code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np def calculate_iou(bboxes1, bboxes2): """ This calculates the intersection over union of N bounding boxes in the form N x [left, top, right, bottom], e.g for N=2: >> bb = [[21,34,45,67], [67,120, 89, 190]] :param bboxes1: np array: N x 4 ground truth bounding boxes :param bboxes2: np array: N x 4 target bounding boxes :return: iou: ratio between 0 and 1 """ if len(bboxes1.shape) == 1: bboxes1 = bboxes1.reshape(1, bboxes1.shape[0]) if len(bboxes2.shape) == 1: bboxes2 = bboxes2.reshape(1, bboxes2.shape[0]) if bboxes1.shape[0] != bboxes2.shape[0] or bboxes1.shape[1] != bboxes2.shape[1]: raise ValueError('Bounding boxes must be of equal dimension') left_intersection = np.maximum(bboxes1[:, 0], bboxes2[:, 0]) top_intersection = np.maximum(bboxes1[:, 1], bboxes2[:, 1]) right_intersection = np.minimum(bboxes1[:, 2], bboxes2[:, 2]) bottom_intersection = np.minimum(bboxes1[:, 3], bboxes2[:, 3]) w_intersection = right_intersection - left_intersection h_intersection = bottom_intersection - top_intersection intersection_area = w_intersection * h_intersection bboxes1_area = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1]) bboxes2_area = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1]) union_area = bboxes1_area + bboxes2_area - intersection_area iou = np.clip(intersection_area/union_area, 0, 1) return iou
[ "numpy.clip", "numpy.maximum", "numpy.minimum" ]
[((770, 810), 'numpy.maximum', 'np.maximum', (['bboxes1[:, 0]', 'bboxes2[:, 0]'], {}), '(bboxes1[:, 0], bboxes2[:, 0])\n', (780, 810), True, 'import numpy as np\n'), ((834, 874), 'numpy.maximum', 'np.maximum', (['bboxes1[:, 1]', 'bboxes2[:, 1]'], {}), '(bboxes1[:, 1], bboxes2[:, 1])\n', (844, 874), True, 'import numpy as np\n'), ((900, 940), 'numpy.minimum', 'np.minimum', (['bboxes1[:, 2]', 'bboxes2[:, 2]'], {}), '(bboxes1[:, 2], bboxes2[:, 2])\n', (910, 940), True, 'import numpy as np\n'), ((967, 1007), 'numpy.minimum', 'np.minimum', (['bboxes1[:, 3]', 'bboxes2[:, 3]'], {}), '(bboxes1[:, 3], bboxes2[:, 3])\n', (977, 1007), True, 'import numpy as np\n'), ((1434, 1479), 'numpy.clip', 'np.clip', (['(intersection_area / union_area)', '(0)', '(1)'], {}), '(intersection_area / union_area, 0, 1)\n', (1441, 1479), True, 'import numpy as np\n')]
import h5py import numpy as np from code.model import UNetClassifier def load_dataset(covid_file_path, normal_file_path): covid = h5py.File(covid_file_path, 'r')['covid'] normal = h5py.File(normal_file_path, 'r')['normal'] all_images = np.expand_dims(np.concatenate([covid, normal]), axis=3) all_labels = np.concatenate([[1]*covid.shape[0], [0]*normal.shape[0]]) shuffled_indices = np.random.permutation(np.arange(all_images.shape[0])) all_images = all_images[shuffled_indices] all_labels = all_labels[shuffled_indices] return all_images, all_labels if __name__ == '__main__': model = Classifier((512, 512, 1), 2, True) all_images, all_labels = load_dataset() print(all_images.shape, all_labels.shape) model.train(all_images, all_labels, 15, 16, 0.2)
[ "numpy.arange", "numpy.concatenate", "h5py.File" ]
[((325, 386), 'numpy.concatenate', 'np.concatenate', (['[[1] * covid.shape[0], [0] * normal.shape[0]]'], {}), '([[1] * covid.shape[0], [0] * normal.shape[0]])\n', (339, 386), True, 'import numpy as np\n'), ((137, 168), 'h5py.File', 'h5py.File', (['covid_file_path', '"""r"""'], {}), "(covid_file_path, 'r')\n", (146, 168), False, 'import h5py\n'), ((191, 223), 'h5py.File', 'h5py.File', (['normal_file_path', '"""r"""'], {}), "(normal_file_path, 'r')\n", (200, 223), False, 'import h5py\n'), ((267, 298), 'numpy.concatenate', 'np.concatenate', (['[covid, normal]'], {}), '([covid, normal])\n', (281, 298), True, 'import numpy as np\n'), ((429, 459), 'numpy.arange', 'np.arange', (['all_images.shape[0]'], {}), '(all_images.shape[0])\n', (438, 459), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import string from collections import Counter import numpy as np import theano import theano.tensor as T punctuation = set(string.punctuation) punctuation.add('\n') punctuation.add('\t') punctuation.add(u'’') punctuation.add(u'‘') punctuation.add(u'“') punctuation.add(u'”') punctuation.add(u'´') punctuation.add('') def one_hot(X, n=None, negative_class=0.): X = np.asarray(X).flatten() if n is None: n = np.max(X) + 1 Xoh = np.ones((len(X), n)) * negative_class Xoh[np.arange(len(X)), X] = 1. return Xoh def flatten(l): return [item for sublist in l for item in sublist] def lbf(l,b): return [el for el, condition in zip(l, b) if condition] def list_index(l, idxs): return [l[idx] for idx in idxs] def tokenize(text): tokenized = [] w = '' for t in text: if t in punctuation: tokenized.append(w) tokenized.append(t) w = '' elif t == ' ': tokenized.append(w) w = '' else: w += t if w != '': tokenized.append(w) tokenized = [token for token in tokenized if token] return tokenized def token_encoder(texts, max_features=9997, min_df=10): df = {} for text in texts: tokens = set(text) for token in tokens: if token in df: df[token] += 1 else: df[token] = 1 k, v = df.keys(), np.asarray(df.values()) valid = v >= min_df k = lbf(k, valid) v = v[valid] sort_mask = np.argsort(v)[::-1] k = list_index(k, sort_mask)[:max_features] v = v[sort_mask][:max_features] xtoi = dict(zip(k, range(3, len(k)+3))) return xtoi def standardize_targets(Y, cost): Y = np.asarray(Y) ndim = len(Y.shape) if ndim == 1: Y = Y.reshape(-1, 1) if Y.shape[1] == 1 and cost.__name__ == 'CategoricalCrossEntropy': Y = one_hot(Y, negative_class=0.) if Y.shape[1] == 1 and 'Hinge' in cost.__name__: if len(np.unique(Y)) > 2: Y = one_hot(Y, negative_class=-1.) else: Y[Y==0] -= 1 return Y class Tokenizer(object): """ For converting lists of text into tokens used by Passage models. max_features sets the maximum number of tokens (all others are mapped to UNK) min_df sets the minimum number of documents a token must appear in to not get mapped to UNK lowercase controls whether the text is lowercased or not character sets whether the tokenizer works on a character or word level Usage: >>> from passage.preprocessing import Tokenizer >>> example_text = ['This. is.', 'Example TEXT', 'is text'] >>> tokenizer = Tokenizer(min_df=1, lowercase=True, character=False) >>> tokenized = tokenizer.fit_transform(example_text) >>> tokenized [[7, 5, 3, 5], [6, 4], [3, 4]] >>> tokenizer.inverse_transform(tokenized) ['this . is .', 'example text', 'is text'] """ def __init__(self, max_features=9997, min_df=10, lowercase=True, character=False): self.max_features = max_features self.min_df = min_df self.lowercase = lowercase self.character = character def fit(self, texts): if self.lowercase: texts = [text.lower() for text in texts] if self.character: tokens = [list(text) for text in texts] else: tokens = [tokenize(text) for text in texts] self.encoder = token_encoder(tokens, max_features=self.max_features-3, min_df=self.min_df) self.encoder['PAD'] = 0 self.encoder['END'] = 1 self.encoder['UNK'] = 2 self.decoder = dict(zip(self.encoder.values(), self.encoder.keys())) self.n_features = len(self.encoder) return self def transform(self, texts): if self.lowercase: texts = [text.lower() for text in texts] if self.character: texts = [list(text) for text in texts] else: texts = [tokenize(text) for text in texts] tokens = [[self.encoder.get(token, 2) for token in text] for text in texts] return tokens def fit_transform(self, texts): self.fit(texts) tokens = self.transform(texts) return tokens def inverse_transform(self, codes): if self.character: joiner = '' else: joiner = ' ' return [joiner.join([self.decoder[token] for token in code]) for code in codes] class LenFilter(object): def __init__(self, max_len=1000, min_max_len=100, percentile=99): self.max_len = max_len self.percentile = percentile self.min_max_len = min_max_len def filter(self, *data): lens = [len(seq) for seq in data[0]] if self.percentile > 0: max_len = np.percentile(lens, self.percentile) max_len = np.clip(max_len, self.min_max_len, self.max_len) else: max_len = self.max_len valid_idxs = [i for i, l in enumerate(lens) if l <= max_len] if len(data) == 1: return list_index(data[0], valid_idxs) else: return tuple([list_index(d, valid_idxs) for d in data])
[ "numpy.clip", "numpy.unique", "numpy.asarray", "numpy.max", "numpy.argsort", "numpy.percentile" ]
[((1789, 1802), 'numpy.asarray', 'np.asarray', (['Y'], {}), '(Y)\n', (1799, 1802), True, 'import numpy as np\n'), ((1582, 1595), 'numpy.argsort', 'np.argsort', (['v'], {}), '(v)\n', (1592, 1595), True, 'import numpy as np\n'), ((417, 430), 'numpy.asarray', 'np.asarray', (['X'], {}), '(X)\n', (427, 430), True, 'import numpy as np\n'), ((471, 480), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (477, 480), True, 'import numpy as np\n'), ((4865, 4901), 'numpy.percentile', 'np.percentile', (['lens', 'self.percentile'], {}), '(lens, self.percentile)\n', (4878, 4901), True, 'import numpy as np\n'), ((4924, 4972), 'numpy.clip', 'np.clip', (['max_len', 'self.min_max_len', 'self.max_len'], {}), '(max_len, self.min_max_len, self.max_len)\n', (4931, 4972), True, 'import numpy as np\n'), ((2055, 2067), 'numpy.unique', 'np.unique', (['Y'], {}), '(Y)\n', (2064, 2067), True, 'import numpy as np\n')]
import pickle import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import pytest from oddt.scoring.models import classifiers, regressors @pytest.mark.filterwarnings('ignore:Stochastic Optimizer') @pytest.mark.parametrize('cls', [classifiers.svm(probability=True), classifiers.neuralnetwork(random_state=42)]) def test_classifiers(cls): # toy data X = np.concatenate((np.zeros((5, 2)), np.ones((5, 2)))) Y = np.concatenate((np.ones(5), np.zeros(5))) np.random.seed(42) cls.fit(X, Y) assert_array_equal(cls.predict(X), Y) assert cls.score(X, Y) == 1.0 prob = cls.predict_proba(X) assert_array_almost_equal(prob, [[0, 1]] * 5 + [[1, 0]] * 5, decimal=1) log_prob = cls.predict_log_proba(X) assert_array_almost_equal(np.log(prob), log_prob) pickled = pickle.dumps(cls) reloaded = pickle.loads(pickled) prob_reloaded = reloaded.predict_proba(X) assert_array_almost_equal(prob, prob_reloaded) @pytest.mark.parametrize('reg', [regressors.svm(C=10), regressors.randomforest(random_state=42), regressors.neuralnetwork(solver='lbfgs', random_state=42, hidden_layer_sizes=(20, 20)), regressors.mlr()]) def test_regressors(reg): X = np.vstack((np.arange(30, 10, -2, dtype='float64'), np.arange(100, 90, -1, dtype='float64'))).T Y = np.arange(10, dtype='float64') np.random.seed(42) reg.fit(X, Y) pred = reg.predict(X) assert (np.abs(pred.flatten() - Y) < 1).all() assert reg.score(X, Y) > 0.9 pickled = pickle.dumps(reg) reloaded = pickle.loads(pickled) pred_reloaded = reloaded.predict(X) assert_array_almost_equal(pred, pred_reloaded)
[ "oddt.scoring.models.regressors.randomforest", "numpy.testing.assert_array_almost_equal", "pytest.mark.filterwarnings", "numpy.ones", "oddt.scoring.models.regressors.neuralnetwork", "pickle.dumps", "numpy.log", "oddt.scoring.models.classifiers.neuralnetwork", "oddt.scoring.models.regressors.svm", "numpy.zeros", "numpy.random.seed", "oddt.scoring.models.classifiers.svm", "oddt.scoring.models.regressors.mlr", "pickle.loads", "numpy.arange" ]
[((180, 237), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore:Stochastic Optimizer"""'], {}), "('ignore:Stochastic Optimizer')\n", (206, 237), False, 'import pytest\n'), ((559, 577), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (573, 577), True, 'import numpy as np\n'), ((711, 782), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['prob', '([[0, 1]] * 5 + [[1, 0]] * 5)'], {'decimal': '(1)'}), '(prob, [[0, 1]] * 5 + [[1, 0]] * 5, decimal=1)\n', (736, 782), False, 'from numpy.testing import assert_array_almost_equal, assert_array_equal\n'), ((892, 909), 'pickle.dumps', 'pickle.dumps', (['cls'], {}), '(cls)\n', (904, 909), False, 'import pickle\n'), ((925, 946), 'pickle.loads', 'pickle.loads', (['pickled'], {}), '(pickled)\n', (937, 946), False, 'import pickle\n'), ((997, 1043), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['prob', 'prob_reloaded'], {}), '(prob, prob_reloaded)\n', (1022, 1043), False, 'from numpy.testing import assert_array_almost_equal, assert_array_equal\n'), ((1612, 1642), 'numpy.arange', 'np.arange', (['(10)'], {'dtype': '"""float64"""'}), "(10, dtype='float64')\n", (1621, 1642), True, 'import numpy as np\n'), ((1648, 1666), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (1662, 1666), True, 'import numpy as np\n'), ((1811, 1828), 'pickle.dumps', 'pickle.dumps', (['reg'], {}), '(reg)\n', (1823, 1828), False, 'import pickle\n'), ((1844, 1865), 'pickle.loads', 'pickle.loads', (['pickled'], {}), '(pickled)\n', (1856, 1865), False, 'import pickle\n'), ((1910, 1956), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['pred', 'pred_reloaded'], {}), '(pred, pred_reloaded)\n', (1935, 1956), False, 'from numpy.testing import assert_array_almost_equal, assert_array_equal\n'), ((853, 865), 'numpy.log', 'np.log', (['prob'], {}), '(prob)\n', (859, 865), True, 'import numpy as np\n'), ((296, 329), 'oddt.scoring.models.classifiers.svm', 'classifiers.svm', ([], {'probability': '(True)'}), '(probability=True)\n', (311, 329), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((357, 399), 'oddt.scoring.models.classifiers.neuralnetwork', 'classifiers.neuralnetwork', ([], {'random_state': '(42)'}), '(random_state=42)\n', (382, 399), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((1104, 1124), 'oddt.scoring.models.regressors.svm', 'regressors.svm', ([], {'C': '(10)'}), '(C=10)\n', (1118, 1124), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((1152, 1192), 'oddt.scoring.models.regressors.randomforest', 'regressors.randomforest', ([], {'random_state': '(42)'}), '(random_state=42)\n', (1175, 1192), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((1220, 1310), 'oddt.scoring.models.regressors.neuralnetwork', 'regressors.neuralnetwork', ([], {'solver': '"""lbfgs"""', 'random_state': '(42)', 'hidden_layer_sizes': '(20, 20)'}), "(solver='lbfgs', random_state=42,\n hidden_layer_sizes=(20, 20))\n", (1244, 1310), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((1436, 1452), 'oddt.scoring.models.regressors.mlr', 'regressors.mlr', ([], {}), '()\n', (1450, 1452), False, 'from oddt.scoring.models import classifiers, regressors\n'), ((468, 484), 'numpy.zeros', 'np.zeros', (['(5, 2)'], {}), '((5, 2))\n', (476, 484), True, 'import numpy as np\n'), ((486, 501), 'numpy.ones', 'np.ones', (['(5, 2)'], {}), '((5, 2))\n', (493, 501), True, 'import numpy as np\n'), ((528, 538), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (535, 538), True, 'import numpy as np\n'), ((540, 551), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (548, 551), True, 'import numpy as np\n'), ((1500, 1538), 'numpy.arange', 'np.arange', (['(30)', '(10)', '(-2)'], {'dtype': '"""float64"""'}), "(30, 10, -2, dtype='float64')\n", (1509, 1538), True, 'import numpy as np\n'), ((1559, 1598), 'numpy.arange', 'np.arange', (['(100)', '(90)', '(-1)'], {'dtype': '"""float64"""'}), "(100, 90, -1, dtype='float64')\n", (1568, 1598), True, 'import numpy as np\n')]
""" Test the fits-module by loading a dumped rtfits result and performing all actions again """ import unittest import numpy as np import cloudpickle import matplotlib.pyplot as plt import copy import os class TestDUMPS(unittest.TestCase): def setUp(self): self.sig0_dB_path = os.path.dirname(__file__) + os.sep + "sig0_dB.dump" self.sig0_linear_path = os.path.dirname(__file__) + os.sep + "sig0_linear.dump" def load_data(self, path): with open(path, 'rb') as file: fit = cloudpickle.load(file) return fit # self.assertTrue( # err < errdict[key], # msg='derived error' + str(err) + 'too high for ' + str(key)) def test_rtplots(self): for path, msg in zip([self.sig0_dB_path, self.sig0_linear_path], ['dB', 'linear']): print(f'testing plotfunctions for {msg} fit') fit = self.load_data(path) # call performfit to re-initialize _fnevals functions # and evaluate intermediate results # (they might have been removed if symeninge has been used) fit.lsq_kwargs['verbose'] = 0 fit.performfit(intermediate_results=True, print_progress=True) # get list of available plot-methods method_list = [func for func in dir(fit.plot) if callable(getattr(fit.plot, func)) and not func.startswith("__")] for function_name in method_list: print(f'... {function_name}') if function_name == 'printsig0analysis': # check 'dataset' index slider f, s1, s2 = fit.plot.__getattribute__(function_name)( range2=2, range1=1, use_index='dataset') # check update functions s1.set_val(1) s2.set_val(1) plt.close(f) # check 'groups' index slider f, s1, s2 = fit.plot.__getattribute__(function_name)( range2=2, range1=1, use_index='groups') # check update functions s1.set_val(1) s2.set_val(1) plt.close(f) elif function_name == 'analyzemodel': f, sliders, txt_but = fit.plot.__getattribute__( function_name)() # check update functions for key, s in sliders.items(): s.set_val((s.valmax - s.valmin)/2.) for key, b in txt_but.items(): if key == 'buttons': # the initial status is ALL OFF stat = b.get_status() for i in range(len(stat)): b.set_active(i) # now all should be ON self.assertTrue(np.all(b.get_status())) for i in range(len(stat)): b.set_active(i) # now all should be OFF again self.assertTrue(~np.all(b.get_status())) else: # set the boundaries of the parameters if 'min' in key: b.set_val(0.02) if 'max' in key: b.set_val(0.99) plt.close(f) elif function_name == 'intermediate_residuals': # check default (e.g. pandas datetime-offset) f = fit.plot.__getattribute__(function_name)(fmt='%d.%b %Y') plt.close(f) # check grouping with respect to incidence angles and # convert the labels to degrees f = fit.plot.__getattribute__(function_name)( grp=('inc', 10), label_formatter=lambda x,y:round(np.rad2deg(x),2)) plt.close(f) # check grouping with respect to datetimes f = fit.plot.__getattribute__(function_name)(grp='groups') plt.close(f) # check grouping with respect to the dataset index f = fit.plot.__getattribute__(function_name)( grp='dataset', plottype='2D', fmt='%Y %b %d (%H:%M)') plt.close(f) else: f = fit.plot.__getattribute__(function_name)() plt.close(f) def test_performfit(self): for path, msg in zip([self.sig0_dB_path, self.sig0_linear_path], ['dB', 'linear']): print(f'testing plotfunctions for {msg} fit') fit = self.load_data(path) old_results = fit.res_dict # print model definition fit.model_definition print('testing performfit') fit.lsq_kwargs['verbose'] = 0 fit.performfit(intermediate_results=True, print_progress=True) # call _cache_info() to make coveralls happy fit._cache_info() fit.R._cache_info() # try to dump the file again (without fit-details) fit.dump(os.path.join(os.path.dirname(__file__), 'testdump1.dump'), mini=True) # try to dump the file again (with fit-details) fit.dump(os.path.join(os.path.dirname(__file__), 'testdump2.dump'), mini=False) for key, val in old_results.items(): self.assertTrue(np.allclose(fit.res_dict[key], old_results[key], atol=1e-4, rtol=1e-4), msg=f'fitted values for {msg} fit of {key} ' + f'differ by {np.subtract(fit.res_dict[key], old_results[key]).mean()}') if __name__ == "__main__": unittest.main()
[ "cloudpickle.load", "numpy.allclose", "numpy.subtract", "matplotlib.pyplot.close", "os.path.dirname", "unittest.main", "numpy.rad2deg" ]
[((6174, 6189), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6187, 6189), False, 'import unittest\n'), ((521, 543), 'cloudpickle.load', 'cloudpickle.load', (['file'], {}), '(file)\n', (537, 543), False, 'import cloudpickle\n'), ((292, 317), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (307, 317), False, 'import os\n'), ((376, 401), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (391, 401), False, 'import os\n'), ((1958, 1970), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (1967, 1970), True, 'import matplotlib.pyplot as plt\n'), ((2297, 2309), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (2306, 2309), True, 'import matplotlib.pyplot as plt\n'), ((5503, 5528), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5518, 5528), False, 'import os\n'), ((5675, 5700), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5690, 5700), False, 'import os\n'), ((5836, 5910), 'numpy.allclose', 'np.allclose', (['fit.res_dict[key]', 'old_results[key]'], {'atol': '(0.0001)', 'rtol': '(0.0001)'}), '(fit.res_dict[key], old_results[key], atol=0.0001, rtol=0.0001)\n', (5847, 5910), True, 'import numpy as np\n'), ((3595, 3607), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (3604, 3607), True, 'import matplotlib.pyplot as plt\n'), ((3840, 3852), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (3849, 3852), True, 'import matplotlib.pyplot as plt\n'), ((4181, 4193), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (4190, 4193), True, 'import matplotlib.pyplot as plt\n'), ((4356, 4368), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (4365, 4368), True, 'import matplotlib.pyplot as plt\n'), ((4604, 4616), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (4613, 4616), True, 'import matplotlib.pyplot as plt\n'), ((4727, 4739), 'matplotlib.pyplot.close', 'plt.close', (['f'], {}), '(f)\n', (4736, 4739), True, 'import matplotlib.pyplot as plt\n'), ((4143, 4156), 'numpy.rad2deg', 'np.rad2deg', (['x'], {}), '(x)\n', (4153, 4156), True, 'import numpy as np\n'), ((6081, 6129), 'numpy.subtract', 'np.subtract', (['fit.res_dict[key]', 'old_results[key]'], {}), '(fit.res_dict[key], old_results[key])\n', (6092, 6129), True, 'import numpy as np\n')]
#!/usr/bin/python #coding = utf-8 import numpy as np import pandas as pd import mysql.connector class mysqlTool(): """ This is the API to connect with mysql database. """ def __init__(self,databaseNameString:str,hostAddress:str,userName:str,passWord:str): self.targetDB = mysql.connector.connect( host = hostAddress, user = userName, passwd = passWord, database = databaseNameString # buffered = True ) self.targetCursor = self.targetDB.cursor(buffered=True) def getAllTables(self): self.targetCursor.execute("SHOW TABLES") return [i for i in self.targetCursor] def getColNameOfTable(self,tableNameString:str): sql = "SELECT * FROM "+tableNameString self.targetCursor.execute(sql) return [i for i in self.targetCursor.column_names] def selectAllFromTable(self,tableNameString:str): sql = "SELECT * FROM "+tableNameString self.targetCursor.execute(sql) result = self.targetCursor.fetchall() df = pd.DataFrame(result,columns = self.targetCursor.column_names) return df def selectDictFromTable(self,tableNameString:str,colNameAsKey:str,colNameAsValue:str): try: sql = "SELECT "+colNameAsKey+","+colNameAsValue+" FROM "+tableNameString self.targetCursor.execute(sql) result = self.targetCursor.fetchall() resultDict = dict(zip([i[0] for i in result],[i[1] for i in result])) return resultDict except Exception as e: print(e) return {} def selectColFromTable(self,tableNameString:str,colNameList:list): colNameString = "".join(["`"+i+"`," for i in colNameList]).strip(",") sql = "SELECT "+colNameString+" FROM "+tableNameString self.targetCursor.execute(sql) result = self.targetCursor.fetchall() df = pd.DataFrame(result,columns = self.targetCursor.column_names) return df def selectColFromTableWithCondition(self,tableNameString:str,colNameList:list,conditionString:str): colNameString = "".join(["`"+i+"`," for i in colNameList]).strip(",") sql = "SELECT "+colNameString+" FROM "+tableNameString+" WHERE "+conditionString self.targetCursor.execute(sql) result = self.targetCursor.fetchall() df = pd.DataFrame(result,columns = self.targetCursor.column_names) return df def selectAllFromTableWithCondition(self,tableNameString:str,conditionString:str): sql = "SELECT * FROM "+tableNameString+" WHERE "+conditionString self.targetCursor.execute(sql) result = self.targetCursor.fetchall() df = pd.DataFrame(result,columns = self.targetCursor.column_names) return df def insertRowIntoTable(self,tableNameString:str,valuesTuple:tuple): sql = "SELECT * FROM "+tableNameString self.targetCursor.execute(sql) colNameString = "".join(["`"+i+"`," for i in self.targetCursor.column_names]).strip(", ") sql = "INSERT INTO "+tableNameString+" ("+colNameString+") VALUES (" + "".join(["%s, " for i in range(len(self.targetCursor.column_names))]).strip(", ")+")" val = valuesTuple self.targetCursor.execute(sql,val) self.targetDB.commit() print("Insert Finished") def replaceRowsIntoTable(self,tableNameString:str,valuesTupleList:list): sql = "SELECT * FROM "+tableNameString self.targetCursor.execute(sql) colNameString = "".join(["`"+i+"`," for i in self.targetCursor.column_names]).strip(", ") sql = "REPLACE INTO "+tableNameString+" ("+colNameString+") VALUES (" + "".join(["%s, " for i in range(len(self.targetCursor.column_names))]).strip(", ")+")" val = valuesTupleList self.targetCursor.executemany(sql, val) self.targetDB.commit() print("Insert Finished") def replaceDFIntoTable(self,tableNameString:str,dataFrame:pd.DataFrame): try: import numpy as np DBTableColNameList = self.getColNameOfTable(tableNameString) df = dataFrame[DBTableColNameList] # convert to tuple valuesTapleList = df.apply(lambda x: tuple([None if type(i)==type(np.nan) and np.isnan(i) else i for i in x]),axis=1).to_list() sql = "SELECT * FROM "+tableNameString self.targetCursor.execute(sql) colNameString = "".join(["`"+i+"`," for i in self.targetCursor.column_names]).strip(", ") sql = "REPLACE INTO "+tableNameString+" ("+colNameString+") VALUES (" + "".join(["%s, " for i in range(len(self.targetCursor.column_names))]).strip(", ")+")" val = valuesTapleList self.targetCursor.executemany(sql, val) self.targetDB.commit() print("Replace Finished") except Exception as e: print("Replace Failed, Error:",e) class oracleTool(): """ This is the API to connect with oracle database. """ def __init__(self,databaseNameString:str,hostAddress:str,port:int,userName:str,passWord:str): from sqlalchemy import create_engine uri = f'oracle+cx_oracle://{userName}:{passWord}@{hostAddress}:{port}/{databaseNameString}' self.engine = create_engine(uri) def readSql(self,sql:str): data = pd.read_sql(sql,con=self.engine) return data class neo4jTool(): """ This is the API to connect with neo4j database. """ def __init__(self, hostAddress:str,port:int,userName:str,password:str): from py2neo import Graph self.engine = Graph(hostAddress+":"+str(port),auth=(userName,password)) def readCypher(self,cypher:str): data = self.engine.run(cypher) return data def convertDataType(self,x): if isinstance(x,np.float64): return float(x) elif hasattr(x,'strftime'): return x.strftime("%Y-%m-%d") elif isinstance(x,list): return [self.convertDataType(i) for i in x] else: return x def updateDFToNode(self,nodeList:list,df:pd.DataFrame,colAsName:str): nameWaitedToBeUpdated = df[colAsName].to_list() nameList = [i for i in nodeList if i['name'] in nameWaitedToBeUpdated] tmp = df.set_index(colAsName,drop=True) [[node.update({j:self.convertDataType(tmp.loc[node['name']][j])}) for j in tmp.columns if j!= colAsName] for node in nameList] def convertDFToNode(self, nodeType:str, df:pd.DataFrame, colAsName:str): from py2neo import Node nodeList = [Node(nodeType, name=df.iloc[i][colAsName]) for i in range(df.shape[0])] [[nodeList[i].update({j:self.convertDataType(df.iloc[i][j])}) for j in df.columns if j!=colAsName] for i in range(df.shape[0])] return nodeList def addNodeFromDF(self, nodeType:str, df:pd.DataFrame, colAsName:str): nodeList = self.convertDFToNode(nodeType, df, colAsName) [self.engine.create(i) for i in nodeList] return nodeList def selectAllLabel(self): labelList = self.readCypher("MATCH (res) RETURN distinct labels(res)") return [i[0][0] for i in labelList] def selectAllNode(self, nodeType:str): nodeList = self.readCypher(f'''MATCH (res:`{nodeType}`) RETURN res''') return [i['res'] for i in nodeList] def selectAttrFromNode(self, nodeType:str, attrList:list): if type(attrList)==type(''): attrList = [attrList] else: pass attr = "'],res['".join(attrList) nodeList = self.readCypher(f"MATCH (res:`{nodeType}`) RETURN res['"+attr+"']") return nodeList.to_data_frame().rename(columns=dict(zip(["res['"+i+"']" for i in attrList],attrList))) def selectAllNodeWithCondition(self, nodeType: str, conditionString:str, resultVariableName:str = 'res'): nodeList = self.readCypher(f'''MATCH ({resultVariableName}:`{nodeType}`) WHERE {conditionString} RETURN {resultVariableName}''') return [i[resultVariableName] for i in nodeList] def selectAttrFromNodeWithCondition(self, nodeType: str, attrList: list, conditionString:str, resultVariableName:str = 'res'): if type(attrList) == type(''): attrList = [attrList] else: pass attr = "'],res['".join(attrList) nodeList = self.readCypher(f"MATCH ({resultVariableName}:`{nodeType}`) WHERE {conditionString} RETURN {resultVariableName}['" + attr + "']") return nodeList.to_data_frame().rename(columns=dict(zip([f"{resultVariableName}['" + i + "']" for i in attrList], attrList))) def connectNodeByAttr(self, nodeTypeLeft:str, nodeTypeRight:str, attrNameLeft:str, attrNameRight:str, relationName:str): from py2neo import Relationship leftNode = self.selectAllNode(nodeTypeLeft) rightNode = self.selectAllNode(nodeTypeRight) pair = [(left,right) for left in leftNode for right in rightNode if left[attrNameLeft]==right[attrNameRight]] relation = [Relationship(i[0],relationName,i[1]) for i in pair] [self.engine.create(i) for i in relation] def replaceNode(self, nodeObj): self.engine.push(nodeObj) def replaceNodeFromDF(self, nodeType:str, df:pd.DataFrame, colAsName:str): nodeList = self.selectAllNodeWithCondition(nodeType,"res.name IN ['"+"','".join(df[colAsName].to_list())+"']") self.updateDFToNode(nodeList,df,colAsName) oldNode = [i['name'] for i in nodeList] tmp = df[[(i not in oldNode) for i in df[colAsName]]] self.addNodeFromDF(nodeType,tmp,colAsName) [self.engine.push(i) for i in nodeList] def deleteAllNode(self): self.engine.delete_all() print("All Nodes Have Been Deleted") def deleteNode(self, nodeObj): self.engine.delete(nodeObj)
[ "py2neo.Node", "sqlalchemy.create_engine", "numpy.isnan", "pandas.DataFrame", "py2neo.Relationship", "pandas.read_sql" ]
[((946, 1006), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {'columns': 'self.targetCursor.column_names'}), '(result, columns=self.targetCursor.column_names)\n', (958, 1006), True, 'import pandas as pd\n'), ((1689, 1749), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {'columns': 'self.targetCursor.column_names'}), '(result, columns=self.targetCursor.column_names)\n', (1701, 1749), True, 'import pandas as pd\n'), ((2100, 2160), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {'columns': 'self.targetCursor.column_names'}), '(result, columns=self.targetCursor.column_names)\n', (2112, 2160), True, 'import pandas as pd\n'), ((2406, 2466), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {'columns': 'self.targetCursor.column_names'}), '(result, columns=self.targetCursor.column_names)\n', (2418, 2466), True, 'import pandas as pd\n'), ((4703, 4721), 'sqlalchemy.create_engine', 'create_engine', (['uri'], {}), '(uri)\n', (4716, 4721), False, 'from sqlalchemy import create_engine\n'), ((4760, 4793), 'pandas.read_sql', 'pd.read_sql', (['sql'], {'con': 'self.engine'}), '(sql, con=self.engine)\n', (4771, 4793), True, 'import pandas as pd\n'), ((5862, 5904), 'py2neo.Node', 'Node', (['nodeType'], {'name': 'df.iloc[i][colAsName]'}), '(nodeType, name=df.iloc[i][colAsName])\n', (5866, 5904), False, 'from py2neo import Node\n'), ((8097, 8135), 'py2neo.Relationship', 'Relationship', (['i[0]', 'relationName', 'i[1]'], {}), '(i[0], relationName, i[1])\n', (8109, 8135), False, 'from py2neo import Relationship\n'), ((3813, 3824), 'numpy.isnan', 'np.isnan', (['i'], {}), '(i)\n', (3821, 3824), True, 'import numpy as np\n')]
import numpy as np import random N = 10 def null(a, rtol=1e-5): u, s, v = np.linalg.svd(a) rank = (s > rtol*s[0]).sum() return rank, v[rank:].T.copy() def gen_data(N, noisy=False): lower = -1 upper = 1 dim = 2 X = np.random.rand(dim, N)*(upper-lower)+lower while True: Xsample = np.concatenate( (np.ones((1, dim)), np.random.rand(dim, dim)*(upper-lower)+lower)) k, w = null(Xsample.T) y = np.sign(np.dot(w.T, np.concatenate((np.ones((1, N)), X)))) if np.all(y): break return (X, y, w) def change_label(y): idx = random.sample(range(1, N), N/10) y[idx] = -y[idx] return y if __name__ == '__main__': X, y, w = gen_data(10) print(X)
[ "numpy.linalg.svd", "numpy.all", "numpy.ones", "numpy.random.rand" ]
[((82, 98), 'numpy.linalg.svd', 'np.linalg.svd', (['a'], {}), '(a)\n', (95, 98), True, 'import numpy as np\n'), ((535, 544), 'numpy.all', 'np.all', (['y'], {}), '(y)\n', (541, 544), True, 'import numpy as np\n'), ((249, 271), 'numpy.random.rand', 'np.random.rand', (['dim', 'N'], {}), '(dim, N)\n', (263, 271), True, 'import numpy as np\n'), ((356, 373), 'numpy.ones', 'np.ones', (['(1, dim)'], {}), '((1, dim))\n', (363, 373), True, 'import numpy as np\n'), ((375, 399), 'numpy.random.rand', 'np.random.rand', (['dim', 'dim'], {}), '(dim, dim)\n', (389, 399), True, 'import numpy as np\n'), ((501, 516), 'numpy.ones', 'np.ones', (['(1, N)'], {}), '((1, N))\n', (508, 516), True, 'import numpy as np\n')]
#!/usr/bin/env python import numpy import itertools from pymatgen.core.lattice import Lattice from pymatgen.core.operations import SymmOp from pymatgen.core.structure import Structure from crystal import fillcell, tikz_atoms def dfh(single = True, defect = False): if defect: single = False a = 5.43 fcc = Lattice([[a/2,a/2,0],[a/2,0,a/2],[0,a/2,a/2]]) dfh = Structure(fcc,['Si']*2,[[0.00,0.00,0.00],[0.25,0.25,0.25]]) # Make the orthogonal cubic dfh.make_supercell([[0,0,1],[1,-1,0],[1,1,-1]]) # Rotate the cell rt = 0.70710678118654746 symmop = SymmOp.from_rotation_and_translation([[0,rt,rt],[0,rt,-rt],[1,0,0]]) dfh.apply_operation(symmop) # Make supercell if single == True: dfh.make_supercell([1,1,8]) else: dfh.make_supercell([2,2,8]) # Insert Mn atoms for i,atom in enumerate(dfh): if abs(atom.frac_coords[2] - 0.5) < 0.01 and atom.specie.symbol == 'Si': dfh.append('Mn',atom.frac_coords) del dfh[i] # Do defects if defect == 1: defectMn = numpy.array([0,0,0.5]) for i,atom in enumerate(dfh): if numpy.linalg.norm(atom.frac_coords - defectMn) < 0.01 and atom.specie.symbol == 'Mn': dfh.append('Si',defectMn) del dfh[i] if defect == 2: defectMn = numpy.array([0.5,0.5,0.5]) for i,atom in enumerate(dfh): if numpy.linalg.norm(atom.frac_coords - defectMn) < 0.01 and atom.specie.symbol == 'Mn': del dfh[i] if defect == 3: defectMn = numpy.array([0.5,0.25,0.5-1./32]) for i,atom in enumerate(dfh): if numpy.linalg.norm(atom.frac_coords - defectMn) < 0.01 and atom.specie.symbol == 'Si': dfh.append('Mn',defectMn) del dfh[i] return dfh atoms = dfh(single = True) atoms_full = fillcell(atoms) bondatoms = [] snsite = numpy.array([0.625,0.625,0.625]) for sitei,sitej in itertools.combinations(atoms_full,2): radius = sitei.specie.atomic_radius + sitej.specie.atomic_radius bondlength = sitei.distance_from_point(sitej.coords) if bondlength <= 1.25 * radius: bondatoms.append((sitei,sitej)) tikz = tikz_atoms(atoms_full, bondatoms, drawcell = True)
[ "pymatgen.core.structure.Structure", "itertools.combinations", "crystal.fillcell", "numpy.array", "pymatgen.core.lattice.Lattice", "numpy.linalg.norm", "pymatgen.core.operations.SymmOp.from_rotation_and_translation", "crystal.tikz_atoms" ]
[((1909, 1924), 'crystal.fillcell', 'fillcell', (['atoms'], {}), '(atoms)\n', (1917, 1924), False, 'from crystal import fillcell, tikz_atoms\n'), ((1949, 1983), 'numpy.array', 'numpy.array', (['[0.625, 0.625, 0.625]'], {}), '([0.625, 0.625, 0.625])\n', (1960, 1983), False, 'import numpy\n'), ((2001, 2038), 'itertools.combinations', 'itertools.combinations', (['atoms_full', '(2)'], {}), '(atoms_full, 2)\n', (2023, 2038), False, 'import itertools\n'), ((2261, 2309), 'crystal.tikz_atoms', 'tikz_atoms', (['atoms_full', 'bondatoms'], {'drawcell': '(True)'}), '(atoms_full, bondatoms, drawcell=True)\n', (2271, 2309), False, 'from crystal import fillcell, tikz_atoms\n'), ((329, 395), 'pymatgen.core.lattice.Lattice', 'Lattice', (['[[a / 2, a / 2, 0], [a / 2, 0, a / 2], [0, a / 2, a / 2]]'], {}), '([[a / 2, a / 2, 0], [a / 2, 0, a / 2], [0, a / 2, a / 2]])\n', (336, 395), False, 'from pymatgen.core.lattice import Lattice\n'), ((386, 451), 'pymatgen.core.structure.Structure', 'Structure', (['fcc', "(['Si'] * 2)", '[[0.0, 0.0, 0.0], [0.25, 0.25, 0.25]]'], {}), "(fcc, ['Si'] * 2, [[0.0, 0.0, 0.0], [0.25, 0.25, 0.25]])\n", (395, 451), False, 'from pymatgen.core.structure import Structure\n'), ((604, 680), 'pymatgen.core.operations.SymmOp.from_rotation_and_translation', 'SymmOp.from_rotation_and_translation', (['[[0, rt, rt], [0, rt, -rt], [1, 0, 0]]'], {}), '([[0, rt, rt], [0, rt, -rt], [1, 0, 0]])\n', (640, 680), False, 'from pymatgen.core.operations import SymmOp\n'), ((1108, 1132), 'numpy.array', 'numpy.array', (['[0, 0, 0.5]'], {}), '([0, 0, 0.5])\n', (1119, 1132), False, 'import numpy\n'), ((1378, 1406), 'numpy.array', 'numpy.array', (['[0.5, 0.5, 0.5]'], {}), '([0.5, 0.5, 0.5])\n', (1389, 1406), False, 'import numpy\n'), ((1610, 1650), 'numpy.array', 'numpy.array', (['[0.5, 0.25, 0.5 - 1.0 / 32]'], {}), '([0.5, 0.25, 0.5 - 1.0 / 32])\n', (1621, 1650), False, 'import numpy\n'), ((1184, 1230), 'numpy.linalg.norm', 'numpy.linalg.norm', (['(atom.frac_coords - defectMn)'], {}), '(atom.frac_coords - defectMn)\n', (1201, 1230), False, 'import numpy\n'), ((1458, 1504), 'numpy.linalg.norm', 'numpy.linalg.norm', (['(atom.frac_coords - defectMn)'], {}), '(atom.frac_coords - defectMn)\n', (1475, 1504), False, 'import numpy\n'), ((1697, 1743), 'numpy.linalg.norm', 'numpy.linalg.norm', (['(atom.frac_coords - defectMn)'], {}), '(atom.frac_coords - defectMn)\n', (1714, 1743), False, 'import numpy\n')]
# coding: utf-8 """ @brief test log(time=1s) """ import unittest import pandas import numpy from scipy.sparse.linalg import lsqr as sparse_lsqr from pyquickhelper.pycode import ExtTestCase, ignore_warnings from pandas_streaming.df import pandas_groupby_nan, numpy_types class TestPandasHelper(ExtTestCase): def test_pandas_groupbynan(self): self.assertTrue(sparse_lsqr is not None) types = [(int, -10), (float, -20.2), (str, "e"), (bytes, bytes("a", "ascii"))] skip = (numpy.bool_, numpy.complex64, numpy.complex128) types += [(_, _(5)) for _ in numpy_types() if _ not in skip] for ty in types: data = [{"this": "cst", "type": "tt1=" + str(ty[0]), "value": ty[1]}, {"this": "cst", "type": "tt2=" + str(ty[0]), "value": ty[1]}, {"this": "cst", "type": "row_for_nan"}] df = pandas.DataFrame(data) gr = pandas_groupby_nan(df, "value") co = gr.sum() li = list(co["value"]) try: self.assertIsInstance(li[-1], float) except AssertionError as e: raise AssertionError("Issue with {0}".format(ty)) from e try: self.assertTrue(numpy.isnan(li[-1])) except AssertionError as e: raise AssertionError( "Issue with value {}\n--df--\n{}\n--gr--\n{}\n--co--\n{}".format( li, df, gr.count(), co)) from e for ty in types: data = [{"this": "cst", "type": "tt1=" + str(ty[0]), "value": ty[1]}, {"this": "cst", "type": "tt2=" + str(ty[0]), "value": ty[1]}, {"this": "cst", "type": "row_for_nan"}] df = pandas.DataFrame(data) try: gr = pandas_groupby_nan(df, ("value", "this")) t = True raise Exception("---") except TypeError: t = False if t: co = gr.sum() li = list(co["value"]) self.assertIsInstance(li[-1], float) self.assertTrue(numpy.isnan(li[-1])) try: gr = pandas_groupby_nan(df, ["value", "this"]) t = True except (TypeError, NotImplementedError): t = False if t: co = gr.sum() li = list(co["value"]) self.assertEqual(len(li), 2) def test_pandas_groupbynan_tuple(self): data = [dict(a="a", b="b", c="c", n=1), dict( b="b", n=2), dict(a="a", n=3), dict(c="c", n=4)] df = pandas.DataFrame(data) gr = df.groupby(["a", "b", "c"]).sum() self.assertEqual(gr.shape, (1, 1)) for nanback in [True, False]: try: gr2_ = pandas_groupby_nan( df, ["a", "b", "c"], nanback=nanback, suffix="NAN") except NotImplementedError: continue gr2 = gr2_.sum().sort_values("n") self.assertEqual(gr2.shape, (4, 4)) d = gr2.to_dict("records") self.assertEqual(d[0]["a"], "a") self.assertEqual(d[0]["b"], "b") self.assertEqual(d[0]["c"], "c") self.assertEqual(d[0]["n"], 1) self.assertEqual(d[1]["a"], "NAN") def test_pandas_groupbynan_regular(self): df = pandas.DataFrame([dict(a="a", b=1), dict(a="a", b=2)]) gr = df.groupby(["a"]).sum() gr2_ = pandas_groupby_nan(df, ["a"]).sum() self.assertEqualDataFrame(gr, gr2_) def test_pandas_groupbynan_regular_nanback(self): df = pandas.DataFrame([dict(a="a", b=1, cc=0), dict(a="a", b=2)]) gr = df.groupby(["a", "cc"]).sum() self.assertEqual(len(gr), 1) self.assertRaise( lambda: pandas_groupby_nan(df, ["a", "cc"], nanback=True).sum(), NotImplementedError) def test_pandas_groupbynan_doc(self): data = [dict(a=2, ind="a", n=1), dict(a=2, ind="a"), dict(a=3, ind="b"), dict(a=30)] df = pandas.DataFrame(data) gr2 = pandas_groupby_nan(df, ["ind"]).sum() ind = list(gr2['ind']) self.assertTrue(numpy.isnan(ind[-1])) val = list(gr2['a']) self.assertEqual(val[-1], 30) @ignore_warnings(UserWarning) def test_pandas_groupbynan_doc2(self): data = [dict(a=2, ind="a", n=1), dict(a=2, ind="a"), dict(a=3, ind="b"), dict(a=30)] df = pandas.DataFrame(data) gr2 = pandas_groupby_nan(df, ["ind", "a"], nanback=False).sum() ind = list(gr2['ind']) self.assertEqual(ind[-1], "²nan") def test_pandas_groupbynan_doc3(self): data = [dict(a=2, ind="a", n=1), dict(a=2, ind="a"), dict(a=3, ind="b"), dict(a=30)] df = pandas.DataFrame(data) self.assertRaise(lambda: pandas_groupby_nan(df, ["ind", "n"]).sum(), NotImplementedError) # ind = list(gr2['ind']) # self.assertTrue(numpy.isnan(ind[-1])) if __name__ == "__main__": unittest.main()
[ "pandas.DataFrame", "numpy.isnan", "pandas_streaming.df.numpy_types", "unittest.main", "pyquickhelper.pycode.ignore_warnings", "pandas_streaming.df.pandas_groupby_nan" ]
[((4454, 4482), 'pyquickhelper.pycode.ignore_warnings', 'ignore_warnings', (['UserWarning'], {}), '(UserWarning)\n', (4469, 4482), False, 'from pyquickhelper.pycode import ExtTestCase, ignore_warnings\n'), ((5306, 5321), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5319, 5321), False, 'import unittest\n'), ((2733, 2755), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (2749, 2755), False, 'import pandas\n'), ((4229, 4251), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (4245, 4251), False, 'import pandas\n'), ((4680, 4702), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (4696, 4702), False, 'import pandas\n'), ((5046, 5068), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (5062, 5068), False, 'import pandas\n'), ((930, 952), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (946, 952), False, 'import pandas\n'), ((970, 1001), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', '"""value"""'], {}), "(df, 'value')\n", (988, 1001), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((1827, 1849), 'pandas.DataFrame', 'pandas.DataFrame', (['data'], {}), '(data)\n', (1843, 1849), False, 'import pandas\n'), ((4359, 4379), 'numpy.isnan', 'numpy.isnan', (['ind[-1]'], {}), '(ind[-1])\n', (4370, 4379), False, 'import numpy\n'), ((607, 620), 'pandas_streaming.df.numpy_types', 'numpy_types', ([], {}), '()\n', (618, 620), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((1888, 1929), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "('value', 'this')"], {}), "(df, ('value', 'this'))\n", (1906, 1929), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((2281, 2322), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['value', 'this']"], {}), "(df, ['value', 'this'])\n", (2299, 2322), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((2925, 2995), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['a', 'b', 'c']"], {'nanback': 'nanback', 'suffix': '"""NAN"""'}), "(df, ['a', 'b', 'c'], nanback=nanback, suffix='NAN')\n", (2943, 2995), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((3607, 3636), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['a']"], {}), "(df, ['a'])\n", (3625, 3636), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((4266, 4297), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['ind']"], {}), "(df, ['ind'])\n", (4284, 4297), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((4717, 4768), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['ind', 'a']"], {'nanback': '(False)'}), "(df, ['ind', 'a'], nanback=False)\n", (4735, 4768), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((1295, 1314), 'numpy.isnan', 'numpy.isnan', (['li[-1]'], {}), '(li[-1])\n', (1306, 1314), False, 'import numpy\n'), ((2222, 2241), 'numpy.isnan', 'numpy.isnan', (['li[-1]'], {}), '(li[-1])\n', (2233, 2241), False, 'import numpy\n'), ((3942, 3991), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['a', 'cc']"], {'nanback': '(True)'}), "(df, ['a', 'cc'], nanback=True)\n", (3960, 3991), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n'), ((5102, 5138), 'pandas_streaming.df.pandas_groupby_nan', 'pandas_groupby_nan', (['df', "['ind', 'n']"], {}), "(df, ['ind', 'n'])\n", (5120, 5138), False, 'from pandas_streaming.df import pandas_groupby_nan, numpy_types\n')]
import shutil import numpy as np ALL_SYNTHS_LIST = 'synth_imgs.txt' TRAIN_IMAGES_LIST = 'train_imgs.txt' VAL_IMAGES_LIST = 'val_imgs.txt' TEST_IMAGES_LIST = 'test_imgs.txt' TRAIN_STOP = 342000 VAL_STOP = TRAIN_STOP + 38000 ''' 390000 examples : 342000 train and 38000 val (90/10 splits on 380000), 10000 test ''' with open(ALL_SYNTHS_LIST,'r') as img_list: files = np.array(img_list.read().splitlines()) files = files[np.random.permutation(files.shape[0])] with open(TRAIN_IMAGES_LIST,"w") as list_file: for i in range(TRAIN_STOP): shutil.copy(files[i],'./train_imgs/') shutil.copy(files[i][:-4] + "_r.jpg",'./train_imgs/') shutil.copy(files[i][:-4] + "_b.jpg",'./train_imgs/') fname = files[i].split('/') fname = fname[len(fname) - 1] list_file.write('./train_imgs/' + fname) list_file.write('\n') print("Copying training examples ..." + str(i) + "/342000") with open(VAL_IMAGES_LIST,"w") as list_file: for i in range(TRAIN_STOP,VAL_STOP): shutil.copy(files[i],'./val_imgs/') shutil.copy(files[i][:-4] + "_r.jpg",'./val_imgs/') shutil.copy(files[i][:-4] + "_b.jpg",'./val_imgs/') fname = files[i].split('/') fname = fname[len(fname) - 1] list_file.write('./val_imgs/' + fname) list_file.write('\n') print("Copying validation examples ..." + str(i) + "/38000") with open(TEST_IMAGES_LIST,"w") as list_file: for i in range(VAL_STOP,files.shape[0]): shutil.copy(files[i],'./test_imgs/') shutil.copy(files[i][:-4] + "_r.jpg",'./test_imgs/') shutil.copy(files[i][:-4] + "_b.jpg",'./test_imgs/') fname = files[i].split('/') fname = fname[len(fname) - 1] list_file.write('./test_imgs/' + fname) list_file.write('\n') print("Copying testing examples ..." + str(i) + "/10000")
[ "shutil.copy", "numpy.random.permutation" ]
[((428, 465), 'numpy.random.permutation', 'np.random.permutation', (['files.shape[0]'], {}), '(files.shape[0])\n', (449, 465), True, 'import numpy as np\n'), ((556, 594), 'shutil.copy', 'shutil.copy', (['files[i]', '"""./train_imgs/"""'], {}), "(files[i], './train_imgs/')\n", (567, 594), False, 'import shutil\n'), ((602, 656), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_r.jpg')", '"""./train_imgs/"""'], {}), "(files[i][:-4] + '_r.jpg', './train_imgs/')\n", (613, 656), False, 'import shutil\n'), ((664, 718), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_b.jpg')", '"""./train_imgs/"""'], {}), "(files[i][:-4] + '_b.jpg', './train_imgs/')\n", (675, 718), False, 'import shutil\n'), ((1034, 1070), 'shutil.copy', 'shutil.copy', (['files[i]', '"""./val_imgs/"""'], {}), "(files[i], './val_imgs/')\n", (1045, 1070), False, 'import shutil\n'), ((1078, 1130), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_r.jpg')", '"""./val_imgs/"""'], {}), "(files[i][:-4] + '_r.jpg', './val_imgs/')\n", (1089, 1130), False, 'import shutil\n'), ((1138, 1190), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_b.jpg')", '"""./val_imgs/"""'], {}), "(files[i][:-4] + '_b.jpg', './val_imgs/')\n", (1149, 1190), False, 'import shutil\n'), ((1510, 1547), 'shutil.copy', 'shutil.copy', (['files[i]', '"""./test_imgs/"""'], {}), "(files[i], './test_imgs/')\n", (1521, 1547), False, 'import shutil\n'), ((1555, 1608), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_r.jpg')", '"""./test_imgs/"""'], {}), "(files[i][:-4] + '_r.jpg', './test_imgs/')\n", (1566, 1608), False, 'import shutil\n'), ((1616, 1669), 'shutil.copy', 'shutil.copy', (["(files[i][:-4] + '_b.jpg')", '"""./test_imgs/"""'], {}), "(files[i][:-4] + '_b.jpg', './test_imgs/')\n", (1627, 1669), False, 'import shutil\n')]
import importlib import json import os import pdb import sys import fnet import pandas as pd import tifffile import numpy as np from fnet.transforms import normalize def pearson_loss(x, y): #x = output #y = target vx = x - torch.mean(x) vy = y - torch.mean(y) cost = torch.sum(vx * vy) / (torch.sqrt(torch.sum(vx ** 2)) * torch.sqrt(torch.sum(vy ** 2))) return cost # code retrieved on 21.05.21 from: https://github.com/pytorch/pytorch/issues/1254 def pearsonr(x, y): """ Mimics `scipy.stats.pearsonr` Arguments --------- x : 1D torch.Tensor y : 1D torch.Tensor Returns ------- r_val : float pearsonr correlation coefficient between x and y Scipy docs ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html Scipy code ref: https://github.com/scipy/scipy/blob/v0.19.0/scipy/stats/stats.py#L2975-L3033 Example: >>> x = np.random.randn(100) >>> y = np.random.randn(100) >>> sp_corr = scipy.stats.pearsonr(x, y)[0] >>> th_corr = pearsonr(torch.from_numpy(x), torch.from_numpy(y)) >>> np.allclose(sp_corr, th_corr) """ x = x.detach().cpu().numpy().flatten() #pred y = y.detach().cpu().numpy().flatten() #target pearson_img = np.corrcoef(x,y) r_val = pearson_img[0,1] return r_val def load_model(path_model, gpu_ids=0, module='fnet_model', in_channels=1, out_channels=1): module_fnet_model = importlib.import_module('fnet.' + module) if os.path.isdir(path_model): path_model = os.path.join(path_model, 'model.p') model = module_fnet_model.Model(in_channels=in_channels, out_channels=out_channels) model.load_state(path_model, gpu_ids=gpu_ids) return model def load_model_from_dir(path_model_dir, gpu_ids=0, in_channels=1, out_channels=1): assert os.path.isdir(path_model_dir) path_model_state = os.path.join(path_model_dir, 'model.p') model = fnet.fnet_model.Model(in_channels=in_channels, out_channels=out_channels) model.load_state(path_model_state, gpu_ids=gpu_ids) return model def compute_dataset_min_max_ranges(train_path, val_path=None, norm=False): df_train = pd.read_csv(train_path) if val_path is not None: df_val = pd.read_csv(val_path) df=pd.concat([df_train, df_val]) else: df=df_train min_bright=[] max_bright =[] min_inf = [] max_inf = [] min_dapi = [] max_dapi = [] if df.iloc[0,:]['target_channel'] is None: no_target = True else: no_target = False if df.iloc[0,:]['dapi_channel'] is None: no_dapi = True else: no_dapi = False for index in range(len(df)): element=df.iloc[index, :] image = tifffile.imread(element['file']) if not no_target: image_infection = image[element['target_channel'],:,:] min_inf.append(np.min(image_infection)) max_inf.append(np.max(image_infection)) if not no_dapi: image_dapi = image[element['dapi_channel'],:,:] min_dapi.append(np.min(image_dapi)) max_dapi.append(np.max(image_dapi)) image_bright = image[element['signal_channel'],:,:] if norm: image_bright = normalize(image_bright) min_bright.append(np.min(image_bright)) max_bright.append(np.max(image_bright)) min_inf = np.min(np.array(min_inf)) if not no_target else None max_inf = np.max(np.array(max_inf)) if not no_target else None min_dapi = np.min(np.array(min_dapi)) if not no_dapi else None max_dapi = np.max(np.array(max_dapi)) if not no_dapi else None min_bright = np.min(np.array(min_bright)) max_bright = np.max(np.array(max_bright)) return [min_bright, max_bright], [min_inf, max_inf], [min_dapi, max_dapi]
[ "fnet.fnet_model.Model", "importlib.import_module", "pandas.read_csv", "numpy.corrcoef", "tifffile.imread", "os.path.join", "numpy.max", "numpy.array", "os.path.isdir", "numpy.min", "pandas.concat", "fnet.transforms.normalize" ]
[((1322, 1339), 'numpy.corrcoef', 'np.corrcoef', (['x', 'y'], {}), '(x, y)\n', (1333, 1339), True, 'import numpy as np\n'), ((1503, 1544), 'importlib.import_module', 'importlib.import_module', (["('fnet.' + module)"], {}), "('fnet.' + module)\n", (1526, 1544), False, 'import importlib\n'), ((1552, 1577), 'os.path.isdir', 'os.path.isdir', (['path_model'], {}), '(path_model)\n', (1565, 1577), False, 'import os\n'), ((1886, 1915), 'os.path.isdir', 'os.path.isdir', (['path_model_dir'], {}), '(path_model_dir)\n', (1899, 1915), False, 'import os\n'), ((1939, 1978), 'os.path.join', 'os.path.join', (['path_model_dir', '"""model.p"""'], {}), "(path_model_dir, 'model.p')\n", (1951, 1978), False, 'import os\n'), ((1991, 2064), 'fnet.fnet_model.Model', 'fnet.fnet_model.Model', ([], {'in_channels': 'in_channels', 'out_channels': 'out_channels'}), '(in_channels=in_channels, out_channels=out_channels)\n', (2012, 2064), False, 'import fnet\n'), ((2234, 2257), 'pandas.read_csv', 'pd.read_csv', (['train_path'], {}), '(train_path)\n', (2245, 2257), True, 'import pandas as pd\n'), ((1600, 1635), 'os.path.join', 'os.path.join', (['path_model', '"""model.p"""'], {}), "(path_model, 'model.p')\n", (1612, 1635), False, 'import os\n'), ((2304, 2325), 'pandas.read_csv', 'pd.read_csv', (['val_path'], {}), '(val_path)\n', (2315, 2325), True, 'import pandas as pd\n'), ((2337, 2366), 'pandas.concat', 'pd.concat', (['[df_train, df_val]'], {}), '([df_train, df_val])\n', (2346, 2366), True, 'import pandas as pd\n'), ((2825, 2857), 'tifffile.imread', 'tifffile.imread', (["element['file']"], {}), "(element['file'])\n", (2840, 2857), False, 'import tifffile\n'), ((3794, 3814), 'numpy.array', 'np.array', (['min_bright'], {}), '(min_bright)\n', (3802, 3814), True, 'import numpy as np\n'), ((3840, 3860), 'numpy.array', 'np.array', (['max_bright'], {}), '(max_bright)\n', (3848, 3860), True, 'import numpy as np\n'), ((3371, 3394), 'fnet.transforms.normalize', 'normalize', (['image_bright'], {}), '(image_bright)\n', (3380, 3394), False, 'from fnet.transforms import normalize\n'), ((3421, 3441), 'numpy.min', 'np.min', (['image_bright'], {}), '(image_bright)\n', (3427, 3441), True, 'import numpy as np\n'), ((3469, 3489), 'numpy.max', 'np.max', (['image_bright'], {}), '(image_bright)\n', (3475, 3489), True, 'import numpy as np\n'), ((3517, 3534), 'numpy.array', 'np.array', (['min_inf'], {}), '(min_inf)\n', (3525, 3534), True, 'import numpy as np\n'), ((3584, 3601), 'numpy.array', 'np.array', (['max_inf'], {}), '(max_inf)\n', (3592, 3601), True, 'import numpy as np\n'), ((3653, 3671), 'numpy.array', 'np.array', (['min_dapi'], {}), '(min_dapi)\n', (3661, 3671), True, 'import numpy as np\n'), ((3720, 3738), 'numpy.array', 'np.array', (['max_dapi'], {}), '(max_dapi)\n', (3728, 3738), True, 'import numpy as np\n'), ((2987, 3010), 'numpy.min', 'np.min', (['image_infection'], {}), '(image_infection)\n', (2993, 3010), True, 'import numpy as np\n'), ((3039, 3062), 'numpy.max', 'np.max', (['image_infection'], {}), '(image_infection)\n', (3045, 3062), True, 'import numpy as np\n'), ((3185, 3203), 'numpy.min', 'np.min', (['image_dapi'], {}), '(image_dapi)\n', (3191, 3203), True, 'import numpy as np\n'), ((3233, 3251), 'numpy.max', 'np.max', (['image_dapi'], {}), '(image_dapi)\n', (3239, 3251), True, 'import numpy as np\n')]
import numpy as np import numpy.random as rand from functools import reduce class Network: def __init__(self, layer_sizes): # layer_sizes: list of numbers representing number of neurons per layer # Create a numpy array of biases for each layer except the (first) input layer self.biases = [rand.randn(l, 1) for l in layer_sizes[1:]] # The weights are an array of matrices. 'Between' each two layers is one matrix. # Every row contains a set of weights for each node self.weights = [rand.randn(y, x) for x, y in zip(layer_sizes[:-1], layer_sizes[1:])] def feed_forward(self, input): # Perform a left fold return reduce(lambda input, b_w: np.dot(b_w[1], input)+b_w[0], zip(self.biases, self.weights), input) def sigmoid(z): # The sigmoid function return 1.0 / (1.0 + np.exp(-z)) def sigmoid_deriv(z): # First-order derivative of the sigmoid function return sigmoid(z) * (1 - sigmoid(z))
[ "numpy.exp", "numpy.dot", "numpy.random.randn" ]
[((322, 338), 'numpy.random.randn', 'rand.randn', (['l', '(1)'], {}), '(l, 1)\n', (332, 338), True, 'import numpy.random as rand\n'), ((539, 555), 'numpy.random.randn', 'rand.randn', (['y', 'x'], {}), '(y, x)\n', (549, 555), True, 'import numpy.random as rand\n'), ((857, 867), 'numpy.exp', 'np.exp', (['(-z)'], {}), '(-z)\n', (863, 867), True, 'import numpy as np\n'), ((715, 736), 'numpy.dot', 'np.dot', (['b_w[1]', 'input'], {}), '(b_w[1], input)\n', (721, 736), True, 'import numpy as np\n')]
import collections import torch import einops import cached_property import padertorch as pt # loss: torch.Tenso r =None, # losses: dict =None, # scalars: dict =None, # histograms: dict =None, # audios: dict =None, # images: dict =None, class ReviewSummary(collections.abc.Mapping): """ >>> review_summary = ReviewSummary() >>> review_summary ReviewSummary(prefix='', _data={}) """ _keys = set(pt.train.hooks.SummaryHook.empty_summary_dict().keys()) | { 'loss', 'losses' } def __init__(self, prefix='', _data=None, sampling_rate=None, visible_dB=60): if _data is None: _data = {} self.data = _data self.prefix = prefix self.sampling_rate = sampling_rate self.visible_dB = visible_dB def add_to_loss(self, value): assert torch.isfinite(value), value if 'loss' in self.data: self.data['loss'] = self.data['loss'] + value else: self.data['loss'] = value def add_scalar(self, name, *value): # Save the mean of all added values value = pt.data.batch.example_to_numpy(value, detach=True) self.data.setdefault( 'scalars', {} ).setdefault( f'{self.prefix}{name}', [] ).extend(value) def add_audio(self, name, signal, sampling_rate=None, batch_first=None, normalize=True): if sampling_rate is None: sampling_rate = self.sampling_rate assert sampling_rate is not None, sampling_rate audio = pt.summary.audio( signal=signal, sampling_rate=sampling_rate, batch_first=batch_first, normalize=normalize ) self.data.setdefault( 'audios', {} )[f'{self.prefix}{name}'] = audio def add_text(self, name, text): assert isinstance(text, str), (type(text), text) self.data.setdefault( 'texts', {} )[f'{self.prefix}{name}'] = text def _rearrange(self, array, rearrange): if rearrange is not None: return einops.rearrange(array, rearrange) else: return array def add_image(self, name, image): # Save the last added value image = pt.utils.to_numpy(image, detach=True) if image.ndim != 3: raise AssertionError( 'Did you forgot to call "pt.summary.*_to_image"?\n' f'Expect ndim == 3, got shape {image.shape}.' ) self.data.setdefault( 'images', {} )[f'{self.prefix}{name}'] = image def add_stft_image( self, name, signal, *, batch_first=None, color='viridis', rearrange=None): signal = self._rearrange(signal, rearrange) image = pt.summary.stft_to_image(signal, batch_first=batch_first, color=color, visible_dB=self.visible_dB) self.add_image(name, image) def add_spectrogram_image( self, name, signal, *, batch_first=None, color='viridis', rearrange=None): signal = self._rearrange(signal, rearrange) image = pt.summary.spectrogram_to_image(signal, batch_first=batch_first, color=color, visible_dB=self.visible_dB) self.add_image(name, image) def add_mask_image(self, name, mask, *, batch_first=None, color='viridis', rearrange=None): mask = self._rearrange(mask, rearrange) image = pt.summary.mask_to_image(mask, batch_first=batch_first, color=color) self.add_image(name, image) def add_histogram(self, name, values): value = pt.utils.to_numpy(values, detach=True) self.data.setdefault( 'histograms', {} ).setdefault( f'{self.prefix}{name}', [] ).append(value) def __contains__(self, item): return item in self.data def __getitem__(self, key): assert key in self._keys, (key, self._keys) return self.data[key] def __setitem__(self, key, value): assert key in self._keys, (key, self._keys) self.data[key] = value def get(self, item, default): if item in self: return self.data[item] else: return default def pop(self, *args, **kwargs): """pop(key[, default])""" return self.data.pop(*args, **kwargs) def setdefault(self, key, default): self.data.setdefault(key, default) def __iter__(self): return iter(self.data) def __len__(self): return len(self.data) def __repr__(self): return f'{self.__class__.__name__}(prefix={self.prefix!r}, _data={dict(self)!r})' def _repr_pretty_(self, p, cycle): """ >>> review_summary = ReviewSummary() >>> review_summary.add_to_loss(1) >>> review_summary.add_scalar('abc', 2) >>> review_summary ReviewSummary(prefix='', _data={'loss': 1, 'scalars': {'abc': [2]}}) >>> from IPython.lib.pretty import pprint >>> pprint(review_summary) ReviewSummary(prefix='', _data={'loss': 1, 'scalars': {'abc': [2]}}) >>> pprint(review_summary, max_width=79-18) ReviewSummary( prefix='', _data={'loss': 1, 'scalars': {'abc': [2]}} ) >>> pprint(review_summary, max_width=79-40) ReviewSummary( prefix='', _data={'loss': 1, 'scalars': {'abc': [2]}} ) """ if cycle: p.text(f'{self.__class__.__name__}(...)') else: txt = f'{self.__class__.__name__}(' with p.group(4, txt, ''): p.breakable(sep='') p.text('prefix=') p.pretty(self.prefix) p.text(',') p.breakable() txt = '_data=' with p.group(len(txt), txt, ''): p.pretty(dict(self)) p.breakable('') p.text(')') class _Plotter: def __init__(self, review: 'ReviewSummary'): self.review = review def image( self, key, origin='lower', **kwargs ): import numpy as np import matplotlib.pyplot as plt kwargs = { 'origin': origin, **kwargs, } if key not in self.review['images']: from paderbox.utils.mapping import DispatchError raise DispatchError(key, self.review['images'].keys()) X = np.einsum('chw->hwc', self.review['images'][key]) if origin == 'lower': X = X[::-1] else: assert origin == 'upper' # ToDo: Where is AxesImage defined? ax: 'plt.AxesImage' = plt.imshow( X, **kwargs, ) # ax.set_title(key) plt.title(key) plt.grid(False) return ax def images( self, columns=1, font_scale=1.0, line_width=3, figure_size=(8.0, 6.0), ): from paderbox.visualization import axes_context from paderbox.visualization.context_manager import _AxesHandler with axes_context( columns=columns, font_scale=font_scale, line_width=line_width, figure_size=figure_size, ) as axes: axes: _AxesHandler for k in self.review['images']: axes.new.grid(False) # set gca self.image(k) @cached_property.cached_property def plot(self): return self._Plotter(self) def play(self, key=None): if key is None: for k in self['audios'].keys(): self.play(k) elif key in self['audios']: from paderbox.io.play import play data, sample_rate = self['audios'][key] play(data, sample_rate=sample_rate, name=key) else: from paderbox.utils.mapping import DispatchError raise DispatchError(key, self['audios'].keys())
[ "matplotlib.pyplot.imshow", "padertorch.summary.spectrogram_to_image", "matplotlib.pyplot.grid", "padertorch.data.batch.example_to_numpy", "padertorch.summary.mask_to_image", "torch.isfinite", "einops.rearrange", "paderbox.visualization.axes_context", "paderbox.io.play.play", "numpy.einsum", "padertorch.train.hooks.SummaryHook.empty_summary_dict", "padertorch.summary.audio", "matplotlib.pyplot.title", "padertorch.summary.stft_to_image", "padertorch.utils.to_numpy" ]
[((834, 855), 'torch.isfinite', 'torch.isfinite', (['value'], {}), '(value)\n', (848, 855), False, 'import torch\n'), ((1106, 1156), 'padertorch.data.batch.example_to_numpy', 'pt.data.batch.example_to_numpy', (['value'], {'detach': '(True)'}), '(value, detach=True)\n', (1136, 1156), True, 'import padertorch as pt\n'), ((1587, 1698), 'padertorch.summary.audio', 'pt.summary.audio', ([], {'signal': 'signal', 'sampling_rate': 'sampling_rate', 'batch_first': 'batch_first', 'normalize': 'normalize'}), '(signal=signal, sampling_rate=sampling_rate, batch_first=\n batch_first, normalize=normalize)\n', (1603, 1698), True, 'import padertorch as pt\n'), ((2309, 2346), 'padertorch.utils.to_numpy', 'pt.utils.to_numpy', (['image'], {'detach': '(True)'}), '(image, detach=True)\n', (2326, 2346), True, 'import padertorch as pt\n'), ((2854, 2956), 'padertorch.summary.stft_to_image', 'pt.summary.stft_to_image', (['signal'], {'batch_first': 'batch_first', 'color': 'color', 'visible_dB': 'self.visible_dB'}), '(signal, batch_first=batch_first, color=color,\n visible_dB=self.visible_dB)\n', (2878, 2956), True, 'import padertorch as pt\n'), ((3188, 3298), 'padertorch.summary.spectrogram_to_image', 'pt.summary.spectrogram_to_image', (['signal'], {'batch_first': 'batch_first', 'color': 'color', 'visible_dB': 'self.visible_dB'}), '(signal, batch_first=batch_first, color=\n color, visible_dB=self.visible_dB)\n', (3219, 3298), True, 'import padertorch as pt\n'), ((3491, 3559), 'padertorch.summary.mask_to_image', 'pt.summary.mask_to_image', (['mask'], {'batch_first': 'batch_first', 'color': 'color'}), '(mask, batch_first=batch_first, color=color)\n', (3515, 3559), True, 'import padertorch as pt\n'), ((3656, 3694), 'padertorch.utils.to_numpy', 'pt.utils.to_numpy', (['values'], {'detach': '(True)'}), '(values, detach=True)\n', (3673, 3694), True, 'import padertorch as pt\n'), ((2144, 2178), 'einops.rearrange', 'einops.rearrange', (['array', 'rearrange'], {}), '(array, rearrange)\n', (2160, 2178), False, 'import einops\n'), ((6616, 6665), 'numpy.einsum', 'np.einsum', (['"""chw->hwc"""', "self.review['images'][key]"], {}), "('chw->hwc', self.review['images'][key])\n", (6625, 6665), True, 'import numpy as np\n'), ((6871, 6894), 'matplotlib.pyplot.imshow', 'plt.imshow', (['X'], {}), '(X, **kwargs)\n', (6881, 6894), True, 'import matplotlib.pyplot as plt\n'), ((6986, 7000), 'matplotlib.pyplot.title', 'plt.title', (['key'], {}), '(key)\n', (6995, 7000), True, 'import matplotlib.pyplot as plt\n'), ((7013, 7028), 'matplotlib.pyplot.grid', 'plt.grid', (['(False)'], {}), '(False)\n', (7021, 7028), True, 'import matplotlib.pyplot as plt\n'), ((7387, 7491), 'paderbox.visualization.axes_context', 'axes_context', ([], {'columns': 'columns', 'font_scale': 'font_scale', 'line_width': 'line_width', 'figure_size': 'figure_size'}), '(columns=columns, font_scale=font_scale, line_width=line_width,\n figure_size=figure_size)\n', (7399, 7491), False, 'from paderbox.visualization import axes_context\n'), ((8129, 8174), 'paderbox.io.play.play', 'play', (['data'], {'sample_rate': 'sample_rate', 'name': 'key'}), '(data, sample_rate=sample_rate, name=key)\n', (8133, 8174), False, 'from paderbox.io.play import play\n'), ((426, 473), 'padertorch.train.hooks.SummaryHook.empty_summary_dict', 'pt.train.hooks.SummaryHook.empty_summary_dict', ([], {}), '()\n', (471, 473), True, 'import padertorch as pt\n')]
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.svm import SVR from sklearn.metrics import mean_squared_error from sklearn.linear_model import HuberRegressor import numpy as np import pickle from dataloader import HeadlineDataset from csv import writer import os, subprocess import math from collections import Counter def get_weights(ys, countings): total = sum(countings.values()) weights = [] for y in ys: bin_num = int(y * 5) weights.append(total / countings[bin_num]) print(ys[:10]) print(weights[:10]) return weights def load_data(ds): with open(f'data/{ds}_features.pkl', 'rb') as f: train_features = pickle.load(f) with open(f'data/{ds}-lstm.csv') as f: lines = f.readlines()[1:] for i, line in enumerate(lines): lstm_prediction = float(line.split(',')[1]) train_features[i][0]['lstm-output'] = lstm_prediction Xs = [] Ys = [] for features, y in train_features: Ys.append(y) x = [] for k in ["orig_score", "edit_score", "bert_sim", "glove_sim", "score_diff", "lstm-output"]: x.append(features[k]) x = np.array(x) Xs.append(x) return Xs, Ys # grouping bins countings = Counter() for i in range(30): countings[i] += 1 dev_dataset = HeadlineDataset('dev') train_dataset = HeadlineDataset('training') for sample in dev_dataset: bin_num = int(sample['label'] * 5) countings[bin_num] += 1 for sample in train_dataset: bin_num = int(sample['label'] * 5) countings[bin_num] += 1 print('load data') Xs, Ys = load_data('train') train_weights = get_weights(Ys, countings) dev_Xs, dev_Ys = load_data('dev') dev_weights = get_weights(dev_Ys, countings) model = GradientBoostingRegressor( learning_rate=0.05, n_estimators=50, subsample=0.5, min_samples_split=2, max_depth=3 ) print('train') model.fit(Xs, Ys, train_weights) print('trained') print(model.feature_importances_) pred_Ys = model.predict(dev_Xs) dev_rmse = math.sqrt(mean_squared_error(dev_Ys, pred_Ys)) print(dev_rmse) test_Xs, _ = load_data('test') pred_Ys = model.predict(test_Xs) test_dataset = HeadlineDataset('test') with open('data/task-1-output.csv', 'w') as f: output_writer = writer(f) output_writer.writerow(('id', 'pred')) for row, pred in zip(test_dataset, pred_Ys): output_writer.writerow((row['id'], pred.item())) os.chdir('data') subprocess.run(['zip', 'task-1-output.zip', 'task-1-output.csv']) os.chdir('..')
