensorflow.summary.scalar", "tensorflow.trainable_variables", "tensorflow.contrib.rnn.MultiRNNCell", "tensorflow.summary.merge_all", "tensorflow.variable_scope", "tensorflow.Variable", "tensorflow.global_variables", "configuration.get_config", "tensorflow.reshape", "time.time", "numpy.set_printoptions", "utils.loss_cal", "tensorflow.reset_default_graph", "utils.normalize", "tensorflow.train.Saver", "os.path.join", "tensorflow.global_variables_initializer", "numpy.sum", "utils.optim" ]
[((226, 238), 'configuration.get_config', 'get_config', ([], {}), '()\n', (236, 238), False, 'from configuration import get_config\n'), ((266, 290), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (288, 290), True, 'import tensorflow as tf\n'), ((341, 412), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, config.N * config.M, 40]', 'dtype': 'tf.float32'}), '(shape=[None, config.N * config.M, 40], dtype=tf.float32)\n', (355, 412), True, 'import tensorflow as tf\n'), ((460, 492), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32'}), '(dtype=tf.float32)\n', (474, 492), True, 'import tensorflow as tf\n'), ((530, 581), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'trainable': '(False)'}), "(0, name='global_step', trainable=False)\n", (541, 581), True, 'import tensorflow as tf\n'), ((1418, 1444), 'utils.similarity', 'similarity', (['embedded', 'w', 'b'], {}), '(embedded, w, b)\n', (1428, 1444), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((1514, 1552), 'utils.loss_cal', 'loss_cal', (['sim_matrix'], {'type': 'config.loss'}), '(sim_matrix, type=config.loss)\n', (1522, 1552), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((1603, 1627), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (1625, 1627), True, 'import tensorflow as tf\n'), ((1679, 1688), 'utils.optim', 'optim', (['lr'], {}), '(lr)\n', (1684, 1688), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((1914, 1948), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['grads', '(3.0)'], {}), '(grads, 3.0)\n', (1936, 1948), True, 'import tensorflow as tf\n'), ((2443, 2474), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss'], {}), "('loss', loss)\n", (2460, 2474), True, 'import tensorflow as tf\n'), ((2489, 2511), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (2509, 2511), True, 'import tensorflow as tf\n'), ((2525, 2541), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2539, 2541), True, 'import tensorflow as tf\n'), ((4181, 4205), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (4203, 4205), True, 'import tensorflow as tf\n'), ((4240, 4311), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, config.N * config.M, 40]', 'dtype': 'tf.float32'}), '(shape=[None, config.N * config.M, 40], dtype=tf.float32)\n', (4254, 4311), True, 'import tensorflow as tf\n'), ((4365, 4436), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, config.N * config.M, 40]', 'dtype': 'tf.float32'}), '(shape=[None, config.N * config.M, 40], dtype=tf.float32)\n', (4379, 4436), True, 'import tensorflow as tf\n'), ((4493, 4527), 'tensorflow.concat', 'tf.concat', (['[enroll, verif]'], {'axis': '(1)'}), '([enroll, verif], axis=1)\n', (4502, 4527), True, 'import tensorflow as tf\n'), ((5478, 5545), 'utils.similarity', 'similarity', ([], {'embedded': 'verif_embed', 'w': '(1.0)', 'b': '(0.0)', 'center': 'enroll_embed'}), '(embedded=verif_embed, w=1.0, b=0.0, center=enroll_embed)\n', (5488, 5545), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((788, 813), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""lstm"""'], {}), "('lstm')\n", (805, 813), True, 'import tensorflow as tf\n'), ((959, 998), 'tensorflow.contrib.rnn.MultiRNNCell', 'tf.contrib.rnn.MultiRNNCell', (['lstm_cells'], {}), '(lstm_cells)\n', (986, 998), True, 'import tensorflow as tf\n'), ((1055, 1132), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', ([], {'cell': 'lstm', 'inputs': 'batch', 'dtype': 'tf.float32', 'time_major': '(True)'}), '(cell=lstm, inputs=batch, dtype=tf.float32, time_major=True)\n', (1072, 1132), True, 'import tensorflow as tf\n'), ((1289, 1308), 'utils.normalize', 'normalize', (['embedded'], {}), '(embedded)\n', (1298, 1308), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((2578, 2590), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2588, 2590), True, 'import tensorflow as tf\n'), ((4580, 4605), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""lstm"""'], {}), "('lstm')\n", (4597, 4605), True, 'import tensorflow as tf\n'), ((4751, 4790), 'tensorflow.contrib.rnn.MultiRNNCell', 'tf.contrib.rnn.MultiRNNCell', (['lstm_cells'], {}), '(lstm_cells)\n', (4778, 4790), True, 'import tensorflow as tf\n'), ((4845, 4922), 'tensorflow.nn.dynamic_rnn', 'tf.nn.dynamic_rnn', ([], {'cell': 'lstm', 'inputs': 'batch', 'dtype': 'tf.float32', 'time_major': '(True)'}), '(cell=lstm, inputs=batch, dtype=tf.float32, time_major=True)\n', (4862, 4922), True, 'import tensorflow as tf\n'), ((5079, 5098), 'utils.normalize', 'normalize', (['embedded'], {}), '(embedded)\n', (5088, 5098), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((5616, 5628), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5626, 5628), True, 'import tensorflow as tf\n'), ((6549, 6560), 'time.time', 'time.time', ([], {}), '()\n', (6558, 6560), False, 'import time\n'), ((7118, 7129), 'time.time', 'time.time', ([], {}), '()\n', (7127, 7129), False, 'import time\n'), ((7141, 7173), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (7160, 7173), True, 'import numpy as np\n'), ((625, 657), 'numpy.array', 'np.array', (['[10]'], {'dtype': 'np.float32'}), '([10], dtype=np.float32)\n', (633, 657), True, 'import numpy as np\n'), ((702, 734), 'numpy.array', 'np.array', (['[-5]'], {'dtype': 'np.float32'}), '([-5], dtype=np.float32)\n', (710, 734), True, 'import numpy as np\n'), ((838, 908), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', ([], {'num_units': 'config.hidden', 'num_proj': 'config.proj'}), '(num_units=config.hidden, num_proj=config.proj)\n', (861, 908), True, 'import tensorflow as tf\n'), ((2670, 2703), 'os.path.join', 'os.path.join', (['path', '"""Check_Point"""'], {}), "(path, 'Check_Point')\n", (2682, 2703), False, 'import os\n'), ((2770, 2796), 'os.path.join', 'os.path.join', (['path', '"""logs"""'], {}), "(path, 'logs')\n", (2782, 2796), False, 'import os\n'), ((2888, 2914), 'os.path.join', 'os.path.join', (['path', '"""logs"""'], {}), "(path, 'logs')\n", (2900, 2914), False, 'import os\n'), ((4630, 4700), 'tensorflow.contrib.rnn.LSTMCell', 'tf.contrib.rnn.LSTMCell', ([], {'num_units': 'config.hidden', 'num_proj': 'config.proj'}), '(num_units=config.hidden, num_proj=config.proj)\n', (4653, 4700), True, 'import tensorflow as tf\n'), ((5276, 5353), 'tensorflow.reshape', 'tf.reshape', (['embedded[:config.N * config.M, :]'], {'shape': '[config.N, config.M, -1]'}), '(embedded[:config.N * config.M, :], shape=[config.N, config.M, -1])\n', (5286, 5353), True, 'import tensorflow as tf\n'), ((5583, 5604), 'tensorflow.global_variables', 'tf.global_variables', ([], {}), '()\n', (5602, 5604), True, 'import tensorflow as tf\n'), ((2609, 2642), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2640, 2642), True, 'import tensorflow as tf\n'), ((5647, 5680), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5678, 5680), True, 'import tensorflow as tf\n'), ((5809, 5842), 'os.path.join', 'os.path.join', (['path', '"""Check_Point"""'], {}), "(path, 'Check_Point')\n", (5821, 5842), False, 'import os\n'), ((4024, 4070), 'os.path.join', 'os.path.join', (['path', '"""./Check_Point/model.ckpt"""'], {}), "(path, './Check_Point/model.ckpt')\n", (4036, 4070), False, 'import os\n'), ((3338, 3352), 'utils.random_batch', 'random_batch', ([], {}), '()\n', (3350, 3352), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((6676, 6720), 'utils.random_batch', 'random_batch', ([], {'shuffle': '(False)', 'noise_filenum': '(1)'}), '(shuffle=False, noise_filenum=1)\n', (6688, 6720), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((6784, 6828), 'utils.random_batch', 'random_batch', ([], {'shuffle': '(False)', 'noise_filenum': '(2)'}), '(shuffle=False, noise_filenum=2)\n', (6796, 6828), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((6909, 6936), 'utils.random_batch', 'random_batch', ([], {'shuffle': '(False)'}), '(shuffle=False)\n', (6921, 6936), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((7000, 7049), 'utils.random_batch', 'random_batch', ([], {'shuffle': '(False)', 'utter_start': 'config.M'}), '(shuffle=False, utter_start=config.M)\n', (7012, 7049), False, 'from utils import random_batch, normalize, similarity, loss_cal, optim\n'), ((7986, 8010), 'numpy.sum', 'np.sum', (['S_thres[i][:, i]'], {}), '(S_thres[i][:, i])\n', (7992, 8010), True, 'import numpy as np\n'), ((7741, 7759), 'numpy.sum', 'np.sum', (['S_thres[i]'], {}), '(S_thres[i])\n', (7747, 7759), True, 'import numpy as np\n'), ((7760, 7784), 'numpy.sum', 'np.sum', (['S_thres[i, :, i]'], {}), '(S_thres[i, :, i])\n', (7766, 7784), True, 'import numpy as np\n')]
''' <NAME> 2021 ''' import numpy as np import cv2 from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift from numpy import conj, real from utils import gaussian2d_rolled_labels, cos_window from hog_cpp.fhog.get_hog import get_hog vgg_path = 'model/imagenet-vgg-verydeep-19.mat' def create_model(): from scipy import io from keras.applications.vgg19 import VGG19 from keras.models import Model mat = io.loadmat(vgg_path) model = VGG19(mat) ixs = [2, 5, 10, 15, 20] outputs = [model.layers[i].output for i in ixs] model = Model(inputs=model.inputs, outputs=outputs) # model.summary() return model vgg_model = create_model() class KernelizedCorrelationFilter: def __init__(self, correlation_type='gaussian', feature='hog'): self.padding = 1.5 # extra area surrounding the target #padding = 2 #extra area surrounding the target self.lambda_ = 1e-4 # regularization self.output_sigma_factor = 0.1 # spatial bandwidth (proportional to target) self.correlation_type = correlation_type self.feature = feature self.resize = False # GRAY if feature == 'gray': self.interp_factor = 0.075 # linear interpolation factor for adaptation self.sigma = 0.2 # gaussian kernel bandwidth self.poly_a = 1 # polynomial kernel additive term self.poly_b = 7 # polynomial kernel exponent self.gray = True self.cell_size = 1 # HOG elif feature == 'hog': self.interp_factor = 0.02 # linear interpolation factor for adaptation self.sigma = 0.5 # gaussian kernel bandwidth self.poly_a = 1 # polynomial kernel additive term self.poly_b = 9 # polynomial kernel exponent self.hog = True self.hog_orientations = 9 self.cell_size = 4 # DEEP elif feature == 'deep': self.interp_factor = 0.02 # linear interpolation factor for adaptation self.sigma = 0.5 # gaussian kernel bandwidth self.poly_a = 1 # polynomial kernel additive term self.poly_b = 9 # polynomial kernel exponent self.deep = True self.cell_size = 4 # 8 def start(self, init_gt, show, frame_list): poses = [] poses.append(init_gt) init_frame = cv2.imread(frame_list[0]) x1, y1, w, h = init_gt init_gt = tuple(init_gt) self.init(init_frame, init_gt) for idx in range(len(frame_list)): if idx != 0: current_frame = cv2.imread(frame_list[idx]) bbox = self.update(current_frame) if bbox is not None: x1, y1, w, h = bbox if show is True: if len(current_frame.shape) == 2: current_frame = cv2.cvtColor(current_frame, cv2.COLOR_GRAY2BGR) show_frame = cv2.rectangle(current_frame, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), (255, 0, 0), 1) cv2.imshow('demo', show_frame) cv2.waitKey(1) else: print('bbox is None') poses.append(np.array([int(x1), int(y1), int(w), int(h)])) return np.array(poses) def init(self, image, roi): # Get image size and search window size x, y, w, h = roi self.image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.target_sz = np.array([h, w]) self.target_sz_real = np.array([h, w]) self.pos = np.array([y + np.floor(h/2), x + np.floor(w/2)]) if np.sqrt(h * w) >= 100: # diagonal size >= threshold self.resize = True self.pos = np.floor(self.pos / 2) self.target_sz = np.floor(self.target_sz / 2) if self.resize: self.image = cv2.resize(self.image, (self.image.shape[1] // 2, self.image.shape[0] // 2)) # window size, taking padding into account self.window_sz = np.floor(np.multiply(self.target_sz, (1 + self.padding))) self.output_sigma = round(round(np.sqrt(self.target_sz[0]*self.target_sz[1]), 4) * self.output_sigma_factor / self.cell_size, 4) yf_sz = np.floor(self.window_sz / self.cell_size) yf_sz[0] = np.floor(self.window_sz / self.cell_size)[1] yf_sz[1] = np.floor(self.window_sz / self.cell_size)[0] gauss = gaussian2d_rolled_labels(yf_sz, self.output_sigma) self.yf = fft2(gauss) #store pre-computed cosine window self.cos_window = cos_window([self.yf.shape[1], self.yf.shape[0]]) # obtain a subwindow for training at newly estimated target position patch = self.get_subwindow(self.image, self.pos, self.window_sz) feat = self.get_features(patch) xf = fftn(feat, axes=(0, 1)) kf = [] if self.correlation_type == 'gaussian': kf = self.gaussian_correlation(xf, xf) alphaf = np.divide(self.yf, (kf + self.lambda_)) self.model_alphaf = alphaf self.model_xf = xf def update(self, image): self.image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.resize: self.image = cv2.resize(self.image, (self.image.shape[1] // 2, self.image.shape[0] // 2)) patch = self.get_subwindow(self.image, self.pos, self.window_sz) zf = fftn(self.get_features(patch), axes=(0, 1)) if self.correlation_type == 'gaussian': kzf = self.gaussian_correlation(zf, self.model_xf) response = real(ifftn(self.model_alphaf * kzf, axes=(0, 1))) # equation for fast detection # Find indices and values of nonzero elements curr = np.unravel_index(np.argmax(gi, axis=None), gi.shape) delta = np.unravel_index(np.argmax(response, axis=None), response.shape) vert_delta, horiz_delta = delta[0], delta[1] if vert_delta > np.size(zf, 0) / 2: # wrap around to negative half-space of vertical axis vert_delta = vert_delta - np.size(zf, 0) if horiz_delta > np.size(zf, 1) / 2: # same for horizontal axis horiz_delta = horiz_delta - np.size(zf, 1) self.pos = self.pos + self.cell_size * np.array([vert_delta, horiz_delta]) # obtain a subwindow for training at newly estimated target position patch = self.get_subwindow(self.image, self.pos, self.window_sz) feat = self.get_features(patch) xf = fftn(feat, axes=(0, 1)) # Kernel Ridge Regression, calculate alphas (in Fourier domain) if self.correlation_type == 'gaussian': kf = self.gaussian_correlation(xf, xf) alphaf = np.divide(self.yf, (kf + self.lambda_)) # subsequent frames, interpolate model self.model_alphaf = (1 - self.interp_factor) * self.model_alphaf + self.interp_factor * alphaf self.model_xf = (1 - self.interp_factor) * self.model_xf + self.interp_factor * xf if self.resize: pos_real = np.multiply(self.pos, 2) else: pos_real = self.pos box = [pos_real[1] - self.target_sz_real[1] / 2, pos_real[0] - self.target_sz_real[0] / 2, self.target_sz_real[1], self.target_sz_real[0]] return box[0], box[1], box[2], box[3] def get_subwindow(self, im, pos, sz): _p1 = np.array(range(0, int(sz[0]))).reshape([1, int(sz[0])]) _p2 = np.array(range(0, int(sz[1]))).reshape([1, int(sz[1])]) ys = np.floor(pos[0]) + _p1 - np.floor(sz[0]/2) xs = np.floor(pos[1]) + _p2 - np.floor(sz[1]/2) # Check for out-of-bounds coordinates, and set them to the values at the borders xs[xs < 0] = 0 ys[ys < 0] = 0 xs[xs > np.size(im, 1) - 1] = np.size(im, 1) - 1 ys[ys > np.size(im, 0) - 1] = np.size(im, 0) - 1 xs = xs.astype(int) ys = ys.astype(int) # extract image out1 = im[list(ys[0, :]), :, :] out = out1[:, list(xs[0, :]), :] return out def get_features(self, im): if self.feature == 'hog': # HOG features, from Piotr's Toolbox x = np.double(self.get_fhog(im)) return x * self.cos_window[:, :, None] if self.feature == 'gray': x = np.double(im) / 255 x = x - np.mean(x) return x * self.cos_window[:, :, None] if self.feature == 'deep': x = self.get_deep_feature(im) x = x / np.max(x) return x * self.cos_window[:, :, None] def get_fhog(self, im_patch): H = get_hog(im_patch/255) return H def gaussian_correlation(self, xf, yf): N = xf.shape[0] * xf.shape[1] xff = xf.reshape([xf.shape[0] * xf.shape[1] * xf.shape[2], 1], order='F') xff_T = xff.conj().T yff = yf.reshape([yf.shape[0] * yf.shape[1] * yf.shape[2], 1], order='F') yff_T = yff.conj().T xx = np.dot(xff_T, xff).real / N # squared norm of x yy = np.dot(yff_T, yff).real / N # squared norm of y # cross-correlation term in Fourier domain xyf = xf * conj(yf) ixyf = ifftn(xyf, axes=(0, 1)) rxyf = real(ixyf) xy = np.sum(rxyf, 2) # to spatial domain # calculate gaussian response for all positions, then go back to the Fourier domain sz = xf.shape[0] * xf.shape[1] * xf.shape[2] mltp = (xx + yy - 2 * xy) / sz crpm = -1 / (self.sigma * self.sigma) expe = crpm * np.maximum(0, mltp) expx = np.exp(expe) kf = fftn(expx, axes=(0, 1)) return kf def get_deep_feature(self, im): # Preprocessing from numpy import expand_dims #img = im.astype('float32') # note: [0, 255] range img = im # note: [0, 255] range img = cv2.resize(img, (224, 224)) img = expand_dims(img, axis=0) feature_maps = vgg_model.predict(img) f_map = feature_maps[3][0][:][:][:] feature_map_n = cv2.resize(f_map, (self.cos_window.shape[1], self.cos_window.shape[0]), interpolation=cv2.INTER_LINEAR) return feature_map_n
[ "numpy.sqrt", "scipy.io.loadmat", "cv2.imshow", "numpy.array", "numpy.divide", "numpy.mean", "numpy.multiply", "numpy.fft.fftn", "numpy.fft.fft2", "numpy.exp", "numpy.real", "numpy.max", "numpy.dot", "keras.models.Model", "keras.applications.vgg19.VGG19", "numpy.maximum", "cv2.waitKey", "numpy.conj", "numpy.size", "numpy.floor", "utils.cos_window", "numpy.argmax", "utils.gaussian2d_rolled_labels", "cv2.cvtColor", "cv2.resize", "numpy.fft.ifftn", "cv2.imread", "hog_cpp.fhog.get_hog.get_hog", "numpy.double", "numpy.sum", "numpy.expand_dims" ]
[((423, 443), 'scipy.io.loadmat', 'io.loadmat', (['vgg_path'], {}), '(vgg_path)\n', (433, 443), False, 'from scipy import io\n'), ((456, 466), 'keras.applications.vgg19.VGG19', 'VGG19', (['mat'], {}), '(mat)\n', (461, 466), False, 'from keras.applications.vgg19 import VGG19\n'), ((560, 603), 'keras.models.Model', 'Model', ([], {'inputs': 'model.inputs', 'outputs': 'outputs'}), '(inputs=model.inputs, outputs=outputs)\n', (565, 603), False, 'from keras.models import Model\n'), ((2396, 2421), 'cv2.imread', 'cv2.imread', (['frame_list[0]'], {}), '(frame_list[0])\n', (2406, 2421), False, 'import cv2\n'), ((3398, 3413), 'numpy.array', 'np.array', (['poses'], {}), '(poses)\n', (3406, 3413), True, 'import numpy as np\n'), ((3541, 3579), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (3553, 3579), False, 'import cv2\n'), ((3605, 3621), 'numpy.array', 'np.array', (['[h, w]'], {}), '([h, w])\n', (3613, 3621), True, 'import numpy as np\n'), ((3652, 3668), 'numpy.array', 'np.array', (['[h, w]'], {}), '([h, w])\n', (3660, 3668), True, 'import numpy as np\n'), ((4349, 4390), 'numpy.floor', 'np.floor', (['(self.window_sz / self.cell_size)'], {}), '(self.window_sz / self.cell_size)\n', (4357, 4390), True, 'import numpy as np\n'), ((4535, 4585), 'utils.gaussian2d_rolled_labels', 'gaussian2d_rolled_labels', (['yf_sz', 'self.output_sigma'], {}), '(yf_sz, self.output_sigma)\n', (4559, 4585), False, 'from utils import gaussian2d_rolled_labels, cos_window\n'), ((4604, 4615), 'numpy.fft.fft2', 'fft2', (['gauss'], {}), '(gauss)\n', (4608, 4615), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((4684, 4732), 'utils.cos_window', 'cos_window', (['[self.yf.shape[1], self.yf.shape[0]]'], {}), '([self.yf.shape[1], self.yf.shape[0]])\n', (4694, 4732), False, 'from utils import gaussian2d_rolled_labels, cos_window\n'), ((4936, 4959), 'numpy.fft.fftn', 'fftn', (['feat'], {'axes': '(0, 1)'}), '(feat, axes=(0, 1))\n', (4940, 4959), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((5092, 5129), 'numpy.divide', 'np.divide', (['self.yf', '(kf + self.lambda_)'], {}), '(self.yf, kf + self.lambda_)\n', (5101, 5129), True, 'import numpy as np\n'), ((5245, 5283), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (5257, 5283), False, 'import cv2\n'), ((6569, 6592), 'numpy.fft.fftn', 'fftn', (['feat'], {'axes': '(0, 1)'}), '(feat, axes=(0, 1))\n', (6573, 6592), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((6783, 6820), 'numpy.divide', 'np.divide', (['self.yf', '(kf + self.lambda_)'], {}), '(self.yf, kf + self.lambda_)\n', (6792, 6820), True, 'import numpy as np\n'), ((8719, 8742), 'hog_cpp.fhog.get_hog.get_hog', 'get_hog', (['(im_patch / 255)'], {}), '(im_patch / 255)\n', (8726, 8742), False, 'from hog_cpp.fhog.get_hog import get_hog\n'), ((9281, 9304), 'numpy.fft.ifftn', 'ifftn', (['xyf'], {'axes': '(0, 1)'}), '(xyf, axes=(0, 1))\n', (9286, 9304), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((9320, 9330), 'numpy.real', 'real', (['ixyf'], {}), '(ixyf)\n', (9324, 9330), False, 'from numpy import conj, real\n'), ((9344, 9359), 'numpy.sum', 'np.sum', (['rxyf', '(2)'], {}), '(rxyf, 2)\n', (9350, 9359), True, 'import numpy as np\n'), ((9669, 9681), 'numpy.exp', 'np.exp', (['expe'], {}), '(expe)\n', (9675, 9681), True, 'import numpy as np\n'), ((9695, 9718), 'numpy.fft.fftn', 'fftn', (['expx'], {'axes': '(0, 1)'}), '(expx, axes=(0, 1))\n', (9699, 9718), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((9952, 9979), 'cv2.resize', 'cv2.resize', (['img', '(224, 224)'], {}), '(img, (224, 224))\n', (9962, 9979), False, 'import cv2\n'), ((9995, 10019), 'numpy.expand_dims', 'expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (10006, 10019), False, 'from numpy import expand_dims\n'), ((10134, 10241), 'cv2.resize', 'cv2.resize', (['f_map', '(self.cos_window.shape[1], self.cos_window.shape[0])'], {'interpolation': 'cv2.INTER_LINEAR'}), '(f_map, (self.cos_window.shape[1], self.cos_window.shape[0]),\n interpolation=cv2.INTER_LINEAR)\n', (10144, 10241), False, 'import cv2\n'), ((3748, 3762), 'numpy.sqrt', 'np.sqrt', (['(h * w)'], {}), '(h * w)\n', (3755, 3762), True, 'import numpy as np\n'), ((3855, 3877), 'numpy.floor', 'np.floor', (['(self.pos / 2)'], {}), '(self.pos / 2)\n', (3863, 3877), True, 'import numpy as np\n'), ((3907, 3935), 'numpy.floor', 'np.floor', (['(self.target_sz / 2)'], {}), '(self.target_sz / 2)\n', (3915, 3935), True, 'import numpy as np\n'), ((3985, 4061), 'cv2.resize', 'cv2.resize', (['self.image', '(self.image.shape[1] // 2, self.image.shape[0] // 2)'], {}), '(self.image, (self.image.shape[1] // 2, self.image.shape[0] // 2))\n', (3995, 4061), False, 'import cv2\n'), ((4147, 4192), 'numpy.multiply', 'np.multiply', (['self.target_sz', '(1 + self.padding)'], {}), '(self.target_sz, 1 + self.padding)\n', (4158, 4192), True, 'import numpy as np\n'), ((4410, 4451), 'numpy.floor', 'np.floor', (['(self.window_sz / self.cell_size)'], {}), '(self.window_sz / self.cell_size)\n', (4418, 4451), True, 'import numpy as np\n'), ((4474, 4515), 'numpy.floor', 'np.floor', (['(self.window_sz / self.cell_size)'], {}), '(self.window_sz / self.cell_size)\n', (4482, 4515), True, 'import numpy as np\n'), ((5333, 5409), 'cv2.resize', 'cv2.resize', (['self.image', '(self.image.shape[1] // 2, self.image.shape[0] // 2)'], {}), '(self.image, (self.image.shape[1] // 2, self.image.shape[0] // 2))\n', (5343, 5409), False, 'import cv2\n'), ((5678, 5721), 'numpy.fft.ifftn', 'ifftn', (['(self.model_alphaf * kzf)'], {'axes': '(0, 1)'}), '(self.model_alphaf * kzf, axes=(0, 1))\n', (5683, 5721), False, 'from numpy.fft import fftn, ifftn, fft2, ifft2, fftshift\n'), ((5901, 5931), 'numpy.argmax', 'np.argmax', (['response'], {'axis': 'None'}), '(response, axis=None)\n', (5910, 5931), True, 'import numpy as np\n'), ((7112, 7136), 'numpy.multiply', 'np.multiply', (['self.pos', '(2)'], {}), '(self.pos, 2)\n', (7123, 7136), True, 'import numpy as np\n'), ((7644, 7663), 'numpy.floor', 'np.floor', (['(sz[0] / 2)'], {}), '(sz[0] / 2)\n', (7652, 7663), True, 'import numpy as np\n'), ((7700, 7719), 'numpy.floor', 'np.floor', (['(sz[1] / 2)'], {}), '(sz[1] / 2)\n', (7708, 7719), True, 'import numpy as np\n'), ((7892, 7906), 'numpy.size', 'np.size', (['im', '(1)'], {}), '(im, 1)\n', (7899, 7906), True, 'import numpy as np\n'), ((7949, 7963), 'numpy.size', 'np.size', (['im', '(0)'], {}), '(im, 0)\n', (7956, 7963), True, 'import numpy as np\n'), ((9257, 9265), 'numpy.conj', 'conj', (['yf'], {}), '(yf)\n', (9261, 9265), False, 'from numpy import conj, real\n'), ((9634, 9653), 'numpy.maximum', 'np.maximum', (['(0)', 'mltp'], {}), '(0, mltp)\n', (9644, 9653), True, 'import numpy as np\n'), ((2626, 2653), 'cv2.imread', 'cv2.imread', (['frame_list[idx]'], {}), '(frame_list[idx])\n', (2636, 2653), False, 'import cv2\n'), ((6026, 6040), 'numpy.size', 'np.size', (['zf', '(0)'], {}), '(zf, 0)\n', (6033, 6040), True, 'import numpy as np\n'), ((6139, 6153), 'numpy.size', 'np.size', (['zf', '(0)'], {}), '(zf, 0)\n', (6146, 6153), True, 'import numpy as np\n'), ((6179, 6193), 'numpy.size', 'np.size', (['zf', '(1)'], {}), '(zf, 1)\n', (6186, 6193), True, 'import numpy as np\n'), ((6267, 6281), 'numpy.size', 'np.size', (['zf', '(1)'], {}), '(zf, 1)\n', (6274, 6281), True, 'import numpy as np\n'), ((6329, 6364), 'numpy.array', 'np.array', (['[vert_delta, horiz_delta]'], {}), '([vert_delta, horiz_delta])\n', (6337, 6364), True, 'import numpy as np\n'), ((7619, 7635), 'numpy.floor', 'np.floor', (['pos[0]'], {}), '(pos[0])\n', (7627, 7635), True, 'import numpy as np\n'), ((7675, 7691), 'numpy.floor', 'np.floor', (['pos[1]'], {}), '(pos[1])\n', (7683, 7691), True, 'import numpy as np\n'), ((8412, 8425), 'numpy.double', 'np.double', (['im'], {}), '(im)\n', (8421, 8425), True, 'import numpy as np\n'), ((8452, 8462), 'numpy.mean', 'np.mean', (['x'], {}), '(x)\n', (8459, 8462), True, 'import numpy as np\n'), ((8611, 8620), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (8617, 8620), True, 'import numpy as np\n'), ((9076, 9094), 'numpy.dot', 'np.dot', (['xff_T', 'xff'], {}), '(xff_T, xff)\n', (9082, 9094), True, 'import numpy as np\n'), ((9138, 9156), 'numpy.dot', 'np.dot', (['yff_T', 'yff'], {}), '(yff_T, yff)\n', (9144, 9156), True, 'import numpy as np\n'), ((3702, 3717), 'numpy.floor', 'np.floor', (['(h / 2)'], {}), '(h / 2)\n', (3710, 3717), True, 'import numpy as np\n'), ((3721, 3736), 'numpy.floor', 'np.floor', (['(w / 2)'], {}), '(w / 2)\n', (3729, 3736), True, 'import numpy as np\n'), ((7870, 7884), 'numpy.size', 'np.size', (['im', '(1)'], {}), '(im, 1)\n', (7877, 7884), True, 'import numpy as np\n'), ((7927, 7941), 'numpy.size', 'np.size', (['im', '(0)'], {}), '(im, 0)\n', (7934, 7941), True, 'import numpy as np\n'), ((3173, 3203), 'cv2.imshow', 'cv2.imshow', (['"""demo"""', 'show_frame'], {}), "('demo', show_frame)\n", (3183, 3203), False, 'import cv2\n'), ((3228, 3242), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3239, 3242), False, 'import cv2\n'), ((4236, 4282), 'numpy.sqrt', 'np.sqrt', (['(self.target_sz[0] * self.target_sz[1])'], {}), '(self.target_sz[0] * self.target_sz[1])\n', (4243, 4282), True, 'import numpy as np\n'), ((2920, 2967), 'cv2.cvtColor', 'cv2.cvtColor', (['current_frame', 'cv2.COLOR_GRAY2BGR'], {}), '(current_frame, cv2.COLOR_GRAY2BGR)\n', (2932, 2967), False, 'import cv2\n')]
"""Utility functions used in Activity 7.""" import random import numpy as np from matplotlib import pyplot as plt from keras.callbacks import TensorBoard def create_groups(data, group_size=7): """Create distinct groups from a continuous series. Parameters ---------- data: np.array Series of continious observations. group_size: int, default 7 Determines how large the groups are. That is, how many observations each group contains. Returns ------- A Numpy array object. """ samples = list() for i in range(0, len(data), group_size): sample = list(data[i:i + group_size]) if len(sample) == group_size: samples.append(np.array(sample).reshape(1, group_size).tolist()) a = np.array(samples) return a.reshape(1, a.shape[0], group_size) def split_lstm_input(groups): """Split groups in a format expected by the LSTM layer. Parameters ---------- groups: np.array Numpy array with the organized sequences. Returns ------- X, Y: np.array Numpy arrays with the shapes required by the LSTM layer. X with (1, a - 1, b) and Y with (1, b). Where a is the total number of groups in `group` and b the number of observations per group. """ X = groups[0:, :-1].reshape(1, groups.shape[1] - 1, groups.shape[2]) Y = groups[0:, -1:][0] return X, Y def mape(A, B): """Calculate the mean absolute percentage error from two series.""" return np.mean(np.abs((A - B) / A)) * 100 def rmse(A, B): """Calculate the root mean square error from two series.""" return np.sqrt(np.square(np.subtract(A, B)).mean()) def train_model(model, X, Y, epochs=100, version=0, run_number=0): """Shorthand function for training a new model. This function names each run of the model using the TensorBoard naming conventions. Parameters ---------- model: Keras model instance Compiled Keras model. X, Y: np.array Series of observations to be used in the training process. version: int Version of the model to run. run_number: int The number of the run. Used in case the same model version is run again. """ hash = random.getrandbits(128) hex_code = '%032x' % hash model_name = f'bitcoin_lstm_v{version}_run_{run_number}_{hex_code[:6]}' tensorboard = TensorBoard(log_dir=f'./logs/{model_name}') model_history = model.fit( x=X, y=Y, batch_size=1, epochs=epochs, callbacks=[tensorboard], shuffle=False) return model_history def plot_two_series(A, B, variable, title): """Plot two series using the same `date` index. Parameters ---------- A, B: pd.DataFrame Dataframe with a `date` key and a variable passed in the `variable` parameter. Parameter A represents the "Observed" series and B the "Predicted" series. These will be labelled respectivelly. variable: str Variable to use in plot. title: str Plot title. """ plt.figure(figsize=(14, 4)) plt.xlabel('Observed and predicted') ax1 = A.set_index('date')[variable].plot( color='#d35400', grid=True, label='Observed', title=title) ax2 = B.set_index('date')[variable].plot( color='grey', grid=True, label='Predicted') ax1.set_xlabel("Predicted Week") ax1.set_ylabel("Predicted Values") plt.legend() plt.show() def denormalize(reference, series, normalized_variable='close_point_relative_normalization', denormalized_variable='close'): """Denormalize the values for a given series. Parameters ---------- reference: pd.DataFrame DataFrame to use as reference. This dataframe contains both a week index and the USD price reference that we are interested on. series: pd.DataFrame DataFrame with the predicted series. The DataFrame must have the same columns as the `reference` dataset. normalized_variable: str, default 'close_point_relative_normalization' Variable to use in normalization. denormalized_variable: str, default `close` Variable to use in de-normalization. Returns ------- A modified DataFrame with the new variable provided in `denormalized_variable` parameter. """ week_values = reference[reference['iso_week'] == series['iso_week'].values[0]] last_value = week_values[denormalized_variable].values[0] series[denormalized_variable] = last_value * (series[normalized_variable] + 1) return series
[ "numpy.abs", "matplotlib.pyplot.xlabel", "numpy.subtract", "keras.callbacks.TensorBoard", "numpy.array", "matplotlib.pyplot.figure", "random.getrandbits", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((779, 796), 'numpy.array', 'np.array', (['samples'], {}), '(samples)\n', (787, 796), True, 'import numpy as np\n'), ((2298, 2321), 'random.getrandbits', 'random.getrandbits', (['(128)'], {}), '(128)\n', (2316, 2321), False, 'import random\n'), ((2447, 2490), 'keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': 'f"""./logs/{model_name}"""'}), "(log_dir=f'./logs/{model_name}')\n", (2458, 2490), False, 'from keras.callbacks import TensorBoard\n'), ((3136, 3163), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 4)'}), '(figsize=(14, 4))\n', (3146, 3163), True, 'from matplotlib import pyplot as plt\n'), ((3168, 3204), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Observed and predicted"""'], {}), "('Observed and predicted')\n", (3178, 3204), True, 'from matplotlib import pyplot as plt\n'), ((3500, 3512), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3510, 3512), True, 'from matplotlib import pyplot as plt\n'), ((3517, 3527), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3525, 3527), True, 'from matplotlib import pyplot as plt\n'), ((1547, 1566), 'numpy.abs', 'np.abs', (['((A - B) / A)'], {}), '((A - B) / A)\n', (1553, 1566), True, 'import numpy as np\n'), ((1685, 1702), 'numpy.subtract', 'np.subtract', (['A', 'B'], {}), '(A, B)\n', (1696, 1702), True, 'import numpy as np\n'), ((720, 736), 'numpy.array', 'np.array', (['sample'], {}), '(sample)\n', (728, 736), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import itertools __metaclass__ = type def prob_incr(species, proj_compressed_data, min_occurences = 10): p = proj_compressed_data['count_incr']/ proj_compressed_data['count'] p[proj_compressed_data['count'] < min_occurences] = -1 return p def score(species,IV, G, exp_digitized, bins, thresholds): # G: control species set (v_f, v_a, v_n) = (0, 0, 0) IV[IV.isnull()] = 0 if (IV == 0).all(): return thresholds['Ti'] n_repressors = IV[IV == -1].count() n_activators = IV[IV == 1].count() # G.extend(parents(IV) ) GG = G[:] GG.extend(parents(IV)) GG = np.unique(GG) pcd = exp_digitized.project(species,GG) pcd['prob_incr'] = prob_incr(species, pcd, min_occurences = 1) # if (GG == ['CI','LacI']).all(): print pcd query_parents= "" if n_repressors > n_activators: query_parents = " & ".join(['%s == %s' %(sp, bins[sp][0] ) for sp in IV[IV == -1].index ] ) # lowest level for repressors query_act = " & ".join(['%s == %s' %(sp, bins[sp][-2]) for sp in IV[IV == 1].index ] ) # highest level for activators if query_act != "": query_parents += (" & " + query_act ) else: query_parents = " & ".join(['%s == %s' %(sp, bins[sp][0] ) for sp in IV[IV == 1].index ] ) # lowest level for activators query_rep = " & ".join(['%s == %s' %(sp, bins[sp][-1]) for sp in IV[IV == -1].index ] ) # highest level for repressors if query_rep != "": query_parents += (" & " + query_rep) for g in G: if (len(parents(IV) == 1) and g == parents(IV)[0]): # single-influence and self-regulating idx_base = pcd.query(query_parents).index p_base = pcd.at[idx_base[0], 'prob_incr'] idx_test = np.setdiff1d(pcd.index, idx_base) if p_base != -1: for i in idx_test: p_a = pcd.loc[i,'prob_incr'] # print "p_a / p_base = %s / %s" % (p_a, p_base) if p_a != -1 : if n_repressors < n_activators: if (p_a / p_base) > thresholds['Ta']: v_f += 1; # print "Voted for" elif (p_a / p_base) < thresholds['Tr']: v_a +=1; # print "Voted against" else: v_n += 1; # print "Voted neutral" else: if (p_a / p_base) < thresholds['Tr']: v_f += 1; # print "Voted for" elif (p_a / p_base) > thresholds['Ta']: v_a +=1; # print "Voted against" else: v_n += 1; # print "Voted neutral" else: for b in bins[g]: query_cntl = '%s == %s' % (g,b) if ( g in parents(IV)): query_str = query_cntl else: #p_base = float(pcd.query(query_parents+ ' & ' + query_cntl )['prob_incr']) query_str = (query_parents+ ' & ' + query_cntl, query_cntl)[query_parents == ""] idx_base = pcd.query(query_str).index p_base = pcd.at[idx_base[0], 'prob_incr'] if p_base != -1: # if p_base == 0: p_base += pseudo_count idx_test = np.setdiff1d(pcd.query(query_cntl).index, idx_base) for i in idx_test: # pcd.loc[i, 'ratio'] = pcd.loc[i,'prob_incr'] / p_base p_a = pcd.loc[i,'prob_incr'] # print "p_a / p_base = %s / %s" % (p_a, p_base) if p_a != -1 : # print pcd.loc[idx, 'prob_incr']/ p_base if n_repressors < n_activators: if (p_a / p_base) > thresholds['Ta']: v_f += 1; # print "Voted for" elif (p_a / p_base) < thresholds['Tr']: v_a +=1; # print "Voted against" else: v_n += 1; # print "Voted neutral" else: if (p_a / p_base) < thresholds['Tr']: v_f += 1; # print "Voted for" elif (p_a / p_base) > thresholds['Ta']: v_a +=1; # print "Voted against" else: v_n += 1; # print "Voted neutral" # print "IV: %s" % IV # print (v_f, v_a, v_n) if (v_f + v_a + v_n == 0): return 0. score = (v_f - v_a + 0.) / (v_f + v_a + v_n ) if (len(parents(IV) == 1) and g == parents(IV)[0]): score *= 0.75 # down weight single-influence and self-regulating return score def parents(infl): return infl[(infl.notnull()) & (infl != 0 )].index def createIVSet(species, exp_digitized,IV0, bins, thresholds): I = [] scores = [] idx_unknown = IV0[IV0.isnull()].index # species name iv = IV0.copy() iv[idx_unknown] = 0 G = [species] score_zero = score(species,iv, G, exp_digitized, bins, thresholds) # print "%s \t Background score: %s" % (list(iv), score_zero) for u in idx_unknown: iv1 = iv.copy() iv1.loc[u] = 1 # set activators # print "scoring %s" % iv1 score_a = score(species ,iv1, G, exp_digitized, bins, thresholds) # print "%s \t Activator score: %s" % (list(iv1), score_a) if score_a >= score_zero: I.append(iv1) scores.append(score_a) else: iv1.loc[u] = -1 # print "scoring %s" % iv1 score_r = score(species ,iv1, G, exp_digitized, bins, thresholds) # print "%s \t Repressor score: %s" % (list(iv1), score_r) if score_r >= score_zero: I.append(iv1) scores.append(score_r) return (I, scores) # IV[IV.isnull()] = 0 def combineIVs(species, IVs, IVscores, IV0,exp_digitized, bins, thresholds): '''score every possible combination of IV in input IVs''' I = [] scores = [] to_remove = [] tj = len(IV0[IV0.notnull()]) bg_score = 0. bg_iv = IV0.copy() bg_iv[IV0.isnull()] = 0 bg_score = score(species, bg_iv, [species], exp_digitized, bins, thresholds) for i in range(2, min(thresholds['Tj'], len(IV0)- tj+1)): K = itertools.combinations(range(len(IVs)), i) for k in K: old_scores = np.zeros((len(k),)) added = IVs[0][IV0.isnull()]; added[:] = 0 # combined vector for j in range(len(k)): added += IVs[k[j]][IV0.isnull()] old_scores[j] = IVscores[k[j]] new_iv = pd.concat((added , IV0[IV0.notnull()])) if (max(old_scores) - min(old_scores)) <= thresholds['Tm']: new_score = score(species, new_iv, [species] ,exp_digitized, bins, thresholds) if ((new_score >= old_scores).all() and (new_score > bg_score)): I.append(new_iv) scores.append(new_score) to_remove.extend(k) return (I, scores, set(to_remove)) def competeIVs(species, iv1, iv2, exp_digitized, bins, thresholds): G = [species]; G.extend(np.setdiff1d(parents(iv2), parents(iv1)) ) s1 = score(species, iv1, G, exp_digitized, bins, thresholds) G = [species]; G.extend(np.setdiff1d(parents(iv1), parents(iv2)) ) s2 = score(species, iv2, G, exp_digitized, bins, thresholds) if s1 > s2: return (0, s1) elif s1 < s2: return (1, s2) else: return ([0, 1], [s1, s2] ) def learn(experiments, initialNetwork, thresholds = { 'Tr': 0.75, 'Ta': 1.15, 'Tj': 2, 'Ti': 0.5, 'Tm': 0.} , nbins=4, bin_assignment = 1): '''Learning of causal network from a set of time series data, each resulted from an independent experiment The algorithm learn influence vectors for one gene at a time. For each gene, there are 3 main stages of learning: (1) Adding single influence to create set of new influence vectors (2) Combining influence vectors from stage (1) to create new influence vectors (with more than 1 parents) (3) competing between influence vectors to determine the best one ''' cnet = initialNetwork.copy() binned = experiments.digitize(nbins=nbins, bin_assignment = 1) bins = { sp: np.unique(binned[sp]) for sp in initialNetwork } for sp in initialNetwork: # print "----------------------------\nLearning influence vector for %s" % sp initial = initialNetwork.influences(sp) (IVs, scores) = createIVSet(sp,binned, initial, bins, thresholds) # if sp == 'LacI': # print "Initial IVs" # print IVs # print scores (cIVs, cScores, to_remove) = combineIVs(sp, IVs, scores, initial,binned, bins, thresholds) # if sp == 'LacI': # print "Combined IVs" # print cIVs # print cScores for i in np.setdiff1d(range(len(IVs)), to_remove): cIVs.append(IVs[i]) cScores.append(scores[i]) while len(cIVs) > 1: sorted_idx = np.argsort(-np.array(cScores)) # ranking IVs from highest scores winnerId, wScore = competeIVs(sp, cIVs[0], cIVs[-1], binned, bins, thresholds) if winnerId == 1: cIVs[0] = cIVs[-1] cScores[0] = cScores[-1] cIVs = cIVs[:-1] cScores = cScores[:-1] if len(cIVs) > 0: cnet.loc[sp] = cIVs[0] else: cnet.loc[sp] = initial.copy() cnet.loc[sp][initial.isnull()] = 0 return cnet class CausalNetwork(pd.DataFrame): def __init__(self, species): '''store influence vectors of each gene in a row, with value indicating relationship of gene in the column --> gene in the row. Example n = CausalNetwork(...) A B C A 0 -1 0 B 0 1 1 C -1 None 0 0: no relation ship 1: activate -1: repress None: unknown ''' super(CausalNetwork,self).__init__(np.zeros((len(species), len(species)), dtype=int)/ 0., columns = species, index=species) def activators(self,i): ''' return the activators of i''' pass def repressors(self,i): ''' return the repressors of i''' pass def influences(self,i): '''return the influence vector of i''' return self.loc[i] def __getitem__(self, i): return self.loc[i]
[ "numpy.array", "numpy.setdiff1d", "numpy.unique" ]
[((640, 653), 'numpy.unique', 'np.unique', (['GG'], {}), '(GG)\n', (649, 653), True, 'import numpy as np\n'), ((8443, 8464), 'numpy.unique', 'np.unique', (['binned[sp]'], {}), '(binned[sp])\n', (8452, 8464), True, 'import numpy as np\n'), ((1796, 1829), 'numpy.setdiff1d', 'np.setdiff1d', (['pcd.index', 'idx_base'], {}), '(pcd.index, idx_base)\n', (1808, 1829), True, 'import numpy as np\n'), ((9252, 9269), 'numpy.array', 'np.array', (['cScores'], {}), '(cScores)\n', (9260, 9269), True, 'import numpy as np\n')]
"""Tools for working with Cryptopunk NFTs; this includes utilities for data analysis and image preparation for training machine learning models using Cryptopunks as training data. Functions: get_punk(id) pixel_to_img(pixel_str, dim) flatten(img) unflatten(img) sort_dict_by_function_of_value(d, f) add_index_to_colors(colors) """ import os import time import requests from collections import OrderedDict from bs4 import BeautifulSoup from re import sub import numpy as np import pandas as pd from matplotlib.colors import rgb2hex import matplotlib.image as mpimg import matplotlib.pyplot as plt __ROOT_DIR__ = os.path.dirname(os.path.abspath(__file__)) __PUNK_DIR__ = f"{__ROOT_DIR__}/images/training"; def camel_case(string): ''' Convert string to camelCase ''' string = string.strip("\n") string = sub(r"(_|-)+", " ", string).title().replace(" ", "") return string[0].lower() + string[1:] def color_str_to_hex(s): ''' Convert string representation of numpy pixel array to a string hex value ''' return rgb2hex([float(x) for x in s[1:-1].split(' ') if x != '']) def get_punk(id): ''' Returns a ndarray with loaded image ''' return mpimg.imread(f'''{__PUNK_DIR__}/punk{"%04d" % id}.png''') def pixel_to_img(pixel_str, dim = (24,24)): ''' Take pixel of format "[r,g,b,b]" and return an image of size `dim` containing only the pixel's color. ''' (x,y) = dim c = np.fromstring(pixel_str[1:-1], float, sep=' ') return np.full((x, y, 4), c) def pixel_to_ximg(pixel_strs, dim = (24,24), n=3 ): ''' Take pixel of format "[r,g,b,b]" and return an image of size `dim` containing a matrix of size n*n ''' (x,y) = (dim[0]//n, dim[1]//n) m = [] for i in range(0,n): l=[] for j in range(0,n): img = np.full((x, y, 4), np.fromstring(pixel_strs[i*n + j][1:-1], float, sep=' ')) l.append(img) m.append(np.concatenate(l, axis=1)) return np.concatenate(m, axis=0) def flatten(img): ''' Convert (x,y,z) array containing a pixel in z-dimension to an (x,y) array with str values for each (i,j) the intention is to make this easier to work with in ML training. ''' return np.array([[str(c) for c in row] for row in img]) def unflatten(img): ''' Return a flattend image to valid .png format for display ''' return np.array([[np.fromstring(c[1:-1], float, sep=' ') for c in row] for row in img]) def sort_dict_by_function_of_value(d, f = len): sorted_tuples = sorted(d.items(), key=lambda item: len(item[1])) return {k: v for k, v in sorted_tuples} def add_index_to_colors(colors): ''' Add a unique, sequential index to the entry for each color. returned dictionary will be of form {`color_string`: { `"id": `int`, "punkIds" : `list[int`}} ''' i=0 d={} for k in colors.keys(): d[k] = { 'id' : i, 'punkIds' : colors[k] } i=i+1 return d def get_attr_dict(): ''' Read the attr csv and populate a default dict ''' d=OrderedDict() with open(f"{__ROOT_DIR__}/data/list_attr_punx.csv") as f: for attr in f.read().strip('\n').split(','): d[attr]=-1 return d def get_punk_attrs(id): ''' Retrieve `id` cryptopunk from larvalabs.com, parse HTML to extract type and attribute list to return list of attributes ''' typeClass="col-md-10 col-md-offset-1 col-xs-12" punk_page=requests.get(f"https://www.larvalabs.com/cryptopunks/details/{id}") if(punk_page.status_code != 200): print(punk_page.status_code) return {} punk_html=punk_page.text soup = BeautifulSoup(punk_html, 'html.parser') details = soup.find(id="punkDetails") punkType = camel_case(details.find(class_=typeClass).find('a').contents[0]) attrs=[punkType] attrTags = details.find(class_ = "row detail-row") for attrTag in attrTags.find_all('a'): attrs.append(camel_case(attrTag.contents[0])) return attrs def get_punk_dict(id): ''' Retrieve a punk page, pull type and attributes from HTML and return a dictionary of attribute to (-1,1) mapping where 1 is truthy for existence of attribute ''' od = {k:__ATTR_DICT__[k] for k in __ATTR_DICT__} attrs = get_punk_attrs(id) for attr in attrs: od[attr]=1 return od def get_punks(start, end): ''' Retrieve punks in range `start` to `end` ''' punks={} for id in range(start, end): print(id) time.sleep(3.3) punks[id] = get_punk_dict(id) return punks def plot_in_grid(n, images, predictions, labels): ''' Plot `images` in an n*n grid with prediction and labels as header ''' (x,y) = (n,n) fig = plt.figure(figsize=(9,14)) i=0 for i in range(1,(x*y)+1): fig.add_subplot(x, y, i) plt.imshow(images[i]) plt.title(f"{predictions[i][0]},{labels[i][0]}") plt.axis('off') i=i+1 return fig
[ "matplotlib.pyplot.imshow", "collections.OrderedDict", "matplotlib.pyplot.title", "matplotlib.image.imread", "requests.get", "time.sleep", "bs4.BeautifulSoup", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "re.sub", "numpy.concatenate", "os.path.abspath", "numpy.full", "numpy.fromstring" ]
[((655, 680), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (670, 680), False, 'import os\n'), ((1216, 1269), 'matplotlib.image.imread', 'mpimg.imread', (['f"""{__PUNK_DIR__}/punk{\'%04d\' % id}.png"""'], {}), '(f"{__PUNK_DIR__}/punk{\'%04d\' % id}.png")\n', (1228, 1269), True, 'import matplotlib.image as mpimg\n'), ((1484, 1530), 'numpy.fromstring', 'np.fromstring', (['pixel_str[1:-1]', 'float'], {'sep': '""" """'}), "(pixel_str[1:-1], float, sep=' ')\n", (1497, 1530), True, 'import numpy as np\n'), ((1542, 1563), 'numpy.full', 'np.full', (['(x, y, 4)', 'c'], {}), '((x, y, 4), c)\n', (1549, 1563), True, 'import numpy as np\n'), ((2069, 2094), 'numpy.concatenate', 'np.concatenate', (['m'], {'axis': '(0)'}), '(m, axis=0)\n', (2083, 2094), True, 'import numpy as np\n'), ((3209, 3222), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (3220, 3222), False, 'from collections import OrderedDict\n'), ((3623, 3690), 'requests.get', 'requests.get', (['f"""https://www.larvalabs.com/cryptopunks/details/{id}"""'], {}), "(f'https://www.larvalabs.com/cryptopunks/details/{id}')\n", (3635, 3690), False, 'import requests\n'), ((3825, 3864), 'bs4.BeautifulSoup', 'BeautifulSoup', (['punk_html', '"""html.parser"""'], {}), "(punk_html, 'html.parser')\n", (3838, 3864), False, 'from bs4 import BeautifulSoup\n'), ((4930, 4957), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 14)'}), '(figsize=(9, 14))\n', (4940, 4957), True, 'import matplotlib.pyplot as plt\n'), ((4698, 4713), 'time.sleep', 'time.sleep', (['(3.3)'], {}), '(3.3)\n', (4708, 4713), False, 'import time\n'), ((5025, 5046), 'matplotlib.pyplot.imshow', 'plt.imshow', (['images[i]'], {}), '(images[i])\n', (5035, 5046), True, 'import matplotlib.pyplot as plt\n'), ((5051, 5099), 'matplotlib.pyplot.title', 'plt.title', (['f"""{predictions[i][0]},{labels[i][0]}"""'], {}), "(f'{predictions[i][0]},{labels[i][0]}')\n", (5060, 5099), True, 'import matplotlib.pyplot as plt\n'), ((5104, 5119), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (5112, 5119), True, 'import matplotlib.pyplot as plt\n'), ((2031, 2056), 'numpy.concatenate', 'np.concatenate', (['l'], {'axis': '(1)'}), '(l, axis=1)\n', (2045, 2056), True, 'import numpy as np\n'), ((1930, 1988), 'numpy.fromstring', 'np.fromstring', (['pixel_strs[i * n + j][1:-1]', 'float'], {'sep': '""" """'}), "(pixel_strs[i * n + j][1:-1], float, sep=' ')\n", (1943, 1988), True, 'import numpy as np\n'), ((2514, 2552), 'numpy.fromstring', 'np.fromstring', (['c[1:-1]', 'float'], {'sep': '""" """'}), "(c[1:-1], float, sep=' ')\n", (2527, 2552), True, 'import numpy as np\n'), ((843, 869), 're.sub', 'sub', (['"""(_|-)+"""', '""" """', 'string'], {}), "('(_|-)+', ' ', string)\n", (846, 869), False, 'from re import sub\n')]
"""This module provides tools for assessing flood risk """ from datetime import timedelta from floodsystem.datafetcher import fetch_measure_levels import numpy as np from floodsystem.analysis import polyfit from matplotlib import dates as date def stations_level_over_threshold(stations, tol): """For a list of MonitoringStation objects (stations) and a tolerance value (tol), returns a list of tuples containing a MonitoringStation object and its corresponding relative water level. The returned list is sorted by the relative level in descending order. Note: "update_water_levels" function needs to be called at least once for this function to work.""" # Create the output list output = [] for station in stations: # Get the relative water level. Will be "None" if typical range is inconsistent or the latest level # is not known relative_level = station.relative_water_level() # Check if the relative level is "None" and, if not "None", compare it with the tolerance value if relative_level is not None and relative_level > tol: # Append tuple of MonitoringStation object and relative level to the output list output.append((station, relative_level)) # Sort the list in order of descending relative water levels output.sort(key=lambda val: val[1], reverse=True) # Return the output list return output def stations_highest_rel_level(stations, N): """For a list of MonitoringStaton objects (stations), returns a list of the N stations at which the water level, relative to the typical range, is highest""" #Filter list as to not include stations without relative water level new_stations = list(filter(lambda station: station.relative_water_level() is not None, stations)) #Sorts stations in descending order of relative water level new_stations.sort(key=lambda station: station.relative_water_level(), reverse = True) #Return first N stations in lists (N stations with highest water level) return new_stations[:N] def get_station_flood_risk(station): """For a MonitoringStation object (station), returns flood a risk rating - a number between 0 and 4. Uses data for the relative water level and the rise in the """ flood_risk = 0 rel_level_threshold = 2 rise_threshold = 0.1 #First factor is the current relative water level of station - sets initial risk rel_water_level = station.relative_water_level() #If no data available for relative water level, cannot calculate score, so return None if rel_water_level is None: return None if rel_water_level > rel_level_threshold: flood_risk = 3 #If above threshold, set high risk else: flood_risk = 1 #If below threshold, set low risk #Second factor is the rate of change of the water level (e.g., if rising rapidly, give a high score) - used to adjust risk level_rise = get_level_rise(station) #If no data available for level rise, cannot calculate score, so return None if level_rise is None: return None #For decreasing level, reduce flood risk if level_rise < 0: flood_risk -= 1 #For increasing level above threshold, increase flood risk if level_rise > rise_threshold: flood_risk += 1 return flood_risk def get_level_rise(station): """For a MonitoringStation object (station), returns a the rate of water level rise, specifically the average value over the last 2 days""" #Fetch data (if no data available, return None) times, values = fetch_measure_levels(station.measure_id, timedelta(days=2)) #Only continue if data available, otherwise return None if times and values and (None in times or None in values) == False: #Get polynomial approximation of poly, d0 = polyfit(times, values, p=4) #Find derivative polynomial level_der = np.polyder(poly) #Obtain list of gradients over last 2 days using the derivative polynomial grads = [] for t in times: grads.append(level_der(date.date2num(t) - d0)) #Return average of gradient values return np.average(grads) else: return None def get_town_flood_risk(town, stations_by_town): """Obtains the flood risk for a town, based on the flood risks for the towns respective station, using the same rating system - returned value is the highest flood risk of the towns stations""" #Get stations for town stations_in_town = stations_by_town[town] flood_risk = get_station_flood_risk(stations_in_town[0]) #Find highest flood risk value from town's stations by iterating through stations for i in range(1, len(stations_in_town)): new_flood_risk = get_station_flood_risk(stations_in_town[i]) if new_flood_risk is None: break if flood_risk is None or new_flood_risk > flood_risk: flood_risk = new_flood_risk #Return highest value return flood_risk def get_flood_risk_rating(num): """Converts an integer value of a flood risk rating to the rating it represents - low (0/1), moderate (2), high (3), severe (4)""" if num == 0 or num == 1: return "Low" if num == 2: return "Moderate" if num == 3: return "High" if num == 4: return "Severe" return None #default (for None value or other)
[ "matplotlib.dates.date2num", "numpy.average", "numpy.polyder", "floodsystem.analysis.polyfit", "datetime.timedelta" ]
[((3640, 3657), 'datetime.timedelta', 'timedelta', ([], {'days': '(2)'}), '(days=2)\n', (3649, 3657), False, 'from datetime import timedelta\n'), ((3860, 3887), 'floodsystem.analysis.polyfit', 'polyfit', (['times', 'values'], {'p': '(4)'}), '(times, values, p=4)\n', (3867, 3887), False, 'from floodsystem.analysis import polyfit\n'), ((3945, 3961), 'numpy.polyder', 'np.polyder', (['poly'], {}), '(poly)\n', (3955, 3961), True, 'import numpy as np\n'), ((4215, 4232), 'numpy.average', 'np.average', (['grads'], {}), '(grads)\n', (4225, 4232), True, 'import numpy as np\n'), ((4132, 4148), 'matplotlib.dates.date2num', 'date.date2num', (['t'], {}), '(t)\n', (4145, 4148), True, 'from matplotlib import dates as date\n')]
import statsmodels.api as sm import statsmodels.formula.api as smf import numpy as np import pandas as pd from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS from sklearn.linear_model import LinearRegression import sys; import re def AIC(data,model,model_type,k=2): if model_type=='linear': return len(data)* np.log(model.ssr/len(data)) + k * (model.df_model+1) elif model_type=='logistic' : return model.aic def Cp(data,model,sigma2): return model.ssr/sigma2 - (len(data) - 2.*model.df_model- 1) def BIC(data,model,model_type='linear'): if model_type=='linear': return np.log(model.ssr/model.centered_tss) * len(data) + (model.df_model+1) * np.log(len(data)) elif model_type=='logistic': return model.bicllf def regressor(y,X, model_type): if model_type =="linear": regressor = sm.OLS(y, X) regressor_fitted = regressor.fit() elif model_type == 'logistic': regressor = sm.GLM(y, X,family=sm.families.Binomial()) regressor_fitted = regressor.fit() return regressor_fitted def criterion_f(X,model,model_type,elimination_criterion): if elimination_criterion=='aic': return AIC(X,model,model_type) elif elimination_criterion=='bic': return AIC(X,model,model_type,k=np.log(len(X))) def detect_dummies(X,variable): ''' If no dummies simply returns the variable to remove (or add) ''' cols = X.columns.tolist() dummy_cols = [] if (len(X[variable].value_counts())==2) and (X[variable].min()==0) and (X[variable].max()==1): cols.remove(variable) dummy_cols.append(variable) if re.search('^([a-zA-Z0-9]+)[\[_]',variable): prefix = (re.search('^([a-zA-Z0-9]+)[\[_]',variable).group(1)) for var in cols: if prefix in var: dummy_cols.append(var) else : dummy_cols.append(variable) return dummy_cols def forwardSelection(X, y, model_type ="linear",elimination_criterion = "aic",verbose=False): ''' Compute model selection based on elimination_criterion (here only aic and bic) Forward Selection : from simple model with only intercept to complete model with all variables present in X X : predictors, pandas dataframe nxp or array nxp y : output, pandas series (DataFrame with one column), nx1, or 1d array of length n elimination_criterion : here only aic available ---- returns final model fitted with selected variables ''' return __forwardSelectionRaw__(X, y, model_type = model_type,elimination_criterion = elimination_criterion,verbose=verbose) def backwardSelection(X, y, model_type ="linear",elimination_criterion = "aic",verbose=False): ''' Compute model selection based on elimination_criterion (here only aic and bic) Backward Selection : from complete with all columns in X to simple model with only intercept X : predictors, pandas dataframe nxp or array nxp y : output, pandas series (DataFrame with one column), nx1, or 1d array of length n elimination_criterion : here only aic available ---- returns final model fitted with selected variables ''' return __backwardSelectionRaw__(X, y, model_type = model_type,elimination_criterion = elimination_criterion,verbose=verbose ) def bothSelection(X, y, model_type ="linear",elimination_criterion = "aic",start='full',verbose=False): return __bothSelectionRaw__(X, y, model_type = model_type,elimination_criterion = elimination_criterion,start=start,verbose=verbose) def __forwardSelectionRaw__(X, y, model_type ="linear",elimination_criterion = "aic",verbose=False): cols = X.columns.tolist() ## Begin from a simple model with only intercept selected_cols = ["Intercept"] other_cols = cols.copy() other_cols.remove("Intercept") model = regressor(y, X[selected_cols],model_type) criterion = criterion_f(X,model,model_type,elimination_criterion) for i in range(X.shape[1]): aicvals = pd.DataFrame(columns = ["Cols","aic"]) for j in other_cols: cols_to_add = detect_dummies(X,j) model = regressor(y, X[selected_cols+cols_to_add],model_type) aicvals = aicvals.append(pd.DataFrame([[j, criterion_f(X,model,model_type,elimination_criterion)]],columns = ["Cols","aic"]),ignore_index=True) aicvals = aicvals.sort_values(by = ["aic"]).reset_index(drop=True) if verbose : print(aicvals) if aicvals.shape[0] > 0: new_criterion = aicvals["aic"][0] if new_criterion < criterion: cols_to_add = detect_dummies(X,aicvals["Cols"][0]) print("Entered :", aicvals["Cols"][0], "\tCriterion :", aicvals["aic"][0]) for i in cols_to_add: selected_cols.append(i) other_cols.remove(i) criterion = new_criterion else: print("break : criterion") break model = regressor(y,X[selected_cols],model_type) print(model.summary()) print("Criterion: "+str(criterion_f(X,model,model_type,elimination_criterion))) print("Final Variables:", selected_cols) return model def __backwardSelectionRaw__(X, y, model_type ="linear",elimination_criterion = "aic",verbose=False): selected_cols = X.columns.tolist() selected_cols.remove('Intercept') model = regressor(y,X,model_type) criterion = criterion_f(X,model,model_type,elimination_criterion) for i in range(X.shape[1]): aicvals = pd.DataFrame(columns = ["Cols","aic"]) if len(selected_cols)==0: print("break : Only Intercept left") break else : for j in selected_cols: temp_cols = selected_cols.copy() ### Detect dummies and remove several columns if necessary cols_to_remove = detect_dummies(X,j) for i in cols_to_remove: temp_cols.remove(i) model = regressor(y, X[['Intercept']+temp_cols],model_type) aicvals = aicvals.append(pd.DataFrame([[j, criterion_f(X,model,model_type,elimination_criterion)]],columns = ["Cols","aic"]),ignore_index=True) aicvals = aicvals.sort_values(by = ["aic"]).reset_index(drop=True) if verbose : print(aicvals) new_criterion = aicvals["aic"][0] if new_criterion < criterion: print("Eliminated :" ,aicvals["Cols"][0],"\tCriterion :", aicvals["aic"][0]) cols_removed = detect_dummies(X,aicvals["Cols"][0]) for i in cols_removed: selected_cols.remove(i) criterion = new_criterion else: print("break : criterion") break model = regressor(y,X[['Intercept']+selected_cols],model_type) print(str(model.summary())+"\nCriterion: "+ str(criterion_f(X,model,model_type,elimination_criterion))) print("Final Variables:", selected_cols) return model def __bothSelectionRaw__(X, y, model_type ="linear",elimination_criterion = "aic",start='full',verbose=False): ''' Compute model selection based on elimination_criterion (here only aic and bic) Both direction Selection : from complete (full) with all columns in X to simple model with only intercept, but try to add or delete one variable at each step X : predictors, pandas dataframe nxp or array nxp y : output, pandas series (DataFrame with one column), nx1, or 1d array of length n elimination_criterion : here only aic available ---- returns final model fitted with selected variables ''' cols = X.columns.tolist() if start=='full': removed_cols = [] selected_cols = cols.copy() selected_cols.remove("Intercept") else : selected_cols = [] removed_cols = cols.copy() removed_cols.remove("Intercept") model = regressor(y,X[['Intercept']+selected_cols],model_type) criterion = criterion_f(X,model,model_type,elimination_criterion) while True : aicvals = pd.DataFrame(columns = ["Cols","aic",'way']) ###### Try to remove variables still present in the model if len(selected_cols)==0: continue else : for j in selected_cols: temp_cols = selected_cols.copy() ### Detect dummies and remove several columns if necessary cols_to_remove = detect_dummies(X,j) for i in cols_to_remove: temp_cols.remove(i) model = regressor(y, X[['Intercept']+temp_cols],model_type) aicvals = aicvals.append(pd.DataFrame([[j, criterion_f(X,model,model_type,elimination_criterion),'delete']],columns = ["Cols","aic",'way']),ignore_index=True) ###### Try to add previously removed variables for j in removed_cols: cols_to_add = detect_dummies(X,j) model = regressor(y, X[['Intercept']+selected_cols+cols_to_add],model_type) aicvals = aicvals.append(pd.DataFrame([[j, criterion_f(X,model,model_type,elimination_criterion),'add']],columns = ["Cols","aic",'way']),ignore_index=True) aicvals = aicvals.sort_values(by = ["aic"]).reset_index(drop=True) if verbose : print(aicvals) if aicvals.shape[0] > 0: new_criterion = aicvals["aic"][0] if new_criterion < criterion: cols_concerned = detect_dummies(X,aicvals["Cols"][0]) if aicvals["way"][0]=='delete': print("Eliminated :" ,aicvals["Cols"][0],"\tCriterion :", aicvals["aic"][0]) criterion = new_criterion for i in cols_concerned: selected_cols.remove(i) removed_cols.append(i) # removed_cols.append(aicvals["Cols"][0]) # selected_cols.remove(aicvals["Cols"][0]) elif aicvals["way"][0]=='add': print("Entered :", aicvals["Cols"][0], "\tCriterion :", aicvals["aic"][0]) for i in cols_concerned: selected_cols.append(i) removed_cols.remove(i) # selected_cols.append(aicvals["Cols"][0]) # removed_cols.remove(aicvals["Cols"][0]) criterion = new_criterion else: print("break : criterion") break model = regressor(y,X[['Intercept']+selected_cols],model_type) print(str(model.summary())+"\nCriterion: "+ str(criterion_f(X,model,model_type,elimination_criterion))) print("Final Variables:", selected_cols) return model def exhaustivesearch_selectionmodel(X,y,vmin=1,vmax=10): ''' Function to compute exhaustive search for LINEAR regression y ~X : test all models with p features from X with p between vmin and vmax. For each size p : select the best model based on MSE. Then compute R2,adj R2, Cp and BIC on selected models. X : Dataframe of explanatory variables, WITHOUT intercept column, nxp y : Dataframe of output variable --------- Returns these different criterion in a DataFrame. ''' if ('const' in X.columns.tolist()) or ('Intercept' in X.columns.tolist()): raise SystemExit('Delete Intercept column in X before to pass it to this function') # sys.exit('Delete Intercept column in X before to pass it to this function') ### First, exhaustive search with LienarRegression() from sklearn and EFS() from mlxtend ### Returns a dictionnary with all estimated models for each model dimension lm = LinearRegression(fit_intercept=True) efs1 = EFS(lm,min_features=1,max_features=vmax,scoring='neg_mean_squared_error',print_progress=True,cv=False) efs1 = efs1.fit(X, y) #### Find for each model size the best model in terms of (neg) MSE best_idxs_all = [] for k in range(1,vmax+1): best_score = -np.infty best_idx = 0 for i in efs1.subsets_: if (len(efs1.subsets_[i]['feature_idx'])) == k: if efs1.subsets_[i]['avg_score'] > best_score: best_score = efs1.subsets_[i]['avg_score'] best_idx = i best_idxs_all.append(best_idx) df_subsets = pd.DataFrame(index=best_idxs_all,columns=['Variables','R2','R2_adj','Cp','BIC','Number of variables (except intercept)']) X_copy = X.copy() X_copy = sm.add_constant(X_copy) full_model = sm.OLS(y,X_copy).fit() sigma2 = (full_model.ssr)/(len(X_copy)-full_model.df_model-1) for index in best_idxs_all: df_subsets['Variables'] = df_subsets['Variables'].astype(object) variables = (efs1.subsets_[index]['feature_names']) variables = np.array(variables).tolist() df_subsets.loc[index,'Number of variables (except intercept)'] = len(variables) model = sm.OLS(y,X_copy[['const']+variables]).fit() df_subsets.loc[index,'R2'] = model.rsquared df_subsets.loc[index,'R2_adj'] = model.rsquared_adj df_subsets.loc[index,'BIC'] = BIC(X_copy,model) df_subsets.loc[index,'Cp'] = Cp(X_copy,model,sigma2) df_subsets.loc[index,'Variables'] = variables return df_subsets
[ "mlxtend.feature_selection.ExhaustiveFeatureSelector", "numpy.log", "statsmodels.api.families.Binomial", "numpy.array", "statsmodels.api.add_constant", "pandas.DataFrame", "statsmodels.api.OLS", "sklearn.linear_model.LinearRegression", "re.search" ]
[((10412, 10448), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(True)'}), '(fit_intercept=True)\n', (10428, 10448), False, 'from sklearn.linear_model import LinearRegression\n'), ((10457, 10568), 'mlxtend.feature_selection.ExhaustiveFeatureSelector', 'EFS', (['lm'], {'min_features': '(1)', 'max_features': 'vmax', 'scoring': '"""neg_mean_squared_error"""', 'print_progress': '(True)', 'cv': '(False)'}), "(lm, min_features=1, max_features=vmax, scoring='neg_mean_squared_error',\n print_progress=True, cv=False)\n", (10460, 10568), True, 'from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS\n'), ((10984, 11115), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'best_idxs_all', 'columns': "['Variables', 'R2', 'R2_adj', 'Cp', 'BIC',\n 'Number of variables (except intercept)']"}), "(index=best_idxs_all, columns=['Variables', 'R2', 'R2_adj',\n 'Cp', 'BIC', 'Number of variables (except intercept)'])\n", (10996, 11115), True, 'import pandas as pd\n'), ((11135, 11158), 'statsmodels.api.add_constant', 'sm.add_constant', (['X_copy'], {}), '(X_copy)\n', (11150, 11158), True, 'import statsmodels.api as sm\n'), ((819, 831), 'statsmodels.api.OLS', 'sm.OLS', (['y', 'X'], {}), '(y, X)\n', (825, 831), True, 'import statsmodels.api as sm\n'), ((1544, 1588), 're.search', 're.search', (['"""^([a-zA-Z0-9]+)[\\\\[_]"""', 'variable'], {}), "('^([a-zA-Z0-9]+)[\\\\[_]', variable)\n", (1553, 1588), False, 'import re\n'), ((3767, 3804), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Cols', 'aic']"}), "(columns=['Cols', 'aic'])\n", (3779, 3804), True, 'import pandas as pd\n'), ((5110, 5147), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Cols', 'aic']"}), "(columns=['Cols', 'aic'])\n", (5122, 5147), True, 'import pandas as pd\n'), ((7344, 7388), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Cols', 'aic', 'way']"}), "(columns=['Cols', 'aic', 'way'])\n", (7356, 7388), True, 'import pandas as pd\n'), ((11173, 11190), 'statsmodels.api.OLS', 'sm.OLS', (['y', 'X_copy'], {}), '(y, X_copy)\n', (11179, 11190), True, 'import statsmodels.api as sm\n'), ((603, 641), 'numpy.log', 'np.log', (['(model.ssr / model.centered_tss)'], {}), '(model.ssr / model.centered_tss)\n', (609, 641), True, 'import numpy as np\n'), ((11426, 11445), 'numpy.array', 'np.array', (['variables'], {}), '(variables)\n', (11434, 11445), True, 'import numpy as np\n'), ((11547, 11587), 'statsmodels.api.OLS', 'sm.OLS', (['y', "X_copy[['const'] + variables]"], {}), "(y, X_copy[['const'] + variables])\n", (11553, 11587), True, 'import statsmodels.api as sm\n'), ((935, 957), 'statsmodels.api.families.Binomial', 'sm.families.Binomial', ([], {}), '()\n', (955, 957), True, 'import statsmodels.api as sm\n'), ((1601, 1645), 're.search', 're.search', (['"""^([a-zA-Z0-9]+)[\\\\[_]"""', 'variable'], {}), "('^([a-zA-Z0-9]+)[\\\\[_]', variable)\n", (1610, 1645), False, 'import re\n')]
import numpy as np import math import pickle def get_data(data, frame_nos, dataset, topic, usernum, fps, milisec, width, height, view_width, view_height): """ Read and return the viewport data """ VIEW_PATH = '../../Viewport/' view_info = pickle.load(open(VIEW_PATH + 'ds{}/viewport_ds{}_topic{}_user{}'.format(dataset, dataset, topic, usernum), 'rb'), encoding='latin1') if dataset == 1: max_frame = int(view_info[-1][0]*1.0*fps/milisec) for i in range(len(view_info)-1): frame = int(view_info[i][0]*1.0*fps/milisec) frame += int(offset*1.0*fps/milisec) frame_nos.append(frame) if(frame > max_frame): break X={} X['VIEWPORT_x']=int(view_info[i][1][1]*width/view_width) X['VIEWPORT_y']=int(view_info[i][1][0]*height/view_height) data.append((X, int(view_info[i+1][1][1]*width/view_width),int(view_info[i+1][1][0]*height/view_height))) elif dataset == 2: for k in range(len(view_info)-1): if view_info[k][0]<=offset+60 and view_info[k+1][0]>offset+60: max_frame = int(view_info[k][0]*1.0*fps/milisec) break for k in range(len(view_info)-1): if view_info[k][0]<=offset and view_info[k+1][0]>offset: min_index = k+1 break prev_frame = 0 for i in range(min_index,len(view_info)-1): frame = int((view_info[i][0])*1.0*fps/milisec) if frame == prev_frame: continue if(frame > max_frame): break frame_nos.append(frame) X={} X['VIEWPORT_x']=int(view_info[i][1][1]*width/view_width) X['VIEWPORT_y']=int(view_info[i][1][0]*height/view_height) data.append((X, int(view_info[i+1][1][1]*width/view_width),int(view_info[i+1][1][0]*height/view_height))) prev_frame = frame return data, frame_nos, max_frame def tiling(data, frame_nos, max_frame, width, height, nrow_tiles, ncol_tiles, fps, pred_nframe): """ Calculate the tiles corresponding to the viewport and segment them into different chunks """ count=0 i=0 act_tiles = [] chunk_frames = [] # Leaving the first 5 seconds ( to keep consistent with our model) while True: curr_frame = frame_nos[i] if curr_frame<5*fps: i=i+1 [inp_i,x,y]=data[curr_frame] else: break # Calulate the tiles and store it in chunks while True: curr_frame = frame_nos[i] nframe = min(pred_nframe, max_frame - frame_nos[i]) if(nframe <= 0): break # Add the frames that will be in the current chunk frames = {i} for k in range(i+1, len(frame_nos)): if(frame_nos[k] < curr_frame + nframe): frames.add(k) else: i=k break if(i!=k): i=k if(i==(len(frame_nos)-1)): break frames = sorted(frames) chunk_frames.append(frames) # Get the actual tile for k in range(len(frames)): [inp_k, x_act, y_act] = data[frames[k]] # print(x_act, y_act) actual_tile_col = int(x_act * ncol_tiles / width) actual_tile_row = int(y_act * nrow_tiles / height) # print(actual_tile_col, actual_tile_row) actual_tile_row = actual_tile_row-nrow_tiles if(actual_tile_row >= nrow_tiles) else actual_tile_row actual_tile_col = actual_tile_col-ncol_tiles if(actual_tile_col >= ncol_tiles) else actual_tile_col actual_tile_row = actual_tile_row+nrow_tiles if actual_tile_row < 0 else actual_tile_row actual_tile_col = actual_tile_col+ncol_tiles if actual_tile_col < 0 else actual_tile_col # print(actual_tile_col, actual_tile_row) # print() act_tiles.append((actual_tile_row, actual_tile_col)) return act_tiles, chunk_frames def alloc_bitrate(frame_nos, chunk_frames, pref_bitrate, nrow_tiles, ncol_tiles): """ Allocates equal bitrate to all the tiles """ vid_bitrate = [] for i in range(len(chunk_frames)): chunk = chunk_frames[i] chunk_bitrate = [[-1 for x in range(ncol_tiles)] for y in range(nrow_tiles)] chunk_weight = [[1. for x in range(ncol_tiles)] for y in range(nrow_tiles)] total_weight = sum(sum(x) for x in chunk_weight) for x in range(nrow_tiles): for y in range(ncol_tiles): chunk_bitrate[x][y] = chunk_weight[x][y]*pref_bitrate/total_weight; vid_bitrate.append(chunk_bitrate) return vid_bitrate def calc_qoe(vid_bitrate, act_tiles, frame_nos, chunk_frames, width, height, nrow_tiles, ncol_tiles, player_width, player_height): """ Calculate QoE based on the video bitrates """ qoe = 0 prev_qoe_1 = 0 weight_1 = 1 weight_2 = 1 weight_3 = 1 tile_width = width/ncol_tiles tile_height = height/nrow_tiles for i in range(len(chunk_frames[:55])): qoe_1, qoe_2, qoe_3, qoe_4 = 0, 0, 0, 0 tile_count = 0 rows, cols = set(), set() rate = [] chunk = chunk_frames[i] chunk_bitrate = vid_bitrate[i] chunk_act = act_tiles[chunk[0]-chunk_frames[0][0] : chunk[-1]-chunk_frames[0][0]] for j in range(len(chunk_act)): if(chunk_act[j][0] not in rows or chunk_act[j][1] not in cols): tile_count += 1 rows.add(chunk_act[j][0]) cols.add(chunk_act[j][1]) row, col = chunk_act[j][0], chunk_act[j][1] # Find the number of tiles that can be accomodated from the center of the viewport n_tiles_width = math.ceil((player_width/2 - tile_width/2)/tile_width) n_tiles_height = math.ceil((player_height/2 - tile_height/2)/tile_height) tot_tiles = (2 * n_tiles_width+1) * (2 * n_tiles_height+1) local_qoe = 0 local_rate = [] # a new metric to get the standard deviation of bitrate within the player view (qoe2) for x in range(2*n_tiles_height+1): for y in range(2*n_tiles_width+1): sub_row = row - n_tiles_height + x sub_col = col - n_tiles_width + y sub_row = nrow_tiles+row+sub_row if sub_row < 0 else sub_row sub_col = ncol_tiles+col+sub_col if sub_col < 0 else sub_col sub_row = sub_row-nrow_tiles if sub_row >= nrow_tiles else sub_row sub_col = sub_col-ncol_tiles if sub_col >= ncol_tiles else sub_col local_qoe += chunk_bitrate[sub_row][sub_col] local_rate.append(chunk_bitrate[sub_row][sub_col]) qoe_1 += local_qoe / tot_tiles if(len(local_rate)>0): qoe_2 += np.std(local_rate) rate.append(local_qoe / tot_tiles) tile_count = 1 if tile_count==0 else tile_count qoe_1 /= tile_count qoe_2 /= tile_count if(len(rate)>0): qoe_3 = np.std(rate) qoe_3 /= tile_count if(i>0): qoe_4 = abs(prev_qoe_1 - qoe_1) qoe += qoe_1 - weight_1*qoe_2 - weight_2*qoe_3 - weight_3*qoe_4 prev_qoe_1 = qoe_1 return qoe
[ "math.ceil", "numpy.std" ]
[((5199, 5258), 'math.ceil', 'math.ceil', (['((player_width / 2 - tile_width / 2) / tile_width)'], {}), '((player_width / 2 - tile_width / 2) / tile_width)\n', (5208, 5258), False, 'import math\n'), ((5274, 5336), 'math.ceil', 'math.ceil', (['((player_height / 2 - tile_height / 2) / tile_height)'], {}), '((player_height / 2 - tile_height / 2) / tile_height)\n', (5283, 5336), False, 'import math\n'), ((6345, 6357), 'numpy.std', 'np.std', (['rate'], {}), '(rate)\n', (6351, 6357), True, 'import numpy as np\n'), ((6152, 6170), 'numpy.std', 'np.std', (['local_rate'], {}), '(local_rate)\n', (6158, 6170), True, 'import numpy as np\n')]
# Copyright 2022 AI Singapore # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test for augment contrast node """ import numpy as np import pytest from peekingduck.pipeline.nodes.augment.contrast import Node @pytest.fixture def contrast_same(): node = Node({"input": ["img"], "output": ["img"], "alpha": 1.0}) return node @pytest.fixture def contrast_increase(): node = Node({"input": ["img"], "output": ["img"], "alpha": 2.0}) return node class TestContrast: def test_no_change(self, contrast_same, create_image): original_img = create_image((28, 28, 3)) input1 = {"img": original_img} results = contrast_same.run(input1) np.testing.assert_equal(original_img, results["img"]) def test_increase_contrast(self, contrast_increase): original_img = np.ones(shape=(28, 28, 3), dtype=np.uint8) input1 = {"img": original_img} results = contrast_increase.run(input1) assert original_img.shape == results["img"].shape with pytest.raises(AssertionError): np.testing.assert_equal(original_img, results["img"]) np.testing.assert_equal(results["img"][0][0], original_img[0][0] * 2) def test_overflow(self, contrast_increase): # Test positive overflow - any values that sum up to higher than 255 will # be clipped at 255 bright_img = np.ones(shape=(28, 28, 3), dtype=np.uint8) * 250 bright_input = {"img": bright_img} results = contrast_increase.run(bright_input) np.testing.assert_equal(results["img"][0][0], np.array([255, 255, 255])) def test_beta_range(self): with pytest.raises(ValueError) as excinfo: Node({"input": ["img"], "output": ["img"], "alpha": -0.5}) assert str(excinfo.value) == "alpha must be between [0.0, 3.0]" with pytest.raises(ValueError) as excinfo: Node({"input": ["img"], "output": ["img"], "alpha": 3.1}) assert str(excinfo.value) == "alpha must be between [0.0, 3.0]"
[ "numpy.ones", "numpy.testing.assert_equal", "numpy.array", "pytest.raises", "peekingduck.pipeline.nodes.augment.contrast.Node" ]
[((763, 820), 'peekingduck.pipeline.nodes.augment.contrast.Node', 'Node', (["{'input': ['img'], 'output': ['img'], 'alpha': 1.0}"], {}), "({'input': ['img'], 'output': ['img'], 'alpha': 1.0})\n", (767, 820), False, 'from peekingduck.pipeline.nodes.augment.contrast import Node\n'), ((891, 948), 'peekingduck.pipeline.nodes.augment.contrast.Node', 'Node', (["{'input': ['img'], 'output': ['img'], 'alpha': 2.0}"], {}), "({'input': ['img'], 'output': ['img'], 'alpha': 2.0})\n", (895, 948), False, 'from peekingduck.pipeline.nodes.augment.contrast import Node\n'), ((1186, 1239), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['original_img', "results['img']"], {}), "(original_img, results['img'])\n", (1209, 1239), True, 'import numpy as np\n'), ((1321, 1363), 'numpy.ones', 'np.ones', ([], {'shape': '(28, 28, 3)', 'dtype': 'np.uint8'}), '(shape=(28, 28, 3), dtype=np.uint8)\n', (1328, 1363), True, 'import numpy as np\n'), ((1628, 1697), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["results['img'][0][0]", '(original_img[0][0] * 2)'], {}), "(results['img'][0][0], original_img[0][0] * 2)\n", (1651, 1697), True, 'import numpy as np\n'), ((1523, 1552), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1536, 1552), False, 'import pytest\n'), ((1566, 1619), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['original_img', "results['img']"], {}), "(original_img, results['img'])\n", (1589, 1619), True, 'import numpy as np\n'), ((1878, 1920), 'numpy.ones', 'np.ones', ([], {'shape': '(28, 28, 3)', 'dtype': 'np.uint8'}), '(shape=(28, 28, 3), dtype=np.uint8)\n', (1885, 1920), True, 'import numpy as np\n'), ((2078, 2103), 'numpy.array', 'np.array', (['[255, 255, 255]'], {}), '([255, 255, 255])\n', (2086, 2103), True, 'import numpy as np\n'), ((2150, 2175), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2163, 2175), False, 'import pytest\n'), ((2200, 2258), 'peekingduck.pipeline.nodes.augment.contrast.Node', 'Node', (["{'input': ['img'], 'output': ['img'], 'alpha': -0.5}"], {}), "({'input': ['img'], 'output': ['img'], 'alpha': -0.5})\n", (2204, 2258), False, 'from peekingduck.pipeline.nodes.augment.contrast import Node\n'), ((2345, 2370), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2358, 2370), False, 'import pytest\n'), ((2395, 2452), 'peekingduck.pipeline.nodes.augment.contrast.Node', 'Node', (["{'input': ['img'], 'output': ['img'], 'alpha': 3.1}"], {}), "({'input': ['img'], 'output': ['img'], 'alpha': 3.1})\n", (2399, 2452), False, 'from peekingduck.pipeline.nodes.augment.contrast import Node\n')]
# coding=utf-8 # Copyright 2018 The DisentanglementLib Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main training protocol used for unsupervised disentanglement models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from disentanglement_lib.data.ground_truth import named_data from disentanglement_lib.data.ground_truth import util from disentanglement_lib.data.ground_truth.ground_truth_data import * from disentanglement_lib.methods.shared import losses from disentanglement_lib.methods.unsupervised import gaussian_encoder_model from disentanglement_lib.methods.unsupervised import model # pylint: disable=unused-import from disentanglement_lib.methods.unsupervised.gaussian_encoder_model import GaussianModel from disentanglement_lib.methods.unsupervised.model import gaussian_log_density from disentanglement_lib.utils import results from disentanglement_lib.evaluation.metrics import mig import numpy as np from argparse import ArgumentParser import pytorch_lightning as pl import torch from torch import nn as nn from torch.nn import functional as F from torch.utils.data import Dataset, DataLoader import gin import pathlib, shutil import wandb from disentanglement_lib.utils.hub import convert_model from disentanglement_lib.utils.mi_estimators import estimate_entropies from disentanglement_lib.visualize.visualize_util import plt_sample_traversal @gin.configurable("train", denylist=[]) class Train(pl.LightningModule): """Trains the estimator and exports the snapshot and the gin config. The use of this function requires the gin binding 'dataset.name' to be specified as that determines the data set used for training. Args: model: GaussianEncoderModel that should be trained and exported. training_steps: Integer with number of training steps. random_seed: Integer with random seed used for training. batch_size: Integer with the batch size. name: Optional string with name of the model (can be used to name models). model_num: Optional integer with model number (can be used to identify models). """ def __init__(self, model=gin.REQUIRED, training_steps=gin.REQUIRED, random_seed=gin.REQUIRED, batch_size=gin.REQUIRED, opt_name=torch.optim.Adam, lr=5e-4, eval_numbers=10, name="", model_num=None): super().__init__() self.training_steps = training_steps self.random_seed = random_seed self.batch_size = batch_size self.lr = lr self.name = name self.model_num = model_num self.eval_numbers = eval_numbers wandb.config['dataset'] = gin.query_parameter('dataset.name') self.save_hyperparameters() self.opt_name = opt_name self.data = named_data.get_named_ground_truth_data() img_shape = np.array(self.data.observation_shape)[[2, 0, 1]].tolist() # img_shape = [1,64,64] self.ae = model(img_shape) def training_step(self, batch, batch_idx): if (self.global_step + 1) % (self.training_steps // self.eval_numbers) == 0: self.evaluate() x = batch loss, summary = self.ae.model_fn(x.float(), None) self.log_dict(summary) return loss def evaluate(self) -> None: model = self.ae model.cpu() model.eval() dic_log = {} dic_log.update(self.visualize_model(model)) wandb.log(dic_log) model.cuda() model.train() def visualize_model(self, model) -> dict: _encoder, _decoder = convert_model(model) num_latent = self.ae.num_latent mu = torch.zeros(1, num_latent) fig = plt_sample_traversal(mu, _decoder, 8, range(num_latent), 2) return {'traversal': wandb.Image(fig)} def train_dataloader(self) -> DataLoader: dl = DataLoader(self.data, batch_size=self.batch_size, num_workers=4, shuffle=True, pin_memory=True) return dl def configure_optimizers(self): optimizer = self.opt_name(self.parameters(), lr=self.lr) return optimizer def save_model(self, file): dir = '/tmp/models/' + str(np.random.randint(99999)) file_path = os.path.join(dir, file) pathlib.Path(dir).mkdir(parents=True, exist_ok=True) torch.save(self.ae.state_dict(), file_path) wandb.save(file_path, base_path=dir)
[ "wandb.log", "disentanglement_lib.methods.unsupervised.model.train", "disentanglement_lib.methods.unsupervised.model.cuda", "wandb.save", "wandb.Image", "disentanglement_lib.data.ground_truth.named_data.get_named_ground_truth_data", "disentanglement_lib.methods.unsupervised.model.cpu", "gin.query_parameter", "disentanglement_lib.utils.hub.convert_model", "disentanglement_lib.methods.unsupervised.model", "os.path.join", "pathlib.Path", "disentanglement_lib.methods.unsupervised.model.eval", "gin.configurable", "numpy.random.randint", "numpy.array", "torch.utils.data.DataLoader", "torch.zeros" ]
[((1989, 2027), 'gin.configurable', 'gin.configurable', (['"""train"""'], {'denylist': '[]'}), "('train', denylist=[])\n", (2005, 2027), False, 'import gin\n'), ((3411, 3446), 'gin.query_parameter', 'gin.query_parameter', (['"""dataset.name"""'], {}), "('dataset.name')\n", (3430, 3446), False, 'import gin\n'), ((3536, 3576), 'disentanglement_lib.data.ground_truth.named_data.get_named_ground_truth_data', 'named_data.get_named_ground_truth_data', ([], {}), '()\n', (3574, 3576), False, 'from disentanglement_lib.data.ground_truth import named_data\n'), ((3705, 3721), 'disentanglement_lib.methods.unsupervised.model', 'model', (['img_shape'], {}), '(img_shape)\n', (3710, 3721), False, 'from disentanglement_lib.methods.unsupervised import model\n'), ((4075, 4086), 'disentanglement_lib.methods.unsupervised.model.cpu', 'model.cpu', ([], {}), '()\n', (4084, 4086), False, 'from disentanglement_lib.methods.unsupervised import model\n'), ((4095, 4107), 'disentanglement_lib.methods.unsupervised.model.eval', 'model.eval', ([], {}), '()\n', (4105, 4107), False, 'from disentanglement_lib.methods.unsupervised import model\n'), ((4189, 4207), 'wandb.log', 'wandb.log', (['dic_log'], {}), '(dic_log)\n', (4198, 4207), False, 'import wandb\n'), ((4216, 4228), 'disentanglement_lib.methods.unsupervised.model.cuda', 'model.cuda', ([], {}), '()\n', (4226, 4228), False, 'from disentanglement_lib.methods.unsupervised import model\n'), ((4237, 4250), 'disentanglement_lib.methods.unsupervised.model.train', 'model.train', ([], {}), '()\n', (4248, 4250), False, 'from disentanglement_lib.methods.unsupervised import model\n'), ((4327, 4347), 'disentanglement_lib.utils.hub.convert_model', 'convert_model', (['model'], {}), '(model)\n', (4340, 4347), False, 'from disentanglement_lib.utils.hub import convert_model\n'), ((4401, 4427), 'torch.zeros', 'torch.zeros', (['(1)', 'num_latent'], {}), '(1, num_latent)\n', (4412, 4427), False, 'import torch\n'), ((4609, 4709), 'torch.utils.data.DataLoader', 'DataLoader', (['self.data'], {'batch_size': 'self.batch_size', 'num_workers': '(4)', 'shuffle': '(True)', 'pin_memory': '(True)'}), '(self.data, batch_size=self.batch_size, num_workers=4, shuffle=\n True, pin_memory=True)\n', (4619, 4709), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((5060, 5083), 'os.path.join', 'os.path.join', (['dir', 'file'], {}), '(dir, file)\n', (5072, 5083), False, 'import os\n'), ((5205, 5241), 'wandb.save', 'wandb.save', (['file_path'], {'base_path': 'dir'}), '(file_path, base_path=dir)\n', (5215, 5241), False, 'import wandb\n'), ((4531, 4547), 'wandb.Image', 'wandb.Image', (['fig'], {}), '(fig)\n', (4542, 4547), False, 'import wandb\n'), ((5014, 5038), 'numpy.random.randint', 'np.random.randint', (['(99999)'], {}), '(99999)\n', (5031, 5038), True, 'import numpy as np\n'), ((5092, 5109), 'pathlib.Path', 'pathlib.Path', (['dir'], {}), '(dir)\n', (5104, 5109), False, 'import pathlib, shutil\n'), ((3597, 3634), 'numpy.array', 'np.array', (['self.data.observation_shape'], {}), '(self.data.observation_shape)\n', (3605, 3634), True, 'import numpy as np\n')]
"""Models and utilities for processing SMIRNOFF data.""" import abc import copy import functools from collections import defaultdict from typing import ( TYPE_CHECKING, Any, DefaultDict, Dict, List, Tuple, Type, TypeVar, Union, ) import numpy as np from openff.toolkit.topology import Molecule from openff.toolkit.typing.engines.smirnoff.parameters import ( AngleHandler, BondHandler, ChargeIncrementModelHandler, ConstraintHandler, ElectrostaticsHandler, ImproperTorsionHandler, LibraryChargeHandler, ParameterHandler, ProperTorsionHandler, ToolkitAM1BCCHandler, UnassignedProperTorsionParameterException, UnassignedValenceParameterException, VirtualSiteHandler, vdWHandler, ) from openff.units import unit from openff.units.openmm import from_openmm from openmm import unit as omm_unit from pydantic import Field from typing_extensions import Literal from openff.interchange.components.potentials import ( Potential, PotentialHandler, WrappedPotential, ) from openff.interchange.exceptions import ( InvalidParameterHandlerError, MissingParametersError, SMIRNOFFParameterAttributeNotImplementedError, ) from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey from openff.interchange.types import FloatQuantity kcal_mol = omm_unit.kilocalorie_per_mole kcal_mol_angstroms = kcal_mol / omm_unit.angstrom ** 2 kcal_mol_radians = kcal_mol / omm_unit.radian ** 2 if TYPE_CHECKING: from openff.toolkit.topology import Topology from openff.interchange.components.mdtraj import _OFFBioTop ElectrostaticsHandlerType = Union[ ElectrostaticsHandler, ChargeIncrementModelHandler, LibraryChargeHandler, ToolkitAM1BCCHandler, ] T = TypeVar("T", bound="SMIRNOFFPotentialHandler") TP = TypeVar("TP", bound="PotentialHandler") class SMIRNOFFPotentialHandler(PotentialHandler, abc.ABC): """Base class for handlers storing potentials produced by SMIRNOFF force fields.""" @classmethod @abc.abstractmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" raise NotImplementedError() @classmethod @abc.abstractmethod def supported_parameters(cls): """Return a list of parameter attributes supported by this handler.""" raise NotImplementedError() # @classmethod # @abc.abstractmethod # def valence_terms(cls, topology): # """Return an interable of all of one type of valence term in this topology.""" # raise NotImplementedError() @classmethod def check_supported_parameters(cls, parameter_handler: ParameterHandler): """Verify that a parameter handler is in an allowed list of handlers.""" for parameter in parameter_handler.parameters: for parameter_attribute in parameter._get_defined_parameter_attributes(): if parameter_attribute not in cls.supported_parameters(): raise SMIRNOFFParameterAttributeNotImplementedError( parameter_attribute, ) def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """Populate self.slot_map with key-val pairs of [TopologyKey, PotentialKey].""" parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: # TODO: Should the slot_map always be reset, or should we be able to partially # update it? Also Note the duplicated code in the child classes self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): topology_key = TopologyKey(atom_indices=key) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name ) self.slot_map[topology_key] = potential_key if self.__class__.__name__ in ["SMIRNOFFBondHandler", "SMIRNOFFAngleHandler"]: valence_terms = self.valence_terms(topology) # type: ignore[attr-defined] parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=valence_terms, exception_cls=UnassignedValenceParameterException, ) @classmethod def _from_toolkit( cls: Type[T], parameter_handler: TP, topology: "Topology", ) -> T: """ Create a SMIRNOFFPotentialHandler from toolkit data. """ if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError(type(parameter_handler)) handler = cls() if hasattr(handler, "fractional_bond_order_method"): if getattr(parameter_handler, "fractional_bondorder_method", None): handler.fractional_bond_order_method = ( # type: ignore[attr-defined] parameter_handler.fractional_bondorder_method # type: ignore[attr-defined] ) handler.fractional_bond_order_interpolation = ( # type: ignore[attr-defined] parameter_handler.fractional_bondorder_interpolation # type: ignore[attr-defined] ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFBondHandler(SMIRNOFFPotentialHandler): """Handler storing bond potentials as produced by a SMIRNOFF force field.""" type: Literal["Bonds"] = "Bonds" expression: Literal["k/2*(r-length)**2"] = "k/2*(r-length)**2" fractional_bond_order_method: Literal["AM1-Wiberg"] = "AM1-Wiberg" fractional_bond_order_interpolation: Literal["linear"] = "linear" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [BondHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "length", "k_bondorder", "length_bondorder"] @classmethod def valence_terms(cls, topology): """Return all bonds in this topology.""" return [list(b.atoms) for b in topology.topology_bonds] def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: # TODO: Should the slot_map always be reset, or should we be able to partially # update it? Also Note the duplicated code in the child classes self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): param = val.parameter_type if param.k_bondorder or param.length_bondorder: top_bond = topology.get_bond_between(*key) fractional_bond_order = top_bond.bond.fractional_bond_order if not fractional_bond_order: raise RuntimeError( "Bond orders should already be assigned at this point" ) else: fractional_bond_order = None topology_key = TopologyKey( atom_indices=key, bond_order=fractional_bond_order ) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name, bond_order=fractional_bond_order, ) self.slot_map[topology_key] = potential_key valence_terms = self.valence_terms(topology) parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=valence_terms, exception_cls=UnassignedValenceParameterException, ) def store_potentials(self, parameter_handler: "BondHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ if self.potentials: self.potentials = dict() for topology_key, potential_key in self.slot_map.items(): smirks = potential_key.id parameter = parameter_handler.get_parameter({"smirks": smirks})[0] if topology_key.bond_order: # type: ignore[union-attr] bond_order = topology_key.bond_order # type: ignore[union-attr] if parameter.k_bondorder: data = parameter.k_bondorder else: data = parameter.length_bondorder coeffs = _get_interpolation_coeffs( fractional_bond_order=bond_order, data=data, ) pots = [] map_keys = [*data.keys()] for map_key in map_keys: pots.append( Potential( parameters={ "k": parameter.k_bondorder[map_key], "length": parameter.length_bondorder[map_key], }, map_key=map_key, ) ) potential = WrappedPotential( {pot: coeff for pot, coeff in zip(pots, coeffs)} ) else: potential = Potential( # type: ignore[assignment] parameters={ "k": parameter.k, "length": parameter.length, }, ) self.potentials[potential_key] = potential @classmethod def _from_toolkit( cls: Type[T], parameter_handler: "BondHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFBondHandler from toolkit data. """ # TODO: This method overrides SMIRNOFFPotentialHandler.from_toolkit in order to gobble up # a ConstraintHandler. This seems like a good solution for the interdependence, but is also # not a great practice. A better solution would involve not overriding the method with a # different function signature. if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError handler: T = cls(type="Bonds", expression="k/2*(r-length)**2") if ( any( getattr(p, "k_bondorder", None) is not None for p in parameter_handler.parameters ) ) or ( any( getattr(p, "length_bondorder", None) is not None for p in parameter_handler.parameters ) ): for ref_mol in topology.reference_molecules: # TODO: expose conformer generation and fractional bond order assigment # knobs to user via API ref_mol.generate_conformers(n_conformers=1) ref_mol.assign_fractional_bond_orders( bond_order_model=handler.fractional_bond_order_method.lower(), # type: ignore[attr-defined] ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFConstraintHandler(SMIRNOFFPotentialHandler): """Handler storing constraint potentials as produced by a SMIRNOFF force field.""" type: Literal["Constraints"] = "Constraints" expression: Literal[""] = "" constraints: Dict[ PotentialKey, bool ] = dict() # should this be named potentials for consistency? @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [BondHandler, ConstraintHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "length", "distance"] @classmethod def _from_toolkit( # type: ignore[override] cls: Type[T], parameter_handler: List, topology: "Topology", ) -> T: """ Create a SMIRNOFFPotentialHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] for parameter_handler in parameter_handlers: if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError(type(parameter_handler)) handler = cls() handler.store_constraints( # type: ignore[attr-defined] parameter_handlers=parameter_handlers, topology=topology ) return handler def store_constraints( self, parameter_handlers: Any, topology: "_OFFBioTop", ) -> None: """Store constraints.""" if self.slot_map: self.slot_map = dict() constraint_handler = [ p for p in parameter_handlers if type(p) == ConstraintHandler ][0] constraint_matches = constraint_handler.find_matches(topology) if any([type(p) == BondHandler for p in parameter_handlers]): bond_handler = [p for p in parameter_handlers if type(p) == BondHandler][0] bonds = SMIRNOFFBondHandler._from_toolkit( parameter_handler=bond_handler, topology=topology, ) else: bond_handler = None bonds = None for key, match in constraint_matches.items(): topology_key = TopologyKey(atom_indices=key) smirks = match.parameter_type.smirks distance = match.parameter_type.distance if distance is not None: # This constraint parameter is fully specified potential_key = PotentialKey( id=smirks, associated_handler="Constraints" ) distance = match.parameter_type.distance else: # This constraint parameter depends on the BondHandler ... if bond_handler is None: raise MissingParametersError( f"Constraint with SMIRKS pattern {smirks} found with no distance " "specified, and no corresponding bond parameters were found. The distance " "of this constraint is not specified." ) # ... so use the same PotentialKey instance as the BondHandler to look up the distance potential_key = bonds.slot_map[topology_key] # type: ignore[union-attr] self.slot_map[topology_key] = potential_key distance = bonds.potentials[potential_key].parameters["length"] # type: ignore[union-attr] potential = Potential( parameters={ "distance": distance, } ) self.constraints[potential_key] = potential # type: ignore[assignment] class SMIRNOFFAngleHandler(SMIRNOFFPotentialHandler): """Handler storing angle potentials as produced by a SMIRNOFF force field.""" type: Literal["Angles"] = "Angles" expression: Literal["k/2*(theta-angle)**2"] = "k/2*(theta-angle)**2" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [AngleHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attributes.""" return ["smirks", "id", "k", "angle"] @classmethod def valence_terms(cls, topology): """Return all angles in this topology.""" return list(topology.angles) def store_potentials(self, parameter_handler: "AngleHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for potential_key in self.slot_map.values(): smirks = potential_key.id # ParameterHandler.get_parameter returns a list, although this # should only ever be length 1 parameter = parameter_handler.get_parameter({"smirks": smirks})[0] potential = Potential( parameters={ "k": parameter.k, "angle": parameter.angle, }, ) self.potentials[potential_key] = potential @classmethod def f_from_toolkit( cls: Type[T], parameter_handler: "AngleHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFAngleHandler from toolkit data. """ handler = cls() handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFProperTorsionHandler(SMIRNOFFPotentialHandler): """Handler storing proper torsions potentials as produced by a SMIRNOFF force field.""" type: Literal["ProperTorsions"] = "ProperTorsions" expression: Literal[ "k*(1+cos(periodicity*theta-phase))" ] = "k*(1+cos(periodicity*theta-phase))" fractional_bond_order_method: Literal["AM1-Wiberg"] = "AM1-Wiberg" fractional_bond_order_interpolation: Literal["linear"] = "linear" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ProperTorsionHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "periodicity", "phase", "idivf", "k_bondorder"] def store_matches( self, parameter_handler: "ProperTorsionHandler", topology: "_OFFBioTop", ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): param = val.parameter_type n_terms = len(val.parameter_type.phase) for n in range(n_terms): smirks = param.smirks if param.k_bondorder: # The relevant bond order is that of the _central_ bond in the torsion top_bond = topology.get_bond_between(key[1], key[2]) fractional_bond_order = top_bond.bond.fractional_bond_order if not fractional_bond_order: raise RuntimeError( "Bond orders should already be assigned at this point" ) else: fractional_bond_order = None topology_key = TopologyKey( atom_indices=key, mult=n, bond_order=fractional_bond_order ) potential_key = PotentialKey( id=smirks, mult=n, associated_handler="ProperTorsions", bond_order=fractional_bond_order, ) self.slot_map[topology_key] = potential_key parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=list(topology.propers), exception_cls=UnassignedProperTorsionParameterException, ) def store_potentials(self, parameter_handler: "ProperTorsionHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for topology_key, potential_key in self.slot_map.items(): smirks = potential_key.id n = potential_key.mult parameter = parameter_handler.get_parameter({"smirks": smirks})[0] # n_terms = len(parameter.k) if topology_key.bond_order: # type: ignore[union-attr] bond_order = topology_key.bond_order # type: ignore[union-attr] data = parameter.k_bondorder[n] coeffs = _get_interpolation_coeffs( fractional_bond_order=bond_order, data=data, ) pots = [] map_keys = [*data.keys()] for map_key in map_keys: parameters = { "k": parameter.k_bondorder[n][map_key], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": parameter.idivf[n] * unit.dimensionless, } pots.append( Potential( parameters=parameters, map_key=map_key, ) ) potential = WrappedPotential( {pot: coeff for pot, coeff in zip(pots, coeffs)} ) else: parameters = { "k": parameter.k[n], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": parameter.idivf[n] * unit.dimensionless, } potential = Potential(parameters=parameters) # type: ignore[assignment] self.potentials[potential_key] = potential class SMIRNOFFImproperTorsionHandler(SMIRNOFFPotentialHandler): """Handler storing improper torsions potentials as produced by a SMIRNOFF force field.""" type: Literal["ImproperTorsions"] = "ImproperTorsions" expression: Literal[ "k*(1+cos(periodicity*theta-phase))" ] = "k*(1+cos(periodicity*theta-phase))" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ImproperTorsionHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "periodicity", "phase", "idivf"] def store_matches( self, parameter_handler: "ImproperTorsionHandler", topology: "_OFFBioTop" ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): parameter_handler._assert_correct_connectivity( val, [ (0, 1), (1, 2), (1, 3), ], ) n_terms = len(val.parameter_type.k) for n in range(n_terms): smirks = val.parameter_type.smirks non_central_indices = [key[0], key[2], key[3]] for permuted_key in [ ( non_central_indices[i], non_central_indices[j], non_central_indices[k], ) for (i, j, k) in [(0, 1, 2), (1, 2, 0), (2, 0, 1)] ]: topology_key = TopologyKey( atom_indices=(key[1], *permuted_key), mult=n ) potential_key = PotentialKey( id=smirks, mult=n, associated_handler="ImproperTorsions" ) self.slot_map[topology_key] = potential_key def store_potentials(self, parameter_handler: "ImproperTorsionHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for potential_key in self.slot_map.values(): smirks = potential_key.id n = potential_key.mult parameter = parameter_handler.get_parameter({"smirks": smirks})[0] parameters = { "k": parameter.k[n], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": 3.0 * unit.dimensionless, } potential = Potential(parameters=parameters) self.potentials[potential_key] = potential class _SMIRNOFFNonbondedHandler(SMIRNOFFPotentialHandler, abc.ABC): """Base class for handlers storing non-bonded potentials produced by SMIRNOFF force fields.""" type: Literal["nonbonded"] = "nonbonded" cutoff: FloatQuantity["angstrom"] = Field( # type: ignore 9.0 * unit.angstrom, description="The distance at which pairwise interactions are truncated", ) scale_13: float = Field( 0.0, description="The scaling factor applied to 1-3 interactions" ) scale_14: float = Field( 0.5, description="The scaling factor applied to 1-4 interactions" ) scale_15: float = Field( 1.0, description="The scaling factor applied to 1-5 interactions" ) class SMIRNOFFvdWHandler(_SMIRNOFFNonbondedHandler): """Handler storing vdW potentials as produced by a SMIRNOFF force field.""" type: Literal["vdW"] = "vdW" # type: ignore[assignment] expression: Literal[ "4*epsilon*((sigma/r)**12-(sigma/r)**6)" ] = "4*epsilon*((sigma/r)**12-(sigma/r)**6)" method: Literal["cutoff", "pme", "no-cutoff"] = Field("cutoff") mixing_rule: Literal["lorentz-berthelot", "geometric"] = Field( "lorentz-berthelot", description="The mixing rule (combination rule) used in computing pairwise vdW interactions", ) switch_width: FloatQuantity["angstrom"] = Field( # type: ignore 1.0 * unit.angstrom, description="The width over which the switching function is applied", ) @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [vdWHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attributes.""" return ["smirks", "id", "sigma", "epsilon", "rmin_half"] def store_potentials(self, parameter_handler: vdWHandler) -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ self.method = parameter_handler.method.lower() self.cutoff = parameter_handler.cutoff for potential_key in self.slot_map.values(): smirks = potential_key.id parameter = parameter_handler.get_parameter({"smirks": smirks})[0] try: potential = Potential( parameters={ "sigma": parameter.sigma, "epsilon": parameter.epsilon, }, ) except AttributeError: # Handle rmin_half pending https://github.com/openforcefield/openff-toolkit/pull/750 potential = Potential( parameters={ "sigma": parameter.sigma, "epsilon": parameter.epsilon, }, ) self.potentials[potential_key] = potential @classmethod def _from_toolkit( cls: Type[T], parameter_handler: "vdWHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFvdWHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] for parameter_handler in parameter_handlers: if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError( f"Found parameter handler type {type(parameter_handler)}, which is not " f"supported by potential type {type(cls)}" ) handler = cls( scale_13=parameter_handler.scale13, scale_14=parameter_handler.scale14, scale_15=parameter_handler.scale15, cutoff=parameter_handler.cutoff, mixing_rule=parameter_handler.combining_rules.lower(), method=parameter_handler.method.lower(), switch_width=parameter_handler.switch_width, ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler @classmethod def parameter_handler_precedence(cls) -> List[str]: """ Return the order in which parameter handlers take precedence when computing charges. """ return ["vdw", "VirtualSites"] def _from_toolkit_virtual_sites( self, parameter_handler: "VirtualSiteHandler", topology: "Topology", ): # TODO: Merge this logic into _from_toolkit if not all( isinstance( p, ( VirtualSiteHandler.VirtualSiteBondChargeType, VirtualSiteHandler.VirtualSiteMonovalentLonePairType, VirtualSiteHandler.VirtualSiteDivalentLonePairType, VirtualSiteHandler.VirtualSiteTrivalentLonePairType, ), ) for p in parameter_handler.parameters ): raise NotImplementedError("Found unsupported virtual site types") matches = parameter_handler.find_matches(topology) for atoms, parameter_match in matches.items(): virtual_site_type = parameter_match[0].parameter_type top_key = VirtualSiteKey( atom_indices=atoms, type=virtual_site_type.type, match=virtual_site_type.match, ) pot_key = PotentialKey( id=virtual_site_type.smirks, associated_handler=virtual_site_type.type ) pot = Potential( parameters={ "sigma": virtual_site_type.sigma, "epsilon": virtual_site_type.epsilon, # "distance": virtual_site_type.distance, } ) # if virtual_site_type.type in {"MonovalentLonePair", "DivalentLonePair"}: # pot.parameters.update( # { # "outOfPlaneAngle": virtual_site_type.outOfPlaneAngle, # } # ) # if virtual_site_type.type in {"MonovalentLonePair"}: # pot.parameters.update( # { # "inPlaneAngle": virtual_site_type.inPlaneAngle, # } # ) self.slot_map.update({top_key: pot_key}) self.potentials.update({pot_key: pot}) class SMIRNOFFElectrostaticsHandler(_SMIRNOFFNonbondedHandler): """ A handler which stores any electrostatic parameters applied to a topology. This handler is responsible for grouping together * global settings for the electrostatic interactions such as the cutoff distance and the intramolecular scale factors. * partial charges which have been assigned by a ``ToolkitAM1BCC``, ``LibraryCharges``, or a ``ChargeIncrementModel`` parameter handler. * charge corrections applied by a ``SMIRNOFFChargeIncrementHandler``. rather than having each in their own handler. """ type: Literal["Electrostatics"] = "Electrostatics" # type: ignore[assignment] expression: Literal["coul"] = "coul" method: Literal["pme", "cutoff", "reaction-field", "no-cutoff"] = Field("pme") @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ LibraryChargeHandler, ChargeIncrementModelHandler, ToolkitAM1BCCHandler, ElectrostaticsHandler, ] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" pass @property def charges(self) -> Dict[Union[TopologyKey, VirtualSiteKey], unit.Quantity]: """Get the total partial charge on each atom, excluding virtual sites.""" return self.get_charges(include_virtual_sites=False) @property def charges_with_virtual_sites( self, ) -> Dict[Union[VirtualSiteKey, TopologyKey], unit.Quantity]: """Get the total partial charge on each atom, including virtual sites.""" return self.get_charges(include_virtual_sites=True) def get_charges( self, include_virtual_sites=False ) -> Dict[Union[VirtualSiteKey, TopologyKey], unit.Quantity]: """Get the total partial charge on each atom or particle.""" charges: DefaultDict[ Union[TopologyKey, VirtualSiteKey], FloatQuantity ] = defaultdict(lambda: 0.0 * unit.e) for topology_key, potential_key in self.slot_map.items(): potential = self.potentials[potential_key] for parameter_key, parameter_value in potential.parameters.items(): if parameter_key == "charge_increments": if type(topology_key) != VirtualSiteKey: raise RuntimeError charge = -1.0 * np.sum(parameter_value) # assumes virtual sites can only have charges determined in one step # also, topology_key is actually a VirtualSiteKey charges[topology_key] = charge elif parameter_key in ["charge", "charge_increment"]: charge = parameter_value charges[topology_key.atom_indices[0]] += charge # type: ignore else: raise NotImplementedError() returned_charges: Dict[ Union[VirtualSiteKey, TopologyKey], unit.Quantity ] = dict() for index, charge in charges.items(): if isinstance(index, int): returned_charges[TopologyKey(atom_indices=(index,))] = charge else: if include_virtual_sites: returned_charges[index] = charge return returned_charges @classmethod def parameter_handler_precedence(cls) -> List[str]: """ Return the order in which parameter handlers take precedence when computing charges. """ return ["LibraryCharges", "ChargeIncrementModel", "ToolkitAM1BCC"] @classmethod def _from_toolkit( cls: Type[T], parameter_handler: Any, topology: "Topology", ) -> T: """ Create a SMIRNOFFElectrostaticsHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] toolkit_handler_with_metadata = [ p for p in parameter_handlers if type(p) == ElectrostaticsHandler ][0] handler = cls( type=toolkit_handler_with_metadata._TAGNAME, scale_13=toolkit_handler_with_metadata.scale13, scale_14=toolkit_handler_with_metadata.scale14, scale_15=toolkit_handler_with_metadata.scale15, cutoff=toolkit_handler_with_metadata.cutoff, method=toolkit_handler_with_metadata.method.lower(), ) handler.store_matches(parameter_handlers, topology) return handler def _from_toolkit_virtual_sites( self, parameter_handler: "VirtualSiteHandler", topology: "Topology", ): # TODO: Merge this logic into _from_toolkit if not all( isinstance( p, ( VirtualSiteHandler.VirtualSiteBondChargeType, VirtualSiteHandler.VirtualSiteMonovalentLonePairType, VirtualSiteHandler.VirtualSiteDivalentLonePairType, VirtualSiteHandler.VirtualSiteTrivalentLonePairType, ), ) for p in parameter_handler.parameters ): raise NotImplementedError("Found unsupported virtual site types") matches = parameter_handler.find_matches(topology) for atom_indices, parameter_match in matches.items(): virtual_site_type = parameter_match[0].parameter_type virtual_site_key = VirtualSiteKey( atom_indices=atom_indices, type=virtual_site_type.type, match=virtual_site_type.match, ) virtual_site_potential_key = PotentialKey( id=virtual_site_type.smirks, associated_handler="VirtualSiteHandler", ) virtual_site_potential = Potential( parameters={ "charge_increments": from_openmm( virtual_site_type.charge_increment ), } ) matches = {} potentials = {} self.slot_map.update({virtual_site_key: virtual_site_potential_key}) self.potentials.update({virtual_site_potential_key: virtual_site_potential}) # TODO: Counter-intuitive that toolkit regression tests pass by using the counter # variable i as if it was the atom index - shouldn't it just use atom_index? for i, atom_index in enumerate(atom_indices): # noqa topology_key = TopologyKey(atom_indices=(i,), mult=2) potential_key = PotentialKey( id=virtual_site_type.smirks, mult=i, associated_handler="VirtualSiteHandler", ) charge_increment = getattr( virtual_site_type, f"charge_increment{i + 1}" ) potential = Potential( parameters={"charge_increment": from_openmm(charge_increment)} ) matches[topology_key] = potential_key potentials[potential_key] = potential self.slot_map.update(matches) self.potentials.update(potentials) @classmethod @functools.lru_cache(None) def _compute_partial_charges(cls, molecule: Molecule, method: str) -> unit.Quantity: """Call out to the toolkit's toolkit wrappers to generate partial charges.""" molecule = copy.deepcopy(molecule) molecule.assign_partial_charges(method) return from_openmm(molecule.partial_charges) @classmethod def _library_charge_to_potentials( cls, atom_indices: Tuple[int, ...], parameter: LibraryChargeHandler.LibraryChargeType, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Map a matched library charge parameter to a set of potentials. """ matches = {} potentials = {} for i, (atom_index, charge) in enumerate(zip(atom_indices, parameter.charge)): topology_key = TopologyKey(atom_indices=(atom_index,)) potential_key = PotentialKey( id=parameter.smirks, mult=i, associated_handler="LibraryCharges" ) potential = Potential(parameters={"charge": from_openmm(charge)}) matches[topology_key] = potential_key potentials[potential_key] = potential return matches, potentials @classmethod def _charge_increment_to_potentials( cls, atom_indices: Tuple[int, ...], parameter: ChargeIncrementModelHandler.ChargeIncrementType, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Map a matched charge increment parameter to a set of potentials. """ matches = {} potentials = {} for i, atom_index in enumerate(atom_indices): topology_key = TopologyKey(atom_indices=(atom_index,)) potential_key = PotentialKey( id=parameter.smirks, mult=i, associated_handler="ChargeIncrementModel" ) # TODO: Handle the cases where n - 1 charge increments have been defined, # maybe by implementing this in the TK? charge_increment = getattr(parameter, f"charge_increment{i + 1}") potential = Potential( parameters={"charge_increment": from_openmm(charge_increment)} ) matches[topology_key] = potential_key potentials[potential_key] = potential return matches, potentials @classmethod def _find_slot_matches( cls, parameter_handler: Union["LibraryChargeHandler", "ChargeIncrementModelHandler"], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Construct a slot and potential map for a slot based parameter handler. """ # Ideally this would be made redundant by OpenFF TK #971 unique_parameter_matches = { tuple(sorted(key)): (key, val) for key, val in parameter_handler.find_matches( reference_molecule.to_topology() ).items() } parameter_matches = {key: val for key, val in unique_parameter_matches.values()} matches, potentials = {}, {} for key, val in parameter_matches.items(): parameter = val.parameter_type if isinstance(parameter_handler, LibraryChargeHandler): ( parameter_matches, parameter_potentials, ) = cls._library_charge_to_potentials(key, parameter) elif isinstance(parameter_handler, ChargeIncrementModelHandler): ( parameter_matches, parameter_potentials, ) = cls._charge_increment_to_potentials(key, parameter) else: raise NotImplementedError() matches.update(parameter_matches) potentials.update(parameter_potentials) return matches, potentials @classmethod def _find_am1_matches( cls, parameter_handler: Union["ToolkitAM1BCCHandler", ChargeIncrementModelHandler], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """Construct a slot and potential map for a charge model based parameter handler.""" reference_molecule = copy.deepcopy(reference_molecule) reference_smiles = reference_molecule.to_smiles( isomeric=True, explicit_hydrogens=True, mapped=True ) method = getattr(parameter_handler, "partial_charge_method", "am1bcc") partial_charges = cls._compute_partial_charges( reference_molecule, method=method ) matches = {} potentials = {} for i, partial_charge in enumerate(partial_charges): potential_key = PotentialKey( id=reference_smiles, mult=i, associated_handler="ToolkitAM1BCC" ) potentials[potential_key] = Potential(parameters={"charge": partial_charge}) matches[TopologyKey(atom_indices=(i,))] = potential_key return matches, potentials @classmethod def _find_reference_matches( cls, parameter_handlers: Dict[str, "ElectrostaticsHandlerType"], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Construct a slot and potential map for a particular reference molecule and set of parameter handlers. """ matches = {} potentials = {} expected_matches = {i for i in range(reference_molecule.n_atoms)} for handler_type in cls.parameter_handler_precedence(): if handler_type not in parameter_handlers: continue parameter_handler = parameter_handlers[handler_type] slot_matches, am1_matches = None, None slot_potentials: Dict = {} am1_potentials: Dict = {} if handler_type in ["LibraryCharges", "ChargeIncrementModel"]: slot_matches, slot_potentials = cls._find_slot_matches( parameter_handler, reference_molecule ) if handler_type in ["ToolkitAM1BCC", "ChargeIncrementModel"]: am1_matches, am1_potentials = cls._find_am1_matches( parameter_handler, reference_molecule ) if slot_matches is None and am1_matches is None: raise NotImplementedError() elif slot_matches is not None and am1_matches is not None: am1_matches = { TopologyKey( atom_indices=topology_key.atom_indices, mult=0 ): potential_key for topology_key, potential_key in am1_matches.items() } slot_matches = { TopologyKey( atom_indices=topology_key.atom_indices, mult=1 ): potential_key for topology_key, potential_key in slot_matches.items() } matched_atom_indices = { index for key in slot_matches for index in key.atom_indices } matched_atom_indices.intersection_update( {index for key in am1_matches for index in key.atom_indices} ) elif slot_matches is not None: matched_atom_indices = { index for key in slot_matches for index in key.atom_indices } else: matched_atom_indices = { index for key in am1_matches for index in key.atom_indices # type: ignore[union-attr] } if matched_atom_indices != expected_matches: # Handle the case where a handler could not fully assign the charges # to the whole molecule. continue matches.update(slot_matches if slot_matches is not None else {}) matches.update(am1_matches if am1_matches is not None else {}) potentials.update(slot_potentials) potentials.update(am1_potentials) break found_matches = {index for key in matches for index in key.atom_indices} if found_matches != expected_matches: raise RuntimeError( f"{reference_molecule.to_smiles(explicit_hydrogens=False)} could " f"not be fully assigned charges." ) return matches, potentials def store_matches( self, parameter_handler: Union[ "ElectrostaticsHandlerType", List["ElectrostaticsHandlerType"] ], topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ # Reshape the parameter handlers into a dictionary for easier referencing. parameter_handlers = { handler._TAGNAME: handler for handler in ( parameter_handler if isinstance(parameter_handler, list) else [parameter_handler] ) } self.potentials = dict() self.slot_map = dict() reference_molecules = [*topology.reference_molecules] for reference_molecule in reference_molecules: matches, potentials = self._find_reference_matches( parameter_handlers, reference_molecule ) match_mults = defaultdict(set) for top_key in matches: match_mults[top_key.atom_indices].add(top_key.mult) self.potentials.update(potentials) for top_mol in topology._reference_molecule_to_topology_molecules[ reference_molecule ]: for topology_particle in top_mol.atoms: reference_index = topology_particle.atom.molecule_particle_index topology_index = topology_particle.topology_particle_index for mult in match_mults[(reference_index,)]: top_key = TopologyKey(atom_indices=(topology_index,), mult=mult) self.slot_map[top_key] = matches[ TopologyKey(atom_indices=(reference_index,), mult=mult) ] def store_potentials( self, parameter_handler: Union[ "ElectrostaticsHandlerType", List["ElectrostaticsHandlerType"] ], ) -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ # This logic is handled by ``store_matches`` as we may need to create potentials # to store depending on the handler type. pass class SMIRNOFFVirtualSiteHandler(SMIRNOFFPotentialHandler): """ A handler which stores the information necessary to construct virtual sites (virtual particles). """ type: Literal["Bonds"] = "Bonds" expression: Literal[""] = "" virtual_site_key_topology_index_map: Dict["VirtualSiteKey", int] = Field( dict(), description="A mapping between VirtualSiteKey objects (stored analogously to TopologyKey objects" "in other handlers) and topology indices describing the associated virtual site", ) exclusion_policy: Literal["parents"] = "parents" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [VirtualSiteHandler] @classmethod def supported_parameters(cls): """Return a list of parameter attributes supported by this handler.""" return ["distance", "outOfPlaneAngle", "inPlaneAngle"] def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of [TopologyKey, PotentialKey]. Differs from SMIRNOFFPotentialHandler.store_matches because each key can point to multiple potentials (?); each value in the dict is a list of parametertypes, whereas conventional handlers don't have lists """ virtual_site_index = topology.n_topology_atoms parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val_list in matches.items(): for val in val_list: virtual_site_key = VirtualSiteKey( atom_indices=key, type=val.parameter_type.type, match=val.parameter_type.match, ) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name, ) self.slot_map[virtual_site_key] = potential_key self.virtual_site_key_topology_index_map[ virtual_site_key ] = virtual_site_index virtual_site_index += 1 def store_potentials(self, parameter_handler: ParameterHandler) -> None: """Store VirtualSite-specific parameter-like data.""" if self.potentials: self.potentials = dict() for potential_key in self.slot_map.values(): smirks = potential_key.id parameter_type = parameter_handler.get_parameter({"smirks": smirks})[0] potential = Potential( parameters={ "distance": parameter_type.distance, }, ) for attr in ["outOfPlaneAngle", "inPlaneAngle"]: if hasattr(parameter_type, attr): potential.parameters.update( {attr: from_openmm(getattr(parameter_type, attr))} ) self.potentials[potential_key] = potential def _get_local_frame_weights(self, virtual_site_key: "VirtualSiteKey"): if virtual_site_key.type == "BondCharge": origin_weight = [1.0, 0.0] x_direction = [-1.0, 1.0] y_direction = [-1.0, 1.0] elif virtual_site_key.type == "MonovalentLonePair": origin_weight = [1, 0.0, 0.0] x_direction = [-1.0, 1.0, 0.0] y_direction = [-1.0, 0.0, 1.0] elif virtual_site_key.type == "DivalentLonePair": origin_weight = [0.0, 1.0, 0.0] x_direction = [0.5, -1.0, 0.5] y_direction = [1.0, -1.0, 1.0] elif virtual_site_key.type == "TrivalentLonePair": origin_weight = [0.0, 1.0, 0.0, 0.0] x_direction = [1 / 3, -1.0, 1 / 3, 1 / 3] y_direction = [1.0, -1.0, 0.0, 0.0] return origin_weight, x_direction, y_direction def _get_local_frame_position(self, virtual_site_key: "VirtualSiteKey"): potential_key = self.slot_map[virtual_site_key] potential = self.potentials[potential_key] if virtual_site_key.type == "BondCharge": distance = potential.parameters["distance"] local_frame_position = np.asarray([-1.0, 0.0, 0.0]) * distance elif virtual_site_key.type == "MonovalentLonePair": distance = potential.parameters["distance"] theta = potential.parameters["inPlaneAngle"].m_as(unit.radian) # type: ignore psi = potential.parameters["outOfPlaneAngle"].m_as(unit.radian) # type: ignore factor = np.array( [np.cos(theta) * np.cos(psi), np.sin(theta) * np.cos(psi), np.sin(psi)] ) local_frame_position = factor * distance elif virtual_site_key.type == "DivalentLonePair": distance = potential.parameters["distance"] theta = potential.parameters["inPlaneAngle"].m_as(unit.radian) # type: ignore factor = np.asarray([-1.0 * np.cos(theta), 0.0, np.sin(theta)]) local_frame_position = factor * distance elif virtual_site_key.type == "TrivalentLonePair": distance = potential.parameters["distance"] local_frame_position = np.asarray([-1.0, 0.0, 0.0]) * distance return local_frame_position def library_charge_from_molecule( molecule: "Molecule", ) -> LibraryChargeHandler.LibraryChargeType: """Given an OpenFF Molecule with charges, generate a corresponding LibraryChargeType.""" if molecule.partial_charges is None: raise ValueError("Input molecule is missing partial charges.") smirks = molecule.to_smiles(mapped=True) charges = molecule.partial_charges library_charge_type = LibraryChargeHandler.LibraryChargeType( smirks=smirks, charge=charges ) return library_charge_type def _get_interpolation_coeffs(fractional_bond_order, data): x1, x2 = data.keys() coeff1 = (x2 - fractional_bond_order) / (x2 - x1) coeff2 = (fractional_bond_order - x1) / (x2 - x1) return coeff1, coeff2 SMIRNOFF_POTENTIAL_HANDLERS = [ SMIRNOFFBondHandler, SMIRNOFFConstraintHandler, SMIRNOFFAngleHandler, SMIRNOFFProperTorsionHandler, SMIRNOFFImproperTorsionHandler, SMIRNOFFvdWHandler, SMIRNOFFElectrostaticsHandler, ]