[ "subprocess.run", "dataloader.HeadlineDataset", "csv.writer", "pickle.load", "sklearn.metrics.mean_squared_error", "collections.Counter", "os.chdir", "numpy.array", "sklearn.ensemble.GradientBoostingRegressor" ]
[((1300, 1309), 'collections.Counter', 'Counter', ([], {}), '()\n', (1307, 1309), False, 'from collections import Counter\n'), ((1366, 1388), 'dataloader.HeadlineDataset', 'HeadlineDataset', (['"""dev"""'], {}), "('dev')\n", (1381, 1388), False, 'from dataloader import HeadlineDataset\n'), ((1405, 1432), 'dataloader.HeadlineDataset', 'HeadlineDataset', (['"""training"""'], {}), "('training')\n", (1420, 1432), False, 'from dataloader import HeadlineDataset\n'), ((1804, 1920), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {'learning_rate': '(0.05)', 'n_estimators': '(50)', 'subsample': '(0.5)', 'min_samples_split': '(2)', 'max_depth': '(3)'}), '(learning_rate=0.05, n_estimators=50, subsample=\n 0.5, min_samples_split=2, max_depth=3)\n', (1829, 1920), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((2222, 2245), 'dataloader.HeadlineDataset', 'HeadlineDataset', (['"""test"""'], {}), "('test')\n", (2237, 2245), False, 'from dataloader import HeadlineDataset\n'), ((2472, 2488), 'os.chdir', 'os.chdir', (['"""data"""'], {}), "('data')\n", (2480, 2488), False, 'import os, subprocess\n'), ((2489, 2554), 'subprocess.run', 'subprocess.run', (["['zip', 'task-1-output.zip', 'task-1-output.csv']"], {}), "(['zip', 'task-1-output.zip', 'task-1-output.csv'])\n", (2503, 2554), False, 'import os, subprocess\n'), ((2555, 2569), 'os.chdir', 'os.chdir', (['""".."""'], {}), "('..')\n", (2563, 2569), False, 'import os, subprocess\n'), ((2089, 2124), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['dev_Ys', 'pred_Ys'], {}), '(dev_Ys, pred_Ys)\n', (2107, 2124), False, 'from sklearn.metrics import mean_squared_error\n'), ((2313, 2322), 'csv.writer', 'writer', (['f'], {}), '(f)\n', (2319, 2322), False, 'from csv import writer\n'), ((707, 721), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (718, 721), False, 'import pickle\n'), ((1218, 1229), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1226, 1229), True, 'import numpy as np\n')]
# <<BEGIN-copyright>> # Copyright 2021, Lawrence Livermore National Security, LLC. # See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: BSD-3-Clause # <<END-copyright>> """ This module contains useful fudge math routines that do not fit into any other module. """ from pqu import PQU from fudge.core.utilities import brb try : import numpy numpyFloat64 = numpy.float64( 1. ) except : numpyFloat64 = 1. __metaclass__ = type def runningZSum( data, xLabel = None, yLabel = None, zLabel = None, normalize = False ) : """Returns the running sum of dy * z (normalized to 1 of normalize is True) for each x as an endl3dmath object. Data must be list of ( x, list of ( y, z ) ).""" d3 = [] for x_yz in data : d3.append( [ x_yz[0], runningYSum( x_yz[1], normalize = normalize ).data ] ) from brownies.legacy.endl import endl3dmathClasses return endl3dmathClasses.endl3dmath(d3, xLabel = xLabel, yLabel = yLabel, zLabel = zLabel, checkDataType = 0) def runningYSum( data, normalize = False ) : """Returns the running sum of dx * y (normalized to 1 of normalize is True) as an endl2dmath object. Data must be list of ( x, y ).""" x1 = None runningSum = [] for xy in data : x2 = xy[0] y2 = xy[1] if ( x1 is None ) : Sum = 0. else : Sum += 0.5 * ( y2 + y1 ) * ( x2 - x1 ) runningSum.append( [ x2, Sum ] ) x1 = x2 y1 = y2 if( normalize and ( Sum != 0. ) ) : for xy in runningSum : xy[1] /= Sum from brownies.legacy.endl import endl2dmathClasses return endl2dmathClasses.endl2dmath(runningSum, checkDataType = 0) def ZSum( data ) : """Returns the area under the curve z(y) for each x as an endl2dmath object. Data must be list of ( x, list of ( y, z ) ).""" d2 = [] for x_yz in data : d2.append( [ x_yz[0], YSum( x_yz[1] ) ] ) from brownies.legacy.endl import endl2dmathClasses return endl2dmathClasses.endl2dmath(d2, checkDataType = 0) def YSum( data ) : """Returns the area under the curve y(x). Data must be list of list( x, y ).""" x1 = None for x2, y2 in data : if ( x1 is None ) : Sum = 0. else : Sum += ( y2 + y1 ) * ( x2 - x1 ) x1 = x2 y1 = y2 return 0.5 * Sum class fastSumOfManyAddends : """This class in designed to sum a lot of endl2dmath or fudge2dmath object together efficiently. For example, consider the list f2d of 100,000 fudge2dmath objects that are to be summed. One way to do this is as s = fudge2dmath( ) for f in f2d : s = s + f In general, this is very inefficient and will take a long time. Using, this class as fs = fastSumOfManyAddends( ) for f in f2d : fs.appendAddend( f ) s = fs.returnSum( ) is, in general, much more efficient (i.e., runs a lot faster) and it should never be less efficient. While this class was designed for endl2dmath and fudge2dmath objects, it should work for any object for which the '+' operation is defined.""" def __init__( self ) : """Constructor for fastSumOfManyAddends.""" self.clear( ) def appendAddend( self, addend ) : """Adds addend to current sum efficiently.""" n = len( self.list ) for i in range( n ) : if( self.list[i] is None ) : self.list[i] = addend addend = None break else : addend = addend + self.list[i] self.list[i] = None if( addend is not None ) : self.list.append( addend ) def clear( self ) : """Clears currently summed data.""" self.list = [] def returnSum( self ) : """Returns the current sum of all addends appended.""" s = None for l in self.list : if( l is not None ) : if( s is None ) : s = l else : s = s + l return( s ) def getValue( n ) : if( isNumber( n ) ) : return( n ) if( isinstance( n, PQU.PQU ) ) : return( n.getValue( ) ) raise Exception( 'Invalue number object = %s' % brb.getType( n ) )
[ "brownies.legacy.endl.endl2dmathClasses.endl2dmath", "numpy.float64", "fudge.core.utilities.brb.getType", "brownies.legacy.endl.endl3dmathClasses.endl3dmath" ]
[((390, 408), 'numpy.float64', 'numpy.float64', (['(1.0)'], {}), '(1.0)\n', (403, 408), False, 'import numpy\n'), ((902, 1001), 'brownies.legacy.endl.endl3dmathClasses.endl3dmath', 'endl3dmathClasses.endl3dmath', (['d3'], {'xLabel': 'xLabel', 'yLabel': 'yLabel', 'zLabel': 'zLabel', 'checkDataType': '(0)'}), '(d3, xLabel=xLabel, yLabel=yLabel, zLabel=\n zLabel, checkDataType=0)\n', (930, 1001), False, 'from brownies.legacy.endl import endl3dmathClasses\n'), ((1627, 1684), 'brownies.legacy.endl.endl2dmathClasses.endl2dmath', 'endl2dmathClasses.endl2dmath', (['runningSum'], {'checkDataType': '(0)'}), '(runningSum, checkDataType=0)\n', (1655, 1684), False, 'from brownies.legacy.endl import endl2dmathClasses\n'), ((1985, 2034), 'brownies.legacy.endl.endl2dmathClasses.endl2dmath', 'endl2dmathClasses.endl2dmath', (['d2'], {'checkDataType': '(0)'}), '(d2, checkDataType=0)\n', (2013, 2034), False, 'from brownies.legacy.endl import endl2dmathClasses\n'), ((4214, 4228), 'fudge.core.utilities.brb.getType', 'brb.getType', (['n'], {}), '(n)\n', (4225, 4228), False, 'from fudge.core.utilities import brb\n')]
import keras import random import numpy as np from glob import glob from keras.models import Model from keras.utils import np_utils from keras.models import load_model import matplotlib.pyplot as plt import os import keras.backend as K import tensorflow as tf from keras.utils import to_categorical from tqdm import tqdm import sys sys.path.append('..') from helpers.losses import * from helpers.utils import load_vol_brats class intervention(): def __init__(self, model, test_path): self.model = model self.vol_path = glob(test_path) self.test_image, self.gt = load_vol_brats(self.vol_path[3], slicen = 78, pad = 0) def mean_swap(self, plot = True, save_path='/home/parth/Interpretable_ML/BioExp/results/RCT'): channel = 3 f_index = 0 test_image, gt = load_vol_brats(self.vol_path[f_index], slicen = 78, pad = 0) prediction = np.argmax(self.model.predict(test_image[None, ...]), axis = -1)[0] n_classes = (len(np.unique(prediction))) corr = np.zeros((n_classes, n_classes)) slices = [78] plt.figure(figsize = (20,20)) for vol in range(len(test_path)): for slicen in slices: test_image, gt = load_vol_brats(self.vol_path[vol], slicen = slicen, pad = 0) prediction = np.argmax(self.model.predict(test_image[None, ...]), axis = -1)[0] print("Original Dice Whole:", dice_whole_coef(prediction, gt)) class_dict = {0:'bg', 1:'core', 2:'edema', 3:'enhancing'} corr_temp = np.zeros((n_classes, n_classes)) for i in range(n_classes): for j in range(n_classes): new_mean = np.mean(test_image[gt == i], axis = 0) old_mean = np.mean(test_image[gt == j], axis = 0) test_image_intervention = np.copy(test_image) test_image_intervention[gt == j] += (new_mean - old_mean) prediction_intervention = np.argmax(self.model.predict(test_image_intervention[None, ...]), axis = -1)[0] corr[i,j] += dice_label_coef(prediction, gt, (j,)) - dice_label_coef(prediction_intervention, gt, (j,)) corr_temp[i,j] += dice_label_coef(prediction, gt, (j,)) - dice_label_coef(prediction_intervention, gt, (j,)) if plot == True: plt.subplot(n_classes, n_classes, 1+4*i+j) plt.xticks([]) plt.yticks([]) plt.title("{} --> {}, Dice Change={}".format(class_dict[j], class_dict[i], "{0:.2f}".format(-corr[i,j]))) plt.imshow(prediction_intervention, cmap = plt.cm.RdBu, vmin = 0, vmax = 3) plt.colorbar() print(corr_temp)#/(vol*len(slices)) np.set_printoptions(precision = 2) plt.rcParams.update({'font.size': 24}) intervention_importance = corr /(len(self.vol_path)*len(slices)) print(intervention_importance) os.makedirs(save_path, exist_ok = True) # np.save(save_path + '/mean_swap_all_images.npy', intervention_importance) if plot == True: plt.show() def blocks(self): test_image, gt = load_vol_brats(self.vol_path[1], slicen = 78, pad = 8) prediction = np.argmax(self.model.predict(test_image[None, ...]), axis = -1)[0] n_classes = (len(np.unique(prediction))) corr = np.zeros((n_classes, n_classes)) slices = [78] intervention_image = np.empty(test_image.shape) for _modality in range(4): for i in range(2): for j in range(2): try: intervention_image[:,:,_modality][test_image.shape[0]//2*i:test_image.shape[0]//2*(i+1), test_image.shape[1]//2*j:test_image.shape[1]//2*(j+1)].fill(np.mean(test_image[gt == 2*i+j], axis = 0)[_modality]) except Exception as e: print(e) prediction_intervention = model.predict(intervention_image[None, ...]) plt.imshow(intervention_image[:, :, 0]) plt.colorbar() plt.show() plt.imshow(np.argmax(prediction_intervention, axis = -1)[0], vmin=0, vmax=3) plt.colorbar() plt.show() def adverserial(self, epochs=100, epsilon = 0.01, mode = 'gradient', plot=False, test_image=None, gt=None): sess = K.get_session() keras.layers.core.K.set_learning_phase(0) image = test_image[None, ...] # if test_image is not None else self.test_image[None, ...] gt = gt[None, ...] # if gt is not None else self.gt[None, ...] noise = np.zeros_like(image) adverserial_image = image.copy() if mode == 'gradient': loss = keras.losses.categorical_crossentropy(self.model.output, tf.convert_to_tensor(to_categorical(gt, num_classes=4))) elif mode == 'random': loss = -keras.losses.categorical_crossentropy(self.model.output, tf.convert_to_tensor(self.generate_random_classification(mode='random'))) elif mode =='swap': loss = -keras.losses.categorical_crossentropy(self.model.output, tf.convert_to_tensor(self.generate_random_classification(mode='swap'))) grads = K.gradients(loss, self.model.input) delta = K.sign(grads[0]) noise = noise + delta adverserial_image = adverserial_image+epsilon*delta adverserial_image, noise_ar, delta_ = sess.run([adverserial_image, noise, delta], feed_dict={self.model.input: image}) delta_image_perc = (np.mean(np.abs(image - adverserial_image))*100)/np.ptp(image) delta_dice_perc = (dice_whole_coef(self.model.predict(image).argmax(axis=-1), gt) - dice_whole_coef(self.model.predict(adverserial_image).argmax(axis=-1), gt))*100/dice_whole_coef(self.model.predict(image).argmax(axis=-1), gt) # print("perc. change in image:{}, perc. change in dice:{}, Sensitivity:{}".format(delta_image_perc, # delta_dice_perc, delta_dice_perc/delta_image_perc)) imshape = image.shape[1] if plot==True: plt.figure(figsize = (40,10)) plt.rcParams.update({'font.size': 34}) plt.subplot(1,4,1) plt.title("Original image") plt.imshow(image[:, :, :, 0].reshape((imshape, imshape))) plt.xticks([]) plt.yticks([]) # plt.subplot(1,6,2) # plt.title("Added Noise") # plt.imshow(noise_ar[:, :, :, 0].reshape((imshape, imshape))) # plt.xticks([]) # plt.yticks([]) plt.subplot(1,4,2) plt.title("Image + Noise, % Change = {}".format("{0:.2f}".format(delta_image_perc))) plt.imshow(adverserial_image[:, :, :, 0].reshape((imshape, imshape))) plt.xticks([]) plt.yticks([]) # plt.subplot(1,6,4) # plt.title("Ground Truth") # plt.imshow(self.gt, vmin = 0, vmax=3) # plt.xticks([]) # plt.yticks([]) plt.subplot(1,4,3) plt.title("Old Seg, Dice = {}".format("{0:.2f}".format(dice_whole_coef(self.model.predict(image).argmax(axis=-1), gt)))) plt.imshow(np.argmax(self.model.predict(image), axis = -1).reshape((imshape, imshape)), vmin = 0, vmax=3) plt.xticks([]) plt.yticks([]) plt.subplot(1,4,4) plt.title("New Seg, Dice={}, Sensitivity={}".format("{0:.2f}".format(dice_whole_coef(self.model.predict(adverserial_image).argmax(axis=-1), gt)), "{0:.2f}".format(delta_dice_perc/delta_image_perc))) plt.imshow(np.argmax(self.model.predict(adverserial_image), axis = -1).reshape((imshape, imshape)), vmin = 0, vmax=3) plt.xticks([]) plt.yticks([]) plt.tight_layout(pad=0) plt.show() # plt.savefig('/home/parth/Interpretable_ML/Adverserial Examples/adv_{}.png'.format(epsilon)) return(delta_image_perc, delta_dice_perc, delta_dice_perc/delta_image_perc) def generate_random_classification(self, mode='random'): if mode == 'random': true_target = self.gt.flatten() true_target[true_target==4] = 3 index_list = [0, 1, 2, 3] adverserial_random = np.zeros_like(true_target) for i in range(adverserial_random.shape[0]): adverserial_random[i] = np.random.choice(np.setdiff1d(index_list, true_target[i])) print("Target image") plt.imshow(adverserial_random.reshape((256, 256)), vmin=0., vmax=3.) plt.show() return to_categorical(adverserial_random, num_classes=4).reshape(self.test_image.shape) elif mode == 'swap': true_target = self.gt.flatten() true_target[true_target==4] = 3 index_list = [0, 1, 2, 3] adverserial_random = np.zeros_like(true_target) for i in index_list: adverserial_random[true_target == i] = np.random.choice(np.setdiff1d(index_list, i)) print("Target image") plt.imshow(adverserial_random.reshape((256, 256)), vmin=0., vmax=3.) plt.show() return to_categorical(adverserial_random, num_classes=4).reshape(self.test_image.shape) if __name__ == "__main__": model = load_model('/home/parth/Interpretable_ML/saved_models/SimUnet/model_lrsch.hdf5', custom_objects={'gen_dice_loss':gen_dice_loss, 'dice_whole_metric':dice_whole_metric, 'dice_core_metric':dice_core_metric, 'dice_en_metric':dice_en_metric}) model.load_weights('/home/parth/Interpretable_ML/saved_models/SimUnet/SimUnet.40_0.060.hdf5') I = intervention(model, '/media/parth/DATA/datasets/brats_2018/val/**') test_path = glob('/media/parth/DATA/datasets/brats_2018/val/**') average_change = [] for epsilon in [0.7]: #, 0.07, 0.21, 0.7]: for i in tqdm(range(len(test_path))): test_image, gt = load_vol_brats(test_path[i], slicen = 78, pad = 0) if len(np.unique(gt)) == 4: print(len(np.unique(gt))) # I.blocks('/home/parth/Interpretable_ML/BioExp/sample_vol/brats/**') adv = I.adverserial(epsilon = epsilon, mode='gradient', test_image=test_image, gt=gt) if adv[1] > 0: average_change.append(adv) print(adv) print(np.mean(average_change, axis = 0)) # I.generate_random_classification(mode='swap') # I.mean_swap(plot = False)
[ "numpy.ptp", "keras.backend.gradients", "keras.utils.to_categorical", "sys.path.append", "keras.layers.core.K.set_learning_phase", "matplotlib.pyplot.imshow", "numpy.mean", "numpy.empty", "matplotlib.pyplot.yticks", "glob.glob", "numpy.abs", "matplotlib.pyplot.xticks", "numpy.argmax", "matplotlib.pyplot.subplot", "matplotlib.pyplot.title", "matplotlib.pyplot.show", "keras.backend.sign", "numpy.set_printoptions", "numpy.copy", "keras.models.load_model", "numpy.unique", "os.makedirs", "matplotlib.pyplot.colorbar", "helpers.utils.load_vol_brats", "matplotlib.pyplot.rcParams.update", "numpy.zeros", "matplotlib.pyplot.figure", "keras.backend.get_session", "numpy.setdiff1d", "matplotlib.pyplot.tight_layout", "numpy.zeros_like" ]
[((332, 353), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (347, 353), False, 'import sys\n'), ((8210, 8464), 'keras.models.load_model', 'load_model', (['"""/home/parth/Interpretable_ML/saved_models/SimUnet/model_lrsch.hdf5"""'], {'custom_objects': "{'gen_dice_loss': gen_dice_loss, 'dice_whole_metric': dice_whole_metric,\n 'dice_core_metric': dice_core_metric, 'dice_en_metric': dice_en_metric}"}), "('/home/parth/Interpretable_ML/saved_models/SimUnet/model_lrsch.hdf5'\n , custom_objects={'gen_dice_loss': gen_dice_loss, 'dice_whole_metric':\n dice_whole_metric, 'dice_core_metric': dice_core_metric,\n 'dice_en_metric': dice_en_metric})\n", (8220, 8464), False, 'from keras.models import load_model\n'), ((8745, 8797), 'glob.glob', 'glob', (['"""/media/parth/DATA/datasets/brats_2018/val/**"""'], {}), "('/media/parth/DATA/datasets/brats_2018/val/**')\n", (8749, 8797), False, 'from glob import glob\n'), ((526, 541), 'glob.glob', 'glob', (['test_path'], {}), '(test_path)\n', (530, 541), False, 'from glob import glob\n'), ((571, 621), 'helpers.utils.load_vol_brats', 'load_vol_brats', (['self.vol_path[3]'], {'slicen': '(78)', 'pad': '(0)'}), '(self.vol_path[3], slicen=78, pad=0)\n', (585, 621), False, 'from helpers.utils import load_vol_brats\n'), ((774, 830), 'helpers.utils.load_vol_brats', 'load_vol_brats', (['self.vol_path[f_index]'], {'slicen': '(78)', 'pad': '(0)'}), '(self.vol_path[f_index], slicen=78, pad=0)\n', (788, 830), False, 'from helpers.utils import load_vol_brats\n'), ((970, 1002), 'numpy.zeros', 'np.zeros', (['(n_classes, n_classes)'], {}), '((n_classes, n_classes))\n', (978, 1002), True, 'import numpy as np\n'), ((1022, 1050), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 20)'}), '(figsize=(20, 20))\n', (1032, 1050), True, 'import matplotlib.pyplot as plt\n'), ((2476, 2508), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (2495, 2508), True, 'import numpy as np\n'), ((2513, 2551), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 24}"], {}), "({'font.size': 24})\n", (2532, 2551), True, 'import matplotlib.pyplot as plt\n'), ((2655, 2692), 'os.makedirs', 'os.makedirs', (['save_path'], {'exist_ok': '(True)'}), '(save_path, exist_ok=True)\n', (2666, 2692), False, 'import os\n'), ((2846, 2896), 'helpers.utils.load_vol_brats', 'load_vol_brats', (['self.vol_path[1]'], {'slicen': '(78)', 'pad': '(8)'}), '(self.vol_path[1], slicen=78, pad=8)\n', (2860, 2896), False, 'from helpers.utils import load_vol_brats\n'), ((3036, 3068), 'numpy.zeros', 'np.zeros', (['(n_classes, n_classes)'], {}), '((n_classes, n_classes))\n', (3044, 3068), True, 'import numpy as np\n'), ((3109, 3135), 'numpy.empty', 'np.empty', (['test_image.shape'], {}), '(test_image.shape)\n', (3117, 3135), True, 'import numpy as np\n'), ((3557, 3596), 'matplotlib.pyplot.imshow', 'plt.imshow', (['intervention_image[:, :, 0]'], {}), '(intervention_image[:, :, 0])\n', (3567, 3596), True, 'import matplotlib.pyplot as plt\n'), ((3599, 3613), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (3611, 3613), True, 'import matplotlib.pyplot as plt\n'), ((3616, 3626), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3624, 3626), True, 'import matplotlib.pyplot as plt\n'), ((3708, 3722), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (3720, 3722), True, 'import matplotlib.pyplot as plt\n'), ((3725, 3735), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3733, 3735), True, 'import matplotlib.pyplot as plt\n'), ((3856, 3871), 'keras.backend.get_session', 'K.get_session', ([], {}), '()\n', (3869, 3871), True, 'import keras.backend as K\n'), ((3875, 3916), 'keras.layers.core.K.set_learning_phase', 'keras.layers.core.K.set_learning_phase', (['(0)'], {}), '(0)\n', (3913, 3916), False, 'import keras\n'), ((4086, 4106), 'numpy.zeros_like', 'np.zeros_like', (['image'], {}), '(image)\n', (4099, 4106), True, 'import numpy as np\n'), ((4643, 4678), 'keras.backend.gradients', 'K.gradients', (['loss', 'self.model.input'], {}), '(loss, self.model.input)\n', (4654, 4678), True, 'import keras.backend as K\n'), ((4690, 4706), 'keras.backend.sign', 'K.sign', (['grads[0]'], {}), '(grads[0])\n', (4696, 4706), True, 'import keras.backend as K\n'), ((937, 958), 'numpy.unique', 'np.unique', (['prediction'], {}), '(prediction)\n', (946, 958), True, 'import numpy as np\n'), ((2795, 2805), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2803, 2805), True, 'import matplotlib.pyplot as plt\n'), ((3003, 3024), 'numpy.unique', 'np.unique', (['prediction'], {}), '(prediction)\n', (3012, 3024), True, 'import numpy as np\n'), ((4980, 4993), 'numpy.ptp', 'np.ptp', (['image'], {}), '(image)\n', (4986, 4993), True, 'import numpy as np\n'), ((5446, 5474), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(40, 10)'}), '(figsize=(40, 10))\n', (5456, 5474), True, 'import matplotlib.pyplot as plt\n'), ((5480, 5518), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 34}"], {}), "({'font.size': 34})\n", (5499, 5518), True, 'import matplotlib.pyplot as plt\n'), ((5522, 5542), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(1)'], {}), '(1, 4, 1)\n', (5533, 5542), True, 'import matplotlib.pyplot as plt\n'), ((5544, 5571), 'matplotlib.pyplot.title', 'plt.title', (['"""Original image"""'], {}), "('Original image')\n", (5553, 5571), True, 'import matplotlib.pyplot as plt\n'), ((5637, 5651), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (5647, 5651), True, 'import matplotlib.pyplot as plt\n'), ((5655, 5669), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (5665, 5669), True, 'import matplotlib.pyplot as plt\n'), ((5840, 5860), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(2)'], {}), '(1, 4, 2)\n', (5851, 5860), True, 'import matplotlib.pyplot as plt\n'), ((6024, 6038), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6034, 6038), True, 'import matplotlib.pyplot as plt\n'), ((6042, 6056), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6052, 6056), True, 'import matplotlib.pyplot as plt\n'), ((6198, 6218), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(3)'], {}), '(1, 4, 3)\n', (6209, 6218), True, 'import matplotlib.pyplot as plt\n'), ((6453, 6467), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6463, 6467), True, 'import matplotlib.pyplot as plt\n'), ((6471, 6485), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6481, 6485), True, 'import matplotlib.pyplot as plt\n'), ((6489, 6509), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(4)'], {}), '(1, 4, 4)\n', (6500, 6509), True, 'import matplotlib.pyplot as plt\n'), ((6839, 6853), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (6849, 6853), True, 'import matplotlib.pyplot as plt\n'), ((6857, 6871), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (6867, 6871), True, 'import matplotlib.pyplot as plt\n'), ((6875, 6898), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'pad': '(0)'}), '(pad=0)\n', (6891, 6898), True, 'import matplotlib.pyplot as plt\n'), ((6902, 6912), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6910, 6912), True, 'import matplotlib.pyplot as plt\n'), ((7299, 7325), 'numpy.zeros_like', 'np.zeros_like', (['true_target'], {}), '(true_target)\n', (7312, 7325), True, 'import numpy as np\n'), ((7571, 7581), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7579, 7581), True, 'import matplotlib.pyplot as plt\n'), ((8926, 8972), 'helpers.utils.load_vol_brats', 'load_vol_brats', (['test_path[i]'], {'slicen': '(78)', 'pad': '(0)'}), '(test_path[i], slicen=78, pad=0)\n', (8940, 8972), False, 'from helpers.utils import load_vol_brats\n'), ((9278, 9309), 'numpy.mean', 'np.mean', (['average_change'], {'axis': '(0)'}), '(average_change, axis=0)\n', (9285, 9309), True, 'import numpy as np\n'), ((1136, 1192), 'helpers.utils.load_vol_brats', 'load_vol_brats', (['self.vol_path[vol]'], {'slicen': 'slicen', 'pad': '(0)'}), '(self.vol_path[vol], slicen=slicen, pad=0)\n', (1150, 1192), False, 'from helpers.utils import load_vol_brats\n'), ((1429, 1461), 'numpy.zeros', 'np.zeros', (['(n_classes, n_classes)'], {}), '((n_classes, n_classes))\n', (1437, 1461), True, 'import numpy as np\n'), ((3640, 3683), 'numpy.argmax', 'np.argmax', (['prediction_intervention'], {'axis': '(-1)'}), '(prediction_intervention, axis=-1)\n', (3649, 3683), True, 'import numpy as np\n'), ((7825, 7851), 'numpy.zeros_like', 'np.zeros_like', (['true_target'], {}), '(true_target)\n', (7838, 7851), True, 'import numpy as np\n'), ((8068, 8078), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8076, 8078), True, 'import matplotlib.pyplot as plt\n'), ((4257, 4290), 'keras.utils.to_categorical', 'to_categorical', (['gt'], {'num_classes': '(4)'}), '(gt, num_classes=4)\n', (4271, 4290), False, 'from keras.utils import to_categorical\n'), ((4940, 4973), 'numpy.abs', 'np.abs', (['(image - adverserial_image)'], {}), '(image - adverserial_image)\n', (4946, 4973), True, 'import numpy as np\n'), ((7421, 7461), 'numpy.setdiff1d', 'np.setdiff1d', (['index_list', 'true_target[i]'], {}), '(index_list, true_target[i])\n', (7433, 7461), True, 'import numpy as np\n'), ((7593, 7642), 'keras.utils.to_categorical', 'to_categorical', (['adverserial_random'], {'num_classes': '(4)'}), '(adverserial_random, num_classes=4)\n', (7607, 7642), False, 'from keras.utils import to_categorical\n'), ((8987, 9000), 'numpy.unique', 'np.unique', (['gt'], {}), '(gt)\n', (8996, 9000), True, 'import numpy as np\n'), ((1542, 1578), 'numpy.mean', 'np.mean', (['test_image[gt == i]'], {'axis': '(0)'}), '(test_image[gt == i], axis=0)\n', (1549, 1578), True, 'import numpy as np\n'), ((1598, 1634), 'numpy.mean', 'np.mean', (['test_image[gt == j]'], {'axis': '(0)'}), '(test_image[gt == j], axis=0)\n', (1605, 1634), True, 'import numpy as np\n'), ((1669, 1688), 'numpy.copy', 'np.copy', (['test_image'], {}), '(test_image)\n', (1676, 1688), True, 'import numpy as np\n'), ((7938, 7965), 'numpy.setdiff1d', 'np.setdiff1d', (['index_list', 'i'], {}), '(index_list, i)\n', (7950, 7965), True, 'import numpy as np\n'), ((8090, 8139), 'keras.utils.to_categorical', 'to_categorical', (['adverserial_random'], {'num_classes': '(4)'}), '(adverserial_random, num_classes=4)\n', (8104, 8139), False, 'from keras.utils import to_categorical\n'), ((9022, 9035), 'numpy.unique', 'np.unique', (['gt'], {}), '(gt)\n', (9031, 9035), True, 'import numpy as np\n'), ((2128, 2176), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_classes', 'n_classes', '(1 + 4 * i + j)'], {}), '(n_classes, n_classes, 1 + 4 * i + j)\n', (2139, 2176), True, 'import matplotlib.pyplot as plt\n'), ((2178, 2192), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[]'], {}), '([])\n', (2188, 2192), True, 'import matplotlib.pyplot as plt\n'), ((2200, 2214), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (2210, 2214), True, 'import matplotlib.pyplot as plt\n'), ((2335, 2404), 'matplotlib.pyplot.imshow', 'plt.imshow', (['prediction_intervention'], {'cmap': 'plt.cm.RdBu', 'vmin': '(0)', 'vmax': '(3)'}), '(prediction_intervention, cmap=plt.cm.RdBu, vmin=0, vmax=3)\n', (2345, 2404), True, 'import matplotlib.pyplot as plt\n'), ((2418, 2432), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (2430, 2432), True, 'import matplotlib.pyplot as plt\n'), ((3383, 3427), 'numpy.mean', 'np.mean', (['test_image[gt == 2 * i + j]'], {'axis': '(0)'}), '(test_image[gt == 2 * i + j], axis=0)\n', (3390, 3427), True, 'import numpy as np\n')]
import pytest grblas = pytest.importorskip("grblas") from metagraph.tests.util import default_plugin_resolver from . import RoundTripper from metagraph.plugins.numpy.types import NumpyMatrixType from metagraph.plugins.graphblas.types import GrblasMatrixType import numpy as np def test_matrix_roundtrip_dense_square(default_plugin_resolver): rt = RoundTripper(default_plugin_resolver) mat = np.array([[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3]]) rt.verify_round_trip(mat) rt.verify_round_trip(mat.astype(int)) rt.verify_round_trip(mat.astype(bool)) def test_matrix_roundtrip_dense_rect(default_plugin_resolver): rt = RoundTripper(default_plugin_resolver) mat = np.array( [[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3], [-1.1, 2.7, 3.3]] ) rt.verify_round_trip(mat) rt.verify_round_trip(mat.astype(int)) rt.verify_round_trip(mat.astype(bool)) def test_numpy_2_grblas(default_plugin_resolver): dpr = default_plugin_resolver x = np.array([[1, 2, 3], [3, 3, 9], [3, 0, 3], [4, 2, 2]]) assert x.shape == (4, 3) # Convert numpy -> grblas.Matrix intermediate = grblas.Matrix.from_values( [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2], [1, 2, 3, 3, 3, 9, 3, 0, 3, 4, 2, 2], nrows=4, ncols=3, dtype=grblas.dtypes.INT64, ) y = dpr.translate(x, grblas.Matrix) dpr.assert_equal(y, intermediate) # Convert numpy <- grblas.Matrix x2 = dpr.translate(y, NumpyMatrixType) dpr.assert_equal(x, x2)
[ "numpy.array", "pytest.importorskip" ]
[((24, 53), 'pytest.importorskip', 'pytest.importorskip', (['"""grblas"""'], {}), "('grblas')\n", (43, 53), False, 'import pytest\n'), ((403, 465), 'numpy.array', 'np.array', (['[[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3]]'], {}), '([[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3]])\n', (411, 465), True, 'import numpy as np\n'), ((703, 788), 'numpy.array', 'np.array', (['[[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3], [-1.1, 2.7, 3.3]]'], {}), '([[1.1, 2.2, 3.3], [3.3, 3.3, 9.9], [3.3, 0.0, -3.3], [-1.1, 2.7, 3.3]]\n )\n', (711, 788), True, 'import numpy as np\n'), ((1007, 1061), 'numpy.array', 'np.array', (['[[1, 2, 3], [3, 3, 9], [3, 0, 3], [4, 2, 2]]'], {}), '([[1, 2, 3], [3, 3, 9], [3, 0, 3], [4, 2, 2]])\n', (1015, 1061), True, 'import numpy as np\n')]
#!/usr/bin/env python """ This file is a Python translation of the MATLAB file acm.m Python version by RDL 29 Mar 2012 Copyright notice from acm.m: copyright 1996, by <NAME>. For use with the book "Statistical Digital Signal Processing and Modeling" (John Wiley & Sons, 1996). """ from __future__ import print_function,division import numpy as np from convm import convm def acm(x,p): """ Find an all-pole model using the autocorrelation method Usage: a,err = acm(x,p) The input sequence x is modeled as the unit sample response of a filter having a system function of the form H(z) = b(0)/A(z) where the coefficients of A(z) are contained in the vector a=[1, a(1), ... a(p)] The input p defines the number of poles in the model. The modeling error is returned in err. The numerator b(0) is typically set equal to the square root of err. """ x = x.flatten() N = len(x) if p > N: print('ERROR: model order too large') else: X = convm(x, p+1) Xq = X[0:N+p-1,0:p] xq1 = -X[1:N+p, 0] a = np.linalg.lstsq(Xq, xq1)[0] a = np.insert(a, 0, 1) err = np.dot(X[0:N+p,0].conj().T, X) err = np.dot(err, a) err = np.abs(err) return a, err
[ "numpy.insert", "numpy.abs", "numpy.dot", "numpy.linalg.lstsq", "convm.convm" ]
[((995, 1010), 'convm.convm', 'convm', (['x', '(p + 1)'], {}), '(x, p + 1)\n', (1000, 1010), False, 'from convm import convm\n'), ((1117, 1135), 'numpy.insert', 'np.insert', (['a', '(0)', '(1)'], {}), '(a, 0, 1)\n', (1126, 1135), True, 'import numpy as np\n'), ((1195, 1209), 'numpy.dot', 'np.dot', (['err', 'a'], {}), '(err, a)\n', (1201, 1209), True, 'import numpy as np\n'), ((1224, 1235), 'numpy.abs', 'np.abs', (['err'], {}), '(err)\n', (1230, 1235), True, 'import numpy as np\n'), ((1077, 1101), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['Xq', 'xq1'], {}), '(Xq, xq1)\n', (1092, 1101), True, 'import numpy as np\n')]
import numpy as np class RegularizeOrthogonal(object): """ Orthogonal """ def __init__(self, coeff_lambda=0.0): self.coeff_lambda = coeff_lambda def cost(self, layers): c = 0.0 for layer in layers: wt = layer.w.transpose() for j in range(layer.output_size): wtj = wt[j] / np.sqrt(wt[j].dot(wt[j])) for k in range(layer.output_size): if j == k: continue wtk = wt[k] / np.sqrt(wt[k].dot(wt[k])) c += np.abs(wtj.dot(wtk)) return self.coeff_lambda * c def cost_gradient(self, layers, dc_db, dc_dw): for l, layer in enumerate(layers): wt = layer.w.transpose() tmp = np.zeros_like(wt) for j in range(layer.output_size): dj = np.sqrt(wt[j].dot(wt[j])) wtj = wt[j] / dj # TODO: simplify this s = 2 * (np.eye(len(wtj)) - np.outer(wtj, wtj)) / dj for k in range(layer.output_size): if j == k: continue dk = np.sqrt(wt[k].dot(wt[k])) wtk = wt[k] / dk tmp[j] += wtk.dot(s) * np.sign(wtj.dot(wtk)) dc_dw[l] += self.coeff_lambda * tmp.transpose() return dc_db, dc_dw
[ "numpy.outer", "numpy.zeros_like" ]
[((795, 812), 'numpy.zeros_like', 'np.zeros_like', (['wt'], {}), '(wt)\n', (808, 812), True, 'import numpy as np\n'), ((1022, 1040), 'numpy.outer', 'np.outer', (['wtj', 'wtj'], {}), '(wtj, wtj)\n', (1030, 1040), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from pandas.util import testing as pdt import pytest from spandex import TableFrame from spandex.io import db_to_df, df_to_db def test_tableframe(loader): table = loader.tables.sample.hf_bg for cache in [False, True]: tf = TableFrame(table, index_col='gid', cache=cache) assert isinstance(tf.index, pd.Index) num_rows = len(tf) assert num_rows > 1 assert set(tf.columns) == set(table.__table__.columns.keys()) for column_name in tf.columns: if column_name != 'gid': if cache: assert column_name not in tf._cached.keys() assert isinstance(tf[column_name], pd.Series) if cache: assert column_name in tf._cached.keys() assert isinstance(getattr(tf, column_name), pd.Series) df = tf[['objectid']] assert isinstance(df, pd.DataFrame) assert len(df) == num_rows assert set(df.columns) == set(['objectid']) assert np.issubdtype(df.objectid.dtype, int) def test_sim_export(loader): # Try importing the UrbanSim simulation framework, otherwise skip test. sim = pytest.importorskip('urbansim.sim.simulation') # Register input parcels table. parcels = loader.tables.sample.heather_farms parcels_in = TableFrame(parcels, index_col='gid') sim.add_table('parcels_in', parcels_in, copy_col=False) # Register output parcels table. @sim.table() def parcels_out(parcels_in): return pd.DataFrame(index=parcels_in.parcel_id) # Specify default table for output columns as decorator. out = sim.column('parcels_out') # Specify some output columns. @out def apn(apn='parcels_in.puid'): return apn.groupby(parcels_in.parcel_id).first().astype(str) @out def county_id(): return 13 @out def area(acr='parcels_in.parcel_acr'): return 4047. * acr.groupby(parcels_in.parcel_id).median() # Register model to export output table to database. @sim.model() def export(parcels_out): schema = loader.tables.sample df_to_db(parcels_out.to_frame(), 'parcels_out', schema=schema) # Inspect output table. column_names = ['apn', 'county_id', 'area'] parcels_out_df1 = sim.get_table('parcels_out').to_frame() assert set(parcels_out_df1.columns) == set(column_names) assert parcels_out_df1.county_id.unique() == [13] # Export table to database and import back to compare. sim.run(['export']) parcels_out_table = loader.tables.sample.parcels_out parcels_out_df2 = db_to_df(parcels_out_table, index_col='parcel_id') pdt.assert_frame_equal(parcels_out_df1[column_names], parcels_out_df2[column_names])
[ "spandex.io.db_to_df", "numpy.issubdtype", "spandex.TableFrame", "pytest.importorskip", "pandas.DataFrame", "pandas.util.testing.assert_frame_equal" ]
[((1216, 1262), 'pytest.importorskip', 'pytest.importorskip', (['"""urbansim.sim.simulation"""'], {}), "('urbansim.sim.simulation')\n", (1235, 1262), False, 'import pytest\n'), ((1366, 1402), 'spandex.TableFrame', 'TableFrame', (['parcels'], {'index_col': '"""gid"""'}), "(parcels, index_col='gid')\n", (1376, 1402), False, 'from spandex import TableFrame\n'), ((2653, 2703), 'spandex.io.db_to_df', 'db_to_df', (['parcels_out_table'], {'index_col': '"""parcel_id"""'}), "(parcels_out_table, index_col='parcel_id')\n", (2661, 2703), False, 'from spandex.io import db_to_df, df_to_db\n'), ((2708, 2797), 'pandas.util.testing.assert_frame_equal', 'pdt.assert_frame_equal', (['parcels_out_df1[column_names]', 'parcels_out_df2[column_names]'], {}), '(parcels_out_df1[column_names], parcels_out_df2[\n column_names])\n', (2730, 2797), True, 'from pandas.util import testing as pdt\n'), ((281, 328), 'spandex.TableFrame', 'TableFrame', (['table'], {'index_col': '"""gid"""', 'cache': 'cache'}), "(table, index_col='gid', cache=cache)\n", (291, 328), False, 'from spandex import TableFrame\n'), ((1061, 1098), 'numpy.issubdtype', 'np.issubdtype', (['df.objectid.dtype', 'int'], {}), '(df.objectid.dtype, int)\n', (1074, 1098), True, 'import numpy as np\n'), ((1566, 1606), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'parcels_in.parcel_id'}), '(index=parcels_in.parcel_id)\n', (1578, 1606), True, 'import pandas as pd\n')]
# encoding: UTF-8 from distutils.core import setup from Cython.Build import cythonize import numpy setup( name = 'crrCython', ext_modules = cythonize("crrCython.pyx"), include_dirs = [numpy.get_include()] )
[ "Cython.Build.cythonize", "numpy.get_include" ]
[((146, 172), 'Cython.Build.cythonize', 'cythonize', (['"""crrCython.pyx"""'], {}), "('crrCython.pyx')\n", (155, 172), False, 'from Cython.Build import cythonize\n'), ((192, 211), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (209, 211), False, 'import numpy\n')]
import pandas as pd import pandas import numpy as np #provide local path testfile='../input/test.csv' data = open(testfile).readlines() sequences={} #(key, value) = (id , sequence) for i in range(1,len(data)): line=data[i] line =line.replace('"','') line = line[:-1].split(',') id = int(line[0]) sequence=[int(x) for x in line[1:]]; sequences[id]=sequence # In[ ]: def checkRecurrence(seq, order= 2, minlength = 7): """ :type seq: List[int] :type order: int :type minlength: int :rtype: List[int] Check whether the input sequence is a recurrence sequence with given order. If it is, return the coefficients for the recurrenec relation. If not, return None. """ if len(seq)< max((2*order+1), minlength): return None ################ Set up the system of equations A,b = [], [] for i in range(order): A.append(seq[i:i+order]) b.append(seq[i+order]) A,b =np.array(A), np.array(b) try: if np.linalg.det(A)==0: return None except TypeError: return None ############# Solve for the coefficients (c0, c1, c2, ...) coeffs = np.linalg.inv(A).dot(b) ############ Check if the next terms satisfy recurrence relation for i in range(2*order, len(seq)): predict = np.sum(coeffs*np.array(seq[i-order:i])) if abs(predict-seq[i])>10**(-2): return None return list(coeffs) def predictNextTerm(seq, coeffs): """ :type seq: List[int] :type coeffs: List[int] :rtype: int Given a sequence and coefficienes, compute the next term for the sequence. """ order = len(coeffs) predict = np.sum(coeffs*np.array(seq[-order:])) return int(round(predict)) # ## Example: ## # * Given a sequence [1,5,11,21,39,73,139,269,527]. # * We verify if it's 3rd order recurrence sequence and find the coefficients (2,-5,4). # * We then predict the next term using the last 3 terms and the relation $a_{n+3} = 2a_{n}-5a_{n+1}+4a_{n+2}$. # In[ ]: seq = [1,5,11,21,39,73,139,269,527] print (checkRecurrence(seq,3)) print (predictNextTerm(seq, [2,-5,4])) # # Find 2nd order sequeneces in the test set # # In[ ]: order2Seq={} #(key, value) = (sequence id, [prediction, coefficients]) for id in sequences: seq = sequences[id] coeff = checkRecurrence(seq,2) if coeff!=None: predict = predictNextTerm(seq, coeff) order2Seq[id]=(predict,coeff) print ("We found %d sequences\n" %len(order2Seq)) print ("Some examples\n") print ("ID, Prediction, Coefficients") for key in sorted(order2Seq)[0:5]: value = order2Seq[key] print ("%s, %s, %s" %(key, value[0], [int(round(x)) for x in value[1]])) # # Find 3rd order sequeneces in the test set # # In[ ]: order3Seq={} for id in sequences: if id in order2Seq: continue seq = sequences[id] coeff = checkRecurrence(seq,3) if coeff!=None: predict = predictNextTerm(seq, coeff) order3Seq[id]=(predict,coeff) print ("We found %d sequences\n" %len(order3Seq)) print ("Some examples\n") print ("ID, Prediction, Coefficients") for key in sorted(order3Seq)[0:5]: value = order3Seq[key] print ("%s, %s, %s" %(key, value[0], [int(round(x)) for x in value[1]])) # # Find 4th order sequeneces in the test set # # In[ ]: order4Seq={} for id in sequences: if id in order2Seq or id in order3Seq: continue seq = sequences[id] coeff = checkRecurrence(seq,4) if coeff!=None: predict = predictNextTerm(seq, coeff) order4Seq[id]=(predict,coeff) print ("We found %d sequences \n" %len(order4Seq)) print ("Some examples\n") print ("ID, Prediction, Coefficients") for key in sorted(order4Seq)[4:5]: value = order4Seq[key] print ("%s, %s, %s" %(key, value[0], [int(round(x)) for x in value[1]])) print (sequences[239][0:17]) # ## Recurrence relations not included in OEIS ## # In the previous cells, # * We find that Sequence 239 is a 4th order sequence and predict the next term as 5662052980. # * We check OEIS https://oeis.org/A000773, which confirms the prediction is correct. # * We observe that this recurrence relation is not described in OEIS. (There are more such sequences.) # In[ ]: print("Conclusion:") print("Number of sequences in the test set:", len(sequences)) print("Number of 2nd order sequences:", len(order2Seq)) print("Number of 3rd order sequences:", len(order3Seq)) print("Number of 4th order sequences:", len(order4Seq))
[ "numpy.array", "numpy.linalg.inv", "numpy.linalg.det" ]
[((1019, 1030), 'numpy.array', 'np.array', (['A'], {}), '(A)\n', (1027, 1030), True, 'import numpy as np\n'), ((1032, 1043), 'numpy.array', 'np.array', (['b'], {}), '(b)\n', (1040, 1043), True, 'import numpy as np\n'), ((1067, 1083), 'numpy.linalg.det', 'np.linalg.det', (['A'], {}), '(A)\n', (1080, 1083), True, 'import numpy as np\n'), ((1241, 1257), 'numpy.linalg.inv', 'np.linalg.inv', (['A'], {}), '(A)\n', (1254, 1257), True, 'import numpy as np\n'), ((1816, 1838), 'numpy.array', 'np.array', (['seq[-order:]'], {}), '(seq[-order:])\n', (1824, 1838), True, 'import numpy as np\n'), ((1417, 1443), 'numpy.array', 'np.array', (['seq[i - order:i]'], {}), '(seq[i - order:i])\n', (1425, 1443), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Sample 10^6 particles from anisotropic Hernquist DF. Created: February 2021 Author: <NAME> """ import sys from emcee import EnsembleSampler as Sampler import numpy as np sys.path.append("../src") from constants import G, M_sun, kpc from hernquist import calc_DF_aniso def hernquist_df_aniso(theta, M, a): """ Evaluate anisotropic Hernquist distribution function. Calculates log-probability of given phase space position theta. Functional form is Eq. (44) in Naik et al., (2020). Parameters ---------- theta: array-like, shape (6,) Array containing phase space position (x, y, z, vx, vy, vz). UNITS: metres and metres/second for positions/velocities respectively. M: float Total mass of Hernquist blob. UNITS: kilograms. a: float Scale radius of Hernquist blob. UNITS: metres. Returns ------- lnf: float Unnormalised ln-probability associated with phase space position. """ q = theta[:3] p = theta[3:] f = calc_DF_aniso(q, p, M, a) if f == 0: return -1e+20 else: lnf = np.log(f) return lnf def sample(N, M, a): """ Sample N particles from isotropic Hernquist distribution function. Takes either isotropic or anisotropic DF, parametrised by mass M and scale radius a. Sampler uses 50 MCMC walkers, each taking N iterations (after burn-in). These samples are then thinned by an interval of 50, giving N quasi-independent samples. Parameters ---------- N: int Number of particles to sample. Note: this needs to be a multiple of 50. M: float Total mass of Hernquist blob. UNITS: kilograms. a: float Scale radius of Hernquist blob. UNITS: metres. Returns ------- pos: (N, 3) array Positions of sampled particles, in Cartesian coordinates. UNITS: metres. vel: (N, 3) array Velocities of sampled particles, in Cartesian coordinates. UNITS: metres/second. """ # set up sampler df_function = hernquist_df_aniso nwalkers, ndim = 100, 6 n_burnin = 1000 assert N % nwalkers == 0 n_iter = N s = Sampler(nwalkers, ndim, df_function, args=[M, a]) # set up initial walker positions v_sig = 0.5 * np.sqrt(G * M / a) / np.sqrt(3) sig = np.array([0.3 * a, 0.3 * a, 0.3 * a, v_sig, v_sig, v_sig]) p0 = -sig + 2 * sig * np.random.rand(nwalkers, ndim) # burn in print("\nBurning in...", flush=True) s.run_mcmc(p0, n_burnin, progress=True) # take final sample p0 = s.chain[:, -1, :] s.reset() print("\n\nTaking final sample...", flush=True) s.run_mcmc(p0, n_iter, progress=True, thin=100) pos = s.flatchain[:, :3] vel = s.flatchain[:, 3:] return pos, vel def downsample(pos, vel, a, x_truncation): """Downsample from truncated Hernquist.""" r = np.linalg.norm(pos, axis=-1) allowed = np.where(r < x_truncation * a)[0] inds = np.random.choice(allowed, size=N) pos = pos[inds] vel = vel[inds] return pos, vel if __name__ == '__main__': M = 1e+10 * M_sun a = 5 * kpc N = 1000000 pos, vel = sample(2 * N, M, a) pos, vel = downsample(pos, vel, a, x_truncation=200) np.savez("hq_aniso_orig", pos=pos, vel=vel)
[ "numpy.savez", "numpy.sqrt", "numpy.random.rand", "numpy.random.choice", "numpy.where", "numpy.log", "emcee.EnsembleSampler", "numpy.array", "numpy.linalg.norm", "hernquist.calc_DF_aniso", "sys.path.append" ]
[((223, 248), 'sys.path.append', 'sys.path.append', (['"""../src"""'], {}), "('../src')\n", (238, 248), False, 'import sys\n'), ((1068, 1093), 'hernquist.calc_DF_aniso', 'calc_DF_aniso', (['q', 'p', 'M', 'a'], {}), '(q, p, M, a)\n', (1081, 1093), False, 'from hernquist import calc_DF_aniso\n'), ((2235, 2284), 'emcee.EnsembleSampler', 'Sampler', (['nwalkers', 'ndim', 'df_function'], {'args': '[M, a]'}), '(nwalkers, ndim, df_function, args=[M, a])\n', (2242, 2284), True, 'from emcee import EnsembleSampler as Sampler\n'), ((2384, 2442), 'numpy.array', 'np.array', (['[0.3 * a, 0.3 * a, 0.3 * a, v_sig, v_sig, v_sig]'], {}), '([0.3 * a, 0.3 * a, 0.3 * a, v_sig, v_sig, v_sig])\n', (2392, 2442), True, 'import numpy as np\n'), ((2949, 2977), 'numpy.linalg.norm', 'np.linalg.norm', (['pos'], {'axis': '(-1)'}), '(pos, axis=-1)\n', (2963, 2977), True, 'import numpy as np\n'), ((3037, 3070), 'numpy.random.choice', 'np.random.choice', (['allowed'], {'size': 'N'}), '(allowed, size=N)\n', (3053, 3070), True, 'import numpy as np\n'), ((3314, 3357), 'numpy.savez', 'np.savez', (['"""hq_aniso_orig"""'], {'pos': 'pos', 'vel': 'vel'}), "('hq_aniso_orig', pos=pos, vel=vel)\n", (3322, 3357), True, 'import numpy as np\n'), ((1155, 1164), 'numpy.log', 'np.log', (['f'], {}), '(f)\n', (1161, 1164), True, 'import numpy as np\n'), ((2363, 2373), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (2370, 2373), True, 'import numpy as np\n'), ((2992, 3022), 'numpy.where', 'np.where', (['(r < x_truncation * a)'], {}), '(r < x_truncation * a)\n', (3000, 3022), True, 'import numpy as np\n'), ((2342, 2360), 'numpy.sqrt', 'np.sqrt', (['(G * M / a)'], {}), '(G * M / a)\n', (2349, 2360), True, 'import numpy as np\n'), ((2469, 2499), 'numpy.random.rand', 'np.random.rand', (['nwalkers', 'ndim'], {}), '(nwalkers, ndim)\n', (2483, 2499), True, 'import numpy as np\n')]
# coding: utf-8 import os, pickle, csv, json import subprocess from typing import NamedTuple, List, TextIO, Tuple, Dict, Optional, Union, Iterable, Hashable import numpy as np import pandas as pd from scipy import stats from itertools import product, groupby, takewhile from collections import namedtuple, Counter import multiprocessing import logging import string import matplotlib matplotlib.use("Agg") # pids with missing data (i.e., pdbs missing for either sid, eid, and/or gid) pids_missing_data = {'2000524', '2001234', '2001249', '2001255', '2001287', '2001291', '2001306', '2001308', '2001311', '2002239', '2002243', '2002247', '2002255', '2002713', '2002963', '2002990', '2002992', '2003008', '2003011', '2003015', '997529', '996023'} unfetched_pids = {'2000659', '2001302', '2002102', '2002465', '2002809', '2002833', '2002850', '2003001', '2003047', '2003059', '2003078', '2003126', '2003183', '996313', '996492', '996508', '997542', '997940', '998465', '998529', '998574'} # fetched, but corrupt bad_pids = {'1998935', '2000659', '2001302', '2002102', '2002465', '2002809', '2002833', '2002850', '2003078', '2003126', '2003183', '2003763', '2003832', '997766'} # stopped early due to crashes or errors stopped_pids = {'2003699', '2003183', '2002494', '2002247', '2002912', '2003801'} # restarted version of stopped puzzle restarted_pids = {'2003704', '2002499', '2002255', '2002914', '2003806'} pids_missing_energies = {'996547'} pids_missing_pdl_actions = {'998071', '1998729', '998219'} skip_pids = pids_missing_energies.union(pids_missing_pdl_actions).union(bad_pids) class EnergyComponent(NamedTuple): name: str weight: float energy: float class PDB_Info(NamedTuple): sid: str pid: str uid: str gid: str sharing_gid: str scoretype: str pdl: Dict energy: float energy_components: List[EnergyComponent] timestamp: int parent_sid: Optional[str] tmscore: float deviations: np.ndarray class SnapshotDelta(NamedTuple): sid: str parent_sid: Optional[str] timestamp: int action_diff: Counter macro_diff: Counter action_count: int energy_diff: float class SolvingLineVariant(NamedTuple): action_count: int time: int indices: List[int] class SolvingLine(NamedTuple): action_count: int time: int pdb_infos: List[PDB_Info] variants: List[SolvingLineVariant] @property def energies(self): return [x.energy for x in self.pdb_infos] class EvolvingLine(NamedTuple): source: Dict pdb_infos: List[PDB_Info] @property def energies(self): return [x.energy for x in self.pdb_infos] class PuzzleMeta(NamedTuple): pid: str best_tmscores: Dict pfront: np.ndarray upload_baseline: float energy_baseline: float structure: Dict class PatternInstance(NamedTuple): cid: int uid: str pid: str start_idx: int end_idx: int class PatternInstanceExt(NamedTuple): cid: int uid: str pid: str start_idx: int end_idx: int start_pdb: PDB_Info end_pdb: PDB_Info pre_best: PDB_Info post_best: PDB_Info class SubPatternInstance(NamedTuple): p: PatternInstance label: str start_idx: int end_idx: int class SubLookup(NamedTuple): clusters: Dict[str, Dict[int, Dict[int, Dict[int, np.ndarray]]]] # (user to k to cid to sub_k to cluster labels) mrfs: Dict[str, Dict[int, Dict[int, Dict[int, Dict[int, np.ndarray]]]]] # (user to k to cid to sub_k to mrf dictionary (cluster label to mrf)) models: Dict[str, Dict[int, Dict[int, Dict[int, Dict]]]] # (user to k to cid to sub_k to dict of ticc model parameters) bics: Dict[str, Dict[int, Dict[int, Dict[int, float]]]] # (user to k to cid to sub_k to bic) class SubSeriesLookup(NamedTuple): patterns: Dict[Hashable, np.ndarray] # e.g., (uid, pid, start index) -> series for that pattern series: np.ndarray idx_lookup: Dict[Hashable, Tuple[int, int]] class SubclusterSeries(NamedTuple): labels: List[str] series: np.ndarray # type aliases SubClusters = Dict[int, Dict[int, Dict[int, np.ndarray]]] SubMRFs = Dict[int, Dict[int, Dict[int, Dict[int, np.ndarray]]]] PatternLookup = Union[Dict[str, Iterable[PatternInstance]], Dict[int, Dict[int, Iterable[PatternInstance]]]] @pd.api.extensions.register_series_accessor("foldit") class FolditSeriesAccessor: def __init__(self, pandas_obj: pd.Series): self._validate(pandas_obj) self._obj = pandas_obj @staticmethod def _validate(obj: pd.Series): # verify there is a column latitude and a column longitude if ('lines' not in obj.index or 'evol_lines' not in obj.index) and (obj.name != "lines" and obj.name != "evol_lines"): raise AttributeError("Must have 'lines' and 'evol_lines'.") @property def solo_pdbs(self): return [p for l in self._obj.lines for p in l.pdb_infos] if self._obj.lines else [] @property def evol_pdbs(self): return [p for l in self._obj.evol_lines for p in l.pdb_infos] if self._obj.evol_lines else [] @property def solo_energies(self): return [p.energy for p in self._obj.foldit.solo_pdbs] @property def evol_energies(self): return [p.energy for p in self._obj.foldit.evol_pdbs] @pd.api.extensions.register_dataframe_accessor("foldit") class FolditAccessor: def __init__(self, pandas_obj: pd.Series): self._validate(pandas_obj) self._obj = pandas_obj @staticmethod def _validate(obj: pd.Series): # verify there is a column latitude and a column longitude if 'lines' not in obj.columns or 'evol_lines' not in obj.columns: raise AttributeError("Must have 'lines' and 'evol_lines'.") @property def solo_pdbs(self): return self._obj.apply(lambda r: r.foldit.solo_pdbs, axis=1) @property def evol_pdbs(self): return self._obj.apply(lambda r: r.foldit.evol_pdbs, axis=1) @property def solo_energies(self): return self._obj.apply(lambda r: r.foldit.solo_energies, axis=1) @property def evol_energies(self): return self._obj.apply(lambda r: r.foldit.evol_energies, axis=1) # @property # def pdbs(self): ROOT_NID = ('00000000-0000-0000-0000-000000000000', 0) category_lookup = { 'overall': '992758', 'beginner': '992759', 'prediction': '992760', 'design': '992761', 'electron': '994237', 'contacts': '997946', 'symmetry': '992769', 'casp10': '992762', 'casp11': '997398', 'casp_roll': '993715', 'hand_folding': '994890', 'small_molecule_design': '2002074', "pilot": "2004148", 'all': 'all', # dummy to allow select of all categorized puzzles } action_types = { 'optimize': {'ActionGlobalMinimize', 'ActionGlobalMinimizeBackbone', 'ActionGlobalMinimizeSidechains', 'ActionLocalMinimize', 'ActionRepack'}, 'hybrid': {'ActionLocalMinimizePull', 'LoopHash', 'ActionBuild', 'ActionPullSidechain', 'ActionTweak', 'ActionRebuild'}, 'manual': {'ActionSetPhiPsi', 'ActionJumpWidget', 'ActionRotamerCycle', 'ActionRotamerSelect'}, 'guiding': {'ActionInsertCut', 'ActionLockToggle', 'ActionCopyToggle', 'ActionSecStructAssignHelix', 'ActionSecStructAssignLoop', 'ActionSecStructAssignSheet', 'ActionSecStructDSSP', 'ActionSecStructDrag', 'ActionBandAddAtomAtom', 'ActionBandAddDrag', 'ActionBandAddResRes', 'ActionBandDrag', 'ActionBandLength', 'ActionBandStrength'}, } action_types['deliberate'] = action_types['hybrid'].union(action_types['manual']).union(action_types['guiding']) def rmse(predictions, targets): return np.sqrt(((predictions - targets) ** 2).mean()) def iden(x): return x def get_ranks(datafile): puzzles = {} with open("{}.csv".format(datafile)) as fp: ranks_in = csv.DictReader(fp) for row in ranks_in: row['energy'] = float(row['best_score']) row['best_score'] = max(float(row['best_score']) * -10 + 8000, 0) pid = row['pid'] if pid not in puzzles: puzzles[pid] = { 'groups': {}, 'soloists': [], 'evolvers': [], 'categories': [] } if row['gid'] == '0': row['gid'] = 'NULL' # no sense in having both 0 and NULL for no group gid = row['gid'] if gid != 'NULL': gs = puzzles[pid]['groups'] if gid not in gs: gs[gid] = { 'score': row['best_score'], 'type': row['type'], 'gid': gid, 'uid': row['uid'], } if gs[gid]['score'] < row['best_score']: gs[gid]['score'] = row['best_score'] gs[gid]['type'] = row['type'] gs[gid]['uid'] = row['uid'] if row['type'] == '1': puzzles[pid]['soloists'].append(row) if row['type'] == '2': puzzles[pid]['evolvers'].append(row) for pid in puzzles: p = puzzles[pid] p['groups'] = list(p['groups'].values()) # reverse sorts to put them in descending order (top ranked should be first) p['groups'].sort(key=lambda x: x['score'], reverse=True) for i, g in enumerate(p['groups']): g['rank'] = i g['norm_rank'] = i / len(p['groups']) p['soloists'].sort(key=lambda x: x['best_score'], reverse=True) for i, s in enumerate(p['soloists']): s['rank'] = i s['norm_rank'] = i / len(p['soloists']) p['evolvers'].sort(key=lambda x: x['best_score'], reverse=True) for i, e in enumerate(p['evolvers']): e['rank'] = i e['norm_rank'] = i / len(p['evolvers']) return puzzles def get_ranks_labeled(): puzzles = get_ranks("data/rprp_puzzle_ranks_latest") with open("data/puzzle_categories_latest.csv") as fp: cat_in = csv.DictReader(fp) for r in cat_in: pid = r['nid'] if pid in puzzles: puzzles[pid]['categories'] = r['categories'].split(',') puzzles[pid]['categories'].append('all') with open("data/puzzle_labels_latest.json") as fp: lab_in = json.load(fp) for r in lab_in: pid = r['pid'] if pid in puzzles: assert r['title'] is not None puzzles[pid]['title'] = r['title'] if r['desc'] is not None: puzzles[pid]['desc'] = r['desc'] return puzzles def add_pdbs_to_ranks(puzzles): print("loading pdbs") with open("data/top_pdbs.pickle", 'rb') as pdb_fp: pdbs = pickle.load(pdb_fp) pdbs = [p for p in pdbs if 'PID' in p and len(p['PDL']) > 0] print("grouping pdbs") pdbs_by_pid = {pid: list(g) for pid, g in groupby(pdbs, lambda p: p['PID'])} for pid in pids_missing_data.union(unfetched_pids): pid in puzzles and puzzles.pop(pid) for pid in puzzles.copy(): pid not in pdbs_by_pid and puzzles.pop(pid) for pid, ps in pdbs_by_pid.items(): if pid in puzzles: puzzles[pid]['pdbs'] = ps def sig_test(a, b, fstr="{} (n={}) {} (n={})", normal=False, thresholds=frozenset()): if normal: t, p = stats.ttest_ind(a, b, equal_var=False) else: U2, p = stats.mannwhitneyu(np.array(a), np.array(b), use_continuity=True, alternative='two-sided') U = min(U2, len(a) * len(b) - U2) N = len(a) * len(b) f = len(list(filter(lambda xy: xy[0] > xy[1], product(a, b)))) / N u = len(list(filter(lambda xy: xy[0] < xy[1], product(a, b)))) / N if ('p' not in thresholds or p < thresholds['p']) and ('r' not in thresholds or abs(f - u) > thresholds['r']): print(fstr.format("mean={:.6f}, median={:.6f}, std={:.6f}".format(np.mean(a), np.median(a), np.std(a)), len(a), "mean={:.6f}, median={:.6f}, std={:.6f}".format(np.mean(b), np.median(b), np.std(b)), len(b))) if normal: print("test statistic t: {:.6f}".format(t)) else: print("<NAME> U: {:.6f}".format(U)) print("significance (two-tailed): {:.6f}".format(p)) print("rank-biserial correlation: {:.3f}".format(f - u)) return p, f - u def get_atoms(pdb): raw = [[float(x) for x in s.strip(' "[]').split(" ")] for s in pdb['ca'].split(",")] if all(k == 0 for k in raw[-1]): return np.array(raw[:-1]) # remove spurious atom at 0 0 0 that appears at the end of each of these return np.array(raw) def rmsd(X, Y): # center of mass X = X - X.mean(axis=0) Y = Y - Y.mean(axis=0) # covariance matrix R = np.dot(X.T, Y) V, S, Wt = np.linalg.svd(R) d = (np.linalg.det(V) * np.linalg.det(Wt)) < 0.0 if d: S[-1] = -S[-1] V[:, -1] = -V[:, -1] U = np.dot(V, Wt) Xp = np.dot(X, U) deviations = np.linalg.norm(Xp - Y, axis=1) return (deviations ** 2).sum() ** 0.5, deviations # https://github.com/charnley/rmsd # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1471868/ # https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4321859/ def weighted_rmsd(X, Y, p=50): weights = np.array([[1]] * len(Y)) wrmsd = 0 wrmsd_old = float('inf') i = 0 # there may be rare cases where this doesn't converge, so limit to 1000 iterations just in case while abs(wrmsd - wrmsd_old) > 1e-6 and i < 1000: i += 1 wrmsd_old = wrmsd # weighted center of mass X = X - (weights * X).mean(axis=0) Y = Y - (weights * Y).mean(axis=0) # weighted covariance matrix R = np.dot(X.T, weights * Y) V, S, Wt = np.linalg.svd(R) d = (np.linalg.det(V) * np.linalg.det(Wt)) < 0.0 if d: S[-1] = -S[-1] V[:, -1] = -V[:, -1] U = np.dot(V, Wt) Xp = np.dot(X, U) deviations = np.linalg.norm(Xp - Y, axis=1) wrmsd = ((weights.flatten() * deviations ** 2).sum() / weights.sum()) ** 0.5 dp = np.percentile(deviations, p) weights = np.exp(-deviations ** 2 / dp ** 2).reshape((len(deviations), 1)) return wrmsd, weights, deviations # take in index i and series of Unix-style timestamps # return indices start, end representing the period containing i with no gaps of size break_threshold or larger # break_threshold given in seconds def expand_seed(i, timestamps, break_threshold=900): start = end = i i = end + 1 while i < len(timestamps) and timestamps[i] - timestamps[end] < break_threshold: end = i i += 1 return start, end # takes in list of Unix-style timestamps def get_sessions(timestamps): sessions = [] i = 0 while i < len(timestamps): sessions.append(expand_seed(i, timestamps)) i = sessions[-1][1] + 1 return sessions def time_splits_helper(timestamps, chunk, splits): sessions = get_sessions(timestamps) start_idx = end_idx = 0 time_left = chunk session_idx = 0 ret = [] times = [] for i in range(splits): logging.debug('split {}'.format(i)) while time_left > 0 and session_idx < len(sessions): logging.debug('time left {}'.format(time_left)) ses = sessions[session_idx] session_start, session_end = ses if session_duration(ses, timestamps) <= time_left: logging.debug('session {} {} fits'.format(session_idx, sessions[session_idx])) end_idx = session_end time_left -= session_duration(ses, timestamps) session_idx += 1 if session_idx == len(sessions): logging.debug('adding {} to the end'.format(start_idx)) ret.append((start_idx, len(timestamps))) times.append(sum(session_duration((s, e), timestamps) for s, e in sessions if s >= start_idx)) logging.debug('time: {}'.format(times[-1])) else: ns, ne = sessions[session_idx] minimal_addition = session_duration((ns, ne), timestamps) if ns == ne else timestamps[ns + 1] - \ timestamps[ns] # the minimum we could add to the current split would put us further away than we currently are if abs(time_left - minimal_addition) > abs(time_left): times.append(session_duration((session_start, end_idx), timestamps) + sum( session_duration((s, e), timestamps) for s, e in sessions if s >= start_idx and e < session_start)) if start_idx == end_idx: end_idx += 1 logging.debug("close as we can get, adding {} up to {}".format(start_idx, end_idx)) ret.append((start_idx, end_idx)) logging.debug('time: {}'.format(times[-1])) start_idx = end_idx time_left = 0 else: if session_start == session_end: end_idx = session_end else: end_idx = session_start + 1 while session_duration((session_start, end_idx), timestamps) < time_left: end_idx += 1 if abs(time_left - (timestamps[end_idx] - timestamps[session_start])) > abs( time_left - ( timestamps[end_idx - 1] - timestamps[session_start])) and end_idx > start_idx + 1: end_idx -= 1 logging.debug('splitting session at {}'.format(end_idx)) sessions[session_idx] = (end_idx, session_end) times.append(session_duration((session_start, end_idx), timestamps) + sum( session_duration((s, e), timestamps) for s, e in sessions if s >= start_idx and e < session_start)) if start_idx == end_idx: end_idx += 1 logging.debug('adding {} up to {}'.format(start_idx, end_idx)) ret.append((start_idx, end_idx)) logging.debug('time: {}'.format(times[-1])) start_idx = end_idx time_left = 0 time_left = chunk return ret, times def get_time_splits(time, timestamps, splits): chunk = time / splits ret, times = time_splits_helper(timestamps, chunk, splits) while len(ret) < splits - 1 and len(timestamps) >= 2 * splits: chunk *= 0.9 logging.debug("bad split possibly due to degenerate chunk size, trying with {}".format(chunk)) ret, times = time_splits_helper(timestamps, chunk, splits) if len(ret) == splits - 1 and any(e - s > 0 for s, e in ret): idx = np.argmax([t if s != e else 0 for (s, e), t in zip(ret, times)]) shifted = ret[:idx] + [(ret[idx][0], ret[idx][1] - 1)] + [(s - 1, e - 1) for s, e in ret[idx + 1:]] + [ (ret[-1][1] - 1, ret[-1][1])] logging.debug("short one slice, shifting everything to make another ({} to {})".format(ret, shifted)) ret = shifted if ret[-1][1] < len(timestamps): logging.debug("extending final slice to the end ({} to {})".format(ret[-1][1], len(timestamps))) ret = ret[:-1] + [(ret[-1][0], len(timestamps))] assert len(ret) == splits or len(timestamps) < 2 * splits, "{} -- wanted {} splits, got {}".format(ret, splits, len(ret)) # assert len(ret) == splits or splits > 12, "{} -- wanted {} splits, got {}".format(ret, splits, len(ret)) assert all(e1 == s2 for (s1, e1), (s2, e2) in zip(ret, ret[1:])) covered_timestamps = np.concatenate([np.arange(s, e) for s, e in ret]) assert all(x in covered_timestamps for x in range(len(timestamps))), \ "{} -- not all timestamp indices accounted for: {}".format(ret, [x for x in range(len(timestamps)) if x not in covered_timestamps]) # allowed_deviation = max([max(np.diff(timestamps[s:e]), default=0) for s, e in get_sessions(timestamps) if s != e], default=300) / 2 # assert all(abs(t - chunk) < max(allowed_deviation, chunk * 0.1) for t in times[:-1]) or len(timestamps) <= 2 * splits, \ # "{} -- splits deviate too far from target size ({} ± {}): {}".format(ret, chunk, max(allowed_deviation, chunk * 0.1), times) return ret def session_duration(session, timestamps): st, en = session if st == en: # assume 5 minutes of work where we have just a single snapshot for the session, based on standard upload rate return 300 return timestamps[en] - timestamps[st] def time_played(timestamps): return sum(session_duration(ses, timestamps) for ses in get_sessions(timestamps)) def align_timestamps(timestamps): sessions = [slice(s, e + 1) for s, e in get_sessions(timestamps)] ts_aligned = timestamps for ses1, ses2 in zip(sessions, sessions[1:]): adjustment = ts_aligned[ses2.start] - ts_aligned[ses1.stop - 1] ts_aligned = np.concatenate((ts_aligned[:ses2.start], ts_aligned[ses2.start:] - adjustment + 900)) assert (np.diff(ts_aligned) <= 900).all() return ts_aligned def get_children(nid, history): uuid, count = nid main = list(filter(lambda x: x['uuid'] == uuid, history[nid])) if nid in history else [] if len(main) == 0 and count != 0: main = list(filter(lambda x: x['uuid'] == uuid and x['count'] > count, history[(uuid, 0)])) other = list( filter(lambda x: x['uuid'] != uuid and x['parent_count'] == count, history[nid])) if nid in history else [] children = [] if len(main) > 0: c = min(main, key=lambda x: x['count']) children.append((c['uuid'], c['count'])) for r in other: children.append((r['uuid'], r['count'])) return children def get_nid(s): return (s['uuid'], int(s['count'])) def output_atoms(atoms: np.ndarray, fp: TextIO) -> None: i = 1 for ca in atoms: fp.write("ATOM {:6d} CA XXX A {:3d} {:8.3f}{:8.3f}{:8.3f} 1.00 0.00\n".format(i, i, *ca)) i += 1 def tmscore(pairs: List[Tuple[str, str]], tmp_input_name: str, atoms_lookup: Dict) -> Dict: if len(pairs) == 0: return {} logging.debug("{}: batch computing {} tmscores".format(tmp_input_name, len(pairs))) if not os.path.exists(tmp_input_name): os.makedirs(tmp_input_name) # write the necessary atom files sids = {s for ss in pairs for s in ss} for sid in sids: with open("{}/{}.atoms".format(tmp_input_name, sid), 'w') as fp: output_atoms(atoms_lookup[sid], fp) # empirically derived formula for chunksize to equalize batch time and spawning time # based on estimates that batches run 100 scores in ~1.5s, and Python starts ~6 batches per second chunksize = max(100, (len(pairs) / 0.09) ** 0.5) if len(pairs) // chunksize > (multiprocessing.cpu_count() / 4): chunksize = len(pairs) / ( multiprocessing.cpu_count() / 4) # avoid spawning huge numbers of batches as this kills the performance splits = np.array_split(pairs, len(pairs) // chunksize if len(pairs) > chunksize else 1) ps = [] for i, split in enumerate(splits): input_name = "{}/{}.tmscore_input".format(tmp_input_name, i) with open(input_name, 'w') as fp: for a, b in split: fp.write("{} {}\n".format(a, b)) ps.append((subprocess.Popen(['./tmscore_batch.zsh', input_name], stdout=subprocess.PIPE, encoding='utf-8'), input_name)) scores = [] for p, fname in ps: scores.extend([s.split() for s in p.communicate()[0].splitlines()]) subprocess.run(['rm', fname]) subprocess.run(["rsync", "-a", "--delete", "tmp_data/empty_dir/", "{}/".format(tmp_input_name)]) return {(a, b): float(s) for a, b, s in scores} def get_overlap(segment, target): seg_sessions = get_sessions(segment) tar_sessions = get_sessions(target) tar_adj = [] for s, e in tar_sessions: cands = [ses for ses in seg_sessions if target[s] < segment[ses[1]] and target[e] > segment[ses[0]]] if len(cands) > 0: start = s while all(target[start] < segment[cs] for cs, ce in cands): start += 1 # assert start < e end = e while all(target[end] > segment[ce] for cs, ce in cands): end -= 1 # assert end >= start if start <= end: tar_adj.append((start, end)) return tar_adj def load_frame(datafile): df = pd.read_hdf(datafile, 'df') bts = pd.read_hdf(datafile, 'bts') puz = pd.read_hdf(datafile, 'puz').iloc[0] # tuple gets wrapped in a pandas data structure, so unwrap it here logging.debug(datafile) return df, bts, puz def collect_pdl_entries(soln): entries = list(takewhile(lambda x: x['header']['uid'] == soln.uid, soln.pdl[::-1])) actions = {} macros = {} for e in entries: for a, c in e['actions'].items(): actions[a] = actions.get(a, 0) + c for m, c in e['macros'].items(): macros[m] = macros.get(m, 0) + c return actions, macros def get_data_value(uid, pid, key, data): r = data[(data.uid == uid) & (data.pid == pid)] return r[key].iloc[0] def get_action_labels(): return ['band', 'build', 'cut', 'global_min', 'idealize', 'local_min', 'lock', 'rebuild', 'repack', 'assign_loop', 'save', 'reset', 'ss_load', 'ss_save'] def get_action_keys(): """ index: action type 0: banding 1: build 2: cuts 3: global minimize 4: idealize 5: local minimize 6: locking 7: rebuild 8: repack 9: assign secondary structure loop 10: quicksave 11: reset recent best 12: load secondary structure 12: save secondary structure """ actionset_band = {'ActionBandAddAtomAtom', 'ActionBandAddDrag', 'ActionBandAddResRes', 'ActionBandDrag', 'ActionBandLength', 'ActionBandStrength', 'ActionBandDelete', 'ActionBandDisableToggle'} actionset_cut = {'ActionDeleteCut', 'ActionInsertCut'} actionset_global = {'ActionGlobalMinimize', 'ActionGlobalMinimizeBackbone', 'ActionGlobalMinimizeSidechains'} actionset_save = {'ActionStandaloneQuicksave', 'ActionNoviceQuicksave'} actionset_load = {'ActionStandaloneResetRecentBest', 'ActionNoviceResetRecentBest'} actionset_ss_save = {'ActionStandaloneSecstructSave', 'ActionNoviceSecstructSave'} actionset_ss_load = {'ActionStandaloneSecstructLoad', 'ActionNoviceSecstructLoad'} return [actionset_band, {'ActionBuild'}, actionset_cut, actionset_global, {'ActionIdealize'}, {'ActionLocalMinimize'}, {'ActionLockToggle'}, {'ActionRebuild'}, {'ActionRepack'}, {'ActionSecStructAssignLoop'}, actionset_save, actionset_load, actionset_ss_load, actionset_ss_save] def get_action_stream(action_diff: Counter): keys = get_action_keys() return [sum(action_diff.get(a, 0) for a in k) for k in keys] def get_pattern_label(p, cid, sub_k): if sub_k == 0: assert p.cid == cid return str(cid) return str(cid) + string.ascii_uppercase[p.cid]
[ "csv.DictReader", "logging.debug", "multiprocessing.cpu_count", "numpy.array", "scipy.stats.ttest_ind", "numpy.linalg.norm", "pandas.api.extensions.register_series_accessor", "numpy.arange", "os.path.exists", "numpy.mean", "subprocess.Popen", "subprocess.run", "itertools.product", "numpy.diff", "numpy.exp", "numpy.dot", "numpy.concatenate", "pandas.read_hdf", "matplotlib.use", "itertools.takewhile", "pickle.load", "numpy.std", "numpy.linalg.svd", "numpy.median", "itertools.groupby", "os.makedirs", "numpy.linalg.det", "pandas.api.extensions.register_dataframe_accessor", "json.load", "numpy.percentile" ]
[((386, 407), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (400, 407), False, 'import matplotlib\n'), ((5594, 5646), 'pandas.api.extensions.register_series_accessor', 'pd.api.extensions.register_series_accessor', (['"""foldit"""'], {}), "('foldit')\n", (5636, 5646), True, 'import pandas as pd\n'), ((6597, 6652), 'pandas.api.extensions.register_dataframe_accessor', 'pd.api.extensions.register_dataframe_accessor', (['"""foldit"""'], {}), "('foldit')\n", (6642, 6652), True, 'import pandas as pd\n'), ((14076, 14089), 'numpy.array', 'np.array', (['raw'], {}), '(raw)\n', (14084, 14089), True, 'import numpy as np\n'), ((14215, 14229), 'numpy.dot', 'np.dot', (['X.T', 'Y'], {}), '(X.T, Y)\n', (14221, 14229), True, 'import numpy as np\n'), ((14245, 14261), 'numpy.linalg.svd', 'np.linalg.svd', (['R'], {}), '(R)\n', (14258, 14261), True, 'import numpy as np\n'), ((14385, 14398), 'numpy.dot', 'np.dot', (['V', 'Wt'], {}), '(V, Wt)\n', (14391, 14398), True, 'import numpy as np\n'), ((14408, 14420), 'numpy.dot', 'np.dot', (['X', 'U'], {}), '(X, U)\n', (14414, 14420), True, 'import numpy as np\n'), ((14438, 14468), 'numpy.linalg.norm', 'np.linalg.norm', (['(Xp - Y)'], {'axis': '(1)'}), '(Xp - Y, axis=1)\n', (14452, 14468), True, 'import numpy as np\n'), ((26446, 26473), 'pandas.read_hdf', 'pd.read_hdf', (['datafile', '"""df"""'], {}), "(datafile, 'df')\n", (26457, 26473), True, 'import pandas as pd\n'), ((26484, 26512), 'pandas.read_hdf', 'pd.read_hdf', (['datafile', '"""bts"""'], {}), "(datafile, 'bts')\n", (26495, 26512), True, 'import pandas as pd\n'), ((26632, 26655), 'logging.debug', 'logging.debug', (['datafile'], {}), '(datafile)\n', (26645, 26655), False, 'import logging\n'), ((9203, 9221), 'csv.DictReader', 'csv.DictReader', (['fp'], {}), '(fp)\n', (9217, 9221), False, 'import os, pickle, csv, json\n'), ((11456, 11474), 'csv.DictReader', 'csv.DictReader', (['fp'], {}), '(fp)\n', (11470, 11474), False, 'import os, pickle, csv, json\n'), ((11759, 11772), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (11768, 11772), False, 'import os, pickle, csv, json\n'), ((12197, 12216), 'pickle.load', 'pickle.load', (['pdb_fp'], {}), '(pdb_fp)\n', (12208, 12216), False, 'import os, pickle, csv, json\n'), ((12801, 12839), 'scipy.stats.ttest_ind', 'stats.ttest_ind', (['a', 'b'], {'equal_var': '(False)'}), '(a, b, equal_var=False)\n', (12816, 12839), False, 'from scipy import stats\n'), ((13969, 13987), 'numpy.array', 'np.array', (['raw[:-1]'], {}), '(raw[:-1])\n', (13977, 13987), True, 'import numpy as np\n'), ((15159, 15183), 'numpy.dot', 'np.dot', (['X.T', '(weights * Y)'], {}), '(X.T, weights * Y)\n', (15165, 15183), True, 'import numpy as np\n'), ((15203, 15219), 'numpy.linalg.svd', 'np.linalg.svd', (['R'], {}), '(R)\n', (15216, 15219), True, 'import numpy as np\n'), ((15363, 15376), 'numpy.dot', 'np.dot', (['V', 'Wt'], {}), '(V, Wt)\n', (15369, 15376), True, 'import numpy as np\n'), ((15390, 15402), 'numpy.dot', 'np.dot', (['X', 'U'], {}), '(X, U)\n', (15396, 15402), True, 'import numpy as np\n'), ((15424, 15454), 'numpy.linalg.norm', 'np.linalg.norm', (['(Xp - Y)'], {'axis': '(1)'}), '(Xp - Y, axis=1)\n', (15438, 15454), True, 'import numpy as np\n'), ((15553, 15581), 'numpy.percentile', 'np.percentile', (['deviations', 'p'], {}), '(deviations, p)\n', (15566, 15581), True, 'import numpy as np\n'), ((22856, 22945), 'numpy.concatenate', 'np.concatenate', (['(ts_aligned[:ses2.start], ts_aligned[ses2.start:] - adjustment + 900)'], {}), '((ts_aligned[:ses2.start], ts_aligned[ses2.start:] -\n adjustment + 900))\n', (22870, 22945), True, 'import numpy as np\n'), ((24161, 24191), 'os.path.exists', 'os.path.exists', (['tmp_input_name'], {}), '(tmp_input_name)\n', (24175, 24191), False, 'import os, pickle, csv, json\n'), ((24201, 24228), 'os.makedirs', 'os.makedirs', (['tmp_input_name'], {}), '(tmp_input_name)\n', (24212, 24228), False, 'import os, pickle, csv, json\n'), ((25532, 25561), 'subprocess.run', 'subprocess.run', (["['rm', fname]"], {}), "(['rm', fname])\n", (25546, 25561), False, 'import subprocess\n'), ((26732, 26799), 'itertools.takewhile', 'takewhile', (["(lambda x: x['header']['uid'] == soln.uid)", 'soln.pdl[::-1]'], {}), "(lambda x: x['header']['uid'] == soln.uid, soln.pdl[::-1])\n", (26741, 26799), False, 'from itertools import product, groupby, takewhile\n'), ((12357, 12390), 'itertools.groupby', 'groupby', (['pdbs', "(lambda p: p['PID'])"], {}), "(pdbs, lambda p: p['PID'])\n", (12364, 12390), False, 'from itertools import product, groupby, takewhile\n'), ((12885, 12896), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (12893, 12896), True, 'import numpy as np\n'), ((12898, 12909), 'numpy.array', 'np.array', (['b'], {}), '(b)\n', (12906, 12909), True, 'import numpy as np\n'), ((14271, 14287), 'numpy.linalg.det', 'np.linalg.det', (['V'], {}), '(V)\n', (14284, 14287), True, 'import numpy as np\n'), ((14290, 14307), 'numpy.linalg.det', 'np.linalg.det', (['Wt'], {}), '(Wt)\n', (14303, 14307), True, 'import numpy as np\n'), ((21460, 21475), 'numpy.arange', 'np.arange', (['s', 'e'], {}), '(s, e)\n', (21469, 21475), True, 'import numpy as np\n'), ((24731, 24758), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (24756, 24758), False, 'import multiprocessing\n'), ((26523, 26551), 'pandas.read_hdf', 'pd.read_hdf', (['datafile', '"""puz"""'], {}), "(datafile, 'puz')\n", (26534, 26551), True, 'import pandas as pd\n'), ((15233, 15249), 'numpy.linalg.det', 'np.linalg.det', (['V'], {}), '(V)\n', (15246, 15249), True, 'import numpy as np\n'), ((15252, 15269), 'numpy.linalg.det', 'np.linalg.det', (['Wt'], {}), '(Wt)\n', (15265, 15269), True, 'import numpy as np\n'), ((15600, 15634), 'numpy.exp', 'np.exp', (['(-deviations ** 2 / dp ** 2)'], {}), '(-deviations ** 2 / dp ** 2)\n', (15606, 15634), True, 'import numpy as np\n'), ((22954, 22973), 'numpy.diff', 'np.diff', (['ts_aligned'], {}), '(ts_aligned)\n', (22961, 22973), True, 'import numpy as np\n'), ((24820, 24847), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (24845, 24847), False, 'import multiprocessing\n'), ((25279, 25379), 'subprocess.Popen', 'subprocess.Popen', (["['./tmscore_batch.zsh', input_name]"], {'stdout': 'subprocess.PIPE', 'encoding': '"""utf-8"""'}), "(['./tmscore_batch.zsh', input_name], stdout=subprocess.\n PIPE, encoding='utf-8')\n", (25295, 25379), False, 'import subprocess\n'), ((13073, 13086), 'itertools.product', 'product', (['a', 'b'], {}), '(a, b)\n', (13080, 13086), False, 'from itertools import product, groupby, takewhile\n'), ((13144, 13157), 'itertools.product', 'product', (['a', 'b'], {}), '(a, b)\n', (13151, 13157), False, 'from itertools import product, groupby, takewhile\n'), ((13355, 13365), 'numpy.mean', 'np.mean', (['a'], {}), '(a)\n', (13362, 13365), True, 'import numpy as np\n'), ((13367, 13379), 'numpy.median', 'np.median', (['a'], {}), '(a)\n', (13376, 13379), True, 'import numpy as np\n'), ((13381, 13390), 'numpy.std', 'np.std', (['a'], {}), '(a)\n', (13387, 13390), True, 'import numpy as np\n'), ((13475, 13485), 'numpy.mean', 'np.mean', (['b'], {}), '(b)\n', (13482, 13485), True, 'import numpy as np\n'), ((13487, 13499), 'numpy.median', 'np.median', (['b'], {}), '(b)\n', (13496, 13499), True, 'import numpy as np\n'), ((13501, 13510), 'numpy.std', 'np.std', (['b'], {}), '(b)\n', (13507, 13510), True, 'import numpy as np\n')]
import os import argparse import numpy as np import scipy import imageio import matplotlib.pyplot as plt from sklearn.cluster import KMeans import graphkke.generate_graphs.graph_generation as graph_generation import graphkke.generate_graphs.generate_SDE as generate_SDE parser = argparse.ArgumentParser() parser.add_argument('--input_dir', type=str, default='/home/katerynam/work/data/artificial/test/') parser.add_argument('--n_graphs', type=int, default=500) parser.add_argument('--n_nodes', type=int, default=300) parser.add_argument('--radius', type=float, default=0.6) parser.add_argument('--n_wells', type=int, default=3) parser.add_argument('--out_state', type=int, default=0.1) parser.add_argument('--if_plot', type=bool, default=True) parser.add_argument('--seed', type=int, default=7) args = parser.parse_args() def randb(n, b): return b[0] + (b[1] - b[0]) * scipy.rand(1, n) def rand(n, bounds, boxes): d = boxes.size x = np.zeros([d, n]) for i in range(d): x[i, :] = randb(n, bounds[i, :]) return x if __name__ == '__main__': lm = generate_SDE.LemonSlice2D([0.9, 0.9], args.n_graphs, 2, args.n_wells) x = rand(1, np.asarray([[-0.5, 0.5], [-0.5, 0.5]]), np.asarray([10, 10])) sde_traj = np.asarray(lm.sim_determ_system(x[:, 0])) k_means = KMeans(n_clusters=args.n_wells).fit(sde_traj) graph_states = k_means.labels_ # sde_traj = np.load(args.input_dir + 'traj.npy') # graph_states = np.load(args.input_dir + 'graph_states.npy') plt.scatter(sde_traj[:, 0], sde_traj[:, 1], c=graph_states) plt.show() sim_graph = graph_generation.LemonGraph(args.radius, args.n_graphs, args.n_nodes, graph_states) graphs, images, node_points = sim_graph.create_adj_matrix(sde_traj, args.out_state, args.if_plot) for i, image in enumerate(images): imageio.imwrite(args.input_dir + f'/traj_{i}.png', image) imageio.mimsave(args.input_dir + '/anim.gif', images, fps=2) np.save(os.path.join(args.input_dir + 'traj.npy'), sde_traj) np.save(os.path.join(args.input_dir + 'graphs.npy'), graphs) np.save(os.path.join(args.input_dir + 'graph_states.npy'), graph_states) np.save(os.path.join(args.input_dir + 'node_points.npy'), node_points)
[ "sklearn.cluster.KMeans", "graphkke.generate_graphs.generate_SDE.LemonSlice2D", "argparse.ArgumentParser", "imageio.imwrite", "numpy.asarray", "os.path.join", "numpy.zeros", "graphkke.generate_graphs.graph_generation.LemonGraph", "matplotlib.pyplot.scatter", "imageio.mimsave", "scipy.rand", "matplotlib.pyplot.show" ]
[((282, 307), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (305, 307), False, 'import argparse\n'), ((1114, 1130), 'numpy.zeros', 'np.zeros', (['[d, n]'], {}), '([d, n])\n', (1122, 1130), True, 'import numpy as np\n'), ((1246, 1315), 'graphkke.generate_graphs.generate_SDE.LemonSlice2D', 'generate_SDE.LemonSlice2D', (['[0.9, 0.9]', 'args.n_graphs', '(2)', 'args.n_wells'], {}), '([0.9, 0.9], args.n_graphs, 2, args.n_wells)\n', (1271, 1315), True, 'import graphkke.generate_graphs.generate_SDE as generate_SDE\n'), ((1674, 1733), 'matplotlib.pyplot.scatter', 'plt.scatter', (['sde_traj[:, 0]', 'sde_traj[:, 1]'], {'c': 'graph_states'}), '(sde_traj[:, 0], sde_traj[:, 1], c=graph_states)\n', (1685, 1733), True, 'import matplotlib.pyplot as plt\n'), ((1738, 1748), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1746, 1748), True, 'import matplotlib.pyplot as plt\n'), ((1766, 1853), 'graphkke.generate_graphs.graph_generation.LemonGraph', 'graph_generation.LemonGraph', (['args.radius', 'args.n_graphs', 'args.n_nodes', 'graph_states'], {}), '(args.radius, args.n_graphs, args.n_nodes,\n graph_states)\n', (1793, 1853), True, 'import graphkke.generate_graphs.graph_generation as graph_generation\n'), ((2106, 2166), 'imageio.mimsave', 'imageio.mimsave', (["(args.input_dir + '/anim.gif')", 'images'], {'fps': '(2)'}), "(args.input_dir + '/anim.gif', images, fps=2)\n", (2121, 2166), False, 'import imageio\n'), ((1333, 1371), 'numpy.asarray', 'np.asarray', (['[[-0.5, 0.5], [-0.5, 0.5]]'], {}), '([[-0.5, 0.5], [-0.5, 0.5]])\n', (1343, 1371), True, 'import numpy as np\n'), ((1373, 1393), 'numpy.asarray', 'np.asarray', (['[10, 10]'], {}), '([10, 10])\n', (1383, 1393), True, 'import numpy as np\n'), ((2044, 2101), 'imageio.imwrite', 'imageio.imwrite', (["(args.input_dir + f'/traj_{i}.png')", 'image'], {}), "(args.input_dir + f'/traj_{i}.png', image)\n", (2059, 2101), False, 'import imageio\n'), ((2180, 2221), 'os.path.join', 'os.path.join', (["(args.input_dir + 'traj.npy')"], {}), "(args.input_dir + 'traj.npy')\n", (2192, 2221), False, 'import os\n'), ((2245, 2288), 'os.path.join', 'os.path.join', (["(args.input_dir + 'graphs.npy')"], {}), "(args.input_dir + 'graphs.npy')\n", (2257, 2288), False, 'import os\n'), ((2310, 2359), 'os.path.join', 'os.path.join', (["(args.input_dir + 'graph_states.npy')"], {}), "(args.input_dir + 'graph_states.npy')\n", (2322, 2359), False, 'import os\n'), ((2387, 2435), 'os.path.join', 'os.path.join', (["(args.input_dir + 'node_points.npy')"], {}), "(args.input_dir + 'node_points.npy')\n", (2399, 2435), False, 'import os\n'), ((1040, 1056), 'scipy.rand', 'scipy.rand', (['(1)', 'n'], {}), '(1, n)\n', (1050, 1056), False, 'import scipy\n'), ((1467, 1498), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'args.n_wells'}), '(n_clusters=args.n_wells)\n', (1473, 1498), False, 'from sklearn.cluster import KMeans\n')]