[ "openff.units.openmm.from_openmm", "pydantic.Field", "openff.interchange.exceptions.SMIRNOFFParameterAttributeNotImplementedError", "numpy.asarray", "openff.interchange.models.TopologyKey", "openff.toolkit.typing.engines.smirnoff.parameters.LibraryChargeHandler.LibraryChargeType", "numpy.sum", "openff.interchange.exceptions.MissingParametersError", "collections.defaultdict", "openff.interchange.models.PotentialKey", "openff.interchange.models.VirtualSiteKey", "copy.deepcopy", "numpy.sin", "functools.lru_cache", "numpy.cos", "openff.interchange.components.potentials.Potential", "typing.TypeVar" ]
[((1814, 1860), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {'bound': '"""SMIRNOFFPotentialHandler"""'}), "('T', bound='SMIRNOFFPotentialHandler')\n", (1821, 1860), False, 'from typing import TYPE_CHECKING, Any, DefaultDict, Dict, List, Tuple, Type, TypeVar, Union\n'), ((1866, 1905), 'typing.TypeVar', 'TypeVar', (['"""TP"""'], {'bound': '"""PotentialHandler"""'}), "('TP', bound='PotentialHandler')\n", (1873, 1905), False, 'from typing import TYPE_CHECKING, Any, DefaultDict, Dict, List, Tuple, Type, TypeVar, Union\n'), ((25522, 25626), 'pydantic.Field', 'Field', (['(9.0 * unit.angstrom)'], {'description': '"""The distance at which pairwise interactions are truncated"""'}), "(9.0 * unit.angstrom, description=\n 'The distance at which pairwise interactions are truncated')\n", (25527, 25626), False, 'from pydantic import Field\n'), ((25684, 25756), 'pydantic.Field', 'Field', (['(0.0)'], {'description': '"""The scaling factor applied to 1-3 interactions"""'}), "(0.0, description='The scaling factor applied to 1-3 interactions')\n", (25689, 25756), False, 'from pydantic import Field\n'), ((25793, 25865), 'pydantic.Field', 'Field', (['(0.5)'], {'description': '"""The scaling factor applied to 1-4 interactions"""'}), "(0.5, description='The scaling factor applied to 1-4 interactions')\n", (25798, 25865), False, 'from pydantic import Field\n'), ((25902, 25974), 'pydantic.Field', 'Field', (['(1.0)'], {'description': '"""The scaling factor applied to 1-5 interactions"""'}), "(1.0, description='The scaling factor applied to 1-5 interactions')\n", (25907, 25974), False, 'from pydantic import Field\n'), ((26363, 26378), 'pydantic.Field', 'Field', (['"""cutoff"""'], {}), "('cutoff')\n", (26368, 26378), False, 'from pydantic import Field\n'), ((26441, 26571), 'pydantic.Field', 'Field', (['"""lorentz-berthelot"""'], {'description': '"""The mixing rule (combination rule) used in computing pairwise vdW interactions"""'}), "('lorentz-berthelot', description=\n 'The mixing rule (combination rule) used in computing pairwise vdW interactions'\n )\n", (26446, 26571), False, 'from pydantic import Field\n'), ((26632, 26733), 'pydantic.Field', 'Field', (['(1.0 * unit.angstrom)'], {'description': '"""The width over which the switching function is applied"""'}), "(1.0 * unit.angstrom, description=\n 'The width over which the switching function is applied')\n", (26637, 26733), False, 'from pydantic import Field\n'), ((32709, 32721), 'pydantic.Field', 'Field', (['"""pme"""'], {}), "('pme')\n", (32714, 32721), False, 'from pydantic import Field\n'), ((39374, 39399), 'functools.lru_cache', 'functools.lru_cache', (['None'], {}), '(None)\n', (39393, 39399), False, 'import functools\n'), ((56282, 56351), 'openff.toolkit.typing.engines.smirnoff.parameters.LibraryChargeHandler.LibraryChargeType', 'LibraryChargeHandler.LibraryChargeType', ([], {'smirks': 'smirks', 'charge': 'charges'}), '(smirks=smirks, charge=charges)\n', (56320, 56351), False, 'from openff.toolkit.typing.engines.smirnoff.parameters import AngleHandler, BondHandler, ChargeIncrementModelHandler, ConstraintHandler, ElectrostaticsHandler, ImproperTorsionHandler, LibraryChargeHandler, ParameterHandler, ProperTorsionHandler, ToolkitAM1BCCHandler, UnassignedProperTorsionParameterException, UnassignedValenceParameterException, VirtualSiteHandler, vdWHandler\n'), ((33976, 34010), 'collections.defaultdict', 'defaultdict', (['(lambda : 0.0 * unit.e)'], {}), '(lambda : 0.0 * unit.e)\n', (33987, 34010), False, 'from collections import defaultdict\n'), ((39594, 39617), 'copy.deepcopy', 'copy.deepcopy', (['molecule'], {}), '(molecule)\n', (39607, 39617), False, 'import copy\n'), ((39682, 39719), 'openff.units.openmm.from_openmm', 'from_openmm', (['molecule.partial_charges'], {}), '(molecule.partial_charges)\n', (39693, 39719), False, 'from openff.units.openmm import from_openmm\n'), ((43721, 43754), 'copy.deepcopy', 'copy.deepcopy', (['reference_molecule'], {}), '(reference_molecule)\n', (43734, 43754), False, 'import copy\n'), ((3870, 3899), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'key'}), '(atom_indices=key)\n', (3881, 3899), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((3928, 4018), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'val.parameter_type.smirks', 'associated_handler': 'parameter_handler_name'}), '(id=val.parameter_type.smirks, associated_handler=\n parameter_handler_name)\n', (3940, 4018), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((7738, 7801), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'key', 'bond_order': 'fractional_bond_order'}), '(atom_indices=key, bond_order=fractional_bond_order)\n', (7749, 7801), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((7860, 7984), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'val.parameter_type.smirks', 'associated_handler': 'parameter_handler_name', 'bond_order': 'fractional_bond_order'}), '(id=val.parameter_type.smirks, associated_handler=\n parameter_handler_name, bond_order=fractional_bond_order)\n', (7872, 7984), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((14302, 14331), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'key'}), '(atom_indices=key)\n', (14313, 14331), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((15563, 15607), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'distance': distance}"}), "(parameters={'distance': distance})\n", (15572, 15607), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((16977, 17043), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'k': parameter.k, 'angle': parameter.angle}"}), "(parameters={'k': parameter.k, 'angle': parameter.angle})\n", (16986, 17043), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((25178, 25210), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': 'parameters'}), '(parameters=parameters)\n', (25187, 25210), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((30700, 30799), 'openff.interchange.models.VirtualSiteKey', 'VirtualSiteKey', ([], {'atom_indices': 'atoms', 'type': 'virtual_site_type.type', 'match': 'virtual_site_type.match'}), '(atom_indices=atoms, type=virtual_site_type.type, match=\n virtual_site_type.match)\n', (30714, 30799), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((30880, 30969), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'virtual_site_type.smirks', 'associated_handler': 'virtual_site_type.type'}), '(id=virtual_site_type.smirks, associated_handler=\n virtual_site_type.type)\n', (30892, 30969), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((31013, 31111), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'sigma': virtual_site_type.sigma, 'epsilon': virtual_site_type.epsilon}"}), "(parameters={'sigma': virtual_site_type.sigma, 'epsilon':\n virtual_site_type.epsilon})\n", (31022, 31111), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((37560, 37665), 'openff.interchange.models.VirtualSiteKey', 'VirtualSiteKey', ([], {'atom_indices': 'atom_indices', 'type': 'virtual_site_type.type', 'match': 'virtual_site_type.match'}), '(atom_indices=atom_indices, type=virtual_site_type.type,\n match=virtual_site_type.match)\n', (37574, 37665), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((37767, 37854), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'virtual_site_type.smirks', 'associated_handler': '"""VirtualSiteHandler"""'}), "(id=virtual_site_type.smirks, associated_handler=\n 'VirtualSiteHandler')\n", (37779, 37854), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((40223, 40262), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(atom_index,)'}), '(atom_indices=(atom_index,))\n', (40234, 40262), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((40291, 40369), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'parameter.smirks', 'mult': 'i', 'associated_handler': '"""LibraryCharges"""'}), "(id=parameter.smirks, mult=i, associated_handler='LibraryCharges')\n", (40303, 40369), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((41098, 41137), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(atom_index,)'}), '(atom_indices=(atom_index,))\n', (41109, 41137), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((41166, 41255), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'parameter.smirks', 'mult': 'i', 'associated_handler': '"""ChargeIncrementModel"""'}), "(id=parameter.smirks, mult=i, associated_handler=\n 'ChargeIncrementModel')\n", (41178, 41255), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((44216, 44293), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'reference_smiles', 'mult': 'i', 'associated_handler': '"""ToolkitAM1BCC"""'}), "(id=reference_smiles, mult=i, associated_handler='ToolkitAM1BCC')\n", (44228, 44293), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((44364, 44412), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'charge': partial_charge}"}), "(parameters={'charge': partial_charge})\n", (44373, 44412), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((49027, 49043), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (49038, 49043), False, 'from collections import defaultdict\n'), ((53120, 53179), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'distance': parameter_type.distance}"}), "(parameters={'distance': parameter_type.distance})\n", (53129, 53179), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((9937, 10005), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'k': parameter.k, 'length': parameter.length}"}), "(parameters={'k': parameter.k, 'length': parameter.length})\n", (9946, 10005), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((14566, 14623), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'smirks', 'associated_handler': '"""Constraints"""'}), "(id=smirks, associated_handler='Constraints')\n", (14578, 14623), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((19637, 19708), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'key', 'mult': 'n', 'bond_order': 'fractional_bond_order'}), '(atom_indices=key, mult=n, bond_order=fractional_bond_order)\n', (19648, 19708), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((19779, 19885), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'smirks', 'mult': 'n', 'associated_handler': '"""ProperTorsions"""', 'bond_order': 'fractional_bond_order'}), "(id=smirks, mult=n, associated_handler='ProperTorsions',\n bond_order=fractional_bond_order)\n", (19791, 19885), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((22197, 22229), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': 'parameters'}), '(parameters=parameters)\n', (22206, 22229), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((27609, 27687), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'sigma': parameter.sigma, 'epsilon': parameter.epsilon}"}), "(parameters={'sigma': parameter.sigma, 'epsilon': parameter.epsilon})\n", (27618, 27687), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((38649, 38687), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(i,)', 'mult': '(2)'}), '(atom_indices=(i,), mult=2)\n', (38660, 38687), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((38720, 38815), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'virtual_site_type.smirks', 'mult': 'i', 'associated_handler': '"""VirtualSiteHandler"""'}), "(id=virtual_site_type.smirks, mult=i, associated_handler=\n 'VirtualSiteHandler')\n", (38732, 38815), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((44434, 44464), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(i,)'}), '(atom_indices=(i,))\n', (44445, 44464), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((52127, 52226), 'openff.interchange.models.VirtualSiteKey', 'VirtualSiteKey', ([], {'atom_indices': 'key', 'type': 'val.parameter_type.type', 'match': 'val.parameter_type.match'}), '(atom_indices=key, type=val.parameter_type.type, match=val.\n parameter_type.match)\n', (52141, 52226), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((52333, 52423), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'val.parameter_type.smirks', 'associated_handler': 'parameter_handler_name'}), '(id=val.parameter_type.smirks, associated_handler=\n parameter_handler_name)\n', (52345, 52423), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((54772, 54800), 'numpy.asarray', 'np.asarray', (['[-1.0, 0.0, 0.0]'], {}), '([-1.0, 0.0, 0.0])\n', (54782, 54800), True, 'import numpy as np\n'), ((3086, 3152), 'openff.interchange.exceptions.SMIRNOFFParameterAttributeNotImplementedError', 'SMIRNOFFParameterAttributeNotImplementedError', (['parameter_attribute'], {}), '(parameter_attribute)\n', (3131, 3152), False, 'from openff.interchange.exceptions import InvalidParameterHandlerError, MissingParametersError, SMIRNOFFParameterAttributeNotImplementedError\n'), ((14879, 15088), 'openff.interchange.exceptions.MissingParametersError', 'MissingParametersError', (['f"""Constraint with SMIRKS pattern {smirks} found with no distance specified, and no corresponding bond parameters were found. The distance of this constraint is not specified."""'], {}), "(\n f'Constraint with SMIRKS pattern {smirks} found with no distance specified, and no corresponding bond parameters were found. The distance of this constraint is not specified.'\n )\n", (14901, 15088), False, 'from openff.interchange.exceptions import InvalidParameterHandlerError, MissingParametersError, SMIRNOFFParameterAttributeNotImplementedError\n'), ((24181, 24238), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(key[1], *permuted_key)', 'mult': 'n'}), '(atom_indices=(key[1], *permuted_key), mult=n)\n', (24192, 24238), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((24321, 24391), 'openff.interchange.models.PotentialKey', 'PotentialKey', ([], {'id': 'smirks', 'mult': 'n', 'associated_handler': '"""ImproperTorsions"""'}), "(id=smirks, mult=n, associated_handler='ImproperTorsions')\n", (24333, 24391), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((27962, 28040), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'sigma': parameter.sigma, 'epsilon': parameter.epsilon}"}), "(parameters={'sigma': parameter.sigma, 'epsilon': parameter.epsilon})\n", (27971, 28040), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((35148, 35182), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(index,)'}), '(atom_indices=(index,))\n', (35159, 35182), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((9434, 9561), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': "{'k': parameter.k_bondorder[map_key], 'length': parameter.length_bondorder[\n map_key]}", 'map_key': 'map_key'}), "(parameters={'k': parameter.k_bondorder[map_key], 'length':\n parameter.length_bondorder[map_key]}, map_key=map_key)\n", (9443, 9561), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((21572, 21621), 'openff.interchange.components.potentials.Potential', 'Potential', ([], {'parameters': 'parameters', 'map_key': 'map_key'}), '(parameters=parameters, map_key=map_key)\n', (21581, 21621), False, 'from openff.interchange.components.potentials import Potential, PotentialHandler, WrappedPotential\n'), ((34412, 34435), 'numpy.sum', 'np.sum', (['parameter_value'], {}), '(parameter_value)\n', (34418, 34435), True, 'import numpy as np\n'), ((38016, 38063), 'openff.units.openmm.from_openmm', 'from_openmm', (['virtual_site_type.charge_increment'], {}), '(virtual_site_type.charge_increment)\n', (38027, 38063), False, 'from openff.units.openmm import from_openmm\n'), ((40456, 40475), 'openff.units.openmm.from_openmm', 'from_openmm', (['charge'], {}), '(charge)\n', (40467, 40475), False, 'from openff.units.openmm import from_openmm\n'), ((41588, 41617), 'openff.units.openmm.from_openmm', 'from_openmm', (['charge_increment'], {}), '(charge_increment)\n', (41599, 41617), False, 'from openff.units.openmm import from_openmm\n'), ((46040, 46099), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'topology_key.atom_indices', 'mult': '(0)'}), '(atom_indices=topology_key.atom_indices, mult=0)\n', (46051, 46099), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((46307, 46366), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': 'topology_key.atom_indices', 'mult': '(1)'}), '(atom_indices=topology_key.atom_indices, mult=1)\n', (46318, 46366), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((49650, 49704), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(topology_index,)', 'mult': 'mult'}), '(atom_indices=(topology_index,), mult=mult)\n', (49661, 49704), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((55217, 55228), 'numpy.sin', 'np.sin', (['psi'], {}), '(psi)\n', (55223, 55228), True, 'import numpy as np\n'), ((39111, 39140), 'openff.units.openmm.from_openmm', 'from_openmm', (['charge_increment'], {}), '(charge_increment)\n', (39122, 39140), False, 'from openff.units.openmm import from_openmm\n'), ((49792, 49847), 'openff.interchange.models.TopologyKey', 'TopologyKey', ([], {'atom_indices': '(reference_index,)', 'mult': 'mult'}), '(atom_indices=(reference_index,), mult=mult)\n', (49803, 49847), False, 'from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey\n'), ((55159, 55172), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (55165, 55172), True, 'import numpy as np\n'), ((55175, 55186), 'numpy.cos', 'np.cos', (['psi'], {}), '(psi)\n', (55181, 55186), True, 'import numpy as np\n'), ((55188, 55201), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (55194, 55201), True, 'import numpy as np\n'), ((55204, 55215), 'numpy.cos', 'np.cos', (['psi'], {}), '(psi)\n', (55210, 55215), True, 'import numpy as np\n'), ((55562, 55575), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (55568, 55575), True, 'import numpy as np\n'), ((55781, 55809), 'numpy.asarray', 'np.asarray', (['[-1.0, 0.0, 0.0]'], {}), '([-1.0, 0.0, 0.0])\n', (55791, 55809), True, 'import numpy as np\n'), ((55542, 55555), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (55548, 55555), True, 'import numpy as np\n')]
from __future__ import print_function import pylab as plt import numpy as np from django.http import HttpResponse, HttpResponseRedirect, HttpResponseBadRequest, QueryDict from django.shortcuts import render_to_response, get_object_or_404, redirect, render from django.template import Context, RequestContext, loader from astrometry.net.models import * from astrometry.util.resample import * from astrometry.net.tmpfile import * def simple_histeq(pixels, getinverse=False, mx=256): assert(pixels.dtype in [np.uint8, np.uint16]) if not getinverse: h = np.bincount(pixels, minlength=mx) # pixel value -> quantile map. # If you imagine jittering the pixels so there are no repeats, # this assigns the middle quantile to a pixel value. quant = h * 0.5 cs = np.cumsum(h) quant[1:] += cs[:-1] quant /= float(cs[-1]) # quant = np.cumsum(h / float(h.sum())) return quant[pixels] # This inverse function has slightly weird properties -- it # puts a ramp across each pixel value, so inv(0.) may produce # values as small as -0.5, and inv(1.) may produce 255.5 h = np.bincount(pixels.astype(int)+1, minlength=mx+1) quant = h[1:] * 0.5 cs = np.cumsum(h) quant[1:] += cs[1:-1] quant /= float(cs[-1]) # interp1d is fragile -- remove duplicate "yy" values that # otherwise cause nans. yy = cs / float(cs[-1]) xx = np.arange(mx + 1) - 0.5 I = np.append([0], 1 + np.flatnonzero(np.diff(yy))) print('mx:', mx) print('xx:', len(xx)) print('yy:', len(yy)) print('I:', I.min(), I.max()) yy = yy[I] xx = xx[I] xx[-1] = mx-0.5 # print 'yy', yy[0], yy[-1] # print 'xx', xx[0], xx[-1] inv = interp1d(yy, xx, kind='linear') return quant[pixels], inv def enhanced_ui(req, user_image_id=None): ui = UserImage.objects.get(id=user_image_id) job = ui.get_best_job() return enhanced_image(req, job_id=job.id, size='display') def enhanced_image(req, job_id=None, size=None): job = get_object_or_404(Job, pk=job_id) ui = job.user_image cal = job.calibration tan = cal.raw_tan nside,hh = get_healpixes_touching_wcs(tan) tt = 'hello %s, job %s, nside %s, hh %s' % (ui, job, nside, hh) ver = EnhanceVersion.objects.get(name='v4') print('Using', ver) EIms = EnhancedImage.objects.filter(version=ver) ens = [] for hp in hh: en = EIms.filter(nside=nside, healpix=hp, version=ver) if len(en): ens.extend(list(en)) for dnside in range(1, 3): if len(ens) == 0: bignside = nside / (2**dnside) nil,hh = get_healpixes_touching_wcs(tan, nside=bignside) tt += 'bigger healpixes: %s: %s' % (bignside, hh) for hp in hh: en = EIms.filter(nside=bignside, healpix=hp) if len(en): ens.extend(list(en)) tt = tt + ', EnhancedImages: ' + ', '.join('%s'%e for e in ens) img = ui.image W,H = img.width, img.height tt = tt + 'image size %ix%i' % (W,H) #return HttpResponse(tt) targetwcs = tan.to_tanwcs() #print 'Target WCS:', targetwcs #print 'W,H', W,H logmsg('wcs:', str(targetwcs)) if size == 'display': scale = float(ui.image.get_display_image().width)/ui.image.width logmsg('scaling:', scale) targetwcs = targetwcs.scale(scale) logmsg('scaled wcs:', str(targetwcs)) H,W = targetwcs.get_height(), targetwcs.get_width() img = ui.image.get_display_image() print(tt) ee = np.zeros((H,W,3), np.float32) imgdata = None df = img.disk_file ft = df.file_type fn = df.get_path() if 'JPEG' in ft: print('Reading', fn) I = plt.imread(fn) print('Read', I.shape, I.dtype) if len(I.shape) == 2: I = I[:,:,np.newaxis].repeat(3, axis=2) assert(len(I.shape) == 3) if I.shape[2] > 3: I = I.shape[:,:,:3] # vertical FLIP to match WCS I = I[::-1,:,:] imgdata = I mapped = np.zeros_like(imgdata) for en in ens: logmsg('Resampling %s' % en) wcs = en.wcs.to_tanwcs() try: Yo,Xo,Yi,Xi,nil = resample_with_wcs(targetwcs, wcs, [], 3) except OverlapError: continue #logmsg(len(Yo), 'pixels') enI,enW = en.read_files() #print 'Cals included in this Enhanced image:' #for c in en.cals.all(): # print ' ', c #logmsg('en:', enI.min(), enI.max()) if imgdata is not None: mask = (enW[Yi,Xi] > 0) for b in range(3): enI[:,:,b] /= enI[:,:,b].max() if imgdata is not None: idata = imgdata[Yo[mask],Xo[mask],b] DI = np.argsort((idata + np.random.uniform(size=idata.shape))/255.) EI = np.argsort(enI[Yi[mask], Xi[mask], b]) Erank = np.zeros_like(EI) Erank[EI] = np.arange(len(Erank)) mapped[Yo[mask],Xo[mask],b] = idata[DI[Erank]] else: # Might have to average the coverage here... ee[Yo,Xo,b] += enI[Yi,Xi,b] # ee[Yo[mask],Xo[mask],b] += enI[Yi[mask],Xi[mask],b] tempfn = get_temp_file(suffix='.png') if imgdata is not None: im = mapped else: im = np.clip(ee, 0., 1.) dpi = 100 figsize = [x / float(dpi) for x in im.shape[:2][::-1]] fig = plt.figure(figsize=figsize, frameon=False, dpi=dpi) plt.clf() plt.subplots_adjust(left=0, right=1, bottom=0, top=1) plt.imshow(im, interpolation='nearest') # rdfn = job.get_rdls_file() # rd = fits_table(rdfn) # ok,x,y = targetwcs.radec2pixelxy(rd.ra, rd.dec) # plt.plot(x, y, 'o', mec='r', mfc='none', ms=10) plt.savefig(tempfn) print('Wrote', tempfn) f = open(tempfn) res = HttpResponse(f) res['Content-Type'] = 'image/png' return res
[ "numpy.clip", "pylab.subplots_adjust", "pylab.imread", "django.http.HttpResponse", "pylab.savefig", "django.shortcuts.get_object_or_404", "numpy.zeros_like", "numpy.diff", "pylab.figure", "numpy.argsort", "numpy.zeros", "numpy.random.uniform", "numpy.cumsum", "numpy.bincount", "pylab.clf", "numpy.arange", "pylab.imshow" ]
[((1246, 1258), 'numpy.cumsum', 'np.cumsum', (['h'], {}), '(h)\n', (1255, 1258), True, 'import numpy as np\n'), ((2058, 2091), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Job'], {'pk': 'job_id'}), '(Job, pk=job_id)\n', (2075, 2091), False, 'from django.shortcuts import render_to_response, get_object_or_404, redirect, render\n'), ((3611, 3642), 'numpy.zeros', 'np.zeros', (['(H, W, 3)', 'np.float32'], {}), '((H, W, 3), np.float32)\n', (3619, 3642), True, 'import numpy as np\n'), ((5543, 5594), 'pylab.figure', 'plt.figure', ([], {'figsize': 'figsize', 'frameon': '(False)', 'dpi': 'dpi'}), '(figsize=figsize, frameon=False, dpi=dpi)\n', (5553, 5594), True, 'import pylab as plt\n'), ((5599, 5608), 'pylab.clf', 'plt.clf', ([], {}), '()\n', (5606, 5608), True, 'import pylab as plt\n'), ((5613, 5666), 'pylab.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0)', 'right': '(1)', 'bottom': '(0)', 'top': '(1)'}), '(left=0, right=1, bottom=0, top=1)\n', (5632, 5666), True, 'import pylab as plt\n'), ((5671, 5710), 'pylab.imshow', 'plt.imshow', (['im'], {'interpolation': '"""nearest"""'}), "(im, interpolation='nearest')\n", (5681, 5710), True, 'import pylab as plt\n'), ((5886, 5905), 'pylab.savefig', 'plt.savefig', (['tempfn'], {}), '(tempfn)\n', (5897, 5905), True, 'import pylab as plt\n'), ((5965, 5980), 'django.http.HttpResponse', 'HttpResponse', (['f'], {}), '(f)\n', (5977, 5980), False, 'from django.http import HttpResponse, HttpResponseRedirect, HttpResponseBadRequest, QueryDict\n'), ((570, 603), 'numpy.bincount', 'np.bincount', (['pixels'], {'minlength': 'mx'}), '(pixels, minlength=mx)\n', (581, 603), True, 'import numpy as np\n'), ((812, 824), 'numpy.cumsum', 'np.cumsum', (['h'], {}), '(h)\n', (821, 824), True, 'import numpy as np\n'), ((1441, 1458), 'numpy.arange', 'np.arange', (['(mx + 1)'], {}), '(mx + 1)\n', (1450, 1458), True, 'import numpy as np\n'), ((3791, 3805), 'pylab.imread', 'plt.imread', (['fn'], {}), '(fn)\n', (3801, 3805), True, 'import pylab as plt\n'), ((4119, 4141), 'numpy.zeros_like', 'np.zeros_like', (['imgdata'], {}), '(imgdata)\n', (4132, 4141), True, 'import numpy as np\n'), ((5440, 5461), 'numpy.clip', 'np.clip', (['ee', '(0.0)', '(1.0)'], {}), '(ee, 0.0, 1.0)\n', (5447, 5461), True, 'import numpy as np\n'), ((1507, 1518), 'numpy.diff', 'np.diff', (['yy'], {}), '(yy)\n', (1514, 1518), True, 'import numpy as np\n'), ((4937, 4975), 'numpy.argsort', 'np.argsort', (['enI[Yi[mask], Xi[mask], b]'], {}), '(enI[Yi[mask], Xi[mask], b])\n', (4947, 4975), True, 'import numpy as np\n'), ((5000, 5017), 'numpy.zeros_like', 'np.zeros_like', (['EI'], {}), '(EI)\n', (5013, 5017), True, 'import numpy as np\n'), ((4872, 4907), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'idata.shape'}), '(size=idata.shape)\n', (4889, 4907), True, 'import numpy as np\n')]
""" Created on Dec 16 2021 @author: <NAME> Poisson equation solver for the Hall effect. Includes classes for Hall bars, Hall bars in a nonlocal geometry, and Corbino disks. The Hall bar class has build in methods for longitudinal and Hall 4-probe resistance measurements. Plotting functions assume coordinates are in microns, but the Poisson equation is scale-invariant. """ import time import math import numpy as np import scipy.sparse as sp # import sparse matrix library import matplotlib.pyplot as plt from scipy.sparse.linalg import spsolve # import the file where the differentiation matrix operators are defined from diff_matrices import Diff_mat_1D, Diff_mat_2D class hallbar(): """The class for a Hall bar device Source is the left terminal, drain is the right terminal. Args: Lx : length in x direction Ly : length in y direction Nx : number of points in grid along x Ny : number of points in grid along y """ def __init__(self, Lx, Ly, Nx = 301, Ny = 201): # Initiate with no contacts self.contacts = [] # Define coordinate variables self.Nx = Nx self.Ny = Ny self.Lx = Lx self.Ly = Ly self.x = np.linspace(0,self.Lx,self.Nx) self.y = np.linspace(0,self.Ly,self.Ny) self.dx = self.x[1] - self.x[0] # grid spacing along x direction self.dy = self.y[1] - self.y[0] # grid spacing along y direction self.X,self.Y = np.meshgrid(self.x,self.y) # 2D meshgrid # 1D indexing self.Xu = self.X.ravel() # Unravel 2D meshgrid to 1D array self.Yu = self.Y.ravel() # Search for boundary indices start_time = time.time() self.ind_unravel_L = np.squeeze(np.where(self.Xu==self.x[0])) # Left boundary self.ind_unravel_R = np.squeeze(np.where(self.Xu==self.x[self.Nx-1])) # Right boundary self.ind_unravel_B = np.squeeze(np.where(self.Yu==self.y[0])) # Bottom boundary self.ind_unravel_T = np.squeeze(np.where(self.Yu==self.y[self.Ny-1])) # Top boundary self.ind_boundary_unravel = np.squeeze(np.where((self.Xu==self.x[0]) | (self.Xu==self.x[self.Nx-1]) | (self.Yu==self.y[0]) | (self.Yu==self.y[self.Ny-1]))) # outer boundaries 1D unravel indices self.ind_boundary = np.where((self.X==self.x[0]) | (self.X==self.x[self.Nx-1]) | (self.Y==self.y[0]) | (self.Y==self.y[self.Ny-1])) # outer boundary print("Boundary search time = %1.4s" % (time.time()-start_time)) # Load finite difference matrix operators self.Dx_2d, self.Dy_2d, self.D2x_2d, self.D2y_2d = Diff_mat_2D(self.Nx,self.Ny) # Initiate empty solution matrix self.u = 0 def solve(self, lmbda): # constructs matrix problem and solves Poisson equation # Args: lmbda : sigma_xy / sigma_xx. Must be finite # Returns: self.u : electric potential self.lmbda = lmbda # Construct system matrix without boundary conditions start_time = time.time() I_sp = sp.eye(self.Nx*self.Ny).tocsr() L_sys = self.D2x_2d/self.dx**2 + self.D2y_2d/self.dy**2 # Boundary operators BD = I_sp # Dirichlet boundary operator BNx = self.Dx_2d / (2 * self.dx) # Neumann boundary operator for x component BNy = self.Dy_2d / (2 * self.dy) # Neumann boundary operator for y component # DIRICHLET BOUNDARY CONDITIONS FOR CONTACTS L_sys[self.ind_unravel_L,:] = BD[self.ind_unravel_L,:] # Boundaries at the left layer L_sys[self.ind_unravel_R,:] = BD[self.ind_unravel_R,:] # Boundaries at the right edges # CURRENT THROUGH EDGES L_sys[self.ind_unravel_T,:] = BNy[self.ind_unravel_T,:] - lmbda * BNx[self.ind_unravel_T,:] # Boundaries at the top layer L_sys[self.ind_unravel_B,:] = BNy[self.ind_unravel_B,:] - lmbda * BNx[self.ind_unravel_B,:] # Boundaries at the bottom layer # Source function (right hand side vector) g = np.zeros(self.Nx*self.Ny) # Insert boundary values at the boundary points g[self.ind_unravel_L] = 1 # Dirichlet boundary condition at source g[self.ind_unravel_R] = 0 # Dirichlet boundary condition at drain g[self.ind_unravel_T] = 0 # No current through top g[self.ind_unravel_B] = 0 # No current through bottom print("System matrix and right hand vector computation time = %1.6s" % (time.time()-start_time)) start_time = time.time() self.u = spsolve(L_sys,g).reshape(self.Ny,self.Nx).T print("spsolve() time = %1.6s" % (time.time()-start_time)) def voltage_measurement(self, x1, x2, side='top'): # Args: x1 : point of V_A # x2 : point of V_B # side ('top', 'bottom', or 'hall') : which side of Hall bar to measure # Returns: V_A - V_B if np.all(self.u==0): raise Exception('System has not been solved') if x1 > self.Lx or x1 < 0 or x2 > self.Lx or x2 < 0: raise Exception('Points out of bounds') if side=='top': ya = self.Ny-1 yb = self.Ny-1 elif side=='bottom': ya = 0 yb = 0 elif side=='hall': ya = 0 yb = self.Ny-1 else: raise Exception('Side must be top or bottom') # Find nearest index value to input coordinates xa = np.searchsorted(self.x, x1, side='left') xb = np.searchsorted(self.x, x2, side='left') return self.u[xa, ya] - self.u[xb, yb] def plot_potential(self): if np.all(self.u==0): raise Exception('System has not been solved') fig = plt.figure(figsize = [8,5]) plt.contourf(self.x,self.y,self.u.T,41,cmap = 'inferno') cbar = plt.colorbar(ticks = np.arange(0, 1.01, 0.2), label = r'$\phi / \phi_s$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'y ($\mu$m)'); plt.show() def plot_resistance(self): if np.all(self.u==0): raise Exception('System has not been solved') r_top = (self.u[0:-1, -1] - self.u[1:, -1]) * 25812 * self.Ly / self.dx r_bottom = (self.u[0:-1, 0] - self.u[1:, 0]) * 25812 * self.Ly / self.dx rxx = 25812 / self.lmbda fig = plt.figure(figsize = [8,5]) plt.plot(self.x[0:-1] - self.dx, r_top, 'r', label='top') plt.plot(self.x[0:-1] - self.dx, r_bottom, 'b', label='bottom') plt.hlines(rxx, self.x[0], self.x[-1], linestyle='dashed', color='grey', label=r'$\rho_{xx}$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'$\rho_{xx}$ $(\Omega)$'); plt.legend() plt.ylim([0, 12000]); plt.show() def add_contact(self, contact): if contact.x1 > self.Lx or contact.x2 > self.Lx: raise Exception('Contact out of bounds') self.contacts.append(contact) def measure_contact_voltageonly(self, contact): # Args: contact instance # Returns: measured resistivity # Voltage is averaged across voltage tap # THIS FUNCTION DOES NOT CHECK THE CURRENT! # This method assumes 2terminal resistance is h/e2, which in general is wrong if np.all(self.u==0): raise Exception('System has not been solved') if contact.side=='top': y = self.Ny-1 elif contact.side=='bottom': y = 0 else: raise Exception('Side must be top or bottom') # Average voltage A A_indices = np.where(np.abs(self.x - contact.x1) < contact.width)[0] A_voltage = self.u[A_indices, y].mean() # Average voltage A B_indices = np.where(np.abs(self.x - contact.x2) < contact.width)[0] B_voltage = self.u[B_indices, y].mean() # voltage difference v = A_voltage - B_voltage # length between contacts dx = np.abs(contact.x1 - contact.x2) # return apparent resistivity return 25812 * v * self.Ly / dx def measure_all_contacts_voltageonly(self): # Args: none # Returns: array; resistivity measurement of all contacts if np.all(self.u==0): raise Exception('System has not been solved') result = [] for contact in self.contacts: result.append(self.measure_contact_voltageonly(contact)) return result def measure_contact(self, contact, sxx, sxy): ''' Voltage is averaged across voltage tap This method checks the current and outputs resistivity. Args: contact : contact instance sxx : longitudinal sxy : hall. sxy/sxx should match self.lmbda Returns: measured resistivity ''' if np.all(self.u==0): raise Exception('System has not been solved') if contact.side=='top': ya = self.Ny-1 yb = self.Ny-1 elif contact.side=='bottom': ya = 0 yb = 0 elif contact.side=='hall': ya = 0 yb = self.Ny-1 else: raise Exception('Side must be top or bottom') # Average voltage A A_indices = np.where(np.abs(self.x - contact.x1) < contact.width)[0] A_voltage = self.u[A_indices, ya].mean() # Average voltage B B_indices = np.where(np.abs(self.x - contact.x2) < contact.width)[0] B_voltage = self.u[B_indices, yb].mean() # voltage difference v = A_voltage - B_voltage # length between contacts dx = np.abs(contact.x1 - contact.x2) i = self.measure_current(sxx, sxy) # return apparent resistivity if contact.side=='hall': return v / i else: return v / i * self.Ly / dx def measure_all_contacts(self, sxx, sxy): # Args: none # Returns: array; resistivity measurement of all contacts if np.all(self.u==0): raise Exception('System has not been solved') result = [] for contact in self.contacts: result.append(self.measure_contact(contact, sxx, sxy)) return result def measure_current(self, sxx, sxy): ''' ARGS : sxx and sxy : longitudinal and Hall conductivity. units e2/h Returns : current moving through device ''' # choose place to measure: halfway across Hallbar ind_x = int(self.Nx/2) # calculate electric field using E = -\nabla V # x electric field, using second order central finite difference E_x = 0.5 * (self.u[ind_x - 1, :] - self.u[ind_x + 1, :]) / self.dx # y electric field, need forward/backward differences for edges Dy_1d, D2y_1d = Diff_mat_1D(self.Ny) E_y = - 0.5 * Dy_1d.dot(self.u[ind_x, :]) / self.dy # calculate x current using j = sigma E; integrate and convert to SI units current = np.sum(sxx * E_x + sxy * E_y) * self.dy / 25812 return current class contact(): """The class for a voltage contact Args: x1 : coordinate location of V_A x2 : coordinate location of V_B side ('top', 'bottom', or 'hall') : which side of the Hall bar to measure width : width of voltage tap in microns """ def __init__(self, x1, x2, side='top', width=6): self.x1 = x1 self.x2 = x2 self.side = side self.width = width class nonlocal_hb(): """The class for nonlocal measurements Contacts are on the bottom edge of the device Args: Lx : length in x direction Ly : length in y direction Nx : number of points in grid along x Ny : number of points in grid along y settings : positions of contacts """ def __init__(self, Lx, Ly, Nx = 301, Ny = 201, settings = {}): # Initiate with no contacts self.contacts = [] # Define coordinate variables self.Nx = Nx self.Ny = Ny self.Lx = Lx self.Ly = Ly self.x = np.linspace(0,self.Lx,self.Nx) self.y = np.linspace(0,self.Ly,self.Ny) self.dx = self.x[1] - self.x[0] # grid spacing along x direction self.dy = self.y[1] - self.y[0] # grid spacing along y direction self.X,self.Y = np.meshgrid(self.x,self.y) # 2D meshgrid # 1D indexing self.Xu = self.X.ravel() # Unravel 2D meshgrid to 1D array self.Yu = self.Y.ravel() # Nonlocal contacts self.source_x1 = settings.get("source_x1", Lx/4) self.source_x2 = settings.get("source_x2", Lx/3) self.drain_x1 = settings.get("drain_x1", 2*Lx/3) self.drain_x2 = settings.get("drain_x2", 3*Lx/4) # Search for boundary indices start_time = time.time() self.ind_unravel_L = np.squeeze(np.where(self.Xu==self.x[0])) # Left boundary self.ind_unravel_R = np.squeeze(np.where(self.Xu==self.x[self.Nx-1])) # Right boundary self.ind_unravel_B = np.squeeze(np.where(self.Yu==self.y[0])) # Bottom boundary self.ind_unravel_T = np.squeeze(np.where(self.Yu==self.y[self.Ny-1])) # Top boundary self.ind_boundary_unravel = np.squeeze(np.where((self.Xu==self.x[0]) | (self.Xu==self.x[self.Nx-1]) | (self.Yu==self.y[0]) | (self.Yu==self.y[self.Ny-1]))) # outer boundaries 1D unravel indices self.ind_boundary = np.where((self.X==self.x[0]) | (self.X==self.x[self.Nx-1]) | (self.Y==self.y[0]) | (self.Y==self.y[self.Ny-1])) # outer boundary self.ind_unravel_source = np.squeeze(np.where( (self.Yu==self.y[0]) & (self.Xu >= self.source_x1) & (self.Xu <= self.source_x2) )) # Source self.ind_unravel_drain = np.squeeze(np.where( (self.Yu==self.y[0]) & (self.Xu >= self.drain_x1) & (self.Xu <= self.drain_x2) )) # Drain print("Boundary search time = %1.4s" % (time.time()-start_time)) # Load finite difference matrix operators self.Dx_2d, self.Dy_2d, self.D2x_2d, self.D2y_2d = Diff_mat_2D(self.Nx,self.Ny) # Initiate empty solution matrix self.u = 0 def solve(self, lmbda): ''' Constructs matrix problem and solves Poisson equation # Args: lmbda : sigma_xy / sigma_xx. Must be finite # Returns: self.u : electric potential ''' self.lmbda = lmbda # Construct system matrix without boundary conditions start_time = time.time() I_sp = sp.eye(self.Nx*self.Ny).tocsr() L_sys = self.D2x_2d/self.dx**2 + self.D2y_2d/self.dy**2 # Boundary operators BD = I_sp # Dirichlet boundary operator BNx = self.Dx_2d / (2 * self.dx) # Neumann boundary operator for x component BNy = self.Dy_2d / (2 * self.dy) # Neumann boundary operator for y component # CURRENT THROUGH TOP/BOTTOM EDGES L_sys[self.ind_unravel_T,:] = BNy[self.ind_unravel_T,:] - lmbda * BNx[self.ind_unravel_T,:] # Boundaries at the top layer L_sys[self.ind_unravel_B,:] = BNy[self.ind_unravel_B,:] - lmbda * BNx[self.ind_unravel_B,:] # Boundaries at the bottom layer # CURRENT THROUGH LEFT/RIGHT EDGES L_sys[self.ind_unravel_L,:] = BNx[self.ind_unravel_L,:] + lmbda * BNy[self.ind_unravel_L,:] L_sys[self.ind_unravel_R,:] = BNx[self.ind_unravel_R,:] + lmbda * BNy[self.ind_unravel_R,:] # REPLACE WITH DIRICHLET BOUNDARY CONDITIONS FOR SOURCE/DRAIN L_sys[self.ind_unravel_source,:] = BD[self.ind_unravel_source,:] L_sys[self.ind_unravel_drain,:] = BD[self.ind_unravel_drain,:] # Source function (right hand side vector) g = np.zeros(self.Nx*self.Ny) # No current boundary conditions g[self.ind_unravel_L] = 0 g[self.ind_unravel_R] = 0 g[self.ind_unravel_T] = 0 g[self.ind_unravel_B] = 0 # Replace source with potential g[self.ind_unravel_source] = 1 print("System matrix and right hand vector computation time = %1.6s" % (time.time()-start_time)) start_time = time.time() self.u = spsolve(L_sys,g).reshape(self.Ny,self.Nx).T print("spsolve() time = %1.6s" % (time.time()-start_time)) def voltage_measurement(self, x1, x2, side='top'): # Args: x1 : point of V_A # x2 : point of V_B # side ('top' or 'bottom') : which side of Hall bar to measure # Returns: V_A - V_B if np.all(self.u==0): raise Exception('System has not been solved') if x1 > self.Lx or x1 < 0 or x2 > self.Lx or x2 < 0: raise Exception('Points out of bounds') if side=='top': y = self.Ny-1 elif side=='bottom': y = 0 else: raise Exception('Side must be top or bottom') # Find nearest index value to input coordinates xa = np.searchsorted(self.x, x1, side='left') xb = np.searchsorted(self.x, x2, side='left') return self.u[xa, y] - self.u[xb, y] def plot_potential(self): if np.all(self.u==0): raise Exception('System has not been solved') fig = plt.figure(figsize = [8,5]) # plt.contour(self.x,self.y,self.u.T,41,cmap = 'viridis', vmin=0, vmax=1) plt.pcolormesh(self.X, self.Y, self.u.T, cmap='inferno', vmin=0, vmax=1) cbar = plt.colorbar(ticks = np.arange(0, 1.01, 0.2), label = r'$\phi / \phi_s$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'y ($\mu$m)'); plt.show() class corbino(): """The class for a Corbino disk Args: ro : outer radius ri : inner radius Nx : number of points in grid along x Ny : number of points in grid along y """ def __init__(self, ro, ri, Nx = 301, Ny = 201): # Initiate with no contacts self.contacts = [] # Define coordinate variables self.Nx = Nx self.Ny = Ny self.ro = ro self.ri = ri self.x = np.linspace(-self.ro, self.ro, self.Nx) self.y = np.linspace(-self.ro, self.ro, self.Ny) self.dx = self.x[1] - self.x[0] # grid spacing along x direction self.dy = self.y[1] - self.y[0] # grid spacing along y direction self.X,self.Y = np.meshgrid(self.x,self.y) # 2D meshgrid # 1D indexing self.Xu = self.X.ravel() # Unravel 2D meshgrid to 1D array self.Yu = self.Y.ravel() # Search for boundary indices start_time = time.time() self.ind_unravel_outer = np.squeeze(np.where(self.Xu**2 + self.Yu**2 >= self.ro**2)) # outer boundary self.ind_unravel_inner = np.squeeze(np.where(self.Xu**2 + self.Yu**2 <= self.ri**2)) # inner boundary self.ind_boundary_unravel = np.squeeze(np.where((self.Xu**2 + self.Yu**2 >= self.ro**2) | (self.Xu**2 + self.Yu**2 <= self.ri**2))) # boundary 1D unravel indices self.ind_boundary = np.where((self.Xu**2 + self.Yu**2 >= self.ro**2) | (self.Xu**2 + self.Yu**2 <= self.ri**2)) # boundary print("Boundary search time = %1.4s" % (time.time()-start_time)) # Load finite difference matrix operators self.Dx_2d, self.Dy_2d, self.D2x_2d, self.D2y_2d = Diff_mat_2D(self.Nx,self.Ny) # Initiate empty solution matrix self.u = 0 def solve(self, lmbda): # constructs matrix problem and solves Poisson equation # Args: lmbda : sigma_xy / sigma_xx. Must be finite # Returns: self.u : electric potential self.lmbda = lmbda # Construct system matrix without boundary conditions start_time = time.time() I_sp = sp.eye(self.Nx*self.Ny).tocsr() L_sys = self.D2x_2d/self.dx**2 + self.D2y_2d/self.dy**2 # Boundary operators BD = I_sp # Dirichlet boundary operator # DIRICHLET BOUNDARY CONDITIONS FOR CONTACTS L_sys[self.ind_boundary_unravel,:] = BD[self.ind_boundary_unravel,:] # Source function (right hand side vector) g = np.zeros(self.Nx*self.Ny) # Insert boundary values at the boundary points g[self.ind_unravel_outer] = 1 # Dirichlet boundary condition at source g[self.ind_unravel_inner] = 0 # Dirichlet boundary condition at drain print("System matrix and right hand vector computation time = %1.6s" % (time.time()-start_time)) start_time = time.time() self.u = spsolve(L_sys,g).reshape(self.Ny,self.Nx).T print("spsolve() time = %1.6s" % (time.time()-start_time)) def plot_potential(self): if np.all(self.u==0): raise Exception('System has not been solved') fig = plt.figure(figsize = [8,5]) plt.contourf(self.x,self.y,self.u.T,41,cmap = 'inferno') cbar = plt.colorbar(ticks = np.arange(0, 1.01, 0.2), label = r'$\phi / \phi_s$') plt.xlabel(r'x ($\mu$m)'); plt.ylabel(r'y ($\mu$m)'); plt.show()
[ "matplotlib.pyplot.ylabel", "diff_matrices.Diff_mat_2D", "matplotlib.pyplot.pcolormesh", "numpy.arange", "matplotlib.pyplot.contourf", "scipy.sparse.eye", "numpy.where", "numpy.searchsorted", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.linspace", "numpy.meshgrid", "matplotlib.pyplot.ylim", "numpy.abs", "scipy.sparse.linalg.spsolve", "time.time", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "matplotlib.pyplot.hlines", "numpy.sum", "numpy.zeros", "matplotlib.pyplot.figure", "diff_matrices.Diff_mat_1D", "numpy.all" ]
[((1161, 1193), 'numpy.linspace', 'np.linspace', (['(0)', 'self.Lx', 'self.Nx'], {}), '(0, self.Lx, self.Nx)\n', (1172, 1193), True, 'import numpy as np\n'), ((1203, 1235), 'numpy.linspace', 'np.linspace', (['(0)', 'self.Ly', 'self.Ny'], {}), '(0, self.Ly, self.Ny)\n', (1214, 1235), True, 'import numpy as np\n'), ((1419, 1446), 'numpy.meshgrid', 'np.meshgrid', (['self.x', 'self.y'], {}), '(self.x, self.y)\n', (1430, 1446), True, 'import numpy as np\n'), ((1639, 1650), 'time.time', 'time.time', ([], {}), '()\n', (1648, 1650), False, 'import time\n'), ((2239, 2366), 'numpy.where', 'np.where', (['((self.X == self.x[0]) | (self.X == self.x[self.Nx - 1]) | (self.Y == self.\n y[0]) | (self.Y == self.y[self.Ny - 1]))'], {}), '((self.X == self.x[0]) | (self.X == self.x[self.Nx - 1]) | (self.Y ==\n self.y[0]) | (self.Y == self.y[self.Ny - 1]))\n', (2247, 2366), True, 'import numpy as np\n'), ((2537, 2566), 'diff_matrices.Diff_mat_2D', 'Diff_mat_2D', (['self.Nx', 'self.Ny'], {}), '(self.Nx, self.Ny)\n', (2548, 2566), False, 'from diff_matrices import Diff_mat_1D, Diff_mat_2D\n'), ((2888, 2899), 'time.time', 'time.time', ([], {}), '()\n', (2897, 2899), False, 'import time\n'), ((3803, 3830), 'numpy.zeros', 'np.zeros', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (3811, 3830), True, 'import numpy as np\n'), ((4244, 4255), 'time.time', 'time.time', ([], {}), '()\n', (4253, 4255), False, 'import time\n'), ((4583, 4602), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (4589, 4602), True, 'import numpy as np\n'), ((5011, 5051), 'numpy.searchsorted', 'np.searchsorted', (['self.x', 'x1'], {'side': '"""left"""'}), "(self.x, x1, side='left')\n", (5026, 5051), True, 'import numpy as np\n'), ((5059, 5099), 'numpy.searchsorted', 'np.searchsorted', (['self.x', 'x2'], {'side': '"""left"""'}), "(self.x, x2, side='left')\n", (5074, 5099), True, 'import numpy as np\n'), ((5176, 5195), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (5182, 5195), True, 'import numpy as np\n'), ((5253, 5279), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[8, 5]'}), '(figsize=[8, 5])\n', (5263, 5279), True, 'import matplotlib.pyplot as plt\n'), ((5283, 5341), 'matplotlib.pyplot.contourf', 'plt.contourf', (['self.x', 'self.y', 'self.u.T', '(41)'], {'cmap': '"""inferno"""'}), "(self.x, self.y, self.u.T, 41, cmap='inferno')\n", (5295, 5341), True, 'import matplotlib.pyplot as plt\n'), ((5425, 5450), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x ($\\\\mu$m)"""'], {}), "('x ($\\\\mu$m)')\n", (5435, 5450), True, 'import matplotlib.pyplot as plt\n'), ((5454, 5479), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y ($\\\\mu$m)"""'], {}), "('y ($\\\\mu$m)')\n", (5464, 5479), True, 'import matplotlib.pyplot as plt\n'), ((5483, 5493), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5491, 5493), True, 'import matplotlib.pyplot as plt\n'), ((5529, 5548), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (5535, 5548), True, 'import numpy as np\n'), ((5783, 5809), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[8, 5]'}), '(figsize=[8, 5])\n', (5793, 5809), True, 'import matplotlib.pyplot as plt\n'), ((5813, 5870), 'matplotlib.pyplot.plot', 'plt.plot', (['(self.x[0:-1] - self.dx)', 'r_top', '"""r"""'], {'label': '"""top"""'}), "(self.x[0:-1] - self.dx, r_top, 'r', label='top')\n", (5821, 5870), True, 'import matplotlib.pyplot as plt\n'), ((5873, 5936), 'matplotlib.pyplot.plot', 'plt.plot', (['(self.x[0:-1] - self.dx)', 'r_bottom', '"""b"""'], {'label': '"""bottom"""'}), "(self.x[0:-1] - self.dx, r_bottom, 'b', label='bottom')\n", (5881, 5936), True, 'import matplotlib.pyplot as plt\n'), ((5939, 6037), 'matplotlib.pyplot.hlines', 'plt.hlines', (['rxx', 'self.x[0]', 'self.x[-1]'], {'linestyle': '"""dashed"""', 'color': '"""grey"""', 'label': '"""$\\\\rho_{xx}$"""'}), "(rxx, self.x[0], self.x[-1], linestyle='dashed', color='grey',\n label='$\\\\rho_{xx}$')\n", (5949, 6037), True, 'import matplotlib.pyplot as plt\n'), ((6036, 6061), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x ($\\\\mu$m)"""'], {}), "('x ($\\\\mu$m)')\n", (6046, 6061), True, 'import matplotlib.pyplot as plt\n'), ((6065, 6103), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\rho_{xx}$ $(\\\\Omega)$"""'], {}), "('$\\\\rho_{xx}$ $(\\\\Omega)$')\n", (6075, 6103), True, 'import matplotlib.pyplot as plt\n'), ((6106, 6118), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6116, 6118), True, 'import matplotlib.pyplot as plt\n'), ((6121, 6141), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 12000]'], {}), '([0, 12000])\n', (6129, 6141), True, 'import matplotlib.pyplot as plt\n'), ((6145, 6155), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6153, 6155), True, 'import matplotlib.pyplot as plt\n'), ((6606, 6625), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (6612, 6625), True, 'import numpy as np\n'), ((7174, 7205), 'numpy.abs', 'np.abs', (['(contact.x1 - contact.x2)'], {}), '(contact.x1 - contact.x2)\n', (7180, 7205), True, 'import numpy as np\n'), ((7400, 7419), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (7406, 7419), True, 'import numpy as np\n'), ((7898, 7917), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (7904, 7917), True, 'import numpy as np\n'), ((8555, 8586), 'numpy.abs', 'np.abs', (['(contact.x1 - contact.x2)'], {}), '(contact.x1 - contact.x2)\n', (8561, 8586), True, 'import numpy as np\n'), ((8865, 8884), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (8871, 8884), True, 'import numpy as np\n'), ((9571, 9591), 'diff_matrices.Diff_mat_1D', 'Diff_mat_1D', (['self.Ny'], {}), '(self.Ny)\n', (9582, 9591), False, 'from diff_matrices import Diff_mat_1D, Diff_mat_2D\n'), ((10693, 10725), 'numpy.linspace', 'np.linspace', (['(0)', 'self.Lx', 'self.Nx'], {}), '(0, self.Lx, self.Nx)\n', (10704, 10725), True, 'import numpy as np\n'), ((10735, 10767), 'numpy.linspace', 'np.linspace', (['(0)', 'self.Ly', 'self.Ny'], {}), '(0, self.Ly, self.Ny)\n', (10746, 10767), True, 'import numpy as np\n'), ((10950, 10977), 'numpy.meshgrid', 'np.meshgrid', (['self.x', 'self.y'], {}), '(self.x, self.y)\n', (10961, 10977), True, 'import numpy as np\n'), ((11397, 11408), 'time.time', 'time.time', ([], {}), '()\n', (11406, 11408), False, 'import time\n'), ((11997, 12124), 'numpy.where', 'np.where', (['((self.X == self.x[0]) | (self.X == self.x[self.Nx - 1]) | (self.Y == self.\n y[0]) | (self.Y == self.y[self.Ny - 1]))'], {}), '((self.X == self.x[0]) | (self.X == self.x[self.Nx - 1]) | (self.Y ==\n self.y[0]) | (self.Y == self.y[self.Ny - 1]))\n', (12005, 12124), True, 'import numpy as np\n'), ((12576, 12605), 'diff_matrices.Diff_mat_2D', 'Diff_mat_2D', (['self.Nx', 'self.Ny'], {}), '(self.Nx, self.Ny)\n', (12587, 12605), False, 'from diff_matrices import Diff_mat_1D, Diff_mat_2D\n'), ((12941, 12952), 'time.time', 'time.time', ([], {}), '()\n', (12950, 12952), False, 'import time\n'), ((14059, 14086), 'numpy.zeros', 'np.zeros', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (14067, 14086), True, 'import numpy as np\n'), ((14418, 14429), 'time.time', 'time.time', ([], {}), '()\n', (14427, 14429), False, 'import time\n'), ((14748, 14767), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (14754, 14767), True, 'import numpy as np\n'), ((15097, 15137), 'numpy.searchsorted', 'np.searchsorted', (['self.x', 'x1'], {'side': '"""left"""'}), "(self.x, x1, side='left')\n", (15112, 15137), True, 'import numpy as np\n'), ((15145, 15185), 'numpy.searchsorted', 'np.searchsorted', (['self.x', 'x2'], {'side': '"""left"""'}), "(self.x, x2, side='left')\n", (15160, 15185), True, 'import numpy as np\n'), ((15260, 15279), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (15266, 15279), True, 'import numpy as np\n'), ((15337, 15363), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[8, 5]'}), '(figsize=[8, 5])\n', (15347, 15363), True, 'import matplotlib.pyplot as plt\n'), ((15443, 15515), 'matplotlib.pyplot.pcolormesh', 'plt.pcolormesh', (['self.X', 'self.Y', 'self.u.T'], {'cmap': '"""inferno"""', 'vmin': '(0)', 'vmax': '(1)'}), "(self.X, self.Y, self.u.T, cmap='inferno', vmin=0, vmax=1)\n", (15457, 15515), True, 'import matplotlib.pyplot as plt\n'), ((15601, 15626), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x ($\\\\mu$m)"""'], {}), "('x ($\\\\mu$m)')\n", (15611, 15626), True, 'import matplotlib.pyplot as plt\n'), ((15630, 15655), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y ($\\\\mu$m)"""'], {}), "('y ($\\\\mu$m)')\n", (15640, 15655), True, 'import matplotlib.pyplot as plt\n'), ((15659, 15669), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15667, 15669), True, 'import matplotlib.pyplot as plt\n'), ((16059, 16098), 'numpy.linspace', 'np.linspace', (['(-self.ro)', 'self.ro', 'self.Nx'], {}), '(-self.ro, self.ro, self.Nx)\n', (16070, 16098), True, 'import numpy as np\n'), ((16110, 16149), 'numpy.linspace', 'np.linspace', (['(-self.ro)', 'self.ro', 'self.Ny'], {}), '(-self.ro, self.ro, self.Ny)\n', (16121, 16149), True, 'import numpy as np\n'), ((16335, 16362), 'numpy.meshgrid', 'np.meshgrid', (['self.x', 'self.y'], {}), '(self.x, self.y)\n', (16346, 16362), True, 'import numpy as np\n'), ((16555, 16566), 'time.time', 'time.time', ([], {}), '()\n', (16564, 16566), False, 'import time\n'), ((16963, 17071), 'numpy.where', 'np.where', (['((self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2) | (self.Xu ** 2 + self.Yu **\n 2 <= self.ri ** 2))'], {}), '((self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2) | (self.Xu ** 2 + \n self.Yu ** 2 <= self.ri ** 2))\n', (16971, 17071), True, 'import numpy as np\n'), ((17235, 17264), 'diff_matrices.Diff_mat_2D', 'Diff_mat_2D', (['self.Nx', 'self.Ny'], {}), '(self.Nx, self.Ny)\n', (17246, 17264), False, 'from diff_matrices import Diff_mat_1D, Diff_mat_2D\n'), ((17586, 17597), 'time.time', 'time.time', ([], {}), '()\n', (17595, 17597), False, 'import time\n'), ((17940, 17967), 'numpy.zeros', 'np.zeros', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (17948, 17967), True, 'import numpy as np\n'), ((18280, 18291), 'time.time', 'time.time', ([], {}), '()\n', (18289, 18291), False, 'import time\n'), ((18442, 18461), 'numpy.all', 'np.all', (['(self.u == 0)'], {}), '(self.u == 0)\n', (18448, 18461), True, 'import numpy as np\n'), ((18519, 18545), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '[8, 5]'}), '(figsize=[8, 5])\n', (18529, 18545), True, 'import matplotlib.pyplot as plt\n'), ((18549, 18607), 'matplotlib.pyplot.contourf', 'plt.contourf', (['self.x', 'self.y', 'self.u.T', '(41)'], {'cmap': '"""inferno"""'}), "(self.x, self.y, self.u.T, 41, cmap='inferno')\n", (18561, 18607), True, 'import matplotlib.pyplot as plt\n'), ((18691, 18716), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x ($\\\\mu$m)"""'], {}), "('x ($\\\\mu$m)')\n", (18701, 18716), True, 'import matplotlib.pyplot as plt\n'), ((18720, 18745), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y ($\\\\mu$m)"""'], {}), "('y ($\\\\mu$m)')\n", (18730, 18745), True, 'import matplotlib.pyplot as plt\n'), ((18749, 18759), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (18757, 18759), True, 'import matplotlib.pyplot as plt\n'), ((1685, 1715), 'numpy.where', 'np.where', (['(self.Xu == self.x[0])'], {}), '(self.Xu == self.x[0])\n', (1693, 1715), True, 'import numpy as np\n'), ((1774, 1814), 'numpy.where', 'np.where', (['(self.Xu == self.x[self.Nx - 1])'], {}), '(self.Xu == self.x[self.Nx - 1])\n', (1782, 1814), True, 'import numpy as np\n'), ((1869, 1899), 'numpy.where', 'np.where', (['(self.Yu == self.y[0])'], {}), '(self.Yu == self.y[0])\n', (1877, 1899), True, 'import numpy as np\n'), ((1960, 2000), 'numpy.where', 'np.where', (['(self.Yu == self.y[self.Ny - 1])'], {}), '(self.Yu == self.y[self.Ny - 1])\n', (1968, 2000), True, 'import numpy as np\n'), ((2061, 2193), 'numpy.where', 'np.where', (['((self.Xu == self.x[0]) | (self.Xu == self.x[self.Nx - 1]) | (self.Yu ==\n self.y[0]) | (self.Yu == self.y[self.Ny - 1]))'], {}), '((self.Xu == self.x[0]) | (self.Xu == self.x[self.Nx - 1]) | (self.\n Yu == self.y[0]) | (self.Yu == self.y[self.Ny - 1]))\n', (2069, 2193), True, 'import numpy as np\n'), ((11443, 11473), 'numpy.where', 'np.where', (['(self.Xu == self.x[0])'], {}), '(self.Xu == self.x[0])\n', (11451, 11473), True, 'import numpy as np\n'), ((11532, 11572), 'numpy.where', 'np.where', (['(self.Xu == self.x[self.Nx - 1])'], {}), '(self.Xu == self.x[self.Nx - 1])\n', (11540, 11572), True, 'import numpy as np\n'), ((11627, 11657), 'numpy.where', 'np.where', (['(self.Yu == self.y[0])'], {}), '(self.Yu == self.y[0])\n', (11635, 11657), True, 'import numpy as np\n'), ((11718, 11758), 'numpy.where', 'np.where', (['(self.Yu == self.y[self.Ny - 1])'], {}), '(self.Yu == self.y[self.Ny - 1])\n', (11726, 11758), True, 'import numpy as np\n'), ((11819, 11951), 'numpy.where', 'np.where', (['((self.Xu == self.x[0]) | (self.Xu == self.x[self.Nx - 1]) | (self.Yu ==\n self.y[0]) | (self.Yu == self.y[self.Ny - 1]))'], {}), '((self.Xu == self.x[0]) | (self.Xu == self.x[self.Nx - 1]) | (self.\n Yu == self.y[0]) | (self.Yu == self.y[self.Ny - 1]))\n', (11827, 11951), True, 'import numpy as np\n'), ((12169, 12265), 'numpy.where', 'np.where', (['((self.Yu == self.y[0]) & (self.Xu >= self.source_x1) & (self.Xu <= self.\n source_x2))'], {}), '((self.Yu == self.y[0]) & (self.Xu >= self.source_x1) & (self.Xu <=\n self.source_x2))\n', (12177, 12265), True, 'import numpy as np\n'), ((12310, 12404), 'numpy.where', 'np.where', (['((self.Yu == self.y[0]) & (self.Xu >= self.drain_x1) & (self.Xu <= self.\n drain_x2))'], {}), '((self.Yu == self.y[0]) & (self.Xu >= self.drain_x1) & (self.Xu <=\n self.drain_x2))\n', (12318, 12404), True, 'import numpy as np\n'), ((16605, 16658), 'numpy.where', 'np.where', (['(self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2)'], {}), '(self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2)\n', (16613, 16658), True, 'import numpy as np\n'), ((16709, 16762), 'numpy.where', 'np.where', (['(self.Xu ** 2 + self.Yu ** 2 <= self.ri ** 2)'], {}), '(self.Xu ** 2 + self.Yu ** 2 <= self.ri ** 2)\n', (16717, 16762), True, 'import numpy as np\n'), ((16817, 16925), 'numpy.where', 'np.where', (['((self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2) | (self.Xu ** 2 + self.Yu **\n 2 <= self.ri ** 2))'], {}), '((self.Xu ** 2 + self.Yu ** 2 >= self.ro ** 2) | (self.Xu ** 2 + \n self.Yu ** 2 <= self.ri ** 2))\n', (16825, 16925), True, 'import numpy as np\n'), ((2909, 2934), 'scipy.sparse.eye', 'sp.eye', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (2915, 2934), True, 'import scipy.sparse as sp\n'), ((5370, 5393), 'numpy.arange', 'np.arange', (['(0)', '(1.01)', '(0.2)'], {}), '(0, 1.01, 0.2)\n', (5379, 5393), True, 'import numpy as np\n'), ((9736, 9765), 'numpy.sum', 'np.sum', (['(sxx * E_x + sxy * E_y)'], {}), '(sxx * E_x + sxy * E_y)\n', (9742, 9765), True, 'import numpy as np\n'), ((12962, 12987), 'scipy.sparse.eye', 'sp.eye', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (12968, 12987), True, 'import scipy.sparse as sp\n'), ((15546, 15569), 'numpy.arange', 'np.arange', (['(0)', '(1.01)', '(0.2)'], {}), '(0, 1.01, 0.2)\n', (15555, 15569), True, 'import numpy as np\n'), ((17607, 17632), 'scipy.sparse.eye', 'sp.eye', (['(self.Nx * self.Ny)'], {}), '(self.Nx * self.Ny)\n', (17613, 17632), True, 'import scipy.sparse as sp\n'), ((18636, 18659), 'numpy.arange', 'np.arange', (['(0)', '(1.01)', '(0.2)'], {}), '(0, 1.01, 0.2)\n', (18645, 18659), True, 'import numpy as np\n'), ((2414, 2425), 'time.time', 'time.time', ([], {}), '()\n', (2423, 2425), False, 'import time\n'), ((4200, 4211), 'time.time', 'time.time', ([], {}), '()\n', (4209, 4211), False, 'import time\n'), ((4267, 4284), 'scipy.sparse.linalg.spsolve', 'spsolve', (['L_sys', 'g'], {}), '(L_sys, g)\n', (4274, 4284), False, 'from scipy.sparse.linalg import spsolve\n'), ((4347, 4358), 'time.time', 'time.time', ([], {}), '()\n', (4356, 4358), False, 'import time\n'), ((6861, 6888), 'numpy.abs', 'np.abs', (['(self.x - contact.x1)'], {}), '(self.x - contact.x1)\n', (6867, 6888), True, 'import numpy as np\n'), ((6997, 7024), 'numpy.abs', 'np.abs', (['(self.x - contact.x2)'], {}), '(self.x - contact.x2)\n', (7003, 7024), True, 'import numpy as np\n'), ((8240, 8267), 'numpy.abs', 'np.abs', (['(self.x - contact.x1)'], {}), '(self.x - contact.x1)\n', (8246, 8267), True, 'import numpy as np\n'), ((8377, 8404), 'numpy.abs', 'np.abs', (['(self.x - contact.x2)'], {}), '(self.x - contact.x2)\n', (8383, 8404), True, 'import numpy as np\n'), ((12453, 12464), 'time.time', 'time.time', ([], {}), '()\n', (12462, 12464), False, 'import time\n'), ((14374, 14385), 'time.time', 'time.time', ([], {}), '()\n', (14383, 14385), False, 'import time\n'), ((14441, 14458), 'scipy.sparse.linalg.spsolve', 'spsolve', (['L_sys', 'g'], {}), '(L_sys, g)\n', (14448, 14458), False, 'from scipy.sparse.linalg import spsolve\n'), ((14521, 14532), 'time.time', 'time.time', ([], {}), '()\n', (14530, 14532), False, 'import time\n'), ((17112, 17123), 'time.time', 'time.time', ([], {}), '()\n', (17121, 17123), False, 'import time\n'), ((18236, 18247), 'time.time', 'time.time', ([], {}), '()\n', (18245, 18247), False, 'import time\n'), ((18303, 18320), 'scipy.sparse.linalg.spsolve', 'spsolve', (['L_sys', 'g'], {}), '(L_sys, g)\n', (18310, 18320), False, 'from scipy.sparse.linalg import spsolve\n'), ((18383, 18394), 'time.time', 'time.time', ([], {}), '()\n', (18392, 18394), False, 'import time\n')]
import unittest from electropy.charge import Charge import numpy as np from electropy import volume class VolumeTest(unittest.TestCase): def setUp(self): self.position_1 = [0, 0, 0] self.position_2 = [-2, 4, 1] self.charge = 7e-9 def tearDown(self): pass # Potential function volume tests def test_potential_volume_at_point_equal_class_potential(self): charge = Charge(self.position_1, self.charge) potential_volume = volume.potential( [charge], x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, ) # Point = [-6, -6, -6] potential_at_point = potential_volume[4][4][4] expected_potential = charge.potential([-6, -6, -6]) np.testing.assert_equal(potential_at_point, expected_potential) def test_two_charge_potential_volume_eq_sum_of_class_potential(self): charges = [Charge(self.position_1, self.charge)] charges.append(Charge(self.position_2, -self.charge)) potential_volume = volume.potential( charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, ) # Point = [-6, -5, -3] potential_at_point = potential_volume[4][5][7] expected_potential = np.add( charges[0].potential([-6, -5, -3]), charges[1].potential([-6, -5, -3]), ) np.testing.assert_equal(potential_at_point, expected_potential) # Field function volume tests def test_field_volume_at_point_equal_class_field(self): charge = Charge(self.position_1, self.charge) field_volume = volume.field( [charge], x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, ) # Point = [-10, -6, -3] field_at_point = field_volume[0][4][7] expected_field = charge.field([-10, -6, -3]) np.testing.assert_equal(field_at_point, expected_field) def test_two_charge_field_volume_eq_sum_of_class_field(self): charges = [Charge(self.position_1, self.charge)] charges.append(Charge(self.position_2, -self.charge)) field_volume = volume.field( charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, ) # Point = [-6, -5, -3] field_at_point = field_volume[4][5][7] expected_field = np.add( charges[0].field([-6, -5, -3]), charges[1].field([-6, -5, -3]) ) np.testing.assert_equal(field_at_point, expected_field) def test_charge_field_volume_x_components_eq_sum_of_class_field_x(self): charges = [Charge(self.position_1, self.charge)] charges.append(Charge(self.position_2, -self.charge)) field_volume = volume.field( charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, component="x", ) # Point = [-6, -5, -3] field_at_point = field_volume[4][5][7] expected_field = np.add( charges[0].field([-6, -5, -3], component="x"), charges[1].field([-6, -5, -3], component="x"), ) np.testing.assert_equal(field_at_point, expected_field) def test_charge_field_volume_y_components_eq_sum_of_class_field_y(self): charges = [Charge(self.position_1, self.charge)] charges.append(Charge(self.position_2, -self.charge)) field_volume = volume.field( charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, component="y", ) # Point = [-6, -5, -3] field_at_point = field_volume[4][5][7] expected_field = np.add( charges[0].field([-6, -5, -3], component="y"), charges[1].field([-6, -5, -3], component="y"), ) np.testing.assert_equal(field_at_point, expected_field) def test_charge_field_volume_z_components_eq_sum_of_class_field_z(self): charges = [Charge(self.position_1, self.charge)] charges.append(Charge(self.position_2, -self.charge)) field_volume = volume.field( charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, 10], h=1, component="z", ) # Point = [-6, -5, -3] field_at_point = field_volume[4][5][7] expected_field = np.add( charges[0].field([-6, -5, -3], component="z"), charges[1].field([-6, -5, -3], component="z"), ) np.testing.assert_equal(field_at_point, expected_field) def test_field_returns_singleton_dim_for_single_slice(self): charge = Charge(self.position_1, self.charge) field_volume = volume.field( [charge], x_range=[-10, 10], y_range=[1, 1], z_range=[-10, 10], h=0.1, ) expected_shape = (201, 1, 201) actual_shape = field_volume.shape np.testing.assert_equal(actual_shape, expected_shape) def test__arange_almost_equals_numpy_arange(self): actual = volume._arange(-10, 10, 0.1) # Mine is rounder anyways =) expected = np.arange(-10, 10 + 0.1, 0.1) np.testing.assert_almost_equal(actual, expected)
[ "numpy.testing.assert_equal", "electropy.volume.field", "electropy.charge.Charge", "numpy.testing.assert_almost_equal", "electropy.volume.potential", "electropy.volume._arange", "numpy.arange" ]
[((425, 461), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (431, 461), False, 'from electropy.charge import Charge\n'), ((490, 583), 'electropy.volume.potential', 'volume.potential', (['[charge]'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)'}), '([charge], x_range=[-10, 10], y_range=[-10, 10], z_range=[-\n 10, 10], h=1)\n', (506, 583), False, 'from electropy import volume\n'), ((807, 870), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['potential_at_point', 'expected_potential'], {}), '(potential_at_point, expected_potential)\n', (830, 870), True, 'import numpy as np\n'), ((1094, 1186), 'electropy.volume.potential', 'volume.potential', (['charges'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)'}), '(charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-\n 10, 10], h=1)\n', (1110, 1186), False, 'from electropy import volume\n'), ((1493, 1556), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['potential_at_point', 'expected_potential'], {}), '(potential_at_point, expected_potential)\n', (1516, 1556), True, 'import numpy as np\n'), ((1670, 1706), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (1676, 1706), False, 'from electropy.charge import Charge\n'), ((1731, 1820), 'electropy.volume.field', 'volume.field', (['[charge]'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)'}), '([charge], x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, \n 10], h=1)\n', (1743, 1820), False, 'from electropy import volume\n'), ((2030, 2085), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['field_at_point', 'expected_field'], {}), '(field_at_point, expected_field)\n', (2053, 2085), True, 'import numpy as np\n'), ((2297, 2385), 'electropy.volume.field', 'volume.field', (['charges'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)'}), '(charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, \n 10], h=1)\n', (2309, 2385), False, 'from electropy import volume\n'), ((2659, 2714), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['field_at_point', 'expected_field'], {}), '(field_at_point, expected_field)\n', (2682, 2714), True, 'import numpy as np\n'), ((2937, 3040), 'electropy.volume.field', 'volume.field', (['charges'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)', 'component': '"""x"""'}), "(charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, \n 10], h=1, component='x')\n", (2949, 3040), False, 'from electropy import volume\n'), ((3369, 3424), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['field_at_point', 'expected_field'], {}), '(field_at_point, expected_field)\n', (3392, 3424), True, 'import numpy as np\n'), ((3647, 3750), 'electropy.volume.field', 'volume.field', (['charges'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)', 'component': '"""y"""'}), "(charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, \n 10], h=1, component='y')\n", (3659, 3750), False, 'from electropy import volume\n'), ((4079, 4134), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['field_at_point', 'expected_field'], {}), '(field_at_point, expected_field)\n', (4102, 4134), True, 'import numpy as np\n'), ((4357, 4460), 'electropy.volume.field', 'volume.field', (['charges'], {'x_range': '[-10, 10]', 'y_range': '[-10, 10]', 'z_range': '[-10, 10]', 'h': '(1)', 'component': '"""z"""'}), "(charges, x_range=[-10, 10], y_range=[-10, 10], z_range=[-10, \n 10], h=1, component='z')\n", (4369, 4460), False, 'from electropy import volume\n'), ((4789, 4844), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['field_at_point', 'expected_field'], {}), '(field_at_point, expected_field)\n', (4812, 4844), True, 'import numpy as np\n'), ((4929, 4965), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (4935, 4965), False, 'from electropy.charge import Charge\n'), ((4990, 5077), 'electropy.volume.field', 'volume.field', (['[charge]'], {'x_range': '[-10, 10]', 'y_range': '[1, 1]', 'z_range': '[-10, 10]', 'h': '(0.1)'}), '([charge], x_range=[-10, 10], y_range=[1, 1], z_range=[-10, 10],\n h=0.1)\n', (5002, 5077), False, 'from electropy import volume\n'), ((5236, 5289), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['actual_shape', 'expected_shape'], {}), '(actual_shape, expected_shape)\n', (5259, 5289), True, 'import numpy as np\n'), ((5364, 5392), 'electropy.volume._arange', 'volume._arange', (['(-10)', '(10)', '(0.1)'], {}), '(-10, 10, 0.1)\n', (5378, 5392), False, 'from electropy import volume\n'), ((5442, 5471), 'numpy.arange', 'np.arange', (['(-10)', '(10 + 0.1)', '(0.1)'], {}), '(-10, 10 + 0.1, 0.1)\n', (5451, 5471), True, 'import numpy as np\n'), ((5480, 5528), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['actual', 'expected'], {}), '(actual, expected)\n', (5510, 5528), True, 'import numpy as np\n'), ((966, 1002), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (972, 1002), False, 'from electropy.charge import Charge\n'), ((1027, 1064), 'electropy.charge.Charge', 'Charge', (['self.position_2', '(-self.charge)'], {}), '(self.position_2, -self.charge)\n', (1033, 1064), False, 'from electropy.charge import Charge\n'), ((2173, 2209), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (2179, 2209), False, 'from electropy.charge import Charge\n'), ((2234, 2271), 'electropy.charge.Charge', 'Charge', (['self.position_2', '(-self.charge)'], {}), '(self.position_2, -self.charge)\n', (2240, 2271), False, 'from electropy.charge import Charge\n'), ((2813, 2849), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (2819, 2849), False, 'from electropy.charge import Charge\n'), ((2874, 2911), 'electropy.charge.Charge', 'Charge', (['self.position_2', '(-self.charge)'], {}), '(self.position_2, -self.charge)\n', (2880, 2911), False, 'from electropy.charge import Charge\n'), ((3523, 3559), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (3529, 3559), False, 'from electropy.charge import Charge\n'), ((3584, 3621), 'electropy.charge.Charge', 'Charge', (['self.position_2', '(-self.charge)'], {}), '(self.position_2, -self.charge)\n', (3590, 3621), False, 'from electropy.charge import Charge\n'), ((4233, 4269), 'electropy.charge.Charge', 'Charge', (['self.position_1', 'self.charge'], {}), '(self.position_1, self.charge)\n', (4239, 4269), False, 'from electropy.charge import Charge\n'), ((4294, 4331), 'electropy.charge.Charge', 'Charge', (['self.position_2', '(-self.charge)'], {}), '(self.position_2, -self.charge)\n', (4300, 4331), False, 'from electropy.charge import Charge\n')]
import numpy as np import matplotlib.pyplot as plt from sklearn.utils.validation import check_random_state from sklearn.datasets import fetch_olivetti_faces from sklearn.externals import joblib rng = check_random_state(21) dataset = fetch_olivetti_faces() X = dataset.images.reshape(dataset.images.shape[0], -1) train = X[dataset.target < 30] test = X[dataset.target >= 30] n_faces = 3 face_ids = rng.randint(test.shape[0], size=(n_faces,)) test = test[face_ids, :] n_pixels = X.shape[1] # Upper half of the faces X_train = train[:, :(n_pixels + 1) // 2] # Lower half of the faces y_train = train[:, n_pixels // 2:] X_test = test[:, :(n_pixels + 1) // 2] y_test = test[:, n_pixels // 2:] n_rows = 2 imshape = (64, 64,) def test_model(y_pred, model_name): plt.figure(figsize=(1.7*n_faces, 4)) plt.suptitle('Face completion with ' + model_name, size=12) # plot the true faces first for i in range(n_faces): plt.subplot(int( '{}{}{}'.format( n_rows, n_faces, i + 1 ) )) plt.axis('off') plt.imshow(np.hstack((X_test[i], y_test[i])).reshape(imshape), cmap=plt.cm.gray, interpolation='nearest') # then plot the predictions for i in range(n_faces): plt.subplot(int( '{}{}{}'.format( n_rows, n_faces, i + n_faces + 1 ) )) plt.axis('off') plt.imshow(np.hstack((X_test[i], y_pred[i])).reshape(imshape), cmap=plt.cm.gray, interpolation='nearest') test_model(joblib.load('../trained_models/nn_face_completion.pkl').predict(X_test), 'Face completion with a Neural Network') test_model(joblib.load('../trained_models/knn_face_completion.pkl').predict(X_test), 'Face completion with a k-Nearest Neighbors') test_model(joblib.load('../trained_models/dt_face_completion.pkl').predict(X_test), 'Face completion with a Decision Tree') plt.show()
[ "numpy.hstack", "sklearn.utils.validation.check_random_state", "sklearn.externals.joblib.load", "sklearn.datasets.fetch_olivetti_faces", "matplotlib.pyplot.figure", "matplotlib.pyplot.axis", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.show" ]
[((202, 224), 'sklearn.utils.validation.check_random_state', 'check_random_state', (['(21)'], {}), '(21)\n', (220, 224), False, 'from sklearn.utils.validation import check_random_state\n'), ((235, 257), 'sklearn.datasets.fetch_olivetti_faces', 'fetch_olivetti_faces', ([], {}), '()\n', (255, 257), False, 'from sklearn.datasets import fetch_olivetti_faces\n'), ((1812, 1822), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1820, 1822), True, 'import matplotlib.pyplot as plt\n'), ((769, 807), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(1.7 * n_faces, 4)'}), '(figsize=(1.7 * n_faces, 4))\n', (779, 807), True, 'import matplotlib.pyplot as plt\n'), ((810, 869), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (["('Face completion with ' + model_name)"], {'size': '(12)'}), "('Face completion with ' + model_name, size=12)\n", (822, 869), True, 'import matplotlib.pyplot as plt\n'), ((1011, 1026), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1019, 1026), True, 'import matplotlib.pyplot as plt\n'), ((1300, 1315), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1308, 1315), True, 'import matplotlib.pyplot as plt\n'), ((1443, 1498), 'sklearn.externals.joblib.load', 'joblib.load', (['"""../trained_models/nn_face_completion.pkl"""'], {}), "('../trained_models/nn_face_completion.pkl')\n", (1454, 1498), False, 'from sklearn.externals import joblib\n'), ((1568, 1624), 'sklearn.externals.joblib.load', 'joblib.load', (['"""../trained_models/knn_face_completion.pkl"""'], {}), "('../trained_models/knn_face_completion.pkl')\n", (1579, 1624), False, 'from sklearn.externals import joblib\n'), ((1699, 1754), 'sklearn.externals.joblib.load', 'joblib.load', (['"""../trained_models/dt_face_completion.pkl"""'], {}), "('../trained_models/dt_face_completion.pkl')\n", (1710, 1754), False, 'from sklearn.externals import joblib\n'), ((1046, 1079), 'numpy.hstack', 'np.hstack', (['(X_test[i], y_test[i])'], {}), '((X_test[i], y_test[i]))\n', (1055, 1079), True, 'import numpy as np\n'), ((1335, 1368), 'numpy.hstack', 'np.hstack', (['(X_test[i], y_pred[i])'], {}), '((X_test[i], y_pred[i]))\n', (1344, 1368), True, 'import numpy as np\n')]
import tensorflow as tf from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras import models from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.vgg16 import preprocess_input import numpy as np import cv2 # prebuild model with pre-trained weights on imagenet base_model = VGG16(weights='imagenet', include_top=True) print (base_model) for i, layer in enumerate(base_model.layers): print (i, layer.name, layer.output_shape) # extract features from block4_pool block model = models.Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) img_path = 'cat.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # get the features from this block features = model.predict(x) print(features)
[ "tensorflow.keras.preprocessing.image.load_img", "tensorflow.keras.applications.vgg16.preprocess_input", "numpy.expand_dims", "tensorflow.keras.applications.vgg16.VGG16", "tensorflow.keras.preprocessing.image.img_to_array" ]
[((336, 379), 'tensorflow.keras.applications.vgg16.VGG16', 'VGG16', ([], {'weights': '"""imagenet"""', 'include_top': '(True)'}), "(weights='imagenet', include_top=True)\n", (341, 379), False, 'from tensorflow.keras.applications.vgg16 import VGG16\n'), ((669, 717), 'tensorflow.keras.preprocessing.image.load_img', 'image.load_img', (['img_path'], {'target_size': '(224, 224)'}), '(img_path, target_size=(224, 224))\n', (683, 717), False, 'from tensorflow.keras.preprocessing import image\n'), ((723, 746), 'tensorflow.keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (741, 746), False, 'from tensorflow.keras.preprocessing import image\n'), ((752, 777), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (766, 777), True, 'import numpy as np\n'), ((783, 802), 'tensorflow.keras.applications.vgg16.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (799, 802), False, 'from tensorflow.keras.applications.vgg16 import preprocess_input\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 7 08:38:28 2020 pyqt realtime plot tutorial source: https://www.learnpyqt.com/courses/graphics-plotting/plotting-pyqtgraph/ @author: nlourie """ from PyQt5 import QtWidgets, QtCore,uic from pyqtgraph import PlotWidget, plot,QtGui import pyqtgraph as pg import sys # We need sys so that we can pass argv to QApplication import os from datetime import datetime import numpy as np from scipy import signal import board import busio import adafruit_lps35hw import time from scipy import interpolate #import monitor_utils as mu # Initialize the i2c bus i2c = busio.I2C(board.SCL, board.SDA) # Using the adafruit_lps35hw class to read in the pressure sensor # note the address must be in decimal. # allowed addresses are: # 92 (0x5c - if you put jumper from SDO to Gnd) # 93 (0x5d - default) p2 = adafruit_lps35hw.LPS35HW(i2c, address = 92) p1 = adafruit_lps35hw.LPS35HW(i2c, address = 93) p1.data_rate = adafruit_lps35hw.DataRate.RATE_75_HZ p2.data_rate = adafruit_lps35hw.DataRate.RATE_75_HZ mbar2cmh20 = 1.01972 # Now read out the pressure difference between the sensors print('p1_0 = ',p1.pressure,' mbar') print('p1_0 = ',p1.pressure*mbar2cmh20,' cmH20') print('p2_0 = ',p2.pressure,' mbar') print('p2_0 = ',p2.pressure*mbar2cmh20,' cmH20') print('') print('Now zero the pressure:') # Not sure why sometimes I have to do this twice?? p1.zero_pressure() p1.zero_pressure() time.sleep(1) p2.zero_pressure() p2.zero_pressure() time.sleep(1) print('p1_0 = ',p1.pressure,' mbar') print('p1_0 = ',p1.pressure*mbar2cmh20,' cmH20') print('p2_0 = ',p2.pressure,' mbar') print('p2_0 = ',p2.pressure*mbar2cmh20,' cmH20') print() def breath_detect_coarse(flow,fs,plotflag = False): """ %% This function detects peaks of flow signal % Inputs: % flow: flow signal % fs: sampling frequency % plotflag: set to 1 to plot % Output: % peak (location, amplitude) % Written by: <NAME>, PhD % Email: <EMAIL> % Updated on: 12 Nov 2015. % Ver: 1.0 # Converted to python by: <NAME>, PhD # Email: <EMAIL> # Updated on: April, 2020 """ # detect peaks of flow signal minpeakwidth = fs*0.3 peakdistance = fs*1.5 #print('peakdistance = ',peakdistance) minPeak = 0.05 # flow threshold = 0.05 (L/s) minpeakprominence = 0.05 peak_index, _ = signal.find_peaks(flow, height = minPeak, distance = peakdistance, prominence = minpeakprominence, width = minpeakwidth) """ valley_index, _ = signal.find_peaks(-1*flow, height = minPeak, distance = peakdistance, prominence = minpeakprominence, width = minpeakwidth) """ print('found peaks at index = ',peak_index) return peak_index class MainWindow(QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.setWindowTitle("Standalone Respiratory Monitor") self.graph0 = pg.PlotWidget() self.graph1 = pg.PlotWidget() self.graph2 = pg.PlotWidget() self.graph3 = pg.PlotWidget() layout = QtWidgets.QVBoxLayout() layout.addWidget(self.graph0) layout.addWidget(self.graph1) layout.addWidget(self.graph2) layout.addWidget(self.graph3) widget = QtWidgets.QWidget() widget.setLayout(layout) # make the window with a graph widget #self.graph1 = pg.PlotWidget() self.setCentralWidget(widget) # set the plot properties self.graph1.setBackground('k') self.graph0.showGrid(x = True, y = True) self.graph1.showGrid(x=True,y=True) self.graph2.showGrid(x = True, y = True) self.graph3.showGrid(x = True, y = True) # Set the label properties with valid CSS commands -- https://groups.google.com/forum/#!topic/pyqtgraph/jS1Ju8R6PXk labelStyle = {'color': '#FFF', 'font-size': '12pt'} self.graph0.setLabel('left','P','cmH20',**labelStyle) self.graph1.setLabel('left','Flow','L/s',**labelStyle) self.graph3.setLabel('bottom', 'Time', 's', **labelStyle) #self.graph2.setLabel('left', 'V raw','L',**labelStyle) self.graph3.setLabel('left','V corr','L',**labelStyle) # change the plot range #self.graph0.setYRange(-30,30,padding = 0.1) #self.graph1.setYRange(-2,2,padding = 0.1) #self.graph3.setYRange(-0.5,1.5,padding = 0.1) #self.graph3.setYRange(200,200,padding = 0.1) self.x = [0] self.t = [datetime.utcnow().timestamp()] self.dt = [0] self.x = [0] self.dt = [0] #self.y = [honeywell_v2f(chan.voltage)] self.dp = [(p1.pressure - p2.pressure)*mbar2cmh20] self.p1 = [(p1.pressure)*mbar2cmh20] self.p2 = [(p2.pressure)*mbar2cmh20] self.flow = [0] self.vol = [0] print('P1 = ',p1.pressure,' cmH20') print('P2 = ',p2.pressure,' cmH20') # plot data: x, y values # make a QPen object to hold the marker properties pen = pg.mkPen(color = 'y',width = 1) pen2 = pg.mkPen(color = 'b',width = 2) self.data_line01 = self.graph0.plot(self.dt,self.p1,pen = pen) self.data_line02 = self.graph0.plot(self.dt,self.p2,pen = pen2) self.data_line1 = self.graph1.plot(self.dt, self.flow,pen = pen) # graph2 self.data_line21 = self.graph2.plot(self.dt,self.flow,pen = pen) self.data_line22 = self.graph2.plot(self.dt,self.flow,pen = pen) # graph3 self.data_line3 = self.graph3.plot(self.dt,self.vol,pen = pen) self.calibrating = False """ # Slower timer self.t_cal = 100 self.cal_timer = QtCore.QTimer() self.cal_timer.setInterval(self.t_cal) self.cal_timer.timeout.connect(self.update_cal) self.cal_timer.start() """ # Stuff with the timer self.t_update = 10 #update time of timer in ms self.timer = QtCore.QTimer() self.timer.setInterval(self.t_update) self.timer.timeout.connect(self.update_plot_data) self.timer.start() self.drift_model = [0,datetime.utcnow().timestamp()/1000*self.t_update] self.i_valleys = [] self.time_to_show = 30 #s def update_plot_data(self): # This is what happens every timer loop if self.dt[-1] >= self.time_to_show: self.x = self.x[1:] # Remove the first element #self.y = self.y[1:] # remove the first element self.dp = self.dp[1:] self.t = self.t[1:] # remove the first element self.dt= self.dt[1:] self.p1 = self.p1[1:] self.p2 = self.p2[1:] self.vol = self.vol[1:] self.flow = self.flow[1:] self.x.append(self.x[-1] + 1) # add a new value 1 higher than the last self.t.append(datetime.utcnow().timestamp()) self.dt = [(ti - self.t[0]) for ti in self.t] dp_cmh20 = ((p1.pressure - p2.pressure))*mbar2cmh20 self.dp.append(dp_cmh20) self.flow.append(dp_cmh20) self.p1.append(p1.pressure*mbar2cmh20) self.p2.append(p2.pressure*mbar2cmh20) # remove any linear trend in the volume data since it's just nonsense. # THis should zero it out okay if there's no noticeable "dips" self.vol = signal.detrend(np.cumsum(self.flow)) self.fs = 1/(self.t[-1] - self.t[-2]) print('Sample Freq = ',self.fs) negative_mean_subtracted_volume = [-1*(v-np.mean(self.vol)) for v in self.vol] i_valleys = breath_detect_coarse(negative_mean_subtracted_volume,fs = self.fs,plotflag = False) self.i_valleys = i_valleys #print('i_valleys = ',self.i_valleys) #print('datatype of i_valleys = ',type(self.i_valleys)) if len(self.i_valleys) >= 2: t = np.array(self.t) vol = np.array(self.vol) dt = np.array(self.dt) print('found peaks at dt = ',dt[self.i_valleys]) #self.drift_model = np.polyfit(t[self.i_valleys],vol[self.i_valleys],1) #self.v_drift = np.polyval(self.drift_model,t) #self.vol_corr = vol - self.v_drift #self.data_line22.setData(self.dt,self.v_drift) self.drift_model = interpolate.interp1d(t[i_valleys],vol[i_valleys],kind = 'linear') v_drift_within_spline = self.drift_model(t[i_valleys[0]:i_valleys[-1]]) v_drift = np.zeros(len(t)) v_drift[0:self.i_valleys[1]] = np.polyval(np.polyfit(t[i_valleys[0:1]],vol[self.i_valleys[0:1]],1),t[0:self.i_valleys[1]],) v_drift[self.i_valleys[0]:self.i_valleys[-1]] = v_drift_within_spline v_drift[self.i_valleys[-1]:] = np.polyval(np.polyfit(t[self.i_valleys[-2:]],vol[self.i_valleys[-2:]],1),t[self.i_valleys[-1]:]) self.v_drift = v_drift self.vol_corr = vol - v_drift self.data_line22.setData(self.dt,self.v_drift) else: self.vol_corr = self.vol self.data_line01.setData(self.dt,self.p1) self.data_line02.setData(self.dt,self.p2) self.data_line1.setData(self.dt,self.flow) #update the data self.data_line21.setData(self.dt,self.vol) self.data_line3.setData(self.dt,self.vol_corr) """ def update_cal(self) : print ('len dt = ',len(self.dt)) if len(self.dt) > 50: # try to run the monitor utils functions fs = 1000/self.t_update i_peaks,i_valleys,i_infl_points,vol_last_peak,flow,self.vol_corr,self.vol_offset,time,vol,drift_model = mu.get_processed_flow(np.array(self.t),np.array(self.y),fs,SmoothingParam = 0,smoothflag=True,plotflag = False) if len(i_peaks) > 2: self.drift_model = drift_model print('updating calibration') self.calibrating = True self.data_line2.setData(self.dt,vol) self.data_line5.setData(self.dt,np.polyval(self.drift_model,time)) self.data_line3.setData(self.dt,vol - np.polyval(self.drift_model,time)) print('drift model = ',self.drift_model) """ def main(): app = QtWidgets.QApplication(sys.argv) main = MainWindow() main.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
[ "PyQt5.QtWidgets.QWidget", "numpy.mean", "adafruit_lps35hw.LPS35HW", "numpy.polyfit", "datetime.datetime.utcnow", "busio.I2C", "PyQt5.QtCore.QTimer", "time.sleep", "scipy.interpolate.interp1d", "numpy.array", "pyqtgraph.PlotWidget", "numpy.cumsum", "PyQt5.QtWidgets.QApplication", "scipy.signal.find_peaks", "PyQt5.QtWidgets.QVBoxLayout", "pyqtgraph.mkPen" ]
[((632, 663), 'busio.I2C', 'busio.I2C', (['board.SCL', 'board.SDA'], {}), '(board.SCL, board.SDA)\n', (641, 663), False, 'import busio\n'), ((904, 945), 'adafruit_lps35hw.LPS35HW', 'adafruit_lps35hw.LPS35HW', (['i2c'], {'address': '(92)'}), '(i2c, address=92)\n', (928, 945), False, 'import adafruit_lps35hw\n'), ((953, 994), 'adafruit_lps35hw.LPS35HW', 'adafruit_lps35hw.LPS35HW', (['i2c'], {'address': '(93)'}), '(i2c, address=93)\n', (977, 994), False, 'import adafruit_lps35hw\n'), ((1488, 1501), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1498, 1501), False, 'import time\n'), ((1540, 1553), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1550, 1553), False, 'import time\n'), ((2510, 2627), 'scipy.signal.find_peaks', 'signal.find_peaks', (['flow'], {'height': 'minPeak', 'distance': 'peakdistance', 'prominence': 'minpeakprominence', 'width': 'minpeakwidth'}), '(flow, height=minPeak, distance=peakdistance, prominence=\n minpeakprominence, width=minpeakwidth)\n', (2527, 2627), False, 'from scipy import signal\n'), ((10966, 10998), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (10988, 10998), False, 'from PyQt5 import QtWidgets, QtCore, uic\n'), ((3390, 3405), 'pyqtgraph.PlotWidget', 'pg.PlotWidget', ([], {}), '()\n', (3403, 3405), True, 'import pyqtgraph as pg\n'), ((3428, 3443), 'pyqtgraph.PlotWidget', 'pg.PlotWidget', ([], {}), '()\n', (3441, 3443), True, 'import pyqtgraph as pg\n'), ((3466, 3481), 'pyqtgraph.PlotWidget', 'pg.PlotWidget', ([], {}), '()\n', (3479, 3481), True, 'import pyqtgraph as pg\n'), ((3504, 3519), 'pyqtgraph.PlotWidget', 'pg.PlotWidget', ([], {}), '()\n', (3517, 3519), True, 'import pyqtgraph as pg\n'), ((3546, 3569), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', ([], {}), '()\n', (3567, 3569), False, 'from PyQt5 import QtWidgets, QtCore, uic\n'), ((3748, 3767), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', ([], {}), '()\n', (3765, 3767), False, 'from PyQt5 import QtWidgets, QtCore, uic\n'), ((5597, 5625), 'pyqtgraph.mkPen', 'pg.mkPen', ([], {'color': '"""y"""', 'width': '(1)'}), "(color='y', width=1)\n", (5605, 5625), True, 'import pyqtgraph as pg\n'), ((5644, 5672), 'pyqtgraph.mkPen', 'pg.mkPen', ([], {'color': '"""b"""', 'width': '(2)'}), "(color='b', width=2)\n", (5652, 5672), True, 'import pyqtgraph as pg\n'), ((6595, 6610), 'PyQt5.QtCore.QTimer', 'QtCore.QTimer', ([], {}), '()\n', (6608, 6610), False, 'from PyQt5 import QtWidgets, QtCore, uic\n'), ((8054, 8074), 'numpy.cumsum', 'np.cumsum', (['self.flow'], {}), '(self.flow)\n', (8063, 8074), True, 'import numpy as np\n'), ((8592, 8608), 'numpy.array', 'np.array', (['self.t'], {}), '(self.t)\n', (8600, 8608), True, 'import numpy as np\n'), ((8627, 8645), 'numpy.array', 'np.array', (['self.vol'], {}), '(self.vol)\n', (8635, 8645), True, 'import numpy as np\n'), ((8663, 8680), 'numpy.array', 'np.array', (['self.dt'], {}), '(self.dt)\n', (8671, 8680), True, 'import numpy as np\n'), ((9037, 9102), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['t[i_valleys]', 'vol[i_valleys]'], {'kind': '"""linear"""'}), "(t[i_valleys], vol[i_valleys], kind='linear')\n", (9057, 9102), False, 'from scipy import interpolate\n'), ((9280, 9338), 'numpy.polyfit', 'np.polyfit', (['t[i_valleys[0:1]]', 'vol[self.i_valleys[0:1]]', '(1)'], {}), '(t[i_valleys[0:1]], vol[self.i_valleys[0:1]], 1)\n', (9290, 9338), True, 'import numpy as np\n'), ((9498, 9561), 'numpy.polyfit', 'np.polyfit', (['t[self.i_valleys[-2:]]', 'vol[self.i_valleys[-2:]]', '(1)'], {}), '(t[self.i_valleys[-2:]], vol[self.i_valleys[-2:]], 1)\n', (9508, 9561), True, 'import numpy as np\n'), ((5050, 5067), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (5065, 5067), False, 'from datetime import datetime\n'), ((7554, 7571), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7569, 7571), False, 'from datetime import datetime\n'), ((8221, 8238), 'numpy.mean', 'np.mean', (['self.vol'], {}), '(self.vol)\n', (8228, 8238), True, 'import numpy as np\n'), ((6790, 6807), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (6805, 6807), False, 'from datetime import datetime\n')]
import pandas as pd import numpy as np print(pd.__version__) # 1.0.0 print(pd.DataFrame.agg is pd.DataFrame.aggregate) # True df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print(df) # A B # 0 0 3 # 1 1 4 # 2 2 5 print(df.agg(['sum', 'mean', 'min', 'max'])) # A B # sum 3.0 12.0 # mean 1.0 4.0 # min 0.0 3.0 # max 2.0 5.0 print(type(df.agg(['sum', 'mean', 'min', 'max']))) # <class 'pandas.core.frame.DataFrame'> print(df.agg(['sum'])) # A B # sum 3 12 print(type(df.agg(['sum']))) # <class 'pandas.core.frame.DataFrame'> print(df.agg('sum')) # A 3 # B 12 # dtype: int64 print(type(df.agg('sum'))) # <class 'pandas.core.series.Series'> print(df.agg({'A': ['sum', 'min', 'max'], 'B': ['mean', 'min', 'max']})) # A B # max 2.0 5.0 # mean NaN 4.0 # min 0.0 3.0 # sum 3.0 NaN print(df.agg({'A': 'sum', 'B': 'mean'})) # A 3.0 # B 4.0 # dtype: float64 print(df.agg({'A': ['sum'], 'B': ['mean']})) # A B # mean NaN 4.0 # sum 3.0 NaN print(df.agg({'A': ['min', 'max'], 'B': 'mean'})) # A B # max 2.0 NaN # mean NaN 4.0 # min 0.0 NaN print(df.agg(['sum', 'mean', 'min', 'max'], axis=1)) # sum mean min max # 0 3.0 1.5 0.0 3.0 # 1 5.0 2.5 1.0 4.0 # 2 7.0 3.5 2.0 5.0 s = df['A'] print(s) # 0 0 # 1 1 # 2 2 # Name: A, dtype: int64 print(s.agg(['sum', 'mean', 'min', 'max'])) # sum 3.0 # mean 1.0 # min 0.0 # max 2.0 # Name: A, dtype: float64 print(type(s.agg(['sum', 'mean', 'min', 'max']))) # <class 'pandas.core.series.Series'> print(s.agg(['sum'])) # sum 3 # Name: A, dtype: int64 print(type(s.agg(['sum']))) # <class 'pandas.core.series.Series'> print(s.agg('sum')) # 3 print(type(s.agg('sum'))) # <class 'numpy.int64'> print(s.agg({'Total': 'sum', 'Average': 'mean', 'Min': 'min', 'Max': 'max'})) # Total 3.0 # Average 1.0 # Min 0.0 # Max 2.0 # Name: A, dtype: float64 # print(s.agg({'NewLabel_1': ['sum', 'max'], 'NewLabel_2': ['mean', 'min']})) # SpecificationError: nested renamer is not supported print(df.agg(['mad', 'amax', 'dtype'])) # A B # mad 0.666667 0.666667 # amax 2 5 # dtype int64 int64 print(df['A'].mad()) # 0.6666666666666666 print(np.amax(df['A'])) # 2 print(df['A'].dtype) # int64 # print(df.agg(['xxx'])) # AttributeError: 'xxx' is not a valid function for 'Series' object # print(df.agg('xxx')) # AttributeError: 'xxx' is not a valid function for 'DataFrame' object print(hasattr(pd.DataFrame, '__array__')) # True print(hasattr(pd.core.groupby.GroupBy, '__array__')) # False print(df.agg([np.sum, max])) # A B # sum 3 12 # max 2 5 print(np.sum(df['A'])) # 3 print(max(df['A'])) # 2 print(np.abs(df['A'])) # 0 0 # 1 1 # 2 2 # Name: A, dtype: int64 print(df.agg([np.abs])) # A B # absolute absolute # 0 0 3 # 1 1 4 # 2 2 5 # print(df.agg([np.abs, max])) # ValueError: cannot combine transform and aggregation operations def my_func(x): return min(x) / max(x) print(df.agg([my_func, lambda x: min(x) / max(x)])) # A B # my_func 0.0 0.6 # <lambda> 0.0 0.6 print(df['A'].std()) # 1.0 print(df['A'].std(ddof=0)) # 0.816496580927726 print(df.agg(['std', lambda x: x.std(ddof=0)])) # A B # std 1.000000 1.000000 # <lambda> 0.816497 0.816497 print(df.agg('std', ddof=0)) # A 0.816497 # B 0.816497 # dtype: float64 print(df.agg(['std'], ddof=0)) # A B # std 1.0 1.0 df_str = df.assign(C=['X', 'Y', 'Z']) print(df_str) # A B C # 0 0 3 X # 1 1 4 Y # 2 2 5 Z # df_str['C'].mean() # TypeError: Could not convert XYZ to numeric print(df_str.agg(['sum', 'mean'])) # A B C # sum 3.0 12.0 XYZ # mean 1.0 4.0 NaN print(df_str.agg(['mean', 'std'])) # A B # mean 1.0 4.0 # std 1.0 1.0 print(df_str.agg(['sum', 'min', 'max'])) # A B C # sum 3 12 XYZ # min 0 3 X # max 2 5 Z print(df_str.select_dtypes(include='number').agg(['sum', 'mean'])) # A B # sum 3.0 12.0 # mean 1.0 4.0
[ "pandas.DataFrame", "numpy.sum", "numpy.amax", "numpy.abs" ]
[((134, 180), 'pandas.DataFrame', 'pd.DataFrame', (["{'A': [0, 1, 2], 'B': [3, 4, 5]}"], {}), "({'A': [0, 1, 2], 'B': [3, 4, 5]})\n", (146, 180), True, 'import pandas as pd\n'), ((2325, 2341), 'numpy.amax', 'np.amax', (["df['A']"], {}), "(df['A'])\n", (2332, 2341), True, 'import numpy as np\n'), ((2754, 2769), 'numpy.sum', 'np.sum', (["df['A']"], {}), "(df['A'])\n", (2760, 2769), True, 'import numpy as np\n'), ((2807, 2822), 'numpy.abs', 'np.abs', (["df['A']"], {}), "(df['A'])\n", (2813, 2822), True, 'import numpy as np\n')]
import os import re import pickle import numpy as np import pandas as pd from tqdm import tqdm # Assign labels used in eep conversion eep_params = dict( age = 'Age (yrs)', hydrogen_lum = 'L_H', lum = 'Log L', logg = 'Log g', log_teff = 'Log T', core_hydrogen_frac = 'X_core', # must be added core_helium_frac = 'Y_core', teff_scale = 20, # used in metric function lum_scale = 1, # used in metric function # `intervals` is a list containing the number of secondary Equivalent # Evolutionary Phases (EEPs) between each pair of primary EEPs. intervals = [200, # Between PreMS and ZAMS 50, # Between ZAMS and EAMS 100, # Between EAMS and IAMS 100, # IAMS-TAMS 150], # TAMS-RGBump ) def my_PreMS(track, eep_params, i0=None): ''' Dartmouth models do not have central temperature, which is necessary for the default PreMS calculation. For now, let the first point be the PreMS. ''' return 0 def my_TAMS(track, eep_params, i0, Xmin=1e-5): ''' By default, the TAMS is defined as the first point in the track where Xcen drops below 10^-12. But not all the DSEP tracks hit this value. To ensure the TAMS is placed correctly, here I'm using Xcen = 10^-5 as the critical value. ''' core_hydrogen_frac = eep_params['core_hydrogen_frac'] Xc_tr = track.loc[i0:, core_hydrogen_frac] below_crit = Xc_tr <= Xmin if not below_crit.any(): return -1 return below_crit.idxmax() def my_RGBump(track, eep_params, i0=None): ''' Modified from eep.get_RGBump to make luminosity logarithmic ''' lum = eep_params['lum'] log_teff = eep_params['log_teff'] N = len(track) lum_tr = track.loc[i0:, lum] logT_tr = track.loc[i0:, log_teff] lum_greater = (lum_tr > 1) if not lum_greater.any(): return -1 RGBump = lum_greater.idxmax() + 1 while logT_tr[RGBump] < logT_tr[RGBump-1] and RGBump < N-1: RGBump += 1 # Two cases: 1) We didn't reach an extremum, in which case RGBump gets # set as the final index of the track. In this case, return -1. # 2) We found the extremum, in which case RGBump gets set # as the index corresponding to the extremum. if RGBump >= N-1: return -1 return RGBump-1 def my_HRD(track, eep_params): ''' Adapted from eep._HRD_distance to fix lum logarithm ''' # Allow for scaling to make changes in Teff and L comparable Tscale = eep_params['teff_scale'] Lscale = eep_params['lum_scale'] log_teff = eep_params['log_teff'] lum = eep_params['lum'] logTeff = track[log_teff] logLum = track[lum] N = len(track) dist = np.zeros(N) for i in range(1, N): temp_dist = (((logTeff.iloc[i] - logTeff.iloc[i-1])*Tscale)**2 + ((logLum.iloc[i] - logLum.iloc[i-1])*Lscale)**2) dist[i] = dist[i-1] + np.sqrt(temp_dist) return dist def from_dartmouth(path): fname = path.split('/')[-1] file_str = fname.replace('.trk', '') mass = int(file_str[1:4])/100 met_str = file_str[7:10] met = int(met_str[1:])/10 if met_str[0] == 'm': met *= -1 alpha_str = file_str[13:] alpha = int(alpha_str[1:])/10 if alpha_str[0] == 'm': alpha *= -1 with open(path, 'r') as f: header = f.readline() col_line = f.readline() data_lines = f.readlines() columns = re.split(r'\s{2,}', col_line.strip('# \n')) data = np.genfromtxt(data_lines) # Build multi-indexed DataFrame, dropping unwanted columns multi_index = pd.MultiIndex.from_tuples( [(mass, met, step) for step in range(len(data))], names=['initial_mass', 'initial_met', 'step']) df = pd.DataFrame(data, index=multi_index, columns=columns) return df def all_from_dartmouth(raw_grids_path, progress=True): df_list = [] filelist = [f for f in os.listdir(raw_grids_path) if '.trk' in f] if progress: file_iter = tqdm(filelist) else: file_iter = filelist for fname in file_iter: fpath = os.path.join(raw_grids_path, fname) df_list.append(from_dartmouth(fpath)) dfs = pd.concat(df_list).sort_index() # Need X_core for EEP computation dfs['X_core'] = 1 - dfs['Y_core'] - dfs['Z_core'] return dfs def install( raw_grids_path, name=None, eep_params=eep_params, eep_functions={'prems': my_PreMS, 'tams': my_TAMS, 'rgbump': my_RGBump}, metric_function=my_HRD, ): ''' The main method to install grids that are output of the `rotevol` rotational evolution tracer code. Parameters ---------- raw_grids_path (str): the path to the folder containing the raw model grids. name (str, optional): the name of the grid you're installing. By default, the basename of the `raw_grids_path` will be used. eep_params (dict, optional): contains a mapping from your grid's specific column names to the names used by kiauhoku's default EEP functions. It also contains 'eep_intervals', the number of secondary EEPs between each consecutive pair of primary EEPs. By default, the params defined at the top of this script will be used, but users may specify their own. eep_functions (dict, optional): if the default EEP functions won't do the job, you can specify your own and supply them in a dictionary. EEP functions must have the call signature function(track, eep_params), where `track` is a single track. If none are supplied, the default functions will be used. metric_function (callable, None): the metric function is how the EEP interpolator spaces the secondary EEPs. By default, the path length along the evolution track on the H-R diagram (luminosity vs. Teff) is used, but you can specify your own if desired. metric_function must have the call signature function(track, eep_params), where `track` is a single track. If no function is supplied, defaults to dartmouth.my_HRD. Returns None ''' from .stargrid import from_pandas from .stargrid import grids_path as install_path if name is None: name = os.path.basename(raw_grids_path) # Create cache directories path = os.path.join(install_path, name) if not os.path.exists(path): os.makedirs(path) # Cache eep parameters with open(os.path.join(path, 'eep_params.pkl'), 'wb') as f: pickle.dump(eep_params, f) print('Reading and combining grid files') grids = all_from_dartmouth(raw_grids_path) grids = from_pandas(grids, name=name) # Save full grid to file full_save_path = os.path.join(path, 'full_grid.pqt') print(f'Saving to {full_save_path}') grids.to_parquet(full_save_path) print(f'Converting to eep-based tracks') eeps = grids.to_eep(eep_params, eep_functions, metric_function) # Save EEP grid to file eep_save_path = os.path.join(path, 'eep_grid.pqt') print(f'Saving to {eep_save_path}') eeps.to_parquet(eep_save_path) # Create and save interpolator to file interp = eeps.to_interpolator() interp_save_path = os.path.join(path, 'interpolator.pkl') print(f'Saving interpolator to {interp_save_path}') interp.to_pickle(path=interp_save_path) print(f'Model grid "{name}" installed.')
[ "os.path.exists", "os.listdir", "pickle.dump", "numpy.sqrt", "os.makedirs", "tqdm.tqdm", "os.path.join", "numpy.zeros", "pandas.concat", "os.path.basename", "pandas.DataFrame", "numpy.genfromtxt" ]
[((2750, 2761), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2758, 2761), True, 'import numpy as np\n'), ((3554, 3579), 'numpy.genfromtxt', 'np.genfromtxt', (['data_lines'], {}), '(data_lines)\n', (3567, 3579), True, 'import numpy as np\n'), ((3815, 3869), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'index': 'multi_index', 'columns': 'columns'}), '(data, index=multi_index, columns=columns)\n', (3827, 3869), True, 'import pandas as pd\n'), ((6396, 6428), 'os.path.join', 'os.path.join', (['install_path', 'name'], {}), '(install_path, name)\n', (6408, 6428), False, 'import os\n'), ((6802, 6837), 'os.path.join', 'os.path.join', (['path', '"""full_grid.pqt"""'], {}), "(path, 'full_grid.pqt')\n", (6814, 6837), False, 'import os\n'), ((7079, 7113), 'os.path.join', 'os.path.join', (['path', '"""eep_grid.pqt"""'], {}), "(path, 'eep_grid.pqt')\n", (7091, 7113), False, 'import os\n'), ((7292, 7330), 'os.path.join', 'os.path.join', (['path', '"""interpolator.pkl"""'], {}), "(path, 'interpolator.pkl')\n", (7304, 7330), False, 'import os\n'), ((4066, 4080), 'tqdm.tqdm', 'tqdm', (['filelist'], {}), '(filelist)\n', (4070, 4080), False, 'from tqdm import tqdm\n'), ((4165, 4200), 'os.path.join', 'os.path.join', (['raw_grids_path', 'fname'], {}), '(raw_grids_path, fname)\n', (4177, 4200), False, 'import os\n'), ((6320, 6352), 'os.path.basename', 'os.path.basename', (['raw_grids_path'], {}), '(raw_grids_path)\n', (6336, 6352), False, 'import os\n'), ((6440, 6460), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (6454, 6460), False, 'import os\n'), ((6470, 6487), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (6481, 6487), False, 'import os\n'), ((6588, 6614), 'pickle.dump', 'pickle.dump', (['eep_params', 'f'], {}), '(eep_params, f)\n', (6599, 6614), False, 'import pickle\n'), ((2960, 2978), 'numpy.sqrt', 'np.sqrt', (['temp_dist'], {}), '(temp_dist)\n', (2967, 2978), True, 'import numpy as np\n'), ((3985, 4011), 'os.listdir', 'os.listdir', (['raw_grids_path'], {}), '(raw_grids_path)\n', (3995, 4011), False, 'import os\n'), ((4258, 4276), 'pandas.concat', 'pd.concat', (['df_list'], {}), '(df_list)\n', (4267, 4276), True, 'import pandas as pd\n'), ((6530, 6566), 'os.path.join', 'os.path.join', (['path', '"""eep_params.pkl"""'], {}), "(path, 'eep_params.pkl')\n", (6542, 6566), False, 'import os\n')]
from precise.covariance.movingaverage import ema_scov from precise.covariance.matrixfunctions import grand_mean, grand_shrink from sklearn.covariance._shrunk_covariance import ledoit_wolf_shrinkage import numpy as np # Experimental estimator inspired by Ledoit-Wolf # Keeps a buffer of last n_buffer observations # Tracks quantities akin to a^2, d^2 in LW def lw_ema_scov(s:dict, x=None, r=0.025)->dict: if s.get('s_c') is None: if isinstance(x,int): return _lw_ema_scov_init(n_dim=x, r=r) else: s = _lw_ema_scov_init(n_dim=len(x), r=r) if x is not None: s = _lw_ema_scov_update(s=s, x=x, r=r) return s def _lw_ema_scov_init(n_dim, r): sc = ema_scov({}, n_dim, r=r) return {'s_c':sc, 'bn_bar':None, 'a2':0, 'mn':0, 'n_new':0, 'buffer':[]} def _lw_ema_scov_update(s, x, r): """ Attempts to track quantities similar to those used to estimate LD shrinkage """ x = np.asarray(x) s['s_c'] = ema_scov(s=s['s_c'], x=x, r=r) s['buffer'].append(x) if len(s['buffer'])>s['s_c']['n_emp']: # Update running estimate of the LD shrinkage parameter s['n_new'] = s['n_new']+1 xl = s['buffer'].pop(0) xc = np.atleast_2d(xl-s['s_c']['mean']) # <--- Do we need this? scov = s['s_c']['scov'] # Compute d^2 mn = grand_mean(scov) s['mn'] = mn n_dim = np.shape(scov)[0] s['dn'] = np.linalg.norm(scov - mn * np.eye(n_dim))**2 # Update b^2 xc2 = xc xl2 = np.dot(xc2.T,xc2) - scov if s.get('bn_bar') is None: s['bn_bar'] = s['lmbd']*s['dn'] s['lmbd_lw'] = 1.0 * s['lmbd'] r_shrink = r/2 # <--- Heuristic bk = np.linalg.norm( xl2 ) s['bn_bar'] = (1-r_shrink)*s['bn_bar'] + r_shrink*bk # b^2 ratio = bk/s['dn'] # Imply new shrinkage bn = min( s['bn_bar'], s['dn'] ) lmbd = bn/s['dn'] s['lmbd'] = lmbd if 2< s['s_c']['n_samples']<2*s['s_c']['n_emp']: # Override with traditional Ledoit-Shrinkage X = np.asarray(s['buffer']) s['lmbd'] = ledoit_wolf_shrinkage(X=X) if s['s_c']['n_samples']>2: scov = s['s_c']['scov'] s['scov'] = grand_shrink(a=scov, lmbd=s['lmbd'], copy=True) return s
[ "numpy.atleast_2d", "sklearn.covariance._shrunk_covariance.ledoit_wolf_shrinkage", "precise.covariance.movingaverage.ema_scov", "numpy.eye", "precise.covariance.matrixfunctions.grand_mean", "numpy.asarray", "numpy.dot", "precise.covariance.matrixfunctions.grand_shrink", "numpy.linalg.norm", "numpy.shape" ]
[((711, 735), 'precise.covariance.movingaverage.ema_scov', 'ema_scov', (['{}', 'n_dim'], {'r': 'r'}), '({}, n_dim, r=r)\n', (719, 735), False, 'from precise.covariance.movingaverage import ema_scov\n'), ((1017, 1030), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (1027, 1030), True, 'import numpy as np\n'), ((1047, 1077), 'precise.covariance.movingaverage.ema_scov', 'ema_scov', ([], {'s': "s['s_c']", 'x': 'x', 'r': 'r'}), "(s=s['s_c'], x=x, r=r)\n", (1055, 1077), False, 'from precise.covariance.movingaverage import ema_scov\n'), ((1290, 1326), 'numpy.atleast_2d', 'np.atleast_2d', (["(xl - s['s_c']['mean'])"], {}), "(xl - s['s_c']['mean'])\n", (1303, 1326), True, 'import numpy as np\n'), ((1418, 1434), 'precise.covariance.matrixfunctions.grand_mean', 'grand_mean', (['scov'], {}), '(scov)\n', (1428, 1434), False, 'from precise.covariance.matrixfunctions import grand_mean, grand_shrink\n'), ((1807, 1826), 'numpy.linalg.norm', 'np.linalg.norm', (['xl2'], {}), '(xl2)\n', (1821, 1826), True, 'import numpy as np\n'), ((2167, 2190), 'numpy.asarray', 'np.asarray', (["s['buffer']"], {}), "(s['buffer'])\n", (2177, 2190), True, 'import numpy as np\n'), ((2211, 2237), 'sklearn.covariance._shrunk_covariance.ledoit_wolf_shrinkage', 'ledoit_wolf_shrinkage', ([], {'X': 'X'}), '(X=X)\n', (2232, 2237), False, 'from sklearn.covariance._shrunk_covariance import ledoit_wolf_shrinkage\n'), ((2322, 2369), 'precise.covariance.matrixfunctions.grand_shrink', 'grand_shrink', ([], {'a': 'scov', 'lmbd': "s['lmbd']", 'copy': '(True)'}), "(a=scov, lmbd=s['lmbd'], copy=True)\n", (2334, 2369), False, 'from precise.covariance.matrixfunctions import grand_mean, grand_shrink\n'), ((1472, 1486), 'numpy.shape', 'np.shape', (['scov'], {}), '(scov)\n', (1480, 1486), True, 'import numpy as np\n'), ((1606, 1624), 'numpy.dot', 'np.dot', (['xc2.T', 'xc2'], {}), '(xc2.T, xc2)\n', (1612, 1624), True, 'import numpy as np\n'), ((1535, 1548), 'numpy.eye', 'np.eye', (['n_dim'], {}), '(n_dim)\n', (1541, 1548), True, 'import numpy as np\n')]
# Copyright (c) 2015-2019 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. import numpy as np from astropy.io import fits from ..op import Operator from ..timing import function_timer from .tod_math import calibrate from ..utils import Logger def write_calibration_file(filename, gain): """Write gains to a FITS file in the standard TOAST format Args: filename (string): output filename, overwritten by default gain (dict): Dictionary, key "TIME" has the common timestamps, other keys are channel names their values are the gains """ log = Logger.get() detectors = list(gain.keys()) detectors.remove("TIME") hdus = [ fits.PrimaryHDU(), fits.BinTableHDU.from_columns( [ fits.Column( name="DETECTORS", array=detectors, unit="", format="{0}A".format(max([len(x) for x in detectors])), ) ] ), ] hdus[1].header["EXTNAME"] = "DETECTORS" cur_hdu = fits.BinTableHDU.from_columns( [fits.Column(name="TIME", array=gain["TIME"], unit="s", format="1D")] ) cur_hdu.header["EXTNAME"] = "TIME" hdus.append(cur_hdu) gain_table = np.zeros( (len(detectors), len(gain["TIME"])), dtype=gain[detectors[0]].dtype ) for i_det, det in enumerate(detectors): gain_table[i_det, :] = gain[det] gainhdu = fits.ImageHDU(gain_table) gainhdu.header["EXTNAME"] = "GAINS" hdus.append(gainhdu) fits.HDUList(hdus).writeto(filename, overwrite=True) log.info("Gains written to file {}".format(filename)) return class OpApplyGain(Operator): """Operator which applies gains to timelines. Args: gain (dict): Dictionary, key "TIME" has the common timestamps, other keys are channel names their values are the gains name (str): Name of the output signal cache object will be <name_in>_<detector>. If the object exists, it is used as input. Otherwise signal is read using the tod read method. """ def __init__(self, gain, name=None): self._gain = gain self._name = name # Call the parent class constructor super().__init__() @function_timer def exec(self, data): """Apply the gains. Args: data (toast.Data): The distributed data. """ for obs in data.obs: tod = obs["tod"] for det in tod.local_dets: # Cache the output signal ref = tod.local_signal(det, self._name) obs_times = tod.read_times() calibrate( obs_times, ref, self._gain["TIME"], self._gain[det], order=0, inplace=True, ) assert np.isnan(ref).sum() == 0, "The signal timestream includes NaN" del ref return
[ "astropy.io.fits.HDUList", "astropy.io.fits.PrimaryHDU", "astropy.io.fits.ImageHDU", "astropy.io.fits.Column", "numpy.isnan" ]
[((1589, 1614), 'astropy.io.fits.ImageHDU', 'fits.ImageHDU', (['gain_table'], {}), '(gain_table)\n', (1602, 1614), False, 'from astropy.io import fits\n'), ((811, 828), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', ([], {}), '()\n', (826, 828), False, 'from astropy.io import fits\n'), ((1240, 1307), 'astropy.io.fits.Column', 'fits.Column', ([], {'name': '"""TIME"""', 'array': "gain['TIME']", 'unit': '"""s"""', 'format': '"""1D"""'}), "(name='TIME', array=gain['TIME'], unit='s', format='1D')\n", (1251, 1307), False, 'from astropy.io import fits\n'), ((1685, 1703), 'astropy.io.fits.HDUList', 'fits.HDUList', (['hdus'], {}), '(hdus)\n', (1697, 1703), False, 'from astropy.io import fits\n'), ((3090, 3103), 'numpy.isnan', 'np.isnan', (['ref'], {}), '(ref)\n', (3098, 3103), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 30 15:28:09 2018 @author: dataquanty """ import numpy as np from math import sqrt, pi, acos,cos from matplotlib import pyplot as plt from scipy.misc import imsave from bisect import bisect_left h , w = 1000, 1000 img = np.ones((h,w)) center = (500,500) r = [20,80,200,300,400,500,600] r = np.exp(range(1,8)).astype(int) lagval = [0,pi,0,pi,0,pi,0] maxd = 810 r = range(10,maxd,20) lagval = [0,pi]*int(len(r)/2) lagval = np.random.rand(len(r))*pi lagval = [-pi/4,pi/3]*int(len(r)/2) lagval = [0,0.05]*int(len(r)/2) def dist(a,b): return sqrt((a[0]-b[0])**2+(a[1]-b[1])**2) for i in range(h): for j in range(w): if (i,j) == center: img[i][j]=0 else: d = dist((i,j),center) k = bisect_left(list(r),d) #dist((i,j),center)<= r1: val = (j-center[1])/d img[i][j] = cos(acos(val)-lagval[k]) """ angle = acos((j-center[1])/dist((i,j),center)) if i > center[0]: angle = 2*pi - angle val = ((angle - lagrad)%(2*pi))/2*pi img[i][j] = val """ #imsave('figLag_pi_s2.png',img) plt.figure(figsize=(10,10)) plt.imshow(img,cmap='gray') #interpolation='nearest' plt.show()
[ "matplotlib.pyplot.imshow", "numpy.ones", "math.acos", "math.sqrt", "matplotlib.pyplot.figure", "matplotlib.pyplot.show" ]
[((293, 308), 'numpy.ones', 'np.ones', (['(h, w)'], {}), '((h, w))\n', (300, 308), True, 'import numpy as np\n'), ((1265, 1293), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (1275, 1293), True, 'from matplotlib import pyplot as plt\n'), ((1300, 1328), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'cmap': '"""gray"""'}), "(img, cmap='gray')\n", (1310, 1328), True, 'from matplotlib import pyplot as plt\n'), ((1354, 1364), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1362, 1364), True, 'from matplotlib import pyplot as plt\n'), ((618, 663), 'math.sqrt', 'sqrt', (['((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)'], {}), '((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)\n', (622, 663), False, 'from math import sqrt, pi, acos, cos\n'), ((975, 984), 'math.acos', 'acos', (['val'], {}), '(val)\n', (979, 984), False, 'from math import sqrt, pi, acos, cos\n')]
#!/usr/bin/env ipython import numpy as np #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ class gral(): def __init__(self): self.name = '' sh, mc = gral(), gral() cr = gral() cr.sh, cr.mc = gral(), gral() vlo, vhi = 550.0, 3000.0 #550., 3000. #100.0, 450.0 #550.0, 3000.0 dir_inp_sh = '../../../sheaths/ascii/MCflag2/wShiftCorr/_test_Vmc_' dir_inp_mc = '../../../mcs/ascii/MCflag2/wShiftCorr/_test_Vmc_' fname_inp_part = 'MCflag2_2before.4after_fgap0.2_Wang90.0_vlo.%4.1f.vhi.%4.1f' % (vlo, vhi) fname_sh = dir_inp_sh + '/%s_V.txt' % fname_inp_part fname_mc = dir_inp_mc + '/%s_V.txt' % fname_inp_part sh.data = np.loadtxt(fname_sh).T mc.data = np.loadtxt(fname_mc).T sh.t, sh.avr = sh.data[0], sh.data[2] mc.t, mc.avr = mc.data[0], mc.data[2] #++++++++++++++++++++++++++++++++++++++++++++++++++++ fname_sh = dir_inp_sh + '/%s_CRs.txt' % fname_inp_part fname_mc = dir_inp_mc + '/%s_CRs.txt' % fname_inp_part cr.sh.data = np.loadtxt(fname_sh).T cr.mc.data = np.loadtxt(fname_mc).T cr.sh.t, cr.sh.avr = cr.sh.data[0], cr.sh.data[2] cr.mc.t, cr.mc.avr = cr.mc.data[0], cr.mc.data[2]
[ "numpy.loadtxt" ]
[((687, 707), 'numpy.loadtxt', 'np.loadtxt', (['fname_sh'], {}), '(fname_sh)\n', (697, 707), True, 'import numpy as np\n'), ((720, 740), 'numpy.loadtxt', 'np.loadtxt', (['fname_mc'], {}), '(fname_mc)\n', (730, 740), True, 'import numpy as np\n'), ((1005, 1025), 'numpy.loadtxt', 'np.loadtxt', (['fname_sh'], {}), '(fname_sh)\n', (1015, 1025), True, 'import numpy as np\n'), ((1041, 1061), 'numpy.loadtxt', 'np.loadtxt', (['fname_mc'], {}), '(fname_mc)\n', (1051, 1061), True, 'import numpy as np\n')]
""" DUNE CVN generator module. """ __version__ = '1.0' __author__ = '<NAME>, <NAME>' __email__ = "<EMAIL>, <EMAIL>" import numpy as np import zlib class DataGenerator(object): ''' Generate data for tf.keras. ''' def __init__(self, cells=500, planes=500, views=3, batch_size=32, images_path = 'dataset', shuffle=True, test_values=[]): ''' Constructor. Args: cells: image cells. planes: image planes. views: number of views. batch_size: batch size. images_path: path of input events. shuffle: shuffle the events. test_values: array to be filled with test values. ''' self.cells = cells self.planes = planes self.views = views self.batch_size = batch_size self.images_path = images_path self.shuffle = shuffle self.test_values = test_values def generate(self, labels, list_IDs): ''' Generates batches of samples. Args: labels: event labels. list_IDs: event IDs within partition. Yields: a batch of events. ''' # infinite loop while 1: # generate random order of exploration of dataset (to make each epoch different) indexes = self.get_exploration_order(list_IDs) # generate batches imax = int(len(indexes)/self.batch_size) # number of batches for i in range(imax): # find list of IDs for one batch list_IDs_temp = [list_IDs[k] for k in indexes[i*self.batch_size:(i+1)*self.batch_size]] # generate data X = self.data_generation(labels, list_IDs_temp) yield X def get_exploration_order(self, list_IDs): ''' Generates order of exploration. Args: list_IDs: event IDs within partition. Returns: random order of exploration. ''' # find exploration order indexes = np.arange(len(list_IDs)) if self.shuffle == True: np.random.shuffle(indexes) return indexes def data_generation(self, labels, list_IDs_temp): ''' Generates data of batch_size sample. Args: labels: event labels. list_IDs: event IDs within partition. Returns: a batch of events. ''' X = [None]*self.views for view in range(self.views): X[view] = np.empty((self.batch_size, self.planes, self.cells, 1), dtype='float32') # generate data for i, ID in enumerate(list_IDs_temp): # decompress images into pixel numpy array with open('dataset/event' + ID + '.gz', 'rb') as image_file: pixels = np.fromstring(zlib.decompress(image_file.read()), dtype=np.uint8, sep='') pixels = pixels.reshape(self.views, self.planes, self.cells) # store volume for view in range(self.views): X[view][i, :, :, :] = pixels[view, :, :].reshape(self.planes, self.cells, 1) # get y label y_value = labels[ID] # store actual y label self.test_values.append(y_value) return X
[ "numpy.empty", "numpy.random.shuffle" ]
[((2123, 2149), 'numpy.random.shuffle', 'np.random.shuffle', (['indexes'], {}), '(indexes)\n', (2140, 2149), True, 'import numpy as np\n'), ((2517, 2589), 'numpy.empty', 'np.empty', (['(self.batch_size, self.planes, self.cells, 1)'], {'dtype': '"""float32"""'}), "((self.batch_size, self.planes, self.cells, 1), dtype='float32')\n", (2525, 2589), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf def show_batch(ds: tf.data.Dataset, classes: list, rescale: bool = False, size: tuple = (10, 10), title: str = None): """ Function to show a batch of images including labels from tf.data object Args: ds: a (batched) tf.data.Dataset classes: a list of all classes (in order of one-hot-encoding) rescale: boolen whether to multiple image values by 255 size: tuple giving plot size title: plot title Returns: matplotlib.pyplot """ plt.figure(figsize=size) # Take on batch from dataset and iterate over image-label-combination for image, label in ds.take(1): image_array = image.numpy() # Undo scaling in preprocess_input or plotting image_array += 1.0 image_array /= 2.0 label_array = label.numpy() batch_size = image_array.shape[0] for idx in range(batch_size): label = classes[np.argmax(label_array[idx])] ax = plt.subplot(np.ceil(batch_size / 4), 4, idx + 1) if rescale: plt.imshow(image_array[idx] * 255) else: plt.imshow(image_array[idx]) plt.title(label + ' ' + str(image_array[idx].shape), fontsize=10) plt.axis('off') if title is not None: plt.suptitle(title) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.show() def create_target_list(files: list, target: str = 'make') -> list: """ Create a list of unique target classes from file names Args: files: a list of file names target: either 'model' or 'make' Returns: list of classes """ if target not in ['make', 'model']: raise ValueError('target must be either "make" or "model"') if target == 'make': classes = list(set([file.split('_')[0] for file in files])) if target == 'model': classes = list(set([file.split('_')[0] + '_' + file.split('_')[1] for file in files])) return classes
[ "matplotlib.pyplot.imshow", "numpy.ceil", "numpy.argmax", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.axis", "matplotlib.pyplot.suptitle", "matplotlib.pyplot.show" ]
[((640, 664), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'size'}), '(figsize=size)\n', (650, 664), True, 'import matplotlib.pyplot as plt\n'), ((1464, 1505), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'rect': '[0, 0.03, 1, 0.95]'}), '(rect=[0, 0.03, 1, 0.95])\n', (1480, 1505), True, 'import matplotlib.pyplot as plt\n'), ((1510, 1520), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1518, 1520), True, 'import matplotlib.pyplot as plt\n'), ((1439, 1458), 'matplotlib.pyplot.suptitle', 'plt.suptitle', (['title'], {}), '(title)\n', (1451, 1458), True, 'import matplotlib.pyplot as plt\n'), ((1388, 1403), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1396, 1403), True, 'import matplotlib.pyplot as plt\n'), ((1065, 1092), 'numpy.argmax', 'np.argmax', (['label_array[idx]'], {}), '(label_array[idx])\n', (1074, 1092), True, 'import numpy as np\n'), ((1123, 1146), 'numpy.ceil', 'np.ceil', (['(batch_size / 4)'], {}), '(batch_size / 4)\n', (1130, 1146), True, 'import numpy as np\n'), ((1200, 1234), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(image_array[idx] * 255)'], {}), '(image_array[idx] * 255)\n', (1210, 1234), True, 'import matplotlib.pyplot as plt\n'), ((1269, 1297), 'matplotlib.pyplot.imshow', 'plt.imshow', (['image_array[idx]'], {}), '(image_array[idx])\n', (1279, 1297), True, 'import matplotlib.pyplot as plt\n')]
import matlab.engine import matlab import numpy as np import PIL import matplotlib.pyplot as plt import sys print(sys.version_info[0:2]) if sys.version_info[0:2] != (3, 8) and sys.version_info[0:2] != (3, 7) and sys.version_info[0:2] != (3, 6): raise Exception('Requires python 3.6, 3.7, or 3.8') eng = matlab.engine.start_matlab() def blind_deconvolution(image, kernel_size=3, num_iterations=30, weighted=False, edge_weight=.08): # If URL to image if type(image) == type(str()): image = PIL.Image.open(image) image = PIL.ImageOps.grayscale(image) # If PIL image object elif type(image) == PIL.Image: image = np.asarray(image) image = PIL.ImageOps.grayscale(image) # If its already in numpy array elif type(image) == np.ndarray: image = PIL.Image.fromarray(image) image = PIL.ImageOps.grayscale(image) # Else raise exception else: raise Exception('Input was of type ' + str(type(image)) + '. Must be a URL to an image, a PIL Image object, or an np array') # If weighted if weighted: weight = eng.edge(image,"sobel",edge_weight) se = eng.strel("disk",2) weight = 1-matlab.double(eng.imdilate(weight,se)) # Starting kernel start_kernel_np = np.ones((kernel_size,kernel_size)) start_kernel = [] image_np = np.asarray(image) image = [] # Convert to matlab types for i in range(len(start_kernel_np)): start_kernel.append(matlab.double(start_kernel_np[i].tolist())) start_kernel = matlab.double(start_kernel) for i in range(len(image_np)): image.append(matlab.double(image_np[i].tolist())) image = matlab.double(image) # Call Matlab Blind deconvolution if weighted: deconvolved = eng.deconvblind(image, start_kernel, num_iterations, weight) else: deconvolved = eng.deconvblind(image, start_kernel) deconvolved = np.asarray(deconvolved).squeeze() return deconvolved
[ "PIL.Image.fromarray", "PIL.Image.open", "matlab.engine.start_matlab", "numpy.ones", "numpy.asarray", "PIL.ImageOps.grayscale", "matlab.double" ]
[((310, 338), 'matlab.engine.start_matlab', 'matlab.engine.start_matlab', ([], {}), '()\n', (336, 338), False, 'import matlab\n'), ((1282, 1317), 'numpy.ones', 'np.ones', (['(kernel_size, kernel_size)'], {}), '((kernel_size, kernel_size))\n', (1289, 1317), True, 'import numpy as np\n'), ((1354, 1371), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (1364, 1371), True, 'import numpy as np\n'), ((1554, 1581), 'matlab.double', 'matlab.double', (['start_kernel'], {}), '(start_kernel)\n', (1567, 1581), False, 'import matlab\n'), ((1697, 1717), 'matlab.double', 'matlab.double', (['image'], {}), '(image)\n', (1710, 1717), False, 'import matlab\n'), ((512, 533), 'PIL.Image.open', 'PIL.Image.open', (['image'], {}), '(image)\n', (526, 533), False, 'import PIL\n'), ((550, 579), 'PIL.ImageOps.grayscale', 'PIL.ImageOps.grayscale', (['image'], {}), '(image)\n', (572, 579), False, 'import PIL\n'), ((657, 674), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (667, 674), True, 'import numpy as np\n'), ((691, 720), 'PIL.ImageOps.grayscale', 'PIL.ImageOps.grayscale', (['image'], {}), '(image)\n', (713, 720), False, 'import PIL\n'), ((1944, 1967), 'numpy.asarray', 'np.asarray', (['deconvolved'], {}), '(deconvolved)\n', (1954, 1967), True, 'import numpy as np\n'), ((809, 835), 'PIL.Image.fromarray', 'PIL.Image.fromarray', (['image'], {}), '(image)\n', (828, 835), False, 'import PIL\n'), ((852, 881), 'PIL.ImageOps.grayscale', 'PIL.ImageOps.grayscale', (['image'], {}), '(image)\n', (874, 881), False, 'import PIL\n')]
from skimage.util import img_as_float from skimage import io, filters # from skimage.viewer import ImageViewer import numpy as np def split_image_into_channels(image): """Look at each image separately""" red_channel = image[:, :, 0] green_channel = image[:, :, 1] blue_channel = image[:, :, 2] return red_channel, green_channel, blue_channel def merge_channels(red, green, blue): """Merge channels back into an image""" return np.stack([red, green, blue], axis=2) def sharpen(image, a, b): """Sharpening an image: Blur and then subtract from original""" blurred = filters.gaussian(image, sigma=10, multichannel=True) sharper = np.clip(image * a - blurred * b, 0, 1.0) return sharper def channel_adjust(channel, values): # preserve the original size, so we can reconstruct at the end orig_size = channel.shape # flatten the image into a single array flat_channel = channel.flatten() # this magical numpy function takes the values in flat_channel # and maps it from its range in [0, 1] to its new squeezed and # stretched range adjusted = np.interp(flat_channel, np.linspace(0, 1, len(values)), values) # put back into the original image shape return adjusted.reshape(orig_size) def gotham( original_image, r_boost_upper=1, b_adjusted_upper=1, blurriness=1.3, subtraction=0.3, amount_bluer_blacks=0.03, ): original_image = img_as_float(original_image) r, g, b = split_image_into_channels(original_image) # np.linspace second argument r_boost_lower = channel_adjust(r, np.linspace(0, r_boost_upper)) # amount of bluer_blacks bluer_blacks = merge_channels( r_boost_lower, g, np.clip(b + amount_bluer_blacks, 0, 1.0) ) # amount blurriness, and subtraction sharper = sharpen(bluer_blacks, blurriness, subtraction) r, g, b = split_image_into_channels(sharper) # np.linspace second argument b_adjusted = channel_adjust(b, np.linspace(0, b_adjusted_upper)) return merge_channels(r, g, b_adjusted) if __name__ == "__main__": original_image = io.imread("data/input/sample.jpg") output = gotham(original_image, b_adjusted_upper=3) io.imsave("data/output/image-experiment/gotham.jpg", output)
[ "numpy.clip", "skimage.util.img_as_float", "numpy.stack", "skimage.io.imread", "numpy.linspace", "skimage.io.imsave", "skimage.filters.gaussian" ]
[((460, 496), 'numpy.stack', 'np.stack', (['[red, green, blue]'], {'axis': '(2)'}), '([red, green, blue], axis=2)\n', (468, 496), True, 'import numpy as np\n'), ((607, 659), 'skimage.filters.gaussian', 'filters.gaussian', (['image'], {'sigma': '(10)', 'multichannel': '(True)'}), '(image, sigma=10, multichannel=True)\n', (623, 659), False, 'from skimage import io, filters\n'), ((674, 714), 'numpy.clip', 'np.clip', (['(image * a - blurred * b)', '(0)', '(1.0)'], {}), '(image * a - blurred * b, 0, 1.0)\n', (681, 714), True, 'import numpy as np\n'), ((1446, 1474), 'skimage.util.img_as_float', 'img_as_float', (['original_image'], {}), '(original_image)\n', (1458, 1474), False, 'from skimage.util import img_as_float\n'), ((2124, 2158), 'skimage.io.imread', 'io.imread', (['"""data/input/sample.jpg"""'], {}), "('data/input/sample.jpg')\n", (2133, 2158), False, 'from skimage import io, filters\n'), ((2219, 2279), 'skimage.io.imsave', 'io.imsave', (['"""data/output/image-experiment/gotham.jpg"""', 'output'], {}), "('data/output/image-experiment/gotham.jpg', output)\n", (2228, 2279), False, 'from skimage import io, filters\n'), ((1605, 1634), 'numpy.linspace', 'np.linspace', (['(0)', 'r_boost_upper'], {}), '(0, r_boost_upper)\n', (1616, 1634), True, 'import numpy as np\n'), ((1727, 1767), 'numpy.clip', 'np.clip', (['(b + amount_bluer_blacks)', '(0)', '(1.0)'], {}), '(b + amount_bluer_blacks, 0, 1.0)\n', (1734, 1767), True, 'import numpy as np\n'), ((1996, 2028), 'numpy.linspace', 'np.linspace', (['(0)', 'b_adjusted_upper'], {}), '(0, b_adjusted_upper)\n', (2007, 2028), True, 'import numpy as np\n')]
import argparse import logging from pathlib import Path import dask import h5py import joblib import numpy as np import pandas as pd from dask.diagnostics import ProgressBar from tqdm import tqdm from dsconcept.get_metrics import ( get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets, ) logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) LOG.setLevel(logging.INFO) def main( experiment_name, synth_strat, in_cat_preds, out_store, synth_batch_size, t, out_synth_scores, limit=None, con_limit=None, ): test_inds = np.load(f"data/interim/{experiment_name}/test_inds.npy") feature_matrix = joblib.load(f"data/interim/{experiment_name}/feature_matrix.jbl") in_cat_models = Path(f"models/{experiment_name}/categories/models/") in_kwd_models = Path(f"models/{experiment_name}/keywords/models/") cat_preds = np.load(in_cat_preds) # based on experiment or explicit path? cat_clfs = load_category_models(in_cat_models) cd = load_concept_models(in_kwd_models) clf = HierarchicalClassifier(cat_clfs, cd) if limit is not None: LOG.info(f"Limiting to {limit} test records.") feature_matrix_test = feature_matrix.tocsc()[test_inds[0:limit], :] cat_preds = cat_preds[0:limit, :] # TODO: How does this affect indices? else: feature_matrix_test = feature_matrix.tocsc()[test_inds, :] LOG.info(f'Synthesizing predictions with strategy "{synth_strat}".') all_cat_inds = get_cat_inds(clf.categories, cat_preds, t=t) if con_limit is not None: conwc = clf.concepts_with_classifiers[0:con_limit] else: conwc = clf.concepts_with_classifiers shape = (feature_matrix_test.shape[0], len(conwc)) with tqdm(total=shape[0]) as pbar: get_synth_preds( out_store, shape, all_cat_inds, clf.categories, synth_batch_size, only_cat=False, synth_strat=synth_strat, con_limit=con_limit, limit=limit, pbar=pbar, ) LOG.info("Obtaining metrics.") with h5py.File(out_store, "r") as f0: if limit is not None: target_values = f0["ground_truth"][0:limit, :] else: target_values = f0["ground_truth"].value with h5py.File(out_store, "r") as f0: synth_preds = f0["synthesis"].value jobs = [] mets_pbar = tqdm( range(len(conwc)), total=len(conwc), ) for i in mets_pbar: job = dask.delayed(get_mets)( i, synth_preds, target_values, conwc, mets_pbar ) jobs.append(job) records = dask.compute(jobs) new_recs_df = pd.DataFrame(records[0]) LOG.info(f"Saving results to {out_synth_scores}.") new_recs_df.to_csv(out_synth_scores) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Say hello") parser.add_argument("--experiment_name", help="input txt file") parser.add_argument("--synth_strat", help="input txt file") parser.add_argument("--in_cat_preds", help="input txt file") parser.add_argument("--store", help="input txt file") parser.add_argument("--synth_batch_size", help="input txt file", type=int) parser.add_argument("--threshold", help="input txt file", type=float) parser.add_argument("--out_synth_scores", help="input txt file") parser.add_argument( "--limit", help="size for sample to test synthesis", type=int, default=None ) parser.add_argument( "--con_limit", help="size for concept sample", type=int, default=None ) args = parser.parse_args() main( args.experiment_name, args.synth_strat, args.in_cat_preds, args.store, args.synth_batch_size, args.threshold, args.out_synth_scores, args.limit, args.con_limit, )
[ "logging.basicConfig", "logging.getLogger", "dsconcept.get_metrics.get_synth_preds", "dask.delayed", "dask.compute", "pathlib.Path", "argparse.ArgumentParser", "dsconcept.get_metrics.get_cat_inds", "dsconcept.get_metrics.load_concept_models", "tqdm.tqdm", "h5py.File", "dsconcept.get_metrics.load_category_models", "joblib.load", "pandas.DataFrame", "dsconcept.get_metrics.HierarchicalClassifier", "numpy.load" ]
[((369, 408), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (388, 408), False, 'import logging\n'), ((415, 442), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (432, 442), False, 'import logging\n'), ((659, 715), 'numpy.load', 'np.load', (['f"""data/interim/{experiment_name}/test_inds.npy"""'], {}), "(f'data/interim/{experiment_name}/test_inds.npy')\n", (666, 715), True, 'import numpy as np\n'), ((737, 802), 'joblib.load', 'joblib.load', (['f"""data/interim/{experiment_name}/feature_matrix.jbl"""'], {}), "(f'data/interim/{experiment_name}/feature_matrix.jbl')\n", (748, 802), False, 'import joblib\n'), ((823, 875), 'pathlib.Path', 'Path', (['f"""models/{experiment_name}/categories/models/"""'], {}), "(f'models/{experiment_name}/categories/models/')\n", (827, 875), False, 'from pathlib import Path\n'), ((896, 946), 'pathlib.Path', 'Path', (['f"""models/{experiment_name}/keywords/models/"""'], {}), "(f'models/{experiment_name}/keywords/models/')\n", (900, 946), False, 'from pathlib import Path\n'), ((963, 984), 'numpy.load', 'np.load', (['in_cat_preds'], {}), '(in_cat_preds)\n', (970, 984), True, 'import numpy as np\n'), ((1041, 1076), 'dsconcept.get_metrics.load_category_models', 'load_category_models', (['in_cat_models'], {}), '(in_cat_models)\n', (1061, 1076), False, 'from dsconcept.get_metrics import get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets\n'), ((1086, 1120), 'dsconcept.get_metrics.load_concept_models', 'load_concept_models', (['in_kwd_models'], {}), '(in_kwd_models)\n', (1105, 1120), False, 'from dsconcept.get_metrics import get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets\n'), ((1131, 1167), 'dsconcept.get_metrics.HierarchicalClassifier', 'HierarchicalClassifier', (['cat_clfs', 'cd'], {}), '(cat_clfs, cd)\n', (1153, 1167), False, 'from dsconcept.get_metrics import get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets\n'), ((1584, 1628), 'dsconcept.get_metrics.get_cat_inds', 'get_cat_inds', (['clf.categories', 'cat_preds'], {'t': 't'}), '(clf.categories, cat_preds, t=t)\n', (1596, 1628), False, 'from dsconcept.get_metrics import get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets\n'), ((2762, 2780), 'dask.compute', 'dask.compute', (['jobs'], {}), '(jobs)\n', (2774, 2780), False, 'import dask\n'), ((2799, 2823), 'pandas.DataFrame', 'pd.DataFrame', (['records[0]'], {}), '(records[0])\n', (2811, 2823), True, 'import pandas as pd\n'), ((2962, 3010), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Say hello"""'}), "(description='Say hello')\n", (2985, 3010), False, 'import argparse\n'), ((1838, 1858), 'tqdm.tqdm', 'tqdm', ([], {'total': 'shape[0]'}), '(total=shape[0])\n', (1842, 1858), False, 'from tqdm import tqdm\n'), ((1876, 2052), 'dsconcept.get_metrics.get_synth_preds', 'get_synth_preds', (['out_store', 'shape', 'all_cat_inds', 'clf.categories', 'synth_batch_size'], {'only_cat': '(False)', 'synth_strat': 'synth_strat', 'con_limit': 'con_limit', 'limit': 'limit', 'pbar': 'pbar'}), '(out_store, shape, all_cat_inds, clf.categories,\n synth_batch_size, only_cat=False, synth_strat=synth_strat, con_limit=\n con_limit, limit=limit, pbar=pbar)\n', (1891, 2052), False, 'from dsconcept.get_metrics import get_cat_inds, get_synth_preds, load_category_models, load_concept_models, HierarchicalClassifier, get_mets\n'), ((2220, 2245), 'h5py.File', 'h5py.File', (['out_store', '"""r"""'], {}), "(out_store, 'r')\n", (2229, 2245), False, 'import h5py\n'), ((2418, 2443), 'h5py.File', 'h5py.File', (['out_store', '"""r"""'], {}), "(out_store, 'r')\n", (2427, 2443), False, 'import h5py\n'), ((2629, 2651), 'dask.delayed', 'dask.delayed', (['get_mets'], {}), '(get_mets)\n', (2641, 2651), False, 'import dask\n')]
# Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np import pytest from pyrado.spaces.box import BoxSpace from pyrado.environment_wrappers.action_delay import ActDelayWrapper from tests.environment_wrappers.mock_env import MockEnv @pytest.mark.wrapper def test_no_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=0) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([4, 1])) assert mockenv.last_act == [4, 1] wenv.step(np.array([7, 5])) assert mockenv.last_act == [7, 5] @pytest.mark.wrapper def test_act_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=2) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 1] wenv.step(np.array([2, 3])) assert mockenv.last_act == [2, 4] @pytest.mark.wrapper def test_reset(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([4, 4])) assert mockenv.last_act == [0, 4] # The next action would be [4, 4], but now we reset again wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [1, 2] @pytest.mark.wrapper def test_domain_param(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 1] # change the delay and reset wenv.domain_param = {"act_delay": 2} wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [0, 0] wenv.step(np.array([8, 9])) assert mockenv.last_act == [1, 2]
[ "numpy.array", "pyrado.spaces.box.BoxSpace", "pyrado.environment_wrappers.action_delay.ActDelayWrapper" ]
[((2046, 2079), 'pyrado.environment_wrappers.action_delay.ActDelayWrapper', 'ActDelayWrapper', (['mockenv'], {'delay': '(0)'}), '(mockenv, delay=0)\n', (2061, 2079), False, 'from pyrado.environment_wrappers.action_delay import ActDelayWrapper\n'), ((2416, 2449), 'pyrado.environment_wrappers.action_delay.ActDelayWrapper', 'ActDelayWrapper', (['mockenv'], {'delay': '(2)'}), '(mockenv, delay=2)\n', (2431, 2449), False, 'from pyrado.environment_wrappers.action_delay import ActDelayWrapper\n'), ((2922, 2955), 'pyrado.environment_wrappers.action_delay.ActDelayWrapper', 'ActDelayWrapper', (['mockenv'], {'delay': '(1)'}), '(mockenv, delay=1)\n', (2937, 2955), False, 'from pyrado.environment_wrappers.action_delay import ActDelayWrapper\n'), ((3516, 3549), 'pyrado.environment_wrappers.action_delay.ActDelayWrapper', 'ActDelayWrapper', (['mockenv'], {'delay': '(1)'}), '(mockenv, delay=1)\n', (3531, 3549), False, 'from pyrado.environment_wrappers.action_delay import ActDelayWrapper\n'), ((2173, 2189), 'numpy.array', 'np.array', (['[4, 1]'], {}), '([4, 1])\n', (2181, 2189), True, 'import numpy as np\n'), ((2243, 2259), 'numpy.array', 'np.array', (['[7, 5]'], {}), '([7, 5])\n', (2251, 2259), True, 'import numpy as np\n'), ((2543, 2559), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (2551, 2559), True, 'import numpy as np\n'), ((2613, 2629), 'numpy.array', 'np.array', (['[2, 4]'], {}), '([2, 4])\n', (2621, 2629), True, 'import numpy as np\n'), ((2683, 2699), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (2691, 2699), True, 'import numpy as np\n'), ((2753, 2769), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (2761, 2769), True, 'import numpy as np\n'), ((3049, 3065), 'numpy.array', 'np.array', (['[0, 4]'], {}), '([0, 4])\n', (3057, 3065), True, 'import numpy as np\n'), ((3119, 3135), 'numpy.array', 'np.array', (['[4, 4]'], {}), '([4, 4])\n', (3127, 3135), True, 'import numpy as np\n'), ((3270, 3286), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (3278, 3286), True, 'import numpy as np\n'), ((3340, 3356), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (3348, 3356), True, 'import numpy as np\n'), ((3643, 3659), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (3651, 3659), True, 'import numpy as np\n'), ((3713, 3729), 'numpy.array', 'np.array', (['[2, 4]'], {}), '([2, 4])\n', (3721, 3729), True, 'import numpy as np\n'), ((3876, 3892), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (3884, 3892), True, 'import numpy as np\n'), ((3946, 3962), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (3954, 3962), True, 'import numpy as np\n'), ((4016, 4032), 'numpy.array', 'np.array', (['[8, 9]'], {}), '([8, 9])\n', (4024, 4032), True, 'import numpy as np\n'), ((2006, 2033), 'pyrado.spaces.box.BoxSpace', 'BoxSpace', (['(-1)', '(1)'], {'shape': '(2,)'}), '(-1, 1, shape=(2,))\n', (2014, 2033), False, 'from pyrado.spaces.box import BoxSpace\n'), ((2376, 2403), 'pyrado.spaces.box.BoxSpace', 'BoxSpace', (['(-1)', '(1)'], {'shape': '(2,)'}), '(-1, 1, shape=(2,))\n', (2384, 2403), False, 'from pyrado.spaces.box import BoxSpace\n'), ((2882, 2909), 'pyrado.spaces.box.BoxSpace', 'BoxSpace', (['(-1)', '(1)'], {'shape': '(2,)'}), '(-1, 1, shape=(2,))\n', (2890, 2909), False, 'from pyrado.spaces.box import BoxSpace\n'), ((3476, 3503), 'pyrado.spaces.box.BoxSpace', 'BoxSpace', (['(-1)', '(1)'], {'shape': '(2,)'}), '(-1, 1, shape=(2,))\n', (3484, 3503), False, 'from pyrado.spaces.box import BoxSpace\n')]
#!/usr/bin/env libtbx.python # # iotbx.xds.xds_cbf.py # # <NAME>, Diamond Light Source, 2012/OCT/16 # # Class to read the CBF files used in XDS # from __future__ import absolute_import, division, print_function class reader: """A class to read the CBF files used in XDS""" def __init__(self): pass def read_file(self, filename): """Read the CBF file""" import pycbf self.cbf_handle = pycbf.cbf_handle_struct() self.cbf_handle.read_file(filename, pycbf.MSG_DIGEST) self.cbf_handle.rewind_datablock() def get_data(self): """Get the gain array from the file""" import numpy # Select the first datablock and rewind all the categories self.cbf_handle.select_datablock(0) self.cbf_handle.select_category(0) self.cbf_handle.select_column(2) self.cbf_handle.select_row(0) # Check the type of the element to ensure it's a binary # otherwise raise an exception type = self.cbf_handle.get_typeofvalue() if type.find('bnry') > -1: # Read the image data into an array image_string = self.cbf_handle.get_integerarray_as_string() image = numpy.fromstring(image_string, numpy.int32) # Get the array parameters parameters = self.cbf_handle.get_integerarrayparameters_wdims() image_size = (parameters[10], parameters[9]) # Resize the image image.shape = (image_size) else: raise TypeError('Can\'t find image') # Return the image return image if __name__ == '__main__': import sys import numpy handle = reader() handle.read_file(sys.argv[1]) image = handle.get_data()
[ "pycbf.cbf_handle_struct", "numpy.fromstring" ]
[((412, 437), 'pycbf.cbf_handle_struct', 'pycbf.cbf_handle_struct', ([], {}), '()\n', (435, 437), False, 'import pycbf\n'), ((1127, 1170), 'numpy.fromstring', 'numpy.fromstring', (['image_string', 'numpy.int32'], {}), '(image_string, numpy.int32)\n', (1143, 1170), False, 'import numpy\n')]
import pickle import numpy as np def fetch_file(path): with open(path, 'rb') as fp: return pickle.load(fp) def fetch_adj_mat(column): if column == 0: return A1 elif column == 1: return A2 elif column == 2: return A3 # elif column == 3: # return A4 print("Fetching files...") A1 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) A2 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) A3 = np.array( fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/adjacency_matrix_normal/definition_2/A1_fc.txt")) # A4 = np.array(fetch_file(RELATIVE_PATH + ADJACENCY_MATRIX + "A4_fc.txt")) influence_matrix = np.array(fetch_file( "/home/imlegend19/PycharmProjects/Research - Data Mining/gnome/influence_matrix_normal/definition_2/" "influence_matrix_fc.txt")) print(influence_matrix.shape) krp = [] for i in range(3): wa1 = A1 * influence_matrix[i][0] wa2 = A2 * influence_matrix[i][1] wa3 = A3 * influence_matrix[i][2] # wa4 = A4 * influence_matrix_normal[i][3] print(influence_matrix[i][0]) print(influence_matrix[i][1]) print(influence_matrix[i][2]) # print(influence_matrix_normal[i][3]) for j in range(1134): row = [] row.extend(wa1[j]) row.extend(wa2[j]) row.extend(wa3[j]) # row.extend(wa4[j]) krp.append(row) print("Clearing variables...") A1 = None A2 = None A3 = None # A4 = None influence_matrix = None print("Setting up kr_product...") kr_product = np.array(krp, dtype=np.float) krp.clear() print(kr_product.shape) print(kr_product) print("Calculating eigenvector...") e = np.linalg.eig(kr_product) e_val = e[0] e_vec = e[1] ind = list(e_val).index(max(e_val)) print(ind) pev = e_vec[ind] / np.linalg.norm(e_vec[ind]) print(pev.shape) print(pev) print(sum(map(lambda x: x.real * x.real, pev))) print("Saving eigenvector...") with open("global_eigenvector_fc.txt", 'wb') as fp: pickle.dump(pev, fp) print("Saving eigenvalues...") with open("eigenvalue_" + str(ind) + "_fc.txt", "wb") as fp: pickle.dump(e_val[ind], fp) print("Process finished!")
[ "pickle.dump", "numpy.linalg.eig", "pickle.load", "numpy.array", "numpy.linalg.norm" ]
[((1745, 1774), 'numpy.array', 'np.array', (['krp'], {'dtype': 'np.float'}), '(krp, dtype=np.float)\n', (1753, 1774), True, 'import numpy as np\n'), ((1871, 1896), 'numpy.linalg.eig', 'np.linalg.eig', (['kr_product'], {}), '(kr_product)\n', (1884, 1896), True, 'import numpy as np\n'), ((1992, 2018), 'numpy.linalg.norm', 'np.linalg.norm', (['e_vec[ind]'], {}), '(e_vec[ind])\n', (2006, 2018), True, 'import numpy as np\n'), ((2185, 2205), 'pickle.dump', 'pickle.dump', (['pev', 'fp'], {}), '(pev, fp)\n', (2196, 2205), False, 'import pickle\n'), ((2303, 2330), 'pickle.dump', 'pickle.dump', (['e_val[ind]', 'fp'], {}), '(e_val[ind], fp)\n', (2314, 2330), False, 'import pickle\n'), ((105, 120), 'pickle.load', 'pickle.load', (['fp'], {}), '(fp)\n', (116, 120), False, 'import pickle\n')]
from typing import List, overload from flow.envs.multiagent.traffic_light_grid import MultiTrafficLightGridPOEnv from flow.envs.traffic_light_grid import TrafficLightGridPOEnv from gym.spaces import Box, Discrete import numpy as np ID_IDX = 1 class SeqTraffiLightEnv(TrafficLightGridPOEnv): def __init__(self, env_params, sim_params, network, simulator): super().__init__(env_params, sim_params, network, simulator=simulator) # number of nearest lights to observe, defaults to 4 self.num_local_lights = env_params.additional_params.get( "num_local_lights", 4) # number of nearest edges to observe, defaults to 4 self.num_local_edges = env_params.additional_params.get( "num_local_edges", 4) @property def observation_space(self): """State space that is partially observed. Velocities, distance to intersections, edge number (for nearby vehicles) from each direction, local edge information, and traffic light state. """ tl_box = Box( low=0., high=1, shape=( self.num_traffic_lights, 3 * 4 * self.num_observed + 2 * self.num_local_edges + 2 * (1 + self.num_local_lights), ), dtype=np.float32) return tl_box def get_state(self): """Observations for each traffic light agent. :return: dictionary which contains agent-wise observations as follows: - For the self.num_observed number of vehicles closest and incoming towards traffic light agent, gives the vehicle velocity, distance to intersection, edge number. - For edges in the network, gives the density and average velocity. - For the self.num_local_lights number of nearest lights (itself included), gives the traffic light information, including the last change time, light direction (i.e. phase), and a currently_yellow flag. """ # Normalization factors max_speed = max( self.k.network.speed_limit(edge) for edge in self.k.network.get_edge_list()) grid_array = self.net_params.additional_params["grid_array"] max_dist = max(grid_array["short_length"], grid_array["long_length"], grid_array["inner_length"]) # TODO(cathywu) refactor TrafficLightGridPOEnv with convenience # methods for observations, but remember to flatten for single-agent # Observed vehicle information speeds = [] dist_to_intersec = [] edge_number = [] all_observed_ids = [] for _, edges in self.network.node_mapping: local_speeds = [] local_dists_to_intersec = [] local_edge_numbers = [] for edge in edges: observed_ids = \ self.get_closest_to_intersection(edge, self.num_observed) all_observed_ids.append(observed_ids) # check which edges we have so we can always pad in the right # positions local_speeds.extend( [self.k.vehicle.get_speed(veh_id) / max_speed for veh_id in observed_ids]) local_dists_to_intersec.extend([(self.k.network.edge_length( self.k.vehicle.get_edge( veh_id)) - self.k.vehicle.get_position( veh_id)) / max_dist for veh_id in observed_ids]) local_edge_numbers.extend([self._convert_edge( self.k.vehicle.get_edge(veh_id)) / ( self.k.network.network.num_edges - 1) for veh_id in observed_ids]) if len(observed_ids) < self.num_observed: diff = self.num_observed - len(observed_ids) local_speeds.extend([1] * diff) local_dists_to_intersec.extend([1] * diff) local_edge_numbers.extend([0] * diff) speeds.append(local_speeds) dist_to_intersec.append(local_dists_to_intersec) edge_number.append(local_edge_numbers) # Edge information density = [] velocity_avg = [] for edge in self.k.network.get_edge_list(): ids = self.k.vehicle.get_ids_by_edge(edge) if len(ids) > 0: # TODO(cathywu) Why is there a 5 here? density += [5 * len(ids) / self.k.network.edge_length(edge)] velocity_avg += [np.mean( [self.k.vehicle.get_speed(veh_id) for veh_id in ids]) / max_speed] else: density += [0] velocity_avg += [0] density = np.array(density) velocity_avg = np.array(velocity_avg) self.observed_ids = all_observed_ids # Traffic light information direction = self.direction.flatten() currently_yellow = self.currently_yellow.flatten() # This is a catch-all for when the relative_node method returns a -1 # (when there is no node in the direction sought). We add a last # item to the lists here, which will serve as a default value. # TODO(cathywu) are these values reasonable? direction = np.append(direction, [0]) currently_yellow = np.append(currently_yellow, [1]) obs = [] # obs -> [num_light, observation] node_to_edges = self.network.node_mapping for rl_id in self.k.traffic_light.get_ids(): rl_id_num = int(rl_id.split("center")[ID_IDX]) local_edges = node_to_edges[rl_id_num][1] local_edge_numbers = [self.k.network.get_edge_list().index(e) for e in local_edges] local_id_nums = [rl_id_num, self._get_relative_node(rl_id, "top"), self._get_relative_node(rl_id, "bottom"), self._get_relative_node(rl_id, "left"), self._get_relative_node(rl_id, "right")] observation = np.array(np.concatenate( [speeds[rl_id_num], dist_to_intersec[rl_id_num], edge_number[rl_id_num], density[local_edge_numbers], velocity_avg[local_edge_numbers], direction[local_id_nums], currently_yellow[local_id_nums] ])) obs.append(observation) return obs
[ "numpy.append", "numpy.array", "numpy.concatenate", "gym.spaces.Box" ]
[((1060, 1229), 'gym.spaces.Box', 'Box', ([], {'low': '(0.0)', 'high': '(1)', 'shape': '(self.num_traffic_lights, 3 * 4 * self.num_observed + 2 * self.\n num_local_edges + 2 * (1 + self.num_local_lights))', 'dtype': 'np.float32'}), '(low=0.0, high=1, shape=(self.num_traffic_lights, 3 * 4 * self.\n num_observed + 2 * self.num_local_edges + 2 * (1 + self.\n num_local_lights)), dtype=np.float32)\n', (1063, 1229), False, 'from gym.spaces import Box, Discrete\n'), ((4827, 4844), 'numpy.array', 'np.array', (['density'], {}), '(density)\n', (4835, 4844), True, 'import numpy as np\n'), ((4868, 4890), 'numpy.array', 'np.array', (['velocity_avg'], {}), '(velocity_avg)\n', (4876, 4890), True, 'import numpy as np\n'), ((5371, 5396), 'numpy.append', 'np.append', (['direction', '[0]'], {}), '(direction, [0])\n', (5380, 5396), True, 'import numpy as np\n'), ((5424, 5456), 'numpy.append', 'np.append', (['currently_yellow', '[1]'], {}), '(currently_yellow, [1])\n', (5433, 5456), True, 'import numpy as np\n'), ((6188, 6413), 'numpy.concatenate', 'np.concatenate', (['[speeds[rl_id_num], dist_to_intersec[rl_id_num], edge_number[rl_id_num],\n density[local_edge_numbers], velocity_avg[local_edge_numbers],\n direction[local_id_nums], currently_yellow[local_id_nums]]'], {}), '([speeds[rl_id_num], dist_to_intersec[rl_id_num], edge_number\n [rl_id_num], density[local_edge_numbers], velocity_avg[\n local_edge_numbers], direction[local_id_nums], currently_yellow[\n local_id_nums]])\n', (6202, 6413), True, 'import numpy as np\n')]
import os import scipy.io.wavfile import matplotlib.pyplot as plt import numpy as np import os import random ''' Create a random dataset with three different frequencies that are always in fase. Frequencies will be octave [440, 880, 1320]. ''' fs = 16000 x1 = scipy.io.wavfile.read('corpus/Analysis/a440.wav')[1] x2 = scipy.io.wavfile.read('corpus/Analysis/c531.wav')[1] x3 = scipy.io.wavfile.read('corpus/Analysis/e667.wav')[1] x4 = scipy.io.wavfile.read('corpus/Analysis/a880.wav')[1] x5 = scipy.io.wavfile.read('corpus/Analysis/c1056.wav')[1] x6 = scipy.io.wavfile.read('corpus/Analysis/e1320.wav')[1] x7 = scipy.io.wavfile.read('corpus/Analysis/a1760.wav')[1] # Categories a = [0] b = [1] c = [2] def createRandomSequence(): # sequence length sq_length = random.randint(5, 10) #create sequence sequence = [] sampleSequence = [] minLen = 1818 for i in range(0, sq_length): value = random.randint(0,6) sequence.append(value) #create lengths per value lenValue = minLen * random.randint(1,10) sampleSequence.append(lenValue) return sequence, sampleSequence def genFile(sequence, sampleSequence, c): newSequence = [] fullSequence = [] for i in range(len(sequence)): newSequence = int(sampleSequence[i]) * [sequence[i]] fullSequence = fullSequence + newSequence file00 = open(os.path.join('corpus', 'panFluteBigDataset', 'lc_train%s.txt' % c), 'w') for item in fullSequence: file00.write('%i,\n' % item) file00.close() def case(x): return { 0: x1, 1: x2, 2: x3, 3: x4, 4: x5, 5: x6, 6: x7 }[x] def genSignals(sequence, sampleSequence, c): y=[] for i in range(len(sequence)): # convert categories to frequencies freq = case(sequence[i]) #nSamples = np.arange(sampleSequence[i]) #a = random.randint(25, 100)/100 a = 1 #y0 = a*np.sin(2*np.pi*freq*nSamples / fs) y0= freq[:sampleSequence[i]] y = scipy.hstack((y, y0)) y = y / y[np.argmax(y)] noise = 0.01*np.random.normal(0, 1, len(y)) y = np.asarray(y) + noise scipy.io.wavfile.write(os.path.join('corpus', 'panFluteBigDataset7freq', 'lc_train%s.wav' % c), fs, y) def main(): for c in range(0,100): sequence, sampleSequence = createRandomSequence() #print(sequence, sampleSequence) #genFile(sequence, sampleSequence, c) genSignals(sequence, sampleSequence, c) if __name__ == '__main__': main()
[ "numpy.argmax", "numpy.asarray", "os.path.join", "random.randint" ]
[((773, 794), 'random.randint', 'random.randint', (['(5)', '(10)'], {}), '(5, 10)\n', (787, 794), False, 'import random\n'), ((926, 946), 'random.randint', 'random.randint', (['(0)', '(6)'], {}), '(0, 6)\n', (940, 946), False, 'import random\n'), ((1389, 1455), 'os.path.join', 'os.path.join', (['"""corpus"""', '"""panFluteBigDataset"""', "('lc_train%s.txt' % c)"], {}), "('corpus', 'panFluteBigDataset', 'lc_train%s.txt' % c)\n", (1401, 1455), False, 'import os\n'), ((2167, 2180), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (2177, 2180), True, 'import numpy as np\n'), ((2216, 2287), 'os.path.join', 'os.path.join', (['"""corpus"""', '"""panFluteBigDataset7freq"""', "('lc_train%s.wav' % c)"], {}), "('corpus', 'panFluteBigDataset7freq', 'lc_train%s.wav' % c)\n", (2228, 2287), False, 'import os\n'), ((1039, 1060), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (1053, 1060), False, 'import random\n'), ((2097, 2109), 'numpy.argmax', 'np.argmax', (['y'], {}), '(y)\n', (2106, 2109), True, 'import numpy as np\n')]
""" This module contains a pytorch dataset for learning peptide embeddings. In particular, each "instance" of the dataset comprises two peptide sequences, as well as the sNebula similarity between them. The sNebula distance reflects the BLOSSUM similarity transformed from 0 to 1. """ import logging logger = logging.getLogger(__name__) import numpy as np import torch import torch.utils.data from lifesci.peptide_dataset import PeptideDataset import lifesci.sequence_similarity_utils as sequence_similarity_utils import pyllars.string_utils as string_utils from typing import NamedTuple, Optional class PeptideEncoderTrainingDatasetItem(NamedTuple): aa_sequence_xs: str aa_sequence_ys: str encoded_xs: torch.IntTensor encoded_ys: torch.IntTensor similarities: torch.FloatTensor _DEFAULT_SEQUENCE_COLUMN = 'sequence' _DEFAULT_SEED = 8675309 _DEFAULT_NAME = "PeptideEncoderTrainingDataset" _DEFAULT_MAX_LEN = 25 class PeptideEncoderTrainingDataset(torch.utils.data.Dataset): """ Generate training samples from a list of amino acid sequences In particular, this class reads a list of peptides from `dataset_path`. It then draws pairs of peptides from the list and calculates the sNebula similarity score between them. Thus, each item from this dataset consists of two peptide sequences and the similarity score. In case the dataset object should be used for validation, the `is_validation` flag can be set to `True`. In that case, a fixed set of pairings will be selected for the peptides so that performance metrics are constant from iteration to iteration. Otherwise (i.e., for training), one member of each pair is randomly sampled. Parameters ---------- dataset_path : str The path to the dataset. It should be compatible with `pandas.read_csv` and contain a column named `sequence_column` which includes the sequences. Other columns are ignored. aa_encoding_map : pyllars.string_utils.encoding_map_type A mapping from each amino acid to its integer index. N.B. This should **not** be a one-hot representation, but, as stated, the integer index. Further, the padding character must be "-". is_validation : bool Whether the dataset will be used for validation (or testing) sequence_column : str The name of the column which contains the amino acid sequences max_len : int The maximum length for a peptide. Peptides longer than this will be truncated, and shorter peptides will be padded to this length. seed : int Seed for the random number generator. This is used to randomly select the second sequence in each of the instances. name : str A name for the dataset instance. This is mostly used for logging. """ def __init__(self, dataset_path:str, aa_encoding_map:string_utils.encoding_map_type, is_validation:bool=False, sequence_column:str=_DEFAULT_SEQUENCE_COLUMN, max_len:int=_DEFAULT_MAX_LEN, seed:int=_DEFAULT_SEED, name:str=_DEFAULT_NAME): self.aa_encoding_map = aa_encoding_map self.is_validation = is_validation self.sequence_column = sequence_column self.max_len = max_len self.seed = seed self.name = name self.rng = np.random.default_rng(self.seed) df_peptides = PeptideDataset.load(dataset_path, sequence_column, filters=["standard_aa_only"]) self.aa_sequences = df_peptides[self.sequence_column].values self.encoded_aa_sequences = string_utils.encode_all_sequences( sequences=self.aa_sequences, encoding_map=self.aa_encoding_map, maxlen=self.max_len, pad_value='-', same_length=False ) self.encoded_aa_sequences = self.encoded_aa_sequences.astype(int) if self.is_validation: self._matching_validation_item = np.random.permutation(len(self.aa_sequences)) def log(self, msg:str, level:int=logging.INFO) -> None: """ Log `msg` using `level` using the module-level logger """ msg = "[{}] {}".format(self.name, msg) logger.log(level, msg) def __len__(self) -> int: return len(self.aa_sequences) def __getitem__(self, idx) -> PeptideEncoderTrainingDatasetItem: x = idx # and choose an appropriate matching index based on the dataset status if self.is_validation: y = self._matching_validation_item[idx] else: # select the second sequence randomly y = self.rng.integers(low=0, high=len(self), size=1) # the rng returns an array... y = y[0] encoded_xs = self.encoded_aa_sequences[x] encoded_ys = self.encoded_aa_sequences[y] peptide_xs = self.aa_sequences[x] peptide_ys = self.aa_sequences[y] similarities = sequence_similarity_utils.get_snebula_score(peptide_xs, peptide_ys) encoded_xs = torch.as_tensor(encoded_xs, dtype=torch.long) encoded_ys = torch.as_tensor(encoded_ys, dtype=torch.long) similarities = torch.as_tensor(similarities, dtype=torch.float32) ret = PeptideEncoderTrainingDatasetItem( peptide_xs, peptide_ys, encoded_xs, encoded_ys, similarities ) return ret def get_trimmed_peptide_lengths(self, peptides) -> np.ndarray: """ Extract the trimmed length of the given peptides, which accounts for max_len """ peptide_lengths = [len(p) for p in peptides] trimmed_peptide_lengths = np.clip(peptide_lengths, 0, self.max_len) return trimmed_peptide_lengths @classmethod def load(clazz, dataset_path:Optional[str], aa_encoding_map:string_utils.encoding_map_type, is_validation:bool, name:str) -> Optional["PeptideEncoderTrainingDataset"]: """ Load the dataset given by `key` in `self.config` Additionally, `name` will be used for the name of the dataset. Parameters ---------- dataset_path : typing.Optional[str] The path to the dataset aa_encoding_map : pyllars.string_utils.encoding_map_type A mapping from each amino acid to its integer index. is_validation : bool Whether the dataset will be used for validation (or testing) name : str The name for the dataset, if it is in the config file. Example: "TrainingSet" Returns ------- dataset : typing.Optional[AAEncoderDataset] If `key` is in `self.config`, then `dataset` will be the dataset object based on that file. Otherwise, this function returns `None`. """ dataset = None if dataset_path is not None: dataset = PeptideEncoderTrainingDataset ( dataset_path=dataset_path, aa_encoding_map=aa_encoding_map, is_validation=is_validation, name=name ) return dataset
[ "logging.getLogger", "numpy.clip", "pyllars.string_utils.encode_all_sequences", "torch.as_tensor", "numpy.random.default_rng", "lifesci.sequence_similarity_utils.get_snebula_score", "lifesci.peptide_dataset.PeptideDataset.load" ]
[((310, 337), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (327, 337), False, 'import logging\n'), ((3411, 3443), 'numpy.random.default_rng', 'np.random.default_rng', (['self.seed'], {}), '(self.seed)\n', (3432, 3443), True, 'import numpy as np\n'), ((3467, 3552), 'lifesci.peptide_dataset.PeptideDataset.load', 'PeptideDataset.load', (['dataset_path', 'sequence_column'], {'filters': "['standard_aa_only']"}), "(dataset_path, sequence_column, filters=['standard_aa_only']\n )\n", (3486, 3552), False, 'from lifesci.peptide_dataset import PeptideDataset\n'), ((3654, 3816), 'pyllars.string_utils.encode_all_sequences', 'string_utils.encode_all_sequences', ([], {'sequences': 'self.aa_sequences', 'encoding_map': 'self.aa_encoding_map', 'maxlen': 'self.max_len', 'pad_value': '"""-"""', 'same_length': '(False)'}), "(sequences=self.aa_sequences, encoding_map\n =self.aa_encoding_map, maxlen=self.max_len, pad_value='-', same_length=\n False)\n", (3687, 3816), True, 'import pyllars.string_utils as string_utils\n'), ((5023, 5090), 'lifesci.sequence_similarity_utils.get_snebula_score', 'sequence_similarity_utils.get_snebula_score', (['peptide_xs', 'peptide_ys'], {}), '(peptide_xs, peptide_ys)\n', (5066, 5090), True, 'import lifesci.sequence_similarity_utils as sequence_similarity_utils\n'), ((5113, 5158), 'torch.as_tensor', 'torch.as_tensor', (['encoded_xs'], {'dtype': 'torch.long'}), '(encoded_xs, dtype=torch.long)\n', (5128, 5158), False, 'import torch\n'), ((5180, 5225), 'torch.as_tensor', 'torch.as_tensor', (['encoded_ys'], {'dtype': 'torch.long'}), '(encoded_ys, dtype=torch.long)\n', (5195, 5225), False, 'import torch\n'), ((5249, 5299), 'torch.as_tensor', 'torch.as_tensor', (['similarities'], {'dtype': 'torch.float32'}), '(similarities, dtype=torch.float32)\n', (5264, 5299), False, 'import torch\n'), ((5700, 5741), 'numpy.clip', 'np.clip', (['peptide_lengths', '(0)', 'self.max_len'], {}), '(peptide_lengths, 0, self.max_len)\n', (5707, 5741), True, 'import numpy as np\n')]
from collections import defaultdict import itertools import numpy as np import pickle import time import warnings from Analysis import binomial_pgf, BranchModel, StaticModel from simulators.fires.UrbanForest import UrbanForest from Policies import NCTfires, UBTfires, DWTfires, RHTfires, USTfires from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control np.seterr(all='raise') def uniform(): # given alpha and beta, compute lattice probabilities for every (parent, child) pair a = 0.2763 b = np.exp(-1/10) p = percolation_parameter(a, b) if p <= 0.5: raise Warning('Percolation parameter {0:0.2f} is not supercritical'.format(p)) lattice_p = defaultdict(lambda: p) # given (delta_alpha, delta_beta), construct the equivalent delta_p delta_a = 0 delta_b = 0.4 dp = equivalent_percolation_control(a, b, delta_a, delta_b) if p - dp >= 0.5: raise Warning('Control is insufficient: p - dp = {0:0.2f} - {1:0.2f} = {2:0.2f}'.format(p, dp, p-dp)) control_p = defaultdict(lambda: dp) control_ab = defaultdict(lambda: (delta_a, delta_b)) # or given delta_p, construct the equivalent (delta_alpha, delta_beta) # delta_p = 0.4 # control_percolation = defaultdict(lambda: delta_p) # control_gmdp = defaultdict(lambda: equivalent_gmdp_control(a, b, delta_p)) a = defaultdict(lambda: a) b = defaultdict(lambda: b) return a, b, lattice_p, control_p, control_ab def nonuniform(simulation): alpha_set = dict() # beta_set = defaultdict(lambda: np.exp(-1/9)) beta_set = dict() p_set = dict() delta_beta = 0.35 control_gmdp = dict() alpha_start = 0.2 alpha_end = 0.4 for r in range(simulation.dims[0]): for c in range(simulation.dims[1]): alpha_set[(r, c)] = alpha_start + (c/(simulation.dims[1]-1))*(alpha_end-alpha_start) beta1 = np.exp(-1/5) beta2 = np.exp(-1/10) for r in range(simulation.dims[0]): for c in range(simulation.dims[1]): if c < simulation.dims[1]-simulation.urban_width: beta_set[(r, c)] = beta1 else: beta_set[(r, c)] = beta2 control_gmdp[(r, c)] = {'healthy': (alpha_set[(r, c)], 0), 'on_fire': (0, np.amin([delta_beta, beta_set[(r, c)]]))} # set initial condition initial_fire = [] r_center = np.floor((simulation.dims[0]-1)/2).astype(np.uint8) c_center = np.floor((simulation.dims[1]-1)/2).astype(np.uint8) delta_r = [k for k in range(-2, 3)] delta_c = [k for k in range(-2, 3)] deltas = itertools.product(delta_r, delta_c) for (dr, dc) in deltas: if dr == 0 and dc == 0: continue elif (dr == -2 or dr == 2) and (dc == -2 or dc == 2): continue elif dc == dr or dc == -dr: continue r, c = r_center + dr, c_center + dc initial_fire.append((r, c)) # control_p = dict() for tree_rc in simulation.group.keys(): for neighbor in simulation.group[tree_rc].neighbors: p = percolation_parameter(alpha_set[neighbor], beta_set[tree_rc]) if p <= 0.5: warnings.warn('p({0:0.2f}, {1:0.2f}) = {2:0.2f} <= 0.5'.format(alpha_set[neighbor], beta_set[tree_rc], p)) p_set[(tree_rc, neighbor)] = p # control_p[(tree_rc, neighbor)] = dict() # # for k in control_gmdp[neighbor].keys(): # da, db = control_gmdp[neighbor][k] # dp = equivalent_percolation_control(alpha_set[neighbor], beta_set[tree_rc], da, db) # if p - dp >= 0.5: # warnings.warn('p - dp = {0:0.2f} - {1:0.2f} = {2:0.2f} >= 0.5'.format(p, dp, p - dp)) # # control_p[(tree_rc, neighbor)][k] = dp return alpha_set, beta_set, initial_fire, control_gmdp, p_set def benchmark(simulation, branchmodel, policy, num_generations=1, num_simulations=1): print('Running policy {0:s} with capacity {1:d} for {2:d} simulations'.format(policy.name, policy.capacity, num_simulations)) print('started at {0:s}'.format(time.strftime('%d-%b-%Y %H:%M'))) tic = time.clock() results = dict() staticmodel = StaticModel() for seed in range(num_simulations): np.random.seed(seed) simulation.reset() simulation.rng = seed while not simulation.early_end: branchmodel.reset() branchmodel.set_boundary(fire_boundary(simulation)) if isinstance(policy, USTfires): staticmodel.set_boundary(urban_boundary(simulation)) policy.urbanboundary = urban_boundary(simulation) def children_function(p): return forest_children(simulation, p) branchmodel.set_children_function(children_function) for _ in range(num_generations): for process in branchmodel.GWprocesses.values(): for parent in process.current_parents: if parent not in branchmodel.lattice_children: branchmodel.lattice_children[parent] = branchmodel.children_function(parent) if not isinstance(policy, USTfires): policy.generate_map(branchmodel) else: policy.generate_map(branchmodel, staticmodel) branchmodel.next_generation(policy) if isinstance(policy, USTfires): staticmodel.next_boundary(policy.control_decisions) # apply control and update simulator if not isinstance(policy, USTfires): control = policy.control(branchmodel) else: control = policy.control(branchmodel, staticmodel) simulation.update(control) if (seed+1) % 10 == 0: print('completed {0:d} simulations'.format((seed+1))) results[seed] = {'healthy_trees': simulation.stats_trees[0]/np.sum(simulation.stats_trees), 'healthy_urban': simulation.stats_urban[0]/np.sum(simulation.stats_urban), 'razed_urban': simulation.stats_urban[3]/np.sum(simulation.stats_urban)} toc = time.clock() dt = toc - tic print('finished at {0:s}'.format(time.strftime('%d-%b-%Y %H:%M'))) print('{0:0.2f}s = {1:0.2f}m = {2:0.2f}h elapsed'.format(dt, dt/60, dt/3600)) filename = policy.name + '_s' + str(num_simulations) + '.pkl' output = open('results/' + filename, 'wb') pickle.dump(results, output) output.close() print('median healthy trees: {0:0.2f}%'.format(100*np.median([results[s]['healthy_trees'] for s in results.keys()]))) print('median healthy urban developments: {0:0.2f}%'.format(100*np.median([results[s]['healthy_urban'] for s in results.keys()]))) print('median removed urban developments: {0:0.2f}%'.format(100*np.median([results[s]['razed_urban'] for s in results.keys()]))) # print('mean remaining trees: {0:0.2f}%'.format(100*np.mean(results))) # print('minimum {0:0.2f}, maximum {1:0.2f}'.format(100*np.amin(results), 100*np.amax(results))) # first, third = np.percentile(results, [25, 75]) # print('1st quartile {0:0.2f}, 3rd quartile {1:0.2f}'.format(100*first, 100*third)) return if __name__ == '__main__': # forest parameters dimension = 50 urban_width = 10 # generate information for uniform or non-uniform case # alpha, beta, lattice_parameters, control_percolation, control_gmdp = uniform(LatticeForest(dimension)) # alpha, beta, p_parameters, map_percolation, map_gmdp = nonuniform(LatticeForest(dimension)) alpha, beta, initial_fire, map_gmdp, p_parameters = nonuniform(UrbanForest(dimension, urban_width)) # sim = LatticeForest(dimension, alpha=alpha, beta=beta) sim = UrbanForest(dimension, urban_width, initial_fire=initial_fire, alpha=alpha, beta=beta) # define policy cap = 6 pi = NCTfires(capacity=cap, alpha_set=alpha, beta_set=beta, control_map_gmdp=map_gmdp) # pi = UBTfires(capacity=cap, alpha_set=alpha, beta_set=beta, control_map_gmdp=map_gmdp) # pi = DWTfires(capacity=cap, alpha_set=alpha, beta_set=beta, control_map_gmdp=map_gmdp) # pi = RHTfires(capacity=cap, horizon=1, alpha_set=alpha, beta_set=beta, control_map_gmdp=map_gmdp) # pi = USTfires(capacity=cap, horizon=5, control_map_gmdp=map_gmdp, alpha_set=alpha, beta_set=beta) # create branching process model approximation bm = BranchModel(lattice_parameters=p_parameters, pgf=binomial_pgf) sm = StaticModel() benchmark(sim, bm, pi, num_generations=1, num_simulations=1000) print()
[ "Utilities.equivalent_percolation_control", "time.clock", "Utilities.urban_boundary", "simulators.fires.UrbanForest.UrbanForest", "Utilities.percolation_parameter", "itertools.product", "numpy.exp", "numpy.random.seed", "Utilities.fire_boundary", "numpy.amin", "Policies.NCTfires", "numpy.floor", "Utilities.forest_children", "pickle.dump", "Analysis.StaticModel", "time.strftime", "Analysis.BranchModel", "numpy.sum", "collections.defaultdict", "numpy.seterr" ]
[((423, 445), 'numpy.seterr', 'np.seterr', ([], {'all': '"""raise"""'}), "(all='raise')\n", (432, 445), True, 'import numpy as np\n'), ((575, 590), 'numpy.exp', 'np.exp', (['(-1 / 10)'], {}), '(-1 / 10)\n', (581, 590), True, 'import numpy as np\n'), ((597, 624), 'Utilities.percolation_parameter', 'percolation_parameter', (['a', 'b'], {}), '(a, b)\n', (618, 624), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((745, 768), 'collections.defaultdict', 'defaultdict', (['(lambda : p)'], {}), '(lambda : p)\n', (756, 768), False, 'from collections import defaultdict\n'), ((884, 938), 'Utilities.equivalent_percolation_control', 'equivalent_percolation_control', (['a', 'b', 'delta_a', 'delta_b'], {}), '(a, b, delta_a, delta_b)\n', (914, 938), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((1087, 1111), 'collections.defaultdict', 'defaultdict', (['(lambda : dp)'], {}), '(lambda : dp)\n', (1098, 1111), False, 'from collections import defaultdict\n'), ((1128, 1168), 'collections.defaultdict', 'defaultdict', (['(lambda : (delta_a, delta_b))'], {}), '(lambda : (delta_a, delta_b))\n', (1139, 1168), False, 'from collections import defaultdict\n'), ((1411, 1434), 'collections.defaultdict', 'defaultdict', (['(lambda : a)'], {}), '(lambda : a)\n', (1422, 1434), False, 'from collections import defaultdict\n'), ((1442, 1465), 'collections.defaultdict', 'defaultdict', (['(lambda : b)'], {}), '(lambda : b)\n', (1453, 1465), False, 'from collections import defaultdict\n'), ((1946, 1960), 'numpy.exp', 'np.exp', (['(-1 / 5)'], {}), '(-1 / 5)\n', (1952, 1960), True, 'import numpy as np\n'), ((1971, 1986), 'numpy.exp', 'np.exp', (['(-1 / 10)'], {}), '(-1 / 10)\n', (1977, 1986), True, 'import numpy as np\n'), ((2675, 2710), 'itertools.product', 'itertools.product', (['delta_r', 'delta_c'], {}), '(delta_r, delta_c)\n', (2692, 2710), False, 'import itertools\n'), ((4517, 4529), 'time.clock', 'time.clock', ([], {}), '()\n', (4527, 4529), False, 'import time\n'), ((4570, 4583), 'Analysis.StaticModel', 'StaticModel', ([], {}), '()\n', (4581, 4583), False, 'from Analysis import binomial_pgf, BranchModel, StaticModel\n'), ((6588, 6600), 'time.clock', 'time.clock', ([], {}), '()\n', (6598, 6600), False, 'import time\n'), ((6891, 6919), 'pickle.dump', 'pickle.dump', (['results', 'output'], {}), '(results, output)\n', (6902, 6919), False, 'import pickle\n'), ((8420, 8510), 'simulators.fires.UrbanForest.UrbanForest', 'UrbanForest', (['dimension', 'urban_width'], {'initial_fire': 'initial_fire', 'alpha': 'alpha', 'beta': 'beta'}), '(dimension, urban_width, initial_fire=initial_fire, alpha=alpha,\n beta=beta)\n', (8431, 8510), False, 'from simulators.fires.UrbanForest import UrbanForest\n'), ((8549, 8635), 'Policies.NCTfires', 'NCTfires', ([], {'capacity': 'cap', 'alpha_set': 'alpha', 'beta_set': 'beta', 'control_map_gmdp': 'map_gmdp'}), '(capacity=cap, alpha_set=alpha, beta_set=beta, control_map_gmdp=\n map_gmdp)\n', (8557, 8635), False, 'from Policies import NCTfires, UBTfires, DWTfires, RHTfires, USTfires\n'), ((9086, 9148), 'Analysis.BranchModel', 'BranchModel', ([], {'lattice_parameters': 'p_parameters', 'pgf': 'binomial_pgf'}), '(lattice_parameters=p_parameters, pgf=binomial_pgf)\n', (9097, 9148), False, 'from Analysis import binomial_pgf, BranchModel, StaticModel\n'), ((9158, 9171), 'Analysis.StaticModel', 'StaticModel', ([], {}), '()\n', (9169, 9171), False, 'from Analysis import binomial_pgf, BranchModel, StaticModel\n'), ((4633, 4653), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4647, 4653), True, 'import numpy as np\n'), ((8311, 8346), 'simulators.fires.UrbanForest.UrbanForest', 'UrbanForest', (['dimension', 'urban_width'], {}), '(dimension, urban_width)\n', (8322, 8346), False, 'from simulators.fires.UrbanForest import UrbanForest\n'), ((2462, 2500), 'numpy.floor', 'np.floor', (['((simulation.dims[0] - 1) / 2)'], {}), '((simulation.dims[0] - 1) / 2)\n', (2470, 2500), True, 'import numpy as np\n'), ((2529, 2567), 'numpy.floor', 'np.floor', (['((simulation.dims[1] - 1) / 2)'], {}), '((simulation.dims[1] - 1) / 2)\n', (2537, 2567), True, 'import numpy as np\n'), ((3161, 3222), 'Utilities.percolation_parameter', 'percolation_parameter', (['alpha_set[neighbor]', 'beta_set[tree_rc]'], {}), '(alpha_set[neighbor], beta_set[tree_rc])\n', (3182, 3222), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((4473, 4504), 'time.strftime', 'time.strftime', (['"""%d-%b-%Y %H:%M"""'], {}), "('%d-%b-%Y %H:%M')\n", (4486, 4504), False, 'import time\n'), ((6657, 6688), 'time.strftime', 'time.strftime', (['"""%d-%b-%Y %H:%M"""'], {}), "('%d-%b-%Y %H:%M')\n", (6670, 6688), False, 'import time\n'), ((4821, 4846), 'Utilities.fire_boundary', 'fire_boundary', (['simulation'], {}), '(simulation)\n', (4834, 4846), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((5002, 5028), 'Utilities.urban_boundary', 'urban_boundary', (['simulation'], {}), '(simulation)\n', (5016, 5028), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((5091, 5121), 'Utilities.forest_children', 'forest_children', (['simulation', 'p'], {}), '(simulation, p)\n', (5106, 5121), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n'), ((6347, 6377), 'numpy.sum', 'np.sum', (['simulation.stats_trees'], {}), '(simulation.stats_trees)\n', (6353, 6377), True, 'import numpy as np\n'), ((6447, 6477), 'numpy.sum', 'np.sum', (['simulation.stats_urban'], {}), '(simulation.stats_urban)\n', (6453, 6477), True, 'import numpy as np\n'), ((6545, 6575), 'numpy.sum', 'np.sum', (['simulation.stats_urban'], {}), '(simulation.stats_urban)\n', (6551, 6575), True, 'import numpy as np\n'), ((2354, 2391), 'numpy.amin', 'np.amin', (['[delta_beta, beta_set[r, c]]'], {}), '([delta_beta, beta_set[r, c]])\n', (2361, 2391), True, 'import numpy as np\n'), ((4935, 4961), 'Utilities.urban_boundary', 'urban_boundary', (['simulation'], {}), '(simulation)\n', (4949, 4961), False, 'from Utilities import fire_boundary, urban_boundary, forest_children, percolation_parameter, equivalent_percolation_control\n')]
# -*- coding: utf-8 -*- """ BLEND This module defines classes and methods for blending images. :Author: <NAME> <<EMAIL>> """ import numpy as np from lmfit import Model from lmfit.models import GaussianModel, ConstantModel from modopt.base.np_adjust import pad2d from sf_tools.image.stamp import postage_stamp from sf_tools.image.distort import recentre class Blender(object): def __init__(self, images, ratio=1.0, overlap=True, stamp_shape=(116, 116), method='sf', xwang_sigma=0.15, seed=None): self.ratio = ratio self.overlap = overlap self.stamp_shape = np.array(stamp_shape) if method in ('sf', 'xwang'): self.method = method else: raise ValueError('Method must be "sf" or "xwang".') self.xwang_sigma = xwang_sigma self.seed = seed if images.shape[0] % 2: images = images[:-1] half_sample = images.shape[0] // 2 self._images = images self._centrals = images[:half_sample] self._companions = images[half_sample:] self.obj_centres = [] @staticmethod def _fit_gauss(xval, yval): model = GaussianModel() result = model.fit(yval, model.guess(yval, x=xval, amplitude=np.max(yval)), x=xval) return result @classmethod def _fit_image(cls, image): sum_x = image.sum(axis=0) sum_y = image.sum(axis=1) x_vals = np.arange(sum_x.size) sum_x_fit = cls._fit_gauss(x_vals, sum_x) sum_y_fit = cls._fit_gauss(x_vals, sum_y) centre = (int(sum_x_fit.params['center'].value), int(sum_y_fit.params['center'].value)) width = min(sum_x_fit.params['fwhm'].value, sum_y_fit.params['fwhm'].value) return centre, width @staticmethod def _random_shift(radius, outer_radius=None, seed=None): if seed: np.random.seed(seed) theta = np.random.ranf() * 2 * np.pi if outer_radius: r = radius + np.random.ranf() * (outer_radius - radius) else: r = np.random.ranf() * radius x = int(np.around(r * np.cos(theta))) y = int(np.around(r * np.sin(theta))) return x, y @staticmethod def _pad_image_shift(image, shift): pad = [(_shift, 0) if _shift >= 0 else (0, -_shift) for _shift in shift] return np.pad(image, pad, 'constant') @classmethod def _blend(cls, image1, image2, shift): dim = image1.shape image2 = cls._pad_image_shift(image2, shift) image2 = image2[:dim[0]] if shift[0] >= 0 else image2[-shift[0]:] image2 = image2[:, :dim[1]] if shift[1] >= 0 else image2[:, -shift[1]:] return image1 + image2 @staticmethod def _gal_size_xwang(image): return np.array([np.count_nonzero(image.sum(axis=ax)) for ax in range(2)]) @staticmethod def _area_prob(shape1, shape2): shape1, shape2 = np.array(shape1), np.array(shape2) area = np.prod(shape1) - np.prod(shape2) shape_diff = (shape1 - shape2) // 2 prob_ab = shape_diff[1] * shape1[0] / area prob_cd = 0.5 - prob_ab return prob_ab, prob_ab, prob_cd, prob_cd @classmethod def _blend_pos_xwang(cls, centre, box, limits, overlap=True): centre, box, limits = np.array(centre), np.array(box), np.array(limits) if overlap: blend_pos = [np.random.randint(centre[i] - box[i], centre[i] + box[i]) for i in range(2)] else: sector = np.random.choice(['a', 'b', 'c', 'd'], p=cls.area_prob(centre * 2, box)) blend_pos = [None, None] if sector == 'a': blend_pos[0] = np.random.randint(limits[0][0], limits[1][0]) blend_pos[1] = np.random.randint(limits[0][1], centre[1] - box[1]) elif sector == 'b': blend_pos[0] = np.random.randint(limits[0][0], limits[1][0]) blend_pos[1] = np.random.randint(centre[1] + box[1], limits[1][1]) elif sector == 'c': blend_pos[0] = np.random.randint(limits[0][0], centre[0] - box[0]) blend_pos[1] = np.random.randint(centre[1] - box[1], centre[1] + box[1]) elif sector == 'd': blend_pos[0] = np.random.randint(centre[0] + box[0], limits[1][1]) blend_pos[1] = np.random.randint(centre[1] - box[1], centre[1] + box[1]) return blend_pos @classmethod def _blend_xwang(cls, image1, image2, ps_shape=(116, 116), sigma=0.15, overlap=True): shape1, shape2 = np.array(image1.shape), np.array(image2.shape) rad2 = shape2 // 2 ps_shape = np.array(ps_shape) shape_diff = (ps_shape - shape1) // 2 + shape2 dis = cls._gal_size_xwang(image1) + cls._gal_size_xwang(image2) box = np.around(sigma * dis).astype(int) padding = ((shape_diff[0], shape_diff[0]), (shape_diff[1], shape_diff[1])) new_image = np.pad(image1, padding, 'constant') new_shape = np.array(new_image.shape) new_centre = new_shape // 2 limits = rad2, new_shape - rad2 bp = cls._blend_pos_xwang(new_centre, box, limits, overlap=True) blend_slice = [slice(bp[i] - shape2[i] // 2, bp[i] + shape2[i] // 2 + 1) for i in range(2)] new_image[blend_slice[0], blend_slice[1]] += image2 new_image = postage_stamp(new_image, pos=new_centre, pixel_rad=ps_shape // 2) return new_image def _pad_image(self, image): if not isinstance(image, np.ndarray): print(type(image)) im_shape = np.array(image.shape) padding = (self.stamp_shape - im_shape) // 2 return pad2d(image, padding) def _combine_images(self, image1, image2): if self.method == 'xwang': res = self._blend_xwang(image1, image2, ps_shape=self.stamp_shape, sigma=self.xwang_sigma, overlap=self.overlap) else: centre1, width1 = self._fit_image(image1) centre2, width2 = self._fit_image(image2) image1 = self._pad_image(recentre(image1, centre1)) image2 = self._pad_image(recentre(image2, centre2)) radius = self.ratio * (width1 + width2) outer_radius = image1.shape[0] / 2. if self.overlap: shift = self._random_shift(radius, seed=self.seed) else: shift = self._random_shift(radius, outer_radius=outer_radius, seed=self.seed) im1_cen = np.array(image1.shape) // 2 im2_cen = np.copy(im1_cen) + np.array(shift)[::-1] self.obj_centres.append((tuple(im1_cen), tuple(im2_cen))) res = self._blend(image1, image2, shift) return res def blend(self): blends = [self._combine_images(image1, image2) for image1, image2 in zip(self._centrals, self._companions)] return np.array(blends) def pad(self): im1_cen = np.array(self._pad_image(self._images[0]).shape) // 2 res = [] for image in self._images: res.append(self._pad_image(image)) self.obj_centres.append((tuple(im1_cen), (None, None))) return np.array(res)
[ "numpy.prod", "numpy.copy", "numpy.arange", "modopt.base.np_adjust.pad2d", "sf_tools.image.distort.recentre", "numpy.sin", "numpy.max", "numpy.array", "numpy.random.randint", "lmfit.models.GaussianModel", "numpy.random.seed", "numpy.around", "numpy.cos", "numpy.random.ranf", "numpy.pad", "sf_tools.image.stamp.postage_stamp" ]
[((610, 631), 'numpy.array', 'np.array', (['stamp_shape'], {}), '(stamp_shape)\n', (618, 631), True, 'import numpy as np\n'), ((1178, 1193), 'lmfit.models.GaussianModel', 'GaussianModel', ([], {}), '()\n', (1191, 1193), False, 'from lmfit.models import GaussianModel, ConstantModel\n'), ((1472, 1493), 'numpy.arange', 'np.arange', (['sum_x.size'], {}), '(sum_x.size)\n', (1481, 1493), True, 'import numpy as np\n'), ((2455, 2485), 'numpy.pad', 'np.pad', (['image', 'pad', '"""constant"""'], {}), "(image, pad, 'constant')\n", (2461, 2485), True, 'import numpy as np\n'), ((5174, 5192), 'numpy.array', 'np.array', (['ps_shape'], {}), '(ps_shape)\n', (5182, 5192), True, 'import numpy as np\n'), ((5495, 5530), 'numpy.pad', 'np.pad', (['image1', 'padding', '"""constant"""'], {}), "(image1, padding, 'constant')\n", (5501, 5530), True, 'import numpy as np\n'), ((5551, 5576), 'numpy.array', 'np.array', (['new_image.shape'], {}), '(new_image.shape)\n', (5559, 5576), True, 'import numpy as np\n'), ((5934, 5999), 'sf_tools.image.stamp.postage_stamp', 'postage_stamp', (['new_image'], {'pos': 'new_centre', 'pixel_rad': '(ps_shape // 2)'}), '(new_image, pos=new_centre, pixel_rad=ps_shape // 2)\n', (5947, 5999), False, 'from sf_tools.image.stamp import postage_stamp\n'), ((6192, 6213), 'numpy.array', 'np.array', (['image.shape'], {}), '(image.shape)\n', (6200, 6213), True, 'import numpy as np\n'), ((6283, 6304), 'modopt.base.np_adjust.pad2d', 'pad2d', (['image', 'padding'], {}), '(image, padding)\n', (6288, 6304), False, 'from modopt.base.np_adjust import pad2d\n'), ((7625, 7641), 'numpy.array', 'np.array', (['blends'], {}), '(blends)\n', (7633, 7641), True, 'import numpy as np\n'), ((7920, 7933), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (7928, 7933), True, 'import numpy as np\n'), ((1954, 1974), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1968, 1974), True, 'import numpy as np\n'), ((3057, 3073), 'numpy.array', 'np.array', (['shape1'], {}), '(shape1)\n', (3065, 3073), True, 'import numpy as np\n'), ((3075, 3091), 'numpy.array', 'np.array', (['shape2'], {}), '(shape2)\n', (3083, 3091), True, 'import numpy as np\n'), ((3108, 3123), 'numpy.prod', 'np.prod', (['shape1'], {}), '(shape1)\n', (3115, 3123), True, 'import numpy as np\n'), ((3126, 3141), 'numpy.prod', 'np.prod', (['shape2'], {}), '(shape2)\n', (3133, 3141), True, 'import numpy as np\n'), ((3435, 3451), 'numpy.array', 'np.array', (['centre'], {}), '(centre)\n', (3443, 3451), True, 'import numpy as np\n'), ((3453, 3466), 'numpy.array', 'np.array', (['box'], {}), '(box)\n', (3461, 3466), True, 'import numpy as np\n'), ((3468, 3484), 'numpy.array', 'np.array', (['limits'], {}), '(limits)\n', (3476, 3484), True, 'import numpy as np\n'), ((5081, 5103), 'numpy.array', 'np.array', (['image1.shape'], {}), '(image1.shape)\n', (5089, 5103), True, 'import numpy as np\n'), ((5105, 5127), 'numpy.array', 'np.array', (['image2.shape'], {}), '(image2.shape)\n', (5113, 5127), True, 'import numpy as np\n'), ((1992, 2008), 'numpy.random.ranf', 'np.random.ranf', ([], {}), '()\n', (2006, 2008), True, 'import numpy as np\n'), ((2144, 2160), 'numpy.random.ranf', 'np.random.ranf', ([], {}), '()\n', (2158, 2160), True, 'import numpy as np\n'), ((3531, 3588), 'numpy.random.randint', 'np.random.randint', (['(centre[i] - box[i])', '(centre[i] + box[i])'], {}), '(centre[i] - box[i], centre[i] + box[i])\n', (3548, 3588), True, 'import numpy as np\n'), ((3877, 3922), 'numpy.random.randint', 'np.random.randint', (['limits[0][0]', 'limits[1][0]'], {}), '(limits[0][0], limits[1][0])\n', (3894, 3922), True, 'import numpy as np\n'), ((3954, 4005), 'numpy.random.randint', 'np.random.randint', (['limits[0][1]', '(centre[1] - box[1])'], {}), '(limits[0][1], centre[1] - box[1])\n', (3971, 4005), True, 'import numpy as np\n'), ((5336, 5358), 'numpy.around', 'np.around', (['(sigma * dis)'], {}), '(sigma * dis)\n', (5345, 5358), True, 'import numpy as np\n'), ((6749, 6774), 'sf_tools.image.distort.recentre', 'recentre', (['image1', 'centre1'], {}), '(image1, centre1)\n', (6757, 6774), False, 'from sf_tools.image.distort import recentre\n'), ((6813, 6838), 'sf_tools.image.distort.recentre', 'recentre', (['image2', 'centre2'], {}), '(image2, centre2)\n', (6821, 6838), False, 'from sf_tools.image.distort import recentre\n'), ((7216, 7238), 'numpy.array', 'np.array', (['image1.shape'], {}), '(image1.shape)\n', (7224, 7238), True, 'import numpy as np\n'), ((7266, 7282), 'numpy.copy', 'np.copy', (['im1_cen'], {}), '(im1_cen)\n', (7273, 7282), True, 'import numpy as np\n'), ((1290, 1302), 'numpy.max', 'np.max', (['yval'], {}), '(yval)\n', (1296, 1302), True, 'import numpy as np\n'), ((2071, 2087), 'numpy.random.ranf', 'np.random.ranf', ([], {}), '()\n', (2085, 2087), True, 'import numpy as np\n'), ((2200, 2213), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2206, 2213), True, 'import numpy as np\n'), ((2246, 2259), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2252, 2259), True, 'import numpy as np\n'), ((4118, 4163), 'numpy.random.randint', 'np.random.randint', (['limits[0][0]', 'limits[1][0]'], {}), '(limits[0][0], limits[1][0])\n', (4135, 4163), True, 'import numpy as np\n'), ((4195, 4246), 'numpy.random.randint', 'np.random.randint', (['(centre[1] + box[1])', 'limits[1][1]'], {}), '(centre[1] + box[1], limits[1][1])\n', (4212, 4246), True, 'import numpy as np\n'), ((7285, 7300), 'numpy.array', 'np.array', (['shift'], {}), '(shift)\n', (7293, 7300), True, 'import numpy as np\n'), ((4359, 4410), 'numpy.random.randint', 'np.random.randint', (['limits[0][0]', '(centre[0] - box[0])'], {}), '(limits[0][0], centre[0] - box[0])\n', (4376, 4410), True, 'import numpy as np\n'), ((4491, 4548), 'numpy.random.randint', 'np.random.randint', (['(centre[1] - box[1])', '(centre[1] + box[1])'], {}), '(centre[1] - box[1], centre[1] + box[1])\n', (4508, 4548), True, 'import numpy as np\n'), ((4661, 4712), 'numpy.random.randint', 'np.random.randint', (['(centre[0] + box[0])', 'limits[1][1]'], {}), '(centre[0] + box[0], limits[1][1])\n', (4678, 4712), True, 'import numpy as np\n'), ((4793, 4850), 'numpy.random.randint', 'np.random.randint', (['(centre[1] - box[1])', '(centre[1] + box[1])'], {}), '(centre[1] - box[1], centre[1] + box[1])\n', (4810, 4850), True, 'import numpy as np\n')]
import os import sys import argparse import onnx import time import subprocess import numpy as np import tempfile from onnx import numpy_helper from collections import OrderedDict # Command arguments. parser = argparse.ArgumentParser() parser.add_argument('model_path', type=str, help="Path to the ONNX model.") parser.add_argument('--print_input', action='store_true', help="Print out inputs") parser.add_argument('--print_output', action='store_true', help="Print out outputs") parser.add_argument('--compile_args', type=str, default="", help="Arguments passed directly to onnx-mlir command." " See bin/onnx-mlir --help") parser.add_argument( '--shape_info', type=str, help="Shape for each dynamic input, e.g. 0:1x10x20,1:7x5x3") parser.add_argument('--verify', choices=['onnxruntime', 'ref'], help="Verify the output by using onnxruntime or reference" " inputs/outputs. By default, no verification") parser.add_argument( '--ref_folder', type=str, help="Path to the folder containing reference inputs and outputs stored" " in protobuf. Used when --verify=ref") parser.add_argument('--rtol', type=str, default="0.05", help="Relative tolerance for verification") parser.add_argument('--atol', type=str, default="0.01", help="Absolute tolerance for verification") args = parser.parse_args() if (not os.environ.get('ONNX_MLIR_HOME', None)): raise RuntimeError( "Environment variable ONNX_MLIR_HOME is not set, please set it to the path to " "the HOME directory for onnx-mlir. The HOME directory for onnx-mlir refers to " "the parent folder containing the bin, lib, etc sub-folders in which ONNX-MLIR " "executables and libraries can be found.") VERBOSE = os.environ.get('VERBOSE', False) ONNX_MLIR_EXENAME = "onnx-mlir" if sys.platform == "win32": ONNX_MLIR_EXENAME = "onnx-mlir.exe" ONNX_MLIR = os.path.join(os.environ['ONNX_MLIR_HOME'], "bin", ONNX_MLIR_EXENAME) # Include runtime directory in python paths, so PyRuntime can be imported. RUNTIME_DIR = os.path.join(os.environ['ONNX_MLIR_HOME'], "lib") sys.path.append(RUNTIME_DIR) try: from PyRuntime import ExecutionSession except ImportError: raise ImportError( "Looks like you did not build the PyRuntime target, build it by running `make PyRuntime`." ) def ordinal(n): suffix = ['th', 'st', 'nd', 'rd', 'th'][min(n % 10, 4)] if 11 <= (n % 100) <= 13: suffix = 'th' return str(n) + suffix def execute_commands(cmds): if (VERBOSE): print(cmds) subprocess.call(cmds, shell=True) def extend_model_output(model, intermediate_outputs): # onnx-mlir doesn't care about manually specified output types & shapes. DUMMY_TENSOR_TYPE = onnx.TensorProto.FLOAT while (len(model.graph.output)): model.graph.output.pop() for output_name in intermediate_outputs: output_value_info = onnx.helper.make_tensor_value_info( output_name, DUMMY_TENSOR_TYPE, None) model.graph.output.extend([output_value_info]) return model def read_input_from_refs(model, ref_folder): print("Reading inputs from {} ...".format(ref_folder)) i = 0 inputs = [] input_names = [] initializers = list(map(lambda x: x.name, model.graph.initializer)) for input_proto in model.graph.input: if input_proto.name not in initializers: input_names.append(input_proto.name) input_file = ref_folder + '/input_{}.pb'.format(i) input_ts = onnx.TensorProto() with open(input_file, 'rb') as f: input_ts.ParseFromString(f.read()) inputs += [numpy_helper.to_array(input_ts)] i += 1 print(" done.\n") return (inputs, input_names) def read_output_from_refs(model, ref_folder): print("Reading reference outputs from {} ...".format(ref_folder)) reference_output = [] for i, _ in enumerate(model.graph.output): output_file = ref_folder + '/output_{}.pb'.format(i) output_ts = onnx.TensorProto() with open(output_file, 'rb') as f: output_ts.ParseFromString(f.read()) reference_output += [numpy_helper.to_array(output_ts)] print(" done.\n") return reference_output def generate_random_input(model, input_shapes): print("Generating random inputs ...") # Generate random data as input. inputs = [] input_names = [] initializers = list(map(lambda x: x.name, model.graph.initializer)) np.random.seed(42) for i, input_proto in enumerate(model.graph.input): if input_proto.name in initializers: continue input_names.append(input_proto.name) shape_proto = input_proto.type.tensor_type.shape explicit_shape = [] for d, dim in enumerate(shape_proto.dim): if dim.dim_value: explicit_shape.append(dim.dim_value) continue if i in input_shapes: if d < len(input_shapes[i]): explicit_shape.append(input_shapes[i][d]) else: print("The {} dim".format(ordinal(d + 1)), "of the {} input is unknown.".format(ordinal(i + 1)), "Use --shape_info to set.") print(shape_proto) exit() else: print("The shape of the {} input".format(ordinal(i + 1)), "is unknown. Use --shape_info to set.") print(shape_proto) exit() inputs.append( np.random.uniform(-1.0, 1.0, explicit_shape).astype(np.float32)) print(" done.\n") return (inputs, input_names) def main(): # Get shape information if given. # args.shape_info in the form of 'input_index:d1xd2, input_index:d1xd2' input_shapes = {} if args.shape_info: for input_shape in args.shape_info.strip().split(","): input_index_shape = input_shape.split(":") input_index = input_index_shape[0] assert not (input_index in input_shapes), "Duplicate input indices" dims = [int(d) for d in input_index_shape[1].split("x")] input_shapes[int(input_index)] = dims # Load the onnx model. model = onnx.load(args.model_path) # Get the output names that we want to verify. # If using onnxruntime for verification, we can verify every operation output. output_names = [o.name for o in model.graph.output] output_names = list(OrderedDict.fromkeys(output_names)) if (args.verify and args.verify == "onnxruntime"): output_names = sum([[n for n in node.output if n != ''] for node in model.graph.node], []) output_names = list(OrderedDict.fromkeys(output_names)) model = extend_model_output(model, output_names) # Compile, run, and verify. with tempfile.TemporaryDirectory() as temp_dir: print("Temporary directory has been created at {}".format(temp_dir)) print("Compiling the model ...") # Save modified model & invoke onnx-mlir to compile it. temp_model_path = os.path.join(temp_dir, "model.onnx") onnx.save(model, temp_model_path) command_str = ONNX_MLIR if args.compile_args: command_str += " " + args.compile_args command_str += " " + temp_model_path start = time.perf_counter() execute_commands(command_str) end = time.perf_counter() print(" took ", end - start, " seconds.\n") # Prepare input data. inputs = [] input_names = [] if (args.verify and args.verify.lower() == "ref"): assert args.ref_folder, "No reference folder given" inputs, input_names = read_input_from_refs(model, args.ref_folder) else: inputs, input_names = generate_random_input(model, input_shapes) # Print the input if required. if (args.print_input): for i, inp in enumerate(inputs): print("The {} input {}:{} is: \n {} \n".format( ordinal(i + 1), input_names[i], list(inp.shape), inp)) print("Running inference ...") temp_shared_lib_path = os.path.join(temp_dir, "model.so") start = time.perf_counter() # Use the generated shared library to create an execution session. sess = ExecutionSession(temp_shared_lib_path, "run_main_graph") outs = sess.run(inputs) end = time.perf_counter() print(" took ", end - start, " seconds.\n") # Print the output if required. if (args.print_output): for i, out in enumerate(outs): print("The {} output {}:{} is: \n {} \n".format( ordinal(i + 1), output_names[i], list(out.shape), out)) # Run the model with reference backend and get results. if (args.verify): ref_outs = [] if (args.verify.lower() == "onnxruntime"): # Reference backend by using onnxruntime. import onnxruntime output_names = list(map(lambda x: x.name, model.graph.output)) input_feed = dict(zip(input_names, inputs)) print("Running inference using onnxruntime ...") start = time.perf_counter() ref_session = onnxruntime.InferenceSession(temp_model_path) ref_outs = ref_session.run(output_names, input_feed) end = time.perf_counter() print(" took ", end - start, " seconds.\n") elif (args.verify.lower() == "ref"): ref_outs = read_output_from_refs(model, args.ref_folder) else: print("Invalid verify option") exit() # For each output tensor, compare results. for i, name in enumerate(output_names): print("Verifying value of {}:{}".format(name, list(outs[i].shape)), "using atol={}, rtol={} ...".format(args.atol, args.rtol)) total_elements = 0 mismatched_elements = 0 for index, actual_val in np.ndenumerate(outs[i]): total_elements += 1 ref_val = ref_outs[i][index] # Use equation atol + rtol * abs(desired), that is used in assert_allclose. diff = float(args.atol) + float(args.rtol) * abs(ref_val) if (abs(actual_val - ref_val) <= diff): continue mismatched_elements += 1 print(" at {}".format(index), "mismatch {} (actual)".format(actual_val), "vs {} (reference)".format(ref_val)) if mismatched_elements == 0: print(" correct.\n".format( args.atol, args.rtol)) else: print(" mismatched elements {}/{}.\n".format( mismatched_elements, total_elements)) if __name__ == '__main__': main()
[ "PyRuntime.ExecutionSession", "tempfile.TemporaryDirectory", "onnx.save", "collections.OrderedDict.fromkeys", "argparse.ArgumentParser", "onnx.helper.make_tensor_value_info", "os.path.join", "os.environ.get", "time.perf_counter", "onnxruntime.InferenceSession", "onnx.TensorProto", "numpy.ndenumerate", "numpy.random.uniform", "subprocess.call", "numpy.random.seed", "onnx.load", "onnx.numpy_helper.to_array", "sys.path.append" ]
[((212, 237), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (235, 237), False, 'import argparse\n'), ((2061, 2093), 'os.environ.get', 'os.environ.get', (['"""VERBOSE"""', '(False)'], {}), "('VERBOSE', False)\n", (2075, 2093), False, 'import os\n'), ((2208, 2276), 'os.path.join', 'os.path.join', (["os.environ['ONNX_MLIR_HOME']", '"""bin"""', 'ONNX_MLIR_EXENAME'], {}), "(os.environ['ONNX_MLIR_HOME'], 'bin', ONNX_MLIR_EXENAME)\n", (2220, 2276), False, 'import os\n'), ((2392, 2441), 'os.path.join', 'os.path.join', (["os.environ['ONNX_MLIR_HOME']", '"""lib"""'], {}), "(os.environ['ONNX_MLIR_HOME'], 'lib')\n", (2404, 2441), False, 'import os\n'), ((2442, 2470), 'sys.path.append', 'sys.path.append', (['RUNTIME_DIR'], {}), '(RUNTIME_DIR)\n', (2457, 2470), False, 'import sys\n'), ((1669, 1707), 'os.environ.get', 'os.environ.get', (['"""ONNX_MLIR_HOME"""', 'None'], {}), "('ONNX_MLIR_HOME', None)\n", (1683, 1707), False, 'import os\n'), ((2897, 2930), 'subprocess.call', 'subprocess.call', (['cmds'], {'shell': '(True)'}), '(cmds, shell=True)\n', (2912, 2930), False, 'import subprocess\n'), ((4850, 4868), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (4864, 4868), True, 'import numpy as np\n'), ((6651, 6677), 'onnx.load', 'onnx.load', (['args.model_path'], {}), '(args.model_path)\n', (6660, 6677), False, 'import onnx\n'), ((3256, 3328), 'onnx.helper.make_tensor_value_info', 'onnx.helper.make_tensor_value_info', (['output_name', 'DUMMY_TENSOR_TYPE', 'None'], {}), '(output_name, DUMMY_TENSOR_TYPE, None)\n', (3290, 3328), False, 'import onnx\n'), ((4384, 4402), 'onnx.TensorProto', 'onnx.TensorProto', ([], {}), '()\n', (4400, 4402), False, 'import onnx\n'), ((6893, 6927), 'collections.OrderedDict.fromkeys', 'OrderedDict.fromkeys', (['output_names'], {}), '(output_names)\n', (6913, 6927), False, 'from collections import OrderedDict\n'), ((7274, 7303), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (7301, 7303), False, 'import tempfile\n'), ((7526, 7562), 'os.path.join', 'os.path.join', (['temp_dir', '"""model.onnx"""'], {}), "(temp_dir, 'model.onnx')\n", (7538, 7562), False, 'import os\n'), ((7571, 7604), 'onnx.save', 'onnx.save', (['model', 'temp_model_path'], {}), '(model, temp_model_path)\n', (7580, 7604), False, 'import onnx\n'), ((7779, 7798), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7796, 7798), False, 'import time\n'), ((7851, 7870), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7868, 7870), False, 'import time\n'), ((8618, 8652), 'os.path.join', 'os.path.join', (['temp_dir', '"""model.so"""'], {}), "(temp_dir, 'model.so')\n", (8630, 8652), False, 'import os\n'), ((8669, 8688), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (8686, 8688), False, 'import time\n'), ((8779, 8835), 'PyRuntime.ExecutionSession', 'ExecutionSession', (['temp_shared_lib_path', '"""run_main_graph"""'], {}), "(temp_shared_lib_path, 'run_main_graph')\n", (8795, 8835), False, 'from PyRuntime import ExecutionSession\n'), ((8882, 8901), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (8899, 8901), False, 'import time\n'), ((3865, 3883), 'onnx.TensorProto', 'onnx.TensorProto', ([], {}), '()\n', (3881, 3883), False, 'import onnx\n'), ((4523, 4555), 'onnx.numpy_helper.to_array', 'numpy_helper.to_array', (['output_ts'], {}), '(output_ts)\n', (4544, 4555), False, 'from onnx import numpy_helper\n'), ((7139, 7173), 'collections.OrderedDict.fromkeys', 'OrderedDict.fromkeys', (['output_names'], {}), '(output_names)\n', (7159, 7173), False, 'from collections import OrderedDict\n'), ((4004, 4035), 'onnx.numpy_helper.to_array', 'numpy_helper.to_array', (['input_ts'], {}), '(input_ts)\n', (4025, 4035), False, 'from onnx import numpy_helper\n'), ((9705, 9724), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9722, 9724), False, 'import time\n'), ((9755, 9800), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['temp_model_path'], {}), '(temp_model_path)\n', (9783, 9800), False, 'import onnxruntime\n'), ((9892, 9911), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9909, 9911), False, 'import time\n'), ((10572, 10595), 'numpy.ndenumerate', 'np.ndenumerate', (['outs[i]'], {}), '(outs[i])\n', (10586, 10595), True, 'import numpy as np\n'), ((5952, 5996), 'numpy.random.uniform', 'np.random.uniform', (['(-1.0)', '(1.0)', 'explicit_shape'], {}), '(-1.0, 1.0, explicit_shape)\n', (5969, 5996), True, 'import numpy as np\n')]
# Copyright (c) 2020, TU Wien, Department of Geodesy and Geoinformation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of TU Wien, Department of Geodesy and Geoinformation # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL TU WIEN DEPARTMENT OF GEODESY AND # GEOINFORMATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np def db2lin(val): """ Converting from linear to dB domain. Parameters ---------- val : numpy.ndarray Values in dB domain. Returns ------- val : numpy.ndarray Values in linear domain. """ return 10 ** (val / 10.) def lin2db(val): """ Converting from linear to dB domain. Parameters ---------- val : numpy.ndarray Values in linear domain. Returns ------- val : numpy.ndarray Values in dB domain. """ return 10. * np.log10(val) def get_window_radius(window, hp_radius): """ Calculates the required radius of a window function in order to achieve the provided half power radius. Parameters ---------- window : string Window function name. Current supported windows: - Hamming - Boxcar hp_radius : float32 Half power radius. Radius of window function for weight equal to 0.5 (-3 dB). In the spatial domain this corresponds to half of the spatial resolution one would like to achieve with the given window. Returns ------- r : float32 Window radius needed to achieve the given half power radius """ window = window.lower() hp_weight = 0.5 if window == 'hamming': alpha = 0.54 r = (np.pi * hp_radius) / np.arccos((hp_weight-alpha) / (1-alpha)) elif window == 'boxcar': r = hp_radius else: raise ValueError('Window name not supported.') return r def hamming_window(radius, distances): """ Hamming window filter. Parameters ---------- radius : float32 Radius of the window. distances : numpy.ndarray Array with distances. Returns ------- weights : numpy.ndarray Distance weights. tw : float32 Sum of weigths. """ alpha = 0.54 weights = alpha + (1 - alpha) * np.cos(np.pi / radius * distances) return weights, np.sum(weights) def boxcar(radius, distance): """ Boxcar filter Parameters ---------- n : int Length. Returns ------- weights : numpy.ndarray Distance weights. tw : float32 Sum of weigths. """ weights = np.zeros(distance.size) weights[distance <= radius] = 1. return weights, np.sum(weights) def get_window_weights(window, radius, distance, norm=False): """ Function returning weights for the provided window function Parameters ---------- window : str Window function name radius : float Radius of the window. distance : numpy.ndarray Distance array norm : boolean If true, normalised weights will be returned. Returns ------- weights : numpy.ndarray Weights according to distances and given window function """ if window == 'hamming': weights, w_sum = hamming_window(radius, distance) elif window == 'boxcar': weights, w_sum = boxcar(radius, distance) else: raise ValueError('Window name not supported.') if norm is True: weights = weights / w_sum return weights
[ "numpy.log10", "numpy.arccos", "numpy.sum", "numpy.zeros", "numpy.cos" ]
[((3934, 3957), 'numpy.zeros', 'np.zeros', (['distance.size'], {}), '(distance.size)\n', (3942, 3957), True, 'import numpy as np\n'), ((2192, 2205), 'numpy.log10', 'np.log10', (['val'], {}), '(val)\n', (2200, 2205), True, 'import numpy as np\n'), ((3659, 3674), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (3665, 3674), True, 'import numpy as np\n'), ((4016, 4031), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (4022, 4031), True, 'import numpy as np\n'), ((3033, 3077), 'numpy.arccos', 'np.arccos', (['((hp_weight - alpha) / (1 - alpha))'], {}), '((hp_weight - alpha) / (1 - alpha))\n', (3042, 3077), True, 'import numpy as np\n'), ((3603, 3637), 'numpy.cos', 'np.cos', (['(np.pi / radius * distances)'], {}), '(np.pi / radius * distances)\n', (3609, 3637), True, 'import numpy as np\n')]