import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from mpl_finance import candlestick_ohlc # import matplotlib as mpl then mpl.use('TkAgg') import pandas as pd import numpy as np from datetime import datetime df = pd.read_csv('BitMEX-OHLCV-1d.csv') df.columns = ['date', 'open', 'high', 'low', 'close', 'volume'] chart_figure = plt.figure(figsize=(10, 5)) chart_figure.set_facecolor('w') chart_gridspec = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) axes = [] axes.append(plt.subplot(chart_gridspec[0])) axes.append(plt.subplot(chart_gridspec[1], sharex=axes[0])) axes[0].get_xaxis().set_visible(False) x = np.arange(len(df.index)) ohlc = df[['open', 'high', 'low', 'close']].astype(int).values dohlc = np.hstack((np.reshape(x, (-1, 1)), ohlc)) candlestick_ohlc(axes[0], dohlc, width=0.5, colorup='r', colordown='b') axes[1].bar(x, df.volume, color='k', width=0.6, align='center') plt.tight_layout() plt.show()
[ "mpl_finance.candlestick_ohlc", "numpy.reshape", "pandas.read_csv", "matplotlib.pyplot.figure", "matplotlib.gridspec.GridSpec", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((236, 270), 'pandas.read_csv', 'pd.read_csv', (['"""BitMEX-OHLCV-1d.csv"""'], {}), "('BitMEX-OHLCV-1d.csv')\n", (247, 270), True, 'import pandas as pd\n'), ((351, 378), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (361, 378), True, 'import matplotlib.pyplot as plt\n'), ((428, 473), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(2)', '(1)'], {'height_ratios': '[3, 1]'}), '(2, 1, height_ratios=[3, 1])\n', (445, 473), True, 'import matplotlib.gridspec as gridspec\n'), ((770, 841), 'mpl_finance.candlestick_ohlc', 'candlestick_ohlc', (['axes[0]', 'dohlc'], {'width': '(0.5)', 'colorup': '"""r"""', 'colordown': '"""b"""'}), "(axes[0], dohlc, width=0.5, colorup='r', colordown='b')\n", (786, 841), False, 'from mpl_finance import candlestick_ohlc\n'), ((908, 926), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (924, 926), True, 'import matplotlib.pyplot as plt\n'), ((927, 937), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (935, 937), True, 'import matplotlib.pyplot as plt\n'), ((496, 526), 'matplotlib.pyplot.subplot', 'plt.subplot', (['chart_gridspec[0]'], {}), '(chart_gridspec[0])\n', (507, 526), True, 'import matplotlib.pyplot as plt\n'), ((540, 586), 'matplotlib.pyplot.subplot', 'plt.subplot', (['chart_gridspec[1]'], {'sharex': 'axes[0]'}), '(chart_gridspec[1], sharex=axes[0])\n', (551, 586), True, 'import matplotlib.pyplot as plt\n'), ((739, 761), 'numpy.reshape', 'np.reshape', (['x', '(-1, 1)'], {}), '(x, (-1, 1))\n', (749, 761), True, 'import numpy as np\n')]
#!/usr/bin/env python from __future__ import division, print_function import numpy as np import rospy from rospkg.rospack import RosPack from copy import deepcopy from tf2_ros import TransformListener, Buffer from bopt_grasp_quality.srv import bopt, boptResponse from bayesian_optimization import Random_Explorer from bayesian_optimization.opt_nodes import RS_Node # from math import nan from geometry_msgs.msg import PoseStamped, Pose, Transform def TF2Pose(TF_msg): new_pose = PoseStamped() new_pose.header = TF_msg.header new_pose.pose.position.x = TF_msg.transform.translation.x new_pose.pose.position.y = TF_msg.transform.translation.y new_pose.pose.position.z = TF_msg.transform.translation.z new_pose.pose.orientation.x = TF_msg.transform.rotation.x new_pose.pose.orientation.y = TF_msg.transform.rotation.y new_pose.pose.orientation.z = TF_msg.transform.rotation.z new_pose.pose.orientation.w = TF_msg.transform.rotation.w return new_pose if __name__ == "__main__": rospy.init_node('ros_bo') # lb_y = rospy.get_param('~lb_x', -.2) # ub_y = rospy.get_param('~ub_x', .2) lb_x = [float(xx) for xx in rospy.get_param('~lb_x', [-.2, 0., -.2])] ub_x = [float(xx) for xx in rospy.get_param('~ub_x', [.2, 0., .2])] ee_link = rospy.get_param('~ee_link', 'hand_root') base_link = rospy.get_param('~base_link', 'world') service_name = rospy.get_param('~commander_service', 'bayes_optimization') n_iter = rospy.get_param('~search_iters', 20) resolution = rospy.get_param('~resolution', .001) tf_buffer = Buffer(rospy.Duration(50)) tf_listener = TransformListener(tf_buffer) rospy.loginfo(rospy.get_name().split('/')[1] + ': Initialization....') rospy.loginfo(rospy.get_name().split('/')[1] + ': Getting current pose....') rospy.sleep(0.5) try: ARM_TF = tf_buffer.lookup_transform(base_link, ee_link, rospy.Time().now(), rospy.Duration(0.1)) current_pose = TF2Pose(ARM_TF) except Exception as e: rospy.logerr('error in finding the arm...') rospy.logerr('Starting at (0, 0, 0), (0, 0, 0, 1)') current_pose = PoseStamped() current_pose.pose.orientation.w = 1. pose = [ [current_pose.pose.position.x, current_pose.pose.position.y, current_pose.pose.position.z], [current_pose.pose.orientation.x, current_pose.pose.orientation.y, current_pose.pose.orientation.z, current_pose.pose.orientation.w]] rospy.loginfo( rospy.get_name().split('/')[1] + ': starting at: ({:.3f}, {:.3f}, {:.3f})-({:.3f}, {:.3f}, {:.3f}, {:.3f})'.format(*pose[0] + pose[1]) ) n = len(lb_x) init_pos = np.array([ current_pose.pose.position.x, current_pose.pose.position.y, current_pose.pose.position.z]) assert(len(lb_x) == len(ub_x)) params = { Random_Explorer.PARAMS.iters :n_iter, Random_Explorer.PARAMS.init_pos : init_pos, Random_Explorer.PARAMS.sampling : [resolution] * n} # lb = current_pose.pose.position.y + lb_x * np.ones((n,)) # ub = current_pose.pose.position.y + ub_x * np.ones((n,)) lb = init_pos[np.arange(len(lb_x))] + lb_x - 1e-10 ub = init_pos[np.arange(len(ub_x))] + ub_x RS_Node(n, params, lb=lb, ub=ub, init_pose=current_pose.pose, service_name=service_name)
[ "rospy.logerr", "tf2_ros.TransformListener", "rospy.init_node", "rospy.get_param", "numpy.array", "rospy.Time", "geometry_msgs.msg.PoseStamped", "rospy.get_name", "rospy.Duration", "rospy.sleep", "bayesian_optimization.opt_nodes.RS_Node" ]
[((486, 499), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (497, 499), False, 'from geometry_msgs.msg import PoseStamped, Pose, Transform\n'), ((1025, 1050), 'rospy.init_node', 'rospy.init_node', (['"""ros_bo"""'], {}), "('ros_bo')\n", (1040, 1050), False, 'import rospy\n'), ((1297, 1337), 'rospy.get_param', 'rospy.get_param', (['"""~ee_link"""', '"""hand_root"""'], {}), "('~ee_link', 'hand_root')\n", (1312, 1337), False, 'import rospy\n'), ((1354, 1392), 'rospy.get_param', 'rospy.get_param', (['"""~base_link"""', '"""world"""'], {}), "('~base_link', 'world')\n", (1369, 1392), False, 'import rospy\n'), ((1412, 1471), 'rospy.get_param', 'rospy.get_param', (['"""~commander_service"""', '"""bayes_optimization"""'], {}), "('~commander_service', 'bayes_optimization')\n", (1427, 1471), False, 'import rospy\n'), ((1485, 1521), 'rospy.get_param', 'rospy.get_param', (['"""~search_iters"""', '(20)'], {}), "('~search_iters', 20)\n", (1500, 1521), False, 'import rospy\n'), ((1539, 1576), 'rospy.get_param', 'rospy.get_param', (['"""~resolution"""', '(0.001)'], {}), "('~resolution', 0.001)\n", (1554, 1576), False, 'import rospy\n'), ((1638, 1666), 'tf2_ros.TransformListener', 'TransformListener', (['tf_buffer'], {}), '(tf_buffer)\n', (1655, 1666), False, 'from tf2_ros import TransformListener, Buffer\n'), ((1827, 1843), 'rospy.sleep', 'rospy.sleep', (['(0.5)'], {}), '(0.5)\n', (1838, 1843), False, 'import rospy\n'), ((2689, 2793), 'numpy.array', 'np.array', (['[current_pose.pose.position.x, current_pose.pose.position.y, current_pose.\n pose.position.z]'], {}), '([current_pose.pose.position.x, current_pose.pose.position.y,\n current_pose.pose.position.z])\n', (2697, 2793), True, 'import numpy as np\n'), ((3267, 3360), 'bayesian_optimization.opt_nodes.RS_Node', 'RS_Node', (['n', 'params'], {'lb': 'lb', 'ub': 'ub', 'init_pose': 'current_pose.pose', 'service_name': 'service_name'}), '(n, params, lb=lb, ub=ub, init_pose=current_pose.pose, service_name=\n service_name)\n', (3274, 3360), False, 'from bayesian_optimization.opt_nodes import RS_Node\n'), ((1600, 1618), 'rospy.Duration', 'rospy.Duration', (['(50)'], {}), '(50)\n', (1614, 1618), False, 'import rospy\n'), ((1169, 1212), 'rospy.get_param', 'rospy.get_param', (['"""~lb_x"""', '[-0.2, 0.0, -0.2]'], {}), "('~lb_x', [-0.2, 0.0, -0.2])\n", (1184, 1212), False, 'import rospy\n'), ((1243, 1284), 'rospy.get_param', 'rospy.get_param', (['"""~ub_x"""', '[0.2, 0.0, 0.2]'], {}), "('~ub_x', [0.2, 0.0, 0.2])\n", (1258, 1284), False, 'import rospy\n'), ((1937, 1956), 'rospy.Duration', 'rospy.Duration', (['(0.1)'], {}), '(0.1)\n', (1951, 1956), False, 'import rospy\n'), ((2032, 2075), 'rospy.logerr', 'rospy.logerr', (['"""error in finding the arm..."""'], {}), "('error in finding the arm...')\n", (2044, 2075), False, 'import rospy\n'), ((2084, 2135), 'rospy.logerr', 'rospy.logerr', (['"""Starting at (0, 0, 0), (0, 0, 0, 1)"""'], {}), "('Starting at (0, 0, 0), (0, 0, 0, 1)')\n", (2096, 2135), False, 'import rospy\n'), ((2160, 2173), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (2171, 2173), False, 'from geometry_msgs.msg import PoseStamped, Pose, Transform\n'), ((1917, 1929), 'rospy.Time', 'rospy.Time', ([], {}), '()\n', (1927, 1929), False, 'import rospy\n'), ((1685, 1701), 'rospy.get_name', 'rospy.get_name', ([], {}), '()\n', (1699, 1701), False, 'import rospy\n'), ((1760, 1776), 'rospy.get_name', 'rospy.get_name', ([], {}), '()\n', (1774, 1776), False, 'import rospy\n'), ((2510, 2526), 'rospy.get_name', 'rospy.get_name', ([], {}), '()\n', (2524, 2526), False, 'import rospy\n')]
#!/bin/python # -*- coding: utf-8 -*- import numpy as np import numpy.linalg as nl import scipy.linalg as sl import scipy.stats as ss import time aca = np.ascontiguousarray def nul(n): return np.zeros((n, n)) def iuc(x, y): """ Checks if pair of generalized EVs x,y is inside the unit circle. Here for legacy reasons """ out = np.empty_like(x, dtype=bool) nonzero = y != 0 # handles (x, y) = (0, 0) too out[~nonzero] = False out[nonzero] = abs(x[nonzero] / y[nonzero]) < 1.0 return out def ouc(x, y): """ Check if pair of generalized EVs x,y is outside the unit circle. Here for legacy reasons """ # stolen from scipy and inverted out = np.empty_like(x, dtype=bool) nonzero = y != 0 # handles (x, y) = (0, 0) too out[~nonzero] = True out[nonzero] = abs(x[nonzero] / y[nonzero]) > 1.0 return out def klein(A, B=None, nstates=None, verbose=False, force=False): """ Klein's method """ st = time.time() if B is None: B = np.eye(A.shape[0]) SS, TT, alp, bet, Q, Z = sl.ordqz(A, B, sort="ouc") if np.any(np.isclose(alp, bet)): mess = " Warning: unit root detected!" else: mess = "" # check for precision if not fast0(Q @ SS @ Z.T - A, 2): raise ValueError("Numerical errors in QZ") if verbose > 1: out = np.empty_like(alp) nonzero = bet != 0 out[~nonzero] = np.inf * np.abs(alp[~nonzero]) out[nonzero] = alp[nonzero] / bet[nonzero] print( "[RE solver:]".ljust(15, " ") + " Generalized EVs:\n", np.sort(np.abs(out)) ) # check for Blanchard-Kahn out = ouc(alp, bet) if not nstates: nstates = sum(out) else: if not nstates == sum(out): mess = ( "B-K condition not satisfied: %s states but %s Evs inside the unit circle." % (nstates, sum(out)) + mess ) if not force: raise ValueError(mess) elif verbose: print(mess) S11 = SS[:nstates, :nstates] T11 = TT[:nstates, :nstates] Z11 = Z[:nstates, :nstates] Z21 = Z[nstates:, :nstates] # changed from sl to nl because of stability: omg = Z21 @ nl.inv(Z11) lam = Z11 @ nl.inv(S11) @ T11 @ nl.inv(Z11) if verbose: print( "[RE solver:]".ljust(15, " ") + " Done in %s. Determinant of `Z11` is %1.2e. There are %s EVs o.u.c. (of %s)." % (np.round((time.time() - st), 5), nl.det(Z11), sum(out), len(out)) + mess ) return omg, lam # def re_bk(A, B=None, d_endo=None, verbose=False, force=False): # """ # Klein's method # """ # # TODO: rename this # print('[RE solver:]'.ljust(15, ' ') + # ' `re_bk` is depreciated. Use `klein` instead.') # if B is None: # B = np.eye(A.shape[0]) # MM, PP, alp, bet, Q, Z = sl.ordqz(A, B, sort='iuc') # if not fast0(Q @ MM @ Z.T - A, 2): # raise ValueError('Numerical errors in QZ') # if verbose > 1: # print('[RE solver:]'.ljust(15, ' ') + # ' Pairs of `alp` and `bet`:\n', np.vstack((alp, bet)).T) # out = ouc(alp, bet) # if not d_endo: # d_endo = sum(out) # else: # if sum(out) > d_endo: # mess = 'B-K condition not satisfied: %s EVs outside the unit circle for %s forward looking variables.' % ( # sum(out), d_endo) # elif sum(out) < d_endo: # mess = 'B-K condition not satisfied: %s EVs outside the unit circle for %s forward looking variables.' % ( # sum(out), d_endo) # else: # mess = '' # if mess and not force: # raise ValueError(mess) # elif mess and verbose: # print(mess) # Z21 = Z.T[-d_endo:, :d_endo] # Z22 = Z.T[-d_endo:, d_endo:] # if verbose: # print('[RE solver:]'.ljust( # 15, ' ')+' Determinant of `Z21` is %1.2e. There are %s EVs o.u.c.' % (nl.det(Z21), sum(out))) # return -nl.inv(Z21) @ Z22 def lti(AA, BB, CC, dimp, dimq, tol=1e-6, check=False, verbose=False): """standard linear time iteration""" if check: pass g = np.eye(dimq + dimp) norm = tol + 1 icnt = 0 while norm > tol: gn = g g = -nl.solve(BB + AA @ g, CC) norm = np.max(np.abs(gn - g)) icnt += 1 if verbose: print(icnt) omg = g[dimq:, :dimq] lam = g[:dimq, :dimq] return omg, lam def speed_kills(A, B, dimp, dimq, selector=None, tol=1e-6, check=False, verbose=False): """Improved linear time iteration""" q, A = nl.qr(A) B = q.T @ B B11i = nl.inv(B[dimq:, dimq:]) A[dimq:] = B11i @ A[dimq:] B[dimq:] = B11i @ B[dimq:] A[:dimq] -= B[:dimq, dimq:] @ A[dimq:] B[:dimq, :dimq] -= B[:dimq, dimq:] @ B[dimq:, :dimq] B[:dimq, dimq:] = 0 B[dimq:, dimq:] = np.eye(dimp) A1 = A[:dimq, :dimq] A3 = A[dimq:, dimq:] A2 = A[:dimq, dimq:] B1 = B[:dimq, :dimq] B2 = B[dimq:, :dimq] g = -B2 norm = tol + 1 icnt = 0 icnt = 0 while norm > tol: gn = g g = A3 @ g @ nl.solve(A1 + A2 @ g, B1) - B2 if selector is not None: norm = np.max(np.abs(gn - g)[selector]) else: norm = np.max(np.abs(gn - g)) icnt += 1 if verbose: print(icnt) if icnt == max_iter: raise Exception("iteration did not converge") return g, -nl.inv(A[:dimq, :dimq] + A2 @ g) @ B1 def fast0(A, mode=-1, tol=1e-08): con = abs(A) < tol if mode == -1: return con elif mode == 0: return con.all(axis=0) elif mode == 1: return con.all(axis=1) else: return con.all() def map2arr(iterator, return_np_array=True, check_nones=True): """Function to cast result from `map` to a tuple of stacked results By default, this returns numpy arrays. Automatically checks if the map object is a tuple, and if not, just one object is returned (instead of a tuple). Be warned, this does not work if the result of interest of the mapped function is a single tuple. Parameters ---------- iterator : iter the iterator returning from `map` Returns ------- numpy array (optional: list) """ res = () mode = 0 for obj in iterator: if check_nones and obj is None: continue if not mode: if isinstance(obj, tuple): for entry in obj: res = res + ([entry],) mode = 1 else: res = [obj] mode = 2 else: if mode == 1: for no, entry in enumerate(obj): res[no].append(entry) else: res.append(obj) if return_np_array: if mode == 1: res = tuple(np.array(tupo) for tupo in res) else: res = np.array(res) return res def napper(cond, interval=0.1): import time start_time = time.time() while not cond(): elt = round(time.time() - start_time, 3) print("Zzzz... " + str(elt) + "s", end="\r", flush=True) time.sleep(interval) print("Zzzz... " + str(elt) + "s.") def timeprint(s, round_to=5, full=False): if s < 60: if full: return str(np.round(s, round_to)) + " seconds" return str(np.round(s, round_to)) + "s" m, s = divmod(s, 60) if m < 60: if full: return "%s minutes, %s seconds" % (int(m), int(s)) return "%sm%ss" % (int(m), int(s)) h, m = divmod(m, 60) if full: return "%s hours, %s minutes, %s seconds" % (int(h), int(m), int(s)) return "%sh%sm%ss" % (int(h), int(m), int(s)) def shuffle(a, axis=-1): """Shuffle along single axis""" shape = a.shape res = a.reshape(-1, a.shape[axis]) np.random.shuffle(res) return res.reshape(shape) def print_dict(d): for k in d.keys(): print(str(k) + ":", d[k]) return 0 def sabs(x, eps=1e-10): """absolute value but smooth around 0""" return np.sqrt(x ** 2 + eps) # aliases map2list = map2arr indof = np.searchsorted
[ "numpy.abs", "numpy.eye", "numpy.linalg.solve", "numpy.linalg.qr", "numpy.sqrt", "numpy.isclose", "time.sleep", "numpy.linalg.det", "numpy.array", "numpy.zeros", "numpy.linalg.inv", "numpy.empty_like", "scipy.linalg.ordqz", "time.time", "numpy.round", "numpy.random.shuffle" ]
[((200, 216), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (208, 216), True, 'import numpy as np\n'), ((354, 382), 'numpy.empty_like', 'np.empty_like', (['x'], {'dtype': 'bool'}), '(x, dtype=bool)\n', (367, 382), True, 'import numpy as np\n'), ((709, 737), 'numpy.empty_like', 'np.empty_like', (['x'], {'dtype': 'bool'}), '(x, dtype=bool)\n', (722, 737), True, 'import numpy as np\n'), ((999, 1010), 'time.time', 'time.time', ([], {}), '()\n', (1008, 1010), False, 'import time\n'), ((1090, 1116), 'scipy.linalg.ordqz', 'sl.ordqz', (['A', 'B'], {'sort': '"""ouc"""'}), "(A, B, sort='ouc')\n", (1098, 1116), True, 'import scipy.linalg as sl\n'), ((4041, 4060), 'numpy.eye', 'np.eye', (['(dimq + dimp)'], {}), '(dimq + dimp)\n', (4047, 4060), True, 'import numpy as np\n'), ((4481, 4489), 'numpy.linalg.qr', 'nl.qr', (['A'], {}), '(A)\n', (4486, 4489), True, 'import numpy.linalg as nl\n'), ((4518, 4541), 'numpy.linalg.inv', 'nl.inv', (['B[dimq:, dimq:]'], {}), '(B[dimq:, dimq:])\n', (4524, 4541), True, 'import numpy.linalg as nl\n'), ((4753, 4765), 'numpy.eye', 'np.eye', (['dimp'], {}), '(dimp)\n', (4759, 4765), True, 'import numpy as np\n'), ((6922, 6933), 'time.time', 'time.time', ([], {}), '()\n', (6931, 6933), False, 'import time\n'), ((7785, 7807), 'numpy.random.shuffle', 'np.random.shuffle', (['res'], {}), '(res)\n', (7802, 7807), True, 'import numpy as np\n'), ((8014, 8035), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + eps)'], {}), '(x ** 2 + eps)\n', (8021, 8035), True, 'import numpy as np\n'), ((1041, 1059), 'numpy.eye', 'np.eye', (['A.shape[0]'], {}), '(A.shape[0])\n', (1047, 1059), True, 'import numpy as np\n'), ((1132, 1152), 'numpy.isclose', 'np.isclose', (['alp', 'bet'], {}), '(alp, bet)\n', (1142, 1152), True, 'import numpy as np\n'), ((1382, 1400), 'numpy.empty_like', 'np.empty_like', (['alp'], {}), '(alp)\n', (1395, 1400), True, 'import numpy as np\n'), ((2305, 2316), 'numpy.linalg.inv', 'nl.inv', (['Z11'], {}), '(Z11)\n', (2311, 2316), True, 'import numpy.linalg as nl\n'), ((2353, 2364), 'numpy.linalg.inv', 'nl.inv', (['Z11'], {}), '(Z11)\n', (2359, 2364), True, 'import numpy.linalg as nl\n'), ((7080, 7100), 'time.sleep', 'time.sleep', (['interval'], {}), '(interval)\n', (7090, 7100), False, 'import time\n'), ((1461, 1482), 'numpy.abs', 'np.abs', (['alp[~nonzero]'], {}), '(alp[~nonzero])\n', (1467, 1482), True, 'import numpy as np\n'), ((4145, 4170), 'numpy.linalg.solve', 'nl.solve', (['(BB + AA @ g)', 'CC'], {}), '(BB + AA @ g, CC)\n', (4153, 4170), True, 'import numpy.linalg as nl\n'), ((4193, 4207), 'numpy.abs', 'np.abs', (['(gn - g)'], {}), '(gn - g)\n', (4199, 4207), True, 'import numpy as np\n'), ((6823, 6836), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (6831, 6836), True, 'import numpy as np\n'), ((1625, 1636), 'numpy.abs', 'np.abs', (['out'], {}), '(out)\n', (1631, 1636), True, 'import numpy as np\n'), ((2333, 2344), 'numpy.linalg.inv', 'nl.inv', (['S11'], {}), '(S11)\n', (2339, 2344), True, 'import numpy.linalg as nl\n'), ((5010, 5035), 'numpy.linalg.solve', 'nl.solve', (['(A1 + A2 @ g)', 'B1'], {}), '(A1 + A2 @ g, B1)\n', (5018, 5035), True, 'import numpy.linalg as nl\n'), ((5166, 5180), 'numpy.abs', 'np.abs', (['(gn - g)'], {}), '(gn - g)\n', (5172, 5180), True, 'import numpy as np\n'), ((5333, 5365), 'numpy.linalg.inv', 'nl.inv', (['(A[:dimq, :dimq] + A2 @ g)'], {}), '(A[:dimq, :dimq] + A2 @ g)\n', (5339, 5365), True, 'import numpy.linalg as nl\n'), ((6978, 6989), 'time.time', 'time.time', ([], {}), '()\n', (6987, 6989), False, 'import time\n'), ((7297, 7318), 'numpy.round', 'np.round', (['s', 'round_to'], {}), '(s, round_to)\n', (7305, 7318), True, 'import numpy as np\n'), ((5100, 5114), 'numpy.abs', 'np.abs', (['(gn - g)'], {}), '(gn - g)\n', (5106, 5114), True, 'import numpy as np\n'), ((6759, 6773), 'numpy.array', 'np.array', (['tupo'], {}), '(tupo)\n', (6767, 6773), True, 'import numpy as np\n'), ((7242, 7263), 'numpy.round', 'np.round', (['s', 'round_to'], {}), '(s, round_to)\n', (7250, 7263), True, 'import numpy as np\n'), ((2580, 2591), 'numpy.linalg.det', 'nl.det', (['Z11'], {}), '(Z11)\n', (2586, 2591), True, 'import numpy.linalg as nl\n'), ((2557, 2568), 'time.time', 'time.time', ([], {}), '()\n', (2566, 2568), False, 'import time\n')]
import collections import logging from event_model import DocumentRouter, RunRouter import numpy from matplotlib.backends.backend_qt5agg import ( FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) import matplotlib from qtpy.QtWidgets import ( # noqa QLabel, QWidget, QVBoxLayout, ) from traitlets.traitlets import Bool, List, Set from traitlets.config import Configurable from .hints import hinted_fields, guess_dimensions # noqa from .image import LatestFrameImageManager from ..utils import load_config matplotlib.use('Qt5Agg') # must set before importing matplotlib.pyplot import matplotlib.pyplot as plt # noqa log = logging.getLogger('bluesky_browser') class LinePlotManager(Configurable): """ Manage the line plots for one FigureManager. """ omit_single_point_plot = Bool(True, config=True) def __init__(self, fig_manager, dimensions): self.update_config(load_config()) self.fig_manager = fig_manager self.start_doc = None self.dimensions = dimensions self.dim_streams = set(stream for _, stream in self.dimensions) if len(self.dim_streams) > 1: raise NotImplementedError def __call__(self, name, start_doc): self.start_doc = start_doc return [], [self.subfactory] def subfactory(self, name, descriptor_doc): if self.omit_single_point_plot and self.start_doc.get('num_points') == 1: return [] if len(self.dimensions) > 1: return [] # This is a job for Grid. fields = set(hinted_fields(descriptor_doc)) # Filter out the fields with a data type or shape that we cannot # represent in a line plot. for field in list(fields): dtype = descriptor_doc['data_keys'][field]['dtype'] if dtype not in ('number', 'integer'): fields.discard(field) ndim = len(descriptor_doc['data_keys'][field]['shape'] or []) if ndim != 0: fields.discard(field) callbacks = [] dim_stream, = self.dim_streams # TODO Handle multiple dim_streams. if descriptor_doc.get('name') == dim_stream: dimension, = self.dimensions x_keys, stream_name = dimension fields -= set(x_keys) assert stream_name == dim_stream # TODO Handle multiple dim_streams. for x_key in x_keys: figure_label = f'Scalars v {x_key}' fig = self.fig_manager.get_figure( ('line', x_key, tuple(fields)), figure_label, len(fields), sharex=True) for y_key, ax in zip(fields, fig.axes): log.debug('plot %s against %s', y_key, x_key) ylabel = y_key y_units = descriptor_doc['data_keys'][y_key].get('units') ax.set_ylabel(y_key) if y_units: ylabel += f' [{y_units}]' # Set xlabel only on lowest axes, outside for loop below. def func(event_page, y_key=y_key): """ Extract x points and y points to plot out of an EventPage. This will be passed to LineWithPeaks. """ y_data = event_page['data'][y_key] if x_key == 'time': t0 = self.start_doc['time'] x_data = numpy.asarray(event_page['time']) - t0 elif x_key == 'seq_num': x_data = event_page['seq_num'] else: x_data = event_page['data'][x_key] return x_data, y_data line = Line(func, ax=ax) callbacks.append(line) if fields: # Set the xlabel on the bottom-most axis. if x_key == 'time': xlabel = x_key x_units = 's' elif x_key == 'seq_num': xlabel = 'sequence number' x_units = None else: xlabel = x_key x_units = descriptor_doc['data_keys'][x_key].get('units') if x_units: xlabel += f' [{x_units}]' ax.set_xlabel(x_key) fig.tight_layout() # TODO Plot other streams against time. for callback in callbacks: callback('start', self.start_doc) callback('descriptor', descriptor_doc) return callbacks class Line(DocumentRouter): """ Draw a matplotlib Line Arist update it for each Event. Parameters ---------- func : callable This must accept an EventPage and return two lists of floats (x points and y points). The two lists must contain an equal number of items, but that number is arbitrary. That is, a given document may add one new point to the plot, no new points, or multiple new points. label_template : string This string will be formatted with the RunStart document. Any missing values will be filled with '?'. If the keyword argument 'label' is given, this argument will be ignored. ax : matplotlib Axes, optional If None, a new Figure and Axes are created. **kwargs Passed through to :meth:`Axes.plot` to style Line object. """ def __init__(self, func, *, label_template='{scan_id} [{uid:.8}]', ax=None, **kwargs): self.func = func if ax is None: import matplotlib.pyplot as plt _, ax = plt.subplots() self.ax = ax self.line, = ax.plot([], [], **kwargs) self.x_data = [] self.y_data = [] self.label_template = label_template self.label = kwargs.get('label') def start(self, doc): if self.label is None: d = collections.defaultdict(lambda: '?') d.update(**doc) label = self.label_template.format_map(d) else: label = self.label if label: self.line.set_label(label) self.ax.legend(loc='best') def event_page(self, doc): x, y = self.func(doc) self._update(x, y) def _update(self, x, y): """ Takes in new x and y points and redraws plot if they are not empty. """ if not len(x) == len(y): raise ValueError("User function is expected to provide the same " "number of x and y points. Got {len(x)} x points " "and {len(y)} y points.") if not x: # No new data. Short-circuit. return self.x_data.extend(x) self.y_data.extend(y) self.line.set_data(self.x_data, self.y_data) self.ax.relim(visible_only=True) self.ax.autoscale_view(tight=True) self.ax.figure.canvas.draw_idle() class Grid(DocumentRouter): """ Draw a matplotlib AxesImage Arist update it for each Event. The purposes of this callback is to create (on initialization) of a matplotlib grid image and then update it with new data for every `event`. NOTE: Some important parameters are fed in through **kwargs like `extent` which defines the axes min and max and `origin` which defines if the grid co-ordinates start in the bottom left or top left of the plot. For more info see https://matplotlib.org/tutorials/intermediate/imshow_extent.html or https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.imshow.html#matplotlib.axes.Axes.imshow Parameters ---------- func : callable This must accept a BulkEvent and return three lists of floats (x grid co-ordinates, y grid co-ordinates and grid position intensity values). The three lists must contain an equal number of items, but that number is arbitrary. That is, a given document may add one new point, no new points or multiple new points to the plot. shape : tuple The (row, col) shape of the grid. ax : matplotlib Axes, optional. if ``None``, a new Figure and Axes are created. **kwargs Passed through to :meth:`Axes.imshow` to style the AxesImage object. """ def __init__(self, func, shape, *, ax=None, **kwargs): self.func = func self.shape = shape if ax is None: _, ax = plt.subplots() self.ax = ax self.grid_data = numpy.full(self.shape, numpy.nan) self.image, = ax.imshow(self.grid_data, **kwargs) def event_page(self, doc): ''' Takes in a bulk_events document and updates grid_data with the values returned from self.func(doc) Parameters ---------- doc : dict The bulk event dictionary that contains the 'data' and 'timestamps' associated with the bulk event. Returns ------- x_coords, y_coords, I_vals : Lists These are lists of x co-ordinate, y co-ordinate and intensity values arising from the bulk event. ''' x_coords, y_coords, I_vals = self.func(doc) self._update(x_coords, y_coords, I_vals) def _update(self, x_coords, y_coords, I_vals): ''' Updates self.grid_data with the values from the lists x_coords, y_coords, I_vals. Parameters ---------- x_coords, y_coords, I_vals : Lists These are lists of x co-ordinate, y co-ordinate and intensity values arising from the event. The length of all three lists must be the same. ''' if not len(x_coords) == len(y_coords) == len(I_vals): raise ValueError("User function is expected to provide the same " "number of x, y and I points. Got {0} x points, " "{1} y points and {2} I values." "".format(len(x_coords), len(y_coords), len(I_vals))) if not x_coords: # No new data, Short-circuit. return # Update grid_data and the plot. self.grid_data[x_coords, y_coords] = I_vals self.image.set_array(self.grid_data) class FigureManager(Configurable): """ For a given Viewer, encasulate the matplotlib Figures and associated tabs. """ factories = List([ LinePlotManager, LatestFrameImageManager], config=True) enabled = Bool(True, config=True) exclude_streams = Set([], config=True) def __init__(self, add_tab): self.update_config(load_config()) self.add_tab = add_tab self._figures = {} def get_figure(self, key, label, *args, **kwargs): try: return self._figures[key] except KeyError: return self._add_figure(key, label, *args, **kwargs) def _add_figure(self, key, label, *args, **kwargs): tab = QWidget() fig, _ = plt.subplots(*args, **kwargs) canvas = FigureCanvas(fig) canvas.setMinimumWidth(640) canvas.setParent(tab) toolbar = NavigationToolbar(canvas, tab) tab_label = QLabel(label) tab_label.setMaximumHeight(20) layout = QVBoxLayout() layout.addWidget(tab_label) layout.addWidget(canvas) layout.addWidget(toolbar) tab.setLayout(layout) self.add_tab(tab, label) self._figures[key] = fig return fig def __call__(self, name, start_doc): if not self.enabled: return [], [] dimensions = start_doc.get('hints', {}).get('dimensions', guess_dimensions(start_doc)) rr = RunRouter( [factory(self, dimensions) for factory in self.factories]) rr('start', start_doc) return [rr], []
[ "logging.getLogger", "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT", "traitlets.traitlets.Set", "qtpy.QtWidgets.QVBoxLayout", "matplotlib.use", "qtpy.QtWidgets.QLabel", "qtpy.QtWidgets.QWidget", "numpy.asarray", "traitlets.traitlets.Bool", "traitlets.traitlets.List", "collections.defaultdict", "matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg", "numpy.full", "matplotlib.pyplot.subplots" ]
[((562, 586), 'matplotlib.use', 'matplotlib.use', (['"""Qt5Agg"""'], {}), "('Qt5Agg')\n", (576, 586), False, 'import matplotlib\n'), ((682, 718), 'logging.getLogger', 'logging.getLogger', (['"""bluesky_browser"""'], {}), "('bluesky_browser')\n", (699, 718), False, 'import logging\n'), ((852, 875), 'traitlets.traitlets.Bool', 'Bool', (['(True)'], {'config': '(True)'}), '(True, config=True)\n', (856, 875), False, 'from traitlets.traitlets import Bool, List, Set\n'), ((10662, 10723), 'traitlets.traitlets.List', 'List', (['[LinePlotManager, LatestFrameImageManager]'], {'config': '(True)'}), '([LinePlotManager, LatestFrameImageManager], config=True)\n', (10666, 10723), False, 'from traitlets.traitlets import Bool, List, Set\n'), ((10763, 10786), 'traitlets.traitlets.Bool', 'Bool', (['(True)'], {'config': '(True)'}), '(True, config=True)\n', (10767, 10786), False, 'from traitlets.traitlets import Bool, List, Set\n'), ((10809, 10829), 'traitlets.traitlets.Set', 'Set', (['[]'], {'config': '(True)'}), '([], config=True)\n', (10812, 10829), False, 'from traitlets.traitlets import Bool, List, Set\n'), ((8707, 8740), 'numpy.full', 'numpy.full', (['self.shape', 'numpy.nan'], {}), '(self.shape, numpy.nan)\n', (8717, 8740), False, 'import numpy\n'), ((11232, 11241), 'qtpy.QtWidgets.QWidget', 'QWidget', ([], {}), '()\n', (11239, 11241), False, 'from qtpy.QtWidgets import QLabel, QWidget, QVBoxLayout\n'), ((11259, 11288), 'matplotlib.pyplot.subplots', 'plt.subplots', (['*args'], {}), '(*args, **kwargs)\n', (11271, 11288), True, 'import matplotlib.pyplot as plt\n'), ((11306, 11323), 'matplotlib.backends.backend_qt5agg.FigureCanvasQTAgg', 'FigureCanvas', (['fig'], {}), '(fig)\n', (11318, 11323), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((11408, 11438), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['canvas', 'tab'], {}), '(canvas, tab)\n', (11425, 11438), True, 'from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar\n'), ((11459, 11472), 'qtpy.QtWidgets.QLabel', 'QLabel', (['label'], {}), '(label)\n', (11465, 11472), False, 'from qtpy.QtWidgets import QLabel, QWidget, QVBoxLayout\n'), ((11530, 11543), 'qtpy.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (11541, 11543), False, 'from qtpy.QtWidgets import QLabel, QWidget, QVBoxLayout\n'), ((5824, 5838), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5836, 5838), True, 'import matplotlib.pyplot as plt\n'), ((6117, 6154), 'collections.defaultdict', 'collections.defaultdict', (["(lambda : '?')"], {}), "(lambda : '?')\n", (6140, 6154), False, 'import collections\n'), ((8646, 8660), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8658, 8660), True, 'import matplotlib.pyplot as plt\n'), ((3536, 3569), 'numpy.asarray', 'numpy.asarray', (["event_page['time']"], {}), "(event_page['time'])\n", (3549, 3569), False, 'import numpy\n')]
#!/usr/bin/env python # Break up idstr file into separate measid/objectid lists per exposure on /data0 import os import sys import numpy as np import time from dlnpyutils import utils as dln, db from astropy.io import fits import sqlite3 import socket from argparse import ArgumentParser def breakup_idstr(dbfile): """ Break-up idstr file into separate measid/objectid lists per exposure on /data0.""" t00 = time.time() outdir = '/data0/dnidever/nsc/instcal/v3/idstr/' # Load the exposures table expcat = fits.getdata('/net/dl2/dnidever/nsc/instcal/v3/lists/nsc_v3_exposure_table.fits.gz',1) # Make sure it's a list if type(dbfile) is str: dbfile=[dbfile] print('Breaking up '+str(len(dbfile))+' database files') # Loop over files for i,dbfile1 in enumerate(dbfile): print(str(i+1)+' '+dbfile1) if os.path.exists(dbfile1): t0 = time.time() dbbase1 = os.path.basename(dbfile1)[0:-9] # remove _idstr.db ending # Get existing index names for this database d = sqlite3.connect(dbfile1, detect_types=sqlite3.PARSE_DECLTYPES|sqlite3.PARSE_COLNAMES) cur = d.cursor() cmd = 'select measid,exposure,objectid from idstr' t1 = time.time() data = cur.execute(cmd).fetchall() print(' '+str(len(data))+' rows read in %5.1f sec. ' % (time.time()-t1)) # Break up data into lists measid,exposure,objectid = list(zip(*data)) measid = np.array(measid) objectid = np.array(objectid) exposure = np.array(exposure) eindex = dln.create_index(exposure) # Match exposures to exposure catalog ind1,ind2 = dln.match(expcat['EXPOSURE'],eindex['value']) # Loop over exposures and write output files nexp = len(eindex['value']) print(' '+str(nexp)+' exposures') measid_maxlen = np.max(dln.strlen(measid)) objectid_maxlen = np.max(dln.strlen(objectid)) df = np.dtype([('measid',np.str,measid_maxlen+1),('objectid',np.str,objectid_maxlen+1)]) # Loop over the exposures and write out the files for k in range(nexp): if nexp>100: if k % 100 == 0: print(' '+str(k+1)) ind = eindex['index'][eindex['lo'][k]:eindex['hi'][k]+1] cat = np.zeros(len(ind),dtype=df) cat['measid'] = measid[ind] cat['objectid'] = objectid[ind] instcode = expcat['INSTRUMENT'][ind1[k]] dateobs = expcat['DATEOBS'][ind1[k]] night = dateobs[0:4]+dateobs[5:7]+dateobs[8:10] if os.path.exists(outdir+instcode+'/'+night+'/'+eindex['value'][k]) is False: # Sometimes this crashes because another process is making the directory at the same time try: os.makedirs(outdir+instcode+'/'+night+'/'+eindex['value'][k]) except: pass outfile = outdir+instcode+'/'+night+'/'+eindex['value'][k]+'/'+eindex['value'][k]+'__'+dbbase1+'.npy' np.save(outfile,cat) print(' dt = %6.1f sec. ' % (time.time()-t0)) else: print(' '+dbfile1+' NOT FOUND') print('dt = %6.1f sec.' % (time.time()-t00)) if __name__ == "__main__": parser = ArgumentParser(description='Break up idstr into separate lists per exposure.') parser.add_argument('dbfile', type=str, nargs=1, help='Database filename') args = parser.parse_args() hostname = socket.gethostname() host = hostname.split('.')[0] dbfile = args.dbfile[0] # Input is a list if dbfile[0]=='@': listfile = dbfile[1:] if os.path.exists(listfile): dbfile = dln.readlines(listfile) else: print(listfile+' NOT FOUND') sys.exit() breakup_idstr(dbfile)
[ "os.path.exists", "dlnpyutils.utils.match", "sys.exit", "sqlite3.connect", "argparse.ArgumentParser", "os.makedirs", "dlnpyutils.utils.strlen", "dlnpyutils.utils.create_index", "numpy.array", "astropy.io.fits.getdata", "dlnpyutils.utils.readlines", "os.path.basename", "time.time", "numpy.dtype", "socket.gethostname", "numpy.save" ]
[((421, 432), 'time.time', 'time.time', ([], {}), '()\n', (430, 432), False, 'import time\n'), ((532, 624), 'astropy.io.fits.getdata', 'fits.getdata', (['"""/net/dl2/dnidever/nsc/instcal/v3/lists/nsc_v3_exposure_table.fits.gz"""', '(1)'], {}), "(\n '/net/dl2/dnidever/nsc/instcal/v3/lists/nsc_v3_exposure_table.fits.gz', 1)\n", (544, 624), False, 'from astropy.io import fits\n'), ((3464, 3542), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Break up idstr into separate lists per exposure."""'}), "(description='Break up idstr into separate lists per exposure.')\n", (3478, 3542), False, 'from argparse import ArgumentParser\n'), ((3669, 3689), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (3687, 3689), False, 'import socket\n'), ((864, 887), 'os.path.exists', 'os.path.exists', (['dbfile1'], {}), '(dbfile1)\n', (878, 887), False, 'import os\n'), ((3839, 3863), 'os.path.exists', 'os.path.exists', (['listfile'], {}), '(listfile)\n', (3853, 3863), False, 'import os\n'), ((906, 917), 'time.time', 'time.time', ([], {}), '()\n', (915, 917), False, 'import time\n'), ((1072, 1164), 'sqlite3.connect', 'sqlite3.connect', (['dbfile1'], {'detect_types': '(sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES)'}), '(dbfile1, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.\n PARSE_COLNAMES)\n', (1087, 1164), False, 'import sqlite3\n'), ((1267, 1278), 'time.time', 'time.time', ([], {}), '()\n', (1276, 1278), False, 'import time\n'), ((1528, 1544), 'numpy.array', 'np.array', (['measid'], {}), '(measid)\n', (1536, 1544), True, 'import numpy as np\n'), ((1568, 1586), 'numpy.array', 'np.array', (['objectid'], {}), '(objectid)\n', (1576, 1586), True, 'import numpy as np\n'), ((1610, 1628), 'numpy.array', 'np.array', (['exposure'], {}), '(exposure)\n', (1618, 1628), True, 'import numpy as np\n'), ((1650, 1676), 'dlnpyutils.utils.create_index', 'dln.create_index', (['exposure'], {}), '(exposure)\n', (1666, 1676), True, 'from dlnpyutils import utils as dln, db\n'), ((1751, 1797), 'dlnpyutils.utils.match', 'dln.match', (["expcat['EXPOSURE']", "eindex['value']"], {}), "(expcat['EXPOSURE'], eindex['value'])\n", (1760, 1797), True, 'from dlnpyutils import utils as dln, db\n'), ((2072, 2169), 'numpy.dtype', 'np.dtype', (["[('measid', np.str, measid_maxlen + 1), ('objectid', np.str, \n objectid_maxlen + 1)]"], {}), "([('measid', np.str, measid_maxlen + 1), ('objectid', np.str, \n objectid_maxlen + 1)])\n", (2080, 2169), True, 'import numpy as np\n'), ((3887, 3910), 'dlnpyutils.utils.readlines', 'dln.readlines', (['listfile'], {}), '(listfile)\n', (3900, 3910), True, 'from dlnpyutils import utils as dln, db\n'), ((3978, 3988), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3986, 3988), False, 'import sys\n'), ((940, 965), 'os.path.basename', 'os.path.basename', (['dbfile1'], {}), '(dbfile1)\n', (956, 965), False, 'import os\n'), ((1976, 1994), 'dlnpyutils.utils.strlen', 'dln.strlen', (['measid'], {}), '(measid)\n', (1986, 1994), True, 'from dlnpyutils import utils as dln, db\n'), ((2033, 2053), 'dlnpyutils.utils.strlen', 'dln.strlen', (['objectid'], {}), '(objectid)\n', (2043, 2053), True, 'from dlnpyutils import utils as dln, db\n'), ((3234, 3255), 'numpy.save', 'np.save', (['outfile', 'cat'], {}), '(outfile, cat)\n', (3241, 3255), True, 'import numpy as np\n'), ((3405, 3416), 'time.time', 'time.time', ([], {}), '()\n', (3414, 3416), False, 'import time\n'), ((2747, 2821), 'os.path.exists', 'os.path.exists', (["(outdir + instcode + '/' + night + '/' + eindex['value'][k])"], {}), "(outdir + instcode + '/' + night + '/' + eindex['value'][k])\n", (2761, 2821), False, 'import os\n'), ((2981, 3052), 'os.makedirs', 'os.makedirs', (["(outdir + instcode + '/' + night + '/' + eindex['value'][k])"], {}), "(outdir + instcode + '/' + night + '/' + eindex['value'][k])\n", (2992, 3052), False, 'import os\n'), ((3297, 3308), 'time.time', 'time.time', ([], {}), '()\n', (3306, 3308), False, 'import time\n'), ((1395, 1406), 'time.time', 'time.time', ([], {}), '()\n', (1404, 1406), False, 'import time\n')]
import autograd.numpy as anp import numpy as np from autograd import value_and_grad from pymoo.factory import normalize from pymoo.util.ref_dirs.energy import squared_dist from pymoo.util.ref_dirs.optimizer import Adam from pymoo.util.reference_direction import ReferenceDirectionFactory, scale_reference_directions class LayerwiseRieszEnergyReferenceDirectionFactory(ReferenceDirectionFactory): def __init__(self, n_dim, partitions, return_as_tuple=False, n_max_iter=1000, verbose=False, X=None, **kwargs): super().__init__(n_dim, **kwargs) self.scalings = None self.n_max_iter = n_max_iter self.verbose = verbose self.return_as_tuple = return_as_tuple self.X = X self.partitions = partitions def _step(self, optimizer, X, scalings): obj, grad = value_and_grad(calc_potential_energy)(scalings, X) scalings = optimizer.next(scalings, np.array(grad)) scalings = normalize(scalings, xl=0, xu=scalings.max()) return scalings, obj def _solve(self, X, scalings): # initialize the optimizer for the run optimizer = Adam() # for each iteration of gradient descent for i in range(self.n_max_iter): # execute one optimization step _scalings, _obj = self._step(optimizer, X, scalings) # evaluate how much the points have moved delta = np.abs(_scalings - scalings).sum() if self.verbose: print(i, "objective", _obj, "delta", delta) # if there was only a little delta during the last iteration -> terminate if delta < 1e-5: scalings = _scalings break # otherwise use the new points for the next iteration scalings = _scalings self.scalings = scalings return get_points(X, scalings) def do(self): X = [] scalings = [] for k, p in enumerate(self.partitions): if p > 1: val = np.linspace(0, 1, p + 1)[1:-1] _X = [] for i in range(self.n_dim): for j in range(i + 1, self.n_dim): x = np.zeros((len(val), self.n_dim)) x[:, i] = val x[:, j] = 1 - val _X.append(x) X.append(np.row_stack(_X + [np.eye(self.n_dim)])) elif p == 1: X.append(np.eye(self.n_dim)) else: X.append(np.full(self.n_dim, 1 / self.n_dim)[None, :]) scalings.append(1 - k / len(self.partitions)) scalings = np.array(scalings) X = self._solve(X, scalings) return X # --------------------------------------------------------------------------------------------------------- # Energy Functions # --------------------------------------------------------------------------------------------------------- def get_points(X, scalings): vals = [] for i in range(len(X)): vals.append(scale_reference_directions(X[i], scalings[i])) X = anp.row_stack(vals) return X def calc_potential_energy(scalings, X): X = get_points(X, scalings) i, j = anp.triu_indices(len(X), 1) D = squared_dist(X, X)[i, j] if np.any(D < 1e-12): return np.nan, np.nan return (1 / D).mean()
[ "numpy.abs", "numpy.eye", "autograd.numpy.row_stack", "pymoo.util.ref_dirs.optimizer.Adam", "numpy.any", "numpy.array", "pymoo.util.reference_direction.scale_reference_directions", "numpy.linspace", "pymoo.util.ref_dirs.energy.squared_dist", "autograd.value_and_grad", "numpy.full" ]
[((3256, 3275), 'autograd.numpy.row_stack', 'anp.row_stack', (['vals'], {}), '(vals)\n', (3269, 3275), True, 'import autograd.numpy as anp\n'), ((3444, 3461), 'numpy.any', 'np.any', (['(D < 1e-12)'], {}), '(D < 1e-12)\n', (3450, 3461), True, 'import numpy as np\n'), ((1252, 1258), 'pymoo.util.ref_dirs.optimizer.Adam', 'Adam', ([], {}), '()\n', (1256, 1258), False, 'from pymoo.util.ref_dirs.optimizer import Adam\n'), ((2797, 2815), 'numpy.array', 'np.array', (['scalings'], {}), '(scalings)\n', (2805, 2815), True, 'import numpy as np\n'), ((3411, 3429), 'pymoo.util.ref_dirs.energy.squared_dist', 'squared_dist', (['X', 'X'], {}), '(X, X)\n', (3423, 3429), False, 'from pymoo.util.ref_dirs.energy import squared_dist\n'), ((944, 981), 'autograd.value_and_grad', 'value_and_grad', (['calc_potential_energy'], {}), '(calc_potential_energy)\n', (958, 981), False, 'from autograd import value_and_grad\n'), ((1039, 1053), 'numpy.array', 'np.array', (['grad'], {}), '(grad)\n', (1047, 1053), True, 'import numpy as np\n'), ((3201, 3246), 'pymoo.util.reference_direction.scale_reference_directions', 'scale_reference_directions', (['X[i]', 'scalings[i]'], {}), '(X[i], scalings[i])\n', (3227, 3246), False, 'from pymoo.util.reference_direction import ReferenceDirectionFactory, scale_reference_directions\n'), ((1535, 1563), 'numpy.abs', 'np.abs', (['(_scalings - scalings)'], {}), '(_scalings - scalings)\n', (1541, 1563), True, 'import numpy as np\n'), ((2159, 2183), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(p + 1)'], {}), '(0, 1, p + 1)\n', (2170, 2183), True, 'import numpy as np\n'), ((2609, 2627), 'numpy.eye', 'np.eye', (['self.n_dim'], {}), '(self.n_dim)\n', (2615, 2627), True, 'import numpy as np\n'), ((2672, 2707), 'numpy.full', 'np.full', (['self.n_dim', '(1 / self.n_dim)'], {}), '(self.n_dim, 1 / self.n_dim)\n', (2679, 2707), True, 'import numpy as np\n'), ((2536, 2554), 'numpy.eye', 'np.eye', (['self.n_dim'], {}), '(self.n_dim)\n', (2542, 2554), True, 'import numpy as np\n')]
import numpy as np import math import fatpack import matplotlib.pyplot as plt import pandas as pd #Create a function that reutrns the Goodman correction: def Goodman_method_correction(M_a,M_m,M_max): M_u = 1.5*M_max M_ar = M_a/(1-M_m/M_u) return M_ar def Equivalent_bending_moment(M_ar,Neq,m): P = M_ar.shape M_sum = 0 j = P[0] for i in range(j): M_sum = math.pow(M_ar[i],m) + M_sum M_eq = math.pow((M_sum/Neq),(1/m)) return M_eq def get_DEL(y,Neq,m): S, Sm = fatpack.find_rainflow_ranges(y.flatten(), return_means=True, k=256) data_arr = np.array([Sm , S ]).T M_ar = Goodman_method_correction(data_arr[:,1],data_arr[:,0],np.max(S)) print(sum(M_ar.shape)) M_eq = Equivalent_bending_moment(M_ar,Neq,m) return M_eq
[ "math.pow", "numpy.array", "numpy.max" ]
[((433, 461), 'math.pow', 'math.pow', (['(M_sum / Neq)', '(1 / m)'], {}), '(M_sum / Neq, 1 / m)\n', (441, 461), False, 'import math\n'), ((596, 613), 'numpy.array', 'np.array', (['[Sm, S]'], {}), '([Sm, S])\n', (604, 613), True, 'import numpy as np\n'), ((683, 692), 'numpy.max', 'np.max', (['S'], {}), '(S)\n', (689, 692), True, 'import numpy as np\n'), ((394, 414), 'math.pow', 'math.pow', (['M_ar[i]', 'm'], {}), '(M_ar[i], m)\n', (402, 414), False, 'import math\n')]
# %% [Algorithm 1c Loop] # # MUSHROOMS # %% [markdown] # ## Binary Classification # %% [markdown] # ### Imports # %% import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt # %% [markdown] # ### Load Data dataset = pd.read_csv(r"C:\Users\yxie367\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") #dataset = pd.read_csv(r"C:\Users\xieya\Documents\GitHub\Mushrooms\DATA\mushrooms.csv") # %% [markdown] # ### View Data and Informations # %% dataset.head() # %% dataset.info() # %% edible, poisonous = dataset['class'].value_counts() # print("Edible:\t ", edible,"\nPoisonous:", poisonous) # %% # Categorical to numerical labels = {'e': 0, 'p': 1} dataset['class'].replace(labels, inplace=True) edible, poisonous = dataset['class'].value_counts() #print("0 - Edible: ", edible,"\n1 - Poisonous:", poisonous) # %% [markdown] # # NN1 Stalk Root - Rooted (r) # %% [markdown] # ### Split Dataset # %% [markdown] # #### Get the Labels # %% X, y = dataset.drop('class', axis=1), dataset['class'].copy() #print("X:",X.shape,"\ny:",y.shape) # %% [markdown] # #### Train Set and Test Set total_error_1 = 0 total_error_2 = 0 total_error_comb = 0 randnum = np.arange(2,44,4) num_trials = len(randnum) record = "" wrong_record = "" run = 1 # %% Data cleaning from sklearn.model_selection import train_test_split X_white = pd.DataFrame() X_not_white = pd.DataFrame() y_white = pd.Series(dtype='float64') y_not_white = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"stalk-root"] == "r": X_white = X_white.append(X.iloc[i,:]) y_white = y_white.append(pd.Series(y.iloc[i])) else: X_not_white = X_not_white.append(X.iloc[i,:]) y_not_white = y_not_white.append(pd.Series(y.iloc[i])) # %% Data cleaning pt2 X_green = pd.DataFrame() X_not_green = pd.DataFrame() y_green = pd.Series(dtype='float64') y_not_green = pd.Series(dtype='float64') for i in range(0,len(X)): if X.loc[i,"odor"] == "a": X_green = X_green.append(X.iloc[i,:]) y_green = y_green.append(pd.Series(y.iloc[i])) else: X_not_green = X_not_green.append(X.iloc[i,:]) y_not_green = y_not_green.append(pd.Series(y.iloc[i])) # %% for j in randnum: X_train_not_white, X_test_not_white, y_train_not_white, y_test_not_white = train_test_split(X_not_white, y_not_white, test_size=1-(6905/(8124-len(X_white))), random_state=j) X_train_not_green, X_test_not_green, y_train_not_green, y_test_not_green = train_test_split(X_not_green, y_not_green, test_size=1-(6905/(8124-len(X_green))), random_state=j) X_train_green = (X_train_not_green) y_train_green = (y_train_not_green) X_train_white = (X_train_not_white) y_train_white = (y_train_not_white) # %% from sklearn.utils import shuffle X_train_full1 = shuffle(X_train_white, random_state=j) X_test = shuffle(X, random_state=j).iloc[4000:8000] y_train_full1 = shuffle(y_train_white, random_state=j) y_test = shuffle(y, random_state=j).iloc[4000:8000] # %% [markdown] # #### Validation Set # %% X_valid1, X_train1 = X_train_full1[:500], X_train_full1[500:] y_valid1, y_train1 = y_train_full1[:500], y_train_full1[500:] # print("X_train:", X_train1.shape[0], "y_train", y_train1.shape[0]) # print("X_valid: ", X_valid1.shape[0], "y_valid ", y_valid1.shape[0]) # print("X_test: ", X_test.shape[0], "y_test ", X_test.shape[0]) # %% [markdown] # ### Prepare the Data # %% [markdown] # #### Data Transformation # %% from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train1 = pipeline.fit_transform(X_train1) X_valid1 = pipeline.fit_transform(X_valid1) X_test1 = pipeline.fit_transform(X_test) # %% [markdown] # ### Neural Network # %% [markdown] # #### Model # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense # %% # tf.random.set_seed(j) tf.random.set_random_seed(j) # %% model1 = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) # %% #model1.summary() # %% [markdown] # #### Compile the Model # %% model1.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) # %% [markdown] # #### Prepare Callbacks # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) # %% [markdown] # ### Training # %% train_model1 = model1.fit(X_train1, y_train1, epochs=100, validation_data=(X_valid1, y_valid1), callbacks=[checkpoint_cb, early_stopping_cb]) # %% [markdown] # ### Evaluate the Best Model on Test Set # %% results1 = model1.evaluate(X_test1, y_test) # print("test loss, test acc:", results1) # %% [markdown] # ### Make Some Predictions # %% X_new1 = X_test1[:5] y_prob1 = model1.predict(X_new1) # print(y_prob.round(3)) # %% y_pred1 = (model1.predict(X_new1) > 0.5).astype("int32") # print(y_pred) y_test_pred = (model1.predict(X_test1) > 0.5).astype("int32") # %% [markdown] # ## KL Divergence # %% # X_new = X_test[:5] X_df1 = pd.DataFrame(model1.predict(X_test1)) y_test_pred1 = pd.DataFrame(y_test_pred).reset_index(drop=True) X_df1 = pd.concat([X_df1, y_test_pred1], axis=1) y_test1 = y_test.reset_index(drop=True) X_df1 = pd.concat([X_df1, y_test1], axis=1) X_df1.columns = ["X_pred","y_pred","y_actual"] #print(X_df1) # %% import math table1 = pd.DataFrame(columns=["KL_div","abs_distance","correctness"]) for i in range(0,len(X_df1)): # KL divergence p = X_df1.loc[i,"X_pred"] try: kl = -(p*math.log(p) + (1-p)*math.log(1-p)) except: kl = 0 table1.loc[i,"KL_div"] = kl # absolute distance abs_dist = 2*abs(0.5-p) table1.loc[i,"abs_distance"] = abs_dist # correctness y_pred1 = X_df1.loc[i,"y_pred"] y_act1 = X_df1.loc[i,"y_actual"] if y_pred1 == y_act1: table1.loc[i,"correctness"] = 1 # correct prediction else: table1.loc[i,"correctness"] = 0 # wrong prediction table1.loc[i,"y_pred"] = y_pred1 #print(table1) # %% table1["count"] = 1 correctness1 = table1[["correctness","count"]].groupby(pd.cut(table1["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) correctness1["percent"] = 100*(correctness1["correctness"]/correctness1["count"]) #print(correctness1) # %% index = [] for i in (correctness1.index): index.append(str(i)) plt.bar(index,correctness1["percent"], width=0.7) for index,data in enumerate(correctness1["percent"]): plt.text(x=index , y =data+1 , s=f"{round(data,2)}" , fontdict=dict(fontsize=15),ha='center') plt.ylim(0,120) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% [markdown] # ### Confidence # %% kl1 = table1[["correctness","count"]].groupby(pd.cut(table1["KL_div"], np.arange(0, 0.80, 0.1))).apply(sum) kl1["percent"] = (kl1["correctness"]/kl1["count"]) kl1.dropna(inplace=True) plt.scatter(np.arange(0, 0.70, 0.1), kl1["percent"]) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% # Linear Regression from sklearn.linear_model import LinearRegression x_reg1 = np.arange(0, 0.70, 0.1).reshape((-1, 1)) y_reg1 = kl1["percent"] reg_model1 = LinearRegression().fit(x_reg1,y_reg1) # %% # print('intercept(alpha):', reg_model1.intercept_) # print('slope(theta):', reg_model1.coef_) # %% [markdown] # # NN2 Odor - Almond (a) # %% [markdown] # #### Train Set and Test Set # %% from sklearn.utils import shuffle X_train_full2 = shuffle(X_train_green, random_state=j) # X_test2 = shuffle(X_test_green, random_state=j) y_train_full2 = shuffle(y_train_green, random_state=j) # y_test2 = shuffle(y_test_green, random_state=j) # %% [markdown] # #### Validation Set # %% X_valid2, X_train2 = X_train_full2[:500], X_train_full2[500:] y_valid2, y_train2 = y_train_full2[:500], y_train_full2[500:] # print("X_train:", X_train2.shape[0], "y_train", y_train2.shape[0]) # print("X_valid: ", X_valid2.shape[0], "y_valid ", y_valid2.shape[0]) # print("X_test: ", X_test.shape[0], "y_test ", X_test.shape[0]) # %% [markdown] # ### Prepare the Data # %% [markdown] # #### Data Transformation # %% from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder from sklearn.compose import ColumnTransformer cat_attr_pipeline = Pipeline([ ('encoder', OrdinalEncoder()) ]) cols = list(X) pipeline = ColumnTransformer([ ('cat_attr_pipeline', cat_attr_pipeline, cols) ]) X_train2 = pipeline.fit_transform(X_train2) X_valid2 = pipeline.fit_transform(X_valid2) X_test2 = pipeline.fit_transform(X_test) y_test2 = y_test # %% [markdown] # ### Neural Network # %% [markdown] # #### Model # %% from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, Dense tf.random.set_random_seed(j) # %% model2 = Sequential([ InputLayer(input_shape=(22,)), # input layer Dense(45, activation='relu'), # hidden layer Dense(1, activation='sigmoid') # output layer ]) # %% #model2.summary() # %% [markdown] # #### Compile the Model # %% model2.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) # %% [markdown] # #### Prepare Callbacks # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping checkpoint_cb = ModelCheckpoint('../SavedModels/best_model.h5', save_best_only=True) early_stopping_cb = EarlyStopping(patience=3, restore_best_weights=True) # %% [markdown] # ### Training # %% train_model2 = model2.fit(X_train2, y_train2, epochs=100, validation_data=(X_valid2, y_valid2), callbacks=[checkpoint_cb, early_stopping_cb]) # %% [markdown] # ### Evaluate the Best Model on Test Set # %% results2 = model2.evaluate(X_test2, y_test2) # print("test loss, test acc:", results2) # %% [markdown] # ### Make Some Predictions # %% # y_pred2 = (model2.predict(X_new2) > 0.5).astype("int32") # print(y_pred2) y_test_pred2 = (model2.predict(X_test2) > 0.5).astype("int32") # %% [markdown] # ## KL Divergence # %% # X_new = X_test[:5] X_df2 = pd.DataFrame(model2.predict(X_test2)) y_test_pred2 = pd.DataFrame(y_test_pred2).reset_index(drop=True) X_df2 = pd.concat([X_df2, y_test_pred2], axis=1) y_test2 = y_test2.reset_index(drop=True) X_df2 = pd.concat([X_df2, y_test2], axis=1) X_df2.columns = ["X_pred","y_pred","y_actual"] #print(X_df2) # %% import math table2 = pd.DataFrame(columns=["KL_div","abs_distance","y_pred","correctness"]) for i in range(0,len(X_df2)): # KL divergence p = X_df2.loc[i,"X_pred"] if p > 0: kl = -(p*math.log(p) + (1-p)*math.log(1-p)) else: kl = 1 table2.loc[i,"KL_div"] = kl # absolute distance abs_dist = 2*abs(0.5-p) table2.loc[i,"abs_distance"] = abs_dist # correctness y_pred = X_df2.loc[i,"y_pred"] y_act = X_df2.loc[i,"y_actual"] if y_pred == y_act: table2.loc[i,"correctness"] = 1 # correct prediction else: table2.loc[i,"correctness"] = 0 # wrong prediction table2.loc[i,"y_pred"] = y_pred #print(table2) # %% table2["count"] = 1 correctness2 = table2[["correctness","count"]].groupby(pd.cut(table2["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) correctness2["percent"] = 100*(correctness2["correctness"]/correctness2["count"]) #print(correctness2) # %% index = [] for i in (correctness2.index): index.append(str(i)) plt.bar(index,correctness2["percent"], width=0.7) for index,data in enumerate(correctness2["percent"]): plt.text(x=index , y =data+1 , s=f"{round(data,2)}" , fontdict=dict(fontsize=15),ha='center') plt.ylim(0,120) plt.xlabel("KL Divergence") plt.ylabel("% correct") # %% [markdown] # ### Confidence # %% kl2 = table2[["correctness","count"]].groupby(pd.cut(table2["KL_div"], np.arange(0, 0.8, 0.1))).apply(sum) kl2["percent"] = (kl2["correctness"]/kl2["count"]) kl2.dropna(inplace=True) plt.scatter(np.arange(0, 0.70, 0.1), kl2["percent"]) # print(kl) # print(np.arange(0, 0.7, 0.05)) # %% # Linear Regression from sklearn.linear_model import LinearRegression x_reg2 = np.arange(0, 0.7, 0.1).reshape((-1, 1)) y_reg2 = kl2["percent"] reg_model2 = LinearRegression().fit(x_reg2,y_reg2) # %% # print('intercept(alpha):', reg_model2.intercept_) # print('slope(theta):', reg_model2.coef_) # %% [markdown] # ## Algorithm C: It = argmax(Ct,i) # %% # Correct answer ans = pd.DataFrame(X_df2["y_actual"]) # NN1 alpha1 = reg_model1.intercept_ theta1 = reg_model1.coef_ # NN2 alpha2 = reg_model2.intercept_ theta2 = reg_model2.coef_ # %% # Creating NN tables nn1 = table1.drop(["abs_distance","correctness"], axis=1) nn1["conf"] = 1 + theta1 * nn1["KL_div"] nn2 = table2.drop(["abs_distance","correctness"], axis=1) nn2["conf"] = 1 + theta2 * nn2["KL_div"] # nn2 # %% # Determing higher confidence NN and choosing that arm for i in range(0,len(nn1)): if nn1.loc[i,"conf"] > nn2.loc[i,"conf"]: ans.loc[i,"y_pred"] = nn1.loc[i,"y_pred"] ans.loc[i,"NN"] = 1 ans.loc[i,"conf"] = nn1.loc[i,"conf"] else: ans.loc[i,"y_pred"] = nn2.loc[i,"y_pred"] ans.loc[i,"NN"] = 2 ans.loc[i,"conf"] = nn2.loc[i,"conf"] # ans # %% [markdown] # #### Comparing performance # %% # NN1 performance cost1 = 0 for i in range(0,len(nn1)): if nn1.loc[i,"y_pred"] != ans.loc[i,"y_actual"]: cost1 += 1 else: pass # NN2 performance cost2 = 0 for i in range(0,len(nn2)): if nn2.loc[i,"y_pred"] != ans.loc[i,"y_actual"]: cost2 += 1 else: pass # Combined performance cost3 = 0 for i in range(0,len(nn1)): nn = ans.loc[i,"NN"] nn_conf = ans.loc[i,"conf"] if ans.loc[i,"y_pred"] != ans.loc[i,"y_actual"]: cost3 += 1 wrong_record = wrong_record + (f"Run:{run} - Wrong NN:{nn}, Conf:{nn_conf}") + "\n" else: pass # %% record = record+(f"Run:{run} - Error count for NN1:{cost1}, NN2:{cost2}, Combined:{cost3}") + "\n" total_error_1 += cost1 total_error_2 += cost2 total_error_comb += cost3 print(f"Run {run} complete!") run+=1 print(record) print(f"Average error count for NN1:{total_error_1/num_trials}, NN2:{total_error_2/num_trials}, Combined:{total_error_comb/num_trials}") #%% # print(wrong_record) # %%
[ "pandas.read_csv", "matplotlib.pyplot.ylabel", "math.log", "tensorflow.keras.callbacks.EarlyStopping", "tensorflow.keras.layers.Dense", "numpy.arange", "matplotlib.pyplot.xlabel", "sklearn.compose.ColumnTransformer", "pandas.DataFrame", "matplotlib.pyplot.ylim", "tensorflow.keras.layers.InputLayer", "tensorflow.random.set_random_seed", "sklearn.preprocessing.OrdinalEncoder", "sklearn.linear_model.LinearRegression", "pandas.Series", "sklearn.utils.shuffle", "matplotlib.pyplot.bar", "tensorflow.keras.callbacks.ModelCheckpoint", "pandas.concat" ]
[((299, 388), 'pandas.read_csv', 'pd.read_csv', (['"""C:\\\\Users\\\\yxie367\\\\Documents\\\\GitHub\\\\Mushrooms\\\\DATA\\\\mushrooms.csv"""'], {}), "(\n 'C:\\\\Users\\\\yxie367\\\\Documents\\\\GitHub\\\\Mushrooms\\\\DATA\\\\mushrooms.csv')\n", (310, 388), True, 'import pandas as pd\n'), ((1241, 1260), 'numpy.arange', 'np.arange', (['(2)', '(44)', '(4)'], {}), '(2, 44, 4)\n', (1250, 1260), True, 'import numpy as np\n'), ((1406, 1420), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1418, 1420), True, 'import pandas as pd\n'), ((1435, 1449), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1447, 1449), True, 'import pandas as pd\n'), ((1460, 1486), 'pandas.Series', 'pd.Series', ([], {'dtype': '"""float64"""'}), "(dtype='float64')\n", (1469, 1486), True, 'import pandas as pd\n'), ((1501, 1527), 'pandas.Series', 'pd.Series', ([], {'dtype': '"""float64"""'}), "(dtype='float64')\n", (1510, 1527), True, 'import pandas as pd\n'), ((1854, 1868), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1866, 1868), True, 'import pandas as pd\n'), ((1883, 1897), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1895, 1897), True, 'import pandas as pd\n'), ((1908, 1934), 'pandas.Series', 'pd.Series', ([], {'dtype': '"""float64"""'}), "(dtype='float64')\n", (1917, 1934), True, 'import pandas as pd\n'), ((1949, 1975), 'pandas.Series', 'pd.Series', ([], {'dtype': '"""float64"""'}), "(dtype='float64')\n", (1958, 1975), True, 'import pandas as pd\n'), ((2871, 2909), 'sklearn.utils.shuffle', 'shuffle', (['X_train_white'], {'random_state': 'j'}), '(X_train_white, random_state=j)\n', (2878, 2909), False, 'from sklearn.utils import shuffle\n'), ((2986, 3024), 'sklearn.utils.shuffle', 'shuffle', (['y_train_white'], {'random_state': 'j'}), '(y_train_white, random_state=j)\n', (2993, 3024), False, 'from sklearn.utils import shuffle\n'), ((3900, 3967), 'sklearn.compose.ColumnTransformer', 'ColumnTransformer', (["[('cat_attr_pipeline', cat_attr_pipeline, cols)]"], {}), "([('cat_attr_pipeline', cat_attr_pipeline, cols)])\n", (3917, 3967), False, 'from sklearn.compose import ColumnTransformer\n'), ((4395, 4423), 'tensorflow.random.set_random_seed', 'tf.random.set_random_seed', (['j'], {}), '(j)\n', (4420, 4423), True, 'import tensorflow as tf\n'), ((5003, 5071), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['"""../SavedModels/best_model.h5"""'], {'save_best_only': '(True)'}), "('../SavedModels/best_model.h5', save_best_only=True)\n", (5018, 5071), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((5133, 5185), 'tensorflow.keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'patience': '(3)', 'restore_best_weights': '(True)'}), '(patience=3, restore_best_weights=True)\n', (5146, 5185), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((6195, 6235), 'pandas.concat', 'pd.concat', (['[X_df1, y_test_pred1]'], {'axis': '(1)'}), '([X_df1, y_test_pred1], axis=1)\n', (6204, 6235), True, 'import pandas as pd\n'), ((6292, 6327), 'pandas.concat', 'pd.concat', (['[X_df1, y_test1]'], {'axis': '(1)'}), '([X_df1, y_test1], axis=1)\n', (6301, 6327), True, 'import pandas as pd\n'), ((6436, 6499), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['KL_div', 'abs_distance', 'correctness']"}), "(columns=['KL_div', 'abs_distance', 'correctness'])\n", (6448, 6499), True, 'import pandas as pd\n'), ((7532, 7582), 'matplotlib.pyplot.bar', 'plt.bar', (['index', "correctness1['percent']"], {'width': '(0.7)'}), "(index, correctness1['percent'], width=0.7)\n", (7539, 7582), True, 'import matplotlib.pyplot as plt\n'), ((7746, 7762), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(120)'], {}), '(0, 120)\n', (7754, 7762), True, 'import matplotlib.pyplot as plt\n'), ((7766, 7793), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""KL Divergence"""'], {}), "('KL Divergence')\n", (7776, 7793), True, 'import matplotlib.pyplot as plt\n'), ((7798, 7821), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""% correct"""'], {}), "('% correct')\n", (7808, 7821), True, 'import matplotlib.pyplot as plt\n'), ((8131, 8158), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""KL Divergence"""'], {}), "('KL Divergence')\n", (8141, 8158), True, 'import matplotlib.pyplot as plt\n'), ((8163, 8186), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""% correct"""'], {}), "('% correct')\n", (8173, 8186), True, 'import matplotlib.pyplot as plt\n'), ((8704, 8742), 'sklearn.utils.shuffle', 'shuffle', (['X_train_green'], {'random_state': 'j'}), '(X_train_green, random_state=j)\n', (8711, 8742), False, 'from sklearn.utils import shuffle\n'), ((8817, 8855), 'sklearn.utils.shuffle', 'shuffle', (['y_train_green'], {'random_state': 'j'}), '(y_train_green, random_state=j)\n', (8824, 8855), False, 'from sklearn.utils import shuffle\n'), ((9729, 9796), 'sklearn.compose.ColumnTransformer', 'ColumnTransformer', (["[('cat_attr_pipeline', cat_attr_pipeline, cols)]"], {}), "([('cat_attr_pipeline', cat_attr_pipeline, cols)])\n", (9746, 9796), False, 'from sklearn.compose import ColumnTransformer\n'), ((10208, 10236), 'tensorflow.random.set_random_seed', 'tf.random.set_random_seed', (['j'], {}), '(j)\n', (10233, 10236), True, 'import tensorflow as tf\n'), ((10816, 10884), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['"""../SavedModels/best_model.h5"""'], {'save_best_only': '(True)'}), "('../SavedModels/best_model.h5', save_best_only=True)\n", (10831, 10884), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((10946, 10998), 'tensorflow.keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'patience': '(3)', 'restore_best_weights': '(True)'}), '(patience=3, restore_best_weights=True)\n', (10959, 10998), False, 'from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((11914, 11954), 'pandas.concat', 'pd.concat', (['[X_df2, y_test_pred2]'], {'axis': '(1)'}), '([X_df2, y_test_pred2], axis=1)\n', (11923, 11954), True, 'import pandas as pd\n'), ((12012, 12047), 'pandas.concat', 'pd.concat', (['[X_df2, y_test2]'], {'axis': '(1)'}), '([X_df2, y_test2], axis=1)\n', (12021, 12047), True, 'import pandas as pd\n'), ((12156, 12229), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['KL_div', 'abs_distance', 'y_pred', 'correctness']"}), "(columns=['KL_div', 'abs_distance', 'y_pred', 'correctness'])\n", (12168, 12229), True, 'import pandas as pd\n'), ((13259, 13309), 'matplotlib.pyplot.bar', 'plt.bar', (['index', "correctness2['percent']"], {'width': '(0.7)'}), "(index, correctness2['percent'], width=0.7)\n", (13266, 13309), True, 'import matplotlib.pyplot as plt\n'), ((13473, 13489), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(120)'], {}), '(0, 120)\n', (13481, 13489), True, 'import matplotlib.pyplot as plt\n'), ((13493, 13520), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""KL Divergence"""'], {}), "('KL Divergence')\n", (13503, 13520), True, 'import matplotlib.pyplot as plt\n'), ((13525, 13548), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""% correct"""'], {}), "('% correct')\n", (13535, 13548), True, 'import matplotlib.pyplot as plt\n'), ((14346, 14377), 'pandas.DataFrame', 'pd.DataFrame', (["X_df2['y_actual']"], {}), "(X_df2['y_actual'])\n", (14358, 14377), True, 'import pandas as pd\n'), ((8086, 8108), 'numpy.arange', 'np.arange', (['(0)', '(0.7)', '(0.1)'], {}), '(0, 0.7, 0.1)\n', (8095, 8108), True, 'import numpy as np\n'), ((13812, 13834), 'numpy.arange', 'np.arange', (['(0)', '(0.7)', '(0.1)'], {}), '(0, 0.7, 0.1)\n', (13821, 13834), True, 'import numpy as np\n'), ((1670, 1690), 'pandas.Series', 'pd.Series', (['y.iloc[i]'], {}), '(y.iloc[i])\n', (1679, 1690), True, 'import pandas as pd\n'), ((1797, 1817), 'pandas.Series', 'pd.Series', (['y.iloc[i]'], {}), '(y.iloc[i])\n', (1806, 1817), True, 'import pandas as pd\n'), ((2112, 2132), 'pandas.Series', 'pd.Series', (['y.iloc[i]'], {}), '(y.iloc[i])\n', (2121, 2132), True, 'import pandas as pd\n'), ((2239, 2259), 'pandas.Series', 'pd.Series', (['y.iloc[i]'], {}), '(y.iloc[i])\n', (2248, 2259), True, 'import pandas as pd\n'), ((2923, 2949), 'sklearn.utils.shuffle', 'shuffle', (['X'], {'random_state': 'j'}), '(X, random_state=j)\n', (2930, 2949), False, 'from sklearn.utils import shuffle\n'), ((3038, 3064), 'sklearn.utils.shuffle', 'shuffle', (['y'], {'random_state': 'j'}), '(y, random_state=j)\n', (3045, 3064), False, 'from sklearn.utils import shuffle\n'), ((4468, 4497), 'tensorflow.keras.layers.InputLayer', 'InputLayer', ([], {'input_shape': '(22,)'}), '(input_shape=(22,))\n', (4478, 4497), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((4525, 4553), 'tensorflow.keras.layers.Dense', 'Dense', (['(45)'], {'activation': '"""relu"""'}), "(45, activation='relu')\n", (4530, 4553), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((4582, 4612), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (4587, 4612), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((6134, 6159), 'pandas.DataFrame', 'pd.DataFrame', (['y_test_pred'], {}), '(y_test_pred)\n', (6146, 6159), True, 'import pandas as pd\n'), ((8289, 8311), 'numpy.arange', 'np.arange', (['(0)', '(0.7)', '(0.1)'], {}), '(0, 0.7, 0.1)\n', (8298, 8311), True, 'import numpy as np\n'), ((8375, 8393), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (8391, 8393), False, 'from sklearn.linear_model import LinearRegression\n'), ((10281, 10310), 'tensorflow.keras.layers.InputLayer', 'InputLayer', ([], {'input_shape': '(22,)'}), '(input_shape=(22,))\n', (10291, 10310), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((10338, 10366), 'tensorflow.keras.layers.Dense', 'Dense', (['(45)'], {'activation': '"""relu"""'}), "(45, activation='relu')\n", (10343, 10366), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((10395, 10425), 'tensorflow.keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (10400, 10425), False, 'from tensorflow.keras.layers import InputLayer, Dense\n'), ((11852, 11878), 'pandas.DataFrame', 'pd.DataFrame', (['y_test_pred2'], {}), '(y_test_pred2)\n', (11864, 11878), True, 'import pandas as pd\n'), ((14008, 14030), 'numpy.arange', 'np.arange', (['(0)', '(0.7)', '(0.1)'], {}), '(0, 0.7, 0.1)\n', (14017, 14030), True, 'import numpy as np\n'), ((14093, 14111), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (14109, 14111), False, 'from sklearn.linear_model import LinearRegression\n'), ((3820, 3836), 'sklearn.preprocessing.OrdinalEncoder', 'OrdinalEncoder', ([], {}), '()\n', (3834, 3836), False, 'from sklearn.preprocessing import OrdinalEncoder\n'), ((9649, 9665), 'sklearn.preprocessing.OrdinalEncoder', 'OrdinalEncoder', ([], {}), '()\n', (9663, 9665), False, 'from sklearn.preprocessing import OrdinalEncoder\n'), ((7292, 7314), 'numpy.arange', 'np.arange', (['(0)', '(0.8)', '(0.1)'], {}), '(0, 0.8, 0.1)\n', (7301, 7314), True, 'import numpy as np\n'), ((7949, 7971), 'numpy.arange', 'np.arange', (['(0)', '(0.8)', '(0.1)'], {}), '(0, 0.8, 0.1)\n', (7958, 7971), True, 'import numpy as np\n'), ((13019, 13041), 'numpy.arange', 'np.arange', (['(0)', '(0.8)', '(0.1)'], {}), '(0, 0.8, 0.1)\n', (13028, 13041), True, 'import numpy as np\n'), ((13676, 13698), 'numpy.arange', 'np.arange', (['(0)', '(0.8)', '(0.1)'], {}), '(0, 0.8, 0.1)\n', (13685, 13698), True, 'import numpy as np\n'), ((6624, 6635), 'math.log', 'math.log', (['p'], {}), '(p)\n', (6632, 6635), False, 'import math\n'), ((6644, 6659), 'math.log', 'math.log', (['(1 - p)'], {}), '(1 - p)\n', (6652, 6659), False, 'import math\n'), ((12358, 12369), 'math.log', 'math.log', (['p'], {}), '(p)\n', (12366, 12369), False, 'import math\n'), ((12378, 12393), 'math.log', 'math.log', (['(1 - p)'], {}), '(1 - p)\n', (12386, 12393), False, 'import math\n')]
#!/usr/bin/env python import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd from conversion import read_imgs_masks from os.path import isfile, basename XERR=0.1 ELINEWIDTH=3 CAPSIZE=5 CAPTHICK=3 FMT='cD' def harm_plot(ydata, labels, outPrefix, bshell_b): ''' :param ydata: list of [y1, y2, y3, ...] where each yi is a list :param labels: list of strings :param outPrefix: :return: ''' outPrefix += f'_b{bshell_b}' labels= list(labels) num_series, num_sub= np.shape(ydata) iter_obj= [i for i in range(num_series)] # errorbar plot plt.figure(1) plt.grid(True) for i in iter_obj: x= list(i*np.ones((num_sub,))) y= ydata[i] plt.plot(x, y, 'r*') plt.errorbar([i], np.mean(y), xerr=XERR, yerr=np.std(y), ecolor='k', capsize=CAPSIZE, capthick=CAPTHICK, elinewidth=ELINEWIDTH, fmt=FMT) plt.xticks(iter_obj, labels) plt.title('Comparison of meanFA before and after harmonization') plt.ylabel('meanFA over IIT_mean_FA_skeleton') plt.savefig(outPrefix+'_ebarplot.png') # plt.show() # box plot # plt.figure(2) # plt.grid(True) # for i in iter_obj: # x = list(i * np.ones((num_sub,))) # y = ydata[i] # plt.plot(x, y, 'r*') # # plt.boxplot(ydata, labels=labels, positions=iter_obj, # boxprops=dict(linewidth=4), # medianprops=dict(linewidth=4), # whiskerprops=dict(linewidth=2)) # # # plt.title(f'Comparison of boxplot before and after harmonization for b{bshell_b}') # plt.ylabel('meanFA over IIT_mean_FA_skeleton') # plt.savefig(outPrefix+'_boxplot.png') # plt.show() # return (outPrefix+'_ebarplot.png', outPrefix+'_boxplot.png') return outPrefix+'_ebarplot.png' def generate_csv(imgs, site_means, outPrefix, bshell_b): try: imgs, _= read_imgs_masks(imgs) except: pass statFile = outPrefix + '_stat.csv' if isfile(statFile): df= pd.read_csv(statFile) df= df.assign(**{f'meanFA b{bshell_b}':site_means}) else: stat = {'subject': [basename(f) for f in imgs], f'meanFA b{bshell_b}': site_means} df = pd.DataFrame(stat) df.to_csv(statFile, index=False) if __name__=='__main__': sub=['hi','hello','go','come'] ref_mean= [0.46, 0.49, 0.44, 0.40] target_mean_before= [0.42, 0.58, 0.43, 0.66] target_mean_after= [0.5 , 0.45, 0.40, 0.55] labels=['Reference','Target before','Target after'] bshell_b= 2000 harm_plot([ref_mean, target_mean_before, target_mean_after], labels, '/tmp/abc', bshell_b) # harm_plot([ref_mean], ['Reference'], '/tmp/abc', bshell_b) generate_csv(sub, ref_mean, '/tmp/abc', bshell_b)
[ "conversion.read_imgs_masks", "numpy.mean", "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "numpy.ones", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.use", "pandas.read_csv", "matplotlib.pyplot.plot", "os.path.isfile", "matplotlib.pyplot.figure", "os.path.basename", "numpy.std", "pandas.DataFrame", "matplotlib.pyplot.title", "numpy.shape" ]
[((60, 81), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (74, 81), False, 'import matplotlib\n'), ((553, 568), 'numpy.shape', 'np.shape', (['ydata'], {}), '(ydata)\n', (561, 568), True, 'import numpy as np\n'), ((640, 653), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (650, 653), True, 'import matplotlib.pyplot as plt\n'), ((658, 672), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (666, 672), True, 'import matplotlib.pyplot as plt\n'), ((956, 984), 'matplotlib.pyplot.xticks', 'plt.xticks', (['iter_obj', 'labels'], {}), '(iter_obj, labels)\n', (966, 984), True, 'import matplotlib.pyplot as plt\n'), ((989, 1053), 'matplotlib.pyplot.title', 'plt.title', (['"""Comparison of meanFA before and after harmonization"""'], {}), "('Comparison of meanFA before and after harmonization')\n", (998, 1053), True, 'import matplotlib.pyplot as plt\n'), ((1058, 1104), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""meanFA over IIT_mean_FA_skeleton"""'], {}), "('meanFA over IIT_mean_FA_skeleton')\n", (1068, 1104), True, 'import matplotlib.pyplot as plt\n'), ((1109, 1149), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(outPrefix + '_ebarplot.png')"], {}), "(outPrefix + '_ebarplot.png')\n", (1120, 1149), True, 'import matplotlib.pyplot as plt\n'), ((2061, 2077), 'os.path.isfile', 'isfile', (['statFile'], {}), '(statFile)\n', (2067, 2077), False, 'from os.path import isfile, basename\n'), ((763, 783), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""r*"""'], {}), "(x, y, 'r*')\n", (771, 783), True, 'import matplotlib.pyplot as plt\n'), ((1962, 1983), 'conversion.read_imgs_masks', 'read_imgs_masks', (['imgs'], {}), '(imgs)\n', (1977, 1983), False, 'from conversion import read_imgs_masks\n'), ((2091, 2112), 'pandas.read_csv', 'pd.read_csv', (['statFile'], {}), '(statFile)\n', (2102, 2112), True, 'import pandas as pd\n'), ((2287, 2305), 'pandas.DataFrame', 'pd.DataFrame', (['stat'], {}), '(stat)\n', (2299, 2305), True, 'import pandas as pd\n'), ((811, 821), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (818, 821), True, 'import numpy as np\n'), ((714, 733), 'numpy.ones', 'np.ones', (['(num_sub,)'], {}), '((num_sub,))\n', (721, 733), True, 'import numpy as np\n'), ((839, 848), 'numpy.std', 'np.std', (['y'], {}), '(y)\n', (845, 848), True, 'import numpy as np\n'), ((2211, 2222), 'os.path.basename', 'basename', (['f'], {}), '(f)\n', (2219, 2222), False, 'from os.path import isfile, basename\n')]
""" MIT License Copyright (c) 2021 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import warnings import rpy2.robjects as robjects from rpy2.robjects import numpy2ri, pandas2ri, Formula from rpy2.robjects.packages import importr pandas2ri.activate() numpy2ri.activate() # import R libraries DESeq2 = importr('DESeq2') edgeR = importr('edgeR') Limma = importr('limma') stats = importr('stats') to_dataframe = robjects.r('function(x) data.frame(x)') class DE_rpy2: """ Running DESeq2, edgeR, limma through rpy2 input: count_matrix: a pandas dataframe with each column as count (float values in FPKM/RPKM are also acceptable as internal rounding will be done) , and a id column for gene id example: id sampleA sampleB geneA 5.1 1 geneB 4.2 5 geneC 1 2 design_matrix: a pandas dataframe with each column as a condition, and one row for one sample Note that the sample name must be the index not a column condition sampleA1 treated sampleA2 treated sampleB1 untreated sampleB2 untreated design_formula: default to be the column name of design matrix, example: "~ condition"" If it contains multiple conditions, this formula must be customised, or the DESeq2 will only consider the first condition. gene_column: column name of gene id columns in count_matrix, default = 'id' """ def __init__(self, count_matrix, design_matrix, design_formula=None, gene_column='id'): assert gene_column in count_matrix, \ 'column: \'%s\', not found in count matrix' % gene_column assert count_matrix.shape[1] - 1 == design_matrix.shape[0], \ 'The number of rows in design matrix must ' \ 'be equal to the number of samples in count matrix' assert all(pd.isna(count_matrix)), \ 'Null values are found in count matrix' \ 'Please check it' assert len(design_matrix.columns), \ 'Columns names are needed in design matrix' if 'float' in count_matrix.drop(gene_column, axis=1): warnings.warn('DESeq2 and edgeR only accept integer counts\n' 'The values in count matrix are automatically rounded\n' 'In fact the FPKM/RPKM input is not encouraged by DESeq2 officially\n') # parameters used in DESeq2 self.count_matrix = pandas2ri.py2ri(count_matrix.drop(gene_column, axis=1).astype('int')) self.design_matrix = pandas2ri.py2ri(design_matrix) self.gene_ids = count_matrix[gene_column] self.gene_column = gene_column self.deseq2_result = None self.deseq2_label = None if design_formula is None: condition = design_matrix.columns[0] if len(design_matrix.columns) > 1: warnings.warn('Multiple conditions are set in design matrix,\n' 'you\'d better customise the design formula.\n' 'Here it only considers the first condition\n') self.design_formula = Formula('~ ' + condition) else: self.design_formula = Formula(design_formula) # parameters used in edgeR self.edgeR_group = numpy2ri.py2ri(design_matrix.iloc[:, 0].values) self.edgeR_gene_names = numpy2ri.py2ri(count_matrix[gene_column].values) self.edgeR_result = None self.edgeR_label = None # parameters used in limma self.limma_result = None self.limma_label = None self.final_label = None def deseq2(self, threshold=0.05, **kwargs): """ Run the standard DESeq2 workflow. Get the DESeq2 results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the adjusted p-value. default = 0.05. :param kwargs: parameters of DESeq2 functions. See official instructions for details: http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # Run DESeq2 workflow dds = DESeq2.DESeqDataSetFromMatrix(countData=self.count_matrix, colData=self.design_matrix, design=self.design_formula) dds = DESeq2.DESeq(dds, **kwargs) res = DESeq2.results(dds, **kwargs) # Store the output matrix as DataFrame self.deseq2_result = pandas2ri.ri2py(to_dataframe(res)) self.deseq2_result[self.gene_column] = self.gene_ids # The adjusted p-value in the DESeq2 results # may contain NAN if any(pd.isna(self.deseq2_result['padj'].values)): warnings.warn('There exist NAN in the adjusted p-value\n' 'see https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/' 'inst/doc/DESeq2.html#why-are-some-p-values-set-to-na\n') # Reject the H0 hypothesis if p-value < threshold labels = [int(x) for x in (self.deseq2_result['padj'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.deseq2_label = label return label def edger(self, threshold=0.05): """ Run the standard edgeR workflow. Get the edgR results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the p-value. default = 0.05. See official instructions for details: https://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # run edgeR workflow # Create the DGEList object dgList = edgeR.DGEList(counts=self.count_matrix, group=self.edgeR_group, genes=self.edgeR_gene_names) # Normalize dgList = edgeR.calcNormFactors(dgList, method="TMM") # Setting up the model robjects.r.assign('edgeR_group', self.edgeR_group) designMat = stats.model_matrix(Formula('~ edgeR_group')) # Estimating Dispersions dgList = edgeR.estimateGLMCommonDisp(dgList, design=designMat) dgList = edgeR.estimateGLMTrendedDisp(dgList, design=designMat) dgList = edgeR.estimateGLMTagwiseDisp(dgList, design=designMat) # Differential Expression fit = edgeR.glmQLFit(dgList, designMat) test = edgeR.glmQLFTest(fit) res = edgeR.topTags(test, n=self.count_matrix.nrow) res_df = pandas2ri.ri2py(to_dataframe(res)) # Sort the result on gene ids gene_df = pd.DataFrame({'genes': self.gene_ids}) self.edgeR_result = pd.merge(gene_df, res_df, how='left') # Reject the H0 hypothesis labels = [int(x) for x in (self.edgeR_result['PValue'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.edgeR_label = label return label def limma(self, threshold=0.05): """ Run the standard limma workflow. Get the limma results as DataFrame. Return the label of each gene: 0 for not differentially expressed, 1 for differentially expressed. :param threshold: threshold for the p-value. default = 0.05. See official instructions for details: https://ucdavis-bioinformatics-training.github.io/2018-June-RNA-Seq-Workshop/thursday/DE.html :return: label: pandas.DataFrame format with 2 columns: gene ids and labels """ # Create the DGEList object dgList = edgeR.DGEList(counts=self.count_matrix, group=self.edgeR_group, genes=self.edgeR_gene_names) # Normalize dgList = edgeR.calcNormFactors(dgList, method="TMM") # Setting up the model robjects.r.assign('edgeR_group', self.edgeR_group) designMat = stats.model_matrix(Formula('~ edgeR_group')) # voom v = Limma.voom(dgList, designMat) # fitting fit = Limma.lmFit(v, designMat) fit = Limma.eBayes(fit) res = Limma.topTable(fit, n=self.count_matrix.nrow) res_df = pandas2ri.ri2py(to_dataframe(res)) # Sort the result on gene ids gene_df = pd.DataFrame({'genes': self.gene_ids}) self.limma_result = pd.merge(gene_df, res_df, how='left') # Reject the H0 hypothesis labels = [int(x) for x in (self.limma_result['adj.P.Val'] < threshold)] label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': labels}) self.limma_label = label return label def plot_label_difference(self): """ Plot the Venn diagram of the 3 label output. Since we only interest in the differentially expressed genes. The number on Venn diagram shows the number of samples labeled as 1. Say differentially expressed genes. """ if self.limma_label is None: warnings.warn('Seems you haven\'t get limma label\n' 'Automatically running limma...') self.limma_label = self.limma() if self.deseq2_label is None: warnings.warn('Seems you haven\'t get DESeq2 label\n' 'Automatically running DESeq2...') self.deseq2_label = self.deseq2() if self.edgeR_label is None: warnings.warn('Seems you haven\'t get edgeR label\n' 'Automatically running edgeR...') self.edgeR_label = self.edger() # Import the plot package from matplotlib_venn import venn3 import matplotlib.pyplot as plt labels = np.array([self.deseq2_label['label'].values, self.edgeR_label['label'].values, self.limma_label['label'].values]).T names = ['DESeq2', 'edgeR', 'limma'] venn_df = pd.DataFrame(data=labels, columns=names) sets = {'000': 0, '001': 0, '010': 0, '011': 0, '100': 0, '101': 0, '110': 0, '111': 0} for i in range(venn_df.shape[0]): loc = [str(num) for num in venn_df.iloc[i, :]] loc = loc[0] + loc[1] + loc[2] sets[loc] += 1 venn3(sets, set_labels=names) plt.show() return sets def get_final_label(self, method='inner'): """ There are 2 methods availabel: inner: set those genes as differentially expressed, say label 1, if all 3 tools agreed vote: set those genes as differentially expressed, say label 1, if all 2 out of the 3 tools agreed union: set those genes as differentially expressed, say label 1, as long as 1 tool agreed """ label = None menu = ['inner', 'vote', 'union'] assert method in menu, \ 'Please choose the correct method' if self.limma_label is None: warnings.warn('Seems you haven\'t get limma label\n' 'Automatically running limma...') self.limma_label = self.limma() if self.deseq2_label is None: warnings.warn('Seems you haven\'t get DESeq2 label\n' 'Automatically running DESeq2...') self.deseq2_label = self.deseq2() if self.edgeR_label is None: warnings.warn('Seems you haven\'t get edgeR label\n' 'Automatically running edgeR...') self.edgeR_label = self.edger() labels = self.deseq2_label['label'].values + self.edgeR_label['label'].values + self.limma_label['label'].values if method == 'inner': label = [int(x) for x in (labels == 3)] if method == 'vote': label = [int(x) for x in (labels >= 2)] if method == 'union': label = [int(x) for x in (labels >= 1)] self.final_label = pd.DataFrame({self.gene_column: self.gene_ids, 'label': label}) return self.final_label
[ "rpy2.robjects.pandas2ri.activate", "rpy2.robjects.pandas2ri.py2ri", "rpy2.robjects.r.assign", "rpy2.robjects.numpy2ri.py2ri", "pandas.merge", "matplotlib_venn.venn3", "rpy2.robjects.Formula", "rpy2.robjects.packages.importr", "numpy.array", "pandas.DataFrame", "warnings.warn", "pandas.isna", "rpy2.robjects.numpy2ri.activate", "rpy2.robjects.r", "matplotlib.pyplot.show" ]
[((1288, 1308), 'rpy2.robjects.pandas2ri.activate', 'pandas2ri.activate', ([], {}), '()\n', (1306, 1308), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((1310, 1329), 'rpy2.robjects.numpy2ri.activate', 'numpy2ri.activate', ([], {}), '()\n', (1327, 1329), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((1364, 1381), 'rpy2.robjects.packages.importr', 'importr', (['"""DESeq2"""'], {}), "('DESeq2')\n", (1371, 1381), False, 'from rpy2.robjects.packages import importr\n'), ((1391, 1407), 'rpy2.robjects.packages.importr', 'importr', (['"""edgeR"""'], {}), "('edgeR')\n", (1398, 1407), False, 'from rpy2.robjects.packages import importr\n'), ((1417, 1433), 'rpy2.robjects.packages.importr', 'importr', (['"""limma"""'], {}), "('limma')\n", (1424, 1433), False, 'from rpy2.robjects.packages import importr\n'), ((1443, 1459), 'rpy2.robjects.packages.importr', 'importr', (['"""stats"""'], {}), "('stats')\n", (1450, 1459), False, 'from rpy2.robjects.packages import importr\n'), ((1478, 1517), 'rpy2.robjects.r', 'robjects.r', (['"""function(x) data.frame(x)"""'], {}), "('function(x) data.frame(x)')\n", (1488, 1517), True, 'import rpy2.robjects as robjects\n'), ((3682, 3712), 'rpy2.robjects.pandas2ri.py2ri', 'pandas2ri.py2ri', (['design_matrix'], {}), '(design_matrix)\n', (3697, 3712), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((4447, 4494), 'rpy2.robjects.numpy2ri.py2ri', 'numpy2ri.py2ri', (['design_matrix.iloc[:, 0].values'], {}), '(design_matrix.iloc[:, 0].values)\n', (4461, 4494), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((4528, 4576), 'rpy2.robjects.numpy2ri.py2ri', 'numpy2ri.py2ri', (['count_matrix[gene_column].values'], {}), '(count_matrix[gene_column].values)\n', (4542, 4576), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((6570, 6634), 'pandas.DataFrame', 'pd.DataFrame', (["{self.gene_column: self.gene_ids, 'label': labels}"], {}), "({self.gene_column: self.gene_ids, 'label': labels})\n", (6582, 6634), True, 'import pandas as pd\n'), ((7618, 7668), 'rpy2.robjects.r.assign', 'robjects.r.assign', (['"""edgeR_group"""', 'self.edgeR_group'], {}), "('edgeR_group', self.edgeR_group)\n", (7635, 7668), True, 'import rpy2.robjects as robjects\n'), ((8281, 8319), 'pandas.DataFrame', 'pd.DataFrame', (["{'genes': self.gene_ids}"], {}), "({'genes': self.gene_ids})\n", (8293, 8319), True, 'import pandas as pd\n'), ((8349, 8386), 'pandas.merge', 'pd.merge', (['gene_df', 'res_df'], {'how': '"""left"""'}), "(gene_df, res_df, how='left')\n", (8357, 8386), True, 'import pandas as pd\n'), ((8520, 8584), 'pandas.DataFrame', 'pd.DataFrame', (["{self.gene_column: self.gene_ids, 'label': labels}"], {}), "({self.gene_column: self.gene_ids, 'label': labels})\n", (8532, 8584), True, 'import pandas as pd\n'), ((9536, 9586), 'rpy2.robjects.r.assign', 'robjects.r.assign', (['"""edgeR_group"""', 'self.edgeR_group'], {}), "('edgeR_group', self.edgeR_group)\n", (9553, 9586), True, 'import rpy2.robjects as robjects\n'), ((9978, 10016), 'pandas.DataFrame', 'pd.DataFrame', (["{'genes': self.gene_ids}"], {}), "({'genes': self.gene_ids})\n", (9990, 10016), True, 'import pandas as pd\n'), ((10046, 10083), 'pandas.merge', 'pd.merge', (['gene_df', 'res_df'], {'how': '"""left"""'}), "(gene_df, res_df, how='left')\n", (10054, 10083), True, 'import pandas as pd\n'), ((10220, 10284), 'pandas.DataFrame', 'pd.DataFrame', (["{self.gene_column: self.gene_ids, 'label': labels}"], {}), "({self.gene_column: self.gene_ids, 'label': labels})\n", (10232, 10284), True, 'import pandas as pd\n'), ((11640, 11680), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'labels', 'columns': 'names'}), '(data=labels, columns=names)\n', (11652, 11680), True, 'import pandas as pd\n'), ((11962, 11991), 'matplotlib_venn.venn3', 'venn3', (['sets'], {'set_labels': 'names'}), '(sets, set_labels=names)\n', (11967, 11991), False, 'from matplotlib_venn import venn3\n'), ((12001, 12011), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12009, 12011), True, 'import matplotlib.pyplot as plt\n'), ((13674, 13737), 'pandas.DataFrame', 'pd.DataFrame', (["{self.gene_column: self.gene_ids, 'label': label}"], {}), "({self.gene_column: self.gene_ids, 'label': label})\n", (13686, 13737), True, 'import pandas as pd\n'), ((2976, 2997), 'pandas.isna', 'pd.isna', (['count_matrix'], {}), '(count_matrix)\n', (2983, 2997), True, 'import pandas as pd\n'), ((3269, 3464), 'warnings.warn', 'warnings.warn', (['"""DESeq2 and edgeR only accept integer counts\nThe values in count matrix are automatically rounded\nIn fact the FPKM/RPKM input is not encouraged by DESeq2 officially\n"""'], {}), '(\n """DESeq2 and edgeR only accept integer counts\nThe values in count matrix are automatically rounded\nIn fact the FPKM/RPKM input is not encouraged by DESeq2 officially\n"""\n )\n', (3282, 3464), False, 'import warnings\n'), ((4281, 4306), 'rpy2.robjects.Formula', 'Formula', (["('~ ' + condition)"], {}), "('~ ' + condition)\n", (4288, 4306), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((4357, 4380), 'rpy2.robjects.Formula', 'Formula', (['design_formula'], {}), '(design_formula)\n', (4364, 4380), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((6116, 6158), 'pandas.isna', 'pd.isna', (["self.deseq2_result['padj'].values"], {}), "(self.deseq2_result['padj'].values)\n", (6123, 6158), True, 'import pandas as pd\n'), ((6174, 6366), 'warnings.warn', 'warnings.warn', (['"""There exist NAN in the adjusted p-value\nsee https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na\n"""'], {}), '(\n """There exist NAN in the adjusted p-value\nsee https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#why-are-some-p-values-set-to-na\n"""\n )\n', (6187, 6366), False, 'import warnings\n'), ((7709, 7733), 'rpy2.robjects.Formula', 'Formula', (['"""~ edgeR_group"""'], {}), "('~ edgeR_group')\n", (7716, 7733), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((9627, 9651), 'rpy2.robjects.Formula', 'Formula', (['"""~ edgeR_group"""'], {}), "('~ edgeR_group')\n", (9634, 9651), False, 'from rpy2.robjects import numpy2ri, pandas2ri, Formula\n'), ((10708, 10798), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get limma label\nAutomatically running limma..."""'], {}), '(\n """Seems you haven\'t get limma label\nAutomatically running limma...""")\n', (10721, 10798), False, 'import warnings\n'), ((10919, 11011), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get DESeq2 label\nAutomatically running DESeq2..."""'], {}), '(\n """Seems you haven\'t get DESeq2 label\nAutomatically running DESeq2...""")\n', (10932, 11011), False, 'import warnings\n'), ((11133, 11223), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get edgeR label\nAutomatically running edgeR..."""'], {}), '(\n """Seems you haven\'t get edgeR label\nAutomatically running edgeR...""")\n', (11146, 11223), False, 'import warnings\n'), ((11431, 11549), 'numpy.array', 'np.array', (["[self.deseq2_label['label'].values, self.edgeR_label['label'].values, self.\n limma_label['label'].values]"], {}), "([self.deseq2_label['label'].values, self.edgeR_label['label'].\n values, self.limma_label['label'].values])\n", (11439, 11549), True, 'import numpy as np\n'), ((12679, 12769), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get limma label\nAutomatically running limma..."""'], {}), '(\n """Seems you haven\'t get limma label\nAutomatically running limma...""")\n', (12692, 12769), False, 'import warnings\n'), ((12890, 12982), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get DESeq2 label\nAutomatically running DESeq2..."""'], {}), '(\n """Seems you haven\'t get DESeq2 label\nAutomatically running DESeq2...""")\n', (12903, 12982), False, 'import warnings\n'), ((13104, 13194), 'warnings.warn', 'warnings.warn', (['"""Seems you haven\'t get edgeR label\nAutomatically running edgeR..."""'], {}), '(\n """Seems you haven\'t get edgeR label\nAutomatically running edgeR...""")\n', (13117, 13194), False, 'import warnings\n'), ((4024, 4187), 'warnings.warn', 'warnings.warn', (['"""Multiple conditions are set in design matrix,\nyou\'d better customise the design formula.\nHere it only considers the first condition\n"""'], {}), '(\n """Multiple conditions are set in design matrix,\nyou\'d better customise the design formula.\nHere it only considers the first condition\n"""\n )\n', (4037, 4187), False, 'import warnings\n')]
""" Takes the MNIST dataset as input (images and labels separated) and creates a new dataset only with 0's and 1's """ import numpy as np DATA_PATH = "data/raw/" OUTPUT_PATH = "data/processed/mnist/" X = np.loadtxt(DATA_PATH + "mnist2500_X.txt") labels = np.loadtxt(DATA_PATH + "mnist2500_labels.txt") X_new = [] labels_new = [] for i,label in enumerate(labels): if label < 5: labels_new.append(label) X_new.append(X[i]) if i%100 == 0: print(f"{i} labels passed") np.savetxt(OUTPUT_PATH + "mnist2500_X_01234.txt",X_new) np.savetxt(OUTPUT_PATH +"mnist2500_labels_01234.txt",labels_new)
[ "numpy.loadtxt", "numpy.savetxt" ]
[((206, 247), 'numpy.loadtxt', 'np.loadtxt', (["(DATA_PATH + 'mnist2500_X.txt')"], {}), "(DATA_PATH + 'mnist2500_X.txt')\n", (216, 247), True, 'import numpy as np\n'), ((257, 303), 'numpy.loadtxt', 'np.loadtxt', (["(DATA_PATH + 'mnist2500_labels.txt')"], {}), "(DATA_PATH + 'mnist2500_labels.txt')\n", (267, 303), True, 'import numpy as np\n'), ((503, 559), 'numpy.savetxt', 'np.savetxt', (["(OUTPUT_PATH + 'mnist2500_X_01234.txt')", 'X_new'], {}), "(OUTPUT_PATH + 'mnist2500_X_01234.txt', X_new)\n", (513, 559), True, 'import numpy as np\n'), ((559, 625), 'numpy.savetxt', 'np.savetxt', (["(OUTPUT_PATH + 'mnist2500_labels_01234.txt')", 'labels_new'], {}), "(OUTPUT_PATH + 'mnist2500_labels_01234.txt', labels_new)\n", (569, 625), True, 'import numpy as np\n')]
from pykalman import KalmanFilter import numpy as np kf = KalmanFilter(transition_matrices=np.array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]), observation_matrices=np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0]]), transition_covariance=0.003 * np.eye(6, dtype=float)) # TODO: change this constant t = 0 means = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) covariances = np.eye(6, dtype=float) def kalman_filter(measurement): global t, means, covariances new_filtered_means, new_filtered_covariances = (kf.filter_update(means, covariances, measurement)) means, covariances = new_filtered_means, new_filtered_covariances t = t + 1.0 # print(means[:3]); return means[:3]
[ "numpy.array", "numpy.eye" ]
[((899, 939), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])\n', (907, 939), True, 'import numpy as np\n'), ((954, 976), 'numpy.eye', 'np.eye', (['(6)'], {'dtype': 'float'}), '(6, dtype=float)\n', (960, 976), True, 'import numpy as np\n'), ((92, 304), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0,\n 1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, \n 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]]'], {}), '([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 1.0, 0.0], [\n 0.0, 0.0, 1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0]])\n', (100, 304), True, 'import numpy as np\n'), ((575, 686), 'numpy.array', 'np.array', (['[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0,\n 1.0, 0.0, 0.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [\n 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]])\n', (583, 686), True, 'import numpy as np\n'), ((829, 851), 'numpy.eye', 'np.eye', (['(6)'], {'dtype': 'float'}), '(6, dtype=float)\n', (835, 851), True, 'import numpy as np\n')]
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.13.4 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # + import gzip import numpy as np import matplotlib.pyplot as plt from Bio import SeqIO, SeqUtils # - # !rm -f atroparvus.fa.gz gambiae.fa.gz 2>/dev/null # !wget https://vectorbase.org/common/downloads/Current_Release/AgambiaePEST/fasta/data/VectorBase-55_AgambiaePEST_Genome.fasta -O gambiae.fa # !gzip -9 gambiae.fa # !wget https://vectorbase.org/common/downloads/Current_Release/AatroparvusEBRO/fasta/data/VectorBase-55_AatroparvusEBRO_Genome.fasta -O atroparvus.fa # !gzip -9 atroparvus.fa gambiae_name = 'gambiae.fa.gz' atroparvus_name = 'atroparvus.fa.gz' recs = SeqIO.parse(gzip.open(gambiae_name, 'rt', encoding='utf-8'), 'fasta') for rec in recs: print(rec.description) #Do not do this with atroparvus recs = SeqIO.parse(gzip.open(gambiae_name, 'rt', encoding='utf-8'), 'fasta') chrom_Ns = {} chrom_sizes = {} for rec in recs: if rec.description.find('supercontig') > -1: continue print(rec.description, rec.id, rec) chrom = rec.id.split('_')[1] if chrom in ['UNKN']:#, 'Y_unplaced']: continue chrom_Ns[chrom] = [] on_N = False curr_size = 0 for pos, nuc in enumerate(rec.seq): if nuc in ['N', 'n']: curr_size += 1 on_N = True else: if on_N: chrom_Ns[chrom].append(curr_size) curr_size = 0 on_N = False if on_N: chrom_Ns[chrom].append(curr_size) chrom_sizes[chrom] = len(rec.seq) for chrom, Ns in chrom_Ns.items(): size = chrom_sizes[chrom] if len(Ns) > 0: max_Ns = max(Ns) else: max_Ns = 'NA' print(f'{chrom} ({size}): %Ns ({round(100 * sum(Ns) / size, 1)}), num Ns: {len(Ns)}, max N: {max_Ns}') # ## Atroparvus super-contigs recs = SeqIO.parse(gzip.open(atroparvus_name, 'rt', encoding='utf-8'), 'fasta') sizes = [] size_N = [] for rec in recs: size = len(rec.seq) sizes.append(size) count_N = 0 for nuc in rec.seq: if nuc in ['n', 'N']: count_N += 1 size_N.append((size, count_N / size)) print(len(sizes), np.median(sizes), np.mean(sizes), max(sizes), min(sizes), np.percentile(sizes, 10), np.percentile(sizes, 90)) small_split = 4800 large_split = 540000 fig, axs = plt.subplots(1, 3, figsize=(16, 9), dpi=300, squeeze=False, sharey=True) xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x <= small_split]) axs[0, 0].plot(xs, ys, '.') xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x > small_split and x <= large_split]) axs[0, 1].plot(xs, ys, '.') axs[0, 1].set_xlim(small_split, large_split) xs, ys = zip(*[(x, 100 * y) for x, y in size_N if x > large_split]) axs[0, 2].plot(xs, ys, '.') axs[0, 0].set_ylabel('Fraction of Ns', fontsize=12) axs[0, 1].set_xlabel('Contig size', fontsize=12) fig.suptitle('Fraction of Ns per contig size', fontsize=26) fig.savefig('frac.png')
[ "numpy.mean", "numpy.median", "gzip.open", "numpy.percentile", "matplotlib.pyplot.subplots" ]
[((2511, 2583), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(16, 9)', 'dpi': '(300)', 'squeeze': '(False)', 'sharey': '(True)'}), '(1, 3, figsize=(16, 9), dpi=300, squeeze=False, sharey=True)\n', (2523, 2583), True, 'import matplotlib.pyplot as plt\n'), ((865, 912), 'gzip.open', 'gzip.open', (['gambiae_name', '"""rt"""'], {'encoding': '"""utf-8"""'}), "(gambiae_name, 'rt', encoding='utf-8')\n", (874, 912), False, 'import gzip\n'), ((1019, 1066), 'gzip.open', 'gzip.open', (['gambiae_name', '"""rt"""'], {'encoding': '"""utf-8"""'}), "(gambiae_name, 'rt', encoding='utf-8')\n", (1028, 1066), False, 'import gzip\n'), ((2039, 2089), 'gzip.open', 'gzip.open', (['atroparvus_name', '"""rt"""'], {'encoding': '"""utf-8"""'}), "(atroparvus_name, 'rt', encoding='utf-8')\n", (2048, 2089), False, 'import gzip\n'), ((2343, 2359), 'numpy.median', 'np.median', (['sizes'], {}), '(sizes)\n', (2352, 2359), True, 'import numpy as np\n'), ((2361, 2375), 'numpy.mean', 'np.mean', (['sizes'], {}), '(sizes)\n', (2368, 2375), True, 'import numpy as np\n'), ((2407, 2431), 'numpy.percentile', 'np.percentile', (['sizes', '(10)'], {}), '(sizes, 10)\n', (2420, 2431), True, 'import numpy as np\n'), ((2433, 2457), 'numpy.percentile', 'np.percentile', (['sizes', '(90)'], {}), '(sizes, 90)\n', (2446, 2457), True, 'import numpy as np\n')]
import argparse import os import os.path as osp import cv2 import numpy as np from scipy.stats import multivariate_normal from scipy.stats import norm import matplotlib # matplotlib.use('agg') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import subprocess import shutil import chainer from chainer import training from chainer.training import extensions from chainer.dataset import concat_examples from chainer.backends.cuda import to_cpu import chainer.functions as F from chainer import serializers import net_200x200 as net import data_generator from config_parser import ConfigParser from utils import * def save_reconstruction_arrays(data, model, folder_name="."): print("Clear Images from Last Reconstructions\n") all_files = list([filename for filename in os.listdir(folder_name) if '.' in filename]) list(map(lambda x : os.remove(folder_name + x), all_files)) print("Saving Array RECONSTRUCTIONS\n") (train_b0, train_b1) = data no_images = 10 train_ind = np.linspace(0, len(train_b0) - 1, no_images, dtype=int) result = model(train_b0[train_ind], train_b1[train_ind]) gt_b0 = np.swapaxes(train_b0[train_ind], 1, 3) gt_b1 = np.swapaxes(train_b1[train_ind], 1, 3) rec_b0 = np.swapaxes(result[0].data, 1, 3) rec_b1 = np.swapaxes(result[1].data, 1, 3) output = {"gt_b0": gt_b0, "gt_b1": gt_b1, 'rec_b0': rec_b0, 'rec_b1': rec_b1} np.savez(os.path.join("result", "reconstruction_arrays/train" + ".npz"), **output) def eval_seen_data(data, model, groups, folder_name=".", pairs=None): print("Clear Images from Last Seen Scatter\n") all_files = list([filename for filename in os.listdir(folder_name) if '.' in filename]) list(map(lambda x : os.remove(folder_name + x), all_files)) print("Evaluating on SEEN data\n") (data_b0, data_b1) = data n = 100 every_nth = len(data_b0) / n if every_nth == 0: every_nth = 1 axis_ranges = [-5, 5] for group_key in groups: for label in groups[group_key]: print(("Visualising label:\t{0}, Group:\t{1}".format(label, group_key))) indecies = [i for i, x in enumerate(train_labels) if x == label] filtered_data_b0 = data_b0.take(indecies, axis=0)[::every_nth] filtered_data_b1 = data_b1.take(indecies, axis=0)[::every_nth] latent_mu = model.get_latent(filtered_data_b0, filtered_data_b1).data pairs = [(0,1), (0,2), (1,2)] for pair in pairs: plt.scatter(latent_mu[:, pair[0]], latent_mu[:, pair[1]], c='red', label=label, alpha=0.75) plt.grid() # major axes plt.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') plt.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') plt.xlim(axis_ranges[0], axis_ranges[1]) plt.ylim(axis_ranges[0], axis_ranges[1]) plt.xlabel("Z_" + str(pair[0])) plt.ylabel("Z_" + str(pair[1])) plt.legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=14) plt.savefig(osp.join(folder_name, "group_" + str(group_key) + "_" + label + "_Z_" + str(pair[0]) + "_Z_" + str(pair[1])), bbox_inches="tight") plt.close() def eval_seen_data_single(data, model, labels=[], folder_name=".", pairs=None): print("Clear Images from Last Seen Scatter Single\n") all_files = list([filename for filename in os.listdir(folder_name) if '.' in filename]) list(map(lambda x : os.remove(folder_name + x), all_files)) print("Evaluating on SEEN SINGLE data\n") (data_b0, data_b1) = data axis_ranges = [-15, 15] # pairs = [(0,1)] n = 100 every_nth = len(data_b0) / n if every_nth == 0: every_nth = 1 filtered_data_b0 = data_b0.take(list(range(len(data_b0))), axis=0)[::every_nth] filtered_data_b1 = data_b1.take(list(range(len(data_b1))), axis=0)[::every_nth] labels = labels[::every_nth] latent = np.array(model.get_latent(filtered_data_b0, filtered_data_b1)) filtered_data_b0 = np.swapaxes(filtered_data_b0, 1, 3) filtered_data_b1 = np.swapaxes(filtered_data_b1, 1, 3) for i in range(0, len(latent[0]), 33): fig = plt.figure() fig.canvas.set_window_title(labels[i]) ax = fig.add_subplot(1, len(pairs) + 1, 1, projection='3d') points = filtered_data_b0[i].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_0 = filtered_points[...,0][::3] ys_0 = filtered_points[...,1][::3] zs_0 = filtered_points[...,2][::3] ax.scatter(xs_0, ys_0, zs_0, c='r', alpha=0.5) points = filtered_data_b1[i].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_1 = filtered_points[...,0][::3] ys_1 = filtered_points[...,1][::3] zs_1 = filtered_points[...,2][::3] ax.scatter(xs_1, ys_1, zs_1, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") for j, pair in enumerate(pairs): ax = fig.add_subplot(1, len(pairs) + 1, j + 2) ax.scatter(latent[pair[0], i], latent[pair[1], i], c='red', label="unseen", alpha=0.75) ax.grid() # major axes ax.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') ax.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') ax.set_xlim(axis_ranges[0], axis_ranges[1]) ax.set_ylim(axis_ranges[0], axis_ranges[1]) ax.set_xlabel("Z_" + str(pair[0])) ax.set_ylabel("Z_" + str(pair[1])) # ax.legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=14) # plt.savefig(osp.join(folder_name, str(i) + "_Z_" + str(pair[0]) + "_Z_" + str(pair[1])), bbox_inches="tight") # plt.close() plt.show() def eval_unseen_data(data, model, folder_name=".", pairs=None): print("Clear Images from Last Unseen Scatter\n") all_files = list([filename for filename in os.listdir(folder_name) if '.' in filename]) list(map(lambda x : os.remove(folder_name + x), all_files)) print("Evaluating on UNSEEN data\n") (data_b0, data_b1) = data axis_ranges = [-5, 5] # pairs = [(0,1), (0,2), (1,2)] # pairs = [(0,1)] # n = 100 # every_nth = len(data_b0) / n # if every_nth == 0: # every_nth = 1 every_nth = 2 filtered_data_b0 = data_b0.take(list(range(len(data_b0))), axis=0)[::every_nth] filtered_data_b1 = data_b1.take(list(range(len(data_b1))), axis=0)[::every_nth] latent = np.array(model.get_latent(filtered_data_b0, filtered_data_b1)) latent_flipped = np.array(model.get_latent(filtered_data_b1, filtered_data_b0)) filtered_data_b0 = np.swapaxes(filtered_data_b0, 1, 3) filtered_data_b1 = np.swapaxes(filtered_data_b1, 1, 3) for i in range(len(filtered_data_b0)): print(("{0}/{1}".format(i, len(latent[0])))) fig = plt.figure() ax = fig.add_subplot(2, 4, 1, projection='3d') points = filtered_data_b0[i].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_0 = filtered_points[...,0][::3] ys_0 = filtered_points[...,1][::3] zs_0 = filtered_points[...,2][::3] ax.scatter(xs_0, ys_0, zs_0, c='r', alpha=0.5) points = filtered_data_b1[i].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_1 = filtered_points[...,0][::3] ys_1 = filtered_points[...,1][::3] zs_1 = filtered_points[...,2][::3] ax.scatter(xs_1, ys_1, zs_1, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") for j, pair in enumerate(pairs): ax = fig.add_subplot(2, 4, j + 2) ax.scatter(latent[pair[0], i], latent[pair[1], i], c='red', label="unseen", alpha=0.75) ax.grid() # major axes ax.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') ax.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') # ax.set_xlim(axis_ranges[0], axis_ranges[1]) # ax.set_ylim(axis_ranges[0], axis_ranges[1]) ax.set_xlabel("Z_" + str(pair[0])) ax.set_ylabel("Z_" + str(pair[1])) # ax.legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=14) ax = fig.add_subplot(2, 4, 5, projection='3d') ax.scatter(xs_1, ys_1, zs_1, c='r', alpha=0.5) ax.scatter(xs_0, ys_0, zs_0, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") for j, pair in enumerate(pairs): ax = fig.add_subplot(2, 4, j + 6) ax.scatter(latent_flipped[pair[0], i], latent_flipped[pair[1], i], c='red', label="unseen", alpha=0.75) ax.grid() # major axes ax.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') ax.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') # ax.set_xlim(axis_ranges[0], axis_ranges[1]) # ax.set_ylim(axis_ranges[0], axis_ranges[1]) ax.set_xlabel("Z_" + str(pair[0])) ax.set_ylabel("Z_" + str(pair[1])) # ax.legend(loc='upper left', bbox_to_anchor=(1, 1), fontsize=14) # plt.savefig(osp.join(folder_name, str(i) + "_Z_" + str(pair[0]) + "_Z_" + str(pair[1])), bbox_inches="tight") # plt.close() plt.show() def eval_unseen_time(data, model, folder_name=".", pairs=None): print("Clear Images from Last Unseen Scatter\n") all_files = list([filename for filename in os.listdir(folder_name) if '.' in filename]) list(map(lambda x : os.remove(folder_name + x), all_files)) print("Evaluating on UNSEEN data through time\n") cmap = plt.cm.get_cmap('cool') (data_b0, data_b1) = data axis_ranges = [-20, 20] # pairs = [(0,1), (0,2), (1,2)] pairs = [(0,1), (2,3)] npz_size = 50 npz_files = 4 for k in range(npz_files): filtered_data_b0 = data_b0.take(list(range(len(data_b0))), axis=0)[k * npz_size : (k+1) * npz_size - 1] filtered_data_b1 = data_b1.take(list(range(len(data_b1))), axis=0)[k * npz_size : (k+1) * npz_size - 1] latent = np.array(model.get_latent(filtered_data_b0, filtered_data_b1)) latent_flipped = np.array(model.get_latent(filtered_data_b1, filtered_data_b0)) filtered_data_b0 = np.swapaxes(filtered_data_b0, 1, 3) filtered_data_b1 = np.swapaxes(filtered_data_b1, 1, 3) print(("{0}/{1}".format(k, npz_files))) fig = plt.figure() ################### #### FIRST ROW #### ################### ax = fig.add_subplot(2, len(pairs) + 2, 1, projection='3d') points = filtered_data_b0[1].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_0_first = filtered_points[...,0][::3] ys_0_first = filtered_points[...,1][::3] zs_0_first = filtered_points[...,2][::3] ax.scatter(xs_0_first, ys_0_first, zs_0_first, c='r', alpha=0.5) points = filtered_data_b1[1].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_1_first = filtered_points[...,0][::3] ys_1_first = filtered_points[...,1][::3] zs_1_first = filtered_points[...,2][::3] ax.scatter(xs_1_first, ys_1_first, zs_1_first, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") ax = fig.add_subplot(2, len(pairs) + 2, 2, projection='3d') points = filtered_data_b0[-1].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_0_last = filtered_points[...,0][::3] ys_0_last = filtered_points[...,1][::3] zs_0_last = filtered_points[...,2][::3] ax.scatter(xs_0_last, ys_0_last, zs_0_last, c='r', alpha=0.5) points = filtered_data_b1[-1].reshape(200*200,3) filtered_points = np.array(list([row for row in points if [point for point in row if (point != [0,0,0]).all()]])) xs_1_last = filtered_points[...,0][::3] ys_1_last = filtered_points[...,1][::3] zs_1_last = filtered_points[...,2][::3] ax.scatter(xs_1_last, ys_1_last, zs_1_last, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") for j, pair in enumerate(pairs): ax = fig.add_subplot(2, len(pairs) + 2, j + 3) for i in range(len(latent[0])): x = (latent[pair[0], i], latent[pair[1], i]) rgba = cmap(i/float(npz_size)) ax.scatter(x[0], x[1], c=[rgba[:3]], label="unseen", s=30, alpha=0.75) ax.grid() # major axes ax.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') ax.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') ax.set_xlabel("Z_" + str(pair[0])) ax.set_ylabel("Z_" + str(pair[1])) ax.set_xlim(axis_ranges[0], axis_ranges[1]) ax.set_ylim(axis_ranges[0], axis_ranges[1]) ################## ### SECOND ROW ### ################## ax = fig.add_subplot(2, len(pairs) + 2, len(pairs) + 3, projection='3d') ax.scatter(xs_1_first, ys_1_first, zs_1_first, c='r', alpha=0.5) ax.scatter(xs_0_first, ys_0_first, zs_0_first, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") ax = fig.add_subplot(2, len(pairs) + 2, len(pairs) + 4, projection='3d') ax.scatter(xs_1_last, ys_1_last, zs_1_last, c='r', alpha=0.5) ax.scatter(xs_0_last, ys_0_last, zs_0_last, c='c', alpha=0.5) ax.set_xlabel('X', fontweight="bold") ax.set_ylabel('Y', fontweight="bold") ax.set_zlabel('Z', fontweight="bold") for j, pair in enumerate(pairs): ax = fig.add_subplot(2, len(pairs) + 2, j + len(pairs) + 5) for i in range(len(latent_flipped[0])): x = (latent_flipped[pair[0], i], latent_flipped[pair[1], i]) rgba = cmap(i/float(npz_size)) ax.scatter(x[0], x[1], c=[rgba[:3]], label="unseen", s=30, alpha=0.75) ax.grid() # major axes ax.plot([axis_ranges[0], axis_ranges[1]], [0,0], 'k') ax.plot([0,0], [axis_ranges[0], axis_ranges[1]], 'k') ax.set_xlabel("Z_" + str(pair[0])) ax.set_ylabel("Z_" + str(pair[1])) ax.set_xlim(axis_ranges[0], axis_ranges[1]) ax.set_ylim(axis_ranges[0], axis_ranges[1]) # plt.savefig(osp.join(folder_name, "npz_" + str(k) + "_Z_" + str(pair[0]) + "_Z_" + str(pair[1])), bbox_inches="tight") # plt.close() plt.show() if __name__ == "__main__": ignore = ["unlabelled", "train"] generator = data_generator.DataGenerator() train_b0, train_b1, train_labels, train_concat, train_vectors, test_b0, test_b1, test_labels, test_concat, test_vectors, unseen_b0, unseen_b1,\ unseen_labels, groups = generator.generate_dataset(ignore=ignore, args=None) print('\n###############################################') print("DATA_LOADED") print(("# Training Branch 0: \t\t{0}".format(train_b0.shape))) print(("# Training Branch 1: \t\t{0}".format(train_b1.shape))) print(("# Training labels: \t{0}".format(set(train_labels)))) print(("# Training labels: \t{0}".format(train_labels.shape))) print(("# Training concat: \t{0}".format(len(train_concat)))) print(("# Training vectors: \t{0}".format(train_vectors.shape))) print(("# Testing Branch 0: \t\t{0}".format(test_b0.shape))) print(("# Testing Branch 1: \t\t{0}".format(test_b1.shape))) print(("# Testing labels: \t{0}".format(set(test_labels)))) print(("# Testing concat: \t{0}".format(len(test_concat)))) print(("# Testing labels: \t{0}".format(test_labels.shape))) print(("# Testing vectors: \t{0}".format(test_vectors.shape))) print(("# Unseen Branch 0: \t\t{0}".format(unseen_b0.shape))) print(("# Unseen Branch 1: \t\t{0}".format(unseen_b1.shape))) print(("# Unseen labels: \t{0}".format(set(unseen_labels)))) print(("\n# Groups: \t{0}".format(groups))) print('###############################################\n') model = net.Conv_Siam_VAE(train_b0.shape[1], train_b1.shape[1], n_latent=8, groups=groups, alpha=1, beta=1, gamma=1) serializers.load_npz("result/models/final.model", model) model.to_cpu() pairs = list(itertools.combinations(list(range(len(groups))), 2)) # save the pointcloud reconstructions # save_reconstruction_arrays((train_b0, train_b0), model, folder_name="result/reconstruction_arrays/") # evaluate on the data that was seen during trainig # eval_seen_data((train_b0, train_b1), model, groups, folder_name="eval/scatter/seen/", pairs=pairs) # evaluate on the data that was seen during trainig one by one + 3D # eval_seen_data_single((test_b0, test_b1), model, labels=test_labels, folder_name="eval/scatter/seen_single/", pairs=pairs) # evaluate on the data that was NOT seen during trainig # eval_unseen_data((unseen_b0, unseen_b1), model, folder_name="eval/scatter/unseen/", pairs=pairs) # evaluate the unseen data through time eval_unseen_time((unseen_b0, unseen_b1), model, folder_name="eval/scatter/unseen_time/", pairs=pairs)
[ "net_200x200.Conv_Siam_VAE", "os.listdir", "matplotlib.pyplot.grid", "matplotlib.pyplot.plot", "os.path.join", "numpy.swapaxes", "os.remove", "matplotlib.pyplot.figure", "matplotlib.pyplot.close", "data_generator.DataGenerator", "matplotlib.pyplot.scatter", "matplotlib.pyplot.cm.get_cmap", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "chainer.serializers.load_npz", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((1128, 1166), 'numpy.swapaxes', 'np.swapaxes', (['train_b0[train_ind]', '(1)', '(3)'], {}), '(train_b0[train_ind], 1, 3)\n', (1139, 1166), True, 'import numpy as np\n'), ((1176, 1214), 'numpy.swapaxes', 'np.swapaxes', (['train_b1[train_ind]', '(1)', '(3)'], {}), '(train_b1[train_ind], 1, 3)\n', (1187, 1214), True, 'import numpy as np\n'), ((1226, 1259), 'numpy.swapaxes', 'np.swapaxes', (['result[0].data', '(1)', '(3)'], {}), '(result[0].data, 1, 3)\n', (1237, 1259), True, 'import numpy as np\n'), ((1270, 1303), 'numpy.swapaxes', 'np.swapaxes', (['result[1].data', '(1)', '(3)'], {}), '(result[1].data, 1, 3)\n', (1281, 1303), True, 'import numpy as np\n'), ((3781, 3816), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b0', '(1)', '(3)'], {}), '(filtered_data_b0, 1, 3)\n', (3792, 3816), True, 'import numpy as np\n'), ((3837, 3872), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b1', '(1)', '(3)'], {}), '(filtered_data_b1, 1, 3)\n', (3848, 3872), True, 'import numpy as np\n'), ((6370, 6405), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b0', '(1)', '(3)'], {}), '(filtered_data_b0, 1, 3)\n', (6381, 6405), True, 'import numpy as np\n'), ((6426, 6461), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b1', '(1)', '(3)'], {}), '(filtered_data_b1, 1, 3)\n', (6437, 6461), True, 'import numpy as np\n'), ((9265, 9288), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""cool"""'], {}), "('cool')\n", (9280, 9288), True, 'import matplotlib.pyplot as plt\n'), ((14066, 14096), 'data_generator.DataGenerator', 'data_generator.DataGenerator', ([], {}), '()\n', (14094, 14096), False, 'import data_generator\n'), ((15463, 15576), 'net_200x200.Conv_Siam_VAE', 'net.Conv_Siam_VAE', (['train_b0.shape[1]', 'train_b1.shape[1]'], {'n_latent': '(8)', 'groups': 'groups', 'alpha': '(1)', 'beta': '(1)', 'gamma': '(1)'}), '(train_b0.shape[1], train_b1.shape[1], n_latent=8, groups=\n groups, alpha=1, beta=1, gamma=1)\n', (15480, 15576), True, 'import net_200x200 as net\n'), ((15573, 15629), 'chainer.serializers.load_npz', 'serializers.load_npz', (['"""result/models/final.model"""', 'model'], {}), "('result/models/final.model', model)\n", (15593, 15629), False, 'from chainer import serializers\n'), ((1394, 1456), 'os.path.join', 'os.path.join', (['"""result"""', "('reconstruction_arrays/train' + '.npz')"], {}), "('result', 'reconstruction_arrays/train' + '.npz')\n", (1406, 1456), False, 'import os\n'), ((3923, 3935), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3933, 3935), True, 'import matplotlib.pyplot as plt\n'), ((5511, 5521), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5519, 5521), True, 'import matplotlib.pyplot as plt\n'), ((6559, 6571), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6569, 6571), True, 'import matplotlib.pyplot as plt\n'), ((8927, 8937), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8935, 8937), True, 'import matplotlib.pyplot as plt\n'), ((9851, 9886), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b0', '(1)', '(3)'], {}), '(filtered_data_b0, 1, 3)\n', (9862, 9886), True, 'import numpy as np\n'), ((9908, 9943), 'numpy.swapaxes', 'np.swapaxes', (['filtered_data_b1', '(1)', '(3)'], {}), '(filtered_data_b1, 1, 3)\n', (9919, 9943), True, 'import numpy as np\n'), ((9995, 10007), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (10005, 10007), True, 'import matplotlib.pyplot as plt\n'), ((13979, 13989), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13987, 13989), True, 'import matplotlib.pyplot as plt\n'), ((797, 820), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (807, 820), False, 'import os\n'), ((863, 889), 'os.remove', 'os.remove', (['(folder_name + x)'], {}), '(folder_name + x)\n', (872, 889), False, 'import os\n'), ((1633, 1656), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (1643, 1656), False, 'import os\n'), ((1699, 1725), 'os.remove', 'os.remove', (['(folder_name + x)'], {}), '(folder_name + x)\n', (1708, 1725), False, 'import os\n'), ((2373, 2469), 'matplotlib.pyplot.scatter', 'plt.scatter', (['latent_mu[:, pair[0]]', 'latent_mu[:, pair[1]]'], {'c': '"""red"""', 'label': 'label', 'alpha': '(0.75)'}), "(latent_mu[:, pair[0]], latent_mu[:, pair[1]], c='red', label=\n label, alpha=0.75)\n", (2384, 2469), True, 'import matplotlib.pyplot as plt\n'), ((2469, 2479), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (2477, 2479), True, 'import matplotlib.pyplot as plt\n'), ((2502, 2557), 'matplotlib.pyplot.plot', 'plt.plot', (['[axis_ranges[0], axis_ranges[1]]', '[0, 0]', '"""k"""'], {}), "([axis_ranges[0], axis_ranges[1]], [0, 0], 'k')\n", (2510, 2557), True, 'import matplotlib.pyplot as plt\n'), ((2561, 2616), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 0]', '[axis_ranges[0], axis_ranges[1]]', '"""k"""'], {}), "([0, 0], [axis_ranges[0], axis_ranges[1]], 'k')\n", (2569, 2616), True, 'import matplotlib.pyplot as plt\n'), ((2621, 2661), 'matplotlib.pyplot.xlim', 'plt.xlim', (['axis_ranges[0]', 'axis_ranges[1]'], {}), '(axis_ranges[0], axis_ranges[1])\n', (2629, 2661), True, 'import matplotlib.pyplot as plt\n'), ((2666, 2706), 'matplotlib.pyplot.ylim', 'plt.ylim', (['axis_ranges[0]', 'axis_ranges[1]'], {}), '(axis_ranges[0], axis_ranges[1])\n', (2674, 2706), True, 'import matplotlib.pyplot as plt\n'), ((2785, 2849), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""', 'bbox_to_anchor': '(1, 1)', 'fontsize': '(14)'}), "(loc='upper left', bbox_to_anchor=(1, 1), fontsize=14)\n", (2795, 2849), True, 'import matplotlib.pyplot as plt\n'), ((3001, 3012), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3010, 3012), True, 'import matplotlib.pyplot as plt\n'), ((3196, 3219), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (3206, 3219), False, 'import os\n'), ((3262, 3288), 'os.remove', 'os.remove', (['(folder_name + x)'], {}), '(folder_name + x)\n', (3271, 3288), False, 'import os\n'), ((5684, 5707), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (5694, 5707), False, 'import os\n'), ((5750, 5776), 'os.remove', 'os.remove', (['(folder_name + x)'], {}), '(folder_name + x)\n', (5759, 5776), False, 'import os\n'), ((9100, 9123), 'os.listdir', 'os.listdir', (['folder_name'], {}), '(folder_name)\n', (9110, 9123), False, 'import os\n'), ((9166, 9192), 'os.remove', 'os.remove', (['(folder_name + x)'], {}), '(folder_name + x)\n', (9175, 9192), False, 'import os\n')]
# utils/test_kronecker.py """Tests for rom_operator_inference.utils._kronecker.""" import pytest import numpy as np import rom_operator_inference as opinf # Index generation for fast self-product kronecker evaluation ================= def test_kron2c_indices(n_tests=100): """Test utils._kronecker.kron2c_indices().""" mask = opinf.utils.kron2c_indices(4) assert np.all(mask == np.array([[0, 0], [1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]], dtype=int)) submask = opinf.utils.kron2c_indices(3) assert np.allclose(submask, mask[:6]) r = 10 _r2 = r * (r + 1) // 2 mask = opinf.utils.kron2c_indices(r) assert mask.shape == (_r2, 2) assert np.all(mask[0] == 0) assert np.all(mask[-1] == r - 1) assert mask.sum(axis=0)[0] == sum(i*(i+1) for i in range(r)) # Ensure consistency with utils.kron2c(). for _ in range(n_tests): x = np.random.random(r) assert np.allclose(np.prod(x[mask], axis=1), opinf.utils.kron2c(x)) def test_kron3c_indices(n_tests=100): """Test utils._kronecker.kron3c_indices().""" mask = opinf.utils.kron3c_indices(2) assert np.all(mask == np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1]], dtype=int)) r = 10 mask = opinf.utils.kron3c_indices(r) _r3 = r * (r + 1) * (r + 2) // 6 mask = opinf.utils.kron3c_indices(r) assert mask.shape == (_r3, 3) assert np.all(mask[0] == 0) assert np.all(mask[-1] == r - 1) # Ensure consistency with utils.kron3c(). for _ in range(n_tests): x = np.random.random(r) assert np.allclose(np.prod(x[mask], axis=1), opinf.utils.kron3c(x)) # Kronecker (Khatri-Rao) products ============================================= # utils.kron2c() -------------------------------------------------------------- def _test_kron2c_single_vector(n): """Do one vector test of utils._kronecker.kron2c().""" x = np.random.random(n) x2 = opinf.utils.kron2c(x) assert x2.ndim == 1 assert x2.shape[0] == n*(n+1)//2 for i in range(n): assert np.allclose(x2[i*(i+1)//2:(i+1)*(i+2)//2], x[i]*x[:i+1]) def _test_kron2c_single_matrix(n): """Do one matrix test of utils._kronecker.kron2c().""" X = np.random.random((n,n)) X2 = opinf.utils.kron2c(X) assert X2.ndim == 2 assert X2.shape[0] == n*(n+1)//2 assert X2.shape[1] == n for i in range(n): assert np.allclose(X2[i*(i+1)//2:(i+1)*(i+2)//2], X[i]*X[:i+1]) def test_kron2c(n_tests=100): """Test utils._kronecker.kron2c().""" # Try with bad input. with pytest.raises(ValueError) as exc: opinf.utils.kron2c(np.random.random((3,3,3)), checkdim=True) assert exc.value.args[0] == "x must be one- or two-dimensional" # Correct inputs. for n in np.random.randint(2, 100, n_tests): _test_kron2c_single_vector(n) _test_kron2c_single_matrix(n) # utils.kron3c() -------------------------------------------------------------- def _test_kron3c_single_vector(n): """Do one vector test of utils._kronecker.kron3c().""" x = np.random.random(n) x3 = opinf.utils.kron3c(x) assert x3.ndim == 1 assert x3.shape[0] == n*(n+1)*(n+2)//6 for i in range(n): assert np.allclose(x3[i*(i+1)*(i+2)//6:(i+1)*(i+2)*(i+3)//6], x[i]*opinf.utils.kron2c(x[:i+1])) def _test_kron3c_single_matrix(n): """Do one matrix test of utils._kronecker.kron3c().""" X = np.random.random((n,n)) X3 = opinf.utils.kron3c(X) assert X3.ndim == 2 assert X3.shape[0] == n*(n+1)*(n+2)//6 assert X3.shape[1] == n for i in range(n): assert np.allclose(X3[i*(i+1)*(i+2)//6:(i+1)*(i+2)*(i+3)//6], X[i]*opinf.utils.kron2c(X[:i+1])) def test_kron3c(n_tests=50): """Test utils._kronecker.kron3c().""" # Try with bad input. with pytest.raises(ValueError) as exc: opinf.utils.kron3c(np.random.random((2,4,3)), checkdim=True) assert exc.value.args[0] == "x must be one- or two-dimensional" # Correct inputs. for n in np.random.randint(2, 30, n_tests): _test_kron3c_single_vector(n) _test_kron3c_single_matrix(n) # Matricized tensor management ================================================ # utils.expand_quadratic() ---------------------------------------------------- def _test_expand_quadratic_single(r): """Do one test of utils._kronecker.expand_quadratic().""" x = np.random.random(r) # Do a valid expand_quadratic() calculation and check dimensions. s = r*(r+1)//2 Hc = np.random.random((r,s)) H = opinf.utils.expand_quadratic(Hc) assert H.shape == (r,r**2) # Check that Hc(x^2) == H(x⊗x). Hxx = H @ np.kron(x,x) assert np.allclose(Hc @ opinf.utils.kron2c(x), Hxx) # Check properties of the tensor for H. Htensor = H.reshape((r,r,r)) assert np.allclose(Htensor @ x @ x, Hxx) for subH in H: assert np.allclose(subH, subH.T) def test_expand_quadratic(n_tests=100): """Test utils._kronecker.expand_quadratic().""" # Try to do expand_quadratic() with a bad second dimension. r = 5 sbad = r*(r+3)//2 Hc = np.random.random((r, sbad)) with pytest.raises(ValueError) as exc: opinf.utils.expand_quadratic(Hc) assert exc.value.args[0] == \ f"invalid shape (r,s) = {(r,sbad)} with s != r(r+1)/2" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 100, n_tests): _test_expand_quadratic_single(r) # utils.compress_quadratic() -------------------------------------------------- def _test_compress_quadratic_single(r): """Do one test of utils._kronecker.compress_quadratic().""" x = np.random.random(r) # Do a valid compress_quadratic() calculation and check dimensions. H = np.random.random((r,r**2)) s = r*(r+1)//2 Hc = opinf.utils.compress_quadratic(H) assert Hc.shape == (r,s) # Check that Hc(x^2) == H(x⊗x). Hxx = H @ np.kron(x,x) assert np.allclose(Hxx, Hc @ opinf.utils.kron2c(x)) # Check that expand_quadratic() and compress_quadratic() # are inverses up to symmetry. H2 = opinf.utils.expand_quadratic(Hc) Ht = H.reshape((r,r,r)) Htnew = np.empty_like(Ht) for i in range(r): Htnew[i] = (Ht[i] + Ht[i].T) / 2 assert np.allclose(H2, Htnew.reshape(H.shape)) def test_compress_quadratic(n_tests=100): """Test utils._kronecker.compress_quadratic().""" # Try to do compress_quadratic() with a bad second dimension. r = 5 r2bad = r**2 + 1 H = np.random.random((r, r2bad)) with pytest.raises(ValueError) as exc: opinf.utils.compress_quadratic(H) assert exc.value.args[0] == \ f"invalid shape (r,a) = {(r,r2bad)} with a != r**2" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 100, n_tests): _test_compress_quadratic_single(r) # utils.expand_cubic() -------------------------------------------------------- def _test_expand_cubic_single(r): """Do one test of utils._kronecker.expand_cubic().""" x = np.random.random(r) # Do a valid expand_cubic() calculation and check dimensions. s = r*(r+1)*(r+2)//6 Gc = np.random.random((r,s)) G = opinf.utils.expand_cubic(Gc) assert G.shape == (r,r**3) # Check that Gc(x^3) == G(x⊗x⊗x). Gxxx = G @ np.kron(x,np.kron(x,x)) assert np.allclose(Gc @ opinf.utils.kron3c(x), Gxxx) # Check properties of the tensor for G. Gtensor = G.reshape((r,r,r,r)) assert np.allclose(Gtensor @ x @ x @ x, Gxxx) for subG in G: assert np.allclose(subG, subG.T) def test_expand_cubic(n_tests=50): """Test utils._kronecker.expand_cubic().""" # Try to do expand_cubic() with a bad second dimension. r = 5 sbad = r*(r+1)*(r+3)//6 Gc = np.random.random((r, sbad)) with pytest.raises(ValueError) as exc: opinf.utils.expand_cubic(Gc) assert exc.value.args[0] == \ f"invalid shape (r,s) = {(r,sbad)} with s != r(r+1)(r+2)/6" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 30, n_tests): _test_expand_cubic_single(r) # utils.compress_cubic() ------------------------------------------------------ def _test_compress_cubic_single(r): """Do one test of utils._kronecker.compress_cubic().""" x = np.random.random(r) # Do a valid compress_cubic() calculation and check dimensions. G = np.random.random((r,r**3)) s = r*(r+1)*(r+2)//6 Gc = opinf.utils.compress_cubic(G) assert Gc.shape == (r,s) # Check that Gc(x^3) == G(x⊗x⊗x). Gxxx = G @ np.kron(x,np.kron(x,x)) assert np.allclose(Gxxx, Gc @ opinf.utils.kron3c(x)) # Check that expand_cubic() and compress_cubic() are "inverses." G_new = opinf.utils.expand_cubic(Gc) assert np.allclose(Gc, opinf.utils.compress_cubic(G_new)) def test_compress_cubic(n_tests=50): """Test utils._kronecker.compress_cubic().""" # Try to do compress_cubic() with a bad second dimension. r = 5 r3bad = r**3 + 1 G = np.random.random((r, r3bad)) with pytest.raises(ValueError) as exc: opinf.utils.compress_cubic(G) assert exc.value.args[0] == \ f"invalid shape (r,a) = {(r,r3bad)} with a != r**3" # Do 100 test cases of varying dimensions. for r in np.random.randint(2, 30, n_tests): _test_compress_cubic_single(r)
[ "rom_operator_inference.utils.kron3c", "numpy.prod", "numpy.allclose", "rom_operator_inference.utils.kron2c", "numpy.random.random", "numpy.kron", "numpy.array", "numpy.random.randint", "rom_operator_inference.utils.expand_cubic", "rom_operator_inference.utils.kron3c_indices", "numpy.empty_like", "pytest.raises", "rom_operator_inference.utils.compress_cubic", "numpy.all", "rom_operator_inference.utils.compress_quadratic", "rom_operator_inference.utils.expand_quadratic", "rom_operator_inference.utils.kron2c_indices" ]
[((338, 367), 'rom_operator_inference.utils.kron2c_indices', 'opinf.utils.kron2c_indices', (['(4)'], {}), '(4)\n', (364, 367), True, 'import rom_operator_inference as opinf\n'), ((654, 683), 'rom_operator_inference.utils.kron2c_indices', 'opinf.utils.kron2c_indices', (['(3)'], {}), '(3)\n', (680, 683), True, 'import rom_operator_inference as opinf\n'), ((695, 725), 'numpy.allclose', 'np.allclose', (['submask', 'mask[:6]'], {}), '(submask, mask[:6])\n', (706, 725), True, 'import numpy as np\n'), ((776, 805), 'rom_operator_inference.utils.kron2c_indices', 'opinf.utils.kron2c_indices', (['r'], {}), '(r)\n', (802, 805), True, 'import rom_operator_inference as opinf\n'), ((851, 871), 'numpy.all', 'np.all', (['(mask[0] == 0)'], {}), '(mask[0] == 0)\n', (857, 871), True, 'import numpy as np\n'), ((883, 908), 'numpy.all', 'np.all', (['(mask[-1] == r - 1)'], {}), '(mask[-1] == r - 1)\n', (889, 908), True, 'import numpy as np\n'), ((1259, 1288), 'rom_operator_inference.utils.kron3c_indices', 'opinf.utils.kron3c_indices', (['(2)'], {}), '(2)\n', (1285, 1288), True, 'import rom_operator_inference as opinf\n'), ((1476, 1505), 'rom_operator_inference.utils.kron3c_indices', 'opinf.utils.kron3c_indices', (['r'], {}), '(r)\n', (1502, 1505), True, 'import rom_operator_inference as opinf\n'), ((1554, 1583), 'rom_operator_inference.utils.kron3c_indices', 'opinf.utils.kron3c_indices', (['r'], {}), '(r)\n', (1580, 1583), True, 'import rom_operator_inference as opinf\n'), ((1629, 1649), 'numpy.all', 'np.all', (['(mask[0] == 0)'], {}), '(mask[0] == 0)\n', (1635, 1649), True, 'import numpy as np\n'), ((1661, 1686), 'numpy.all', 'np.all', (['(mask[-1] == r - 1)'], {}), '(mask[-1] == r - 1)\n', (1667, 1686), True, 'import numpy as np\n'), ((2135, 2154), 'numpy.random.random', 'np.random.random', (['n'], {}), '(n)\n', (2151, 2154), True, 'import numpy as np\n'), ((2164, 2185), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['x'], {}), '(x)\n', (2182, 2185), True, 'import rom_operator_inference as opinf\n'), ((2446, 2470), 'numpy.random.random', 'np.random.random', (['(n, n)'], {}), '((n, n))\n', (2462, 2470), True, 'import numpy as np\n'), ((2479, 2500), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['X'], {}), '(X)\n', (2497, 2500), True, 'import rom_operator_inference as opinf\n'), ((3001, 3035), 'numpy.random.randint', 'np.random.randint', (['(2)', '(100)', 'n_tests'], {}), '(2, 100, n_tests)\n', (3018, 3035), True, 'import numpy as np\n'), ((3297, 3316), 'numpy.random.random', 'np.random.random', (['n'], {}), '(n)\n', (3313, 3316), True, 'import numpy as np\n'), ((3326, 3347), 'rom_operator_inference.utils.kron3c', 'opinf.utils.kron3c', (['x'], {}), '(x)\n', (3344, 3347), True, 'import rom_operator_inference as opinf\n'), ((3673, 3697), 'numpy.random.random', 'np.random.random', (['(n, n)'], {}), '((n, n))\n', (3689, 3697), True, 'import numpy as np\n'), ((3706, 3727), 'rom_operator_inference.utils.kron3c', 'opinf.utils.kron3c', (['X'], {}), '(X)\n', (3724, 3727), True, 'import rom_operator_inference as opinf\n'), ((4292, 4325), 'numpy.random.randint', 'np.random.randint', (['(2)', '(30)', 'n_tests'], {}), '(2, 30, n_tests)\n', (4309, 4325), True, 'import numpy as np\n'), ((4673, 4692), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (4689, 4692), True, 'import numpy as np\n'), ((4792, 4816), 'numpy.random.random', 'np.random.random', (['(r, s)'], {}), '((r, s))\n', (4808, 4816), True, 'import numpy as np\n'), ((4824, 4856), 'rom_operator_inference.utils.expand_quadratic', 'opinf.utils.expand_quadratic', (['Hc'], {}), '(Hc)\n', (4852, 4856), True, 'import rom_operator_inference as opinf\n'), ((5097, 5130), 'numpy.allclose', 'np.allclose', (['(Htensor @ x @ x)', 'Hxx'], {}), '(Htensor @ x @ x, Hxx)\n', (5108, 5130), True, 'import numpy as np\n'), ((5390, 5417), 'numpy.random.random', 'np.random.random', (['(r, sbad)'], {}), '((r, sbad))\n', (5406, 5417), True, 'import numpy as np\n'), ((5660, 5694), 'numpy.random.randint', 'np.random.randint', (['(2)', '(100)', 'n_tests'], {}), '(2, 100, n_tests)\n', (5677, 5694), True, 'import numpy as np\n'), ((5931, 5950), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (5947, 5950), True, 'import numpy as np\n'), ((6032, 6061), 'numpy.random.random', 'np.random.random', (['(r, r ** 2)'], {}), '((r, r ** 2))\n', (6048, 6061), True, 'import numpy as np\n'), ((6087, 6120), 'rom_operator_inference.utils.compress_quadratic', 'opinf.utils.compress_quadratic', (['H'], {}), '(H)\n', (6117, 6120), True, 'import rom_operator_inference as opinf\n'), ((6376, 6408), 'rom_operator_inference.utils.expand_quadratic', 'opinf.utils.expand_quadratic', (['Hc'], {}), '(Hc)\n', (6404, 6408), True, 'import rom_operator_inference as opinf\n'), ((6449, 6466), 'numpy.empty_like', 'np.empty_like', (['Ht'], {}), '(Ht)\n', (6462, 6466), True, 'import numpy as np\n'), ((6785, 6813), 'numpy.random.random', 'np.random.random', (['(r, r2bad)'], {}), '((r, r2bad))\n', (6801, 6813), True, 'import numpy as np\n'), ((7054, 7088), 'numpy.random.randint', 'np.random.randint', (['(2)', '(100)', 'n_tests'], {}), '(2, 100, n_tests)\n', (7071, 7088), True, 'import numpy as np\n'), ((7315, 7334), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (7331, 7334), True, 'import numpy as np\n'), ((7436, 7460), 'numpy.random.random', 'np.random.random', (['(r, s)'], {}), '((r, s))\n', (7452, 7460), True, 'import numpy as np\n'), ((7468, 7496), 'rom_operator_inference.utils.expand_cubic', 'opinf.utils.expand_cubic', (['Gc'], {}), '(Gc)\n', (7492, 7496), True, 'import rom_operator_inference as opinf\n'), ((7754, 7792), 'numpy.allclose', 'np.allclose', (['(Gtensor @ x @ x @ x)', 'Gxxx'], {}), '(Gtensor @ x @ x @ x, Gxxx)\n', (7765, 7792), True, 'import numpy as np\n'), ((8045, 8072), 'numpy.random.random', 'np.random.random', (['(r, sbad)'], {}), '((r, sbad))\n', (8061, 8072), True, 'import numpy as np\n'), ((8316, 8349), 'numpy.random.randint', 'np.random.randint', (['(2)', '(30)', 'n_tests'], {}), '(2, 30, n_tests)\n', (8333, 8349), True, 'import numpy as np\n'), ((8574, 8593), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (8590, 8593), True, 'import numpy as np\n'), ((8671, 8700), 'numpy.random.random', 'np.random.random', (['(r, r ** 3)'], {}), '((r, r ** 3))\n', (8687, 8700), True, 'import numpy as np\n'), ((8732, 8761), 'rom_operator_inference.utils.compress_cubic', 'opinf.utils.compress_cubic', (['G'], {}), '(G)\n', (8758, 8761), True, 'import rom_operator_inference as opinf\n'), ((9008, 9036), 'rom_operator_inference.utils.expand_cubic', 'opinf.utils.expand_cubic', (['Gc'], {}), '(Gc)\n', (9032, 9036), True, 'import rom_operator_inference as opinf\n'), ((9289, 9317), 'numpy.random.random', 'np.random.random', (['(r, r3bad)'], {}), '((r, r3bad))\n', (9305, 9317), True, 'import numpy as np\n'), ((9554, 9587), 'numpy.random.randint', 'np.random.randint', (['(2)', '(30)', 'n_tests'], {}), '(2, 30, n_tests)\n', (9571, 9587), True, 'import numpy as np\n'), ((1062, 1081), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (1078, 1081), True, 'import numpy as np\n'), ((1775, 1794), 'numpy.random.random', 'np.random.random', (['r'], {}), '(r)\n', (1791, 1794), True, 'import numpy as np\n'), ((2285, 2359), 'numpy.allclose', 'np.allclose', (['x2[i * (i + 1) // 2:(i + 1) * (i + 2) // 2]', '(x[i] * x[:i + 1])'], {}), '(x2[i * (i + 1) // 2:(i + 1) * (i + 2) // 2], x[i] * x[:i + 1])\n', (2296, 2359), True, 'import numpy as np\n'), ((2628, 2702), 'numpy.allclose', 'np.allclose', (['X2[i * (i + 1) // 2:(i + 1) * (i + 2) // 2]', '(X[i] * X[:i + 1])'], {}), '(X2[i * (i + 1) // 2:(i + 1) * (i + 2) // 2], X[i] * X[:i + 1])\n', (2639, 2702), True, 'import numpy as np\n'), ((2794, 2819), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2807, 2819), False, 'import pytest\n'), ((4085, 4110), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4098, 4110), False, 'import pytest\n'), ((4939, 4952), 'numpy.kron', 'np.kron', (['x', 'x'], {}), '(x, x)\n', (4946, 4952), True, 'import numpy as np\n'), ((5165, 5190), 'numpy.allclose', 'np.allclose', (['subH', 'subH.T'], {}), '(subH, subH.T)\n', (5176, 5190), True, 'import numpy as np\n'), ((5427, 5452), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5440, 5452), False, 'import pytest\n'), ((5469, 5501), 'rom_operator_inference.utils.expand_quadratic', 'opinf.utils.expand_quadratic', (['Hc'], {}), '(Hc)\n', (5497, 5501), True, 'import rom_operator_inference as opinf\n'), ((6201, 6214), 'numpy.kron', 'np.kron', (['x', 'x'], {}), '(x, x)\n', (6208, 6214), True, 'import numpy as np\n'), ((6823, 6848), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6836, 6848), False, 'import pytest\n'), ((6865, 6898), 'rom_operator_inference.utils.compress_quadratic', 'opinf.utils.compress_quadratic', (['H'], {}), '(H)\n', (6895, 6898), True, 'import rom_operator_inference as opinf\n'), ((7827, 7852), 'numpy.allclose', 'np.allclose', (['subG', 'subG.T'], {}), '(subG, subG.T)\n', (7838, 7852), True, 'import numpy as np\n'), ((8082, 8107), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (8095, 8107), False, 'import pytest\n'), ((8124, 8152), 'rom_operator_inference.utils.expand_cubic', 'opinf.utils.expand_cubic', (['Gc'], {}), '(Gc)\n', (8148, 8152), True, 'import rom_operator_inference as opinf\n'), ((9064, 9097), 'rom_operator_inference.utils.compress_cubic', 'opinf.utils.compress_cubic', (['G_new'], {}), '(G_new)\n', (9090, 9097), True, 'import rom_operator_inference as opinf\n'), ((9327, 9352), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (9340, 9352), False, 'import pytest\n'), ((9369, 9398), 'rom_operator_inference.utils.compress_cubic', 'opinf.utils.compress_cubic', (['G'], {}), '(G)\n', (9395, 9398), True, 'import rom_operator_inference as opinf\n'), ((394, 500), 'numpy.array', 'np.array', (['[[0, 0], [1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [3, 2], [3, 3]\n ]'], {'dtype': 'int'}), '([[0, 0], [1, 0], [1, 1], [2, 0], [2, 1], [2, 2], [3, 0], [3, 1], [\n 3, 2], [3, 3]], dtype=int)\n', (402, 500), True, 'import numpy as np\n'), ((1109, 1133), 'numpy.prod', 'np.prod', (['x[mask]'], {'axis': '(1)'}), '(x[mask], axis=1)\n', (1116, 1133), True, 'import numpy as np\n'), ((1135, 1156), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['x'], {}), '(x)\n', (1153, 1156), True, 'import rom_operator_inference as opinf\n'), ((1315, 1380), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1]]'], {'dtype': 'int'}), '([[0, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1]], dtype=int)\n', (1323, 1380), True, 'import numpy as np\n'), ((1822, 1846), 'numpy.prod', 'np.prod', (['x[mask]'], {'axis': '(1)'}), '(x[mask], axis=1)\n', (1829, 1846), True, 'import numpy as np\n'), ((1848, 1869), 'rom_operator_inference.utils.kron3c', 'opinf.utils.kron3c', (['x'], {}), '(x)\n', (1866, 1869), True, 'import rom_operator_inference as opinf\n'), ((2855, 2882), 'numpy.random.random', 'np.random.random', (['(3, 3, 3)'], {}), '((3, 3, 3))\n', (2871, 2882), True, 'import numpy as np\n'), ((4146, 4173), 'numpy.random.random', 'np.random.random', (['(2, 4, 3)'], {}), '((2, 4, 3))\n', (4162, 4173), True, 'import numpy as np\n'), ((4980, 5001), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['x'], {}), '(x)\n', (4998, 5001), True, 'import rom_operator_inference as opinf\n'), ((6247, 6268), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['x'], {}), '(x)\n', (6265, 6268), True, 'import rom_operator_inference as opinf\n'), ((7592, 7605), 'numpy.kron', 'np.kron', (['x', 'x'], {}), '(x, x)\n', (7599, 7605), True, 'import numpy as np\n'), ((7634, 7655), 'rom_operator_inference.utils.kron3c', 'opinf.utils.kron3c', (['x'], {}), '(x)\n', (7652, 7655), True, 'import rom_operator_inference as opinf\n'), ((8855, 8868), 'numpy.kron', 'np.kron', (['x', 'x'], {}), '(x, x)\n', (8862, 8868), True, 'import numpy as np\n'), ((8903, 8924), 'rom_operator_inference.utils.kron3c', 'opinf.utils.kron3c', (['x'], {}), '(x)\n', (8921, 8924), True, 'import rom_operator_inference as opinf\n'), ((3540, 3569), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['x[:i + 1]'], {}), '(x[:i + 1])\n', (3558, 3569), True, 'import rom_operator_inference as opinf\n'), ((3948, 3977), 'rom_operator_inference.utils.kron2c', 'opinf.utils.kron2c', (['X[:i + 1]'], {}), '(X[:i + 1])\n', (3966, 3977), True, 'import rom_operator_inference as opinf\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 1 12:48:08 2020 @author: smith """ import spacy from gensim.test.utils import common_texts, get_tmpfile from gensim.models import Word2Vec from gensim.models.phrases import Phrases, Phraser import os import multiprocessing import csv import re import pandas as pd from time import time from datetime import datetime from collections import defaultdict import numpy as np from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt import seaborn as sns sns.set_style("darkgrid") import logging import gensim logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s", datefmt= '%H:%M:%S', level=logging.INFO) w2v_dir = '/home/smith/Smith_Scripts/NLP_GeneExpression/w2v_model/model071520/' w2v_model = Word2Vec.load(os.path.join(w2v_dir, 'w2v_model071520_MarkerGenes_UpOC_DownOC_CombinedSentences.model')) modelName = '_w2v071520_' resultDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/' clusters = ['Cluster' + str(x) for x in range(20)] category = 'CellTypes' comparison = 'MarkerGenes' termIndex = pd.read_excel(os.path.join(resultDirectory, 'MarkerGenes_Results/Combined_Clusters_' + category + '_' + comparison + '_Frequency.xlsx'), index_col=0) termIndex = termIndex.sort_values(by='Combined Occurances', ascending=False) enrichIndex = pd.read_excel('/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Combined_Clusters_Enriched_CellTypes_MarkerGenes.xlsx', index_col=0) enrIndex = enrichIndex.iloc[:,::4] def calcTopSimilarities(cluster, category, min_freq=5, topn=2000, save=False): resultDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/AllComparisons_Results/' clusterDirectory = os.path.join(resultDirectory, cluster + '_MarkerGenes_Results/') clusterNum=cluster.replace('Cluster', '') genesDf = pd.read_excel('/d1/studies/cellranger/ACWS_DP/scanpy_DiffExp_V2/results_maxGenes3000_maxMito.05_MinDisp0.2/DP_OC_Saline_Merged_t-test_pval_table_500genes_clusters.xlsx') genesList = genesDf[str(clusterNum) + '_n'].tolist() genes = genesList genes = [] for gene in genesList: genes.append(gene.lower()) # words = pd.read_excel(os.path.join(resultDirectory, str(cluster) + '_' + comparison + '_Results/' + category + '_' + cluster + '_Frequency.xlsx'), index_col=0) # words = pd.read_excel('/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Cluster0_EnrichedFunctions_onlyTest.xlsx', index_col=0) # wordsRedacted = words.loc[words['Occurances'] > min_freq]['word'].tolist() words = enrIndex wordsRedacted = words[cluster + ' term'].tolist()[:-1] if category == 'CellTypes': wordsRedacted = termIndex['word'].tolist()[:150] newWords = [] for item in wordsRedacted: try: item = item.replace(' ', '_') newWords.append(item) except AttributeError: pass cat = pd.DataFrame() catX = pd.DataFrame() for gene in genes: gene = gene.lower() try: df = pd.DataFrame(w2v_model.wv.most_similar(positive=[str(gene)], topn=topn), columns=['entity', 'similarity']) df['gene'] = gene df2 = df.loc[df['entity'].isin(newWords)] df2 = df2.reset_index(drop=True) dfX = pd.DataFrame(w2v_model.wv.most_similar(positive=[str(gene)], topn=topn), columns=['entity ' + gene, 'similarity ' + gene]) dfX2 = dfX.loc[dfX['entity ' + gene].isin(newWords)] dfX2 = dfX2.reset_index(drop=True) cat = pd.concat([cat, df2], axis=0) cat = cat.reset_index(drop=True) catX = pd.concat([catX, dfX2], axis=1) catX = catX.reset_index(drop=True) except KeyError: pass if save: # cat.to_excel(os.path.join(clusterDirectory, cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')) # catX.to_excel(os.path.join(clusterDirectory, cluster + '_Similarities_Enriched_' + category + modelName + 'axis1.xlsx')) cat.to_excel(os.path.join(resultDirectory, cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')) catX.to_excel(os.path.join(resultDirectory, cluster + '_Similarities_Enriched_' + category + modelName + 'axis1.xlsx')) return(cat, catX) def averageSimilarities(cluster, category): clusterDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/AllComparisons_Results/' # clusterDirectory = os.path.join(resultDirectory, cluster + '_MarkerGenes_Results/') if not os.path.exists(os.path.join(clusterDirectory, cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')): raise FileNotFoundError("Similarities file doesn't exist at " + os.path.join(clusterDirectory, cluster + modelName + '_Similarities_Enriched_' + category + '.xlsx')) else: df = pd.read_excel(os.path.join(clusterDirectory, cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')) itemList = [] aveList = [] stdList = [] weightList = [] countList = [] geneList = [] for item in df['entity'].unique().tolist(): ave = np.mean(df.loc[df['entity']==item]['similarity']) std = np.std(df.loc[df['entity']==item]['similarity']) gene = df.loc[df['entity']==item]['gene'].tolist() count = len(gene) weightedAve = df.loc[df['entity']==item].shape[0]*ave itemList.append(item) aveList.append(ave) stdList.append(std) weightList.append(weightedAve) countList.append(count) geneList.append(gene) df = pd.DataFrame(data=[itemList, aveList, stdList, weightList, countList, geneList]).T df.columns=['entity', 'ave_similarity', 'stdev', 'weighted_ave', 'count', 'similar_genes'] df = df.sort_values(by='weighted_ave', ascending=False) df = df.drop_duplicates(subset='entity', keep='first') df.to_excel(os.path.join(clusterDirectory, cluster + '_averageSimilarities_Enriched' + category + modelName + '.xlsx')) return(df) def combineAverageSims(clusters, category, save=True): clusterDirectory = '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/AllComparisons_Results/' bigDf = pd.DataFrame() for cluster in clusters: df = pd.read_excel(os.path.join(clusterDirectory, cluster + '_averageSimilarities_Enriched' + category + modelName + '.xlsx'), index_col=0) df.columns=[cluster + '_entity', cluster + '_average_sim', cluster + '_stdev', cluster + '_weightedAve', cluster + '_count', cluster + '_similarGenes'] bigDf = pd.concat([bigDf, df], axis=1) if save: bigDf.to_excel(os.path.join(clusterDirectory, 'Combined_AverageSimilarities' + modelName + category + '.xlsx')) return(bigDf) cat, catX = calcTopSimilarities('Cluster0', 'Functions', save=True) df = averageSimilarities('Cluster0', 'Functions') for cluster in clusters: calcTopSimilarities(cluster, 'CellTypes', min_freq=5, topn=10000, save=True) for cluster in clusters: averageSimilarities(cluster, 'CellTypes') df = combineAverageSims(clusters, 'CellTypes', save=True) df = averageSimilarities('Cluster5', 'Functions') ###FREQUENCY DISTRIBUTION: cat = pd.read_excel('/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Cluster3_Results/Functions_cat_model062920_Cluster3.xlsx') def tsnescatterplot(model, setName, word, list_names,): """ Plot in seaborn the results from the t-SNE dimensionality reduction algorithm of the vectors of a query word, its list of most similar words, and a list of words. """ arrays = np.empty((0, 300), dtype='f') word_labels = [word] color_list = ['red'] # adds the vector of the query word arrays = np.append(arrays, model.wv.__getitem__([word]), axis=0) # gets list of most similar words close_words = model.wv.most_similar([word]) # adds the vector for each of the closest words to the array try: for wrd_score in close_words: wrd_vector = model.wv.__getitem__([wrd_score[0]]) word_labels.append(wrd_score[0]) color_list.append('blue') arrays = np.append(arrays, wrd_vector, axis=0) # adds the vector for each of the words from list_names to the array for wrd in list_names: wrd_vector = model.wv.__getitem__([wrd]) word_labels.append(wrd) color_list.append('green') arrays = np.append(arrays, wrd_vector, axis=0) except KeyError: pass # Reduces the dimensionality from 300 to 50 dimensions with PCA reduc = PCA(n_components=42).fit_transform(arrays) ###### CHANGED FROM 50 DURING TUTORIAL # Finds t-SNE coordinates for 2 dimensions np.set_printoptions(suppress=True) Y = TSNE(n_components=2, random_state=0, perplexity=10).fit_transform(reduc) # Sets everything up to plot df = pd.DataFrame({'x': [x for x in Y[:, 0]], 'y': [y for y in Y[:, 1]], 'words': word_labels, 'color': color_list}) fig, _ = plt.subplots() fig.set_size_inches(9, 9) # Basic plot p1 = sns.regplot(data=df, x="x", y="y", fit_reg=False, marker="o", scatter_kws={'s': 40, 'facecolors': df['color'] } ) # Adds annotations one by one with a loop for line in range(0, df.shape[0]): p1.text(df["x"][line], df['y'][line], ' ' + df["words"][line].title(), horizontalalignment='left', verticalalignment='bottom', size='medium', color=df['color'][line], weight='normal' ).set_size(15) plt.xlim(Y[:, 0].min()-50, Y[:, 0].max()+50) plt.ylim(Y[:, 1].min()-50, Y[:, 1].max()+50) plt.title('t-SNE visualization for {}'.format(word.title())) plt.savefig(os.path.join(resultDirectory, setName + modelName + word + '_tSNE_42PCs.png')) tsnescatterplot(w2v_model, setName, word, newWords) w2v_model.wv.most_similar(positive=["drug_addiction"], topn=20) w2v_model.wv.most_similar(positive=["nucleus_accumbens"], topn=20) w2v_model.wv.most_similar(positive=["vta"], topn=20) w2v_model.wv.most_similar(positive=["dbi"], topn=20) w2v_model.wv.most_similar(positive=["enkephalin", "cacng4"], negative=["opioid"], topn=20) w2v_model.wv.most_similar(positive=["slc17a7", "cacng4"], negative=["glutamatergic_neuron"], topn=20) ###RUN PCA: # fit a 2d PCA model to the vectors X = w2v_model[w2v_model.wv.vocab] pca = PCA(n_components=50) result = pca.fit_transform(X) #Plot the result fig, ax = plt.subplots() ax.plot(result[:, 0], result[:, 1], 'o') ax.set_title('Entities') plt.show() words = list(w2v_model.wv.vocab.keys())
[ "logging.basicConfig", "numpy.mean", "seaborn.regplot", "sklearn.decomposition.PCA", "numpy.set_printoptions", "numpy.std", "os.path.join", "sklearn.manifold.TSNE", "seaborn.set_style", "numpy.append", "numpy.empty", "pandas.read_excel", "pandas.DataFrame", "pandas.concat", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((569, 594), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (582, 594), True, 'import seaborn as sns\n'), ((624, 738), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname)s - %(asctime)s: %(message)s"""', 'datefmt': '"""%H:%M:%S"""', 'level': 'logging.INFO'}), "(format='%(levelname)s - %(asctime)s: %(message)s',\n datefmt='%H:%M:%S', level=logging.INFO)\n", (643, 738), False, 'import logging\n'), ((1409, 1573), 'pandas.read_excel', 'pd.read_excel', (['"""/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Combined_Clusters_Enriched_CellTypes_MarkerGenes.xlsx"""'], {'index_col': '(0)'}), "(\n '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Combined_Clusters_Enriched_CellTypes_MarkerGenes.xlsx'\n , index_col=0)\n", (1422, 1573), True, 'import pandas as pd\n'), ((7399, 7553), 'pandas.read_excel', 'pd.read_excel', (['"""/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Cluster3_Results/Functions_cat_model062920_Cluster3.xlsx"""'], {}), "(\n '/home/smith/Smith_Scripts/NLP_GeneExpression/spaCy_model062920/Results/Cluster3_Results/Functions_cat_model062920_Cluster3.xlsx'\n )\n", (7412, 7553), True, 'import pandas as pd\n'), ((10983, 11003), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(50)'}), '(n_components=50)\n', (10986, 11003), False, 'from sklearn.decomposition import PCA\n'), ((11061, 11075), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (11073, 11075), True, 'import matplotlib.pyplot as plt\n'), ((11142, 11152), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11150, 11152), True, 'import matplotlib.pyplot as plt\n'), ((843, 935), 'os.path.join', 'os.path.join', (['w2v_dir', '"""w2v_model071520_MarkerGenes_UpOC_DownOC_CombinedSentences.model"""'], {}), "(w2v_dir,\n 'w2v_model071520_MarkerGenes_UpOC_DownOC_CombinedSentences.model')\n", (855, 935), False, 'import os\n'), ((1181, 1306), 'os.path.join', 'os.path.join', (['resultDirectory', "('MarkerGenes_Results/Combined_Clusters_' + category + '_' + comparison +\n '_Frequency.xlsx')"], {}), "(resultDirectory, 'MarkerGenes_Results/Combined_Clusters_' +\n category + '_' + comparison + '_Frequency.xlsx')\n", (1193, 1306), False, 'import os\n'), ((1821, 1885), 'os.path.join', 'os.path.join', (['resultDirectory', "(cluster + '_MarkerGenes_Results/')"], {}), "(resultDirectory, cluster + '_MarkerGenes_Results/')\n", (1833, 1885), False, 'import os\n'), ((1946, 2125), 'pandas.read_excel', 'pd.read_excel', (['"""/d1/studies/cellranger/ACWS_DP/scanpy_DiffExp_V2/results_maxGenes3000_maxMito.05_MinDisp0.2/DP_OC_Saline_Merged_t-test_pval_table_500genes_clusters.xlsx"""'], {}), "(\n '/d1/studies/cellranger/ACWS_DP/scanpy_DiffExp_V2/results_maxGenes3000_maxMito.05_MinDisp0.2/DP_OC_Saline_Merged_t-test_pval_table_500genes_clusters.xlsx'\n )\n", (1959, 2125), True, 'import pandas as pd\n'), ((3037, 3051), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3049, 3051), True, 'import pandas as pd\n'), ((3063, 3077), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3075, 3077), True, 'import pandas as pd\n'), ((6377, 6391), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (6389, 6391), True, 'import pandas as pd\n'), ((7802, 7831), 'numpy.empty', 'np.empty', (['(0, 300)'], {'dtype': '"""f"""'}), "((0, 300), dtype='f')\n", (7810, 7831), True, 'import numpy as np\n'), ((8962, 8996), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (8981, 8996), True, 'import numpy as np\n'), ((9130, 9245), 'pandas.DataFrame', 'pd.DataFrame', (["{'x': [x for x in Y[:, 0]], 'y': [y for y in Y[:, 1]], 'words': word_labels,\n 'color': color_list}"], {}), "({'x': [x for x in Y[:, 0]], 'y': [y for y in Y[:, 1]], 'words':\n word_labels, 'color': color_list})\n", (9142, 9245), True, 'import pandas as pd\n'), ((9329, 9343), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9341, 9343), True, 'import matplotlib.pyplot as plt\n'), ((9405, 9521), 'seaborn.regplot', 'sns.regplot', ([], {'data': 'df', 'x': '"""x"""', 'y': '"""y"""', 'fit_reg': '(False)', 'marker': '"""o"""', 'scatter_kws': "{'s': 40, 'facecolors': df['color']}"}), "(data=df, x='x', y='y', fit_reg=False, marker='o', scatter_kws={\n 's': 40, 'facecolors': df['color']})\n", (9416, 9521), True, 'import seaborn as sns\n'), ((5289, 5340), 'numpy.mean', 'np.mean', (["df.loc[df['entity'] == item]['similarity']"], {}), "(df.loc[df['entity'] == item]['similarity'])\n", (5296, 5340), True, 'import numpy as np\n'), ((5353, 5403), 'numpy.std', 'np.std', (["df.loc[df['entity'] == item]['similarity']"], {}), "(df.loc[df['entity'] == item]['similarity'])\n", (5359, 5403), True, 'import numpy as np\n'), ((5745, 5830), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '[itemList, aveList, stdList, weightList, countList, geneList]'}), '(data=[itemList, aveList, stdList, weightList, countList, geneList]\n )\n', (5757, 5830), True, 'import pandas as pd\n'), ((6058, 6168), 'os.path.join', 'os.path.join', (['clusterDirectory', "(cluster + '_averageSimilarities_Enriched' + category + modelName + '.xlsx')"], {}), "(clusterDirectory, cluster + '_averageSimilarities_Enriched' +\n category + modelName + '.xlsx')\n", (6070, 6168), False, 'import os\n'), ((6761, 6791), 'pandas.concat', 'pd.concat', (['[bigDf, df]'], {'axis': '(1)'}), '([bigDf, df], axis=1)\n', (6770, 6791), True, 'import pandas as pd\n'), ((10325, 10402), 'os.path.join', 'os.path.join', (['resultDirectory', "(setName + modelName + word + '_tSNE_42PCs.png')"], {}), "(resultDirectory, setName + modelName + word + '_tSNE_42PCs.png')\n", (10337, 10402), False, 'import os\n'), ((3666, 3695), 'pandas.concat', 'pd.concat', (['[cat, df2]'], {'axis': '(0)'}), '([cat, df2], axis=0)\n', (3675, 3695), True, 'import pandas as pd\n'), ((3760, 3791), 'pandas.concat', 'pd.concat', (['[catX, dfX2]'], {'axis': '(1)'}), '([catX, dfX2], axis=1)\n', (3769, 3791), True, 'import pandas as pd\n'), ((4169, 4272), 'os.path.join', 'os.path.join', (['resultDirectory', "(cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')"], {}), "(resultDirectory, cluster + '_Similarities_Enriched_' +\n category + modelName + '.xlsx')\n", (4181, 4272), False, 'import os\n'), ((4292, 4400), 'os.path.join', 'os.path.join', (['resultDirectory', "(cluster + '_Similarities_Enriched_' + category + modelName + 'axis1.xlsx')"], {}), "(resultDirectory, cluster + '_Similarities_Enriched_' +\n category + modelName + 'axis1.xlsx')\n", (4304, 4400), False, 'import os\n'), ((4702, 4806), 'os.path.join', 'os.path.join', (['clusterDirectory', "(cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')"], {}), "(clusterDirectory, cluster + '_Similarities_Enriched_' +\n category + modelName + '.xlsx')\n", (4714, 4806), False, 'import os\n'), ((5016, 5120), 'os.path.join', 'os.path.join', (['clusterDirectory', "(cluster + '_Similarities_Enriched_' + category + modelName + '.xlsx')"], {}), "(clusterDirectory, cluster + '_Similarities_Enriched_' +\n category + modelName + '.xlsx')\n", (5028, 5120), False, 'import os\n'), ((6456, 6566), 'os.path.join', 'os.path.join', (['clusterDirectory', "(cluster + '_averageSimilarities_Enriched' + category + modelName + '.xlsx')"], {}), "(clusterDirectory, cluster + '_averageSimilarities_Enriched' +\n category + modelName + '.xlsx')\n", (6468, 6566), False, 'import os\n'), ((6836, 6935), 'os.path.join', 'os.path.join', (['clusterDirectory', "('Combined_AverageSimilarities' + modelName + category + '.xlsx')"], {}), "(clusterDirectory, 'Combined_AverageSimilarities' + modelName +\n category + '.xlsx')\n", (6848, 6935), False, 'import os\n'), ((8368, 8405), 'numpy.append', 'np.append', (['arrays', 'wrd_vector'], {'axis': '(0)'}), '(arrays, wrd_vector, axis=0)\n', (8377, 8405), True, 'import numpy as np\n'), ((8672, 8709), 'numpy.append', 'np.append', (['arrays', 'wrd_vector'], {'axis': '(0)'}), '(arrays, wrd_vector, axis=0)\n', (8681, 8709), True, 'import numpy as np\n'), ((8824, 8844), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(42)'}), '(n_components=42)\n', (8827, 8844), False, 'from sklearn.decomposition import PCA\n'), ((9010, 9061), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)', 'random_state': '(0)', 'perplexity': '(10)'}), '(n_components=2, random_state=0, perplexity=10)\n', (9014, 9061), False, 'from sklearn.manifold import TSNE\n'), ((4877, 4981), 'os.path.join', 'os.path.join', (['clusterDirectory', "(cluster + modelName + '_Similarities_Enriched_' + category + '.xlsx')"], {}), "(clusterDirectory, cluster + modelName +\n '_Similarities_Enriched_' + category + '.xlsx')\n", (4889, 4981), False, 'import os\n')]
#!/usr/bin/env python # encoding: utf-8 from flask import Flask, request, jsonify import base64 import numpy as np from util.args_help import fill_from_args import os import logging from dpr.simple_mmap_dataset import Corpus from dpr.faiss_index import ANNIndex logger = logging.getLogger(__name__) class Options(): def __init__(self): self.port = 5001 self.corpus_dir = '' self.model_name = 'facebook/rag-token-nq' self.rest_dtype = 16 self.local_only = False # only accessible on same machine self.debug = False self.log_info = False self.__required_args__ = ['corpus_dir'] def get_rest_dtype(self): return np.float32 if self.rest_dtype == 32 else np.float16 def run(opts: Options): for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logging.basicConfig(format='%(filename)s:%(lineno)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if opts.log_info else logging.WARNING) app = Flask(__name__) if not opts.log_info: log = logging.getLogger('werkzeug') log.disabled = True app.logger.disabled = True app.logger.setLevel(logging.WARNING) passages = Corpus(os.path.join(opts.corpus_dir)) index = ANNIndex(os.path.join(opts.corpus_dir, "index.faiss")) dim = index.dim() print(dim) @app.route('/config', methods=['GET']) def get_config(): return jsonify({'dtype': opts.rest_dtype, 'dim': dim, 'corpus': opts.corpus_dir}) @app.route('/retrieve', methods=['POST']) def retrieve_docs(): rest_dtype = opts.get_rest_dtype() query = request.get_json() # input is three parts: # the base64 encoded fp16 numpy matrix # k (the number of records per document) # return-vectors flag query_vectors = np.frombuffer(base64.decodebytes(query['query_vectors'].encode('ascii')), dtype=rest_dtype).reshape(-1, dim) k = query['k'] include_vectors = 'include_vectors' in query and query['include_vectors'] query_vectors = query_vectors.astype(np.float32) scores, indexes = index.search(query_vectors, k) docs = [[passages[ndx] for ndx in ndxs] for ndxs in indexes] if 'pid' in docs[0][0]: doc_dicts = [{'pid': [dqk['pid'] for dqk in dq], 'title': [dqk['title'] for dqk in dq], 'text': [dqk['text'] for dqk in dq]} for dq in docs] else: doc_dicts = [{'title': [dqk['title'] for dqk in dq], 'text': [dqk['text'] for dqk in dq]} for dq in docs] retval = {'docs': doc_dicts} if include_vectors: doc_vectors = np.zeros([query_vectors.shape[0], k, query_vectors.shape[1]], dtype=rest_dtype) for qi, docs_qi in enumerate(docs): for ki, doc_qi_ki in enumerate(docs_qi): doc_vectors[qi, ki] = doc_qi_ki['vector'] retval['doc_vectors'] = base64.b64encode(doc_vectors).decode('ascii') # print(retval) # output # list of docs: len(docs) == query_vectors.shape[0]; len(docs[i].title) == len(docs[i].text) == k # doc_vectors: query_vectors.shape[0] x k x query_vectors.shape[1] return jsonify(retval) app.run(host='127.0.0.1' if opts.local_only else '0.0.0.0', debug=opts.debug, port=opts.port) if __name__ == '__main__': opts = Options() fill_from_args(opts) run(opts)