"""fasterRCNN对象创建""" import numpy as np import colorsys import os from keras import backend as K from keras.applications.imagenet_utils import preprocess_input from PIL import Image, ImageFont, ImageDraw import copy import math from net import fasterrcnn as frcnn from net import netconfig as netconfig from net import RPN as RPN from net import tools as tools class FasterRCNN(object): _defaults = { "model_path": './model_data/logs/epoch015-loss1.729-rpn1.025-roi0.704.h5', "classes_path": './model_data/index.txt', "confidence": 0.7, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): """初始化faster RCNN""" self.__dict__.update(self._defaults) self.class_names = self._get_class() self.sess = K.get_session() self.config = netconfig.Config() self.generate() self.bbox_util = tools.BBoxUtility() self.confidence = 0.7 self.classes_path='./model_data/index.txt' self.model_path='./model_data/logs/epoch015-loss1.729-rpn1.025-roi0.704.h5' def _get_class(self): """获得所有的分类""" classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def generate(self): """获得所有的分类""" model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # 计算总的种类 self.num_classes = len(self.class_names) + 1 # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。 # 否则先构建模型再载入 self.model_rpn, self.model_classifier = frcnn.get_predict_model(self.config, self.num_classes) self.model_rpn.load_weights(self.model_path, by_name=True) self.model_classifier.load_weights(self.model_path, by_name=True, skip_mismatch=True) print('{} model, anchors, and classes loaded.'.format(model_path)) # 画框设置不同的颜色 hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) def get_img_output_length(self, width, height): def get_output_length(input_length): # input_length += 6 filter_sizes = [7, 3, 1, 1] padding = [3, 1, 0, 0] stride = 2 for i in range(4): # input_length = (input_length - filter_size + stride) // stride input_length = (input_length + 2 * padding[i] - filter_sizes[i]) // stride + 1 return input_length return get_output_length(width), get_output_length(height) def detect_image(self, image): """检测图片""" image_shape = np.array(np.shape(image)[0:2]) old_width = image_shape[1] old_height = image_shape[0] # 保存原始图片 old_image = copy.deepcopy(image) # 把图片的最短边resize到600 width, height = tools.get_new_img_size(old_width, old_height) image = image.resize([width, height]) # 图片转成数组 photo = np.array(image, dtype=np.float64) # 图片预处理,归一化 photo = preprocess_input(np.expand_dims(photo, 0)) # 使用RPN预测,获得概率x_class和x_regr preds = self.model_rpn.predict(photo) # 将预测结果进行解码 # 获得所有先验框 anchors = RPN.create_anchor(self.get_img_output_length(width, height), width, height) # 解码获得建议框,这里得到了300个建议框,注意其坐标均为0-1间 rpn_results = self.bbox_util.detection_out(preds, anchors, 1, confidence_threshold=0) # 将返回的0-1的建议框映射到共享特征图,如果特征图为38*38,值域变成0-38之间,R为300行4列,分别是左上角右下角坐标 R = rpn_results[0][:, 2:] R[:, 0] = np.array(np.round(R[:, 0] * width / self.config.rpn_stride), dtype=np.int32) R[:, 1] = np.array(np.round(R[:, 1] * height / self.config.rpn_stride), dtype=np.int32) R[:, 2] = np.array(np.round(R[:, 2] * width / self.config.rpn_stride), dtype=np.int32) R[:, 3] = np.array(np.round(R[:, 3] * height / self.config.rpn_stride), dtype=np.int32) print(R) # R转换一下,前两列是左上角坐标,后两列是宽和高 R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] base_layer = preds[2] delete_line = [] for i, r in enumerate(R): if r[2] < 1 or r[3] < 1: delete_line.append(i) R = np.delete(R, delete_line, axis=0) bboxes = [] probs = [] labels = [] # 分批次遍历建议框,每批32个 for jk in range(R.shape[0] // self.config.num_rois + 1): # 取出32个建议框 ROIs = np.expand_dims(R[self.config.num_rois * jk:self.config.num_rois * (jk + 1), :], axis=0) # 判断建议框是否有效 if ROIs.shape[1] == 0: break # 对最后一次整除不全,不能到32个的建议框小批进行填充 if jk == R.shape[0] // self.config.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], self.config.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded # 将共享特征层和建议框传入end_classifier进行预测 # P_cls为(Batch_size,32个建议框,21) # P_regr为(Batch_size,32个建议框,80) [P_cls, P_regr] = self.model_classifier.predict([base_layer, ROIs]) # 判断输出的每批中每个建议框是否真实包含我们要的物体,本身置信度阈值设置为0.9,如果是背景也要跳过 for ii in range(P_cls.shape[1]): # P_cls[0, ii, :-1]是21个概率组成的列表 if np.max(P_cls[0, ii, :-1]) < self.confidence or np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue # 获得label label = np.argmax(P_cls[0, ii, :-1]) # 获得坐标信息 (x, y, w, h) = ROIs[0, ii, :] # 其实就是label cls_num = np.argmax(P_cls[0, ii, :-1]) # 获取框的信息,并改变数量级 (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= self.config.classifier_regr_std[0] ty /= self.config.classifier_regr_std[1] tw /= self.config.classifier_regr_std[2] th /= self.config.classifier_regr_std[3] # 获取到共享特征层上真实的坐标信息 cx = x + w / 2. cy = y + h / 2. cx1 = tx * w + cx cy1 = ty * h + cy w1 = math.exp(tw) * w h1 = math.exp(th) * h x1 = cx1 - w1 / 2. y1 = cy1 - h1 / 2. x2 = cx1 + w1 / 2 y2 = cy1 + h1 / 2 x1 = int(round(x1)) y1 = int(round(y1)) x2 = int(round(x2)) y2 = int(round(y2)) # bboxes是最终从300个建议框过滤出来与目标物体对应的建议框 # 但注意,这里的建议框还是存在重叠现象,因为之前仅仅靠物体置信度来筛选 bboxes.append([x1, y1, x2, y2]) probs.append(np.max(P_cls[0, ii, :-1])) labels.append(label) # 没检测到物体,返回 if len(bboxes) == 0: return old_image # 将38*38特征层的建议框映射到600*600 # 筛选出其中得分高于confidence的框,因此此时需要再次NMS删除重叠框 labels = np.array(labels) probs = np.array(probs) boxes = np.array(bboxes, dtype=np.float32) boxes[:, 0] = boxes[:, 0] * self.config.rpn_stride / width boxes[:, 1] = boxes[:, 1] * self.config.rpn_stride / height boxes[:, 2] = boxes[:, 2] * self.config.rpn_stride / width boxes[:, 3] = boxes[:, 3] * self.config.rpn_stride / height results = np.array( self.bbox_util.nms_for_out(np.array(labels), np.array(probs), np.array(boxes), self.num_classes - 1, 0.4)) top_label_indices = results[:, 0] top_conf = results[:, 1] boxes = results[:, 2:] #top_label_indices=labels #top_conf=probs # 大小调整到原图上,此时已经完成了建议框的计算 boxes[:, 0] = boxes[:, 0] * old_width boxes[:, 1] = boxes[:, 1] * old_height boxes[:, 2] = boxes[:, 2] * old_width boxes[:, 3] = boxes[:, 3] * old_height # simhei.ttf用于设置字体 font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32')) thickness = (np.shape(old_image)[0] + np.shape(old_image)[1]) // old_width * 2 image = old_image for i, c in enumerate(top_label_indices): predicted_class = self.class_names[int(c)] score = top_conf[i] left, top, right, bottom = boxes[i] top = top - 5 left = left - 5 bottom = bottom + 5 right = right + 5 top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32')) right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32')) # 画框框 label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) label_size = draw.textsize(label, font) label = label.encode('utf-8') print(label) if top - label_size[1] >= 0: text_origin = np.array([left, top - label_size[1]]) else: text_origin = np.array([left, top + 1]) for i in range(thickness): draw.rectangle( [left + i, top + i, right - i, bottom - i], outline=self.colors[int(c)]) draw.rectangle( [tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[int(c)]) draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font) del draw return image def close(self): self.sess.close()
[ "net.tools.get_new_img_size", "colorsys.hsv_to_rgb", "numpy.array", "PIL.ImageDraw.Draw", "copy.deepcopy", "math.exp", "numpy.delete", "numpy.max", "numpy.round", "os.path.expanduser", "net.tools.BBoxUtility", "net.fasterrcnn.get_predict_model", "numpy.floor", "numpy.argmax", "numpy.shape", "net.netconfig.Config", "keras.backend.get_session", "numpy.zeros", "numpy.expand_dims" ]
[((938, 953), 'keras.backend.get_session', 'K.get_session', ([], {}), '()\n', (951, 953), True, 'from keras import backend as K\n'), ((976, 994), 'net.netconfig.Config', 'netconfig.Config', ([], {}), '()\n', (992, 994), True, 'from net import netconfig as netconfig\n'), ((1044, 1063), 'net.tools.BBoxUtility', 'tools.BBoxUtility', ([], {}), '()\n', (1061, 1063), True, 'from net import tools as tools\n'), ((1301, 1338), 'os.path.expanduser', 'os.path.expanduser', (['self.classes_path'], {}), '(self.classes_path)\n', (1319, 1338), False, 'import os\n'), ((1567, 1602), 'os.path.expanduser', 'os.path.expanduser', (['self.model_path'], {}), '(self.model_path)\n', (1585, 1602), False, 'import os\n'), ((1871, 1925), 'net.fasterrcnn.get_predict_model', 'frcnn.get_predict_model', (['self.config', 'self.num_classes'], {}), '(self.config, self.num_classes)\n', (1894, 1925), True, 'from net import fasterrcnn as frcnn\n'), ((3270, 3290), 'copy.deepcopy', 'copy.deepcopy', (['image'], {}), '(image)\n', (3283, 3290), False, 'import copy\n'), ((3344, 3389), 'net.tools.get_new_img_size', 'tools.get_new_img_size', (['old_width', 'old_height'], {}), '(old_width, old_height)\n', (3366, 3389), True, 'from net import tools as tools\n'), ((3469, 3502), 'numpy.array', 'np.array', (['image'], {'dtype': 'np.float64'}), '(image, dtype=np.float64)\n', (3477, 3502), True, 'import numpy as np\n'), ((4711, 4744), 'numpy.delete', 'np.delete', (['R', 'delete_line'], {'axis': '(0)'}), '(R, delete_line, axis=0)\n', (4720, 4744), True, 'import numpy as np\n'), ((7633, 7649), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (7641, 7649), True, 'import numpy as np\n'), ((7666, 7681), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (7674, 7681), True, 'import numpy as np\n'), ((7698, 7732), 'numpy.array', 'np.array', (['bboxes'], {'dtype': 'np.float32'}), '(bboxes, dtype=np.float32)\n', (7706, 7732), True, 'import numpy as np\n'), ((3557, 3581), 'numpy.expand_dims', 'np.expand_dims', (['photo', '(0)'], {}), '(photo, 0)\n', (3571, 3581), True, 'import numpy as np\n'), ((4073, 4123), 'numpy.round', 'np.round', (['(R[:, 0] * width / self.config.rpn_stride)'], {}), '(R[:, 0] * width / self.config.rpn_stride)\n', (4081, 4123), True, 'import numpy as np\n'), ((4168, 4219), 'numpy.round', 'np.round', (['(R[:, 1] * height / self.config.rpn_stride)'], {}), '(R[:, 1] * height / self.config.rpn_stride)\n', (4176, 4219), True, 'import numpy as np\n'), ((4264, 4314), 'numpy.round', 'np.round', (['(R[:, 2] * width / self.config.rpn_stride)'], {}), '(R[:, 2] * width / self.config.rpn_stride)\n', (4272, 4314), True, 'import numpy as np\n'), ((4359, 4410), 'numpy.round', 'np.round', (['(R[:, 3] * height / self.config.rpn_stride)'], {}), '(R[:, 3] * height / self.config.rpn_stride)\n', (4367, 4410), True, 'import numpy as np\n'), ((4938, 5029), 'numpy.expand_dims', 'np.expand_dims', (['R[self.config.num_rois * jk:self.config.num_rois * (jk + 1), :]'], {'axis': '(0)'}), '(R[self.config.num_rois * jk:self.config.num_rois * (jk + 1),\n :], axis=0)\n', (4952, 5029), True, 'import numpy as np\n'), ((9503, 9524), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['image'], {}), '(image)\n', (9517, 9524), False, 'from PIL import Image, ImageFont, ImageDraw\n'), ((3140, 3155), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (3148, 3155), True, 'import numpy as np\n'), ((6153, 6181), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :-1]'], {}), '(P_cls[0, ii, :-1])\n', (6162, 6181), True, 'import numpy as np\n'), ((6308, 6336), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :-1]'], {}), '(P_cls[0, ii, :-1])\n', (6317, 6336), True, 'import numpy as np\n'), ((8070, 8086), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (8078, 8086), True, 'import numpy as np\n'), ((8088, 8103), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (8096, 8103), True, 'import numpy as np\n'), ((8105, 8120), 'numpy.array', 'np.array', (['boxes'], {}), '(boxes)\n', (8113, 8120), True, 'import numpy as np\n'), ((9716, 9753), 'numpy.array', 'np.array', (['[left, top - label_size[1]]'], {}), '([left, top - label_size[1]])\n', (9724, 9753), True, 'import numpy as np\n'), ((9802, 9827), 'numpy.array', 'np.array', (['[left, top + 1]'], {}), '([left, top + 1])\n', (9810, 9827), True, 'import numpy as np\n'), ((2344, 2367), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['*x'], {}), '(*x)\n', (2363, 2367), False, 'import colorsys\n'), ((6867, 6879), 'math.exp', 'math.exp', (['tw'], {}), '(tw)\n', (6875, 6879), False, 'import math\n'), ((6905, 6917), 'math.exp', 'math.exp', (['th'], {}), '(th)\n', (6913, 6917), False, 'import math\n'), ((7389, 7414), 'numpy.max', 'np.max', (['P_cls[0, ii, :-1]'], {}), '(P_cls[0, ii, :-1])\n', (7395, 7414), True, 'import numpy as np\n'), ((9259, 9274), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (9267, 9274), True, 'import numpy as np\n'), ((9343, 9358), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (9351, 9358), True, 'import numpy as np\n'), ((5385, 5407), 'numpy.zeros', 'np.zeros', (['target_shape'], {}), '(target_shape)\n', (5393, 5407), True, 'import numpy as np\n'), ((5974, 5999), 'numpy.max', 'np.max', (['P_cls[0, ii, :-1]'], {}), '(P_cls[0, ii, :-1])\n', (5980, 5999), True, 'import numpy as np\n'), ((6021, 6047), 'numpy.argmax', 'np.argmax', (['P_cls[0, ii, :]'], {}), '(P_cls[0, ii, :])\n', (6030, 6047), True, 'import numpy as np\n'), ((8713, 8732), 'numpy.shape', 'np.shape', (['old_image'], {}), '(old_image)\n', (8721, 8732), True, 'import numpy as np\n'), ((8738, 8757), 'numpy.shape', 'np.shape', (['old_image'], {}), '(old_image)\n', (8746, 8757), True, 'import numpy as np\n'), ((9133, 9152), 'numpy.floor', 'np.floor', (['(top + 0.5)'], {}), '(top + 0.5)\n', (9141, 9152), True, 'import numpy as np\n'), ((9196, 9216), 'numpy.floor', 'np.floor', (['(left + 0.5)'], {}), '(left + 0.5)\n', (9204, 9216), True, 'import numpy as np\n'), ((9279, 9301), 'numpy.floor', 'np.floor', (['(bottom + 0.5)'], {}), '(bottom + 0.5)\n', (9287, 9301), True, 'import numpy as np\n'), ((9363, 9384), 'numpy.floor', 'np.floor', (['(right + 0.5)'], {}), '(right + 0.5)\n', (9371, 9384), True, 'import numpy as np\n'), ((8648, 8663), 'numpy.shape', 'np.shape', (['image'], {}), '(image)\n', (8656, 8663), True, 'import numpy as np\n')]
# Standard Library import pickle from typing import * from pathlib import Path # Third-party Party import numpy as np import PIL.Image as Image from colorama import Fore, init # Torch Library import torch import torch.utils.data as data import torchvision.transforms as T # My Library from helper import visualize_np, visualize_plt, visualize_pil from helper import ProjectPath, DatasetPath from helper import ClassLabelLookuper init(autoreset=True) ImageType = TypeVar( "ImageType", np.ndarray, torch.Tensor, Path ) ClassType = TypeVar( "ClassType", np.ndarray, torch.Tensor ) class MultiDataset(data.Dataset): def __init__(self, dataset: str, split: str): super(MultiDataset, self).__init__() assert split in (s := ["train", "val", "test"]), f"{Fore.RED}Invalid split, should be in {s}" self.split = split self.dataset = dataset self._dataset_reader: Dict[str, Callable] = { "Cifar10": self.__read_cifar10, "Cifar100": self.__read_cifar100, "PascalVOC2012": self.__read_PascalVOC2012 } assert dataset in self._dataset_reader.keys(), f"{Fore.RED}Invalid dataset, please select in " \ f"{self._dataset_reader.keys()}." self.image: Union[np.ndarray, List[Path]] self.label: np.ndarray self.image, self.label = self._dataset_reader[self.dataset]() self.select_train_val() self.num_class = len(ClassLabelLookuper(self.dataset).cls) def __len__(self) -> int: return len(self.image) def __getitem__(self, idx) -> Tuple[torch.Tensor, torch.Tensor]: image, label = self.image[idx], self.label[idx] if isinstance(image, Path): image = Image.open(image) else: image = Image.fromarray(image.astype(np.uint8)).convert("RGB") return self.transform(image), label def set_transform(self, transform: T.Compose) -> "MultiDataset": self.transform = transform return self def select_train_val(self, trainval_ratio: Optional[float] = 0.2) -> None: # get image of each label self.label_image: Dict[int, np.ndarray] = {} for label in np.unique(self.label): self.label_image[label] = np.where(self.label == label)[0] if self.dataset in ["Cifar10", "Cifar100"]: if self.split == "test": return else: # generate train val if not exists, else load if (config_path := ProjectPath.config.joinpath(f"{self.dataset}.npz")).exists(): data = np.load(config_path) ratio, train, val =data["ratio"], data["train"], data["val"] if not config_path.exists() or ratio != trainval_ratio: train, val = [], [] for label, image_idx in self.label_image.items(): np.random.shuffle(image_idx) val_num = int(trainval_ratio * len(image_idx)) val.append(image_idx[:val_num]) train.append(image_idx[val_num:]) train = np.stack(train, axis=0) val = np.stack(val, axis=0) config_path.parent.mkdir(parents=True, exist_ok=True) np.savez(config_path, ratio=trainval_ratio, train=train, val=val) train = np.concatenate(train, axis=0) val = np.concatenate(val, axis=0) # select train val if self.split == "val": self.image = self.image[val] self.label = self.label[val] else: self.image = self.image[train] self.label = self.label[train] else: return def __read_cifar10(self) -> Tuple[np.ndarray, np.ndarray]: if self.split in ["train", "val"]: data = [] for batch in DatasetPath.Cifar10.train: with batch.open(mode="rb") as f: data.append(pickle.load(f, encoding="bytes")) image = np.concatenate([i[b"data"].reshape(-1, 3, 32, 32) for i in data], axis=0) label = np.concatenate([i[b"labels"] for i in data], axis=0) else: with DatasetPath.Cifar10.test.open(mode="rb") as f: data = pickle.load(f, encoding="bytes") image = data[b"data"].reshape(-1, 3, 32, 32) label = data[b"labels"] return image.transpose(0, 2, 3, 1), np.array(label) def __read_cifar100(self) -> Tuple[np.ndarray, np.ndarray]: if self.split in ["train", "val"]: with DatasetPath.Cifar100.train.open(mode="rb") as f: data = pickle.load(f, encoding="bytes") image = data[b"data"].reshape(-1, 3, 32, 32) label = data[b"fine_labels"] else: with DatasetPath.Cifar100.test.open(mode="rb") as f: data = pickle.load(f, encoding="bytes") image = data["data"].reshape(-1, 3, 32, 32) label = data["label"] return image.transpose(0, 2, 3, 1), np.asarray(label) def __read_PascalVOC2012(self) -> Tuple[List[Path], np.ndarray]: image = [] label = [] ccn = ClassLabelLookuper(datasets="PascalVOC2012") if self.split in "train": for k, v in DatasetPath.PascalVOC2012.train_idx.items(): image.extend(v) label.extend([ccn.get_label(k)] * len(v)) elif self.split == "val": for k, v in DatasetPath.PascalVOC2012.val_idx.items(): image.extend(v) label.extend([ccn.get_label(k)] * len(v)) else: assert False, f"{Fore.RED}PascalVOC2012 test data is not accesibly" # Attention: PascalVOC2012 中图像是存在重复的 image, idx = np.unique(image, return_index=True) return image, np.array(label)[idx] if __name__ == "__main__": # md = MultiDataset(dataset="PascalVOC2012", split="val") # tt = T.Compose([ # T.RandomHorizontalFlip(), # T.Resize((224, 224)), # T.ToTensor() # ]) # md.set_transform(tt) md = MultiDataset(dataset="Cifar100", split="train") tt = T.Compose([ T.RandomHorizontalFlip(), T.ToTensor() ]) md.set_transform(tt) ccn = ClassLabelLookuper(datasets=md.dataset) dl = data.DataLoader(md, batch_size=64) for x, y in dl: print(x.shape) visualize_plt(x, [ccn.get_class(i.item()) for i in y]) break
[ "helper.ProjectPath.config.joinpath", "numpy.array", "helper.DatasetPath.Cifar10.test.open", "colorama.init", "numpy.load", "numpy.savez", "numpy.where", "helper.DatasetPath.Cifar100.test.open", "helper.ClassLabelLookuper", "numpy.asarray", "helper.DatasetPath.PascalVOC2012.train_idx.items", "helper.DatasetPath.Cifar100.train.open", "numpy.stack", "numpy.concatenate", "torchvision.transforms.ToTensor", "torchvision.transforms.RandomHorizontalFlip", "pickle.load", "PIL.Image.open", "numpy.unique", "torch.utils.data.DataLoader", "helper.DatasetPath.PascalVOC2012.val_idx.items", "numpy.random.shuffle" ]
[((434, 454), 'colorama.init', 'init', ([], {'autoreset': '(True)'}), '(autoreset=True)\n', (438, 454), False, 'from colorama import Fore, init\n'), ((6474, 6513), 'helper.ClassLabelLookuper', 'ClassLabelLookuper', ([], {'datasets': 'md.dataset'}), '(datasets=md.dataset)\n', (6492, 6513), False, 'from helper import ClassLabelLookuper\n'), ((6523, 6557), 'torch.utils.data.DataLoader', 'data.DataLoader', (['md'], {'batch_size': '(64)'}), '(md, batch_size=64)\n', (6538, 6557), True, 'import torch.utils.data as data\n'), ((2257, 2278), 'numpy.unique', 'np.unique', (['self.label'], {}), '(self.label)\n', (2266, 2278), True, 'import numpy as np\n'), ((5389, 5433), 'helper.ClassLabelLookuper', 'ClassLabelLookuper', ([], {'datasets': '"""PascalVOC2012"""'}), "(datasets='PascalVOC2012')\n", (5407, 5433), False, 'from helper import ClassLabelLookuper\n'), ((5978, 6013), 'numpy.unique', 'np.unique', (['image'], {'return_index': '(True)'}), '(image, return_index=True)\n', (5987, 6013), True, 'import numpy as np\n'), ((1789, 1806), 'PIL.Image.open', 'Image.open', (['image'], {}), '(image)\n', (1799, 1806), True, 'import PIL.Image as Image\n'), ((4312, 4364), 'numpy.concatenate', 'np.concatenate', (["[i[b'labels'] for i in data]"], {'axis': '(0)'}), "([i[b'labels'] for i in data], axis=0)\n", (4326, 4364), True, 'import numpy as np\n'), ((4636, 4651), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (4644, 4651), True, 'import numpy as np\n'), ((5249, 5266), 'numpy.asarray', 'np.asarray', (['label'], {}), '(label)\n', (5259, 5266), True, 'import numpy as np\n'), ((5492, 5535), 'helper.DatasetPath.PascalVOC2012.train_idx.items', 'DatasetPath.PascalVOC2012.train_idx.items', ([], {}), '()\n', (5533, 5535), False, 'from helper import ProjectPath, DatasetPath\n'), ((6384, 6408), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (6406, 6408), True, 'import torchvision.transforms as T\n'), ((6418, 6430), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (6428, 6430), True, 'import torchvision.transforms as T\n'), ((1507, 1539), 'helper.ClassLabelLookuper', 'ClassLabelLookuper', (['self.dataset'], {}), '(self.dataset)\n', (1525, 1539), False, 'from helper import ClassLabelLookuper\n'), ((2318, 2347), 'numpy.where', 'np.where', (['(self.label == label)'], {}), '(self.label == label)\n', (2326, 2347), True, 'import numpy as np\n'), ((3474, 3503), 'numpy.concatenate', 'np.concatenate', (['train'], {'axis': '(0)'}), '(train, axis=0)\n', (3488, 3503), True, 'import numpy as np\n'), ((3526, 3553), 'numpy.concatenate', 'np.concatenate', (['val'], {'axis': '(0)'}), '(val, axis=0)\n', (3540, 3553), True, 'import numpy as np\n'), ((4396, 4436), 'helper.DatasetPath.Cifar10.test.open', 'DatasetPath.Cifar10.test.open', ([], {'mode': '"""rb"""'}), "(mode='rb')\n", (4425, 4436), False, 'from helper import ProjectPath, DatasetPath\n'), ((4466, 4498), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""bytes"""'}), "(f, encoding='bytes')\n", (4477, 4498), False, 'import pickle\n'), ((4777, 4819), 'helper.DatasetPath.Cifar100.train.open', 'DatasetPath.Cifar100.train.open', ([], {'mode': '"""rb"""'}), "(mode='rb')\n", (4808, 4819), False, 'from helper import ProjectPath, DatasetPath\n'), ((4849, 4881), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""bytes"""'}), "(f, encoding='bytes')\n", (4860, 4881), False, 'import pickle\n'), ((5011, 5052), 'helper.DatasetPath.Cifar100.test.open', 'DatasetPath.Cifar100.test.open', ([], {'mode': '"""rb"""'}), "(mode='rb')\n", (5041, 5052), False, 'from helper import ProjectPath, DatasetPath\n'), ((5082, 5114), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""bytes"""'}), "(f, encoding='bytes')\n", (5093, 5114), False, 'import pickle\n'), ((5685, 5726), 'helper.DatasetPath.PascalVOC2012.val_idx.items', 'DatasetPath.PascalVOC2012.val_idx.items', ([], {}), '()\n', (5724, 5726), False, 'from helper import ProjectPath, DatasetPath\n'), ((6036, 6051), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (6044, 6051), True, 'import numpy as np\n'), ((2668, 2688), 'numpy.load', 'np.load', (['config_path'], {}), '(config_path)\n', (2675, 2688), True, 'import numpy as np\n'), ((3218, 3241), 'numpy.stack', 'np.stack', (['train'], {'axis': '(0)'}), '(train, axis=0)\n', (3226, 3241), True, 'import numpy as np\n'), ((3268, 3289), 'numpy.stack', 'np.stack', (['val'], {'axis': '(0)'}), '(val, axis=0)\n', (3276, 3289), True, 'import numpy as np\n'), ((3384, 3449), 'numpy.savez', 'np.savez', (['config_path'], {'ratio': 'trainval_ratio', 'train': 'train', 'val': 'val'}), '(config_path, ratio=trainval_ratio, train=train, val=val)\n', (3392, 3449), True, 'import numpy as np\n'), ((2976, 3004), 'numpy.random.shuffle', 'np.random.shuffle', (['image_idx'], {}), '(image_idx)\n', (2993, 3004), True, 'import numpy as np\n'), ((4164, 4196), 'pickle.load', 'pickle.load', (['f'], {'encoding': '"""bytes"""'}), "(f, encoding='bytes')\n", (4175, 4196), False, 'import pickle\n'), ((2579, 2629), 'helper.ProjectPath.config.joinpath', 'ProjectPath.config.joinpath', (['f"""{self.dataset}.npz"""'], {}), "(f'{self.dataset}.npz')\n", (2606, 2629), False, 'from helper import ProjectPath, DatasetPath\n')]
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ pipline for U-GAT-IT """ import time import math import os from glob import glob import cv2 import numpy as np import mindspore.ops as ops from mindspore import nn from mindspore import save_checkpoint, load_checkpoint, load_param_into_net from mindspore.common import initializer as init from mindspore.communication.management import get_rank from .networks import ResnetGenerator, Discriminator, GWithLossCell, DWithLossCell from .cell import TrainOneStepG, TrainOneStepD, Generator from ..utils.tools import denorm, tensor2numpy, RGB2BGR, cam from ..dataset.dataset import TrainDataLoader, TestDataLoader from ..metrics.metrics import mean_kernel_inception_distance class UGATIT: """pipline""" def __init__(self, args): self.light = args.light self.distributed = args.distributed self.mode = args.phase if self.light: self.model_name = 'UGATIT_light' else: self.model_name = 'UGATIT' self.modelart = args.enable_modelarts self.train_url = args.train_url self.output_path = args.output_path self.dataset = args.dataset self.data_path = args.data_path self.decay_flag = args.decay_flag self.epoch = args.epoch self.decay_epoch = args.decay_epoch self.batch_size = args.batch_size self.print_freq = args.print_freq self.save_freq = args.save_freq self.lr_policy = 'linear' self.loss_scale = args.loss_scale self.lr = args.lr self.weight_decay = args.weight_decay self.ch = args.ch self.use_global_norm = args.use_global_norm """ Weight """ self.adv_weight = args.adv_weight self.cycle_weight = args.cycle_weight self.identity_weight = args.identity_weight self.cam_weight = args.cam_weight self.weights = [self.adv_weight, self.cycle_weight, self.identity_weight, self.cam_weight] """ Generator """ self.n_res = args.n_res """ Discriminator """ self.n_dis = args.n_dis self.img_size = args.img_size self.img_ch = args.img_ch self.resume = args.resume """utils""" self.oneslike = ops.OnesLike() self.zeroslike = ops.ZerosLike() self.assign = ops.Assign() print() print("##### Information #####") print("# light : ", self.light) print("# dataset : ", self.dataset) print("# batch_size : ", self.batch_size) print("# epochs: ", self.epoch) print() print("##### Generator #####") print("# residual blocks : ", self.n_res) print() print("##### Discriminator #####") print("# discriminator layer : ", self.n_dis) print() print("##### Weight #####") print("# adv_weight : ", self.adv_weight) print("# cycle_weight : ", self.cycle_weight) print("# identity_weight : ", self.identity_weight) print("# cam_weight : ", self.cam_weight) ################################################################################## # Model ################################################################################## def build_model(self): """build model""" self.train_nums = 1 if self.mode == 'train': train_loader, test_loader, train_nums = TrainDataLoader(self.img_size, self.data_path, self.dataset, self.batch_size, self.distributed) self.train_loader = train_loader self.test_iterator = test_loader.create_dict_iterator() self.train_nums = train_nums print("Training dataset size = ", self.train_nums) elif self.mode == 'test': test_loader = TestDataLoader(self.img_size, self.data_path, self.dataset) self.test_iterator = test_loader.create_dict_iterator() else: raise RuntimeError("Invalid mode") print("Dataset load finished") self.genA2B = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size, light=self.light) self.genB2A = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size, light=self.light) self.disGA = Discriminator(input_nc=3, ndf=self.ch, n_layers=7) self.disGB = Discriminator(input_nc=3, ndf=self.ch, n_layers=7) self.disLA = Discriminator(input_nc=3, ndf=self.ch, n_layers=5) self.disLB = Discriminator(input_nc=3, ndf=self.ch, n_layers=5) self.generator = Generator(self.genA2B, self.genB2A) self.init_weights(self.genA2B, 'KaimingUniform', math.sqrt(5)) self.init_weights(self.genB2A, 'KaimingUniform', math.sqrt(5)) self.init_weights(self.disGA, 'KaimingUniform', math.sqrt(5)) self.init_weights(self.disGB, 'KaimingUniform', math.sqrt(5)) self.init_weights(self.disLA, 'KaimingUniform', math.sqrt(5)) self.init_weights(self.disLB, 'KaimingUniform', math.sqrt(5)) self.start_epoch = 1 if self.resume: model_list = glob(os.path.join(self.output_path, self.dataset, 'model', '*.ckpt')) if model_list: model_list.sort() self.start_epoch = int(model_list[-1].split('_')[-1].split('.')[0]) self.load(os.path.join(self.output_path, self.dataset, 'model'), self.start_epoch) print(" [*]Epoch %d Load SUCCESS" % self.start_epoch) start_step = (self.start_epoch - 1) * self.train_nums self.learning_rate = self.get_lr()[start_step:] loss_scale = self.loss_scale self.D_loss_net = DWithLossCell(self.disGA, self.disLA, self.disGB, self.disLB, self.weights) self.G_loss_net = GWithLossCell(self.generator, self.disGA, self.disLA, self.disGB, self.disLB, self.weights) self.G_optim = nn.Adam(self.generator.trainable_params(), learning_rate=self.learning_rate, beta1=0.5, beta2=0.999, weight_decay=self.weight_decay) self.D_optim = nn.Adam(self.D_loss_net.trainable_params(), learning_rate=self.learning_rate, beta1=0.5, beta2=0.999, weight_decay=self.weight_decay) self.D_train_net = TrainOneStepD(self.D_loss_net, self.D_optim, loss_scale, self.use_global_norm) self.G_train_net = TrainOneStepG(self.G_loss_net, self.generator, self.G_optim, loss_scale, self.use_global_norm) def get_lr(self): """ Learning rate generator. """ if self.lr_policy == 'linear': lrs = [self.lr] * self.train_nums * self.decay_epoch for epoch in range(self.decay_epoch, self.epoch): lr_epoch = self.lr * (self.epoch - epoch) / (self.epoch - self.decay_epoch) lrs += [lr_epoch] * self.train_nums return lrs return self.lr def init_weights(self, net, init_type='normal', init_gain=0.02): """init weights""" for _, cell in net.cells_and_names(): if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose, nn.Dense)): if init_type == 'normal': cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape)) elif init_type == 'xavier': cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape)) elif init_type == 'KaimingUniform': cell.weight.set_data(init.initializer(init.HeUniform(init_gain), cell.weight.shape)) elif init_type == 'constant': cell.weight.set_data(init.initializer(0.0005, cell.weight.shape)) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) elif isinstance(cell, (nn.GroupNorm, nn.BatchNorm2d)): cell.gamma.set_data(init.initializer('ones', cell.gamma.shape)) cell.beta.set_data(init.initializer('zeros', cell.beta.shape)) def train(self): """train""" self.D_train_net.set_train() self.G_train_net.set_train() data_loader = self.train_loader.create_dict_iterator() # training loop print('training start !') for epoch in range(self.start_epoch, self.epoch + 1): i = 0 for data in data_loader: i += 1 start_time = time.time() real_A = data["image_A"] real_B = data["image_B"] # Update fake_A2B, fake_B2A, Generator_loss = self.G_train_net(real_A, real_B) Discriminator_loss = self.D_train_net(real_A, real_B, fake_A2B, fake_B2A) # clip parameter of AdaILN and ILN, applied after optimizer step for m in self.genA2B.cells_and_names(): if hasattr(m[1], 'rho'): w = m[1].rho.data w = ops.clip_by_value(w, 0, 1) m[1].rho.data.set_data(w) for m in self.genB2A.cells_and_names(): if hasattr(m[1], 'rho'): w = m[1].rho.data w = ops.clip_by_value(w, 0, 1) m[1].rho.data.set_data(w) print("epoch %d:[%5d/%5d] time per iter: %4.4f " % (epoch, i, self.train_nums, time.time() - start_time)) print("d_loss:", Discriminator_loss) print("g_loss:", Generator_loss) if epoch % self.print_freq == 0: if self.distributed: if get_rank() == 0: self.print(epoch) save_checkpoint(self.genA2B, os.path.join(self.output_path, self.dataset + '_genA2B_params_latest.ckpt')) save_checkpoint(self.genB2A, os.path.join(self.output_path, self.dataset + '_genB2A_params_latest.ckpt')) save_checkpoint(self.disGA, os.path.join(self.output_path, self.dataset + '_disGA_params_latest.ckpt')) save_checkpoint(self.disGB, os.path.join(self.output_path, self.dataset + '_disGB_params_latest.ckpt')) save_checkpoint(self.disLA, os.path.join(self.output_path, self.dataset + '_disLA_params_latest.ckpt')) save_checkpoint(self.disLB, os.path.join(self.output_path, self.dataset + '_disLB_params_latest.ckpt')) else: self.print(epoch) save_checkpoint(self.genA2B, os.path.join(self.output_path, self.dataset + '_genA2B_params_latest.ckpt')) save_checkpoint(self.genB2A, os.path.join(self.output_path, self.dataset + '_genB2A_params_latest.ckpt')) save_checkpoint(self.disGA, os.path.join(self.output_path, self.dataset + '_disGA_params_latest.ckpt')) save_checkpoint(self.disGB, os.path.join(self.output_path, self.dataset + '_disGB_params_latest.ckpt')) save_checkpoint(self.disLA, os.path.join(self.output_path, self.dataset + '_disLA_params_latest.ckpt')) save_checkpoint(self.disLB, os.path.join(self.output_path, self.dataset + '_disLB_params_latest.ckpt')) if epoch % self.save_freq == 0: if self.distributed: if get_rank() == 0: self.save(os.path.join(self.output_path, self.dataset, 'model'), epoch) else: self.save(os.path.join(self.output_path, self.dataset, 'model'), epoch) def print(self, epoch): """save middle results""" test_sample_num = 5 A2B = np.zeros((self.img_size * 7, 0, 3)) B2A = np.zeros((self.img_size * 7, 0, 3)) for _ in range(test_sample_num): data = next(self.test_iterator) real_A = data["image_A"] real_B = data["image_B"] fake_A2B, _, fake_A2B_heatmap = self.genA2B(real_A) fake_B2A, _, fake_B2A_heatmap = self.genB2A(real_B) fake_A2B2A, _, fake_A2B2A_heatmap = self.genB2A(fake_A2B) fake_B2A2B, _, fake_B2A2B_heatmap = self.genA2B(fake_B2A) # Without copying real_A and real_B tensors before feeding them # into genB2A and genA2B does not work correctly with the GPU backend. fake_A2A, _, fake_A2A_heatmap = self.genB2A(real_A.copy()) fake_B2B, _, fake_B2B_heatmap = self.genA2B(real_B.copy()) A2B = np.concatenate((A2B, np.concatenate((RGB2BGR(tensor2numpy(denorm(real_A[0]))), cam(tensor2numpy(fake_A2A_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_A2A[0]))), cam(tensor2numpy(fake_A2B_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_A2B[0]))), cam(tensor2numpy(fake_A2B2A_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_A2B2A[0])))), 0)), 1) B2A = np.concatenate((B2A, np.concatenate((RGB2BGR(tensor2numpy(denorm(real_B[0]))), cam(tensor2numpy(fake_B2B_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_B2B[0]))), cam(tensor2numpy(fake_B2A_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_B2A[0]))), cam(tensor2numpy(fake_B2A2B_heatmap[0]), self.img_size), RGB2BGR(tensor2numpy(denorm(fake_B2A2B[0])))), 0)), 1) cv2.imwrite(os.path.join(self.output_path, self.dataset, 'img', 'A2B_%07d.png' % epoch), A2B * 255.0) cv2.imwrite(os.path.join(self.output_path, self.dataset, 'img', 'B2A_%07d.png' % epoch), B2A * 255.0) def save(self, savedir, epoch): save_checkpoint(self.genA2B, os.path.join(savedir, self.dataset + '_genA2B_params_%07d.ckpt' % epoch)) save_checkpoint(self.genB2A, os.path.join(savedir, self.dataset + '_genB2A_params_%07d.ckpt' % epoch)) save_checkpoint(self.disGA, os.path.join(savedir, self.dataset + '_disGA_params_%07d.ckpt' % epoch)) save_checkpoint(self.disGB, os.path.join(savedir, self.dataset + '_disGB_params_%07d.ckpt' % epoch)) save_checkpoint(self.disLA, os.path.join(savedir, self.dataset + '_disLA_params_%07d.ckpt' % epoch)) save_checkpoint(self.disLB, os.path.join(savedir, self.dataset + '_disLB_params_%07d.ckpt' % epoch)) def load(self, loaddir, epoch): """load checkpoint""" genA2B_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_genA2B_params_%07d.ckpt' % epoch)) not_load = {} not_load['genA2B'] = load_param_into_net(self.genA2B, genA2B_params) if self.mode == 'train': genB2A_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_genB2A_params_%07d.ckpt' % epoch)) disGA_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_disGA_params_%07d.ckpt' % epoch)) disGB_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_disGB_params_%07d.ckpt' % epoch)) disLA_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_disLA_params_%07d.ckpt' % epoch)) disLB_params = load_checkpoint(os.path.join(loaddir, self.dataset + '_disLB_params_%07d.ckpt' % epoch)) not_load['genB2A'] = load_param_into_net(self.genB2A, genB2A_params) not_load['disGA'] = load_param_into_net(self.disGA, disGA_params) not_load['disGB'] = load_param_into_net(self.disGB, disGB_params) not_load['disLA'] = load_param_into_net(self.disLA, disLA_params) not_load['disLB'] = load_param_into_net(self.disLB, disLB_params) print("these params are not loaded: ", not_load) def test(self, inception_ckpt_path=None): """test""" self.genA2B.set_train(True) output_path = os.path.join(self.output_path, self.dataset) model_list = glob(os.path.join(output_path, 'model', '*.ckpt')) if model_list: model_list.sort() start_epoch = int(model_list[-1].split('_')[-1].split('.')[0]) self.load(os.path.join(output_path, 'model'), start_epoch) print(" [*] epoch %d Load SUCCESS" % start_epoch) else: print(" [*] Load FAILURE") return for n, data in enumerate(self.test_iterator): real_A = data['image_A'] fake_A2B, _, _ = self.genA2B(real_A) A = RGB2BGR(tensor2numpy(denorm(real_A[0]))) A2B = RGB2BGR(tensor2numpy(denorm(fake_A2B[0]))) cv2.imwrite(os.path.join(output_path, 'test', 'A_%d.png' % (n + 1)), A * 255.0) cv2.imwrite(os.path.join(output_path, 'test', 'A2B_%d.png' % (n + 1)), A2B * 255.0) if inception_ckpt_path is not None: dataset_path = os.path.join(self.data_path, self.dataset) mean_kernel_inception_distance(output_path, dataset_path, inception_ckpt_path)
[ "mindspore.common.initializer.XavierUniform", "mindspore.common.initializer.HeUniform", "mindspore.ops.ZerosLike", "mindspore.ops.clip_by_value", "os.path.join", "math.sqrt", "mindspore.ops.OnesLike", "numpy.zeros", "mindspore.common.initializer.Normal", "mindspore.common.initializer.initializer", "mindspore.load_param_into_net", "mindspore.ops.Assign", "time.time", "mindspore.communication.management.get_rank" ]
[((2894, 2908), 'mindspore.ops.OnesLike', 'ops.OnesLike', ([], {}), '()\n', (2906, 2908), True, 'import mindspore.ops as ops\n'), ((2934, 2949), 'mindspore.ops.ZerosLike', 'ops.ZerosLike', ([], {}), '()\n', (2947, 2949), True, 'import mindspore.ops as ops\n'), ((2972, 2984), 'mindspore.ops.Assign', 'ops.Assign', ([], {}), '()\n', (2982, 2984), True, 'import mindspore.ops as ops\n'), ((14424, 14459), 'numpy.zeros', 'np.zeros', (['(self.img_size * 7, 0, 3)'], {}), '((self.img_size * 7, 0, 3))\n', (14432, 14459), True, 'import numpy as np\n'), ((14474, 14509), 'numpy.zeros', 'np.zeros', (['(self.img_size * 7, 0, 3)'], {}), '((self.img_size * 7, 0, 3))\n', (14482, 14509), True, 'import numpy as np\n'), ((17867, 17914), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.genA2B', 'genA2B_params'], {}), '(self.genA2B, genA2B_params)\n', (17886, 17914), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((19105, 19149), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset'], {}), '(self.output_path, self.dataset)\n', (19117, 19149), False, 'import os\n'), ((6084, 6096), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6093, 6096), False, 'import math\n'), ((6155, 6167), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6164, 6167), False, 'import math\n'), ((6225, 6237), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6234, 6237), False, 'import math\n'), ((6295, 6307), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6304, 6307), False, 'import math\n'), ((6365, 6377), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6374, 6377), False, 'import math\n'), ((6435, 6447), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (6444, 6447), False, 'import math\n'), ((16740, 16815), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""img"""', "('A2B_%07d.png' % epoch)"], {}), "(self.output_path, self.dataset, 'img', 'A2B_%07d.png' % epoch)\n", (16752, 16815), False, 'import os\n'), ((16850, 16925), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""img"""', "('B2A_%07d.png' % epoch)"], {}), "(self.output_path, self.dataset, 'img', 'B2A_%07d.png' % epoch)\n", (16862, 16925), False, 'import os\n'), ((17014, 17086), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_genA2B_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_genA2B_params_%07d.ckpt' % epoch)\n", (17026, 17086), False, 'import os\n'), ((17125, 17197), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_genB2A_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_genB2A_params_%07d.ckpt' % epoch)\n", (17137, 17197), False, 'import os\n'), ((17235, 17306), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_disGA_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_disGA_params_%07d.ckpt' % epoch)\n", (17247, 17306), False, 'import os\n'), ((17344, 17415), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_disGB_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_disGB_params_%07d.ckpt' % epoch)\n", (17356, 17415), False, 'import os\n'), ((17453, 17524), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_disLA_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_disLA_params_%07d.ckpt' % epoch)\n", (17465, 17524), False, 'import os\n'), ((17562, 17633), 'os.path.join', 'os.path.join', (['savedir', "(self.dataset + '_disLB_params_%07d.ckpt' % epoch)"], {}), "(savedir, self.dataset + '_disLB_params_%07d.ckpt' % epoch)\n", (17574, 17633), False, 'import os\n'), ((17742, 17814), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_genA2B_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_genA2B_params_%07d.ckpt' % epoch)\n", (17754, 17814), False, 'import os\n'), ((18564, 18611), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.genB2A', 'genB2A_params'], {}), '(self.genB2A, genB2A_params)\n', (18583, 18611), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((18644, 18689), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.disGA', 'disGA_params'], {}), '(self.disGA, disGA_params)\n', (18663, 18689), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((18722, 18767), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.disGB', 'disGB_params'], {}), '(self.disGB, disGB_params)\n', (18741, 18767), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((18800, 18845), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.disLA', 'disLA_params'], {}), '(self.disLA, disLA_params)\n', (18819, 18845), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((18878, 18923), 'mindspore.load_param_into_net', 'load_param_into_net', (['self.disLB', 'disLB_params'], {}), '(self.disLB, disLB_params)\n', (18897, 18923), False, 'from mindspore import save_checkpoint, load_checkpoint, load_param_into_net\n'), ((19176, 19220), 'os.path.join', 'os.path.join', (['output_path', '"""model"""', '"""*.ckpt"""'], {}), "(output_path, 'model', '*.ckpt')\n", (19188, 19220), False, 'import os\n'), ((20075, 20117), 'os.path.join', 'os.path.join', (['self.data_path', 'self.dataset'], {}), '(self.data_path, self.dataset)\n', (20087, 20117), False, 'import os\n'), ((6532, 6595), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""model"""', '"""*.ckpt"""'], {}), "(self.output_path, self.dataset, 'model', '*.ckpt')\n", (6544, 6595), False, 'import os\n'), ((10482, 10493), 'time.time', 'time.time', ([], {}), '()\n', (10491, 10493), False, 'import time\n'), ((17992, 18064), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_genB2A_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_genB2A_params_%07d.ckpt' % epoch)\n", (18004, 18064), False, 'import os\n'), ((18109, 18180), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_disGA_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_disGA_params_%07d.ckpt' % epoch)\n", (18121, 18180), False, 'import os\n'), ((18225, 18296), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_disGB_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_disGB_params_%07d.ckpt' % epoch)\n", (18237, 18296), False, 'import os\n'), ((18341, 18412), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_disLA_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_disLA_params_%07d.ckpt' % epoch)\n", (18353, 18412), False, 'import os\n'), ((18457, 18528), 'os.path.join', 'os.path.join', (['loaddir', "(self.dataset + '_disLB_params_%07d.ckpt' % epoch)"], {}), "(loaddir, self.dataset + '_disLB_params_%07d.ckpt' % epoch)\n", (18469, 18528), False, 'import os\n'), ((19372, 19406), 'os.path.join', 'os.path.join', (['output_path', '"""model"""'], {}), "(output_path, 'model')\n", (19384, 19406), False, 'import os\n'), ((19839, 19894), 'os.path.join', 'os.path.join', (['output_path', '"""test"""', "('A_%d.png' % (n + 1))"], {}), "(output_path, 'test', 'A_%d.png' % (n + 1))\n", (19851, 19894), False, 'import os\n'), ((19931, 19988), 'os.path.join', 'os.path.join', (['output_path', '"""test"""', "('A2B_%d.png' % (n + 1))"], {}), "(output_path, 'test', 'A2B_%d.png' % (n + 1))\n", (19943, 19988), False, 'import os\n'), ((6768, 6821), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""model"""'], {}), "(self.output_path, self.dataset, 'model')\n", (6780, 6821), False, 'import os\n'), ((9953, 9995), 'mindspore.common.initializer.initializer', 'init.initializer', (['"""ones"""', 'cell.gamma.shape'], {}), "('ones', cell.gamma.shape)\n", (9969, 9995), True, 'from mindspore.common import initializer as init\n'), ((10032, 10074), 'mindspore.common.initializer.initializer', 'init.initializer', (['"""zeros"""', 'cell.beta.shape'], {}), "('zeros', cell.beta.shape)\n", (10048, 10074), True, 'from mindspore.common import initializer as init\n'), ((11031, 11057), 'mindspore.ops.clip_by_value', 'ops.clip_by_value', (['w', '(0)', '(1)'], {}), '(w, 0, 1)\n', (11048, 11057), True, 'import mindspore.ops as ops\n'), ((11279, 11305), 'mindspore.ops.clip_by_value', 'ops.clip_by_value', (['w', '(0)', '(1)'], {}), '(w, 0, 1)\n', (11296, 11305), True, 'import mindspore.ops as ops\n'), ((11891, 11901), 'mindspore.communication.management.get_rank', 'get_rank', ([], {}), '()\n', (11899, 11901), False, 'from mindspore.communication.management import get_rank\n'), ((13108, 13183), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_genA2B_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_genA2B_params_latest.ckpt')\n", (13120, 13183), False, 'import os\n'), ((13270, 13345), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_genB2A_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_genB2A_params_latest.ckpt')\n", (13282, 13345), False, 'import os\n'), ((13431, 13505), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disGA_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disGA_params_latest.ckpt')\n", (13443, 13505), False, 'import os\n'), ((13591, 13665), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disGB_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disGB_params_latest.ckpt')\n", (13603, 13665), False, 'import os\n'), ((13751, 13825), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disLA_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disLA_params_latest.ckpt')\n", (13763, 13825), False, 'import os\n'), ((13911, 13985), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disLB_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disLB_params_latest.ckpt')\n", (13923, 13985), False, 'import os\n'), ((14092, 14102), 'mindspore.communication.management.get_rank', 'get_rank', ([], {}), '()\n', (14100, 14102), False, 'from mindspore.communication.management import get_rank\n'), ((14257, 14310), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""model"""'], {}), "(self.output_path, self.dataset, 'model')\n", (14269, 14310), False, 'import os\n'), ((9235, 9257), 'mindspore.common.initializer.Normal', 'init.Normal', (['init_gain'], {}), '(init_gain)\n', (9246, 9257), True, 'from mindspore.common import initializer as init\n'), ((12043, 12118), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_genA2B_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_genA2B_params_latest.ckpt')\n", (12055, 12118), False, 'import os\n'), ((12213, 12288), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_genB2A_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_genB2A_params_latest.ckpt')\n", (12225, 12288), False, 'import os\n'), ((12382, 12456), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disGA_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disGA_params_latest.ckpt')\n", (12394, 12456), False, 'import os\n'), ((12550, 12624), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disGB_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disGB_params_latest.ckpt')\n", (12562, 12624), False, 'import os\n'), ((12718, 12792), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disLA_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disLA_params_latest.ckpt')\n", (12730, 12792), False, 'import os\n'), ((12886, 12960), 'os.path.join', 'os.path.join', (['self.output_path', "(self.dataset + '_disLB_params_latest.ckpt')"], {}), "(self.output_path, self.dataset + '_disLB_params_latest.ckpt')\n", (12898, 12960), False, 'import os\n'), ((14143, 14196), 'os.path.join', 'os.path.join', (['self.output_path', 'self.dataset', '"""model"""'], {}), "(self.output_path, self.dataset, 'model')\n", (14155, 14196), False, 'import os\n'), ((9381, 9410), 'mindspore.common.initializer.XavierUniform', 'init.XavierUniform', (['init_gain'], {}), '(init_gain)\n', (9399, 9410), True, 'from mindspore.common import initializer as init\n'), ((11656, 11667), 'time.time', 'time.time', ([], {}), '()\n', (11665, 11667), False, 'import time\n'), ((9542, 9567), 'mindspore.common.initializer.HeUniform', 'init.HeUniform', (['init_gain'], {}), '(init_gain)\n', (9556, 9567), True, 'from mindspore.common import initializer as init\n'), ((9676, 9719), 'mindspore.common.initializer.initializer', 'init.initializer', (['(0.0005)', 'cell.weight.shape'], {}), '(0.0005, cell.weight.shape)\n', (9692, 9719), True, 'from mindspore.common import initializer as init\n')]
#! /usr/bin/python3 import sys sys.path.append('../../') import numpy as np import numpy.fft as npfft import matplotlib.pyplot as plt from matplotlib import animation import time from netCDF4 import MFDataset from nephelae_simulation.mesonh_interface import MesoNHVariable from nephelae_base.types import Position from nephelae_base.types import Bounds from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process import kernels as gpk class WindKernel(gpk.Kernel): """ Kernel compatible with sklearn.gaussian_process.Kernel to be used in GaussianProcessRegressor /!\ Hyper parameters optimizatin HAS NOT BEEN TESTED When using with GaussianProcessRegressor, set optimizer=None /!\ Only implemented for dimension (t,x,y) for now for testing purposes. """ # Actually used (maybe) def __init__(self, lengthScale=[1.0,1.0,1.0], stddev=1.0, noiseStddev=0.1, windSpeed=[0.0,0.0]): self.lengthScale = lengthScale self.stddev = stddev self.noiseStddev = noiseStddev self.windSpeed = windSpeed def __call__(self, X, Y=None): if Y is None: Y = X # print("X shape: ", X.shape) # print("Y shape: ", X.shape, end="\n\n") cop = False # cop = True # Far from most efficient but efficiency requires C++ implementation (or is it ?) t0,t1 = np.meshgrid(X[:,0], Y[:,0], indexing='ij', copy=cop) dt = t1 - t0 distMat = (dt / self.lengthScale[0])**2 x0,x1 = np.meshgrid(X[:,1], Y[:,1], indexing='ij', copy=cop) dx = x1 - (x0 + self.windSpeed[0] * dt) distMat = distMat + (dx / self.lengthScale[1])**2 x0,x1 = np.meshgrid(X[:,2], Y[:,2], indexing='ij', copy=cop) dx = x1 - (x0 + self.windSpeed[1] * dt) distMat = distMat + (dx / self.lengthScale[2])**2 if Y is X: return self.stddev*np.exp(-0.5*distMat) + np.diag([self.noiseStddev]*X.shape[0]) else: return self.stddev*np.exp(-0.5*distMat) def diag(self, X): return np.array([self.stddev + self.noiseStddev]*X.shape[0]) def is_stationary(self): return True mesonhPath = '/home/pnarvor/work/nephelae/data/MesoNH-2019-02/REFHR.1.ARMCu.4D.nc' rct = MesoNHVariable(MFDataset(mesonhPath), 'RCT') # Estimating advective wind ut = MesoNHVariable(MFDataset(mesonhPath), 'UT')[50.0, 1100.0,:,:].data.mean() vt = MesoNHVariable(MFDataset(mesonhPath), 'VT')[50.0, 1100.0,:,:].data.mean() print("Advective wind :", [ut, vt]) rctSlice = rct[240,1100,:,:].data print("Variance : ", (rctSlice**2).mean()) t = np.linspace(0,300.0,300) # a0 = 400.0 a0 = 250.0 f0 = - 1 / 120.0 # f0 = 1 / 150.0 a1 = 0.0 # f1 = 1.5*f0 f1 = 2.5*f0 # f1 = -1.3*f0 # f1 = -2.5*f0 # f1 = -4.5*f0 tStart = 50.0 tEnd = 700.0 t = np.linspace(tStart, tEnd, int(tEnd - tStart)) # p0 = Position(240.0, 1700.0, 2000.0, 1100.0) # p0 = Position(50.0, 0.0, 2000.0, 1100.0) p0 = Position(50.0, 100.0, 1950.0, 1100.0) p = np.array([[p0.t, p0.x, p0.y, p0.z]]*len(t)) # v0 = np.array([[9.09, 0.68]]) v0 = np.array([8.5, 0.9]) p[:,0] = t p[:,1] = p[:,1] + a0*(a1 + np.cos(2*np.pi*f1*(t-t[0])))*np.cos(2*np.pi*f0*(t-t[0])) p[:,2] = p[:,2] + a0*(a1 + np.cos(2*np.pi*f1*(t-t[0])))*np.sin(2*np.pi*f0*(t-t[0])) print("Max velocity relative to wind :", max(np.sqrt(np.sum((p[1:,1:3] - p[:-1,1:3])**2, axis=1)) / (p[1:,0] - p[:-1,0]))) p[:,1:3] = p[:,1:3] + (t - tStart).reshape([len(t), 1]) @ v0.reshape([1,2]) # building prediction locations # X0,Y0 = np.meshgrid( # np.linspace(rct.bounds[3][0], rct.bounds[3][-1], rct.shape[3]), # np.linspace(rct.bounds[2][0], rct.bounds[2][-1], rct.shape[2])) b = rct.bounds yBounds = [min(p[:,2]), max(p[:,2])] tmp = rct[p0.t,p0.z,yBounds[0]:yBounds[1],:] X0,Y0 = np.meshgrid( np.linspace(tmp.bounds[1][0], tmp.bounds[1][-1], tmp.shape[1]), np.linspace(tmp.bounds[0][0], tmp.bounds[0][-1], tmp.shape[0])) xyLocations = np.array([[0]*X0.shape[0]*X0.shape[1], X0.ravel(), Y0.ravel()]).T b[2].min = yBounds[0] b[2].max = yBounds[1] # Kernel processVariance = 1.0e-8 noiseStddev = 0.1 * np.sqrt(processVariance) # lengthScales = [100, 50, 50] # lengthScales = [70, 50, 50] lengthScales = [70, 60, 60] # lengthScales = [140, 120, 120] kernel0 = WindKernel(lengthScales, processVariance, noiseStddev**2, v0) rctValues = [] print("Getting rct values... ", end='') sys.stdout.flush() for pos in p: rctValues.append(rct[pos[0],pos[3],pos[2],pos[1]]) rctValues = np.array(rctValues) print("Done !") sys.stdout.flush() noise = noiseStddev*np.random.randn(rctValues.shape[0]) rctValues = rctValues + noise # # plotting rct values # fig, axes = plt.subplots(1,1) # axes.plot(p[:,0], np.array(rctValues)) # profiling = False profiling = True if not profiling: fig, axes = plt.subplots(3,1,sharex=True,sharey=True) simTime = p0.t lastTime = time.time() simSpeed = 50.0 def do_update(t): print("Sim time :", t) # prediction gprProcessor0 = GaussianProcessRegressor(kernel0, alpha=0.0, optimizer=None, copy_X_train=False) # trainSet = np.array([list(pos) + [rctVal] \ # for pos, rctVal in zip(p[:,0:3],rctValues)\ # if pos[0] < t and pos[0] > t - 2*lengthScales[0]]) trainSet = np.array([list(pos) + [rctVal] \ for pos, rctVal in zip(p[:,0:3],rctValues)\ if pos[0] < t and pos[0] > t - 3*lengthScales[0]]) print("Number of used measures samples :", trainSet.shape[0]) gprProcessor0.fit(trainSet[:,:-1], trainSet[:,-1]) xyLocations[:,0] = t map0, std0 = gprProcessor0.predict(xyLocations, return_std=True) map0[map0 < 0.0] = 0.0 map0 = map0.reshape(X0.shape) std0 = std0.reshape(X0.shape) # display if not profiling: global axes axes[0].cla() axes[0].imshow(rct[t,p0.z,yBounds[0]:yBounds[1],:].data, origin='lower', extent=[b[3].min, b[3].max, b[2].min, b[2].max]) axes[0].grid() axes[0].set_title("Ground truth") try: axes[0].plot(p[:int(t-tStart + 0.5),1], p[:int(t-tStart + 0.5),2], '.') finally: pass axes[1].cla() axes[1].imshow(map0, origin='lower', extent=[b[3].min, b[3].max, b[2].min, b[2].max]) axes[1].grid() axes[1].set_title("MAP") axes[2].cla() axes[2].imshow(std0**2, origin='lower', extent=[b[3].min, b[3].max, b[2].min, b[2].max]) axes[2].grid() axes[2].set_title("Variance AP") def init(): pass def update(i): # global lastTime global simTime # currentTime = time.time() # simTime = simTime + simSpeed*(currentTime - lastTime) # lastTime = currentTime # simTime = simTime + 5.0 simTime = simTime + 2.0 do_update(simTime) if not profiling: anim = animation.FuncAnimation( fig, update, init_func=init, interval = 1) plt.show(block=False) else: t0 = time.time() while simTime < 600: update(0) print("Ellapsed :", time.time() - t0, "s")
[ "numpy.sqrt", "netCDF4.MFDataset", "numpy.array", "numpy.sin", "sys.path.append", "sklearn.gaussian_process.GaussianProcessRegressor", "nephelae_base.types.Position", "numpy.exp", "numpy.linspace", "numpy.meshgrid", "sys.stdout.flush", "numpy.cos", "numpy.random.randn", "time.time", "matplotlib.pyplot.show", "matplotlib.animation.FuncAnimation", "numpy.diag", "numpy.sum", "matplotlib.pyplot.subplots" ]
[((32, 57), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (47, 57), False, 'import sys\n'), ((2711, 2737), 'numpy.linspace', 'np.linspace', (['(0)', '(300.0)', '(300)'], {}), '(0, 300.0, 300)\n', (2722, 2737), True, 'import numpy as np\n'), ((3050, 3087), 'nephelae_base.types.Position', 'Position', (['(50.0)', '(100.0)', '(1950.0)', '(1100.0)'], {}), '(50.0, 100.0, 1950.0, 1100.0)\n', (3058, 3087), False, 'from nephelae_base.types import Position\n'), ((3174, 3194), 'numpy.array', 'np.array', (['[8.5, 0.9]'], {}), '([8.5, 0.9])\n', (3182, 3194), True, 'import numpy as np\n'), ((4486, 4504), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4502, 4504), False, 'import sys\n'), ((4586, 4605), 'numpy.array', 'np.array', (['rctValues'], {}), '(rctValues)\n', (4594, 4605), True, 'import numpy as np\n'), ((4622, 4640), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4638, 4640), False, 'import sys\n'), ((4965, 4976), 'time.time', 'time.time', ([], {}), '()\n', (4974, 4976), False, 'import time\n'), ((2375, 2396), 'netCDF4.MFDataset', 'MFDataset', (['mesonhPath'], {}), '(mesonhPath)\n', (2384, 2396), False, 'from netCDF4 import MFDataset\n'), ((3897, 3959), 'numpy.linspace', 'np.linspace', (['tmp.bounds[1][0]', 'tmp.bounds[1][-1]', 'tmp.shape[1]'], {}), '(tmp.bounds[1][0], tmp.bounds[1][-1], tmp.shape[1])\n', (3908, 3959), True, 'import numpy as np\n'), ((3965, 4027), 'numpy.linspace', 'np.linspace', (['tmp.bounds[0][0]', 'tmp.bounds[0][-1]', 'tmp.shape[0]'], {}), '(tmp.bounds[0][0], tmp.bounds[0][-1], tmp.shape[0])\n', (3976, 4027), True, 'import numpy as np\n'), ((4211, 4235), 'numpy.sqrt', 'np.sqrt', (['processVariance'], {}), '(processVariance)\n', (4218, 4235), True, 'import numpy as np\n'), ((4661, 4696), 'numpy.random.randn', 'np.random.randn', (['rctValues.shape[0]'], {}), '(rctValues.shape[0])\n', (4676, 4696), True, 'import numpy as np\n'), ((4897, 4941), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {'sharex': '(True)', 'sharey': '(True)'}), '(3, 1, sharex=True, sharey=True)\n', (4909, 4941), True, 'import matplotlib.pyplot as plt\n'), ((5077, 5162), 'sklearn.gaussian_process.GaussianProcessRegressor', 'GaussianProcessRegressor', (['kernel0'], {'alpha': '(0.0)', 'optimizer': 'None', 'copy_X_train': '(False)'}), '(kernel0, alpha=0.0, optimizer=None, copy_X_train=False\n )\n', (5101, 5162), False, 'from sklearn.gaussian_process import GaussianProcessRegressor\n'), ((7139, 7203), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'update'], {'init_func': 'init', 'interval': '(1)'}), '(fig, update, init_func=init, interval=1)\n', (7162, 7203), False, 'from matplotlib import animation\n'), ((7248, 7269), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (7256, 7269), True, 'import matplotlib.pyplot as plt\n'), ((7285, 7296), 'time.time', 'time.time', ([], {}), '()\n', (7294, 7296), False, 'import time\n'), ((1471, 1525), 'numpy.meshgrid', 'np.meshgrid', (['X[:, 0]', 'Y[:, 0]'], {'indexing': '"""ij"""', 'copy': 'cop'}), "(X[:, 0], Y[:, 0], indexing='ij', copy=cop)\n", (1482, 1525), True, 'import numpy as np\n'), ((1610, 1664), 'numpy.meshgrid', 'np.meshgrid', (['X[:, 1]', 'Y[:, 1]'], {'indexing': '"""ij"""', 'copy': 'cop'}), "(X[:, 1], Y[:, 1], indexing='ij', copy=cop)\n", (1621, 1664), True, 'import numpy as np\n'), ((1786, 1840), 'numpy.meshgrid', 'np.meshgrid', (['X[:, 2]', 'Y[:, 2]'], {'indexing': '"""ij"""', 'copy': 'cop'}), "(X[:, 2], Y[:, 2], indexing='ij', copy=cop)\n", (1797, 1840), True, 'import numpy as np\n'), ((2164, 2219), 'numpy.array', 'np.array', (['([self.stddev + self.noiseStddev] * X.shape[0])'], {}), '([self.stddev + self.noiseStddev] * X.shape[0])\n', (2172, 2219), True, 'import numpy as np\n'), ((3263, 3298), 'numpy.cos', 'np.cos', (['(2 * np.pi * f0 * (t - t[0]))'], {}), '(2 * np.pi * f0 * (t - t[0]))\n', (3269, 3298), True, 'import numpy as np\n'), ((3347, 3382), 'numpy.sin', 'np.sin', (['(2 * np.pi * f0 * (t - t[0]))'], {}), '(2 * np.pi * f0 * (t - t[0]))\n', (3353, 3382), True, 'import numpy as np\n'), ((7364, 7375), 'time.time', 'time.time', ([], {}), '()\n', (7373, 7375), False, 'import time\n'), ((2019, 2059), 'numpy.diag', 'np.diag', (['([self.noiseStddev] * X.shape[0])'], {}), '([self.noiseStddev] * X.shape[0])\n', (2026, 2059), True, 'import numpy as np\n'), ((2103, 2125), 'numpy.exp', 'np.exp', (['(-0.5 * distMat)'], {}), '(-0.5 * distMat)\n', (2109, 2125), True, 'import numpy as np\n'), ((3234, 3269), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * (t - t[0]))'], {}), '(2 * np.pi * f1 * (t - t[0]))\n', (3240, 3269), True, 'import numpy as np\n'), ((3318, 3353), 'numpy.cos', 'np.cos', (['(2 * np.pi * f1 * (t - t[0]))'], {}), '(2 * np.pi * f1 * (t - t[0]))\n', (3324, 3353), True, 'import numpy as np\n'), ((3432, 3479), 'numpy.sum', 'np.sum', (['((p[1:, 1:3] - p[:-1, 1:3]) ** 2)'], {'axis': '(1)'}), '((p[1:, 1:3] - p[:-1, 1:3]) ** 2, axis=1)\n', (3438, 3479), True, 'import numpy as np\n'), ((1996, 2018), 'numpy.exp', 'np.exp', (['(-0.5 * distMat)'], {}), '(-0.5 * distMat)\n', (2002, 2018), True, 'import numpy as np\n'), ((2454, 2475), 'netCDF4.MFDataset', 'MFDataset', (['mesonhPath'], {}), '(mesonhPath)\n', (2463, 2475), False, 'from netCDF4 import MFDataset\n'), ((2533, 2554), 'netCDF4.MFDataset', 'MFDataset', (['mesonhPath'], {}), '(mesonhPath)\n', (2542, 2554), False, 'from netCDF4 import MFDataset\n')]
#!/usr/bin/env python3 import numpy as np import numpy.random as npr import pytest A1 = npr.rand( 1, 1) B1 = npr.rand( 1, 1) C1 = npr.rand( 1, 1) A3 = npr.rand( 3, 3) B3 = npr.rand( 3, 3) C3 = npr.rand( 3, 3) A10 = npr.rand( 10, 10) B10 = npr.rand( 10, 10) C10 = npr.rand( 10, 10) A30 = npr.rand( 30, 30) B30 = npr.rand( 30, 30) C30 = npr.rand( 30, 30) A100 = npr.rand( 100, 100) B100 = npr.rand( 100, 100) C100 = npr.rand( 100, 100) A300 = npr.rand( 300, 300) B300 = npr.rand( 300, 300) C300 = npr.rand( 300, 300) A1000 = npr.rand(1000, 1000) B1000 = npr.rand(1000, 1000) C1000 = npr.rand(1000, 1000) A3000 = npr.rand(3000, 3000) B3000 = npr.rand(3000, 3000) C3000 = npr.rand(3000, 3000) NC_A1 = list(A1 .flatten()) NC_B1 = list(B1 .flatten()) NC_C1 = list(C1 .flatten()) NC_A3 = list(A3 .flatten()) NC_B3 = list(B3 .flatten()) NC_C3 = list(C3 .flatten()) NC_A10 = list(A10 .flatten()) NC_B10 = list(B10 .flatten()) NC_C10 = list(C10 .flatten()) NC_A30 = list(A30 .flatten()) NC_B30 = list(B30 .flatten()) NC_C30 = list(C30 .flatten()) NC_A100 = list(A100 .flatten()) NC_B100 = list(B100 .flatten()) NC_C100 = list(C100 .flatten()) NC_A300 = list(A300 .flatten()) NC_B300 = list(B300 .flatten()) NC_C300 = list(C300 .flatten()) NC_A1000 = list(A1000.flatten()) NC_B1000 = list(B1000.flatten()) NC_C1000 = list(C1000.flatten()) NC_A3000 = list(A3000.flatten()) NC_B3000 = list(B3000.flatten()) NC_C3000 = list(C3000.flatten()) def add_numpy_core(a: np.ndarray, b: np.ndarray, c: np.ndarray) -> np.ndarray: return a + b + c def add_simple_core(a: list, b: list, c: list) -> list: retval = [0.0] * len(a) for i in range(len(a)): retval[i] = a[i] + b[i] + c[i] return retval def add_numpy_1 (): return add_numpy_core(A1 , B1 , C1 ) def add_numpy_3 (): return add_numpy_core(A3 , B3 , C3 ) def add_numpy_10 (): return add_numpy_core(A10 , B10 , C10 ) def add_numpy_30 (): return add_numpy_core(A30 , B30 , C30 ) def add_numpy_100 (): return add_numpy_core(A100 , B100 , C100 ) def add_numpy_300 (): return add_numpy_core(A300 , B300 , C300 ) def add_numpy_1000(): return add_numpy_core(A1000, B1000, C1000) def add_numpy_3000(): return add_numpy_core(A3000, B3000, C3000) def add_simple_1 (): return add_simple_core(A1 , B1 , C1 ) def add_simple_3 (): return add_simple_core(A3 , B3 , C3 ) def add_simple_10 (): return add_simple_core(A10 , B10 , C10 ) def add_simple_30 (): return add_simple_core(A30 , B30 , C30 ) def add_simple_100 (): return add_simple_core(A100 , B100 , C100 ) def add_simple_300 (): return add_simple_core(A300 , B300 , C300 ) def add_simple_1000(): return add_simple_core(A1000, B1000, C1000) def add_simple_3000(): return add_simple_core(A3000, B3000, C3000) def test_add_numpy_1 (benchmark): benchmark.pedantic(add_numpy_1 , rounds=256, iterations=16) def test_add_numpy_3 (benchmark): benchmark.pedantic(add_numpy_3 , rounds=256, iterations=16) def test_add_numpy_10 (benchmark): benchmark.pedantic(add_numpy_10 , rounds=256, iterations=16) def test_add_numpy_30 (benchmark): benchmark.pedantic(add_numpy_30 , rounds=256, iterations=16) def test_add_numpy_100 (benchmark): benchmark.pedantic(add_numpy_100 , rounds=256, iterations=16) def test_add_numpy_300 (benchmark): benchmark.pedantic(add_numpy_300 , rounds=256, iterations=16) def test_add_numpy_1000 (benchmark): benchmark.pedantic(add_numpy_1000 , rounds=256, iterations=16) def test_add_numpy_3000 (benchmark): benchmark.pedantic(add_numpy_3000 , rounds=256, iterations=16) def test_add_simple_1 (benchmark): benchmark.pedantic(add_simple_1 , rounds=256, iterations=16) def test_add_simple_3 (benchmark): benchmark.pedantic(add_simple_3 , rounds=256, iterations=16) def test_add_simple_10 (benchmark): benchmark.pedantic(add_simple_10 , rounds=256, iterations=16) def test_add_simple_30 (benchmark): benchmark.pedantic(add_simple_30 , rounds=256, iterations=16) def test_add_simple_100 (benchmark): benchmark.pedantic(add_simple_100 , rounds=256, iterations=16) def test_add_simple_300 (benchmark): benchmark.pedantic(add_simple_300 , rounds=256, iterations=16) def test_add_simple_1000(benchmark): benchmark.pedantic(add_simple_1000, rounds=256, iterations=16) def test_add_simple_3000(benchmark): benchmark.pedantic(add_simple_3000, rounds=256, iterations=16) if __name__ == "__main__": pytest.main(['-v', __file__])
[ "numpy.random.rand", "pytest.main" ]
[((93, 107), 'numpy.random.rand', 'npr.rand', (['(1)', '(1)'], {}), '(1, 1)\n', (101, 107), True, 'import numpy.random as npr\n'), ((122, 136), 'numpy.random.rand', 'npr.rand', (['(1)', '(1)'], {}), '(1, 1)\n', (130, 136), True, 'import numpy.random as npr\n'), ((151, 165), 'numpy.random.rand', 'npr.rand', (['(1)', '(1)'], {}), '(1, 1)\n', (159, 165), True, 'import numpy.random as npr\n'), ((180, 194), 'numpy.random.rand', 'npr.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (188, 194), True, 'import numpy.random as npr\n'), ((209, 223), 'numpy.random.rand', 'npr.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (217, 223), True, 'import numpy.random as npr\n'), ((238, 252), 'numpy.random.rand', 'npr.rand', (['(3)', '(3)'], {}), '(3, 3)\n', (246, 252), True, 'import numpy.random as npr\n'), ((267, 283), 'numpy.random.rand', 'npr.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (275, 283), True, 'import numpy.random as npr\n'), ((296, 312), 'numpy.random.rand', 'npr.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (304, 312), True, 'import numpy.random as npr\n'), ((325, 341), 'numpy.random.rand', 'npr.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (333, 341), True, 'import numpy.random as npr\n'), ((354, 370), 'numpy.random.rand', 'npr.rand', (['(30)', '(30)'], {}), '(30, 30)\n', (362, 370), True, 'import numpy.random as npr\n'), ((383, 399), 'numpy.random.rand', 'npr.rand', (['(30)', '(30)'], {}), '(30, 30)\n', (391, 399), True, 'import numpy.random as npr\n'), ((412, 428), 'numpy.random.rand', 'npr.rand', (['(30)', '(30)'], {}), '(30, 30)\n', (420, 428), True, 'import numpy.random as npr\n'), ((441, 459), 'numpy.random.rand', 'npr.rand', (['(100)', '(100)'], {}), '(100, 100)\n', (449, 459), True, 'import numpy.random as npr\n'), ((470, 488), 'numpy.random.rand', 'npr.rand', (['(100)', '(100)'], {}), '(100, 100)\n', (478, 488), True, 'import numpy.random as npr\n'), ((499, 517), 'numpy.random.rand', 'npr.rand', (['(100)', '(100)'], {}), '(100, 100)\n', (507, 517), True, 'import numpy.random as npr\n'), ((528, 546), 'numpy.random.rand', 'npr.rand', (['(300)', '(300)'], {}), '(300, 300)\n', (536, 546), True, 'import numpy.random as npr\n'), ((557, 575), 'numpy.random.rand', 'npr.rand', (['(300)', '(300)'], {}), '(300, 300)\n', (565, 575), True, 'import numpy.random as npr\n'), ((586, 604), 'numpy.random.rand', 'npr.rand', (['(300)', '(300)'], {}), '(300, 300)\n', (594, 604), True, 'import numpy.random as npr\n'), ((615, 635), 'numpy.random.rand', 'npr.rand', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (623, 635), True, 'import numpy.random as npr\n'), ((644, 664), 'numpy.random.rand', 'npr.rand', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (652, 664), True, 'import numpy.random as npr\n'), ((673, 693), 'numpy.random.rand', 'npr.rand', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (681, 693), True, 'import numpy.random as npr\n'), ((702, 722), 'numpy.random.rand', 'npr.rand', (['(3000)', '(3000)'], {}), '(3000, 3000)\n', (710, 722), True, 'import numpy.random as npr\n'), ((731, 751), 'numpy.random.rand', 'npr.rand', (['(3000)', '(3000)'], {}), '(3000, 3000)\n', (739, 751), True, 'import numpy.random as npr\n'), ((760, 780), 'numpy.random.rand', 'npr.rand', (['(3000)', '(3000)'], {}), '(3000, 3000)\n', (768, 780), True, 'import numpy.random as npr\n'), ((4540, 4569), 'pytest.main', 'pytest.main', (["['-v', __file__]"], {}), "(['-v', __file__])\n", (4551, 4569), False, 'import pytest\n')]
import random import numpy as np import tensorflow as tf from recognition.utils import train_utils, googlenet_load try: from tensorflow.models.rnn import rnn_cell except ImportError: rnn_cell = tf.nn.rnn_cell from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops random.seed(0) np.random.seed(0) @ops.RegisterGradient("Hungarian") def _hungarian_grad(op, *args): return map(array_ops.zeros_like, op.inputs) def build_lstm_inner(H, lstm_input): ''' build lstm decoder ''' lstm_cell = rnn_cell.BasicLSTMCell(H['lstm_size'], forget_bias=0.0, state_is_tuple=False) if H['num_lstm_layers'] > 1: lstm = rnn_cell.MultiRNNCell([lstm_cell] * H['num_lstm_layers'], state_is_tuple=False) else: lstm = lstm_cell batch_size = H['batch_size'] * H['grid_height'] * H['grid_width'] state = tf.zeros([batch_size, lstm.state_size]) outputs = [] with tf.variable_scope('RNN', initializer=tf.random_uniform_initializer(-0.1, 0.1)): for time_step in range(H['rnn_len']): if time_step > 0: tf.get_variable_scope().reuse_variables() output, state = lstm(lstm_input, state) outputs.append(output) return outputs def build_overfeat_inner(H, lstm_input): ''' build simple overfeat decoder ''' if H['rnn_len'] > 1: raise ValueError('rnn_len > 1 only supported with use_lstm == True') outputs = [] initializer = tf.random_uniform_initializer(-0.1, 0.1) with tf.variable_scope('Overfeat', initializer=initializer): w = tf.get_variable('ip', shape=[H['later_feat_channels'], H['lstm_size']]) outputs.append(tf.matmul(lstm_input, w)) return outputs def deconv(x, output_shape, channels): k_h = 2 k_w = 2 w = tf.get_variable('w_deconv', initializer=tf.random_normal_initializer(stddev=0.01), shape=[k_h, k_w, channels[1], channels[0]]) y = tf.nn.conv2d_transpose(x, w, output_shape, strides=[1, k_h, k_w, 1], padding='VALID') return y def rezoom(H, pred_boxes, early_feat, early_feat_channels, w_offsets, h_offsets): ''' Rezoom into a feature map at multiple interpolation points in a grid. If the predicted object center is at X, len(w_offsets) == 3, and len(h_offsets) == 5, the rezoom grid will look as follows: [o o o] [o o o] [o X o] [o o o] [o o o] Where each letter indexes into the feature map with bilinear interpolation ''' grid_size = H['grid_width'] * H['grid_height'] outer_size = grid_size * H['batch_size'] indices = [] for w_offset in w_offsets: for h_offset in h_offsets: indices.append(train_utils.bilinear_select(H, pred_boxes, early_feat, early_feat_channels, w_offset, h_offset)) interp_indices = tf.concat(0, indices) rezoom_features = train_utils.interp(early_feat, interp_indices, early_feat_channels) rezoom_features_r = tf.reshape(rezoom_features, [len(w_offsets) * len(h_offsets), outer_size, H['rnn_len'], early_feat_channels]) rezoom_features_t = tf.transpose(rezoom_features_r, [1, 2, 0, 3]) return tf.reshape(rezoom_features_t, [outer_size, H['rnn_len'], len(w_offsets) * len(h_offsets) * early_feat_channels]) def build_forward(H, x, phase, reuse): ''' Construct the forward model ''' grid_size = H['grid_width'] * H['grid_height'] outer_size = grid_size * H['batch_size'] input_mean = 117. x -= input_mean cnn, early_feat, _ = googlenet_load.model(x, H, reuse) early_feat_channels = H['early_feat_channels'] early_feat = early_feat[:, :, :, :early_feat_channels] if H['deconv']: size = 3 stride = 2 pool_size = 5 with tf.variable_scope("deconv", reuse=reuse): w = tf.get_variable('conv_pool_w', shape=[size, size, H['later_feat_channels'], H['later_feat_channels']], initializer=tf.random_normal_initializer(stddev=0.01)) cnn_s = tf.nn.conv2d(cnn, w, strides=[1, stride, stride, 1], padding='SAME') cnn_s_pool = tf.nn.avg_pool(cnn_s[:, :, :, :256], ksize=[1, pool_size, pool_size, 1], strides=[1, 1, 1, 1], padding='SAME') cnn_s_with_pool = tf.concat(3, [cnn_s_pool, cnn_s[:, :, :, 256:]]) cnn_deconv = deconv(cnn_s_with_pool, output_shape=[H['batch_size'], H['grid_height'], H['grid_width'], 256], channels=[H['later_feat_channels'], 256]) cnn = tf.concat(3, (cnn_deconv, cnn[:, :, :, 256:])) elif H['avg_pool_size'] > 1: pool_size = H['avg_pool_size'] cnn1 = cnn[:, :, :, :700] cnn2 = cnn[:, :, :, 700:] cnn2 = tf.nn.avg_pool(cnn2, ksize=[1, pool_size, pool_size, 1], strides=[1, 1, 1, 1], padding='SAME') cnn = tf.concat(3, [cnn1, cnn2]) cnn = tf.reshape(cnn, [H['batch_size'] * H['grid_width'] * H['grid_height'], H['later_feat_channels']]) initializer = tf.random_uniform_initializer(-0.1, 0.1) with tf.variable_scope('decoder', reuse=reuse, initializer=initializer): scale_down = 0.01 lstm_input = tf.reshape(cnn * scale_down, (H['batch_size'] * grid_size, H['later_feat_channels'])) if H['use_lstm']: lstm_outputs = build_lstm_inner(H, lstm_input) else: lstm_outputs = build_overfeat_inner(H, lstm_input) pred_boxes = [] pred_logits = [] for k in range(H['rnn_len']): output = lstm_outputs[k] if phase == 'train': output = tf.nn.dropout(output, 0.5) box_weights = tf.get_variable('box_ip%d' % k, shape=(H['lstm_size'], 4)) conf_weights = tf.get_variable('conf_ip%d' % k, shape=(H['lstm_size'], H['num_classes'])) pred_boxes_step = tf.reshape(tf.matmul(output, box_weights) * 50, [outer_size, 1, 4]) pred_boxes.append(pred_boxes_step) pred_logits.append(tf.reshape(tf.matmul(output, conf_weights), [outer_size, 1, H['num_classes']])) pred_boxes = tf.concat(1, pred_boxes) pred_logits = tf.concat(1, pred_logits) pred_logits_squash = tf.reshape(pred_logits, [outer_size * H['rnn_len'], H['num_classes']]) pred_confidences_squash = tf.nn.softmax(pred_logits_squash) pred_confidences = tf.reshape(pred_confidences_squash, [outer_size, H['rnn_len'], H['num_classes']]) if H['use_rezoom']: pred_confs_deltas = [] pred_boxes_deltas = [] w_offsets = H['rezoom_w_coords'] h_offsets = H['rezoom_h_coords'] num_offsets = len(w_offsets) * len(h_offsets) rezoom_features = rezoom(H, pred_boxes, early_feat, early_feat_channels, w_offsets, h_offsets) if phase == 'train': rezoom_features = tf.nn.dropout(rezoom_features, 0.5) for k in range(H['rnn_len']): delta_features = tf.concat(1, [lstm_outputs[k], rezoom_features[:, k, :] / 1000.]) dim = 128 delta_weights1 = tf.get_variable( 'delta_ip1%d' % k, shape=[H['lstm_size'] + early_feat_channels * num_offsets, dim]) # TODO: add dropout here ? ip1 = tf.nn.relu(tf.matmul(delta_features, delta_weights1)) if phase == 'train': ip1 = tf.nn.dropout(ip1, 0.5) delta_confs_weights = tf.get_variable( 'delta_ip2%d' % k, shape=[dim, H['num_classes']]) if H['reregress']: delta_boxes_weights = tf.get_variable( 'delta_ip_boxes%d' % k, shape=[dim, 4]) pred_boxes_deltas.append(tf.reshape(tf.matmul(ip1, delta_boxes_weights) * 5, [outer_size, 1, 4])) scale = H.get('rezoom_conf_scale', 50) pred_confs_deltas.append(tf.reshape(tf.matmul(ip1, delta_confs_weights) * scale, [outer_size, 1, H['num_classes']])) pred_confs_deltas = tf.concat(1, pred_confs_deltas) if H['reregress']: pred_boxes_deltas = tf.concat(1, pred_boxes_deltas) return pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas return pred_boxes, pred_logits, pred_confidences
[ "tensorflow.python.framework.ops.RegisterGradient", "tensorflow.models.rnn.rnn_cell.MultiRNNCell", "tensorflow.get_variable", "tensorflow.transpose", "tensorflow.get_variable_scope", "tensorflow.nn.dropout", "tensorflow.nn.conv2d_transpose", "tensorflow.nn.softmax", "recognition.utils.train_utils.interp", "tensorflow.random_normal_initializer", "tensorflow.concat", "recognition.utils.googlenet_load.model", "numpy.random.seed", "tensorflow.matmul", "recognition.utils.train_utils.bilinear_select", "tensorflow.zeros", "tensorflow.nn.conv2d", "tensorflow.variable_scope", "tensorflow.nn.avg_pool", "tensorflow.reshape", "random.seed", "tensorflow.models.rnn.rnn_cell.BasicLSTMCell", "tensorflow.random_uniform_initializer" ]
[((309, 323), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (320, 323), False, 'import random\n'), ((324, 341), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (338, 341), True, 'import numpy as np\n'), ((345, 378), 'tensorflow.python.framework.ops.RegisterGradient', 'ops.RegisterGradient', (['"""Hungarian"""'], {}), "('Hungarian')\n", (365, 378), False, 'from tensorflow.python.framework import ops\n'), ((553, 630), 'tensorflow.models.rnn.rnn_cell.BasicLSTMCell', 'rnn_cell.BasicLSTMCell', (["H['lstm_size']"], {'forget_bias': '(0.0)', 'state_is_tuple': '(False)'}), "(H['lstm_size'], forget_bias=0.0, state_is_tuple=False)\n", (575, 630), False, 'from tensorflow.models.rnn import rnn_cell\n'), ((877, 916), 'tensorflow.zeros', 'tf.zeros', (['[batch_size, lstm.state_size]'], {}), '([batch_size, lstm.state_size])\n', (885, 916), True, 'import tensorflow as tf\n'), ((1478, 1518), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.1)', '(0.1)'], {}), '(-0.1, 0.1)\n', (1507, 1518), True, 'import tensorflow as tf\n'), ((1968, 2057), 'tensorflow.nn.conv2d_transpose', 'tf.nn.conv2d_transpose', (['x', 'w', 'output_shape'], {'strides': '[1, k_h, k_w, 1]', 'padding': '"""VALID"""'}), "(x, w, output_shape, strides=[1, k_h, k_w, 1],\n padding='VALID')\n", (1990, 2057), True, 'import tensorflow as tf\n'), ((3061, 3082), 'tensorflow.concat', 'tf.concat', (['(0)', 'indices'], {}), '(0, indices)\n', (3070, 3082), True, 'import tensorflow as tf\n'), ((3105, 3172), 'recognition.utils.train_utils.interp', 'train_utils.interp', (['early_feat', 'interp_indices', 'early_feat_channels'], {}), '(early_feat, interp_indices, early_feat_channels)\n', (3123, 3172), False, 'from recognition.utils import train_utils, googlenet_load\n'), ((3556, 3601), 'tensorflow.transpose', 'tf.transpose', (['rezoom_features_r', '[1, 2, 0, 3]'], {}), '(rezoom_features_r, [1, 2, 0, 3])\n', (3568, 3601), True, 'import tensorflow as tf\n'), ((4047, 4080), 'recognition.utils.googlenet_load.model', 'googlenet_load.model', (['x', 'H', 'reuse'], {}), '(x, H, reuse)\n', (4067, 4080), False, 'from recognition.utils import train_utils, googlenet_load\n'), ((5470, 5572), 'tensorflow.reshape', 'tf.reshape', (['cnn', "[H['batch_size'] * H['grid_width'] * H['grid_height'], H['later_feat_channels']\n ]"], {}), "(cnn, [H['batch_size'] * H['grid_width'] * H['grid_height'], H[\n 'later_feat_channels']])\n", (5480, 5572), True, 'import tensorflow as tf\n'), ((5607, 5647), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.1)', '(0.1)'], {}), '(-0.1, 0.1)\n', (5636, 5647), True, 'import tensorflow as tf\n'), ((679, 758), 'tensorflow.models.rnn.rnn_cell.MultiRNNCell', 'rnn_cell.MultiRNNCell', (["([lstm_cell] * H['num_lstm_layers'])"], {'state_is_tuple': '(False)'}), "([lstm_cell] * H['num_lstm_layers'], state_is_tuple=False)\n", (700, 758), False, 'from tensorflow.models.rnn import rnn_cell\n'), ((1528, 1582), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""Overfeat"""'], {'initializer': 'initializer'}), "('Overfeat', initializer=initializer)\n", (1545, 1582), True, 'import tensorflow as tf\n'), ((1596, 1667), 'tensorflow.get_variable', 'tf.get_variable', (['"""ip"""'], {'shape': "[H['later_feat_channels'], H['lstm_size']]"}), "('ip', shape=[H['later_feat_channels'], H['lstm_size']])\n", (1611, 1667), True, 'import tensorflow as tf\n'), ((5657, 5723), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""decoder"""'], {'reuse': 'reuse', 'initializer': 'initializer'}), "('decoder', reuse=reuse, initializer=initializer)\n", (5674, 5723), True, 'import tensorflow as tf\n'), ((5772, 5862), 'tensorflow.reshape', 'tf.reshape', (['(cnn * scale_down)', "(H['batch_size'] * grid_size, H['later_feat_channels'])"], {}), "(cnn * scale_down, (H['batch_size'] * grid_size, H[\n 'later_feat_channels']))\n", (5782, 5862), True, 'import tensorflow as tf\n'), ((6865, 6889), 'tensorflow.concat', 'tf.concat', (['(1)', 'pred_boxes'], {}), '(1, pred_boxes)\n', (6874, 6889), True, 'import tensorflow as tf\n'), ((6912, 6937), 'tensorflow.concat', 'tf.concat', (['(1)', 'pred_logits'], {}), '(1, pred_logits)\n', (6921, 6937), True, 'import tensorflow as tf\n'), ((6967, 7037), 'tensorflow.reshape', 'tf.reshape', (['pred_logits', "[outer_size * H['rnn_len'], H['num_classes']]"], {}), "(pred_logits, [outer_size * H['rnn_len'], H['num_classes']])\n", (6977, 7037), True, 'import tensorflow as tf\n'), ((7112, 7145), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['pred_logits_squash'], {}), '(pred_logits_squash)\n', (7125, 7145), True, 'import tensorflow as tf\n'), ((7173, 7259), 'tensorflow.reshape', 'tf.reshape', (['pred_confidences_squash', "[outer_size, H['rnn_len'], H['num_classes']]"], {}), "(pred_confidences_squash, [outer_size, H['rnn_len'], H[\n 'num_classes']])\n", (7183, 7259), True, 'import tensorflow as tf\n'), ((1691, 1715), 'tensorflow.matmul', 'tf.matmul', (['lstm_input', 'w'], {}), '(lstm_input, w)\n', (1700, 1715), True, 'import tensorflow as tf\n'), ((1849, 1890), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (1877, 1890), True, 'import tensorflow as tf\n'), ((4284, 4324), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""deconv"""'], {'reuse': 'reuse'}), "('deconv', reuse=reuse)\n", (4301, 4324), True, 'import tensorflow as tf\n'), ((4552, 4620), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['cnn', 'w'], {'strides': '[1, stride, stride, 1]', 'padding': '"""SAME"""'}), "(cnn, w, strides=[1, stride, stride, 1], padding='SAME')\n", (4564, 4620), True, 'import tensorflow as tf\n'), ((4646, 4760), 'tensorflow.nn.avg_pool', 'tf.nn.avg_pool', (['cnn_s[:, :, :, :256]'], {'ksize': '[1, pool_size, pool_size, 1]', 'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(cnn_s[:, :, :, :256], ksize=[1, pool_size, pool_size, 1],\n strides=[1, 1, 1, 1], padding='SAME')\n", (4660, 4760), True, 'import tensorflow as tf\n'), ((4828, 4876), 'tensorflow.concat', 'tf.concat', (['(3)', '[cnn_s_pool, cnn_s[:, :, :, 256:]]'], {}), '(3, [cnn_s_pool, cnn_s[:, :, :, 256:]])\n', (4837, 4876), True, 'import tensorflow as tf\n'), ((5090, 5136), 'tensorflow.concat', 'tf.concat', (['(3)', '(cnn_deconv, cnn[:, :, :, 256:])'], {}), '(3, (cnn_deconv, cnn[:, :, :, 256:]))\n', (5099, 5136), True, 'import tensorflow as tf\n'), ((5293, 5392), 'tensorflow.nn.avg_pool', 'tf.nn.avg_pool', (['cnn2'], {'ksize': '[1, pool_size, pool_size, 1]', 'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(cnn2, ksize=[1, pool_size, pool_size, 1], strides=[1, 1, 1, \n 1], padding='SAME')\n", (5307, 5392), True, 'import tensorflow as tf\n'), ((5432, 5458), 'tensorflow.concat', 'tf.concat', (['(3)', '[cnn1, cnn2]'], {}), '(3, [cnn1, cnn2])\n', (5441, 5458), True, 'import tensorflow as tf\n'), ((6256, 6314), 'tensorflow.get_variable', 'tf.get_variable', (["('box_ip%d' % k)"], {'shape': "(H['lstm_size'], 4)"}), "('box_ip%d' % k, shape=(H['lstm_size'], 4))\n", (6271, 6314), True, 'import tensorflow as tf\n'), ((6384, 6458), 'tensorflow.get_variable', 'tf.get_variable', (["('conf_ip%d' % k)"], {'shape': "(H['lstm_size'], H['num_classes'])"}), "('conf_ip%d' % k, shape=(H['lstm_size'], H['num_classes']))\n", (6399, 6458), True, 'import tensorflow as tf\n'), ((9070, 9101), 'tensorflow.concat', 'tf.concat', (['(1)', 'pred_confs_deltas'], {}), '(1, pred_confs_deltas)\n', (9079, 9101), True, 'import tensorflow as tf\n'), ((981, 1021), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', (['(-0.1)', '(0.1)'], {}), '(-0.1, 0.1)\n', (1010, 1021), True, 'import tensorflow as tf\n'), ((2722, 2821), 'recognition.utils.train_utils.bilinear_select', 'train_utils.bilinear_select', (['H', 'pred_boxes', 'early_feat', 'early_feat_channels', 'w_offset', 'h_offset'], {}), '(H, pred_boxes, early_feat, early_feat_channels,\n w_offset, h_offset)\n', (2749, 2821), False, 'from recognition.utils import train_utils, googlenet_load\n'), ((6203, 6229), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['output', '(0.5)'], {}), '(output, 0.5)\n', (6216, 6229), True, 'import tensorflow as tf\n'), ((7714, 7749), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['rezoom_features', '(0.5)'], {}), '(rezoom_features, 0.5)\n', (7727, 7749), True, 'import tensorflow as tf\n'), ((7825, 7891), 'tensorflow.concat', 'tf.concat', (['(1)', '[lstm_outputs[k], rezoom_features[:, k, :] / 1000.0]'], {}), '(1, [lstm_outputs[k], rezoom_features[:, k, :] / 1000.0])\n', (7834, 7891), True, 'import tensorflow as tf\n'), ((7950, 8054), 'tensorflow.get_variable', 'tf.get_variable', (["('delta_ip1%d' % k)"], {'shape': "[H['lstm_size'] + early_feat_channels * num_offsets, dim]"}), "('delta_ip1%d' % k, shape=[H['lstm_size'] + \n early_feat_channels * num_offsets, dim])\n", (7965, 8054), True, 'import tensorflow as tf\n'), ((8335, 8400), 'tensorflow.get_variable', 'tf.get_variable', (["('delta_ip2%d' % k)"], {'shape': "[dim, H['num_classes']]"}), "('delta_ip2%d' % k, shape=[dim, H['num_classes']])\n", (8350, 8400), True, 'import tensorflow as tf\n'), ((9169, 9200), 'tensorflow.concat', 'tf.concat', (['(1)', 'pred_boxes_deltas'], {}), '(1, pred_boxes_deltas)\n', (9178, 9200), True, 'import tensorflow as tf\n'), ((4489, 4530), 'tensorflow.random_normal_initializer', 'tf.random_normal_initializer', ([], {'stddev': '(0.01)'}), '(stddev=0.01)\n', (4517, 4530), True, 'import tensorflow as tf\n'), ((6544, 6574), 'tensorflow.matmul', 'tf.matmul', (['output', 'box_weights'], {}), '(output, box_weights)\n', (6553, 6574), True, 'import tensorflow as tf\n'), ((6732, 6763), 'tensorflow.matmul', 'tf.matmul', (['output', 'conf_weights'], {}), '(output, conf_weights)\n', (6741, 6763), True, 'import tensorflow as tf\n'), ((8167, 8208), 'tensorflow.matmul', 'tf.matmul', (['delta_features', 'delta_weights1'], {}), '(delta_features, delta_weights1)\n', (8176, 8208), True, 'import tensorflow as tf\n'), ((8273, 8296), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['ip1', '(0.5)'], {}), '(ip1, 0.5)\n', (8286, 8296), True, 'import tensorflow as tf\n'), ((8519, 8574), 'tensorflow.get_variable', 'tf.get_variable', (["('delta_ip_boxes%d' % k)"], {'shape': '[dim, 4]'}), "('delta_ip_boxes%d' % k, shape=[dim, 4])\n", (8534, 8574), True, 'import tensorflow as tf\n'), ((1100, 1123), 'tensorflow.get_variable_scope', 'tf.get_variable_scope', ([], {}), '()\n', (1121, 1123), True, 'import tensorflow as tf\n'), ((8905, 8940), 'tensorflow.matmul', 'tf.matmul', (['ip1', 'delta_confs_weights'], {}), '(ip1, delta_confs_weights)\n', (8914, 8940), True, 'import tensorflow as tf\n'), ((8680, 8715), 'tensorflow.matmul', 'tf.matmul', (['ip1', 'delta_boxes_weights'], {}), '(ip1, delta_boxes_weights)\n', (8689, 8715), True, 'import tensorflow as tf\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: linear.ipynb (unless otherwise specified). __all__ = ['vv', 'denoising_MRF'] # Cell import numpy as np import gtsam from gtsam import noiseModel from .display import show from typing import Dict # Cell def vv(keys_vectors: Dict[int, np.ndarray]): """Create a VectorValues from a dict""" result = gtsam.VectorValues() for j, v in keys_vectors.items(): result.insert(j, v) return result # Cell def denoising_MRF(M: int, N: int, sigma = 0.5, smoothness_sigma=0.5): """Create MxN MRF @returns graph and symbols used for rows. """ row_symbols = [chr(ord('a')+row) for row in range(M)] keys = {(row, col): gtsam.symbol(row_symbols[row], col+1) for row in range(M) for col in range(N)} rng = np.random.default_rng(42) data = rng.normal(loc=0, scale=sigma, size=(M, N, 1)) data_model = noiseModel.Isotropic.Sigmas([sigma]) smoothness_model = noiseModel.Isotropic.Sigmas([smoothness_sigma]) I = np.eye(1, 1, dtype=float) zero = np.zeros((1, 1)) graph = gtsam.GaussianFactorGraph() for row in range(M): for col in range(N): # add data terms: j = keys[(row, col)] graph.add(j, I, np.array(data[row, col]), data_model) # add smoothness terms: if col > 0: j1 = keys[(row, col-1)] graph.add(j, I, j1, -I, zero, smoothness_model) if row > 0: j2 = keys[(row-1, col)] graph.add(j, I, j2, -I, zero, smoothness_model) return graph, row_symbols # Cell
[ "numpy.eye", "gtsam.noiseModel.Isotropic.Sigmas", "numpy.random.default_rng", "gtsam.symbol", "numpy.array", "numpy.zeros", "gtsam.VectorValues", "gtsam.GaussianFactorGraph" ]
[((352, 372), 'gtsam.VectorValues', 'gtsam.VectorValues', ([], {}), '()\n', (370, 372), False, 'import gtsam\n'), ((800, 825), 'numpy.random.default_rng', 'np.random.default_rng', (['(42)'], {}), '(42)\n', (821, 825), True, 'import numpy as np\n'), ((901, 937), 'gtsam.noiseModel.Isotropic.Sigmas', 'noiseModel.Isotropic.Sigmas', (['[sigma]'], {}), '([sigma])\n', (928, 937), False, 'from gtsam import noiseModel\n'), ((962, 1009), 'gtsam.noiseModel.Isotropic.Sigmas', 'noiseModel.Isotropic.Sigmas', (['[smoothness_sigma]'], {}), '([smoothness_sigma])\n', (989, 1009), False, 'from gtsam import noiseModel\n'), ((1019, 1044), 'numpy.eye', 'np.eye', (['(1)', '(1)'], {'dtype': 'float'}), '(1, 1, dtype=float)\n', (1025, 1044), True, 'import numpy as np\n'), ((1056, 1072), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (1064, 1072), True, 'import numpy as np\n'), ((1085, 1112), 'gtsam.GaussianFactorGraph', 'gtsam.GaussianFactorGraph', ([], {}), '()\n', (1110, 1112), False, 'import gtsam\n'), ((698, 737), 'gtsam.symbol', 'gtsam.symbol', (['row_symbols[row]', '(col + 1)'], {}), '(row_symbols[row], col + 1)\n', (710, 737), False, 'import gtsam\n'), ((1258, 1282), 'numpy.array', 'np.array', (['data[row, col]'], {}), '(data[row, col])\n', (1266, 1282), True, 'import numpy as np\n')]
"""Evaluating Prophet model on M4 timeseries """ from darts.models import Prophet from darts.utils.statistics import check_seasonality from darts.utils import _build_tqdm_iterator import numpy as np import pandas as pd import pickle as pkl from M4_metrics import owa_m4, mase_m4, smape_m4 if __name__ == "__main__": data_categories = ['Yearly', 'Quarterly', 'Monthly', 'Weekly', 'Daily', 'Hourly'] info_dataset = pd.read_csv('dataset/M4-info.csv', delimiter=',').set_index('M4id') for cat in data_categories[::-1]: # Load TimeSeries from M4 ts_train = pkl.load(open("dataset/train_"+cat+".pkl", "rb")) ts_test = pkl.load(open("dataset/test_"+cat+".pkl", "rb")) # Test models on all time series mase_all = [] smape_all = [] m = int(info_dataset.Frequency[cat[0]+"1"]) for train, test in _build_tqdm_iterator(zip(ts_train, ts_test), verbose=True): train_des = train seasonOut = 1 if m > 1: if check_seasonality(train, m=int(m), max_lag=2*m): pass else: m = 1 try: prophet_args = { 'daily_seasonality': False, 'weekly_seasonality': False, 'yearly_seasonality': False, 'frequency': None, 'changepoint_range': 0.95, } if cat == 'Daily': prophet_args['daily_seasonality'] = True elif cat == 'Hourly': prophet_args['daily_seasonality'] = True elif cat == 'Weekly': prophet_args['weekly_seasonality'] = True elif cat == 'Monthly': prophet_args['yearly_seasonality'] = True elif cat == 'Quarterly': prophet_args['yearly_seasonality'] = True elif cat == 'Yearly': prophet_args['yearly_seasonality'] = True prophet = Prophet(**prophet_args) derivate = np.diff(train.univariate_values(), n=1) jump = derivate.max()/(train.max().max() - train.min().min()) try: if jump <= 0.5: prophet.fit(train) else: prophet.fit(train.drop_before(train.time_index()[np.argmax(derivate)+1])) except ValueError as e: raise e forecast_prophet = prophet.predict(len(test)) m = info_dataset.Frequency[cat[0]+"1"] mase_all.append(np.vstack([ mase_m4(train, test, forecast_prophet, m=m), ])) smape_all.append(np.vstack([ smape_m4(test, forecast_prophet), ])) except Exception as e: print(e) break pkl.dump(mase_all, open("prophet_mase_"+cat+".pkl", "wb")) pkl.dump(smape_all, open("prophet_smape_"+cat+".pkl", "wb")) print("MASE; Prophet: {}".format(*tuple(np.nanmean(np.stack(mase_all), axis=(0, 2))))) print("sMAPE; Prophet: {}".format(*tuple(np.nanmean(np.stack(smape_all), axis=(0, 2))))) print("OWA: ", owa_m4(cat, np.nanmean(np.stack(smape_all), axis=(0, 2)), np.nanmean(np.stack(mase_all), axis=(0, 2))))
[ "M4_metrics.mase_m4", "pandas.read_csv", "M4_metrics.smape_m4", "numpy.argmax", "numpy.stack", "darts.models.Prophet" ]
[((429, 478), 'pandas.read_csv', 'pd.read_csv', (['"""dataset/M4-info.csv"""'], {'delimiter': '""","""'}), "('dataset/M4-info.csv', delimiter=',')\n", (440, 478), True, 'import pandas as pd\n'), ((2152, 2175), 'darts.models.Prophet', 'Prophet', ([], {}), '(**prophet_args)\n', (2159, 2175), False, 'from darts.models import Prophet\n'), ((3442, 3461), 'numpy.stack', 'np.stack', (['smape_all'], {}), '(smape_all)\n', (3450, 3461), True, 'import numpy as np\n'), ((3518, 3536), 'numpy.stack', 'np.stack', (['mase_all'], {}), '(mase_all)\n', (3526, 3536), True, 'import numpy as np\n'), ((2794, 2837), 'M4_metrics.mase_m4', 'mase_m4', (['train', 'test', 'forecast_prophet'], {'m': 'm'}), '(train, test, forecast_prophet, m=m)\n', (2801, 2837), False, 'from M4_metrics import owa_m4, mase_m4, smape_m4\n'), ((2928, 2960), 'M4_metrics.smape_m4', 'smape_m4', (['test', 'forecast_prophet'], {}), '(test, forecast_prophet)\n', (2936, 2960), False, 'from M4_metrics import owa_m4, mase_m4, smape_m4\n'), ((3263, 3281), 'numpy.stack', 'np.stack', (['mase_all'], {}), '(mase_all)\n', (3271, 3281), True, 'import numpy as np\n'), ((3359, 3378), 'numpy.stack', 'np.stack', (['smape_all'], {}), '(smape_all)\n', (3367, 3378), True, 'import numpy as np\n'), ((2520, 2539), 'numpy.argmax', 'np.argmax', (['derivate'], {}), '(derivate)\n', (2529, 2539), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. import numpy as np from numpy.testing import assert_array_equal, assert_allclose from vispy.testing import run_tests_if_main from vispy.geometry import (create_box, create_cube, create_cylinder, create_sphere, create_plane) def test_box(): """Test box function""" vertices, filled, outline = create_box() assert_array_equal(np.arange(len(vertices)), np.unique(filled)) assert_array_equal(np.arange(len(vertices)), np.unique(outline)) def test_cube(): """Test cube function""" vertices, filled, outline = create_cube() assert_array_equal(np.arange(len(vertices)), np.unique(filled)) assert_array_equal(np.arange(len(vertices)), np.unique(outline)) def test_sphere(): """Test sphere function""" md = create_sphere(rows=10, cols=20, radius=10, method='latitude') radii = np.sqrt((md.get_vertices() ** 2).sum(axis=1)) assert_allclose(radii, np.ones_like(radii) * 10) md = create_sphere(subdivisions=5, radius=10, method='ico') radii = np.sqrt((md.get_vertices() ** 2).sum(axis=1)) assert_allclose(radii, np.ones_like(radii) * 10) md = create_sphere(rows=20, cols=20, depth=20, radius=10, method='cube') radii = np.sqrt((md.get_vertices() ** 2).sum(axis=1)) assert_allclose(radii, np.ones_like(radii) * 10) def test_cylinder(): """Test cylinder function""" md = create_cylinder(10, 20, radius=[10, 10]) radii = np.sqrt((md.get_vertices()[:, :2] ** 2).sum(axis=1)) assert_allclose(radii, np.ones_like(radii) * 10) def test_plane(): """Test plane function""" vertices, filled, outline = create_plane() assert_array_equal(np.arange(len(vertices)), np.unique(filled)) assert_array_equal(np.arange(len(vertices)), np.unique(outline)) run_tests_if_main()
[ "numpy.ones_like", "numpy.unique", "vispy.geometry.create_cylinder", "vispy.testing.run_tests_if_main", "vispy.geometry.create_plane", "vispy.geometry.create_sphere", "vispy.geometry.create_cube", "vispy.geometry.create_box" ]
[((1913, 1932), 'vispy.testing.run_tests_if_main', 'run_tests_if_main', ([], {}), '()\n', (1930, 1932), False, 'from vispy.testing import run_tests_if_main\n'), ((475, 487), 'vispy.geometry.create_box', 'create_box', ([], {}), '()\n', (485, 487), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((705, 718), 'vispy.geometry.create_cube', 'create_cube', ([], {}), '()\n', (716, 718), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((917, 978), 'vispy.geometry.create_sphere', 'create_sphere', ([], {'rows': '(10)', 'cols': '(20)', 'radius': '(10)', 'method': '"""latitude"""'}), "(rows=10, cols=20, radius=10, method='latitude')\n", (930, 978), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((1099, 1153), 'vispy.geometry.create_sphere', 'create_sphere', ([], {'subdivisions': '(5)', 'radius': '(10)', 'method': '"""ico"""'}), "(subdivisions=5, radius=10, method='ico')\n", (1112, 1153), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((1274, 1341), 'vispy.geometry.create_sphere', 'create_sphere', ([], {'rows': '(20)', 'cols': '(20)', 'depth': '(20)', 'radius': '(10)', 'method': '"""cube"""'}), "(rows=20, cols=20, depth=20, radius=10, method='cube')\n", (1287, 1341), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((1518, 1558), 'vispy.geometry.create_cylinder', 'create_cylinder', (['(10)', '(20)'], {'radius': '[10, 10]'}), '(10, 20, radius=[10, 10])\n', (1533, 1558), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((1759, 1773), 'vispy.geometry.create_plane', 'create_plane', ([], {}), '()\n', (1771, 1773), False, 'from vispy.geometry import create_box, create_cube, create_cylinder, create_sphere, create_plane\n'), ((537, 554), 'numpy.unique', 'np.unique', (['filled'], {}), '(filled)\n', (546, 554), True, 'import numpy as np\n'), ((605, 623), 'numpy.unique', 'np.unique', (['outline'], {}), '(outline)\n', (614, 623), True, 'import numpy as np\n'), ((768, 785), 'numpy.unique', 'np.unique', (['filled'], {}), '(filled)\n', (777, 785), True, 'import numpy as np\n'), ((836, 854), 'numpy.unique', 'np.unique', (['outline'], {}), '(outline)\n', (845, 854), True, 'import numpy as np\n'), ((1823, 1840), 'numpy.unique', 'np.unique', (['filled'], {}), '(filled)\n', (1832, 1840), True, 'import numpy as np\n'), ((1891, 1909), 'numpy.unique', 'np.unique', (['outline'], {}), '(outline)\n', (1900, 1909), True, 'import numpy as np\n'), ((1064, 1083), 'numpy.ones_like', 'np.ones_like', (['radii'], {}), '(radii)\n', (1076, 1083), True, 'import numpy as np\n'), ((1239, 1258), 'numpy.ones_like', 'np.ones_like', (['radii'], {}), '(radii)\n', (1251, 1258), True, 'import numpy as np\n'), ((1427, 1446), 'numpy.ones_like', 'np.ones_like', (['radii'], {}), '(radii)\n', (1439, 1446), True, 'import numpy as np\n'), ((1651, 1670), 'numpy.ones_like', 'np.ones_like', (['radii'], {}), '(radii)\n', (1663, 1670), True, 'import numpy as np\n')]
import logging import numpy as np from bico.geometry.point import Point from bico.nearest_neighbor.base import NearestNeighbor from bico.utils.ClusteringFeature import ClusteringFeature from datetime import datetime from typing import Callable, TextIO, List logger = logging.getLogger(__name__) class BICONode: def __init__(self, level: int, dim: int, proj: int, bico: 'BICO', projection_func: Callable[[int, int, float], NearestNeighbor]): self.level = level self.dim = dim self.proj = proj self.point_to_biconode = [] self.projection_func = projection_func self.nn_engine = projection_func(dim, proj, bico.get_radius(self.level)) self.num_cfs = 0 self.bico = bico self.cf = ClusteringFeature(Point(np.zeros(dim)), Point(np.zeros(dim)), 0, 0) def insert_point(self, point_cf: ClusteringFeature) -> int: if self.bico.verbose: logger.debug("Insert point: {}".format(point_cf)) # check whether geometry fits into CF if self.level > 0: if self.cf.size == 0: self.cf += point_cf self.cf.ref = point_cf.ref else: test = self.cf + point_cf cost = test.kmeans_cost(self.cf.ref) if self.bico.verbose: logger.debug("Cost: " + str(cost) + ", Thresh: " + str(self.bico.get_threshold(self.level))) if cost < self.bico.get_threshold(self.level): self.cf = test return 0 # search nearest neighbor and insert geometry there or open new BICONode candidates = [] if self.num_cfs > 0: if self.bico.track_time: tstart = datetime.now() candidates = self.nn_engine.get_candidates(point_cf.ref.p) # candidates = self.ann_engine.neighbours(point_cf.ref.p) if self.bico.track_time: tend = datetime.now() if len(self.bico.time) < self.level + 1: self.bico.time.append(tend - tstart) else: self.bico.time[self.level] += tend - tstart if len(candidates) == 0: if self.bico.verbose: logger.debug("No nearest neighbor found.") self.num_cfs += 1 self.nn_engine.insert_candidate(point=point_cf.ref.p, metadata=self.num_cfs) # self.ann_engine.store_vector(point_cf.ref.p, data=self.num_cfs) new_node = BICONode(self.level + 1, self.dim, self.proj, self.bico, self.projection_func) # new_node.cf = ClusteringFeature(geometry, geometry, geometry*geometry, 1) new_node.cf = point_cf # debug if len(self.point_to_biconode) != self.num_cfs - 1: logger.error("Something is wrong: {} != {}".format(len(self.point_to_biconode), self.num_cfs - 1)) self.point_to_biconode.append(new_node) return 1 else: if self.bico.verbose: logger.debug(str(len(candidates)) + " nearest neighbor found!") logger.debug(candidates) nearest = candidates[0] node = nearest.data # contains the index # sanity check if len(self.point_to_biconode) < node - 2: logger.error("Something is wrong: {} > {}".format(len(self.point_to_biconode), node - 2)) return self.point_to_biconode[node - 1].insert_point(point_cf) def output_cf(self, f: TextIO) -> None: if self.level > 0: f.write(str(self.cf) + "\n") for node in self.point_to_biconode: node.output_cf(f) def get_cf(self) -> List[np.ndarray]: cur = [] if self.level > 0: cur.append(np.insert(self.cf.center().p, 0, self.cf.size)) for node in self.point_to_biconode: cur = cur + node.get_cf() return cur
[ "logging.getLogger", "datetime.datetime.now", "numpy.zeros" ]
[((268, 295), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (285, 295), False, 'import logging\n'), ((796, 809), 'numpy.zeros', 'np.zeros', (['dim'], {}), '(dim)\n', (804, 809), True, 'import numpy as np\n'), ((818, 831), 'numpy.zeros', 'np.zeros', (['dim'], {}), '(dim)\n', (826, 831), True, 'import numpy as np\n'), ((1771, 1785), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1783, 1785), False, 'from datetime import datetime\n'), ((1987, 2001), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1999, 2001), False, 'from datetime import datetime\n')]
import numpy as np from scipy.stats import linregress as li from math import exp def calc_factor(field,stepsize=0.01): """ Function for calculation of the summed binning. The returned result is an integral over the binning of the velocities. It is done for the negative and positive half separately. :param field: is a 1D field which will be binned :param stepsize: is the step size for the velocity :return (positive,negative): velocities and the binning result for positive half and negative half are returned as a tuple of numpy arrays """ result_pos = [] result_neg = [] alpha = 0. #: binning of the positive half while alpha <= np.max(field)+stepsize: pos = alpha neg = 0. filtered = np.copy(field) filtered[filtered<=neg] = np.nan filtered[filtered>pos] = np.nan outlier = np.count_nonzero(~np.isnan(filtered))/np.float(np.count_nonzero(~np.isnan(field))) result_pos.append([alpha,outlier]) alpha += stepsize alpha = 0. #: binning of the negative half while alpha <= np.abs(np.min(field))+stepsize: pos = 0. neg = -1.*alpha filtered = np.copy(field) filtered[filtered<=neg] = np.nan filtered[filtered>pos] = np.nan outlier = np.count_nonzero(~np.isnan(filtered))/np.float(np.count_nonzero(~np.isnan(field))) result_neg.append([-1.*alpha,outlier]) alpha += stepsize return (np.array(result_pos),np.array(result_neg)) def calc_derivative(field,stepsize=0.01): """ Function for calculation of the binning. The returned result is the binning of the velocities. It is called derivative because it is mathematically the derivative of the function: .. function:: velofilter.calc_factor It is done for the negative and positive half separately. :param field: is a 1D field which will be binned :param stepsize: is the step size for the velocity :return (positive,negative): velocities and the binning result for positive half and negative half are returned as a tuple """ result_pos = [] result_neg = [] outlier = 1. alpha = 0. while alpha <= np.max(field)+stepsize: pos = alpha+stepsize neg = alpha filtered = np.copy(field) filtered[(filtered<=neg) | (filtered>pos)] = np.nan #filtered[filtered>pos] = np.nan outlier = np.count_nonzero(~np.isnan(filtered))/np.float(np.count_nonzero(~np.isnan(field))) result_pos.append([alpha,outlier]) alpha += stepsize outlier = 1. alpha = 0. while alpha <= np.abs(np.min(field))+stepsize: pos = -1.*alpha neg = -1.*(alpha+stepsize) filtered = np.copy(field) filtered[(filtered<=neg) | (filtered>pos)] = np.nan #filtered[filtered>pos] = np.nan outlier = np.count_nonzero(~np.isnan(filtered))/np.float(np.count_nonzero(~np.isnan(field))) result_neg.append([-1.*alpha,outlier]) alpha += stepsize return (np.array(result_pos),np.array(result_neg)) def filter(piv,tfactor=3.,dalpha=.01): """ Function for calculating the cutoff values. :param object piv: PIV class object This is supposed to be an object from a Direct or adaptive Class it is needed to get the velocities :param double tfactor: Factor for cutoff in the velocity binning The default value is set to 3 which works for many cases :param double dalpha: value for differential velocity The default is set to .01 which work for many cases if the velocities vary over a larger ranger use a larger value """ #: pre sampling numberup = np.count_nonzero(piv.u<=0.)/np.float(np.count_nonzero(piv.u)) numberun = np.count_nonzero(piv.u>0.)/np.float(np.count_nonzero(piv.u)) numbervp = np.count_nonzero(piv.v<=0.)/np.float(np.count_nonzero(piv.v)) numbervn = np.count_nonzero(piv.v>0.)/np.float(np.count_nonzero(piv.v)) upos = numberup uneg = numberun vpos = numbervp vneg = numbervn #: get alpha dependency up_alpha, un_alpha = calc_factor(piv.u,dalpha) vp_alpha, vn_alpha = calc_factor(piv.v,dalpha) #: calculate derivative directly from data dup_alpha1, dun_alpha1 = calc_derivative(piv.u,dalpha) dvp_alpha1, dvn_alpha1 = calc_derivative(piv.v,dalpha) dup_alpha = dup_alpha1[:,1] dun_alpha = dun_alpha1[:,1] dvp_alpha = dvp_alpha1[:,1] dvn_alpha = dvn_alpha1[:,1] #get boundaries boundup = np.sum(dup_alpha[0:5])/5./np.exp(tfactor) boundun = np.sum(dun_alpha[0:5])/5./np.exp(tfactor) boundvp = np.sum(dvp_alpha[0:5])/5./np.exp(tfactor) boundvn = np.sum(dvn_alpha[0:5])/5./np.exp(tfactor) #get indices and exponential if upos != 0.: indexup = np.where(dup_alpha<boundup) cut_up = np.int(np.sum(indexup[0][0:5])/5.) nup = np.polyfit(np.log( up_alpha[1:cut_up,0]),np.log(up_alpha[1:cut_up,1]),1) upos = exp(-nup[1]/nup[0]) if uneg != 0.: indexun = np.where(dun_alpha<boundun) cut_un = np.int(np.sum(indexun[0][0:5])/5.) nun = np.polyfit(np.log(-un_alpha[1:cut_un,0]),np.log(un_alpha[1:cut_un,1]),1) uneg = -exp(-nun[1]/nun[0]) if vpos != 0.: indexvp = np.where(dvp_alpha<boundvp) cut_vp = np.int(np.sum(indexvp[0][0:5])/5.) nvp = np.polyfit(np.log( vp_alpha[1:cut_vp,0]),np.log(vp_alpha[1:cut_vp,1]),1) vpos = exp(-nvp[1]/nvp[0]) if vneg != 0.: indexvn = np.where(dvn_alpha<boundvn) cut_vn = np.int(np.sum(indexvn[0][0:5])/5.) nvn = np.polyfit(np.log(-vn_alpha[1:cut_vn,0]),np.log(vn_alpha[1:cut_vn,1]),1) vneg = -exp(-nvn[1]/nvn[0]) #filter + clamping if upos > np.max(piv.u): upos = np.max(piv.u) if uneg < np.min(piv.u): uneg = np.min(piv.u) if vpos > np.max(piv.v): vpos = np.max(piv.v) if vneg < np.min(piv.v): vneg = np.min(piv.v) #equalizing the cutoff upos *= (0.5+numberup) uneg *= (0.5+numberun) vpos *= (0.5+numbervp) vneg *= (0.5+numbervn) #making the mask masku = (piv.u<uneg) | (piv.u>upos) maskv = (piv.v<vneg) | (piv.v>vpos) piv.u[masku] = np.nan piv.v[maskv] = np.nan