[ "logging.getLogger", "logging.basicConfig", "util.args_help.fill_from_args", "flask.Flask", "base64.b64encode", "os.path.join", "flask.request.get_json", "numpy.zeros", "logging.root.removeHandler", "flask.jsonify" ]
[((272, 299), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (289, 299), False, 'import logging\n'), ((865, 1029), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(filename)s:%(lineno)d - %(message)s"""', 'datefmt': '"""%m/%d/%Y %H:%M:%S"""', 'level': '(logging.INFO if opts.log_info else logging.WARNING)'}), "(format='%(filename)s:%(lineno)d - %(message)s', datefmt\n ='%m/%d/%Y %H:%M:%S', level=logging.INFO if opts.log_info else logging.\n WARNING)\n", (884, 1029), False, 'import logging\n'), ((1078, 1093), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (1083, 1093), False, 'from flask import Flask, request, jsonify\n'), ((3548, 3568), 'util.args_help.fill_from_args', 'fill_from_args', (['opts'], {}), '(opts)\n', (3562, 3568), False, 'from util.args_help import fill_from_args\n'), ((825, 860), 'logging.root.removeHandler', 'logging.root.removeHandler', (['handler'], {}), '(handler)\n', (851, 860), False, 'import logging\n'), ((1134, 1163), 'logging.getLogger', 'logging.getLogger', (['"""werkzeug"""'], {}), "('werkzeug')\n", (1151, 1163), False, 'import logging\n'), ((1294, 1323), 'os.path.join', 'os.path.join', (['opts.corpus_dir'], {}), '(opts.corpus_dir)\n', (1306, 1323), False, 'import os\n'), ((1346, 1390), 'os.path.join', 'os.path.join', (['opts.corpus_dir', '"""index.faiss"""'], {}), "(opts.corpus_dir, 'index.faiss')\n", (1358, 1390), False, 'import os\n'), ((1510, 1584), 'flask.jsonify', 'jsonify', (["{'dtype': opts.rest_dtype, 'dim': dim, 'corpus': opts.corpus_dir}"], {}), "({'dtype': opts.rest_dtype, 'dim': dim, 'corpus': opts.corpus_dir})\n", (1517, 1584), False, 'from flask import Flask, request, jsonify\n'), ((1716, 1734), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (1732, 1734), False, 'from flask import Flask, request, jsonify\n'), ((3379, 3394), 'flask.jsonify', 'jsonify', (['retval'], {}), '(retval)\n', (3386, 3394), False, 'from flask import Flask, request, jsonify\n'), ((2808, 2887), 'numpy.zeros', 'np.zeros', (['[query_vectors.shape[0], k, query_vectors.shape[1]]'], {'dtype': 'rest_dtype'}), '([query_vectors.shape[0], k, query_vectors.shape[1]], dtype=rest_dtype)\n', (2816, 2887), True, 'import numpy as np\n'), ((3091, 3120), 'base64.b64encode', 'base64.b64encode', (['doc_vectors'], {}), '(doc_vectors)\n', (3107, 3120), False, 'import base64\n')]
# Noysim -- Noise simulation tools for Aimsun. # Copyright (c) 2010-2011 by <NAME>, Ghent University & Griffith University. # # Basic geometry functions and classes import numpy import pylab EPSILON = 10e-12 # smallest difference for points/directions #--------------------------------------------------------------------------------------------------- # Convenience functions #--------------------------------------------------------------------------------------------------- def parse_coordinates(*args): """ parse 2D/3D coordinates x,y(,z) in a variety of fashions, and return a 3-element tuple """ n = len(args) if n == 0: return (0.0,0.0,0.0) if n == 1: try: # try if a Point object is supplied return args[0].coordinates() except: if type(args[0]) in (tuple,list): # coordinates supplied as a tuple (x,y) or (x,y,z) if len(args[0]) == 2: return (args[0][0], args[0][1], 0.0) if len(args[0]) == 3: return (args[0][0], args[0][1], args[0][2]) if type(args[0]) is str: # coordinates supplied as a string '(x,y,z)' c = args[0].strip('()').split(',') return (float(c[0]), float(c[1]), float(c[2])) else: # coordinates supplied as separate arguments x,y or x,y,z if n == 2: return (args[0], args[1], 0.0) if n == 3: return (args[0], args[1], args[2]) raise Exception('unable to parse coordinates: ' + str(args)) def asPoint(p): """ create a point object from 2D/3D coordinates """ if isinstance(p, Point): return p else: return Point(p) def asDirection(d): """ create a direction object from a tuple (bearing, gradient) """ if isinstance(d, Direction): return d else: return Direction(bearing = d[0], gradient = d[1]) #--------------------------------------------------------------------------------------------------- # Point class #--------------------------------------------------------------------------------------------------- class Point(object): """ basic 3D point class """ def __init__(self, *xyz): object.__init__(self) self.x, self.y, self.z = parse_coordinates(*xyz) def copy(self): """ return a copy """ return Point(self.x, self.y, self.z) def coordinates(self): """ return the coordinates as a tuple (x,y,z) """ return (self.x, self.y, self.z) def __getitem__(self, key): """ implement list style access to coordinates: p[0], p[1], p[2] """ return self.coordinates()[key] def __str__(self): """ string representation of a point """ return '(%.2f,%.2f,%.2f)' % self.coordinates() def middle(self, other): """ return the middle point between self and another point """ return Point((self.x + other.x)/2.0, (self.y + other.y)/2.0, (self.z + other.z)/2.0) def distanceSquared(self, other): """ return the squared distance to another point """ return (self.x - other.x)**2 + (self.y - other.y)**2 + (self.z - other.z)**2 def distance(self, other): """ return the distance to another point """ return numpy.sqrt(self.distanceSquared(other)) def distanceXY(self, other): """ return the distance to another point, both projected to the xy-plane """ return numpy.sqrt((self.x - other.x)**2 + (self.y - other.y)**2) def __eq__(self, other): """ check if points coincide """ if other == None: return False return (self.distance(other) < EPSILON) def __ne__(self, other): """ check if points do not coincide """ return not self.__eq__(other) def __cmp__(self, other): """ compare the coordinates, first x, then y, then z """ if self.x == other.x: if (self.y == other.y): return (self.z < other.z) else: return (self.y < other.y) else: return (self.x < other.x) def projectXY(self, z = 0.0): """ return the projection of the point on the xy-plane """ return Point(self.x, self.y, z) def transform(self, func): """ perform a coordinate transformation with the given function (x,y,z) to (x',y',z') """ self.x, self.y, self.z = func((self.x, self.y, self.z)) def plot(self, color = 'black', size = 5): """ plot the point in the xy-plane """ pylab.plot([self.x], [self.y], color = color, linestyle = 'None', marker = '.', markersize = size) #--------------------------------------------------------------------------------------------------- # Direction class #--------------------------------------------------------------------------------------------------- class Direction(object): """ basic geometrical 3D direction class """ def __init__(self, bearing, gradient = 0.0): object.__init__(self) # both bearing and gradient are stored in degrees self.bearing = bearing self.gradient = gradient def copy(self): """ return a copy """ return Direction(self.bearing, self.gradient) def __getitem__(self, key): """ implement list style access to bearing and gradient """ return (self.bearing, self.gradient)[key] def bearingRadians(self): """ return the bearing (horizontal angle with the x-axis) in radians """ return numpy.radians(self.bearing) def gradientRadians(self): """ return the gradient (vertical angle with the xy-plane) in radians """ return numpy.radians(self.gradient) def __str__(self): """ return a string representation of the direction """ return '[%.2f,%.2f]' % (self.bearing, self.gradient) def __eq__(self, other): """ check if directions coincide """ if other == None: return False db = abs(self.bearing - other.bearing) dg = abs(self.gradient - other.gradient) return (db <= EPSILON) and (dg <= EPSILON) def __ne__(self, other): """ check if directions do not coincide """ return not self.__eq__(other) def directionFromTo(p1, p2): """ returns the direction from point 1 to point 2 """ (dx, dy, dz) = (p2.x - p1.x, p2.y - p1.y, p2.z - p1.z) siz = p1.distance(p2) return Direction(bearing = numpy.degrees(numpy.arctan2(dy, dx)), gradient = numpy.degrees(numpy.arcsin(dz/siz))) #--------------------------------------------------------------------------------------------------- # Test code #--------------------------------------------------------------------------------------------------- if __name__ == '__main__': points = [] points.append(Point(1.2, 3.4)) points.append(Point([5.6, 7.8, 9.0])) points.append(Point('(7.8, 9.0, 1.2)')) pylab.figure() for p in points: p.plot() try: pylab.show() except: pass
[ "numpy.radians", "numpy.sqrt", "pylab.plot", "numpy.arcsin", "pylab.figure", "numpy.arctan2", "pylab.show" ]
[((6690, 6704), 'pylab.figure', 'pylab.figure', ([], {}), '()\n', (6702, 6704), False, 'import pylab\n'), ((3341, 3402), 'numpy.sqrt', 'numpy.sqrt', (['((self.x - other.x) ** 2 + (self.y - other.y) ** 2)'], {}), '((self.x - other.x) ** 2 + (self.y - other.y) ** 2)\n', (3351, 3402), False, 'import numpy\n'), ((4364, 4458), 'pylab.plot', 'pylab.plot', (['[self.x]', '[self.y]'], {'color': 'color', 'linestyle': '"""None"""', 'marker': '"""."""', 'markersize': 'size'}), "([self.x], [self.y], color=color, linestyle='None', marker='.',\n markersize=size)\n", (4374, 4458), False, 'import pylab\n'), ((5319, 5346), 'numpy.radians', 'numpy.radians', (['self.bearing'], {}), '(self.bearing)\n', (5332, 5346), False, 'import numpy\n'), ((5470, 5498), 'numpy.radians', 'numpy.radians', (['self.gradient'], {}), '(self.gradient)\n', (5483, 5498), False, 'import numpy\n'), ((6754, 6766), 'pylab.show', 'pylab.show', ([], {}), '()\n', (6764, 6766), False, 'import pylab\n'), ((6227, 6248), 'numpy.arctan2', 'numpy.arctan2', (['dy', 'dx'], {}), '(dy, dx)\n', (6240, 6248), False, 'import numpy\n'), ((6276, 6298), 'numpy.arcsin', 'numpy.arcsin', (['(dz / siz)'], {}), '(dz / siz)\n', (6288, 6298), False, 'import numpy\n')]
import itertools import logging import netCDF4 import numpy from .. import core from ..constants import masked as cfdm_masked from ..decorators import ( _inplace_enabled, _inplace_enabled_define_and_cleanup, _manage_log_level_via_verbosity, ) from ..functions import abspath from ..mixin.container import Container from ..mixin.netcdf import NetCDFHDF5 from . import NumpyArray, abstract logger = logging.getLogger(__name__) class Data(Container, NetCDFHDF5, core.Data): """An orthogonal multidimensional array with masking and units. .. versionadded:: (cfdm) 1.7.0 """ def __init__( self, array=None, units=None, calendar=None, fill_value=None, source=None, copy=True, dtype=None, mask=None, _use_array=True, **kwargs, ): """**Initialisation** :Parameters: array: data_like, optional The array of values. {{data_like}} Ignored if the *source* parameter is set. *Parameter example:* ``array=[34.6]`` *Parameter example:* ``array=[[1, 2], [3, 4]]`` *Parameter example:* ``array=numpy.ma.arange(10).reshape(2, 1, 5)`` units: `str`, optional The physical units of the data. Ignored if the *source* parameter is set. The units may also be set after initialisation with the `set_units` method. *Parameter example:* ``units='km hr-1'`` *Parameter example:* ``units='days since 2018-12-01'`` calendar: `str`, optional The calendar for reference time units. Ignored if the *source* parameter is set. The calendar may also be set after initialisation with the `set_calendar` method. *Parameter example:* ``calendar='360_day'`` fill_value: optional The fill value of the data. By default, or if set to `None`, the `numpy` fill value appropriate to the array's data type will be used (see `numpy.ma.default_fill_value`). Ignored if the *source* parameter is set. The fill value may also be set after initialisation with the `set_fill_value` method. *Parameter example:* ``fill_value=-999.`` dtype: data-type, optional The desired data-type for the data. By default the data-type will be inferred form the *array* parameter. The data-type may also be set after initialisation with the `dtype` attribute. *Parameter example:* ``dtype=float`` *Parameter example:* ``dtype='float32'`` *Parameter example:* ``dtype=numpy.dtype('i2')`` mask: data_like, optional Apply this mask to the data given by the *array* parameter. By default, or if *mask* is `None`, no mask is applied. May be any data_like object that broadcasts to *array*. Masking will be carried out where mask elements evaluate to `True`. {{data_like}} This mask will applied in addition to any mask already defined by the *array* parameter. source: optional Initialise the array, units, calendar and fill value from those of *source*. {{init source}} copy: `bool`, optional If False then do not deep copy input parameters prior to initialisation. By default arguments are deep copied. kwargs: ignored Not used. Present to facilitate subclassing. """ if dtype is not None: if isinstance(array, abstract.Array): array = array.array elif not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = array.astype(dtype) array = NumpyArray(array) if mask is not None: if isinstance(array, abstract.Array): array = array.array elif not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = numpy.ma.array(array, mask=mask) array = NumpyArray(array) super().__init__( array=array, units=units, calendar=calendar, fill_value=fill_value, source=source, copy=copy, _use_array=_use_array, ) self._initialise_netcdf(source) def __array__(self, *dtype): """The numpy array interface. .. versionadded:: (cfdm) 1.7.0 :Parameters: dtype: optional Typecode or data-type to which the array is cast. :Returns: `numpy.ndarray` An independent numpy array of the data. **Examples:** >>> d = {{package}}.{{class}}([1, 2, 3]) >>> a = numpy.array(d) >>> print(type(a)) <class 'numpy.ndarray'> >>> a[0] = -99 >>> d <{{repr}}{{class}}(3): [1, 2, 3]> >>> b = numpy.array(d, float) >>> print(b) [1. 2. 3.] """ array = self.array if not dtype: return array else: return array.astype(dtype[0], copy=False) def __repr__(self): """Called by the `repr` built-in function. x.__repr__() <==> repr(x) """ try: shape = self.shape except AttributeError: shape = "" else: shape = str(shape) shape = shape.replace(",)", ")") return f"<{ self.__class__.__name__}{shape}: {self}>" def __format__(self, format_spec): """Interpret format specifiers for size 1 arrays. **Examples:** >>> d = {{package}}.{{class}}(9, 'metres') >>> f"{d}" '9 metres' >>> f"{d!s}" '9 metres' >>> f"{d!r}" '<{{repr}}{{class}}(): 9 metres>' >>> f"{d:.3f}" '9.000' >>> d = {{package}}.{{class}}([[9]], 'metres') >>> f"{d}" '[[9]] metres' >>> f"{d!s}" '[[9]] metres' >>> f"{d!r}" '<{{repr}}{{class}}(1, 1): [[9]] metres>' >>> f"{d:.3f}" '9.000' >>> d = {{package}}.{{class}}([9, 10], 'metres') >>> f"{d}" >>> '[9, 10] metres' >>> f"{d!s}" >>> '[9, 10] metres' >>> f"{d!r}" '<{{repr}}{{class}}(2): [9, 10] metres>' >>> f"{d:.3f}" Traceback (most recent call last): ... ValueError: Can't format Data array of size 2 with format code .3f """ if not format_spec: return super().__format__("") n = self.size if n == 1: return "{x:{f}}".format(x=self.first_element(), f=format_spec) raise ValueError( f"Can't format Data array of size {n} with " f"format code {format_spec}" ) def __getitem__(self, indices): """Return a subspace of the data defined by indices. d.__getitem__(indices) <==> d[indices] Indexing follows rules that are very similar to the numpy indexing rules, the only differences being: * An integer index i takes the i-th element but does not reduce the rank by one. * When two or more dimensions' indices are sequences of integers then these indices work independently along each dimension (similar to the way vector subscripts work in Fortran). This is the same behaviour as indexing on a Variable object of the netCDF4 package. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `__setitem__`, `_parse_indices` :Returns: `{{class}}` The subspace of the data. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d.shape (1, 10, 9) >>> d[:, :, 1].shape (1, 10, 1) >>> d[:, 0].shape (1, 1, 9) >>> d[..., 6:3:-1, 3:6].shape (1, 3, 3) >>> d[0, [2, 9], [4, 8]].shape (1, 2, 2) >>> d[0, :, -2].shape (1, 10, 1) """ indices = self._parse_indices(indices) array = self._get_Array(None) if array is None: raise ValueError("No array!!") array = array[tuple(indices)] out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out def __int__(self): """Called by the `int` built-in function. x.__int__() <==> int(x) """ if self.size != 1: raise TypeError( "only length-1 arrays can be converted to " f"Python scalars. Got {self}" ) return int(self.array) def __iter__(self): """Called when an iterator is required. x.__iter__() <==> iter(x) **Examples:** >>> d = {{package}}.{{class}}([1, 2, 3], 'metres') >>> for e in d: ... print(repr(e)) ... 1 2 3 >>> d = {{package}}.{{class}}([[1, 2], [4, 5]], 'metres') >>> for e in d: ... print(repr(e)) ... <{{repr}}Data(2): [1, 2] metres> <{{repr}}Data(2): [4, 5] metres> >>> d = {{package}}.{{class}}(34, 'metres') >>> for e in d: ... print(repr(e)) Traceback (most recent call last): ... TypeError: Iteration over 0-d Data """ ndim = self.ndim if not ndim: raise TypeError(f"Iteration over 0-d {self.__class__.__name__}") if ndim == 1: i = iter(self.array) while 1: try: yield next(i) except StopIteration: return else: # ndim > 1 for n in range(self.shape[0]): out = self[n, ...] out.squeeze(0, inplace=True) yield out def __setitem__(self, indices, value): """Assign to data elements defined by indices. d.__setitem__(indices, x) <==> d[indices]=x Indexing follows rules that are very similar to the numpy indexing rules, the only differences being: * An integer index i takes the i-th element but does not reduce the rank by one. * When two or more dimensions' indices are sequences of integers then these indices work independently along each dimension (similar to the way vector subscripts work in Fortran). This is the same behaviour as indexing on a Variable object of the netCDF4 package. **Broadcasting** The value, or values, being assigned must be broadcastable to the shape defined by the indices, using the numpy broadcasting rules. **Missing data** Data array elements may be set to missing values by assigning them to `masked`. Missing values may be unmasked by assigning them to any other value. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `__getitem__`, `_parse_indices` :Returns: `None` **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d.shape (1, 10, 9) >>> d[:, :, 1] = -10 >>> d[:, 0] = range(9) >>> d[..., 6:3:-1, 3:6] = numpy.arange(-18, -9).reshape(3, 3) >>> d[0, [2, 9], [4, 8]] = {{package}}.{{class}}([[-2, -3]]) >>> d[0, :, -2] = {{package}}.masked """ indices = self._parse_indices(indices) array = self.array if value is cfdm_masked or numpy.ma.isMA(value): # The data is not masked but the assignment is masking # elements, so turn the non-masked array into a masked # one. array = array.view(numpy.ma.MaskedArray) self._set_subspace(array, indices, numpy.asanyarray(value)) self._set_Array(array, copy=False) def __str__(self): """Called by the `str` built-in function. x.__str__() <==> str(x) """ units = self.get_units(None) calendar = self.get_calendar(None) isreftime = False if units is not None: if isinstance(units, str): isreftime = "since" in units else: units = "??" try: first = self.first_element() except Exception: out = "" if units and not isreftime: out += f" {units}" if calendar: out += f" {calendar}" return out size = self.size shape = self.shape ndim = self.ndim open_brackets = "[" * ndim close_brackets = "]" * ndim mask = [False, False, False] if size == 1: if isreftime: # Convert reference time to date-time if first is numpy.ma.masked: first = 0 mask[0] = True try: first = type(self)( numpy.ma.array(first, mask=mask[0]), units, calendar ).datetime_array except (ValueError, OverflowError): first = "??" out = f"{open_brackets}{first}{close_brackets}" else: last = self.last_element() if isreftime: if last is numpy.ma.masked: last = 0 mask[-1] = True # Convert reference times to date-times try: first, last = type(self)( numpy.ma.array( [first, last], mask=(mask[0], mask[-1]) ), units, calendar, ).datetime_array except (ValueError, OverflowError): first, last = ("??", "??") if size > 3: out = f"{open_brackets}{first}, ..., {last}{close_brackets}" elif shape[-1:] == (3,): middle = self.second_element() if isreftime: # Convert reference time to date-time if middle is numpy.ma.masked: middle = 0 mask[1] = True try: middle = type(self)( numpy.ma.array(middle, mask=mask[1]), units, calendar, ).datetime_array except (ValueError, OverflowError): middle = "??" out = ( f"{open_brackets}{first}, {middle}, {last}{close_brackets}" ) elif size == 3: out = f"{open_brackets}{first}, ..., {last}{close_brackets}" else: out = f"{open_brackets}{first}, {last}{close_brackets}" if isreftime: if calendar: out += f" {calendar}" elif units: out += f" {units}" return out # ---------------------------------------------------------------- # Private methods # ---------------------------------------------------------------- def _item(self, index): """Return an element of the data as a scalar. It is assumed, but not checked, that the given index selects exactly one element. :Parameters: index: :Returns: The selected element of the data. **Examples:** >>> d = {{package}}.{{class}}([[1, 2, 3]], 'km') >>> x = d._item((0, -1)) >>> print(x, type(x)) 3 <class 'int'> >>> x = d._item((0, 1)) >>> print(x, type(x)) 2 <class 'int'> >>> d[0, 1] = {{package}}.masked >>> d._item((slice(None), slice(1, 2))) masked """ array = self[index].array if not numpy.ma.isMA(array): return array.item() mask = array.mask if mask is numpy.ma.nomask or not mask.item(): return array.item() return numpy.ma.masked def _parse_axes(self, axes): """Parses the data axes and returns valid non-duplicate axes. :Parameters: axes: (sequence of) `int` The axes of the data. {{axes int examples}} :Returns: `tuple` **Examples:** >>> d._parse_axes(1) (1,) >>> e._parse_axes([0, 2]) (0, 2) """ if axes is None: return axes ndim = self.ndim if isinstance(axes, int): axes = (axes,) axes2 = [] for axis in axes: if 0 <= axis < ndim: axes2.append(axis) elif -ndim <= axis < 0: axes2.append(axis + ndim) else: raise ValueError(f"Invalid axis: {axis!r}") # Check for duplicate axes n = len(axes2) if n > len(set(axes2)) >= 1: raise ValueError(f"Duplicate axis: {axes2}") return tuple(axes2) def _set_Array(self, array, copy=True): """Set the array. .. seealso:: `_set_CompressedArray` :Parameters: array: `numpy` array_like or `Array`, optional The array to be inserted. :Returns: `None` **Examples:** >>> d._set_Array(a) """ if not isinstance(array, abstract.Array): if not isinstance(array, numpy.ndarray): array = numpy.asanyarray(array) array = NumpyArray(array) super()._set_Array(array, copy=copy) def _set_CompressedArray(self, array, copy=True): """Set the compressed array. .. versionadded:: (cfdm) 1.7.11 .. seealso:: `_set_Array` :Parameters: array: subclass of `CompressedArray` The compressed array to be inserted. :Returns: `None` **Examples:** >>> d._set_CompressedArray(a) """ self._set_Array(array, copy=copy) @classmethod def _set_subspace(cls, array, indices, value): """Set a subspace of the data array defined by indices.""" axes_with_list_indices = [ i for i, x in enumerate(indices) if not isinstance(x, slice) ] if len(axes_with_list_indices) < 2: # -------------------------------------------------------- # At most one axis has a list-of-integers index so we can # do a normal numpy assignment # -------------------------------------------------------- array[tuple(indices)] = value else: # -------------------------------------------------------- # At least two axes have list-of-integers indices so we # can't do a normal numpy assignment # -------------------------------------------------------- indices1 = indices[:] for i, x in enumerate(indices): if i in axes_with_list_indices: # This index is a list of integers y = [] args = [iter(x)] * 2 for start, stop in itertools.zip_longest(*args): if not stop: y.append(slice(start, start + 1)) else: step = stop - start stop += 1 y.append(slice(start, stop, step)) indices1[i] = y else: indices1[i] = (x,) if numpy.size(value) == 1: for i in itertools.product(*indices1): array[i] = value else: indices2 = [] ndim_difference = array.ndim - numpy.ndim(value) for i, n in enumerate(numpy.shape(value)): if n == 1: indices2.append((slice(None),)) elif i + ndim_difference in axes_with_list_indices: y = [] start = 0 while start < n: stop = start + 2 y.append(slice(start, stop)) start = stop indices2.append(y) else: indices2.append((slice(None),)) for i, j in zip( itertools.product(*indices1), itertools.product(*indices2) ): array[i] = value[j] # ---------------------------------------------------------------- # Attributes # ---------------------------------------------------------------- @property def compressed_array(self): """Returns an independent numpy array of the compressed data. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_compressed_axes`, `get_compressed_dimension`, `get_compression_type` :Returns: `numpy.ndarray` An independent numpy array of the compressed data. **Examples:** >>> a = d.compressed_array """ ca = self._get_Array(None) if not ca.get_compression_type(): raise ValueError("not compressed: can't get compressed array") return ca.compressed_array @property def datetime_array(self): """Returns an independent numpy array of datetimes. Specifically, returns an independent numpy array containing the date-time objects corresponding to times since a reference date. Only applicable for reference time units. If the calendar has not been set then the CF default calendar of 'standard' (i.e. the mixed Gregorian/Julian calendar as defined by Udunits) will be used. Conversions are carried out with the `netCDF4.num2date` function. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `array`, `datetime_as_string` :Returns: `numpy.ndarray` An independent numpy array of the date-time objects. **Examples:** >>> d = {{package}}.{{class}}([31, 62, 90], units='days since 2018-12-01') >>> a = d.datetime_array >>> print(a) [cftime.DatetimeGregorian(2019, 1, 1, 0, 0, 0, 0) cftime.DatetimeGregorian(2019, 2, 1, 0, 0, 0, 0) cftime.DatetimeGregorian(2019, 3, 1, 0, 0, 0, 0)] >>> print(a[1]) 2019-02-01 00:00:00 >>> d = {{package}}.{{class}}( ... [31, 62, 90], units='days since 2018-12-01', calendar='360_day') >>> a = d.datetime_array >>> print(a) [cftime.Datetime360Day(2019, 1, 2, 0, 0, 0, 0) cftime.Datetime360Day(2019, 2, 3, 0, 0, 0, 0) cftime.Datetime360Day(2019, 3, 1, 0, 0, 0, 0)] >>> print(a[1]) 2019-02-03 00:00:00 """ array = self.array mask = None if numpy.ma.isMA(array): # num2date has issues if the mask is nomask mask = array.mask if mask is numpy.ma.nomask or not numpy.ma.is_masked(array): mask = None array = array.view(numpy.ndarray) if mask is not None and not array.ndim: # Fix until num2date copes with scalar aarrays containing # missing data return array array = netCDF4.num2date( array, units=self.get_units(None), calendar=self.get_calendar("standard"), only_use_cftime_datetimes=True, ) if mask is None: # There is no missing data array = numpy.array(array, dtype=object) else: # There is missing data array = numpy.ma.masked_where(mask, array) if not numpy.ndim(array): array = numpy.ma.masked_all((), dtype=object) return array @property def datetime_as_string(self): """Returns an independent numpy array with datetimes as strings. Specifically, returns an independent numpy array containing string representations of times since a reference date. Only applicable for reference time units. If the calendar has not been set then the CF default calendar of "standard" (i.e. the mixed Gregorian/Julian calendar as defined by Udunits) will be used. Conversions are carried out with the `netCDF4.num2date` function. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `array`, `datetime_array` :Returns: `numpy.ndarray` An independent numpy array of the date-time strings. **Examples:** >>> d = {{package}}.{{class}}([31, 62, 90], units='days since 2018-12-01') >>> print(d.datetime_as_string) ['2019-01-01 00:00:00' '2019-02-01 00:00:00' '2019-03-01 00:00:00'] >>> d = {{package}}.{{class}}( ... [31, 62, 90], units='days since 2018-12-01', calendar='360_day') >>> print(d.datetime_as_string) ['2019-01-02 00:00:00' '2019-02-03 00:00:00' '2019-03-01 00:00:00'] """ return self.datetime_array.astype(str) @property def mask(self): """The Boolean missing data mask of the data array. The Boolean mask has True where the data array has missing data and False otherwise. :Returns: `{{class}}` The Boolean mask as data. **Examples:** >>> d = {{package}}.{{class}}(numpy.ma.array( ... [[280.0, -99, -99, -99], ... [281.0, 279.0, 278.0, 279.5]], ... mask=[[0, 1, 1, 1], [0, 0, 0, 0]] ... )) >>> d <{{repr}}Data(2, 4): [[280.0, ..., 279.5]]> >>> print(d.array) [[280.0 -- -- --] [281.0 279.0 278.0 279.5]] >>> d.mask <{{repr}}Data(2, 4): [[False, ..., False]]> >>> print(d.mask.array) [[False True True True] [False False False False]] """ return type(self)(numpy.ma.getmaskarray(self.array)) # ---------------------------------------------------------------- # Methods # ---------------------------------------------------------------- def any(self): """Test whether any data array elements evaluate to True. Performs a logical or over the data array and returns the result. Masked values are considered as False during computation. :Returns: `bool` `True` if any data array elements evaluate to True, otherwise `False`. **Examples:** >>> d = {{package}}.{{class}}([[0, 0, 0]]) >>> d.any() False >>> d[0, 0] = {{package}}.masked >>> print(d.array) [[-- 0 0]] >>> d.any() False >>> d[0, 1] = 3 >>> print(d.array) [[-- 3 0]] >>> d.any() True >>> d[...] = {{package}}.masked >>> print(d.array) [[-- -- --]] >>> d.any() False """ masked = self.array.any() if masked is numpy.ma.masked: masked = False return masked @_inplace_enabled(default=False) def apply_masking( self, fill_values=None, valid_min=None, valid_max=None, valid_range=None, inplace=False, ): """Apply masking. Masking is applied according to the values of the keyword parameters. Elements that are already masked remain so. .. versionadded:: (cfdm) 1.8.2 .. seealso:: `get_fill_value`, `mask` :Parameters: fill_values: `bool` or sequence of scalars, optional Specify values that will be set to missing data. Data elements exactly equal to any of the values are set to missing data. If True then the value returned by the `get_fill_value` method, if such a value exists, is used. Zero or more values may be provided in a sequence of scalars. *Parameter example:* Specify a fill value of 999: ``fill_values=[999]`` *Parameter example:* Specify fill values of 999 and -1.0e30: ``fill_values=[999, -1.0e30]`` *Parameter example:* Use the fill value already set for the data: ``fill_values=True`` *Parameter example:* Use no fill values: ``fill_values=False`` or ``fill_value=[]`` valid_min: number, optional A scalar specifying the minimum valid value. Data elements strictly less than this number will be set to missing data. valid_max: number, optional A scalar specifying the maximum valid value. Data elements strictly greater than this number will be set to missing data. valid_range: (number, number), optional A vector of two numbers specifying the minimum and maximum valid values, equivalent to specifying values for both *valid_min* and *valid_max* parameters. The *valid_range* parameter must not be set if either *valid_min* or *valid_max* is defined. *Parameter example:* ``valid_range=[-999, 10000]`` is equivalent to setting ``valid_min=-999, valid_max=10000`` inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with masked values. If the operation was in-place then `None` is returned. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(12).reshape(3, 4), 'm') >>> d[1, 1] = {{package}}.masked >>> print(d.array) [[0 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking().array) [[0 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(fill_values=[0]).array) [[-- 1 2 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(fill_values=[0, 11]).array) [[-- 1 2 3] [4 -- 6 7] [8 9 10 --]] >>> print(d.apply_masking(valid_min=3).array) [[-- -- -- 3] [4 -- 6 7] [8 9 10 11]] >>> print(d.apply_masking(valid_max=6).array) [[0 1 2 3] [4 -- 6 --] [-- -- -- --]] >>> print(d.apply_masking(valid_range=[2, 8]).array) [[-- -- 2 3] [4 -- 6 7] [8 -- -- --]] >>> d.set_fill_value(7) >>> print(d.apply_masking(fill_values=True).array) [[0 1 2 3] [4 -- 6 --] [8 9 10 11]] >>> print(d.apply_masking(fill_values=True, ... valid_range=[2, 8]).array) [[-- -- 2 3] [4 -- 6 --] [8 -- -- --]] """ if valid_range is not None: if valid_min is not None or valid_max is not None: raise ValueError( "Can't set 'valid_range' parameter with either the " "'valid_min' nor 'valid_max' parameters" ) try: if len(valid_range) != 2: raise ValueError( "'valid_range' parameter must be a vector of " "two elements" ) except TypeError: raise ValueError( "'valid_range' parameter must be a vector of " "two elements" ) valid_min, valid_max = valid_range d = _inplace_enabled_define_and_cleanup(self) if fill_values is None: fill_values = False if isinstance(fill_values, bool): if fill_values: fill_value = self.get_fill_value(None) if fill_value is not None: fill_values = (fill_value,) else: fill_values = () else: fill_values = () else: try: _ = iter(fill_values) except TypeError: raise TypeError( "'fill_values' parameter must be a sequence or " f"of type bool. Got type {type(fill_values)}" ) else: if isinstance(fill_values, str): raise TypeError( "'fill_values' parameter must be a sequence or " f"of type bool. Got type {type(fill_values)}" ) mask = None if fill_values: array = self.array mask = array == fill_values[0] for fill_value in fill_values[1:]: mask |= array == fill_value if valid_min is not None: if mask is None: array = self.array mask = array < valid_min else: mask |= array < valid_min if valid_max is not None: if mask is None: array = self.array mask = array > valid_max else: mask |= array > valid_max if mask is not None: array = numpy.ma.where(mask, cfdm_masked, array) d._set_Array(array, copy=False) return d def copy(self, array=True): """Return a deep copy. ``d.copy()`` is equivalent to ``copy.deepcopy(d)``. :Parameters: array: `bool`, optional If False then do not copy the array. By default the array is copied. :Returns: `{{class}}` The deep copy. **Examples:** >>> e = d.copy() >>> e = d.copy(array=False) """ return super().copy(array=array) def creation_commands( self, name="data", namespace=None, indent=0, string=True ): """Return the commands that would create the data object. .. versionadded:: (cfdm) 1.8.7.0 :Parameters: name: `str` or `None`, optional Set the variable name of `Data` object that the commands create. {{namespace: `str`, optional}} {{indent: `int`, optional}} {{string: `bool`, optional}} :Returns: {{returns creation_commands}} **Examples:** >>> d = {{package}}.{{class}}([[0.0, 45.0], [45.0, 90.0]], ... units='degrees_east') >>> print(d.creation_commands()) data = {{package}}.{{class}}([[0.0, 45.0], [45.0, 90.0]], units='degrees_east', dtype='f8') >>> d = {{package}}.{{class}}(['alpha', 'beta', 'gamma', 'delta'], ... mask = [1, 0, 0, 0]) >>> d.creation_commands(name='d', namespace='', string=False) ["d = Data(['', 'beta', 'gamma', 'delta'], dtype='U5', mask=Data([True, False, False, False], dtype='b1'))"] """ namespace0 = namespace if namespace is None: namespace = self._package() + "." elif namespace and not namespace.endswith("."): namespace += "." mask = self.mask if mask.any(): if name == "mask": raise ValueError( "When the data is masked, the 'name' parameter " "can not have the value 'mask'" ) masked = True array = self.filled().array.tolist() else: masked = False array = self.array.tolist() units = self.get_units(None) if units is None: units = "" else: units = f", units={units!r}" calendar = self.get_calendar(None) if calendar is None: calendar = "" else: calendar = f", calendar={calendar!r}" fill_value = self.get_fill_value(None) if fill_value is None: fill_value = "" else: fill_value = f", fill_value={fill_value}" dtype = self.dtype.descr[0][1][1:] if masked: mask = mask.creation_commands( name="mask", namespace=namespace0, indent=0, string=True ) mask = mask.replace("mask = ", "mask=", 1) mask = f", {mask}" else: mask = "" if name is None: name = "" else: name = name + " = " out = [] out.append( f"{name}{namespace}{self.__class__.__name__}({array}{units}" f"{calendar}, dtype={dtype!r}{mask}{fill_value})" ) if string: indent = " " * indent out[0] = indent + out[0] out = ("\n" + indent).join(out) return out @_inplace_enabled(default=False) def filled(self, fill_value=None, inplace=False): """Replace masked elements with the fill value. .. versionadded:: (cfdm) 1.8.7.0 :Parameters: fill_value: scalar, optional The fill value. By default the fill returned by `get_fill_value` is used, or if this is not set then the netCDF default fill value for the data type is used (as defined by `netCDF.fillvals`). {{inplace: `bool`, optional}} :Returns: `Data` or `None` The filled data, or `None` if the operation was in-place. **Examples:** >>> d = {{package}}.{{class}}([[1, 2, 3]]) >>> print(d.filled().array) [[1 2 3]] >>> d[0, 0] = {{package}}.masked >>> print(d.filled().array) [[-9223372036854775806 2 3]] >>> d.set_fill_value(-99) >>> print(d.filled().array) [[-99 2 3]] >>> print(d.filled(1e10).array) [[10000000000 2 3]] """ d = _inplace_enabled_define_and_cleanup(self) if fill_value is None: fill_value = d.get_fill_value(None) if fill_value is None: default_fillvals = netCDF4.default_fillvals fill_value = default_fillvals.get(d.dtype.str[1:], None) if fill_value is None and d.dtype.kind in ("SU"): fill_value = default_fillvals.get("S1", None) if fill_value is None: # should not be None by this stage raise ValueError( "Can't determine fill value for " f"data type {d.dtype.str!r}" ) # pragma: no cover array = self.array if numpy.ma.isMA(array): array = array.filled(fill_value) d._set_Array(array, copy=False) return d @_inplace_enabled(default=False) def insert_dimension(self, position=0, inplace=False): """Expand the shape of the data array. Inserts a new size 1 axis, corresponding to a given position in the data array shape. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `squeeze`, `transpose` :Parameters: position: `int`, optional Specify the position that the new axis will have in the data array. By default the new axis has position 0, the slowest varying position. Negative integers counting from the last position are allowed. *Parameter example:* ``position=2`` *Parameter example:* ``position=-1`` inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with expanded axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (19, 73, 96) >>> d.insert_dimension('domainaxis3').shape (1, 96, 73, 19) >>> d.insert_dimension('domainaxis3', position=3).shape (19, 73, 96, 1) >>> d.insert_dimension('domainaxis3', position=-1, inplace=True) >>> d.shape (19, 73, 1, 96) """ d = _inplace_enabled_define_and_cleanup(self) # Parse position ndim = d.ndim if -ndim - 1 <= position < 0: position += ndim + 1 elif not 0 <= position <= ndim: raise ValueError( f"Can't insert dimension: Invalid position: {position!r}" ) array = numpy.expand_dims(self.array, position) d._set_Array(array, copy=False) # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d def get_count(self, default=ValueError()): """Return the count variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_index`, `get_list` :Parameters: default: optional Return the value of the *default* parameter if a count variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The count variable. **Examples:** >>> c = d.get_count() """ try: return self._get_Array().get_count() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no count variable" ) def get_index(self, default=ValueError()): """Return the index variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_count`, `get_list` :Parameters: default: optional Return *default* if index variable has not been set. default: optional Return the value of the *default* parameter if an index variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The index variable. **Examples:** >>> i = d.get_index() """ try: return self._get_Array().get_index() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no index variable" ) def get_list(self, default=ValueError()): """Return the list variable for a compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `get_count`, `get_index` :Parameters: default: optional Return the value of the *default* parameter if an index variable has not been set. If set to an `Exception` instance then it will be raised instead. :Returns: The list variable. **Examples:** >>> l = d.get_list() """ try: return self._get_Array().get_list() except (AttributeError, ValueError): return self._default( default, f"{self.__class__.__name__!r} has no list variable" ) def get_compressed_dimension(self, default=ValueError()): """Returns the compressed dimension's array position. That is, returns the position of the compressed dimension in the compressed array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `get_compressed_axes`, `get_compression_type` :Parameters: default: optional Return the value of the *default* parameter there is no compressed dimension. If set to an `Exception` instance then it will be raised instead. :Returns: `int` The position of the compressed dimension in the compressed array. **Examples:** >>> d.get_compressed_dimension() 2 """ try: return self._get_Array().get_compressed_dimension() except (AttributeError, ValueError): return self._default( default, f"{ self.__class__.__name__!r} has no compressed dimension", ) def _parse_indices(self, indices): """Parse indices of the data and return valid indices in a list. :Parameters: indices: `tuple` (not a `list`!) :Returns: `list` **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(100, 190).reshape(1, 10, 9)) >>> d._parse_indices((slice(None, None, None), 1, 2)) [slice(None, None, None), slice(1, 2, 1), slice(2, 3, 1)] >>> d._parse_indices((1,)) [slice(1, 2, 1), slice(None, None, None), slice(None, None, None)] """ shape = self.shape parsed_indices = [] if not isinstance(indices, tuple): indices = (indices,) # Initialise the list of parsed indices as the input indices # with any Ellipsis objects expanded length = len(indices) n = len(shape) ndim = n for index in indices: if index is Ellipsis: m = n - length + 1 parsed_indices.extend([slice(None)] * m) n -= m else: parsed_indices.append(index) n -= 1 length -= 1 len_parsed_indices = len(parsed_indices) if ndim and len_parsed_indices > ndim: raise IndexError( f"Invalid indices for data with shape {shape}: " f"{parsed_indices}" ) if len_parsed_indices < ndim: parsed_indices.extend([slice(None)] * (ndim - len_parsed_indices)) if not ndim and parsed_indices: raise IndexError( "Scalar data can only be indexed with () or Ellipsis" ) for i, (index, size) in enumerate(zip(parsed_indices, shape)): if isinstance(index, slice): continue if isinstance(index, int): # E.g. 43 -> slice(43, 44, 1) if index < 0: index += size index = slice(index, index + 1, 1) else: if getattr(getattr(index, "dtype", None), "kind", None) == "b": # E.g. index is [True, False, True] -> [0, 2] # # Convert Booleans to non-negative integers. We're # assuming that anything with a dtype attribute also # has a size attribute. if index.size != size: raise IndexError( "Invalid indices for data " f"with shape {shape}: {parsed_indices}" ) index = numpy.where(index)[0] if not numpy.ndim(index): if index < 0: index += size index = slice(index, index + 1, 1) else: len_index = len(index) if len_index == 1: # E.g. [3] -> slice(3, 4, 1) index = index[0] if index < 0: index += size index = slice(index, index + 1, 1) else: # E.g. [1, 3, 4] -> [1, 3, 4] pass parsed_indices[i] = index return parsed_indices def maximum(self, axes=None): """Return the maximum of an array or the maximum along axes. Missing data array elements are omitted from the calculation. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `minimum` :Parameters: axes: (sequence of) `int`, optional The axes over which to take the maximum. By default the maximum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` Maximum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.max() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[23]]]]> >>> print(e.array) [[[[23]]]] >>> e = d.max(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[8, ..., 23]]]]> >>> print(e.array) [[[[ 8 9 10 11]] [[20 21 22 23]]]] >>> e = d.max([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[11, 23]]]]> >>> print(e.array) [[[[11]] [[23]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't find maximum of data: {error}") array = self.array array = numpy.amax(array, axis=axes, keepdims=True) out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out def minimum(self, axes=None): """Return the minimum of an array or minimum along axes. Missing data array elements are omitted from the calculation. .. versionadded:: (cfdm) 1.8.0 .. seealso:: `maximum` :Parameters: axes: (sequence of) `int`, optional The axes over which to take the minimum. By default the minimum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` Minimum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.min() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[0]]]]> >>> print(e.array) [[[[0]]]] >>> e = d.min(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[0, ..., 15]]]]> >>> print(e.array) [[[[ 0 1 2 3]] [[12 13 14 15]]]] >>> e = d.min([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[0, 12]]]]> >>> print(e.array) [[[[ 0]] [[12]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't find minimum of data: {error}") array = self.array array = numpy.amin(array, axis=axes, keepdims=True) out = self.copy(array=False) out._set_Array(array, copy=False) if out.shape != self.shape: # Delete hdf5 chunksizes out.nc_clear_hdf5_chunksizes() return out @_inplace_enabled(default=False) def squeeze(self, axes=None, inplace=False): """Remove size 1 axes from the data. By default all size 1 axes are removed, but particular axes may be selected with the keyword arguments. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `insert_dimension`, `transpose` :Parameters: axes: (sequence of) `int`, optional The positions of the size one axes to be removed. By default all size one axes are removed. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `Data` or `None` The data with removed data axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (1, 73, 1, 96) >>> f.squeeze().shape (73, 96) >>> d.squeeze(0).shape (73, 1, 96) >>> d.squeeze([-3, 2]).shape (73, 96) >>> d.squeeze(2, inplace=True) >>> d.shape (1, 73, 96) """ d = _inplace_enabled_define_and_cleanup(self) try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't squeeze data: {error}") shape = d.shape if axes is None: axes = tuple([i for i, n in enumerate(shape) if n == 1]) else: # Check the squeeze axes for i in axes: if shape[i] > 1: raise ValueError( "Can't squeeze data: " f"Can't remove axis of size {shape[i]}" ) if not axes: return d array = self.array array = numpy.squeeze(array, axes) d._set_Array(array, copy=False) # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d def sum(self, axes=None): """Return the sum of an array or the sum along axes. Missing data array elements are omitted from the calculation. .. seealso:: `max`, `min` :Parameters: axes: (sequence of) `int`, optional The axes over which to calculate the sum. By default the sum over all axes is returned. {{axes int examples}} :Returns: `{{class}}` The sum of the data along the specified axes. **Examples:** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.sum() >>> e <{{repr}}Data(1, 1, 1, 1): [[[[276]]]]> >>> print(e.array) [[[[276]]]] >>> e = d.sum(2) >>> e <{{repr}}Data(1, 2, 1, 4): [[[[12, ..., 57]]]]> >>> print(e.array) [[[[12 15 18 21]] [[48 51 54 57]]]] >>> e = d.sum([-2, -1]) >>> e <{{repr}}Data(1, 2, 1, 1): [[[[66, 210]]]]> >>> print(e.array) [[[[ 66]] [[210]]]] """ # Parse the axes. By default flattened input is used. try: axes = self._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't sum data: {error}") array = self.array array = numpy.sum(array, axis=axes, keepdims=True) d = self.copy(array=False) d._set_Array(array, copy=False) if d.shape != self.shape: # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d @_inplace_enabled(default=False) def transpose(self, axes=None, inplace=False): """Permute the axes of the data array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `flatten`, `insert_dimension`, `squeeze` :Parameters: axes: (sequence of) `int` The new axis order. By default the order is reversed. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The data with permuted data axes. If the operation was in-place then `None` is returned. **Examples:** >>> d.shape (19, 73, 96) >>> d.transpose().shape (96, 73, 19) >>> d.transpose([1, 0, 2]).shape (73, 19, 96) >>> d.transpose([-1, 0, 1], inplace=True) >>> d.shape (96, 19, 73) """ d = _inplace_enabled_define_and_cleanup(self) ndim = d.ndim # Parse the axes. By default, reverse the order of the axes. try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't transpose data: {error}") if axes is None: if ndim <= 1: return d axes = tuple(range(ndim - 1, -1, -1)) elif len(axes) != ndim: raise ValueError( f"Can't transpose data: Axes don't match array: {axes}" ) # Return unchanged if axes are in the same order as the data if axes == tuple(range(ndim)): return d array = self.array array = numpy.transpose(array, axes=axes) d._set_Array(array, copy=False) return d def get_compressed_axes(self): """Returns the dimensions that are compressed in the array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `get_compressed_dimension`, `get_compression_type` :Returns: `list` The dimensions of the data that are compressed to a single dimension in the underlying array. If the data are not compressed then an empty list is returned. **Examples:** >>> d.shape (2, 3, 4, 5, 6) >>> d.compressed_array.shape (2, 14, 6) >>> d.get_compressed_axes() [1, 2, 3] >>> d.get_compression_type() '' >>> d.get_compressed_axes() [] """ ca = self._get_Array(None) if ca is None: return [] return ca.get_compressed_axes() def get_compression_type(self): """Returns the type of compression applied to the array. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `compressed_array`, `compression_axes`, `get_compressed_dimension` :Returns: `str` The compression type. An empty string means that no compression has been applied. **Examples:** >>> d.get_compression_type() '' >>> d.get_compression_type() 'gathered' >>> d.get_compression_type() 'ragged contiguous' """ ma = self._get_Array(None) if ma is None: return "" return ma.get_compression_type() @classmethod def empty(cls, shape, dtype=None, units=None, calendar=None): """Create a new data array without initialising the elements. Note that the mask of the returned empty data is hard. .. seealso:: `full`, `ones`, `zeros` :Parameters: shape: `int` or `tuple` of `int` The shape of the new array. dtype: `numpy.dtype` or any object convertible to `numpy.dtype` The data-type of the new array. By default the data-type is ``float``. units: `str` or `Units` The units for the empty data array. calendar: `str`, optional The calendar for reference time units. :Returns: `{{class}}` **Examples:** >>> d = {{package}}.{{class}}.empty((96, 73)) """ return cls( numpy.empty(shape=shape, dtype=dtype), units=units, calendar=calendar, ) @_manage_log_level_via_verbosity def equals( self, other, rtol=None, atol=None, verbose=None, ignore_data_type=False, ignore_fill_value=False, ignore_compression=True, ignore_type=False, _check_values=True, ): """Whether two data arrays are the same. Equality is strict by default. This means that for data arrays to be considered equal: * the units and calendar must be the same, .. * the fill value must be the same (see the *ignore_fill_value* parameter), and .. * the arrays must have same shape and data type, the same missing data mask, and be element-wise equal (see the *ignore_data_type* parameter). {{equals tolerance}} Any compression is ignored by default, with only the arrays in their uncompressed forms being compared. See the *ignore_compression* parameter. Any type of object may be tested but, in general, equality is only possible with another cell measure construct, or a subclass of one. See the *ignore_type* parameter. .. versionadded:: (cfdm) 1.7.0 :Parameters: other: The object to compare for equality. {{atol: number, optional}} {{rtol: number, optional}} ignore_fill_value: `bool`, optional If True then the fill value is omitted from the comparison. {{ignore_data_type: `bool`, optional}} {{ignore_compression: `bool`, optional}} {{ignore_type: `bool`, optional}} {{verbose: `int` or `str` or `None`, optional}} :Returns: `bool` Whether the two data arrays are equal. **Examples:** >>> d.equals(d) True >>> d.equals(d.copy()) True >>> d.equals('not a data array') False """ pp = super()._equals_preprocess( other, verbose=verbose, ignore_type=ignore_type ) if pp is True or pp is False: return pp other = pp # Check that each instance has the same shape if self.shape != other.shape: logger.info( f"{self.__class__.__name__}: Different shapes: " f"{self.shape} != {other.shape}" ) # pragma: no cover return False # Check that each instance has the same fill value if not ignore_fill_value and self.get_fill_value( None ) != other.get_fill_value(None): logger.info( f"{self.__class__.__name__}: Different fill value: " f"{self.get_fill_value(None)} != {other.get_fill_value(None)}" ) # pragma: no cover return False # Check that each instance has the same data type if not ignore_data_type and self.dtype != other.dtype: logger.info( f"{self.__class__.__name__}: Different data types: " f"{self.dtype} != {other.dtype}" ) # pragma: no cover return False # Return now if we have been asked to not check the array # values if not _check_values: return True # Check that each instance has the same units for attr in ("units", "calendar"): x = getattr(self, "get_" + attr)(None) y = getattr(other, "get_" + attr)(None) if x != y: logger.info( f"{self.__class__.__name__}: Different {attr}: " f"{x!r} != {y!r}" ) # pragma: no cover return False if not ignore_compression: # -------------------------------------------------------- # Check for equal compression types # -------------------------------------------------------- compression_type = self.get_compression_type() if compression_type != other.get_compression_type(): logger.info( f"{self.__class__.__name__}: Different compression types: " f"{compression_type} != {other.get_compression_type()}" ) # pragma: no cover return False # -------------------------------------------------------- # Check for equal compressed array values # -------------------------------------------------------- if compression_type: if not self._equals( self.compressed_array, other.compressed_array, rtol=rtol, atol=atol, ): logger.info( f"{self.__class__.__name__}: Different compressed " "array values" ) # pragma: no cover return False # ------------------------------------------------------------ # Check for equal (uncompressed) array values # ------------------------------------------------------------ if not self._equals(self.array, other.array, rtol=rtol, atol=atol): logger.info( f"{self.__class__.__name__}: Different array values " f"(atol={atol}, rtol={rtol})" ) # pragma: no cover return False # ------------------------------------------------------------ # Still here? Then the two data arrays are equal. # ------------------------------------------------------------ return True def get_filenames(self): """Return the name of the file containing the data array. :Returns: `set` The file name in normalised, absolute form. If the data is are memory then an empty `set` is returned. **Examples:** >>> f = {{package}}.example_field(0) >>> {{package}}.write(f, 'temp_file.nc') >>> g = {{package}}.read('temp_file.nc')[0] >>> d = g.data >>> d.get_filenames() {'/data/user/temp_file.nc'} >>> d[...] = -99 >>> d.get_filenames() set() """ source = self.source(None) if source is None: return set() try: filename = source.get_filename() except AttributeError: return set() else: return set((abspath(filename),)) def first_element(self): """Return the first element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `last_element`, `second_element` :Returns: The first element of the data. **Examples:** >>> d = {{package}}.{{class}}(9.0) >>> x = d.first_element() >>> print(x, type(x)) 9.0 <class 'float'> >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.first_element() >>> print(x, type(x)) 1 <class 'int'> >>> d[0, 0] = {{package}}.masked >>> y = d.first_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.first_element() >>> print(x, type(x)) foo <class 'str'> """ return self._item((slice(0, 1),) * self.ndim) @_inplace_enabled(default=False) def flatten(self, axes=None, inplace=False): """Flatten axes of the data. Any subset of the axes may be flattened. The shape of the data may change, but the size will not. The flattening is executed in row-major (C-style) order. For example, the array ``[[1, 2], [3, 4]]`` would be flattened across both dimensions to ``[1 2 3 4]``. .. versionadded:: (cfdm) 1.7.11 .. seealso:: `insert_dimension`, `squeeze`, `transpose` :Parameters: axes: (sequence of) `int`, optional Select the axes. By default all axes are flattened. No axes are flattened if *axes* is an empty sequence. {{axes int examples}} inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `Data` or `None` The flattened data, or `None` if the operation was in-place. **Examples** >>> d = {{package}}.{{class}}(numpy.arange(24).reshape(1, 2, 3, 4)) >>> d <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> print(d.array) [[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]] >>> e = d.flatten() >>> e <{{repr}}Data(24): [0, ..., 23]> >>> print(e.array) [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] >>> e = d.flatten([]) >>> e <{{repr}}Data(1, 2, 3, 4): [[[[0, ..., 23]]]]> >>> e = d.flatten([1, 3]) >>> e <{{repr}}Data(1, 8, 3): [[[0, ..., 23]]]> >>> print(e.array) [[[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11] [12 16 20] [13 17 21] [14 18 22] [15 19 23]]] >>> d.flatten([0, -1], inplace=True) >>> d <{{repr}}Data(4, 2, 3): [[[0, ..., 23]]]> >>> print(d.array) [[[ 0 4 8] [12 16 20]] [[ 1 5 9] [13 17 21]] [[ 2 6 10] [14 18 22]] [[ 3 7 11] [15 19 23]]] """ d = _inplace_enabled_define_and_cleanup(self) try: axes = d._parse_axes(axes) except ValueError as error: raise ValueError(f"Can't flatten data: {error}") ndim = d.ndim if ndim <= 1: return d if axes is None: # By default flatten all axes axes = tuple(range(ndim)) else: if len(axes) <= 1: return d # Note that it is important that the first axis in the # list is the left-most flattened axis axes = sorted(axes) # Save the shape before we transpose shape = list(d.shape) order = [i for i in range(ndim) if i not in axes] order[axes[0] : axes[0]] = axes d.transpose(order, inplace=True) new_shape = [n for i, n in enumerate(shape) if i not in axes] new_shape.insert(axes[0], numpy.prod([shape[i] for i in axes])) array = d.array.reshape(new_shape) out = type(self)( array, units=d.get_units(None), calendar=d.get_calendar(None), fill_value=d.get_fill_value(None), ) if inplace: d.__dict__ = out.__dict__ return out def last_element(self): """Return the last element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `first_element`, `second_element` :Returns: The last element of the data. **Examples:** >>> d = {{package}}.{{class}}(9.0) >>> x = d.last_element() >>> print(x, type(x)) 9.0 <class 'float'> >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.last_element() >>> print(x, type(x)) 4 <class 'int'> >>> d[-1, -1] = {{package}}.masked >>> y = d.last_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.last_element() >>> print(x, type(x)) bar <class 'str'> """ return self._item((slice(-1, None),) * self.ndim) def second_element(self): """Return the second element of the data as a scalar. .. versionadded:: (cfdm) 1.7.0 .. seealso:: `first_element`, `last_element` :Returns: The second element of the data. **Examples:** >>> d = {{package}}.{{class}}([[1, 2], [3, 4]]) >>> x = d.second_element() >>> print(x, type(x)) 2 <class 'int'> >>> d[0, 1] = {{package}}.masked >>> y = d.second_element() >>> print(y, type(y)) -- <class 'numpy.ma.core.MaskedConstant'> >>> d = {{package}}.{{class}}(['foo', 'bar']) >>> x = d.second_element() >>> print(x, type(x)) bar <class 'str'> """ return self._item((slice(0, 1),) * (self.ndim - 1) + (slice(1, 2),)) def to_memory(self): """Bring data on disk into memory and retain it there. There is no change to data that is already in memory. :Returns: `None` **Examples:** >>> f = {{package}}.example_field(4) >>> f.data <{{repr}}Data(3, 26, 4): [[[290.0, ..., --]]] K> >>> f.data.to_memory() """ self._set_Array(self.source().to_memory()) @_inplace_enabled(default=False) def uncompress(self, inplace=False): """Uncompress the underlying array. .. versionadded:: (cfdm) 1.7.3 .. seealso:: `array`, `compressed_array`, `source` :Parameters: inplace: `bool`, optional If True then do the operation in-place and return `None`. :Returns: `{{class}}` or `None` The uncompressed data, or `None` if the operation was in-place. **Examples:** >>> d.get_compression_type() 'ragged contiguous' >>> d.source() <RaggedContiguousArray(4, 9): > >>> d.uncompress(inpalce=True) >>> d.get_compression_type() '' >>> d.source() <NumpyArray(4, 9): > """ d = _inplace_enabled_define_and_cleanup(self) if d.get_compression_type(): d._set_Array(d.array, copy=False) return d def unique(self): """The unique elements of the data. The unique elements are sorted into a one dimensional array. with no missing values. .. versionadded:: (cfdm) 1.7.0 :Returns: `{{class}}` The unique elements. **Examples:** >>> d = {{package}}.{{class}}([[4, 2, 1], [1, 2, 3]], 'metre') >>> d.unique() <{{repr}}Data(4): [1, ..., 4] metre> >>> d[1, -1] = {{package}}.masked >>> d.unique() <{{repr}}Data(3): [1, 2, 4] metre> """ array = self.array array = numpy.unique(array) if numpy.ma.is_masked(array): array = array.compressed() d = self.copy(array=False) d._set_Array(array, copy=False) if d.shape != self.shape: # Delete hdf5 chunksizes d.nc_clear_hdf5_chunksizes() return d # ---------------------------------------------------------------- # Aliases # ---------------------------------------------------------------- def max(self, axes=None): """Alias for `maximum`.""" return self.maximum(axes=axes) def min(self, axes=None): """Alias for `minimum`.""" return self.minimum(axes=axes)
[ "logging.getLogger", "numpy.prod", "numpy.ma.getmaskarray", "numpy.asanyarray", "numpy.array", "numpy.ma.is_masked", "numpy.where", "numpy.ma.masked_all", "itertools.product", "numpy.ndim", "numpy.ma.masked_where", "numpy.empty", "numpy.ma.where", "numpy.amin", "numpy.ma.array", "numpy.size", "itertools.zip_longest", "numpy.squeeze", "numpy.shape", "numpy.transpose", "numpy.ma.isMA", "numpy.unique", "numpy.sum", "numpy.expand_dims", "numpy.amax" ]
[((412, 439), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (429, 439), False, 'import logging\n'), ((24164, 24184), 'numpy.ma.isMA', 'numpy.ma.isMA', (['array'], {}), '(array)\n', (24177, 24184), False, 'import numpy\n'), ((40415, 40435), 'numpy.ma.isMA', 'numpy.ma.isMA', (['array'], {}), '(array)\n', (40428, 40435), False, 'import numpy\n'), ((42343, 42382), 'numpy.expand_dims', 'numpy.expand_dims', (['self.array', 'position'], {}), '(self.array, position)\n', (42360, 42382), False, 'import numpy\n'), ((51195, 51238), 'numpy.amax', 'numpy.amax', (['array'], {'axis': 'axes', 'keepdims': '(True)'}), '(array, axis=axes, keepdims=True)\n', (51205, 51238), False, 'import numpy\n'), ((53131, 53174), 'numpy.amin', 'numpy.amin', (['array'], {'axis': 'axes', 'keepdims': '(True)'}), '(array, axis=axes, keepdims=True)\n', (53141, 53174), False, 'import numpy\n'), ((55270, 55296), 'numpy.squeeze', 'numpy.squeeze', (['array', 'axes'], {}), '(array, axes)\n', (55283, 55296), False, 'import numpy\n'), ((57050, 57092), 'numpy.sum', 'numpy.sum', (['array'], {'axis': 'axes', 'keepdims': '(True)'}), '(array, axis=axes, keepdims=True)\n', (57059, 57092), False, 'import numpy\n'), ((59029, 59062), 'numpy.transpose', 'numpy.transpose', (['array'], {'axes': 'axes'}), '(array, axes=axes)\n', (59044, 59062), False, 'import numpy\n'), ((76655, 76674), 'numpy.unique', 'numpy.unique', (['array'], {}), '(array)\n', (76667, 76674), False, 'import numpy\n'), ((76687, 76712), 'numpy.ma.is_masked', 'numpy.ma.is_masked', (['array'], {}), '(array)\n', (76705, 76712), False, 'import numpy\n'), ((4663, 4695), 'numpy.ma.array', 'numpy.ma.array', (['array'], {'mask': 'mask'}), '(array, mask=mask)\n', (4677, 4695), False, 'import numpy\n'), ((12464, 12484), 'numpy.ma.isMA', 'numpy.ma.isMA', (['value'], {}), '(value)\n', (12477, 12484), False, 'import numpy\n'), ((12736, 12759), 'numpy.asanyarray', 'numpy.asanyarray', (['value'], {}), '(value)\n', (12752, 12759), False, 'import numpy\n'), ((16925, 16945), 'numpy.ma.isMA', 'numpy.ma.isMA', (['array'], {}), '(array)\n', (16938, 16945), False, 'import numpy\n'), ((24879, 24911), 'numpy.array', 'numpy.array', (['array'], {'dtype': 'object'}), '(array, dtype=object)\n', (24890, 24911), False, 'import numpy\n'), ((24982, 25016), 'numpy.ma.masked_where', 'numpy.ma.masked_where', (['mask', 'array'], {}), '(mask, array)\n', (25003, 25016), False, 'import numpy\n'), ((27323, 27356), 'numpy.ma.getmaskarray', 'numpy.ma.getmaskarray', (['self.array'], {}), '(self.array)\n', (27344, 27356), False, 'import numpy\n'), ((34903, 34943), 'numpy.ma.where', 'numpy.ma.where', (['mask', 'cfdm_masked', 'array'], {}), '(mask, cfdm_masked, array)\n', (34917, 34943), False, 'import numpy\n'), ((61673, 61710), 'numpy.empty', 'numpy.empty', ([], {'shape': 'shape', 'dtype': 'dtype'}), '(shape=shape, dtype=dtype)\n', (61684, 61710), False, 'import numpy\n'), ((72555, 72591), 'numpy.prod', 'numpy.prod', (['[shape[i] for i in axes]'], {}), '([shape[i] for i in axes])\n', (72565, 72591), False, 'import numpy\n'), ((18596, 18619), 'numpy.asanyarray', 'numpy.asanyarray', (['array'], {}), '(array)\n', (18612, 18619), False, 'import numpy\n'), ((20733, 20750), 'numpy.size', 'numpy.size', (['value'], {}), '(value)\n', (20743, 20750), False, 'import numpy\n'), ((20782, 20810), 'itertools.product', 'itertools.product', (['*indices1'], {}), '(*indices1)\n', (20799, 20810), False, 'import itertools\n'), ((25036, 25053), 'numpy.ndim', 'numpy.ndim', (['array'], {}), '(array)\n', (25046, 25053), False, 'import numpy\n'), ((25079, 25116), 'numpy.ma.masked_all', 'numpy.ma.masked_all', (['()'], {'dtype': 'object'}), '((), dtype=object)\n', (25098, 25116), False, 'import numpy\n'), ((4320, 4343), 'numpy.asanyarray', 'numpy.asanyarray', (['array'], {}), '(array)\n', (4336, 4343), False, 'import numpy\n'), ((4618, 4641), 'numpy.asanyarray', 'numpy.asanyarray', (['array'], {}), '(array)\n', (4634, 4641), False, 'import numpy\n'), ((20311, 20339), 'itertools.zip_longest', 'itertools.zip_longest', (['*args'], {}), '(*args)\n', (20332, 20339), False, 'import itertools\n'), ((20945, 20962), 'numpy.ndim', 'numpy.ndim', (['value'], {}), '(value)\n', (20955, 20962), False, 'import numpy\n'), ((21001, 21019), 'numpy.shape', 'numpy.shape', (['value'], {}), '(value)\n', (21012, 21019), False, 'import numpy\n'), ((21610, 21638), 'itertools.product', 'itertools.product', (['*indices1'], {}), '(*indices1)\n', (21627, 21638), False, 'import itertools\n'), ((21640, 21668), 'itertools.product', 'itertools.product', (['*indices2'], {}), '(*indices2)\n', (21657, 21668), False, 'import itertools\n'), ((24318, 24343), 'numpy.ma.is_masked', 'numpy.ma.is_masked', (['array'], {}), '(array)\n', (24336, 24343), False, 'import numpy\n'), ((48849, 48866), 'numpy.ndim', 'numpy.ndim', (['index'], {}), '(index)\n', (48859, 48866), False, 'import numpy\n'), ((48803, 48821), 'numpy.where', 'numpy.where', (['index'], {}), '(index)\n', (48814, 48821), False, 'import numpy\n'), ((13943, 13978), 'numpy.ma.array', 'numpy.ma.array', (['first'], {'mask': 'mask[0]'}), '(first, mask=mask[0])\n', (13957, 13978), False, 'import numpy\n'), ((14515, 14570), 'numpy.ma.array', 'numpy.ma.array', (['[first, last]'], {'mask': '(mask[0], mask[-1])'}), '([first, last], mask=(mask[0], mask[-1]))\n', (14529, 14570), False, 'import numpy\n'), ((15325, 15361), 'numpy.ma.array', 'numpy.ma.array', (['middle'], {'mask': 'mask[1]'}), '(middle, mask=mask[1])\n', (15339, 15361), False, 'import numpy\n')]
#!/usr/bin/env python # coding:utf8 # -*- coding: utf-8 -*- """ Main Program: Run MODIS AGGREGATION IN MPI WITH FLEXIBLE STATISTICS Created on 2020 @author: <NAME> (Email: <EMAIL>) """ import os import sys import h5py import timeit import random import calendar import numpy as np import pandas as pd from mpi4py import MPI from netCDF4 import Dataset from collections import OrderedDict from datetime import date, datetime from dateutil.rrule import rrule, DAILY, MONTHLY from MODIS_Aggregation import * if __name__ =='__main__': # This is the main program for using concurrent to speed up the whole process #--------------STEP 1: Read User Inputs and Initial Paramters for Aggregation-------------------- fname1,fname2,day_in_year,shift_hour,NTA_lats,NTA_lons,map_lon,map_lat,grid_lon,grid_lat,gap_x,gap_y,filenum, \ grid_data,sts_switch,varnames,intervals_1d,intervals_2d,bin_num1,bin_num2,var_idx,spl_num,sts_name,histnames, \ output_dir,l3name,unit_list,scale_list,offst_list,longname_list,fillvalue_list = read_user_inputs() total_file_num = len(filenum) #--------------STEP 2: Start Aggregation------------------------------------------------ # Start counting operation time start_time = timeit.default_timer() print("-------- START AGGREGATION --------") # Initiate MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() random.seed(rank) # Initiate the number of files for MPI remain = size-total_file_num%size files_part1 = np.arange(total_file_num + remain) tasks_part1 = np.array(np.split(files_part1,size)) files_part2 = np.arange(total_file_num - tasks_part1[rank].size * (size-remain)) + tasks_part1[rank].size * (size-remain) tasks_part2 = np.array(np.split(files_part2,remain)) if rank < (size-remain): fileloop = tasks_part1[rank] else: fileloop = tasks_part2[rank-(size-remain)] print("Process {} calculating files from {} to {}... (Total: {} / {})".format(rank, fileloop[0],fileloop[-1],fileloop.shape[0],total_file_num)) if rank == 0: grid_data = run_modis_aggre(fname1,fname2,day_in_year,shift_hour,NTA_lats,NTA_lons,grid_lon,grid_lat,gap_x,gap_y,fileloop, \ grid_data,sts_switch,varnames,intervals_1d,intervals_2d,var_idx,spl_num,sts_name,histnames) for i in range(1,size): results = comm.recv(source=i, tag=0) grid_data = addCounter(grid_data, results) # Compute the mean cloud fraction & Statistics (Include Min & Max & Standard deviation) # Reference for statstic parameters # sts_name[0]: min # sts_name[1]: max # sts_name[2]: mean / total_value # sts_name[3]: count # sts_name[4]: square # sts_name[5]: histogram # sts_name[6]: joint histogram sts_idx = np.array(np.where(sts_switch == True))[0] print("Index of User-defined Statistics:",sts_idx) print(grid_data['GRID_Counts'].reshape([grid_lat,grid_lon])) key_idx = 0 for key in varnames: for i in sts_idx: if i == 0: grid_data[key+'_'+sts_name[0]] = grid_data[key+'_'+sts_name[0]].reshape([grid_lat,grid_lon]) elif i == 1: grid_data[key+'_'+sts_name[1]] = grid_data[key+'_'+sts_name[1]].reshape([grid_lat,grid_lon]) elif i == 2: grid_data[key+'_'+sts_name[2]] = grid_data[key+'_'+sts_name[2]] / grid_data[key+'_'+sts_name[3]] grid_data[key+'_'+sts_name[2]] = grid_data[key+'_'+sts_name[2]].reshape([grid_lat,grid_lon]) elif i == 3: grid_data[key+'_'+sts_name[3]] = grid_data[key+'_'+sts_name[3]].reshape([grid_lat,grid_lon]) elif i == 4: grid_data[key+'_'+sts_name[4]] = ((grid_data[key+'_'+sts_name[4]] / grid_data[key+'_'+sts_name[3]].ravel()) - grid_data[key+'_'+sts_name[2]].ravel()**2)**0.5 grid_data[key+'_'+sts_name[4]] = grid_data[key+'_'+sts_name[4]].reshape([grid_lat,grid_lon]) elif i == 5: grid_data[key+'_'+sts_name[5]] = grid_data[key+'_'+sts_name[5]].reshape([grid_lat,grid_lon,bin_num1[key_idx]]) elif i == 6: grid_data[key+'_'+sts_name[6]+histnames[key_idx]] = grid_data[key+'_'+sts_name[6]+histnames[key_idx]].reshape([grid_lat,grid_lon,bin_num1[key_idx],bin_num2[key_idx]]) key_idx += 1 end_time = timeit.default_timer() print ("Operation Time in {:7.2f} seconds".format(end_time - start_time)) #--------------STEP 3: Create HDF5 file to store the result------------------------------ ff=h5py.File(output_dir+l3name+'MPI','w') PC=ff.create_dataset('lat_bnd',data=map_lat) PC.attrs['units']='degrees' PC.attrs['long_name']='Latitude_boundaries' PC=ff.create_dataset('lon_bnd',data=map_lon) PC.attrs['units']='degrees' PC.attrs['long_name']='Longitude_boundaries' PCentry=ff.create_dataset('GRID_Counts',data=grid_data['GRID_Counts'].reshape([grid_lat,grid_lon])) PCentry.dims[0].label='lat_bnd' PCentry.dims[1].label='lon_bnd' PC.attrs['units']='none' PC.attrs['long_name']='grid_point_counts' for i in range(sts_idx.shape[0]): cnt = 0 for key in grid_data: if key.find("1km") != -1: new_name = key.replace("_1km", "") else: new_name = key if (sts_name[sts_idx[i]] in key) == True: if sts_idx[i] >= 5: addGridEntry(ff,new_name,unit_list[cnt],longname_list[cnt],fillvalue_list[cnt],scale_list[cnt],offst_list[cnt],grid_data[key],intervals_1d[cnt],intervals_2d[cnt]) else: addGridEntry(ff,new_name,unit_list[cnt],longname_list[cnt],fillvalue_list[cnt],scale_list[cnt],offst_list[cnt],grid_data[key],intervals_1d[0],intervals_2d[0]) cnt += 1 ff.close() print(l3name+' Saved!') print("-------- AGGREGATION COMPLETED --------") else: results = run_modis_aggre(fname1,fname2,day_in_year,shift_hour,NTA_lats,NTA_lons,grid_lon,grid_lat,gap_x,gap_y,fileloop, \ grid_data,sts_switch,varnames,intervals_1d,intervals_2d,var_idx,spl_num,sts_name,histnames) massage = "Process {} finished".format(rank) print(massage) comm.send(results, dest=0, tag=0) #---------------------------COMPLETED------------------------------------------------------
[ "numpy.where", "timeit.default_timer", "random.seed", "h5py.File", "numpy.split", "numpy.arange" ]
[((1212, 1234), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (1232, 1234), False, 'import timeit\n'), ((1372, 1389), 'random.seed', 'random.seed', (['rank'], {}), '(rank)\n', (1383, 1389), False, 'import random\n'), ((1484, 1518), 'numpy.arange', 'np.arange', (['(total_file_num + remain)'], {}), '(total_file_num + remain)\n', (1493, 1518), True, 'import numpy as np\n'), ((1543, 1570), 'numpy.split', 'np.split', (['files_part1', 'size'], {}), '(files_part1, size)\n', (1551, 1570), True, 'import numpy as np\n'), ((1587, 1655), 'numpy.arange', 'np.arange', (['(total_file_num - tasks_part1[rank].size * (size - remain))'], {}), '(total_file_num - tasks_part1[rank].size * (size - remain))\n', (1596, 1655), True, 'import numpy as np\n'), ((1719, 1748), 'numpy.split', 'np.split', (['files_part2', 'remain'], {}), '(files_part2, remain)\n', (1727, 1748), True, 'import numpy as np\n'), ((4099, 4121), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (4119, 4121), False, 'import timeit\n'), ((4298, 4341), 'h5py.File', 'h5py.File', (["(output_dir + l3name + 'MPI')", '"""w"""'], {}), "(output_dir + l3name + 'MPI', 'w')\n", (4307, 4341), False, 'import h5py\n'), ((2702, 2730), 'numpy.where', 'np.where', (['(sts_switch == True)'], {}), '(sts_switch == True)\n', (2710, 2730), True, 'import numpy as np\n')]
import torch import torch.nn as nn import os import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler from .modules import WavePool, WaveUnpool, ImagePool, NLayerDiscriminator from utils.metrics import compute_dice_metric from utils.losses import DiceLoss import numpy as np class WaveEncoder(nn.Module): """Wavelet encoder in WCT2, only partial layers used""" def __init__(self): super(WaveEncoder, self).__init__() self.pad = nn.ReflectionPad2d(1) self.relu = nn.ReLU(inplace=True) self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv1_1 = nn.Conv2d(3, 64, 3, 1, 0) self.conv1_2 = nn.Conv2d(64, 64, 3, 1, 0) self.pool1 = WavePool(64) self.conv2_1 = nn.Conv2d(64, 128, 3, 1, 0) self.conv2_2 = nn.Conv2d(128, 128, 3, 1, 0) self.pool2 = WavePool(128) self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 0) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_4 = nn.Conv2d(256, 256, 3, 1, 0) self.pool3 = WavePool(256) self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 0) def forward(self, x, skips): """Wavelet encoding - only up to level 2 Args: x (torch.Tensor): input to be encoded skips (dict): dictionary to contain LH, HL, HH filter responses Returns: LL (torch.Tensor): output of LL filters skips (dict): dictionary containing said filters """ # level 1 out = self.conv0(x) out = self.relu(self.conv1_1(self.pad(out))) # level 2 out = self.relu(self.conv1_2(self.pad(out))) skips['conv1_2'] = out LL, LH, HL, HH = self.pool1(out) skips['pool1'] = [LH, HL, HH] return LL, skips class WaveDecoder(nn.Module): """Wavelet encoder in WCT2, only partial layers used""" def __init__(self): super(WaveDecoder, self).__init__() multiply_in = 5 self.pad = nn.ReflectionPad2d(1) self.relu = nn.ReLU(inplace=True) self.conv4_1 = nn.Conv2d(512, 256, 3, 1, 0) self.recon_block3 = WaveUnpool(256) self.conv3_4_2 = nn.Conv2d(256*multiply_in, 256, 3, 1, 0) self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 0) self.conv3_1 = nn.Conv2d(256, 128, 3, 1, 0) self.recon_block2 = WaveUnpool(128) self.conv2_2_2 = nn.Conv2d(128*multiply_in, 128, 3, 1, 0) self.conv2_1 = nn.Conv2d(128, 64, 3, 1, 0) self.recon_block1 = WaveUnpool(64) self.conv1_2_2 = nn.Conv2d(64*multiply_in, 64, 3, 1, 0) self.conv1_1 = nn.Conv2d(64, 3, 3, 1, 0) def forward(self, x, skips): """Decoder - upsample from level 2 Args: x (torch.Tensor): input to be encoded skips (dict): dictionary containing LH, HL, HH filter responses Returns: out (torch.Tensor): output of wavelet unpooling layer """ LH, HL, HH = skips['pool1'] original = skips['conv1_2'] if 'conv1_2' in skips.keys() else None out = self.recon_block1(x, LH, HL, HH, original) return out class WCT2Features(nn.Module): """WCT2 transform with fixed input and output channels and handpicked LL filters """ def __init__(self, filters=None, model_path_encoder=None, model_path_decoder=None): super(WCT2Features, self).__init__() self.encoder = WaveEncoder().cuda() self.decoder = WaveDecoder().cuda() self.encoder.load_state_dict( torch.load(os.path.join(model_path_encoder), map_location=lambda storage, loc: storage)) self.decoder.load_state_dict( torch.load(os.path.join(model_path_decoder), map_location=lambda storage, loc: storage)) self.filters = filters # self.tanh = nn.Tanh() # chosen channels # self.ll_filter_idx = [4,7,11,24,25,27] # Sparsest CT channels [25, 54,16,22,61,4,8,27,7,3] # self.ll_filter_idx = [15,2,41,12,39,1,42,23,51,38] # self.ll_filter_idx = [14 ,15 ,45 ,19 ,39, 1 ,42 ,23 ,51, 38] def forward(self, x): """Get WCT2 LL filters Args: x (torch.Tensor): input tensor Returns: out (torch.Tensor): output LL filters """ skips = {} out, skips = self.encoder(x, skips) out = self.decoder(out, skips) out = out[:,:64,:,:] if self.filters != None: out = torch.index_select(out, 1, torch.tensor(self.filters).cuda()) return out class WCT2GANUNet(nn.Module): """WCT2 GAN UNet all in one class""" def __init__(self, g, seg, n_channels, lr=0.0002): super(WCT2GANUNet, self).__init__() # generator self.g = g.cuda() # discriminator self.d = NLayerDiscriminator(input_nc=n_channels).cuda() # segmentor self.seg = seg.cuda() self.lr = lr # optimisers here self.g_optim = optim.Adam(self.g.parameters(), lr=self.lr) self.seg_optim = optim.Adam(self.seg.parameters(), lr=self.lr) # self.optim = optim.Adam(chain(self.g.parameters(), self.seg.parameters()), lr=self.lr) self.d_optim = optim.SGD(self.d.parameters(), lr=self.lr, momentum=0.5) self.criterion_gan = nn.BCELoss() self.pool = ImagePool() def criterion_seg(self, prediction, target): return nn.BCELoss()(prediction, target) + DiceLoss()(prediction, target) def forward_gen(self, x): return self.g(x) def forward_seg(self, x): out = self.forward_gen(x) a1, a2, a3, a4, a5 = self.seg.downsample(out) seg = self.seg.upsample(a1, a2, a3, a4, a5) return seg def get_target(self, pred, is_true=True): """Return target tensor with similar shape to pred""" if is_true == True and np.random.random() > 0.65: return torch.ones(pred.size(), requires_grad=False).cuda() return torch.zeros(pred.size(), requires_grad=False).cuda() # # occasionally give wrong labels # if is_true == True and np.random.random() + 0.3 > 0.5: # # use soft label for true [0.7, 1.2] # return (1.2 - 0.7) * torch.rand(pred.size(), requires_grad=False).cuda() + 0.7 # # use soft label [0, 0.1] for false # return 0.1 * torch.rand(pred.size(), requires_grad=False).cuda() def set_requires_grad(self, net, requires_grad=False): for param in net.parameters(): param.requires_grad=requires_grad def step(self, x_s, x_t, y_s): # GAN loss - update discriminator and generator here # GAN loss - max log(D(x)) + log(1 - D(G(x))) # update d only self.d_optim.zero_grad() out_x_s = self.forward_gen(x_s) out_x_t = self.forward_gen(x_t) x_s_real = self.d(out_x_s) target_real = self.get_target(x_s_real) loss_real = self.criterion_gan(x_s_real, target_real) loss_real.backward() # get generated feature maps from pool / replay for stability x_s_fake_map = (self.pool.query(out_x_t)).detach() x_s_fake = self.d(x_s_fake_map) target_fake = self.get_target(x_s_fake, is_true=False) loss_fake = self.criterion_gan(x_s_fake, target_fake) loss_fake.backward() self.d_optim.step() # update g - max D(G(X)) self.g_optim.zero_grad() x_s_fake = self.d(x_s_fake_map) target_real = self.get_target(x_s_real) loss_g = self.criterion_gan(x_s_fake, target_real) loss_g.backward() self.g_optim.step() # Segmentation loss self.set_requires_grad(self.g, requires_grad=False) # self.g_optim.zero_grad() self.seg_optim.zero_grad() out_seg = self.forward_seg(x_s) seg_loss = self.criterion_seg(out_seg, y_s) seg_loss.backward() # self.g_optim.step() self.seg_optim.step() # calculate dice score for current batch dice_score = compute_dice_metric(torch.round(out_seg), y_s).item() # backward pass return seg_loss.item(), (loss_real + loss_fake).item(), dice_score def save(self, path): print('saving model...') if os.path.isdir(path) == False: os.makedirs(path) torch.save(self.g.state_dict(), os.path.join(path,'g.pth')) torch.save(self.d.state_dict(), os.path.join(path,'d.pth')) torch.save(self.seg.state_dict(), os.path.join(path,'seg.pth')) print('saving done!')