[ "numpy.copy", "numpy.where", "numpy.log", "numpy.max", "numpy.count_nonzero", "numpy.array", "numpy.exp", "numpy.sum", "numpy.isnan", "numpy.min", "math.exp" ]
[((785, 799), 'numpy.copy', 'np.copy', (['field'], {}), '(field)\n', (792, 799), True, 'import numpy as np\n'), ((1213, 1227), 'numpy.copy', 'np.copy', (['field'], {}), '(field)\n', (1220, 1227), True, 'import numpy as np\n'), ((1496, 1516), 'numpy.array', 'np.array', (['result_pos'], {}), '(result_pos)\n', (1504, 1516), True, 'import numpy as np\n'), ((1517, 1537), 'numpy.array', 'np.array', (['result_neg'], {}), '(result_neg)\n', (1525, 1537), True, 'import numpy as np\n'), ((2334, 2348), 'numpy.copy', 'np.copy', (['field'], {}), '(field)\n', (2341, 2348), True, 'import numpy as np\n'), ((2781, 2795), 'numpy.copy', 'np.copy', (['field'], {}), '(field)\n', (2788, 2795), True, 'import numpy as np\n'), ((3084, 3104), 'numpy.array', 'np.array', (['result_pos'], {}), '(result_pos)\n', (3092, 3104), True, 'import numpy as np\n'), ((3105, 3125), 'numpy.array', 'np.array', (['result_neg'], {}), '(result_neg)\n', (3113, 3125), True, 'import numpy as np\n'), ((3750, 3780), 'numpy.count_nonzero', 'np.count_nonzero', (['(piv.u <= 0.0)'], {}), '(piv.u <= 0.0)\n', (3766, 3780), True, 'import numpy as np\n'), ((3827, 3856), 'numpy.count_nonzero', 'np.count_nonzero', (['(piv.u > 0.0)'], {}), '(piv.u > 0.0)\n', (3843, 3856), True, 'import numpy as np\n'), ((3903, 3933), 'numpy.count_nonzero', 'np.count_nonzero', (['(piv.v <= 0.0)'], {}), '(piv.v <= 0.0)\n', (3919, 3933), True, 'import numpy as np\n'), ((3980, 4009), 'numpy.count_nonzero', 'np.count_nonzero', (['(piv.v > 0.0)'], {}), '(piv.v > 0.0)\n', (3996, 4009), True, 'import numpy as np\n'), ((4610, 4625), 'numpy.exp', 'np.exp', (['tfactor'], {}), '(tfactor)\n', (4616, 4625), True, 'import numpy as np\n'), ((4666, 4681), 'numpy.exp', 'np.exp', (['tfactor'], {}), '(tfactor)\n', (4672, 4681), True, 'import numpy as np\n'), ((4722, 4737), 'numpy.exp', 'np.exp', (['tfactor'], {}), '(tfactor)\n', (4728, 4737), True, 'import numpy as np\n'), ((4778, 4793), 'numpy.exp', 'np.exp', (['tfactor'], {}), '(tfactor)\n', (4784, 4793), True, 'import numpy as np\n'), ((4865, 4894), 'numpy.where', 'np.where', (['(dup_alpha < boundup)'], {}), '(dup_alpha < boundup)\n', (4873, 4894), True, 'import numpy as np\n'), ((5048, 5069), 'math.exp', 'exp', (['(-nup[1] / nup[0])'], {}), '(-nup[1] / nup[0])\n', (5051, 5069), False, 'from math import exp\n'), ((5105, 5134), 'numpy.where', 'np.where', (['(dun_alpha < boundun)'], {}), '(dun_alpha < boundun)\n', (5113, 5134), True, 'import numpy as np\n'), ((5345, 5374), 'numpy.where', 'np.where', (['(dvp_alpha < boundvp)'], {}), '(dvp_alpha < boundvp)\n', (5353, 5374), True, 'import numpy as np\n'), ((5528, 5549), 'math.exp', 'exp', (['(-nvp[1] / nvp[0])'], {}), '(-nvp[1] / nvp[0])\n', (5531, 5549), False, 'from math import exp\n'), ((5585, 5614), 'numpy.where', 'np.where', (['(dvn_alpha < boundvn)'], {}), '(dvn_alpha < boundvn)\n', (5593, 5614), True, 'import numpy as np\n'), ((5826, 5839), 'numpy.max', 'np.max', (['piv.u'], {}), '(piv.u)\n', (5832, 5839), True, 'import numpy as np\n'), ((5856, 5869), 'numpy.max', 'np.max', (['piv.u'], {}), '(piv.u)\n', (5862, 5869), True, 'import numpy as np\n'), ((5884, 5897), 'numpy.min', 'np.min', (['piv.u'], {}), '(piv.u)\n', (5890, 5897), True, 'import numpy as np\n'), ((5914, 5927), 'numpy.min', 'np.min', (['piv.u'], {}), '(piv.u)\n', (5920, 5927), True, 'import numpy as np\n'), ((5942, 5955), 'numpy.max', 'np.max', (['piv.v'], {}), '(piv.v)\n', (5948, 5955), True, 'import numpy as np\n'), ((5972, 5985), 'numpy.max', 'np.max', (['piv.v'], {}), '(piv.v)\n', (5978, 5985), True, 'import numpy as np\n'), ((6000, 6013), 'numpy.min', 'np.min', (['piv.v'], {}), '(piv.v)\n', (6006, 6013), True, 'import numpy as np\n'), ((6030, 6043), 'numpy.min', 'np.min', (['piv.v'], {}), '(piv.v)\n', (6036, 6043), True, 'import numpy as np\n'), ((705, 718), 'numpy.max', 'np.max', (['field'], {}), '(field)\n', (711, 718), True, 'import numpy as np\n'), ((2242, 2255), 'numpy.max', 'np.max', (['field'], {}), '(field)\n', (2248, 2255), True, 'import numpy as np\n'), ((3787, 3810), 'numpy.count_nonzero', 'np.count_nonzero', (['piv.u'], {}), '(piv.u)\n', (3803, 3810), True, 'import numpy as np\n'), ((3863, 3886), 'numpy.count_nonzero', 'np.count_nonzero', (['piv.u'], {}), '(piv.u)\n', (3879, 3886), True, 'import numpy as np\n'), ((3940, 3963), 'numpy.count_nonzero', 'np.count_nonzero', (['piv.v'], {}), '(piv.v)\n', (3956, 3963), True, 'import numpy as np\n'), ((4016, 4039), 'numpy.count_nonzero', 'np.count_nonzero', (['piv.v'], {}), '(piv.v)\n', (4032, 4039), True, 'import numpy as np\n'), ((4584, 4606), 'numpy.sum', 'np.sum', (['dup_alpha[0:5]'], {}), '(dup_alpha[0:5])\n', (4590, 4606), True, 'import numpy as np\n'), ((4640, 4662), 'numpy.sum', 'np.sum', (['dun_alpha[0:5]'], {}), '(dun_alpha[0:5])\n', (4646, 4662), True, 'import numpy as np\n'), ((4696, 4718), 'numpy.sum', 'np.sum', (['dvp_alpha[0:5]'], {}), '(dvp_alpha[0:5])\n', (4702, 4718), True, 'import numpy as np\n'), ((4752, 4774), 'numpy.sum', 'np.sum', (['dvn_alpha[0:5]'], {}), '(dvn_alpha[0:5])\n', (4758, 4774), True, 'import numpy as np\n'), ((4970, 4999), 'numpy.log', 'np.log', (['up_alpha[1:cut_up, 0]'], {}), '(up_alpha[1:cut_up, 0])\n', (4976, 4999), True, 'import numpy as np\n'), ((5000, 5029), 'numpy.log', 'np.log', (['up_alpha[1:cut_up, 1]'], {}), '(up_alpha[1:cut_up, 1])\n', (5006, 5029), True, 'import numpy as np\n'), ((5210, 5240), 'numpy.log', 'np.log', (['(-un_alpha[1:cut_un, 0])'], {}), '(-un_alpha[1:cut_un, 0])\n', (5216, 5240), True, 'import numpy as np\n'), ((5240, 5269), 'numpy.log', 'np.log', (['un_alpha[1:cut_un, 1]'], {}), '(un_alpha[1:cut_un, 1])\n', (5246, 5269), True, 'import numpy as np\n'), ((5288, 5309), 'math.exp', 'exp', (['(-nun[1] / nun[0])'], {}), '(-nun[1] / nun[0])\n', (5291, 5309), False, 'from math import exp\n'), ((5450, 5479), 'numpy.log', 'np.log', (['vp_alpha[1:cut_vp, 0]'], {}), '(vp_alpha[1:cut_vp, 0])\n', (5456, 5479), True, 'import numpy as np\n'), ((5480, 5509), 'numpy.log', 'np.log', (['vp_alpha[1:cut_vp, 1]'], {}), '(vp_alpha[1:cut_vp, 1])\n', (5486, 5509), True, 'import numpy as np\n'), ((5690, 5720), 'numpy.log', 'np.log', (['(-vn_alpha[1:cut_vn, 0])'], {}), '(-vn_alpha[1:cut_vn, 0])\n', (5696, 5720), True, 'import numpy as np\n'), ((5720, 5749), 'numpy.log', 'np.log', (['vn_alpha[1:cut_vn, 1]'], {}), '(vn_alpha[1:cut_vn, 1])\n', (5726, 5749), True, 'import numpy as np\n'), ((5768, 5789), 'math.exp', 'exp', (['(-nvn[1] / nvn[0])'], {}), '(-nvn[1] / nvn[0])\n', (5771, 5789), False, 'from math import exp\n'), ((1128, 1141), 'numpy.min', 'np.min', (['field'], {}), '(field)\n', (1134, 1141), True, 'import numpy as np\n'), ((2678, 2691), 'numpy.min', 'np.min', (['field'], {}), '(field)\n', (2684, 2691), True, 'import numpy as np\n'), ((4917, 4940), 'numpy.sum', 'np.sum', (['indexup[0][0:5]'], {}), '(indexup[0][0:5])\n', (4923, 4940), True, 'import numpy as np\n'), ((5157, 5180), 'numpy.sum', 'np.sum', (['indexun[0][0:5]'], {}), '(indexun[0][0:5])\n', (5163, 5180), True, 'import numpy as np\n'), ((5397, 5420), 'numpy.sum', 'np.sum', (['indexvp[0][0:5]'], {}), '(indexvp[0][0:5])\n', (5403, 5420), True, 'import numpy as np\n'), ((5637, 5660), 'numpy.sum', 'np.sum', (['indexvn[0][0:5]'], {}), '(indexvn[0][0:5])\n', (5643, 5660), True, 'import numpy as np\n'), ((917, 935), 'numpy.isnan', 'np.isnan', (['filtered'], {}), '(filtered)\n', (925, 935), True, 'import numpy as np\n'), ((1345, 1363), 'numpy.isnan', 'np.isnan', (['filtered'], {}), '(filtered)\n', (1353, 1363), True, 'import numpy as np\n'), ((2486, 2504), 'numpy.isnan', 'np.isnan', (['filtered'], {}), '(filtered)\n', (2494, 2504), True, 'import numpy as np\n'), ((2933, 2951), 'numpy.isnan', 'np.isnan', (['filtered'], {}), '(filtered)\n', (2941, 2951), True, 'import numpy as np\n'), ((964, 979), 'numpy.isnan', 'np.isnan', (['field'], {}), '(field)\n', (972, 979), True, 'import numpy as np\n'), ((1392, 1407), 'numpy.isnan', 'np.isnan', (['field'], {}), '(field)\n', (1400, 1407), True, 'import numpy as np\n'), ((2533, 2548), 'numpy.isnan', 'np.isnan', (['field'], {}), '(field)\n', (2541, 2548), True, 'import numpy as np\n'), ((2980, 2995), 'numpy.isnan', 'np.isnan', (['field'], {}), '(field)\n', (2988, 2995), True, 'import numpy as np\n')]
import urllib3 import pandas as pd import numpy as np import zipfile import copy import pickle import os from esig import tosig from tqdm import tqdm from multiprocessing import Pool from functools import partial from os import listdir from os.path import isfile, join from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score, confusion_matrix def get_inputs(): url = "https://storage.googleapis.com/challenge-2012-1.0.0.physionet.org/set-a.zip" http = urllib3.PoolManager() r = http.request('GET', url, preload_content=False) with open('data/input.zip', 'wb') as out: while True: data = r.read() if not data: break out.write(data) r.release_conn() zip_ref = zipfile.ZipFile("data/input.zip", 'r') zip_ref.extractall("data/") zip_ref.close() data = {} list_files = [f for f in listdir( "data/set-a") if isfile(join("data/set-a", f))] for f in list_files: df = pd.read_csv(join("data/set-a", f)) patient_id = int(df.values[0, 2]) data[patient_id] = df return data def get_outputs(): url = "https://storage.googleapis.com/challenge-2012-1.0.0.physionet.org/Outcomes-a.txt" data_df = pd.read_csv(url) data = {} for patient in data_df.values: patient_id = int(patient[0]) data[patient_id] = patient[-1] return data def download(): X_dict, Y_dict = get_inputs(), get_outputs() X = [] Y = [] for patient_id in X_dict: X.append(X_dict[patient_id]) Y.append(Y_dict[patient_id]) print("Data for %s patients downloaded." % len(X)) return X, Y def split(X, Y, proportion=0.75): idx = int(len(X)*proportion) print("Dataset split in a training set of %s and testing set of %s patients." % ( idx, len(X)-idx)) return X[:idx], Y[:idx], X[idx:], Y[idx:] def features_point(x): static, path = x maximums = np.max(path, axis=0) minimums = np.min(path, axis=0) last_observation = path[-1] return np.concatenate([static, maximums, minimums, last_observation]) def extract(X): return list(map(features_point, X)) def lead_lag(mylist): leadlist = np.concatenate([[mylist[0]], mylist]) laglist = np.concatenate([mylist, [mylist[-1]]]) return np.concatenate([leadlist, laglist], axis=1) def add_time(mylist, init_time=0., total_time=1.): ans = [[init_time + xn * total_time / (len(mylist)-1)] + list(x) for (xn, x) in enumerate(mylist)] return np.array(ans) def home_and_pen_off(mylist): ans = [list(x) + [1.] for x in mylist] last = list(ans[-1]) last[-1] = 0. ans.append(last) ans.append([0 for item in last]) return np.array(ans) def refocus(path, centre): return np.concatenate((centre[::-1], path), axis=0) def train(features, Y): classifier = RandomForestClassifier() classifier.fit(features, Y) return classifier def normalise_point(x): static, path = x path[:, 0] /= 2. return [static, path] def normalise(X): return list(map(normalise_point, X)) def evaluate(classifier, features, Y): THRESHOLD = .3 predictions_proba = classifier.predict_proba(features)[:, 1] predictions = [1. if pred > THRESHOLD else 0. for pred in predictions_proba] cm = confusion_matrix(Y, predictions) Se = cm[1, 1] / float(cm[1, 1] + cm[1, 0]) P = cm[1, 1] / float(cm[1, 1] + cm[0, 1]) score = min(Se, P) print("Score of predictions: %s" % score) def to_path(df, dynamic_variables): dim = len(dynamic_variables) + 1 path = [[0.]*dim] for event in df.values: if event[1] in dynamic_variables: new_value = copy.deepcopy(path[-1]) idx = 1 + dynamic_variables.index(event[1]) new_value[idx] = event[2] hour, min = event[0].split(":") days = (float(hour) + float(min) / 60.)/24. new_value[0] = days path.append(new_value) path = np.array(path) unique_times = np.unique(path[:, 0]) idx = [] for time in unique_times: last_idx = np.where(path[:, 0] == time)[0][-1] idx.append(last_idx) path = path[idx] return path def static_features(df, static_variables): return df[df["Parameter"].isin(static_variables)]["Value"].values def reformat(X, static_variables, dynamic_variables): for i, x in enumerate(X): dynamic = to_path(x, dynamic_variables=dynamic_variables) static = static_features(x, static_variables=static_variables) X[i] = [static, dynamic] return X def st2si(order, stream): if order > 1: return(tosig.stream2sig(stream, order)) else: if order == 1: return np.concatenate((np.array([1]), stream[-1] - stream[0]), axis=0) else: return np.array([1]) def compute(X, order=2): func = partial(st2si, order) pool = Pool() n_samples = len(X) signatures = [] try: signatures = np.array(list(tqdm(pool.imap(func, X), total=n_samples))) except Exception as e: print('Failed to compute signatures: ' + repr(e)) signatures = [] return signatures def predict(classifier, url): http = urllib3.PoolManager() r = http.request('GET', url, preload_content=False) with open('data/test_input.txt', 'wb') as out: while True: data = r.read() if not data: break out.write(data) r.release_conn() data = {} df = pd.read_csv("data/test_input.txt") patient_id = int(df.values[0, 2]) data[patient_id] = df X = [] for patient_id in data: X.append(data[patient_id]) X = reformat(X, static_variables=["Age", "Gender"], dynamic_variables=[ "Creatinine", "Glucose"]) X = normalise(X) X = extract(X) # [0] means in-house dead [1] means in-house alive print('Predicted result: ' + classifier.predict(X)) if __name__ == "__main__": # DOWNLOAD & REFORMAT EVENT DATA, TRANSFORM TIME DEPENDENT VARIABLES X, Y = download() X = reformat(X, static_variables=["Age", "Gender"], dynamic_variables=[ "Creatinine", "Glucose"]) # NORMALISE & EXTRACT FEATURES X = normalise(X) features = extract(X) # TRAIN THE MODEL BY SPLITING features_train, Y_train, features_test, Y_test = split( features, Y, proportion=0.75) classifier = train(features_train, Y_train) predict(classifier, 'https://storage.googleapis.com/challenge-2012-1.0.0.physionet.org/set-a/132539.txt') # EVALUATE PERFORMANCE evaluate(classifier, features_test, Y_test)
[ "os.listdir", "copy.deepcopy", "numpy.unique", "zipfile.ZipFile", "pandas.read_csv", "numpy.where", "os.path.join", "sklearn.ensemble.RandomForestClassifier", "numpy.max", "numpy.array", "urllib3.PoolManager", "functools.partial", "numpy.concatenate", "numpy.min", "multiprocessing.Pool", "esig.tosig.stream2sig", "sklearn.metrics.confusion_matrix" ]
[((500, 521), 'urllib3.PoolManager', 'urllib3.PoolManager', ([], {}), '()\n', (519, 521), False, 'import urllib3\n'), ((784, 822), 'zipfile.ZipFile', 'zipfile.ZipFile', (['"""data/input.zip"""', '"""r"""'], {}), "('data/input.zip', 'r')\n", (799, 822), False, 'import zipfile\n'), ((1275, 1291), 'pandas.read_csv', 'pd.read_csv', (['url'], {}), '(url)\n', (1286, 1291), True, 'import pandas as pd\n'), ((1989, 2009), 'numpy.max', 'np.max', (['path'], {'axis': '(0)'}), '(path, axis=0)\n', (1995, 2009), True, 'import numpy as np\n'), ((2025, 2045), 'numpy.min', 'np.min', (['path'], {'axis': '(0)'}), '(path, axis=0)\n', (2031, 2045), True, 'import numpy as np\n'), ((2090, 2152), 'numpy.concatenate', 'np.concatenate', (['[static, maximums, minimums, last_observation]'], {}), '([static, maximums, minimums, last_observation])\n', (2104, 2152), True, 'import numpy as np\n'), ((2250, 2287), 'numpy.concatenate', 'np.concatenate', (['[[mylist[0]], mylist]'], {}), '([[mylist[0]], mylist])\n', (2264, 2287), True, 'import numpy as np\n'), ((2302, 2340), 'numpy.concatenate', 'np.concatenate', (['[mylist, [mylist[-1]]]'], {}), '([mylist, [mylist[-1]]])\n', (2316, 2340), True, 'import numpy as np\n'), ((2352, 2395), 'numpy.concatenate', 'np.concatenate', (['[leadlist, laglist]'], {'axis': '(1)'}), '([leadlist, laglist], axis=1)\n', (2366, 2395), True, 'import numpy as np\n'), ((2575, 2588), 'numpy.array', 'np.array', (['ans'], {}), '(ans)\n', (2583, 2588), True, 'import numpy as np\n'), ((2776, 2789), 'numpy.array', 'np.array', (['ans'], {}), '(ans)\n', (2784, 2789), True, 'import numpy as np\n'), ((2830, 2874), 'numpy.concatenate', 'np.concatenate', (['(centre[::-1], path)'], {'axis': '(0)'}), '((centre[::-1], path), axis=0)\n', (2844, 2874), True, 'import numpy as np\n'), ((2918, 2942), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (2940, 2942), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((3386, 3418), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['Y', 'predictions'], {}), '(Y, predictions)\n', (3402, 3418), False, 'from sklearn.metrics import roc_auc_score, confusion_matrix\n'), ((4069, 4083), 'numpy.array', 'np.array', (['path'], {}), '(path)\n', (4077, 4083), True, 'import numpy as np\n'), ((4103, 4124), 'numpy.unique', 'np.unique', (['path[:, 0]'], {}), '(path[:, 0])\n', (4112, 4124), True, 'import numpy as np\n'), ((4968, 4989), 'functools.partial', 'partial', (['st2si', 'order'], {}), '(st2si, order)\n', (4975, 4989), False, 'from functools import partial\n'), ((5001, 5007), 'multiprocessing.Pool', 'Pool', ([], {}), '()\n', (5005, 5007), False, 'from multiprocessing import Pool\n'), ((5313, 5334), 'urllib3.PoolManager', 'urllib3.PoolManager', ([], {}), '()\n', (5332, 5334), False, 'import urllib3\n'), ((5612, 5646), 'pandas.read_csv', 'pd.read_csv', (['"""data/test_input.txt"""'], {}), "('data/test_input.txt')\n", (5623, 5646), True, 'import pandas as pd\n'), ((4734, 4765), 'esig.tosig.stream2sig', 'tosig.stream2sig', (['stream', 'order'], {}), '(stream, order)\n', (4750, 4765), False, 'from esig import tosig\n'), ((919, 940), 'os.listdir', 'listdir', (['"""data/set-a"""'], {}), "('data/set-a')\n", (926, 940), False, 'from os import listdir\n'), ((1035, 1056), 'os.path.join', 'join', (['"""data/set-a"""', 'f'], {}), "('data/set-a', f)\n", (1039, 1056), False, 'from os.path import isfile, join\n'), ((3772, 3795), 'copy.deepcopy', 'copy.deepcopy', (['path[-1]'], {}), '(path[-1])\n', (3785, 3795), False, 'import copy\n'), ((4916, 4929), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (4924, 4929), True, 'import numpy as np\n'), ((960, 981), 'os.path.join', 'join', (['"""data/set-a"""', 'f'], {}), "('data/set-a', f)\n", (964, 981), False, 'from os.path import isfile, join\n'), ((4187, 4215), 'numpy.where', 'np.where', (['(path[:, 0] == time)'], {}), '(path[:, 0] == time)\n', (4195, 4215), True, 'import numpy as np\n'), ((4835, 4848), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (4843, 4848), True, 'import numpy as np\n')]
#------------------------------------------------------------------------------- # Filename: create_pics.py # Description: creates square pictures out of a picture which is mostly empty # for training a neural network later. # The parameters to fool around with include: # factor: scaled down image for faster image processing # sq_size: size of square that is used to construct the standard-deviation map # cutoff: cutoff for standard deviation # Authors: <NAME>, <NAME> #------------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt from PIL import Image from os import listdir, path, makedirs import argparse import sys # class MyParser(argparse.ArgumentParser): # def error(self, message): # sys.stderr.write('error: %s\n' % message) # self.print_help() # sys.exit(2) def pics(from_path='raw_data',to_path='preproc_data'): # parser = MyParser() # parser.add_argument('input_folder', nargs='+') # parser.add_argument('output_folder', nargs='+') # args = parser.parse_args() # from_path = args.input_folder[0] if not from_path[-1]=='/': from_path+=('/') # to_path = args.output_folder[0] if not to_path[-1]=='/': to_path+=('/') #check whether input path exists if not path.exists(from_path): raise IOError("input directory {0} does not exist, exiting script".format(from_path)) #possible image file extensions. exts = ['.jpg', '.png', '.tif', '.bmp'] # input file dimensions xdim = 1330 #2560 ydim = 884 #1920 # output file dimensions dim = 80 #256 export_ext = '.png' #extension files will be saved #first, find all the image file in the directory files = listdir(from_path) filenames = [] extensions = [] for f in files: name, ext = path.splitext(from_path+f) if ext in exts: filenames.append(name) extensions.append(ext) print("found {0} image files in folder {1}".format(len(filenames), from_path)) total_flakes = 0 good_flakes = 0 missed_flakes = 0 #start the actual work of cutting the pictures into smaller pictures for i, filename in enumerate(filenames): print("starting with new image file: {0}{1}".format(filename, extensions[i])) #first, check for the .csv file with the coordinates of good flakes good_ones = [] try: with open(filename+".csv") as f: content = f.read().splitlines() for line in content: good_ones.append(line.split(',')) except IOError: print("Warning: Couldn't find file {0}.csv, assume there's no good flakes".format(filename)) # open image full_im = Image.open(filename+extensions[i]) Lx = full_im.size[0] #x dimension of picture Ly = full_im.size[1] #y dimension of picture # we want to work on pictures of equal size, so if they are not the right # size, we rescale them. scalex = 1. scaley = 1. if not Lx == xdim: scalex = float(xdim) / Lx scaley = float(ydim) / Ly full_im = full_im.resize((xdim, ydim)) print("picture is too big, resizing to ({0}, {1})".format(xdim, ydim)) #to speed up the whole work, we resize the image for the first step factor = 8 lx = int(xdim/factor) # resized x dimension ly = int(ydim/factor) # resized y dimension small_im = full_im.resize((lx, ly)) sq_size = dim//factor # size of square in resized image cutoff = 5 #was 2.75 # cutoff for standard deviation #calculate the standard deviation of the black and white images # (convert('L') returns a BW image) stds = np.zeros((lx-sq_size, ly-sq_size)) for k in range(lx-sq_size): for l in range(ly-sq_size): tmp_im = small_im.crop((k, l, k+sq_size, l+sq_size)) stds[k,l] = np.std(list(tmp_im.convert('L').getdata())) Lstds = np.reshape(stds, (lx-sq_size)*(ly-sq_size)) sorted_stds = np.argsort(Lstds) centers = [] for j in reversed(sorted_stds): if Lstds[j]< cutoff: break ix = int(j/(ly-sq_size))+sq_size/2 iy = j%(ly-sq_size)+sq_size/2 included = False for c in centers: if (abs(c[0]-ix) < sq_size) and (abs(c[1]-iy)<sq_size): included = True continue if included: continue ix = min(max(sq_size, ix), lx-sq_size) iy = min(max(sq_size, iy), ly-sq_size) centers.append((ix, iy)) print("identified {0} potential candidates in image {1}".format(len(centers), filename)) total_flakes += len(centers) squares = [] coordinates = [] for c in centers: ix = c[0]*factor iy = c[1]*factor coordinates.append([ix, iy]) x0 = ix - factor*sq_size x1 = ix + factor*sq_size y0 = iy - factor*sq_size y1 = iy + factor*sq_size squares.append(full_im.crop((x0, y0, x1, y1))) if not path.exists(to_path): print("{0} does not exist yet, creating it".format(to_path)) makedirs(to_path) found = np.zeros(len(good_ones)) # to make sure we found all good ones for k in range(len(squares)): x = coordinates[k][0] y = coordinates[k][1] bad = True name = filename.split('/')[-1] for j, good in enumerate(good_ones): g0 = scalex*float(good[0]) g1 = scaley*float(good[1]) if (abs(g0-x) < factor*sq_size) and (abs(g1-y)<factor*sq_size): this_file = to_path+name+"_" + str(coordinates[k][0])\ + "_" + str(coordinates[k][1])+"_0A"+ export_ext squares[k].resize((dim, dim)).save(this_file) for t in range(5): this_file = to_path+name + "_" + str(coordinates[k][0]) + \ "_" + str(coordinates[k][1])+"_{0}A".format(t+1)+ export_ext squares[k].transpose(t).resize((dim, dim)).save(this_file) found[j]=1 bad = False good_flakes += 1 if not bad: continue this_file = to_path + name +"_" + str(coordinates[k][0]) + "_" + \ str(coordinates[k][1])+"_B" + export_ext squares[k].resize((dim, dim)).save(this_file) if np.sum(found)<len(good_ones): missed_flakes += len(good_ones) - np.sum(found) print("Warning: We have missed a good one in {0}".format(filename)) print("(should have found {0}, found {1}instead".format( \ len(good_ones), np.sum(found))) print("") print("total flakes found: {0}".format(total_flakes)) print("of which are good : {0}".format(good_flakes)) print("good flakes missed: {0}".format(int(missed_flakes)))
[ "os.path.exists", "os.listdir", "PIL.Image.open", "numpy.reshape", "os.makedirs", "os.path.splitext", "numpy.argsort", "numpy.sum", "numpy.zeros" ]
[((1785, 1803), 'os.listdir', 'listdir', (['from_path'], {}), '(from_path)\n', (1792, 1803), False, 'from os import listdir, path, makedirs\n'), ((1343, 1365), 'os.path.exists', 'path.exists', (['from_path'], {}), '(from_path)\n', (1354, 1365), False, 'from os import listdir, path, makedirs\n'), ((1883, 1911), 'os.path.splitext', 'path.splitext', (['(from_path + f)'], {}), '(from_path + f)\n', (1896, 1911), False, 'from os import listdir, path, makedirs\n'), ((2826, 2862), 'PIL.Image.open', 'Image.open', (['(filename + extensions[i])'], {}), '(filename + extensions[i])\n', (2836, 2862), False, 'from PIL import Image\n'), ((3863, 3901), 'numpy.zeros', 'np.zeros', (['(lx - sq_size, ly - sq_size)'], {}), '((lx - sq_size, ly - sq_size))\n', (3871, 3901), True, 'import numpy as np\n'), ((4132, 4181), 'numpy.reshape', 'np.reshape', (['stds', '((lx - sq_size) * (ly - sq_size))'], {}), '(stds, (lx - sq_size) * (ly - sq_size))\n', (4142, 4181), True, 'import numpy as np\n'), ((4198, 4215), 'numpy.argsort', 'np.argsort', (['Lstds'], {}), '(Lstds)\n', (4208, 4215), True, 'import numpy as np\n'), ((5304, 5324), 'os.path.exists', 'path.exists', (['to_path'], {}), '(to_path)\n', (5315, 5324), False, 'from os import listdir, path, makedirs\n'), ((5411, 5428), 'os.makedirs', 'makedirs', (['to_path'], {}), '(to_path)\n', (5419, 5428), False, 'from os import listdir, path, makedirs\n'), ((6750, 6763), 'numpy.sum', 'np.sum', (['found'], {}), '(found)\n', (6756, 6763), True, 'import numpy as np\n'), ((6826, 6839), 'numpy.sum', 'np.sum', (['found'], {}), '(found)\n', (6832, 6839), True, 'import numpy as np\n'), ((7027, 7040), 'numpy.sum', 'np.sum', (['found'], {}), '(found)\n', (7033, 7040), True, 'import numpy as np\n')]
""" Helper functions for the tests """ import os import numpy as np from msl.io import read def read_sample(filename, **kwargs): """Read a file in the 'samples' directory. Parameters ---------- filename : str The name of the file in the samples/ directory Returns ------- A root object """ return read(os.path.join(os.path.dirname(__file__), 'samples', filename), **kwargs) def metadata_equal(m1, m2): """Assert that two Metadata objects are equal.""" assert len(m1) == len(m2) for k1, v1 in m1.items(): v2 = m2[k1] if isinstance(v1, (list, tuple, np.ndarray)): assert np.array_equal(v1, v2), '{}\n{}'.format(v1, v2) else: assert v1 == v2, '{} != {}'.format(v1, v2) return True def datasets_equal(d1, d2): """Assert that two Dataset objects are equal.""" assert d1.name == d2.name, '{} != {}'.format(d1.name, d2.name) assert np.array_equal(d1.data, d2.data), '{}\n{}'.format(d1.data, d2.data) assert metadata_equal(d1.metadata, d2.metadata) return True def roots_equal(r1, r2): """Assert that two Root objects are equal.""" assert metadata_equal(r1.metadata, r2.metadata) groups1 = list(r1.groups()) groups1.sort(key=lambda x: x.name) groups2 = list(r2.groups()) groups2.sort(key=lambda x: x.name) assert len(groups1) == len(groups2) for g1, g2 in zip(groups1, groups2): assert g1.name == g2.name, '{} != {}'.format(g1.name, g2.name) assert metadata_equal(g1.metadata, g2.metadata) datasets1 = list(r1.datasets()) datasets1.sort(key=lambda x: x.name) datasets2 = list(r2.datasets()) datasets2.sort(key=lambda x: x.name) assert len(datasets1) == len(datasets2) for d1, d2 in zip(datasets1, datasets2): assert datasets_equal(d1, d2) return True
[ "os.path.dirname", "numpy.array_equal" ]
[((955, 987), 'numpy.array_equal', 'np.array_equal', (['d1.data', 'd2.data'], {}), '(d1.data, d2.data)\n', (969, 987), True, 'import numpy as np\n'), ((365, 390), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (380, 390), False, 'import os\n'), ((661, 683), 'numpy.array_equal', 'np.array_equal', (['v1', 'v2'], {}), '(v1, v2)\n', (675, 683), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Oct 19 17:35:09 2016 @author: yxl """ from imagepy.core.engine import Tool import numpy as np from imagepy.core.manager import ColorManager from imagepy.core.draw.fill import floodfill class Plugin(Tool): title = 'Flood Fill' para = {'tor':10, 'con':'8-connect'} view = [(int, 'tor', (0,1000), 0, 'torlorance', 'value'), (list, 'con', ['4-connect', '8-connect'], str, 'fill', 'pix')] def mouse_down(self, ips, x, y, btn, **key): ips.snapshot() msk = floodfill(ips.img, x, y, self.para['tor'], self.para['con']=='8-connect') #plt.imshow(msk) #plt.show() color = ColorManager.get_front() if ips.get_nchannels()==1:color = np.mean(color) ips.img[msk] = color ips.update() def mouse_up(self, ips, x, y, btn, **key): pass def mouse_move(self, ips, x, y, btn, **key): pass def mouse_wheel(self, ips, x, y, d, **key): pass
[ "imagepy.core.manager.ColorManager.get_front", "numpy.mean", "imagepy.core.draw.fill.floodfill" ]
[((549, 624), 'imagepy.core.draw.fill.floodfill', 'floodfill', (['ips.img', 'x', 'y', "self.para['tor']", "(self.para['con'] == '8-connect')"], {}), "(ips.img, x, y, self.para['tor'], self.para['con'] == '8-connect')\n", (558, 624), False, 'from imagepy.core.draw.fill import floodfill\n'), ((684, 708), 'imagepy.core.manager.ColorManager.get_front', 'ColorManager.get_front', ([], {}), '()\n', (706, 708), False, 'from imagepy.core.manager import ColorManager\n'), ((751, 765), 'numpy.mean', 'np.mean', (['color'], {}), '(color)\n', (758, 765), True, 'import numpy as np\n')]
from typing import Union from scipy.spatial.qhull import Delaunay from shapely.geometry import LineString from subsurface.structs.base_structures import StructuredData import numpy as np try: import segyio segyio_imported = True except ImportError: segyio_imported = False def read_in_segy(filepath: str, coords=None) -> StructuredData: """Reader for seismic data stored in sgy/segy files Args: filepath (str): the path of the sgy/segy file coords (dict): If data is a numpy array coords provides the values for the xarray dimension. These dimensions are 'x', 'y' and 'z' Returns: a StructuredData object with data, the traces with samples written into an xr.Dataset, optionally with labels defined by coords """ segyfile = segyio.open(filepath, ignore_geometry=True) data = np.asarray([np.copy(tr) for tr in segyfile.trace[:]]) sd = StructuredData.from_numpy(data) # data holds traces * (samples per trace) values segyfile.close() return sd def create_mesh_from_coords(coords: Union[dict, LineString], zmin: Union[float, int], zmax: Union[float, int] = 0.0): """Creates a mesh for plotting StructuredData Args: coords (Union[dict, LineString]): the x and y, i.e. latitude and longitude, location of the traces of the seismic profile zmax (float): the maximum elevation of the seismic profile, by default 0.0 zmin (float): the location in z where the lowest sample was taken Returns: vertices and faces for creating an UnstructuredData object """ if type(coords) == LineString: linestring = coords n = len(list(linestring.coords)) coords = np.array([[x[0] for x in list(linestring.coords)], [y[1] for y in list(linestring.coords)]]).T else: n = len(coords['x']) coords = np.array([coords['x'], coords['y']]).T # duplicating the line, once with z=lower and another with z=upper values vertices = np.zeros((2*n, 3)) vertices[:n, :2] = coords vertices[:n, 2] = zmin vertices[n:, :2] = coords vertices[n:, 2] = zmax # i+n --- i+n+1 # |\ | # | \ | # | \ | # | \ | # i --- i+1 tri = Delaunay(vertices[:, [0, 2]]) faces = tri.simplices return vertices, faces
[ "numpy.copy", "subsurface.structs.base_structures.StructuredData.from_numpy", "numpy.array", "numpy.zeros", "scipy.spatial.qhull.Delaunay", "segyio.open" ]
[((793, 836), 'segyio.open', 'segyio.open', (['filepath'], {'ignore_geometry': '(True)'}), '(filepath, ignore_geometry=True)\n', (804, 836), False, 'import segyio\n'), ((913, 944), 'subsurface.structs.base_structures.StructuredData.from_numpy', 'StructuredData.from_numpy', (['data'], {}), '(data)\n', (938, 944), False, 'from subsurface.structs.base_structures import StructuredData\n'), ((2065, 2085), 'numpy.zeros', 'np.zeros', (['(2 * n, 3)'], {}), '((2 * n, 3))\n', (2073, 2085), True, 'import numpy as np\n'), ((2310, 2339), 'scipy.spatial.qhull.Delaunay', 'Delaunay', (['vertices[:, [0, 2]]'], {}), '(vertices[:, [0, 2]])\n', (2318, 2339), False, 'from scipy.spatial.qhull import Delaunay\n'), ((861, 872), 'numpy.copy', 'np.copy', (['tr'], {}), '(tr)\n', (868, 872), True, 'import numpy as np\n'), ((1906, 1942), 'numpy.array', 'np.array', (["[coords['x'], coords['y']]"], {}), "([coords['x'], coords['y']])\n", (1914, 1942), True, 'import numpy as np\n')]
#!/usr/bin/python #author: zhaofeng-shu33 import numpy as np from ace_cream import ace_cream def pearson_correlation(X,Y): return (np.mean(X*Y, axis=0) -np.mean(X, axis = 0)* np.mean(Y, axis = 0)) / ( np.std(X, axis = 0) * np.std(Y, axis = 0)) if __name__ == '__main__': N_SIZE = 1000 ERROR_PROBABILITY = 0.1 x = np.random.choice([0,1],size=N_SIZE) y = np.random.uniform(size=N_SIZE) for i in range(len(x)): if(y[i] < ERROR_PROBABILITY): y[i] = 2 else: y[i] = x[i] dic_Y = {0:6, 1:8, 2:3} dic_X = {0:7, 1:9} for i in range(len(y)): y[i] = dic_Y[y[i]] x[i] = dic_X[x[i]] print('rho(x,y)',pearson_correlation(x,y)) # use fortran ace by 1985 article author tx, ty = ace_cream(x, y, cat = [-1,0]) print('mapped X symbol list: ') print(np.unique(tx)) print('mapped Y symbol list: ') print(np.unique(ty)) print('mean(tx) = %f, std(tx) = %f'%(np.mean(tx), np.std(tx))) print('mean(ty) = %f, std(ty) = %f'%(np.mean(ty), np.std(ty))) print('rho(tx,ty)',pearson_correlation(tx,ty)) # matches theoretical result: np.sqrt(1-ERROR_PROBABILITY)
[ "numpy.mean", "numpy.unique", "numpy.random.choice", "ace_cream.ace_cream", "numpy.std", "numpy.random.uniform" ]
[((332, 369), 'numpy.random.choice', 'np.random.choice', (['[0, 1]'], {'size': 'N_SIZE'}), '([0, 1], size=N_SIZE)\n', (348, 369), True, 'import numpy as np\n'), ((376, 406), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'N_SIZE'}), '(size=N_SIZE)\n', (393, 406), True, 'import numpy as np\n'), ((770, 798), 'ace_cream.ace_cream', 'ace_cream', (['x', 'y'], {'cat': '[-1, 0]'}), '(x, y, cat=[-1, 0])\n', (779, 798), False, 'from ace_cream import ace_cream\n'), ((846, 859), 'numpy.unique', 'np.unique', (['tx'], {}), '(tx)\n', (855, 859), True, 'import numpy as np\n'), ((907, 920), 'numpy.unique', 'np.unique', (['ty'], {}), '(ty)\n', (916, 920), True, 'import numpy as np\n'), ((137, 159), 'numpy.mean', 'np.mean', (['(X * Y)'], {'axis': '(0)'}), '(X * Y, axis=0)\n', (144, 159), True, 'import numpy as np\n'), ((207, 224), 'numpy.std', 'np.std', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (213, 224), True, 'import numpy as np\n'), ((229, 246), 'numpy.std', 'np.std', (['Y'], {'axis': '(0)'}), '(Y, axis=0)\n', (235, 246), True, 'import numpy as np\n'), ((159, 177), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (166, 177), True, 'import numpy as np\n'), ((181, 199), 'numpy.mean', 'np.mean', (['Y'], {'axis': '(0)'}), '(Y, axis=0)\n', (188, 199), True, 'import numpy as np\n'), ((964, 975), 'numpy.mean', 'np.mean', (['tx'], {}), '(tx)\n', (971, 975), True, 'import numpy as np\n'), ((977, 987), 'numpy.std', 'np.std', (['tx'], {}), '(tx)\n', (983, 987), True, 'import numpy as np\n'), ((1031, 1042), 'numpy.mean', 'np.mean', (['ty'], {}), '(ty)\n', (1038, 1042), True, 'import numpy as np\n'), ((1044, 1054), 'numpy.std', 'np.std', (['ty'], {}), '(ty)\n', (1050, 1054), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import math import datetime import time import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") class Indicators(): def __init__(self, dataframe, params = []): self.dataframe = dataframe self.params = params self.dataframe['return'] = 0 for i in range(1,len(dataframe['return'])): #http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy dataframe.loc[i,'return'] = (self.dataframe.loc[i,'open']-self.dataframe.loc[i-1,'open'])/self.dataframe.loc[i-1,'open'] self.Return = dataframe['return'] self.dataframe['time'] = dataframe['tradeDate'] self.dataframe['cumulative_return'] = self.dataframe['open'] self.dataframe['cumulative_return'] = self.dataframe['cumulative_return']/self.dataframe.loc[0,'open'] self.dataframe['cumulative_return'] = dataframe['cumulative_return']#*1000000 self.dataframe.index = pd.to_datetime(dataframe['tradeDate'])#!!!!! #分年计算 self.year_slice = {} i = 0 y = time.strptime(self.dataframe['time'].iat[0],"%Y-%m-%d").tm_year for j in range(1,len(self.dataframe)): if y != time.strptime(self.dataframe['time'].iat[j],"%Y-%m-%d").tm_year: self.year_slice[str(y)] = dataframe[i:j-1] y = time.strptime(self.dataframe['time'].iat[j],"%Y-%m-%d").tm_year i = j self.year_slice[str(y)] = dataframe[i:] ###年化收益 def annual_return(self,asset,year): R = self.year_slice[year][asset].iat[-1]/self.year_slice[year][asset].iat[0] t1 = time.strptime(self.year_slice[year]['time'].iat[0],"%Y-%m-%d") t2 = time.strptime(self.year_slice[year]['time'].iat[-1],"%Y-%m-%d") d1 = datetime.datetime(t1.tm_year, t1.tm_mon, t1.tm_mday) d2 = datetime.datetime(t1.tm_year, t2.tm_mon, t2.tm_mday) n = (d2-d1).days n = n/244 # print('The annual return for %s in %s is %f' %(asset,year,math.pow(R, 1/n)-1)) return math.pow(R, 1/n)-1 ###最大回撤 def max_draw(self,asset,year): self.year_slice[year]['max'] = 0 self.year_slice[year].ix[0,'max'] = self.year_slice[year].ix[0,asset]#loc, iloc, and ix for i in range(1, len(self.year_slice[year][asset])): if self.year_slice[year].ix[i, asset] > self.year_slice[year].ix[i-1, 'max']: self.year_slice[year].ix[i, 'max'] = self.year_slice[year].ix[i, asset] else: self.year_slice[year].ix[i, 'max'] = self.year_slice[year].ix[i-1, 'max'] self.year_slice[year]['retreat']=(self.year_slice[year][asset]- self.year_slice[year]['max'])/self.year_slice[year]['max'] print('The max draw for %s in %s is %f' %(asset,year,abs(min(self.year_slice[year]['retreat'])))) return abs(min(self.year_slice[year]['retreat'])) ###波动率 def volatility(self,asset,year): print('The volatility for %s in %s is %f' %(asset,year,np.std(self.year_slice[year][asset])*math.sqrt(244/len(self.year_slice[year][asset])))) return np.std(self.year_slice[year][asset])*math.sqrt(244/len(self.year_slice[year][asset])) ###夏普比率 def sharp(self, asset,no_risk_R,year): print('The Sharp Ratio for %s in %s is %.7f' %(asset,year,(self.annual_return(asset,year)-no_risk_R)/(self.volatility(asset,year)*math.sqrt(244/len(self.year_slice[year][asset]))+1e-10))) return (self.annual_return(asset,year)-no_risk_R)/(self.volatility(asset,year)*math.sqrt(244/len(self.year_slice[year][asset]))+1e-10) ###卡玛比率 def calmar(self,asset,year): print('The Calmar Ratio for %s in %s is %f' %(asset,year,self.annual_return(asset,year)/self.max_draw(asset,year))) return self.annual_return(asset,year)/self.max_draw(asset,year) ###日胜率 def daily_win_ratio(self,asset,year): #df的条件选择不是self.dataframe[asset][self.dataframe[asset] > 0]而是self.dataframe[self.dataframe[asset] > 0][asset] #!! pnl = asset.replace('asset','pnl') n1 = len(self.year_slice[year][self.year_slice[year][pnl] > 0][pnl]) n2 = len(self.year_slice[year][pnl]) print('The daily win ratio for %s in %s is %f' %(asset,year,n1/n2)) return n1/n2 ###日盈亏比 def win_lose_ratio(self,asset,year): self.year_slice[year]['dif'] = self.year_slice[year][asset] - self.year_slice[year][asset].shift(1) print('The win lose ratio for %s in %s is %f' %(asset,year,abs(min(self.year_slice[year]['retreat'])))) return abs(sum(self.year_slice[year][self.year_slice[year]['dif']>0]['dif']))/abs(sum(self.year_slice[year][self.year_slice[year]['dif']<0]['dif'])) ###大回撤区间 def worst_draw_interval(self,asset,year): self.year_slice[year]['max'] = 0 self.year_slice[year].ix[0,'max'] = self.year_slice[year].ix[0,asset] self.year_slice[year]['max_time'] = self.year_slice[year]['time'] for i in range(1, len(self.year_slice[year][asset])): if self.year_slice[year].ix[i, asset] > self.year_slice[year].ix[i-1, 'max']: self.year_slice[year].ix[i, 'max'] = self.year_slice[year].ix[i, asset] else: self.year_slice[year].ix[i, 'max'] = self.year_slice[year].ix[i-1, 'max'] self.year_slice[year].ix[i, 'max_time'] = self.year_slice[year].ix[i-1, 'max_time'] self.year_slice[year]['retreat']=(self.year_slice[year][asset]- self.year_slice[year]['max'])/self.year_slice[year]['max'] max_draw = min(self.year_slice[year]['retreat']) data = self.year_slice[year][self.year_slice[year]['retreat'] == max_draw] t1 = data['tradeDate']# t2 = data['max_time'] #print('The worst draw interval for %s in %s is %s %s' %(asset,year,str(t1),str(t2))) return t1,t2 ###总换手 def total_turnover(self,asset,year): turnover = asset.replace('asset','turnover') print('The total turnover for %s in %s is %f' %(asset,year,sum(self.year_slice[year][turnover]))) return sum(self.year_slice[year][turnover]) ###日均换手 def average_daily_turnover(self,asset,year): t1 = time.strptime(self.year_slice[year]['time'].iat[0],"%Y-%m-%d") t2 = time.strptime(self.year_slice[year]['time'].iat[-1],"%Y-%m-%d") d1 = datetime.datetime(t1.tm_year, t1.tm_mon, t1.tm_mday) d2 = datetime.datetime(t1.tm_year, t2.tm_mon, t2.tm_mday) n = (d2-d1).days print('The average daily turnover for %s in %s is %f' %(asset,year,self.total_turnover(asset,year)/n)) return self.total_turnover(asset,year)/n ###日均持仓 def average_daily_position(self,asset,year): position = asset.replace('asset','position') print('The average daily position for %s in %s is %f' %(asset,year,self.year_slice[year][position].mean())) return self.year_slice[year][position].mean() ###次均收益 def minor_average_return(self,asset,year): position = asset.replace('asset','position') sum_pos = sum(self.year_slice[year][self.year_slice[year][position]!=0][position]) num = len(self.year_slice[year][self.year_slice[year][position]!=0][position]) print('The minor average return for %s in %s is %f' %(asset,year,sum_pos/num)) return sum_pos/num def write_indicators_concat(self,path): frames = [] for items in self.year_slice: temp_data = [] temp_index = [] for k in self.params: x = [items, self.annual_return('asset'+ str(k),items), self.max_draw('asset'+ str(k),items), self.volatility('asset'+ str(k),items), self.sharp('asset'+ str(k),0,items), self.calmar('asset'+ str(k),items), self.daily_win_ratio('asset'+ str(k),items), self.win_lose_ratio('asset'+ str(k),items), self.total_turnover('asset'+ str(k),items), self.average_daily_turnover('asset'+ str(k),items), self.average_daily_position('asset'+ str(k),items), self.minor_average_return('asset'+ str(k),items)] temp_data.append(x) temp_index.append('asset'+ str(k)) DataFrame = pd.DataFrame(temp_data,index=temp_index,columns=['year','annual_return', 'max_draw', 'volatility', 'sharp','calmar','daily_win_ratio','win_lose_ratio','total_turnover','average_daily_turnover','average_daily_position','minor_average_return']) frames.append(DataFrame) DataFrame = pd.concat(frames) DataFrame.to_csv(path_or_buf=path) def plot_figure(self,asset_num): t1 = time.strptime(self.dataframe['time'].iat[0],"%Y-%m-%d") t2 = time.strptime(self.dataframe['time'].iat[-1],"%Y-%m-%d") d1 = datetime.datetime(t1.tm_year, t1.tm_mon, t1.tm_mday) d2 = datetime.datetime(t1.tm_year, t2.tm_mon, t2.tm_mday) plt.figure() plt.subplots_adjust(hspace=1, wspace=1) plt.subplot(3,1,1) self.dataframe['asset'+ str(asset_num)].plot(legend = True) self.dataframe['cumulative_return'].plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False) plt.subplot(3,1,2) f2 = plt.bar(range(len(self.dataframe['transaction'+ str(asset_num)])), self.dataframe['transaction'+ str(asset_num)].tolist(),tick_label= None,label='transaction'+ str(asset_num)) plt.legend((f2,),('transaction'+ str(asset_num),)) plt.subplot(3,1,3) f3 = plt.bar(range(len(self.dataframe['pnl'+ str(asset_num)])),self.dataframe['pnl'+ str(asset_num)].tolist(),label='pnl'+ str(asset_num)) plt.legend((f3,),('pnl'+ str(asset_num),)) plt.show() if __name__=='__main__': indicators = Indicators('/Users/zhubaobao/Documents/Quant/ZXJT/total3.csv', [5,10,20]) #indicators.write_indicators_concat('/Users/zhubaobao/Documents/Quant/ZXJT/write_indicators.csv') indicators.plot_figure(10)
[ "datetime.datetime", "matplotlib.pyplot.subplots_adjust", "time.strptime", "math.pow", "matplotlib.pyplot.subplot", "matplotlib.pyplot.figure", "numpy.std", "pandas.DataFrame", "pandas.concat", "warnings.filterwarnings", "pandas.to_datetime", "matplotlib.pyplot.show" ]
[((151, 184), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (174, 184), False, 'import warnings\n'), ((1033, 1071), 'pandas.to_datetime', 'pd.to_datetime', (["dataframe['tradeDate']"], {}), "(dataframe['tradeDate'])\n", (1047, 1071), True, 'import pandas as pd\n'), ((1704, 1767), 'time.strptime', 'time.strptime', (["self.year_slice[year]['time'].iat[0]", '"""%Y-%m-%d"""'], {}), "(self.year_slice[year]['time'].iat[0], '%Y-%m-%d')\n", (1717, 1767), False, 'import time\n'), ((1780, 1844), 'time.strptime', 'time.strptime', (["self.year_slice[year]['time'].iat[-1]", '"""%Y-%m-%d"""'], {}), "(self.year_slice[year]['time'].iat[-1], '%Y-%m-%d')\n", (1793, 1844), False, 'import time\n'), ((1857, 1909), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't1.tm_mon', 't1.tm_mday'], {}), '(t1.tm_year, t1.tm_mon, t1.tm_mday)\n', (1874, 1909), False, 'import datetime\n'), ((1923, 1975), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't2.tm_mon', 't2.tm_mday'], {}), '(t1.tm_year, t2.tm_mon, t2.tm_mday)\n', (1940, 1975), False, 'import datetime\n'), ((6236, 6299), 'time.strptime', 'time.strptime', (["self.year_slice[year]['time'].iat[0]", '"""%Y-%m-%d"""'], {}), "(self.year_slice[year]['time'].iat[0], '%Y-%m-%d')\n", (6249, 6299), False, 'import time\n'), ((6312, 6376), 'time.strptime', 'time.strptime', (["self.year_slice[year]['time'].iat[-1]", '"""%Y-%m-%d"""'], {}), "(self.year_slice[year]['time'].iat[-1], '%Y-%m-%d')\n", (6325, 6376), False, 'import time\n'), ((6389, 6441), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't1.tm_mon', 't1.tm_mday'], {}), '(t1.tm_year, t1.tm_mon, t1.tm_mday)\n', (6406, 6441), False, 'import datetime\n'), ((6455, 6507), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't2.tm_mon', 't2.tm_mday'], {}), '(t1.tm_year, t2.tm_mon, t2.tm_mday)\n', (6472, 6507), False, 'import datetime\n'), ((8663, 8680), 'pandas.concat', 'pd.concat', (['frames'], {}), '(frames)\n', (8672, 8680), True, 'import pandas as pd\n'), ((8775, 8831), 'time.strptime', 'time.strptime', (["self.dataframe['time'].iat[0]", '"""%Y-%m-%d"""'], {}), "(self.dataframe['time'].iat[0], '%Y-%m-%d')\n", (8788, 8831), False, 'import time\n'), ((8844, 8901), 'time.strptime', 'time.strptime', (["self.dataframe['time'].iat[-1]", '"""%Y-%m-%d"""'], {}), "(self.dataframe['time'].iat[-1], '%Y-%m-%d')\n", (8857, 8901), False, 'import time\n'), ((8914, 8966), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't1.tm_mon', 't1.tm_mday'], {}), '(t1.tm_year, t1.tm_mon, t1.tm_mday)\n', (8931, 8966), False, 'import datetime\n'), ((8980, 9032), 'datetime.datetime', 'datetime.datetime', (['t1.tm_year', 't2.tm_mon', 't2.tm_mday'], {}), '(t1.tm_year, t2.tm_mon, t2.tm_mday)\n', (8997, 9032), False, 'import datetime\n'), ((9041, 9053), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9051, 9053), True, 'import matplotlib.pyplot as plt\n'), ((9062, 9101), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(1)', 'wspace': '(1)'}), '(hspace=1, wspace=1)\n', (9081, 9101), True, 'import matplotlib.pyplot as plt\n'), ((9111, 9131), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (9122, 9131), True, 'import matplotlib.pyplot as plt\n'), ((9628, 9648), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(2)'], {}), '(3, 1, 2)\n', (9639, 9648), True, 'import matplotlib.pyplot as plt\n'), ((9904, 9924), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(3)'], {}), '(3, 1, 3)\n', (9915, 9924), True, 'import matplotlib.pyplot as plt\n'), ((10130, 10140), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10138, 10140), True, 'import matplotlib.pyplot as plt\n'), ((1147, 1203), 'time.strptime', 'time.strptime', (["self.dataframe['time'].iat[0]", '"""%Y-%m-%d"""'], {}), "(self.dataframe['time'].iat[0], '%Y-%m-%d')\n", (1160, 1203), False, 'import time\n'), ((2122, 2140), 'math.pow', 'math.pow', (['R', '(1 / n)'], {}), '(R, 1 / n)\n', (2130, 2140), False, 'import math\n'), ((3176, 3212), 'numpy.std', 'np.std', (['self.year_slice[year][asset]'], {}), '(self.year_slice[year][asset])\n', (3182, 3212), True, 'import numpy as np\n'), ((8363, 8627), 'pandas.DataFrame', 'pd.DataFrame', (['temp_data'], {'index': 'temp_index', 'columns': "['year', 'annual_return', 'max_draw', 'volatility', 'sharp', 'calmar',\n 'daily_win_ratio', 'win_lose_ratio', 'total_turnover',\n 'average_daily_turnover', 'average_daily_position', 'minor_average_return']"}), "(temp_data, index=temp_index, columns=['year', 'annual_return',\n 'max_draw', 'volatility', 'sharp', 'calmar', 'daily_win_ratio',\n 'win_lose_ratio', 'total_turnover', 'average_daily_turnover',\n 'average_daily_position', 'minor_average_return'])\n", (8375, 8627), True, 'import pandas as pd\n'), ((1278, 1334), 'time.strptime', 'time.strptime', (["self.dataframe['time'].iat[j]", '"""%Y-%m-%d"""'], {}), "(self.dataframe['time'].iat[j], '%Y-%m-%d')\n", (1291, 1334), False, 'import time\n'), ((1422, 1478), 'time.strptime', 'time.strptime', (["self.dataframe['time'].iat[j]", '"""%Y-%m-%d"""'], {}), "(self.dataframe['time'].iat[j], '%Y-%m-%d')\n", (1435, 1478), False, 'import time\n'), ((3073, 3109), 'numpy.std', 'np.std', (['self.year_slice[year][asset]'], {}), '(self.year_slice[year][asset])\n', (3079, 3109), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import sys import csv import datetime import math from tabulate import tabulate import scipy.stats as st from tqdm import tqdm import numpy as np np.seterr(all='ignore') def isfloat(val): try: val = float(val) if math.isnan(val): return False return True except: return False class Describe: def __init__(self, filename): self.filename = filename self.content = [] self.listed = {} self.mean = {} self.count = {} self.columns = [] self.min = {} self.max = {} self.std = {} self.Q25 = {} self.Q50 = {} self.Q75 = {} self.iqr = {} self.range = {} self.best_dist = {} self.dist_params = {} self.dist_pval = {} def ReadFile(self): with open(self.filename, 'r') as file: coco = csv.DictReader(file) for row in coco: del row['Index'] newrow = {} for k, v in row.items(): if isfloat(v): newrow[k] = float(v) if k not in self.listed.keys(): self.listed[k] = [float(v)] else: self.listed[k] += [float(v)] elif k == 'Birthday': split = v.split('-') year, month, day = int(split[0]), int(split[1]), int(split[2]) newrow[k] = datetime.datetime(year, month, day, 0, 0).timestamp() if k not in self.listed.keys(): self.listed[k] = [newrow[k]] else: self.listed[k] += [newrow[k]] self.content += [newrow] def FilterNumerics(self): for k, v in self.content[0].items(): try: float(v) self.columns += [k] self.mean[k] = 0 self.count[k] = 0 self.std[k] = 0 self.min[k] = 0 self.max[k] = 0 except: pass def GetCount(self): for x in self.content: for k, v in x.items(): self.count[k] += 1 def GetMean(self): for x in self.content: for k, v in x.items(): self.mean[k] += v / self.count[k] def GetStd(self): for x in self.content: for k, v in x.items(): self.std[k] += (v - self.mean[k]) ** 2 / self.count[k] for k, v in self.std.items(): self.std[k] = math.sqrt(self.std[k]) def GetQMinMax(self): for k in self.listed.keys(): self.listed[k] = sorted(self.listed[k]) if self.listed[k] != []: self.min[k] = self.listed[k][0] self.max[k] = self.listed[k][-1] self.range[k] = self.max[k] - self.min[k] else: continue L25 = (self.count[k] + 1) * 0.25 L50 = (self.count[k] + 1) * 0.5 L75 = (self.count[k] + 1) * 0.75 try: P25 = self.listed[k][int(L25)] + (L25 - int(L25)) * (self.listed[k][int(L25) + 1] - self.listed[k][int(L25)]) P50 = self.listed[k][int(L50)] + (L50 - int(L50)) * (self.listed[k][int(L50) + 1] - self.listed[k][int(L25)]) P75 = self.listed[k][int(L75)] + (L75 - int(L75)) * (self.listed[k][int(L75) + 1] - self.listed[k][int(L25)]) except: P25 = self.listed[k][0] P50 = self.listed[k][0] P75 = self.listed[k][0] self.Q25[k] = P25 self.Q50[k] = P50 self.Q75[k] = P75 self.iqr[k] = P75 - P25 def get_best_distribution(self): dist_names = ["norm", "exponweib", "weibull_max", "weibull_min", "pareto", "genextreme"] dist_results = [] params = {} with tqdm(total=len(self.listed.keys()) * len(dist_names)) as tq: for k in self.listed.keys(): for dist_name in dist_names: dist = getattr(st, dist_name) param = dist.fit(self.listed[k]) params[dist_name] = param # Applying the Kolmogorov-Smirnov test D, p = st.kstest(self.listed[k], dist_name, args=param) dist_results.append((dist_name, p)) tq.update(1) # select the best fitted distribution best_dist, best_p = (max(dist_results, key=lambda item: item[1])) self.best_dist[k] = best_dist self.dist_params[k] = params[dist_name] self.dist_pval[k] = best_p def Describe(self): self.GetCount() self.GetMean() self.GetStd() self.GetQMinMax() if len(sys.argv) > 2 and sys.argv[2] == "-dist": self.get_best_distribution() def Print(self): self.columns = sorted(self.columns) if len(sys.argv) > 2 and sys.argv[2] == "-dist": i = 0 for k, v in self.best_dist.items(): self.columns[i] += '\n(' + v + ')' i += 1 self.mean = {k: v for k, v in sorted(self.mean.items(), key=lambda item: item[0])} self.count = {k: v for k, v in sorted(self.count.items(), key=lambda item: item[0])} self.min = {k: v for k, v in sorted(self.min.items(), key=lambda item: item[0])} self.max = {k: v for k, v in sorted(self.max.items(), key=lambda item: item[0])} self.std = {k: v for k, v in sorted(self.std.items(), key=lambda item: item[0])} self.Q25 = {k: v for k, v in sorted(self.Q25.items(), key=lambda item: item[0])} self.Q50 = {k: v for k, v in sorted(self.Q50.items(), key=lambda item: item[0])} self.Q75 = {k: v for k, v in sorted(self.Q75.items(), key=lambda item: item[0])} self.iqr = {k: v for k, v in sorted(self.iqr.items(), key=lambda item: item[0])} self.range = {k: v for k, v in sorted(self.range.items(), key=lambda item: item[0])} self.best_dist = {k: v for k, v in sorted(self.best_dist.items(), key=lambda item: item[0])} columns = [''] + self.columns print(tabulate([ ['Count'] + list(self.count.values()), ['Mean'] + list(self.mean.values()), ['Std'] + list(self.std.values()), ['Min'] + list(self.min.values()), ['25%'] + list(self.Q25.values()), ['50%'] + list(self.Q50.values()), ['75%'] + list(self.Q75.values()), ['Max'] + list(self.max.values()), ['IQR'] + list(self.iqr.values()), ['Range'] + list(self.range.values())], headers=columns, tablefmt='plain', floatfmt=".6f")) #print(tabulate([ # ['Distribution'] + list(self.best_dist.values())], headers=columns, tablefmt='plain', floatfmt=".6f")) def ConvertBirthday(self): start = datetime.datetime.fromtimestamp(0) self.mean['Birthday'] = datetime.datetime.fromtimestamp(self.mean['Birthday']).strftime('%Y-%m-%d') self.std['Birthday'] = str((datetime.datetime.fromtimestamp(self.std['Birthday']) - start).days) + '(d)' self.min['Birthday'] = datetime.datetime.fromtimestamp(self.min['Birthday']).strftime('%Y-%m-%d') self.max['Birthday'] = datetime.datetime.fromtimestamp(self.max['Birthday']).strftime('%Y-%m-%d') self.Q25['Birthday'] = datetime.datetime.fromtimestamp(self.Q25['Birthday']).strftime('%Y-%m-%d') self.Q50['Birthday'] = datetime.datetime.fromtimestamp(self.Q50['Birthday']).strftime('%Y-%m-%d') self.Q75['Birthday'] = datetime.datetime.fromtimestamp(self.Q75['Birthday']).strftime('%Y-%m-%d') self.iqr['Birthday'] = str((datetime.datetime.fromtimestamp(self.iqr['Birthday']) - start).days) + '(d)' self.range['Birthday'] = str((datetime.datetime.fromtimestamp(self.range['Birthday']) - start).days) + '(d)' pass def __call__(self): self.ReadFile() self.FilterNumerics() self.Describe() self.ConvertBirthday() self.Print() def main(): best_class = Describe(sys.argv[1]) best_class() def CheckArgs(): if len(sys.argv) < 2: print(f"Usage: {__file__} <dataset_name.csv> <flags>") exit() if __name__ == '__main__': CheckArgs() main()
[ "datetime.datetime", "csv.DictReader", "datetime.datetime.fromtimestamp", "scipy.stats.kstest", "math.sqrt", "numpy.seterr", "math.isnan" ]
[((175, 198), 'numpy.seterr', 'np.seterr', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (184, 198), True, 'import numpy as np\n'), ((263, 278), 'math.isnan', 'math.isnan', (['val'], {}), '(val)\n', (273, 278), False, 'import math\n'), ((7153, 7187), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['(0)'], {}), '(0)\n', (7184, 7187), False, 'import datetime\n'), ((923, 943), 'csv.DictReader', 'csv.DictReader', (['file'], {}), '(file)\n', (937, 943), False, 'import csv\n'), ((2712, 2734), 'math.sqrt', 'math.sqrt', (['self.std[k]'], {}), '(self.std[k])\n', (2721, 2734), False, 'import math\n'), ((7220, 7274), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.mean['Birthday']"], {}), "(self.mean['Birthday'])\n", (7251, 7274), False, 'import datetime\n'), ((7440, 7493), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.min['Birthday']"], {}), "(self.min['Birthday'])\n", (7471, 7493), False, 'import datetime\n'), ((7546, 7599), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.max['Birthday']"], {}), "(self.max['Birthday'])\n", (7577, 7599), False, 'import datetime\n'), ((7652, 7705), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.Q25['Birthday']"], {}), "(self.Q25['Birthday'])\n", (7683, 7705), False, 'import datetime\n'), ((7758, 7811), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.Q50['Birthday']"], {}), "(self.Q50['Birthday'])\n", (7789, 7811), False, 'import datetime\n'), ((7864, 7917), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.Q75['Birthday']"], {}), "(self.Q75['Birthday'])\n", (7895, 7917), False, 'import datetime\n'), ((4459, 4507), 'scipy.stats.kstest', 'st.kstest', (['self.listed[k]', 'dist_name'], {'args': 'param'}), '(self.listed[k], dist_name, args=param)\n', (4468, 4507), True, 'import scipy.stats as st\n'), ((7332, 7385), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.std['Birthday']"], {}), "(self.std['Birthday'])\n", (7363, 7385), False, 'import datetime\n'), ((7975, 8028), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.iqr['Birthday']"], {}), "(self.iqr['Birthday'])\n", (8006, 8028), False, 'import datetime\n'), ((8090, 8145), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (["self.range['Birthday']"], {}), "(self.range['Birthday'])\n", (8121, 8145), False, 'import datetime\n'), ((1564, 1605), 'datetime.datetime', 'datetime.datetime', (['year', 'month', 'day', '(0)', '(0)'], {}), '(year, month, day, 0, 0)\n', (1581, 1605), False, 'import datetime\n')]
import numpy as np def flip_axis(x_in, axis): x_out = np.zeros(x_in.shape, dtype=x_in.dtype) for i, x in enumerate(x_in): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x_out[i] = x.swapaxes(0, axis) return x_out def flip_axis_fra(x, flipping_axis): pattern = [flipping_axis] pattern += [el for el in range(x.ndim) if el != flipping_axis] inv_pattern = [pattern.index(el) for el in range(x.ndim)] x = x.transpose(pattern) # "flipping_axis" first x = x[::-1, ...] x = x.transpose(inv_pattern) return x if __name__ == '__main__': aa = np.random.random((10, 2, 3, 4)) # b, *, *, * for axis in [1, 2, 3]: print('Testing channel in axis {}'.format(axis)) mm = flip_axis(aa.copy(), axis-1) ff = flip_axis_fra(aa.copy(), axis) assert np.array_equal(mm, ff) print('Test passed!')
[ "numpy.random.random", "numpy.zeros", "numpy.array_equal", "numpy.asarray" ]
[((60, 98), 'numpy.zeros', 'np.zeros', (['x_in.shape'], {'dtype': 'x_in.dtype'}), '(x_in.shape, dtype=x_in.dtype)\n', (68, 98), True, 'import numpy as np\n'), ((614, 645), 'numpy.random.random', 'np.random.random', (['(10, 2, 3, 4)'], {}), '((10, 2, 3, 4))\n', (630, 645), True, 'import numpy as np\n'), ((845, 867), 'numpy.array_equal', 'np.array_equal', (['mm', 'ff'], {}), '(mm, ff)\n', (859, 867), True, 'import numpy as np\n'), ((144, 157), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (154, 157), True, 'import numpy as np\n')]
def elastic_rate( hv, hs, v, s, rho, mu, nx, dx, order, t, y, r0, r1, tau0_1, tau0_2, tauN_1, tauN_2, type_0, forcing, ): # we compute rates that will be used for Runge-Kutta time-stepping # import first_derivative_sbp_operators import numpy as np import boundarycondition V = np.zeros((nx, 1)) S = np.zeros((nx, 1)) Vt = np.zeros((nx, 1)) St = np.zeros((nx, 1)) Vx = np.zeros((nx, 1)) Sx = np.zeros((nx, 1)) mms(V, S, Vt, St, Vx, Sx, y, t, type_0) # initialize arrays for computing derivatives vx = np.zeros((nx, 1)) sx = np.zeros((nx, 1)) # compute first derivatives for velocity and stress fields first_derivative_sbp_operators.dx(vx, v, nx, dx, order) first_derivative_sbp_operators.dx(sx, s, nx, dx, order) # compute the elastic rates hv[:, :] = (1.0 / rho) * sx + forcing * (Vt - (1.0 / rho) * Sx) hs[:, :] = mu * vx + forcing * (St - mu * Vx) # impose boundary conditions using penalty: SAT impose_bc( hv, hs, v, s, rho, mu, nx, dx, order, forcing * V, forcing * S, r0, r1, tau0_1, tau0_2, tauN_1, tauN_2, ) def advection_rate(hv, v, nx, dx, order, t, y, tau): # we compute rates that will be used for Runge-Kutta time-stepping # import first_derivative_sbp_operators import numpy as np # initialize arrays for computing derivatives vx = np.zeros((nx, 1)) # compute first derivatives of the advected field v first_derivative_sbp_operators.dx(vx, v, nx, dx, order) # compute rates hv[:, :] = -vx # impose boundary conditions using penalty: SAT # penalty weights h11 = np.zeros((1, 1)) penaltyweight(h11, dx, order) V0 = np.zeros((1, 1)) # boundary forcing g(V0, t) # print(Vn) # penalize boundaries with the SAT terms hv[0, :] = hv[0, :] - tau / h11 * (v[0, :] - V0) def impose_bc( hv, hs, v, s, rho, mu, nx, dx, order, V, S, r0, r1, tau0_1, tau0_2, tauN_1, tauN_2, ): # impose boundary conditions import numpy as np import boundarycondition # penalty weights h11 = np.zeros((1, 1)) penaltyweight(h11, dx, order) mv = np.zeros((1, 1)) ms = np.zeros((1, 1)) pv = np.zeros((1, 1)) ps = np.zeros((1, 1)) v0 = v[0, :] s0 = s[0, :] vn = v[nx - 1, :] sn = s[nx - 1, :] # boundary forcing V0 = V[0, :] S0 = S[0, :] Vn = V[nx - 1, :] Sn = S[nx - 1, :] # compute SAT terms boundarycondition.bcm(mv, ms, v0, s0, V0, S0, rho, mu, r0) boundarycondition.bcp(pv, ps, vn, sn, Vn, Sn, rho, mu, r1) # penalize boundaries with the SAT terms hv[0, :] = hv[0, :] - tau0_1 / h11 * mv hs[0, :] = hs[0, :] - tau0_2 / h11 * ms hv[nx - 1, :] = hv[nx - 1, :] - tauN_1 / h11 * pv def mms(V, S, V_t, S_t, V_x, S_x, y, t, type_0): import numpy as np if type_0 in ("Gaussian"): delta = 0.015 * (y[-1, 0] - y[0, 0]) cs = 3.464 rho = 2.6702 Zs = rho * cs x0 = 0.5 * (y[-1, 0] - y[0, 0]) V[:, :] = ( 1 / np.sqrt(2.0 * np.pi * delta ** 2) * 0.5 * ( np.exp(-(y + cs * (t) - x0) ** 2 / (2.0 * delta ** 2)) + np.exp(-(y - cs * (t) - x0) ** 2 / (2.0 * delta ** 2)) ) ) S[:, :] = ( 1 / np.sqrt(2.0 * np.pi * delta ** 2) * 0.5 * Zs * ( np.exp(-(y + cs * (t) - x0) ** 2 / (2.0 * delta ** 2)) - np.exp(-(y - cs * (t) - x0) ** 2 / (2.0 * delta ** 2)) ) ) V_t[:, :] = 0 S_t[:, :] = 0 V_x[:, :] = 0 S_x[:, :] = 0 if type_0 in ("Sinusoidal"): delta = y[-1, 0] - y[0, 0] ny = 20.5 / delta * np.pi nt = 2.5 * np.pi fs = 9.33 V[:, :] = np.cos(nt * t) * np.sin(ny * y + fs) S[:, :] = ny * np.sin(nt * t) * np.cos(ny * y - fs) V_t[:, :] = -nt * np.sin(nt * t) * np.sin(ny * y + fs) S_t[:, :] = nt * ny * np.cos(nt * t) * np.cos(ny * y - fs) V_x[:, :] = ny * np.cos(nt * t) * np.cos(ny * y + fs) S_x[:, :] = -ny * ny * np.sin(nt * t) * np.sin(ny * y - fs) def g(V, t): import numpy as np V[:, :] = 0.0 if t <= 1.0 and t >= 0.0: V[:, :] = (np.sin(np.pi * t)) ** 4 def penaltyweight(h11, dx, order): if order == 2: h11[:] = 0.5 * dx if order == 4: h11[:] = (17.0 / 48.0) * dx if order == 6: h11[:] = 13649.0 / 43200.0 * dx
[ "boundarycondition.bcm", "numpy.sqrt", "first_derivative_sbp_operators.dx", "boundarycondition.bcp", "numpy.exp", "numpy.zeros", "numpy.cos", "numpy.sin" ]
[((378, 395), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (386, 395), True, 'import numpy as np\n'), ((404, 421), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (412, 421), True, 'import numpy as np\n'), ((431, 448), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (439, 448), True, 'import numpy as np\n'), ((458, 475), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (466, 475), True, 'import numpy as np\n'), ((485, 502), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (493, 502), True, 'import numpy as np\n'), ((512, 529), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (520, 529), True, 'import numpy as np\n'), ((635, 652), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (643, 652), True, 'import numpy as np\n'), ((662, 679), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (670, 679), True, 'import numpy as np\n'), ((748, 803), 'first_derivative_sbp_operators.dx', 'first_derivative_sbp_operators.dx', (['vx', 'v', 'nx', 'dx', 'order'], {}), '(vx, v, nx, dx, order)\n', (781, 803), False, 'import first_derivative_sbp_operators\n'), ((808, 863), 'first_derivative_sbp_operators.dx', 'first_derivative_sbp_operators.dx', (['sx', 's', 'nx', 'dx', 'order'], {}), '(sx, s, nx, dx, order)\n', (841, 863), False, 'import first_derivative_sbp_operators\n'), ((1586, 1603), 'numpy.zeros', 'np.zeros', (['(nx, 1)'], {}), '((nx, 1))\n', (1594, 1603), True, 'import numpy as np\n'), ((1665, 1720), 'first_derivative_sbp_operators.dx', 'first_derivative_sbp_operators.dx', (['vx', 'v', 'nx', 'dx', 'order'], {}), '(vx, v, nx, dx, order)\n', (1698, 1720), False, 'import first_derivative_sbp_operators\n'), ((1847, 1863), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (1855, 1863), True, 'import numpy as np\n'), ((1908, 1924), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (1916, 1924), True, 'import numpy as np\n'), ((2367, 2383), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2375, 2383), True, 'import numpy as np\n'), ((2428, 2444), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2436, 2444), True, 'import numpy as np\n'), ((2454, 2470), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2462, 2470), True, 'import numpy as np\n'), ((2481, 2497), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2489, 2497), True, 'import numpy as np\n'), ((2507, 2523), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2515, 2523), True, 'import numpy as np\n'), ((2736, 2794), 'boundarycondition.bcm', 'boundarycondition.bcm', (['mv', 'ms', 'v0', 's0', 'V0', 'S0', 'rho', 'mu', 'r0'], {}), '(mv, ms, v0, s0, V0, S0, rho, mu, r0)\n', (2757, 2794), False, 'import boundarycondition\n'), ((2799, 2857), 'boundarycondition.bcp', 'boundarycondition.bcp', (['pv', 'ps', 'vn', 'sn', 'Vn', 'Sn', 'rho', 'mu', 'r1'], {}), '(pv, ps, vn, sn, Vn, Sn, rho, mu, r1)\n', (2820, 2857), False, 'import boundarycondition\n'), ((4148, 4162), 'numpy.cos', 'np.cos', (['(nt * t)'], {}), '(nt * t)\n', (4154, 4162), True, 'import numpy as np\n'), ((4165, 4184), 'numpy.sin', 'np.sin', (['(ny * y + fs)'], {}), '(ny * y + fs)\n', (4171, 4184), True, 'import numpy as np\n'), ((4226, 4245), 'numpy.cos', 'np.cos', (['(ny * y - fs)'], {}), '(ny * y - fs)\n', (4232, 4245), True, 'import numpy as np\n'), ((4290, 4309), 'numpy.sin', 'np.sin', (['(ny * y + fs)'], {}), '(ny * y + fs)\n', (4296, 4309), True, 'import numpy as np\n'), ((4357, 4376), 'numpy.cos', 'np.cos', (['(ny * y - fs)'], {}), '(ny * y - fs)\n', (4363, 4376), True, 'import numpy as np\n'), ((4420, 4439), 'numpy.cos', 'np.cos', (['(ny * y + fs)'], {}), '(ny * y + fs)\n', (4426, 4439), True, 'import numpy as np\n'), ((4488, 4507), 'numpy.sin', 'np.sin', (['(ny * y - fs)'], {}), '(ny * y - fs)\n', (4494, 4507), True, 'import numpy as np\n'), ((4616, 4633), 'numpy.sin', 'np.sin', (['(np.pi * t)'], {}), '(np.pi * t)\n', (4622, 4633), True, 'import numpy as np\n'), ((3438, 3490), 'numpy.exp', 'np.exp', (['(-(y + cs * t - x0) ** 2 / (2.0 * delta ** 2))'], {}), '(-(y + cs * t - x0) ** 2 / (2.0 * delta ** 2))\n', (3444, 3490), True, 'import numpy as np\n'), ((3511, 3563), 'numpy.exp', 'np.exp', (['(-(y - cs * t - x0) ** 2 / (2.0 * delta ** 2))'], {}), '(-(y - cs * t - x0) ** 2 / (2.0 * delta ** 2))\n', (3517, 3563), True, 'import numpy as np\n'), ((3740, 3792), 'numpy.exp', 'np.exp', (['(-(y + cs * t - x0) ** 2 / (2.0 * delta ** 2))'], {}), '(-(y + cs * t - x0) ** 2 / (2.0 * delta ** 2))\n', (3746, 3792), True, 'import numpy as np\n'), ((3813, 3865), 'numpy.exp', 'np.exp', (['(-(y - cs * t - x0) ** 2 / (2.0 * delta ** 2))'], {}), '(-(y - cs * t - x0) ** 2 / (2.0 * delta ** 2))\n', (3819, 3865), True, 'import numpy as np\n'), ((4209, 4223), 'numpy.sin', 'np.sin', (['(nt * t)'], {}), '(nt * t)\n', (4215, 4223), True, 'import numpy as np\n'), ((4273, 4287), 'numpy.sin', 'np.sin', (['(nt * t)'], {}), '(nt * t)\n', (4279, 4287), True, 'import numpy as np\n'), ((4340, 4354), 'numpy.cos', 'np.cos', (['(nt * t)'], {}), '(nt * t)\n', (4346, 4354), True, 'import numpy as np\n'), ((4403, 4417), 'numpy.cos', 'np.cos', (['(nt * t)'], {}), '(nt * t)\n', (4409, 4417), True, 'import numpy as np\n'), ((4471, 4485), 'numpy.sin', 'np.sin', (['(nt * t)'], {}), '(nt * t)\n', (4477, 4485), True, 'import numpy as np\n'), ((3354, 3387), 'numpy.sqrt', 'np.sqrt', (['(2.0 * np.pi * delta ** 2)'], {}), '(2.0 * np.pi * delta ** 2)\n', (3361, 3387), True, 'import numpy as np\n'), ((3639, 3672), 'numpy.sqrt', 'np.sqrt', (['(2.0 * np.pi * delta ** 2)'], {}), '(2.0 * np.pi * delta ** 2)\n', (3646, 3672), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.datasets import generate_ar_df from etna.datasets import generate_const_df from etna.datasets import generate_periodic_df from etna.metrics import R2 from etna.models import LinearPerSegmentModel from etna.transforms import FilterFeaturesTransform from etna.transforms.encoders.categorical import LabelEncoderTransform from etna.transforms.encoders.categorical import OneHotEncoderTransform @pytest.fixture def two_df_with_new_values(): d = { "timestamp": list(pd.date_range(start="2021-01-01", end="2021-01-03")) + list(pd.date_range(start="2021-01-01", end="2021-01-03")), "segment": ["segment_0", "segment_0", "segment_0", "segment_1", "segment_1", "segment_1"], "regressor_0": [5, 8, 5, 9, 5, 9], "target": [1, 2, 3, 4, 5, 6], } df1 = TSDataset.to_dataset(pd.DataFrame(d)) d = { "timestamp": list(pd.date_range(start="2021-01-01", end="2021-01-03")) + list(pd.date_range(start="2021-01-01", end="2021-01-03")), "segment": ["segment_0", "segment_0", "segment_0", "segment_1", "segment_1", "segment_1"], "regressor_0": [5, 8, 9, 5, 0, 0], "target": [1, 2, 3, 4, 5, 6], } df2 = TSDataset.to_dataset(pd.DataFrame(d)) return df1, df2 @pytest.fixture def df_for_ohe_encoding(): df_to_forecast = generate_ar_df(10, start_time="2021-01-01", n_segments=1) d = { "timestamp": pd.date_range(start="2021-01-01", end="2021-01-12"), "regressor_0": [5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8], "regressor_1": [9, 5, 9, 5, 9, 5, 9, 5, 9, 5, 9, 5], "regressor_2": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "regressor_3": [1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7], } df_regressors = pd.DataFrame(d) df_regressors["segment"] = "segment_0" df_to_forecast = TSDataset.to_dataset(df_to_forecast) df_regressors = TSDataset.to_dataset(df_regressors) tsdataset = TSDataset(df=df_to_forecast, freq="D", df_exog=df_regressors) answer_on_regressor_0 = tsdataset.df.copy()["segment_0"] answer_on_regressor_0["test_0"] = answer_on_regressor_0["regressor_0"].apply(lambda x: float(x == 5)) answer_on_regressor_0["test_1"] = answer_on_regressor_0["regressor_0"].apply(lambda x: float(x == 8)) answer_on_regressor_0["test_0"] = answer_on_regressor_0["test_0"].astype("category") answer_on_regressor_0["test_1"] = answer_on_regressor_0["test_1"].astype("category") answer_on_regressor_1 = tsdataset.df.copy()["segment_0"] answer_on_regressor_1["test_0"] = answer_on_regressor_1["regressor_1"].apply(lambda x: float(x == 5)) answer_on_regressor_1["test_1"] = answer_on_regressor_1["regressor_1"].apply(lambda x: float(x == 9)) answer_on_regressor_1["test_0"] = answer_on_regressor_1["test_0"].astype("category") answer_on_regressor_1["test_1"] = answer_on_regressor_1["test_1"].astype("category") answer_on_regressor_2 = tsdataset.df.copy()["segment_0"] answer_on_regressor_2["test_0"] = answer_on_regressor_2["regressor_2"].apply(lambda x: float(x == 0)) answer_on_regressor_2["test_0"] = answer_on_regressor_2["test_0"].astype("category") return tsdataset.df, (answer_on_regressor_0, answer_on_regressor_1, answer_on_regressor_2) @pytest.fixture def df_for_label_encoding(): df_to_forecast = generate_ar_df(10, start_time="2021-01-01", n_segments=1) d = { "timestamp": pd.date_range(start="2021-01-01", end="2021-01-12"), "regressor_0": [5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8], "regressor_1": [9, 5, 9, 5, 9, 5, 9, 5, 9, 5, 9, 5], "regressor_2": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "regressor_3": [1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7], } df_regressors = pd.DataFrame(d) df_regressors["segment"] = "segment_0" df_to_forecast = TSDataset.to_dataset(df_to_forecast) df_regressors = TSDataset.to_dataset(df_regressors) tsdataset = TSDataset(df=df_to_forecast, freq="D", df_exog=df_regressors) answer_on_regressor_0 = tsdataset.df.copy()["segment_0"] answer_on_regressor_0["test"] = answer_on_regressor_0["regressor_0"].apply(lambda x: float(x == 8)) answer_on_regressor_0["test"] = answer_on_regressor_0["test"].astype("category") answer_on_regressor_1 = tsdataset.df.copy()["segment_0"] answer_on_regressor_1["test"] = answer_on_regressor_1["regressor_1"].apply(lambda x: float(x == 9)) answer_on_regressor_1["test"] = answer_on_regressor_1["test"].astype("category") answer_on_regressor_2 = tsdataset.df.copy()["segment_0"] answer_on_regressor_2["test"] = answer_on_regressor_2["regressor_2"].apply(lambda x: float(x == 1)) answer_on_regressor_2["test"] = answer_on_regressor_2["test"].astype("category") return tsdataset.df, (answer_on_regressor_0, answer_on_regressor_1, answer_on_regressor_2) @pytest.fixture def df_for_naming(): df_to_forecast = generate_ar_df(10, start_time="2021-01-01", n_segments=1) df_regressors = generate_periodic_df(12, start_time="2021-01-01", scale=10, period=2, n_segments=2) df_regressors = df_regressors.pivot(index="timestamp", columns="segment").reset_index() df_regressors.columns = ["timestamp"] + ["regressor_1", "2"] df_regressors["segment"] = "segment_0" df_to_forecast = TSDataset.to_dataset(df_to_forecast) df_regressors = TSDataset.to_dataset(df_regressors) tsdataset = TSDataset(df=df_to_forecast, freq="D", df_exog=df_regressors) return tsdataset.df def test_label_encoder_simple(df_for_label_encoding): """Test that LabelEncoderTransform works correct in a simple cases.""" df, answers = df_for_label_encoding for i in range(3): le = LabelEncoderTransform(in_column=f"regressor_{i}", out_column="test") le.fit(df) cols = le.transform(df)["segment_0"].columns assert le.transform(df)["segment_0"][cols].equals(answers[i][cols]) def test_ohe_encoder_simple(df_for_ohe_encoding): """Test that OneHotEncoderTransform works correct in a simple case.""" df, answers = df_for_ohe_encoding for i in range(3): ohe = OneHotEncoderTransform(in_column=f"regressor_{i}", out_column="test") ohe.fit(df) cols = ohe.transform(df)["segment_0"].columns assert ohe.transform(df)["segment_0"][cols].equals(answers[i][cols]) def test_value_error_label_encoder(df_for_label_encoding): """Test LabelEncoderTransform with wrong strategy.""" df, _ = df_for_label_encoding with pytest.raises(ValueError, match="The strategy"): le = LabelEncoderTransform(in_column="target", strategy="new_vlue") le.fit(df) le.transform(df) @pytest.mark.parametrize( "strategy, expected_values", [ ("new_value", np.array([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, -1, 5], [9, -1, 3, 0, -1, 6]])), ("none", np.array([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, np.nan, 5], [9, np.nan, 3, 0, np.nan, 6]])), ("mean", np.array([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, 0, 5], [9, 0.5, 3, 0, 0, 6]])), ], ) def test_new_value_label_encoder(two_df_with_new_values, strategy, expected_values): """Test LabelEncoderTransform correct works with unknown values.""" df1, df2 = two_df_with_new_values le = LabelEncoderTransform(in_column="regressor_0", strategy=strategy) le.fit(df1) np.testing.assert_array_almost_equal(le.transform(df2).values, expected_values) def test_new_value_ohe_encoder(two_df_with_new_values): """Test OneHotEncoderTransform correct works with unknown values.""" expected_values = np.array( [ [5.0, 1.0, 1.0, 0.0, 5.0, 4.0, 1.0, 0.0], [8.0, 2.0, 0.0, 1.0, 0.0, 5.0, 0.0, 0.0], [9.0, 3.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0], ] ) df1, df2 = two_df_with_new_values ohe = OneHotEncoderTransform(in_column="regressor_0", out_column="targets") ohe.fit(df1) np.testing.assert_array_almost_equal(ohe.transform(df2).values, expected_values) def test_naming_ohe_encoder(two_df_with_new_values): """Test OneHotEncoderTransform gives the correct columns.""" df1, df2 = two_df_with_new_values ohe = OneHotEncoderTransform(in_column="regressor_0", out_column="targets") ohe.fit(df1) segments = ["segment_0", "segment_1"] target = ["target", "targets_0", "targets_1", "regressor_0"] assert set([(i, j) for i in segments for j in target]) == set(ohe.transform(df2).columns.values) @pytest.mark.parametrize( "in_column, prefix", [("2", ""), ("regressor_1", "regressor_")], ) def test_naming_ohe_encoder_no_out_column(df_for_naming, in_column, prefix): """Test OneHotEncoderTransform gives the correct columns with no out_column.""" df = df_for_naming ohe = OneHotEncoderTransform(in_column=in_column) ohe.fit(df) answer = set( list(df["segment_0"].columns) + [prefix + str(ohe.__repr__()) + "_0", prefix + str(ohe.__repr__()) + "_1"] ) assert answer == set(ohe.transform(df)["segment_0"].columns.values) @pytest.mark.parametrize( "in_column, prefix", [("2", ""), ("regressor_1", "regressor_")], ) def test_naming_label_encoder_no_out_column(df_for_naming, in_column, prefix): """Test LabelEncoderTransform gives the correct columns with no out_column.""" df = df_for_naming le = LabelEncoderTransform(in_column=in_column) le.fit(df) answer = set(list(df["segment_0"].columns) + [prefix + str(le.__repr__())]) assert answer == set(le.transform(df)["segment_0"].columns.values) @pytest.fixture def ts_for_ohe_sanity(): df_to_forecast = generate_const_df(periods=100, start_time="2021-01-01", scale=0, n_segments=1) df_regressors = generate_periodic_df(periods=120, start_time="2021-01-01", scale=10, period=4, n_segments=1) df_regressors = df_regressors.pivot(index="timestamp", columns="segment").reset_index() df_regressors.columns = ["timestamp"] + [f"regressor_{i}" for i in range(1)] df_regressors["segment"] = "segment_0" df_to_forecast = TSDataset.to_dataset(df_to_forecast) df_regressors = TSDataset.to_dataset(df_regressors) rng = np.random.default_rng(12345) def f(x): return x ** 2 + rng.normal(0, 0.01) df_to_forecast["segment_0", "target"] = df_regressors["segment_0"]["regressor_0"][:100].apply(f) ts = TSDataset(df=df_to_forecast, freq="D", df_exog=df_regressors) return ts def test_ohe_sanity(ts_for_ohe_sanity): """Test for correct work in the full forecasting pipeline.""" horizon = 10 train_ts, test_ts = ts_for_ohe_sanity.train_test_split(test_size=horizon) ohe = OneHotEncoderTransform(in_column="regressor_0") filt = FilterFeaturesTransform(exclude=["regressor_0"]) train_ts.fit_transform([ohe, filt]) model = LinearPerSegmentModel() model.fit(train_ts) future_ts = train_ts.make_future(horizon) forecast_ts = model.forecast(future_ts) r2 = R2() assert 1 - r2(test_ts, forecast_ts)["segment_0"] < 1e-5
[ "etna.transforms.encoders.categorical.LabelEncoderTransform", "etna.datasets.TSDataset.to_dataset", "etna.datasets.generate_periodic_df", "numpy.random.default_rng", "etna.metrics.R2", "etna.datasets.TSDataset", "etna.models.LinearPerSegmentModel", "etna.transforms.FilterFeaturesTransform", "etna.datasets.generate_const_df", "etna.transforms.encoders.categorical.OneHotEncoderTransform", "pytest.mark.parametrize", "numpy.array", "pytest.raises", "pandas.DataFrame", "etna.datasets.generate_ar_df", "pandas.date_range" ]
[((8503, 8595), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""in_column, prefix"""', "[('2', ''), ('regressor_1', 'regressor_')]"], {}), "('in_column, prefix', [('2', ''), ('regressor_1',\n 'regressor_')])\n", (8526, 8595), False, 'import pytest\n'), ((9071, 9163), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""in_column, prefix"""', "[('2', ''), ('regressor_1', 'regressor_')]"], {}), "('in_column, prefix', [('2', ''), ('regressor_1',\n 'regressor_')])\n", (9094, 9163), False, 'import pytest\n'), ((1409, 1466), 'etna.datasets.generate_ar_df', 'generate_ar_df', (['(10)'], {'start_time': '"""2021-01-01"""', 'n_segments': '(1)'}), "(10, start_time='2021-01-01', n_segments=1)\n", (1423, 1466), False, 'from etna.datasets import generate_ar_df\n'), ((1821, 1836), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (1833, 1836), True, 'import pandas as pd\n'), ((1901, 1937), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_to_forecast'], {}), '(df_to_forecast)\n', (1921, 1937), False, 'from etna.datasets import TSDataset\n'), ((1958, 1993), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_regressors'], {}), '(df_regressors)\n', (1978, 1993), False, 'from etna.datasets import TSDataset\n'), ((2010, 2071), 'etna.datasets.TSDataset', 'TSDataset', ([], {'df': 'df_to_forecast', 'freq': '"""D"""', 'df_exog': 'df_regressors'}), "(df=df_to_forecast, freq='D', df_exog=df_regressors)\n", (2019, 2071), False, 'from etna.datasets import TSDataset\n'), ((3397, 3454), 'etna.datasets.generate_ar_df', 'generate_ar_df', (['(10)'], {'start_time': '"""2021-01-01"""', 'n_segments': '(1)'}), "(10, start_time='2021-01-01', n_segments=1)\n", (3411, 3454), False, 'from etna.datasets import generate_ar_df\n'), ((3809, 3824), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (3821, 3824), True, 'import pandas as pd\n'), ((3889, 3925), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_to_forecast'], {}), '(df_to_forecast)\n', (3909, 3925), False, 'from etna.datasets import TSDataset\n'), ((3946, 3981), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_regressors'], {}), '(df_regressors)\n', (3966, 3981), False, 'from etna.datasets import TSDataset\n'), ((3998, 4059), 'etna.datasets.TSDataset', 'TSDataset', ([], {'df': 'df_to_forecast', 'freq': '"""D"""', 'df_exog': 'df_regressors'}), "(df=df_to_forecast, freq='D', df_exog=df_regressors)\n", (4007, 4059), False, 'from etna.datasets import TSDataset\n'), ((4969, 5026), 'etna.datasets.generate_ar_df', 'generate_ar_df', (['(10)'], {'start_time': '"""2021-01-01"""', 'n_segments': '(1)'}), "(10, start_time='2021-01-01', n_segments=1)\n", (4983, 5026), False, 'from etna.datasets import generate_ar_df\n'), ((5047, 5134), 'etna.datasets.generate_periodic_df', 'generate_periodic_df', (['(12)'], {'start_time': '"""2021-01-01"""', 'scale': '(10)', 'period': '(2)', 'n_segments': '(2)'}), "(12, start_time='2021-01-01', scale=10, period=2,\n n_segments=2)\n", (5067, 5134), False, 'from etna.datasets import generate_periodic_df\n'), ((5352, 5388), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_to_forecast'], {}), '(df_to_forecast)\n', (5372, 5388), False, 'from etna.datasets import TSDataset\n'), ((5409, 5444), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_regressors'], {}), '(df_regressors)\n', (5429, 5444), False, 'from etna.datasets import TSDataset\n'), ((5461, 5522), 'etna.datasets.TSDataset', 'TSDataset', ([], {'df': 'df_to_forecast', 'freq': '"""D"""', 'df_exog': 'df_regressors'}), "(df=df_to_forecast, freq='D', df_exog=df_regressors)\n", (5470, 5522), False, 'from etna.datasets import TSDataset\n'), ((7300, 7365), 'etna.transforms.encoders.categorical.LabelEncoderTransform', 'LabelEncoderTransform', ([], {'in_column': '"""regressor_0"""', 'strategy': 'strategy'}), "(in_column='regressor_0', strategy=strategy)\n", (7321, 7365), False, 'from etna.transforms.encoders.categorical import LabelEncoderTransform\n'), ((7619, 7760), 'numpy.array', 'np.array', (['[[5.0, 1.0, 1.0, 0.0, 5.0, 4.0, 1.0, 0.0], [8.0, 2.0, 0.0, 1.0, 0.0, 5.0, \n 0.0, 0.0], [9.0, 3.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0]]'], {}), '([[5.0, 1.0, 1.0, 0.0, 5.0, 4.0, 1.0, 0.0], [8.0, 2.0, 0.0, 1.0, \n 0.0, 5.0, 0.0, 0.0], [9.0, 3.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0]])\n', (7627, 7760), True, 'import numpy as np\n'), ((7865, 7934), 'etna.transforms.encoders.categorical.OneHotEncoderTransform', 'OneHotEncoderTransform', ([], {'in_column': '"""regressor_0"""', 'out_column': '"""targets"""'}), "(in_column='regressor_0', out_column='targets')\n", (7887, 7934), False, 'from etna.transforms.encoders.categorical import OneHotEncoderTransform\n'), ((8205, 8274), 'etna.transforms.encoders.categorical.OneHotEncoderTransform', 'OneHotEncoderTransform', ([], {'in_column': '"""regressor_0"""', 'out_column': '"""targets"""'}), "(in_column='regressor_0', out_column='targets')\n", (8227, 8274), False, 'from etna.transforms.encoders.categorical import OneHotEncoderTransform\n'), ((8797, 8840), 'etna.transforms.encoders.categorical.OneHotEncoderTransform', 'OneHotEncoderTransform', ([], {'in_column': 'in_column'}), '(in_column=in_column)\n', (8819, 8840), False, 'from etna.transforms.encoders.categorical import OneHotEncoderTransform\n'), ((9365, 9407), 'etna.transforms.encoders.categorical.LabelEncoderTransform', 'LabelEncoderTransform', ([], {'in_column': 'in_column'}), '(in_column=in_column)\n', (9386, 9407), False, 'from etna.transforms.encoders.categorical import LabelEncoderTransform\n'), ((9638, 9716), 'etna.datasets.generate_const_df', 'generate_const_df', ([], {'periods': '(100)', 'start_time': '"""2021-01-01"""', 'scale': '(0)', 'n_segments': '(1)'}), "(periods=100, start_time='2021-01-01', scale=0, n_segments=1)\n", (9655, 9716), False, 'from etna.datasets import generate_const_df\n'), ((9737, 9834), 'etna.datasets.generate_periodic_df', 'generate_periodic_df', ([], {'periods': '(120)', 'start_time': '"""2021-01-01"""', 'scale': '(10)', 'period': '(4)', 'n_segments': '(1)'}), "(periods=120, start_time='2021-01-01', scale=10, period\n =4, n_segments=1)\n", (9757, 9834), False, 'from etna.datasets import generate_periodic_df\n'), ((10067, 10103), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_to_forecast'], {}), '(df_to_forecast)\n', (10087, 10103), False, 'from etna.datasets import TSDataset\n'), ((10124, 10159), 'etna.datasets.TSDataset.to_dataset', 'TSDataset.to_dataset', (['df_regressors'], {}), '(df_regressors)\n', (10144, 10159), False, 'from etna.datasets import TSDataset\n'), ((10170, 10198), 'numpy.random.default_rng', 'np.random.default_rng', (['(12345)'], {}), '(12345)\n', (10191, 10198), True, 'import numpy as np\n'), ((10369, 10430), 'etna.datasets.TSDataset', 'TSDataset', ([], {'df': 'df_to_forecast', 'freq': '"""D"""', 'df_exog': 'df_regressors'}), "(df=df_to_forecast, freq='D', df_exog=df_regressors)\n", (10378, 10430), False, 'from etna.datasets import TSDataset\n'), ((10658, 10705), 'etna.transforms.encoders.categorical.OneHotEncoderTransform', 'OneHotEncoderTransform', ([], {'in_column': '"""regressor_0"""'}), "(in_column='regressor_0')\n", (10680, 10705), False, 'from etna.transforms.encoders.categorical import OneHotEncoderTransform\n'), ((10717, 10765), 'etna.transforms.FilterFeaturesTransform', 'FilterFeaturesTransform', ([], {'exclude': "['regressor_0']"}), "(exclude=['regressor_0'])\n", (10740, 10765), False, 'from etna.transforms import FilterFeaturesTransform\n'), ((10818, 10841), 'etna.models.LinearPerSegmentModel', 'LinearPerSegmentModel', ([], {}), '()\n', (10839, 10841), False, 'from etna.models import LinearPerSegmentModel\n'), ((10965, 10969), 'etna.metrics.R2', 'R2', ([], {}), '()\n', (10967, 10969), False, 'from etna.metrics import R2\n'), ((914, 929), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (926, 929), True, 'import pandas as pd\n'), ((1306, 1321), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (1318, 1321), True, 'import pandas as pd\n'), ((1498, 1549), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-12"""'}), "(start='2021-01-01', end='2021-01-12')\n", (1511, 1549), True, 'import pandas as pd\n'), ((3486, 3537), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-12"""'}), "(start='2021-01-01', end='2021-01-12')\n", (3499, 3537), True, 'import pandas as pd\n'), ((5754, 5822), 'etna.transforms.encoders.categorical.LabelEncoderTransform', 'LabelEncoderTransform', ([], {'in_column': 'f"""regressor_{i}"""', 'out_column': '"""test"""'}), "(in_column=f'regressor_{i}', out_column='test')\n", (5775, 5822), False, 'from etna.transforms.encoders.categorical import LabelEncoderTransform\n'), ((6173, 6242), 'etna.transforms.encoders.categorical.OneHotEncoderTransform', 'OneHotEncoderTransform', ([], {'in_column': 'f"""regressor_{i}"""', 'out_column': '"""test"""'}), "(in_column=f'regressor_{i}', out_column='test')\n", (6195, 6242), False, 'from etna.transforms.encoders.categorical import OneHotEncoderTransform\n'), ((6556, 6603), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""The strategy"""'}), "(ValueError, match='The strategy')\n", (6569, 6603), False, 'import pytest\n'), ((6618, 6680), 'etna.transforms.encoders.categorical.LabelEncoderTransform', 'LabelEncoderTransform', ([], {'in_column': '"""target"""', 'strategy': '"""new_vlue"""'}), "(in_column='target', strategy='new_vlue')\n", (6639, 6680), False, 'from etna.transforms.encoders.categorical import LabelEncoderTransform\n'), ((6814, 6887), 'numpy.array', 'np.array', (['[[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, -1, 5], [9, -1, 3, 0, -1, 6]]'], {}), '([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, -1, 5], [9, -1, 3, 0, -1, 6]])\n', (6822, 6887), True, 'import numpy as np\n'), ((6907, 6997), 'numpy.array', 'np.array', (['[[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, np.nan, 5], [9, np.nan, 3, 0, np.nan, 6]]'], {}), '([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, np.nan, 5], [9, np.nan, 3, 0, np\n .nan, 6]])\n', (6915, 6997), True, 'import numpy as np\n'), ((7012, 7084), 'numpy.array', 'np.array', (['[[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, 0, 5], [9, 0.5, 3, 0, 0, 6]]'], {}), '([[5, 0, 1, 5, 0, 4], [8, 1, 2, 0, 0, 5], [9, 0.5, 3, 0, 0, 6]])\n', (7020, 7084), True, 'import numpy as np\n'), ((575, 626), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-03"""'}), "(start='2021-01-01', end='2021-01-03')\n", (588, 626), True, 'import pandas as pd\n'), ((643, 694), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-03"""'}), "(start='2021-01-01', end='2021-01-03')\n", (656, 694), True, 'import pandas as pd\n'), ((967, 1018), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-03"""'}), "(start='2021-01-01', end='2021-01-03')\n", (980, 1018), True, 'import pandas as pd\n'), ((1035, 1086), 'pandas.date_range', 'pd.date_range', ([], {'start': '"""2021-01-01"""', 'end': '"""2021-01-03"""'}), "(start='2021-01-01', end='2021-01-03')\n", (1048, 1086), True, 'import pandas as pd\n')]
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score, confusion_matrix from keras.callbacks import ModelCheckpoint import seaborn as sns from keras.optimizers import Adam import pickle import matplotlib.pyplot as plt import lime import lime.lime_tabular from lime.lime_tabular import LimeTabularExplainer import os # fix random seed for reproducibility np.random.seed(7) # load dataset dataset = np.genfromtxt("covid_filtered_1-5_allMin3.csv", delimiter=",", encoding="utf8") dataset = dataset[1:, :] np.random.shuffle(dataset) # split into input and output variables df_label = dataset[:, 23] label = [] for lab in df_label: if lab == 1: label.append([0]) # class 1 elif lab == 2 or lab == 3: label.append([1]) # class 23 elif lab == 4 or lab == 5: label.append([2]) # class 45 else: print("DATA ERROR") inputColumns = [0, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] label = np.array(label) xFit, xTest, yFit, yTest = train_test_split(dataset[:, inputColumns], label, test_size=0.3, random_state=42, stratify=label) ''' # test: xTest_c1 = [] yTest_c1 = [] xTest_c23 = [] yTest_c23 = [] xTest_c45 = [] yTest_c45 = [] for i in range(len(yTest)): if yTest[i][0] == 1: # class 1 xTest_c1.append(xTest[i]) yTest_c1.append(yTest[i]) elif yTest[i][1] == 1: # class 2-3 xTest_c23.append(xTest[i]) yTest_c23.append(yTest[i]) elif yTest[i][2] == 1: # class 4-5 xTest_c45.append(xTest[i]) yTest_c45.append(yTest[i]) xTest_c1 = numpy.array(xTest_c1) yTest_c1 = numpy.array(yTest_c1) xTest_c23 = numpy.array(xTest_c23) yTest_c23 = numpy.array(yTest_c23) xTest_c45 = numpy.array(xTest_c45) yTest_c45 = numpy.array(yTest_c45) ''' parameters = {'bootstrap': True, 'min_samples_leaf': 3, 'n_estimators': 50, 'min_samples_split': 10, 'max_features': 'sqrt', 'max_depth': 6, 'max_leaf_nodes': None} RF_model = RandomForestClassifier(**parameters) yFit = np.array(yFit).ravel() RF_model.fit(xFit, yFit) RF_predictions = RF_model.predict(xTest) score = accuracy_score(yTest, RF_predictions) print(score) from sklearn import tree import matplotlib.pyplot as plt fn = ['sex', 'HSD', 'entry_month', 'symptoms_month', 'pneumonia', 'age_group', 'pregnancy', 'diabetes', 'copd', 'asthma', 'immsupr', 'hypertension', 'other_disease', 'cardiovascular', 'obesity', 'renal_chronic', 'tobacco', 'contact_other_covid'] cn = ['Low', 'Middle', 'High'] fig = plt.figure(figsize=(35, 6), dpi=900) tree.plot_tree(RF_model.estimators_[0], feature_names=fn, class_names=cn, filled=True, rounded=True, precision=2, fontsize=4) fig.savefig('rf_individualtree.png') ''' # Get and reshape confusion matrix data matrix = confusion_matrix(yTest, RF_predictions) matrix = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis] # Build the plot plt.figure(figsize=(16, 7)) sns.set(font_scale=1.4) sns.heatmap(matrix, annot=True, annot_kws={'size': 10}, cmap=plt.cm.Greens, linewidths=0.2) # Add labels to the plot class_names = ['Low severity', 'Medium severity', 'High severity'] tick_marks = np.arange(len(class_names)) tick_marks2 = tick_marks + 0.5 plt.xticks(tick_marks, class_names, rotation=25) plt.yticks(tick_marks2, class_names, rotation=0) plt.xlabel('Predicted label') plt.ylabel('True label') plt.title('Confusion Matrix for Random Forest Model') plt.show() # create model model = Sequential() model.add(Dense(729, input_dim=len(inputColumns), activation='sigmoid')) model.add(Dense(243, activation='sigmoid')) model.add(Dense(81, activation='sigmoid')) model.add(Dense(27, activation='sigmoid')) model.add(Dense(9, activation='sigmoid')) model.add(Dense(3, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.002), metrics=['accuracy']) # Fit the model (train the model) model.fit(xFit, yFit, epochs=1000, batch_size=50) # evaluate the model print("\n-------------------------------------------------------") print("\ntotal(%i):" % len(xTest)) scores = model.evaluate(xTest, yTest) print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) # test: print("\nclass1(%i):" % len(xTest_c1)) scores = model.evaluate(xTest_c1, yTest_c1) print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) print("\nclass23(%i):" % len(xTest_c23)) scores = model.evaluate(xTest_c23, yTest_c23) print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) print("\nclass45(%i):" % len(xTest_c45)) scores = model.evaluate(xTest_c45, yTest_c45) print("%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100)) '''
[ "sklearn.model_selection.train_test_split", "sklearn.ensemble.RandomForestClassifier", "numpy.array", "matplotlib.pyplot.figure", "numpy.random.seed", "sklearn.tree.plot_tree", "numpy.genfromtxt", "sklearn.metrics.accuracy_score", "numpy.random.shuffle" ]
[((613, 630), 'numpy.random.seed', 'np.random.seed', (['(7)'], {}), '(7)\n', (627, 630), True, 'import numpy as np\n'), ((657, 736), 'numpy.genfromtxt', 'np.genfromtxt', (['"""covid_filtered_1-5_allMin3.csv"""'], {'delimiter': '""","""', 'encoding': '"""utf8"""'}), "('covid_filtered_1-5_allMin3.csv', delimiter=',', encoding='utf8')\n", (670, 736), True, 'import numpy as np\n'), ((762, 788), 'numpy.random.shuffle', 'np.random.shuffle', (['dataset'], {}), '(dataset)\n', (779, 788), True, 'import numpy as np\n'), ((1207, 1222), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (1215, 1222), True, 'import numpy as np\n'), ((1250, 1351), 'sklearn.model_selection.train_test_split', 'train_test_split', (['dataset[:, inputColumns]', 'label'], {'test_size': '(0.3)', 'random_state': '(42)', 'stratify': 'label'}), '(dataset[:, inputColumns], label, test_size=0.3,\n random_state=42, stratify=label)\n', (1266, 1351), False, 'from sklearn.model_selection import train_test_split\n'), ((2317, 2353), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '(**parameters)\n', (2339, 2353), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((2458, 2495), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['yTest', 'RF_predictions'], {}), '(yTest, RF_predictions)\n', (2472, 2495), False, 'from sklearn.metrics import accuracy_score, confusion_matrix\n'), ((2863, 2899), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(35, 6)', 'dpi': '(900)'}), '(figsize=(35, 6), dpi=900)\n', (2873, 2899), True, 'import matplotlib.pyplot as plt\n'), ((2900, 3029), 'sklearn.tree.plot_tree', 'tree.plot_tree', (['RF_model.estimators_[0]'], {'feature_names': 'fn', 'class_names': 'cn', 'filled': '(True)', 'rounded': '(True)', 'precision': '(2)', 'fontsize': '(4)'}), '(RF_model.estimators_[0], feature_names=fn, class_names=cn,\n filled=True, rounded=True, precision=2, fontsize=4)\n', (2914, 3029), False, 'from sklearn import tree\n'), ((2361, 2375), 'numpy.array', 'np.array', (['yFit'], {}), '(yFit)\n', (2369, 2375), True, 'import numpy as np\n')]
import numpy as np from pytope import Polytope import matplotlib.pyplot as plt np.random.seed(1) # Create a polytope in R^2 with -1 <= x1 <= 4, -2 <= x2 <= 3 lower_bound1 = (-1, -2) # [-1, -2]' <= x upper_bound1 = (4, 3) # x <= [4, 3]' P1 = Polytope(lb=lower_bound1, ub=upper_bound1) # Print the halfspace representation A*x <= b and H = [A b] print('P1: ', repr(P1)) print('A =\n', P1.A) print('b =\n', P1.b) print('H =\n', P1.H) # Create a square polytope in R^2 from specifying the four vertices V2 = np.array([[1, 0], [0, -1], [-1, 0], [0, 1]]) P2 = Polytope(V2) # Print the array of vertices: print('P2: ', repr(P2)) print('V =\n', P2.V) # Create a triangle in R^2 from specifying three half spaces (inequalities) A3 = [[1, 0], [0, 1], [-1, -1]] b3 = (2, 1, -1.5) P3 = Polytope(A3, b3) # Print the halfspace representation A*x <= b and H = [A b] print('P3: ', repr(P3)) print('A =\n', P3.A) print('b =\n', P3.b) print('H =\n', P3.H) # Determine and print the vertices: print('V =\n', P3.V) # P4: P3 shifted by a point p4 p4 = (1.4, 0.7) P4 = P3 + p4 # P5: P4 shifted by a point p5 (in negative direction) p5 = [0.4, 2] P5 = P4 - p5 # P6: P2 scaled by s6 and shifted by p6 s6 = 0.2 p6 = -np.array([[0.4], [1.6]]) P6 = s6 * P2 + p6 # P7: P2 rotated 20 degrees (both clockwise and counter-clockwise) rot7 = np.pi / 9.0 rot_mat7 = np.array([[np.cos(rot7), -np.sin(rot7)], [np.sin(rot7), np.cos(rot7)]]) P7 = rot_mat7 * P2 P7_inv = P2 * rot_mat7 # P8: -P6 P8 = -P6 # P9: The convex hull of a set of 30 random points in [1, 2]' <= x [2, 3]' V9 = np.random.uniform((1, 2), (2, 3), (30, 2)) P9 = Polytope(V9) P9.minimize_V_rep() # P10: the Minkowski sum of two squares (one large and one rotated and smaller) P10_1 = Polytope(lb=(-0.6, -0.6), ub=(0.6, 0.6)) P10_2 = rot_mat7 * Polytope(lb=(-0.3, -0.3), ub=(0.3, 0.3)) P10 = P10_1 + P10_2 # Plot all of the polytopes. # See the matplotlib.patches.Polygon documentation for a list of valid kwargs fig1, ax1 = plt.subplots(num=1) plt.grid() plt.axis([-1.5, 4.5, -2.5, 3.5]) P1.plot(ax1, fill=False, edgecolor='r', linewidth=2) P2.plot(ax1, facecolor='g', edgecolor=(0, 0, 0), linewidth=1) P3.plot(ax1, facecolor='b', edgecolor='k', linewidth=2, alpha=0.5) P4.plot(ax1, facecolor='lightsalmon') plt.scatter(P4.V[:, 0], P4.V[:, 1], c='k', marker='x') # the vertices of P4 # Polytope implements an additional keyword edgealpha: P5.plot(ax1, fill=False, edgecolor='b', linewidth=8, edgealpha=0.2) plt.plot(P5.centroid[0], P5.centroid[1], 'o') # the centroid of P5 P6.plot(ax1, facecolor='g', edgecolor=(0, 0, 0), linewidth=1) P7.plot(ax1, facecolor='g', edgecolor=(0, 0, 0), alpha=0.3, linewidth=1, edgealpha=0.3) P7_inv.plot(ax1, facecolor='g', edgecolor=(0, 0, 0), alpha=0.3, linewidth=1, edgealpha=0.3, linestyle='--') P8.plot(ax1, facecolor='g', edgecolor=(0, 0, 0), alpha=0.3, linewidth=1, edgealpha=0.3) P9.plot(ax1, facecolor='gray', alpha=0.6, edgecolor='k') plt.plot(V9[:, 0], V9[:, 1], 'or', marker='o', markersize=2) # random points plt.plot(P9.V[:, 0], P9.V[:, 1], 'og', marker='o', markersize=1) # P9's vertices plt.title('Demonstration of various polytope operations') # Plot the Minkowski sum of two squares fig2, ax2 = plt.subplots(num=2) plt.grid() plt.axis([-2.5, 2.5, -2.5, 2.5]) P10_1.plot(ax2, fill=False, edgecolor=(1, 0, 0)) P10_2.plot(ax2, fill=False, edgecolor=(0, 0, 1)) P10.plot(ax2, fill=False, edgecolor=(1, 0, 1), linestyle='--', linewidth=2) for p in P10_1.V: # the smaller square + each of the vertices of the larger one (P10_2 + p).plot(ax2, facecolor='grey', alpha=0.4, edgecolor='k', linewidth=0.5) ax2.legend((r'$P$', r'$Q$', r'$P \oplus Q$')) plt.title('Minkowski sum of two polytopes') # Plot two rotated rectangles and their intersection rot1 = -np.pi / 18.0 rot_mat1 = np.array([[np.cos(rot1), -np.sin(rot1)], [np.sin(rot1), np.cos(rot1)]]) rot2 = np.pi / 18.0 rot_mat2 = np.array([[np.cos(rot2), -np.sin(rot2)], [np.sin(rot2), np.cos(rot2)]]) P_i1 = rot_mat1 * Polytope(lb=(-2, -1), ub=(1, 1)) P_i2 = rot_mat2 * Polytope(lb=(0, 0), ub=(2, 2)) P_i = P_i1 & P_i2 # intersection fig3, ax3 = plt.subplots(num=3) plt.grid() plt.axis([-3.5, 3.5, -3.5, 3.5]) P_i1.plot(fill=False, edgecolor=(1, 0, 0), linestyle='--') P_i2.plot(fill=False, edgecolor=(0, 0, 1), linestyle='--') P_i.plot(fill=False, edgecolor=(1, 0, 1), linestyle='-', linewidth=2) ax3.legend((r'$P$', r'$Q$', r'$P \cap Q$')) plt.title('Intersection of two polytopes') # Plot two polytopes and their Pontryagin difference P_m1 = Polytope(lb=(-3, -3), ub=(3, 3)) P_m2 = Polytope([[1, 0], [0, -1], [-1, 0], [0, 1]]) P_diff = P_m1 - P_m2 fig4, ax4 = plt.subplots(num=4) plt.grid() plt.axis([-3.5, 3.5, -3.5, 3.5]) P_m1.plot(fill=False, edgecolor=(1, 0, 0)) P_m2.plot(fill=False, edgecolor=(0, 0, 1)) P_diff.plot(fill=False, edgecolor=(1, 0, 1), linestyle='--', linewidth=2) ax4.legend((r'$P$', r'$Q$', r'$P \ominus Q$')) plt.title('Pontryagin difference of two polytopes') plt.setp([ax1, ax2, ax3, ax4], xlabel=r'$x_1$', ylabel=r'$x_2$')
[ "matplotlib.pyplot.setp", "matplotlib.pyplot.grid", "matplotlib.pyplot.title", "numpy.sin", "matplotlib.pyplot.plot", "numpy.array", "numpy.random.seed", "matplotlib.pyplot.scatter", "numpy.random.uniform", "numpy.cos", "matplotlib.pyplot.axis", "pytope.Polytope", "matplotlib.pyplot.subplots" ]
[((82, 99), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (96, 99), True, 'import numpy as np\n'), ((247, 289), 'pytope.Polytope', 'Polytope', ([], {'lb': 'lower_bound1', 'ub': 'upper_bound1'}), '(lb=lower_bound1, ub=upper_bound1)\n', (255, 289), False, 'from pytope import Polytope\n'), ((511, 555), 'numpy.array', 'np.array', (['[[1, 0], [0, -1], [-1, 0], [0, 1]]'], {}), '([[1, 0], [0, -1], [-1, 0], [0, 1]])\n', (519, 555), True, 'import numpy as np\n'), ((561, 573), 'pytope.Polytope', 'Polytope', (['V2'], {}), '(V2)\n', (569, 573), False, 'from pytope import Polytope\n'), ((782, 798), 'pytope.Polytope', 'Polytope', (['A3', 'b3'], {}), '(A3, b3)\n', (790, 798), False, 'from pytope import Polytope\n'), ((1580, 1622), 'numpy.random.uniform', 'np.random.uniform', (['(1, 2)', '(2, 3)', '(30, 2)'], {}), '((1, 2), (2, 3), (30, 2))\n', (1597, 1622), True, 'import numpy as np\n'), ((1628, 1640), 'pytope.Polytope', 'Polytope', (['V9'], {}), '(V9)\n', (1636, 1640), False, 'from pytope import Polytope\n'), ((1750, 1790), 'pytope.Polytope', 'Polytope', ([], {'lb': '(-0.6, -0.6)', 'ub': '(0.6, 0.6)'}), '(lb=(-0.6, -0.6), ub=(0.6, 0.6))\n', (1758, 1790), False, 'from pytope import Polytope\n'), ((1991, 2010), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'num': '(1)'}), '(num=1)\n', (2003, 2010), True, 'import matplotlib.pyplot as plt\n'), ((2011, 2021), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (2019, 2021), True, 'import matplotlib.pyplot as plt\n'), ((2022, 2054), 'matplotlib.pyplot.axis', 'plt.axis', (['[-1.5, 4.5, -2.5, 3.5]'], {}), '([-1.5, 4.5, -2.5, 3.5])\n', (2030, 2054), True, 'import matplotlib.pyplot as plt\n'), ((2275, 2329), 'matplotlib.pyplot.scatter', 'plt.scatter', (['P4.V[:, 0]', 'P4.V[:, 1]'], {'c': '"""k"""', 'marker': '"""x"""'}), "(P4.V[:, 0], P4.V[:, 1], c='k', marker='x')\n", (2286, 2329), True, 'import matplotlib.pyplot as plt\n'), ((2475, 2520), 'matplotlib.pyplot.plot', 'plt.plot', (['P5.centroid[0]', 'P5.centroid[1]', '"""o"""'], {}), "(P5.centroid[0], P5.centroid[1], 'o')\n", (2483, 2520), True, 'import matplotlib.pyplot as plt\n'), ((2970, 3030), 'matplotlib.pyplot.plot', 'plt.plot', (['V9[:, 0]', 'V9[:, 1]', '"""or"""'], {'marker': '"""o"""', 'markersize': '(2)'}), "(V9[:, 0], V9[:, 1], 'or', marker='o', markersize=2)\n", (2978, 3030), True, 'import matplotlib.pyplot as plt\n'), ((3048, 3112), 'matplotlib.pyplot.plot', 'plt.plot', (['P9.V[:, 0]', 'P9.V[:, 1]', '"""og"""'], {'marker': '"""o"""', 'markersize': '(1)'}), "(P9.V[:, 0], P9.V[:, 1], 'og', marker='o', markersize=1)\n", (3056, 3112), True, 'import matplotlib.pyplot as plt\n'), ((3129, 3186), 'matplotlib.pyplot.title', 'plt.title', (['"""Demonstration of various polytope operations"""'], {}), "('Demonstration of various polytope operations')\n", (3138, 3186), True, 'import matplotlib.pyplot as plt\n'), ((3240, 3259), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'num': '(2)'}), '(num=2)\n', (3252, 3259), True, 'import matplotlib.pyplot as plt\n'), ((3260, 3270), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3268, 3270), True, 'import matplotlib.pyplot as plt\n'), ((3271, 3303), 'matplotlib.pyplot.axis', 'plt.axis', (['[-2.5, 2.5, -2.5, 2.5]'], {}), '([-2.5, 2.5, -2.5, 2.5])\n', (3279, 3303), True, 'import matplotlib.pyplot as plt\n'), ((3716, 3759), 'matplotlib.pyplot.title', 'plt.title', (['"""Minkowski sum of two polytopes"""'], {}), "('Minkowski sum of two polytopes')\n", (3725, 3759), True, 'import matplotlib.pyplot as plt\n'), ((4209, 4228), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'num': '(3)'}), '(num=3)\n', (4221, 4228), True, 'import matplotlib.pyplot as plt\n'), ((4229, 4239), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (4237, 4239), True, 'import matplotlib.pyplot as plt\n'), ((4240, 4272), 'matplotlib.pyplot.axis', 'plt.axis', (['[-3.5, 3.5, -3.5, 3.5]'], {}), '([-3.5, 3.5, -3.5, 3.5])\n', (4248, 4272), True, 'import matplotlib.pyplot as plt\n'), ((4514, 4556), 'matplotlib.pyplot.title', 'plt.title', (['"""Intersection of two polytopes"""'], {}), "('Intersection of two polytopes')\n", (4523, 4556), True, 'import matplotlib.pyplot as plt\n'), ((4618, 4650), 'pytope.Polytope', 'Polytope', ([], {'lb': '(-3, -3)', 'ub': '(3, 3)'}), '(lb=(-3, -3), ub=(3, 3))\n', (4626, 4650), False, 'from pytope import Polytope\n'), ((4658, 4702), 'pytope.Polytope', 'Polytope', (['[[1, 0], [0, -1], [-1, 0], [0, 1]]'], {}), '([[1, 0], [0, -1], [-1, 0], [0, 1]])\n', (4666, 4702), False, 'from pytope import Polytope\n'), ((4736, 4755), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'num': '(4)'}), '(num=4)\n', (4748, 4755), True, 'import matplotlib.pyplot as plt\n'), ((4756, 4766), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (4764, 4766), True, 'import matplotlib.pyplot as plt\n'), ((4767, 4799), 'matplotlib.pyplot.axis', 'plt.axis', (['[-3.5, 3.5, -3.5, 3.5]'], {}), '([-3.5, 3.5, -3.5, 3.5])\n', (4775, 4799), True, 'import matplotlib.pyplot as plt\n'), ((5019, 5070), 'matplotlib.pyplot.title', 'plt.title', (['"""Pontryagin difference of two polytopes"""'], {}), "('Pontryagin difference of two polytopes')\n", (5028, 5070), True, 'import matplotlib.pyplot as plt\n'), ((5072, 5134), 'matplotlib.pyplot.setp', 'plt.setp', (['[ax1, ax2, ax3, ax4]'], {'xlabel': '"""$x_1$"""', 'ylabel': '"""$x_2$"""'}), "([ax1, ax2, ax3, ax4], xlabel='$x_1$', ylabel='$x_2$')\n", (5080, 5134), True, 'import matplotlib.pyplot as plt\n'), ((1203, 1227), 'numpy.array', 'np.array', (['[[0.4], [1.6]]'], {}), '([[0.4], [1.6]])\n', (1211, 1227), True, 'import numpy as np\n'), ((1810, 1850), 'pytope.Polytope', 'Polytope', ([], {'lb': '(-0.3, -0.3)', 'ub': '(0.3, 0.3)'}), '(lb=(-0.3, -0.3), ub=(0.3, 0.3))\n', (1818, 1850), False, 'from pytope import Polytope\n'), ((4081, 4113), 'pytope.Polytope', 'Polytope', ([], {'lb': '(-2, -1)', 'ub': '(1, 1)'}), '(lb=(-2, -1), ub=(1, 1))\n', (4089, 4113), False, 'from pytope import Polytope\n'), ((4132, 4162), 'pytope.Polytope', 'Polytope', ([], {'lb': '(0, 0)', 'ub': '(2, 2)'}), '(lb=(0, 0), ub=(2, 2))\n', (4140, 4162), False, 'from pytope import Polytope\n'), ((1355, 1367), 'numpy.cos', 'np.cos', (['rot7'], {}), '(rot7)\n', (1361, 1367), True, 'import numpy as np\n'), ((1407, 1419), 'numpy.sin', 'np.sin', (['rot7'], {}), '(rot7)\n', (1413, 1419), True, 'import numpy as np\n'), ((1421, 1433), 'numpy.cos', 'np.cos', (['rot7'], {}), '(rot7)\n', (1427, 1433), True, 'import numpy as np\n'), ((3857, 3869), 'numpy.cos', 'np.cos', (['rot1'], {}), '(rot1)\n', (3863, 3869), True, 'import numpy as np\n'), ((3909, 3921), 'numpy.sin', 'np.sin', (['rot1'], {}), '(rot1)\n', (3915, 3921), True, 'import numpy as np\n'), ((3923, 3935), 'numpy.cos', 'np.cos', (['rot1'], {}), '(rot1)\n', (3929, 3935), True, 'import numpy as np\n'), ((3981, 3993), 'numpy.cos', 'np.cos', (['rot2'], {}), '(rot2)\n', (3987, 3993), True, 'import numpy as np\n'), ((4033, 4045), 'numpy.sin', 'np.sin', (['rot2'], {}), '(rot2)\n', (4039, 4045), True, 'import numpy as np\n'), ((4047, 4059), 'numpy.cos', 'np.cos', (['rot2'], {}), '(rot2)\n', (4053, 4059), True, 'import numpy as np\n'), ((1370, 1382), 'numpy.sin', 'np.sin', (['rot7'], {}), '(rot7)\n', (1376, 1382), True, 'import numpy as np\n'), ((3872, 3884), 'numpy.sin', 'np.sin', (['rot1'], {}), '(rot1)\n', (3878, 3884), True, 'import numpy as np\n'), ((3996, 4008), 'numpy.sin', 'np.sin', (['rot2'], {}), '(rot2)\n', (4002, 4008), True, 'import numpy as np\n')]
import retro # pip install gym-retro import numpy as np # pip install numpy import cv2 # pip install opencv-python import neat # pip install neat-python import pickle # pip install cloudpickle class Worker(object): def __init__(self, genome, config): self.genome = genome self.config = config def work(self): self.env = retro.make('SonicTheHedgehog-Genesis', 'GreenHillZone.Act1') self.env.reset() ob, _, _, _ = self.env.step(self.env.action_space.sample()) inx = int(ob.shape[0]/8) iny = int(ob.shape[1]/8) done = False net = neat.nn.FeedForwardNetwork.create(self.genome, self.config) fitness = 0 xpos = 0 xpos_max = 0 counter = 0 imgarray = [] while not done: # self.env.render() ob = cv2.resize(ob, (inx, iny)) ob = cv2.cvtColor(ob, cv2.COLOR_BGR2GRAY) ob = np.reshape(ob, (inx, iny)) imgarray = np.ndarray.flatten(ob) imgarray = np.interp(imgarray, (0, 254), (-1, +1)) actions = net.activate(imgarray) ob, rew, done, info = self.env.step(actions) xpos = info['x'] if xpos > xpos_max: xpos_max = xpos counter = 0 fitness += 1 else: counter += 1 if counter > 250: done = True if xpos == info['screen_x_end'] and xpos > 500: fitness += 100000 done = True print(fitness) return fitness def eval_genomes(genome, config): worky = Worker(genome, config) return worky.work() config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, 'config-feedforward') p = neat.Population(config) p = neat.Checkpointer.restore_checkpoint('neat-checkpoint-13') p.add_reporter(neat.StdOutReporter(True)) stats = neat.StatisticsReporter() p.add_reporter(stats) p.add_reporter(neat.Checkpointer(10)) pe = neat.ParallelEvaluator(10, eval_genomes) winner = p.run(pe.evaluate) with open('winner.pkl', 'wb') as output: pickle.dump(winner, output, 1)
[ "pickle.dump", "neat.StdOutReporter", "neat.Population", "numpy.reshape", "neat.Config", "neat.nn.FeedForwardNetwork.create", "neat.Checkpointer.restore_checkpoint", "neat.StatisticsReporter", "numpy.ndarray.flatten", "cv2.cvtColor", "numpy.interp", "neat.ParallelEvaluator", "cv2.resize", "retro.make", "neat.Checkpointer" ]
[((1918, 2050), 'neat.Config', 'neat.Config', (['neat.DefaultGenome', 'neat.DefaultReproduction', 'neat.DefaultSpeciesSet', 'neat.DefaultStagnation', '"""config-feedforward"""'], {}), "(neat.DefaultGenome, neat.DefaultReproduction, neat.\n DefaultSpeciesSet, neat.DefaultStagnation, 'config-feedforward')\n", (1929, 2050), False, 'import neat\n'), ((2094, 2117), 'neat.Population', 'neat.Population', (['config'], {}), '(config)\n', (2109, 2117), False, 'import neat\n'), ((2122, 2180), 'neat.Checkpointer.restore_checkpoint', 'neat.Checkpointer.restore_checkpoint', (['"""neat-checkpoint-13"""'], {}), "('neat-checkpoint-13')\n", (2158, 2180), False, 'import neat\n'), ((2231, 2256), 'neat.StatisticsReporter', 'neat.StatisticsReporter', ([], {}), '()\n', (2254, 2256), False, 'import neat\n'), ((2323, 2363), 'neat.ParallelEvaluator', 'neat.ParallelEvaluator', (['(10)', 'eval_genomes'], {}), '(10, eval_genomes)\n', (2345, 2363), False, 'import neat\n'), ((2196, 2221), 'neat.StdOutReporter', 'neat.StdOutReporter', (['(True)'], {}), '(True)\n', (2215, 2221), False, 'import neat\n'), ((2294, 2315), 'neat.Checkpointer', 'neat.Checkpointer', (['(10)'], {}), '(10)\n', (2311, 2315), False, 'import neat\n'), ((2439, 2469), 'pickle.dump', 'pickle.dump', (['winner', 'output', '(1)'], {}), '(winner, output, 1)\n', (2450, 2469), False, 'import pickle\n'), ((403, 463), 'retro.make', 'retro.make', (['"""SonicTheHedgehog-Genesis"""', '"""GreenHillZone.Act1"""'], {}), "('SonicTheHedgehog-Genesis', 'GreenHillZone.Act1')\n", (413, 463), False, 'import retro\n'), ((694, 753), 'neat.nn.FeedForwardNetwork.create', 'neat.nn.FeedForwardNetwork.create', (['self.genome', 'self.config'], {}), '(self.genome, self.config)\n', (727, 753), False, 'import neat\n'), ((945, 971), 'cv2.resize', 'cv2.resize', (['ob', '(inx, iny)'], {}), '(ob, (inx, iny))\n', (955, 971), False, 'import cv2\n'), ((989, 1025), 'cv2.cvtColor', 'cv2.cvtColor', (['ob', 'cv2.COLOR_BGR2GRAY'], {}), '(ob, cv2.COLOR_BGR2GRAY)\n', (1001, 1025), False, 'import cv2\n'), ((1043, 1069), 'numpy.reshape', 'np.reshape', (['ob', '(inx, iny)'], {}), '(ob, (inx, iny))\n', (1053, 1069), True, 'import numpy as np\n'), ((1106, 1128), 'numpy.ndarray.flatten', 'np.ndarray.flatten', (['ob'], {}), '(ob)\n', (1124, 1128), True, 'import numpy as np\n'), ((1152, 1191), 'numpy.interp', 'np.interp', (['imgarray', '(0, 254)', '(-1, +1)'], {}), '(imgarray, (0, 254), (-1, +1))\n', (1161, 1191), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import time import torch import numpy as np import torchvision import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt from torch.utils.data import DataLoader from utils import * from IPython import embed class DCGAN(object): def __init__(self, args): self.args = args self.model = dict() self.data = dict() self.rescache = dict() self.device = args.use_gpu and torch.cuda.is_available() def _report_settings(self): ''' Report the settings ''' str = '-' * 16 print('%sEnvironment Versions%s' % (str, str)) print("- Python : {}".format(sys.version.strip().split('|')[0])) print("- PyTorch : {}".format(torch.__version__)) print("- TorchVison: {}".format(torchvision.__version__)) print("- USE_GPU : {}".format(self.device)) print('-' * 52) def _model_loader(self): self.model['generator'] = Generator(self.args.in_dim, self.args.gchannels) self.model['discriminator'] = Discriminator(self.args.dchannels) self.model['criterion'] = nn.BCELoss() self.model['opti_gene'] = optim.Adam(self.model['generator'].parameters(), \ lr=self.args.base_lr, betas=(self.args.beta, 0.999)) self.model['opti_disc'] = optim.Adam(self.model['discriminator'].parameters(), \ lr=self.args.base_lr, betas=(self.args.beta, 0.999)) # self.model['scheduler'] = torch.optim.lr_scheduler.MultiStepLR( # self.model['optimizer'], milestones=[12, 20, 30, 45], gamma=self.args.gamma) if self.device: self.model['generator'] = self.model['generator'].cuda() self.model['discriminator'] = self.model['discriminator'].cuda() if len(self.args.gpu_ids) > 1: self.model['generator'] = torch.nn.DataParallel(self.model['generator'], device_ids=self.args.gpu_ids) self.model['discriminator'] = torch.nn.DataParallel(self.model['discriminator'], device_ids=self.args.gpu_ids) torch.backends.cudnn.benchmark = True print('Parallel mode was going ...') else: print('Single-gpu mode was going ...') else: print('CPU mode was going ...') if len(self.args.resume) > 2: checkpoint = torch.load(self.args.resume, map_location=lambda storage, loc: storage) self.args.start = checkpoint['epoch'] self.model['generator'].load_state_dict(checkpoint['generator']) self.model['discriminator'].load_state_dict(checkpoint['discriminator']) print('Resuming the train process at %3d epoches ...' % self.args.start) print('Model loading was finished ...') def _data_loader(self): self.data['train_loader'] = DataLoader( CelebA(args=self.args), batch_size = self.args.batch_size, \ shuffle = True,\ num_workers= self.args.workers) self.data['fixed_noise'] = torch.randn(64, self.args.in_dim ,1, 1) if self.device: self.data['fixed_noise'] = self.data['fixed_noise'].cuda() self.rescache['gloss'] = [] self.rescache['dloss'] = [] self.rescache['fake'] = [] print('Data loading was finished ...') def _model_train(self, epoch = 0): total_dloss, total_gloss = 0, 0 for idx, imgs in enumerate(self.data['train_loader']): # update discriminator self.model['discriminator'].train() self.model['generator'].eval() imgs.requires_grad = False if self.device: imgs = imgs.cuda() b_size = imgs.size(0) self.model['discriminator'].zero_grad() gty = torch.full((b_size,), 1) if self.device: gty = gty.cuda() predy = self.model['discriminator'](imgs).view(-1) dloss_real = self.model['criterion'](predy, gty) dloss_real.backward() noise = torch.randn(b_size, self.args.in_dim, 1, 1) if self.device: noise = noise.cuda() fake = self.model['generator'](noise) gty.fill_(0) # TODO predy = self.model['discriminator'](fake.detach()).view(-1) dloss_fake = self.model['criterion'](predy, gty) dloss_fake.backward() self.model['opti_disc'].step() d_loss_real = dloss_real.mean().item() d_loss_fake = dloss_fake.mean().item() d_loss = d_loss_real + d_loss_fake self.rescache['dloss'].append(d_loss) total_dloss += d_loss # update generator self.model['generator'].train() self.model['discriminator'].eval() self.model['generator'].zero_grad() gty.fill_(1) # TODO predy = self.model['discriminator'](fake).view(-1) gloss = self.model['criterion'](predy, gty) gloss.backward() self.model['opti_gene'].step() g_loss = gloss.mean().item() self.rescache['gloss'].append(g_loss) total_gloss += g_loss if (idx + 1) % self.args.print_freq == 0: print('epoch : %2d|%2d, iter : %4d|%4d, dloss : %.4f, gloss : %.4f' % \ (epoch, self.args.epoches, idx+1, len(self.data['train_loader']), \ np.mean(self.rescache['dloss']), np.mean(self.rescache['gloss']))) if (idx + 1) % self.args.monitor_freq == 0: with torch.no_grad(): self.model['generator'].eval() fake = self.model['generator'](self.data['fixed_noise']).detach().cpu() self.rescache['fake'].append(fake) return total_dloss, total_gloss def _main_loop(self): min_loss = 1e3 for epoch in range(self.args.start, self.args.epoches + 1): start_time = time.time() dloss, gloss = self._model_train(epoch) train_loss = dloss + gloss # self.model['scheduler'].step() end_time = time.time() print('Single epoch cost time : %.2f mins' % ((end_time - start_time)/60)) if not os.path.exists(self.args.save_to): os.mkdir(self.args.save_to) if (min_loss > train_loss) and (not self.args.is_debug): print('%snew SOTA was found%s' % ('*'*16, '*'*16)) min_loss = train_loss filename = os.path.join(self.args.save_to, 'sota.pth.tar') torch.save({ 'epoch' : epoch, 'generator' : self.model['generator'].state_dict(), 'discriminator' : self.model['discriminator'].state_dict(), 'loss' : min_loss, }, filename) if (epoch % self.args.save_freq == 0) and (not self.args.is_debug): filename = os.path.join(self.args.save_to, 'epoch_'+str(epoch)+'.pth.tar') torch.save({ 'epoch' : epoch, 'generator' : self.model['generator'].state_dict(), 'discriminator' : self.model['discriminator'].state_dict(), 'loss' : train_loss, }, filename) if self.args.is_debug: break def _visual_res(self): ''' Visual the training process ''' # gloss and dloss plt.figure(figsize=(10,5)) plt.title("Generator and Discriminator Loss During Training") plt.plot(self.rescache['gloss'], label="gloss") plt.plot(self.rescache['dloss'], label="dloss") plt.xlabel("iterations") plt.ylabel("loss") plt.legend() plt.savefig('loss.jpg', dpi=400) # save the fake-images np.save('fake.npy', self.rescache['fake']) def train_runner(self): self._report_settings() self._model_loader() self._data_loader() self._main_loop() self._visual_res() if __name__ == "__main__": faceu = DCGAN(training_args()) faceu.train_runner()
[ "matplotlib.pyplot.ylabel", "torch.cuda.is_available", "numpy.save", "os.path.exists", "numpy.mean", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "os.mkdir", "torch.randn", "matplotlib.pyplot.savefig", "matplotlib.pyplot.title", "time.time", "matplotlib.pyplot.legend", "torch.full", "sys.version.strip", "torch.load", "os.path.join", "torch.nn.DataParallel", "torch.nn.BCELoss", "matplotlib.pyplot.figure", "torch.no_grad" ]
[((1189, 1201), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (1199, 1201), True, 'import torch.nn as nn\n'), ((3336, 3375), 'torch.randn', 'torch.randn', (['(64)', 'self.args.in_dim', '(1)', '(1)'], {}), '(64, self.args.in_dim, 1, 1)\n', (3347, 3375), False, 'import torch\n'), ((7981, 8008), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (7991, 8008), True, 'import matplotlib.pyplot as plt\n'), ((8016, 8077), 'matplotlib.pyplot.title', 'plt.title', (['"""Generator and Discriminator Loss During Training"""'], {}), "('Generator and Discriminator Loss During Training')\n", (8025, 8077), True, 'import matplotlib.pyplot as plt\n'), ((8086, 8133), 'matplotlib.pyplot.plot', 'plt.plot', (["self.rescache['gloss']"], {'label': '"""gloss"""'}), "(self.rescache['gloss'], label='gloss')\n", (8094, 8133), True, 'import matplotlib.pyplot as plt\n'), ((8142, 8189), 'matplotlib.pyplot.plot', 'plt.plot', (["self.rescache['dloss']"], {'label': '"""dloss"""'}), "(self.rescache['dloss'], label='dloss')\n", (8150, 8189), True, 'import matplotlib.pyplot as plt\n'), ((8198, 8222), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iterations"""'], {}), "('iterations')\n", (8208, 8222), True, 'import matplotlib.pyplot as plt\n'), ((8231, 8249), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (8241, 8249), True, 'import matplotlib.pyplot as plt\n'), ((8258, 8270), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8268, 8270), True, 'import matplotlib.pyplot as plt\n'), ((8279, 8311), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""loss.jpg"""'], {'dpi': '(400)'}), "('loss.jpg', dpi=400)\n", (8290, 8311), True, 'import matplotlib.pyplot as plt\n'), ((8360, 8402), 'numpy.save', 'np.save', (['"""fake.npy"""', "self.rescache['fake']"], {}), "('fake.npy', self.rescache['fake'])\n", (8367, 8402), True, 'import numpy as np\n'), ((512, 537), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (535, 537), False, 'import torch\n'), ((2532, 2603), 'torch.load', 'torch.load', (['self.args.resume'], {'map_location': '(lambda storage, loc: storage)'}), '(self.args.resume, map_location=lambda storage, loc: storage)\n', (2542, 2603), False, 'import torch\n'), ((4116, 4140), 'torch.full', 'torch.full', (['(b_size,)', '(1)'], {}), '((b_size,), 1)\n', (4126, 4140), False, 'import torch\n'), ((4381, 4424), 'torch.randn', 'torch.randn', (['b_size', 'self.args.in_dim', '(1)', '(1)'], {}), '(b_size, self.args.in_dim, 1, 1)\n', (4392, 4424), False, 'import torch\n'), ((6396, 6407), 'time.time', 'time.time', ([], {}), '()\n', (6405, 6407), False, 'import time\n'), ((6567, 6578), 'time.time', 'time.time', ([], {}), '()\n', (6576, 6578), False, 'import time\n'), ((2026, 2102), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (["self.model['generator']"], {'device_ids': 'self.args.gpu_ids'}), "(self.model['generator'], device_ids=self.args.gpu_ids)\n", (2047, 2102), False, 'import torch\n'), ((2149, 2234), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (["self.model['discriminator']"], {'device_ids': 'self.args.gpu_ids'}), "(self.model['discriminator'], device_ids=self.args.gpu_ids\n )\n", (2170, 2234), False, 'import torch\n'), ((6686, 6719), 'os.path.exists', 'os.path.exists', (['self.args.save_to'], {}), '(self.args.save_to)\n', (6700, 6719), False, 'import os\n'), ((6737, 6764), 'os.mkdir', 'os.mkdir', (['self.args.save_to'], {}), '(self.args.save_to)\n', (6745, 6764), False, 'import os\n'), ((6967, 7014), 'os.path.join', 'os.path.join', (['self.args.save_to', '"""sota.pth.tar"""'], {}), "(self.args.save_to, 'sota.pth.tar')\n", (6979, 7014), False, 'import os\n'), ((5989, 6004), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6002, 6004), False, 'import torch\n'), ((727, 746), 'sys.version.strip', 'sys.version.strip', ([], {}), '()\n', (744, 746), False, 'import sys\n'), ((5844, 5875), 'numpy.mean', 'np.mean', (["self.rescache['dloss']"], {}), "(self.rescache['dloss'])\n", (5851, 5875), True, 'import numpy as np\n'), ((5877, 5908), 'numpy.mean', 'np.mean', (["self.rescache['gloss']"], {}), "(self.rescache['gloss'])\n", (5884, 5908), True, 'import numpy as np\n')]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unittests for objax.util.image.""" import io import unittest from typing import Tuple import jax.numpy as jn import numpy as np from PIL import Image import objax class TestUtilImage(unittest.TestCase): def ndimarange(self, dims: Tuple[int, ...]): return np.arange(np.prod(dims), dtype=float).reshape(dims) def test_nchw(self): """Test nchw.""" x = self.ndimarange((2, 3, 4, 5)) self.assertEqual(objax.util.image.nchw(x).tolist(), x.transpose((0, 3, 1, 2)).tolist()) self.assertEqual(objax.util.image.nchw(jn.array(x)).tolist(), x.transpose((0, 3, 1, 2)).tolist()) x = self.ndimarange((2, 3, 4, 5, 6)) self.assertEqual(objax.util.image.nchw(x).tolist(), x.transpose((0, 1, 4, 2, 3)).tolist()) self.assertEqual(objax.util.image.nchw(jn.array(x)).tolist(), x.transpose((0, 1, 4, 2, 3)).tolist()) def test_nhwc(self): """Test nhwc.""" x = self.ndimarange((2, 3, 4, 5)) self.assertEqual(objax.util.image.nhwc(x).tolist(), x.transpose((0, 2, 3, 1)).tolist()) self.assertEqual(objax.util.image.nhwc(jn.array(x)).tolist(), x.transpose((0, 2, 3, 1)).tolist()) x = self.ndimarange((2, 3, 4, 5, 6)) self.assertEqual(objax.util.image.nhwc(x).tolist(), x.transpose((0, 1, 3, 4, 2)).tolist()) self.assertEqual(objax.util.image.nhwc(jn.array(x)).tolist(), x.transpose((0, 1, 3, 4, 2)).tolist()) def test_normalize(self): """Test normalize methods.""" x = np.arange(256) y = objax.util.image.normalize_to_unit_float(x) self.assertEqual((x / 128 - (1 - 1 / 256)).tolist(), y.tolist()) self.assertEqual(y.tolist(), y.clip(-1, 1).tolist()) z = objax.util.image.normalize_to_uint8(y) self.assertEqual(x.tolist(), z.tolist()) z = objax.util.image.normalize_to_uint8(y + 1 / 128) self.assertEqual((x + 1).clip(0, 255).tolist(), z.tolist()) z = objax.util.image.normalize_to_uint8(y - 1 / 128) self.assertEqual((x - 1).clip(0, 255).tolist(), z.tolist()) def test_to_png(self): """Test to_png.""" x = np.zeros((3, 32, 32), np.float) + 1 / 255 x[:, :12, :12] = 1 x[:, -12:, -12:] = -1 y = objax.util.image.to_png(x) self.assertEqual(y, b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00 \x00\x00\x00 \x08\x02\x00\x00\x00\xfc' b'\x18\xed\xa3\x00\x00\x00FIDATx\x9cc\xfc\xff\xff?\x03!\xd0\xd8\xd8HP\r.\xc0D\xb6\xceQ' b'\x0bF-\x18\xb5`\x04Y\xc0BI9C\x0c\x18\xfaA4j\xc1\x08\xb0\x80\x85\x12\xcd\r\r\r\x04\xd5' b'\x0c\xfd \x1a\xb5`\xd4\x82Q\x0b\xe8`\x01\x00\xe3\xf1\x07\xc7\x82\x83p\xa5\x00\x00\x00\x00' b'IEND\xaeB`\x82') z = np.array(Image.open(io.BytesIO(y))) z = (z.transpose((2, 0, 1)) - 127.5) / 127.5 self.assertEqual(x.tolist(), z.tolist()) if __name__ == '__main__': unittest.main()
[ "numpy.prod", "objax.util.image.nhwc", "objax.util.image.normalize_to_uint8", "objax.util.image.nchw", "io.BytesIO", "jax.numpy.array", "numpy.zeros", "objax.util.image.to_png", "objax.util.image.normalize_to_unit_float", "unittest.main", "numpy.arange" ]
[((3549, 3564), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3562, 3564), False, 'import unittest\n'), ((2080, 2094), 'numpy.arange', 'np.arange', (['(256)'], {}), '(256)\n', (2089, 2094), True, 'import numpy as np\n'), ((2107, 2150), 'objax.util.image.normalize_to_unit_float', 'objax.util.image.normalize_to_unit_float', (['x'], {}), '(x)\n', (2147, 2150), False, 'import objax\n'), ((2297, 2335), 'objax.util.image.normalize_to_uint8', 'objax.util.image.normalize_to_uint8', (['y'], {}), '(y)\n', (2332, 2335), False, 'import objax\n'), ((2397, 2445), 'objax.util.image.normalize_to_uint8', 'objax.util.image.normalize_to_uint8', (['(y + 1 / 128)'], {}), '(y + 1 / 128)\n', (2432, 2445), False, 'import objax\n'), ((2526, 2574), 'objax.util.image.normalize_to_uint8', 'objax.util.image.normalize_to_uint8', (['(y - 1 / 128)'], {}), '(y - 1 / 128)\n', (2561, 2574), False, 'import objax\n'), ((2821, 2847), 'objax.util.image.to_png', 'objax.util.image.to_png', (['x'], {}), '(x)\n', (2844, 2847), False, 'import objax\n'), ((2710, 2741), 'numpy.zeros', 'np.zeros', (['(3, 32, 32)', 'np.float'], {}), '((3, 32, 32), np.float)\n', (2718, 2741), True, 'import numpy as np\n'), ((3398, 3411), 'io.BytesIO', 'io.BytesIO', (['y'], {}), '(y)\n', (3408, 3411), False, 'import io\n'), ((861, 874), 'numpy.prod', 'np.prod', (['dims'], {}), '(dims)\n', (868, 874), True, 'import numpy as np\n'), ((1021, 1045), 'objax.util.image.nchw', 'objax.util.image.nchw', (['x'], {}), '(x)\n', (1042, 1045), False, 'import objax\n'), ((1268, 1292), 'objax.util.image.nchw', 'objax.util.image.nchw', (['x'], {}), '(x)\n', (1289, 1292), False, 'import objax\n'), ((1569, 1593), 'objax.util.image.nhwc', 'objax.util.image.nhwc', (['x'], {}), '(x)\n', (1590, 1593), False, 'import objax\n'), ((1816, 1840), 'objax.util.image.nhwc', 'objax.util.image.nhwc', (['x'], {}), '(x)\n', (1837, 1840), False, 'import objax\n'), ((1139, 1150), 'jax.numpy.array', 'jn.array', (['x'], {}), '(x)\n', (1147, 1150), True, 'import jax.numpy as jn\n'), ((1389, 1400), 'jax.numpy.array', 'jn.array', (['x'], {}), '(x)\n', (1397, 1400), True, 'import jax.numpy as jn\n'), ((1687, 1698), 'jax.numpy.array', 'jn.array', (['x'], {}), '(x)\n', (1695, 1698), True, 'import jax.numpy as jn\n'), ((1937, 1948), 'jax.numpy.array', 'jn.array', (['x'], {}), '(x)\n', (1945, 1948), True, 'import jax.numpy as jn\n')]
import os import sys import json import time import numpy as np import tensorflow as tf from blocks.helpers import Monitor from blocks.helpers import visualize_samples, get_nonlinearity, int_shape, get_trainable_variables, broadcast_masks_np from blocks.optimizers import adam_updates import data.load_data as load_data from masks import get_generator from .learner import Learner class FullyObservedLearner(Learner): def __init__(self, nr_gpu, save_dir, img_size, exp_name="default"): super().__init__(nr_gpu, save_dir, img_size, exp_name) def train_epoch(self, mgen, which_set='train'): if which_set == 'train': data_set = self.train_set elif which_set == 'eval': data_set = self.eval_set elif which_set == 'test': data_set = self.test_set for data in data_set: if self.num_channels == 3: data = np.cast[np.float32]((data - 127.5) / 127.5) ds = np.split(data, self.nr_gpu) feed_dict = {} feed_dict.update({model.is_training: True for model in self.models}) feed_dict.update({model.dropout_p: 0.5 for model in self.models}) feed_dict.update({model.x: ds[i] for i, model in enumerate(self.models)}) feed_dict.update({model.x_bar: ds[i] for i, model in enumerate(self.models)}) masks_np = [mgen.gen(self.batch_size//self.nr_gpu) for i in range(self.nr_gpu)] feed_dict.update({model.masks: masks_np[i] for i, model in enumerate(self.models)}) self.sess.run(self.train_step, feed_dict=feed_dict) def eval_epoch(self, mgen, which_set='eval'): if which_set == 'train': data_set = self.train_set elif which_set == 'eval': data_set = self.eval_set elif which_set == 'test': data_set = self.test_set for data in data_set: if self.num_channels == 3: data = np.cast[np.float32]((data - 127.5) / 127.5) ds = np.split(data, self.nr_gpu) feed_dict = {} feed_dict.update({model.is_training: False for model in self.models}) feed_dict.update({model.dropout_p: 0.0 for model in self.models}) feed_dict.update({model.x: ds[i] for i, model in enumerate(self.models)}) feed_dict.update({model.x_bar: ds[i] for i, model in enumerate(self.models)}) masks_np = [mgen.gen(self.batch_size//self.nr_gpu) for i in range(self.nr_gpu)] feed_dict.update({model.masks: masks_np[i] for i, model in enumerate(self.models)}) self.monitor.evaluate(self.sess, feed_dict) def sample(self, data, mgen, same_inputs=False, use_mask_at=None): if self.num_channels == 3: data = np.cast[np.float32]((data - 127.5) / 127.5) if same_inputs: for i in range(data.shape[0]): data[i] = data[3] ori_data = data.copy() ds = np.split(data.copy(), self.nr_gpu) feed_dict = {} feed_dict.update({model.is_training: False for model in self.models}) feed_dict.update({model.dropout_p: 0.0 for model in self.models}) feed_dict.update({model.x: ds[i] for i, model in enumerate(self.models)}) feed_dict.update({model.x_bar: ds[i] for i, model in enumerate(self.models)}) if use_mask_at is not None: masks_np = np.load(use_mask_at)['masks'] masks_np = np.split(masks_np, self.nr_gpu) else: masks_np = [mgen.gen(self.batch_size//self.nr_gpu) for i in range(self.nr_gpu)] np.savez(mgen.name+"_"+self.data_set, masks=np.concatenate(masks_np)) if same_inputs: for g in range(self.nr_gpu): for i in range(self.batch_size//self.nr_gpu): masks_np[g][i] = masks_np[0][0] feed_dict.update({model.masks: masks_np[i] for i, model in enumerate(self.models)}) # for i in range(self.nr_gpu): ds[i] *= broadcast_masks_np(masks_np[i], num_channels=self.num_channels) masked_data = np.concatenate(ds, axis=0) x_gen = [ds[i].copy() for i in range(self.nr_gpu)] for yi in range(self.img_size): for xi in range(self.img_size): if np.min(np.array([masks_np[i][:, yi, xi] for i in range(self.nr_gpu)])) > 0: continue feed_dict.update({model.x_bar:x_gen[i] for i, model in enumerate(self.models)}) x_hats = self.sess.run([model.x_hat for model in self.models], feed_dict=feed_dict) for i in range(self.nr_gpu): bmask = broadcast_masks_np(masks_np[i][:, yi, xi] , num_channels=self.num_channels) x_gen[i][:, yi, xi, :] = x_hats[i][:, yi, xi, :] * (1.-bmask) + x_gen[i][:, yi, xi, :] * bmask gen_data = np.concatenate(x_gen, axis=0) if self.num_channels == 1: masks_np = np.concatenate(masks_np, axis=0) masks_np = broadcast_masks_np(masks_np, num_channels=self.num_channels) masked_data += (1-masks_np) * 0.5 return ori_data, masked_data, gen_data
[ "numpy.split", "numpy.load", "blocks.helpers.broadcast_masks_np", "numpy.concatenate" ]
[((4122, 4148), 'numpy.concatenate', 'np.concatenate', (['ds'], {'axis': '(0)'}), '(ds, axis=0)\n', (4136, 4148), True, 'import numpy as np\n'), ((4895, 4924), 'numpy.concatenate', 'np.concatenate', (['x_gen'], {'axis': '(0)'}), '(x_gen, axis=0)\n', (4909, 4924), True, 'import numpy as np\n'), ((974, 1001), 'numpy.split', 'np.split', (['data', 'self.nr_gpu'], {}), '(data, self.nr_gpu)\n', (982, 1001), True, 'import numpy as np\n'), ((2034, 2061), 'numpy.split', 'np.split', (['data', 'self.nr_gpu'], {}), '(data, self.nr_gpu)\n', (2042, 2061), True, 'import numpy as np\n'), ((3476, 3507), 'numpy.split', 'np.split', (['masks_np', 'self.nr_gpu'], {}), '(masks_np, self.nr_gpu)\n', (3484, 3507), True, 'import numpy as np\n'), ((4036, 4099), 'blocks.helpers.broadcast_masks_np', 'broadcast_masks_np', (['masks_np[i]'], {'num_channels': 'self.num_channels'}), '(masks_np[i], num_channels=self.num_channels)\n', (4054, 4099), False, 'from blocks.helpers import visualize_samples, get_nonlinearity, int_shape, get_trainable_variables, broadcast_masks_np\n'), ((4983, 5015), 'numpy.concatenate', 'np.concatenate', (['masks_np'], {'axis': '(0)'}), '(masks_np, axis=0)\n', (4997, 5015), True, 'import numpy as np\n'), ((5039, 5099), 'blocks.helpers.broadcast_masks_np', 'broadcast_masks_np', (['masks_np'], {'num_channels': 'self.num_channels'}), '(masks_np, num_channels=self.num_channels)\n', (5057, 5099), False, 'from blocks.helpers import visualize_samples, get_nonlinearity, int_shape, get_trainable_variables, broadcast_masks_np\n'), ((3423, 3443), 'numpy.load', 'np.load', (['use_mask_at'], {}), '(use_mask_at)\n', (3430, 3443), True, 'import numpy as np\n'), ((3670, 3694), 'numpy.concatenate', 'np.concatenate', (['masks_np'], {}), '(masks_np)\n', (3684, 3694), True, 'import numpy as np\n'), ((4685, 4759), 'blocks.helpers.broadcast_masks_np', 'broadcast_masks_np', (['masks_np[i][:, yi, xi]'], {'num_channels': 'self.num_channels'}), '(masks_np[i][:, yi, xi], num_channels=self.num_channels)\n', (4703, 4759), False, 'from blocks.helpers import visualize_samples, get_nonlinearity, int_shape, get_trainable_variables, broadcast_masks_np\n')]
from __future__ import print_function import os import numpy as np from tqdm import trange from models import * from utils import save_image class Trainer(object): def __init__(self, config, batch_manager): tf.compat.v1.set_random_seed(config.random_seed) self.config = config self.batch_manager = batch_manager self.x, self.y = batch_manager.batch() self.xt =tf.compat.v1.placeholder(tf.float32, shape=int_shape(self.x)) self.yt =tf.compat.v1.placeholder(tf.float32, shape=int_shape(self.y)) self.dataset = config.dataset self.beta1 = config.beta1 self.beta2 = config.beta2 self.optimizer = config.optimizer self.batch_size = config.batch_size self.lr = tf.Variable(config.lr, name='lr') self.lr_update = tf.assign(self.lr, tf.maximum(self.lr*0.1, config.lr_lower_boundary), name='lr_update') self.height = config.height self.width = config.width self.b_num = config.batch_size self.conv_hidden_num = config.conv_hidden_num self.repeat_num = config.repeat_num self.use_l2 = config.use_l2 self.use_norm = config.use_norm self.model_dir = config.model_dir self.use_gpu = config.use_gpu self.data_format = config.data_format if self.data_format == 'NCHW': self.x = nhwc_to_nchw(self.x) self.y = nhwc_to_nchw(self.y) self.xt = nhwc_to_nchw(self.xt) self.yt = nhwc_to_nchw(self.yt) self.start_step = config.start_step self.log_step = config.log_step self.test_step = config.test_step self.max_step = config.max_step self.save_sec = config.save_sec self.lr_update_step = config.lr_update_step self.step = tf.Variable(self.start_step, name='step', trainable=False) self.is_train = config.is_train self.build_model() self.saver = tf.compat.v1.train.Saver() self.summary_writer = tf.summary.FileWriter(self.model_dir) sv = tf.train.Supervisor(logdir=self.model_dir, is_chief=True, saver=self.saver, summary_op=None, summary_writer=self.summary_writer, save_model_secs=self.save_sec, global_step=self.step, ready_for_local_init_op=None) gpu_options = tf.compat.v1.GPUOptions(allow_growth=True) sess_config = tf.compat.v1.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) self.sess = sv.prepare_or_wait_for_session(config=sess_config) if self.is_train: self.batch_manager.start_thread(self.sess) def build_model(self): self.y_, self.var = VDSR( self.x, self.conv_hidden_num, self.repeat_num, self.data_format, self.use_norm) self.y_img = denorm_img(self.y_, self.data_format) # for debug self.yt_, _ = VDSR( self.xt, self.conv_hidden_num, self.repeat_num, self.data_format, self.use_norm, train=False, reuse=True) self.yt_ = tf.clip_by_value(self.yt_, 0, 1) self.yt_img = denorm_img(self.yt_, self.data_format) show_all_variables() if self.optimizer == 'adam': optimizer = tf.train.AdamOptimizer else: raise Exception("[!] Caution! Paper didn't use {} opimizer other than Adam".format(self.config.optimizer)) optimizer = optimizer(self.lr, beta1=self.beta1, beta2=self.beta2) # losses # l1 and l2 self.loss_l1 = tf.reduce_mean(tf.abs(self.y_ - self.y)) self.loss_l2 = tf.reduce_mean(tf.squared_difference(self.y_, self.y)) # total if self.use_l2: self.loss = self.loss_l2 else: self.loss = self.loss_l1 # test loss self.tl1 = 1 - tf.reduce_mean(tf.abs(self.yt_ - self.yt)) self.tl2 = 1 - tf.reduce_mean(tf.squared_difference(self.yt_, self.yt)) self.test_acc_l1 =tf.compat.v1.placeholder(tf.float32) self.test_acc_l2 =tf.compat.v1.placeholder(tf.float32) self.test_acc_iou =tf.compat.v1.placeholder(tf.float32) self.optim = optimizer.minimize(self.loss, global_step=self.step, var_list=self.var) summary = [ tf.summary.image("y", self.y_img), tf.summary.scalar("loss/loss", self.loss), tf.summary.scalar("loss/loss_l1", self.loss_l1), tf.summary.scalar("loss/loss_l2", self.loss_l2), tf.summary.scalar("misc/lr", self.lr), tf.summary.scalar('misc/q', self.batch_manager.q.size()) ] self.summary_op = tf.summary.merge(summary) summary = [ tf.summary.image("x_sample", denorm_img(self.x, self.data_format)), tf.summary.image("y_sample", denorm_img(self.y, self.data_format)), ] self.summary_once = tf.summary.merge(summary) # call just once summary = [ tf.summary.scalar("loss/test_acc_l1", self.test_acc_l1), tf.summary.scalar("loss/test_acc_l2", self.test_acc_l2), tf.summary.scalar("loss/test_acc_iou", self.test_acc_iou), ] self.summary_test = tf.summary.merge(summary) def train(self): x_list, xs, ys, sample_list = self.batch_manager.random_list(self.b_num) save_image(xs, '{}/x_gt.png'.format(self.model_dir)) save_image(ys, '{}/y_gt.png'.format(self.model_dir)) with open('{}/gt.txt'.format(self.model_dir), 'w') as f: for sample in sample_list: f.write(sample + '\n') # call once summary_once = self.sess.run(self.summary_once) self.summary_writer.add_summary(summary_once, 0) self.summary_writer.flush() for step in trange(self.start_step, self.max_step): fetch_dict = { "optim": self.optim, "loss": self.loss, } if step % self.log_step == 0 or step == self.max_step-1: fetch_dict.update({ "summary": self.summary_op, }) # if step % self.test_step == self.test_step-1 or step == self.max_step-1: if True: l1, l2, iou, nb = 0, 0, 0, 0 for x, y in self.batch_manager.test_batch(): if self.data_format == 'NCHW': x = to_nchw_numpy(x) y = to_nchw_numpy(y) tl1, tl2, y_ = self.sess.run([self.tl1, self.tl2, self.yt_], {self.xt: x, self.yt: y}) l1 += tl1 l2 += tl2 nb += 1 # iou y_I = np.logical_and(y>0, y_>0) y_I_sum = np.sum(y_I, axis=(1, 2, 3)) y_U = np.logical_or(y>0, y_>0) y_U_sum = np.sum(y_U, axis=(1, 2, 3)) # print(y_I_sum, y_U_sum) nonzero_id = np.where(y_U_sum != 0)[0] if nonzero_id.shape[0] == 0: acc = 1.0 else: acc = np.average(y_I_sum[nonzero_id] / y_U_sum[nonzero_id]) iou += acc if nb > 500: break l1 /= float(nb) l2 /= float(nb) iou /= float(nb) summary_test = self.sess.run(self.summary_test, {self.test_acc_l1: l1, self.test_acc_l2: l2, self.test_acc_iou: iou}) self.summary_writer.add_summary(summary_test, step) self.summary_writer.flush() result = self.sess.run(fetch_dict) if step % self.log_step == 0 or step == self.max_step-1: self.summary_writer.add_summary(result['summary'], step) self.summary_writer.flush() loss = result['loss'] assert not np.isnan(loss), 'Model diverged with loss = NaN' print("\n[{}/{}] Loss: {:.6f}".format(step, self.max_step, loss)) if step % (self.log_step * 10) == 0 or step == self.max_step-1: self.generate(x_list, self.model_dir, idx=step) if step % self.lr_update_step == self.lr_update_step - 1: self.sess.run(self.lr_update) # save last checkpoint.. save_path = os.path.join(self.model_dir, 'model.ckpt') self.saver.save(self.sess, save_path, global_step=self.step) self.batch_manager.stop_thread() def generate(self, x_samples, root_path=None, idx=None): if self.data_format == 'NCHW': x_samples = to_nchw_numpy(x_samples) generated = self.sess.run(self.yt_img, {self.xt: x_samples}) y_path = os.path.join(root_path, 'y_{}.png'.format(idx)) save_image(generated, y_path, nrow=self.b_num) print("[*] Samples saved: {}".format(y_path))
[ "numpy.logical_and", "numpy.average", "numpy.where", "os.path.join", "numpy.logical_or", "utils.save_image", "numpy.sum", "numpy.isnan", "tqdm.trange" ]
[((6028, 6066), 'tqdm.trange', 'trange', (['self.start_step', 'self.max_step'], {}), '(self.start_step, self.max_step)\n', (6034, 6066), False, 'from tqdm import trange\n'), ((8716, 8758), 'os.path.join', 'os.path.join', (['self.model_dir', '"""model.ckpt"""'], {}), "(self.model_dir, 'model.ckpt')\n", (8728, 8758), False, 'import os\n'), ((9161, 9207), 'utils.save_image', 'save_image', (['generated', 'y_path'], {'nrow': 'self.b_num'}), '(generated, y_path, nrow=self.b_num)\n', (9171, 9207), False, 'from utils import save_image\n'), ((6989, 7018), 'numpy.logical_and', 'np.logical_and', (['(y > 0)', '(y_ > 0)'], {}), '(y > 0, y_ > 0)\n', (7003, 7018), True, 'import numpy as np\n'), ((7045, 7072), 'numpy.sum', 'np.sum', (['y_I'], {'axis': '(1, 2, 3)'}), '(y_I, axis=(1, 2, 3))\n', (7051, 7072), True, 'import numpy as np\n'), ((7099, 7127), 'numpy.logical_or', 'np.logical_or', (['(y > 0)', '(y_ > 0)'], {}), '(y > 0, y_ > 0)\n', (7112, 7127), True, 'import numpy as np\n'), ((7154, 7181), 'numpy.sum', 'np.sum', (['y_U'], {'axis': '(1, 2, 3)'}), '(y_U, axis=(1, 2, 3))\n', (7160, 7181), True, 'import numpy as np\n'), ((8272, 8286), 'numpy.isnan', 'np.isnan', (['loss'], {}), '(loss)\n', (8280, 8286), True, 'import numpy as np\n'), ((7261, 7283), 'numpy.where', 'np.where', (['(y_U_sum != 0)'], {}), '(y_U_sum != 0)\n', (7269, 7283), True, 'import numpy as np\n'), ((7426, 7479), 'numpy.average', 'np.average', (['(y_I_sum[nonzero_id] / y_U_sum[nonzero_id])'], {}), '(y_I_sum[nonzero_id] / y_U_sum[nonzero_id])\n', (7436, 7479), True, 'import numpy as np\n')]
from zerocopy import send_from from socket import * s = socket(AF_INET, SOCK_STREAM) s.bind(('', 25000)) s.listen(1) c,a = s.accept() import numpy a = numpy.arange(0.0, 50000000.0) send_from(a, c) c.close()
[ "zerocopy.send_from", "numpy.arange" ]
[((153, 182), 'numpy.arange', 'numpy.arange', (['(0.0)', '(50000000.0)'], {}), '(0.0, 50000000.0)\n', (165, 182), False, 'import numpy\n'), ((183, 198), 'zerocopy.send_from', 'send_from', (['a', 'c'], {}), '(a, c)\n', (192, 198), False, 'from zerocopy import send_from\n')]
import os from json import JSONDecodeError from json import dump from json import load import numpy as np from core.net_errors import JsonFileStructureIncorrect, JsonFileNotFound def upload(net_object, path): if not os.path.isfile(path): raise JsonFileNotFound() try: with open(path, 'r') as file: deserialized_file = load(file) net_object.config = deserialized_file['config'] net_object.tags = deserialized_file.get('tags') net_object.net = deserialized_file.get('net') net_object.deviation = deserialized_file.get('normalization') if net_object.net: for l in range(1, len(net_object.config)): net_object.net[l - 1]['w'] = np.array(net_object.net[l - 1]['w']) net_object.net[l - 1]['o'] = np.zeros((net_object.config[l])) except KeyError: raise JsonFileStructureIncorrect() except JSONDecodeError: raise def unload(net_object, path): try: net_copy = [] for l in range(len(net_object.net)): net_copy.append({'w': net_object.net[l]['w'].tolist()}) with open(path, 'w') as file: file_dictionary = { 'config': net_object.config, 'tags': net_object.tags, 'net': net_copy, 'normalization': net_object.normalization } dump(file_dictionary, file, sort_keys=True, indent=4) except JSONDecodeError: raise
[ "core.net_errors.JsonFileStructureIncorrect", "core.net_errors.JsonFileNotFound", "os.path.isfile", "numpy.array", "numpy.zeros", "json.load", "json.dump" ]
[((224, 244), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (238, 244), False, 'import os\n'), ((260, 278), 'core.net_errors.JsonFileNotFound', 'JsonFileNotFound', ([], {}), '()\n', (276, 278), False, 'from core.net_errors import JsonFileStructureIncorrect, JsonFileNotFound\n'), ((359, 369), 'json.load', 'load', (['file'], {}), '(file)\n', (363, 369), False, 'from json import load\n'), ((917, 945), 'core.net_errors.JsonFileStructureIncorrect', 'JsonFileStructureIncorrect', ([], {}), '()\n', (943, 945), False, 'from core.net_errors import JsonFileStructureIncorrect, JsonFileNotFound\n'), ((1438, 1491), 'json.dump', 'dump', (['file_dictionary', 'file'], {'sort_keys': '(True)', 'indent': '(4)'}), '(file_dictionary, file, sort_keys=True, indent=4)\n', (1442, 1491), False, 'from json import dump\n'), ((762, 798), 'numpy.array', 'np.array', (["net_object.net[l - 1]['w']"], {}), "(net_object.net[l - 1]['w'])\n", (770, 798), True, 'import numpy as np\n'), ((848, 878), 'numpy.zeros', 'np.zeros', (['net_object.config[l]'], {}), '(net_object.config[l])\n', (856, 878), True, 'import numpy as np\n')]
from env_wrapper import SubprocVecEnv, DummyVecEnv import numpy as np import multiagent.scenarios as scenarios from multiagent.environment import MultiAgentEnv def make_parallel_env(n_rollout_threads, seed=1): def get_env_fn(rank): def init_env(): env = make_env("simple_adversary") env.seed(seed + rank * 1000) np.random.seed(seed + rank * 1000) return env return init_env # if n_rollout_threads == 1: # return DummyVecEnv([get_env_fn(0)]) # else: return SubprocVecEnv([get_env_fn(i) for i in range(n_rollout_threads)]) def make_env(scenario_name, benchmark=False): scenario = scenarios.load(scenario_name + ".py").Scenario() world = scenario.make_world() env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation) return env
[ "multiagent.scenarios.load", "multiagent.environment.MultiAgentEnv", "numpy.random.seed" ]
[((765, 851), 'multiagent.environment.MultiAgentEnv', 'MultiAgentEnv', (['world', 'scenario.reset_world', 'scenario.reward', 'scenario.observation'], {}), '(world, scenario.reset_world, scenario.reward, scenario.\n observation)\n', (778, 851), False, 'from multiagent.environment import MultiAgentEnv\n'), ((362, 396), 'numpy.random.seed', 'np.random.seed', (['(seed + rank * 1000)'], {}), '(seed + rank * 1000)\n', (376, 396), True, 'import numpy as np\n'), ((672, 709), 'multiagent.scenarios.load', 'scenarios.load', (["(scenario_name + '.py')"], {}), "(scenario_name + '.py')\n", (686, 709), True, 'import multiagent.scenarios as scenarios\n')]
from AlphaGo.models.policy import CNNPolicy from AlphaGo import go from AlphaGo.go import GameState from AlphaGo.ai import GreedyPolicyPlayer, ProbabilisticPolicyPlayer import numpy as np import unittest import os class TestCNNPolicy(unittest.TestCase): def test_default_policy(self): policy = CNNPolicy(["board", "liberties", "sensibleness", "capture_size"]) policy.eval_state(GameState()) # just hope nothing breaks def test_batch_eval_state(self): policy = CNNPolicy(["board", "liberties", "sensibleness", "capture_size"]) results = policy.batch_eval_state([GameState(), GameState()]) self.assertEqual(len(results), 2) # one result per GameState self.assertEqual(len(results[0]), 361) # each one has 361 (move,prob) pairs def test_output_size(self): policy19 = CNNPolicy(["board", "liberties", "sensibleness", "capture_size"], board=19) output = policy19.forward(policy19.preprocessor.state_to_tensor(GameState(19))) self.assertEqual(output.shape, (1, 19 * 19)) policy13 = CNNPolicy(["board", "liberties", "sensibleness", "capture_size"], board=13) output = policy13.forward(policy13.preprocessor.state_to_tensor(GameState(13))) self.assertEqual(output.shape, (1, 13 * 13)) def test_save_load(self): policy = CNNPolicy(["board", "liberties", "sensibleness", "capture_size"]) model_file = 'TESTPOLICY.json' weights_file = 'TESTWEIGHTS.h5' model_file2 = 'TESTPOLICY2.json' weights_file2 = 'TESTWEIGHTS2.h5' # test saving model/weights separately policy.save_model(model_file) policy.model.save_weights(weights_file) # test saving them together policy.save_model(model_file2, weights_file2) copypolicy = CNNPolicy.load_model(model_file) copypolicy.model.load_weights(weights_file) copypolicy2 = CNNPolicy.load_model(model_file2) for w1, w2 in zip(copypolicy.model.get_weights(), copypolicy2.model.get_weights()): self.assertTrue(np.all(w1 == w2)) os.remove(model_file) os.remove(weights_file) os.remove(model_file2) os.remove(weights_file2) class TestPlayers(unittest.TestCase): def test_greedy_player(self): gs = GameState() policy = CNNPolicy(["board", "ones", "turns_since"]) player = GreedyPolicyPlayer(policy) for i in range(20): move = player.get_move(gs) self.assertIsNotNone(move) gs.do_move(move) def test_probabilistic_player(self): gs = GameState() policy = CNNPolicy(["board", "ones", "turns_since"]) player = ProbabilisticPolicyPlayer(policy) for i in range(20): move = player.get_move(gs) self.assertIsNotNone(move) gs.do_move(move) def test_sensible_probabilistic(self): gs = GameState() policy = CNNPolicy(["board", "ones", "turns_since"]) player = ProbabilisticPolicyPlayer(policy) empty = (10, 10) for x in range(19): for y in range(19): if (x, y) != empty: gs.do_move((x, y), go.BLACK) gs.current_player = go.BLACK self.assertIsNone(player.get_move(gs)) def test_sensible_greedy(self): gs = GameState() policy = CNNPolicy(["board", "ones", "turns_since"]) player = GreedyPolicyPlayer(policy) empty = (10, 10) for x in range(19): for y in range(19): if (x, y) != empty: gs.do_move((x, y), go.BLACK) gs.current_player = go.BLACK self.assertIsNone(player.get_move(gs)) if __name__ == '__main__': unittest.main()
[ "AlphaGo.models.policy.CNNPolicy.load_model", "AlphaGo.models.policy.CNNPolicy", "AlphaGo.ai.GreedyPolicyPlayer", "AlphaGo.go.GameState", "unittest.main", "AlphaGo.ai.ProbabilisticPolicyPlayer", "numpy.all", "os.remove" ]
[((3295, 3310), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3308, 3310), False, 'import unittest\n'), ((300, 365), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'liberties', 'sensibleness', 'capture_size']"], {}), "(['board', 'liberties', 'sensibleness', 'capture_size'])\n", (309, 365), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((474, 539), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'liberties', 'sensibleness', 'capture_size']"], {}), "(['board', 'liberties', 'sensibleness', 'capture_size'])\n", (483, 539), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((790, 865), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'liberties', 'sensibleness', 'capture_size']"], {'board': '(19)'}), "(['board', 'liberties', 'sensibleness', 'capture_size'], board=19)\n", (799, 865), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((1009, 1084), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'liberties', 'sensibleness', 'capture_size']"], {'board': '(13)'}), "(['board', 'liberties', 'sensibleness', 'capture_size'], board=13)\n", (1018, 1084), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((1253, 1318), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'liberties', 'sensibleness', 'capture_size']"], {}), "(['board', 'liberties', 'sensibleness', 'capture_size'])\n", (1262, 1318), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((1668, 1700), 'AlphaGo.models.policy.CNNPolicy.load_model', 'CNNPolicy.load_model', (['model_file'], {}), '(model_file)\n', (1688, 1700), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((1764, 1797), 'AlphaGo.models.policy.CNNPolicy.load_model', 'CNNPolicy.load_model', (['model_file2'], {}), '(model_file2)\n', (1784, 1797), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((1925, 1946), 'os.remove', 'os.remove', (['model_file'], {}), '(model_file)\n', (1934, 1946), False, 'import os\n'), ((1949, 1972), 'os.remove', 'os.remove', (['weights_file'], {}), '(weights_file)\n', (1958, 1972), False, 'import os\n'), ((1975, 1997), 'os.remove', 'os.remove', (['model_file2'], {}), '(model_file2)\n', (1984, 1997), False, 'import os\n'), ((2000, 2024), 'os.remove', 'os.remove', (['weights_file2'], {}), '(weights_file2)\n', (2009, 2024), False, 'import os\n'), ((2104, 2115), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (2113, 2115), False, 'from AlphaGo.go import GameState\n'), ((2127, 2170), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'ones', 'turns_since']"], {}), "(['board', 'ones', 'turns_since'])\n", (2136, 2170), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((2182, 2208), 'AlphaGo.ai.GreedyPolicyPlayer', 'GreedyPolicyPlayer', (['policy'], {}), '(policy)\n', (2200, 2208), False, 'from AlphaGo.ai import GreedyPolicyPlayer, ProbabilisticPolicyPlayer\n'), ((2357, 2368), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (2366, 2368), False, 'from AlphaGo.go import GameState\n'), ((2380, 2423), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'ones', 'turns_since']"], {}), "(['board', 'ones', 'turns_since'])\n", (2389, 2423), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((2435, 2468), 'AlphaGo.ai.ProbabilisticPolicyPlayer', 'ProbabilisticPolicyPlayer', (['policy'], {}), '(policy)\n', (2460, 2468), False, 'from AlphaGo.ai import GreedyPolicyPlayer, ProbabilisticPolicyPlayer\n'), ((2619, 2630), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (2628, 2630), False, 'from AlphaGo.go import GameState\n'), ((2642, 2685), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'ones', 'turns_since']"], {}), "(['board', 'ones', 'turns_since'])\n", (2651, 2685), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((2697, 2730), 'AlphaGo.ai.ProbabilisticPolicyPlayer', 'ProbabilisticPolicyPlayer', (['policy'], {}), '(policy)\n', (2722, 2730), False, 'from AlphaGo.ai import GreedyPolicyPlayer, ProbabilisticPolicyPlayer\n'), ((2966, 2977), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (2975, 2977), False, 'from AlphaGo.go import GameState\n'), ((2989, 3032), 'AlphaGo.models.policy.CNNPolicy', 'CNNPolicy', (["['board', 'ones', 'turns_since']"], {}), "(['board', 'ones', 'turns_since'])\n", (2998, 3032), False, 'from AlphaGo.models.policy import CNNPolicy\n'), ((3044, 3070), 'AlphaGo.ai.GreedyPolicyPlayer', 'GreedyPolicyPlayer', (['policy'], {}), '(policy)\n', (3062, 3070), False, 'from AlphaGo.ai import GreedyPolicyPlayer, ProbabilisticPolicyPlayer\n'), ((386, 397), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (395, 397), False, 'from AlphaGo.go import GameState\n'), ((577, 588), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (586, 588), False, 'from AlphaGo.go import GameState\n'), ((590, 601), 'AlphaGo.go.GameState', 'GameState', ([], {}), '()\n', (599, 601), False, 'from AlphaGo.go import GameState\n'), ((932, 945), 'AlphaGo.go.GameState', 'GameState', (['(19)'], {}), '(19)\n', (941, 945), False, 'from AlphaGo.go import GameState\n'), ((1151, 1164), 'AlphaGo.go.GameState', 'GameState', (['(13)'], {}), '(13)\n', (1160, 1164), False, 'from AlphaGo.go import GameState\n'), ((1904, 1920), 'numpy.all', 'np.all', (['(w1 == w2)'], {}), '(w1 == w2)\n', (1910, 1920), True, 'import numpy as np\n')]
import os import torch import numpy as np import torch.nn as nn import matplotlib.pyplot as plt def get_param_matrix(model_prefix, model_dir): """ Grabs the parameters of a saved model and returns them as a matrix """ # Load and combine the parameters param_matrix = [] for file in os.listdir(model_dir): if file.startswith(model_prefix): model_path = os.path.join(model_dir, file) state_dict = torch.load(model_path) # Grab all params in state dict params = [state_dict[param].data.float() for param in state_dict] # Reshape to one long parameter vector params = nn.utils.parameters_to_vector(params) param_matrix.append(params.cpu().numpy()) params_matrix = np.array(param_matrix) return params_matrix def plot_trajectory(projected_params): # Separate components x = projected_params[:, 0] y = projected_params[:, 1] z = projected_params[:, 2] # Creating figure fig = plt.figure(figsize = (10, 7)) ax = plt.axes(projection ="3d") # Creating plot ax.scatter3D(x, y, z, color="green") plt.title("Projected Learning Trajectory")
[ "os.listdir", "torch.load", "os.path.join", "torch.nn.utils.parameters_to_vector", "numpy.array", "matplotlib.pyplot.figure", "matplotlib.pyplot.axes", "matplotlib.pyplot.title" ]
[((309, 330), 'os.listdir', 'os.listdir', (['model_dir'], {}), '(model_dir)\n', (319, 330), False, 'import os\n'), ((785, 807), 'numpy.array', 'np.array', (['param_matrix'], {}), '(param_matrix)\n', (793, 807), True, 'import numpy as np\n'), ((1024, 1051), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 7)'}), '(figsize=(10, 7))\n', (1034, 1051), True, 'import matplotlib.pyplot as plt\n'), ((1063, 1088), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (1071, 1088), True, 'import matplotlib.pyplot as plt\n'), ((1155, 1197), 'matplotlib.pyplot.title', 'plt.title', (['"""Projected Learning Trajectory"""'], {}), "('Projected Learning Trajectory')\n", (1164, 1197), True, 'import matplotlib.pyplot as plt\n'), ((399, 428), 'os.path.join', 'os.path.join', (['model_dir', 'file'], {}), '(model_dir, file)\n', (411, 428), False, 'import os\n'), ((454, 476), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (464, 476), False, 'import torch\n'), ((673, 710), 'torch.nn.utils.parameters_to_vector', 'nn.utils.parameters_to_vector', (['params'], {}), '(params)\n', (702, 710), True, 'import torch.nn as nn\n')]
# Author: <NAME> <<EMAIL>> """Module implementing the FASTA algorithm""" import numpy as np from math import sqrt from scipy import linalg import time import logging def _next_stepsize(deltax, deltaF, t=0): """A variation of spectral descent step-size selection: 'adaptive' BB method. Reference: --------- <NAME>, <NAME>, and <NAME>, 'Gradient methods with adaptive step-sizes,' Comput. Optim. Appl., vol. 35, pp. 69-86, Sept. 2006 parameters ---------- deltax: ndarray difference between coefs_current and coefs_next deltaF: ndarray difference between grad operator evaluated at coefs_current and coefs_next returns ------- float adaptive step-size """ n_deltax = (deltax ** 2).sum() # linalg.norm(deltax, 'fro') ** 2 n_deltaF = (deltaF ** 2).sum() # linalg.norm(deltaF, 'fro') ** 2 innerproduct_xF = np.real((deltax * deltaF).sum()) if n_deltax == 0: return 0 elif (n_deltaF == 0) | (innerproduct_xF == 0): return -1 else: tau_s = n_deltax / innerproduct_xF # steepest descent tau_m = innerproduct_xF / n_deltaF # minimum residual # adaptive BB method if 2 * tau_m > tau_s: return tau_m else: return tau_s - 0.5 * tau_m def _compute_residual(deltaf, sg): """Computes residuals""" res = sqrt(((deltaf + sg) ** 2).sum()) a = sqrt((deltaf ** 2).sum()) b = sqrt((sg ** 2).sum()) res_r = res / (max(a, b) + 1e-15) return res, res_r def _update_coefs(x, tau, gradfx, prox, f, g, beta, fk, linesearch=True): """Non-monotone line search parameters ---------- x: ndarray current coefficients tau: float step size gradfx: ndarry gradient operator evaluated at current coefficients prox: function handle proximal operator of :math:`g(x)` f: callable smooth differentiable function, :math:`f(x)` g: callable non-smooth function, :math:`g(x)` beta: float backtracking parameter fk: float maximum of previous function values returns ------- z: ndarray next coefficients """ x_hat = x - tau * gradfx z = prox(x_hat, tau) fz = f(z) count = 0 if linesearch: while fz > fk + (gradfx * (z - x)).sum() + ((z - x) ** 2).sum() / (2 * tau): # np.square(linalg.norm(z - x, 'fro')) / (2 * tau): count += 1 tau *= beta x_hat = x - tau * gradfx z = prox(x_hat, tau) fz = f(z) sg = (x_hat - z) / tau return z, fz, sg, tau, count class Fasta: r"""Fast adaptive shrinkage/threshold Algorithm Reference --------- Goldstein, Tom, <NAME>, and <NAME>. "A field guide to forward-backward splitting with a FASTA implementation." arXiv preprint arXiv:1411.3406 (2014). Parameters ---------- f: function handle smooth differentiable function, :math:`f(x)` g: function handle non-smooth convex function, :math:`g(x)` gradf: function handle gradient of smooth differentiable function, :math:`\\nabla f(x)` proxg: function handle proximal operator of non-smooth convex function :math:`proxg(v, \\lambda) = argmin g(x) + \\frac{1}{2*\\lambda}\|x-v\|^2` beta: float, optional backtracking parameter default is 0.5 n_iter: int, optional number of iterations default is 1000 Attributes ---------- coefs: ndvar learned coefficients objective_value: float optimum objective value residuals: list residual values at each iteration initial_stepsize: float, optional created only with verbose=1 option objective: list, optional objective values at each iteration created only with verbose=1 option stepsizes: list, optional stepsizes at each iteration created only with verbose=1 option backtracks: list, optional number of backtracking steps created only with verbose=1 option Notes ----- Make sure that outputs of gradf and proxg is of same size as x. The implementation does not check for any such discrepancies. Use --- Solve following least square problem using fastapy :math:`\\min .5||Ax-b||^2 + \\mu*\|x\|_1` Create function handles >>> def f(x): return 0.5 * linalg.norm(np.dot(A, x) - b, 2)**2 # f(x) = .5||Ax-b||^2 >>> def gradf(x): return np.dot(A.T, np.dot(A, x) - b) # gradient of f(x) >>> def g(x): return mu * linalg.norm(x, 1) # mu|x| >>> def proxg(x, t): return shrink(x, mu*t) >>> def shrink(x, mu): return np.multiply(np.sign(x), np.maximum(np.abs(x) - mu, 0)) #proxg(z,t) = sign(x)*max( |x|-mu,0) Create FASTA instance >>> lsq = Fasta(f, g, gradf, proxg) Call solver >>> lsq.learn(x0, verbose=True) """ def __init__(self, f, g, gradf, proxg, beta=0.5, n_iter=1000): self.f = f self.g = g self.grad = gradf self.prox = proxg self.beta = beta self.n_iter = n_iter self.residuals = [] self._funcValues = [] self.coefs_ = None def __str__(self): return "Fast adaptive shrinkage/thresholding Algorithm instance" def learn(self, coefs_init, tol=1e-4, verbose=True, linesearch=True, next_stepsize=_next_stepsize): r"""fits the model using FASTA algorithm parameters ---------- coefs_init: ndarray initial guess tol: float, optional tolerance parameter default is 1e-8 verbose: bool verbosity of the method : 1 will display informations while 0 will display nothing default = 0 linesearch: bool if True (Default) uses line-search to fine step-size next_stepsize: callable a callable with argument (\deltax, \deltaGradf) which provides next step-size. Default is a non-monotone step-size selection ('adaptive' BB) method. returns ------- self """ logger = logging.getLogger("FASTA") coefs_current = np.copy(coefs_init) grad_current = self.grad(coefs_current) coefs_next = coefs_current + 0.01 * np.random.randn(coefs_current.shape[0], coefs_current.shape[1]) grad_next = self.grad(coefs_next) tau_current = next_stepsize(coefs_next - coefs_current, grad_next - grad_current, 0) self._funcValues.append(self.f(coefs_current)) if verbose: self.objective = [] self.objective.append(self._funcValues[-1] + self.g(coefs_current)) self.initial_stepsize = np.copy(tau_current) self.stepsizes = [] self.backtracks = [] start = time.time() logger.debug(f"Iteration \t objective value \t step-size \t backtracking steps taken \t residual") for i in range(self.n_iter): coefs_next, objective_next, sub_grad, tau, n_backtracks \ = _update_coefs(coefs_current, tau_current, grad_current, self.prox, self.f, self.g, self.beta, max(self._funcValues), linesearch) self._funcValues.append(objective_next) grad_next = self.grad(coefs_next) # Find residual delta_coef = coefs_current - coefs_next delta_grad = grad_current - grad_next residual, residual_r = _compute_residual(grad_next, sub_grad) self.residuals.append(residual) residual_n = residual / (self.residuals[0] + 1e-15) # Find step size for next iteration tau_next = next_stepsize(delta_coef, delta_grad, i) if verbose: self.stepsizes.append(tau) self.backtracks.append(n_backtracks) self.objective.append(objective_next + self.g(coefs_next)) logger.debug( f"{i} \t {self.objective[i]} \t {self.stepsizes[i]} \t {self.backtracks[i]} \t {self.residuals[i]}") # Prepare for next iteration coefs_current = coefs_next grad_current = grad_next if tau_next == 0.0 or min(residual_n, residual_r) < tol: # convergence reached break elif tau_next < 0.0: # non-convex probelms -> negative stepsize -> use the previous value tau_current = tau else: tau_current = tau_next end = time.time() self.coefs_ = coefs_current self.objective_value = objective_next + self.g(coefs_current) if verbose: logger.debug(f"total time elapsed : {end - start}s") return self
[ "logging.getLogger", "numpy.copy", "numpy.random.randn", "time.time" ]
[((6219, 6245), 'logging.getLogger', 'logging.getLogger', (['"""FASTA"""'], {}), "('FASTA')\n", (6236, 6245), False, 'import logging\n'), ((6270, 6289), 'numpy.copy', 'np.copy', (['coefs_init'], {}), '(coefs_init)\n', (6277, 6289), True, 'import numpy as np\n'), ((6908, 6919), 'time.time', 'time.time', ([], {}), '()\n', (6917, 6919), False, 'import time\n'), ((8629, 8640), 'time.time', 'time.time', ([], {}), '()\n', (8638, 8640), False, 'import time\n'), ((6805, 6825), 'numpy.copy', 'np.copy', (['tau_current'], {}), '(tau_current)\n', (6812, 6825), True, 'import numpy as np\n'), ((6382, 6445), 'numpy.random.randn', 'np.random.randn', (['coefs_current.shape[0]', 'coefs_current.shape[1]'], {}), '(coefs_current.shape[0], coefs_current.shape[1])\n', (6397, 6445), True, 'import numpy as np\n')]
from tensorflow.keras.preprocessing import image from tensorflow.keras.models import model_from_json import numpy as np import tensorflow.keras.models as models def predict(temp_file): test_image = image.load_img(temp_file, target_size = (224, 224)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) with open('Model Weights _ Json/model.json','r') as json_file: json_model = json_file.read() model = model_from_json(json_model) model.load_weights('Model Weights _ Json/model_weights.h5') result = model.predict(test_image) return np.argmax(result)
[ "tensorflow.keras.preprocessing.image.load_img", "tensorflow.keras.models.model_from_json", "numpy.argmax", "numpy.expand_dims", "tensorflow.keras.preprocessing.image.img_to_array" ]
[((203, 252), 'tensorflow.keras.preprocessing.image.load_img', 'image.load_img', (['temp_file'], {'target_size': '(224, 224)'}), '(temp_file, target_size=(224, 224))\n', (217, 252), False, 'from tensorflow.keras.preprocessing import image\n'), ((272, 302), 'tensorflow.keras.preprocessing.image.img_to_array', 'image.img_to_array', (['test_image'], {}), '(test_image)\n', (290, 302), False, 'from tensorflow.keras.preprocessing import image\n'), ((320, 354), 'numpy.expand_dims', 'np.expand_dims', (['test_image'], {'axis': '(0)'}), '(test_image, axis=0)\n', (334, 354), True, 'import numpy as np\n'), ((474, 501), 'tensorflow.keras.models.model_from_json', 'model_from_json', (['json_model'], {}), '(json_model)\n', (489, 501), False, 'from tensorflow.keras.models import model_from_json\n'), ((616, 633), 'numpy.argmax', 'np.argmax', (['result'], {}), '(result)\n', (625, 633), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.metrics import r2_score import datetime def func(x, a, b): return a + b*x def exp_regression(x, y): p, _ = curve_fit(func, x, np.log(y)) p[0] = np.exp(p[0]) return p def r2(coeffs, x, y): return r2_score(np.log(y), np.log(out[0]*np.exp(out[1]*x))) # calculate exponential fit for error rate extrapolation # report as annual decay (i.e. error rate decreases by fixed factor every year) errors = pd.read_csv('error_rates.csv') x = pd.to_datetime(errors.iloc[:, 0]).astype(int) y = errors.iloc[:, 1] out = exp_regression(x, y) print('annual error rate decay', np.exp(out[1]*pd.Timedelta(datetime.timedelta(days=365.2422)).delta)) print('R^2', r2(out, x, y))
[ "pandas.read_csv", "numpy.log", "numpy.exp", "datetime.timedelta", "pandas.to_datetime" ]
[((543, 573), 'pandas.read_csv', 'pd.read_csv', (['"""error_rates.csv"""'], {}), "('error_rates.csv')\n", (554, 573), True, 'import pandas as pd\n'), ((279, 291), 'numpy.exp', 'np.exp', (['p[0]'], {}), '(p[0])\n', (285, 291), True, 'import numpy as np\n'), ((257, 266), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (263, 266), True, 'import numpy as np\n'), ((352, 361), 'numpy.log', 'np.log', (['y'], {}), '(y)\n', (358, 361), True, 'import numpy as np\n'), ((578, 611), 'pandas.to_datetime', 'pd.to_datetime', (['errors.iloc[:, 0]'], {}), '(errors.iloc[:, 0])\n', (592, 611), True, 'import pandas as pd\n'), ((377, 395), 'numpy.exp', 'np.exp', (['(out[1] * x)'], {}), '(out[1] * x)\n', (383, 395), True, 'import numpy as np\n'), ((733, 766), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(365.2422)'}), '(days=365.2422)\n', (751, 766), False, 'import datetime\n')]
import numpy as np import tensorflow as tf from tensorflow import keras from keras.applications.xception import Xception import h5py import json import cv2 import math import logging from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.xception import preprocess_input, decode_predictions logging.basicConfig(level = logging.INFO) sampling_rate = 5 sampled_frames = frame_stamps = [] top1_labels = top1_scores = [] def sampling_time_stamps(_sample_path): cap = cv2.VideoCapture(_sample_path) total_frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) logging.info('Total no. of frames in video:', total_frame_count) for i in range(sampling_rate): val = round(total_frame_count/sampling_rate)*(i+1) frame_stamps.append(val) def sampling_frames(): frameId , frame_count = 5, 0 success,frame = cap.read() while success: frame_count+=1 if frame_count in frame_stamps and frameId >= 1: frame = cv2.resize(frame, (299,299)) sampled_frames.append(frame) success,frame = cap.read() frameId-=1 else: success,frame = cap.read() pass def generate_and_average_predictions(): base_model = keras.applications.Xception( weights='imagenet') # Load weights pre-trained on ImageNet. for i in range(len(sampled_frames)): img = sampled_frames[i] x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = base_model.predict(x) print('Prediction level:', (i+1), decode_predictions(preds, top=5)[0]) top1_labels.append(decode_predictions(preds, top=1)[0][0][1]) top1_scores.append(decode_predictions(preds, top=1)[0][0][2]) return top1_labels, top1_scores def run(): sampling_time_stamps(_sample_path) sampling_frames() labels, scores = generate_and_average_predictions() return labels, scores
[ "logging.basicConfig", "cv2.resize", "tensorflow.keras.applications.xception.preprocess_input", "tensorflow.keras.applications.xception.decode_predictions", "tensorflow.keras.applications.Xception", "cv2.VideoCapture", "numpy.expand_dims", "tensorflow.keras.preprocessing.image.img_to_array", "logging.info" ]
[((333, 372), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (352, 372), False, 'import logging\n'), ((519, 549), 'cv2.VideoCapture', 'cv2.VideoCapture', (['_sample_path'], {}), '(_sample_path)\n', (535, 549), False, 'import cv2\n'), ((613, 677), 'logging.info', 'logging.info', (['"""Total no. of frames in video:"""', 'total_frame_count'], {}), "('Total no. of frames in video:', total_frame_count)\n", (625, 677), False, 'import logging\n'), ((1271, 1318), 'tensorflow.keras.applications.Xception', 'keras.applications.Xception', ([], {'weights': '"""imagenet"""'}), "(weights='imagenet')\n", (1298, 1318), False, 'from tensorflow import keras\n'), ((1448, 1471), 'tensorflow.keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (1466, 1471), False, 'from tensorflow.keras.preprocessing import image\n'), ((1482, 1507), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1496, 1507), True, 'import numpy as np\n'), ((1518, 1537), 'tensorflow.keras.applications.xception.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (1534, 1537), False, 'from tensorflow.keras.applications.xception import preprocess_input, decode_predictions\n'), ((1006, 1035), 'cv2.resize', 'cv2.resize', (['frame', '(299, 299)'], {}), '(frame, (299, 299))\n', (1016, 1035), False, 'import cv2\n'), ((1614, 1646), 'tensorflow.keras.applications.xception.decode_predictions', 'decode_predictions', (['preds'], {'top': '(5)'}), '(preds, top=5)\n', (1632, 1646), False, 'from tensorflow.keras.applications.xception import preprocess_input, decode_predictions\n'), ((1678, 1710), 'tensorflow.keras.applications.xception.decode_predictions', 'decode_predictions', (['preds'], {'top': '(1)'}), '(preds, top=1)\n', (1696, 1710), False, 'from tensorflow.keras.applications.xception import preprocess_input, decode_predictions\n'), ((1746, 1778), 'tensorflow.keras.applications.xception.decode_predictions', 'decode_predictions', (['preds'], {'top': '(1)'}), '(preds, top=1)\n', (1764, 1778), False, 'from tensorflow.keras.applications.xception import preprocess_input, decode_predictions\n')]
from collections import namedtuple import numpy as np import scipy as sp from scipy.sparse.csgraph import minimum_spanning_tree from .. import logging as logg from ..neighbors import Neighbors from .. import utils from .. import settings def paga( adata, groups='louvain', use_rna_velocity=False, copy=False): """\ Generate cellular maps of differentiation manifolds with complex topologies [Wolf17i]_. Partition-based graph abstraction (PAGA) quantifies the connectivities of partitions of a neighborhood graph of single cells, thereby generating a much simpler abstracted graph whose nodes label the partitions. Together with a random walk-based distance measure, this generates a partial coordinatization of data useful for exploring and explaining its variation. Parameters ---------- adata : :class:`~scanpy.api.AnnData` Annotated data matrix. groups : categorical annotation of observations or 'louvain_groups', optional (default: 'louvain_groups') Criterion to determine the resulting partitions of the single-cell graph. 'louvain_groups' uses the Louvain algorithm and optimizes modularity of the graph. You can also pass your predefined groups by choosing any categorical annotation of observations (`adata.obs`). use_rna_velocity : `bool` (default: `False`) Use RNA velocity to orient edges in the abstracted graph and estimate transitions. copy : `bool`, optional (default: `False`) Copy `adata` before computation and return a copy. Otherwise, perform computation inplace and return `None`. Returns ------- Returns or updates `adata` depending on `copy` with connectivities : np.ndarray (adata.uns['connectivities']) The full adjacency matrix of the abstracted graph, weights correspond to connectivities. confidence : np.ndarray (adata.uns['confidence']) The full adjacency matrix of the abstracted graph, weights correspond to confidence in the presence of an edge. confidence_tree : sc.sparse csr matrix (adata.uns['confidence_tree']) The adjacency matrix of the tree-like subgraph that best explains the topology. """ if 'neighbors' not in adata.uns: raise ValueError( 'You need to run `pp.neighbors` first to compute a neighborhood graph.') adata = adata.copy() if copy else adata utils.sanitize_anndata(adata) logg.info('running partition-based graph abstraction (PAGA)', reset=True) paga = PAGA(adata, groups, use_rna_velocity=use_rna_velocity) paga.compute() # only add if not present if 'paga' not in adata.uns: adata.uns['paga'] = {} if not use_rna_velocity: adata.uns['paga']['connectivities'] = paga.connectivities_coarse adata.uns['paga']['confidence'] = paga.confidence adata.uns['paga']['confidence_tree'] = paga.confidence_tree adata.uns[groups + '_sizes'] = np.array(paga.vc.sizes()) else: adata.uns['paga']['transitions_confidence'] = paga.transitions_confidence adata.uns['paga']['transitions_ttest'] = paga.transitions_ttest adata.uns['paga']['groups'] = groups logg.info(' finished', time=True, end=' ' if settings.verbosity > 2 else '\n') if use_rna_velocity: logg.hint( 'added\n' ' \'paga/transitions_confidence\', confidence adjacency (adata.uns)\n' ' \'paga/transitions_ttest\', confidence subtree (adata.uns)') else: logg.hint( 'added\n' ' \'paga/connectivities\', connectivities adjacency (adata.uns)\n' ' \'paga/confidence\', confidence adjacency (adata.uns)\n' ' \'paga/confidence_tree\', confidence subtree (adata.uns)') return adata if copy else None class PAGA(Neighbors): def __init__(self, adata, groups, use_rna_velocity=False, tree_based_confidence=False): super(PAGA, self).__init__(adata) self._groups = groups self._tree_based_confidence = tree_based_confidence self._use_rna_velocity = use_rna_velocity def compute(self): if self._use_rna_velocity: self.compute_transitions_coarse() else: self.compute_connectivities_coarse() self.compute_confidence() def compute_connectivities_coarse(self): import igraph ones = self.connectivities.copy() # graph where edges carry weight 1 ones.data = np.ones(len(ones.data)) g = utils.get_igraph_from_adjacency(ones) self.vc = igraph.VertexClustering( g, membership=self._adata.obs[self._groups].cat.codes.values) cg = self.vc.cluster_graph(combine_edges='sum') self.connectivities_coarse = utils.get_sparse_from_igraph(cg, weight_attr='weight')/2 def compute_confidence(self): """Translates the connectivities_coarse measure into a confidence measure. """ pseudo_distance = self.connectivities_coarse.copy() pseudo_distance.data = 1./pseudo_distance.data connectivities_coarse_tree = minimum_spanning_tree(pseudo_distance) connectivities_coarse_tree.data = 1./connectivities_coarse_tree.data connectivities_coarse_tree_indices = [ connectivities_coarse_tree[i].nonzero()[1] for i in range(connectivities_coarse_tree.shape[0])] # inter- and intra-cluster based confidence if not self._tree_based_confidence: total_n = self.n_neighbors * np.array(self.vc.sizes()) maximum = self.connectivities_coarse.max() confidence = self.connectivities_coarse.copy() # initializing for i in range(self.connectivities_coarse.shape[0]): for j in range(i+1, self.connectivities_coarse.shape[1]): if self.connectivities_coarse[i, j] > 0: geom_mean = np.sqrt(total_n[i] * total_n[j]) confidence[i, j] = self.connectivities_coarse[i, j] / geom_mean confidence[j, i] = confidence[i, j] # tree-based confidence else: median_connectivities_coarse_tree = np.median(connectivities_coarse_tree.data) confidence = self.connectivities_coarse.copy() confidence.data[self.connectivities_coarse.data >= median_connectivities_coarse_tree] = 1 connectivities_coarse_adjusted = self.connectivities_coarse.copy() connectivities_coarse_adjusted.data -= median_connectivities_coarse_tree connectivities_coarse_adjusted.data = np.exp(connectivities_coarse_adjusted.data) index = self.connectivities_coarse.data < median_connectivities_coarse_tree confidence.data[index] = connectivities_coarse_adjusted.data[index] confidence_tree = self.compute_confidence_tree( confidence, connectivities_coarse_tree_indices) self.confidence = confidence self.confidence_tree = confidence_tree def compute_confidence_tree( self, confidence, connectivities_coarse_tree_indices): confidence_tree = sp.sparse.lil_matrix(confidence.shape, dtype=float) for i, neighbors in enumerate(connectivities_coarse_tree_indices): if len(neighbors) > 0: confidence_tree[i, neighbors] = confidence[i, neighbors] return confidence_tree.tocsr() def compute_transitions_coarse(self): # analogous code using networkx # membership = adata.obs['clusters'].cat.codes.tolist() # partition = defaultdict(list) # for n, p in zip(list(range(len(G))), membership): # partition[p].append(n) # partition = partition.values() # g_abstracted = nx.quotient_graph(g, partition, relabel=True) # for some reason, though, edges aren't oriented in the quotient # graph... import igraph g = utils.get_igraph_from_adjacency( self._adata.uns['velocyto_transitions'], directed=True) vc = igraph.VertexClustering( g, membership=self._adata.obs[self._groups].cat.codes.values) cg_full = vc.cluster_graph(combine_edges=False) g_bool = utils.get_igraph_from_adjacency( self._adata.uns['velocyto_transitions'].astype('bool'), directed=True) vc_bool = igraph.VertexClustering( g_bool, membership=self._adata.obs[self._groups].cat.codes.values) cg_bool = vc_bool.cluster_graph(combine_edges='sum') # collapsed version transitions_coarse = utils.get_sparse_from_igraph(cg_bool, weight_attr='weight') # translate this into a confidence measure # the number of outgoing edges # total_n = np.zeros(len(vc.sizes())) # # (this is not the convention of standard stochastic matrices) # total_outgoing = transitions_coarse.sum(axis=1) # for i in range(len(total_n)): # total_n[i] = vc.subgraph(i).ecount() # total_n[i] += total_outgoing[i, 0] # use the topology based reference, the velocity one might have very small numbers total_n = self.n_neighbors * np.array(vc_bool.sizes()) transitions_ttest = transitions_coarse.copy() transitions_confidence = transitions_coarse.copy() from scipy.stats import ttest_1samp for i in range(transitions_coarse.shape[0]): # no symmetry in transitions_coarse, hence we should not restrict to # upper triangle neighbors = transitions_coarse[i].nonzero()[1] for j in neighbors: forward = cg_full.es.select(_source=i, _target=j)['weight'] backward = cg_full.es.select(_source=j, _target=i)['weight'] # backward direction: add minus sign values = np.array(list(forward) + list(-np.array(backward))) # require some minimal number of observations if len(values) < 5: transitions_ttest[i, j] = 0 transitions_ttest[j, i] = 0 transitions_confidence[i, j] = 0 transitions_confidence[j, i] = 0 continue t, prob = ttest_1samp(values, 0.0) if t > 0: # number of outgoing edges greater than number of ingoing edges # i.e., transition from i to j transitions_ttest[i, j] = -np.log10(max(prob, 1e-10)) transitions_ttest[j, i] = 0 else: transitions_ttest[j, i] = -np.log10(max(prob, 1e-10)) transitions_ttest[i, j] = 0 # geom_mean geom_mean = np.sqrt(total_n[i] * total_n[j]) diff = (len(forward) - len(backward)) / geom_mean if diff > 0: transitions_confidence[i, j] = diff transitions_confidence[j, i] = 0 else: transitions_confidence[j, i] = -diff transitions_confidence[i, j] = 0 transitions_ttest.eliminate_zeros() transitions_confidence.eliminate_zeros() # transpose in order to match convention of stochastic matrices # entry ij means transition from j to i self.transitions_ttest = transitions_ttest.T self.transitions_confidence = transitions_confidence.T def paga_degrees(adata): """Compute the degree of each node in the abstracted graph. Parameters ---------- adata : AnnData Annotated data matrix. Returns ------- degrees : list List of degrees for each node. """ import networkx as nx g = nx.Graph(adata.uns['paga']['confidence']) degrees = [d for _, d in g.degree(weight='weight')] return degrees def paga_expression_entropies(adata): """Compute the median expression entropy for each node-group. Parameters ---------- adata : AnnData Annotated data matrix. Returns ------- entropies : list Entropies of median expressions for each node. """ from scipy.stats import entropy groups_order, groups_masks = utils.select_groups( adata, key=adata.uns['paga']['groups']) entropies = [] for mask in groups_masks: X_mask = adata.X[mask] x_median = np.median(X_mask, axis=0) x_probs = (x_median - np.min(x_median)) / (np.max(x_median) - np.min(x_median)) entropies.append(entropy(x_probs)) return entropies def paga_compare_paths(adata1, adata2, adjacency_key='confidence', adjacency_key2=None): """Compare paths in abstracted graphs in two datasets. Compute the fraction of consistent paths between leafs, a measure for the topological similarity between graphs. By increasing the verbosity to level 4 and 5, the paths that do not agree and the paths that agree are written to the output, respectively. The PAGA "groups key" needs to be the same in both objects. Parameters ---------- adata1, adata2 : AnnData Annotated data matrices to compare. adjacency_key : str Key for indexing the adjacency matrices in `.uns['paga']` to be used in adata1 and adata2. adjacency_key2 : str, None If provided, used for adata2. Returns ------- OrderedTuple with attributes ``n_steps`` (total number of steps in paths) and ``frac_steps`` (fraction of consistent steps), ``n_paths`` and ``frac_paths``. """ import networkx as nx g1 = nx.Graph(adata1.uns['paga'][adjacency_key]) g2 = nx.Graph(adata2.uns['paga'][adjacency_key2 if adjacency_key2 is not None else adjacency_key]) leaf_nodes1 = [str(x) for x in g1.nodes() if g1.degree(x) == 1] logg.msg('leaf nodes in graph 1: {}'.format(leaf_nodes1), v=5, no_indent=True) paga_groups = adata1.uns['paga']['groups'] asso_groups1 = utils.identify_groups(adata1.obs[paga_groups].values, adata2.obs[paga_groups].values) asso_groups2 = utils.identify_groups(adata2.obs[paga_groups].values, adata1.obs[paga_groups].values) orig_names1 = adata1.obs[paga_groups].cat.categories orig_names2 = adata2.obs[paga_groups].cat.categories import itertools n_steps = 0 n_agreeing_steps = 0 n_paths = 0 n_agreeing_paths = 0 # loop over all pairs of leaf nodes in the reference adata1 for (r, s) in itertools.combinations(leaf_nodes1, r=2): r2, s2 = asso_groups1[r][0], asso_groups1[s][0] orig_names = [orig_names1[int(i)] for i in [r, s]] orig_names += [orig_names2[int(i)] for i in [r2, s2]] logg.msg('compare shortest paths between leafs ({}, {}) in graph1 and ({}, {}) in graph2:' .format(*orig_names), v=4, no_indent=True) no_path1 = False try: path1 = [str(x) for x in nx.shortest_path(g1, int(r), int(s))] except nx.NetworkXNoPath: no_path1 = True no_path2 = False try: path2 = [str(x) for x in nx.shortest_path(g2, int(r2), int(s2))] except nx.NetworkXNoPath: no_path2 = True if no_path1 and no_path2: # consistent behavior n_paths += 1 n_agreeing_paths += 1 n_steps += 1 n_agreeing_steps += 1 logg.msg('there are no connecting paths in both graphs', v=5, no_indent=True) continue elif no_path1 or no_path2: # non-consistent result n_paths += 1 n_steps += 1 continue if len(path1) >= len(path2): path_mapped = [asso_groups1[l] for l in path1] path_compare = path2 path_compare_id = 2 path_compare_orig_names = [[orig_names2[int(s)] for s in l] for l in path_compare] path_mapped_orig_names = [[orig_names2[int(s)] for s in l] for l in path_mapped] else: path_mapped = [asso_groups2[l] for l in path2] path_compare = path1 path_compare_id = 1 path_compare_orig_names = [[orig_names1[int(s)] for s in l] for l in path_compare] path_mapped_orig_names = [[orig_names1[int(s)] for s in l] for l in path_mapped] n_agreeing_steps_path = 0 ip_progress = 0 for il, l in enumerate(path_compare[:-1]): for ip, p in enumerate(path_mapped): if ip >= ip_progress and l in p: # check whether we can find the step forward of path_compare in path_mapped if (ip + 1 < len(path_mapped) and path_compare[il + 1] in path_mapped[ip + 1]): # make sure that a step backward leads us to the same value of l # in case we "jumped" logg.msg('found matching step ({} -> {}) at position {} in path{} and position {} in path_mapped' .format(l, path_compare_orig_names[il + 1], il, path_compare_id, ip), v=6) consistent_history = True for iip in range(ip, ip_progress, -1): if l not in path_mapped[iip - 1]: consistent_history = False if consistent_history: # here, we take one step further back (ip_progress - 1); it's implied that this # was ok in the previous step logg.msg(' step(s) backward to position(s) {} in path_mapped are fine, too: valid step' .format(list(range(ip - 1, ip_progress - 2, -1))), v=6) n_agreeing_steps_path += 1 ip_progress = ip + 1 break n_steps_path = len(path_compare) - 1 n_agreeing_steps += n_agreeing_steps_path n_steps += n_steps_path n_paths += 1 if n_agreeing_steps_path == n_steps_path: n_agreeing_paths += 1 # only for the output, use original names path1_orig_names = [orig_names1[int(s)] for s in path1] path2_orig_names = [orig_names2[int(s)] for s in path2] logg.msg(' path1 = {},\n' 'path_mapped = {},\n' ' path2 = {},\n' '-> n_agreeing_steps = {} / n_steps = {}.' .format(path1_orig_names, [list(p) for p in path_mapped_orig_names], path2_orig_names, n_agreeing_steps_path, n_steps_path), v=5, no_indent=True) Result = namedtuple('paga_compare_paths_result', ['frac_steps', 'n_steps', 'frac_paths', 'n_paths']) return Result(frac_steps=n_agreeing_steps/n_steps if n_steps > 0 else np.nan, n_steps=n_steps if n_steps > 0 else np.nan, frac_paths=n_agreeing_paths/n_paths if n_steps > 0 else np.nan, n_paths=n_paths if n_steps > 0 else np.nan)
[ "collections.namedtuple", "scipy.sparse.lil_matrix", "numpy.median", "scipy.stats.entropy", "numpy.sqrt", "networkx.Graph", "numpy.max", "itertools.combinations", "numpy.exp", "numpy.array", "scipy.sparse.csgraph.minimum_spanning_tree", "igraph.VertexClustering", "scipy.stats.ttest_1samp", "numpy.min" ]
[((11850, 11891), 'networkx.Graph', 'nx.Graph', (["adata.uns['paga']['confidence']"], {}), "(adata.uns['paga']['confidence'])\n", (11858, 11891), True, 'import networkx as nx\n'), ((13730, 13773), 'networkx.Graph', 'nx.Graph', (["adata1.uns['paga'][adjacency_key]"], {}), "(adata1.uns['paga'][adjacency_key])\n", (13738, 13773), True, 'import networkx as nx\n'), ((13783, 13880), 'networkx.Graph', 'nx.Graph', (["adata2.uns['paga'][adjacency_key2 if adjacency_key2 is not None else\n adjacency_key]"], {}), "(adata2.uns['paga'][adjacency_key2 if adjacency_key2 is not None else\n adjacency_key])\n", (13791, 13880), True, 'import networkx as nx\n'), ((14667, 14707), 'itertools.combinations', 'itertools.combinations', (['leaf_nodes1'], {'r': '(2)'}), '(leaf_nodes1, r=2)\n', (14689, 14707), False, 'import itertools\n'), ((18931, 19026), 'collections.namedtuple', 'namedtuple', (['"""paga_compare_paths_result"""', "['frac_steps', 'n_steps', 'frac_paths', 'n_paths']"], {}), "('paga_compare_paths_result', ['frac_steps', 'n_steps',\n 'frac_paths', 'n_paths'])\n", (18941, 19026), False, 'from collections import namedtuple\n'), ((4669, 4759), 'igraph.VertexClustering', 'igraph.VertexClustering', (['g'], {'membership': 'self._adata.obs[self._groups].cat.codes.values'}), '(g, membership=self._adata.obs[self._groups].cat.\n codes.values)\n', (4692, 4759), False, 'import igraph\n'), ((5200, 5238), 'scipy.sparse.csgraph.minimum_spanning_tree', 'minimum_spanning_tree', (['pseudo_distance'], {}), '(pseudo_distance)\n', (5221, 5238), False, 'from scipy.sparse.csgraph import minimum_spanning_tree\n'), ((7244, 7295), 'scipy.sparse.lil_matrix', 'sp.sparse.lil_matrix', (['confidence.shape'], {'dtype': 'float'}), '(confidence.shape, dtype=float)\n', (7264, 7295), True, 'import scipy as sp\n'), ((8154, 8244), 'igraph.VertexClustering', 'igraph.VertexClustering', (['g'], {'membership': 'self._adata.obs[self._groups].cat.codes.values'}), '(g, membership=self._adata.obs[self._groups].cat.\n codes.values)\n', (8177, 8244), False, 'import igraph\n'), ((8461, 8556), 'igraph.VertexClustering', 'igraph.VertexClustering', (['g_bool'], {'membership': 'self._adata.obs[self._groups].cat.codes.values'}), '(g_bool, membership=self._adata.obs[self._groups].\n cat.codes.values)\n', (8484, 8556), False, 'import igraph\n'), ((12501, 12526), 'numpy.median', 'np.median', (['X_mask'], {'axis': '(0)'}), '(X_mask, axis=0)\n', (12510, 12526), True, 'import numpy as np\n'), ((6287, 6329), 'numpy.median', 'np.median', (['connectivities_coarse_tree.data'], {}), '(connectivities_coarse_tree.data)\n', (6296, 6329), True, 'import numpy as np\n'), ((6705, 6748), 'numpy.exp', 'np.exp', (['connectivities_coarse_adjusted.data'], {}), '(connectivities_coarse_adjusted.data)\n', (6711, 6748), True, 'import numpy as np\n'), ((12640, 12656), 'scipy.stats.entropy', 'entropy', (['x_probs'], {}), '(x_probs)\n', (12647, 12656), False, 'from scipy.stats import entropy\n'), ((10346, 10370), 'scipy.stats.ttest_1samp', 'ttest_1samp', (['values', '(0.0)'], {}), '(values, 0.0)\n', (10357, 10370), False, 'from scipy.stats import ttest_1samp\n'), ((10854, 10886), 'numpy.sqrt', 'np.sqrt', (['(total_n[i] * total_n[j])'], {}), '(total_n[i] * total_n[j])\n', (10861, 10886), True, 'import numpy as np\n'), ((12557, 12573), 'numpy.min', 'np.min', (['x_median'], {}), '(x_median)\n', (12563, 12573), True, 'import numpy as np\n'), ((12578, 12594), 'numpy.max', 'np.max', (['x_median'], {}), '(x_median)\n', (12584, 12594), True, 'import numpy as np\n'), ((12597, 12613), 'numpy.min', 'np.min', (['x_median'], {}), '(x_median)\n', (12603, 12613), True, 'import numpy as np\n'), ((6012, 6044), 'numpy.sqrt', 'np.sqrt', (['(total_n[i] * total_n[j])'], {}), '(total_n[i] * total_n[j])\n', (6019, 6044), True, 'import numpy as np\n'), ((9970, 9988), 'numpy.array', 'np.array', (['backward'], {}), '(backward)\n', (9978, 9988), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Nov 5 01:34:00 2021 @author: yrc2 """ import biosteam as bst import biorefineries.oilcane as oc from biosteam.utils import CABBI_colors, colors from thermosteam.utils import set_figure_size, set_font, roundsigfigs from thermosteam.units_of_measure import format_units from colorpalette import Palette import matplotlib.pyplot as plt import matplotlib.patches as mpatches from warnings import warn import numpy as np import pandas as pd from matplotlib.gridspec import GridSpec from . import _variable_mockups as variables from ._variable_mockups import ( tea_monte_carlo_metric_mockups, tea_monte_carlo_derivative_metric_mockups, lca_monte_carlo_metric_mockups, lca_monte_carlo_derivative_metric_mockups, MFPP, TCI, electricity_production, natural_gas_consumption, ethanol_production, biodiesel_production, GWP_ethanol, GWP_biodiesel, GWP_electricity, GWP_ethanol_allocation, GWP_biodiesel_allocation, GWP_economic, MFPP_derivative, TCI_derivative, ethanol_production_derivative, biodiesel_production_derivative, electricity_production_derivative, natural_gas_consumption_derivative, GWP_ethanol_derivative, ) from ._load_data import ( images_folder, get_monte_carlo, spearman_file, ) import os from._parse_configuration import format_name __all__ = ( 'plot_all', 'plot_montecarlo_main_manuscript', 'plot_breakdowns', 'plot_montecarlo_feedstock_comparison', 'plot_montecarlo_configuration_comparison', 'plot_montecarlo_agile_comparison', 'plot_montecarlo_derivative', 'plot_montecarlo_absolute', 'plot_spearman_tea', 'plot_spearman_lca', 'plot_spearman_tea_short', 'plot_spearman_lca_short', 'plot_monte_carlo_across_coordinate', 'monte_carlo_box_plot', 'plot_monte_carlo', 'plot_spearman', 'plot_configuration_breakdown', 'plot_TCI_areas_across_oil_content', 'plot_heatmap_comparison', 'plot_feedstock_conventional_comparison_kde', 'plot_feedstock_cellulosic_comparison_kde', 'plot_configuration_comparison_kde', 'plot_open_comparison_kde', 'plot_feedstock_comparison_kde', 'plot_crude_configuration_comparison_kde', 'plot_agile_comparison_kde', 'plot_separated_configuration_comparison_kde', 'area_colors', 'area_hatches', ) area_colors = { 'Feedstock handling': CABBI_colors.teal, 'Juicing': CABBI_colors.green_dirty, 'EtOH prod.': CABBI_colors.blue, 'Ethanol production': CABBI_colors.blue, 'Oil ext.': CABBI_colors.brown, 'Oil extraction': CABBI_colors.brown, 'Biod. prod.': CABBI_colors.orange, 'Biodiesel production': CABBI_colors.orange, 'Pretreatment': CABBI_colors.green, 'Wastewater treatment': colors.purple, 'CH&P': CABBI_colors.yellow, 'Co-Heat and Power': CABBI_colors.yellow, 'Utilities': colors.red, 'Storage': CABBI_colors.grey, 'HXN': colors.orange, 'Heat exchanger network': colors.orange, } area_hatches = { 'Feedstock handling': 'x', 'Juicing': '-', 'EtOH prod.': '/', 'Ethanol production': '/', 'Oil ext.': '\\', 'Oil extraction': '\\', 'Biod. prod.': '/|', 'Biodiesel production': '/|', 'Pretreatment': '//', 'Wastewater treatment': r'\\', 'CH&P': '', 'Co-Heat and Power': '', 'Utilities': '\\|', 'Storage': '', 'HXN': '+', 'Heat exchanger network': '+', } for i in area_colors: area_colors[i] = area_colors[i].tint(20) palette = Palette(**area_colors) letter_color = colors.neutral.shade(25).RGBn GWP_units_L = '$\\mathrm{kg} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{L}^{-1}$' GWP_units_L_small = GWP_units_L.replace('kg', 'g') CABBI_colors.orange_hatch = CABBI_colors.orange.copy(hatch='////') ethanol_over_biodiesel = bst.MockVariable('Ethanol over biodiesel', 'L/MT', 'Biorefinery') GWP_ethanol_displacement = variables.GWP_ethanol_displacement production = (ethanol_production, biodiesel_production) mc_metric_settings = { 'MFPP': (MFPP, f"MFPP\n[{format_units('USD/MT')}]", None), 'TCI': (TCI, f"TCI\n[{format_units('10^6*USD')}]", None), 'production': (production, f"Production\n[{format_units('L/MT')}]", None), 'electricity_production': (electricity_production, f"Elec. prod.\n[{format_units('kWhr/MT')}]", None), 'natural_gas_consumption': (natural_gas_consumption, f"NG cons.\n[{format_units('m^3/MT')}]", None), 'GWP_ethanol_displacement': (GWP_ethanol_displacement, "GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]", None), 'GWP_economic': ((GWP_ethanol, GWP_biodiesel), "GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]", None), 'GWP_energy': ((GWP_ethanol_allocation, GWP_biodiesel_allocation), "GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]", None), } mc_comparison_settings = { 'MFPP': (MFPP, r"$\Delta$" + f"MFPP\n[{format_units('USD/MT')}]", None), 'TCI': (TCI, r"$\Delta$" + f"TCI\n[{format_units('10^6*USD')}]", None), 'production': (production, r"$\Delta$" + f"Production\n[{format_units('L/MT')}]", None), 'electricity_production': (electricity_production, r"$\Delta$" + f"Elec. prod.\n[{format_units('kWhr/MT')}]", None), 'natural_gas_consumption': (natural_gas_consumption, r"$\Delta$" + f"NG cons.\n[{format_units('m^3/MT')}]", None), 'GWP_ethanol_displacement': (GWP_ethanol_displacement, r"$\Delta$" + "GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]", None), 'GWP_economic': (GWP_ethanol, r"$\Delta$" + "GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]", None), 'GWP_energy': (GWP_ethanol_allocation, r"$\Delta$" + "GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]", None), 'GWP_property_allocation': ((GWP_ethanol, GWP_ethanol_allocation), r"$\Delta$" + f"GWP\n[{GWP_units_L}]", None), } mc_derivative_metric_settings = { 'MFPP': (MFPP_derivative, r"$\Delta$" + format_units(r"MFPP/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('USD/MT')}]", None), 'TCI': (TCI_derivative, r"$\Delta$" + format_units(r"TCI/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('10^6*USD')}]", None), 'production': ((ethanol_production_derivative, biodiesel_production_derivative), r"$\Delta$" + format_units(r"Prod./OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('L/MT')}]", None), 'electricity_production': (electricity_production_derivative, r"$\Delta$" + format_units(r"EP/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('kWhr/MT')}]", None), 'natural_gas_consumption': (natural_gas_consumption_derivative, r"$\Delta$" + format_units(r"NGC/OC").replace('cdot', r'cdot \Delta') + f"\n[{format_units('m^3/MT')}]", None), 'GWP_economic': (GWP_ethanol_derivative, r"$\Delta$" + r"GWP $\cdot \Delta \mathrm{OC}^{-1}$" f"\n[{GWP_units_L_small}]", 1000), } kde_metric_settings = {j[0]: j for j in mc_metric_settings.values()} kde_comparison_settings = {j[0]: j for j in mc_comparison_settings.values()} kde_derivative_settings = {j[0]: j for j in mc_derivative_metric_settings.values()} # %% Plots for publication def plot_all(): # plot_montecarlo_main_manuscript() plot_montecarlo_absolute() plot_spearman_tea() plot_spearman_lca() plot_breakdowns() def plot_montecarlo_main_manuscript(): set_font(size=8) set_figure_size(aspect_ratio=0.85) fig = plt.figure() everything = GridSpec(4, 3, fig, hspace=1.5, wspace=0.7, top=0.90, bottom=0.05, left=0.11, right=0.97) def spec2axes(spec, x, y, hspace=0, wspace=0.7, **kwargs): subspec = spec.subgridspec(x, y, hspace=hspace, wspace=wspace, **kwargs) return np.array([[fig.add_subplot(subspec[i, j]) for j in range(y)] for i in range(x)], object) gs_feedstock_comparison = everything[:2, :] gs_configuration_comparison = everything[2:, :2] gs_agile_comparison = everything[2:, 2] axes_feedstock_comparison = spec2axes(gs_feedstock_comparison, 2, 3) axes_configuration_comparison = spec2axes(gs_configuration_comparison, 2, 2) axes_agile_comparison = spec2axes(gs_agile_comparison, 2, 1) plot_montecarlo_feedstock_comparison(axes_feedstock_comparison, letters='ABCDEFG') plot_montecarlo_configuration_comparison(axes_configuration_comparison, letters='ABCDEFG') plot_montecarlo_agile_comparison(axes_agile_comparison, letters='ABCDEFG') def add_title(gs, title): ax = fig.add_subplot(gs) ax._frameon = False ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.set_title( title, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold', y=1.1 ) add_title(gs_feedstock_comparison, '(I) Impact of opting to process oilcane over sugarcane') add_title(gs_configuration_comparison, '(II) Impact of cellulosic ethanol integration') add_title(gs_agile_comparison, '(III) Impact of\noilsorghum\nintegration') plt.show() for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_main_manuscript.{i}') plt.savefig(file, transparent=True) def plot_montecarlo_feedstock_comparison(axes_box=None, letters=None, single_column=True): if single_column: width = 'half' aspect_ratio = 2.25 ncols = 1 left = 0.255 bottom = 0.05 else: width = None aspect_ratio = 0.75 left = 0.105 bottom = 0.12 ncols = 3 if axes_box is None: set_font(size=8) set_figure_size(width=width, aspect_ratio=aspect_ratio) fig, axes = plot_monte_carlo( derivative=False, absolute=False, comparison=True, tickmarks=None, agile=False, ncols=ncols, axes_box=axes_box, labels=[ 'Direct Cogeneration', 'Integrated Co-Fermentation', # 'Direct Cogeneration', # 'Integrated Co-Fermentation', ], comparison_names=['O1 - S1', 'O2 - S2'], metrics = ['MFPP', 'TCI', 'production', 'GWP_property_allocation', 'natural_gas_consumption', 'electricity_production'], color_wheel = CABBI_colors.wheel([ 'blue_light', 'green_dirty', 'orange', 'green', 'orange', 'orange_hatch', 'grey', 'brown', ]) ) for ax, letter in zip(axes, 'ABCDEFGH' if letters is None else letters): plt.sca(ax) ylb, yub = plt.ylim() plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') # if axes_box is None and letter in 'DH': # x = 0.5 # plt.text(x, ylb - (yub - ylb) * 0.3, # 'Impact of processing\noilcane over sugarcane', # horizontalalignment='center',verticalalignment='center', # fontsize=8) if axes_box is None: plt.subplots_adjust(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom) for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_feedstock_comparison.{i}') plt.savefig(file, transparent=True) def plot_montecarlo_configuration_comparison(axes_box=None, letters=None, single_column=True): if single_column: width = 'half' aspect_ratio = 2.25 ncols = 1 left = 0.255 bottom = 0.05 x = 1.65 metrics= ['MFPP', 'TCI', 'production', 'GWP_property_allocation', 'natural_gas_consumption', 'electricity_production'] else: width = None aspect_ratio = 0.75 left = 0.105 bottom = 0.12 ncols = 2 x = 0.58 metrics= ['MFPP', 'TCI', 'production', 'GWP_property_allocation'] if axes_box is None: set_font(size=8) set_figure_size(width=width, aspect_ratio=aspect_ratio) fig, axes = plot_monte_carlo( derivative=False, absolute=False, comparison=True, tickmarks=None, agile=False, ncols=ncols, axes_box=axes_box, labels=[ 'Oilcane', # 'Sugarcane', ], comparison_names=[ 'O2 - O1', # 'S2 - S1' ], metrics=metrics, color_wheel = CABBI_colors.wheel([ 'blue_light', 'green_dirty', 'orange', 'green', 'orange', 'orange_hatch', ]) ) for ax, letter in zip(axes, 'ABCDEF' if letters is None else letters): plt.sca(ax) ylb, yub = plt.ylim() plt.text(x, ylb + (yub - ylb) * 0.90, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') if axes_box is None: plt.subplots_adjust(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom) for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_configuration_comparison.{i}') plt.savefig(file, transparent=True) def plot_montecarlo_agile_comparison(axes_box=None, letters=None): if axes_box is None: set_font(size=8) set_figure_size(width=3.3071, aspect_ratio=1.0) fig, axes = plot_monte_carlo( derivative=False, absolute=False, comparison=True, tickmarks=None, agile_only=True, ncols=1, labels=[ 'Direct Cogeneration', 'Integrated Co-Fermentation' ], metrics=['MFPP', 'TCI'], axes_box=axes_box, ) for ax, letter in zip(axes, 'AB' if letters is None else letters): plt.sca(ax) ylb, yub = plt.ylim() plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') if axes_box is None and letter == 'B': plt.text(0.5, ylb - (yub - ylb) * 0.25, 'Impact of integrating oilsorghum\nat an agile oilcane biorefinery', horizontalalignment='center',verticalalignment='center', fontsize=8) if axes_box is None: plt.subplots_adjust(right=0.9, left=0.2, wspace=0.5, top=0.98, bottom=0.15) for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_agile_comparison.{i}') plt.savefig(file, transparent=True) def plot_montecarlo_derivative(): set_font(size=8) set_figure_size( aspect_ratio=0.5, # width=3.3071, aspect_ratio=1.85 ) fig, axes = plot_monte_carlo( derivative=True, absolute=True, comparison=False, agile=False, ncols=3, # tickmarks=np.array([ # [-3, -2, -1, 0, 1, 2, 3, 4, 5], # [-9, -6, -3, 0, 3, 6, 9, 12, 15], # [-2.0, -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2], # [-16, -8, 0, 8, 16, 24, 32, 40, 48], # [-400, -300, -200, -100, 0, 100, 200, 300, 400], # [-300, -225, -150, -75, 0, 75, 150, 225, 300] # ], dtype=object), labels=['DC', 'ICF'], color_wheel = CABBI_colors.wheel([ 'blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown', 'orange', ]) ) for ax, letter in zip(axes, 'ABCDEFGH'): plt.sca(ax) ylb, yub = plt.ylim() plt.text(1.65, ylb + (yub - ylb) * 0.90, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') plt.subplots_adjust( hspace=0, wspace=0.7, top=0.95, bottom=0.1, left=0.12, right=0.96 ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_derivative.{i}') plt.savefig(file, transparent=True) def plot_montecarlo_absolute(): set_font(size=8) set_figure_size(aspect_ratio=1.05) fig, axes = plot_monte_carlo( absolute=True, comparison=False, ncols=2, expand=0.1, labels=['Sugarcane\nDC', 'Oilcane\nDC', 'Sugarcane\nICF', 'Oilcane\nICF', 'Sugarcane &\nSorghum DC', 'Oilcane &\nOil-sorghum DC', 'Sugarcane &\nSorghum ICF', 'Oilcane &\nOil-sorghum ICF'], xrot=90, color_wheel = CABBI_colors.wheel([ 'blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown', 'orange', 'orange', 'green', 'orange', 'green', ]) ) for ax, letter in zip(axes, 'ABCDEFGHIJ'): plt.sca(ax) ylb, yub = plt.ylim() plt.text(7.8, ylb + (yub - ylb) * 0.92, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') plt.subplots_adjust(left=0.12, right=0.95, wspace=0.40, top=0.98, bottom=0.2) for i in ('svg', 'png'): file = os.path.join(images_folder, f'montecarlo_absolute.{i}') plt.savefig(file, transparent=True) def plot_spearman_tea(with_units=None, aspect_ratio=0.8, **kwargs): set_font(size=8) set_figure_size(aspect_ratio=aspect_ratio) plot_spearman( configurations=[ 'O1', 'O1*', 'O2', 'O2*', ], labels=[ 'DC', 'Oil-sorghum int., DC', 'ICF', 'Oil-sorghum int., ICF', ], kind='TEA', with_units=with_units, cutoff=0.03, **kwargs ) plt.subplots_adjust(left=0.45, right=0.975, top=0.98, bottom=0.08) for i in ('svg', 'png'): file = os.path.join(images_folder, f'spearman_tea.{i}') plt.savefig(file, transparent=True) def plot_spearman_tea_short(**kwargs): set_font(size=8) set_figure_size(aspect_ratio=0.65, width=6.6142 * 2/3) plot_spearman( configurations=[ 'O1', 'O2', ], labels=[ 'DC', 'ICF', ], kind='TEA', with_units=False, cutoff=0.03, top=5, legend=True, legend_kwargs={'loc': 'upper left'}, **kwargs ) plt.subplots_adjust(left=0.35, right=0.975, top=0.98, bottom=0.15) for i in ('svg', 'png'): file = os.path.join(images_folder, f'spearman_tea.{i}') plt.savefig(file, transparent=True) def plot_spearman_lca_short(with_units=False, aspect_ratio=0.65, **kwargs): set_font(size=8) set_figure_size(aspect_ratio=aspect_ratio, width=6.6142 * 2/3) plot_spearman( configurations=[ 'O1', 'O2', ], labels=[ 'DC', 'ICF', ], kind='LCA', with_units=with_units, cutoff=0.03, top=5, legend=False, **kwargs ) plt.subplots_adjust(left=0.35, right=0.975, top=0.98, bottom=0.15) for i in ('svg', 'png'): file = os.path.join(images_folder, f'spearman_lca.{i}') plt.savefig(file, transparent=True) def plot_spearman_lca(with_units=None, aspect_ratio=0.65, **kwargs): set_font(size=8) set_figure_size(aspect_ratio=aspect_ratio) plot_spearman( configurations=[ 'O1', 'O1*', 'O2', 'O2*', ], labels=[ 'DC', 'Oil-sorghum int., DC', 'ICF', 'Oil-sorghum int., ICF', ], kind='LCA', with_units=with_units, cutoff=0.03, **kwargs ) plt.subplots_adjust(left=0.45, right=0.975, top=0.98, bottom=0.10) for i in ('svg', 'png'): file = os.path.join(images_folder, f'spearman_lca.{i}') plt.savefig(file, transparent=True) def plot_breakdowns(): set_font(size=8) set_figure_size(aspect_ratio=0.68) fig, axes = plt.subplots(nrows=1, ncols=2) plt.sca(axes[0]) plot_configuration_breakdown('O1', ax=axes[0], legend=False) plt.sca(axes[1]) plot_configuration_breakdown('O2', ax=axes[1], legend=True) yticks = axes[1].get_yticks() plt.yticks(yticks, ['']*len(yticks)) plt.ylabel('') plt.subplots_adjust(left=0.09, right=0.96, wspace=0., top=0.84, bottom=0.31) for ax, letter in zip(axes, ['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation']): plt.sca(ax) ylb, yub = plt.ylim() xlb, xub = plt.xlim() plt.text((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.2, letter, color=letter_color, horizontalalignment='center',verticalalignment='center', fontsize=12, fontweight='bold') for i in ('svg', 'png'): file = os.path.join(images_folder, f'breakdowns.{i}') plt.savefig(file, transparent=True) # %% Heatmap def get_fraction_in_same_direction(data, direction): return (direction * data >= 0.).sum(axis=0) / data.size def get_median(data): return roundsigfigs(np.percentile(data, 50, axis=0)) def plot_heatmap_comparison(comparison_names=None, xlabels=None): if comparison_names is None: comparison_names = oc.comparison_names columns = comparison_names if xlabels is None: xlabels = [format_name(i).replace(' ', '') for i in comparison_names] def get_data(metric, name): df = get_monte_carlo(name, metric) values = df.values return values GWP_economic, GWP_ethanol, GWP_biodiesel, GWP_electricity, GWP_crude_glycerol, = lca_monte_carlo_metric_mockups MFPP, TCI, ethanol_production, biodiesel_production, electricity_production, natural_gas_consumption = tea_monte_carlo_metric_mockups GWP_ethanol_displacement = variables.GWP_ethanol_displacement GWP_ethanol_allocation = variables.GWP_ethanol_allocation rows = [ MFPP, TCI, ethanol_production, biodiesel_production, electricity_production, natural_gas_consumption, GWP_ethanol_displacement, GWP_ethanol_allocation, GWP_ethanol, # economic ] ylabels = [ f"MFPP\n[{format_units('USD/MT')}]", f"TCI\n[{format_units('10^6*USD')}]", f"Ethanol production\n[{format_units('L/MT')}]", f"Biodiesel production\n[{format_units('L/MT')}]", f"Elec. prod.