[ "torch.nn.ReLU", "os.makedirs", "numpy.random.random", "torch.nn.ReflectionPad2d", "os.path.join", "torch.nn.Conv2d", "torch.tensor", "torch.nn.BCELoss", "os.path.isdir", "torch.round", "utils.losses.DiceLoss" ]
[((479, 500), 'torch.nn.ReflectionPad2d', 'nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (497, 500), True, 'import torch.nn as nn\n'), ((521, 542), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (528, 542), True, 'import torch.nn as nn\n'), ((565, 589), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(3)', '(1)', '(1)', '(0)'], {}), '(3, 3, 1, 1, 0)\n', (574, 589), True, 'import torch.nn as nn\n'), ((613, 638), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)', '(3)', '(1)', '(0)'], {}), '(3, 64, 3, 1, 0)\n', (622, 638), True, 'import torch.nn as nn\n'), ((662, 688), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)', '(3)', '(1)', '(0)'], {}), '(64, 64, 3, 1, 0)\n', (671, 688), True, 'import torch.nn as nn\n'), ((747, 774), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(128)', '(3)', '(1)', '(0)'], {}), '(64, 128, 3, 1, 0)\n', (756, 774), True, 'import torch.nn as nn\n'), ((798, 826), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(128)', '(3)', '(1)', '(0)'], {}), '(128, 128, 3, 1, 0)\n', (807, 826), True, 'import torch.nn as nn\n'), ((886, 914), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(256)', '(3)', '(1)', '(0)'], {}), '(128, 256, 3, 1, 0)\n', (895, 914), True, 'import torch.nn as nn\n'), ((938, 966), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (947, 966), True, 'import torch.nn as nn\n'), ((990, 1018), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (999, 1018), True, 'import torch.nn as nn\n'), ((1042, 1070), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (1051, 1070), True, 'import torch.nn as nn\n'), ((1138, 1166), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(512)', '(3)', '(1)', '(0)'], {}), '(256, 512, 3, 1, 0)\n', (1147, 1166), True, 'import torch.nn as nn\n'), ((2084, 2105), 'torch.nn.ReflectionPad2d', 'nn.ReflectionPad2d', (['(1)'], {}), '(1)\n', (2102, 2105), True, 'import torch.nn as nn\n'), ((2126, 2147), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2133, 2147), True, 'import torch.nn as nn\n'), ((2171, 2199), 'torch.nn.Conv2d', 'nn.Conv2d', (['(512)', '(256)', '(3)', '(1)', '(0)'], {}), '(512, 256, 3, 1, 0)\n', (2180, 2199), True, 'import torch.nn as nn\n'), ((2279, 2321), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256 * multiply_in)', '(256)', '(3)', '(1)', '(0)'], {}), '(256 * multiply_in, 256, 3, 1, 0)\n', (2288, 2321), True, 'import torch.nn as nn\n'), ((2343, 2371), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (2352, 2371), True, 'import torch.nn as nn\n'), ((2395, 2423), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)', '(3)', '(1)', '(0)'], {}), '(256, 256, 3, 1, 0)\n', (2404, 2423), True, 'import torch.nn as nn\n'), ((2447, 2475), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(128)', '(3)', '(1)', '(0)'], {}), '(256, 128, 3, 1, 0)\n', (2456, 2475), True, 'import torch.nn as nn\n'), ((2555, 2597), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128 * multiply_in)', '(128)', '(3)', '(1)', '(0)'], {}), '(128 * multiply_in, 128, 3, 1, 0)\n', (2564, 2597), True, 'import torch.nn as nn\n'), ((2619, 2646), 'torch.nn.Conv2d', 'nn.Conv2d', (['(128)', '(64)', '(3)', '(1)', '(0)'], {}), '(128, 64, 3, 1, 0)\n', (2628, 2646), True, 'import torch.nn as nn\n'), ((2716, 2756), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64 * multiply_in)', '(64)', '(3)', '(1)', '(0)'], {}), '(64 * multiply_in, 64, 3, 1, 0)\n', (2725, 2756), True, 'import torch.nn as nn\n'), ((2778, 2803), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(3)', '(3)', '(1)', '(0)'], {}), '(64, 3, 3, 1, 0)\n', (2787, 2803), True, 'import torch.nn as nn\n'), ((5668, 5680), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (5678, 5680), True, 'import torch.nn as nn\n'), ((8858, 8877), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (8871, 8877), False, 'import os\n'), ((8900, 8917), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (8911, 8917), False, 'import os\n'), ((8958, 8985), 'os.path.join', 'os.path.join', (['path', '"""g.pth"""'], {}), "(path, 'g.pth')\n", (8970, 8985), False, 'import os\n'), ((9026, 9053), 'os.path.join', 'os.path.join', (['path', '"""d.pth"""'], {}), "(path, 'd.pth')\n", (9038, 9053), False, 'import os\n'), ((9096, 9125), 'os.path.join', 'os.path.join', (['path', '"""seg.pth"""'], {}), "(path, 'seg.pth')\n", (9108, 9125), False, 'import os\n'), ((3753, 3785), 'os.path.join', 'os.path.join', (['model_path_encoder'], {}), '(model_path_encoder)\n', (3765, 3785), False, 'import os\n'), ((3915, 3947), 'os.path.join', 'os.path.join', (['model_path_decoder'], {}), '(model_path_decoder)\n', (3927, 3947), False, 'import os\n'), ((5787, 5799), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (5797, 5799), True, 'import torch.nn as nn\n'), ((5822, 5832), 'utils.losses.DiceLoss', 'DiceLoss', ([], {}), '()\n', (5830, 5832), False, 'from utils.losses import DiceLoss\n'), ((6290, 6308), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (6306, 6308), True, 'import numpy as np\n'), ((8636, 8656), 'torch.round', 'torch.round', (['out_seg'], {}), '(out_seg)\n', (8647, 8656), False, 'import torch\n'), ((4799, 4825), 'torch.tensor', 'torch.tensor', (['self.filters'], {}), '(self.filters)\n', (4811, 4825), False, 'import torch\n')]
import kfserving from typing import List, Union import numpy as np class Predictor(): # pylint:disable=too-few-public-methods def __init__(self, clf: kfserving.KFModel): self.clf = clf def predict_fn(self, arr: Union[np.ndarray, List]) -> np.ndarray: instances = [] for req_data in arr: if isinstance(req_data, np.ndarray): instances.append(req_data.tolist()) else: instances.append(req_data) resp = self.clf.predict({"instances": instances}) return np.array(resp["predictions"])
[ "numpy.array" ]
[((557, 586), 'numpy.array', 'np.array', (["resp['predictions']"], {}), "(resp['predictions'])\n", (565, 586), True, 'import numpy as np\n')]
#!/usr/bin/env python from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2013, The Emperor Project" __credits__ = ["<NAME>"] __license__ = "BSD" __version__ = "0.9.3-dev" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from unittest import TestCase, main from tempfile import mkstemp from os import close import numpy as np import numpy.testing as npt from emperor.parse import parse_coords class ParseTests(TestCase): def test_parse_coords_ordination_results(self): """parse_coords should handle skbio's OrdinationResults file""" coords = ordination_results_file.splitlines() obs = parse_coords(coords) exp = (['A', 'B', 'C'], np.array([[.11, .09, .23], [.03, .07, -.26], [.12, .06, -.32]]), np.array([4.94, 1.79, 1.50]), np.array([14.3, 5.2, 4.3])) # test the header and the values apart from each other self.assertEqual(obs[0], exp[0]) npt.assert_almost_equal(obs[1], exp[1]) npt.assert_almost_equal(obs[2], exp[2]) npt.assert_almost_equal(obs[3], exp[3]) def test_parse_coords_qiime(self): """parse_coords should handle old qiime PCoA coords format""" coords = qiime_pcoa_file.splitlines() obs = parse_coords(coords) exp = (['A', 'B', 'C'], np.array([[.11, .09, .23], [.03, .07, -.26], [.12, .06, -.32]]), np.array([4.94, 1.79, 1.50]), np.array([14.3, 5.2, 4.3])) # test the header and the values apart from each other self.assertEqual(obs[0], exp[0]) npt.assert_almost_equal(obs[1], exp[1]) npt.assert_almost_equal(obs[2], exp[2]) npt.assert_almost_equal(obs[3], exp[3]) def test_parse_coords_qiime_file(self): """parse_coords should handle old qiime PCoA coords file""" fd, fp = mkstemp() close(fd) with open(fp, 'w') as f: f.write(qiime_pcoa_file) with open(fp, 'U') as f: obs = parse_coords(f) exp = (['A', 'B', 'C'], np.array([[.11, .09, .23], [.03, .07, -.26], [.12, .06, -.32]]), np.array([4.94, 1.79, 1.50]), np.array([14.3, 5.2, 4.3])) # test the header and the values apart from each other self.assertEqual(obs[0], exp[0]) npt.assert_almost_equal(obs[1], exp[1]) npt.assert_almost_equal(obs[2], exp[2]) npt.assert_almost_equal(obs[3], exp[3]) ordination_results_file = """Eigvals\t3 4.94\t1.79\t1.50 Proportion explained\t3 14.3\t5.2\t4.3 Species\t0\t0 Site\t3\t3 A\t.11\t.09\t.23 B\t.03\t.07\t-.26 C\t.12\t.06\t-.32 Biplot\t0\t0 Site constraints\t0\t0""" qiime_pcoa_file = """pc vector number\t1\t2\t3 A\t0.11\t0.09\t0.23 B\t0.03\t0.07\t-0.26 C\t0.12\t0.06\t-0.32 eigvals\t4.94\t1.79\t1.50 % variation explained\t14.3\t5.2\t4.3 """ if __name__ == '__main__': main()
[ "os.close", "numpy.testing.assert_almost_equal", "numpy.array", "unittest.main", "emperor.parse.parse_coords", "tempfile.mkstemp" ]
[((2964, 2970), 'unittest.main', 'main', ([], {}), '()\n', (2968, 2970), False, 'from unittest import TestCase, main\n'), ((677, 697), 'emperor.parse.parse_coords', 'parse_coords', (['coords'], {}), '(coords)\n', (689, 697), False, 'from emperor.parse import parse_coords\n'), ((1010, 1049), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[1]', 'exp[1]'], {}), '(obs[1], exp[1])\n', (1033, 1049), True, 'import numpy.testing as npt\n'), ((1058, 1097), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[2]', 'exp[2]'], {}), '(obs[2], exp[2])\n', (1081, 1097), True, 'import numpy.testing as npt\n'), ((1106, 1145), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[3]', 'exp[3]'], {}), '(obs[3], exp[3])\n', (1129, 1145), True, 'import numpy.testing as npt\n'), ((1316, 1336), 'emperor.parse.parse_coords', 'parse_coords', (['coords'], {}), '(coords)\n', (1328, 1336), False, 'from emperor.parse import parse_coords\n'), ((1649, 1688), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[1]', 'exp[1]'], {}), '(obs[1], exp[1])\n', (1672, 1688), True, 'import numpy.testing as npt\n'), ((1697, 1736), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[2]', 'exp[2]'], {}), '(obs[2], exp[2])\n', (1720, 1736), True, 'import numpy.testing as npt\n'), ((1745, 1784), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[3]', 'exp[3]'], {}), '(obs[3], exp[3])\n', (1768, 1784), True, 'import numpy.testing as npt\n'), ((1915, 1924), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (1922, 1924), False, 'from tempfile import mkstemp\n'), ((1933, 1942), 'os.close', 'close', (['fd'], {}), '(fd)\n', (1938, 1942), False, 'from os import close\n'), ((2395, 2434), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[1]', 'exp[1]'], {}), '(obs[1], exp[1])\n', (2418, 2434), True, 'import numpy.testing as npt\n'), ((2443, 2482), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[2]', 'exp[2]'], {}), '(obs[2], exp[2])\n', (2466, 2482), True, 'import numpy.testing as npt\n'), ((2491, 2530), 'numpy.testing.assert_almost_equal', 'npt.assert_almost_equal', (['obs[3]', 'exp[3]'], {}), '(obs[3], exp[3])\n', (2514, 2530), True, 'import numpy.testing as npt\n'), ((745, 817), 'numpy.array', 'np.array', (['[[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]]'], {}), '([[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]])\n', (753, 817), True, 'import numpy as np\n'), ((825, 852), 'numpy.array', 'np.array', (['[4.94, 1.79, 1.5]'], {}), '([4.94, 1.79, 1.5])\n', (833, 852), True, 'import numpy as np\n'), ((870, 896), 'numpy.array', 'np.array', (['[14.3, 5.2, 4.3]'], {}), '([14.3, 5.2, 4.3])\n', (878, 896), True, 'import numpy as np\n'), ((1384, 1456), 'numpy.array', 'np.array', (['[[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]]'], {}), '([[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]])\n', (1392, 1456), True, 'import numpy as np\n'), ((1464, 1491), 'numpy.array', 'np.array', (['[4.94, 1.79, 1.5]'], {}), '([4.94, 1.79, 1.5])\n', (1472, 1491), True, 'import numpy as np\n'), ((1509, 1535), 'numpy.array', 'np.array', (['[14.3, 5.2, 4.3]'], {}), '([14.3, 5.2, 4.3])\n', (1517, 1535), True, 'import numpy as np\n'), ((2066, 2081), 'emperor.parse.parse_coords', 'parse_coords', (['f'], {}), '(f)\n', (2078, 2081), False, 'from emperor.parse import parse_coords\n'), ((2130, 2202), 'numpy.array', 'np.array', (['[[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]]'], {}), '([[0.11, 0.09, 0.23], [0.03, 0.07, -0.26], [0.12, 0.06, -0.32]])\n', (2138, 2202), True, 'import numpy as np\n'), ((2210, 2237), 'numpy.array', 'np.array', (['[4.94, 1.79, 1.5]'], {}), '([4.94, 1.79, 1.5])\n', (2218, 2237), True, 'import numpy as np\n'), ((2255, 2281), 'numpy.array', 'np.array', (['[14.3, 5.2, 4.3]'], {}), '([14.3, 5.2, 4.3])\n', (2263, 2281), True, 'import numpy as np\n')]
import cv2 import numpy as np import imutils from collections import defaultdict # mouse callback function def define_points(target_img): corners = [] refPt = [] def draw_circle(event,x,y,flags,param): global refPt if event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(param,(x,y),5,(255,0,0),-1) refPt = [x,y] print(type(refPt)) corners.append(refPt) cv2.namedWindow('image') cv2.setMouseCallback('image',draw_circle, target_img) while(1): cv2.imshow('image',target_img) k = cv2.waitKey(20) & 0xFF # corners.append(refPt) if k == 27: break cv2.destroyAllWindows() print (corners) new_corners = np.array(corners) return new_corners def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def segment_by_angle_kmeans(lines,k=2, **kwargs): """Groups lines based on angle with k-means. Uses k-means on the coordinates of the angle on the unit circle to segment `k` angles inside `lines`. """ # Define criteria = (type, max_iter, epsilon) default_criteria_type = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER criteria = kwargs.get('criteria', (default_criteria_type, 10, 1.0)) flags = kwargs.get('flags', cv2.KMEANS_RANDOM_CENTERS) attempts = kwargs.get('attempts', 10) # returns angles in [0, pi] in radians angles = np.array([line[0][1] for line in lines]) # multiply the angles by two and find coordinates of that angle pts = np.array([[np.cos(2*angle), np.sin(2*angle)] for angle in angles], dtype=np.float32) # run kmeans on the coords labels, centers = cv2.kmeans(pts, k, None, criteria, attempts, flags)[1:] labels = labels.reshape(-1) # transpose to row vec # segment lines based on their kmeans label segmented = defaultdict(list) for i, line in zip(range(len(lines)), lines): segmented[labels[i]].append(line) segmented = list(segmented.values()) return segmented def intersection(line1, line2): """Finds the intersection of two lines given in Hesse normal form. Returns closest integer pixel locations. See https://stackoverflow.com/a/383527/5087436 """ rho1, theta1 = line1[0] rho2, theta2 = line2[0] A = np.array([ [np.cos(theta1), np.sin(theta1)], [np.cos(theta2), np.sin(theta2)] ]) b = np.array([[rho1], [rho2]]) x0, y0 = np.linalg.solve(A, b) x0, y0 = int(np.round(x0)), int(np.round(y0)) return [[x0, y0]] def segmented_intersections(lines): """Finds the intersections between groups of lines.""" intersections = [] for i, group in enumerate(lines[:-1]): for next_group in lines[i+1:]: for line1 in group: for line2 in next_group: intersections.append(intersection(line1, line2)) return intersections def isEqual(l1, l2): length1 = sqrtf((l1[2] - l1[0])*(l1[2] - l1[0]) + (l1[3] - l1[1])*(l1[3] - l1[1])) length2 = sqrtf((l2[2] - l2[0])*(l2[2] - l2[0]) + (l2[3] - l2[1])*(l2[3] - l2[1])) product = (l1[2] - l1[0])*(l2[2] - l2[0]) + (l1[3] - l1[1])*(l2[3] - l2[1]) if (fabs(product / (length1 * length2)) < cos(CV_PI / 30)): return false mx1 = (l1[0] + l1[2]) * 0.5 mx2 = (l2[0] + l2[2]) * 0.5 my1 = (l1[1] + l1[3]) * 0.5 my2 = (l2[1] + l2[3]) * 0.5 dist = sqrtf((mx1 - mx2)*(mx1 - mx2) + (my1 - my2)*(my1 - my2)) if (dist > max(length1, length2) * 0.5): return false return true def birdseye_correction(img = "angled.jpg"): img = cv2.imread(img,0) resized = imutils.resize(img, height = 1000) copy = resized.copy() rect = order_points(define_points(copy)) print (rect) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0]-bl[0])**2)+((br[1]-bl[1])**2)) widthB = np.sqrt(((tr[0]-tl[0])**2)+((tr[1]-tl[1])**2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0]-br[0])**2)+((tr[1]-br[1])**2)) heightB = np.sqrt(((tl[0]-bl[0])**2)+((tl[1]-bl[1])**2)) maxHeight = max(int(heightA), int(heightB)) dst = np.array([[0, 0], \ [maxWidth - 1, 0], \ [maxWidth - 1, maxHeight - 1], \ [0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(resized, M, (maxWidth, maxHeight)) cv2.imshow("warped", warped) cv2.waitKey(0) cv2.destroyAllWindows() # gray = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) blurred_img = cv2.GaussianBlur(warped,(3,3),0) binary = cv2.adaptiveThreshold(blurred_img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,31,2) # noise removal kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(binary,cv2.MORPH_OPEN,kernel, iterations = 2) # Apply edge detection method on the image edges = cv2.Canny(warped,50,150,apertureSize = 3) # cv2.imshow("edges", edges) cv2.waitKey(0) cv2.destroyAllWindows() # This returns an array of r and theta values lines = cv2.HoughLines(edges,1,np.pi/180, 140) # The below for loop runs till r and theta values # are in the range of the 2d array for line in lines: for r,theta in line: # Stores the value of cos(theta) in a a = np.cos(theta) # Stores the value of sin(theta) in b b = np.sin(theta) # x0 stores the value rcos(theta) x0 = a*r # y0 stores the value rsin(theta) y0 = b*r # x1 stores the rounded off value of (rcos(theta)-1000sin(theta)) x1 = int(x0 + 1000*(-b)) # y1 stores the rounded off value of (rsin(theta)+1000cos(theta)) y1 = int(y0 + 1000*(a)) # x2 stores the rounded off value of (rcos(theta)+1000sin(theta)) x2 = int(x0 - 1000*(-b)) # y2 stores the rounded off value of (rsin(theta)-1000cos(theta)) y2 = int(y0 - 1000*(a)) # cv2.line draws a line in img from the point(x1,y1) to (x2,y2). # (0,0,255) denotes the colour of the line to be # In this case, it is red. cv2.line(warped,(x1,y1), (x2,y2), (0,0,255),2) # labels = [] # num_lines = partition(lines, labels, isEqual) # define criteria, number of clusters(K) and apply kmeans() # criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 54, 1.0) # K = 54 # ret,label,center=cv2.kmeans(lines,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS) # # # Now convert back into uint8, and make original image # center = np.uint8(center) # res = center[label.flatten()] # print(res.shape, img.shape) # # res2 = res.reshape((img.shape)) # cv2.imshow('res',res) # res2 = cv2.resize(res, warped.shape); # cv2.imshow('img', img) # cv2.imshow('res2',res2) # cv2.waitKey(0) # cv2.destroyAllWindows() # cv2.imwrite("unclustered_lines.jpg", warped) # cv2.imshow("lines", warped) cv2.waitKey(0) cv2.destroyAllWindows() # segmented = segment_by_angle_kmeans(lines) # intersections = segmented_intersections(segmented) # print(intersections) # draw the intersection points # intersectsimg = img.copy() # for cx, cy in zip(intersections): # cx = np.round(cx).astype(int) # cy = np.round(cy).astype(int) # color = np.random.randint(0,255,3).tolist() # random colors # cv2.circle(intersectsimg, (cx, cy), radius=2, color=color, thickness=-1) # -1: filled circle # # # cv2.imshow("intersections", intersectionimg) # cv2.waitKey(0) # cv2.destroyAllWindows() def main(): birdseye_correction() if __name__ == "__main__": main()
[ "numpy.sqrt", "cv2.imshow", "numpy.array", "cv2.warpPerspective", "cv2.HoughLines", "cv2.destroyAllWindows", "numpy.sin", "cv2.setMouseCallback", "cv2.line", "numpy.diff", "numpy.argmin", "cv2.waitKey", "numpy.round", "numpy.ones", "cv2.getPerspectiveTransform", "cv2.kmeans", "numpy.argmax", "cv2.morphologyEx", "cv2.circle", "numpy.cos", "cv2.GaussianBlur", "cv2.imread", "cv2.namedWindow", "cv2.Canny", "cv2.imwrite", "numpy.linalg.solve", "imutils.resize", "numpy.zeros", "cv2.adaptiveThreshold", "collections.defaultdict" ]
[((429, 453), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image"""'], {}), "('image')\n", (444, 453), False, 'import cv2\n'), ((458, 512), 'cv2.setMouseCallback', 'cv2.setMouseCallback', (['"""image"""', 'draw_circle', 'target_img'], {}), "('image', draw_circle, target_img)\n", (478, 512), False, 'import cv2\n'), ((674, 697), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (695, 697), False, 'import cv2\n'), ((736, 753), 'numpy.array', 'np.array', (['corners'], {}), '(corners)\n', (744, 753), True, 'import numpy as np\n'), ((1031, 1064), 'numpy.zeros', 'np.zeros', (['(4, 2)'], {'dtype': '"""float32"""'}), "((4, 2), dtype='float32')\n", (1039, 1064), True, 'import numpy as np\n'), ((1437, 1457), 'numpy.diff', 'np.diff', (['pts'], {'axis': '(1)'}), '(pts, axis=1)\n', (1444, 1457), True, 'import numpy as np\n'), ((2151, 2191), 'numpy.array', 'np.array', (['[line[0][1] for line in lines]'], {}), '([line[0][1] for line in lines])\n', (2159, 2191), True, 'import numpy as np\n'), ((2606, 2623), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2617, 2623), False, 'from collections import defaultdict\n'), ((3160, 3186), 'numpy.array', 'np.array', (['[[rho1], [rho2]]'], {}), '([[rho1], [rho2]])\n', (3168, 3186), True, 'import numpy as np\n'), ((3200, 3221), 'numpy.linalg.solve', 'np.linalg.solve', (['A', 'b'], {}), '(A, b)\n', (3215, 3221), True, 'import numpy as np\n'), ((4367, 4385), 'cv2.imread', 'cv2.imread', (['img', '(0)'], {}), '(img, 0)\n', (4377, 4385), False, 'import cv2\n'), ((4399, 4431), 'imutils.resize', 'imutils.resize', (['img'], {'height': '(1000)'}), '(img, height=1000)\n', (4413, 4431), False, 'import imutils\n'), ((4739, 4791), 'numpy.sqrt', 'np.sqrt', (['((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)'], {}), '((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)\n', (4746, 4791), True, 'import numpy as np\n'), ((4799, 4851), 'numpy.sqrt', 'np.sqrt', (['((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)'], {}), '((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)\n', (4806, 4851), True, 'import numpy as np\n'), ((5095, 5147), 'numpy.sqrt', 'np.sqrt', (['((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)'], {}), '((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)\n', (5102, 5147), True, 'import numpy as np\n'), ((5156, 5208), 'numpy.sqrt', 'np.sqrt', (['((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)'], {}), '((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)\n', (5163, 5208), True, 'import numpy as np\n'), ((5262, 5372), 'numpy.array', 'np.array', (['[[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]]'], {'dtype': '"""float32"""'}), "([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, \n maxHeight - 1]], dtype='float32')\n", (5270, 5372), True, 'import numpy as np\n'), ((5462, 5500), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['rect', 'dst'], {}), '(rect, dst)\n', (5489, 5500), False, 'import cv2\n'), ((5514, 5568), 'cv2.warpPerspective', 'cv2.warpPerspective', (['resized', 'M', '(maxWidth, maxHeight)'], {}), '(resized, M, (maxWidth, maxHeight))\n', (5533, 5568), False, 'import cv2\n'), ((5574, 5602), 'cv2.imshow', 'cv2.imshow', (['"""warped"""', 'warped'], {}), "('warped', warped)\n", (5584, 5602), False, 'import cv2\n'), ((5607, 5621), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (5618, 5621), False, 'import cv2\n'), ((5626, 5649), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5647, 5649), False, 'import cv2\n'), ((5724, 5759), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['warped', '(3, 3)', '(0)'], {}), '(warped, (3, 3), 0)\n', (5740, 5759), False, 'import cv2\n'), ((5770, 5872), 'cv2.adaptiveThreshold', 'cv2.adaptiveThreshold', (['blurred_img', '(255)', 'cv2.ADAPTIVE_THRESH_GAUSSIAN_C', 'cv2.THRESH_BINARY', '(31)', '(2)'], {}), '(blurred_img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2\n .THRESH_BINARY, 31, 2)\n', (5791, 5872), False, 'import cv2\n'), ((5914, 5939), 'numpy.ones', 'np.ones', (['(3, 3)', 'np.uint8'], {}), '((3, 3), np.uint8)\n', (5921, 5939), True, 'import numpy as np\n'), ((5952, 6014), 'cv2.morphologyEx', 'cv2.morphologyEx', (['binary', 'cv2.MORPH_OPEN', 'kernel'], {'iterations': '(2)'}), '(binary, cv2.MORPH_OPEN, kernel, iterations=2)\n', (5968, 6014), False, 'import cv2\n'), ((6074, 6116), 'cv2.Canny', 'cv2.Canny', (['warped', '(50)', '(150)'], {'apertureSize': '(3)'}), '(warped, 50, 150, apertureSize=3)\n', (6083, 6116), False, 'import cv2\n'), ((6126, 6152), 'cv2.imshow', 'cv2.imshow', (['"""edges"""', 'edges'], {}), "('edges', edges)\n", (6136, 6152), False, 'import cv2\n'), ((6157, 6171), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (6168, 6171), False, 'import cv2\n'), ((6176, 6199), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (6197, 6199), False, 'import cv2\n'), ((6264, 6306), 'cv2.HoughLines', 'cv2.HoughLines', (['edges', '(1)', '(np.pi / 180)', '(140)'], {}), '(edges, 1, np.pi / 180, 140)\n', (6278, 6306), False, 'import cv2\n'), ((8153, 8197), 'cv2.imwrite', 'cv2.imwrite', (['"""unclustered_lines.jpg"""', 'warped'], {}), "('unclustered_lines.jpg', warped)\n", (8164, 8197), False, 'import cv2\n'), ((8208, 8235), 'cv2.imshow', 'cv2.imshow', (['"""lines"""', 'warped'], {}), "('lines', warped)\n", (8218, 8235), False, 'import cv2\n'), ((8240, 8254), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (8251, 8254), False, 'import cv2\n'), ((8259, 8282), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8280, 8282), False, 'import cv2\n'), ((534, 565), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'target_img'], {}), "('image', target_img)\n", (544, 565), False, 'import cv2\n'), ((1216, 1228), 'numpy.argmin', 'np.argmin', (['s'], {}), '(s)\n', (1225, 1228), True, 'import numpy as np\n'), ((1245, 1257), 'numpy.argmax', 'np.argmax', (['s'], {}), '(s)\n', (1254, 1257), True, 'import numpy as np\n'), ((1475, 1490), 'numpy.argmin', 'np.argmin', (['diff'], {}), '(diff)\n', (1484, 1490), True, 'import numpy as np\n'), ((1507, 1522), 'numpy.argmax', 'np.argmax', (['diff'], {}), '(diff)\n', (1516, 1522), True, 'import numpy as np\n'), ((2429, 2480), 'cv2.kmeans', 'cv2.kmeans', (['pts', 'k', 'None', 'criteria', 'attempts', 'flags'], {}), '(pts, k, None, criteria, attempts, flags)\n', (2439, 2480), False, 'import cv2\n'), ((294, 339), 'cv2.circle', 'cv2.circle', (['param', '(x, y)', '(5)', '(255, 0, 0)', '(-1)'], {}), '(param, (x, y), 5, (255, 0, 0), -1)\n', (304, 339), False, 'import cv2\n'), ((577, 592), 'cv2.waitKey', 'cv2.waitKey', (['(20)'], {}), '(20)\n', (588, 592), False, 'import cv2\n'), ((3239, 3251), 'numpy.round', 'np.round', (['x0'], {}), '(x0)\n', (3247, 3251), True, 'import numpy as np\n'), ((3258, 3270), 'numpy.round', 'np.round', (['y0'], {}), '(y0)\n', (3266, 3270), True, 'import numpy as np\n'), ((6515, 6528), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (6521, 6528), True, 'import numpy as np\n'), ((6595, 6608), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (6601, 6608), True, 'import numpy as np\n'), ((7391, 7443), 'cv2.line', 'cv2.line', (['warped', '(x1, y1)', '(x2, y2)', '(0, 0, 255)', '(2)'], {}), '(warped, (x1, y1), (x2, y2), (0, 0, 255), 2)\n', (7399, 7443), False, 'import cv2\n'), ((2281, 2298), 'numpy.cos', 'np.cos', (['(2 * angle)'], {}), '(2 * angle)\n', (2287, 2298), True, 'import numpy as np\n'), ((2298, 2315), 'numpy.sin', 'np.sin', (['(2 * angle)'], {}), '(2 * angle)\n', (2304, 2315), True, 'import numpy as np\n'), ((3071, 3085), 'numpy.cos', 'np.cos', (['theta1'], {}), '(theta1)\n', (3077, 3085), True, 'import numpy as np\n'), ((3087, 3101), 'numpy.sin', 'np.sin', (['theta1'], {}), '(theta1)\n', (3093, 3101), True, 'import numpy as np\n'), ((3113, 3127), 'numpy.cos', 'np.cos', (['theta2'], {}), '(theta2)\n', (3119, 3127), True, 'import numpy as np\n'), ((3129, 3143), 'numpy.sin', 'np.sin', (['theta2'], {}), '(theta2)\n', (3135, 3143), True, 'import numpy as np\n')]
import logging as log import numpy as np import h5py import humblerl as hrl from humblerl import Callback, Interpreter import torch import torch.nn as nn import torch.optim as optim from torch.distributions import Normal from torch.utils.data import Dataset from common_utils import get_model_path_if_exists from third_party.torchtrainer import TorchTrainer, evaluate class MDNInterpreter(Interpreter, Callback): """Performs state preprocessing with VAE module and concatenates it with hidden state of MDN module. Args: vae_model (keras.Model): Keras VAE encoder. mdn_model (torch.nn.Module): PyTorch MDN-RNN memory. latent_dim (int): Latent space dimensionality. Note: In order to work, this Interpreter system must be also passed as callback to 'hrl.loop(...)'! """ def __init__(self, vae_model, mdn_model, latent_dim): self.vae_model = vae_model self.mdn_model = mdn_model self.latent_dim = latent_dim def __call__(self, state, reward=0.): return self.process_state(state), reward def process_state(self, state): # NOTE: [0][0] <- it gets first in the batch latent space mean (mu) latent = self.vae_model.predict(state[np.newaxis, :])[0][0] memory = self.mdn_model.hidden[0].cpu().detach().numpy() # NOTE: See HRL `ply`, `on_step_taken` that would update hidden state is called AFTER # Interpreter is used to preprocess next_state. So next_state has out-dated hidden state! # What saves us is the fact, that `state` in next `ply` call will have it updated so, # Transitions.state has up-to-date latent and hidden state and in all the other places # exactly it is used, not next state. return np.concatenate((latent, memory.flatten())) def on_episode_start(self, episode, train_mode): self.mdn_model.init_hidden(1) def on_step_taken(self, step, transition, info): state = torch.from_numpy(transition.state[:self.latent_dim]).view(1, 1, -1) action = torch.from_numpy(np.array([transition.action])).view(1, 1, -1) if torch.cuda.is_available(): state = state.cuda() action = action.cuda() with torch.no_grad(), evaluate(self.mdn_model) as net: net(state, action) class MDNDataset(Dataset): """Dataset of sequential data to train MDN-RNN. Args: dataset_path (string): Path to HDF5 dataset file. sequence_len (int): Desired output sequence len. terminal_prob (float): Probability of sampling sequence that finishes with terminal state. (Default: 0.5) Note: Arrays should have the same size of the first dimension and their type should be the same as desired Tensor type. """ def __init__(self, dataset_path, sequence_len, terminal_prob=0.5, dataset_fraction=1.): assert 0 < terminal_prob and terminal_prob <= 1.0, "0 < terminal_prob <= 1.0" assert 0 < dataset_fraction and dataset_fraction <= 1.0, "0 < dataset_fraction <= 1.0" self.dataset = h5py.File(dataset_path, "r") self.sequence_len = sequence_len self.terminal_prob = terminal_prob self.dataset_fraction = dataset_fraction self.latent_dim = self.dataset.attrs["LATENT_DIM"] self.action_dim = self.dataset.attrs["ACTION_DIM"] def __getitem__(self, idx): """Get sequence at random starting position of given sequence length from episode `idx`.""" offset = 1 t_start, t_end = self.dataset['episodes'][idx:idx + 2] episode_length = t_end - t_start if self.sequence_len <= episode_length - offset: sequence_len = self.sequence_len else: sequence_len = episode_length - offset log.warning( "Episode %d is too short to form full sequence, data will be zero-padded.", idx) # Sample where to start sequence of length `self.sequence_len` in episode `idx` # '- offset' because "next states" are offset by 'offset' if np.random.rand() < self.terminal_prob: # Take sequence ending with terminal state start = t_start + episode_length - sequence_len - offset else: # NOTE: np.random.randint takes EXCLUSIVE upper bound of range to sample from start = t_start + np.random.randint(max(1, episode_length - sequence_len - offset)) states_ = torch.from_numpy(self.dataset['states'][start:start + sequence_len + offset]) actions_ = torch.from_numpy(self.dataset['actions'][start:start + sequence_len]) states = torch.zeros(self.sequence_len, self.latent_dim, dtype=states_.dtype) next_states = torch.zeros(self.sequence_len, self.latent_dim, dtype=states_.dtype) actions = torch.zeros(self.sequence_len, self.action_dim, dtype=actions_.dtype) # Sample latent states (this is done to prevent overfitting MDN-RNN to a specific 'z'.) mu = states_[:, 0] sigma = torch.exp(states_[:, 1] / 2) latent = Normal(loc=mu, scale=sigma) z_samples = latent.sample() states[:sequence_len] = z_samples[:-offset] next_states[:sequence_len] = z_samples[offset:] actions[:sequence_len] = actions_ return [states, actions], [next_states] def __len__(self): return int(self.dataset.attrs["N_GAMES"] * self.dataset_fraction) def close(self): self.dataset.close() class MDN(nn.Module): def __init__(self, hidden_units, latent_dim, action_space, temperature, n_gaussians, num_layers=1): super(MDN, self).__init__() self.hidden_units = hidden_units self.latent_dim = latent_dim self.temperature = temperature self.n_gaussians = n_gaussians self.num_layers = num_layers self.embedding = nn.Embedding.from_pretrained(torch.eye(action_space.num)) \ if isinstance(action_space, hrl.environments.Discrete) else None self.lstm = nn.LSTM(input_size=(latent_dim + action_space.num), hidden_size=hidden_units, num_layers=num_layers, batch_first=True) self.pi = nn.Linear(hidden_units, n_gaussians * latent_dim) self.mu = nn.Linear(hidden_units, n_gaussians * latent_dim) self.logsigma = nn.Linear(hidden_units, n_gaussians * latent_dim) # NOTE: This is here only for backward compatibility with trained checkpoint self.reward = nn.Linear(hidden_units, 1) def forward(self, latent, action, hidden=None): self.lstm.flatten_parameters() sequence_len = latent.size(1) if self.embedding: # Use one-hot representation for discrete actions x = torch.cat((latent, self.embedding(action).squeeze(dim=2)), dim=2) else: # Pass raw action vector for continuous actions x = torch.cat((latent, action.float()), dim=2) h, self.hidden = self.lstm(x, hidden if hidden else self.hidden) pi = self.pi(h).view(-1, sequence_len, self.n_gaussians, self.latent_dim) / self.temperature pi = torch.softmax(pi, dim=2) logsigma = self.logsigma(h).view(-1, sequence_len, self.n_gaussians, self.latent_dim) sigma = torch.exp(logsigma) mu = self.mu(h).view(-1, sequence_len, self.n_gaussians, self.latent_dim) return mu, sigma, pi def sample(self, latent, action, hidden=None): """Sample (simulate) next state from Mixture Density Network a.k.a. Gaussian Mixture Model. Args: latent (torch.Tensor): Latent vectors to start from. Shape of tensor: batch x sequence x latent dim. action (torch.Tensor): Actions to simulate. Shape of tensor: batch x sequence x action dim. hidden (tuple): Memory module (torch.nn.LSTM) hidden state. Return: numpy.ndarray: Latent vector of next state. Shape of array: batch x sequence x latent dim. Note: You can find next hidden state in this module `hidden` member. """ # Simulate transition with torch.no_grad(), evaluate(self) as net: mu, sigma, pi = net(latent, action, hidden) # Transform tensors to numpy arrays and move "gaussians mixture" dim to the end # NOTE: Arrays will have shape (batch x sequence x latent dim. x num. gaussians) mu = np.transpose(mu.cpu().detach().numpy(), axes=[0, 1, 3, 2]) sigma = np.transpose(sigma.cpu().detach().numpy(), axes=[0, 1, 3, 2]) pi = np.transpose(pi.cpu().detach().numpy(), axes=[0, 1, 3, 2]) # Sample parameters of Gaussian distribution(s) from mixture c = pi.cumsum(axis=-1) u = np.random.rand(*c.shape[:-1], 1) choices = np.expand_dims((u < c).argmax(axis=-1), axis=-1) # Sample latent vector from Gaussian distribution with mean and std. dev. from above mean = np.take_along_axis(mu, choices, axis=-1) stddev = np.take_along_axis(sigma, choices, axis=-1) samples = mean + stddev * np.random.randn(*mean.shape) return np.squeeze(samples, axis=-1) def simulate(self, latent, actions): """Simulate environment trajectory. Args: latent (torch.Tensor): Latent vector with state(s) to start from. Shape of tensor: batch x 1 (sequence dim.) x latent dim. actions (torch.Tensor): Tensor with actions to take in simulated trajectory. Shape of tensor: batch x sequence x action dim. Return: np.ndarray: Array of latent vectors of simulated trajectory. Shape of array: batch x sequence x latent dim. Note: You can find next hidden state in this module `hidden` member. """ states = [] for a in range(actions.shape[1]): # NOTE: We use np.newaxis to preserve shape of tensor. states.append(self.sample(latent, actions[:, a, np.newaxis, :])) # NOTE: This is a bit arbitrary to set it to float32 which happens to be type of torch # tensors. It can blow up further in code if we'll choose to change tensors types. latent = torch.from_numpy(states[-1]).float().to(next(self.parameters()).device) # NOTE: Squeeze former sequence dim. (which is 1 because we inferred next latent state # action by action) and reorder batch dim. and list sequence dim. to finally get: # batch x len(states) (sequence dim.) x latent dim. return np.transpose(np.squeeze(np.array(states), axis=2), axes=[1, 0, 2]) def init_hidden(self, batch_size): device = next(self.parameters()).device self.hidden = ( torch.zeros(self.num_layers, batch_size, self.hidden_units, device=device), torch.zeros(self.num_layers, batch_size, self.hidden_units, device=device) ) def build_rnn_model(rnn_params, latent_dim, action_space, model_path=None): """Builds MDN-RNN memory module, which model time dependencies. Args: rnn_params (dict): MDN-RNN parameters from .json config. latent_dim (int): Latent space dimensionality. action_space (hrl.environments.ActionSpace): Action space, discrete or continuous. model_path (str): Path to VAE ckpt. Taken from .json config if `None` (Default: None) Returns: TorchTrainer: Compiled MDN-RNN model wrapped in TorchTrainer, ready for training. """ use_cuda = torch.cuda.is_available() def mdn_loss_function(pred, target): """Mixed Density Network loss function, see: https://mikedusenberry.com/mixture-density-networks""" mu, sigma, pi = pred sequence_len = mu.size(1) latent_dim = mu.size(3) target = target.view(-1, sequence_len, 1, latent_dim) loss = Normal(loc=mu, scale=sigma) loss = torch.exp(loss.log_prob(target)) # TODO: Is this stable?! Check that. loss = torch.sum(loss * pi, dim=2) loss = -torch.log(loss + 1e-9) return torch.mean(loss) mdn = TorchTrainer(MDN(rnn_params['hidden_units'], latent_dim, action_space, rnn_params['temperature'], rnn_params['n_gaussians']), device_name='cuda' if use_cuda else 'cpu') mdn.compile( optimizer=optim.Adam(mdn.model.parameters(), lr=rnn_params['learning_rate']), loss=mdn_loss_function ) model_path = get_model_path_if_exists( path=model_path, default_path=rnn_params['ckpt_path'], model_name="MDN-RNN") if model_path is not None: mdn.load_ckpt(model_path) log.info("Loaded MDN-RNN model weights from: %s", model_path) return mdn
[ "numpy.random.rand", "torch.from_numpy", "torch.exp", "torch.softmax", "numpy.array", "torch.cuda.is_available", "torch.sum", "numpy.take_along_axis", "logging.info", "torch.nn.LSTM", "torch.mean", "torch.eye", "torch.distributions.Normal", "logging.warning", "h5py.File", "numpy.squeeze", "numpy.random.randn", "torch.log", "third_party.torchtrainer.evaluate", "torch.nn.Linear", "torch.no_grad", "common_utils.get_model_path_if_exists", "torch.zeros" ]
[((11699, 11724), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (11722, 11724), False, 'import torch\n'), ((12676, 12782), 'common_utils.get_model_path_if_exists', 'get_model_path_if_exists', ([], {'path': 'model_path', 'default_path': "rnn_params['ckpt_path']", 'model_name': '"""MDN-RNN"""'}), "(path=model_path, default_path=rnn_params[\n 'ckpt_path'], model_name='MDN-RNN')\n", (12700, 12782), False, 'from common_utils import get_model_path_if_exists\n'), ((2157, 2182), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2180, 2182), False, 'import torch\n'), ((3126, 3154), 'h5py.File', 'h5py.File', (['dataset_path', '"""r"""'], {}), "(dataset_path, 'r')\n", (3135, 3154), False, 'import h5py\n'), ((4501, 4578), 'torch.from_numpy', 'torch.from_numpy', (["self.dataset['states'][start:start + sequence_len + offset]"], {}), "(self.dataset['states'][start:start + sequence_len + offset])\n", (4517, 4578), False, 'import torch\n'), ((4598, 4667), 'torch.from_numpy', 'torch.from_numpy', (["self.dataset['actions'][start:start + sequence_len]"], {}), "(self.dataset['actions'][start:start + sequence_len])\n", (4614, 4667), False, 'import torch\n'), ((4686, 4754), 'torch.zeros', 'torch.zeros', (['self.sequence_len', 'self.latent_dim'], {'dtype': 'states_.dtype'}), '(self.sequence_len, self.latent_dim, dtype=states_.dtype)\n', (4697, 4754), False, 'import torch\n'), ((4777, 4845), 'torch.zeros', 'torch.zeros', (['self.sequence_len', 'self.latent_dim'], {'dtype': 'states_.dtype'}), '(self.sequence_len, self.latent_dim, dtype=states_.dtype)\n', (4788, 4845), False, 'import torch\n'), ((4864, 4933), 'torch.zeros', 'torch.zeros', (['self.sequence_len', 'self.action_dim'], {'dtype': 'actions_.dtype'}), '(self.sequence_len, self.action_dim, dtype=actions_.dtype)\n', (4875, 4933), False, 'import torch\n'), ((5074, 5102), 'torch.exp', 'torch.exp', (['(states_[:, 1] / 2)'], {}), '(states_[:, 1] / 2)\n', (5083, 5102), False, 'import torch\n'), ((5120, 5147), 'torch.distributions.Normal', 'Normal', ([], {'loc': 'mu', 'scale': 'sigma'}), '(loc=mu, scale=sigma)\n', (5126, 5147), False, 'from torch.distributions import Normal\n'), ((6074, 6194), 'torch.nn.LSTM', 'nn.LSTM', ([], {'input_size': '(latent_dim + action_space.num)', 'hidden_size': 'hidden_units', 'num_layers': 'num_layers', 'batch_first': '(True)'}), '(input_size=latent_dim + action_space.num, hidden_size=hidden_units,\n num_layers=num_layers, batch_first=True)\n', (6081, 6194), True, 'import torch.nn as nn\n'), ((6295, 6344), 'torch.nn.Linear', 'nn.Linear', (['hidden_units', '(n_gaussians * latent_dim)'], {}), '(hidden_units, n_gaussians * latent_dim)\n', (6304, 6344), True, 'import torch.nn as nn\n'), ((6363, 6412), 'torch.nn.Linear', 'nn.Linear', (['hidden_units', '(n_gaussians * latent_dim)'], {}), '(hidden_units, n_gaussians * latent_dim)\n', (6372, 6412), True, 'import torch.nn as nn\n'), ((6437, 6486), 'torch.nn.Linear', 'nn.Linear', (['hidden_units', '(n_gaussians * latent_dim)'], {}), '(hidden_units, n_gaussians * latent_dim)\n', (6446, 6486), True, 'import torch.nn as nn\n'), ((6594, 6620), 'torch.nn.Linear', 'nn.Linear', (['hidden_units', '(1)'], {}), '(hidden_units, 1)\n', (6603, 6620), True, 'import torch.nn as nn\n'), ((7244, 7268), 'torch.softmax', 'torch.softmax', (['pi'], {'dim': '(2)'}), '(pi, dim=2)\n', (7257, 7268), False, 'import torch\n'), ((7380, 7399), 'torch.exp', 'torch.exp', (['logsigma'], {}), '(logsigma)\n', (7389, 7399), False, 'import torch\n'), ((8892, 8924), 'numpy.random.rand', 'np.random.rand', (['*c.shape[:-1]', '(1)'], {}), '(*c.shape[:-1], 1)\n', (8906, 8924), True, 'import numpy as np\n'), ((9101, 9141), 'numpy.take_along_axis', 'np.take_along_axis', (['mu', 'choices'], {'axis': '(-1)'}), '(mu, choices, axis=-1)\n', (9119, 9141), True, 'import numpy as np\n'), ((9159, 9202), 'numpy.take_along_axis', 'np.take_along_axis', (['sigma', 'choices'], {'axis': '(-1)'}), '(sigma, choices, axis=-1)\n', (9177, 9202), True, 'import numpy as np\n'), ((9282, 9310), 'numpy.squeeze', 'np.squeeze', (['samples'], {'axis': '(-1)'}), '(samples, axis=-1)\n', (9292, 9310), True, 'import numpy as np\n'), ((12058, 12085), 'torch.distributions.Normal', 'Normal', ([], {'loc': 'mu', 'scale': 'sigma'}), '(loc=mu, scale=sigma)\n', (12064, 12085), False, 'from torch.distributions import Normal\n'), ((12187, 12214), 'torch.sum', 'torch.sum', (['(loss * pi)'], {'dim': '(2)'}), '(loss * pi, dim=2)\n', (12196, 12214), False, 'import torch\n'), ((12270, 12286), 'torch.mean', 'torch.mean', (['loss'], {}), '(loss)\n', (12280, 12286), False, 'import torch\n'), ((12861, 12922), 'logging.info', 'log.info', (['"""Loaded MDN-RNN model weights from: %s"""', 'model_path'], {}), "('Loaded MDN-RNN model weights from: %s', model_path)\n", (12869, 12922), True, 'import logging as log\n'), ((2265, 2280), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2278, 2280), False, 'import torch\n'), ((2282, 2306), 'third_party.torchtrainer.evaluate', 'evaluate', (['self.mdn_model'], {}), '(self.mdn_model)\n', (2290, 2306), False, 'from third_party.torchtrainer import TorchTrainer, evaluate\n'), ((3843, 3944), 'logging.warning', 'log.warning', (['"""Episode %d is too short to form full sequence, data will be zero-padded."""', 'idx'], {}), "(\n 'Episode %d is too short to form full sequence, data will be zero-padded.',\n idx)\n", (3854, 3944), True, 'import logging as log\n'), ((4119, 4135), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4133, 4135), True, 'import numpy as np\n'), ((8283, 8298), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8296, 8298), False, 'import torch\n'), ((8300, 8314), 'third_party.torchtrainer.evaluate', 'evaluate', (['self'], {}), '(self)\n', (8308, 8314), False, 'from third_party.torchtrainer import TorchTrainer, evaluate\n'), ((10936, 11010), 'torch.zeros', 'torch.zeros', (['self.num_layers', 'batch_size', 'self.hidden_units'], {'device': 'device'}), '(self.num_layers, batch_size, self.hidden_units, device=device)\n', (10947, 11010), False, 'import torch\n'), ((11024, 11098), 'torch.zeros', 'torch.zeros', (['self.num_layers', 'batch_size', 'self.hidden_units'], {'device': 'device'}), '(self.num_layers, batch_size, self.hidden_units, device=device)\n', (11035, 11098), False, 'import torch\n'), ((12231, 12254), 'torch.log', 'torch.log', (['(loss + 1e-09)'], {}), '(loss + 1e-09)\n', (12240, 12254), False, 'import torch\n'), ((1998, 2050), 'torch.from_numpy', 'torch.from_numpy', (['transition.state[:self.latent_dim]'], {}), '(transition.state[:self.latent_dim])\n', (2014, 2050), False, 'import torch\n'), ((5946, 5973), 'torch.eye', 'torch.eye', (['action_space.num'], {}), '(action_space.num)\n', (5955, 5973), False, 'import torch\n'), ((9237, 9265), 'numpy.random.randn', 'np.random.randn', (['*mean.shape'], {}), '(*mean.shape)\n', (9252, 9265), True, 'import numpy as np\n'), ((10768, 10784), 'numpy.array', 'np.array', (['states'], {}), '(states)\n', (10776, 10784), True, 'import numpy as np\n'), ((2100, 2129), 'numpy.array', 'np.array', (['[transition.action]'], {}), '([transition.action])\n', (2108, 2129), True, 'import numpy as np\n'), ((10399, 10427), 'torch.from_numpy', 'torch.from_numpy', (['states[-1]'], {}), '(states[-1])\n', (10415, 10427), False, 'import torch\n')]
import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib import rcParams params = { # 'text.latex.preamble': ['\\usepackage{gensymb}'], # 'text.usetex': True, 'font.family': 'Helvetica', 'lines.solid_capstyle':'butt', 'lines.markeredgewidth': 1, } rcParams.update(params) sns.set_context("paper", font_scale=1.6, rc={"lines.linewidth": 2}) sns.set_style('white') sns.set_palette("cividis") dir_path = os.path.dirname(os.path.realpath(__file__)) def main(): sens = pd.read_csv('model_sensitivities.csv',header=0,index_col=0) # ,low_memory=False) occu = pd.read_csv('sc_occurrence_data.csv',header=0,index_col=0) occu.index = [val if val[6] is not '_' else val[:6] + val[7:] for val in occu.index.values] # oops, used two naming conventions occu['cluster'] = [sens.loc[((sens['model_id']==i) & (sens['experiment']=='classification')),'cluster'].values[0] for i in occu.index.values] clust_list = ['Dominated Cluster','Overfit Cluster','Parsimonious Cluster',] occu = occu[[True if i in [1,2,3] else False for i in occu['cluster'].values]] occu['Cluster'] = [clust_list[i-1] for i in occu['cluster']] occu = occu.drop(['training_error', 'complexity', 'test_error','cluster'],axis=1) occu[occu.columns[:-1]] = occu[occu.columns[:-1]] > 0 occu = occu.groupby(['Cluster']).sum() inpu = occu[occu.columns[:-9]].stack() inputs = pd.DataFrame() inputs['Cluster'] = inpu.index.get_level_values(0) inputs['Input'] = inpu.index.get_level_values(1) inputs['category'] = [categorize(i) for i in inputs['Input'].values] inputs['Category'] = [translate(i) for i in inputs['category'].values] inputs['Lag'] = [lag(i) for i in inputs['Input'].values] inputs['Neighbor'] = [neighbor(i) for i in inputs['Input'].values] inputs['Occurrence'] = inpu.values func = occu[occu.columns[-9:]].stack() functions = pd.DataFrame() functions['Cluster'] = func.index.get_level_values(0) functions['Function'] = [func_trans(i) for i in func.index.get_level_values(1)] functions['Occurrence'] = func.values plots = {'category':'Category', 'neighborhood':'Neighborhood', 'lag':'Lag' } # three in total orders = {'category':['land_tree','land_non','water_pump','water_deliv','econ_tree','econ_non'], 'neighborhood':['home','neighbor_1','neighbor_2','neighbor_3','neighbor_4','neighbor_5'], 'lag':['present','lag1','lag2','lag3','lag4','lag5','lag6'], 'function':['Addition','Subtraction','Multiplication','Division','Negative','Sine','Cosine','Less Than','If-Then-Else'], 'Category':['Tree Acreage','Non-Tree Acreage','Tree Prices/Values','Non-Tree Prices/Values','Water Deliveries','Water Pumping'], 'Cluster':['Parsimonious Cluster','Dominated Cluster','Overfit Cluster'], # 'color':['midnightblue','Red'] } colors = ['midnightblue','Red','Blue'] #,'c','m','y','b'] fig, axes = plt.subplots(1,2,figsize=(8,6)) g2 = sns.boxplot(x='Occurrence', y='Category', order=orders['Category'], hue='Cluster', hue_order=orders['Cluster'], data=inputs, whis='range', dodge=True, # width=0.8, linewidth=2, palette=colors, ax=axes[0], ) g1 = sns.scatterplot(x='Occurrence', y='Function', marker='o', palette=colors, s=100, alpha=0.9, hue='Cluster', hue_order=orders['Cluster'], data=functions, ax=axes[1] ) adjust_box_widths(fig, 0.8) for i,artist in enumerate(axes[0].artists): # Set the linecolor on the artist to the facecolor, and set the facecolor to None col = artist.get_facecolor() artist.set_edgecolor(col) artist.set_facecolor('None') # Each box has 6 associated Line2D objects (to make the whiskers, fliers, etc.) # Loop over them here, and use the same colour as above for j in range(i*6,i*6+6): line = axes[0].lines[j] line.set_color(col) line.set_mfc(col) line.set_mec(col) line.set_solid_capstyle('butt') med_line = axes[0].lines[i*6+4].set_ydata(axes[0].lines[i*6+2].get_ydata()) axes[0].set_xscale('log') axes[0].legend_.remove() axes[1].legend_.remove() axes[1].legend(frameon=False,markerscale=2,bbox_to_anchor=(1, 1),ncol=4,bbox_transform=plt.gcf().transFigure) axes[1].yaxis.set_label_position("right") axes[1].yaxis.tick_right() axes[0].text(x= 0.95,y=0.8,s='(A)',ha='right',va='top',transform=axes[0].transAxes) axes[1].text(x= 0.05,y=0.8,s='(B)',ha='left',va='top',transform=axes[1].transAxes) # for patch in axes[0].artists: # r, g, b, a = patch.get_facecolor() # patch.set_facecolor((r, g, b, .9)) # plt.tight_layout() plt.subplots_adjust(wspace=0.05) fig.savefig('plot_occurrence.pdf',format='pdf',bbox_inches='tight',dpi=600,transparent=True) from matplotlib.patches import PathPatch def adjust_box_widths(g, fac): """ Adjust the withs of a seaborn-generated boxplot. """ # iterating through Axes instances for ax in g.axes: # iterating through axes artists: for i,c in enumerate(ax.get_children()): # searching for PathPatches if isinstance(c, PathPatch): # getting current width of box: p = c.get_path() verts = p.vertices # print(verts) verts_sub = verts[:-1] xmin = np.min(verts_sub[:, 1]) xmax = np.max(verts_sub[:, 1]) xmid = 0.5*(xmin+xmax) xhalf = 0.5*(xmax - xmin) # setting new width of box xmin_new = xmid-fac*xhalf xmax_new = xmid+fac*xhalf verts_sub[verts_sub[:, 1] == xmin, 1] = xmin_new verts_sub[verts_sub[:, 1] == xmax, 1] = xmax_new # setting new width of median line for l in ax.lines: if np.all(l.get_xdata() == [xmin, xmax]): l.set_xdata([xmin_new, xmax_new]) def categorize(term): trees = ['ALMOND','ALMONDHULLS','APRICOT','NECTARINES','PISTACHIO','PLUMS','WALNUT'] if ('ppu' in term) or ('value' in term): if any(tree in term for tree in trees): category = 'econ_tree' else: category = 'econ_non' elif 'Pump' in term or 'Deliv' in term: if 'Pump' in term: category = 'water_pump' else: category = 'water_deliv' elif 'tree' in term: category = 'land_tree' elif 'non_' in term: category = 'land_non' else: category = 'none' return category def lag(term): lags = ['lag1','lag2','lag3','lag4','lag5','lag6'] if any(lag_ in term for lag_ in lags): lag = lags[np.argmax([lag_ in term for lag_ in lags])] else: lag = 'present' return lag def neighbor(term): if 'neighbor' in term: neighbor = term[:10] else: neighbor = 'home' return neighbor def func_trans(term): if term == 'lt': return 'Less Than' elif term == 'ite': return 'If-Then-Else' elif term == 'vadd': return 'Addition' elif term == 'vsub': return 'Subtraction' elif term == 'vmul': return 'Multiplication' elif term == 'vdiv': return 'Division' elif term == 'vneg': return 'Negative' elif term == 'vsin': return 'Sine' elif term == 'vcos': return 'Cosine' def translate(item): if item == 'land_tree': return 'Tree Acreage' if item == 'land_non': return 'Non-Tree Acreage' if item == 'water_pump': return 'Water Pumping' if item == 'water_deliv': return 'Water Deliveries' if item == 'econ_tree': return 'Tree Prices/Values' if item == 'econ_non': return 'Non-Tree Prices/Values' if item == 'home': return 'Current Plot Data' if item == 'neighbor_1': return 'Neighbor 1 Data' if item == 'neighbor_2': return 'Neighbor 2 Data' if item == 'neighbor_3': return 'Neighbor 3 Data' if item == 'neighbor_4': return 'Neighbor 4 Data' if item == 'neighbor_5': return 'Neighbor 5 Data' if item == 'present': return 'Present Data' if item == 'lag1': return "Previous Year's Data" if item == 'lag2': return 'Two Years Previous' if item == 'lag3': return 'Three Years Previous' if item == 'lag4': return 'Four Years Previous' if item == 'lag5': return 'Five Years Previous' if item == 'lag6': return 'Six Years Previous' if __name__ == "__main__": main()
[ "seaborn.set_palette", "matplotlib.rcParams.update", "pandas.read_csv", "matplotlib.pyplot.gcf", "seaborn.set_context", "numpy.argmax", "numpy.max", "seaborn.set_style", "os.path.realpath", "seaborn.boxplot", "seaborn.scatterplot", "numpy.min", "pandas.DataFrame", "matplotlib.pyplot.subplots", "matplotlib.pyplot.subplots_adjust" ]
[((365, 388), 'matplotlib.rcParams.update', 'rcParams.update', (['params'], {}), '(params)\n', (380, 388), False, 'from matplotlib import rcParams\n'), ((390, 457), 'seaborn.set_context', 'sns.set_context', (['"""paper"""'], {'font_scale': '(1.6)', 'rc': "{'lines.linewidth': 2}"}), "('paper', font_scale=1.6, rc={'lines.linewidth': 2})\n", (405, 457), True, 'import seaborn as sns\n'), ((458, 480), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (471, 480), True, 'import seaborn as sns\n'), ((481, 507), 'seaborn.set_palette', 'sns.set_palette', (['"""cividis"""'], {}), "('cividis')\n", (496, 507), True, 'import seaborn as sns\n'), ((536, 562), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (552, 562), False, 'import os\n'), ((585, 646), 'pandas.read_csv', 'pd.read_csv', (['"""model_sensitivities.csv"""'], {'header': '(0)', 'index_col': '(0)'}), "('model_sensitivities.csv', header=0, index_col=0)\n", (596, 646), True, 'import pandas as pd\n'), ((674, 734), 'pandas.read_csv', 'pd.read_csv', (['"""sc_occurrence_data.csv"""'], {'header': '(0)', 'index_col': '(0)'}), "('sc_occurrence_data.csv', header=0, index_col=0)\n", (685, 734), True, 'import pandas as pd\n'), ((1455, 1469), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1467, 1469), True, 'import pandas as pd\n'), ((1930, 1944), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1942, 1944), True, 'import pandas as pd\n'), ((2918, 2952), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(8, 6)'}), '(1, 2, figsize=(8, 6))\n', (2930, 2952), True, 'import matplotlib.pyplot as plt\n'), ((2958, 3158), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': '"""Occurrence"""', 'y': '"""Category"""', 'order': "orders['Category']", 'hue': '"""Cluster"""', 'hue_order': "orders['Cluster']", 'data': 'inputs', 'whis': '"""range"""', 'dodge': '(True)', 'linewidth': '(2)', 'palette': 'colors', 'ax': 'axes[0]'}), "(x='Occurrence', y='Category', order=orders['Category'], hue=\n 'Cluster', hue_order=orders['Cluster'], data=inputs, whis='range',\n dodge=True, linewidth=2, palette=colors, ax=axes[0])\n", (2969, 3158), True, 'import seaborn as sns\n'), ((3236, 3409), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': '"""Occurrence"""', 'y': '"""Function"""', 'marker': '"""o"""', 'palette': 'colors', 's': '(100)', 'alpha': '(0.9)', 'hue': '"""Cluster"""', 'hue_order': "orders['Cluster']", 'data': 'functions', 'ax': 'axes[1]'}), "(x='Occurrence', y='Function', marker='o', palette=colors, s\n =100, alpha=0.9, hue='Cluster', hue_order=orders['Cluster'], data=\n functions, ax=axes[1])\n", (3251, 3409), True, 'import seaborn as sns\n'), ((4664, 4696), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)'}), '(wspace=0.05)\n', (4683, 4696), True, 'import matplotlib.pyplot as plt\n'), ((6360, 6404), 'numpy.argmax', 'np.argmax', (['[(lag_ in term) for lag_ in lags]'], {}), '([(lag_ in term) for lag_ in lags])\n', (6369, 6404), True, 'import numpy as np\n'), ((4258, 4267), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (4265, 4267), True, 'import matplotlib.pyplot as plt\n'), ((5261, 5284), 'numpy.min', 'np.min', (['verts_sub[:, 1]'], {}), '(verts_sub[:, 1])\n', (5267, 5284), True, 'import numpy as np\n'), ((5296, 5319), 'numpy.max', 'np.max', (['verts_sub[:, 1]'], {}), '(verts_sub[:, 1])\n', (5302, 5319), True, 'import numpy as np\n')]
import numpy as np def split_ids(args, ids, folds=10): if args.dataset == 'COLORS-3': assert folds == 1, 'this dataset has train, val and test splits' train_ids = [np.arange(500)] val_ids = [np.arange(500, 3000)] test_ids = [np.arange(3000, 10500)] elif args.dataset == 'TRIANGLES': assert folds == 1, 'this dataset has train, val and test splits' train_ids = [np.arange(30000)] val_ids = [np.arange(30000, 35000)] test_ids = [np.arange(35000, 45000)] else: n = len(ids) stride = int(np.ceil(n / float(folds))) test_ids = [ids[i: i + stride] for i in range(0, n, stride)] assert np.all( np.unique(np.concatenate(test_ids)) == sorted(ids)), 'some graphs are missing in the test sets' assert len(test_ids) == folds, 'invalid test sets' train_ids = [] for fold in range(folds): train_ids.append(np.array([e for e in ids if e not in test_ids[fold]])) assert len(train_ids[fold]) + len(test_ids[fold]) == len( np.unique(list(train_ids[fold]) + list(test_ids[fold]))) == n, 'invalid splits' return train_ids, test_ids
[ "numpy.concatenate", "numpy.array", "numpy.arange" ]
[((186, 200), 'numpy.arange', 'np.arange', (['(500)'], {}), '(500)\n', (195, 200), True, 'import numpy as np\n'), ((221, 241), 'numpy.arange', 'np.arange', (['(500)', '(3000)'], {}), '(500, 3000)\n', (230, 241), True, 'import numpy as np\n'), ((263, 285), 'numpy.arange', 'np.arange', (['(3000)', '(10500)'], {}), '(3000, 10500)\n', (272, 285), True, 'import numpy as np\n'), ((419, 435), 'numpy.arange', 'np.arange', (['(30000)'], {}), '(30000)\n', (428, 435), True, 'import numpy as np\n'), ((456, 479), 'numpy.arange', 'np.arange', (['(30000)', '(35000)'], {}), '(30000, 35000)\n', (465, 479), True, 'import numpy as np\n'), ((501, 524), 'numpy.arange', 'np.arange', (['(35000)', '(45000)'], {}), '(35000, 45000)\n', (510, 524), True, 'import numpy as np\n'), ((950, 1003), 'numpy.array', 'np.array', (['[e for e in ids if e not in test_ids[fold]]'], {}), '([e for e in ids if e not in test_ids[fold]])\n', (958, 1003), True, 'import numpy as np\n'), ((719, 743), 'numpy.concatenate', 'np.concatenate', (['test_ids'], {}), '(test_ids)\n', (733, 743), True, 'import numpy as np\n')]
# coding: utf-8 # - We are creating a very simple machine learning model.<br> # - Using dataset: tic-tac-toe.data.txt with user-defined columns.<br> # - We are treating this problem as a supervised learning problem.<br> # In[74]: # This the rough sketch of the processing that happened in my brain while creating the program. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import Imputer from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier # In[52]: # Loading data data = pd.read_csv("../tic-tac-toe.data.txt", sep = ",") data_copy = pd.read_csv("../tic-tac-toe.data.txt", sep = ",") # Setting cols. data.columns = ["first_row_left", "first_row_middle", "first_row_right", "center_row_left", "center_row_middle", "center_row_right", "bottom_row_left", "bottom_row_middle", "bottom_row_right", "is_win"] data_copy.columns = ["first_row_left", "first_row_middle", "first_row_right", "center_row_left", "center_row_middle", "center_row_right", "bottom_row_left", "bottom_row_middle", "bottom_row_right", "is_win"] # In[53]: # Viewing data data.head() # In[54]: # As we can see the the different move options, we perform label encoding. mapping_for_moves = {'x':1, "o":0} # For b, we put mean of the data. mapping_for_wins = {"positive":1, "negative":0} # Positive is win, negative is lose data.is_win = data.is_win.map(mapping_for_wins) data_copy.is_win = data_copy.is_win.map(mapping_for_wins) data = data.drop(columns=["is_win"], axis=1) # In[55]: data.head() # In[56]: for i in data.columns: # Applying map to all the columns except is_win. data[i] = data[i].map(mapping_for_moves) # In[57]: data.head() # Viewing data # In[58]: # Extracting features and labels features = data.values labels = data_copy.is_win.values # In[63]: # Filling missing values aka "b" features = (Imputer().fit_transform(features)) # In[48]: len(features) # In[49]: len(labels) # In[65]: # Changing type to int features = features.astype(np.int) labels = labels.astype(np.int) # In[66]: features # In[67]: labels # - Preprocessing is done. # In[68]: features_train, features_test, labels_train, labels_test = train_test_split(features, labels, random_state=3, shuffle=True) # In[73]: data.corr() # - Clearly it is a classification problem, we can use DecisionTree or SVC # In[84]: # Trying different classifiers. clf = DecisionTreeClassifier() clf.fit(features_train, labels_train) d_tree_score = clf.score(features_test, labels_test) # Good result! # In[78]: clf2 = SVC() # Clearly the data is non linear. clf2.fit(features_train, labels_train) clf2.score(features_test, labels_test) # Not good! # In[85]: clf3 = KNeighborsClassifier(n_neighbors=1) clf3.fit(features_train, labels_train) k_score = clf3.score(features_test, labels_test) # In[86]: d_tree_score > k_score # In[87]: predictions = clf3.predict(features_test) # In[89]: from sklearn.metrics import confusion_matrix cm = confusion_matrix(labels_test, predictions) # In[90]: cm # In[91]: np.where(labels_test!=predictions) # In[95]: d_tree_score # In[94]: k_score # In[97]: from sklearn.metrics import classification_report c = classification_report(labels_test, predictions) # In[98]: c # In[115]: from sklearn.ensemble import RandomForestClassifier r = RandomForestClassifier(n_estimators=100) # With 100 decision tree r.fit(features_train, labels_train) r_forest = r.score(features_test, labels_test) p = r.predict(features_test) np.where(labels_test!=features_test) # Only one misclassified # In[116]: cm = confusion_matrix(labels_test, p) # In[117]: cm
[ "sklearn.metrics.confusion_matrix", "pandas.read_csv", "sklearn.model_selection.train_test_split", "numpy.where", "sklearn.metrics.classification_report", "sklearn.tree.DecisionTreeClassifier", "sklearn.neighbors.KNeighborsClassifier", "sklearn.ensemble.RandomForestClassifier", "sklearn.preprocessing.Imputer", "sklearn.svm.SVC" ]
[((662, 709), 'pandas.read_csv', 'pd.read_csv', (['"""../tic-tac-toe.data.txt"""'], {'sep': '""","""'}), "('../tic-tac-toe.data.txt', sep=',')\n", (673, 709), True, 'import pandas as pd\n'), ((724, 771), 'pandas.read_csv', 'pd.read_csv', (['"""../tic-tac-toe.data.txt"""'], {'sep': '""","""'}), "('../tic-tac-toe.data.txt', sep=',')\n", (735, 771), True, 'import pandas as pd\n'), ((2335, 2399), 'sklearn.model_selection.train_test_split', 'train_test_split', (['features', 'labels'], {'random_state': '(3)', 'shuffle': '(True)'}), '(features, labels, random_state=3, shuffle=True)\n', (2351, 2399), False, 'from sklearn.model_selection import train_test_split\n'), ((2554, 2578), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (2576, 2578), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((2706, 2711), 'sklearn.svm.SVC', 'SVC', ([], {}), '()\n', (2709, 2711), False, 'from sklearn.svm import SVC\n'), ((2857, 2892), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {'n_neighbors': '(1)'}), '(n_neighbors=1)\n', (2877, 2892), False, 'from sklearn.neighbors import KNeighborsClassifier\n'), ((3138, 3180), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['labels_test', 'predictions'], {}), '(labels_test, predictions)\n', (3154, 3180), False, 'from sklearn.metrics import confusion_matrix\n'), ((3212, 3248), 'numpy.where', 'np.where', (['(labels_test != predictions)'], {}), '(labels_test != predictions)\n', (3220, 3248), True, 'import numpy as np\n'), ((3364, 3411), 'sklearn.metrics.classification_report', 'classification_report', (['labels_test', 'predictions'], {}), '(labels_test, predictions)\n', (3385, 3411), False, 'from sklearn.metrics import classification_report\n'), ((3499, 3539), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': '(100)'}), '(n_estimators=100)\n', (3521, 3539), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((3677, 3715), 'numpy.where', 'np.where', (['(labels_test != features_test)'], {}), '(labels_test != features_test)\n', (3685, 3715), True, 'import numpy as np\n'), ((3760, 3792), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['labels_test', 'p'], {}), '(labels_test, p)\n', (3776, 3792), False, 'from sklearn.metrics import confusion_matrix\n'), ((1997, 2006), 'sklearn.preprocessing.Imputer', 'Imputer', ([], {}), '()\n', (2004, 2006), False, 'from sklearn.preprocessing import Imputer\n')]
""" Functions to manipulate data from PostgreSQL database includes a parallelise dataframe that runs a function on a pandas data frame in parallel, as well as a loop_chunks function. This reads a chunk from the database performs an operation and uploads to a new table in the database. """ import numpy as np import pandas as pd import time from multiprocessing import Pool, cpu_count from utils import db_connect def parallelise_dataframe(df, func, num_cores=None): ''' Perform function in parallel on pandas data frame where if the num_cores is not specified then use the number of available cores -1. Arguments: df (dataframe to manipulate) func (function to apply) num_cores (number of cores to parallelise) Returns: The data frame processed by function in parallel. ''' if num_cores==None: num_cores = cpu_count() - 1 df_split = np.array_split(df, num_cores) pool = Pool(num_cores) df = pd.concat(pool.map(func, df_split)) pool.close() pool.join() return df def loop_chunks(table_read, chunk_function, output_schema, output_table, size_chunk=1000000, parallel=True): ''' Perform function on PostgreSQL database chunk. Read from the db perform operation either threaded or on a single core, then upload to the database. Arguments: table_read (a PSQL query that alchemy uses to read the table) chunk_function (the function to apply to that chunk) output_schema (schema for table output) output_table (table name to output data into, will create if not exists) size_chunk (the number of rows to process in 1 chunk) parallel (use the parallelise_dataframe function on chunk) ''' conn_input, conn_output = db_connect.alchemy_input_output_open() start = round(time.time()) j = 0 for chunk in pd.read_sql_query(table_read, conn_input, chunksize=size_chunk): if parallel==True: chunk = parallelise_dataframe(chunk, chunk_function) else: chunk = chunk_function(chunk) chunk.to_sql(output_table, conn_output, schema=output_schema, if_exists='append', index=False) j+=1 print('{} seconds: completed {} rows'.format( (round(time.time()) - start), j*size_chunk)) db_connect.alchemy_input_output_close(conn_input, conn_output)
[ "pandas.read_sql_query", "utils.db_connect.alchemy_input_output_close", "utils.db_connect.alchemy_input_output_open", "multiprocessing.cpu_count", "numpy.array_split", "multiprocessing.Pool", "time.time" ]
[((901, 930), 'numpy.array_split', 'np.array_split', (['df', 'num_cores'], {}), '(df, num_cores)\n', (915, 930), True, 'import numpy as np\n'), ((942, 957), 'multiprocessing.Pool', 'Pool', (['num_cores'], {}), '(num_cores)\n', (946, 957), False, 'from multiprocessing import Pool, cpu_count\n'), ((1764, 1802), 'utils.db_connect.alchemy_input_output_open', 'db_connect.alchemy_input_output_open', ([], {}), '()\n', (1800, 1802), False, 'from utils import db_connect\n'), ((1861, 1924), 'pandas.read_sql_query', 'pd.read_sql_query', (['table_read', 'conn_input'], {'chunksize': 'size_chunk'}), '(table_read, conn_input, chunksize=size_chunk)\n', (1878, 1924), True, 'import pandas as pd\n'), ((2327, 2389), 'utils.db_connect.alchemy_input_output_close', 'db_connect.alchemy_input_output_close', (['conn_input', 'conn_output'], {}), '(conn_input, conn_output)\n', (2364, 2389), False, 'from utils import db_connect\n'), ((1821, 1832), 'time.time', 'time.time', ([], {}), '()\n', (1830, 1832), False, 'import time\n'), ((870, 881), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (879, 881), False, 'from multiprocessing import Pool, cpu_count\n'), ((2284, 2295), 'time.time', 'time.time', ([], {}), '()\n', (2293, 2295), False, 'import time\n')]
import os import numpy as np import urllib from absl import flags import tensorflow as tf import tensorflow_probability as tfp tfb = tfp.bijectors tfd = tfp.distributions flags.DEFINE_float( "learning_rate", default=0.001, help="Initial learning rate.") flags.DEFINE_integer( "epochs", default=100, help="Number of training steps to run.") flags.DEFINE_string( "activation", default="selu", help="Activation function for all hidden layers.") flags.DEFINE_integer( "batch_size", default=32, help="Batch size.") flags.DEFINE_string( "data_dir", default="/tmp/mnist", help="Directory where data is stored (if using real data).") flags.DEFINE_string( "model_dir", default="/tmp/critic/", help="Directory to put the model's fit.") flags.DEFINE_integer( "viz_steps", default=500, help="Frequency at which to save visualizations.") flags.DEFINE_bool( "delete_existing", default=False, help="If true, deletes existing `model_dir` directory.") FLAGS = flags.FLAGS def non_square_det(x, reltol=1e-6): """ Idea taken from https://www.quora.com/How-do-we-calculate-the-determinant-of-a-non-square-matrix # for n != m A = tf.random_normal([n, m]) det(A) := sqrt(det(A.A^T)) Args: x (tf.tensor): shape in [..., a, b] Returns: [..., ] """ # squared_mat = tf.matmul(x, x, transpose_b=True) # return tf.sqrt(tf.linalg.det(squared_mat)) s = tf.svd(x, compute_uv=False) # atol = tf.reduce_max(s) * reltol # s = tf.diag(tf.where(tf.greater(atol, tf.abs(s)), tf.ones_like(s), s)) return tf.reduce_prod(s) def pinv(A, reltol=1e-6): """ Args: A (tf.tensor): the matrix to be inverted shape=[n, m] Returns: inverse (tf.tensor): the invserse of A, s.t. A_T.A = I. shape=[m,n] """ s, u, v = tf.svd(A) atol = tf.reduce_max(s) * reltol s_inv = tf.diag(tf.where(tf.greater(tf.abs(s), atol), 1.0/s, tf.zeros_like(s))) # s_inv = tf.diag(1./s) return tf.matmul(v, tf.matmul(s_inv, u, transpose_b=True)) class Dense(tfb.Bijector): """ Want a hierarchical flow. Map some low dim distribution to a manifold in a higher dimensional space. For more info on bijectors see tfb.Bijector, I simply cloned the general structure. """ def __init__(self, n_inputs, n_outputs, validate_args=False, name=''): """ Args: n_inputs (int): the number of features (last dim) n_outputs (int): the target num of feautres """ super(self.__class__, self).__init__( validate_args=validate_args, is_constant_jacobian=True, forward_min_event_ndims=1, name=name) self.n_inputs = n_inputs self.n_outputs = n_outputs with tf.variable_scope('dense'+name): self.weights = tf.get_variable(name='weights', shape=[n_inputs, n_outputs], dtype=tf.float32, # initializer=tf.initializers.orthogonal() ) self.bias = tf.get_variable(name='bias', shape=[n_outputs], dtype=tf.float32, initializer=tf.initializers.zeros() ) @property def _is_injective(self): return True def _forward_event_shape_tensor(self, shape): return tf.shape([shape[0], self.n_inputs]) def _invserse_event_shape_tensor(self, shape): return tf.shape([shape[0], self.n_outputs]) def _forward(self, x): return tf.matmul(x, self.weights) + self.bias def _inverse(self, y): weights_inv = pinv(self.weights) return tf.matmul(y - self.bias, weights_inv) def _forward_log_det_jacobian(self, x): return tf.log(non_square_det(self.weights)) def _inverse_log_det_jacobian(self, y): return tf.log(non_square_det(pinv(self.weights))) def make_mixture(latent_size, mixture_components): """Creates a mixture of Gaussians distribution. Args: latent_size: The dimensionality of the latent representation. mixture_components: Number of elements of the mixture. Returns: random_prior: A `tf.distributions.Distribution` instance representing the distribution over encodings in the absence of any evidence. """ if mixture_components == 1: # See the module docstring for why we don't learn the parameters here. return tfd.MultivariateNormalDiag( loc=tf.zeros([latent_size]), scale_identity_multiplier=1.0) loc = tf.get_variable(name="loc", shape=[mixture_components, latent_size]) raw_scale_diag = tf.get_variable( name="raw_scale_diag", shape=[mixture_components, latent_size]) mixture_logits = tf.get_variable( name="mixture_logits", shape=[mixture_components]) return tfd.MixtureSameFamily( components_distribution=tfd.MultivariateNormalDiag( loc=loc, scale_diag=tf.nn.softplus(raw_scale_diag)), mixture_distribution=tfd.Categorical(logits=mixture_logits), name="prior") def model_fn(features, labels, mode, params, config): """ Builds the model function for use in an estimator. Arguments: features: The input features for the estimator. labels: The labels, unused here. mode: Signifies whether it is train or test or predict. params: Some hyperparameters as a dictionary. config: The RunConfig, unused here. Returns: EstimatorSpec: A tf.estimator.EstimatorSpec instance. """ x = features['x'] global_step = tf.train.get_or_create_global_step() with tf.contrib.summary.record_summaries_every_n_global_steps(100, global_step=global_step): # construct a multilayer parameterised bijector n_hidden = 8 width = 32 n_outputs = 784 fn = tfb.Chain([ Dense(width, n_outputs, name='3'), # tfb.Softplus(), # Dense(width, width, name='2'), # tfb.Softplus(), # Dense(width, width, name='1'), Dense(n_hidden, width, name='0') ]) # use the bijector to map a simple distribution into our a density model dist = make_mixture(n_hidden, 10) # logits = tf.get_variable( # name="logits", shape=[n_outputs]) # dist = tfd.RelaxedOneHotCategorical(logits=logits, temperature=1.0) # density = tfd.RelaxedBernoulli(logits=logits, temperature=100.0) density = tfd.TransformedDistribution(distribution=dist, bijector=fn) # maximise the likelihood of the data p = density.prob(x) loss = tf.reduce_mean(1-p) # - 0.1*density.entropy() # reg = -density.entropy() # tf.summary.scalar('entropy', reg) # generate some samples to visualise # HACK to get samples to work I had to comment out line 411 of transformed_distribution.py samples = density.sample(3) tf.summary.image('samples', tf.reshape(samples, [3, 28, 28, 1])) # mu = density.mean() # tf.summary.image('mean', tf.reshape(mu, [1, 28, 28, 1])) opt = tf.train.AdamOptimizer(0.0001) gnvs = opt.compute_gradients(loss) gnvs = [(tf.clip_by_norm(g, 10.0) if g is not None else tf.zeros_like(v), v) for g, v in gnvs] train_step = opt.apply_gradients(gnvs, global_step=global_step) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_step, eval_metric_ops={"eval_loss": tf.metrics.mean(loss)} ) def main(_): params = FLAGS.flag_values_dict() params["activation"] = getattr(tf.nn, params["activation"]) if FLAGS.delete_existing and tf.gfile.Exists(FLAGS.model_dir): tf.logging.warn("Deleting old log directory at {}".format(FLAGS.model_dir)) tf.gfile.DeleteRecursively(FLAGS.model_dir) tf.gfile.MakeDirs(FLAGS.model_dir) mnist = tf.contrib.learn.datasets.load_dataset("mnist") train_data = mnist.train.images # Returns np.array train_labels = np.asarray(mnist.train.labels, dtype=np.int32) eval_data = mnist.test.images # Returns np.array eval_labels = np.asarray(mnist.test.labels, dtype=np.int32) train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=FLAGS.batch_size, num_epochs=1, shuffle=True) eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": eval_data}, y=eval_labels, batch_size=FLAGS.batch_size, num_epochs=1, shuffle=False) estimator = tf.estimator.Estimator( model_fn, params=params, config=tf.estimator.RunConfig( model_dir=FLAGS.model_dir, save_checkpoints_steps=FLAGS.viz_steps, ), ) for _ in range(FLAGS.epochs): estimator.train(train_input_fn, steps=FLAGS.viz_steps) eval_results = estimator.evaluate(eval_input_fn) print("Evaluation_results:\n\t%s\n" % eval_results) if __name__ == "__main__": tf.app.run()
[ "tensorflow.shape", "tensorflow.get_variable", "tensorflow.contrib.learn.datasets.load_dataset", "tensorflow.estimator.inputs.numpy_input_fn", "tensorflow.metrics.mean", "tensorflow.nn.softplus", "tensorflow.gfile.MakeDirs", "tensorflow.reduce_mean", "absl.flags.DEFINE_float", "tensorflow.app.run", "tensorflow.gfile.Exists", "tensorflow.gfile.DeleteRecursively", "numpy.asarray", "tensorflow.matmul", "tensorflow.zeros_like", "tensorflow.train.AdamOptimizer", "tensorflow.train.get_or_create_global_step", "tensorflow.zeros", "tensorflow.variable_scope", "tensorflow.clip_by_norm", "tensorflow.initializers.zeros", "tensorflow.reduce_max", "tensorflow.reshape", "absl.flags.DEFINE_string", "tensorflow.reduce_prod", "tensorflow.estimator.RunConfig", "absl.flags.DEFINE_bool", "tensorflow.contrib.summary.record_summaries_every_n_global_steps", "absl.flags.DEFINE_integer", "tensorflow.svd", "tensorflow.abs" ]
[((174, 260), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""learning_rate"""'], {'default': '(0.001)', 'help': '"""Initial learning rate."""'}), "('learning_rate', default=0.001, help=\n 'Initial learning rate.')\n", (192, 260), False, 'from absl import flags\n'), ((261, 350), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""epochs"""'], {'default': '(100)', 'help': '"""Number of training steps to run."""'}), "('epochs', default=100, help=\n 'Number of training steps to run.')\n", (281, 350), False, 'from absl import flags\n'), ((351, 456), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""activation"""'], {'default': '"""selu"""', 'help': '"""Activation function for all hidden layers."""'}), "('activation', default='selu', help=\n 'Activation function for all hidden layers.')\n", (370, 456), False, 'from absl import flags\n'), ((465, 531), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""batch_size"""'], {'default': '(32)', 'help': '"""Batch size."""'}), "('batch_size', default=32, help='Batch size.')\n", (485, 531), False, 'from absl import flags\n'), ((545, 664), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""data_dir"""'], {'default': '"""/tmp/mnist"""', 'help': '"""Directory where data is stored (if using real data)."""'}), "('data_dir', default='/tmp/mnist', help=\n 'Directory where data is stored (if using real data).')\n", (564, 664), False, 'from absl import flags\n'), ((673, 776), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""model_dir"""'], {'default': '"""/tmp/critic/"""', 'help': '"""Directory to put the model\'s fit."""'}), '(\'model_dir\', default=\'/tmp/critic/\', help=\n "Directory to put the model\'s fit.")\n', (692, 776), False, 'from absl import flags\n'), ((785, 887), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""viz_steps"""'], {'default': '(500)', 'help': '"""Frequency at which to save visualizations."""'}), "('viz_steps', default=500, help=\n 'Frequency at which to save visualizations.')\n", (805, 887), False, 'from absl import flags\n'), ((888, 1001), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""delete_existing"""'], {'default': '(False)', 'help': '"""If true, deletes existing `model_dir` directory."""'}), "('delete_existing', default=False, help=\n 'If true, deletes existing `model_dir` directory.')\n", (905, 1001), False, 'from absl import flags\n'), ((1464, 1491), 'tensorflow.svd', 'tf.svd', (['x'], {'compute_uv': '(False)'}), '(x, compute_uv=False)\n', (1470, 1491), True, 'import tensorflow as tf\n'), ((1621, 1638), 'tensorflow.reduce_prod', 'tf.reduce_prod', (['s'], {}), '(s)\n', (1635, 1638), True, 'import tensorflow as tf\n'), ((1858, 1867), 'tensorflow.svd', 'tf.svd', (['A'], {}), '(A)\n', (1864, 1867), True, 'import tensorflow as tf\n'), ((4781, 4849), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""loc"""', 'shape': '[mixture_components, latent_size]'}), "(name='loc', shape=[mixture_components, latent_size])\n", (4796, 4849), True, 'import tensorflow as tf\n'), ((4869, 4948), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""raw_scale_diag"""', 'shape': '[mixture_components, latent_size]'}), "(name='raw_scale_diag', shape=[mixture_components, latent_size])\n", (4884, 4948), True, 'import tensorflow as tf\n'), ((4975, 5041), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""mixture_logits"""', 'shape': '[mixture_components]'}), "(name='mixture_logits', shape=[mixture_components])\n", (4990, 5041), True, 'import tensorflow as tf\n'), ((5816, 5852), 'tensorflow.train.get_or_create_global_step', 'tf.train.get_or_create_global_step', ([], {}), '()\n', (5850, 5852), True, 'import tensorflow as tf\n'), ((8113, 8147), 'tensorflow.gfile.MakeDirs', 'tf.gfile.MakeDirs', (['FLAGS.model_dir'], {}), '(FLAGS.model_dir)\n', (8130, 8147), True, 'import tensorflow as tf\n'), ((8161, 8208), 'tensorflow.contrib.learn.datasets.load_dataset', 'tf.contrib.learn.datasets.load_dataset', (['"""mnist"""'], {}), "('mnist')\n", (8199, 8208), True, 'import tensorflow as tf\n'), ((8284, 8330), 'numpy.asarray', 'np.asarray', (['mnist.train.labels'], {'dtype': 'np.int32'}), '(mnist.train.labels, dtype=np.int32)\n', (8294, 8330), True, 'import numpy as np\n'), ((8403, 8448), 'numpy.asarray', 'np.asarray', (['mnist.test.labels'], {'dtype': 'np.int32'}), '(mnist.test.labels, dtype=np.int32)\n', (8413, 8448), True, 'import numpy as np\n'), ((8471, 8603), 'tensorflow.estimator.inputs.numpy_input_fn', 'tf.estimator.inputs.numpy_input_fn', ([], {'x': "{'x': train_data}", 'y': 'train_labels', 'batch_size': 'FLAGS.batch_size', 'num_epochs': '(1)', 'shuffle': '(True)'}), "(x={'x': train_data}, y=train_labels,\n batch_size=FLAGS.batch_size, num_epochs=1, shuffle=True)\n", (8505, 8603), True, 'import tensorflow as tf\n'), ((8672, 8803), 'tensorflow.estimator.inputs.numpy_input_fn', 'tf.estimator.inputs.numpy_input_fn', ([], {'x': "{'x': eval_data}", 'y': 'eval_labels', 'batch_size': 'FLAGS.batch_size', 'num_epochs': '(1)', 'shuffle': '(False)'}), "(x={'x': eval_data}, y=eval_labels,\n batch_size=FLAGS.batch_size, num_epochs=1, shuffle=False)\n", (8706, 8803), True, 'import tensorflow as tf\n'), ((9306, 9318), 'tensorflow.app.run', 'tf.app.run', ([], {}), '()\n', (9316, 9318), True, 'import tensorflow as tf\n'), ((1880, 1896), 'tensorflow.reduce_max', 'tf.reduce_max', (['s'], {}), '(s)\n', (1893, 1896), True, 'import tensorflow as tf\n'), ((2043, 2080), 'tensorflow.matmul', 'tf.matmul', (['s_inv', 'u'], {'transpose_b': '(True)'}), '(s_inv, u, transpose_b=True)\n', (2052, 2080), True, 'import tensorflow as tf\n'), ((3604, 3639), 'tensorflow.shape', 'tf.shape', (['[shape[0], self.n_inputs]'], {}), '([shape[0], self.n_inputs])\n', (3612, 3639), True, 'import tensorflow as tf\n'), ((3707, 3743), 'tensorflow.shape', 'tf.shape', (['[shape[0], self.n_outputs]'], {}), '([shape[0], self.n_outputs])\n', (3715, 3743), True, 'import tensorflow as tf\n'), ((3910, 3947), 'tensorflow.matmul', 'tf.matmul', (['(y - self.bias)', 'weights_inv'], {}), '(y - self.bias, weights_inv)\n', (3919, 3947), True, 'import tensorflow as tf\n'), ((5862, 5953), 'tensorflow.contrib.summary.record_summaries_every_n_global_steps', 'tf.contrib.summary.record_summaries_every_n_global_steps', (['(100)'], {'global_step': 'global_step'}), '(100, global_step=\n global_step)\n', (5918, 5953), True, 'import tensorflow as tf\n'), ((6882, 6903), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(1 - p)'], {}), '(1 - p)\n', (6896, 6903), True, 'import tensorflow as tf\n'), ((7374, 7404), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(0.0001)'], {}), '(0.0001)\n', (7396, 7404), True, 'import tensorflow as tf\n'), ((7939, 7971), 'tensorflow.gfile.Exists', 'tf.gfile.Exists', (['FLAGS.model_dir'], {}), '(FLAGS.model_dir)\n', (7954, 7971), True, 'import tensorflow as tf\n'), ((8065, 8108), 'tensorflow.gfile.DeleteRecursively', 'tf.gfile.DeleteRecursively', (['FLAGS.model_dir'], {}), '(FLAGS.model_dir)\n', (8091, 8108), True, 'import tensorflow as tf\n'), ((1971, 1987), 'tensorflow.zeros_like', 'tf.zeros_like', (['s'], {}), '(s)\n', (1984, 1987), True, 'import tensorflow as tf\n'), ((2830, 2863), 'tensorflow.variable_scope', 'tf.variable_scope', (["('dense' + name)"], {}), "('dense' + name)\n", (2847, 2863), True, 'import tensorflow as tf\n'), ((2890, 2968), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""weights"""', 'shape': '[n_inputs, n_outputs]', 'dtype': 'tf.float32'}), "(name='weights', shape=[n_inputs, n_outputs], dtype=tf.float32)\n", (2905, 2968), True, 'import tensorflow as tf\n'), ((3787, 3813), 'tensorflow.matmul', 'tf.matmul', (['x', 'self.weights'], {}), '(x, self.weights)\n', (3796, 3813), True, 'import tensorflow as tf\n'), ((7224, 7259), 'tensorflow.reshape', 'tf.reshape', (['samples', '[3, 28, 28, 1]'], {}), '(samples, [3, 28, 28, 1])\n', (7234, 7259), True, 'import tensorflow as tf\n'), ((8933, 9027), 'tensorflow.estimator.RunConfig', 'tf.estimator.RunConfig', ([], {'model_dir': 'FLAGS.model_dir', 'save_checkpoints_steps': 'FLAGS.viz_steps'}), '(model_dir=FLAGS.model_dir, save_checkpoints_steps=\n FLAGS.viz_steps)\n', (8955, 9027), True, 'import tensorflow as tf\n'), ((1946, 1955), 'tensorflow.abs', 'tf.abs', (['s'], {}), '(s)\n', (1952, 1955), True, 'import tensorflow as tf\n'), ((4708, 4731), 'tensorflow.zeros', 'tf.zeros', (['[latent_size]'], {}), '([latent_size])\n', (4716, 4731), True, 'import tensorflow as tf\n'), ((7760, 7781), 'tensorflow.metrics.mean', 'tf.metrics.mean', (['loss'], {}), '(loss)\n', (7775, 7781), True, 'import tensorflow as tf\n'), ((3408, 3431), 'tensorflow.initializers.zeros', 'tf.initializers.zeros', ([], {}), '()\n', (3429, 3431), True, 'import tensorflow as tf\n'), ((5180, 5210), 'tensorflow.nn.softplus', 'tf.nn.softplus', (['raw_scale_diag'], {}), '(raw_scale_diag)\n', (5194, 5210), True, 'import tensorflow as tf\n'), ((7465, 7489), 'tensorflow.clip_by_norm', 'tf.clip_by_norm', (['g', '(10.0)'], {}), '(g, 10.0)\n', (7480, 7489), True, 'import tensorflow as tf\n'), ((7512, 7528), 'tensorflow.zeros_like', 'tf.zeros_like', (['v'], {}), '(v)\n', (7525, 7528), True, 'import tensorflow as tf\n')]
import os import shutil import argparse import torch from torch import nn from torchvision.utils import save_image, make_grid import matplotlib.pyplot as plt import numpy as np import cv2 as cv import utils.utils as utils from utils.constants import * class GenerationMode(enum.Enum): SINGLE_IMAGE = 0, INTERPOLATION = 1, VECTOR_ARITHMETIC = 2 def postprocess_generated_img(generated_img_tensor): assert isinstance(generated_img_tensor, torch.Tensor), f'Expected PyTorch tensor but got {type(generated_img_tensor)}.' # Move the tensor from GPU to CPU, convert to numpy array, extract 0th batch, move the image channel # from 0th to 2nd position (CHW -> HWC) generated_img = np.moveaxis(generated_img_tensor.to('cpu').numpy()[0], 0, 2) # If grayscale image repeat 3 times to get RGB image (for generators trained on MNIST) if generated_img.shape[2] == 1: generated_img = np.repeat(generated_img, 3, axis=2) # Imagery is in the range [-1, 1] (generator has tanh as the output activation) move it into [0, 1] range generated_img -= np.min(generated_img) generated_img /= np.max(generated_img) return generated_img def generate_from_random_latent_vector(generator, cgan_digit=None): with torch.no_grad(): latent_vector = utils.get_gaussian_latent_batch(1, next(generator.parameters()).device) if cgan_digit is None: generated_img = postprocess_generated_img(generator(latent_vector)) else: # condition and generate the digit specified by cgan_digit ref_label = torch.tensor([cgan_digit], dtype=torch.int64) ref_label_one_hot_encoding = torch.nn.functional.one_hot(ref_label, MNIST_NUM_CLASSES).type(torch.FloatTensor).to(next(generator.parameters()).device) generated_img = postprocess_generated_img(generator(latent_vector, ref_label_one_hot_encoding)) return generated_img, latent_vector.to('cpu').numpy()[0] def generate_from_specified_numpy_latent_vector(generator, latent_vector): assert isinstance(latent_vector, np.ndarray), f'Expected latent vector to be numpy array but got {type(latent_vector)}.' with torch.no_grad(): latent_vector_tensor = torch.unsqueeze(torch.tensor(latent_vector, device=next(generator.parameters()).device), dim=0) return postprocess_generated_img(generator(latent_vector_tensor)) def linear_interpolation(t, p0, p1): return p0 + t * (p1 - p0) def spherical_interpolation(t, p0, p1): """ Spherical interpolation (slerp) formula: https://en.wikipedia.org/wiki/Slerp Found inspiration here: https://github.com/soumith/ganhacks but I didn't get any improvement using it compared to linear interpolation. Args: t (float): has [0, 1] range p0 (numpy array): First n-dimensional vector p1 (numpy array): Second n-dimensional vector Result: Returns spherically interpolated vector. """ if t <= 0: return p0 elif t >= 1: return p1 elif np.allclose(p0, p1): return p0 # Convert p0 and p1 to unit vectors and find the angle between them (omega) omega = np.arccos(np.dot(p0 / np.linalg.norm(p0), p1 / np.linalg.norm(p1))) sin_omega = np.sin(omega) # syntactic sugar return np.sin((1.0 - t) * omega) / sin_omega * p0 + np.sin(t * omega) / sin_omega * p1 def display_vector_arithmetic_results(imgs_to_display): fig = plt.figure(figsize=(6, 6)) title_fontsize = 'x-small' num_display_imgs = 7 titles = ['happy women', 'happy woman (avg)', 'neutral women', 'neutral woman (avg)', 'neutral men', 'neutral man (avg)', 'result - happy man'] ax = np.zeros(num_display_imgs, dtype=object) assert len(imgs_to_display) == num_display_imgs, f'Expected {num_display_imgs} got {len(imgs_to_display)} images.' gs = fig.add_gridspec(5, 4, left=0.02, right=0.98, wspace=0.05, hspace=0.3) ax[0] = fig.add_subplot(gs[0, :3]) ax[1] = fig.add_subplot(gs[0, 3]) ax[2] = fig.add_subplot(gs[1, :3]) ax[3] = fig.add_subplot(gs[1, 3]) ax[4] = fig.add_subplot(gs[2, :3]) ax[5] = fig.add_subplot(gs[2, 3]) ax[6] = fig.add_subplot(gs[3:, 1:3]) for i in range(num_display_imgs): ax[i].imshow(cv.resize(imgs_to_display[i], (0, 0), fx=3, fy=3, interpolation=cv.INTER_NEAREST)) ax[i].set_title(titles[i], fontsize=title_fontsize) ax[i].tick_params(which='both', bottom=False, left=False, labelleft=False, labelbottom=False) plt.show() def generate_new_images(model_name, cgan_digit=None, generation_mode=True, slerp=True, a=None, b=None, should_display=True): """ Generate imagery using pre-trained generator (using vanilla_generator_000000.pth by default) Args: model_name (str): model name you want to use (default lookup location is BINARIES_PATH). cgan_digit (int): if specified generate that exact digit. generation_mode (enum): generate a single image from a random vector, interpolate between the 2 chosen latent vectors, or perform arithmetic over latent vectors (note: not every mode is supported for every model type) slerp (bool): if True use spherical interpolation otherwise use linear interpolation. a, b (numpy arrays): latent vectors, if set to None you'll be prompted to choose images you like, and use corresponding latent vectors instead. should_display (bool): Display the generated images before saving them. """ model_path = os.path.join(BINARIES_PATH, model_name) assert os.path.exists(model_path), f'Could not find the model {model_path}. You first need to train your generator.' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Prepare the correct (vanilla, cGAN, DCGAN, ...) model, load the weights and put the model into evaluation mode model_state = torch.load(model_path) gan_type = model_state["gan_type"] print(f'Found {gan_type} GAN!') _, generator = utils.get_gan(device, gan_type) generator.load_state_dict(model_state["state_dict"], strict=True) generator.eval() # Generate a single image, save it and potentially display it if generation_mode == GenerationMode.SINGLE_IMAGE: generated_imgs_path = os.path.join(DATA_DIR_PATH, 'generated_imagery') os.makedirs(generated_imgs_path, exist_ok=True) generated_img, _ = generate_from_random_latent_vector(generator, cgan_digit if gan_type == GANType.CGAN.name else None) utils.save_and_maybe_display_image(generated_imgs_path, generated_img, should_display=should_display) # Pick 2 images you like between which you'd like to interpolate (by typing 'y' into console) elif generation_mode == GenerationMode.INTERPOLATION: assert gan_type == GANType.VANILLA.name or gan_type ==GANType.DCGAN.name, f'Got {gan_type} but only VANILLA/DCGAN are supported for the interpolation mode.' interpolation_name = "spherical" if slerp else "linear" interpolation_fn = spherical_interpolation if slerp else linear_interpolation grid_interpolated_imgs_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery') # combined results dir decomposed_interpolated_imgs_path = os.path.join(grid_interpolated_imgs_path, f'tmp_{gan_type}_{interpolation_name}_dump') # dump separate results if os.path.exists(decomposed_interpolated_imgs_path): shutil.rmtree(decomposed_interpolated_imgs_path) os.makedirs(grid_interpolated_imgs_path, exist_ok=True) os.makedirs(decomposed_interpolated_imgs_path, exist_ok=True) latent_vector_a, latent_vector_b = [None, None] # If a and b were not specified loop until the user picked the 2 images he/she likes. found_good_vectors_flag = False if a is None or b is None: while not found_good_vectors_flag: generated_img, latent_vector = generate_from_random_latent_vector(generator) plt.imshow(generated_img); plt.title('Do you like this image?'); plt.show() user_input = input("Do you like this generated image? [y for yes]:") if user_input == 'y': if latent_vector_a is None: latent_vector_a = latent_vector print('Saved the first latent vector.') elif latent_vector_b is None: latent_vector_b = latent_vector print('Saved the second latent vector.') found_good_vectors_flag = True else: print('Well lets generate a new one!') continue else: print('Skipping latent vectors selection section and using cached ones.') latent_vector_a, latent_vector_b = [a, b] # Cache latent vectors if a is None or b is None: np.save(os.path.join(grid_interpolated_imgs_path, 'a.npy'), latent_vector_a) np.save(os.path.join(grid_interpolated_imgs_path, 'b.npy'), latent_vector_b) print(f'Lets do some {interpolation_name} interpolation!') interpolation_resolution = 47 # number of images between the vectors a and b num_interpolated_imgs = interpolation_resolution + 2 # + 2 so that we include a and b generated_imgs = [] for i in range(num_interpolated_imgs): t = i / (num_interpolated_imgs - 1) # goes from 0. to 1. current_latent_vector = interpolation_fn(t, latent_vector_a, latent_vector_b) generated_img = generate_from_specified_numpy_latent_vector(generator, current_latent_vector) print(f'Generated image [{i+1}/{num_interpolated_imgs}].') utils.save_and_maybe_display_image(decomposed_interpolated_imgs_path, generated_img, should_display=should_display) # Move from channel last to channel first (CHW->HWC), PyTorch's save_image function expects BCHW format generated_imgs.append(torch.tensor(np.moveaxis(generated_img, 2, 0))) interpolated_block_img = torch.stack(generated_imgs) interpolated_block_img = nn.Upsample(scale_factor=2.5, mode='nearest')(interpolated_block_img) save_image(interpolated_block_img, os.path.join(grid_interpolated_imgs_path, utils.get_available_file_name(grid_interpolated_imgs_path)), nrow=int(np.sqrt(num_interpolated_imgs))) elif generation_mode == GenerationMode.VECTOR_ARITHMETIC: assert gan_type == GANType.DCGAN.name, f'Got {gan_type} but only DCGAN is supported for arithmetic mode.' # Generate num_options face images and create a grid image from them num_options = 100 generated_imgs = [] latent_vectors = [] padding = 2 for i in range(num_options): generated_img, latent_vector = generate_from_random_latent_vector(generator) generated_imgs.append(torch.tensor(np.moveaxis(generated_img, 2, 0))) # make_grid expects CHW format latent_vectors.append(latent_vector) stacked_tensor_imgs = torch.stack(generated_imgs) final_tensor_img = make_grid(stacked_tensor_imgs, nrow=int(np.sqrt(num_options)), padding=padding) display_img = np.moveaxis(final_tensor_img.numpy(), 0, 2) # For storing latent vectors num_of_vectors_per_category = 3 happy_woman_latent_vectors = [] neutral_woman_latent_vectors = [] neutral_man_latent_vectors = [] # Make it easy - by clicking on the plot you pick the image. def onclick(event): if event.dblclick: pass else: # single click if event.button == 1: # left click x_coord = event.xdata y_coord = event.ydata column = int(x_coord / (64 + padding)) row = int(y_coord / (64 + padding)) # Store latent vector corresponding to the image that the user clicked on. if len(happy_woman_latent_vectors) < num_of_vectors_per_category: happy_woman_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(happy_woman_latent_vectors)}. happy woman.') elif len(neutral_woman_latent_vectors) < num_of_vectors_per_category: neutral_woman_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(neutral_woman_latent_vectors)}. neutral woman.') elif len(neutral_man_latent_vectors) < num_of_vectors_per_category: neutral_man_latent_vectors.append(latent_vectors[10*row + column]) print(f'Picked image row={row}, column={column} as {len(neutral_man_latent_vectors)}. neutral man.') else: plt.close() plt.figure(figsize=(10, 10)) plt.imshow(display_img) # This is just an example you could also pick 3 neutral woman images with sunglasses, etc. plt.title('Click on 3 happy women, 3 neutral women and \n 3 neutral men images (order matters!)') cid = plt.gcf().canvas.mpl_connect('button_press_event', onclick) plt.show() plt.gcf().canvas.mpl_disconnect(cid) print('Done choosing images.') # Calculate the average latent vector for every category (happy woman, neutral woman, neutral man) happy_woman_avg_latent_vector = np.mean(np.array(happy_woman_latent_vectors), axis=0) neutral_woman_avg_latent_vector = np.mean(np.array(neutral_woman_latent_vectors), axis=0) neutral_man_avg_latent_vector = np.mean(np.array(neutral_man_latent_vectors), axis=0) # By subtracting neutral woman from the happy woman we capture the "vector of smiling". Adding that vector # to a neutral man we get a happy man's latent vector! Our latent space has amazingly beautiful structure! happy_man_latent_vector = neutral_man_avg_latent_vector + (happy_woman_avg_latent_vector - neutral_woman_avg_latent_vector) # Generate images from these latent vectors happy_women_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in happy_woman_latent_vectors]) neutral_women_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in neutral_woman_latent_vectors]) neutral_men_imgs = np.hstack([generate_from_specified_numpy_latent_vector(generator, v) for v in neutral_man_latent_vectors]) happy_woman_avg_img = generate_from_specified_numpy_latent_vector(generator, happy_woman_avg_latent_vector) neutral_woman_avg_img = generate_from_specified_numpy_latent_vector(generator, neutral_woman_avg_latent_vector) neutral_man_avg_img = generate_from_specified_numpy_latent_vector(generator, neutral_man_avg_latent_vector) happy_man_img = generate_from_specified_numpy_latent_vector(generator, happy_man_latent_vector) display_vector_arithmetic_results([happy_women_imgs, happy_woman_avg_img, neutral_women_imgs, neutral_woman_avg_img, neutral_men_imgs, neutral_man_avg_img, happy_man_img]) else: raise Exception(f'Generation mode not yet supported.') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, help="Pre-trained generator model name", default=r'VANILLA_000000.pth') parser.add_argument("--cgan_digit", type=int, help="Used only for cGAN - generate specified digit", default=3) parser.add_argument("--generation_mode", type=bool, help="Pick between 3 generation modes", default=GenerationMode.SINGLE_IMAGE) parser.add_argument("--slerp", type=bool, help="Should use spherical interpolation (default No)", default=False) parser.add_argument("--should_display", type=bool, help="Display intermediate results", default=True) args = parser.parse_args() # The first time you start generation in the interpolation mode it will cache a and b # which you'll choose the first time you run the it. a_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery', 'a.npy') b_path = os.path.join(DATA_DIR_PATH, 'interpolated_imagery', 'b.npy') latent_vector_a = np.load(a_path) if os.path.exists(a_path) else None latent_vector_b = np.load(b_path) if os.path.exists(b_path) else None generate_new_images( args.model_name, args.cgan_digit, generation_mode=args.generation_mode, slerp=args.slerp, a=latent_vector_a, b=latent_vector_b, should_display=args.should_display)
[ "numpy.sqrt", "utils.utils.save_and_maybe_display_image", "numpy.array", "torch.cuda.is_available", "numpy.linalg.norm", "numpy.sin", "numpy.moveaxis", "utils.utils.get_available_file_name", "matplotlib.pyplot.imshow", "os.path.exists", "numpy.repeat", "argparse.ArgumentParser", "numpy.max", "utils.utils.get_gan", "matplotlib.pyplot.close", "numpy.min", "numpy.allclose", "matplotlib.pyplot.gcf", "torch.nn.functional.one_hot", "torch.nn.Upsample", "matplotlib.pyplot.title", "cv2.resize", "matplotlib.pyplot.show", "os.makedirs", "torch.load", "torch.stack", "os.path.join", "torch.tensor", "matplotlib.pyplot.figure", "numpy.zeros", "shutil.rmtree", "torch.no_grad", "numpy.load" ]
[((1093, 1114), 'numpy.min', 'np.min', (['generated_img'], {}), '(generated_img)\n', (1099, 1114), True, 'import numpy as np\n'), ((1136, 1157), 'numpy.max', 'np.max', (['generated_img'], {}), '(generated_img)\n', (1142, 1157), True, 'import numpy as np\n'), ((3254, 3267), 'numpy.sin', 'np.sin', (['omega'], {}), '(omega)\n', (3260, 3267), True, 'import numpy as np\n'), ((3446, 3472), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 6)'}), '(figsize=(6, 6))\n', (3456, 3472), True, 'import matplotlib.pyplot as plt\n'), ((3686, 3726), 'numpy.zeros', 'np.zeros', (['num_display_imgs'], {'dtype': 'object'}), '(num_display_imgs, dtype=object)\n', (3694, 3726), True, 'import numpy as np\n'), ((4509, 4519), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4517, 4519), True, 'import matplotlib.pyplot as plt\n'), ((5520, 5559), 'os.path.join', 'os.path.join', (['BINARIES_PATH', 'model_name'], {}), '(BINARIES_PATH, model_name)\n', (5532, 5559), False, 'import os\n'), ((5571, 5597), 'os.path.exists', 'os.path.exists', (['model_path'], {}), '(model_path)\n', (5585, 5597), False, 'import os\n'), ((5892, 5914), 'torch.load', 'torch.load', (['model_path'], {}), '(model_path)\n', (5902, 5914), False, 'import torch\n'), ((6009, 6040), 'utils.utils.get_gan', 'utils.get_gan', (['device', 'gan_type'], {}), '(device, gan_type)\n', (6022, 6040), True, 'import utils.utils as utils\n'), ((15467, 15492), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (15490, 15492), False, 'import argparse\n'), ((16278, 16338), 'os.path.join', 'os.path.join', (['DATA_DIR_PATH', '"""interpolated_imagery"""', '"""a.npy"""'], {}), "(DATA_DIR_PATH, 'interpolated_imagery', 'a.npy')\n", (16290, 16338), False, 'import os\n'), ((16352, 16412), 'os.path.join', 'os.path.join', (['DATA_DIR_PATH', '"""interpolated_imagery"""', '"""b.npy"""'], {}), "(DATA_DIR_PATH, 'interpolated_imagery', 'b.npy')\n", (16364, 16412), False, 'import os\n'), ((924, 959), 'numpy.repeat', 'np.repeat', (['generated_img', '(3)'], {'axis': '(2)'}), '(generated_img, 3, axis=2)\n', (933, 959), True, 'import numpy as np\n'), ((1263, 1278), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1276, 1278), False, 'import torch\n'), ((2177, 2192), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2190, 2192), False, 'import torch\n'), ((6284, 6332), 'os.path.join', 'os.path.join', (['DATA_DIR_PATH', '"""generated_imagery"""'], {}), "(DATA_DIR_PATH, 'generated_imagery')\n", (6296, 6332), False, 'import os\n'), ((6341, 6388), 'os.makedirs', 'os.makedirs', (['generated_imgs_path'], {'exist_ok': '(True)'}), '(generated_imgs_path, exist_ok=True)\n', (6352, 6388), False, 'import os\n'), ((6526, 6631), 'utils.utils.save_and_maybe_display_image', 'utils.save_and_maybe_display_image', (['generated_imgs_path', 'generated_img'], {'should_display': 'should_display'}), '(generated_imgs_path, generated_img,\n should_display=should_display)\n', (6560, 6631), True, 'import utils.utils as utils\n'), ((16454, 16476), 'os.path.exists', 'os.path.exists', (['a_path'], {}), '(a_path)\n', (16468, 16476), False, 'import os\n'), ((16435, 16450), 'numpy.load', 'np.load', (['a_path'], {}), '(a_path)\n', (16442, 16450), True, 'import numpy as np\n'), ((16528, 16550), 'os.path.exists', 'os.path.exists', (['b_path'], {}), '(b_path)\n', (16542, 16550), False, 'import os\n'), ((16509, 16524), 'numpy.load', 'np.load', (['b_path'], {}), '(b_path)\n', (16516, 16524), True, 'import numpy as np\n'), ((1586, 1631), 'torch.tensor', 'torch.tensor', (['[cgan_digit]'], {'dtype': 'torch.int64'}), '([cgan_digit], dtype=torch.int64)\n', (1598, 1631), False, 'import torch\n'), ((3038, 3057), 'numpy.allclose', 'np.allclose', (['p0', 'p1'], {}), '(p0, p1)\n', (3049, 3057), True, 'import numpy as np\n'), ((4259, 4345), 'cv2.resize', 'cv.resize', (['imgs_to_display[i]', '(0, 0)'], {'fx': '(3)', 'fy': '(3)', 'interpolation': 'cv.INTER_NEAREST'}), '(imgs_to_display[i], (0, 0), fx=3, fy=3, interpolation=cv.\n INTER_NEAREST)\n', (4268, 4345), True, 'import cv2 as cv\n'), ((5718, 5743), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5741, 5743), False, 'import torch\n'), ((7140, 7191), 'os.path.join', 'os.path.join', (['DATA_DIR_PATH', '"""interpolated_imagery"""'], {}), "(DATA_DIR_PATH, 'interpolated_imagery')\n", (7152, 7191), False, 'import os\n'), ((7260, 7350), 'os.path.join', 'os.path.join', (['grid_interpolated_imgs_path', 'f"""tmp_{gan_type}_{interpolation_name}_dump"""'], {}), "(grid_interpolated_imgs_path,\n f'tmp_{gan_type}_{interpolation_name}_dump')\n", (7272, 7350), False, 'import os\n'), ((7383, 7432), 'os.path.exists', 'os.path.exists', (['decomposed_interpolated_imgs_path'], {}), '(decomposed_interpolated_imgs_path)\n', (7397, 7432), False, 'import os\n'), ((7503, 7558), 'os.makedirs', 'os.makedirs', (['grid_interpolated_imgs_path'], {'exist_ok': '(True)'}), '(grid_interpolated_imgs_path, exist_ok=True)\n', (7514, 7558), False, 'import os\n'), ((7567, 7628), 'os.makedirs', 'os.makedirs', (['decomposed_interpolated_imgs_path'], {'exist_ok': '(True)'}), '(decomposed_interpolated_imgs_path, exist_ok=True)\n', (7578, 7628), False, 'import os\n'), ((10138, 10165), 'torch.stack', 'torch.stack', (['generated_imgs'], {}), '(generated_imgs)\n', (10149, 10165), False, 'import torch\n'), ((3192, 3210), 'numpy.linalg.norm', 'np.linalg.norm', (['p0'], {}), '(p0)\n', (3206, 3210), True, 'import numpy as np\n'), ((3217, 3235), 'numpy.linalg.norm', 'np.linalg.norm', (['p1'], {}), '(p1)\n', (3231, 3235), True, 'import numpy as np\n'), ((3298, 3323), 'numpy.sin', 'np.sin', (['((1.0 - t) * omega)'], {}), '((1.0 - t) * omega)\n', (3304, 3323), True, 'import numpy as np\n'), ((3343, 3360), 'numpy.sin', 'np.sin', (['(t * omega)'], {}), '(t * omega)\n', (3349, 3360), True, 'import numpy as np\n'), ((7446, 7494), 'shutil.rmtree', 'shutil.rmtree', (['decomposed_interpolated_imgs_path'], {}), '(decomposed_interpolated_imgs_path)\n', (7459, 7494), False, 'import shutil\n'), ((9789, 9908), 'utils.utils.save_and_maybe_display_image', 'utils.save_and_maybe_display_image', (['decomposed_interpolated_imgs_path', 'generated_img'], {'should_display': 'should_display'}), '(decomposed_interpolated_imgs_path,\n generated_img, should_display=should_display)\n', (9823, 9908), True, 'import utils.utils as utils\n'), ((10199, 10244), 'torch.nn.Upsample', 'nn.Upsample', ([], {'scale_factor': '(2.5)', 'mode': '"""nearest"""'}), "(scale_factor=2.5, mode='nearest')\n", (10210, 10244), False, 'from torch import nn\n'), ((11133, 11160), 'torch.stack', 'torch.stack', (['generated_imgs'], {}), '(generated_imgs)\n', (11144, 11160), False, 'import torch\n'), ((13054, 13082), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (13064, 13082), True, 'import matplotlib.pyplot as plt\n'), ((13091, 13114), 'matplotlib.pyplot.imshow', 'plt.imshow', (['display_img'], {}), '(display_img)\n', (13101, 13114), True, 'import matplotlib.pyplot as plt\n'), ((13222, 13332), 'matplotlib.pyplot.title', 'plt.title', (['"""Click on 3 happy women, 3 neutral women and \n 3 neutral men images (order matters!)"""'], {}), '(\n """Click on 3 happy women, 3 neutral women and \n 3 neutral men images (order matters!)"""\n )\n', (13231, 13332), True, 'import matplotlib.pyplot as plt\n'), ((13402, 13412), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13410, 13412), True, 'import matplotlib.pyplot as plt\n'), ((8012, 8037), 'matplotlib.pyplot.imshow', 'plt.imshow', (['generated_img'], {}), '(generated_img)\n', (8022, 8037), True, 'import matplotlib.pyplot as plt\n'), ((8039, 8075), 'matplotlib.pyplot.title', 'plt.title', (['"""Do you like this image?"""'], {}), "('Do you like this image?')\n", (8048, 8075), True, 'import matplotlib.pyplot as plt\n'), ((8077, 8087), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8085, 8087), True, 'import matplotlib.pyplot as plt\n'), ((8956, 9006), 'os.path.join', 'os.path.join', (['grid_interpolated_imgs_path', '"""a.npy"""'], {}), "(grid_interpolated_imgs_path, 'a.npy')\n", (8968, 9006), False, 'import os\n'), ((9045, 9095), 'os.path.join', 'os.path.join', (['grid_interpolated_imgs_path', '"""b.npy"""'], {}), "(grid_interpolated_imgs_path, 'b.npy')\n", (9057, 9095), False, 'import os\n'), ((10354, 10412), 'utils.utils.get_available_file_name', 'utils.get_available_file_name', (['grid_interpolated_imgs_path'], {}), '(grid_interpolated_imgs_path)\n', (10383, 10412), True, 'import utils.utils as utils\n'), ((13653, 13689), 'numpy.array', 'np.array', (['happy_woman_latent_vectors'], {}), '(happy_woman_latent_vectors)\n', (13661, 13689), True, 'import numpy as np\n'), ((13749, 13787), 'numpy.array', 'np.array', (['neutral_woman_latent_vectors'], {}), '(neutral_woman_latent_vectors)\n', (13757, 13787), True, 'import numpy as np\n'), ((13845, 13881), 'numpy.array', 'np.array', (['neutral_man_latent_vectors'], {}), '(neutral_man_latent_vectors)\n', (13853, 13881), True, 'import numpy as np\n'), ((10069, 10101), 'numpy.moveaxis', 'np.moveaxis', (['generated_img', '(2)', '(0)'], {}), '(generated_img, 2, 0)\n', (10080, 10101), True, 'import numpy as np\n'), ((10424, 10454), 'numpy.sqrt', 'np.sqrt', (['num_interpolated_imgs'], {}), '(num_interpolated_imgs)\n', (10431, 10454), True, 'import numpy as np\n'), ((1673, 1730), 'torch.nn.functional.one_hot', 'torch.nn.functional.one_hot', (['ref_label', 'MNIST_NUM_CLASSES'], {}), '(ref_label, MNIST_NUM_CLASSES)\n', (1700, 1730), False, 'import torch\n'), ((10987, 11019), 'numpy.moveaxis', 'np.moveaxis', (['generated_img', '(2)', '(0)'], {}), '(generated_img, 2, 0)\n', (10998, 11019), True, 'import numpy as np\n'), ((11228, 11248), 'numpy.sqrt', 'np.sqrt', (['num_options'], {}), '(num_options)\n', (11235, 11248), True, 'import numpy as np\n'), ((13334, 13343), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (13341, 13343), True, 'import matplotlib.pyplot as plt\n'), ((13421, 13430), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (13428, 13430), True, 'import matplotlib.pyplot as plt\n'), ((13033, 13044), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (13042, 13044), True, 'import matplotlib.pyplot as plt\n')]
"""a module solely for finding how add_a_list and add_tuple_list compare. it's effectively the empirical proof for how LongIntTable.add() chooses the fastest method with it's get_fastest_method() function.""" from __future__ import print_function from math import log10 import time import random from os import getcwd from itertools import cycle import matplotlib.pyplot as plt import numpy as np from dicetables.additiveevents import AdditiveEvents WELCOME_TXT = 'hi' def input_py_2_and_3(question): try: return raw_input(question) except NameError: return input(question) def generate_tuple_list_with_increasing_number_of_events(first_event, start_length, event_occurrences, len_increase_step=1): """ :param first_event: :param start_length: :param event_occurrences: :param len_increase_step: =1 :return: generator(next) """ tuple_list_of_events = [(first_event, event_occurrences)] for add_to_first_event in range(1, start_length): tuple_list_of_events.append((first_event + add_to_first_event, event_occurrences)) while True: yield tuple_list_of_events highest_event = tuple_list_of_events[-1][0] new_tuples = [(highest_event + 1 + step, event_occurrences) for step in range(len_increase_step)] tuple_list_of_events += new_tuples def generate_tuple_list_with_increasing_occurrences(first_event, start_length, increment, exponential_increase=True): """ :param first_event: :param start_length: :param increment: :param exponential_increase: =True :return: generator(next) """ tuple_list_of_events = [(event, 1) for event in range(first_event, first_event + start_length)] growth = 0.0 while True: yield tuple_list_of_events growth += increment if exponential_increase: tuple_list_of_events = [(event, int(2 ** growth)) for event in range(first_event, first_event + start_length)] else: tuple_list_of_events = [(event, int(growth)) for event in range(first_event, first_event + start_length)] def generate_tuple_list_with_increasing_gaps(first_event, start_length, event_occurrences=1, gaps_per_iteration=1, randomize=True): """ :param first_event: :param start_length: :param event_occurrences: =1 :param gaps_per_iteration: =1 :param randomize: =True :return: generator """ tuple_list_of_events = [(first_event + index, event_occurrences) for index in range(start_length)] while sum([event[1] for event in tuple_list_of_events]) > 2 * event_occurrences: yield tuple_list_of_events for _ in range(gaps_per_iteration): if randomize: start_search_index = random.randrange(1, start_length - 1) else: start_search_index = len(tuple_list_of_events) - 2 only_occurrences = [event[1] for event in tuple_list_of_events] while not only_occurrences[start_search_index:-1].count(event_occurrences) and start_search_index: start_search_index -= 1 index_to_make_zero = only_occurrences[start_search_index:].index(event_occurrences) + start_search_index event_value = tuple_list_of_events[index_to_make_zero][0] tuple_list_of_events[index_to_make_zero] = (event_value, 0) def get_generator(variable_name, first_event, start_length, growth_increment=1., event_occurrences=1, len_increase_step=1, gaps_per_iteration=1, randomize=True, exponential_increase=True): """ :param variable_name: 'list_length', 'event_occurrences', 'increasing_gaps' :param first_event: :param start_length: :param growth_increment: =1.0 :param event_occurrences: =1 :param len_increase_step: =1 :param gaps_per_iteration: =1 :param randomize: True :param exponential_increase: =True :return: """ if variable_name == 'list_length': return generate_tuple_list_with_increasing_number_of_events(first_event, start_length, event_occurrences, len_increase_step) if variable_name == 'event_occurrences': return generate_tuple_list_with_increasing_occurrences(first_event, start_length, growth_increment, exponential_increase) if variable_name == 'increasing_gaps': return generate_tuple_list_with_increasing_gaps(first_event, start_length, event_occurrences, gaps_per_iteration, randomize) def one_time_trial(combine_times, events_tuples, input_dict_size=1, use_exponential_occurrences=True): """ :param combine_times: :param events_tuples: :param input_dict_size: =1 :param use_exponential_occurrences: =True :return: (list_len, # occurrences, log10(# occurrences), range/events, start dict size)\n , control time, IndexedValues time """ if events_tuples[0][1] < 10**100: print('one_time_trial prepped list [{} .. {}]'.format(events_tuples[0], events_tuples[-1])) input_dict = get_input_dict(input_dict_size, use_exponential_occurrences) events_tuples = [pair for pair in events_tuples if pair[1]] control_time, indexed_values_time = get_control_and_indexed_values_times(combine_times, events_tuples, input_dict) list_length = float(len(events_tuples)) event_occurrences = float(events_tuples[0][1]) event_occurrences_exponent = log10(events_tuples[0][1]) events_range_vs_events = (max(events_tuples)[0] - min(events_tuples)[0] + 1) / float(list_length) start_dict_size = float(input_dict_size) y_axis_variables = (list_length, event_occurrences, event_occurrences_exponent, events_range_vs_events, start_dict_size) return y_axis_variables, control_time, indexed_values_time def get_input_dict(input_dict_size, use_exponential_occurrences): if use_exponential_occurrences: input_dict = dict([(event, 1 + 2 ** (event % 1000)) for event in range(input_dict_size)]) else: input_dict = dict([(event, 1 + event % 1000) for event in range(input_dict_size)]) return input_dict def get_control_and_indexed_values_times(combine_times, events_tuples, input_dict): control_events_action = get_control_action(input_dict, events_tuples) events_for_indexed_values = AdditiveEvents(input_dict) events_to_add = AdditiveEvents(dict(events_tuples)) indexed_values_start = time.clock() events_for_indexed_values.combine_by_indexed_values(events_to_add, combine_times) indexed_values_time = time.clock() - indexed_values_start control_start = time.clock() control_events_action(events_to_add, combine_times) control_time = time.clock() - control_start return control_time, indexed_values_time def get_control_action(input_dict, events_tuples): control_events = AdditiveEvents(input_dict) control_method_str = get_control_method_str(events_tuples) control_method_dict = {'tuple_list': control_events.combine_by_dictionary, 'flattened_list': control_events.combine_by_flattened_list} control_events_action = control_method_dict[control_method_str] return control_events_action def get_control_method_str(prepped_list): if prepped_list[0][1] == 1: return 'flattened_list' else: return 'tuple_list' def time_trial_vary_start_dict(events_tuple_list, input_dict_start_size=1000, input_dict_downward_step=5, number_of_adds=1, use_exponential_occurrences=True): """ :param events_tuple_list: :param input_dict_start_size: =1000 :param input_dict_downward_step: =5 :param number_of_adds: =1 :param use_exponential_occurrences: =False :return: """ adds_per_trial = number_of_adds variable_name = 'start_dict_size' variable_values = [] control_times = [] indexed_values_times = [] print('please wait for the down to reach zero') input_dict_size = input_dict_start_size while input_dict_size > 0: print('adds {}'.format(adds_per_trial)) y_axis, control_time, indexed_values_time = one_time_trial( adds_per_trial, events_tuple_list, input_dict_size=input_dict_size, use_exponential_occurrences=use_exponential_occurrences ) input_dict_size -= input_dict_downward_step variable = y_axis[4] print('results: variable: {:.2}, control: {:.3e}, IndexedValues: {:.3e}'.format(variable, control_time, indexed_values_time)) print('count down: {}\n'.format(input_dict_size)) variable_values.append(variable) control_times.append(control_time) indexed_values_times.append(indexed_values_time) return variable_values, variable_name, control_times, indexed_values_times def time_trial(generator, variable_name, adds_per_trial=1, automatic_adds_per_trial=False, input_dict_size=1, number_of_data_pts=100): """ :param generator: :param variable_name: 'list_length', 'event_occurrences_linear', 'event_occurrences', 'increasing_gaps' :param adds_per_trial: =1 :param automatic_adds_per_trial: =False :param input_dict_size: =1 :param number_of_data_pts: =100 :return: variable_values, variable_name, control_times, indexed_values_times """ tuple_list_length_times_add_times = 2200 variable_values = [] control_times = [] indexed_values_times = [] count = number_of_data_pts print('please wait for the count-up/down to reach zero') while count > 0: try: tuple_list_for_trial = next(generator) except StopIteration: break if automatic_adds_per_trial: adds_per_trial = int(max(1, tuple_list_length_times_add_times / len(tuple_list_for_trial))) print('adds {}'.format(adds_per_trial)) y_axis, control_time, indexed_values_time = one_time_trial(adds_per_trial, tuple_list_for_trial, input_dict_size=input_dict_size) variable_order = ['list_length', 'event_occurrences_linear', 'event_occurrences', 'increasing_gaps'] index = variable_order.index(variable_name) variable = y_axis[index] print('results: variable: {:.2}, control: {:.3e}, IndexedValues: {:.3e}'.format(variable, control_time, indexed_values_time)) print('count down: {}\n'.format(count)) count -= 1 variable_values.append(variable) control_times.append(control_time) indexed_values_times.append(indexed_values_time) return variable_values, variable_name, control_times, indexed_values_times def plot_trial_with_ratio(variable_values, variable_name, control_times, iv_times, title='none', figure=1, style='bo-', label='', base_line=False): """ :param variable_values: :param variable_name: 'list_length', 'event_occurrences', 'event_occurrences_linear', 'increasing_gaps', 'dict_size' :param control_times: :param iv_times: :param title: :param figure: :param style: ='bo-' :param label: ='' :param base_line: =False :return: """ plt.ion() # use_figure = plt.figure(figure) # use_figure.clf() speed_ratios = [] equality_line = [1.0] * len(control_times) for index, numerator in enumerate(control_times): speed_ratios.append(numerator / iv_times[index]) plt.plot(variable_values, speed_ratios, style, label=label) if base_line: plt.plot(variable_values, equality_line, 'g-', label='equal speed') plt.ylabel('speed of indexed values over speed of control') x_labels = {'list_length': 'size of tuple list', 'event_occurrences': '10 ** exponent event occurrences', 'event_occurrences_linear': 'event occurrences', 'increasing_gaps': 'ratio of events range to non-zero events', 'start_dict_size': 'number of events in starting dictionary'} plt.xlabel(x_labels[variable_name]) plt.legend() plt.title(title) plt.pause(0.01) def plot_trial_two_lines(variable_values, variable_name, control_times, iv_times, title='none', figure=1): """ :param variable_values: :param variable_name:'list_length', 'event_occurrences', 'increasing_gaps', 'dict_size' :param control_times: :param iv_times: :param title: :param figure: :return: """ plt.ion() use_figure = plt.figure(figure) use_figure.clf() plt.plot(variable_values, control_times, 'bo-', label='control') plt.plot(variable_values, iv_times, 'r*-', label='IndexedValues') plt.ylabel('time') x_labels = {'list_length': 'size of tuple list', 'event_occurrences': '10 ** exponent event occurrences', 'increasing_gaps': 'ratio of events range to non-zero events', 'start_dict_size': 'number of events in starting dictionary'} plt.xlabel(x_labels[variable_name]) plt.legend() intersection, control_fit, iv_fit = get_poly_fit_and_intersection(variable_values, control_times, iv_times) title += '\nintersection = {}'.format(intersection) plt.title(title) plt.plot(variable_values, control_fit, 'c-') plt.plot(variable_values, iv_fit, 'c-') plt.pause(0.01) return intersection def get_poly_fit_and_intersection(variable_values, control_times, iv_times): control_slope, control_constant = np.polyfit(variable_values, control_times, 1) iv_slope, iv_constant = np.polyfit(variable_values, iv_times, 1) intersection = (control_constant - iv_constant) / (iv_slope - control_slope) control_poly_fit_values = [(control_slope * x + control_constant) for x in variable_values] iv_poly_fit_values = [(iv_slope * x + iv_constant) for x in variable_values] return intersection, control_poly_fit_values, iv_poly_fit_values def get_welcome(): """return welcome_message.txt""" try: welcome_file_name = getcwd() + '\\' + 'welcome_message.txt' welcome_file = open(welcome_file_name, 'r') welcome_message = welcome_file.read() except IOError: welcome_message = 'took a guess where "welcome_' \ 'message.txt" was, and I was wrong.' return welcome_message def get_int(question): """makes sure user input is an int. quit if "q" """ while True: answer = input_py_2_and_3(question + '\n>>> ') if answer == 'q': raise SystemExit try: output = int(answer) return output except ValueError: print('must be int OR "q" to quit') continue def get_answer(question, min_val, max_val): question = '{} between {} and {}'.format(question, min_val, max_val) raw_val = get_int(question) return min(max_val, (max(min_val, raw_val))) def get_plot_style_generator(): pt_style = cycle(['o', '<', '>', 'v', 's', 'p', '*', '+', 'x', 'D', 'd']) colors = cycle(['b', 'y', 'r', 'c', 'm', 'k', 'g']) while True: yield '{}{}-'.format(next(colors), next(pt_style)) def do_trials_vary_start_dict(add_list_len=10, occurrences_are_many=False, use_exponential_occurrences=True, adds_list=(1, 2, 5)): """ :param add_list_len: =10 :param occurrences_are_many: =False :param use_exponential_occurrences: =False :param adds_list: =(1, 2, 5) :return: """ style_generator = get_plot_style_generator() if occurrences_are_many: occurrences = 10 else: occurrences = 1 list_for_vary_start_dict = get_generator('list_length', 0, add_list_len, event_occurrences=occurrences) tuple_list_for_time_trial = next(list_for_vary_start_dict) for add_variable in adds_list: title = 'vary size of start dict. number of adds = {}\n'.format(add_variable) title += 'input occurrences = {}. input list length = {}'.format(occurrences, add_list_len) results = time_trial_vary_start_dict(tuple_list_for_time_trial, input_dict_start_size=1000, input_dict_downward_step=10, number_of_adds=add_variable, use_exponential_occurrences=use_exponential_occurrences) do_base_line = False if add_variable == adds_list[-1]: do_base_line = True plot_trial_with_ratio(*results, figure=1, title=title, label='add: {}'.format(add_variable), style=next(style_generator), base_line=do_base_line) def do_trials_vary_event_occurrences(add_list_len=10, start_dict_size=1, adds_list=(1, 2, 5), exponential_growth=True): """ :param add_list_len: =10 :param start_dict_size: =1 :param adds_list: =(1, 2, 5) :param exponential_growth: =True :return: """ style_generator = get_plot_style_generator() for add_variable in adds_list: if exponential_growth: increment = 0.2 time_trial_variable = 'event_occurrences' else: increment = 1 time_trial_variable = 'event_occurrences_linear' event_occurrences_generator = get_generator('event_occurrences', 0, add_list_len, growth_increment=increment, exponential_increase=exponential_growth) results = time_trial(event_occurrences_generator, time_trial_variable, adds_per_trial=add_variable, input_dict_size=start_dict_size, number_of_data_pts=100) title = 'increasing event occurrences.\n' title += 'starting dict size={}. input list length = {}'.format(start_dict_size, add_list_len) do_base_line = False if add_variable == adds_list[-1]: do_base_line = True plot_trial_with_ratio(*results, figure=1, title=title, label='add: {}'.format(add_variable), style=next(style_generator), base_line=do_base_line) def do_trials_vary_list_length(start_dict_size=1, occurrences_are_many=False, adds_list=(1, 2, 5)): """ :param start_dict_size: =1 :param occurrences_are_many: =False :param adds_list: =(1, 2, 4) :return: """ style_generator = get_plot_style_generator() if occurrences_are_many: occurrences = 10 else: occurrences = 1 for add_variable in adds_list: list_length_generator = get_generator('list_length', 0, 2, event_occurrences=occurrences, len_increase_step=1) results = time_trial(list_length_generator, 'list_length', adds_per_trial=add_variable, input_dict_size=start_dict_size, number_of_data_pts=100) title = 'increasing list length.\n' title += 'starting dict size={}. input list occurrences = {}'.format(start_dict_size, occurrences) do_base_line = False if add_variable == adds_list[-1]: do_base_line = True plot_trial_with_ratio(*results, figure=1, title=title, label='add: {}'.format(add_variable), style=next(style_generator), base_line=do_base_line) def do_trials_vary_gaps_in_list(add_list_len=100, start_dict_size=1, occurrences_are_many=False, randomize_gaps=True, adds_list=(1, 2, 5)): """ :param add_list_len: =100 :param start_dict_size: =1 :param occurrences_are_many: =False :param randomize_gaps: =True :param adds_list: =(1, 2, 5) :return: """ style_generator = get_plot_style_generator() if occurrences_are_many: occurrences = 10 else: occurrences = 1 gaps_per_iteration = max(1, add_list_len // 100) for add_variable in adds_list: increasing_gaps_generator = get_generator('increasing_gaps', 0, add_list_len, event_occurrences=occurrences, gaps_per_iteration=gaps_per_iteration, randomize=randomize_gaps) results = time_trial(increasing_gaps_generator, 'increasing_gaps', adds_per_trial=add_variable, input_dict_size=start_dict_size, number_of_data_pts=100) title = 'making many gaps in list.\n' title += 'starting dict size={}. input list length: {}, occurrences: {}'.format(start_dict_size, add_list_len, occurrences) do_base_line = False if add_variable == adds_list[-1]: do_base_line = True plot_trial_with_ratio(*results, figure=1, title=title, label='add: {}'.format(add_variable), style=next(style_generator), base_line=do_base_line) def graphing_ui(): """a UI to demonstrate add speeds""" print(WELCOME_TXT) """ 'list_length', 'event_occurrences', 'increasing_gaps', 'dict_size' """ plt_figure = 1 while True: plt.figure(plt_figure) plt_figure += 1 plt.ion() variable_choice = get_answer('enter "1" for varying input events\' length\n' + 'enter "2" for varying input events\' # of occurrences\n' + 'enter "3" for varying input events\' gaps in values\n' + 'enter "4" for varying the size of the start dictionary', 1, 4) variable_dict = {1: 'list_length', 2: 'event_occurrences', 3: 'increasing_gaps', 4: 'dict_size'} action_dict = {1: do_trials_vary_list_length, 2: do_trials_vary_event_occurrences, 3: do_trials_vary_gaps_in_list, 4: do_trials_vary_start_dict} variable = variable_dict[variable_choice] action = action_dict[variable_choice] print('chose {}'.format(variable)) input_variables = get_kwargs(variable) action(**input_variables) plt.pause(0.1) def get_kwargs(request): default_adds_list = [1, 2, 3, 4, 5] keys = ['start_dict_size', 'add_list_len', 'occurrences_are_many', 'exponential_growth'] questions = ['what size for starting dictionary?', 'how large a list to add?', 'should the list have many occurrences? 1=True, 0=False', 'should the occurrences increase exponentially? 1=True, 0=False' ] min_max = [(1, 2000), (2, 500), (0, 1), (0, 1), (0, 1)] if request == 'dict_size': min_max[1] = (2, 100) request_and_indices = {'list_length': (0, 2), 'event_occurrences': (0, 1, 3), 'increasing_gaps': (0, 1, 2), 'dict_size': (1, 2)} output_kwargs = {} for index in request_and_indices[request]: output_kwargs[keys[index]] = get_answer(questions[index], *min_max[index]) if min_max[index] == (0, 1): output_kwargs[keys[index]] = bool(output_kwargs[keys[index]]) if request != 'list_length': adds_list = get_adds_list(output_kwargs) output_kwargs['adds_list'] = adds_list else: output_kwargs['adds_list'] = default_adds_list return output_kwargs def get_adds_list(dictionary): start_size = dictionary.get('start_dict_size', 1000) add_list_size = dictionary['add_list_len'] complete_add_list = [1, 2, 3, 4, 5, 10, 50, 100, 500] max_adds = 5 if start_size <= 100: max_list_size_for_add = [(3, 500), (6, 100), (9, 50), (20, 10), (10000, 5)] for pair in max_list_size_for_add: if add_list_size <= pair[0]: max_adds = pair[1] break else: max_list_size_for_add = [(4, 50), (9, 10), (10000, 5)] for pair in max_list_size_for_add: if add_list_size <= pair[0]: max_adds = pair[1] break adds_list_end = complete_add_list.index(max_adds) return complete_add_list[: adds_list_end + 1] def get_tuple_list(size, many_occurrences=False, step=1): if many_occurrences: occur = 10 else: occur = 1 return [(event, occur) for event in range(0, size, step)] def get_indexed_advantage_ratio(start_dict_size, adds, tuple_list_sizes, many_occurrences): events_tuples = get_tuple_list(tuple_list_sizes, many_occurrences) input_dict = get_input_dict(start_dict_size, True) control_time, indexed_values_time = get_control_and_indexed_values_times(adds, events_tuples, input_dict) return control_time / indexed_values_time def get_data_list(many_occurrences): titles = ('ADDS', 'DICT SIZE', 'LIST SIZE', 'OCCUR MANY', 'RESULT') adds = [1, 2, 3, 4, 5, 10, 20, 50, 100, 500, 1000, 2000] start_dict_sizes = [1, 10, 50, 100, 200, 500, 1000, 2000, 5000] tuple_list_sizes = [2, 3, 4, 6, 8, 10, 20, 50, 100] all_data = [titles] for add_time in adds: print(add_time) for start_size in start_dict_sizes: for tuple_size in tuple_list_sizes: if add_time * tuple_size <= 4000: datum = get_indexed_advantage_ratio(start_size, add_time, tuple_size, many_occurrences) data_line = (float(add_time), float(start_size), float(tuple_size), float(many_occurrences), datum) all_data.append(data_line) return all_data def data_grouper(data_list, index_priority=(0, 1, 2, 3, 4)): new_list = [] for data in data_list: new_data = [] for index in index_priority: new_data.append(data[index]) new_list.append(tuple(new_data)) new_labels = new_list[0] the_rest = sorted(new_list[1:]) return [new_labels] + the_rest def get_result_str(data_list): labels = data_list[0] result_index = labels.index('RESULT') bool_index = labels.index('OCCUR MANY') star_the_result = 1.0 number_of_labels = len(labels) middle_just = '10' template = '\n' + ('{:^' + middle_just + '}|') * number_of_labels template.rstrip('|') table_descriptor = template.format(*labels) line_len = len(table_descriptor) table_descriptor = add_sep_line(table_descriptor, line_len, '*') table_descriptor = '\n' + line_len * '=' + table_descriptor first_element = -1 second_element = -1 output_str = '' for line in data_list[1:]: new_first_element = int(line[0]) new_second_element = int(line[1]) if new_first_element != first_element: output_str += table_descriptor if new_second_element != second_element: output_str = add_sep_line(output_str, line_len, '-') first_element = new_first_element second_element = new_second_element line_strings = [] for index, element in enumerate(line): if index == result_index: to_add = '{:.3f}'.format(element) elif index == bool_index: to_add = str(bool(element)) else: to_add = str(int(element)) line_strings.append(to_add) output_str += template.format(*line_strings) result = float(line[result_index]) if result > star_the_result: output_str += ' *** ' return output_str def add_sep_line(input_str, line_length, separator): return input_str + '\n' + line_length * separator def save_data_pts(data_flat, data_bumpy): flat_save = np.array(data_flat) np.save('save_flat_data', flat_save) bumpy_save = np.array(data_bumpy) np.save('save_bumpy_data', bumpy_save) def load_data_pts(full_file_name): np_array = np.load(full_file_name) output = [] for data_tuple in np_array.tolist(): try: output.append(tuple([float(number) for number in data_tuple])) except ValueError: output.append(tuple(data_tuple)) return output def get_saved_data(): data_points_flat = load_data_pts('save_flat_data.npy') data_points_bumpy = load_data_pts('save_bumpy_data.npy') return data_points_flat, data_points_bumpy def data_points_ui(): try: get_new_data = input_py_2_and_3('generate new data pts (will take some minutes)? type "y" for yes.\n>>> ') if get_new_data == 'y': raise IOError data_points_flat, data_points_bumpy = get_saved_data() except IOError: print('generating data points. this will take a few minutes') data_points_flat = get_data_list(False) data_points_bumpy = get_data_list(True) save_data_pts(data_points_flat, data_points_bumpy) labels_dict = dict(enumerate(data_points_flat[0])) intro = """ here are the values whose order you may change {} at the prompt put in a new 5-digit string showing how you want the data ordered so "01234" will order the data by ('ADDS', 'DICT SIZE', 'LIST SIZE', 'OCCUR MANY', 'RESULT') "21034" will order the data by ('LIST SIZE', 'DICT SIZE', 'ADDS', 'OCCUR MANY', 'RESULT') when prompted, enter the base name for the file. "test" would create 3 files. "test_flat.txt", "test_many.txt", "test_combined.txt". they will be text files showing the data grouped accordingly. flat show adding events that occurred once and many shows events that occurred 10 times. the result column shows how many times faster the index_values method is and so any time indexed values is faster, it is starred. """ print(intro.format(str(labels_dict).replace(',', '\n'))) while True: print(str(labels_dict).replace(',', '\n')) new_order = input_py_2_and_3('new order or "q" quits >>> ') if new_order == 'q': break change_list = [] for digit in new_order: change_list.append(int(digit)) result_to_print_flat = data_grouper(data_points_flat, change_list) result_to_print_bumpy = data_grouper(data_points_bumpy, change_list) flat = get_result_str(result_to_print_flat) many = get_result_str(result_to_print_bumpy) name = input_py_2_and_3('file base name >>> ') with open(name + '_flat.txt', 'w') as file: file.write(flat) with open(name + '_many.txt', 'w') as file: file.write(many) with open(name + '_combined.txt', 'w') as file: file.write(get_side_by_side_data(flat, many)) def get_side_by_side_data(left_answer, right_answer): left_lines = left_answer.split('\n') right_lines = right_answer.split('\n') left_just_line_len = 64 joined_lines = [] for index, line in enumerate(left_lines): new_line = '{:<{}}{}'.format(line, left_just_line_len, right_lines[index]) joined_lines.append(new_line) joined_answer = '\n'.join(joined_lines) return joined_answer if __name__ == '__main__': graphing_ui() # data_points_ui()
[ "itertools.cycle", "time.clock", "matplotlib.pyplot.ylabel", "numpy.polyfit", "random.randrange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "os.getcwd", "numpy.array", "matplotlib.pyplot.figure", "dicetables.additiveevents.AdditiveEvents", "numpy.save", "matplotlib.pyplot.ion", "matplotlib.pyplot.title", "math.log10", "matplotlib.pyplot.pause", "matplotlib.pyplot.legend", "numpy.load" ]
[((5825, 5851), 'math.log10', 'log10', (['events_tuples[0][1]'], {}), '(events_tuples[0][1])\n', (5830, 5851), False, 'from math import log10\n'), ((6730, 6756), 'dicetables.additiveevents.AdditiveEvents', 'AdditiveEvents', (['input_dict'], {}), '(input_dict)\n', (6744, 6756), False, 'from dicetables.additiveevents import AdditiveEvents\n'), ((6840, 6852), 'time.clock', 'time.clock', ([], {}), '()\n', (6850, 6852), False, 'import time\n'), ((7021, 7033), 'time.clock', 'time.clock', ([], {}), '()\n', (7031, 7033), False, 'import time\n'), ((7257, 7283), 'dicetables.additiveevents.AdditiveEvents', 'AdditiveEvents', (['input_dict'], {}), '(input_dict)\n', (7271, 7283), False, 'from dicetables.additiveevents import AdditiveEvents\n'), ((11995, 12004), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (12002, 12004), True, 'import matplotlib.pyplot as plt\n'), ((12251, 12310), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'speed_ratios', 'style'], {'label': 'label'}), '(variable_values, speed_ratios, style, label=label)\n', (12259, 12310), True, 'import matplotlib.pyplot as plt\n'), ((12409, 12468), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""speed of indexed values over speed of control"""'], {}), "('speed of indexed values over speed of control')\n", (12419, 12468), True, 'import matplotlib.pyplot as plt\n'), ((12821, 12856), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_labels[variable_name]'], {}), '(x_labels[variable_name])\n', (12831, 12856), True, 'import matplotlib.pyplot as plt\n'), ((12862, 12874), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (12872, 12874), True, 'import matplotlib.pyplot as plt\n'), ((12879, 12895), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (12888, 12895), True, 'import matplotlib.pyplot as plt\n'), ((12900, 12915), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.01)'], {}), '(0.01)\n', (12909, 12915), True, 'import matplotlib.pyplot as plt\n'), ((13263, 13272), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (13270, 13272), True, 'import matplotlib.pyplot as plt\n'), ((13291, 13309), 'matplotlib.pyplot.figure', 'plt.figure', (['figure'], {}), '(figure)\n', (13301, 13309), True, 'import matplotlib.pyplot as plt\n'), ((13335, 13399), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'control_times', '"""bo-"""'], {'label': '"""control"""'}), "(variable_values, control_times, 'bo-', label='control')\n", (13343, 13399), True, 'import matplotlib.pyplot as plt\n'), ((13404, 13469), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'iv_times', '"""r*-"""'], {'label': '"""IndexedValues"""'}), "(variable_values, iv_times, 'r*-', label='IndexedValues')\n", (13412, 13469), True, 'import matplotlib.pyplot as plt\n'), ((13474, 13492), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""time"""'], {}), "('time')\n", (13484, 13492), True, 'import matplotlib.pyplot as plt\n'), ((13780, 13815), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['x_labels[variable_name]'], {}), '(x_labels[variable_name])\n', (13790, 13815), True, 'import matplotlib.pyplot as plt\n'), ((13821, 13833), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (13831, 13833), True, 'import matplotlib.pyplot as plt\n'), ((14006, 14022), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (14015, 14022), True, 'import matplotlib.pyplot as plt\n'), ((14027, 14071), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'control_fit', '"""c-"""'], {}), "(variable_values, control_fit, 'c-')\n", (14035, 14071), True, 'import matplotlib.pyplot as plt\n'), ((14076, 14115), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'iv_fit', '"""c-"""'], {}), "(variable_values, iv_fit, 'c-')\n", (14084, 14115), True, 'import matplotlib.pyplot as plt\n'), ((14120, 14135), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.01)'], {}), '(0.01)\n', (14129, 14135), True, 'import matplotlib.pyplot as plt\n'), ((14277, 14322), 'numpy.polyfit', 'np.polyfit', (['variable_values', 'control_times', '(1)'], {}), '(variable_values, control_times, 1)\n', (14287, 14322), True, 'import numpy as np\n'), ((14351, 14391), 'numpy.polyfit', 'np.polyfit', (['variable_values', 'iv_times', '(1)'], {}), '(variable_values, iv_times, 1)\n', (14361, 14391), True, 'import numpy as np\n'), ((15745, 15807), 'itertools.cycle', 'cycle', (["['o', '<', '>', 'v', 's', 'p', '*', '+', 'x', 'D', 'd']"], {}), "(['o', '<', '>', 'v', 's', 'p', '*', '+', 'x', 'D', 'd'])\n", (15750, 15807), False, 'from itertools import cycle\n'), ((15843, 15885), 'itertools.cycle', 'cycle', (["['b', 'y', 'r', 'c', 'm', 'k', 'g']"], {}), "(['b', 'y', 'r', 'c', 'm', 'k', 'g'])\n", (15848, 15885), False, 'from itertools import cycle\n'), ((28495, 28514), 'numpy.array', 'np.array', (['data_flat'], {}), '(data_flat)\n', (28503, 28514), True, 'import numpy as np\n'), ((28519, 28555), 'numpy.save', 'np.save', (['"""save_flat_data"""', 'flat_save'], {}), "('save_flat_data', flat_save)\n", (28526, 28555), True, 'import numpy as np\n'), ((28574, 28594), 'numpy.array', 'np.array', (['data_bumpy'], {}), '(data_bumpy)\n', (28582, 28594), True, 'import numpy as np\n'), ((28599, 28637), 'numpy.save', 'np.save', (['"""save_bumpy_data"""', 'bumpy_save'], {}), "('save_bumpy_data', bumpy_save)\n", (28606, 28637), True, 'import numpy as np\n'), ((28690, 28713), 'numpy.load', 'np.load', (['full_file_name'], {}), '(full_file_name)\n', (28697, 28713), True, 'import numpy as np\n'), ((6965, 6977), 'time.clock', 'time.clock', ([], {}), '()\n', (6975, 6977), False, 'import time\n'), ((7109, 7121), 'time.clock', 'time.clock', ([], {}), '()\n', (7119, 7121), False, 'import time\n'), ((12337, 12404), 'matplotlib.pyplot.plot', 'plt.plot', (['variable_values', 'equality_line', '"""g-"""'], {'label': '"""equal speed"""'}), "(variable_values, equality_line, 'g-', label='equal speed')\n", (12345, 12404), True, 'import matplotlib.pyplot as plt\n'), ((21874, 21896), 'matplotlib.pyplot.figure', 'plt.figure', (['plt_figure'], {}), '(plt_figure)\n', (21884, 21896), True, 'import matplotlib.pyplot as plt\n'), ((21929, 21938), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (21936, 21938), True, 'import matplotlib.pyplot as plt\n'), ((22988, 23002), 'matplotlib.pyplot.pause', 'plt.pause', (['(0.1)'], {}), '(0.1)\n', (22997, 23002), True, 'import matplotlib.pyplot as plt\n'), ((2929, 2966), 'random.randrange', 'random.randrange', (['(1)', '(start_length - 1)'], {}), '(1, start_length - 1)\n', (2945, 2966), False, 'import random\n'), ((14814, 14822), 'os.getcwd', 'getcwd', ([], {}), '()\n', (14820, 14822), False, 'from os import getcwd\n')]
# coding: utf-8 # In[20]: import numpy as np import pydensecrf.densecrf as dcrf import os import cv2 import random from tqdm import tqdm # In[21]: from skimage.color import gray2rgb from skimage.color import rgb2gray import matplotlib.pyplot as plt from sklearn.metrics import f1_score, accuracy_score from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax #from osgeo import gdal get_ipython().run_line_magic('matplotlib', 'inline') # In[22]: # Color maps for direction map COLOR_LR = [0,128,128] COLOR_UD = [128,0,128] COLOR_DIAG = [255,215,0] COLOR_ADIAG = [1,255,255] INF = 10000 # In[23]: MAX = 0 SUM = 1 VEC = 0 MAT = 1 # In[24]: def dir_to_features(dir_map): """Converts direction color map to feature used for crf kernel. The feature is obtained by computing the intersections of the x, y axis and the line determined by the position of one point and its direction. (More details in the report) Parameters ____________ dir_map: numpy.array Direction map that maps each pixel to a direction in [left_right, up_down, diagonal, anti-diagonal], each direction is represented by a color. """ (h, w, c) = dir_map.shape feature_map = np.zeros((h,w,2)) for i in range(h): for j in range(w): dir_color = dir_map[i,j] if dir_color[0] == COLOR_LR[0]: # dir = lr feature_map[i,j] = np.array([INF,i]) if dir_color[0] == COLOR_UP[0]: # dir = ud feature_map[i,j] = np.array([j,INF]) if dir_color[1] == COLOR_DIAG[0]: # dir = diag feature_map[i,j] = np.array([j-i,i-j]) if dir_color[1] == COLOR_ADIAG[0]: # dir = adiag feature_map[i,j] = np.array([i+j, i+j]) return feature_map # In[25]: def gen_dir_map(img): """Generate direction map from a rgb img Parameters ____________ img: numpy.array Rgb img with width = height """ window_size = 101 half_size = int((window_size-1)/2) sigma_1 = 2 sigma_2 = 40 (h, w, c) = img.shape assert h==w, "h and w are not equal" dir_map = np.zeros((h,w)) pos_mat = np.zeros((h,w,2)) for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) index_mask_lr = np.zeros((window_size, window_size)).astype("bool") index_mask_lr[half_size,:]=True index_mask_ud = np.zeros((window_size, window_size)).astype("bool") index_mask_ud[:,half_size]=True index_mask_diag = np.identity(window_size).astype("bool") index_mask_adiag = np.fliplr(np.identity(window_size)).astype("bool") mask_list = [index_mask_lr, index_mask_ud, index_mask_diag, index_mask_adiag] for i in range(h): for j in range(w): img_nbr = padded_img[i:i+window_size,j:j+window_size] pos_nbr = padded_pos[i:i+window_size,j:j+window_size] img_nbr = img_nbr - img[i,j,:] pos_nbr = pos_nbr - np.array([i,j]) dir_intensity = np.zeros(4) for dir_index, index_mask in enumerate(mask_list): img_nbr_dir = img_nbr[index_mask] pos_nbr_dir = pos_nbr[index_mask] img_nbr_dir = np.sum(img_nbr_dir**2, axis=1)/(2*sigma_1**2) pos_nbr_dir = np.sum(pos_nbr_dir**2, axis=1)/(2*sigma_2**2) k = np.exp(-img_nbr_dir-pos_nbr_dir) dir_intensity[dir_index]=np.sum(k) dir_map[i,j]=np.argmax(dir_intensity)+1 return dir_map # In[26]: def visualize_dir_map(img, dir_map, save_file=False, filename=None, vis_path=None, dir_path=None): """Visualize a direction map Parameters ____________ img: numpy.array Rgb img dir_map: numpy.array Correspongding direction map ... """ h = img.shape[0] w = img.shape[1] vis_dir = np.zeros(img.shape) vis_dir[dir_map==1] = np.array(COLOR_LR) vis_dir[dir_map==2] = np.array(COLOR_UD) vis_dir[dir_map==3] = np.array(COLOR_DIAG) vis_dir[dir_map==4] = np.array(COLOR_ADIAG) plt.figure(figsize=(10,5)) plt.subplot(1,2,1); plt.imshow(img); plt.title('Original Image (blurred)'); plt.axis('off'); plt.subplot(1,2,2); plt.imshow(dir_map); plt.title('Direction map'); plt.axis('off'); if save_file: plt.savefig(os.path.join(vis_path, filename),dpi=300) plt.close() cv2.imwrite(os.path.join(dir_path, filename), vis_dir) # In[27]: def gen_dir_map_and_visualize(image_path= './images/', vis_path='./vis_dir_blur_/', dir_path='./dir_map_/', process_all=True): """Generate direction color map for images in image_path Parameters ____________ image_path: string Image path vis_path: string Path to save visualization results dir_path: string Path to save direction map process_all: Bool False to generate a single visualization result without save. True to generate and save visualizaiton results for all images. """ if not os.path.exists(dir_path): os.mkdir(dir_path) if not os.path.exists(vis_path): os.mkdir(vis_path) if process_all: for file in tqdm(os.listdir(image_path)): img = cv2.imread(os.path.join(image_path, file)) img = cv2.GaussianBlur(img,(5,5),0) dir_map = gen_dir_map(img) visualize_dir_map(img, dir_map, filename=file, save_file=True, vis_path=vis_path, dir_path=dir_path) else: img = cv2.imread('./images/satImage_001.png') img = cv2.GaussianBlur(img,(5,5),0) dir_map = gen_dir_map(img) visualize_dir_map(img, dir_map, save_file=False) # In[28]: def crf_with_dir_kernel(original_img, dir_feature, prob, iter_num, compat_smooth, compat_appearance, compat_struct, w_smooth, w_appearance, w_struct, sigma_smooth, sigma_app_color, sigma_app_pos, sigma_struct_pos, sigma_struct_feat): """CRF with a Gaussian smoothing kernel, an appearance kernel and a structural kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #Setting up the CRF model d = dcrf.DenseCRF2D(original_img.shape[1], original_img.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) compat_smooth = compat_smooth * w_smooth compat_appearance = compat_appearance * w_appearance compat_struct = compat_struct * w_struct # Smooth kernel d.addPairwiseGaussian(sxy=(sigma_smooth, sigma_smooth), compat=compat_smooth.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # Appearance kernel d.addPairwiseBilateral(sxy=(sigma_app_pos, sigma_app_pos), srgb=(sigma_app_color, sigma_app_color, sigma_app_color), rgbim=original_image, compat=compat_appearance.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # Structural kernel pairwise_energy = create_pairwise_bilateral(sdims=(sigma_struct_pos,sigma_struct_pos), schan=(sigma_struct_feat,sigma_struct_feat), img=dir_feature, chdim=2) d.addPairwiseEnergy(pairwise_energy, compat=compat_struct.astype(np.float32)) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((dir_feature.shape[0], dir_feature.shape[1])) # In[29]: def crf(original_image, prob, iter_num=4, compat_smooth = np.array([[-0.4946432, 1.27117338],[0.59452892, 0.23182234]]), compat_appearance = np.array([[-0.30571318, 0.83015124],[1.3217825, -0.13046645]]), w_smooth=3.7946478055761963, w_appearance=1.8458537690881878, sigma_smooth=8.575103751642672, sigma_color=2.0738539891571977, sigma_color_pos=20): """Basic CRF with a Gaussian smoothing kernel and an appearance kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #print("No of labels in the Image are ") #print(n_labels) #Setting up the CRF model d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) compat_smooth=compat_smooth*w_smooth compat_appearance=compat_appearance*w_appearance # This adds the color-independent term, features are the locations only. d.addPairwiseGaussian(sxy=(sigma_smooth, sigma_smooth), compat=compat_smooth.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # This adds the color-dependent term, i.e. features are (x,y,r,g,b). d.addPairwiseBilateral(sxy=(sigma_color_pos, sigma_color_pos), srgb=(sigma_color, sigma_color, sigma_color), rgbim=original_image, compat=compat_appearance.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((original_image.shape[0], original_image.shape[1])) # In[30]: def crf_smooth(original_image, prob, use_2d = True, iter_num=1, w=4.921522279119057, sigma_sm=4.325251720130304): """CRF with only a smoothing kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #Setting up the CRF model if use_2d : d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) # This adds the color-independent term, features are the locations only. d.addPairwiseGaussian(sxy=(sigma_sm, sigma_sm), compat=w, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((original_image.shape[0], original_image.shape[1])) # In[31]: def propagate_max_mat(img, prob): """Probability propagation (max) in 4 directions via matrix multiplication """ prob_out = prob.copy() prop_size = 51 half_size = int((prop_size-1)/2) prop_num = 3 sigma_1 = 5 sigma_2 = 42 (h, w) = prob.shape pos_mat = np.zeros((h,w,2)) for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) index_mask = np.zeros((prop_size, prop_size)).astype("bool") for i in range(prop_size): index_mask[i,half_size]=1 index_mask[half_size,i]=1 index_mask[i,i]=1 index_mask[prop_size-1-i,i]=1 for iteration in range(prop_num): padded_prob = np.pad(prob_out, ((half_size, half_size), (half_size, half_size))) # propagate prob (maximum) for i in range(h): for j in range(w): if prob_out[i,j]<0.01: continue img_nbr = padded_img[i:i+prop_size,j:j+prop_size] pos_nbr = padded_pos[i:i+prop_size,j:j+prop_size] img_nbr = img_nbr - img[i,j,:] pos_nbr = pos_nbr - np.array([i,j]) img_nbr[~index_mask]=0 pos_nbr[~index_mask]=0 img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*prob_out[i,j] k = k*index_mask padded_prob[i:i+prop_size,j:j+prop_size] = np.maximum(padded_prob[i:i+prop_size,j:j+prop_size], k) prob_out = padded_prob[half_size:h+half_size,half_size:w+half_size] return prob_out # In[32]: def propagate_max_vec(img, prob, prop_size=11, prop_num=16, sigma_1=1.039316347691348, sigma_2=40): """ vec means only do propagation along x and y axis max means propagate using max function Args: prop_size: neighborhood size prop_num: number of iteration/propagation sigma_1: variance of color sigma_2: variance of distance """ prob_out = prob.copy() half_size = int((prop_size-1)/2) (h, w, c) = img.shape pos_mat = np.zeros((h,w,2)) # position matrix for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) for iteration in range(prop_num): padded_prob = np.pad(prob_out, ((half_size, half_size), (half_size, half_size))) padded_prob_fix = padded_prob.copy() # propagate prob (maximum) assert h==w, "h and w are not equal" for i in range(h): # prop along y for row i img_nbr = padded_img[i:i+prop_size,:] pos_nbr = padded_pos[i:i+prop_size,:] img_nbr = img_nbr - padded_img[i+half_size,:,:] pos_nbr = pos_nbr - padded_pos[i+half_size,:,:] img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*padded_prob_fix[i+half_size,:] padded_prob[i:i+prop_size,:] = np.maximum(padded_prob[i:i+prop_size,:], k) # prop along x for col i img_nbr = padded_img[:,i:i+prop_size] pos_nbr = padded_pos[:,i:i+prop_size] img_nbr = img_nbr - padded_img[:,i+half_size,:].reshape((padded_img.shape[0],1,c)) pos_nbr = pos_nbr - padded_pos[:,i+half_size,:].reshape((padded_img.shape[0],1,2)) img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*padded_prob_fix[:,i+half_size].reshape((-1,1)) padded_prob[:,i:i+prop_size] = np.maximum(padded_prob[:,i:i+prop_size], k) prob_out = padded_prob[half_size:h+half_size,half_size:w+half_size] return prob_out # In[33]: def propagate_sum_vec(img, prob, prop_size=11, prop_num=1, sigma_1=1.5319569104856783, sigma_2=80): """ vec means only do propagation along x and y axis sum means propagate in a additive schema (with total probability fixed) Args: prop_size: neighborhood size prop_num: number of iteration/propagation sigma_1: variance of color sigma_2: variance of distance """ # print(np.sum(prob)) prob_out = prob.copy() half_size = int((prop_size-1)/2) (h, w, c) = img.shape pos_mat = np.zeros((h,w,2)) # position matrix for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) padded_prob = np.pad(prob, ((half_size, half_size), (half_size, half_size))) for iteration in range(prop_num): padded_prob_fix = padded_prob.copy() padded_prob = np.pad(np.zeros((h,w)), ((half_size, half_size), (half_size, half_size))) # propagate prob (sum) assert h==w, "h and w are not equal" # compute the degree mat deg_mat = np.zeros((h+2*half_size,w+2*half_size)) for i in range(h): # prop along y for row i img_nbr = padded_img[i:i+prop_size,:] pos_nbr = padded_pos[i:i+prop_size,:] img_nbr = img_nbr - padded_img[i+half_size,:,:] pos_nbr = pos_nbr - padded_pos[i+half_size,:,:] img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr) deg_mat[i+half_size,:] = deg_mat[i+half_size,:]+np.sum(k,axis=0) # prop along x for col i img_nbr = padded_img[:,i:i+prop_size] pos_nbr = padded_pos[:,i:i+prop_size] img_nbr = img_nbr - padded_img[:,i+half_size,:].reshape((padded_img.shape[0],1,c)) pos_nbr = pos_nbr - padded_pos[:,i+half_size,:].reshape((padded_img.shape[0],1,2)) img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr) deg_mat[:,i+half_size] = deg_mat[:,i+half_size]+np.sum(k,axis=1) for i in range(h): # prop along y for row i img_nbr = padded_img[i:i+prop_size,:] pos_nbr = padded_pos[i:i+prop_size,:] img_nbr = img_nbr - padded_img[i+half_size,:,:] pos_nbr = pos_nbr - padded_pos[i+half_size,:,:] img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr) # similarity matrix k = k/deg_mat[i+half_size,:] #devided by degree prop_prob = k * padded_prob_fix[i+half_size,:] padded_prob[i:i+prop_size,:] = padded_prob[i:i+prop_size,:] + prop_prob # prop along x for col i img_nbr = padded_img[:,i:i+prop_size] pos_nbr = padded_pos[:,i:i+prop_size] img_nbr = img_nbr - padded_img[:,i+half_size,:].reshape((padded_img.shape[0],1,c)) pos_nbr = pos_nbr - padded_pos[:,i+half_size,:].reshape((padded_img.shape[0],1,2)) img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr) # similarity matrix k = k/deg_mat[:,i+half_size].reshape((-1,1)) #devided by degree prop_prob = k * padded_prob_fix[:,i+half_size].reshape((-1,1)) padded_prob[:,i:i+prop_size] = padded_prob[:,i:i+prop_size]+ prop_prob # padded_prob = padded_prob + 0.5 * padded_prob_fix # lazy propagation prob_out = padded_prob[half_size:h+half_size,half_size:w+half_size] # print(np.sum(prob_out)) prob_out[prob_out>1]=1 return prob_out # In[34]: def prob_to_patch(im): """Convert pixel level probability prediction to patch version """ patch_list = [] patch_size = 16 for j in range(0, im.shape[1], patch_size): for i in range(0, im.shape[0], patch_size): patch = im[i:i + patch_size, j:j + patch_size] df = np.mean(patch) patch_list.append(df) return np.array(patch_list)
[ "numpy.ascontiguousarray", "numpy.array", "pydensecrf.utils.unary_from_softmax", "matplotlib.pyplot.imshow", "pydensecrf.densecrf.DenseCRF2D", "os.path.exists", "os.listdir", "numpy.mean", "matplotlib.pyplot.close", "numpy.exp", "os.mkdir", "matplotlib.pyplot.axis", "numpy.maximum", "numpy.identity", "numpy.argmax", "pydensecrf.utils.create_pairwise_bilateral", "matplotlib.pyplot.title", "cv2.GaussianBlur", "cv2.imread", "os.path.join", "numpy.sum", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.pad", "matplotlib.pyplot.subplot" ]
[((1290, 1309), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (1298, 1309), True, 'import numpy as np\n'), ((2223, 2239), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (2231, 2239), True, 'import numpy as np\n'), ((2253, 2272), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (2261, 2272), True, 'import numpy as np\n'), ((2409, 2482), 'numpy.pad', 'np.pad', (['pos_mat', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(pos_mat, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (2415, 2482), True, 'import numpy as np\n'), ((2499, 2568), 'numpy.pad', 'np.pad', (['img', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(img, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (2505, 2568), True, 'import numpy as np\n'), ((4187, 4206), 'numpy.zeros', 'np.zeros', (['img.shape'], {}), '(img.shape)\n', (4195, 4206), True, 'import numpy as np\n'), ((4233, 4251), 'numpy.array', 'np.array', (['COLOR_LR'], {}), '(COLOR_LR)\n', (4241, 4251), True, 'import numpy as np\n'), ((4278, 4296), 'numpy.array', 'np.array', (['COLOR_UD'], {}), '(COLOR_UD)\n', (4286, 4296), True, 'import numpy as np\n'), ((4323, 4343), 'numpy.array', 'np.array', (['COLOR_DIAG'], {}), '(COLOR_DIAG)\n', (4331, 4343), True, 'import numpy as np\n'), ((4370, 4391), 'numpy.array', 'np.array', (['COLOR_ADIAG'], {}), '(COLOR_ADIAG)\n', (4378, 4391), True, 'import numpy as np\n'), ((4396, 4423), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (4406, 4423), True, 'import matplotlib.pyplot as plt\n'), ((4427, 4447), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (4438, 4447), True, 'import matplotlib.pyplot as plt\n'), ((4447, 4462), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4457, 4462), True, 'import matplotlib.pyplot as plt\n'), ((4464, 4501), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image (blurred)"""'], {}), "('Original Image (blurred)')\n", (4473, 4501), True, 'import matplotlib.pyplot as plt\n'), ((4503, 4518), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4511, 4518), True, 'import matplotlib.pyplot as plt\n'), ((4524, 4544), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (4535, 4544), True, 'import matplotlib.pyplot as plt\n'), ((4544, 4563), 'matplotlib.pyplot.imshow', 'plt.imshow', (['dir_map'], {}), '(dir_map)\n', (4554, 4563), True, 'import matplotlib.pyplot as plt\n'), ((4565, 4591), 'matplotlib.pyplot.title', 'plt.title', (['"""Direction map"""'], {}), "('Direction map')\n", (4574, 4591), True, 'import matplotlib.pyplot as plt\n'), ((4593, 4608), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (4601, 4608), True, 'import matplotlib.pyplot as plt\n'), ((6606, 6625), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (6614, 6625), True, 'import numpy as np\n'), ((6822, 6893), 'pydensecrf.densecrf.DenseCRF2D', 'dcrf.DenseCRF2D', (['original_img.shape[1]', 'original_img.shape[0]', 'n_labels'], {}), '(original_img.shape[1], original_img.shape[0], n_labels)\n', (6837, 6893), True, 'import pydensecrf.densecrf as dcrf\n'), ((6969, 7004), 'pydensecrf.utils.unary_from_softmax', 'unary_from_softmax', (['annotated_image'], {}), '(annotated_image)\n', (6987, 7004), False, 'from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax\n'), ((7017, 7040), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['U'], {}), '(U)\n', (7037, 7040), True, 'import numpy as np\n'), ((7926, 8072), 'pydensecrf.utils.create_pairwise_bilateral', 'create_pairwise_bilateral', ([], {'sdims': '(sigma_struct_pos, sigma_struct_pos)', 'schan': '(sigma_struct_feat, sigma_struct_feat)', 'img': 'dir_feature', 'chdim': '(2)'}), '(sdims=(sigma_struct_pos, sigma_struct_pos), schan\n =(sigma_struct_feat, sigma_struct_feat), img=dir_feature, chdim=2)\n', (7951, 8072), False, 'from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax\n'), ((8293, 8304), 'numpy.array', 'np.array', (['Q'], {}), '(Q)\n', (8301, 8304), True, 'import numpy as np\n'), ((8459, 8521), 'numpy.array', 'np.array', (['[[-0.4946432, 1.27117338], [0.59452892, 0.23182234]]'], {}), '([[-0.4946432, 1.27117338], [0.59452892, 0.23182234]])\n', (8467, 8521), True, 'import numpy as np\n'), ((8552, 8615), 'numpy.array', 'np.array', (['[[-0.30571318, 0.83015124], [1.3217825, -0.13046645]]'], {}), '([[-0.30571318, 0.83015124], [1.3217825, -0.13046645]])\n', (8560, 8615), True, 'import numpy as np\n'), ((8901, 8920), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (8909, 8920), True, 'import numpy as np\n'), ((9201, 9276), 'pydensecrf.densecrf.DenseCRF2D', 'dcrf.DenseCRF2D', (['original_image.shape[1]', 'original_image.shape[0]', 'n_labels'], {}), '(original_image.shape[1], original_image.shape[0], n_labels)\n', (9216, 9276), True, 'import pydensecrf.densecrf as dcrf\n'), ((9352, 9387), 'pydensecrf.utils.unary_from_softmax', 'unary_from_softmax', (['annotated_image'], {}), '(annotated_image)\n', (9370, 9387), False, 'from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax\n'), ((9400, 9423), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['U'], {}), '(U)\n', (9420, 9423), True, 'import numpy as np\n'), ((10258, 10269), 'numpy.array', 'np.array', (['Q'], {}), '(Q)\n', (10266, 10269), True, 'import numpy as np\n'), ((10562, 10581), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (10570, 10581), True, 'import numpy as np\n'), ((11349, 11360), 'numpy.array', 'np.array', (['Q'], {}), '(Q)\n', (11357, 11360), True, 'import numpy as np\n'), ((11752, 11771), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (11760, 11771), True, 'import numpy as np\n'), ((11908, 11981), 'numpy.pad', 'np.pad', (['pos_mat', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(pos_mat, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (11914, 11981), True, 'import numpy as np\n'), ((11998, 12067), 'numpy.pad', 'np.pad', (['img', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(img, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (12004, 12067), True, 'import numpy as np\n'), ((13882, 13901), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (13890, 13901), True, 'import numpy as np\n'), ((14063, 14136), 'numpy.pad', 'np.pad', (['pos_mat', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(pos_mat, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (14069, 14136), True, 'import numpy as np\n'), ((14153, 14222), 'numpy.pad', 'np.pad', (['img', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(img, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (14159, 14222), True, 'import numpy as np\n'), ((16379, 16398), 'numpy.zeros', 'np.zeros', (['(h, w, 2)'], {}), '((h, w, 2))\n', (16387, 16398), True, 'import numpy as np\n'), ((16560, 16633), 'numpy.pad', 'np.pad', (['pos_mat', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(pos_mat, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (16566, 16633), True, 'import numpy as np\n'), ((16650, 16719), 'numpy.pad', 'np.pad', (['img', '((half_size, half_size), (half_size, half_size), (0, 0))'], {}), '(img, ((half_size, half_size), (half_size, half_size), (0, 0)))\n', (16656, 16719), True, 'import numpy as np\n'), ((16737, 16799), 'numpy.pad', 'np.pad', (['prob', '((half_size, half_size), (half_size, half_size))'], {}), '(prob, ((half_size, half_size), (half_size, half_size)))\n', (16743, 16799), True, 'import numpy as np\n'), ((20330, 20350), 'numpy.array', 'np.array', (['patch_list'], {}), '(patch_list)\n', (20338, 20350), True, 'import numpy as np\n'), ((4698, 4709), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4707, 4709), True, 'import matplotlib.pyplot as plt\n'), ((5448, 5472), 'os.path.exists', 'os.path.exists', (['dir_path'], {}), '(dir_path)\n', (5462, 5472), False, 'import os\n'), ((5482, 5500), 'os.mkdir', 'os.mkdir', (['dir_path'], {}), '(dir_path)\n', (5490, 5500), False, 'import os\n'), ((5512, 5536), 'os.path.exists', 'os.path.exists', (['vis_path'], {}), '(vis_path)\n', (5526, 5536), False, 'import os\n'), ((5546, 5564), 'os.mkdir', 'os.mkdir', (['vis_path'], {}), '(vis_path)\n', (5554, 5564), False, 'import os\n'), ((5951, 5990), 'cv2.imread', 'cv2.imread', (['"""./images/satImage_001.png"""'], {}), "('./images/satImage_001.png')\n", (5961, 5990), False, 'import cv2\n'), ((6005, 6037), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(5, 5)', '(0)'], {}), '(img, (5, 5), 0)\n', (6021, 6037), False, 'import cv2\n'), ((10802, 10877), 'pydensecrf.densecrf.DenseCRF2D', 'dcrf.DenseCRF2D', (['original_image.shape[1]', 'original_image.shape[0]', 'n_labels'], {}), '(original_image.shape[1], original_image.shape[0], n_labels)\n', (10817, 10877), True, 'import pydensecrf.densecrf as dcrf\n'), ((10961, 10996), 'pydensecrf.utils.unary_from_softmax', 'unary_from_softmax', (['annotated_image'], {}), '(annotated_image)\n', (10979, 10996), False, 'from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax\n'), ((11013, 11036), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['U'], {}), '(U)\n', (11033, 11036), True, 'import numpy as np\n'), ((12369, 12435), 'numpy.pad', 'np.pad', (['prob_out', '((half_size, half_size), (half_size, half_size))'], {}), '(prob_out, ((half_size, half_size), (half_size, half_size)))\n', (12375, 12435), True, 'import numpy as np\n'), ((14291, 14357), 'numpy.pad', 'np.pad', (['prob_out', '((half_size, half_size), (half_size, half_size))'], {}), '(prob_out, ((half_size, half_size), (half_size, half_size)))\n', (14297, 14357), True, 'import numpy as np\n'), ((17106, 17154), 'numpy.zeros', 'np.zeros', (['(h + 2 * half_size, w + 2 * half_size)'], {}), '((h + 2 * half_size, w + 2 * half_size))\n', (17114, 17154), True, 'import numpy as np\n'), ((2593, 2629), 'numpy.zeros', 'np.zeros', (['(window_size, window_size)'], {}), '((window_size, window_size))\n', (2601, 2629), True, 'import numpy as np\n'), ((2701, 2737), 'numpy.zeros', 'np.zeros', (['(window_size, window_size)'], {}), '((window_size, window_size))\n', (2709, 2737), True, 'import numpy as np\n'), ((2811, 2835), 'numpy.identity', 'np.identity', (['window_size'], {}), '(window_size)\n', (2822, 2835), True, 'import numpy as np\n'), ((3308, 3319), 'numpy.zeros', 'np.zeros', (['(4)'], {}), '(4)\n', (3316, 3319), True, 'import numpy as np\n'), ((4648, 4680), 'os.path.join', 'os.path.join', (['vis_path', 'filename'], {}), '(vis_path, filename)\n', (4660, 4680), False, 'import os\n'), ((4730, 4762), 'os.path.join', 'os.path.join', (['dir_path', 'filename'], {}), '(dir_path, filename)\n', (4742, 4762), False, 'import os\n'), ((5610, 5632), 'os.listdir', 'os.listdir', (['image_path'], {}), '(image_path)\n', (5620, 5632), False, 'import os\n'), ((5714, 5746), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(5, 5)', '(0)'], {}), '(img, (5, 5), 0)\n', (5730, 5746), False, 'import cv2\n'), ((12089, 12121), 'numpy.zeros', 'np.zeros', (['(prop_size, prop_size)'], {}), '((prop_size, prop_size))\n', (12097, 12121), True, 'import numpy as np\n'), ((15010, 15056), 'numpy.maximum', 'np.maximum', (['padded_prob[i:i + prop_size, :]', 'k'], {}), '(padded_prob[i:i + prop_size, :], k)\n', (15020, 15056), True, 'import numpy as np\n'), ((15653, 15699), 'numpy.maximum', 'np.maximum', (['padded_prob[:, i:i + prop_size]', 'k'], {}), '(padded_prob[:, i:i + prop_size], k)\n', (15663, 15699), True, 'import numpy as np\n'), ((16912, 16928), 'numpy.zeros', 'np.zeros', (['(h, w)'], {}), '((h, w))\n', (16920, 16928), True, 'import numpy as np\n'), ((17574, 17600), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (17580, 17600), True, 'import numpy as np\n'), ((18160, 18186), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (18166, 18186), True, 'import numpy as np\n'), ((18691, 18717), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (18697, 18717), True, 'import numpy as np\n'), ((19411, 19437), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (19417, 19437), True, 'import numpy as np\n'), ((20270, 20284), 'numpy.mean', 'np.mean', (['patch'], {}), '(patch)\n', (20277, 20284), True, 'import numpy as np\n'), ((1485, 1503), 'numpy.array', 'np.array', (['[INF, i]'], {}), '([INF, i])\n', (1493, 1503), True, 'import numpy as np\n'), ((1593, 1611), 'numpy.array', 'np.array', (['[j, INF]'], {}), '([j, INF])\n', (1601, 1611), True, 'import numpy as np\n'), ((1705, 1729), 'numpy.array', 'np.array', (['[j - i, i - j]'], {}), '([j - i, i - j])\n', (1713, 1729), True, 'import numpy as np\n'), ((1821, 1845), 'numpy.array', 'np.array', (['[i + j, i + j]'], {}), '([i + j, i + j])\n', (1829, 1845), True, 'import numpy as np\n'), ((2884, 2908), 'numpy.identity', 'np.identity', (['window_size'], {}), '(window_size)\n', (2895, 2908), True, 'import numpy as np\n'), ((3264, 3280), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (3272, 3280), True, 'import numpy as np\n'), ((3655, 3689), 'numpy.exp', 'np.exp', (['(-img_nbr_dir - pos_nbr_dir)'], {}), '(-img_nbr_dir - pos_nbr_dir)\n', (3661, 3689), True, 'import numpy as np\n'), ((3729, 3738), 'numpy.sum', 'np.sum', (['k'], {}), '(k)\n', (3735, 3738), True, 'import numpy as np\n'), ((3764, 3788), 'numpy.argmax', 'np.argmax', (['dir_intensity'], {}), '(dir_intensity)\n', (3773, 3788), True, 'import numpy as np\n'), ((5664, 5694), 'os.path.join', 'os.path.join', (['image_path', 'file'], {}), '(image_path, file)\n', (5676, 5694), False, 'import os\n'), ((13193, 13253), 'numpy.maximum', 'np.maximum', (['padded_prob[i:i + prop_size, j:j + prop_size]', 'k'], {}), '(padded_prob[i:i + prop_size, j:j + prop_size], k)\n', (13203, 13253), True, 'import numpy as np\n'), ((14789, 14817), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (14795, 14817), True, 'import numpy as np\n'), ((14853, 14881), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (14859, 14881), True, 'import numpy as np\n'), ((14911, 14937), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (14917, 14937), True, 'import numpy as np\n'), ((15416, 15444), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (15422, 15444), True, 'import numpy as np\n'), ((15480, 15508), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (15486, 15508), True, 'import numpy as np\n'), ((15538, 15564), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (15544, 15564), True, 'import numpy as np\n'), ((17452, 17480), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (17458, 17480), True, 'import numpy as np\n'), ((17516, 17544), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (17522, 17544), True, 'import numpy as np\n'), ((17659, 17676), 'numpy.sum', 'np.sum', (['k'], {'axis': '(0)'}), '(k, axis=0)\n', (17665, 17676), True, 'import numpy as np\n'), ((18038, 18066), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (18044, 18066), True, 'import numpy as np\n'), ((18102, 18130), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (18108, 18130), True, 'import numpy as np\n'), ((18245, 18262), 'numpy.sum', 'np.sum', (['k'], {'axis': '(1)'}), '(k, axis=1)\n', (18251, 18262), True, 'import numpy as np\n'), ((18569, 18597), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (18575, 18597), True, 'import numpy as np\n'), ((18633, 18661), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (18639, 18661), True, 'import numpy as np\n'), ((19289, 19317), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (19295, 19317), True, 'import numpy as np\n'), ((19353, 19381), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (19359, 19381), True, 'import numpy as np\n'), ((3513, 3545), 'numpy.sum', 'np.sum', (['(img_nbr_dir ** 2)'], {'axis': '(1)'}), '(img_nbr_dir ** 2, axis=1)\n', (3519, 3545), True, 'import numpy as np\n'), ((3589, 3621), 'numpy.sum', 'np.sum', (['(pos_nbr_dir ** 2)'], {'axis': '(1)'}), '(pos_nbr_dir ** 2, axis=1)\n', (3595, 3621), True, 'import numpy as np\n'), ((12812, 12828), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (12820, 12828), True, 'import numpy as np\n'), ((12932, 12960), 'numpy.sum', 'np.sum', (['(img_nbr ** 2)'], {'axis': '(2)'}), '(img_nbr ** 2, axis=2)\n', (12938, 12960), True, 'import numpy as np\n'), ((13000, 13028), 'numpy.sum', 'np.sum', (['(pos_nbr ** 2)'], {'axis': '(2)'}), '(pos_nbr ** 2, axis=2)\n', (13006, 13028), True, 'import numpy as np\n'), ((13062, 13088), 'numpy.exp', 'np.exp', (['(-img_nbr - pos_nbr)'], {}), '(-img_nbr - pos_nbr)\n', (13068, 13088), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import os from pyburst.grids import grid_analyser, grid_strings, grid_tools # resolution tests y_factors = {'dt': 3600, 'fluence': 1e39, 'peak': 1e38, } y_labels = {'dt': '$\Delta t$', 'rate': 'Burst rate', 'fluence': '$E_b$', 'peak': '$L_{peak}$', 'length': 'Burst length', } y_units = {'dt': 'hr', 'rate': 'day$^{-1}$', 'fluence': '$10^39$ erg', 'peak': '$10^38$ erg s$^{-1}$', 'length': 's', } reference_params = {'accmass': 1e16, 'accdepth': 1e20} other_param = {'accmass': 'accdepth', 'accdepth': 'accmass'} x_bounds = {'accmass': [1e15, 1e17], 'accdepth': [1e19, 1e21]} colors = {True: 'C1', False: 'C0'} # TODO add save plot, iterate over params def save_all_plots(sources, ref_source, grid_version, params=('x', 'z', 'mass', 'accrate'), **kwargs): kgrids = get_multigrids(sources, grid_version=grid_version) source = get_not(sources, ref_source) unique_all = kgrids[source].unique_params unique_subset = {} for p in params: unique_subset[p] = unique_all[p] params_full = grid_tools.enumerate_params(unique_subset) n = len(params_full[params[0]]) for i in range(n): params_sub = {} for p in params: params_sub[p] = params_full[p][i] plot(params=params_sub, sources=sources, ref_source=ref_source, kgrids=kgrids, save=True, display=False, title=False, **kwargs) def plot(params, sources, ref_source, grid_version, bprops=('rate', 'fluence', 'peak', 'length'), figsize=(9, 10), shaded=False, display=True, save=False, kgrids=None, title=True, show_nbursts=True): """Plot burst properties for given resolution parameter parameters ---------- params : dict ref_source : str source from which the reference model comes sources: set(str) list of source(s) to get models from kgrids : {source: Kgrid} dict of grid_analyser.Kgrid objects for each source bprops : [str] figsize : [int, int] shaded : bool shade between y_values of reference model """ check_params(params) n = len(bprops) fig, ax = plt.subplots(n, 2, sharex=False, figsize=figsize) if kgrids is None: kgrids = get_multigrids(sources, grid_version=grid_version) for i, res_param in enumerate(reference_params): ref_value = reference_params[res_param] other_res_param = other_param[res_param] full_params = dict(params) full_params[other_res_param] = reference_params[other_res_param] sub_summ, sub_params = get_subgrids(kgrids, params=full_params) for j, bprop in enumerate(bprops): u_bprop = f'u_{bprop}' y_label = f'{y_labels[bprop]} ({y_units[bprop]})' y_factor = y_factors.get(bprop, 1) set_axes(ax[j, i], xscale='log', ylabel=y_label if i == 0 else '', xlabel=res_param if j == n-1 else '', yticks=True if i == 0 else False) for source in sources: ref = source == ref_source x = sub_params[source][res_param] y = sub_summ[source][bprop] / y_factor yerr = sub_summ[source][u_bprop] / y_factor if show_nbursts: n_bursts = sub_summ[source]['n_used'] for k in range(len(n_bursts)): x_offset = 1.15 nb = n_bursts.iloc[k] ax[j, i].text(x.iloc[k] * x_offset, y.iloc[k], f'{nb:.0f}', verticalalignment='center') if shaded and ref: idx = np.where(x == ref_value)[0] y_ref = y.iloc[idx] yerr_ref = yerr.iloc[idx] ax[j, i].fill_between(x_bounds[res_param], np.full(2, y_ref + yerr_ref), np.full(2, y_ref - yerr_ref), color='0.85') ax[j, i].errorbar(x=x, y=y, yerr=yerr, ls='none', marker='o', capsize=3, color=colors[ref]) if title: ax[0, 0].set_title(params, fontsize=11) plt.tight_layout() if save: source = get_not(sources, ref_source) precisions = {'z': 4, 'x': 2, 'qb': 3, 'mass': 1, 'accrate': 2} fixed_str = '' for p, v in params.items(): precision = precisions.get(p, 3) fixed_str += f'_{p}={v:.{precision}f}' filename = f'resolution_{source}{fixed_str}.png' path = os.path.join(grid_strings.plots_path(source), 'resolution') filepath = os.path.join(path, filename) print(f'Saving {filepath}') plt.savefig(filepath) plt.close(fig) else: plt.show(block=False) def get_not(array, var): """Returns value in length-2 'array' that is not 'var' """ copy = list(array) copy.remove(var) return copy[0] def get_multigrids(sources, grid_version): kgrids = {} for source in sources: kgrids[source] = grid_analyser.Kgrid(source, grid_version=grid_version) return kgrids def get_subgrids(kgrids, params): """Returns subkgrids of multiple given sources """ sub_params = {} sub_summ = {} for source in kgrids: sub_params[source] = kgrids[source].get_params(params=params) sub_summ[source] = kgrids[source].get_summ(params=params) return sub_summ, sub_params def set_axes(ax, title='', xlabel='', ylabel='', yscale='linear', xscale='linear', fontsize=14, yticks=True, xticks=True): if not yticks: ax.axes.tick_params(axis='both', left='off', labelleft='off') if not xticks: ax.axes.tick_params(axis='both', bottom='off', labelbottom='off') ax.set_title(title, fontsize=fontsize) ax.set_xlabel(xlabel, fontsize=fontsize) ax.set_ylabel(ylabel, fontsize=fontsize) ax.set_xscale(xscale) ax.set_yscale(yscale) def check_params(params, must_specify=('x', 'z', 'accrate', 'mass')): for param in must_specify: if param not in params: raise ValueError(f'{param} not specified in params')
[ "matplotlib.pyplot.savefig", "pyburst.grids.grid_tools.enumerate_params", "numpy.where", "os.path.join", "matplotlib.pyplot.close", "pyburst.grids.grid_strings.plots_path", "matplotlib.pyplot.tight_layout", "pyburst.grids.grid_analyser.Kgrid", "numpy.full", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((1303, 1345), 'pyburst.grids.grid_tools.enumerate_params', 'grid_tools.enumerate_params', (['unique_subset'], {}), '(unique_subset)\n', (1330, 1345), False, 'from pyburst.grids import grid_analyser, grid_strings, grid_tools\n'), ((2387, 2436), 'matplotlib.pyplot.subplots', 'plt.subplots', (['n', '(2)'], {'sharex': '(False)', 'figsize': 'figsize'}), '(n, 2, sharex=False, figsize=figsize)\n', (2399, 2436), True, 'import matplotlib.pyplot as plt\n'), ((4491, 4509), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4507, 4509), True, 'import matplotlib.pyplot as plt\n'), ((4949, 4977), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (4961, 4977), False, 'import os\n'), ((5022, 5043), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filepath'], {}), '(filepath)\n', (5033, 5043), True, 'import matplotlib.pyplot as plt\n'), ((5052, 5066), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (5061, 5066), True, 'import matplotlib.pyplot as plt\n'), ((5085, 5106), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (5093, 5106), True, 'import matplotlib.pyplot as plt\n'), ((5376, 5430), 'pyburst.grids.grid_analyser.Kgrid', 'grid_analyser.Kgrid', (['source'], {'grid_version': 'grid_version'}), '(source, grid_version=grid_version)\n', (5395, 5430), False, 'from pyburst.grids import grid_analyser, grid_strings, grid_tools\n'), ((4883, 4914), 'pyburst.grids.grid_strings.plots_path', 'grid_strings.plots_path', (['source'], {}), '(source)\n', (4906, 4914), False, 'from pyburst.grids import grid_analyser, grid_strings, grid_tools\n'), ((3947, 3971), 'numpy.where', 'np.where', (['(x == ref_value)'], {}), '(x == ref_value)\n', (3955, 3971), True, 'import numpy as np\n'), ((4166, 4194), 'numpy.full', 'np.full', (['(2)', '(y_ref + yerr_ref)'], {}), '(2, y_ref + yerr_ref)\n', (4173, 4194), True, 'import numpy as np\n'), ((4238, 4266), 'numpy.full', 'np.full', (['(2)', '(y_ref - yerr_ref)'], {}), '(2, y_ref - yerr_ref)\n', (4245, 4266), True, 'import numpy as np\n')]
# Copyright (c) 2020-present, Assistive Robotics Lab # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from transformers.training_utils import fit from transformers.transformers import ( InferenceTransformerEncoder, InferenceTransformer ) from common.data_utils import load_dataloader from common.logging import logger from common.losses import QuatDistance import torch from torch import nn, optim import numpy as np import argparse torch.manual_seed(42) np.random.seed(42) torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False def parse_args(): """Parse arguments for module. Returns: argparse.Namespace: contains accessible arguments passed in to module """ parser = argparse.ArgumentParser() parser.add_argument("--task", help=("task for neural network to train on; " "either prediction or conversion")) parser.add_argument("--data-path", help=("path to h5 files containing data " "(must contain training.h5 and validation.h5)")) parser.add_argument("--representation", help=("will normalize if quaternions, will use expmap " "to quat validation loss if expmap"), default="quaternion") parser.add_argument("--full-transformer", help=("will use Transformer with both encoder and " "decoder if true, will only use encoder " "if false"), default=False, action="store_true") parser.add_argument("--model-file-path", help="path to model file for saving it after training") parser.add_argument("--batch-size", help="batch size for training", default=32) parser.add_argument("--learning-rate", help="initial learning rate for training", default=0.001) parser.add_argument("--beta-one", help="beta1 for adam optimizer (momentum)", default=0.9) parser.add_argument("--beta-two", help="beta2 for adam optimizer", default=0.999) parser.add_argument("--seq-length", help=("sequence length for model, will be divided " "by downsample if downsample is provided"), default=20) parser.add_argument("--downsample", help=("reduce sampling frequency of recorded data; " "default sampling frequency is 240 Hz"), default=1) parser.add_argument("--in-out-ratio", help=("ratio of input/output; " "seq_length / downsample = input length = 10, " "output length = input length / in_out_ratio"), default=1) parser.add_argument("--stride", help=("stride used when reading data in " "for running prediction tasks"), default=3) parser.add_argument("--num-epochs", help="number of epochs for training", default=1) parser.add_argument("--num-heads", help="number of heads in Transformer") parser.add_argument("--dim-feedforward", help=("number of dimensions in feedforward layer " "in Transformer")) parser.add_argument("--dropout", help="dropout percentage in Transformer") parser.add_argument("--num-layers", help="number of layers in Transformer") args = parser.parse_args() if args.data_path is None: parser.print_help() return args if __name__ == "__main__": args = parse_args() for arg in vars(args): logger.info(f"{arg} - {getattr(args, arg)}") logger.info("Starting Transformer training...") logger.info(f"Device count: {torch.cuda.device_count()}") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info(f"Training on {device}...") seq_length = int(args.seq_length)//int(args.downsample) assert seq_length % int(args.in_out_ratio) == 0 lr = float(args.learning_rate) normalize = True train_dataloader, norm_data = load_dataloader(args, "training", normalize) val_dataloader, _ = load_dataloader(args, "validation", normalize, norm_data=norm_data) encoder_feature_size = train_dataloader.dataset[0][0].shape[1] decoder_feature_size = train_dataloader.dataset[0][1].shape[1] num_heads = int(args.num_heads) dim_feedforward = int(args.dim_feedforward) dropout = float(args.dropout) num_layers = int(args.num_layers) quaternions = (args.representation == "quaternions") if args.full_transformer: model = InferenceTransformer(decoder_feature_size, num_heads, dim_feedforward, dropout, num_layers, quaternions=quaternions) else: model = InferenceTransformerEncoder(encoder_feature_size, num_heads, dim_feedforward, dropout, num_layers, decoder_feature_size, quaternions=quaternions) num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) model = model.to(device).double() epochs = int(args.num_epochs) beta1 = float(args.beta_one) beta2 = float(args.beta_two) optimizer = optim.AdamW(model.parameters(), lr=lr, betas=(beta1, beta2), weight_decay=0.03) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[1, 3], gamma=0.1) dataloaders = (train_dataloader, val_dataloader) training_criterion = nn.L1Loss() validation_criteria = [nn.L1Loss(), QuatDistance()] logger.info(f"Model for training: {model}") logger.info(f"Number of parameters: {num_params}") logger.info(f"Optimizer for training: {optimizer}") logger.info(f"Criterion for training: {training_criterion}") fit(model, optimizer, scheduler, epochs, dataloaders, training_criterion, validation_criteria, device, args.model_file_path, full_transformer=args.full_transformer) logger.info("Completed Training...") logger.info("\n")
[ "torch.manual_seed", "torch.optim.lr_scheduler.MultiStepLR", "argparse.ArgumentParser", "common.logging.logger.info", "torch.nn.L1Loss", "torch.cuda.device_count", "transformers.training_utils.fit", "torch.nn.DataParallel", "torch.cuda.is_available", "common.losses.QuatDistance", "numpy.random.seed", "transformers.transformers.InferenceTransformerEncoder", "transformers.transformers.InferenceTransformer", "common.data_utils.load_dataloader" ]