\n[{format_units('kWhr/MT')}]", f"NG cons.\n[{format_units('m^3/MT')}]", "GWP$_{\\mathrm{displacement}}$" f"\n[{GWP_units_L}]", "GWP$_{\\mathrm{energy}}$" f"\n[{GWP_units_L}]", "GWP$_{\\mathrm{economic}}$" f"\n[{GWP_units_L}]", ] N_rows = len(rows) N_cols = len(comparison_names) data = np.zeros([N_rows, N_cols], dtype=object) data[:] = [[get_data(i, j) for j in columns] for i in rows] medians = np.zeros_like(data, dtype=float) fractions = medians.copy() for i in range(N_rows): for j in range(N_cols): medians[i, j] = x = get_median(data[i, j]) fractions[i, j] = get_fraction_in_same_direction(data[i, j], 1 if x > 0 else -1) fig, ax = plt.subplots() mbar = bst.plots.MetricBar( 'Fraction in the same direction [%]', ticks=[-100, -75, -50, -25, 0, 25, 50, 75, 100], cmap=plt.cm.get_cmap('RdYlGn') ) im, cbar = bst.plots.plot_heatmap( 100 * fractions, vmin=0, vmax=100, ax=ax, cell_labels=medians, metric_bar=mbar, xlabels=xlabels, ylabels=ylabels, ) cbar.ax.set_ylabel(mbar.title, rotation=-90, va="bottom") plt.sca(ax) ax.spines[:].set_visible(False) plt.grid(True, 'major', 'both', lw=1, color='w', ls='-') # %% KDE def plot_kde(name, metrics=(GWP_ethanol, MFPP), xticks=None, yticks=None, xbox_kwargs=None, ybox_kwargs=None, top_left='', top_right='Tradeoff', bottom_left='Tradeoff', bottom_right=''): set_font(size=8) set_figure_size(width='half', aspect_ratio=1.20) Xi, Yi = [i.index for i in metrics] df = oc.get_monte_carlo(name, metrics) y = df[Yi].values x = df[Xi].values sX, sY = [kde_comparison_settings[i] for i in metrics] _, xlabel, fx = sX _, ylabel, fy = sY if fx: x *= fx if fy: y *= fy ax = bst.plots.plot_kde( y=y, x=x, xticks=xticks, yticks=yticks, xticklabels=True, yticklabels=True, xbox_kwargs=xbox_kwargs or dict(light=CABBI_colors.orange.RGBn, dark=CABBI_colors.orange.shade(60).RGBn), ybox_kwargs=ybox_kwargs or dict(light=CABBI_colors.blue.RGBn, dark=CABBI_colors.blue.shade(60).RGBn), ) plt.sca(ax) plt.xlabel(xlabel.replace('\n', ' ')) plt.ylabel(ylabel.replace('\n', ' ')) bst.plots.plot_quadrants() xlb, xub = plt.xlim() ylb, yub = plt.ylim() xpos = lambda x: xlb + (xub - xlb) * x # xlpos = lambda x: xlb * (1 - x) ypos = lambda y: ylb + (yub - ylb) * y y_mt_0 = y > 0 y_lt_0 = y < 0 x_mt_0 = x > 0 x_lt_0 = x < 0 xleft = 0.02 xright = 0.98 ytop = 0.94 ybottom = 0.02 if yub > 0. and xlb < 0.: if top_left.endswith('()'): p = (y_mt_0 & x_lt_0).sum() / y.size top_left = f"{p:.0%} {top_left.strip('()')}" plt.text(xpos(xleft), ypos(ytop), top_left, color=CABBI_colors.teal.shade(50).RGBn, horizontalalignment='left', verticalalignment='top', fontsize=10, fontweight='bold', zorder=10) if ylb < 0. and xlb < 0.: if bottom_left.endswith('()'): p = (y_lt_0 & x_lt_0).sum() / y.size bottom_left = f"{p:.0%} {bottom_left.strip('()')}" plt.text(xpos(xleft), ypos(ybottom), bottom_left, color=CABBI_colors.grey.shade(75).RGBn, horizontalalignment='left', verticalalignment='bottom', fontsize=10, fontweight='bold', zorder=10) if yub > 0. and xub > 0.: if top_right.endswith('()'): p = (y_mt_0 & x_mt_0).sum() / y.size top_right = f"{p:.0%} {top_right.strip('()')}" plt.text(xpos(xright), ypos(ytop), top_right, color=CABBI_colors.grey.shade(75).RGBn, horizontalalignment='right', verticalalignment='top', fontsize=10, fontweight='bold', zorder=10) if ylb < 0. and xub > 0.: if bottom_right.endswith('()'): p = (y_lt_0 & x_mt_0).sum() / y.size bottom_right = f"{p:.0%} {bottom_right.strip('()')}" plt.text(xpos(xright), ypos(ybottom), bottom_right, color=colors.red.shade(50).RGBn, horizontalalignment='right', verticalalignment='bottom', fontsize=10, fontweight='bold', zorder=10) plt.subplots_adjust( hspace=0.05, wspace=0.05, top=0.98, bottom=0.15, left=0.15, right=0.98, ) def plot_kde_2d(name, metrics=(GWP_ethanol, MFPP), xticks=None, yticks=None, top_left='', top_right='Tradeoff', bottom_left='Tradeoff', bottom_right='', xbox_kwargs=None, ybox_kwargs=None, titles=None): set_font(size=8) set_figure_size(aspect_ratio=0.65) if isinstance(name, str): name = (name,) Xi, Yi = [i.index for i in metrics] dfs = [oc.get_monte_carlo(i, metrics) for i in name] sX, sY = [kde_comparison_settings[i] for i in metrics] _, xlabel, fx = sX _, ylabel, fy = sY xs = np.array([[df[Xi] for df in dfs]]) ys = np.array([[df[Yi] for df in dfs]]) if fx: xs *= fx if fy: ys *= fy axes = bst.plots.plot_kde_2d( xs=xs, ys=ys, xticks=xticks, yticks=yticks, xticklabels=[True, True], yticklabels=[True, True], xbox_kwargs=2*[xbox_kwargs or dict(light=CABBI_colors.orange.RGBn, dark=CABBI_colors.orange.shade(60).RGBn)], ybox_kwargs=[ybox_kwargs or dict(light=CABBI_colors.blue.RGBn, dark=CABBI_colors.blue.shade(60).RGBn)], ) M, N = axes.shape xleft = 0.02 xright = 0.98 ytop = 0.94 ybottom = 0.02 for i in range(M): for j in range(N): ax = axes[i, j] plt.sca(ax) if i == M - 1: plt.xlabel(xlabel.replace('\n', ' ')) if j == 0: plt.ylabel(ylabel.replace('\n', ' ')) bst.plots.plot_quadrants() xlb, xub = plt.xlim() ylb, yub = plt.ylim() xpos = lambda x: xlb + (xub - xlb) * x # xlpos = lambda x: xlb * (1 - x) ypos = lambda y: ylb + (yub - ylb) * y df = dfs[j] x = df[Xi] y = df[Yi] y_mt_0 = y > 0 y_lt_0 = y < 0 x_mt_0 = x > 0 x_lt_0 = x < 0 if yub > 0. and xlb < 0. and top_left: if top_left.endswith('()'): p = (y_mt_0 & x_lt_0).sum() / y.size top_left = f"{p:.0%} {top_left.strip('()')}" replacement = '()' else: replacement = None plt.text(xpos(xleft), ypos(ytop), top_left, color=CABBI_colors.teal.shade(50).RGBn, horizontalalignment='left', verticalalignment='top', fontsize=10, fontweight='bold', zorder=10) top_left = replacement if ylb < 0. and xlb < 0. and bottom_left: if bottom_left.endswith('()'): p = (y_lt_0 & x_lt_0).sum() / y.size bottom_left = f"{p:.0%} {bottom_left.strip('()')}" replacement = '()' else: replacement = None plt.text(xpos(xleft), ypos(ybottom), bottom_left, color=CABBI_colors.grey.shade(75).RGBn, horizontalalignment='left', verticalalignment='bottom', fontsize=10, fontweight='bold', zorder=10) bottom_left = replacement if yub > 0. and xub > 0. and top_right: if top_right.endswith('()'): p = (y_mt_0 & x_mt_0).sum() / y.size top_right = f"{p:.0%} {top_right.strip('()')}" replacement = '()' else: replacement = None plt.text(xpos(xright), ypos(ytop), top_right, color=CABBI_colors.grey.shade(75).RGBn, horizontalalignment='right', verticalalignment='top', fontsize=10, fontweight='bold', zorder=10) top_right = replacement if ylb < 0. and xub > 0. and bottom_right: if bottom_right.endswith('()'): p = (y_lt_0 & x_mt_0).sum() / y.size bottom_right = f"{p:.0%} {bottom_right.strip('()')}" replacement = '()' else: replacement = None plt.text(xpos(xright), ypos(ybottom), bottom_right, color=colors.red.shade(50).RGBn, horizontalalignment='right', verticalalignment='bottom', fontsize=10, fontweight='bold', zorder=10) bottom_right = replacement plt.subplots_adjust( hspace=0, wspace=0, top=0.98, bottom=0.15, left=0.1, right=0.98, ) if titles: plt.subplots_adjust( top=0.90, ) for ax, letter in zip(axes[0, :], titles): plt.sca(ax) ylb, yub = plt.ylim() xlb, xub = plt.xlim() plt.text((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.17, letter, color=letter_color, horizontalalignment='center', verticalalignment='center', fontsize=12, fontweight='bold') def plot_feedstock_conventional_comparison_kde(): plot_kde( 'O1 - S1', yticks=[-20, -10, 0, 10, 20, 30, 40], xticks=[-0.12, -0.09, -0.06, -0.03, 0, 0.03, 0.06], top_left='Oilcane Favored', bottom_right='Sugarcane\nFavored', top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'feedstock_conventional_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_feedstock_cellulosic_comparison_kde(): plot_kde( 'O2 - S2', yticks=[-40, -20, 0, 20, 40, 60, 80], xticks=[-5, -4, -3, -2, -1, 0], top_left='Oilcane Favored', bottom_right='Sugarcane Favored', top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', fx=1000., ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'feedstock_cellulosic_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_feedstock_comparison_kde(): plot_kde_2d( ('O1 - S1', 'O2 - S2'), yticks=[[-10, 0, 10, 20, 30, 40, 50, 60]], xticks=[[-0.12, -0.09, -0.06, -0.03, 0, 0.03, 0.06], [-2.0, -1.5, -1, -0.5, 0., 0.5, 1.0]], top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', top_left='Oilcane\nFavored()', bottom_right='\nSugarcane\nFavored()', titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'], ) plt.subplots_adjust( wspace=0, ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'feedstock_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_configuration_comparison_kde(): plot_kde( 'O1 - O2', yticks=[-20, 0, 20, 40, 60], xticks=[-2, -1.5, -1, -0.5, 0, 0.5, 1], top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', top_left='DC Favored()', bottom_right='ICF\nFavored()', ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'configuration_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_separated_configuration_comparison_kde(): plot_kde_2d( ('O1', 'O2'), yticks=[[-20, 0, 20, 40, 60]], xticks=[ [0, 0.5, 1, 1.5], [0, 2, 4, 6, 8, 10] ], top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', top_left='DC Favored()', bottom_right='ICF\nFavored()', ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'separated_configuration_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_crude_configuration_comparison_kde(): plot_kde_2d( ('O1 - O3', 'O2 - O4'), yticks=[[-12, 0, 12, 24, 36, 48]], xticks=[ [-0.5, -0.4, -0.3, -0.2, -0.1, 0], [-1, -0.8, -0.6, -0.4, -0.2, 0] ], top_right='GWP\nTradeoff()', bottom_left='MFPP\nTradeoff()', top_left='Biodiesel\nProduction Favored()', bottom_right='Crude Oil\nProduction Favored()', titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'], ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'crude_configuration_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_agile_comparison_kde(): plot_kde_2d( ('O1* - O1', 'O2* - O2'), metrics=[TCI, MFPP], yticks=[[0, 3, 6, 9, 12, 15]], xticks=2*[[-150, -125, -100, -75, -50, -25, 0]], top_right='TCI-Tradeoff()', bottom_left='MFPP\nTradeoff()', top_left='Sorghum\nIntegration Favored()', bottom_right='Cane-only\nFavored()', xbox_kwargs=dict(light=CABBI_colors.green_dirty.RGBn, dark=CABBI_colors.green_dirty.shade(60).RGBn), titles=['(A) Direct Cogeneration', '(B) Integrated Co-Fermentation'], ) for i in ('svg', 'png'): file = os.path.join(images_folder, f'agile_conventional_comparison_kde.{i}') plt.savefig(file, transparent=True) def plot_open_comparison_kde(overlap=False): metrics = [MFPP, TCI, GWP_ethanol, biodiesel_production] df_conventional_oc = oc.get_monte_carlo('O1', metrics) df_cellulosic_oc = oc.get_monte_carlo('O2', metrics) df_conventional_sc = oc.get_monte_carlo('S1', metrics) df_cellulosic_sc = oc.get_monte_carlo('S2', metrics) MFPPi = MFPP.index TCIi = TCI.index if overlap: ys = np.zeros([1, 2], dtype=object) xs = np.zeros([1, 2], dtype=object) ys[0, 0] = (df_conventional_oc[MFPPi], df_cellulosic_oc[MFPPi]) ys[0, 1] = (df_conventional_sc[MFPPi], df_cellulosic_sc[MFPPi]) xs[0, 0] = (df_conventional_oc[TCIi], df_cellulosic_oc[TCIi]) xs[0, 1] = (df_conventional_sc[TCIi], df_cellulosic_sc[TCIi]) yticks = [[-30, -15, 0, 15, 30, 45, 60, 75]] xticks = 2*[[200, 300, 400, 500, 600]] else: ys = np.array([ [df_conventional_oc[MFPPi], df_conventional_sc[MFPPi]], [df_cellulosic_oc[MFPPi], df_cellulosic_sc[MFPPi]] ]) xs = np.array([ [df_conventional_oc[TCIi], df_conventional_sc[TCIi]], [df_cellulosic_oc[TCIi], df_cellulosic_sc[TCIi]] ]) yticks = 2*[[-30, -15, 0, 15, 30, 45, 60, 75]] xticks = 2*[[200, 300, 400, 500, 600]] bst.plots.plot_kde_2d( ys=ys, xs=xs, xticks=xticks, yticks=yticks, xbox_kwargs=[dict(position=1), dict(position=1)], ybox_kwargs=[dict(position=0), dict(position=0)], ) #%% General Monte Carlo box plots def plot_monte_carlo_across_coordinate(coordinate, data, color_wheel): if isinstance(data, list): return [plot_monte_carlo_across_coordinate(coordinate, i, color_wheel) for i in data] else: color = color_wheel.next() return bst.plots.plot_montecarlo_across_coordinate( coordinate, data, light_color=color.tint(50).RGBn, dark_color=color.shade(50).RGBn, ) def monte_carlo_box_plot(data, positions, light_color, dark_color, width=None, hatch=None, outliers=False, **kwargs): if width is None: width = 0.8 if outliers: flierprops = {'marker':'D', 'markerfacecolor': light_color, 'markeredgecolor': dark_color, 'markersize':3} else: flierprops = {'marker':''} bp = plt.boxplot( x=data, positions=positions, patch_artist=True, widths=width, whis=[5, 95], boxprops={'facecolor':light_color, 'edgecolor':dark_color}, medianprops={'color':dark_color, 'linewidth':1.5}, flierprops=flierprops, **kwargs ) if hatch: for box in bp['boxes']: box.set(hatch = hatch) def plot_monte_carlo(derivative=False, absolute=True, comparison=True, configuration_names=None, comparison_names=None, metrics=None, labels=None, tickmarks=None, agile=True, ncols=1, expand=None, step_min=None, agile_only=False, xrot=None, color_wheel=None, axes_box=None): if derivative: default_configuration_names = ['O1', 'O2'] default_comparison_names = ['O2 - O1'] metric_info = mc_derivative_metric_settings default_metrics = list(metric_info) else: default_configuration_names = oc.configuration_names[:-2] default_comparison_names = oc.comparison_names if comparison: metric_info = mc_comparison_settings else: metric_info = mc_metric_settings if agile_only: default_configuration_names = [i for i in default_configuration_names if '*' in i] default_comparison_names = [i for i in default_comparison_names if '*' in i] default_metrics = ['MFPP', 'TCI', 'production'] else: default_metrics = list(metric_info) if configuration_names is None: configuration_names = default_configuration_names if comparison_names is None: comparison_names = default_comparison_names if metrics is None: metrics = default_metrics combined = absolute and comparison if agile_only: configuration_names = [i for i in configuration_names if '*' in i] comparison_names = [i for i in comparison_names if '*' in i] elif not agile: configuration_names = [i for i in configuration_names if '*' not in i] comparison_names = [i for i in comparison_names if '*' not in i] if combined: columns = configurations = configuration_names + comparison_names elif absolute: columns = configurations = configuration_names elif comparison: columns = configurations = comparison_names else: columns = configurations = [] rows, ylabels, factors = zip(*[metric_info[i] for i in metrics]) factors = [(i, j) for i, j in enumerate(factors) if j is not None] if color_wheel is None: color_wheel = CABBI_colors.wheel() N_rows = len(rows) if axes_box is None: fig, axes_box = plt.subplots(ncols=ncols, nrows=int(round(N_rows / ncols))) plt.subplots_adjust(wspace=0.45) else: fig = None axes = axes_box.transpose() axes = axes.flatten() N_cols = len(columns) xtext = labels or [format_name(i).replace(' ', '') for i in configurations] N_marks = len(xtext) xticks = tuple(range(N_marks)) def get_data(metric, name): try: df = get_monte_carlo(name, metric) except: return np.zeros([1, 1]) else: values = df.values return values def plot(arr, position): if arr.ndim == 2: N = arr.shape[1] width = 0.618 / N boxwidth = 0.618 / (N + 1/N) plots = [] for i in range(N): color = color_wheel.next() boxplot = monte_carlo_box_plot( data=arr[:, i], positions=[position + (i-(N-1)/2)*width], light_color=color.RGBn, dark_color=color.shade(60).RGBn, width=boxwidth, hatch=getattr(color, 'hatch', None), ) plots.append(boxplot) return plots else: color = color_wheel.next() return monte_carlo_box_plot( data=arr, positions=[position], light_color=color.RGBn, dark_color=color.shade(60).RGBn, width=0.618, ) data = np.zeros([N_rows, N_cols], dtype=object) data[:] = [[get_data(i, j) for j in columns] for i in rows] for i, j in factors: data[i, :] *= j if tickmarks is None: tickmarks = [ bst.plots.rounded_tickmarks_from_data( i, step_min=step_min, N_ticks=8, lb_max=0, center=0, f=roundsigfigs, expand=expand, f_min=lambda x: np.percentile(x, 5), f_max=lambda x: np.percentile(x, 95), ) for i in data ] x0 = len(configuration_names) - 0.5 xf = len(columns) - 0.5 for i in range(N_rows): ax = axes[i] plt.sca(ax) if combined: bst.plots.plot_vertical_line(x0) ax.axvspan(x0, xf, color=colors.purple_tint.tint(60).RGBn) plt.xlim(-0.5, xf) for j in range(N_cols): color_wheel.restart() for i in range(N_rows): ax = axes[i] plt.sca(ax) plot(data[i, j], j) plt.ylabel(ylabels[i]) for i in range(N_rows): ax = axes[i] plt.sca(ax) yticks = tickmarks[i] plt.ylim([yticks[0], yticks[1]]) if yticks[0] < 0.: bst.plots.plot_horizontal_line(0, color=CABBI_colors.black.RGBn, lw=0.8, linestyle='--') try: xticklabels = xtext if ax in axes_box[-1] else [] except: xticklabels = xtext if i == N_rows - 1 else [] bst.plots.style_axis(ax, xticks = xticks, yticks = yticks, xticklabels= xticklabels, ytick0=False, ytickf=False, offset_xticks=True, xrot=xrot, ) if fig is None: fig = plt.gcf() else: plt.subplots_adjust(hspace=0) fig.align_ylabels(axes) return fig, axes #%% Spearman def plot_spearman(configurations, labels=None, metric=None, kind=None, with_units=None, legend=None, legend_kwargs=None, **kwargs): if kind is None: kind = 'TEA' if with_units is None: with_units = True if legend is None: legend = True if metric is None: if kind == 'TEA': metric = MFPP metric_name = metric.name elif kind == 'LCA': metric = GWP_economic metric_name = r'GWP$_{\mathrm{economic}}$' else: raise ValueError(f"invalid kind '{kind}'") else: if metric == 'MFPP': metric = MFPP elif metric == 'GWP': metric = GWP_economic metric_name = metric.name stream_price = format_units('USD/L') USD_MT = format_units('USD/MT') ng_price = format_units('USD/m^3') electricity_price = format_units('USD/kWhr') operating_days = format_units('day/yr') capacity = format_units('10^6 MT/yr') titer = format_units('g/L') productivity = format_units('g/L/hr') material_GWP = '$\\mathrm{kg} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{kg}^{-1}$' feedstock_GWP = '$\\mathrm{g} \\cdot \\mathrm{CO}_{2}\\mathrm{eq} \\cdot \\mathrm{kg}^{-1}$' index, ignored_list = zip(*[ ('Crushing mill oil recovery [60 $-$ 95 %]', ['S2', 'S1', 'S2*', 'S1*']), ('Saccharification oil recovery [70 $-$ 95 %]', ['S2', 'S1', 'S2*', 'S1*', 'O1', 'O1*']), (f'Cane operating days [120 $-$ 180 {operating_days}]', []), (f'Sorghum operating days [30 $-$ 60 {operating_days}]', ['S2', 'S1', 'O1', 'O2']), (f'Crushing capacity [1.2 $-$ 2.0 {capacity}]', []), (f'Ethanol price [0.269, 0.476, 0.758 {stream_price}]', []), (f'Relative biodiesel price [0.0819, 0.786, 1.09 {stream_price}]', []), (f'Natural gas price [0.105, 0.122, 0.175 {ng_price}]', ['S1', 'O1', 'S1*', 'O1*']), (f'Electricity price [0.0583, 0.065, 0.069 {electricity_price}]', ['S2', 'O2', 'S2*', 'O2*']), ('IRR [10 $-$ 15 %]', []), (f'Crude glycerol price [100 $-$ 220 {USD_MT}]', ['S2', 'S1', 'S2*', 'S1*']), (f'Pure glycerol price [488 $-$ 812 {USD_MT}]', ['S2', 'S1', 'S2*', 'S1*']), ('Saccharification reaction time [54 $-$ 90 hr]', ['S1', 'O1', 'S1*', 'O1*']), (f'Cellulase price [159 $-$ 265 {USD_MT}]', ['S1', 'O1', 'S1*', 'O1*']), ('Cellulase loading [1.5 $-$ 2.5 wt. % cellulose]', ['S1', 'O1', 'S1*', 'O1*']), ('PTRS base cost [14.9 $-$ 24.7 MMUSD]', ['S1', 'O1', 'S1*', 'O1*']), # ('Pretreatment reactor system base cost [14.9 $-$ 24.7 MMUSD]', ['S1', 'O1', 'S1*', 'O1*']), ('Cane glucose yield [85 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']), ('Sorghum glucose yield [85 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']), ('Cane xylose yield [65 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']), ('Sorghum xylose yield [65 $-$ 97.5 %]', ['S1', 'O1', 'S1*', 'O1*']), ('Glucose to ethanol yield [90 $-$ 95 %]', ['S1', 'O1', 'S1*', 'O1*']), ('Xylose to ethanol yield [50 $-$ 95 %]', ['S1', 'O1', 'S1*', 'O1*']), (f'Titer [65 $-$ 130 {titer}]', ['S1', 'O1', 'S1*', 'O1*']), (f'Productivity [1.0 $-$ 2.0 {productivity}]', ['S1', 'O1', 'S1*', 'O1*']), ('Cane PL content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']), ('Sorghum PL content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']), ('Cane FFA content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']), ('Sorghum FFA content [7.5 $-$ 12.5 %]', ['S2', 'S1', 'S2*', 'S1*']), ('Cane oil content [5 $-$ 15 dry wt. %]', ['S2', 'S1', 'S2*', 'S1*']), ('Relative sorghum oil content [-3 $-$ 0 dry wt. %]', ['S2', 'S1', 'S2*', 'S1*', 'O2', 'O1']), ('TAG to FFA conversion [17.25 $-$ 28.75 % theoretical]', ['S1', 'O1', 'S1*', 'O1*']), # TODO: change lower upper values to baseline +- 10% (f'Feedstock GWPCF [26.3 $-$ 44.0 {feedstock_GWP}]', ['S1', 'S2', 'S1*', 'S2*']), (f'Methanol GWPCF [0.338 $-$ 0.563 {material_GWP}]', ['S1', 'S2', 'S1*', 'S2*']), (f'Pure glycerine GWPCF [1.25 $-$ 2.08 {material_GWP}]', ['S1', 'S2', 'S1*', 'S2*']), (f'Cellulase GWPCF [6.05 $-$ 10.1 {material_GWP}]', ['S1', 'O1', 'S1*', 'O1*']), (f'Natural gas GWPCF [0.297 $-$ 0.363 {material_GWP}]', ['S1', 'O1', 'S1*', 'O1*']), ]) if not with_units: index = [i.split(' [')[0] for i in index] ignored_dct = { 'S1': [], 'O1': [], 'S2': [], 'O2': [], 'S1*': [], 'O1*': [], 'S2*': [], 'O2*': [], } for i, ignored in enumerate(ignored_list): for name in ignored: ignored_dct[name].append(i) index_name = index[i] if kind == 'LCA': for term in ('cost', 'price', 'IRR', 'time', 'capacity'): if term in index_name: for name in ignored_dct: ignored_dct[name].append(i) break elif kind == 'TEA': if 'GWP' in index_name: for name in ignored_dct: ignored_dct[name].append(i) else: raise ValueError(f"invalid kind '{kind}'") rhos = [] for name in configurations: file = spearman_file(name) try: df = pd.read_excel(file, header=[0, 1], index_col=[0, 1]) except: warning = RuntimeWarning(f"file '{file}' not found") warn(warning) continue s = df[metric.index] s.iloc[ignored_dct[name]] = 0. rhos.append(s) color_wheel = [CABBI_colors.orange, CABBI_colors.green_soft, CABBI_colors.blue, CABBI_colors.brown] fig, ax = bst.plots.plot_spearman_2d(rhos, index=index, color_wheel=color_wheel, name=metric_name, **kwargs) if legend: if legend_kwargs is None: legend_kwargs = {'loc': 'lower left'} plt.legend( handles=[ mpatches.Patch( color=color_wheel[i].RGBn, label=labels[i] if labels else format_name(configurations[i]) ) for i in range(len(configurations)) ], **legend_kwargs, ) return fig, ax # %% Other def plot_configuration_breakdown(name, across_coordinate=False, **kwargs): oc.load(name) if across_coordinate: return bst.plots.plot_unit_groups_across_coordinate( oc.set_cane_oil_content, [5, 7.5, 10, 12.5], 'Feedstock oil content [dry wt. %]', oc.unit_groups, colors=[area_colors[i.name].RGBn for i in oc.unit_groups], hatches=[area_hatches[i.name] for i in oc.unit_groups], **kwargs, ) else: def format_total(x): if x < 1e3: return format(x, '.3g') else: x = int(x) n = 10 ** (len(str(x)) - 3) value = int(round(x / n) * n) return format(value, ',') for i in oc.unit_groups: if i.name == 'EtOH prod.': i.name = 'Ethanol production' elif i.name == 'Oil ext.': i.name = 'Oil extraction' elif i.name == 'Biod. prod.': i.name = 'Biodiesel production' i.metrics[0].name = 'Inst. eq.\ncost' i.metrics[3].name = 'Elec.\ncons.' i.metrics[4].name = 'Mat.\ncost' return bst.plots.plot_unit_groups( oc.unit_groups, colors=[area_colors[i.name].RGBn for i in oc.unit_groups], hatches=[area_hatches[i.name] for i in oc.unit_groups], format_total=format_total, fraction=True, legend_kwargs=dict( loc='lower center', ncol=4, bbox_to_anchor=(0, -0.52), labelspacing=1.5, handlelength=2.8, handleheight=1, scale=0.8, ), **kwargs, ) def plot_TCI_areas_across_oil_content(configuration='O2'): oc.load(configuration) data = {i.name: [] for i in oc.unit_groups} increasing_areas = [] decreasing_areas = [] oil_contents = np.linspace(5, 15, 10) for i in oil_contents: oc.set_cane_oil_content(i) oc.sys.simulate() for i in oc.unit_groups: data[i.name].append(i.get_installed_cost()) for name, group_data in data.items(): lb, *_, ub = group_data if ub > lb: increasing_areas.append(group_data) else: decreasing_areas.append(group_data) increasing_values = np.sum(increasing_areas, axis=0) increasing_values -= increasing_values[0] decreasing_values = np.sum(decreasing_areas, axis=0) decreasing_values -= decreasing_values[-1] plt.plot(oil_contents, increasing_values, label='Oil & fiber areas') plt.plot(oil_contents, decreasing_values, label='Sugar areas') # def plot_monte_carlo_across_oil_content(kind=0, derivative=False): # MFPP, TCI, *production, electricity_production, natural_gas_consumption = tea_monte_carlo_metric_mockups # rows = [MFPP, TCI, production] # if kind == 0: # columns = across_oil_content_names # elif kind == 1: # columns = across_oil_content_agile_names # elif kind == 2: # columns = across_oil_content_comparison_names # elif kind == 3: # columns = across_oil_content_agile_comparison_names # elif kind == 4: # columns = across_oil_content_agile_direct_comparison_names # else: # raise NotImplementedError(str(kind)) # if derivative: # x = 100 * (oil_content[:-1] + np.diff(oil_content) / 2.) # ylabels = [ # f"MFPP der. [{format_units('USD/MT')}]", # f"TCI der. [{format_units('10^6*USD')}]", # f"Production der. [{format_units('L/MT')}]" # ] # else: # x = 100 * oil_content # ylabels = [ # f"MFPP$\backprime$ [{format_units('USD/MT')}]", # f"TCI [{format_units('10^6*USD')}]", # f"Production [{format_units('L/MT')}]" # ] # N_cols = len(columns) # N_rows = len(rows) # fig, axes = plt.subplots(ncols=N_cols, nrows=N_rows) # data = np.zeros([N_rows, N_cols], dtype=object) # def get_data(metric, name): # if isinstance(metric, bst.Variable): # return get_monte_carlo_across_oil_content(name, metric, derivative) # else: # return [get_data(i, name) for i in metric] # data = np.array([[get_data(i, j) for j in columns] for i in rows]) # tickmarks = [None] * N_rows # get_max = lambda x: max([i.max() for i in x]) if isinstance(x, list) else x.max() # get_min = lambda x: min([i.min() for i in x]) if isinstance(x, list) else x.min() # N_ticks = 5 # for r in range(N_rows): # lb = min(min([get_min(i) for i in data[r, :]]), 0) # ub = max([get_max(i) for i in data[r, :]]) # diff = 0.1 * (ub - lb) # ub += diff # if derivative: # lb = floor(lb) # ub = ceil(ub) # step = (ub - lb) / (N_ticks - 1) # tickmarks[r] = [0, 1] if step == 0 else [int(lb + step * i) for i in range(N_ticks)] # else: # if rows[r] is MFPP: # if kind == 0 or kind == 1: # tickmarks[r] = [-20, 0, 20, 40, 60] # elif kind == 2: # tickmarks[r] = [-20, -10, 0, 10, 20] # elif kind == 3: # tickmarks[r] = [-10, 0, 10, 20, 30] # elif kind == 4: # tickmarks[r] = [-5, 0, 5, 10, 15] # continue # lb = floor(lb / 15) * 15 # ub = ceil(ub / 15) * 15 # step = (ub - lb) / (N_ticks - 1) # tickmarks[r] = [0, 1] if step == 0 else [int(lb + step * i) for i in range(N_ticks)] # color_wheel = CABBI_colors.wheel() # for j in range(N_cols): # color_wheel.restart() # for i in range(N_rows): # arr = data[i, j] # ax = axes[i, j] # plt.sca(ax) # percentiles = plot_monte_carlo_across_coordinate(x, arr, color_wheel) # if i == 0: ax.set_title(format_name(columns[j])) # xticklabels = i == N_rows - 1 # yticklabels = j == 0 # if xticklabels: plt.xlabel('Oil content [dry wt. %]') # if yticklabels: plt.ylabel(ylabels[i]) # bst.plots.style_axis(ax, # xticks = [5, 10, 15], # yticks = tickmarks[i], # xticklabels= xticklabels, # yticklabels= yticklabels, # ytick0=False) # for i in range(N_cols): fig.align_ylabels(axes[:, i]) # plt.subplots_adjust(hspace=0.1, wspace=0.1)
[ "matplotlib.pyplot.boxplot", "biosteam.utils.colors.red.shade", "matplotlib.pyplot.grid", "biosteam.utils.CABBI_colors.orange.shade", "matplotlib.pyplot.ylabel", "biosteam.plots.plot_quadrants", "biosteam.plots.style_axis", "biosteam.MockVariable", "numpy.array", "biosteam.utils.CABBI_colors.green_dirty.shade", "biosteam.utils.CABBI_colors.wheel", "pandas.read_excel", "colorpalette.Palette", "biosteam.plots.plot_vertical_line", "thermosteam.units_of_measure.format_units", "biorefineries.oilcane.set_cane_oil_content", "biorefineries.oilcane.sys.simulate", "matplotlib.pyplot.plot", "matplotlib.gridspec.GridSpec", "numpy.linspace", "biosteam.utils.CABBI_colors.orange.copy", "warnings.warn", "matplotlib.pyplot.ylim", "biosteam.utils.CABBI_colors.blue.shade", "matplotlib.pyplot.savefig", "matplotlib.pyplot.gcf", "biosteam.utils.CABBI_colors.grey.shade", "biosteam.utils.colors.neutral.shade", "matplotlib.pyplot.cm.get_cmap", "thermosteam.utils.set_figure_size", "matplotlib.pyplot.xlim", "biorefineries.oilcane.get_monte_carlo", "biosteam.plots.plot_heatmap", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.show", "biosteam.plots.plot_spearman_2d", "matplotlib.pyplot.text", "biosteam.plots.plot_horizontal_line", "biosteam.utils.CABBI_colors.teal.shade", "thermosteam.utils.set_font", "biosteam.plots.plot_unit_groups_across_coordinate", "os.path.join", "matplotlib.pyplot.sca", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "biosteam.utils.colors.purple_tint.tint", "numpy.percentile", "numpy.zeros_like", "matplotlib.pyplot.subplots", "biorefineries.oilcane.load" ]
[((3524, 3546), 'colorpalette.Palette', 'Palette', ([], {}), '(**area_colors)\n', (3531, 3546), False, 'from colorpalette import Palette\n'), ((3762, 3800), 'biosteam.utils.CABBI_colors.orange.copy', 'CABBI_colors.orange.copy', ([], {'hatch': '"""////"""'}), "(hatch='////')\n", (3786, 3800), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((3831, 3896), 'biosteam.MockVariable', 'bst.MockVariable', (['"""Ethanol over biodiesel"""', '"""L/MT"""', '"""Biorefinery"""'], {}), "('Ethanol over biodiesel', 'L/MT', 'Biorefinery')\n", (3847, 3896), True, 'import biosteam as bst\n'), ((3562, 3586), 'biosteam.utils.colors.neutral.shade', 'colors.neutral.shade', (['(25)'], {}), '(25)\n', (3582, 3586), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((7273, 7289), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (7281, 7289), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((7294, 7328), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(0.85)'}), '(aspect_ratio=0.85)\n', (7309, 7328), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((7339, 7351), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7349, 7351), True, 'import matplotlib.pyplot as plt\n'), ((7369, 7461), 'matplotlib.gridspec.GridSpec', 'GridSpec', (['(4)', '(3)', 'fig'], {'hspace': '(1.5)', 'wspace': '(0.7)', 'top': '(0.9)', 'bottom': '(0.05)', 'left': '(0.11)', 'right': '(0.97)'}), '(4, 3, fig, hspace=1.5, wspace=0.7, top=0.9, bottom=0.05, left=0.11,\n right=0.97)\n', (7377, 7461), False, 'from matplotlib.gridspec import GridSpec\n'), ((9025, 9035), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9033, 9035), True, 'import matplotlib.pyplot as plt\n'), ((14658, 14674), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (14666, 14674), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((14679, 14712), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(0.5)'}), '(aspect_ratio=0.5)\n', (14694, 14712), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((15779, 15869), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0)', 'wspace': '(0.7)', 'top': '(0.95)', 'bottom': '(0.1)', 'left': '(0.12)', 'right': '(0.96)'}), '(hspace=0, wspace=0.7, top=0.95, bottom=0.1, left=0.12,\n right=0.96)\n', (15798, 15869), True, 'import matplotlib.pyplot as plt\n'), ((16079, 16095), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (16087, 16095), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((16100, 16134), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(1.05)'}), '(aspect_ratio=1.05)\n', (16115, 16134), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((16999, 17075), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.12)', 'right': '(0.95)', 'wspace': '(0.4)', 'top': '(0.98)', 'bottom': '(0.2)'}), '(left=0.12, right=0.95, wspace=0.4, top=0.98, bottom=0.2)\n', (17018, 17075), True, 'import matplotlib.pyplot as plt\n'), ((17298, 17314), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (17306, 17314), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((17319, 17361), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': 'aspect_ratio'}), '(aspect_ratio=aspect_ratio)\n', (17334, 17361), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((17680, 17746), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.45)', 'right': '(0.975)', 'top': '(0.98)', 'bottom': '(0.08)'}), '(left=0.45, right=0.975, top=0.98, bottom=0.08)\n', (17699, 17746), True, 'import matplotlib.pyplot as plt\n'), ((17928, 17944), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (17936, 17944), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((17949, 18005), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(0.65)', 'width': '(6.6142 * 2 / 3)'}), '(aspect_ratio=0.65, width=6.6142 * 2 / 3)\n', (17964, 18005), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((18338, 18404), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.35)', 'right': '(0.975)', 'top': '(0.98)', 'bottom': '(0.15)'}), '(left=0.35, right=0.975, top=0.98, bottom=0.15)\n', (18357, 18404), True, 'import matplotlib.pyplot as plt\n'), ((18623, 18639), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (18631, 18639), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((18644, 18708), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': 'aspect_ratio', 'width': '(6.6142 * 2 / 3)'}), '(aspect_ratio=aspect_ratio, width=6.6142 * 2 / 3)\n', (18659, 18708), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((19002, 19068), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.35)', 'right': '(0.975)', 'top': '(0.98)', 'bottom': '(0.15)'}), '(left=0.35, right=0.975, top=0.98, bottom=0.15)\n', (19021, 19068), True, 'import matplotlib.pyplot as plt\n'), ((19280, 19296), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (19288, 19296), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((19301, 19343), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': 'aspect_ratio'}), '(aspect_ratio=aspect_ratio)\n', (19316, 19343), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((19662, 19727), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.45)', 'right': '(0.975)', 'top': '(0.98)', 'bottom': '(0.1)'}), '(left=0.45, right=0.975, top=0.98, bottom=0.1)\n', (19681, 19727), True, 'import matplotlib.pyplot as plt\n'), ((19894, 19910), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (19902, 19910), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((19915, 19949), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(0.68)'}), '(aspect_ratio=0.68)\n', (19930, 19949), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((19966, 19996), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(2)'}), '(nrows=1, ncols=2)\n', (19978, 19996), True, 'import matplotlib.pyplot as plt\n'), ((20001, 20017), 'matplotlib.pyplot.sca', 'plt.sca', (['axes[0]'], {}), '(axes[0])\n', (20008, 20017), True, 'import matplotlib.pyplot as plt\n'), ((20087, 20103), 'matplotlib.pyplot.sca', 'plt.sca', (['axes[1]'], {}), '(axes[1])\n', (20094, 20103), True, 'import matplotlib.pyplot as plt\n'), ((20247, 20261), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""""""'], {}), "('')\n", (20257, 20261), True, 'import matplotlib.pyplot as plt\n'), ((20266, 20343), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.09)', 'right': '(0.96)', 'wspace': '(0.0)', 'top': '(0.84)', 'bottom': '(0.31)'}), '(left=0.09, right=0.96, wspace=0.0, top=0.84, bottom=0.31)\n', (20285, 20343), True, 'import matplotlib.pyplot as plt\n'), ((22700, 22740), 'numpy.zeros', 'np.zeros', (['[N_rows, N_cols]'], {'dtype': 'object'}), '([N_rows, N_cols], dtype=object)\n', (22708, 22740), True, 'import numpy as np\n'), ((22819, 22851), 'numpy.zeros_like', 'np.zeros_like', (['data'], {'dtype': 'float'}), '(data, dtype=float)\n', (22832, 22851), True, 'import numpy as np\n'), ((23118, 23132), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (23130, 23132), True, 'import matplotlib.pyplot as plt\n'), ((23320, 23460), 'biosteam.plots.plot_heatmap', 'bst.plots.plot_heatmap', (['(100 * fractions)'], {'vmin': '(0)', 'vmax': '(100)', 'ax': 'ax', 'cell_labels': 'medians', 'metric_bar': 'mbar', 'xlabels': 'xlabels', 'ylabels': 'ylabels'}), '(100 * fractions, vmin=0, vmax=100, ax=ax,\n cell_labels=medians, metric_bar=mbar, xlabels=xlabels, ylabels=ylabels)\n', (23342, 23460), True, 'import biosteam as bst\n'), ((23546, 23557), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (23553, 23557), True, 'import matplotlib.pyplot as plt\n'), ((23598, 23654), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)', '"""major"""', '"""both"""'], {'lw': '(1)', 'color': '"""w"""', 'ls': '"""-"""'}), "(True, 'major', 'both', lw=1, color='w', ls='-')\n", (23606, 23654), True, 'import matplotlib.pyplot as plt\n'), ((23897, 23913), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (23905, 23913), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((23918, 23965), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'width': '"""half"""', 'aspect_ratio': '(1.2)'}), "(width='half', aspect_ratio=1.2)\n", (23933, 23965), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((24016, 24049), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['name', 'metrics'], {}), '(name, metrics)\n', (24034, 24049), True, 'import biorefineries.oilcane as oc\n'), ((24592, 24603), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (24599, 24603), True, 'import matplotlib.pyplot as plt\n'), ((24692, 24718), 'biosteam.plots.plot_quadrants', 'bst.plots.plot_quadrants', ([], {}), '()\n', (24716, 24718), True, 'import biosteam as bst\n'), ((24734, 24744), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (24742, 24744), True, 'import matplotlib.pyplot as plt\n'), ((24760, 24770), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (24768, 24770), True, 'import matplotlib.pyplot as plt\n'), ((26662, 26758), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0.05)', 'wspace': '(0.05)', 'top': '(0.98)', 'bottom': '(0.15)', 'left': '(0.15)', 'right': '(0.98)'}), '(hspace=0.05, wspace=0.05, top=0.98, bottom=0.15, left=\n 0.15, right=0.98)\n', (26681, 26758), True, 'import matplotlib.pyplot as plt\n'), ((27025, 27041), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (27033, 27041), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((27046, 27080), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'aspect_ratio': '(0.65)'}), '(aspect_ratio=0.65)\n', (27061, 27080), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((27337, 27371), 'numpy.array', 'np.array', (['[[df[Xi] for df in dfs]]'], {}), '([[df[Xi] for df in dfs]])\n', (27345, 27371), True, 'import numpy as np\n'), ((27381, 27415), 'numpy.array', 'np.array', (['[[df[Yi] for df in dfs]]'], {}), '([[df[Yi] for df in dfs]])\n', (27389, 27415), True, 'import numpy as np\n'), ((31052, 31140), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0)', 'wspace': '(0)', 'top': '(0.98)', 'bottom': '(0.15)', 'left': '(0.1)', 'right': '(0.98)'}), '(hspace=0, wspace=0, top=0.98, bottom=0.15, left=0.1,\n right=0.98)\n', (31071, 31140), True, 'import matplotlib.pyplot as plt\n'), ((33141, 33170), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0)'}), '(wspace=0)\n', (33160, 33170), True, 'import matplotlib.pyplot as plt\n'), ((35929, 35962), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['"""O1"""', 'metrics'], {}), "('O1', metrics)\n", (35947, 35962), True, 'import biorefineries.oilcane as oc\n'), ((35986, 36019), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['"""O2"""', 'metrics'], {}), "('O2', metrics)\n", (36004, 36019), True, 'import biorefineries.oilcane as oc\n'), ((36045, 36078), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['"""S1"""', 'metrics'], {}), "('S1', metrics)\n", (36063, 36078), True, 'import biorefineries.oilcane as oc\n'), ((36102, 36135), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['"""S2"""', 'metrics'], {}), "('S2', metrics)\n", (36120, 36135), True, 'import biorefineries.oilcane as oc\n'), ((38200, 38447), 'matplotlib.pyplot.boxplot', 'plt.boxplot', ([], {'x': 'data', 'positions': 'positions', 'patch_artist': '(True)', 'widths': 'width', 'whis': '[5, 95]', 'boxprops': "{'facecolor': light_color, 'edgecolor': dark_color}", 'medianprops': "{'color': dark_color, 'linewidth': 1.5}", 'flierprops': 'flierprops'}), "(x=data, positions=positions, patch_artist=True, widths=width,\n whis=[5, 95], boxprops={'facecolor': light_color, 'edgecolor':\n dark_color}, medianprops={'color': dark_color, 'linewidth': 1.5},\n flierprops=flierprops, **kwargs)\n", (38211, 38447), True, 'import matplotlib.pyplot as plt\n'), ((42466, 42506), 'numpy.zeros', 'np.zeros', (['[N_rows, N_cols]'], {'dtype': 'object'}), '([N_rows, N_cols], dtype=object)\n', (42474, 42506), True, 'import numpy as np\n'), ((45080, 45101), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/L"""'], {}), "('USD/L')\n", (45092, 45101), False, 'from thermosteam.units_of_measure import format_units\n'), ((45115, 45137), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/MT"""'], {}), "('USD/MT')\n", (45127, 45137), False, 'from thermosteam.units_of_measure import format_units\n'), ((45153, 45176), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/m^3"""'], {}), "('USD/m^3')\n", (45165, 45176), False, 'from thermosteam.units_of_measure import format_units\n'), ((45201, 45225), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/kWhr"""'], {}), "('USD/kWhr')\n", (45213, 45225), False, 'from thermosteam.units_of_measure import format_units\n'), ((45247, 45269), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""day/yr"""'], {}), "('day/yr')\n", (45259, 45269), False, 'from thermosteam.units_of_measure import format_units\n'), ((45285, 45311), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""10^6 MT/yr"""'], {}), "('10^6 MT/yr')\n", (45297, 45311), False, 'from thermosteam.units_of_measure import format_units\n'), ((45324, 45343), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""g/L"""'], {}), "('g/L')\n", (45336, 45343), False, 'from thermosteam.units_of_measure import format_units\n'), ((45363, 45385), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""g/L/hr"""'], {}), "('g/L/hr')\n", (45375, 45385), False, 'from thermosteam.units_of_measure import format_units\n'), ((50066, 50169), 'biosteam.plots.plot_spearman_2d', 'bst.plots.plot_spearman_2d', (['rhos'], {'index': 'index', 'color_wheel': 'color_wheel', 'name': 'metric_name'}), '(rhos, index=index, color_wheel=color_wheel, name\n =metric_name, **kwargs)\n', (50092, 50169), True, 'import biosteam as bst\n'), ((50827, 50840), 'biorefineries.oilcane.load', 'oc.load', (['name'], {}), '(name)\n', (50834, 50840), True, 'import biorefineries.oilcane as oc\n'), ((52583, 52605), 'biorefineries.oilcane.load', 'oc.load', (['configuration'], {}), '(configuration)\n', (52590, 52605), True, 'import biorefineries.oilcane as oc\n'), ((52725, 52747), 'numpy.linspace', 'np.linspace', (['(5)', '(15)', '(10)'], {}), '(5, 15, 10)\n', (52736, 52747), True, 'import numpy as np\n'), ((53142, 53174), 'numpy.sum', 'np.sum', (['increasing_areas'], {'axis': '(0)'}), '(increasing_areas, axis=0)\n', (53148, 53174), True, 'import numpy as np\n'), ((53245, 53277), 'numpy.sum', 'np.sum', (['decreasing_areas'], {'axis': '(0)'}), '(decreasing_areas, axis=0)\n', (53251, 53277), True, 'import numpy as np\n'), ((53329, 53397), 'matplotlib.pyplot.plot', 'plt.plot', (['oil_contents', 'increasing_values'], {'label': '"""Oil & fiber areas"""'}), "(oil_contents, increasing_values, label='Oil & fiber areas')\n", (53337, 53397), True, 'import matplotlib.pyplot as plt\n'), ((53402, 53464), 'matplotlib.pyplot.plot', 'plt.plot', (['oil_contents', 'decreasing_values'], {'label': '"""Sugar areas"""'}), "(oil_contents, decreasing_values, label='Sugar areas')\n", (53410, 53464), True, 'import matplotlib.pyplot as plt\n'), ((9080, 9142), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_main_manuscript.{i}"""'], {}), "(images_folder, f'montecarlo_main_manuscript.{i}')\n", (9092, 9142), False, 'import os\n'), ((9151, 9186), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (9162, 9186), True, 'import matplotlib.pyplot as plt\n'), ((9608, 9624), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (9616, 9624), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((9633, 9688), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'width': 'width', 'aspect_ratio': 'aspect_ratio'}), '(width=width, aspect_ratio=aspect_ratio)\n', (9648, 9688), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((10503, 10514), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (10510, 10514), True, 'import matplotlib.pyplot as plt\n'), ((10534, 10544), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (10542, 10544), True, 'import matplotlib.pyplot as plt\n'), ((10553, 10718), 'matplotlib.pyplot.text', 'plt.text', (['(1.65)', '(ylb + (yub - ylb) * 0.9)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(1.65, ylb + (yub - ylb) * 0.9, letter, color=letter_color,\n horizontalalignment='center', verticalalignment='center', fontsize=12,\n fontweight='bold')\n", (10561, 10718), True, 'import matplotlib.pyplot as plt\n'), ((11089, 11174), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'right': '(0.96)', 'left': 'left', 'wspace': '(0.38)', 'top': '(0.98)', 'bottom': 'bottom'}), '(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom\n )\n', (11108, 11174), True, 'import matplotlib.pyplot as plt\n'), ((12024, 12040), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (12032, 12040), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((12049, 12104), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'width': 'width', 'aspect_ratio': 'aspect_ratio'}), '(width=width, aspect_ratio=aspect_ratio)\n', (12064, 12104), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((12699, 12710), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (12706, 12710), True, 'import matplotlib.pyplot as plt\n'), ((12730, 12740), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (12738, 12740), True, 'import matplotlib.pyplot as plt\n'), ((12749, 12911), 'matplotlib.pyplot.text', 'plt.text', (['x', '(ylb + (yub - ylb) * 0.9)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(x, ylb + (yub - ylb) * 0.9, letter, color=letter_color,\n horizontalalignment='center', verticalalignment='center', fontsize=12,\n fontweight='bold')\n", (12757, 12911), True, 'import matplotlib.pyplot as plt\n'), ((12971, 13056), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'right': '(0.96)', 'left': 'left', 'wspace': '(0.38)', 'top': '(0.98)', 'bottom': 'bottom'}), '(right=0.96, left=left, wspace=0.38, top=0.98, bottom=bottom\n )\n', (12990, 13056), True, 'import matplotlib.pyplot as plt\n'), ((13329, 13345), 'thermosteam.utils.set_font', 'set_font', ([], {'size': '(8)'}), '(size=8)\n', (13337, 13345), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((13354, 13401), 'thermosteam.utils.set_figure_size', 'set_figure_size', ([], {'width': '(3.3071)', 'aspect_ratio': '(1.0)'}), '(width=3.3071, aspect_ratio=1.0)\n', (13369, 13401), False, 'from thermosteam.utils import set_figure_size, set_font, roundsigfigs\n'), ((13795, 13806), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (13802, 13806), True, 'import matplotlib.pyplot as plt\n'), ((13826, 13836), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (13834, 13836), True, 'import matplotlib.pyplot as plt\n'), ((13845, 14010), 'matplotlib.pyplot.text', 'plt.text', (['(1.65)', '(ylb + (yub - ylb) * 0.9)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(1.65, ylb + (yub - ylb) * 0.9, letter, color=letter_color,\n horizontalalignment='center', verticalalignment='center', fontsize=12,\n fontweight='bold')\n", (13853, 14010), True, 'import matplotlib.pyplot as plt\n'), ((14375, 14450), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'right': '(0.9)', 'left': '(0.2)', 'wspace': '(0.5)', 'top': '(0.98)', 'bottom': '(0.15)'}), '(right=0.9, left=0.2, wspace=0.5, top=0.98, bottom=0.15)\n', (14394, 14450), True, 'import matplotlib.pyplot as plt\n'), ((15533, 15544), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (15540, 15544), True, 'import matplotlib.pyplot as plt\n'), ((15564, 15574), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (15572, 15574), True, 'import matplotlib.pyplot as plt\n'), ((15583, 15748), 'matplotlib.pyplot.text', 'plt.text', (['(1.65)', '(ylb + (yub - ylb) * 0.9)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(1.65, ylb + (yub - ylb) * 0.9, letter, color=letter_color,\n horizontalalignment='center', verticalalignment='center', fontsize=12,\n fontweight='bold')\n", (15591, 15748), True, 'import matplotlib.pyplot as plt\n'), ((15940, 15997), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_derivative.{i}"""'], {}), "(images_folder, f'montecarlo_derivative.{i}')\n", (15952, 15997), False, 'import os\n'), ((16006, 16041), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (16017, 16041), True, 'import matplotlib.pyplot as plt\n'), ((16754, 16765), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (16761, 16765), True, 'import matplotlib.pyplot as plt\n'), ((16785, 16795), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (16793, 16795), True, 'import matplotlib.pyplot as plt\n'), ((16804, 16969), 'matplotlib.pyplot.text', 'plt.text', (['(7.8)', '(ylb + (yub - ylb) * 0.92)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "(7.8, ylb + (yub - ylb) * 0.92, letter, color=letter_color,\n horizontalalignment='center', verticalalignment='center', fontsize=12,\n fontweight='bold')\n", (16812, 16969), True, 'import matplotlib.pyplot as plt\n'), ((17121, 17176), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_absolute.{i}"""'], {}), "(images_folder, f'montecarlo_absolute.{i}')\n", (17133, 17176), False, 'import os\n'), ((17185, 17220), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (17196, 17220), True, 'import matplotlib.pyplot as plt\n'), ((17791, 17839), 'os.path.join', 'os.path.join', (['images_folder', 'f"""spearman_tea.{i}"""'], {}), "(images_folder, f'spearman_tea.{i}')\n", (17803, 17839), False, 'import os\n'), ((17848, 17883), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (17859, 17883), True, 'import matplotlib.pyplot as plt\n'), ((18449, 18497), 'os.path.join', 'os.path.join', (['images_folder', 'f"""spearman_tea.{i}"""'], {}), "(images_folder, f'spearman_tea.{i}')\n", (18461, 18497), False, 'import os\n'), ((18506, 18541), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (18517, 18541), True, 'import matplotlib.pyplot as plt\n'), ((19113, 19161), 'os.path.join', 'os.path.join', (['images_folder', 'f"""spearman_lca.{i}"""'], {}), "(images_folder, f'spearman_lca.{i}')\n", (19125, 19161), False, 'import os\n'), ((19170, 19205), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (19181, 19205), True, 'import matplotlib.pyplot as plt\n'), ((19773, 19821), 'os.path.join', 'os.path.join', (['images_folder', 'f"""spearman_lca.{i}"""'], {}), "(images_folder, f'spearman_lca.{i}')\n", (19785, 19821), False, 'import os\n'), ((19830, 19865), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (19841, 19865), True, 'import matplotlib.pyplot as plt\n'), ((20447, 20458), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (20454, 20458), True, 'import matplotlib.pyplot as plt\n'), ((20478, 20488), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (20486, 20488), True, 'import matplotlib.pyplot as plt\n'), ((20508, 20518), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (20516, 20518), True, 'import matplotlib.pyplot as plt\n'), ((20527, 20706), 'matplotlib.pyplot.text', 'plt.text', (['((xlb + xub) * 0.5)', '(ylb + (yub - ylb) * 1.2)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.2, letter, color=\n letter_color, horizontalalignment='center', verticalalignment='center',\n fontsize=12, fontweight='bold')\n", (20535, 20706), True, 'import matplotlib.pyplot as plt\n'), ((20777, 20823), 'os.path.join', 'os.path.join', (['images_folder', 'f"""breakdowns.{i}"""'], {}), "(images_folder, f'breakdowns.{i}')\n", (20789, 20823), False, 'import os\n'), ((20832, 20867), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (20843, 20867), True, 'import matplotlib.pyplot as plt\n'), ((21043, 21074), 'numpy.percentile', 'np.percentile', (['data', '(50)'], {'axis': '(0)'}), '(data, 50, axis=0)\n', (21056, 21074), True, 'import numpy as np\n'), ((27177, 27207), 'biorefineries.oilcane.get_monte_carlo', 'oc.get_monte_carlo', (['i', 'metrics'], {}), '(i, metrics)\n', (27195, 27207), True, 'import biorefineries.oilcane as oc\n'), ((31191, 31219), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'top': '(0.9)'}), '(top=0.9)\n', (31210, 31219), True, 'import matplotlib.pyplot as plt\n'), ((32011, 32084), 'os.path.join', 'os.path.join', (['images_folder', 'f"""feedstock_conventional_comparison_kde.{i}"""'], {}), "(images_folder, f'feedstock_conventional_comparison_kde.{i}')\n", (32023, 32084), False, 'import os\n'), ((32093, 32128), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (32104, 32128), True, 'import matplotlib.pyplot as plt\n'), ((32520, 32591), 'os.path.join', 'os.path.join', (['images_folder', 'f"""feedstock_cellulosic_comparison_kde.{i}"""'], {}), "(images_folder, f'feedstock_cellulosic_comparison_kde.{i}')\n", (32532, 32591), False, 'import os\n'), ((32600, 32635), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (32611, 32635), True, 'import matplotlib.pyplot as plt\n'), ((33239, 33299), 'os.path.join', 'os.path.join', (['images_folder', 'f"""feedstock_comparison_kde.{i}"""'], {}), "(images_folder, f'feedstock_comparison_kde.{i}')\n", (33251, 33299), False, 'import os\n'), ((33308, 33343), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (33319, 33343), True, 'import matplotlib.pyplot as plt\n'), ((33703, 33767), 'os.path.join', 'os.path.join', (['images_folder', 'f"""configuration_comparison_kde.{i}"""'], {}), "(images_folder, f'configuration_comparison_kde.{i}')\n", (33715, 33767), False, 'import os\n'), ((33776, 33811), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (33787, 33811), True, 'import matplotlib.pyplot as plt\n'), ((34231, 34305), 'os.path.join', 'os.path.join', (['images_folder', 'f"""separated_configuration_comparison_kde.{i}"""'], {}), "(images_folder, f'separated_configuration_comparison_kde.{i}')\n", (34243, 34305), False, 'import os\n'), ((34314, 34349), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (34325, 34349), True, 'import matplotlib.pyplot as plt\n'), ((34922, 34992), 'os.path.join', 'os.path.join', (['images_folder', 'f"""crude_configuration_comparison_kde.{i}"""'], {}), "(images_folder, f'crude_configuration_comparison_kde.{i}')\n", (34934, 34992), False, 'import os\n'), ((35001, 35036), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (35012, 35036), True, 'import matplotlib.pyplot as plt\n'), ((35683, 35752), 'os.path.join', 'os.path.join', (['images_folder', 'f"""agile_conventional_comparison_kde.{i}"""'], {}), "(images_folder, f'agile_conventional_comparison_kde.{i}')\n", (35695, 35752), False, 'import os\n'), ((35761, 35796), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (35772, 35796), True, 'import matplotlib.pyplot as plt\n'), ((36209, 36239), 'numpy.zeros', 'np.zeros', (['[1, 2]'], {'dtype': 'object'}), '([1, 2], dtype=object)\n', (36217, 36239), True, 'import numpy as np\n'), ((36253, 36283), 'numpy.zeros', 'np.zeros', (['[1, 2]'], {'dtype': 'object'}), '([1, 2], dtype=object)\n', (36261, 36283), True, 'import numpy as np\n'), ((36695, 36818), 'numpy.array', 'np.array', (['[[df_conventional_oc[MFPPi], df_conventional_sc[MFPPi]], [df_cellulosic_oc[\n MFPPi], df_cellulosic_sc[MFPPi]]]'], {}), '([[df_conventional_oc[MFPPi], df_conventional_sc[MFPPi]], [\n df_cellulosic_oc[MFPPi], df_cellulosic_sc[MFPPi]]])\n', (36703, 36818), True, 'import numpy as np\n'), ((36861, 36980), 'numpy.array', 'np.array', (['[[df_conventional_oc[TCIi], df_conventional_sc[TCIi]], [df_cellulosic_oc[\n TCIi], df_cellulosic_sc[TCIi]]]'], {}), '([[df_conventional_oc[TCIi], df_conventional_sc[TCIi]], [\n df_cellulosic_oc[TCIi], df_cellulosic_sc[TCIi]]])\n', (36869, 36980), True, 'import numpy as np\n'), ((40847, 40867), 'biosteam.utils.CABBI_colors.wheel', 'CABBI_colors.wheel', ([], {}), '()\n', (40865, 40867), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((41008, 41040), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.45)'}), '(wspace=0.45)\n', (41027, 41040), True, 'import matplotlib.pyplot as plt\n'), ((43121, 43132), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (43128, 43132), True, 'import matplotlib.pyplot as plt\n'), ((43278, 43296), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-0.5)', 'xf'], {}), '(-0.5, xf)\n', (43286, 43296), True, 'import matplotlib.pyplot as plt\n'), ((43566, 43577), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (43573, 43577), True, 'import matplotlib.pyplot as plt\n'), ((43616, 43648), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[yticks[0], yticks[1]]'], {}), '([yticks[0], yticks[1]])\n', (43624, 43648), True, 'import matplotlib.pyplot as plt\n'), ((43935, 44078), 'biosteam.plots.style_axis', 'bst.plots.style_axis', (['ax'], {'xticks': 'xticks', 'yticks': 'yticks', 'xticklabels': 'xticklabels', 'ytick0': '(False)', 'ytickf': '(False)', 'offset_xticks': '(True)', 'xrot': 'xrot'}), '(ax, xticks=xticks, yticks=yticks, xticklabels=\n xticklabels, ytick0=False, ytickf=False, offset_xticks=True, xrot=xrot)\n', (43955, 44078), True, 'import biosteam as bst\n'), ((44210, 44219), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (44217, 44219), True, 'import matplotlib.pyplot as plt\n'), ((44238, 44267), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(0)'}), '(hspace=0)\n', (44257, 44267), True, 'import matplotlib.pyplot as plt\n'), ((50882, 51163), 'biosteam.plots.plot_unit_groups_across_coordinate', 'bst.plots.plot_unit_groups_across_coordinate', (['oc.set_cane_oil_content', '[5, 7.5, 10, 12.5]', '"""Feedstock oil content [dry wt. %]"""', 'oc.unit_groups'], {'colors': '[area_colors[i.name].RGBn for i in oc.unit_groups]', 'hatches': '[area_hatches[i.name] for i in oc.unit_groups]'}), "(oc.set_cane_oil_content, [5, \n 7.5, 10, 12.5], 'Feedstock oil content [dry wt. %]', oc.unit_groups,\n colors=[area_colors[i.name].RGBn for i in oc.unit_groups], hatches=[\n area_hatches[i.name] for i in oc.unit_groups], **kwargs)\n", (50926, 51163), True, 'import biosteam as bst\n'), ((52783, 52809), 'biorefineries.oilcane.set_cane_oil_content', 'oc.set_cane_oil_content', (['i'], {}), '(i)\n', (52806, 52809), True, 'import biorefineries.oilcane as oc\n'), ((52818, 52835), 'biorefineries.oilcane.sys.simulate', 'oc.sys.simulate', ([], {}), '()\n', (52833, 52835), True, 'import biorefineries.oilcane as oc\n'), ((10264, 10379), 'biosteam.utils.CABBI_colors.wheel', 'CABBI_colors.wheel', (["['blue_light', 'green_dirty', 'orange', 'green', 'orange', 'orange_hatch',\n 'grey', 'brown']"], {}), "(['blue_light', 'green_dirty', 'orange', 'green',\n 'orange', 'orange_hatch', 'grey', 'brown'])\n", (10282, 10379), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((11222, 11289), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_feedstock_comparison.{i}"""'], {}), "(images_folder, f'montecarlo_feedstock_comparison.{i}')\n", (11234, 11289), False, 'import os\n'), ((11302, 11337), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (11313, 11337), True, 'import matplotlib.pyplot as plt\n'), ((12478, 12576), 'biosteam.utils.CABBI_colors.wheel', 'CABBI_colors.wheel', (["['blue_light', 'green_dirty', 'orange', 'green', 'orange', 'orange_hatch']"], {}), "(['blue_light', 'green_dirty', 'orange', 'green',\n 'orange', 'orange_hatch'])\n", (12496, 12576), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((13104, 13175), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_configuration_comparison.{i}"""'], {}), "(images_folder, f'montecarlo_configuration_comparison.{i}')\n", (13116, 13175), False, 'import os\n'), ((13188, 13223), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (13199, 13223), True, 'import matplotlib.pyplot as plt\n'), ((14096, 14285), 'matplotlib.pyplot.text', 'plt.text', (['(0.5)', '(ylb - (yub - ylb) * 0.25)', '"""Impact of integrating oilsorghum\nat an agile oilcane biorefinery"""'], {'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(8)'}), '(0.5, ylb - (yub - ylb) * 0.25,\n """Impact of integrating oilsorghum\nat an agile oilcane biorefinery""",\n horizontalalignment=\'center\', verticalalignment=\'center\', fontsize=8)\n', (14104, 14285), True, 'import matplotlib.pyplot as plt\n'), ((14503, 14566), 'os.path.join', 'os.path.join', (['images_folder', 'f"""montecarlo_agile_comparison.{i}"""'], {}), "(images_folder, f'montecarlo_agile_comparison.{i}')\n", (14515, 14566), False, 'import os\n'), ((14579, 14614), 'matplotlib.pyplot.savefig', 'plt.savefig', (['file'], {'transparent': '(True)'}), '(file, transparent=True)\n', (14590, 14614), True, 'import matplotlib.pyplot as plt\n'), ((15342, 15441), 'biosteam.utils.CABBI_colors.wheel', 'CABBI_colors.wheel', (["['blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown', 'orange']"], {}), "(['blue_light', 'green_dirty', 'orange', 'green', 'grey',\n 'brown', 'orange'])\n", (15360, 15441), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((16524, 16661), 'biosteam.utils.CABBI_colors.wheel', 'CABBI_colors.wheel', (["['blue_light', 'green_dirty', 'orange', 'green', 'grey', 'brown', 'orange',\n 'orange', 'green', 'orange', 'green']"], {}), "(['blue_light', 'green_dirty', 'orange', 'green', 'grey',\n 'brown', 'orange', 'orange', 'green', 'orange', 'green'])\n", (16542, 16661), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((23273, 23298), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""RdYlGn"""'], {}), "('RdYlGn')\n", (23288, 23298), True, 'import matplotlib.pyplot as plt\n'), ((28028, 28039), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (28035, 28039), True, 'import matplotlib.pyplot as plt\n'), ((28178, 28204), 'biosteam.plots.plot_quadrants', 'bst.plots.plot_quadrants', ([], {}), '()\n', (28202, 28204), True, 'import biosteam as bst\n'), ((28228, 28238), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (28236, 28238), True, 'import matplotlib.pyplot as plt\n'), ((28262, 28272), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (28270, 28272), True, 'import matplotlib.pyplot as plt\n'), ((31307, 31318), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (31314, 31318), True, 'import matplotlib.pyplot as plt\n'), ((31342, 31352), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (31350, 31352), True, 'import matplotlib.pyplot as plt\n'), ((31376, 31386), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (31384, 31386), True, 'import matplotlib.pyplot as plt\n'), ((31399, 31579), 'matplotlib.pyplot.text', 'plt.text', (['((xlb + xub) * 0.5)', '(ylb + (yub - ylb) * 1.17)', 'letter'], {'color': 'letter_color', 'horizontalalignment': '"""center"""', 'verticalalignment': '"""center"""', 'fontsize': '(12)', 'fontweight': '"""bold"""'}), "((xlb + xub) * 0.5, ylb + (yub - ylb) * 1.17, letter, color=\n letter_color, horizontalalignment='center', verticalalignment='center',\n fontsize=12, fontweight='bold')\n", (31407, 31579), True, 'import matplotlib.pyplot as plt\n'), ((43166, 43198), 'biosteam.plots.plot_vertical_line', 'bst.plots.plot_vertical_line', (['x0'], {}), '(x0)\n', (43194, 43198), True, 'import biosteam as bst\n'), ((43425, 43436), 'matplotlib.pyplot.sca', 'plt.sca', (['ax'], {}), '(ax)\n', (43432, 43436), True, 'import matplotlib.pyplot as plt\n'), ((43481, 43503), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabels[i]'], {}), '(ylabels[i])\n', (43491, 43503), True, 'import matplotlib.pyplot as plt\n'), ((43688, 43780), 'biosteam.plots.plot_horizontal_line', 'bst.plots.plot_horizontal_line', (['(0)'], {'color': 'CABBI_colors.black.RGBn', 'lw': '(0.8)', 'linestyle': '"""--"""'}), "(0, color=CABBI_colors.black.RGBn, lw=0.8,\n linestyle='--')\n", (43718, 43780), True, 'import biosteam as bst\n'), ((49675, 49727), 'pandas.read_excel', 'pd.read_excel', (['file'], {'header': '[0, 1]', 'index_col': '[0, 1]'}), '(file, header=[0, 1], index_col=[0, 1])\n', (49688, 49727), True, 'import pandas as pd\n'), ((4068, 4090), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/MT"""'], {}), "('USD/MT')\n", (4080, 4090), False, 'from thermosteam.units_of_measure import format_units\n'), ((4128, 4152), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""10^6*USD"""'], {}), "('10^6*USD')\n", (4140, 4152), False, 'from thermosteam.units_of_measure import format_units\n'), ((4211, 4231), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""L/MT"""'], {}), "('L/MT')\n", (4223, 4231), False, 'from thermosteam.units_of_measure import format_units\n'), ((4315, 4338), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""kWhr/MT"""'], {}), "('kWhr/MT')\n", (4327, 4338), False, 'from thermosteam.units_of_measure import format_units\n'), ((4421, 4443), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""m^3/MT"""'], {}), "('m^3/MT')\n", (4433, 4443), False, 'from thermosteam.units_of_measure import format_units\n'), ((22155, 22177), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/MT"""'], {}), "('USD/MT')\n", (22167, 22177), False, 'from thermosteam.units_of_measure import format_units\n'), ((22199, 22223), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""10^6*USD"""'], {}), "('10^6*USD')\n", (22211, 22223), False, 'from thermosteam.units_of_measure import format_units\n'), ((22260, 22280), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""L/MT"""'], {}), "('L/MT')\n", (22272, 22280), False, 'from thermosteam.units_of_measure import format_units\n'), ((22319, 22339), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""L/MT"""'], {}), "('L/MT')\n", (22331, 22339), False, 'from thermosteam.units_of_measure import format_units\n'), ((22369, 22392), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""kWhr/MT"""'], {}), "('kWhr/MT')\n", (22381, 22392), False, 'from thermosteam.units_of_measure import format_units\n'), ((22419, 22441), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""m^3/MT"""'], {}), "('m^3/MT')\n", (22431, 22441), False, 'from thermosteam.units_of_measure import format_units\n'), ((41430, 41446), 'numpy.zeros', 'np.zeros', (['[1, 1]'], {}), '([1, 1])\n', (41438, 41446), True, 'import numpy as np\n'), ((49822, 49835), 'warnings.warn', 'warn', (['warning'], {}), '(warning)\n', (49826, 49835), False, 'from warnings import warn\n'), ((4885, 4907), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/MT"""'], {}), "('USD/MT')\n", (4897, 4907), False, 'from thermosteam.units_of_measure import format_units\n'), ((4959, 4983), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""10^6*USD"""'], {}), "('10^6*USD')\n", (4971, 4983), False, 'from thermosteam.units_of_measure import format_units\n'), ((5056, 5076), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""L/MT"""'], {}), "('L/MT')\n", (5068, 5076), False, 'from thermosteam.units_of_measure import format_units\n'), ((5174, 5197), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""kWhr/MT"""'], {}), "('kWhr/MT')\n", (5186, 5197), False, 'from thermosteam.units_of_measure import format_units\n'), ((5294, 5316), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""m^3/MT"""'], {}), "('m^3/MT')\n", (5306, 5316), False, 'from thermosteam.units_of_measure import format_units\n'), ((5945, 5967), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""USD/MT"""'], {}), "('USD/MT')\n", (5957, 5967), False, 'from thermosteam.units_of_measure import format_units\n'), ((6086, 6110), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""10^6*USD"""'], {}), "('10^6*USD')\n", (6098, 6110), False, 'from thermosteam.units_of_measure import format_units\n'), ((6287, 6307), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""L/MT"""'], {}), "('L/MT')\n", (6299, 6307), False, 'from thermosteam.units_of_measure import format_units\n'), ((6462, 6485), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""kWhr/MT"""'], {}), "('kWhr/MT')\n", (6474, 6485), False, 'from thermosteam.units_of_measure import format_units\n'), ((6643, 6665), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""m^3/MT"""'], {}), "('m^3/MT')\n", (6655, 6665), False, 'from thermosteam.units_of_measure import format_units\n'), ((25271, 25298), 'biosteam.utils.CABBI_colors.teal.shade', 'CABBI_colors.teal.shade', (['(50)'], {}), '(50)\n', (25294, 25298), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((25680, 25707), 'biosteam.utils.CABBI_colors.grey.shade', 'CABBI_colors.grey.shade', (['(75)'], {}), '(75)\n', (25703, 25707), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((26082, 26109), 'biosteam.utils.CABBI_colors.grey.shade', 'CABBI_colors.grey.shade', (['(75)'], {}), '(75)\n', (26105, 26109), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((26497, 26517), 'biosteam.utils.colors.red.shade', 'colors.red.shade', (['(50)'], {}), '(50)\n', (26513, 26517), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((5880, 5903), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""MFPP/OC"""'], {}), "('MFPP/OC')\n", (5892, 5903), False, 'from thermosteam.units_of_measure import format_units\n'), ((6022, 6044), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""TCI/OC"""'], {}), "('TCI/OC')\n", (6034, 6044), False, 'from thermosteam.units_of_measure import format_units\n'), ((6221, 6245), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""Prod./OC"""'], {}), "('Prod./OC')\n", (6233, 6245), False, 'from thermosteam.units_of_measure import format_units\n'), ((6399, 6420), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""EP/OC"""'], {}), "('EP/OC')\n", (6411, 6420), False, 'from thermosteam.units_of_measure import format_units\n'), ((6579, 6601), 'thermosteam.units_of_measure.format_units', 'format_units', (['"""NGC/OC"""'], {}), "('NGC/OC')\n", (6591, 6601), False, 'from thermosteam.units_of_measure import format_units\n'), ((35513, 35547), 'biosteam.utils.CABBI_colors.green_dirty.shade', 'CABBI_colors.green_dirty.shade', (['(60)'], {}), '(60)\n', (35543, 35547), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((42869, 42888), 'numpy.percentile', 'np.percentile', (['x', '(5)'], {}), '(x, 5)\n', (42882, 42888), True, 'import numpy as np\n'), ((42922, 42942), 'numpy.percentile', 'np.percentile', (['x', '(95)'], {}), '(x, 95)\n', (42935, 42942), True, 'import numpy as np\n'), ((43236, 43263), 'biosteam.utils.colors.purple_tint.tint', 'colors.purple_tint.tint', (['(60)'], {}), '(60)\n', (43259, 43263), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((24435, 24464), 'biosteam.utils.CABBI_colors.orange.shade', 'CABBI_colors.orange.shade', (['(60)'], {}), '(60)\n', (24460, 24464), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((24547, 24574), 'biosteam.utils.CABBI_colors.blue.shade', 'CABBI_colors.blue.shade', (['(60)'], {}), '(60)\n', (24570, 24574), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((28982, 29009), 'biosteam.utils.CABBI_colors.teal.shade', 'CABBI_colors.teal.shade', (['(50)'], {}), '(50)\n', (29005, 29009), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((29602, 29629), 'biosteam.utils.CABBI_colors.grey.shade', 'CABBI_colors.grey.shade', (['(75)'], {}), '(75)\n', (29625, 29629), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((30216, 30243), 'biosteam.utils.CABBI_colors.grey.shade', 'CABBI_colors.grey.shade', (['(75)'], {}), '(75)\n', (30239, 30243), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((30836, 30856), 'biosteam.utils.colors.red.shade', 'colors.red.shade', (['(50)'], {}), '(50)\n', (30852, 30856), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((27804, 27831), 'biosteam.utils.CABBI_colors.blue.shade', 'CABBI_colors.blue.shade', (['(60)'], {}), '(60)\n', (27827, 27831), False, 'from biosteam.utils import CABBI_colors, colors\n'), ((27690, 27719), 'biosteam.utils.CABBI_colors.orange.shade', 'CABBI_colors.orange.shade', (['(60)'], {}), '(60)\n', (27715, 27719), False, 'from biosteam.utils import CABBI_colors, colors\n')]
import numpy as np from ..layers.Layer import LayerTrainable class LayeredModel(object): def __init__(self, layers): """ layers : a list of layers. Treated as a feed-forward model """ assert len(layers) > 0, "Model layers must be non-empty" # check that the output of each layer is the same size as the input of # the next layer #for l1, l2 in zip(layers[:-1], layers[1:]): # print(l1.output_size, l2.input_size) for l1, l2 in zip(layers[:-1], layers[1:]): #print(l1,l2) #print(l1.output_size,l2.input_size) assert l1.output_size == l2.input_size, "layers do not match input to output in the model" self.layers = layers def reset(self): for l in self.layers: l.reset() def forward(self, x, end_layer=None): """ x : data to push through the network end_layer : the layer to stop the forward movement of the data. Used for training. (default=None) """ x = x.squeeze() assert (self.layers[0].input_size == 1 and x.shape == ()) or len(x) == self.layers[0].input_size, "unexpected input dimensionality (check bias)" # if an end layer has not been named, feedforward the entire model if end_layer is None: f_layers = self.layers else: f_layers = self.layers[:end_layer] # for l in f_layers: # x = np.array(l.forward(x)) for l in f_layers: #print(l.info()) x = l.forward(x) return x def train(self, X, y, warmup_timesteps=100, data_repeats=1): """ x : input data to train on y : output data to train on warmup_timesteps : number of timesteps to run the data before training (default=100) """ assert isinstance(self.layers[-1], LayerTrainable), "This model cannot be trained because the final layer of type {} is not trainable".format(type(self.layers[-1])) # TODO: for now we assume ONLY the last layer can be trained # warmup stage # for x in X[:warmup_timesteps]: # # some function that allows us to display # self.display() # _ = self.forward(x, len(self.layers)-1) # # training stage # y_forward = np.zeros((np.shape(X[warmup_timesteps:])[0], # self.layers[-1].input_size)) # for idx, x in enumerate(X[warmup_timesteps:]): # # some function that allows us to display # self.display() # y_p = self.forward(x, len(self.layers)-1) # y_forward[idx, :] = y_p # y_nonwarmup = y[warmup_timesteps:] y_forward = np.zeros((np.shape(X)[0] - data_repeats*warmup_timesteps, self.layers[-1].input_size)) y_nonwarmup = np.zeros((np.shape(y)[0] - data_repeats*warmup_timesteps, np.shape(y)[1])) y_idx = 0 data_rate = np.shape(X)[0] / data_repeats # print(data_rate) # print(X[:10]) # print(X[data_rate:(data_rate+10)]) for idx,x in enumerate(X): # some function that allows us to display self.display() # if idx % data_rate == 0: # print(x) # self.reset() if idx % data_rate < warmup_timesteps: _ = self.forward(x, len(self.layers)-1) else: y_p = self.forward(x, len(self.layers)-1) y_forward[y_idx, :] = y_p y_nonwarmup[y_idx, :] = y[idx, :] y_idx += 1 # training stage # y_forward = np.zeros((np.shape(X[warmup_timesteps:])[0], # self.layers[-1].input_size)) # for idx, x in enumerate(X[warmup_timesteps:]): # # some function that allows us to display # self.display() # y_p = self.forward(x, len(self.layers)-1) # y_forward[idx, :] = y_p # y_nonwarmup = y[warmup_timesteps:] self.layers[-1].train(y_forward, y_nonwarmup) def generate(self, x_data, count, reset_increment=-1, warmup_timesteps=0): """ Given a single datapoint, the model will feed this back into itself to produce generative output data. x_data : data to generate from (the first data point will be used unless reset_increment != -1) count : number of times to run the generative process reset_increment : how often to feed the generator the 'real' data value (default=-1 <= no reset) """ # y_outputs = [] y_outputs = np.zeros(count) # x = np.array(x_data[0]) x = x_data[0] for e in range(-warmup_timesteps, count, 1): # some function that allows us to display self.display() # if we enable reseting, feed the 'real' data in (e == 0) is for warm-up swap if e == 0 or (reset_increment != -1 and e % reset_increment == 0): assert e < len(x_data), "generating data is less than the specified count" x = x_data[e + warmup_timesteps] # forward generating without 'warmup' if e >= 0: x = self.forward(x) y_outputs[e] = x x = np.hstack((x, 1)) # forward generating with 'warmup' else: _ = self.forward(x_data[e + warmup_timesteps]) # return np.array(y_outputs).squeeze() return y_outputs.squeeze() def get_output_size(self): return self.layers[-1].output_size def get_input_size(self): return self.layers[0].input_size def display(self): pass
[ "numpy.shape", "numpy.zeros", "numpy.hstack" ]
[((4802, 4817), 'numpy.zeros', 'np.zeros', (['count'], {}), '(count)\n', (4810, 4817), True, 'import numpy as np\n'), ((3096, 3107), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (3104, 3107), True, 'import numpy as np\n'), ((5482, 5499), 'numpy.hstack', 'np.hstack', (['(x, 1)'], {}), '((x, 1))\n', (5491, 5499), True, 'import numpy as np\n'), ((3041, 3052), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (3049, 3052), True, 'import numpy as np\n'), ((2821, 2832), 'numpy.shape', 'np.shape', (['X'], {}), '(X)\n', (2829, 2832), True, 'import numpy as np\n'), ((2961, 2972), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (2969, 2972), True, 'import numpy as np\n')]
#%% import numpy as np from sapai.data import data from sapai.rand import MockRandomState #%% class Food(): def __init__(self, name="food-none", shop=None, team=[], seed_state = None): """ Food class definition the types of interactions that food undergoes """ if len(name) != 0: if not name.startswith("food-"): name = "food-{}".format(name) self.eaten = False self.shop = shop self.seed_state = seed_state if self.seed_state != None: self.rs = np.random.RandomState() self.rs.set_state(self.seed_state) else: ### Otherwise, set use self.rs = MockRandomState() self.attack = 0 self.health = 0 self.base_attack = 0 self.base_health = 0 self.status = "none" self.effect = "none" self.fd = {} self.name = name if name not in data["foods"]: raise Exception("Food {} not found".format(name)) fd = data["foods"][name]["ability"] self.fd = fd self.attack = 0 self.health = 0 self.effect = fd["effect"]["kind"] if "attackAmount" in fd["effect"]: self.attack = fd["effect"]["attackAmount"] self.base_attack = fd["effect"]["attackAmount"] if "healthAmount" in fd["effect"]: self.health = fd["effect"]["healthAmount"] self.base_health = fd["effect"]["healthAmount"] if "status" in fd["effect"]: self.status = fd["effect"]["status"] def apply(self, pet=None): """ Serve the food object to the input pet """ if self.eaten == True: raise Exception("This should not be possible") if self.name == "food-canned-food": self.shop.can += self.attack return pet.attack += self.attack pet.health += self.health if self.effect == "ModifyStats": ### Done return pet elif self.effect == "ApplyStatus": pet.status = self.status def copy(self): copy_food = Food(self.name, self.shop) for key,value in self.__dict__.items(): ### Although this approach will copy the internal dictionaries by ### reference rather than copy by value, these dictionaries will ### never be modified anyways. ### All integers and strings are copied by value automatically with ### Python, therefore, this achieves the correct behavior copy_food.__dict__[key] = value return copy_food @property def state(self): #### Ensure that state can be JSON serialized if getattr(self, "rs", False): if type(self.rs).__name__ == "MockRandomState": seed_state = None else: seed_state = list(self.rs.get_state()) seed_state[1] = seed_state[1].tolist() else: seed_state = None state_dict = { "type": "Food", "name": self.name, "eaten": self.eaten, "attack": self.attack, "health": self.health, "seed_state": seed_state } return state_dict @classmethod def from_state(cls, state): food = cls(name=state["name"]) food.attack = state["attack"] food.health = state["health"] food.eaten = state["eaten"], ### Supply seed_state in state dict should be optional if "seed_state" in state: if state["seed_state"] != None: food.seed_state = state["seed_state"] food.rs = np.random.RandomState() food.rs.set_state(state["seed_state"]) return food def __repr__(self): return "< {} {}-{} {} >".format( self.name, self.attack, self.health, self.status) # %%
[ "sapai.rand.MockRandomState", "numpy.random.RandomState" ]
[((661, 684), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (682, 684), True, 'import numpy as np\n'), ((804, 821), 'sapai.rand.MockRandomState', 'MockRandomState', ([], {}), '()\n', (819, 821), False, 'from sapai.rand import MockRandomState\n'), ((3925, 3948), 'numpy.random.RandomState', 'np.random.RandomState', ([], {}), '()\n', (3946, 3948), True, 'import numpy as np\n')]
import traceback import copy import gc from ctypes import c_void_p import itertools import array import math import numpy as np from OpenGL.GL import * from PyEngine3D.Common import logger from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler from PyEngine3D.OpenGLContext import OpenGLContext def get_numpy_dtype(data_type): if GL_BYTE == data_type: return np.int8 elif GL_UNSIGNED_BYTE == data_type: return np.uint8 elif GL_UNSIGNED_BYTE == data_type: return np.uint8 elif GL_SHORT == data_type: return np.int16 elif GL_UNSIGNED_SHORT == data_type: return np.uint16 elif GL_INT == data_type: return np.int32 elif GL_UNSIGNED_INT == data_type: return np.uint32 elif GL_UNSIGNED_INT64 == data_type: return np.uint64 elif GL_FLOAT == data_type: return np.float32 elif GL_DOUBLE == data_type: return np.float64 logger.error('Cannot convert to numpy dtype. UNKOWN DATA TYPE(%s)', data_type) return np.uint8 def get_internal_format(str_image_mode): if str_image_mode == "RGBA": return GL_RGBA8 elif str_image_mode == "RGB": return GL_RGB8 elif str_image_mode == "L" or str_image_mode == "P" or str_image_mode == "R": return GL_R8 else: logger.error("get_internal_format::unknown image mode ( %s )" % str_image_mode) return GL_RGBA8 def get_texture_format(str_image_mode): if str_image_mode == "RGBA": # R,G,B,A order. GL_BGRA is faster than GL_RGBA return GL_RGBA # GL_BGRA elif str_image_mode == "RGB": return GL_RGB elif str_image_mode == "L" or str_image_mode == "P" or str_image_mode == "R": return GL_RED else: logger.error("get_texture_format::unknown image mode ( %s )" % str_image_mode) return GL_RGBA def get_image_mode(texture_internal_format): if texture_internal_format in (GL_RGBA, GL_BGRA): return "RGBA" elif texture_internal_format in (GL_RGB, GL_BGR): return "RGB" elif texture_internal_format == GL_RG: return "RG" elif texture_internal_format in (GL_R8, GL_R16F, GL_RED, GL_DEPTH_STENCIL, GL_DEPTH_COMPONENT): return "R" elif texture_internal_format == GL_LUMINANCE: return "L" else: logger.error("get_image_mode::unknown image format ( %s )" % texture_internal_format) return "RGBA" def CreateTexture(**texture_datas): texture_class = texture_datas.get('texture_type', Texture2D) if texture_class is not None: if type(texture_class) is str: texture_class = eval(texture_class) return texture_class(**texture_datas) return None class Texture: target = GL_TEXTURE_2D default_wrap = GL_REPEAT use_glTexStorage = False def __init__(self, **texture_data): self.name = texture_data.get('name') self.attachment = False self.image_mode = "RGBA" self.internal_format = GL_RGBA8 self.texture_format = GL_RGBA self.sRGB = False self.clear_color = None self.multisample_count = 0 self.width = 0 self.height = 0 self.depth = 1 self.data_type = GL_UNSIGNED_BYTE self.min_filter = GL_LINEAR_MIPMAP_LINEAR self.mag_filter = GL_LINEAR self.enable_mipmap = False self.wrap = self.default_wrap self.wrap_s = self.default_wrap self.wrap_t = self.default_wrap self.wrap_r = self.default_wrap self.buffer = -1 self.sampler_handle = -1 self.attribute = Attributes() self.create_texture(**texture_data) def create_texture(self, **texture_data): if self.buffer != -1: self.delete() self.attachment = False self.image_mode = texture_data.get('image_mode') self.internal_format = texture_data.get('internal_format') self.texture_format = texture_data.get('texture_format') self.sRGB = texture_data.get('sRGB', False) self.clear_color = texture_data.get('clear_color') self.multisample_count = 0 if self.internal_format is None and self.image_mode: self.internal_format = get_internal_format(self.image_mode) if self.texture_format is None and self.image_mode: self.texture_format = get_texture_format(self.image_mode) if self.image_mode is None and self.texture_format: self.image_mode = get_image_mode(self.texture_format) # Convert to sRGB if self.sRGB: if self.internal_format == GL_RGB: self.internal_format = GL_SRGB8 elif self.internal_format == GL_RGBA: self.internal_format = GL_SRGB8_ALPHA8 if GL_RGBA == self.internal_format: self.internal_format = GL_RGBA8 if GL_RGB == self.internal_format: self.internal_format = GL_RGB8 self.width = int(texture_data.get('width', 0)) self.height = int(texture_data.get('height', 0)) self.depth = int(max(1, texture_data.get('depth', 1))) self.data_type = texture_data.get('data_type', GL_UNSIGNED_BYTE) self.min_filter = texture_data.get('min_filter', GL_LINEAR_MIPMAP_LINEAR) self.mag_filter = texture_data.get('mag_filter', GL_LINEAR) # GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR, GL_NEAREST mipmap_filters = (GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_NEAREST) self.enable_mipmap = self.min_filter in mipmap_filters if self.target == GL_TEXTURE_2D_MULTISAMPLE: self.enable_mipmap = False self.wrap = texture_data.get('wrap', self.default_wrap) # GL_REPEAT, GL_CLAMP self.wrap_s = texture_data.get('wrap_s') self.wrap_t = texture_data.get('wrap_t') self.wrap_r = texture_data.get('wrap_r') self.buffer = -1 self.sampler_handle = -1 # texture parameter overwrite # self.sampler_handle = glGenSamplers(1) # glSamplerParameteri(self.sampler_handle, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) # glBindSampler(0, self.sampler_handle) logger.info("Create %s : %s %dx%dx%d %s mipmap(%s)." % ( GetClassName(self), self.name, self.width, self.height, self.depth, str(self.internal_format), 'Enable' if self.enable_mipmap else 'Disable')) self.attribute = Attributes() def __del__(self): pass def delete(self): logger.info("Delete %s : %s" % (GetClassName(self), self.name)) glDeleteTextures([self.buffer, ]) self.buffer = -1 def get_texture_info(self): return dict( texture_type=self.__class__.__name__, width=self.width, height=self.height, depth=self.depth, image_mode=self.image_mode, internal_format=self.internal_format, texture_format=self.texture_format, data_type=self.data_type, min_filter=self.min_filter, mag_filter=self.mag_filter, wrap=self.wrap, wrap_s=self.wrap_s, wrap_t=self.wrap_t, wrap_r=self.wrap_r, ) def get_save_data(self): save_data = self.get_texture_info() data = self.get_image_data() if data is not None: save_data['data'] = data return save_data def get_mipmap_size(self, level=0): if 0 < level: divider = 2.0 ** level width = max(1, int(self.width / divider)) height = max(1, int(self.height / divider)) return width, height return self.width, self.height def get_image_data(self, level=0): if self.target not in (GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D): return None level = min(level, self.get_mipmap_count()) dtype = get_numpy_dtype(self.data_type) try: glBindTexture(self.target, self.buffer) data = OpenGLContext.glGetTexImage(self.target, level, self.texture_format, self.data_type) # convert to numpy array if type(data) is bytes: data = np.fromstring(data, dtype=dtype) else: data = np.array(data, dtype=dtype) glBindTexture(self.target, 0) return data except: logger.error(traceback.format_exc()) logger.error('%s failed to get image data.' % self.name) logger.info('Try to glReadPixels.') glBindTexture(self.target, self.buffer) fb = glGenFramebuffers(1) glBindFramebuffer(GL_FRAMEBUFFER, fb) data = [] for layer in range(self.depth): if GL_TEXTURE_2D == self.target: glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, self.buffer, level) elif GL_TEXTURE_3D == self.target: glFramebufferTexture3D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_3D, self.buffer, level, layer) elif GL_TEXTURE_2D_ARRAY == self.target: glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, self.buffer, level, layer) glReadBuffer(GL_COLOR_ATTACHMENT0) width, height = self.get_mipmap_size(level) pixels = glReadPixels(0, 0, width, height, self.texture_format, self.data_type) # convert to numpy array if type(pixels) is bytes: pixels = np.fromstring(pixels, dtype=dtype) data.append(pixels) data = np.array(data, dtype=dtype) glBindTexture(self.target, 0) glBindFramebuffer(GL_FRAMEBUFFER, 0) glDeleteFramebuffers(1, [fb, ]) return data def get_mipmap_count(self): factor = max(max(self.width, self.height), self.depth) return math.floor(math.log2(factor)) + 1 def generate_mipmap(self): if self.enable_mipmap: glBindTexture(self.target, self.buffer) glGenerateMipmap(self.target) else: logger.warn('%s disable to generate mipmap.' % self.name) def texure_wrap(self, wrap): glTexParameteri(self.target, GL_TEXTURE_WRAP_S, wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_T, wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_R, wrap) def bind_texture(self, wrap=None): if self.buffer == -1: logger.warn("%s texture is invalid." % self.name) return glBindTexture(self.target, self.buffer) if wrap is not None: self.texure_wrap(wrap) def bind_image(self, image_unit, level=0, access=GL_READ_WRITE): if self.buffer == -1: logger.warn("%s texture is invalid." % self.name) return # flag : GL_READ_WRITE, GL_WRITE_ONLY, GL_READ_ONLY glBindImageTexture(image_unit, self.buffer, level, GL_FALSE, 0, access, self.internal_format) def is_attached(self): return self.attachment def set_attachment(self, attachment): self.attachment = attachment def get_attribute(self): self.attribute.set_attribute("name", self.name) self.attribute.set_attribute("target", self.target) self.attribute.set_attribute("width", self.width) self.attribute.set_attribute("height", self.height) self.attribute.set_attribute("depth", self.depth) self.attribute.set_attribute("image_mode", self.image_mode) self.attribute.set_attribute("internal_format", self.internal_format) self.attribute.set_attribute("texture_format", self.texture_format) self.attribute.set_attribute("data_type", self.data_type) self.attribute.set_attribute("min_filter", self.min_filter) self.attribute.set_attribute("mag_filter", self.mag_filter) self.attribute.set_attribute("multisample_count", self.multisample_count) self.attribute.set_attribute("wrap", self.wrap) self.attribute.set_attribute("wrap_s", self.wrap_s) self.attribute.set_attribute("wrap_t", self.wrap_t) self.attribute.set_attribute("wrap_r", self.wrap_r) return self.attribute def set_attribute(self, attribute_name, attribute_value, item_info_history, attribute_index): if hasattr(self, attribute_name) and "" != attribute_value: setattr(self, attribute_name, eval(attribute_value)) if 'wrap' in attribute_name: glBindTexture(self.target, self.buffer) glTexParameteri(self.target, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glBindTexture(self.target, 0) return self.attribute class Texture2D(Texture): target = GL_TEXTURE_2D def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, self.buffer) if self.use_glTexStorage: glTexStorage2D(GL_TEXTURE_2D, self.get_mipmap_count(), self.internal_format, self.width, self.height) if data is not None: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, self.width, self.height, self.texture_format, self.data_type, data) else: glTexImage2D(GL_TEXTURE_2D, 0, self.internal_format, self.width, self.height, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_2D) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, self.mag_filter) if self.clear_color is not None: glClearTexImage(self.buffer, 0, self.texture_format, self.data_type, self.clear_color) glBindTexture(GL_TEXTURE_2D, 0) class Texture2DArray(Texture): target = GL_TEXTURE_2D_ARRAY def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D_ARRAY, self.buffer) if self.use_glTexStorage: glTexStorage3D(GL_TEXTURE_2D_ARRAY, self.get_mipmap_count(), self.internal_format, self.width, self.height, self.depth) if data is not None: glTexSubImage3D(GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, self.width, self.height, self.depth, self.texture_format, self.data_type, data) else: glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, self.internal_format, self.width, self.height, self.depth, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_2D_ARRAY) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_2D_ARRAY, 0) class Texture3D(Texture): target = GL_TEXTURE_3D def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_3D, self.buffer) if self.use_glTexStorage: glTexStorage3D(GL_TEXTURE_3D, self.get_mipmap_count(), self.internal_format, self.width, self.height, self.depth) if data is not None: glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, self.width, self.height, self.depth, self.texture_format, self.data_type, data) else: glTexImage3D(GL_TEXTURE_3D, 0, self.internal_format, self.width, self.height, self.depth, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_3D) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_3D, 0) class Texture2DMultiSample(Texture): target = GL_TEXTURE_2D_MULTISAMPLE def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) multisample_count = texture_data.get('multisample_count', 4) self.multisample_count = multisample_count - (multisample_count % 4) self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, self.buffer) if self.use_glTexStorage: glTexStorage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, self.multisample_count, self.internal_format, self.width, self.height, GL_TRUE) else: glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, self.multisample_count, self.internal_format, self.width, self.height, GL_TRUE) glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, 0) class TextureCube(Texture): target = GL_TEXTURE_CUBE_MAP default_wrap = GL_REPEAT def __init__(self, **texture_data): self.texture_positive_x = None self.texture_negative_x = None self.texture_positive_y = None self.texture_negative_y = None self.texture_positive_z = None self.texture_negative_z = None Texture.__init__(self, **texture_data) def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) # If texture2d is None then create render target. face_texture_datas = copy.copy(texture_data) face_texture_datas.pop('name') face_texture_datas['texture_type'] = Texture2D self.texture_positive_x = texture_data.get('texture_positive_x', CreateTexture(name=self.name + "_right", **face_texture_datas)) self.texture_negative_x = texture_data.get('texture_negative_x', CreateTexture(name=self.name + "_left", **face_texture_datas)) self.texture_positive_y = texture_data.get('texture_positive_y', CreateTexture(name=self.name + "_top", **face_texture_datas)) self.texture_negative_y = texture_data.get('texture_negative_y', CreateTexture(name=self.name + "_bottom", **face_texture_datas)) self.texture_positive_z = texture_data.get('texture_positive_z', CreateTexture(name=self.name + "_front", **face_texture_datas)) self.texture_negative_z = texture_data.get('texture_negative_z', CreateTexture(name=self.name + "_back", **face_texture_datas)) self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_CUBE_MAP, self.buffer) if self.use_glTexStorage: glTexStorage2D(GL_TEXTURE_CUBE_MAP, self.get_mipmap_count(), self.internal_format, self.width, self.height) self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, self.texture_positive_x) # Right self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, self.texture_negative_x) # Left self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, self.texture_positive_y) # Top self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, self.texture_negative_y) # Bottom self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, self.texture_positive_z) # Front self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, self.texture_negative_z) # Back else: self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, self.texture_positive_x) # Right self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, self.texture_negative_x) # Left self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, self.texture_positive_y) # Top self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, self.texture_negative_y) # Bottom self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, self.texture_positive_z) # Front self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, self.texture_negative_z) # Back if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_CUBE_MAP) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_CUBE_MAP, 0) @staticmethod def createTexImage2D(target_face, texture): glTexImage2D(target_face, 0, texture.internal_format, texture.width, texture.height, 0, texture.texture_format, texture.data_type, texture.get_image_data()) @staticmethod def createTexSubImage2D(target_face, texture): glTexSubImage2D(target_face, 0, 0, 0, texture.width, texture.height, texture.texture_format, texture.data_type, texture.get_image_data()) def delete(self): super(TextureCube, self).delete() self.texture_positive_x.delete() self.texture_negative_x.delete() self.texture_positive_y.delete() self.texture_negative_y.delete() self.texture_positive_z.delete() self.texture_negative_z.delete() def get_save_data(self, get_image_data=True): save_data = Texture.get_save_data(self) save_data['texture_positive_x'] = self.texture_positive_x.name save_data['texture_negative_x'] = self.texture_negative_x.name save_data['texture_positive_y'] = self.texture_positive_y.name save_data['texture_negative_y'] = self.texture_negative_y.name save_data['texture_positive_z'] = self.texture_positive_z.name save_data['texture_negative_z'] = self.texture_negative_z.name return save_data def get_attribute(self): Texture.get_attribute(self) self.attribute.set_attribute("texture_positive_x", self.texture_positive_x.name) self.attribute.set_attribute("texture_negative_x", self.texture_negative_x.name) self.attribute.set_attribute("texture_positive_y", self.texture_positive_y.name) self.attribute.set_attribute("texture_negative_y", self.texture_negative_y.name) self.attribute.set_attribute("texture_positive_z", self.texture_positive_z.name) self.attribute.set_attribute("texture_negative_z", self.texture_negative_z.name) return self.attribute
[ "PyEngine3D.Common.logger.error", "traceback.format_exc", "PyEngine3D.OpenGLContext.OpenGLContext.glGetTexImage", "PyEngine3D.Utilities.GetClassName", "PyEngine3D.Common.logger.warn", "math.log2", "PyEngine3D.Utilities.Attributes", "numpy.array", "copy.copy", "numpy.fromstring", "PyEngine3D.Common.logger.info" ]
[((964, 1042), 'PyEngine3D.Common.logger.error', 'logger.error', (['"""Cannot convert to numpy dtype. UNKOWN DATA TYPE(%s)"""', 'data_type'], {}), "('Cannot convert to numpy dtype. UNKOWN DATA TYPE(%s)', data_type)\n", (976, 1042), False, 'from PyEngine3D.Common import logger\n'), ((3639, 3651), 'PyEngine3D.Utilities.Attributes', 'Attributes', ([], {}), '()\n', (3649, 3651), False, 'from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler\n'), ((6519, 6531), 'PyEngine3D.Utilities.Attributes', 'Attributes', ([], {}), '()\n', (6529, 6531), False, 'from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler\n'), ((9711, 9738), 'numpy.array', 'np.array', (['data'], {'dtype': 'dtype'}), '(data, dtype=dtype)\n', (9719, 9738), True, 'import numpy as np\n'), ((20172, 20195), 'copy.copy', 'copy.copy', (['texture_data'], {}), '(texture_data)\n', (20181, 20195), False, 'import copy\n'), ((8132, 8221), 'PyEngine3D.OpenGLContext.OpenGLContext.glGetTexImage', 'OpenGLContext.glGetTexImage', (['self.target', 'level', 'self.texture_format', 'self.data_type'], {}), '(self.target, level, self.texture_format, self.\n data_type)\n', (8159, 8221), False, 'from PyEngine3D.OpenGLContext import OpenGLContext\n'), ((10210, 10267), 'PyEngine3D.Common.logger.warn', 'logger.warn', (["('%s disable to generate mipmap.' % self.name)"], {}), "('%s disable to generate mipmap.' % self.name)\n", (10221, 10267), False, 'from PyEngine3D.Common import logger\n'), ((10570, 10619), 'PyEngine3D.Common.logger.warn', 'logger.warn', (["('%s texture is invalid.' % self.name)"], {}), "('%s texture is invalid.' % self.name)\n", (10581, 10619), False, 'from PyEngine3D.Common import logger\n'), ((10865, 10914), 'PyEngine3D.Common.logger.warn', 'logger.warn', (["('%s texture is invalid.' % self.name)"], {}), "('%s texture is invalid.' % self.name)\n", (10876, 10914), False, 'from PyEngine3D.Common import logger\n'), ((1341, 1420), 'PyEngine3D.Common.logger.error', 'logger.error', (["('get_internal_format::unknown image mode ( %s )' % str_image_mode)"], {}), "('get_internal_format::unknown image mode ( %s )' % str_image_mode)\n", (1353, 1420), False, 'from PyEngine3D.Common import logger\n'), ((1784, 1862), 'PyEngine3D.Common.logger.error', 'logger.error', (["('get_texture_format::unknown image mode ( %s )' % str_image_mode)"], {}), "('get_texture_format::unknown image mode ( %s )' % str_image_mode)\n", (1796, 1862), False, 'from PyEngine3D.Common import logger\n'), ((8313, 8345), 'numpy.fromstring', 'np.fromstring', (['data'], {'dtype': 'dtype'}), '(data, dtype=dtype)\n', (8326, 8345), True, 'import numpy as np\n'), ((8387, 8414), 'numpy.array', 'np.array', (['data'], {'dtype': 'dtype'}), '(data, dtype=dtype)\n', (8395, 8414), True, 'import numpy as np\n'), ((8558, 8614), 'PyEngine3D.Common.logger.error', 'logger.error', (["('%s failed to get image data.' % self.name)"], {}), "('%s failed to get image data.' % self.name)\n", (8570, 8614), False, 'from PyEngine3D.Common import logger\n'), ((8627, 8662), 'PyEngine3D.Common.logger.info', 'logger.info', (['"""Try to glReadPixels."""'], {}), "('Try to glReadPixels.')\n", (8638, 8662), False, 'from PyEngine3D.Common import logger\n'), ((9629, 9663), 'numpy.fromstring', 'np.fromstring', (['pixels'], {'dtype': 'dtype'}), '(pixels, dtype=dtype)\n', (9642, 9663), True, 'import numpy as np\n'), ((10004, 10021), 'math.log2', 'math.log2', (['factor'], {}), '(factor)\n', (10013, 10021), False, 'import math\n'), ((6338, 6356), 'PyEngine3D.Utilities.GetClassName', 'GetClassName', (['self'], {}), '(self)\n', (6350, 6356), False, 'from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler\n'), ((6632, 6650), 'PyEngine3D.Utilities.GetClassName', 'GetClassName', (['self'], {}), '(self)\n', (6644, 6650), False, 'from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler\n'), ((8522, 8544), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (8542, 8544), False, 'import traceback\n'), ((2349, 2438), 'PyEngine3D.Common.logger.error', 'logger.error', (["('get_image_mode::unknown image format ( %s )' % texture_internal_format)"], {}), "('get_image_mode::unknown image format ( %s )' %\n texture_internal_format)\n", (2361, 2438), False, 'from PyEngine3D.Common import logger\n')]
"""Find stars that are both in our sample and in Shull+21""" import numpy as np import get_data from matplotlib import pyplot as plt data = get_data.get_merged_table() shull = get_data.get_shull2021() matches = [name for name in data["Name"] if name in shull["Name"]] print(len(matches), " matches found") print(matches) data_comp = data[np.isin(data["Name"], matches)] refs = data_comp['hiref'] shull_comp = shull[np.isin(shull["Name"], matches)] def compare_shull(param): plt.figure() x = shull_comp[param] y = data_comp[param] plt.plot(x, x, color="k") plt.scatter(x, y, c=refs) plt.colorbar() plt.ylabel("ours") plt.xlabel("shull") plt.title(param) # compare_shull("nhtot") compare_shull("EBV") compare_shull("fh2") compare_shull("nhi") compare_shull("nh2") plt.show()
[ "get_data.get_merged_table", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.colorbar", "numpy.isin", "matplotlib.pyplot.figure", "matplotlib.pyplot.scatter", "matplotlib.pyplot.title", "get_data.get_shull2021", "matplotlib.pyplot.show" ]
[((142, 169), 'get_data.get_merged_table', 'get_data.get_merged_table', ([], {}), '()\n', (167, 169), False, 'import get_data\n'), ((178, 202), 'get_data.get_shull2021', 'get_data.get_shull2021', ([], {}), '()\n', (200, 202), False, 'import get_data\n'), ((806, 816), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (814, 816), True, 'from matplotlib import pyplot as plt\n'), ((341, 371), 'numpy.isin', 'np.isin', (["data['Name']", 'matches'], {}), "(data['Name'], matches)\n", (348, 371), True, 'import numpy as np\n'), ((418, 449), 'numpy.isin', 'np.isin', (["shull['Name']", 'matches'], {}), "(shull['Name'], matches)\n", (425, 449), True, 'import numpy as np\n'), ((483, 495), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (493, 495), True, 'from matplotlib import pyplot as plt\n'), ((551, 576), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'x'], {'color': '"""k"""'}), "(x, x, color='k')\n", (559, 576), True, 'from matplotlib import pyplot as plt\n'), ((581, 606), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'c': 'refs'}), '(x, y, c=refs)\n', (592, 606), True, 'from matplotlib import pyplot as plt\n'), ((611, 625), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (623, 625), True, 'from matplotlib import pyplot as plt\n'), ((630, 648), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""ours"""'], {}), "('ours')\n", (640, 648), True, 'from matplotlib import pyplot as plt\n'), ((653, 672), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""shull"""'], {}), "('shull')\n", (663, 672), True, 'from matplotlib import pyplot as plt\n'), ((677, 693), 'matplotlib.pyplot.title', 'plt.title', (['param'], {}), '(param)\n', (686, 693), True, 'from matplotlib import pyplot as plt\n')]
import numpy as np import matplotlib.pyplot as plt from collections import Iterable mrkr1 = 12 mrkr1_inner = 8 fs = 18 # FUNCTION TO TURN NESTED LIST INTO 1D LIST def flatten(lis): for item in lis: if isinstance(item, Iterable) and not isinstance(item, str): for x in flatten(item): yield x else: yield item # FUNCTION TO DRAW TREES def tree (base, graph, cycle, bias, visits, print_states_hex, docolour): # find parents parents = graph[base][0] for each in cycle: if each in parents: parents.remove(each) # add parents to visits for a in parents: visits.append(a) greycol = (0.4,0.4,0.4) # add co-ordinates to graph array l = len(parents) count = 0 amp = graph[base][2][0] min_ang = graph[base][2][1] max_ang = graph[base][2][2] for b in parents: graph[b][2][0] = amp + 1 graph[b][2][1] = min_ang + count*(max_ang-min_ang)/l graph[b][2][2] = min_ang + (count+1)*(max_ang-min_ang)/l count = count + 1 # draw those on the branches for c in parents: mid = (graph[c][2][1] + graph[c][2][2])/2 xco = graph[c][2][0]*np.cos(np.radians(mid)) yco = graph[c][2][0]*np.sin(np.radians(mid)) + bias graph[c][2][3] = xco graph[c][2][4] = yco colo = plt.cm.hsv(c/32) if c%2==0: colo2 = plt.cm.flag(c/32.0) else: colo2 = plt.cm.prism(c/32.0) if docolour == False: colo = 'k' colo2 = 'k' #print ('Printing marker for c={0}'.format(c)) plt.plot(xco, yco, 'o', markersize=mrkr1, color=colo) text_labels=0 if c==21 or c==10 or c==16 or c==0: text_labels=1 if text_labels: if print_states_hex: tt = plt.text(xco+0.25,yco+0.4, '{:02X}'.format(c), ha='center', fontsize=fs) else: tt = plt.text(xco+0.25,yco+0.4, '{:d}'.format(c), ha='center', fontsize=fs) tt.set_bbox(dict(boxstyle='round,pad=0.0', edgecolor='none', facecolor='white', alpha=0.6)) if c==21 or c==10: selmarker = 'v' if docolour == False: colo2 = 'w' elif c==16 or c==0: #print ('Printing star for c={0}'.format(c)) # Note in one case, star is red and BG circle is red. selmarker = '*' if docolour == False: selmarker = 'o' colo2 = 'w' else: if (c==0): print ('printing selmarker for c={0} with BLUE star'.format(c)) colo2='b' else: selmarker = 'o' plt.plot (xco, yco, marker=selmarker, markersize=mrkr1_inner, color=colo2) plt.arrow(xco, yco, graph[base][2][3]-xco, graph[base][2][4]-yco, overhang=0, length_includes_head=True, head_width=0.15, head_length=0.5, fc=greycol, ec=greycol) for z in parents: tree (z, graph, parents, bias, visits, print_states_hex, docolour) def plot_states (net, ax, print_states_hex=False, kequalsn=True, docolour=True): # Find where each state leads targets = [] for i in range(2**5): state = np.binary_repr(i,5) # k=n if kequalsn: effect = net[int(state,2)] + net[int(state[1:]+state[0:1],2) + 32] + net[int(state[2:]+state[0:2],2) + 64] + net[int(state[3:]+state[0:3],2)+96] + net[int(state[4:]+state[0:4],2)+128] else: # k=n-1 effect = net[int(state[1:],2)] + net[int(state[:1]+state[2:],2)+16] + net[int(state[:2]+state[3:],2) + 32] + net[int(state[:3]+state[4],2)+48] + net[int(state[:4],2)+64] # in decimal form targets.append(int(effect[4]) + 2*int(effect[3]) + 4*int(effect[2]) + 8*int(effect[1]) + 16*int(effect[0])) # graph[n] gives the parent nodes, child nodes and co-ordinates for the nth node. # graph[n][2][0] gives polar amplitude, [1] is min angle, [2] is max angle, [3] is x, [4] is y graph = [[[],[],[0,0,0,0,0]] for x in range(1024)] targets = [int(z) for z in targets] for y in range(32): graph[y][1] = targets[y] # add child graph[targets[y]][0].append(y) # add parent visits = [] greycol = (0.4,0.4,0.4) plt.xticks([]) plt.yticks([]) bases = [] for x in range(len(targets)): visits = [] while not x in visits: visits.append(x) x = targets[x] base = visits[visits.index(x):] # It's awkward to format the list of bases in hex, so it's not implemented if not base[0] in list(flatten(bases)): bases.append(base) for base in bases: # find co-ordinates of base nodes tot = len(base) count = 0 for x in base: graph[x][2][0] = 1 graph[x][2][1] = count*180/tot graph[x][2][2] = (count+1)*180/tot count = count + 1 # find max y-co for bias for next tree bias = graph[0][2][4] for node in graph: if node[2][4]>bias: bias = node[2][4] bias = bias + 2 # draw those on the LC tt = plt.text(0+0.7,bias-2+0.5,base, ha='center', fontsize=fs) tt.set_bbox(dict(boxstyle='round,pad=0.0', edgecolor='none', facecolor='white', alpha=0.6)) circle = plt.Circle ((0,bias), 1, color=greycol, fill=False) ax.add_artist(circle) for x in base: mid = (graph[x][2][1] + graph[x][2][2])/2. graph[x][2][3] = graph[x][2][0]*np.cos(np.radians(mid)) graph[x][2][4] = graph[x][2][0]*np.sin(np.radians(mid)) + bias colo = plt.cm.hsv(x/32) if x%2==0: colo2 = plt.cm.flag(x/32.0) else: colo2 = plt.cm.prism(x/32.0) #plt.plot(graph[x][2][3], graph[x][2][4], 'o', color=(0,0,0), markersize=mrkr1) #print ('Printing marker for c={0}'.format(x)) if docolour == True: plt.plot(graph[x][2][3], graph[x][2][4], 'o', color=colo, markersize=mrkr1) else: plt.plot(graph[x][2][3], graph[x][2][4], 'o', color='k', markersize=mrkr1) if docolour == False: colo2 = 'k' if x==21 or x==10: selmarker = 'v' if docolour == False: colo2 = 'w' elif x==16 or x==0: selmarker = '*' if docolour == False: selmarker = 'o' colo2 = 'w' else: if x==0: print ('printing selmarker for x={0} with BLUE star'.format(x)) colo2='b' # special case else: selmarker = 'o' plt.plot(graph[x][2][3], graph[x][2][4], marker=selmarker, color=colo2, markersize=mrkr1_inner) for x in base: tree (x, graph, base, bias, visits, print_states_hex, docolour) # do it again for the next set # find max y and x to get axis right max_x = graph[0][2][3] max_y = graph[0][2][4] min_x = max_x for node in graph: if node[2][4] > max_y: max_y = node[2][4] if node[2][3] > max_x: max_x = node[2][3] #plt.plot(graph[21][2][3], graph[21][2][4],'v',color='k', markersize=mrkr1-2) # final ant #plt.plot(graph[10][2][3], graph[10][2][4],'v',color='w', markersize=mrkr1-2) # final post #plt.plot(graph[16][2][3], graph[16][2][4],'*',color='k', markersize=mrkr1-2) # initial ant #plt.plot(graph[0][2][3], graph[0][2][4],'*',color='w', markersize=mrkr1-2) # initial post # Modify use of the area inside the graph ymin,ymax = plt.ylim() plt.ylim(ymin-4,ymax+1) xmin,xmax = plt.xlim() plt.xlim(xmin-0,xmax+0)
[ "numpy.radians", "matplotlib.pyplot.text", "matplotlib.pyplot.Circle", "matplotlib.pyplot.xticks", "matplotlib.pyplot.plot", "matplotlib.pyplot.cm.flag", "numpy.binary_repr", "matplotlib.pyplot.cm.hsv", "matplotlib.pyplot.yticks", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "matplotlib.pyplot.arrow", "matplotlib.pyplot.cm.prism" ]
[((4339, 4353), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (4349, 4353), True, 'import matplotlib.pyplot as plt\n'), ((4358, 4372), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (4368, 4372), True, 'import matplotlib.pyplot as plt\n'), ((7847, 7857), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (7855, 7857), True, 'import matplotlib.pyplot as plt\n'), ((7862, 7890), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymin - 4)', '(ymax + 1)'], {}), '(ymin - 4, ymax + 1)\n', (7870, 7890), True, 'import matplotlib.pyplot as plt\n'), ((7902, 7912), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (7910, 7912), True, 'import matplotlib.pyplot as plt\n'), ((7917, 7945), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(xmin - 0)', '(xmax + 0)'], {}), '(xmin - 0, xmax + 0)\n', (7925, 7945), True, 'import matplotlib.pyplot as plt\n'), ((1372, 1390), 'matplotlib.pyplot.cm.hsv', 'plt.cm.hsv', (['(c / 32)'], {}), '(c / 32)\n', (1382, 1390), True, 'import matplotlib.pyplot as plt\n'), ((1643, 1696), 'matplotlib.pyplot.plot', 'plt.plot', (['xco', 'yco', '"""o"""'], {'markersize': 'mrkr1', 'color': 'colo'}), "(xco, yco, 'o', markersize=mrkr1, color=colo)\n", (1651, 1696), True, 'import matplotlib.pyplot as plt\n'), ((2744, 2817), 'matplotlib.pyplot.plot', 'plt.plot', (['xco', 'yco'], {'marker': 'selmarker', 'markersize': 'mrkr1_inner', 'color': 'colo2'}), '(xco, yco, marker=selmarker, markersize=mrkr1_inner, color=colo2)\n', (2752, 2817), True, 'import matplotlib.pyplot as plt\n'), ((2828, 3002), 'matplotlib.pyplot.arrow', 'plt.arrow', (['xco', 'yco', '(graph[base][2][3] - xco)', '(graph[base][2][4] - yco)'], {'overhang': '(0)', 'length_includes_head': '(True)', 'head_width': '(0.15)', 'head_length': '(0.5)', 'fc': 'greycol', 'ec': 'greycol'}), '(xco, yco, graph[base][2][3] - xco, graph[base][2][4] - yco,\n overhang=0, length_includes_head=True, head_width=0.15, head_length=0.5,\n fc=greycol, ec=greycol)\n', (2837, 3002), True, 'import matplotlib.pyplot as plt\n'), ((3265, 3285), 'numpy.binary_repr', 'np.binary_repr', (['i', '(5)'], {}), '(i, 5)\n', (3279, 3285), True, 'import numpy as np\n'), ((5259, 5324), 'matplotlib.pyplot.text', 'plt.text', (['(0 + 0.7)', '(bias - 2 + 0.5)', 'base'], {'ha': '"""center"""', 'fontsize': 'fs'}), "(0 + 0.7, bias - 2 + 0.5, base, ha='center', fontsize=fs)\n", (5267, 5324), True, 'import matplotlib.pyplot as plt\n'), ((5434, 5485), 'matplotlib.pyplot.Circle', 'plt.Circle', (['(0, bias)', '(1)'], {'color': 'greycol', 'fill': '(False)'}), '((0, bias), 1, color=greycol, fill=False)\n', (5444, 5485), True, 'import matplotlib.pyplot as plt\n'), ((1428, 1449), 'matplotlib.pyplot.cm.flag', 'plt.cm.flag', (['(c / 32.0)'], {}), '(c / 32.0)\n', (1439, 1449), True, 'import matplotlib.pyplot as plt\n'), ((1482, 1504), 'matplotlib.pyplot.cm.prism', 'plt.cm.prism', (['(c / 32.0)'], {}), '(c / 32.0)\n', (1494, 1504), True, 'import matplotlib.pyplot as plt\n'), ((5756, 5774), 'matplotlib.pyplot.cm.hsv', 'plt.cm.hsv', (['(x / 32)'], {}), '(x / 32)\n', (5766, 5774), True, 'import matplotlib.pyplot as plt\n'), ((6905, 7004), 'matplotlib.pyplot.plot', 'plt.plot', (['graph[x][2][3]', 'graph[x][2][4]'], {'marker': 'selmarker', 'color': 'colo2', 'markersize': 'mrkr1_inner'}), '(graph[x][2][3], graph[x][2][4], marker=selmarker, color=colo2,\n markersize=mrkr1_inner)\n', (6913, 7004), True, 'import matplotlib.pyplot as plt\n'), ((1222, 1237), 'numpy.radians', 'np.radians', (['mid'], {}), '(mid)\n', (1232, 1237), True, 'import numpy as np\n'), ((5820, 5841), 'matplotlib.pyplot.cm.flag', 'plt.cm.flag', (['(x / 32.0)'], {}), '(x / 32.0)\n', (5831, 5841), True, 'import matplotlib.pyplot as plt\n'), ((5882, 5904), 'matplotlib.pyplot.cm.prism', 'plt.cm.prism', (['(x / 32.0)'], {}), '(x / 32.0)\n', (5894, 5904), True, 'import matplotlib.pyplot as plt\n'), ((6103, 6178), 'matplotlib.pyplot.plot', 'plt.plot', (['graph[x][2][3]', 'graph[x][2][4]', '"""o"""'], {'color': 'colo', 'markersize': 'mrkr1'}), "(graph[x][2][3], graph[x][2][4], 'o', color=colo, markersize=mrkr1)\n", (6111, 6178), True, 'import matplotlib.pyplot as plt\n'), ((6213, 6287), 'matplotlib.pyplot.plot', 'plt.plot', (['graph[x][2][3]', 'graph[x][2][4]', '"""o"""'], {'color': '"""k"""', 'markersize': 'mrkr1'}), "(graph[x][2][3], graph[x][2][4], 'o', color='k', markersize=mrkr1)\n", (6221, 6287), True, 'import matplotlib.pyplot as plt\n'), ((1275, 1290), 'numpy.radians', 'np.radians', (['mid'], {}), '(mid)\n', (1285, 1290), True, 'import numpy as np\n'), ((5645, 5660), 'numpy.radians', 'np.radians', (['mid'], {}), '(mid)\n', (5655, 5660), True, 'import numpy as np\n'), ((5713, 5728), 'numpy.radians', 'np.radians', (['mid'], {}), '(mid)\n', (5723, 5728), True, 'import numpy as np\n')]
# pdaggerq - A code for bringing strings of creation / annihilation operators to normal order. # Copyright (C) 2020 <NAME> # # This file is part of the pdaggerq package. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ spin-orbital CCSD amplitude equations """ import numpy as np from numpy import einsum def ccsd_energy(t1, t2, f, g, o, v): # < 0 | e(-T) H e(T) | 0> : # 1.0000 f(i,i) energy = 1.000000000000000 * einsum('ii', f[o, o]) # 1.0000 f(i,a)*t1(a,i) energy += 1.000000000000000 * einsum('ia,ai', f[o, v], t1) # -0.5000 <j,i||j,i> energy += -0.500000000000000 * einsum('jiji', g[o, o, o, o]) # 0.2500 <j,i||a,b>*t2(a,b,j,i) energy += 0.250000000000000 * einsum('jiab,abji', g[o, o, v, v], t2) # -0.5000 <j,i||a,b>*t1(a,i)*t1(b,j) energy += -0.500000000000000 * einsum('jiab,ai,bj', g[o, o, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) return energy def singles_residual(t1, t2, f, g, o, v): # < 0 | m* e e(-T) H e(T) | 0> : # 1.0000 f(e,m) singles_res = 1.000000000000000 * einsum('em->em', f[v, o]) # -1.0000 f(i,m)*t1(e,i) singles_res += -1.000000000000000 * einsum('im,ei->em', f[o, o], t1) # 1.0000 f(e,a)*t1(a,m) singles_res += 1.000000000000000 * einsum('ea,am->em', f[v, v], t1) # -1.0000 f(i,a)*t2(a,e,m,i) singles_res += -1.000000000000000 * einsum('ia,aemi->em', f[o, v], t2) # -1.0000 f(i,a)*t1(a,m)*t1(e,i) singles_res += -1.000000000000000 * einsum('ia,am,ei->em', f[o, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <i,e||a,m>*t1(a,i) singles_res += 1.000000000000000 * einsum('ieam,ai->em', g[o, v, v, o], t1) # -0.5000 <j,i||a,m>*t2(a,e,j,i) singles_res += -0.500000000000000 * einsum('jiam,aeji->em', g[o, o, v, o], t2) # -0.5000 <i,e||a,b>*t2(a,b,m,i) singles_res += -0.500000000000000 * einsum('ieab,abmi->em', g[o, v, v, v], t2) # 1.0000 <j,i||a,b>*t1(a,i)*t2(b,e,m,j) singles_res += 1.000000000000000 * einsum('jiab,ai,bemj->em', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) # 0.5000 <j,i||a,b>*t1(a,m)*t2(b,e,j,i) singles_res += 0.500000000000000 * einsum('jiab,am,beji->em', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 2), (0, 1)]) # 0.5000 <j,i||a,b>*t1(e,i)*t2(a,b,m,j) singles_res += 0.500000000000000 * einsum('jiab,ei,abmj->em', g[o, o, v, v], t1, t2, optimize=['einsum_path', (0, 2), (0, 1)]) # 1.0000 <j,i||a,m>*t1(a,i)*t1(e,j) singles_res += 1.000000000000000 * einsum('jiam,ai,ej->em', g[o, o, v, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <i,e||a,b>*t1(a,i)*t1(b,m) singles_res += 1.000000000000000 * einsum('ieab,ai,bm->em', g[o, v, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 <j,i||a,b>*t1(a,i)*t1(b,m)*t1(e,j) singles_res += 1.000000000000000 * einsum('jiab,ai,bm,ej->em', g[o, o, v, v], t1, t1, t1, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) return singles_res def doubles_residual(t1, t2, f, g, o, v): # < 0 | m* n* f e e(-T) H e(T) | 0> : # -1.0000 P(m,n)f(i,n)*t2(e,f,m,i) contracted_intermediate = -1.000000000000000 * einsum('in,efmi->efmn', f[o, o], t2) doubles_res = 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # 1.0000 P(e,f)f(e,a)*t2(a,f,m,n) contracted_intermediate = 1.000000000000000 * einsum('ea,afmn->efmn', f[v, v], t2) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # -1.0000 P(m,n)f(i,a)*t1(a,n)*t2(e,f,m,i) contracted_intermediate = -1.000000000000000 * einsum('ia,an,efmi->efmn', f[o, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # -1.0000 P(e,f)f(i,a)*t1(e,i)*t2(a,f,m,n) contracted_intermediate = -1.000000000000000 * einsum('ia,ei,afmn->efmn', f[o, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # 1.0000 <e,f||m,n> doubles_res += 1.000000000000000 * einsum('efmn->efmn', g[v, v, o, o]) # 1.0000 P(e,f)<i,e||m,n>*t1(f,i) contracted_intermediate = 1.000000000000000 * einsum('iemn,fi->efmn', g[o, v, o, o], t1) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # 1.0000 P(m,n)<e,f||a,n>*t1(a,m) contracted_intermediate = 1.000000000000000 * einsum('efan,am->efmn', g[v, v, v, o], t1) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # 0.5000 <j,i||m,n>*t2(e,f,j,i) doubles_res += 0.500000000000000 * einsum('jimn,efji->efmn', g[o, o, o, o], t2) # 1.0000 P(m,n)*P(e,f)<i,e||a,n>*t2(a,f,m,i) contracted_intermediate = 1.000000000000000 * einsum('iean,afmi->efmn', g[o, v, v, o], t2) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) + -1.00000 * einsum('efmn->femn', contracted_intermediate) + 1.00000 * einsum('efmn->fenm', contracted_intermediate) # 0.5000 <e,f||a,b>*t2(a,b,m,n) doubles_res += 0.500000000000000 * einsum('efab,abmn->efmn', g[v, v, v, v], t2) # 1.0000 P(m,n)<j,i||a,n>*t1(a,i)*t2(e,f,m,j) contracted_intermediate = 1.000000000000000 * einsum('jian,ai,efmj->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # 0.5000 P(m,n)<j,i||a,n>*t1(a,m)*t2(e,f,j,i) contracted_intermediate = 0.500000000000000 * einsum('jian,am,efji->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # -1.0000 P(m,n)*P(e,f)<j,i||a,n>*t1(e,i)*t2(a,f,m,j) contracted_intermediate = -1.000000000000000 * einsum('jian,ei,afmj->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) + -1.00000 * einsum('efmn->femn', contracted_intermediate) + 1.00000 * einsum('efmn->fenm', contracted_intermediate) # 1.0000 P(e,f)<i,e||a,b>*t1(a,i)*t2(b,f,m,n) contracted_intermediate = 1.000000000000000 * einsum('ieab,ai,bfmn->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # -1.0000 P(m,n)*P(e,f)<i,e||a,b>*t1(a,n)*t2(b,f,m,i) contracted_intermediate = -1.000000000000000 * einsum('ieab,an,bfmi->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) + -1.00000 * einsum('efmn->femn', contracted_intermediate) + 1.00000 * einsum('efmn->fenm', contracted_intermediate) # 0.5000 P(e,f)<i,e||a,b>*t1(f,i)*t2(a,b,m,n) contracted_intermediate = 0.500000000000000 * einsum('ieab,fi,abmn->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # -1.0000 <j,i||m,n>*t1(e,i)*t1(f,j) doubles_res += -1.000000000000000 * einsum('jimn,ei,fj->efmn', g[o, o, o, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 P(m,n)*P(e,f)<i,e||a,n>*t1(a,m)*t1(f,i) contracted_intermediate = 1.000000000000000 * einsum('iean,am,fi->efmn', g[o, v, v, o], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) + -1.00000 * einsum('efmn->femn', contracted_intermediate) + 1.00000 * einsum('efmn->fenm', contracted_intermediate) # -1.0000 <e,f||a,b>*t1(a,n)*t1(b,m) doubles_res += -1.000000000000000 * einsum('efab,an,bm->efmn', g[v, v, v, v], t1, t1, optimize=['einsum_path', (0, 1), (0, 1)]) # -0.5000 P(m,n)<j,i||a,b>*t2(a,b,n,i)*t2(e,f,m,j) contracted_intermediate = -0.500000000000000 * einsum('jiab,abni,efmj->efmn', g[o, o, v, v], t2, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # 0.2500 <j,i||a,b>*t2(a,b,m,n)*t2(e,f,j,i) doubles_res += 0.250000000000000 * einsum('jiab,abmn,efji->efmn', g[o, o, v, v], t2, t2, optimize=['einsum_path', (0, 1), (0, 1)]) # -0.5000 <j,i||a,b>*t2(a,e,j,i)*t2(b,f,m,n) doubles_res += -0.500000000000000 * einsum('jiab,aeji,bfmn->efmn', g[o, o, v, v], t2, t2, optimize=['einsum_path', (0, 1), (0, 1)]) # 1.0000 P(m,n)<j,i||a,b>*t2(a,e,n,i)*t2(b,f,m,j) contracted_intermediate = 1.000000000000000 * einsum('jiab,aeni,bfmj->efmn', g[o, o, v, v], t2, t2, optimize=['einsum_path', (0, 1), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # -0.5000 <j,i||a,b>*t2(a,e,m,n)*t2(b,f,j,i) doubles_res += -0.500000000000000 * einsum('jiab,aemn,bfji->efmn', g[o, o, v, v], t2, t2, optimize=['einsum_path', (0, 2), (0, 1)]) # 1.0000 P(m,n)<j,i||a,b>*t1(a,i)*t1(b,n)*t2(e,f,m,j) contracted_intermediate = 1.000000000000000 * einsum('jiab,ai,bn,efmj->efmn', g[o, o, v, v], t1, t1, t2, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # 1.0000 P(e,f)<j,i||a,b>*t1(a,i)*t1(e,j)*t2(b,f,m,n) contracted_intermediate = 1.000000000000000 * einsum('jiab,ai,ej,bfmn->efmn', g[o, o, v, v], t1, t1, t2, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # -0.5000 <j,i||a,b>*t1(a,n)*t1(b,m)*t2(e,f,j,i) doubles_res += -0.500000000000000 * einsum('jiab,an,bm,efji->efmn', g[o, o, v, v], t1, t1, t2, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) # 1.0000 P(m,n)*P(e,f)<j,i||a,b>*t1(a,n)*t1(e,i)*t2(b,f,m,j) contracted_intermediate = 1.000000000000000 * einsum('jiab,an,ei,bfmj->efmn', g[o, o, v, v], t1, t1, t2, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) + -1.00000 * einsum('efmn->femn', contracted_intermediate) + 1.00000 * einsum('efmn->fenm', contracted_intermediate) # -0.5000 <j,i||a,b>*t1(e,i)*t1(f,j)*t2(a,b,m,n) doubles_res += -0.500000000000000 * einsum('jiab,ei,fj,abmn->efmn', g[o, o, v, v], t1, t1, t2, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) # -1.0000 P(m,n)<j,i||a,n>*t1(a,m)*t1(e,i)*t1(f,j) contracted_intermediate = -1.000000000000000 * einsum('jian,am,ei,fj->efmn', g[o, o, v, o], t1, t1, t1, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->efnm', contracted_intermediate) # -1.0000 P(e,f)<i,e||a,b>*t1(a,n)*t1(b,m)*t1(f,i) contracted_intermediate = -1.000000000000000 * einsum('ieab,an,bm,fi->efmn', g[o, v, v, v], t1, t1, t1, optimize=['einsum_path', (0, 1), (0, 2), (0, 1)]) doubles_res += 1.00000 * contracted_intermediate + -1.00000 * einsum('efmn->femn', contracted_intermediate) # 1.0000 <j,i||a,b>*t1(a,n)*t1(b,m)*t1(e,i)*t1(f,j) doubles_res += 1.000000000000000 * einsum('jiab,an,bm,ei,fj->efmn', g[o, o, v, v], t1, t1, t1, t1, optimize=['einsum_path', (0, 1), (0, 3), (0, 2), (0, 1)]) return doubles_res def ccsd_iterations(t1, t2, fock, g, o, v, e_ai, e_abij, hf_energy, max_iter=100, e_convergence=1e-8,r_convergence=1e-8,diis_size=None, diis_start_cycle=4): # initialize diis if diis_size is not None # else normal scf iterate if diis_size is not None: from diis import DIIS diis_update = DIIS(diis_size, start_iter=diis_start_cycle) t1_dim = t1.size old_vec = np.hstack((t1.flatten(), t2.flatten())) fock_e_ai = np.reciprocal(e_ai) fock_e_abij = np.reciprocal(e_abij) old_energy = ccsd_energy(t1, t2, fock, g, o, v) print("") print(" ==> CCSD amplitude equations <==") print("") print(" Iter Energy |dE| |dT|") for idx in range(max_iter): residual_singles = singles_residual(t1, t2, fock, g, o, v) residual_doubles = doubles_residual(t1, t2, fock, g, o, v) res_norm = np.linalg.norm(residual_singles) + np.linalg.norm(residual_doubles) singles_res = residual_singles + fock_e_ai * t1 doubles_res = residual_doubles + fock_e_abij * t2 new_singles = singles_res * e_ai new_doubles = doubles_res * e_abij # diis update if diis_size is not None: vectorized_iterate = np.hstack( (new_singles.flatten(), new_doubles.flatten())) error_vec = old_vec - vectorized_iterate new_vectorized_iterate = diis_update.compute_new_vec(vectorized_iterate, error_vec) new_singles = new_vectorized_iterate[:t1_dim].reshape(t1.shape) new_doubles = new_vectorized_iterate[t1_dim:].reshape(t2.shape) old_vec = new_vectorized_iterate current_energy = ccsd_energy(new_singles, new_doubles, fock, g, o, v) delta_e = np.abs(old_energy - current_energy) print(" {: 5d} {: 20.12f} {: 20.12f} {: 20.12f}".format(idx, current_energy - hf_energy, delta_e, res_norm)) if delta_e < e_convergence and res_norm < r_convergence: # assign t1 and t2 variables for future use before breaking t1 = new_singles t2 = new_doubles break else: # assign t1 and t2 and old_energy for next iteration t1 = new_singles t2 = new_doubles old_energy = current_energy else: raise ValueError("CCSD iterations did not converge") return t1, t2
[ "numpy.abs", "numpy.reciprocal", "numpy.einsum", "numpy.linalg.norm", "diis.DIIS" ]
[((13236, 13255), 'numpy.reciprocal', 'np.reciprocal', (['e_ai'], {}), '(e_ai)\n', (13249, 13255), True, 'import numpy as np\n'), ((13274, 13295), 'numpy.reciprocal', 'np.reciprocal', (['e_abij'], {}), '(e_abij)\n', (13287, 13295), True, 'import numpy as np\n'), ((959, 980), 'numpy.einsum', 'einsum', (['"""ii"""', 'f[o, o]'], {}), "('ii', f[o, o])\n", (965, 980), False, 'from numpy import einsum\n'), ((1051, 1079), 'numpy.einsum', 'einsum', (['"""ia,ai"""', 'f[o, v]', 't1'], {}), "('ia,ai', f[o, v], t1)\n", (1057, 1079), False, 'from numpy import einsum\n'), ((1146, 1175), 'numpy.einsum', 'einsum', (['"""jiji"""', 'g[o, o, o, o]'], {}), "('jiji', g[o, o, o, o])\n", (1152, 1175), False, 'from numpy import einsum\n'), ((1254, 1292), 'numpy.einsum', 'einsum', (['"""jiab,abji"""', 'g[o, o, v, v]', 't2'], {}), "('jiab,abji', g[o, o, v, v], t2)\n", (1260, 1292), False, 'from numpy import einsum\n'), ((1375, 1464), 'numpy.einsum', 'einsum', (['"""jiab,ai,bj"""', 'g[o, o, v, v]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,ai,bj', g[o, o, v, v], t1, t1, optimize=['einsum_path', (0, 1),\n (0, 1)])\n", (1381, 1464), False, 'from numpy import einsum\n'), ((1638, 1663), 'numpy.einsum', 'einsum', (['"""em->em"""', 'f[v, o]'], {}), "('em->em', f[v, o])\n", (1644, 1663), False, 'from numpy import einsum\n'), ((1739, 1771), 'numpy.einsum', 'einsum', (['"""im,ei->em"""', 'f[o, o]', 't1'], {}), "('im,ei->em', f[o, o], t1)\n", (1745, 1771), False, 'from numpy import einsum\n'), ((1847, 1879), 'numpy.einsum', 'einsum', (['"""ea,am->em"""', 'f[v, v]', 't1'], {}), "('ea,am->em', f[v, v], t1)\n", (1853, 1879), False, 'from numpy import einsum\n'), ((1959, 1993), 'numpy.einsum', 'einsum', (['"""ia,aemi->em"""', 'f[o, v]', 't2'], {}), "('ia,aemi->em', f[o, v], t2)\n", (1965, 1993), False, 'from numpy import einsum\n'), ((2077, 2162), 'numpy.einsum', 'einsum', (['"""ia,am,ei->em"""', 'f[o, v]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ia,am,ei->em', f[o, v], t1, t1, optimize=['einsum_path', (0, 1), (0,\n 1)])\n", (2083, 2162), False, 'from numpy import einsum\n'), ((2238, 2278), 'numpy.einsum', 'einsum', (['"""ieam,ai->em"""', 'g[o, v, v, o]', 't1'], {}), "('ieam,ai->em', g[o, v, v, o], t1)\n", (2244, 2278), False, 'from numpy import einsum\n'), ((2362, 2404), 'numpy.einsum', 'einsum', (['"""jiam,aeji->em"""', 'g[o, o, v, o]', 't2'], {}), "('jiam,aeji->em', g[o, o, v, o], t2)\n", (2368, 2404), False, 'from numpy import einsum\n'), ((2488, 2530), 'numpy.einsum', 'einsum', (['"""ieab,abmi->em"""', 'g[o, v, v, v]', 't2'], {}), "('ieab,abmi->em', g[o, v, v, v], t2)\n", (2494, 2530), False, 'from numpy import einsum\n'), ((2622, 2717), 'numpy.einsum', 'einsum', (['"""jiab,ai,bemj->em"""', 'g[o, o, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,ai,bemj->em', g[o, o, v, v], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (2628, 2717), False, 'from numpy import einsum\n'), ((2805, 2900), 'numpy.einsum', 'einsum', (['"""jiab,am,beji->em"""', 'g[o, o, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 2), (0, 1)]"}), "('jiab,am,beji->em', g[o, o, v, v], t1, t2, optimize=['einsum_path',\n (0, 2), (0, 1)])\n", (2811, 2900), False, 'from numpy import einsum\n'), ((2988, 3083), 'numpy.einsum', 'einsum', (['"""jiab,ei,abmj->em"""', 'g[o, o, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 2), (0, 1)]"}), "('jiab,ei,abmj->em', g[o, o, v, v], t1, t2, optimize=['einsum_path',\n (0, 2), (0, 1)])\n", (2994, 3083), False, 'from numpy import einsum\n'), ((3167, 3260), 'numpy.einsum', 'einsum', (['"""jiam,ai,ej->em"""', 'g[o, o, v, o]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiam,ai,ej->em', g[o, o, v, o], t1, t1, optimize=['einsum_path', (0,\n 1), (0, 1)])\n", (3173, 3260), False, 'from numpy import einsum\n'), ((3344, 3437), 'numpy.einsum', 'einsum', (['"""ieab,ai,bm->em"""', 'g[o, v, v, v]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ieab,ai,bm->em', g[o, v, v, v], t1, t1, optimize=['einsum_path', (0,\n 1), (0, 1)])\n", (3350, 3437), False, 'from numpy import einsum\n'), ((3529, 3638), 'numpy.einsum', 'einsum', (['"""jiab,ai,bm,ej->em"""', 'g[o, o, v, v]', 't1', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,ai,bm,ej->em', g[o, o, v, v], t1, t1, t1, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (3535, 3638), False, 'from numpy import einsum\n'), ((3851, 3887), 'numpy.einsum', 'einsum', (['"""in,efmi->efmn"""', 'f[o, o]', 't2'], {}), "('in,efmi->efmn', f[o, o], t2)\n", (3857, 3887), False, 'from numpy import einsum\n'), ((4097, 4133), 'numpy.einsum', 'einsum', (['"""ea,afmn->efmn"""', 'f[v, v]', 't2'], {}), "('ea,afmn->efmn', f[v, v], t2)\n", (4103, 4133), False, 'from numpy import einsum\n'), ((4352, 4441), 'numpy.einsum', 'einsum', (['"""ia,an,efmi->efmn"""', 'f[o, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ia,an,efmi->efmn', f[o, v], t1, t2, optimize=['einsum_path', (0, 1),\n (0, 1)])\n", (4358, 4441), False, 'from numpy import einsum\n'), ((4656, 4745), 'numpy.einsum', 'einsum', (['"""ia,ei,afmn->efmn"""', 'f[o, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ia,ei,afmn->efmn', f[o, v], t1, t2, optimize=['einsum_path', (0, 1),\n (0, 1)])\n", (4662, 4745), False, 'from numpy import einsum\n'), ((4927, 4962), 'numpy.einsum', 'einsum', (['"""efmn->efmn"""', 'g[v, v, o, o]'], {}), "('efmn->efmn', g[v, v, o, o])\n", (4933, 4962), False, 'from numpy import einsum\n'), ((5059, 5101), 'numpy.einsum', 'einsum', (['"""iemn,fi->efmn"""', 'g[o, v, o, o]', 't1'], {}), "('iemn,fi->efmn', g[o, v, o, o], t1)\n", (5065, 5101), False, 'from numpy import einsum\n'), ((5312, 5354), 'numpy.einsum', 'einsum', (['"""efan,am->efmn"""', 'g[v, v, v, o]', 't1'], {}), "('efan,am->efmn', g[v, v, v, o], t1)\n", (5318, 5354), False, 'from numpy import einsum\n'), ((5552, 5596), 'numpy.einsum', 'einsum', (['"""jimn,efji->efmn"""', 'g[o, o, o, o]', 't2'], {}), "('jimn,efji->efmn', g[o, o, o, o], t2)\n", (5558, 5596), False, 'from numpy import einsum\n'), ((5704, 5748), 'numpy.einsum', 'einsum', (['"""iean,afmi->efmn"""', 'g[o, v, v, o]', 't2'], {}), "('iean,afmi->efmn', g[o, v, v, o], t2)\n", (5710, 5748), False, 'from numpy import einsum\n'), ((6066, 6110), 'numpy.einsum', 'einsum', (['"""efab,abmn->efmn"""', 'g[v, v, v, v]', 't2'], {}), "('efab,abmn->efmn', g[v, v, v, v], t2)\n", (6072, 6110), False, 'from numpy import einsum\n'), ((6219, 6316), 'numpy.einsum', 'einsum', (['"""jian,ai,efmj->efmn"""', 'g[o, o, v, o]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jian,ai,efmj->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (6225, 6316), False, 'from numpy import einsum\n'), ((6535, 6632), 'numpy.einsum', 'einsum', (['"""jian,am,efji->efmn"""', 'g[o, o, v, o]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jian,am,efji->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (6541, 6632), False, 'from numpy import einsum\n'), ((6858, 6955), 'numpy.einsum', 'einsum', (['"""jian,ei,afmj->efmn"""', 'g[o, o, v, o]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jian,ei,afmj->efmn', g[o, o, v, o], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (6864, 6955), False, 'from numpy import einsum\n'), ((7294, 7391), 'numpy.einsum', 'einsum', (['"""ieab,ai,bfmn->efmn"""', 'g[o, v, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ieab,ai,bfmn->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (7300, 7391), False, 'from numpy import einsum\n'), ((7617, 7714), 'numpy.einsum', 'einsum', (['"""ieab,an,bfmi->efmn"""', 'g[o, v, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ieab,an,bfmi->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (7623, 7714), False, 'from numpy import einsum\n'), ((8053, 8150), 'numpy.einsum', 'einsum', (['"""ieab,fi,abmn->efmn"""', 'g[o, v, v, v]', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('ieab,fi,abmn->efmn', g[o, v, v, v], t1, t2, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (8059, 8150), False, 'from numpy import einsum\n'), ((8348, 8443), 'numpy.einsum', 'einsum', (['"""jimn,ei,fj->efmn"""', 'g[o, o, o, o]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jimn,ei,fj->efmn', g[o, o, o, o], t1, t1, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (8354, 8443), False, 'from numpy import einsum\n'), ((8551, 8646), 'numpy.einsum', 'einsum', (['"""iean,am,fi->efmn"""', 'g[o, v, v, o]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('iean,am,fi->efmn', g[o, v, v, o], t1, t1, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (8557, 8646), False, 'from numpy import einsum\n'), ((8964, 9059), 'numpy.einsum', 'einsum', (['"""efab,an,bm->efmn"""', 'g[v, v, v, v]', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('efab,an,bm->efmn', g[v, v, v, v], t1, t1, optimize=['einsum_path',\n (0, 1), (0, 1)])\n", (8970, 9059), False, 'from numpy import einsum\n'), ((9168, 9268), 'numpy.einsum', 'einsum', (['"""jiab,abni,efmj->efmn"""', 'g[o, o, v, v]', 't2', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,abni,efmj->efmn', g[o, o, v, v], t2, t2, optimize=[\n 'einsum_path', (0, 1), (0, 1)])\n", (9174, 9268), False, 'from numpy import einsum\n'), ((9473, 9573), 'numpy.einsum', 'einsum', (['"""jiab,abmn,efji->efmn"""', 'g[o, o, v, v]', 't2', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,abmn,efji->efmn', g[o, o, v, v], t2, t2, optimize=[\n 'einsum_path', (0, 1), (0, 1)])\n", (9479, 9573), False, 'from numpy import einsum\n'), ((9664, 9764), 'numpy.einsum', 'einsum', (['"""jiab,aeji,bfmn->efmn"""', 'g[o, o, v, v]', 't2', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,aeji,bfmn->efmn', g[o, o, v, v], t2, t2, optimize=[\n 'einsum_path', (0, 1), (0, 1)])\n", (9670, 9764), False, 'from numpy import einsum\n'), ((9872, 9972), 'numpy.einsum', 'einsum', (['"""jiab,aeni,bfmj->efmn"""', 'g[o, o, v, v]', 't2', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 1)]"}), "('jiab,aeni,bfmj->efmn', g[o, o, v, v], t2, t2, optimize=[\n 'einsum_path', (0, 1), (0, 1)])\n", (9878, 9972), False, 'from numpy import einsum\n'), ((10177, 10277), 'numpy.einsum', 'einsum', (['"""jiab,aemn,bfji->efmn"""', 'g[o, o, v, v]', 't2', 't2'], {'optimize': "['einsum_path', (0, 2), (0, 1)]"}), "('jiab,aemn,bfji->efmn', g[o, o, v, v], t2, t2, optimize=[\n 'einsum_path', (0, 2), (0, 1)])\n", (10183, 10277), False, 'from numpy import einsum\n'), ((10389, 10502), 'numpy.einsum', 'einsum', (['"""jiab,ai,bn,efmj->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,ai,bn,efmj->efmn', g[o, o, v, v], t1, t1, t2, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (10395, 10502), False, 'from numpy import einsum\n'), ((10728, 10841), 'numpy.einsum', 'einsum', (['"""jiab,ai,ej,bfmn->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,ai,ej,bfmn->efmn', g[o, o, v, v], t1, t1, t2, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (10734, 10841), False, 'from numpy import einsum\n'), ((11050, 11163), 'numpy.einsum', 'einsum', (['"""jiab,an,bm,efji->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,an,bm,efji->efmn', g[o, o, v, v], t1, t1, t2, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (11056, 11163), False, 'from numpy import einsum\n'), ((11282, 11395), 'numpy.einsum', 'einsum', (['"""jiab,an,ei,bfmj->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,an,ei,bfmj->efmn', g[o, o, v, v], t1, t1, t2, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (11288, 11395), False, 'from numpy import einsum\n'), ((11724, 11837), 'numpy.einsum', 'einsum', (['"""jiab,ei,fj,abmn->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't2'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jiab,ei,fj,abmn->efmn', g[o, o, v, v], t1, t1, t2, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (11730, 11837), False, 'from numpy import einsum\n'), ((11945, 12056), 'numpy.einsum', 'einsum', (['"""jian,am,ei,fj->efmn"""', 'g[o, o, v, o]', 't1', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('jian,am,ei,fj->efmn', g[o, o, v, o], t1, t1, t1, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (11951, 12056), False, 'from numpy import einsum\n'), ((12278, 12389), 'numpy.einsum', 'einsum', (['"""ieab,an,bm,fi->efmn"""', 'g[o, v, v, v]', 't1', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 2), (0, 1)]"}), "('ieab,an,bm,fi->efmn', g[o, v, v, v], t1, t1, t1, optimize=[\n 'einsum_path', (0, 1), (0, 2), (0, 1)])\n", (12284, 12389), False, 'from numpy import einsum\n'), ((12602, 12728), 'numpy.einsum', 'einsum', (['"""jiab,an,bm,ei,fj->efmn"""', 'g[o, o, v, v]', 't1', 't1', 't1', 't1'], {'optimize': "['einsum_path', (0, 1), (0, 3), (0, 2), (0, 1)]"}), "('jiab,an,bm,ei,fj->efmn', g[o, o, v, v], t1, t1, t1, t1, optimize=[\n 'einsum_path', (0, 1), (0, 3), (0, 2), (0, 1)])\n", (12608, 12728), False, 'from numpy import einsum\n'), ((13091, 13135), 'diis.DIIS', 'DIIS', (['diis_size'], {'start_iter': 'diis_start_cycle'}), '(diis_size, start_iter=diis_start_cycle)\n', (13095, 13135), False, 'from diis import DIIS\n'), ((14641, 14676), 'numpy.abs', 'np.abs', (['(old_energy - current_energy)'], {}), '(old_energy - current_energy)\n', (14647, 14676), True, 'import numpy as np\n'), ((3954, 3999), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (3960, 3999), False, 'from numpy import einsum\n'), ((4201, 4246), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (4207, 4246), False, 'from numpy import einsum\n'), ((4505, 4550), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (4511, 4550), False, 'from numpy import einsum\n'), ((4809, 4854), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (4815, 4854), False, 'from numpy import einsum\n'), ((5169, 5214), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (5175, 5214), False, 'from numpy import einsum\n'), ((5422, 5467), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (5428, 5467), False, 'from numpy import einsum\n'), ((5936, 5981), 'numpy.einsum', 'einsum', (['"""efmn->fenm"""', 'contracted_intermediate'], {}), "('efmn->fenm', contracted_intermediate)\n", (5942, 5981), False, 'from numpy import einsum\n'), ((6380, 6425), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (6386, 6425), False, 'from numpy import einsum\n'), ((6696, 6741), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (6702, 6741), False, 'from numpy import einsum\n'), ((7139, 7184), 'numpy.einsum', 'einsum', (['"""efmn->fenm"""', 'contracted_intermediate'], {}), "('efmn->fenm', contracted_intermediate)\n", (7145, 7184), False, 'from numpy import einsum\n'), ((7455, 7500), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (7461, 7500), False, 'from numpy import einsum\n'), ((7898, 7943), 'numpy.einsum', 'einsum', (['"""efmn->fenm"""', 'contracted_intermediate'], {}), "('efmn->fenm', contracted_intermediate)\n", (7904, 7943), False, 'from numpy import einsum\n'), ((8214, 8259), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (8220, 8259), False, 'from numpy import einsum\n'), ((8830, 8875), 'numpy.einsum', 'einsum', (['"""efmn->fenm"""', 'contracted_intermediate'], {}), "('efmn->fenm', contracted_intermediate)\n", (8836, 8875), False, 'from numpy import einsum\n'), ((9331, 9376), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (9337, 9376), False, 'from numpy import einsum\n'), ((10035, 10080), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (10041, 10080), False, 'from numpy import einsum\n'), ((10565, 10610), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (10571, 10610), False, 'from numpy import einsum\n'), ((10904, 10949), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (10910, 10949), False, 'from numpy import einsum\n'), ((11578, 11623), 'numpy.einsum', 'einsum', (['"""efmn->fenm"""', 'contracted_intermediate'], {}), "('efmn->fenm', contracted_intermediate)\n", (11584, 11623), False, 'from numpy import einsum\n'), ((12119, 12164), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (12125, 12164), False, 'from numpy import einsum\n'), ((12452, 12497), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (12458, 12497), False, 'from numpy import einsum\n'), ((13700, 13732), 'numpy.linalg.norm', 'np.linalg.norm', (['residual_singles'], {}), '(residual_singles)\n', (13714, 13732), True, 'import numpy as np\n'), ((13735, 13767), 'numpy.linalg.norm', 'np.linalg.norm', (['residual_doubles'], {}), '(residual_doubles)\n', (13749, 13767), True, 'import numpy as np\n'), ((5876, 5921), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (5882, 5921), False, 'from numpy import einsum\n'), ((7079, 7124), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (7085, 7124), False, 'from numpy import einsum\n'), ((7838, 7883), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (7844, 7883), False, 'from numpy import einsum\n'), ((8770, 8815), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (8776, 8815), False, 'from numpy import einsum\n'), ((11518, 11563), 'numpy.einsum', 'einsum', (['"""efmn->femn"""', 'contracted_intermediate'], {}), "('efmn->femn', contracted_intermediate)\n", (11524, 11563), False, 'from numpy import einsum\n'), ((5816, 5861), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (5822, 5861), False, 'from numpy import einsum\n'), ((7019, 7064), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (7025, 7064), False, 'from numpy import einsum\n'), ((7778, 7823), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (7784, 7823), False, 'from numpy import einsum\n'), ((8710, 8755), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (8716, 8755), False, 'from numpy import einsum\n'), ((11458, 11503), 'numpy.einsum', 'einsum', (['"""efmn->efnm"""', 'contracted_intermediate'], {}), "('efmn->efnm', contracted_intermediate)\n", (11464, 11503), False, 'from numpy import einsum\n')]
"""Module containing definitions of arithmetic functions used by perceptrons""" from abc import ABC, abstractmethod import numpy as np from NaiveNeurals.utils import ErrorAlgorithm class ActivationFunction(ABC): """Abstract function for defining functions""" label = '' @staticmethod @abstractmethod def function(arg: np.array) -> np.array: """Implementation of function :param arg: float :return: float """ raise NotImplementedError() @classmethod @abstractmethod def prime(cls, arg: np.array) -> np.array: """First derivative of implemented function :param arg: float :return: float """ raise NotImplementedError() class Sigmoid(ActivationFunction): """Represents sigmoid function and its derivative""" label = 'sigmoid' @staticmethod def function(arg: np.array) -> np.array: """Calculate sigmoid(arg) :param arg: float input value :return: float sig(arg) value """ return 1 / (1 + np.exp(-arg)) @classmethod def prime(cls, arg: np.array) -> np.array: """Calculate value of sigmoid's prime derivative for given arg :param arg: float input value :return: float value """ return cls.function(arg) * (1 - cls.function(arg)) class Tanh(ActivationFunction): """Represents hyperbolic tangent""" label = 'tanh' @staticmethod def function(arg: np.array) -> np.array: """Calculate tanh(arg) :param arg: float input value :return: float tanh(arg) value """ return np.tanh(arg) @classmethod def prime(cls, arg: np.array) -> np.array: """Calculate value of tanh's prime derivative for given arg :param arg: float input value :return: float value """ return 1 - np.tanh(arg)**2 class Linear(ActivationFunction): """Represents linear function""" label = 'lin' @staticmethod def function(arg: np.array) -> np.array: """Calculate lin(arg) :param arg: float input value :return: float lin(arg) value """ return arg @classmethod def prime(cls, arg: np.array) -> np.array: """Calculate value of lin's prime derivative for given arg :param arg: float input value :return: float value """ ones = np.array(arg) ones[::] = 1.0 return ones class SoftMax(ActivationFunction): """Represents SoftMax function The ``softmax`` function takes an N-dimensional vector of arbitrary real values and produces another N-dimensional vector with real values in the range (0, 1) that add up to 1.0. source: https://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ """ label = 'softmax' @staticmethod def function(arg: np.array, beta: int = 20) -> np.array: # pylint: disable=arguments-differ """Calculate softmax(arg) :param arg: float input value :param beta: scaling parameter :return: float softmax(arg) value """ exps = np.exp(beta * arg - beta * arg.max()) return exps / np.sum(exps) @classmethod def prime(cls, arg: np.array) -> np.array: """Calculate value of softmax's prime derivative for given arg :param arg: float input value :return: float value """ return cls.function(arg) * (1 - cls.function(arg)) class SoftPlus(ActivationFunction): """Represents softplus function""" label = 'softplus' @staticmethod def function(arg: np.array) -> np.array: """Calculate softplus(arg) :param arg: float input value :return: float softmax(arg) value """ return np.log(1 + np.exp(arg)) @classmethod def prime(cls, arg: np.array) -> np.array: """Calculate value of softplus's prime derivative for given arg :param arg: float input value :return: float value """ return 1/(1 + np.exp(-arg)) def get_activation_function(label: str) -> ActivationFunction: """Get activation function by label :param label: string denoting function :return: callable function """ if label == 'lin': return Linear() if label == 'sigmoid': return Sigmoid() if label == 'tanh': return Tanh() return Sigmoid() def calculate_error(target: np.array, actual: np.array, func_type: ErrorAlgorithm = ErrorAlgorithm.SQR) -> np.array: """Calculates error for provided actual and targeted data. :param target: target data :param actual: actual training data :param func_type: denotes type of used function for error :return: calculated error """ if func_type == ErrorAlgorithm.SQR: return np.sum(0.5 * np.power(actual - target, 2), axis=1) elif func_type == ErrorAlgorithm.CE: return -1 * np.sum(target * np.log(abs(actual)), axis=1) raise NotImplementedError()
[ "numpy.power", "numpy.tanh", "numpy.exp", "numpy.sum", "numpy.array" ]
[((1650, 1662), 'numpy.tanh', 'np.tanh', (['arg'], {}), '(arg)\n', (1657, 1662), True, 'import numpy as np\n'), ((2432, 2445), 'numpy.array', 'np.array', (['arg'], {}), '(arg)\n', (2440, 2445), True, 'import numpy as np\n'), ((3232, 3244), 'numpy.sum', 'np.sum', (['exps'], {}), '(exps)\n', (3238, 3244), True, 'import numpy as np\n'), ((1067, 1079), 'numpy.exp', 'np.exp', (['(-arg)'], {}), '(-arg)\n', (1073, 1079), True, 'import numpy as np\n'), ((1895, 1907), 'numpy.tanh', 'np.tanh', (['arg'], {}), '(arg)\n', (1902, 1907), True, 'import numpy as np\n'), ((3839, 3850), 'numpy.exp', 'np.exp', (['arg'], {}), '(arg)\n', (3845, 3850), True, 'import numpy as np\n'), ((4091, 4103), 'numpy.exp', 'np.exp', (['(-arg)'], {}), '(-arg)\n', (4097, 4103), True, 'import numpy as np\n'), ((4901, 4929), 'numpy.power', 'np.power', (['(actual - target)', '(2)'], {}), '(actual - target, 2)\n', (4909, 4929), True, 'import numpy as np\n')]
from OpenGL import GL from PIL import Image from pathlib import Path import numpy as np import gc import os import ctypes GL_COMPRESSED_RGBA_S3TC_DXT1_EXT = 0x83F1 VBO = None VAO = None TEXTURE = None SHADER = None vertexData = [ -1.0, -1.0, 0.0, 0.0, 1.0, -1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, -1.0, -1.0, 0.0, 0.0, 1.0] _filepath = os.path.join( Path(__file__).parent.parent.parent, "branding/spykeLogo.dds") tex = dds_loader.DDSTexture() tex.load(_filepath) texData = np.fromstring(tex.data, dtype=np.uint8) texImageSize = tex.real_size vertSource = """ #version 450 core layout(location = 0) in vec3 aPosition; layout(location = 1) in vec2 aTexCoord; out vec2 vTexCoord; void main() { vTexCoord = aTexCoord; gl_Position = vec4(aPosition, 1.0f); } """ fragSource = """ #version 450 core in vec2 vTexCoord; uniform sampler2D uTexture; out vec4 Color; void main() { Color = texture(uTexture, vTexCoord); } """ def __SetupShader(): global SHADER SHADER = GL.glCreateProgram() vert = GL.glCreateShader(GL.GL_VERTEX_SHADER) GL.glShaderSource(vert, vertSource) GL.glCompileShader(vert) GL.glAttachShader(SHADER, vert) frag = GL.glCreateShader(GL.GL_FRAGMENT_SHADER) GL.glShaderSource(frag, fragSource) GL.glCompileShader(frag) GL.glAttachShader(SHADER, frag) GL.glLinkProgram(SHADER) GL.glValidateProgram(SHADER) GL.glDetachShader(SHADER, vert) GL.glDetachShader(SHADER, frag) GL.glDeleteShader(vert) GL.glDeleteShader(frag) def __SetupVbo(): global VBO VBO = GL.glGenBuffers(1) GL.glBindBuffer(GL.GL_ARRAY_BUFFER, VBO) GL.glBufferData(GL.GL_ARRAY_BUFFER, len(vertexData) * ctypes.sizeof(ctypes.c_float), np.asarray(vertexData, dtype=np.float32), GL.GL_STATIC_DRAW) def __SetupVao(): global VAO vertexSize = (3 + 2) * ctypes.sizeof(ctypes.c_float) VAO = GL.glGenVertexArrays(1) GL.glBindVertexArray(VAO) GL.glBindBuffer(GL.GL_ARRAY_BUFFER, VBO) GL.glVertexAttribPointer(0, 3, GL.GL_FLOAT, False, vertexSize, ctypes.c_void_p(0)) GL.glEnableVertexAttribArray(0) GL.glVertexAttribPointer(1, 2, GL.GL_FLOAT, False, vertexSize, ctypes.c_void_p( 3 * ctypes.sizeof(ctypes.c_float))) GL.glEnableVertexAttribArray(1) def __SetupTexture(): global TEXTURE TEXTURE = GL.glGenTextures(1) GL.glBindTexture(GL.GL_TEXTURE_2D, TEXTURE) GL.glCompressedTexImage2D( GL.GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, 1024, 1024, texImageSize, texData) GL.glTexParameter(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR) GL.glTexParameter(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR) def CleanupPreview(): global vertexData, texData, vertSource, fragSource GL.glClear(GL.GL_COLOR_BUFFER_BIT) GL.glDeleteProgram(SHADER) GL.glDeleteBuffers(1, [VBO]) GL.glDeleteVertexArrays(1, [VAO]) GL.glDeleteTextures(1, [TEXTURE]) err = GL.glGetError() while err != GL.GL_NO_ERROR: err = GL.glGetError() del vertexData del texData del vertSource del fragSource gc.collect() def RenderPreview(): global VBO, VAO, TEXTURE, SHADER __SetupShader() __SetupVbo() __SetupVao() __SetupTexture() GL.glEnable(GL.GL_BLEND) GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA) GL.glUseProgram(SHADER) GL.glBindVertexArray(VAO) GL.glBindTexture(GL.GL_TEXTURE_2D, TEXTURE) GL.glClear(GL.GL_COLOR_BUFFER_BIT) GL.glDrawArrays(GL.GL_TRIANGLES, 0, 6) GL.glBindTexture(GL.GL_TEXTURE_2D, 0) err = GL.glGetError() while err != GL.GL_NO_ERROR: err = GL.glGetError()
[ "OpenGL.GL.glTexParameter", "OpenGL.GL.glDeleteProgram", "ctypes.c_void_p", "OpenGL.GL.glAttachShader", "OpenGL.GL.glCreateShader", "OpenGL.GL.glDrawArrays", "OpenGL.GL.glDeleteBuffers", "OpenGL.GL.glGenTextures", "pathlib.Path", "OpenGL.GL.glBindVertexArray", "OpenGL.GL.glGenBuffers", "OpenGL.GL.glClear", "numpy.asarray", "OpenGL.GL.glBindBuffer", "numpy.fromstring", "OpenGL.GL.glShaderSource", "OpenGL.GL.glDetachShader", "OpenGL.GL.glBindTexture", "OpenGL.GL.glUseProgram", "OpenGL.GL.glGenVertexArrays", "OpenGL.GL.glCompileShader", "OpenGL.GL.glDeleteTextures", "OpenGL.GL.glEnable", "OpenGL.GL.glEnableVertexAttribArray", "OpenGL.GL.glDeleteShader", "gc.collect", "OpenGL.GL.glLinkProgram", "OpenGL.GL.glDeleteVertexArrays", "ctypes.sizeof", "OpenGL.GL.glCompressedTexImage2D", "OpenGL.GL.glBlendFunc", "OpenGL.GL.glValidateProgram", "OpenGL.GL.glCreateProgram", "OpenGL.GL.glGetError" ]
[((575, 614), 'numpy.fromstring', 'np.fromstring', (['tex.data'], {'dtype': 'np.uint8'}), '(tex.data, dtype=np.uint8)\n', (588, 614), True, 'import numpy as np\n'), ((1089, 1109), 'OpenGL.GL.glCreateProgram', 'GL.glCreateProgram', ([], {}), '()\n', (1107, 1109), False, 'from OpenGL import GL\n'), ((1122, 1160), 'OpenGL.GL.glCreateShader', 'GL.glCreateShader', (['GL.GL_VERTEX_SHADER'], {}), '(GL.GL_VERTEX_SHADER)\n', (1139, 1160), False, 'from OpenGL import GL\n'), ((1165, 1200), 'OpenGL.GL.glShaderSource', 'GL.glShaderSource', (['vert', 'vertSource'], {}), '(vert, vertSource)\n', (1182, 1200), False, 'from OpenGL import GL\n'), ((1205, 1229), 'OpenGL.GL.glCompileShader', 'GL.glCompileShader', (['vert'], {}), '(vert)\n', (1223, 1229), False, 'from OpenGL import GL\n'), ((1234, 1265), 'OpenGL.GL.glAttachShader', 'GL.glAttachShader', (['SHADER', 'vert'], {}), '(SHADER, vert)\n', (1251, 1265), False, 'from OpenGL import GL\n'), ((1278, 1318), 'OpenGL.GL.glCreateShader', 'GL.glCreateShader', (['GL.GL_FRAGMENT_SHADER'], {}), '(GL.GL_FRAGMENT_SHADER)\n', (1295, 1318), False, 'from OpenGL import GL\n'), ((1323, 1358), 'OpenGL.GL.glShaderSource', 'GL.glShaderSource', (['frag', 'fragSource'], {}), '(frag, fragSource)\n', (1340, 1358), False, 'from OpenGL import GL\n'), ((1363, 1387), 'OpenGL.GL.glCompileShader', 'GL.glCompileShader', (['frag'], {}), '(frag)\n', (1381, 1387), False, 'from OpenGL import GL\n'), ((1392, 1423), 'OpenGL.GL.glAttachShader', 'GL.glAttachShader', (['SHADER', 'frag'], {}), '(SHADER, frag)\n', (1409, 1423), False, 'from OpenGL import GL\n'), ((1429, 1453), 'OpenGL.GL.glLinkProgram', 'GL.glLinkProgram', (['SHADER'], {}), '(SHADER)\n', (1445, 1453), False, 'from OpenGL import GL\n'), ((1458, 1486), 'OpenGL.GL.glValidateProgram', 'GL.glValidateProgram', (['SHADER'], {}), '(SHADER)\n', (1478, 1486), False, 'from OpenGL import GL\n'), ((1492, 1523), 'OpenGL.GL.glDetachShader', 'GL.glDetachShader', (['SHADER', 'vert'], {}), '(SHADER, vert)\n', (1509, 1523), False, 'from OpenGL import GL\n'), ((1528, 1559), 'OpenGL.GL.glDetachShader', 'GL.glDetachShader', (['SHADER', 'frag'], {}), '(SHADER, frag)\n', (1545, 1559), False, 'from OpenGL import GL\n'), ((1565, 1588), 'OpenGL.GL.glDeleteShader', 'GL.glDeleteShader', (['vert'], {}), '(vert)\n', (1582, 1588), False, 'from OpenGL import GL\n'), ((1593, 1616), 'OpenGL.GL.glDeleteShader', 'GL.glDeleteShader', (['frag'], {}), '(frag)\n', (1610, 1616), False, 'from OpenGL import GL\n'), ((1663, 1681), 'OpenGL.GL.glGenBuffers', 'GL.glGenBuffers', (['(1)'], {}), '(1)\n', (1678, 1681), False, 'from OpenGL import GL\n'), ((1686, 1726), 'OpenGL.GL.glBindBuffer', 'GL.glBindBuffer', (['GL.GL_ARRAY_BUFFER', 'VBO'], {}), '(GL.GL_ARRAY_BUFFER, VBO)\n', (1701, 1726), False, 'from OpenGL import GL\n'), ((2001, 2024), 'OpenGL.GL.glGenVertexArrays', 'GL.glGenVertexArrays', (['(1)'], {}), '(1)\n', (2021, 2024), False, 'from OpenGL import GL\n'), ((2029, 2054), 'OpenGL.GL.glBindVertexArray', 'GL.glBindVertexArray', (['VAO'], {}), '(VAO)\n', (2049, 2054), False, 'from OpenGL import GL\n'), ((2060, 2100), 'OpenGL.GL.glBindBuffer', 'GL.glBindBuffer', (['GL.GL_ARRAY_BUFFER', 'VBO'], {}), '(GL.GL_ARRAY_BUFFER, VBO)\n', (2075, 2100), False, 'from OpenGL import GL\n'), ((2222, 2253), 'OpenGL.GL.glEnableVertexAttribArray', 'GL.glEnableVertexAttribArray', (['(0)'], {}), '(0)\n', (2250, 2253), False, 'from OpenGL import GL\n'), ((2387, 2418), 'OpenGL.GL.glEnableVertexAttribArray', 'GL.glEnableVertexAttribArray', (['(1)'], {}), '(1)\n', (2415, 2418), False, 'from OpenGL import GL\n'), ((2477, 2496), 'OpenGL.GL.glGenTextures', 'GL.glGenTextures', (['(1)'], {}), '(1)\n', (2493, 2496), False, 'from OpenGL import GL\n'), ((2501, 2544), 'OpenGL.GL.glBindTexture', 'GL.glBindTexture', (['GL.GL_TEXTURE_2D', 'TEXTURE'], {}), '(GL.GL_TEXTURE_2D, TEXTURE)\n', (2517, 2544), False, 'from OpenGL import GL\n'), ((2550, 2669), 'OpenGL.GL.glCompressedTexImage2D', 'GL.glCompressedTexImage2D', (['GL.GL_TEXTURE_2D', '(0)', 'GL_COMPRESSED_RGBA_S3TC_DXT1_EXT', '(1024)', '(1024)', 'texImageSize', 'texData'], {}), '(GL.GL_TEXTURE_2D, 0,\n GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, 1024, 1024, texImageSize, texData)\n', (2575, 2669), False, 'from OpenGL import GL\n'), ((2679, 2754), 'OpenGL.GL.glTexParameter', 'GL.glTexParameter', (['GL.GL_TEXTURE_2D', 'GL.GL_TEXTURE_MAG_FILTER', 'GL.GL_LINEAR'], {}), '(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR)\n', (2696, 2754), False, 'from OpenGL import GL\n'), ((2759, 2834), 'OpenGL.GL.glTexParameter', 'GL.glTexParameter', (['GL.GL_TEXTURE_2D', 'GL.GL_TEXTURE_MIN_FILTER', 'GL.GL_LINEAR'], {}), '(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR)\n', (2776, 2834), False, 'from OpenGL import GL\n'), ((2919, 2953), 'OpenGL.GL.glClear', 'GL.glClear', (['GL.GL_COLOR_BUFFER_BIT'], {}), '(GL.GL_COLOR_BUFFER_BIT)\n', (2929, 2953), False, 'from OpenGL import GL\n'), ((2959, 2985), 'OpenGL.GL.glDeleteProgram', 'GL.glDeleteProgram', (['SHADER'], {}), '(SHADER)\n', (2977, 2985), False, 'from OpenGL import GL\n'), ((2990, 3018), 'OpenGL.GL.glDeleteBuffers', 'GL.glDeleteBuffers', (['(1)', '[VBO]'], {}), '(1, [VBO])\n', (3008, 3018), False, 'from OpenGL import GL\n'), ((3023, 3056), 'OpenGL.GL.glDeleteVertexArrays', 'GL.glDeleteVertexArrays', (['(1)', '[VAO]'], {}), '(1, [VAO])\n', (3046, 3056), False, 'from OpenGL import GL\n'), ((3061, 3094), 'OpenGL.GL.glDeleteTextures', 'GL.glDeleteTextures', (['(1)', '[TEXTURE]'], {}), '(1, [TEXTURE])\n', (3080, 3094), False, 'from OpenGL import GL\n'), ((3106, 3121), 'OpenGL.GL.glGetError', 'GL.glGetError', ([], {}), '()\n', (3119, 3121), False, 'from OpenGL import GL\n'), ((3264, 3276), 'gc.collect', 'gc.collect', ([], {}), '()\n', (3274, 3276), False, 'import gc\n'), ((3418, 3442), 'OpenGL.GL.glEnable', 'GL.glEnable', (['GL.GL_BLEND'], {}), '(GL.GL_BLEND)\n', (3429, 3442), False, 'from OpenGL import GL\n'), ((3447, 3505), 'OpenGL.GL.glBlendFunc', 'GL.glBlendFunc', (['GL.GL_SRC_ALPHA', 'GL.GL_ONE_MINUS_SRC_ALPHA'], {}), '(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA)\n', (3461, 3505), False, 'from OpenGL import GL\n'), ((3511, 3534), 'OpenGL.GL.glUseProgram', 'GL.glUseProgram', (['SHADER'], {}), '(SHADER)\n', (3526, 3534), False, 'from OpenGL import GL\n'), ((3539, 3564), 'OpenGL.GL.glBindVertexArray', 'GL.glBindVertexArray', (['VAO'], {}), '(VAO)\n', (3559, 3564), False, 'from OpenGL import GL\n'), ((3569, 3612), 'OpenGL.GL.glBindTexture', 'GL.glBindTexture', (['GL.GL_TEXTURE_2D', 'TEXTURE'], {}), '(GL.GL_TEXTURE_2D, TEXTURE)\n', (3585, 3612), False, 'from OpenGL import GL\n'), ((3618, 3652), 'OpenGL.GL.glClear', 'GL.glClear', (['GL.GL_COLOR_BUFFER_BIT'], {}), '(GL.GL_COLOR_BUFFER_BIT)\n', (3628, 3652), False, 'from OpenGL import GL\n'), ((3657, 3695), 'OpenGL.GL.glDrawArrays', 'GL.glDrawArrays', (['GL.GL_TRIANGLES', '(0)', '(6)'], {}), '(GL.GL_TRIANGLES, 0, 6)\n', (3672, 3695), False, 'from OpenGL import GL\n'), ((3701, 3738), 'OpenGL.GL.glBindTexture', 'GL.glBindTexture', (['GL.GL_TEXTURE_2D', '(0)'], {}), '(GL.GL_TEXTURE_2D, 0)\n', (3717, 3738), False, 'from OpenGL import GL\n'), ((3750, 3765), 'OpenGL.GL.glGetError', 'GL.glGetError', ([], {}), '()\n', (3763, 3765), False, 'from OpenGL import GL\n'), ((1836, 1876), 'numpy.asarray', 'np.asarray', (['vertexData'], {'dtype': 'np.float32'}), '(vertexData, dtype=np.float32)\n', (1846, 1876), True, 'import numpy as np\n'), ((1960, 1989), 'ctypes.sizeof', 'ctypes.sizeof', (['ctypes.c_float'], {}), '(ctypes.c_float)\n', (1973, 1989), False, 'import ctypes\n'), ((2198, 2216), 'ctypes.c_void_p', 'ctypes.c_void_p', (['(0)'], {}), '(0)\n', (2213, 2216), False, 'import ctypes\n'), ((3169, 3184), 'OpenGL.GL.glGetError', 'GL.glGetError', ([], {}), '()\n', (3182, 3184), False, 'from OpenGL import GL\n'), ((3813, 3828), 'OpenGL.GL.glGetError', 'GL.glGetError', ([], {}), '()\n', (3826, 3828), False, 'from OpenGL import GL\n'), ((1785, 1814), 'ctypes.sizeof', 'ctypes.sizeof', (['ctypes.c_float'], {}), '(ctypes.c_float)\n', (1798, 1814), False, 'import ctypes\n'), ((451, 465), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (455, 465), False, 'from pathlib import Path\n'), ((2351, 2380), 'ctypes.sizeof', 'ctypes.sizeof', (['ctypes.c_float'], {}), '(ctypes.c_float)\n', (2364, 2380), False, 'import ctypes\n')]
import io import torchvision.transforms as transforms from PIL import Image import onnxruntime as ort import numpy as np class_map = { 0: "10 Reais Frente", 1: "10 Reais Verso", 2: "20 Reais Frente", 3: "20 Reais Verso", 4: "2 Reais Frente", 5: "2 Reais Verso", 6: "50 Reais Frente", 7: "50 Reais Verso", 8: "5 Reais Frente", 9: "5 Reais Verso" } def transform_image(image_bytes): my_transforms = transforms.Compose([ transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image = Image.open(io.BytesIO(image_bytes)) return my_transforms(image).unsqueeze_(0) def get_prediction(image_bytes, inference_session): tensor = transform_image(image_bytes=image_bytes) outputs = inference_session.run(None, {'input.1': tensor.numpy()}) y_hat = np.argmax(outputs[0], axis=1)[0] return class_map[y_hat] if __name__ == "__main__": ort_session = ort.InferenceSession('app/models/banknote_best.onnx') filename = [ "data/validation/2reaisFrente/compressed_0_1835891.jpeg", 'data/validation/2reaisVerso/compressed_0_3752849.jpeg', "data/validation/5reaisFrente/compressed_0_1986857.jpeg", "data/validation/5reaisVerso/compressed_0_4651610.jpeg", "data/validation/10reaisFrente/compressed_0_2854543.jpeg", "data/validation/10reaisVerso/compressed_0_2175135.jpeg", 'data/validation/20reaisFrente/compressed_0_1516768.jpeg', 'data/validation/20reaisVerso/compressed_0_3080811.jpeg', 'data/validation/50reaisFrente/compressed_0_1478513.jpeg', 'data/validation/50reaisVerso/compressed_0_3923784.jpeg'] for img in filename: with open(img, 'rb') as f: image_bytes = f.read() tensor = get_prediction(image_bytes, ort_session) print(tensor)
[ "onnxruntime.InferenceSession", "numpy.argmax", "io.BytesIO", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "torchvision.transforms.ToTensor" ]
[((1044, 1097), 'onnxruntime.InferenceSession', 'ort.InferenceSession', (['"""app/models/banknote_best.onnx"""'], {}), "('app/models/banknote_best.onnx')\n", (1064, 1097), True, 'import onnxruntime as ort\n'), ((669, 692), 'io.BytesIO', 'io.BytesIO', (['image_bytes'], {}), '(image_bytes)\n', (679, 692), False, 'import io\n'), ((931, 960), 'numpy.argmax', 'np.argmax', (['outputs[0]'], {'axis': '(1)'}), '(outputs[0], axis=1)\n', (940, 960), True, 'import numpy as np\n'), ((490, 519), 'torchvision.transforms.Resize', 'transforms.Resize', (['[224, 224]'], {}), '([224, 224])\n', (507, 519), True, 'import torchvision.transforms as transforms\n'), ((533, 554), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (552, 554), True, 'import torchvision.transforms as transforms\n'), ((568, 634), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (588, 634), True, 'import torchvision.transforms as transforms\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import vplot import scipy.signal as sig #plt.rcParams["text.usetex"]=True #plt.rcParams["text.latex.unicode"]=True plt.rcParams.update({'font.size':16,'legend.fontsize':15}) import sys # Check correct number of arguments if (len(sys.argv) != 2): print('ERROR: Incorrect number of arguments.') print('Usage: '+sys.argv[0]+' <pdf | png>') exit(1) if (sys.argv[1] != 'pdf' and sys.argv[1] != 'png'): print('ERROR: Unknown file format: '+sys.argv[1]) print('Options are: pdf, png') exit(1) out = vplot.GetOutput() # Print final state #print('Final: t=%.3f TUMan=%f TMan=%f TCMB=%f TCore=%f HflowUMan=%.1f HflowCMB=%.1f RadPowerTotal=%f RadPowerMan=%.1f RadPowerCore=%.1f MagMom=%f RIC=%f'%(out.earth.Time[-1],out.earth.TUMan[-1],out.earth.TMan[-1],out.earth.TCMB[-1],out.earth.TCore[-1],out.earth.HflowUMan[-1],out.earth.HflowCMB[-1],out.earth.RadPowerTotal[-1],out.earth.RadPowerMan[-1],out.earth.RadPowerCore[-1],out.earth.MagMom[-1],out.earth.RIC[-1])) ### Uncertainty ranges TUMan_ra = np.array([1280.,1475.])+273. #[K] Jaupart (2015) Table 4. TCMB_ra = np.array([3800,4200.]) #[K] Hirose (2013) Table 2. HflowUMan_ra = np.array([35,41.]) #[TW] Jaupart (2015) Table 12. HflowUMan_ra = np.array([35,41.]) #[TW] Jaupart (2015) Table 12. HflowCMB_ra = np.array([5,17]) #[TW] Jaupart (2015) Table 12. ViscUMan_ra = np.array([1.5e19,1.5e22])/3300. #[m^2/s] Paulson (2005) Fig 3. ViscLMan_ra = np.array([3e19,1.5e22])/5200. #[m^2/s] Paulson (2005) Fig 3. MeltMassFlux_ra = np.array([0.52,4*.52]) #[1e6 kg/s] Cogne (2004) 5-15 km^3/yr. Li (2015) ~20 km^3/yr FMeltUMan_ra = np.array([0.07,0.15]) # refs? ### Hi/lo TUMan_lo = np.abs(TUMan_ra[0]-out.earth.TUMan[-1]) TUMan_hi = np.abs(TUMan_ra[1]-out.earth.TUMan[-1]) TCMB_lo = np.abs(TCMB_ra[0]-out.earth.TCMB[-1]) TCMB_hi = np.abs(TCMB_ra[1]-out.earth.TCMB[-1]) HflowUMan_lo = np.abs(HflowUMan_ra[0]-out.earth.HflowUMan[-1]) HflowUMan_hi = np.abs(HflowUMan_ra[1]-out.earth.HflowUMan[-1]) HflowCMB_lo = np.abs(HflowCMB_ra[0]-out.earth.HflowCMB[-1]) HflowCMB_hi = np.abs(HflowCMB_ra[1]-out.earth.HflowCMB[-1]) ViscUMan_lo = np.abs(ViscUMan_ra[0]-out.earth.ViscUMan[-1]) ViscUMan_hi = np.abs(ViscUMan_ra[1]-out.earth.ViscUMan[-1]) ViscLMan_lo = np.abs(ViscLMan_ra[0]-out.earth.ViscLMan[-1]) ViscLMan_hi = np.abs(ViscLMan_ra[1]-out.earth.ViscLMan[-1]) MeltMassFlux_lo = np.abs(MeltMassFlux_ra[0]-out.earth.MeltMassFluxMan[-1]*1e-6) MeltMassFlux_hi = np.abs(MeltMassFlux_ra[1]-out.earth.MeltMassFluxMan[-1]*1e-6) FMeltUMan_lo = np.abs(FMeltUMan_ra[0]-out.earth.FMeltUMan[-1]) FMeltUMan_hi = np.abs(FMeltUMan_ra[1]-out.earth.FMeltUMan[-1]) # Plots rows=3 cols=2 # Mantle Figure nfig=1 fig = plt.figure(nfig, figsize=(10,15)) panel=1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.TMan,color=vplot.colors.red,linestyle='-',label=r'$T_{M}$') plt.plot(out.earth.Time,out.earth.TUMan,color=vplot.colors.orange,linestyle='-',label=r'$T_{UM}$') plt.errorbar(out.earth.Time[-1],out.earth.TUMan[-1],yerr=[[TUMan_lo],[TUMan_hi]],color=vplot.colors.orange,fmt='o') plt.plot(out.earth.Time,out.earth.TLMan,color=vplot.colors.pale_blue,linestyle='-',label=r'$T_{LM}$') plt.plot(out.earth.Time,out.earth.TCMB,color=vplot.colors.purple,linestyle='-',label=r'$T_{CMB}$') plt.errorbar(out.earth.Time[-1],out.earth.TCMB[-1],yerr=[[TCMB_lo],[TCMB_hi]],color=vplot.colors.purple,fmt='-o') plt.plot(out.earth.Time,out.earth.TCore,'k-',label=r'$T_{C}$') plt.legend(loc='best',ncol=2,frameon=True,columnspacing=1) plt.ylabel('Temperature (K)') plt.xlabel('Time (Gyr)') plt.ylim(0,10000) plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.HflowUMan,color=vplot.colors.red,linestyle='-',label=r'$Q_{UMan}$') plt.errorbar(out.earth.Time[-1],out.earth.HflowUMan[-1],yerr=[[HflowUMan_lo],[HflowUMan_hi]],color=vplot.colors.red,fmt='o') plt.plot(out.earth.Time,out.earth.HflowCMB,color=vplot.colors.orange,linestyle='-',label=r'$Q_{CMB}$') plt.errorbar(out.earth.Time[-1],out.earth.HflowCMB[-1],yerr=[[HflowCMB_lo],[HflowCMB_hi]],color=vplot.colors.orange,fmt='o') plt.plot(out.earth.Time,out.earth.RadPowerMan,color=vplot.colors.pale_blue,linestyle='-',label=r'$Q_{Rad,Man}$') plt.plot(out.earth.Time,out.earth.RadPowerCore,'k-',label=r'$Q_{Rad,Core}$') plt.legend(loc='best',frameon=True) plt.ylabel('Heat Flow (TW)') plt.xlabel('Time (Gyr)') plt.ylim(0,150) plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.BLUMan,label=r'$\delta_{UM}$',color=vplot.colors.dark_blue) plt.plot(out.earth.Time,out.earth.BLLMan,label=r'$\delta_{LM}$',color=vplot.colors.orange) plt.legend(loc='best',frameon=True) plt.ylabel(r'Boundary Layer Depths (km)') plt.xlabel('Time (Gyr)') plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.semilogy(out.earth.Time,out.earth.ViscUMan,label=r'$\nu_{UM}$',color=vplot.colors.dark_blue) plt.errorbar(out.earth.Time[-1],out.earth.ViscUMan[-1],yerr=[[ViscUMan_lo],[ViscUMan_hi]],color=vplot.colors.dark_blue,fmt='o') plt.semilogy(out.earth.Time,out.earth.ViscLMan,label=r'$\nu_{LM}$',color=vplot.colors.orange) plt.errorbar(out.earth.Time[-1],out.earth.ViscLMan[-1],yerr=[[ViscLMan_lo],[ViscLMan_hi]],color=vplot.colors.orange,fmt='o') plt.legend(loc='best',frameon=True) plt.ylabel(r'Mantle Viscosity ($m^2s^{-1}$)') plt.xlabel('Time (Gyr)') plt.ylim(1e12,1e19) plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.FMeltUMan,color=vplot.colors.dark_blue) plt.errorbar(out.earth.Time[-1],out.earth.FMeltUMan[-1]*1e-6,yerr=[[FMeltUMan_lo],[FMeltUMan_hi]],color=vplot.colors.dark_blue,fmt='o') plt.ylabel(r'Melt Fraction Upper Mantle (n.d.)') plt.xlabel('Time (Gyr)') plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.MeltMassFluxMan*1e-6,color=vplot.colors.dark_blue) plt.errorbar(out.earth.Time[-1],out.earth.MeltMassFluxMan[-1]*1e-6,yerr=[[MeltMassFlux_lo],[MeltMassFlux_hi]],color=vplot.colors.dark_blue,fmt='o') plt.ylabel(r'Melt Mass Flux Mantle ($\times 10^6$ kg$/$s)') plt.xlabel('Time (Gyr)') plt.ylim(0,100) plt.xlim(0,4.6) plt.xticks([0,1,2,3,4]) vplot.make_pretty(fig) if (sys.argv[1] == 'pdf'): plt.savefig('EarthInterior%d.pdf'%nfig) if (sys.argv[1] == 'png'): plt.savefig('EarthInterior%d.png'%nfig) # Core Plots rows=2 nfig += 1 fig = plt.figure(nfig, figsize=(10,10)) panel = 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.RIC,label='RIC') plt.ylim(0,1500) plt.ylabel(r'Inner Core Radius (km)') plt.xlabel('Time (Gyr)') panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.CoreBuoyTherm*1e13,label='Thermal') plt.plot(out.earth.Time,out.earth.CoreBuoyCompo*1e13,label='Compositional') plt.plot(out.earth.Time,out.earth.CoreBuoyTotal*1e13,label='Total') plt.legend(loc='best',frameon=True) plt.ylabel(r'Core Buoyancy Flux ($\times10^{-13}$ m$^2/$s$^3$)') plt.xlabel('Time (Gyr)') plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.MagMom,label='MagMom') plt.ylim(0,2) plt.ylabel('Magnetic Moment (E. Units)') plt.xlabel('Time (Gyr)') plt.xticks([0,1,2,3,4]) panel += 1 plt.subplot(rows,cols,panel) plt.plot(out.earth.Time,out.earth.MagPauseRad) plt.ylabel(r'Magnetopause Radius (E. Units)') plt.xlabel('Time (Gyr)') plt.xticks([0,1,2,3,4]) #panel += 1 #plt.subplot(rows,cols,panel) #plt.plot(out.earth.Time,out.earth.ChiOC,label='ChiOC') #plt.plot(out.earth.Time,out.earth.ChiIC,label='ChiIC') #plt.ylim(0,0.2) #plt.ylabel(r'Core Light Element Concentration') #plt.xlabel('Time (Gyr)') #plt.legend(loc='best',frameon=False) vplot.make_pretty(fig) if (sys.argv[1] == 'pdf'): plt.savefig('EarthInterior%d.pdf'%nfig) if (sys.argv[1] == 'png'): plt.savefig('EarthInterior%d.png'%nfig) plt.close()
[ "numpy.abs", "matplotlib.pyplot.semilogy", "vplot.make_pretty", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "matplotlib.pyplot.rcParams.update", "numpy.array", "matplotlib.pyplot.figure", "vplot.GetOutput", "matplotlib.pyplot.errorbar", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "matplotlib.pyplot.subplot", "matplotlib.pyplot.legend" ]
[((191, 252), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 16, 'legend.fontsize': 15}"], {}), "({'font.size': 16, 'legend.fontsize': 15})\n", (210, 252), True, 'import matplotlib.pyplot as plt\n'), ((595, 612), 'vplot.GetOutput', 'vplot.GetOutput', ([], {}), '()\n', (610, 612), False, 'import vplot\n'), ((1165, 1189), 'numpy.array', 'np.array', (['[3800, 4200.0]'], {}), '([3800, 4200.0])\n', (1173, 1189), True, 'import numpy as np\n'), ((1245, 1265), 'numpy.array', 'np.array', (['[35, 41.0]'], {}), '([35, 41.0])\n', (1253, 1265), True, 'import numpy as np\n'), ((1323, 1343), 'numpy.array', 'np.array', (['[35, 41.0]'], {}), '([35, 41.0])\n', (1331, 1343), True, 'import numpy as np\n'), ((1401, 1418), 'numpy.array', 'np.array', (['[5, 17]'], {}), '([5, 17])\n', (1409, 1418), True, 'import numpy as np\n'), ((1640, 1666), 'numpy.array', 'np.array', (['[0.52, 4 * 0.52]'], {}), '([0.52, 4 * 0.52])\n', (1648, 1666), True, 'import numpy as np\n'), ((1747, 1769), 'numpy.array', 'np.array', (['[0.07, 0.15]'], {}), '([0.07, 0.15])\n', (1755, 1769), True, 'import numpy as np\n'), ((1810, 1851), 'numpy.abs', 'np.abs', (['(TUMan_ra[0] - out.earth.TUMan[-1])'], {}), '(TUMan_ra[0] - out.earth.TUMan[-1])\n', (1816, 1851), True, 'import numpy as np\n'), ((1861, 1902), 'numpy.abs', 'np.abs', (['(TUMan_ra[1] - out.earth.TUMan[-1])'], {}), '(TUMan_ra[1] - out.earth.TUMan[-1])\n', (1867, 1902), True, 'import numpy as np\n'), ((1911, 1950), 'numpy.abs', 'np.abs', (['(TCMB_ra[0] - out.earth.TCMB[-1])'], {}), '(TCMB_ra[0] - out.earth.TCMB[-1])\n', (1917, 1950), True, 'import numpy as np\n'), ((1959, 1998), 'numpy.abs', 'np.abs', (['(TCMB_ra[1] - out.earth.TCMB[-1])'], {}), '(TCMB_ra[1] - out.earth.TCMB[-1])\n', (1965, 1998), True, 'import numpy as np\n'), ((2012, 2061), 'numpy.abs', 'np.abs', (['(HflowUMan_ra[0] - out.earth.HflowUMan[-1])'], {}), '(HflowUMan_ra[0] - out.earth.HflowUMan[-1])\n', (2018, 2061), True, 'import numpy as np\n'), ((2075, 2124), 'numpy.abs', 'np.abs', (['(HflowUMan_ra[1] - out.earth.HflowUMan[-1])'], {}), '(HflowUMan_ra[1] - out.earth.HflowUMan[-1])\n', (2081, 2124), True, 'import numpy as np\n'), ((2137, 2184), 'numpy.abs', 'np.abs', (['(HflowCMB_ra[0] - out.earth.HflowCMB[-1])'], {}), '(HflowCMB_ra[0] - out.earth.HflowCMB[-1])\n', (2143, 2184), True, 'import numpy as np\n'), ((2197, 2244), 'numpy.abs', 'np.abs', (['(HflowCMB_ra[1] - out.earth.HflowCMB[-1])'], {}), '(HflowCMB_ra[1] - out.earth.HflowCMB[-1])\n', (2203, 2244), True, 'import numpy as np\n'), ((2257, 2304), 'numpy.abs', 'np.abs', (['(ViscUMan_ra[0] - out.earth.ViscUMan[-1])'], {}), '(ViscUMan_ra[0] - out.earth.ViscUMan[-1])\n', (2263, 2304), True, 'import numpy as np\n'), ((2317, 2364), 'numpy.abs', 'np.abs', (['(ViscUMan_ra[1] - out.earth.ViscUMan[-1])'], {}), '(ViscUMan_ra[1] - out.earth.ViscUMan[-1])\n', (2323, 2364), True, 'import numpy as np\n'), ((2377, 2424), 'numpy.abs', 'np.abs', (['(ViscLMan_ra[0] - out.earth.ViscLMan[-1])'], {}), '(ViscLMan_ra[0] - out.earth.ViscLMan[-1])\n', (2383, 2424), True, 'import numpy as np\n'), ((2437, 2484), 'numpy.abs', 'np.abs', (['(ViscLMan_ra[1] - out.earth.ViscLMan[-1])'], {}), '(ViscLMan_ra[1] - out.earth.ViscLMan[-1])\n', (2443, 2484), True, 'import numpy as np\n'), ((2501, 2567), 'numpy.abs', 'np.abs', (['(MeltMassFlux_ra[0] - out.earth.MeltMassFluxMan[-1] * 1e-06)'], {}), '(MeltMassFlux_ra[0] - out.earth.MeltMassFluxMan[-1] * 1e-06)\n', (2507, 2567), True, 'import numpy as np\n'), ((2581, 2647), 'numpy.abs', 'np.abs', (['(MeltMassFlux_ra[1] - out.earth.MeltMassFluxMan[-1] * 1e-06)'], {}), '(MeltMassFlux_ra[1] - out.earth.MeltMassFluxMan[-1] * 1e-06)\n', (2587, 2647), True, 'import numpy as np\n'), ((2658, 2707), 'numpy.abs', 'np.abs', (['(FMeltUMan_ra[0] - out.earth.FMeltUMan[-1])'], {}), '(FMeltUMan_ra[0] - out.earth.FMeltUMan[-1])\n', (2664, 2707), True, 'import numpy as np\n'), ((2721, 2770), 'numpy.abs', 'np.abs', (['(FMeltUMan_ra[1] - out.earth.FMeltUMan[-1])'], {}), '(FMeltUMan_ra[1] - out.earth.FMeltUMan[-1])\n', (2727, 2770), True, 'import numpy as np\n'), ((2821, 2855), 'matplotlib.pyplot.figure', 'plt.figure', (['nfig'], {'figsize': '(10, 15)'}), '(nfig, figsize=(10, 15))\n', (2831, 2855), True, 'import matplotlib.pyplot as plt\n'), ((2863, 2893), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (2874, 2893), True, 'import matplotlib.pyplot as plt\n'), ((2892, 2993), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.TMan'], {'color': 'vplot.colors.red', 'linestyle': '"""-"""', 'label': '"""$T_{M}$"""'}), "(out.earth.Time, out.earth.TMan, color=vplot.colors.red, linestyle=\n '-', label='$T_{M}$')\n", (2900, 2993), True, 'import matplotlib.pyplot as plt\n'), ((2986, 3091), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.TUMan'], {'color': 'vplot.colors.orange', 'linestyle': '"""-"""', 'label': '"""$T_{UM}$"""'}), "(out.earth.Time, out.earth.TUMan, color=vplot.colors.orange,\n linestyle='-', label='$T_{UM}$')\n", (2994, 3091), True, 'import matplotlib.pyplot as plt\n'), ((3085, 3210), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.TUMan[-1]'], {'yerr': '[[TUMan_lo], [TUMan_hi]]', 'color': 'vplot.colors.orange', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.TUMan[-1], yerr=[[TUMan_lo], [\n TUMan_hi]], color=vplot.colors.orange, fmt='o')\n", (3097, 3210), True, 'import matplotlib.pyplot as plt\n'), ((3201, 3309), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.TLMan'], {'color': 'vplot.colors.pale_blue', 'linestyle': '"""-"""', 'label': '"""$T_{LM}$"""'}), "(out.earth.Time, out.earth.TLMan, color=vplot.colors.pale_blue,\n linestyle='-', label='$T_{LM}$')\n", (3209, 3309), True, 'import matplotlib.pyplot as plt\n'), ((3303, 3408), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.TCMB'], {'color': 'vplot.colors.purple', 'linestyle': '"""-"""', 'label': '"""$T_{CMB}$"""'}), "(out.earth.Time, out.earth.TCMB, color=vplot.colors.purple,\n linestyle='-', label='$T_{CMB}$')\n", (3311, 3408), True, 'import matplotlib.pyplot as plt\n'), ((3402, 3525), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.TCMB[-1]'], {'yerr': '[[TCMB_lo], [TCMB_hi]]', 'color': 'vplot.colors.purple', 'fmt': '"""-o"""'}), "(out.earth.Time[-1], out.earth.TCMB[-1], yerr=[[TCMB_lo], [\n TCMB_hi]], color=vplot.colors.purple, fmt='-o')\n", (3414, 3525), True, 'import matplotlib.pyplot as plt\n'), ((3516, 3580), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.TCore', '"""k-"""'], {'label': '"""$T_{C}$"""'}), "(out.earth.Time, out.earth.TCore, 'k-', label='$T_{C}$')\n", (3524, 3580), True, 'import matplotlib.pyplot as plt\n'), ((3579, 3640), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'ncol': '(2)', 'frameon': '(True)', 'columnspacing': '(1)'}), "(loc='best', ncol=2, frameon=True, columnspacing=1)\n", (3589, 3640), True, 'import matplotlib.pyplot as plt\n'), ((3638, 3667), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Temperature (K)"""'], {}), "('Temperature (K)')\n", (3648, 3667), True, 'import matplotlib.pyplot as plt\n'), ((3668, 3692), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (3678, 3692), True, 'import matplotlib.pyplot as plt\n'), ((3693, 3711), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(10000)'], {}), '(0, 10000)\n', (3701, 3711), True, 'import matplotlib.pyplot as plt\n'), ((3711, 3727), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (3719, 3727), True, 'import matplotlib.pyplot as plt\n'), ((3727, 3754), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (3737, 3754), True, 'import matplotlib.pyplot as plt\n'), ((3762, 3792), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (3773, 3792), True, 'import matplotlib.pyplot as plt\n'), ((3791, 3899), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.HflowUMan'], {'color': 'vplot.colors.red', 'linestyle': '"""-"""', 'label': '"""$Q_{UMan}$"""'}), "(out.earth.Time, out.earth.HflowUMan, color=vplot.colors.red,\n linestyle='-', label='$Q_{UMan}$')\n", (3799, 3899), True, 'import matplotlib.pyplot as plt\n'), ((3893, 4027), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.HflowUMan[-1]'], {'yerr': '[[HflowUMan_lo], [HflowUMan_hi]]', 'color': 'vplot.colors.red', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.HflowUMan[-1], yerr=[[\n HflowUMan_lo], [HflowUMan_hi]], color=vplot.colors.red, fmt='o')\n", (3905, 4027), True, 'import matplotlib.pyplot as plt\n'), ((4018, 4127), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.HflowCMB'], {'color': 'vplot.colors.orange', 'linestyle': '"""-"""', 'label': '"""$Q_{CMB}$"""'}), "(out.earth.Time, out.earth.HflowCMB, color=vplot.colors.orange,\n linestyle='-', label='$Q_{CMB}$')\n", (4026, 4127), True, 'import matplotlib.pyplot as plt\n'), ((4121, 4255), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.HflowCMB[-1]'], {'yerr': '[[HflowCMB_lo], [HflowCMB_hi]]', 'color': 'vplot.colors.orange', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.HflowCMB[-1], yerr=[[HflowCMB_lo\n ], [HflowCMB_hi]], color=vplot.colors.orange, fmt='o')\n", (4133, 4255), True, 'import matplotlib.pyplot as plt\n'), ((4246, 4366), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.RadPowerMan'], {'color': 'vplot.colors.pale_blue', 'linestyle': '"""-"""', 'label': '"""$Q_{Rad,Man}$"""'}), "(out.earth.Time, out.earth.RadPowerMan, color=vplot.colors.\n pale_blue, linestyle='-', label='$Q_{Rad,Man}$')\n", (4254, 4366), True, 'import matplotlib.pyplot as plt\n'), ((4359, 4437), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.RadPowerCore', '"""k-"""'], {'label': '"""$Q_{Rad,Core}$"""'}), "(out.earth.Time, out.earth.RadPowerCore, 'k-', label='$Q_{Rad,Core}$')\n", (4367, 4437), True, 'import matplotlib.pyplot as plt\n'), ((4436, 4472), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'frameon': '(True)'}), "(loc='best', frameon=True)\n", (4446, 4472), True, 'import matplotlib.pyplot as plt\n'), ((4472, 4500), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Heat Flow (TW)"""'], {}), "('Heat Flow (TW)')\n", (4482, 4500), True, 'import matplotlib.pyplot as plt\n'), ((4501, 4525), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (4511, 4525), True, 'import matplotlib.pyplot as plt\n'), ((4526, 4542), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(150)'], {}), '(0, 150)\n', (4534, 4542), True, 'import matplotlib.pyplot as plt\n'), ((4542, 4558), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (4550, 4558), True, 'import matplotlib.pyplot as plt\n'), ((4558, 4585), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (4568, 4585), True, 'import matplotlib.pyplot as plt\n'), ((4593, 4623), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (4604, 4623), True, 'import matplotlib.pyplot as plt\n'), ((4622, 4723), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.BLUMan'], {'label': '"""$\\\\delta_{UM}$"""', 'color': 'vplot.colors.dark_blue'}), "(out.earth.Time, out.earth.BLUMan, label='$\\\\delta_{UM}$', color=\n vplot.colors.dark_blue)\n", (4630, 4723), True, 'import matplotlib.pyplot as plt\n'), ((4716, 4814), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.BLLMan'], {'label': '"""$\\\\delta_{LM}$"""', 'color': 'vplot.colors.orange'}), "(out.earth.Time, out.earth.BLLMan, label='$\\\\delta_{LM}$', color=\n vplot.colors.orange)\n", (4724, 4814), True, 'import matplotlib.pyplot as plt\n'), ((4807, 4843), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'frameon': '(True)'}), "(loc='best', frameon=True)\n", (4817, 4843), True, 'import matplotlib.pyplot as plt\n'), ((4843, 4883), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Boundary Layer Depths (km)"""'], {}), "('Boundary Layer Depths (km)')\n", (4853, 4883), True, 'import matplotlib.pyplot as plt\n'), ((4885, 4909), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (4895, 4909), True, 'import matplotlib.pyplot as plt\n'), ((4910, 4926), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (4918, 4926), True, 'import matplotlib.pyplot as plt\n'), ((4926, 4953), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (4936, 4953), True, 'import matplotlib.pyplot as plt\n'), ((4961, 4991), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (4972, 4991), True, 'import matplotlib.pyplot as plt\n'), ((4990, 5094), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['out.earth.Time', 'out.earth.ViscUMan'], {'label': '"""$\\\\nu_{UM}$"""', 'color': 'vplot.colors.dark_blue'}), "(out.earth.Time, out.earth.ViscUMan, label='$\\\\nu_{UM}$', color\n =vplot.colors.dark_blue)\n", (5002, 5094), True, 'import matplotlib.pyplot as plt\n'), ((5087, 5224), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.ViscUMan[-1]'], {'yerr': '[[ViscUMan_lo], [ViscUMan_hi]]', 'color': 'vplot.colors.dark_blue', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.ViscUMan[-1], yerr=[[ViscUMan_lo\n ], [ViscUMan_hi]], color=vplot.colors.dark_blue, fmt='o')\n", (5099, 5224), True, 'import matplotlib.pyplot as plt\n'), ((5215, 5316), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['out.earth.Time', 'out.earth.ViscLMan'], {'label': '"""$\\\\nu_{LM}$"""', 'color': 'vplot.colors.orange'}), "(out.earth.Time, out.earth.ViscLMan, label='$\\\\nu_{LM}$', color\n =vplot.colors.orange)\n", (5227, 5316), True, 'import matplotlib.pyplot as plt\n'), ((5309, 5443), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', 'out.earth.ViscLMan[-1]'], {'yerr': '[[ViscLMan_lo], [ViscLMan_hi]]', 'color': 'vplot.colors.orange', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.ViscLMan[-1], yerr=[[ViscLMan_lo\n ], [ViscLMan_hi]], color=vplot.colors.orange, fmt='o')\n", (5321, 5443), True, 'import matplotlib.pyplot as plt\n'), ((5434, 5470), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'frameon': '(True)'}), "(loc='best', frameon=True)\n", (5444, 5470), True, 'import matplotlib.pyplot as plt\n'), ((5470, 5514), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mantle Viscosity ($m^2s^{-1}$)"""'], {}), "('Mantle Viscosity ($m^2s^{-1}$)')\n", (5480, 5514), True, 'import matplotlib.pyplot as plt\n'), ((5516, 5540), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (5526, 5540), True, 'import matplotlib.pyplot as plt\n'), ((5541, 5573), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(1000000000000.0)', '(1e+19)'], {}), '(1000000000000.0, 1e+19)\n', (5549, 5573), True, 'import matplotlib.pyplot as plt\n'), ((5561, 5577), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (5569, 5577), True, 'import matplotlib.pyplot as plt\n'), ((5577, 5604), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (5587, 5604), True, 'import matplotlib.pyplot as plt\n'), ((5612, 5642), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (5623, 5642), True, 'import matplotlib.pyplot as plt\n'), ((5641, 5716), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.FMeltUMan'], {'color': 'vplot.colors.dark_blue'}), '(out.earth.Time, out.earth.FMeltUMan, color=vplot.colors.dark_blue)\n', (5649, 5716), True, 'import matplotlib.pyplot as plt\n'), ((5715, 5863), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', '(out.earth.FMeltUMan[-1] * 1e-06)'], {'yerr': '[[FMeltUMan_lo], [FMeltUMan_hi]]', 'color': 'vplot.colors.dark_blue', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.FMeltUMan[-1] * 1e-06, yerr=[[\n FMeltUMan_lo], [FMeltUMan_hi]], color=vplot.colors.dark_blue, fmt='o')\n", (5727, 5863), True, 'import matplotlib.pyplot as plt\n'), ((5851, 5898), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Melt Fraction Upper Mantle (n.d.)"""'], {}), "('Melt Fraction Upper Mantle (n.d.)')\n", (5861, 5898), True, 'import matplotlib.pyplot as plt\n'), ((5900, 5924), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (5910, 5924), True, 'import matplotlib.pyplot as plt\n'), ((5925, 5941), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (5933, 5941), True, 'import matplotlib.pyplot as plt\n'), ((5941, 5968), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (5951, 5968), True, 'import matplotlib.pyplot as plt\n'), ((5976, 6006), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (5987, 6006), True, 'import matplotlib.pyplot as plt\n'), ((6005, 6099), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', '(out.earth.MeltMassFluxMan * 1e-06)'], {'color': 'vplot.colors.dark_blue'}), '(out.earth.Time, out.earth.MeltMassFluxMan * 1e-06, color=vplot.\n colors.dark_blue)\n', (6013, 6099), True, 'import matplotlib.pyplot as plt\n'), ((6090, 6254), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['out.earth.Time[-1]', '(out.earth.MeltMassFluxMan[-1] * 1e-06)'], {'yerr': '[[MeltMassFlux_lo], [MeltMassFlux_hi]]', 'color': 'vplot.colors.dark_blue', 'fmt': '"""o"""'}), "(out.earth.Time[-1], out.earth.MeltMassFluxMan[-1] * 1e-06,\n yerr=[[MeltMassFlux_lo], [MeltMassFlux_hi]], color=vplot.colors.\n dark_blue, fmt='o')\n", (6102, 6254), True, 'import matplotlib.pyplot as plt\n'), ((6238, 6297), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Melt Mass Flux Mantle ($\\\\times 10^6$ kg$/$s)"""'], {}), "('Melt Mass Flux Mantle ($\\\\times 10^6$ kg$/$s)')\n", (6248, 6297), True, 'import matplotlib.pyplot as plt\n'), ((6298, 6322), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (6308, 6322), True, 'import matplotlib.pyplot as plt\n'), ((6323, 6339), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(100)'], {}), '(0, 100)\n', (6331, 6339), True, 'import matplotlib.pyplot as plt\n'), ((6339, 6355), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(4.6)'], {}), '(0, 4.6)\n', (6347, 6355), True, 'import matplotlib.pyplot as plt\n'), ((6355, 6382), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (6365, 6382), True, 'import matplotlib.pyplot as plt\n'), ((6380, 6402), 'vplot.make_pretty', 'vplot.make_pretty', (['fig'], {}), '(fig)\n', (6397, 6402), False, 'import vplot\n'), ((6582, 6616), 'matplotlib.pyplot.figure', 'plt.figure', (['nfig'], {'figsize': '(10, 10)'}), '(nfig, figsize=(10, 10))\n', (6592, 6616), True, 'import matplotlib.pyplot as plt\n'), ((6626, 6656), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (6637, 6656), True, 'import matplotlib.pyplot as plt\n'), ((6655, 6707), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.RIC'], {'label': '"""RIC"""'}), "(out.earth.Time, out.earth.RIC, label='RIC')\n", (6663, 6707), True, 'import matplotlib.pyplot as plt\n'), ((6706, 6723), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1500)'], {}), '(0, 1500)\n', (6714, 6723), True, 'import matplotlib.pyplot as plt\n'), ((6723, 6759), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Inner Core Radius (km)"""'], {}), "('Inner Core Radius (km)')\n", (6733, 6759), True, 'import matplotlib.pyplot as plt\n'), ((6761, 6785), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (6771, 6785), True, 'import matplotlib.pyplot as plt\n'), ((6797, 6827), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (6808, 6827), True, 'import matplotlib.pyplot as plt\n'), ((6826, 6916), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', '(out.earth.CoreBuoyTherm * 10000000000000.0)'], {'label': '"""Thermal"""'}), "(out.earth.Time, out.earth.CoreBuoyTherm * 10000000000000.0, label=\n 'Thermal')\n", (6834, 6916), True, 'import matplotlib.pyplot as plt\n'), ((6896, 6992), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', '(out.earth.CoreBuoyCompo * 10000000000000.0)'], {'label': '"""Compositional"""'}), "(out.earth.Time, out.earth.CoreBuoyCompo * 10000000000000.0, label=\n 'Compositional')\n", (6904, 6992), True, 'import matplotlib.pyplot as plt\n'), ((6972, 7060), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', '(out.earth.CoreBuoyTotal * 10000000000000.0)'], {'label': '"""Total"""'}), "(out.earth.Time, out.earth.CoreBuoyTotal * 10000000000000.0, label=\n 'Total')\n", (6980, 7060), True, 'import matplotlib.pyplot as plt\n'), ((7040, 7076), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'frameon': '(True)'}), "(loc='best', frameon=True)\n", (7050, 7076), True, 'import matplotlib.pyplot as plt\n'), ((7076, 7140), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Core Buoyancy Flux ($\\\\times10^{-13}$ m$^2/$s$^3$)"""'], {}), "('Core Buoyancy Flux ($\\\\times10^{-13}$ m$^2/$s$^3$)')\n", (7086, 7140), True, 'import matplotlib.pyplot as plt\n'), ((7141, 7165), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (7151, 7165), True, 'import matplotlib.pyplot as plt\n'), ((7166, 7193), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (7176, 7193), True, 'import matplotlib.pyplot as plt\n'), ((7201, 7231), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (7212, 7231), True, 'import matplotlib.pyplot as plt\n'), ((7230, 7288), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.MagMom'], {'label': '"""MagMom"""'}), "(out.earth.Time, out.earth.MagMom, label='MagMom')\n", (7238, 7288), True, 'import matplotlib.pyplot as plt\n'), ((7287, 7301), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(2)'], {}), '(0, 2)\n', (7295, 7301), True, 'import matplotlib.pyplot as plt\n'), ((7301, 7341), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnetic Moment (E. Units)"""'], {}), "('Magnetic Moment (E. Units)')\n", (7311, 7341), True, 'import matplotlib.pyplot as plt\n'), ((7342, 7366), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (7352, 7366), True, 'import matplotlib.pyplot as plt\n'), ((7367, 7394), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (7377, 7394), True, 'import matplotlib.pyplot as plt\n'), ((7402, 7432), 'matplotlib.pyplot.subplot', 'plt.subplot', (['rows', 'cols', 'panel'], {}), '(rows, cols, panel)\n', (7413, 7432), True, 'import matplotlib.pyplot as plt\n'), ((7431, 7478), 'matplotlib.pyplot.plot', 'plt.plot', (['out.earth.Time', 'out.earth.MagPauseRad'], {}), '(out.earth.Time, out.earth.MagPauseRad)\n', (7439, 7478), True, 'import matplotlib.pyplot as plt\n'), ((7478, 7522), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Magnetopause Radius (E. Units)"""'], {}), "('Magnetopause Radius (E. Units)')\n", (7488, 7522), True, 'import matplotlib.pyplot as plt\n'), ((7524, 7548), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (Gyr)"""'], {}), "('Time (Gyr)')\n", (7534, 7548), True, 'import matplotlib.pyplot as plt\n'), ((7549, 7576), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 1, 2, 3, 4]'], {}), '([0, 1, 2, 3, 4])\n', (7559, 7576), True, 'import matplotlib.pyplot as plt\n'), ((7858, 7880), 'vplot.make_pretty', 'vplot.make_pretty', (['fig'], {}), '(fig)\n', (7875, 7880), False, 'import vplot\n'), ((8023, 8034), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8032, 8034), True, 'import matplotlib.pyplot as plt\n'), ((1090, 1116), 'numpy.array', 'np.array', (['[1280.0, 1475.0]'], {}), '([1280.0, 1475.0])\n', (1098, 1116), True, 'import numpy as np\n'), ((1480, 1508), 'numpy.array', 'np.array', (['[1.5e+19, 1.5e+22]'], {}), '([1.5e+19, 1.5e+22])\n', (1488, 1508), True, 'import numpy as np\n'), ((1558, 1584), 'numpy.array', 'np.array', (['[3e+19, 1.5e+22]'], {}), '([3e+19, 1.5e+22])\n', (1566, 1584), True, 'import numpy as np\n'), ((6434, 6475), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('EarthInterior%d.pdf' % nfig)"], {}), "('EarthInterior%d.pdf' % nfig)\n", (6445, 6475), True, 'import matplotlib.pyplot as plt\n'), ((6505, 6546), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('EarthInterior%d.png' % nfig)"], {}), "('EarthInterior%d.png' % nfig)\n", (6516, 6546), True, 'import matplotlib.pyplot as plt\n'), ((7912, 7953), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('EarthInterior%d.pdf' % nfig)"], {}), "('EarthInterior%d.pdf' % nfig)\n", (7923, 7953), True, 'import matplotlib.pyplot as plt\n'), ((7983, 8024), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('EarthInterior%d.png' % nfig)"], {}), "('EarthInterior%d.png' % nfig)\n", (7994, 8024), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division import array import numpy as np from numcodecs.compat import buffer_tobytes def test_buffer_tobytes(): bufs = [ b'adsdasdas', bytes(20), np.arange(100), array.array('l', b'qwertyuiqwertyui') ] for buf in bufs: b = buffer_tobytes(buf) assert isinstance(b, bytes)
[ "numcodecs.compat.buffer_tobytes", "array.array", "numpy.arange" ]
[((260, 274), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (269, 274), True, 'import numpy as np\n'), ((284, 321), 'array.array', 'array.array', (['"""l"""', "b'qwertyuiqwertyui'"], {}), "('l', b'qwertyuiqwertyui')\n", (295, 321), False, 'import array\n'), ((361, 380), 'numcodecs.compat.buffer_tobytes', 'buffer_tobytes', (['buf'], {}), '(buf)\n', (375, 380), False, 'from numcodecs.compat import buffer_tobytes\n')]
import tensorflow as tf import numpy as np import cv2 import os import rospy from timeit import default_timer as timer from styx_msgs.msg import TrafficLight CLASS_TRAFFIC_LIGHT = 10 MODEL_DIR = 'light_classification/models/' IMG_DIR = 'light_classification/img/' DEBUG_DIR = 'light_classification/result/' class TLClassifier(object): def __init__(self): #TODO load classifier # object detection: faster_rcnn_inception_v2 # from Tensorflow detection model zoo: # https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md self.detector = MODEL_DIR + 'faster_rcnn_inception_v2.pb' self.sess= self.load_graph(self.detector) detection_graph = self.sess.graph if not os.path.exists(DEBUG_DIR): #check the result of light detection os.makedirs(DEBUG_DIR) # The input placeholder for the image. # 'get_tensor_by_name' returns the Tensor with the associated name in the Graph. self.image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') self.detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') self.detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') # the first decoding test_image = cv2.imread(IMG_DIR + 'image_test.jpg') image_np, box_coords, classes, scores = self.detect_tl(test_image) # Traditional traffic light classifier pred_image, is_red = self.classify_red_tl(image_np, box_coords, classes, scores) # rospy.loginfo("DEBUG: stage 4") if is_red: rospy.loginfo("Classifier: RED") else: rospy.loginfo("Classifier: NOT RED") cv2.imwrite(IMG_DIR + 'pred_image.png', pred_image) rospy.loginfo("TensorFlow Initiation: Done") self.num_image = 1 def load_graph(self, graph_file, use_xla=False): config = tf.ConfigProto(log_device_placement=False) config.gpu_options.allow_growth = True session = tf.Session(config=config) # if use_xla: # jit_level = tf.OptimizerOptions.ON_1 # config.graph_options.optimizer_options.global_jit_level = jit_level with tf.Session(graph=tf.Graph(), config=config) as sess: gd = tf.GraphDef() with tf.gfile.Open(graph_file, 'rb') as f: data = f.read() gd.ParseFromString(data) tf.import_graph_def(gd, name='') ops = sess.graph.get_operations() n_ops = len(ops) print("number of operations = %d" % n_ops) return sess # return sess, ops def detect_tl(self, image): trt_image = np.copy(image) image_np = np.expand_dims(np.asarray(trt_image, dtype=np.uint8), 0) # Actual detection. (boxes, scores, classes) = self.sess.run([self.detection_boxes, self.detection_scores, self.detection_classes], feed_dict={self.image_tensor: image_np}) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) confidence_cutoff = 0.8 # Filter traffic light boxes with a confidence score less than `confidence_cutoff` boxes, scores, classes = self.filter_boxes(confidence_cutoff, boxes, scores, classes, keep_classes=[CLASS_TRAFFIC_LIGHT]) # The current box coordinates are normalized to a range between 0 and 1. # This converts the coordinates actual location on the image. image_np = np.squeeze(image_np) width = image_np.shape[1] height = image_np.shape[0] box_coords = self.to_image_coords(boxes, height, width) return image_np, box_coords, classes, scores # Filter the boxes which detection confidence lower than the threshold def filter_boxes(self, min_score, boxes, scores, classes, keep_classes): n = len(classes) idxs = [] for i in range(n): if scores[i] >= min_score: if ((keep_classes is None) or (int(classes[i]) in keep_classes)): idxs.append(i) filtered_boxes = boxes[idxs, ...] filtered_scores = scores[idxs, ...] filtered_classes = classes[idxs, ...] return filtered_boxes, filtered_scores, filtered_classes # Convert the normalized box coordinates (0~1) to image coordinates def to_image_coords(self, boxes, height, width): box_coords = np.zeros_like(boxes) box_coords[:, 0] = boxes[:, 0] * height box_coords[:, 1] = boxes[:, 1] * width box_coords[:, 2] = boxes[:, 2] * height box_coords[:, 3] = boxes[:, 3] * width return box_coords #Draw bounding box on traffic light, and detect if it is RED def classify_red_tl(self, image_np, boxes, classes, scores, thickness=5): for i in range(len(boxes)): # rospy.loginfo("DEBUG: stage 3.1") bot, left, top, right = boxes[i, ...] class_id = int(classes[i]) score = scores[i] h = top - bot w = right - left if h <= 1.5 * w: continue # Truncated Traffic Ligth box cv2.rectangle(image_np,(left, top), (right, bot), (255, 43, 255), thickness) # BGR format for color tl_img = image_np[int(bot):int(top), int(left):int(right)] tl_img_simu = self.select_red_simu(tl_img) # SELECT RED tl_img_real = self.select_lighton_real(tl_img) # SELECT TL tl_img = (tl_img_simu + tl_img_real) / 2 gray_tl_img = cv2.cvtColor(tl_img, cv2.COLOR_RGB2GRAY) nrows, ncols = gray_tl_img.shape[0], gray_tl_img.shape[1] # compute center of mass of RED points mean_row = 0 mean_col = 0 npoints = 0 for row in range(nrows): for col in range(ncols): if (gray_tl_img[row, col] > 0): mean_row += row mean_col += col npoints += 1 if npoints > 0: mean_row = float(mean_row / npoints) / nrows mean_col = float(mean_col / npoints) / ncols # Get the normalized center of mass of RED points # Use the location of light to detect the color, RED is in the upper part of the box if npoints > 10 and mean_row < 0.33: rospy.loginfo("RED Light Detection Confidance: %.2f", score) return image_np, True return image_np, False # select RED mask in simulation situation def select_red_simu(self, img): # BGR lower = np.array([ 0, 0, 200], dtype="uint8") upper = np.array([ 55, 55, 255], dtype="uint8") red_mask = cv2.inRange(img, lower, upper) return cv2.bitwise_and(img, img, mask = red_mask) # select Traffic Lighton area(HLS: high L and high S) in real situation # for camera without polarization filter def select_lighton_real(self, img): # HLS for real hls_img = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) lower = np.array([ 50, 150, 150], dtype="uint8") upper = np.array([ 100, 255, 255], dtype="uint8") tl_mask = cv2.inRange(hls_img, lower, upper) return cv2.bitwise_and(img, img, mask = tl_mask) def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ #implement light color prediction image_np, box_coords, classes, scores = self.detect_tl(image) # light color detection detected_image, is_red = self.classify_red_tl(image_np, box_coords, classes, scores) # fimage = DEBUG_DIR + 'detected_img_' + str(self.num_image) + '.png' # #output the predicted image # cv2.imwrite(fimage, detected_image) self.num_image += 1 #return 'if it is a RED' if is_red: return TrafficLight.RED else: return TrafficLight.UNKNOWN
[ "cv2.rectangle", "numpy.array", "os.path.exists", "tensorflow.Graph", "tensorflow.Session", "numpy.asarray", "tensorflow.GraphDef", "tensorflow.ConfigProto", "numpy.squeeze", "cv2.cvtColor", "tensorflow.import_graph_def", "cv2.imread", "rospy.loginfo", "cv2.imwrite", "numpy.copy", "tensorflow.gfile.Open", "os.makedirs", "cv2.inRange", "cv2.bitwise_and", "numpy.zeros_like" ]
[((1463, 1501), 'cv2.imread', 'cv2.imread', (["(IMG_DIR + 'image_test.jpg')"], {}), "(IMG_DIR + 'image_test.jpg')\n", (1473, 1501), False, 'import cv2\n'), ((1908, 1959), 'cv2.imwrite', 'cv2.imwrite', (["(IMG_DIR + 'pred_image.png')", 'pred_image'], {}), "(IMG_DIR + 'pred_image.png', pred_image)\n", (1919, 1959), False, 'import cv2\n'), ((1968, 2012), 'rospy.loginfo', 'rospy.loginfo', (['"""TensorFlow Initiation: Done"""'], {}), "('TensorFlow Initiation: Done')\n", (1981, 2012), False, 'import rospy\n'), ((2129, 2171), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'log_device_placement': '(False)'}), '(log_device_placement=False)\n', (2143, 2171), True, 'import tensorflow as tf\n'), ((2237, 2262), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (2247, 2262), True, 'import tensorflow as tf\n'), ((2928, 2942), 'numpy.copy', 'np.copy', (['image'], {}), '(image)\n', (2935, 2942), True, 'import numpy as np\n'), ((3328, 3345), 'numpy.squeeze', 'np.squeeze', (['boxes'], {}), '(boxes)\n', (3338, 3345), True, 'import numpy as np\n'), ((3363, 3381), 'numpy.squeeze', 'np.squeeze', (['scores'], {}), '(scores)\n', (3373, 3381), True, 'import numpy as np\n'), ((3400, 3419), 'numpy.squeeze', 'np.squeeze', (['classes'], {}), '(classes)\n', (3410, 3419), True, 'import numpy as np\n'), ((3853, 3873), 'numpy.squeeze', 'np.squeeze', (['image_np'], {}), '(image_np)\n', (3863, 3873), True, 'import numpy as np\n'), ((4812, 4832), 'numpy.zeros_like', 'np.zeros_like', (['boxes'], {}), '(boxes)\n', (4825, 4832), True, 'import numpy as np\n'), ((7078, 7114), 'numpy.array', 'np.array', (['[0, 0, 200]'], {'dtype': '"""uint8"""'}), "([0, 0, 200], dtype='uint8')\n", (7086, 7114), True, 'import numpy as np\n'), ((7134, 7172), 'numpy.array', 'np.array', (['[55, 55, 255]'], {'dtype': '"""uint8"""'}), "([55, 55, 255], dtype='uint8')\n", (7142, 7172), True, 'import numpy as np\n'), ((7193, 7223), 'cv2.inRange', 'cv2.inRange', (['img', 'lower', 'upper'], {}), '(img, lower, upper)\n', (7204, 7223), False, 'import cv2\n'), ((7239, 7279), 'cv2.bitwise_and', 'cv2.bitwise_and', (['img', 'img'], {'mask': 'red_mask'}), '(img, img, mask=red_mask)\n', (7254, 7279), False, 'import cv2\n'), ((7469, 7505), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2HLS'], {}), '(img, cv2.COLOR_RGB2HLS)\n', (7481, 7505), False, 'import cv2\n'), ((7522, 7561), 'numpy.array', 'np.array', (['[50, 150, 150]'], {'dtype': '"""uint8"""'}), "([50, 150, 150], dtype='uint8')\n", (7530, 7561), True, 'import numpy as np\n'), ((7581, 7621), 'numpy.array', 'np.array', (['[100, 255, 255]'], {'dtype': '"""uint8"""'}), "([100, 255, 255], dtype='uint8')\n", (7589, 7621), True, 'import numpy as np\n'), ((7641, 7675), 'cv2.inRange', 'cv2.inRange', (['hls_img', 'lower', 'upper'], {}), '(hls_img, lower, upper)\n', (7652, 7675), False, 'import cv2\n'), ((7691, 7730), 'cv2.bitwise_and', 'cv2.bitwise_and', (['img', 'img'], {'mask': 'tl_mask'}), '(img, img, mask=tl_mask)\n', (7706, 7730), False, 'import cv2\n'), ((820, 845), 'os.path.exists', 'os.path.exists', (['DEBUG_DIR'], {}), '(DEBUG_DIR)\n', (834, 845), False, 'import os\n'), ((896, 918), 'os.makedirs', 'os.makedirs', (['DEBUG_DIR'], {}), '(DEBUG_DIR)\n', (907, 918), False, 'import os\n'), ((1786, 1818), 'rospy.loginfo', 'rospy.loginfo', (['"""Classifier: RED"""'], {}), "('Classifier: RED')\n", (1799, 1818), False, 'import rospy\n'), ((1845, 1881), 'rospy.loginfo', 'rospy.loginfo', (['"""Classifier: NOT RED"""'], {}), "('Classifier: NOT RED')\n", (1858, 1881), False, 'import rospy\n'), ((2501, 2514), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (2512, 2514), True, 'import tensorflow as tf\n'), ((2655, 2687), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['gd'], {'name': '""""""'}), "(gd, name='')\n", (2674, 2687), True, 'import tensorflow as tf\n'), ((2977, 3014), 'numpy.asarray', 'np.asarray', (['trt_image'], {'dtype': 'np.uint8'}), '(trt_image, dtype=np.uint8)\n', (2987, 3014), True, 'import numpy as np\n'), ((5567, 5644), 'cv2.rectangle', 'cv2.rectangle', (['image_np', '(left, top)', '(right, bot)', '(255, 43, 255)', 'thickness'], {}), '(image_np, (left, top), (right, bot), (255, 43, 255), thickness)\n', (5580, 5644), False, 'import cv2\n'), ((5958, 5998), 'cv2.cvtColor', 'cv2.cvtColor', (['tl_img', 'cv2.COLOR_RGB2GRAY'], {}), '(tl_img, cv2.COLOR_RGB2GRAY)\n', (5970, 5998), False, 'import cv2\n'), ((2532, 2563), 'tensorflow.gfile.Open', 'tf.gfile.Open', (['graph_file', '"""rb"""'], {}), "(graph_file, 'rb')\n", (2545, 2563), True, 'import tensorflow as tf\n'), ((2448, 2458), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2456, 2458), True, 'import tensorflow as tf\n'), ((6822, 6882), 'rospy.loginfo', 'rospy.loginfo', (['"""RED Light Detection Confidance: %.2f"""', 'score'], {}), "('RED Light Detection Confidance: %.2f', score)\n", (6835, 6882), False, 'import rospy\n')]
"""Created on Sat Oct 01 2015 16:24. @author: <NAME> """ import numpy as np def coe2mee(COE, mu=1.): """ Convert classical orbital elements to modified equinoctial elements. Parameters ---------- COE : ndarray mx6 array of elements ordered as [p e i W w nu]. mu : float Standard gravitational parameter. Defaults to canonical units. Returns ------- MEE : ndarray mx6 array of elements ordered as [p f g h k L]. """ p = COE[0:, 0:1] e = COE[0:, 1:2] i = COE[0:, 2:3] W = COE[0:, 3:4] w = COE[0:, 4:5] nu = COE[0:, 5:6] # x,y components of eccentricity vector f = e * np.cos(w + W) g = e * np.sin(w + W) # x,y components of ascending node vector h = np.tan(i/2.) * np.cos(W) k = np.tan(i/2.) * np.sin(W) # true longitude L = np.mod(W+w+nu, 2*np.pi) return np.concatenate((p, f, g, h, k, L), 1)
[ "numpy.tan", "numpy.cos", "numpy.concatenate", "numpy.sin", "numpy.mod" ]
[((852, 881), 'numpy.mod', 'np.mod', (['(W + w + nu)', '(2 * np.pi)'], {}), '(W + w + nu, 2 * np.pi)\n', (858, 881), True, 'import numpy as np\n'), ((888, 925), 'numpy.concatenate', 'np.concatenate', (['(p, f, g, h, k, L)', '(1)'], {}), '((p, f, g, h, k, L), 1)\n', (902, 925), True, 'import numpy as np\n'), ((669, 682), 'numpy.cos', 'np.cos', (['(w + W)'], {}), '(w + W)\n', (675, 682), True, 'import numpy as np\n'), ((695, 708), 'numpy.sin', 'np.sin', (['(w + W)'], {}), '(w + W)\n', (701, 708), True, 'import numpy as np\n'), ((764, 779), 'numpy.tan', 'np.tan', (['(i / 2.0)'], {}), '(i / 2.0)\n', (770, 779), True, 'import numpy as np\n'), ((779, 788), 'numpy.cos', 'np.cos', (['W'], {}), '(W)\n', (785, 788), True, 'import numpy as np\n'), ((797, 812), 'numpy.tan', 'np.tan', (['(i / 2.0)'], {}), '(i / 2.0)\n', (803, 812), True, 'import numpy as np\n'), ((812, 821), 'numpy.sin', 'np.sin', (['W'], {}), '(W)\n', (818, 821), True, 'import numpy as np\n')]
import pickle from sys import intern from numpy import uint32 import numpy as np import zarr from napari_plugin_engine import napari_hook_implementation from qtpy.QtWidgets import QWidget, QHBoxLayout, QPushButton from magicgui import magic_factory import pathlib import napari def viterbrain_reader(path: str) -> list: with open(path, "rb") as handle: viterbi = pickle.load(handle) layer_labels = zarr.open(viterbi.fragment_path) image_path = viterbi.fragment_path[:-12] + ".zarr" layer_image = zarr.open(image_path) scale = viterbi.resolution meta_labels = {"name": "fragments", "scale": scale} meta_image = {"name": "image", "scale": scale} return [(layer_image, meta_image, "image"), (layer_labels, meta_labels, "labels")] def napari_get_reader(path: str) -> list: parts = path.split(".") if parts[-1] == "pickle" or parts[-1] == "pkl": return viterbrain_reader else: return None @magic_factory( call_button="Trace", start_comp={"max": 2**20}, end_comp={"max": 2**20} ) def comp_trace( v: napari.Viewer, start_comp: int, end_comp: int, filename=pathlib.Path("/some/path.pickle"), ) -> None: with open(filename, "rb") as handle: viterbi = pickle.load(handle) def comp2point(comp: int) -> list: state = viterbi.comp_to_states[comp][0] if viterbi.nxGraph.nodes[state]["type"] == "fragment": return viterbi.nxGraph.nodes[state]["point1"] else: coords = viterbi.soma_fragment2coords[comp] centroid = np.mean(coords, axis=0) centroid = [int(c) for c in centroid] return centroid start_pt = comp2point(start_comp) end_pt = comp2point(end_comp) print(f"tracing from {start_pt} to {end_pt}") path = viterbi.shortest_path(start_pt, end_pt) v.add_shapes( path, shape_type="path", edge_color="r", edge_width=1, name=f"trace {start_comp} to {end_comp}", scale=viterbi.resolution, )
[ "numpy.mean", "pathlib.Path", "pickle.load", "zarr.open", "magicgui.magic_factory" ]
[((965, 1060), 'magicgui.magic_factory', 'magic_factory', ([], {'call_button': '"""Trace"""', 'start_comp': "{'max': 2 ** 20}", 'end_comp': "{'max': 2 ** 20}"}), "(call_button='Trace', start_comp={'max': 2 ** 20}, end_comp={\n 'max': 2 ** 20})\n", (978, 1060), False, 'from magicgui import magic_factory\n'), ((419, 451), 'zarr.open', 'zarr.open', (['viterbi.fragment_path'], {}), '(viterbi.fragment_path)\n', (428, 451), False, 'import zarr\n'), ((525, 546), 'zarr.open', 'zarr.open', (['image_path'], {}), '(image_path)\n', (534, 546), False, 'import zarr\n'), ((1149, 1182), 'pathlib.Path', 'pathlib.Path', (['"""/some/path.pickle"""'], {}), "('/some/path.pickle')\n", (1161, 1182), False, 'import pathlib\n'), ((379, 398), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (390, 398), False, 'import pickle\n'), ((1254, 1273), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (1265, 1273), False, 'import pickle\n'), ((1576, 1599), 'numpy.mean', 'np.mean', (['coords'], {'axis': '(0)'}), '(coords, axis=0)\n', (1583, 1599), True, 'import numpy as np\n')]