[((541, 562), 'torch.manual_seed', 'torch.manual_seed', (['(42)'], {}), '(42)\n', (558, 562), False, 'import torch\n'), ((563, 581), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (577, 581), True, 'import numpy as np\n'), ((833, 858), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (856, 858), False, 'import argparse\n'), ((4185, 4232), 'common.logging.logger.info', 'logger.info', (['"""Starting Transformer training..."""'], {}), "('Starting Transformer training...')\n", (4196, 4232), False, 'from common.logging import logger\n'), ((4375, 4414), 'common.logging.logger.info', 'logger.info', (['f"""Training on {device}..."""'], {}), "(f'Training on {device}...')\n", (4386, 4414), False, 'from common.logging import logger\n'), ((4620, 4664), 'common.data_utils.load_dataloader', 'load_dataloader', (['args', '"""training"""', 'normalize'], {}), "(args, 'training', normalize)\n", (4635, 4664), False, 'from common.data_utils import load_dataloader\n'), ((4689, 4756), 'common.data_utils.load_dataloader', 'load_dataloader', (['args', '"""validation"""', 'normalize'], {'norm_data': 'norm_data'}), "(args, 'validation', normalize, norm_data=norm_data)\n", (4704, 4756), False, 'from common.data_utils import load_dataloader\n'), ((6183, 6254), 'torch.optim.lr_scheduler.MultiStepLR', 'optim.lr_scheduler.MultiStepLR', (['optimizer'], {'milestones': '[1, 3]', 'gamma': '(0.1)'}), '(optimizer, milestones=[1, 3], gamma=0.1)\n', (6213, 6254), False, 'from torch import nn, optim\n'), ((6428, 6439), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (6437, 6439), False, 'from torch import nn, optim\n'), ((6501, 6544), 'common.logging.logger.info', 'logger.info', (['f"""Model for training: {model}"""'], {}), "(f'Model for training: {model}')\n", (6512, 6544), False, 'from common.logging import logger\n'), ((6549, 6599), 'common.logging.logger.info', 'logger.info', (['f"""Number of parameters: {num_params}"""'], {}), "(f'Number of parameters: {num_params}')\n", (6560, 6599), False, 'from common.logging import logger\n'), ((6604, 6655), 'common.logging.logger.info', 'logger.info', (['f"""Optimizer for training: {optimizer}"""'], {}), "(f'Optimizer for training: {optimizer}')\n", (6615, 6655), False, 'from common.logging import logger\n'), ((6660, 6720), 'common.logging.logger.info', 'logger.info', (['f"""Criterion for training: {training_criterion}"""'], {}), "(f'Criterion for training: {training_criterion}')\n", (6671, 6720), False, 'from common.logging import logger\n'), ((6726, 6899), 'transformers.training_utils.fit', 'fit', (['model', 'optimizer', 'scheduler', 'epochs', 'dataloaders', 'training_criterion', 'validation_criteria', 'device', 'args.model_file_path'], {'full_transformer': 'args.full_transformer'}), '(model, optimizer, scheduler, epochs, dataloaders, training_criterion,\n validation_criteria, device, args.model_file_path, full_transformer=\n args.full_transformer)\n', (6729, 6899), False, 'from transformers.training_utils import fit\n'), ((6912, 6948), 'common.logging.logger.info', 'logger.info', (['"""Completed Training..."""'], {}), "('Completed Training...')\n", (6923, 6948), False, 'from common.logging import logger\n'), ((6953, 6970), 'common.logging.logger.info', 'logger.info', (['"""\n"""'], {}), "('\\n')\n", (6964, 6970), False, 'from common.logging import logger\n'), ((5193, 5313), 'transformers.transformers.InferenceTransformer', 'InferenceTransformer', (['decoder_feature_size', 'num_heads', 'dim_feedforward', 'dropout', 'num_layers'], {'quaternions': 'quaternions'}), '(decoder_feature_size, num_heads, dim_feedforward,\n dropout, num_layers, quaternions=quaternions)\n', (5213, 5313), False, 'from transformers.transformers import InferenceTransformerEncoder, InferenceTransformer\n'), ((5410, 5564), 'transformers.transformers.InferenceTransformerEncoder', 'InferenceTransformerEncoder', (['encoder_feature_size', 'num_heads', 'dim_feedforward', 'dropout', 'num_layers', 'decoder_feature_size'], {'quaternions': 'quaternions'}), '(encoder_feature_size, num_heads,\n dim_feedforward, dropout, num_layers, decoder_feature_size, quaternions\n =quaternions)\n', (5437, 5564), False, 'from transformers.transformers import InferenceTransformerEncoder, InferenceTransformer\n'), ((5776, 5801), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (5799, 5801), False, 'import torch\n'), ((5823, 5845), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (5838, 5845), False, 'from torch import nn, optim\n'), ((6467, 6478), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (6476, 6478), False, 'from torch import nn, optim\n'), ((6480, 6494), 'common.losses.QuatDistance', 'QuatDistance', ([], {}), '()\n', (6492, 6494), False, 'from common.losses import QuatDistance\n'), ((4333, 4358), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4356, 4358), False, 'import torch\n'), ((4267, 4292), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (4290, 4292), False, 'import torch\n')]
#!/usr/bin/env nemesis """ This script creates a spatial database for the initial stress and state variables for a Maxwell plane strain material. """ sim = "gravity_vardensity" materials = ["crust","mantle"] import numpy import h5py from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii from spatialdata.geocoords.CSCart import CSCart cs = CSCart() cs._configure() cs.setSpaceDim(2) # Basis functions for quad4 cell evaluated at quadrature points. Use # to compute coordinate of quadrature points in each cell from # coordinates of vertices. Note the order must correspond to the order # of the data at the quadrature points in the output. qpts = numpy.array([[ 0.62200847, 0.16666667, 0.0446582, 0.16666667], [ 0.16666667, 0.62200847, 0.16666667, 0.0446582 ], [ 0.16666667, 0.0446582, 0.16666667, 0.62200847], [ 0.0446582, 0.16666667, 0.62200847, 0.16666667]], dtype=numpy.float64) def calcQuadCoords(vertices, cells, qpts): """Compute coordinates of quadrature points.""" nqpts = qpts.shape[0] ncells = cells.shape[0] spaceDim = vertices.shape[1] quadCoords = numpy.zeros((ncells, nqpts, spaceDim), dtype=numpy.float64) cellCoords = vertices[cells,:] for iDim in range(spaceDim): quadCoords[:,:,iDim] = numpy.dot(cellCoords[:,:,iDim], qpts.transpose()) quadCoords = quadCoords.reshape((ncells*nqpts, spaceDim)) return quadCoords for material in materials: filenameH5 = "output/%s-%s.h5" % (sim, material) filenameDB = "%s_statevars-%s.spatialdb" % (sim, material) # Open HDF5 file and get coordinates, cells, and stress. h5 = h5py.File(filenameH5, "r") vertices = h5['geometry/vertices'][:] tindex = -1 cells = numpy.array(h5['topology/cells'][:], dtype=numpy.int) stress = h5['cell_fields/stress'][tindex,:,:] if "mantle" in material: vstrain = h5['cell_fields/viscous_strain'][tindex,:,:] h5.close() # Compute coordinates of quadrature points. quadCoords = calcQuadCoords(vertices, cells, qpts) nqpts = qpts.shape[0] ncells = cells.shape[0] nvalues = stress.shape[1]/nqpts # Check to make sure output included all quadrature points (CellFilterAvg was not used). if stress.shape[1] == 3: raise ValueError("Found %d stress values for each cell. Expected 12 stress values (stress_xx, stress_yy, and stress_xy at 4 quadrature points) for each cell. Turn off CellFilterAvg in pylithapp.cfg." % stress.shape[1]) if stress.shape[1] != nqpts*3: raise ValueError("Found %d stress values for each cell. Expected 12 stress values (stress_xx, stress_yy, and stress_xy at 4 quadrature points) for each cell. Did you turn off CellFilterAvg in pylithapp.cfg?" % stress.shape[1]) stress = stress.reshape((ncells*nqpts, nvalues)) # Create writer for spatial database file writer = SimpleIOAscii() writer.inventory.filename = filenameDB writer._configure() values = [{'name': "stress-xx", 'units': "Pa", 'data': stress[:,0]}, {'name': "stress-yy", 'units': "Pa", 'data': stress[:,1]}, {'name': "stress-xy", 'units': "Pa", 'data': stress[:,2]}, ] if "mantle" in material: nvalues = vstrain.shape[1]/nqpts vstrain = vstrain.reshape((ncells*nqpts, nvalues)) stressZZ = 0.5*(stress[:,0]+stress[:,1]) zeros = numpy.zeros(stressZZ.shape) values += [{'name': "stress-zz-initial", 'units': "Pa", 'data': stressZZ}, {'name': "total-strain-xx", 'units': "None", 'data': zeros}, {'name': "total-strain-yy", 'units': "None", 'data': zeros}, {'name': "total-strain-xy", 'units': "None", 'data': zeros}, {'name': "viscous-strain-xx", 'units': "None", 'data': vstrain[:,0]}, {'name': "viscous-strain-yy", 'units': "None", 'data': vstrain[:,1]}, {'name': "viscous-strain-zz", 'units': "None", 'data': vstrain[:,2]}, {'name': "viscous-strain-xy", 'units': "None", 'data': vstrain[:,3]}, ] writer.write({'points': quadCoords, 'coordsys': cs, 'data_dim': 2, 'values': values}) # End of file
[ "spatialdata.spatialdb.SimpleIOAscii.SimpleIOAscii", "h5py.File", "numpy.array", "numpy.zeros", "spatialdata.geocoords.CSCart.CSCart" ]
[((351, 359), 'spatialdata.geocoords.CSCart.CSCart', 'CSCart', ([], {}), '()\n', (357, 359), False, 'from spatialdata.geocoords.CSCart import CSCart\n'), ((659, 903), 'numpy.array', 'numpy.array', (['[[0.62200847, 0.16666667, 0.0446582, 0.16666667], [0.16666667, 0.62200847, \n 0.16666667, 0.0446582], [0.16666667, 0.0446582, 0.16666667, 0.62200847],\n [0.0446582, 0.16666667, 0.62200847, 0.16666667]]'], {'dtype': 'numpy.float64'}), '([[0.62200847, 0.16666667, 0.0446582, 0.16666667], [0.16666667, \n 0.62200847, 0.16666667, 0.0446582], [0.16666667, 0.0446582, 0.16666667,\n 0.62200847], [0.0446582, 0.16666667, 0.62200847, 0.16666667]], dtype=\n numpy.float64)\n', (670, 903), False, 'import numpy\n'), ((1162, 1221), 'numpy.zeros', 'numpy.zeros', (['(ncells, nqpts, spaceDim)'], {'dtype': 'numpy.float64'}), '((ncells, nqpts, spaceDim), dtype=numpy.float64)\n', (1173, 1221), False, 'import numpy\n'), ((1652, 1678), 'h5py.File', 'h5py.File', (['filenameH5', '"""r"""'], {}), "(filenameH5, 'r')\n", (1661, 1678), False, 'import h5py\n'), ((1743, 1796), 'numpy.array', 'numpy.array', (["h5['topology/cells'][:]"], {'dtype': 'numpy.int'}), "(h5['topology/cells'][:], dtype=numpy.int)\n", (1754, 1796), False, 'import numpy\n'), ((2850, 2865), 'spatialdata.spatialdb.SimpleIOAscii.SimpleIOAscii', 'SimpleIOAscii', ([], {}), '()\n', (2863, 2865), False, 'from spatialdata.spatialdb.SimpleIOAscii import SimpleIOAscii\n'), ((3414, 3441), 'numpy.zeros', 'numpy.zeros', (['stressZZ.shape'], {}), '(stressZZ.shape)\n', (3425, 3441), False, 'import numpy\n')]
import inspect from collections import namedtuple import numpy as np from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import train_test_split from sklearn.exceptions import NotFittedError from uq360.algorithms.posthocuq import PostHocUQ class MetamodelRegression(PostHocUQ): """ Extracts confidence scores from black-box regression models using a meta-model [2]_ . References: .. [2] Chen, Tongfei, et al. Confidence scoring using whitebox meta-models with linear classifier probes. The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, 2019. """ def _create_named_model(self, mdltype, config): """ Instantiates a model by name passed in 'mdltype' :param mdltype: string with name (must be supprted) :param config: dict with args passed in the instantiation call :return: mdl instance """ assert (isinstance(mdltype, str)) if mdltype == 'gbr': mdl = GradientBoostingRegressor(**config) else: raise NotImplementedError("ERROR: Requested model type unknown: \"%s\"" % mdltype) return mdl def _get_model_instance(self, model, config): """ Returns an instance of a model based on (a) a desired name or (b) passed in class, or (c) passed in instance :param model: string, class, or instance. Class and instance must have certain methods callable. :param config: dict with args passed in during the instantiation :return: model instance """ assert (model is not None and config is not None) if isinstance(model, str): # 'model' is a name, create it mdl = self._create_named_model(model, config) elif inspect.isclass(model): # 'model' is a class, instantiate it mdl = model(**config) else: # 'model' is an instance, register it mdl = model if not all([hasattr(mdl, key) and callable(getattr(mdl, key)) for key in self.callable_keys]): raise ValueError("ERROR: Passed model/method failed the interface test. Methods required: %s" % ','.join(self.callable_keys)) return mdl def __init__(self, base_model=None, meta_model=None, base_config=None, meta_config=None, random_seed=42): """ :param base_model: Base model. Can be: (1) None (default mdl will be set up), (2) Named model (e.g., 'gbr'), (3) Base model class declaration (e.g., sklearn.linear_model.LinearRegressor). Will instantiate. (4) Model instance (instantiated outside). Will be re-used. Must have required callable methods. Note: user-supplied classes and models must have certain callable methods ('predict', 'fit') and be capable of raising NotFittedError. :param meta_model: Meta model. Same values possible as with 'base_model' :param base_config: None or a params dict to be passed to 'base_model' at instantiation :param meta_config: None or a params dict to be passed to 'meta_model' at instantiation :param random_seed: seed used in the various pipeline steps """ super(MetamodelRegression).__init__() self.random_seed = random_seed self.callable_keys = ['predict', 'fit'] # required methods - must be present in models passed in self.base_model_default = 'gbr' self.meta_model_default = 'gbr' self.base_config_default = {'loss': 'ls', 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.meta_config_default = {'loss': 'quantile', 'alpha': 0.95, 'n_estimators': 300, 'max_depth': 10, 'learning_rate': 0.001, 'min_samples_leaf': 10, 'min_samples_split': 10, 'random_state': self.random_seed} self.base_config = base_config if base_config is not None else self.base_config_default self.meta_config = meta_config if meta_config is not None else self.meta_config_default self.base_model = None self.meta_model = None self.base_model = self._get_model_instance(base_model if base_model is not None else self.base_model_default, self.base_config) self.meta_model = self._get_model_instance(meta_model if meta_model is not None else self.meta_model_default, self.meta_config) def get_params(self, deep=True): return {"base_model": self.base_model, "meta_model": self.meta_model, "base_config": self.base_config, "meta_config": self.meta_config, "random_seed": self.random_seed} def fit(self, X, y, meta_fraction=0.2, randomize_samples=True, base_is_prefitted=False, meta_train_data=(None, None)): """ Fit base and meta models. :param X: input to the base model :param y: ground truth for the base model :param meta_fraction: float in [0,1] - a fractional size of the partition carved out to train the meta model (complement will be used to train the base model) :param randomize_samples: use shuffling when creating partitions :param base_is_prefitted: Setting True will skip fitting the base model (useful for base models that have been instantiated outside/by the user and are already fitted. :param meta_train_data: User supplied data to train the meta model. Note that this option should only be used with 'base_is_prefitted'==True. Pass a tuple meta_train_data=(X_meta, y_meta) to activate. Note that (X,y,meta_fraction, randomize_samples) will be ignored in this mode. :return: self """ X = np.asarray(X) y = np.asarray(y) assert(len(meta_train_data)==2) if meta_train_data[0] is None: X_base, X_meta, y_base, y_meta = train_test_split(X, y, shuffle=randomize_samples, test_size=meta_fraction, random_state=self.random_seed) else: if not base_is_prefitted: raise ValueError("ERROR: fit(): base model must be pre-fitted to use the 'meta_train_data' option") X_base = y_base = None X_meta = meta_train_data[0] y_meta = meta_train_data[1] # fit the base model if not base_is_prefitted: self.base_model.fit(X_base, y_base) # get input for the meta model from the base try: y_hat_meta = self.base_model.predict(X_meta) except NotFittedError as e: raise RuntimeError("ERROR: fit(): The base model appears not pre-fitted (%s)" % repr(e)) # used base input and output as meta input X_meta_in = self._process_pretrained_model(X_meta, y_hat_meta) # train meta model to predict abs diff self.meta_model.fit(X_meta_in, np.abs(y_hat_meta - y_meta)) return self def _process_pretrained_model(self, X, y_hat): """ Given the original input features and the base output probabilities, generate input features to train a meta model. Current implementation copies all input features and appends. :param X: numpy [nsamples, dim] :param y_hat: [nsamples,] :return: array with new features [nsamples, newdim] """ y_hat_meta_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_meta_prime]) return X_meta_in def predict(self, X): """ Generate prediction and uncertainty bounds for data X. :param X: input features :return: namedtuple: A namedtuple that holds y_mean: ndarray of shape (n_samples, [n_output_dims]) Mean of predictive distribution of the test points. y_lower: ndarray of shape (n_samples, [n_output_dims]) Lower quantile of predictive distribution of the test points. y_upper: ndarray of shape (n_samples, [n_output_dims]) Upper quantile of predictive distribution of the test points. """ y_hat = self.base_model.predict(X) y_hat_prime = np.expand_dims(y_hat, -1) if len(y_hat.shape) < 2 else y_hat X_meta_in = np.hstack([X, y_hat_prime]) z_hat = self.meta_model.predict(X_meta_in) Result = namedtuple('res', ['y_mean', 'y_lower', 'y_upper']) res = Result(y_hat, y_hat - z_hat, y_hat + z_hat) return res
[ "numpy.abs", "collections.namedtuple", "numpy.hstack", "sklearn.model_selection.train_test_split", "numpy.asarray", "numpy.expand_dims", "inspect.isclass", "sklearn.ensemble.GradientBoostingRegressor" ]
[((6132, 6145), 'numpy.asarray', 'np.asarray', (['X'], {}), '(X)\n', (6142, 6145), True, 'import numpy as np\n'), ((6158, 6171), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (6168, 6171), True, 'import numpy as np\n'), ((7884, 7916), 'numpy.hstack', 'np.hstack', (['[X, y_hat_meta_prime]'], {}), '([X, y_hat_meta_prime])\n', (7893, 7916), True, 'import numpy as np\n'), ((8715, 8742), 'numpy.hstack', 'np.hstack', (['[X, y_hat_prime]'], {}), '([X, y_hat_prime])\n', (8724, 8742), True, 'import numpy as np\n'), ((8812, 8863), 'collections.namedtuple', 'namedtuple', (['"""res"""', "['y_mean', 'y_lower', 'y_upper']"], {}), "('res', ['y_mean', 'y_lower', 'y_upper'])\n", (8822, 8863), False, 'from collections import namedtuple\n'), ((1030, 1065), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {}), '(**config)\n', (1055, 1065), False, 'from sklearn.ensemble import GradientBoostingRegressor\n'), ((1801, 1823), 'inspect.isclass', 'inspect.isclass', (['model'], {}), '(model)\n', (1816, 1823), False, 'import inspect\n'), ((6296, 6405), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'shuffle': 'randomize_samples', 'test_size': 'meta_fraction', 'random_state': 'self.random_seed'}), '(X, y, shuffle=randomize_samples, test_size=meta_fraction,\n random_state=self.random_seed)\n', (6312, 6405), False, 'from sklearn.model_selection import train_test_split\n'), ((7322, 7349), 'numpy.abs', 'np.abs', (['(y_hat_meta - y_meta)'], {}), '(y_hat_meta - y_meta)\n', (7328, 7349), True, 'import numpy as np\n'), ((7803, 7828), 'numpy.expand_dims', 'np.expand_dims', (['y_hat', '(-1)'], {}), '(y_hat, -1)\n', (7817, 7828), True, 'import numpy as np\n'), ((8634, 8659), 'numpy.expand_dims', 'np.expand_dims', (['y_hat', '(-1)'], {}), '(y_hat, -1)\n', (8648, 8659), True, 'import numpy as np\n')]
import unittest from collections import defaultdict import numpy as np import pandas as pd from ife.io.io import ImageReader class TestMomentFeatures(unittest.TestCase): def test_moment_output_type(self) -> None: features = ImageReader.read_from_single_file("ife/data/small_rgb.jpg") moment = features.moment() self.assertIs(np.ndarray, type(moment)) moment = features.moment(output_type="") self.assertIs(np.ndarray, type(moment)) moment = features.moment(output_type="one_col") self.assertIs(np.ndarray, type(moment)) self.assertEqual(np.zeros(15).shape, moment.shape) # type: ignore moment = features.moment(output_type="dict") self.assertIs(defaultdict, type(moment)) moment = features.moment(output_type="pandas") self.assertIs(pd.DataFrame, type(moment)) def test_colourfulness_output_type(self) -> None: features = ImageReader.read_from_single_file("ife/data/small_rgb.jpg") moment = features.colourfulness() self.assertIs(np.float64, type(moment)) moment = features.colourfulness(output_type="") self.assertIs(np.float64, type(moment)) moment = features.colourfulness(output_type="one_col") self.assertIs(np.float64, type(moment)) moment = features.colourfulness(output_type="dict") self.assertIs(dict, type(moment)) moment = features.colourfulness(output_type="pandas") self.assertIs(pd.DataFrame, type(moment))
[ "ife.io.io.ImageReader.read_from_single_file", "numpy.zeros" ]
[((240, 299), 'ife.io.io.ImageReader.read_from_single_file', 'ImageReader.read_from_single_file', (['"""ife/data/small_rgb.jpg"""'], {}), "('ife/data/small_rgb.jpg')\n", (273, 299), False, 'from ife.io.io import ImageReader\n'), ((945, 1004), 'ife.io.io.ImageReader.read_from_single_file', 'ImageReader.read_from_single_file', (['"""ife/data/small_rgb.jpg"""'], {}), "('ife/data/small_rgb.jpg')\n", (978, 1004), False, 'from ife.io.io import ImageReader\n'), ((612, 624), 'numpy.zeros', 'np.zeros', (['(15)'], {}), '(15)\n', (620, 624), True, 'import numpy as np\n')]
import numpy as np from math import pi import torch from pykeops.torch import LazyTensor from plyfile import PlyData, PlyElement from helper import * import torch.nn as nn import torch.nn.functional as F # from matplotlib import pyplot as plt from pykeops.torch.cluster import grid_cluster, cluster_ranges_centroids, from_matrix from math import pi, sqrt # Input-Output for tests ======================================================= import os from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData def save_vtk( fname, xyz, triangles=None, values=None, vectors=None, triangle_values=None ): """Saves a point cloud or triangle mesh as a .vtk file. Files can be opened with Paraview or displayed using the PyVista library. Args: fname (string): filename. xyz (Tensor): (N,3) point cloud or vertices. triangles (integer Tensor, optional): (T,3) mesh connectivity. Defaults to None. values (Tensor, optional): (N,D) values, supported by the vertices. Defaults to None. vectors (Tensor, optional): (N,3) vectors, supported by the vertices. Defaults to None. triangle_values (Tensor, optional): (T,D) values, supported by the triangles. Defaults to None. """ # Encode the points/vertices as a VTK structure: if triangles is None: # Point cloud structure = PolyData(points=numpy(xyz), vertices=np.arange(len(xyz))) else: # Surface mesh structure = PolyData(points=numpy(xyz), polygons=numpy(triangles)) data = [structure] pointdata, celldata = [], [] # Point values - one channel per column of the `values` array: if values is not None: values = numpy(values) if len(values.shape) == 1: values = values[:, None] features = values.T pointdata += [ Scalars(f, name=f"features_{i:02d}") for i, f in enumerate(features) ] # Point vectors - one vector per point: if vectors is not None: pointdata += [Vectors(numpy(vectors), name="vectors")] # Store in the VTK object: if pointdata != []: pointdata = PointData(*pointdata) data.append(pointdata) # Triangle values - one channel per column of the `triangle_values` array: if triangle_values is not None: triangle_values = numpy(triangle_values) if len(triangle_values.shape) == 1: triangle_values = triangle_values[:, None] features = triangle_values.T celldata += [ Scalars(f, name=f"features_{i:02d}") for i, f in enumerate(features) ] celldata = CellData(*celldata) data.append(celldata) #  Write to hard drive: vtk = VtkData(*data) os.makedirs(os.path.dirname(fname), exist_ok=True) vtk.tofile(fname) # On-the-fly generation of the surfaces ======================================== def subsample(x, batch=None, scale=1.0): """Subsamples the point cloud using a grid (cubic) clustering scheme. The function returns one average sample per cell, as described in Fig. 3.e) of the paper. Args: x (Tensor): (N,3) point cloud. batch (integer Tensor, optional): (N,) batch vector, as in PyTorch_geometric. Defaults to None. scale (float, optional): side length of the cubic grid cells. Defaults to 1 (Angstrom). Returns: (M,3): sub-sampled point cloud, with M <= N. """ if batch is None: # Single protein case: if True: # Use a fast scatter_add_ implementation labels = grid_cluster(x, scale).long() C = labels.max() + 1 # We append a "1" to the input vectors, in order to # compute both the numerator and denominator of the "average" #  fraction in one pass through the data. x_1 = torch.cat((x, torch.ones_like(x[:, :1])), dim=1) D = x_1.shape[1] points = torch.zeros_like(x_1[:C]) points.scatter_add_(0, labels[:, None].repeat(1, D), x_1) return (points[:, :-1] / points[:, -1:]).contiguous() else: # Older implementation; points = scatter(points * weights[:, None], labels, dim=0) weights = scatter(weights, labels, dim=0) points = points / weights[:, None] else: # We process proteins using a for loop. # This is probably sub-optimal, but I don't really know # how to do more elegantly (this type of computation is # not super well supported by PyTorch). batch_size = torch.max(batch).item() + 1 # Typically, =32 points, batches = [], [] for b in range(batch_size): p = subsample(x[batch == b], scale=scale) points.append(p) batches.append(b * torch.ones_like(batch[: len(p)])) return torch.cat(points, dim=0), torch.cat(batches, dim=0) def soft_distances(x, y, batch_x, batch_y, smoothness=0.01, atomtypes=None): """Computes a soft distance function to the atom centers of a protein. Implements Eq. (1) of the paper in a fast and numerically stable way. Args: x (Tensor): (N,3) atom centers. y (Tensor): (M,3) sampling locations. batch_x (integer Tensor): (N,) batch vector for x, as in PyTorch_geometric. batch_y (integer Tensor): (M,) batch vector for y, as in PyTorch_geometric. smoothness (float, optional): atom radii if atom types are not provided. Defaults to .01. atomtypes (integer Tensor, optional): (N,6) one-hot encoding of the atom chemical types. Defaults to None. Returns: Tensor: (M,) values of the soft distance function on the points `y`. """ # Build the (N, M, 1) symbolic matrix of squared distances: x_i = LazyTensor(x[:, None, :]) # (N, 1, 3) atoms y_j = LazyTensor(y[None, :, :]) # (1, M, 3) sampling points D_ij = ((x_i - y_j) ** 2).sum(-1) # (N, M, 1) squared distances # Use a block-diagonal sparsity mask to support heterogeneous batch processing: D_ij.ranges = diagonal_ranges(batch_x, batch_y) if atomtypes is not None: # Turn the one-hot encoding "atomtypes" into a vector of diameters "smoothness_i": # (N, 6) -> (N, 1, 1) (There are 6 atom types) atomic_radii = torch.FloatTensor( [170, 110, 152, 155, 180, 190], device=x.device ) atomic_radii = atomic_radii / atomic_radii.min() atomtype_radii = atomtypes * atomic_radii[None, :] # n_atoms, n_atomtypes # smoothness = atomtypes @ atomic_radii # (N, 6) @ (6,) = (N,) smoothness = torch.sum( smoothness * atomtype_radii, dim=1, keepdim=False ) # n_atoms, 1 smoothness_i = LazyTensor(smoothness[:, None, None]) # Compute an estimation of the mean smoothness in a neighborhood # of each sampling point: # density = (-D_ij.sqrt()).exp().sum(0).view(-1) # (M,) local density of atoms # smooth = (smoothness_i * (-D_ij.sqrt()).exp()).sum(0).view(-1) # (M,) # mean_smoothness = smooth / density # (M,) # soft_dists = -mean_smoothness * ( # (-D_ij.sqrt() / smoothness_i).logsumexp(dim=0) # ).view(-1) mean_smoothness = (-D_ij.sqrt()).exp().sum(0) mean_smoothness_j = LazyTensor(mean_smoothness[None, :, :]) mean_smoothness = ( smoothness_i * (-D_ij.sqrt()).exp() / mean_smoothness_j ) # n_atoms, n_points, 1 mean_smoothness = mean_smoothness.sum(0).view(-1) soft_dists = -mean_smoothness * ( (-D_ij.sqrt() / smoothness_i).logsumexp(dim=0) ).view(-1) else: soft_dists = -smoothness * ((-D_ij.sqrt() / smoothness).logsumexp(dim=0)).view( -1 ) return soft_dists def atoms_to_points_normals( atoms, batch, distance=1.05, smoothness=0.5, resolution=1.0, nits=4, atomtypes=None, sup_sampling=20, variance=0.1, ): """Turns a collection of atoms into an oriented point cloud. Sampling algorithm for protein surfaces, described in Fig. 3 of the paper. Args: atoms (Tensor): (N,3) coordinates of the atom centers `a_k`. batch (integer Tensor): (N,) batch vector, as in PyTorch_geometric. distance (float, optional): value of the level set to sample from the smooth distance function. Defaults to 1.05. smoothness (float, optional): radii of the atoms, if atom types are not provided. Defaults to 0.5. resolution (float, optional): side length of the cubic cells in the final sub-sampling pass. Defaults to 1.0. nits (int, optional): number of iterations . Defaults to 4. atomtypes (Tensor, optional): (N,6) one-hot encoding of the atom chemical types. Defaults to None. Returns: (Tensor): (M,3) coordinates for the surface points `x_i`. (Tensor): (M,3) unit normals `n_i`. (integer Tensor): (M,) batch vector, as in PyTorch_geometric. """ # a) Parameters for the soft distance function and its level set: T = distance N, D = atoms.shape B = sup_sampling # Sup-sampling ratio # Batch vectors: batch_atoms = batch batch_z = batch[:, None].repeat(1, B).view(N * B) # b) Draw N*B points at random in the neighborhood of our atoms z = atoms[:, None, :] + 10 * T * torch.randn(N, B, D).type_as(atoms) z = z.view(-1, D) # (N*B, D) # We don't want to backprop through a full network here! atoms = atoms.detach().contiguous() z = z.detach().contiguous() # N.B.: Test mode disables the autograd engine: we must switch it on explicitely. with torch.enable_grad(): if z.is_leaf: z.requires_grad = True # c) Iterative loop: gradient descent along the potential # ".5 * (dist - T)^2" with respect to the positions z of our samples for it in range(nits): dists = soft_distances( atoms, z, batch_atoms, batch_z, smoothness=smoothness, atomtypes=atomtypes, ) Loss = ((dists - T) ** 2).sum() g = torch.autograd.grad(Loss, z)[0] z.data -= 0.5 * g # d) Only keep the points which are reasonably close to the level set: dists = soft_distances( atoms, z, batch_atoms, batch_z, smoothness=smoothness, atomtypes=atomtypes ) margin = (dists - T).abs() mask = margin < variance * T # d') And remove the points that are trapped *inside* the protein: zz = z.detach() zz.requires_grad = True for it in range(nits): dists = soft_distances( atoms, zz, batch_atoms, batch_z, smoothness=smoothness, atomtypes=atomtypes, ) Loss = (1.0 * dists).sum() g = torch.autograd.grad(Loss, zz)[0] normals = F.normalize(g, p=2, dim=-1) # (N, 3) zz = zz + 1.0 * T * normals dists = soft_distances( atoms, zz, batch_atoms, batch_z, smoothness=smoothness, atomtypes=atomtypes ) mask = mask & (dists > 1.5 * T) z = z[mask].contiguous().detach() batch_z = batch_z[mask].contiguous().detach() # e) Subsample the point cloud: points, batch_points = subsample(z, batch_z, scale=resolution) # f) Compute the normals on this smaller point cloud: p = points.detach() p.requires_grad = True dists = soft_distances( atoms, p, batch_atoms, batch_points, smoothness=smoothness, atomtypes=atomtypes, ) Loss = (1.0 * dists).sum() g = torch.autograd.grad(Loss, p)[0] normals = F.normalize(g, p=2, dim=-1) # (N, 3) points = points - 0.5 * normals return points.detach(), normals.detach(), batch_points.detach() # Surface mesh -> Normals ====================================================== def mesh_normals_areas(vertices, triangles=None, scale=[1.0], batch=None, normals=None): """Returns a smooth field of normals, possibly at different scales. points, triangles or normals, scale(s) -> normals (N, 3), (3, T) or (N,3), (S,) -> (N, 3) or (N, S, 3) Simply put - if `triangles` are provided: 1. Normals are first computed for every triangle using simple 3D geometry and are weighted according to surface area. 2. The normal at any given vertex is then computed as the weighted average of the normals of all triangles in a neighborhood specified by Gaussian windows whose radii are given in the list of "scales". If `normals` are provided instead, we simply smooth the discrete vector field using Gaussian windows whose radii are given in the list of "scales". If more than one scale is provided, normal fields are computed in parallel and returned in a single 3D tensor. Args: vertices (Tensor): (N,3) coordinates of mesh vertices or 3D points. triangles (integer Tensor, optional): (3,T) mesh connectivity. Defaults to None. scale (list of floats, optional): (S,) radii of the Gaussian smoothing windows. Defaults to [1.]. batch (integer Tensor, optional): batch vector, as in PyTorch_geometric. Defaults to None. normals (Tensor, optional): (N,3) raw normals vectors on the vertices. Defaults to None. Returns: (Tensor): (N,3) or (N,S,3) point normals. (Tensor): (N,) point areas, if triangles were provided. """ # Single- or Multi-scale mode: if hasattr(scale, "__len__"): scales, single_scale = scale, False else: scales, single_scale = [scale], True scales = torch.Tensor(scales).type_as(vertices) # (S,) # Compute the "raw" field of normals: if triangles is not None: # Vertices of all triangles in the mesh: A = vertices[triangles[0, :]] # (N, 3) B = vertices[triangles[1, :]] # (N, 3) C = vertices[triangles[2, :]] # (N, 3) # Triangle centers and normals (length = surface area): centers = (A + B + C) / 3 # (N, 3) V = (B - A).cross(C - A) # (N, 3) # Vertice areas: S = (V ** 2).sum(-1).sqrt() / 6 # (N,) 1/3 of a triangle area areas = torch.zeros(len(vertices)).type_as(vertices) # (N,) areas.scatter_add_(0, triangles[0, :], S) # Aggregate from "A's" areas.scatter_add_(0, triangles[1, :], S) # Aggregate from "B's" areas.scatter_add_(0, triangles[2, :], S) # Aggregate from "C's" else: # Use "normals" instead areas = None V = normals centers = vertices # Normal of a vertex = average of all normals in a ball of size "scale": x_i = LazyTensor(vertices[:, None, :]) # (N, 1, 3) y_j = LazyTensor(centers[None, :, :]) # (1, M, 3) v_j = LazyTensor(V[None, :, :]) # (1, M, 3) s = LazyTensor(scales[None, None, :]) # (1, 1, S) D_ij = ((x_i - y_j) ** 2).sum(-1) #  (N, M, 1) K_ij = (-D_ij / (2 * s ** 2)).exp() # (N, M, S) # Support for heterogeneous batch processing: if batch is not None: batch_vertices = batch batch_centers = batch[triangles[0, :]] if triangles is not None else batch K_ij.ranges = diagonal_ranges(batch_vertices, batch_centers) if single_scale: U = (K_ij * v_j).sum(dim=1) # (N, 3) else: U = (K_ij.tensorprod(v_j)).sum(dim=1) # (N, S*3) U = U.view(-1, len(scales), 3) # (N, S, 3) normals = F.normalize(U, p=2, dim=-1) # (N, 3) or (N, S, 3) return normals, areas # Compute tangent planes and curvatures ======================================== def tangent_vectors(normals): """Returns a pair of vector fields u and v to complete the orthonormal basis [n,u,v]. normals -> uv (N, 3) or (N, S, 3) -> (N, 2, 3) or (N, S, 2, 3) This routine assumes that the 3D "normal" vectors are normalized. It is based on the 2017 paper from Pixar, "Building an orthonormal basis, revisited". Args: normals (Tensor): (N,3) or (N,S,3) normals `n_i`, i.e. unit-norm 3D vectors. Returns: (Tensor): (N,2,3) or (N,S,2,3) unit vectors `u_i` and `v_i` to complete the tangent coordinate systems `[n_i,u_i,v_i]. """ x, y, z = normals[..., 0], normals[..., 1], normals[..., 2] s = (2 * (z >= 0)) - 1.0 # = z.sign(), but =1. if z=0. a = -1 / (s + z) b = x * y * a uv = torch.stack((1 + s * x * x * a, s * b, -s * x, b, s + y * y * a, -y), dim=-1) uv = uv.view(uv.shape[:-1] + (2, 3)) return uv def curvatures( vertices, triangles=None, scales=[1.0], batch=None, normals=None, reg=0.01 ): """Returns a collection of mean (H) and Gauss (K) curvatures at different scales. points, faces, scales -> (H_1, K_1, ..., H_S, K_S) (N, 3), (3, N), (S,) -> (N, S*2) We rely on a very simple linear regression method, for all vertices: 1. Estimate normals and surface areas. 2. Compute a local tangent frame. 3. In a pseudo-geodesic Gaussian neighborhood at scale s, compute the two (2, 2) covariance matrices PPt and PQt between the displacement vectors "P = x_i - x_j" and the normals "Q = n_i - n_j", projected on the local tangent plane. 4. Up to the sign, the shape operator S at scale s is then approximated as "S = (reg**2 * I_2 + PPt)^-1 @ PQt". 5. The mean and Gauss curvatures are the trace and determinant of this (2, 2) matrix. As of today, this implementation does not weigh points by surface areas: this could make a sizeable difference if protein surfaces were not sub-sampled to ensure uniform sampling density. For convergence analysis, see for instance "Efficient curvature estimation for oriented point clouds", Cao, Li, Sun, Assadi, Zhang, 2019. Args: vertices (Tensor): (N,3) coordinates of the points or mesh vertices. triangles (integer Tensor, optional): (3,T) mesh connectivity. Defaults to None. scales (list of floats, optional): list of (S,) smoothing scales. Defaults to [1.]. batch (integer Tensor, optional): batch vector, as in PyTorch_geometric. Defaults to None. normals (Tensor, optional): (N,3) field of "raw" unit normals. Defaults to None. reg (float, optional): small amount of Tikhonov/ridge regularization in the estimation of the shape operator. Defaults to .01. Returns: (Tensor): (N, S*2) tensor of mean and Gauss curvatures computed for every point at the required scales. """ # Number of points, number of scales: N, S = vertices.shape[0], len(scales) ranges = diagonal_ranges(batch) # Compute the normals at different scales + vertice areas: normals_s, _ = mesh_normals_areas( vertices, triangles=triangles, normals=normals, scale=scales, batch=batch ) # (N, S, 3), (N,) # Local tangent bases: uv_s = tangent_vectors(normals_s) # (N, S, 2, 3) features = [] for s, scale in enumerate(scales): # Extract the relevant descriptors at the current scale: normals = normals_s[:, s, :].contiguous() #  (N, 3) uv = uv_s[:, s, :, :].contiguous() # (N, 2, 3) # Encode as symbolic tensors: # Points: x_i = LazyTensor(vertices.view(N, 1, 3)) x_j = LazyTensor(vertices.view(1, N, 3)) # Normals: n_i = LazyTensor(normals.view(N, 1, 3)) n_j = LazyTensor(normals.view(1, N, 3)) # Tangent bases: uv_i = LazyTensor(uv.view(N, 1, 6)) # Pseudo-geodesic squared distance: d2_ij = ((x_j - x_i) ** 2).sum(-1) * ((2 - (n_i | n_j)) ** 2) # (N, N, 1) # Gaussian window: window_ij = (-d2_ij / (2 * (scale ** 2))).exp() # (N, N, 1) # Project on the tangent plane: P_ij = uv_i.matvecmult(x_j - x_i) # (N, N, 2) Q_ij = uv_i.matvecmult(n_j - n_i) # (N, N, 2) # Concatenate: PQ_ij = P_ij.concat(Q_ij) # (N, N, 2+2) # Covariances, with a scale-dependent weight: PPt_PQt_ij = P_ij.tensorprod(PQ_ij) # (N, N, 2*(2+2)) PPt_PQt_ij = window_ij * PPt_PQt_ij #  (N, N, 2*(2+2)) # Reduction - with batch support: PPt_PQt_ij.ranges = ranges PPt_PQt = PPt_PQt_ij.sum(1) # (N, 2*(2+2)) # Reshape to get the two covariance matrices: PPt_PQt = PPt_PQt.view(N, 2, 2, 2) PPt, PQt = PPt_PQt[:, :, 0, :], PPt_PQt[:, :, 1, :] # (N, 2, 2), (N, 2, 2) # Add a small ridge regression: PPt[:, 0, 0] += reg PPt[:, 1, 1] += reg # (minus) Shape operator, i.e. the differential of the Gauss map: # = (PPt^-1 @ PQt) : simple estimation through linear regression S = torch.solve(PQt, PPt).solution a, b, c, d = S[:, 0, 0], S[:, 0, 1], S[:, 1, 0], S[:, 1, 1] # (N,) # Normalization mean_curvature = a + d gauss_curvature = a * d - b * c features += [mean_curvature.clamp(-1, 1), gauss_curvature.clamp(-1, 1)] features = torch.stack(features, dim=-1) return features #  Fast tangent convolution layer =============================================== class ContiguousBackward(torch.autograd.Function): """ Function to ensure contiguous gradient in backward pass. To be applied after PyKeOps reduction. N.B.: This workaround fixes a bug that will be fixed in ulterior KeOp releases. """ @staticmethod def forward(ctx, input): return input @staticmethod def backward(ctx, grad_output): return grad_output.contiguous() class dMaSIFConv(nn.Module): def __init__( self, in_channels=1, out_channels=1, radius=1.0, hidden_units=None, cheap=False ): """Creates the KeOps convolution layer. I = in_channels is the dimension of the input features O = out_channels is the dimension of the output features H = hidden_units is the dimension of the intermediate representation radius is the size of the pseudo-geodesic Gaussian window w_ij = W(d_ij) This affordable layer implements an elementary "convolution" operator on a cloud of N points (x_i) in dimension 3 that we decompose in three steps: 1. Apply the MLP "net_in" on the input features "f_i". (N, I) -> (N, H) 2. Compute H interaction terms in parallel with: f_i = sum_j [ w_ij * conv(P_ij) * f_j ] In the equation above: - w_ij is a pseudo-geodesic window with a set radius. - P_ij is a vector of dimension 3, equal to "x_j-x_i" in the local oriented basis at x_i. - "conv" is an MLP from R^3 to R^H: - with 1 linear layer if "cheap" is True; - with 2 linear layers and C=8 intermediate "cuts" otherwise. - "*" is coordinate-wise product. - f_j is the vector of transformed features. 3. Apply the MLP "net_out" on the output features. (N, H) -> (N, O) A more general layer would have implemented conv(P_ij) as a full (H, H) matrix instead of a mere (H,) vector... At a much higher computational cost. The reasoning behind the code below is that a given time budget is better spent on using a larger architecture and more channels than on a very complex convolution operator. Interactions between channels happen at steps 1. and 3., whereas the (costly) point-to-point interaction step 2. lets the network aggregate information in spatial neighborhoods. Args: in_channels (int, optional): numper of input features per point. Defaults to 1. out_channels (int, optional): number of output features per point. Defaults to 1. radius (float, optional): deviation of the Gaussian window on the quasi-geodesic distance `d_ij`. Defaults to 1.. hidden_units (int, optional): number of hidden features per point. Defaults to out_channels. cheap (bool, optional): shall we use a 1-layer deep Filter, instead of a 2-layer deep MLP? Defaults to False. """ super(dMaSIFConv, self).__init__() self.Input = in_channels self.Output = out_channels self.Radius = radius self.Hidden = self.Output if hidden_units is None else hidden_units self.Cuts = 8 # Number of hidden units for the 3D MLP Filter. self.cheap = cheap # For performance reasons, we cut our "hidden" vectors # in n_heads "independent heads" of dimension 8. self.heads_dim = 8 # 4 is probably too small; 16 is certainly too big # We accept "Hidden" dimensions of size 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, ... if self.Hidden < self.heads_dim: self.heads_dim = self.Hidden if self.Hidden % self.heads_dim != 0: raise ValueError(f"The dimension of the hidden units ({self.Hidden})"\ + f"should be a multiple of the heads dimension ({self.heads_dim}).") else: self.n_heads = self.Hidden // self.heads_dim # Transformation of the input features: self.net_in = nn.Sequential( nn.Linear(self.Input, self.Hidden), # (H, I) + (H,) nn.LeakyReLU(negative_slope=0.2), nn.Linear(self.Hidden, self.Hidden), # (H, H) + (H,) # nn.LayerNorm(self.Hidden),#nn.BatchNorm1d(self.Hidden), nn.LeakyReLU(negative_slope=0.2), ) #  (H,) self.norm_in = nn.GroupNorm(4, self.Hidden) # self.norm_in = nn.LayerNorm(self.Hidden) # self.norm_in = nn.Identity() # 3D convolution filters, encoded as an MLP: if cheap: self.conv = nn.Sequential( nn.Linear(3, self.Hidden), nn.ReLU() # (H, 3) + (H,) ) # KeOps does not support well LeakyReLu else: self.conv = nn.Sequential( nn.Linear(3, self.Cuts), # (C, 3) + (C,) nn.ReLU(), # KeOps does not support well LeakyReLu nn.Linear(self.Cuts, self.Hidden), ) # (H, C) + (H,) # Transformation of the output features: self.net_out = nn.Sequential( nn.Linear(self.Hidden, self.Output), # (O, H) + (O,) nn.LeakyReLU(negative_slope=0.2), nn.Linear(self.Output, self.Output), # (O, O) + (O,) # nn.LayerNorm(self.Output),#nn.BatchNorm1d(self.Output), nn.LeakyReLU(negative_slope=0.2), ) #  (O,) self.norm_out = nn.GroupNorm(4, self.Output) # self.norm_out = nn.LayerNorm(self.Output) # self.norm_out = nn.Identity() # Custom initialization for the MLP convolution filters: # we get interesting piecewise affine cuts on a normalized neighborhood. with torch.no_grad(): nn.init.normal_(self.conv[0].weight) nn.init.uniform_(self.conv[0].bias) self.conv[0].bias *= 0.8 * (self.conv[0].weight ** 2).sum(-1).sqrt() if not cheap: nn.init.uniform_( self.conv[2].weight, a=-1 / np.sqrt(self.Cuts), b=1 / np.sqrt(self.Cuts), ) nn.init.normal_(self.conv[2].bias) self.conv[2].bias *= 0.5 * (self.conv[2].weight ** 2).sum(-1).sqrt() def forward(self, points, nuv, features, ranges=None): """Performs a quasi-geodesic interaction step. points, local basis, in features -> out features (N, 3), (N, 3, 3), (N, I) -> (N, O) This layer computes the interaction step of Eq. (7) in the paper, in-between the application of two MLP networks independently on all feature vectors. Args: points (Tensor): (N,3) point coordinates `x_i`. nuv (Tensor): (N,3,3) local coordinate systems `[n_i,u_i,v_i]`. features (Tensor): (N,I) input feature vectors `f_i`. ranges (6-uple of integer Tensors, optional): low-level format to support batch processing, as described in the KeOps documentation. In practice, this will be built by a higher-level object to encode the relevant "batch vectors" in a way that is convenient for the KeOps CUDA engine. Defaults to None. Returns: (Tensor): (N,O) output feature vectors `f'_i`. """ # 1. Transform the input features: ------------------------------------- features = self.net_in(features) # (N, I) -> (N, H) features = features.transpose(1, 0)[None, :, :] # (1,H,N) features = self.norm_in(features) features = features[0].transpose(1, 0).contiguous() # (1, H, N) -> (N, H) # 2. Compute the local "shape contexts": ------------------------------- # 2.a Normalize the kernel radius: points = points / (sqrt(2.0) * self.Radius) # (N, 3) # 2.b Encode the variables as KeOps LazyTensors # Vertices: x_i = LazyTensor(points[:, None, :]) # (N, 1, 3) x_j = LazyTensor(points[None, :, :]) # (1, N, 3) # WARNING - Here, we assume that the normals are fixed: normals = ( nuv[:, 0, :].contiguous().detach() ) # (N, 3) - remove the .detach() if needed # Local bases: nuv_i = LazyTensor(nuv.view(-1, 1, 9)) # (N, 1, 9) # Normals: n_i = nuv_i[:3] # (N, 1, 3) n_j = LazyTensor(normals[None, :, :]) # (1, N, 3) # To avoid register spilling when using large embeddings, we perform our KeOps reduction # over the vector of length "self.Hidden = self.n_heads * self.heads_dim" # as self.n_heads reduction over vectors of length self.heads_dim (= "Hd" in the comments). head_out_features = [] for head in range(self.n_heads): # Extract a slice of width Hd from the feature array head_start = head * self.heads_dim head_end = head_start + self.heads_dim head_features = features[:, head_start:head_end].contiguous() # (N, H) -> (N, Hd) # Features: f_j = LazyTensor(head_features[None, :, :]) # (1, N, Hd) # Convolution parameters: if self.cheap: # Extract a slice of Hd lines: (H, 3) -> (Hd, 3) A = self.conv[0].weight[head_start:head_end, :].contiguous() # Extract a slice of Hd coefficients: (H,) -> (Hd,) B = self.conv[0].bias[head_start:head_end].contiguous() AB = torch.cat((A, B[:, None]), dim=1) # (Hd, 4) ab = LazyTensor(AB.view(1, 1, -1)) # (1, 1, Hd*4) else: A_1, B_1 = self.conv[0].weight, self.conv[0].bias # (C, 3), (C,) # Extract a slice of Hd lines: (H, C) -> (Hd, C) A_2 = self.conv[2].weight[head_start:head_end, :].contiguous() # Extract a slice of Hd coefficients: (H,) -> (Hd,) B_2 = self.conv[2].bias[head_start:head_end].contiguous() a_1 = LazyTensor(A_1.view(1, 1, -1)) # (1, 1, C*3) b_1 = LazyTensor(B_1.view(1, 1, -1)) # (1, 1, C) a_2 = LazyTensor(A_2.view(1, 1, -1)) # (1, 1, Hd*C) b_2 = LazyTensor(B_2.view(1, 1, -1)) # (1, 1, Hd) # 2.c Pseudo-geodesic window: # Pseudo-geodesic squared distance: d2_ij = ((x_j - x_i) ** 2).sum(-1) * ((2 - (n_i | n_j)) ** 2) # (N, N, 1) # Gaussian window: window_ij = (-d2_ij).exp() # (N, N, 1) # 2.d Local MLP: # Local coordinates: X_ij = nuv_i.matvecmult(x_j - x_i) # (N, N, 9) "@" (N, N, 3) = (N, N, 3) # MLP: if self.cheap: X_ij = ab.matvecmult( X_ij.concat(LazyTensor(1)) ) # (N, N, Hd*4) @ (N, N, 3+1) = (N, N, Hd) X_ij = X_ij.relu() # (N, N, Hd) else: X_ij = a_1.matvecmult(X_ij) + b_1 # (N, N, C) X_ij = X_ij.relu() # (N, N, C) X_ij = a_2.matvecmult(X_ij) + b_2 # (N, N, Hd) X_ij = X_ij.relu() # 2.e Actual computation: F_ij = window_ij * X_ij * f_j # (N, N, Hd) F_ij.ranges = ranges # Support for batches and/or block-sparsity head_out_features.append(ContiguousBackward().apply(F_ij.sum(dim=1))) # (N, Hd) # Concatenate the result of our n_heads "attention heads": features = torch.cat(head_out_features, dim=1) # n_heads * (N, Hd) -> (N, H) # 3. Transform the output features: ------------------------------------ features = self.net_out(features) # (N, H) -> (N, O) features = features.transpose(1, 0)[None, :, :] # (1,O,N) features = self.norm_out(features) features = features[0].transpose(1, 0).contiguous() return features
[ "torch.nn.ReLU", "numpy.sqrt", "torch.max", "math.sqrt", "torch.sum", "torch.nn.GroupNorm", "pyvtk.PointData", "pyvtk.VtkData", "pyvtk.CellData", "torch.zeros_like", "torch.nn.init.uniform_", "pykeops.torch.LazyTensor", "torch.randn", "torch.ones_like", "torch.nn.LeakyReLU", "torch.Tensor", "torch.solve", "torch.nn.functional.normalize", "os.path.dirname", "torch.autograd.grad", "torch.cat", "torch.nn.init.normal_", "pykeops.torch.cluster.grid_cluster", "torch.enable_grad", "pyvtk.Scalars", "torch.stack", "torch.nn.Linear", "torch.no_grad", "torch.FloatTensor" ]
[((2722, 2736), 'pyvtk.VtkData', 'VtkData', (['*data'], {}), '(*data)\n', (2729, 2736), False, 'from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData\n'), ((5780, 5805), 'pykeops.torch.LazyTensor', 'LazyTensor', (['x[:, None, :]'], {}), '(x[:, None, :])\n', (5790, 5805), False, 'from pykeops.torch import LazyTensor\n'), ((5835, 5860), 'pykeops.torch.LazyTensor', 'LazyTensor', (['y[None, :, :]'], {}), '(y[None, :, :])\n', (5845, 5860), False, 'from pykeops.torch import LazyTensor\n'), ((15017, 15049), 'pykeops.torch.LazyTensor', 'LazyTensor', (['vertices[:, None, :]'], {}), '(vertices[:, None, :])\n', (15027, 15049), False, 'from pykeops.torch import LazyTensor\n'), ((15073, 15104), 'pykeops.torch.LazyTensor', 'LazyTensor', (['centers[None, :, :]'], {}), '(centers[None, :, :])\n', (15083, 15104), False, 'from pykeops.torch import LazyTensor\n'), ((15128, 15153), 'pykeops.torch.LazyTensor', 'LazyTensor', (['V[None, :, :]'], {}), '(V[None, :, :])\n', (15138, 15153), False, 'from pykeops.torch import LazyTensor\n'), ((15175, 15208), 'pykeops.torch.LazyTensor', 'LazyTensor', (['scales[None, None, :]'], {}), '(scales[None, None, :])\n', (15185, 15208), False, 'from pykeops.torch import LazyTensor\n'), ((15791, 15818), 'torch.nn.functional.normalize', 'F.normalize', (['U'], {'p': '(2)', 'dim': '(-1)'}), '(U, p=2, dim=-1)\n', (15802, 15818), True, 'import torch.nn.functional as F\n'), ((16763, 16840), 'torch.stack', 'torch.stack', (['(1 + s * x * x * a, s * b, -s * x, b, s + y * y * a, -y)'], {'dim': '(-1)'}), '((1 + s * x * x * a, s * b, -s * x, b, s + y * y * a, -y), dim=-1)\n', (16774, 16840), False, 'import torch\n'), ((21434, 21463), 'torch.stack', 'torch.stack', (['features'], {'dim': '(-1)'}), '(features, dim=-1)\n', (21445, 21463), False, 'import torch\n'), ((2146, 2167), 'pyvtk.PointData', 'PointData', (['*pointdata'], {}), '(*pointdata)\n', (2155, 2167), False, 'from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData\n'), ((2633, 2652), 'pyvtk.CellData', 'CellData', (['*celldata'], {}), '(*celldata)\n', (2641, 2652), False, 'from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData\n'), ((2753, 2775), 'os.path.dirname', 'os.path.dirname', (['fname'], {}), '(fname)\n', (2768, 2775), False, 'import os\n'), ((4848, 4872), 'torch.cat', 'torch.cat', (['points'], {'dim': '(0)'}), '(points, dim=0)\n', (4857, 4872), False, 'import torch\n'), ((4874, 4899), 'torch.cat', 'torch.cat', (['batches'], {'dim': '(0)'}), '(batches, dim=0)\n', (4883, 4899), False, 'import torch\n'), ((6298, 6364), 'torch.FloatTensor', 'torch.FloatTensor', (['[170, 110, 152, 155, 180, 190]'], {'device': 'x.device'}), '([170, 110, 152, 155, 180, 190], device=x.device)\n', (6315, 6364), False, 'import torch\n'), ((6620, 6680), 'torch.sum', 'torch.sum', (['(smoothness * atomtype_radii)'], {'dim': '(1)', 'keepdim': '(False)'}), '(smoothness * atomtype_radii, dim=1, keepdim=False)\n', (6629, 6680), False, 'import torch\n'), ((6740, 6777), 'pykeops.torch.LazyTensor', 'LazyTensor', (['smoothness[:, None, None]'], {}), '(smoothness[:, None, None])\n', (6750, 6777), False, 'from pykeops.torch import LazyTensor\n'), ((7316, 7355), 'pykeops.torch.LazyTensor', 'LazyTensor', (['mean_smoothness[None, :, :]'], {}), '(mean_smoothness[None, :, :])\n', (7326, 7355), False, 'from pykeops.torch import LazyTensor\n'), ((9730, 9749), 'torch.enable_grad', 'torch.enable_grad', ([], {}), '()\n', (9747, 9749), False, 'import torch\n'), ((11976, 12003), 'torch.nn.functional.normalize', 'F.normalize', (['g'], {'p': '(2)', 'dim': '(-1)'}), '(g, p=2, dim=-1)\n', (11987, 12003), True, 'import torch.nn.functional as F\n'), ((26007, 26035), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['(4)', 'self.Hidden'], {}), '(4, self.Hidden)\n', (26019, 26035), True, 'import torch.nn as nn\n'), ((27049, 27077), 'torch.nn.GroupNorm', 'nn.GroupNorm', (['(4)', 'self.Output'], {}), '(4, self.Output)\n', (27061, 27077), True, 'import torch.nn as nn\n'), ((29580, 29610), 'pykeops.torch.LazyTensor', 'LazyTensor', (['points[:, None, :]'], {}), '(points[:, None, :])\n', (29590, 29610), False, 'from pykeops.torch import LazyTensor\n'), ((29638, 29668), 'pykeops.torch.LazyTensor', 'LazyTensor', (['points[None, :, :]'], {}), '(points[None, :, :])\n', (29648, 29668), False, 'from pykeops.torch import LazyTensor\n'), ((30022, 30053), 'pykeops.torch.LazyTensor', 'LazyTensor', (['normals[None, :, :]'], {}), '(normals[None, :, :])\n', (30032, 30053), False, 'from pykeops.torch import LazyTensor\n'), ((33146, 33181), 'torch.cat', 'torch.cat', (['head_out_features'], {'dim': '(1)'}), '(head_out_features, dim=1)\n', (33155, 33181), False, 'import torch\n'), ((1855, 1891), 'pyvtk.Scalars', 'Scalars', (['f'], {'name': 'f"""features_{i:02d}"""'}), "(f, name=f'features_{i:02d}')\n", (1862, 1891), False, 'from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData\n'), ((2534, 2570), 'pyvtk.Scalars', 'Scalars', (['f'], {'name': 'f"""features_{i:02d}"""'}), "(f, name=f'features_{i:02d}')\n", (2541, 2570), False, 'from pyvtk import PolyData, PointData, CellData, Scalars, Vectors, VtkData, PointData\n'), ((3950, 3975), 'torch.zeros_like', 'torch.zeros_like', (['x_1[:C]'], {}), '(x_1[:C])\n', (3966, 3975), False, 'import torch\n'), ((11104, 11131), 'torch.nn.functional.normalize', 'F.normalize', (['g'], {'p': '(2)', 'dim': '(-1)'}), '(g, p=2, dim=-1)\n', (11115, 11131), True, 'import torch.nn.functional as F\n'), ((11926, 11954), 'torch.autograd.grad', 'torch.autograd.grad', (['Loss', 'p'], {}), '(Loss, p)\n', (11945, 11954), False, 'import torch\n'), ((13972, 13992), 'torch.Tensor', 'torch.Tensor', (['scales'], {}), '(scales)\n', (13984, 13992), False, 'import torch\n'), ((21135, 21156), 'torch.solve', 'torch.solve', (['PQt', 'PPt'], {}), '(PQt, PPt)\n', (21146, 21156), False, 'import torch\n'), ((25684, 25718), 'torch.nn.Linear', 'nn.Linear', (['self.Input', 'self.Hidden'], {}), '(self.Input, self.Hidden)\n', (25693, 25718), True, 'import torch.nn as nn\n'), ((25749, 25781), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {'negative_slope': '(0.2)'}), '(negative_slope=0.2)\n', (25761, 25781), True, 'import torch.nn as nn\n'), ((25795, 25830), 'torch.nn.Linear', 'nn.Linear', (['self.Hidden', 'self.Hidden'], {}), '(self.Hidden, self.Hidden)\n', (25804, 25830), True, 'import torch.nn as nn\n'), ((25931, 25963), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {'negative_slope': '(0.2)'}), '(negative_slope=0.2)\n', (25943, 25963), True, 'import torch.nn as nn\n'), ((26723, 26758), 'torch.nn.Linear', 'nn.Linear', (['self.Hidden', 'self.Output'], {}), '(self.Hidden, self.Output)\n', (26732, 26758), True, 'import torch.nn as nn\n'), ((26789, 26821), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {'negative_slope': '(0.2)'}), '(negative_slope=0.2)\n', (26801, 26821), True, 'import torch.nn as nn\n'), ((26835, 26870), 'torch.nn.Linear', 'nn.Linear', (['self.Output', 'self.Output'], {}), '(self.Output, self.Output)\n', (26844, 26870), True, 'import torch.nn as nn\n'), ((26971, 27003), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', ([], {'negative_slope': '(0.2)'}), '(negative_slope=0.2)\n', (26983, 27003), True, 'import torch.nn as nn\n'), ((27330, 27345), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (27343, 27345), False, 'import torch\n'), ((27359, 27395), 'torch.nn.init.normal_', 'nn.init.normal_', (['self.conv[0].weight'], {}), '(self.conv[0].weight)\n', (27374, 27395), True, 'import torch.nn as nn\n'), ((27408, 27443), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.conv[0].bias'], {}), '(self.conv[0].bias)\n', (27424, 27443), True, 'import torch.nn as nn\n'), ((30721, 30758), 'pykeops.torch.LazyTensor', 'LazyTensor', (['head_features[None, :, :]'], {}), '(head_features[None, :, :])\n', (30731, 30758), False, 'from pykeops.torch import LazyTensor\n'), ((10265, 10293), 'torch.autograd.grad', 'torch.autograd.grad', (['Loss', 'z'], {}), '(Loss, z)\n', (10284, 10293), False, 'import torch\n'), ((11049, 11078), 'torch.autograd.grad', 'torch.autograd.grad', (['Loss', 'zz'], {}), '(Loss, zz)\n', (11068, 11078), False, 'import torch\n'), ((26253, 26278), 'torch.nn.Linear', 'nn.Linear', (['(3)', 'self.Hidden'], {}), '(3, self.Hidden)\n', (26262, 26278), True, 'import torch.nn as nn\n'), ((26280, 26289), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (26287, 26289), True, 'import torch.nn as nn\n'), ((26431, 26454), 'torch.nn.Linear', 'nn.Linear', (['(3)', 'self.Cuts'], {}), '(3, self.Cuts)\n', (26440, 26454), True, 'import torch.nn as nn\n'), ((26489, 26498), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (26496, 26498), True, 'import torch.nn as nn\n'), ((26557, 26590), 'torch.nn.Linear', 'nn.Linear', (['self.Cuts', 'self.Hidden'], {}), '(self.Cuts, self.Hidden)\n', (26566, 26590), True, 'import torch.nn as nn\n'), ((27754, 27788), 'torch.nn.init.normal_', 'nn.init.normal_', (['self.conv[2].bias'], {}), '(self.conv[2].bias)\n', (27769, 27788), True, 'import torch.nn as nn\n'), ((29453, 29462), 'math.sqrt', 'sqrt', (['(2.0)'], {}), '(2.0)\n', (29457, 29462), False, 'from math import pi, sqrt\n'), ((31145, 31178), 'torch.cat', 'torch.cat', (['(A, B[:, None])'], {'dim': '(1)'}), '((A, B[:, None]), dim=1)\n', (31154, 31178), False, 'import torch\n'), ((3577, 3599), 'pykeops.torch.cluster.grid_cluster', 'grid_cluster', (['x', 'scale'], {}), '(x, scale)\n', (3589, 3599), False, 'from pykeops.torch.cluster import grid_cluster, cluster_ranges_centroids, from_matrix\n'), ((3865, 3890), 'torch.ones_like', 'torch.ones_like', (['x[:, :1]'], {}), '(x[:, :1])\n', (3880, 3890), False, 'import torch\n'), ((4573, 4589), 'torch.max', 'torch.max', (['batch'], {}), '(batch)\n', (4582, 4589), False, 'import torch\n'), ((9430, 9450), 'torch.randn', 'torch.randn', (['N', 'B', 'D'], {}), '(N, B, D)\n', (9441, 9450), False, 'import torch\n'), ((32439, 32452), 'pykeops.torch.LazyTensor', 'LazyTensor', (['(1)'], {}), '(1)\n', (32449, 32452), False, 'from pykeops.torch import LazyTensor\n'), ((27654, 27672), 'numpy.sqrt', 'np.sqrt', (['self.Cuts'], {}), '(self.Cuts)\n', (27661, 27672), True, 'import numpy as np\n'), ((27700, 27718), 'numpy.sqrt', 'np.sqrt', (['self.Cuts'], {}), '(self.Cuts)\n', (27707, 27718), True, 'import numpy as np\n')]
from random import randint, seed import numpy as np from os import path, mkdir from maze_utils import generate_grid seed_number = 69 training_folder = "training" testing_folder = "testing" tot_elem_training = 100 # numero di matrici da generare tot_elem_testing = 20 # numero di matrici da generare max_w = 10 # massima altezza max_h = 10 # massima lunghezza min_w = 3 # minima altezza min_h = 3 # minima larghezza def generate_dataset(): """ Genera il dataset di training e testing creando matrici a caso di dimensione massima 10x10, minima 3x3 e con un numero minimo di 1 muro :return: """ # imposto il seed np.random.seed(seed_number) seed(seed_number) generate_training(tot_elem_training) generate_testing(tot_elem_testing) def generate_testing(dim: int): """ Genera il dataset di testing. Se la cartella non esiste la crea e la popola con matrici a caso. :param dim: numero di matrici da creare :return: """ # se la cartella non esiste la creo if not path.exists(testing_folder): mkdir(testing_folder) for elem in range(dim): file_name = f"{testing_folder}/matrice_{elem}" # scelta random di w, h e walls w = randint(min_w, max_w) h = randint(min_h, max_h) walls = randint(1, int(w * h / 2) - 1) grid = generate_grid(w, h, walls=walls) np.savetxt(file_name, grid, delimiter=" ", fmt='%i') def generate_training(dim: int): """ Genera il dataset di training. Se la cartella non esiste la crea e la popola con matrici a caso. :param dim: numero di matrici da creare :return: """ # se la cartella non esiste la creo if not path.exists(training_folder): mkdir(training_folder) for elem in range(dim): file_name = f"{training_folder}/matrice_{elem}"\ # scelta random di w, h e walls w = randint(min_w, max_w) h = randint(min_h, max_h) walls = randint(1, int(w * h / 2) - 1) grid = generate_grid(w, h, walls=walls) np.savetxt(file_name, grid, delimiter=" ", fmt='%i') if __name__ == "__main__": generate_dataset()
[ "os.path.exists", "maze_utils.generate_grid", "random.seed", "os.mkdir", "numpy.random.seed", "numpy.savetxt", "random.randint" ]
[((707, 734), 'numpy.random.seed', 'np.random.seed', (['seed_number'], {}), '(seed_number)\n', (721, 734), True, 'import numpy as np\n'), ((739, 756), 'random.seed', 'seed', (['seed_number'], {}), '(seed_number)\n', (743, 756), False, 'from random import randint, seed\n'), ((1101, 1128), 'os.path.exists', 'path.exists', (['testing_folder'], {}), '(testing_folder)\n', (1112, 1128), False, 'from os import path, mkdir\n'), ((1138, 1159), 'os.mkdir', 'mkdir', (['testing_folder'], {}), '(testing_folder)\n', (1143, 1159), False, 'from os import path, mkdir\n'), ((1297, 1318), 'random.randint', 'randint', (['min_w', 'max_w'], {}), '(min_w, max_w)\n', (1304, 1318), False, 'from random import randint, seed\n'), ((1331, 1352), 'random.randint', 'randint', (['min_h', 'max_h'], {}), '(min_h, max_h)\n', (1338, 1352), False, 'from random import randint, seed\n'), ((1416, 1448), 'maze_utils.generate_grid', 'generate_grid', (['w', 'h'], {'walls': 'walls'}), '(w, h, walls=walls)\n', (1429, 1448), False, 'from maze_utils import generate_grid\n'), ((1458, 1510), 'numpy.savetxt', 'np.savetxt', (['file_name', 'grid'], {'delimiter': '""" """', 'fmt': '"""%i"""'}), "(file_name, grid, delimiter=' ', fmt='%i')\n", (1468, 1510), True, 'import numpy as np\n'), ((1777, 1805), 'os.path.exists', 'path.exists', (['training_folder'], {}), '(training_folder)\n', (1788, 1805), False, 'from os import path, mkdir\n'), ((1815, 1837), 'os.mkdir', 'mkdir', (['training_folder'], {}), '(training_folder)\n', (1820, 1837), False, 'from os import path, mkdir\n'), ((1977, 1998), 'random.randint', 'randint', (['min_w', 'max_w'], {}), '(min_w, max_w)\n', (1984, 1998), False, 'from random import randint, seed\n'), ((2011, 2032), 'random.randint', 'randint', (['min_h', 'max_h'], {}), '(min_h, max_h)\n', (2018, 2032), False, 'from random import randint, seed\n'), ((2096, 2128), 'maze_utils.generate_grid', 'generate_grid', (['w', 'h'], {'walls': 'walls'}), '(w, h, walls=walls)\n', (2109, 2128), False, 'from maze_utils import generate_grid\n'), ((2138, 2190), 'numpy.savetxt', 'np.savetxt', (['file_name', 'grid'], {'delimiter': '""" """', 'fmt': '"""%i"""'}), "(file_name, grid, delimiter=' ', fmt='%i')\n", (2148, 2190), True, 'import numpy as np\n')]
# coding: utf-8 # $ \newcommand{\cat}[2][\phantom{i}]{\ket{C^{#2}_{#1\alpha}}} $ # $ \newcommand{\ket}[1]{|#1\rangle} $ # $ \newcommand{\bra}[1]{\langle#1|} $ # $ \newcommand{\braket}[2]{\langle#1|#2\rangle} $ # $\newcommand{\au}{\hat{a}^\dagger}$ # $\newcommand{\ad}{\hat{a}}$ # $\newcommand{\bu}{\hat{b}^\dagger}$ # $\newcommand{\bd}{\hat{b}}$ # # Cat Code Preparation with Optimal Control # <sup><NAME></sup> # # ## Goal # Obtain a set of pulses which will encode the quantum information of a qubit with "cat codes" (and vice versa). # # <sub><NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME> &amp; <NAME>, ‘Extending the lifetime of a quantum bit with error correction in superconducting circuits’, Nature; London, vol. 536, no. 7617, pp. 441–445, Aug. 2016.</sub> # # Outline # * Why cat codes? # * Optimal control (GRAPE) # * Using optimal control to generate cat codes # * My work so far # # Why use cat codes for error correction? # The cat code is comprised of the logical basis: # ![image.png](attachment:image.png) # <p style="text-align: center;">Notation: $ \ket{0}_L = \cat{\pm},\,\, \ket{1}_L = \cat[i]{\pm} $ </p> # $ \ket{\psi} = c_0 \ket{C_\alpha^\pm} + c_1 \ket{C_{i\alpha}^\pm} $ # ![image.png](attachment:image.png) # ## Crash course in Optimal control (GRAPE) # ![image.png](attachment:image.png) # We (usually) optimise for fidelity $\newcommand{\tr}[0]{\operatorname{tr}} f_{PSU} = \tfrac{1}{d} \big| \tr \{X_{targ}^{\dagger} X(T)\} \big| $ # # Optimal control for cat codes # Jaynes-Cummings (dispersive) # $$ \hat{H} = \omega_s\au\ad \,+ (\omega_a - \chi_{sa}\au\ad)\bu\bd $$ # $$-\, \frac{K_s}{2}\au{}^2\ad{}^2 \,-\, \frac{K_a}{2}\bu{}^2\bd{}^2 $$ # $$+\, \underbrace{\epsilon_a(t)\bu + \epsilon_a^*(t)\bd}_{\text{Qubit drive}} \,+\, \underbrace{\epsilon_s(t)\au + \epsilon_s^*(t)\ad}_{\text{Res drive}} $$ # # $$ \bu\bd = \ket{e}\bra{e} = \sigma_-\sigma_+ $$ # ![image.png](attachment:image.png) # * Use optimisation to find the pulse envelope which will realise the unitary $ \hat{U}_t \underbrace{(c_0\ket{g} + c_1\ket{e})}_{\text{ancilla}}\underbrace{\ket{0}}_{\text{res}} = \underbrace{\ket{g}}_{\text{ancilla}} \underbrace{(c_0\cat{+} + c_1\cat[i]{+})}_{\text{res}} $ # * Practically this means we want to optimise for $K$ state transfers at the same time $ F_{oc} = \frac{1}{K^2} | \sum_k^K \braket{\psi_k(T)}{\psi_k^{\text{tar}}} |^2 $ where we encode many points on the Bloch sphere in the cat code basis. # In[7]: from numpy import sqrt π = 3.1415926 ω_r = 8.3056 * 2 * π # resonator frequency ω_q = 6.2815 * 2 * π # qubit frequency K_q = -2*π*297e-3 # Kerr qubit 200-300 MHz K_r = 2*π*4.5e-6 # Kerr res 1-10 Khz ω_ef = ω_q + K_q ω_gf = ω_q + K_q/2 χ = 25e-3 * 2 * π # parameter in the dispersive hamiltonian Δ = abs(ω_r - ω_q) # detuning g = sqrt(Δ * χ) # coupling strength that is consistent with chi print(g) # ![image.png](attachment:image.png) # ![image.png](attachment:image.png) # ![image.png](attachment:image.png) # ### My work so far # * Use the pulse optimisation tool in `QuTiP` (quantum simulation toolbox in Python), or other framework # * Project status - more difficult than expected # * Even for the simple things, e.g. bit flip pulse, there are problems with convergence and numerical errors # * Custom constraints on the pulses aren't implemented yet (nor general optimization goals) in QuTiP # * I will try `Krotov`, another python toolbox which uses the Krotov method instead of GRAPE # * Goal of the thesis is to realise this method and then eventually evaluate possible extensions: # * Other bosonic codes besides "2 lobe"-cat codes # * Optimise the coefficients of Fock states (theoretical curiosity) # ## Thank you for listening! Any questions?
[ "numpy.sqrt" ]
[((2879, 2890), 'numpy.sqrt', 'sqrt', (['(Δ * χ)'], {}), '(Δ * χ)\n', (2883, 2890), False, 'from numpy import sqrt\n')]
import numpy as np class NumpyDynamic: def __init__(self, dtype, array_size=(100,)): self.data = np.zeros(array_size, dtype) self.array_size = list(array_size) self.size = 0 def add(self, x): if self.size == self.array_size[0]: self.array_size[0] *= 2 newdata = np.zeros(self.array_size, self.data.dtype) newdata[:self.size] = self.data self.data = newdata self.data[self.size] = x self.size += 1 def finalize(self): return self.data[:self.size]
[ "numpy.zeros" ]
[((112, 139), 'numpy.zeros', 'np.zeros', (['array_size', 'dtype'], {}), '(array_size, dtype)\n', (120, 139), True, 'import numpy as np\n'), ((330, 372), 'numpy.zeros', 'np.zeros', (['self.array_size', 'self.data.dtype'], {}), '(self.array_size, self.data.dtype)\n', (338, 372), True, 'import numpy as np\n')]
import numpy as np from abc import ABCMeta, abstractmethod class Node(object): """Represents state in MCTS search tree. Args: state (object): The environment state corresponding to this node in the search tree. Note: Node object is immutable. Node is left without exit edges (empty dict) when it's terminal. """ def __init__(self, state): self._state = state self._edges = None @property def state(self): """object: The environment state corresponding to this node in the search tree.""" return self._state @property def edges(self): """list of Edges: Mapping from this node's possible actions to corresponding edges.""" return self._edges def expand(self, edges): """Initialize Node object with edges. Args: edges (dict of Edges): Mapping from this node's possible actions to corresponding edges. """ self._edges = edges def select_edge(self, c=1.): """Choose next action (edge) according to UCB formula. Args: c (float): The parameter c >= 0 controls the trade-off between choosing lucrative nodes (low c) and exploring nodes with low visit counts (high c). (Default: 1) Returns: int: Action chosen with UCB formula. Edge: Edge which represents proper action chosen with UCB formula. or None: If it is terminal node and has no exit edges. """ assert self.edges is not None, "This node hasn't been expanded yet!" if len(self.edges) == 0: return None state_visits = 0 scores = {} # Initialize every edge's score to its Q-value and count current state visits for action, edge in self.edges.items(): state_visits += edge.num_visits scores[(action, edge)] = edge.qvalue # Add exploration term to every edge's score for action, edge in self.edges.items(): scores[(action, edge)] += c * edge.prior * \ np.sqrt(state_visits) / (1 + edge.num_visits) # Choose next action and edge with highest score action_edge = max(scores, key=scores.get) return action_edge class Edge(object): """Represents state-actions pair in MCTS search tree. Args: prior (float): Action probability from prior policy. (Default: 1.) """ def __init__(self, prior=1.): self._prior = prior self._next_node = None self._reward = 0 self._qvalue = 0 self._num_visits = 0 def expand(self, next_node, reward): """Explore this edge. Args: next_node (Node): Node that this edge points to. reward (float): Reward of transition represented by this edge. """ self._next_node = next_node self._reward = reward def update(self, return_t): """Update edge with data from child. Args: return_t (float): (Un)discounted return from timestep 't' (this edge). """ self._num_visits += 1 # This is formula for iteratively calculating average # NOTE: You can check that first arbitrary value will be forgotten after fist update self._qvalue += (return_t - self._qvalue) / self.num_visits @property def next_node(self): """next_node (Node): Node that this edge points to.""" return self._next_node @property def reward(self): """float: Reward of transition represented by this edge.""" return self._reward @property def qvalue(self): """float: Quality value of this edge state-action pair.""" return self._qvalue @property def prior(self): """float: Action probability from prior policy.""" return self._prior @property def num_visits(self): """int: Number of times this state-action pair was visited.""" return self._num_visits
[ "numpy.sqrt" ]
[((2113, 2134), 'numpy.sqrt', 'np.sqrt', (['state_visits'], {}), '(state_visits)\n', (2120, 2134), True, 'import numpy as np\n')]
import numpy as np import time import pytest import jax.numpy as jnp import jax.config as config import torch import tensorflow as tf from tensornetwork.linalg import linalg from tensornetwork import backends from tensornetwork.backends.numpy import numpy_backend from tensornetwork.backends.jax import jax_backend #pylint: disable=no-member config.update("jax_enable_x64", True) np_real = [np.float32, np.float16, np.float64] np_float = np_real + [np.complex64, np.complex128] np_int = [np.int8, np.int16, np.int32, np.int64] np_uint = [np.uint8, np.uint16, np.uint32, np.uint64] np_dtypes = {"real": np_real, "float": np_float, "rand": np_float, "int": np_int + np_uint, "all": np_real+ np_int + np_uint + [None, ]} tf_real = [tf.float32, tf.float16, tf.float64] tf_float = tf_real + [tf.complex64, tf.complex128] tf_int = [tf.int8, tf.int16, tf.int32, tf.int64] tf_uint = [tf.uint8, tf.uint16, tf.uint32, tf.uint64] tf_dtypes = {"real": tf_real, "float": tf_float, "rand": tf_real + [None, ], "int": tf_int + tf_uint, "all": tf_real + tf_int + tf_uint + [None, ]} torch_float = [torch.float32, torch.float16, torch.float64] torch_int = [torch.int8, torch.int16, torch.int32, torch.int64] torch_uint = [torch.uint8] torch_dtypes = {"real": torch_float, "float": torch_float, "rand": [torch.float32, torch.float64, None], "int": torch_int + torch_uint, "all": torch_float + torch_int + torch_uint + [None, ]} dtypes = {"pytorch": torch_dtypes, "jax": np_dtypes, "numpy": np_dtypes, "tensorflow": tf_dtypes} def test_eye(backend): """ Tests linalg.eye against np.eye. """ N = 4 M = 6 name = "Jeffrey" axis_names = ["Sam", "Blinkey"] backend_obj = backends.backend_factory.get_backend(backend) for dtype in dtypes[backend]["all"]: tnI = linalg.eye(N, dtype=dtype, M=M, name=name, axis_names=axis_names, backend=backend) npI = backend_obj.eye(N, dtype=dtype, M=M) np.testing.assert_allclose(tnI.tensor, npI) assert tnI.name == name edges = tnI.get_all_dangling() for edge, expected_name in zip(edges, axis_names): assert edge.name == expected_name assert tnI.backend.name == backend def test_zeros(backend): """ Tests linalg.zeros against np.zeros. """ shape = (5, 10, 3) name = "Jeffrey" axis_names = ["Sam", "Blinkey", "Renaldo"] backend_obj = backends.backend_factory.get_backend(backend) for dtype in dtypes[backend]["all"]: tnI = linalg.zeros(shape, dtype=dtype, name=name, axis_names=axis_names, backend=backend) npI = backend_obj.zeros(shape, dtype=dtype) np.testing.assert_allclose(tnI.tensor, npI) assert tnI.name == name edges = tnI.get_all_dangling() for edge, expected_name in zip(edges, axis_names): assert edge.name == expected_name assert tnI.backend.name == backend def test_ones(backend): """ Tests linalg.ones against np.ones. """ shape = (5, 10, 3) name = "Jeffrey" axis_names = ["Sam", "Blinkey", "Renaldo"] backend_obj = backends.backend_factory.get_backend(backend) for dtype in dtypes[backend]["all"]: tnI = linalg.ones(shape, dtype=dtype, name=name, axis_names=axis_names, backend=backend) npI = backend_obj.ones(shape, dtype=dtype) np.testing.assert_allclose(tnI.tensor, npI) assert tnI.name == name edges = tnI.get_all_dangling() for edge, expected_name in zip(edges, axis_names): assert edge.name == expected_name assert tnI.backend.name == backend def test_randn(backend): """ Tests linalg.randn against the backend code. """ shape = (5, 10, 3, 2) seed = int(time.time()) np.random.seed(seed=seed) name = "Jeffrey" axis_names = ["Sam", "Blinkey", "Renaldo", "Jarvis"] backend_obj = backends.backend_factory.get_backend(backend) for dtype in dtypes[backend]["rand"]: tnI = linalg.randn(shape, dtype=dtype, name=name, axis_names=axis_names, backend=backend, seed=seed) npI = backend_obj.randn(shape, dtype=dtype, seed=seed) np.testing.assert_allclose(tnI.tensor, npI) assert tnI.name == name edges = tnI.get_all_dangling() for edge, expected_name in zip(edges, axis_names): assert edge.name == expected_name assert tnI.backend.name == backend def test_random_uniform(backend): """ Tests linalg.ones against np.ones. """ shape = (5, 10, 3, 2) seed = int(time.time()) np.random.seed(seed=seed) boundaries = (-0.3, 10.5) name = "Jeffrey" axis_names = ["Sam", "Blinkey", "Renaldo", "Jarvis"] backend_obj = backends.backend_factory.get_backend(backend) for dtype in dtypes[backend]["rand"]: tnI = linalg.random_uniform(shape, dtype=dtype, name=name, axis_names=axis_names, backend=backend, seed=seed, boundaries=boundaries) npI = backend_obj.random_uniform(shape, dtype=dtype, seed=seed, boundaries=boundaries) np.testing.assert_allclose(tnI.tensor, npI) assert tnI.name == name edges = tnI.get_all_dangling() for edge, expected_name in zip(edges, axis_names): assert edge.name == expected_name assert tnI.backend.name == backend
[ "jax.config.update", "tensornetwork.linalg.linalg.zeros", "tensornetwork.linalg.linalg.randn", "numpy.testing.assert_allclose", "tensornetwork.backends.backend_factory.get_backend", "tensornetwork.linalg.linalg.eye", "numpy.random.seed", "tensornetwork.linalg.linalg.ones", "time.time", "tensornetwork.linalg.linalg.random_uniform" ]
[((342, 379), 'jax.config.update', 'config.update', (['"""jax_enable_x64"""', '(True)'], {}), "('jax_enable_x64', True)\n", (355, 379), True, 'import jax.config as config\n'), ((1806, 1851), 'tensornetwork.backends.backend_factory.get_backend', 'backends.backend_factory.get_backend', (['backend'], {}), '(backend)\n', (1842, 1851), False, 'from tensornetwork import backends\n'), ((2476, 2521), 'tensornetwork.backends.backend_factory.get_backend', 'backends.backend_factory.get_backend', (['backend'], {}), '(backend)\n', (2512, 2521), False, 'from tensornetwork import backends\n'), ((3147, 3192), 'tensornetwork.backends.backend_factory.get_backend', 'backends.backend_factory.get_backend', (['backend'], {}), '(backend)\n', (3183, 3192), False, 'from tensornetwork import backends\n'), ((3777, 3802), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (3791, 3802), True, 'import numpy as np\n'), ((3893, 3938), 'tensornetwork.backends.backend_factory.get_backend', 'backends.backend_factory.get_backend', (['backend'], {}), '(backend)\n', (3929, 3938), False, 'from tensornetwork import backends\n'), ((4548, 4573), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (4562, 4573), True, 'import numpy as np\n'), ((4692, 4737), 'tensornetwork.backends.backend_factory.get_backend', 'backends.backend_factory.get_backend', (['backend'], {}), '(backend)\n', (4728, 4737), False, 'from tensornetwork import backends\n'), ((1901, 1988), 'tensornetwork.linalg.linalg.eye', 'linalg.eye', (['N'], {'dtype': 'dtype', 'M': 'M', 'name': 'name', 'axis_names': 'axis_names', 'backend': 'backend'}), '(N, dtype=dtype, M=M, name=name, axis_names=axis_names, backend=\n backend)\n', (1911, 1988), False, 'from tensornetwork.linalg import linalg\n'), ((2056, 2099), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tnI.tensor', 'npI'], {}), '(tnI.tensor, npI)\n', (2082, 2099), True, 'import numpy as np\n'), ((2571, 2659), 'tensornetwork.linalg.linalg.zeros', 'linalg.zeros', (['shape'], {'dtype': 'dtype', 'name': 'name', 'axis_names': 'axis_names', 'backend': 'backend'}), '(shape, dtype=dtype, name=name, axis_names=axis_names, backend=\n backend)\n', (2583, 2659), False, 'from tensornetwork.linalg import linalg\n'), ((2730, 2773), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tnI.tensor', 'npI'], {}), '(tnI.tensor, npI)\n', (2756, 2773), True, 'import numpy as np\n'), ((3242, 3329), 'tensornetwork.linalg.linalg.ones', 'linalg.ones', (['shape'], {'dtype': 'dtype', 'name': 'name', 'axis_names': 'axis_names', 'backend': 'backend'}), '(shape, dtype=dtype, name=name, axis_names=axis_names, backend=\n backend)\n', (3253, 3329), False, 'from tensornetwork.linalg import linalg\n'), ((3398, 3441), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tnI.tensor', 'npI'], {}), '(tnI.tensor, npI)\n', (3424, 3441), True, 'import numpy as np\n'), ((3762, 3773), 'time.time', 'time.time', ([], {}), '()\n', (3771, 3773), False, 'import time\n'), ((3989, 4088), 'tensornetwork.linalg.linalg.randn', 'linalg.randn', (['shape'], {'dtype': 'dtype', 'name': 'name', 'axis_names': 'axis_names', 'backend': 'backend', 'seed': 'seed'}), '(shape, dtype=dtype, name=name, axis_names=axis_names, backend=\n backend, seed=seed)\n', (4001, 4088), False, 'from tensornetwork.linalg import linalg\n'), ((4170, 4213), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tnI.tensor', 'npI'], {}), '(tnI.tensor, npI)\n', (4196, 4213), True, 'import numpy as np\n'), ((4533, 4544), 'time.time', 'time.time', ([], {}), '()\n', (4542, 4544), False, 'import time\n'), ((4788, 4918), 'tensornetwork.linalg.linalg.random_uniform', 'linalg.random_uniform', (['shape'], {'dtype': 'dtype', 'name': 'name', 'axis_names': 'axis_names', 'backend': 'backend', 'seed': 'seed', 'boundaries': 'boundaries'}), '(shape, dtype=dtype, name=name, axis_names=axis_names,\n backend=backend, seed=seed, boundaries=boundaries)\n', (4809, 4918), False, 'from tensornetwork.linalg import linalg\n'), ((5111, 5154), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tnI.tensor', 'npI'], {}), '(tnI.tensor, npI)\n', (5137, 5154), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import numpy as np import pandas as pd import librosa import os import sys import time from datetime import datetime from pathlib import Path from src.python.audio_transforms import * from src.python.model_predict import * from src.python.graphics import plot_graph # Hardcoding a few variables max_chroma_sample = 6145 max_spectrogram_sample = 6145 model_classes = [(0, 'artifact'), (1, 'extra'), (2, 'murmur'), (3, 'normal')] # Directories DIR_ROOT = Path().resolve() DIR_PARENT = Path().resolve().parent def import_wav(filepath): ''' Takes a filepath and returns the sample rate (sr) and amplitude (x) ''' try: x, sr = librosa.load(filepath) x, _ = librosa.effects.trim(x) except FileNotFoundError: raise FileNotFoundError(f'could not file a file at {filepath}') return x, sr # ---------------------------------- # MAIN FUNCTION -------------------- # ---------------------------------- def main(wav_path, max_chroma_sample, max_spect_sample, dt_string): audio_results = {} base_path = Path(DIR_ROOT, 'demo_files', 'results') # 0. SAVE RECORD SOMEWHERE ## Placeholder for now # 1. Open wav file with Librosa x, sr = import_wav(wav_path) # 2. Spectogram audio_results['spectogram'] = amp_to_db( freq_array = stft_transform(amp_array = x), sr = sr, ref = np.max ) # 3. MFCC audio_results['mfcc'] = mfcc_spectogram( amp_array = x, sr = sr ) # 4. Chromagram audio_results['chromagram'] = chromagram( amp_array = x, sr = sr ) # 5. Create Images (User) for key, value in audio_results.items(): plot_graph( audio_array = value, viz_type = key, out_file = Path(base_path, 'user_images', "_".join([dt_string, key]) + '.png'), user = True, dpi = 150 ) # 6. Pad Images for key, value in audio_results.items(): audio_results[key] = pad_along_axis(value, max_spectrogram_sample) # 6. Create Images (Model) img_path = {} for key, value in audio_results.items(): file_path = Path(base_path, 'model_images', "_".join([key, dt_string]) + '.png') plot_graph( audio_array = value, viz_type = key, out_file = file_path, user = False, dpi = 200 ) img_path[key] = str(file_path) # Return all 3 images to be pushed to model for predictions return img_path if __name__ == '__main__': wav_path = sys.argv[1] if not Path(wav_path).is_file(): raise FileNotFoundError() dt_string = str(round(datetime.now().timestamp())) hb_images = main( wav_path, max_chroma_sample, max_spectrogram_sample, dt_string ) results = [] for key, value in hb_images.items(): output, predict = predict_heartbeat(key, value, DIR_ROOT) results.append(output.detach().numpy()[0]) results = np.array(results) index = results.mean(axis=0).argmax() hb_predict = model_classes[index][1].title() if hb_predict.lower() == 'artifact': m = "Too much backgound noise. Try again!" else: m = f"Your heartbeat is....... {hb_predict}" print(m)
[ "pathlib.Path", "src.python.graphics.plot_graph", "numpy.array", "datetime.datetime.now", "librosa.effects.trim", "librosa.load" ]
[((1090, 1129), 'pathlib.Path', 'Path', (['DIR_ROOT', '"""demo_files"""', '"""results"""'], {}), "(DIR_ROOT, 'demo_files', 'results')\n", (1094, 1129), False, 'from pathlib import Path\n'), ((3100, 3117), 'numpy.array', 'np.array', (['results'], {}), '(results)\n', (3108, 3117), True, 'import numpy as np\n'), ((481, 487), 'pathlib.Path', 'Path', ([], {}), '()\n', (485, 487), False, 'from pathlib import Path\n'), ((666, 688), 'librosa.load', 'librosa.load', (['filepath'], {}), '(filepath)\n', (678, 688), False, 'import librosa\n'), ((700, 723), 'librosa.effects.trim', 'librosa.effects.trim', (['x'], {}), '(x)\n', (720, 723), False, 'import librosa\n'), ((2307, 2395), 'src.python.graphics.plot_graph', 'plot_graph', ([], {'audio_array': 'value', 'viz_type': 'key', 'out_file': 'file_path', 'user': '(False)', 'dpi': '(200)'}), '(audio_array=value, viz_type=key, out_file=file_path, user=False,\n dpi=200)\n', (2317, 2395), False, 'from src.python.graphics import plot_graph\n'), ((511, 517), 'pathlib.Path', 'Path', ([], {}), '()\n', (515, 517), False, 'from pathlib import Path\n'), ((2664, 2678), 'pathlib.Path', 'Path', (['wav_path'], {}), '(wav_path)\n', (2668, 2678), False, 'from pathlib import Path\n'), ((2751, 2765), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2763, 2765), False, 'from datetime import datetime\n')]
import unittest import numpy as np from xcube.webapi.controllers.time_series import get_time_series_info, get_time_series_for_point, \ get_time_series_for_geometry, get_time_series_for_geometry_collection from ..helpers import new_test_service_context class TimeSeriesControllerTest(unittest.TestCase): def test_get_time_series_for_point_invalid_lat_and_lon(self): ctx = new_test_service_context() time_series = get_time_series_for_point(ctx, 'demo', 'conc_tsm', lon=-150.0, lat=-30.0) expected_dict = {'results': []} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_point(self): ctx = new_test_service_context() time_series = get_time_series_for_point(ctx, 'demo', 'conc_tsm', lon=2.1, lat=51.4, start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29')) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 3.534773588180542, 'totalCount': 1, 'validCount': 1}}, {'date': '2017-01-25T09:35:51Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-26T10:50:17Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 20.12085723876953, 'totalCount': 1, 'validCount': 1}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_point_one_valid(self): ctx = new_test_service_context() time_series = get_time_series_for_point(ctx, 'demo', 'conc_tsm', lon=2.1, lat=51.4, start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29'), max_valids=1) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 3.534773588180542, 'totalCount': 1, 'validCount': 1}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_point_only_valids(self): ctx = new_test_service_context() time_series = get_time_series_for_point(ctx, 'demo', 'conc_tsm', lon=2.1, lat=51.4, start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29'), max_valids=-1) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 3.534773588180542, 'totalCount': 1, 'validCount': 1}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 20.12085723876953, 'totalCount': 1, 'validCount': 1}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_point_with_uncertainty(self): ctx = new_test_service_context() time_series = get_time_series_for_point(ctx, 'demo-1w', 'conc_tsm', lon=2.1, lat=51.4, start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29')) expected_dict = {'results': [{'date': '2017-01-22T00:00:00Z', 'result': {'average': 3.534773588180542, 'uncertainty': 0.0, 'totalCount': 1, 'validCount': 1}}, {'date': '2017-01-29T00:00:00Z', 'result': {'average': 20.12085723876953, 'uncertainty': 0.0, 'totalCount': 1, 'validCount': 1}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_geometry_point(self): ctx = new_test_service_context() time_series = get_time_series_for_geometry(ctx, 'demo', 'conc_tsm', dict(type="Point", coordinates=[2.1, 51.4]), start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29')) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 3.534773588180542, 'totalCount': 1, 'validCount': 1}}, {'date': '2017-01-25T09:35:51Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-26T10:50:17Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 20.12085723876953, 'totalCount': 1, 'validCount': 1}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_geometry_polygon(self): ctx = new_test_service_context() time_series = get_time_series_for_geometry(ctx, 'demo', 'conc_tsm', dict(type="Polygon", coordinates=[[ [1., 51.], [2., 51.], [2., 52.], [1., 52.], [1., 51.] ]])) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 56.0228561816751, 'totalCount': 1, 'validCount': 122738}}, {'date': '2017-01-25T09:35:51Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-26T10:50:17Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 49.71656646340396, 'totalCount': 1, 'validCount': 132716}}, {'date': '2017-01-30T10:46:34Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_geometry_polygon_one_valid(self): ctx = new_test_service_context() time_series = get_time_series_for_geometry(ctx, 'demo', 'conc_tsm', dict(type="Polygon", coordinates=[[ [1., 51.], [2., 51.], [2., 52.], [1., 52.], [1., 51.] ]]), max_valids=1) expected_dict = {'results': [{'date': '2017-01-16T10:09:22Z', 'result': {'average': 56.0228561816751, 'totalCount': 1, 'validCount': 122738}}]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_geometries_incl_point(self): ctx = new_test_service_context() time_series = get_time_series_for_geometry_collection(ctx, 'demo', 'conc_tsm', dict(type="GeometryCollection", geometries=[ dict(type="Point", coordinates=[2.1, 51.4])]), start_date=np.datetime64('2017-01-15'), end_date=np.datetime64('2017-01-29')) expected_dict = {'results': [[{'date': '2017-01-16T10:09:22Z', 'result': {'average': 3.534773588180542, 'totalCount': 1, 'validCount': 1}}, {'date': '2017-01-25T09:35:51Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-26T10:50:17Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 20.12085723876953, 'totalCount': 1, 'validCount': 1}}]]} self.assertEqual(expected_dict, time_series) def test_get_time_series_for_geometries_incl_polygon(self): ctx = new_test_service_context() time_series = get_time_series_for_geometry_collection(ctx, 'demo', 'conc_tsm', dict(type="GeometryCollection", geometries=[dict(type="Polygon", coordinates=[[ [1., 51.], [2., 51.], [2., 52.], [1., 52.], [1., 51.] ]])])) expected_dict = {'results': [[{'date': '2017-01-16T10:09:22Z', 'result': {'average': 56.0228561816751, 'totalCount': 1, 'validCount': 122738}}, {'date': '2017-01-25T09:35:51Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-26T10:50:17Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}, {'date': '2017-01-28T09:58:11Z', 'result': {'average': 49.71656646340396, 'totalCount': 1, 'validCount': 132716}}, {'date': '2017-01-30T10:46:34Z', 'result': {'average': None, 'totalCount': 1, 'validCount': 0}}]]} self.assertEqual(expected_dict, time_series) def test_get_time_series_info(self): self.maxDiff = None ctx = new_test_service_context() info = get_time_series_info(ctx) expected_dict = self._get_expected_info_dict() self.assertEqual(expected_dict, info) @staticmethod def _get_expected_info_dict(): expected_dict = {'layers': []} bounds = {'xmin': 0.0, 'ymin': 50.0, 'xmax': 5.0, 'ymax': 52.5} demo_times = ['2017-01-16T10:09:22Z', '2017-01-25T09:35:51Z', '2017-01-26T10:50:17Z', '2017-01-28T09:58:11Z', '2017-01-30T10:46:34Z'] demo_variables = ['c2rcc_flags', 'conc_chl', 'conc_tsm', 'kd489', 'quality_flags'] for demo_variable in demo_variables: dict_variable = {'name': f'demo.{demo_variable}', 'dates': demo_times, 'bounds': bounds} expected_dict['layers'].append(dict_variable) demo1w_times = ['2017-01-22T00:00:00Z', '2017-01-29T00:00:00Z', '2017-02-05T00:00:00Z'] for demo_variable in demo_variables: dict_variable = {'name': f'demo-1w.{demo_variable}', 'dates': demo1w_times, 'bounds': bounds} expected_dict['layers'].append(dict_variable) dict_variable = {'name': f'demo-1w.{demo_variable}_stdev', 'dates': demo1w_times, 'bounds': bounds} expected_dict['layers'].append(dict_variable) return expected_dict
[ "xcube.webapi.controllers.time_series.get_time_series_for_point", "xcube.webapi.controllers.time_series.get_time_series_info", "numpy.datetime64" ]
[((441, 514), 'xcube.webapi.controllers.time_series.get_time_series_for_point', 'get_time_series_for_point', (['ctx', '"""demo"""', '"""conc_tsm"""'], {'lon': '(-150.0)', 'lat': '(-30.0)'}), "(ctx, 'demo', 'conc_tsm', lon=-150.0, lat=-30.0)\n", (466, 514), False, 'from xcube.webapi.controllers.time_series import get_time_series_info, get_time_series_for_point, get_time_series_for_geometry, get_time_series_for_geometry_collection\n'), ((12635, 12660), 'xcube.webapi.controllers.time_series.get_time_series_info', 'get_time_series_info', (['ctx'], {}), '(ctx)\n', (12655, 12660), False, 'from xcube.webapi.controllers.time_series import get_time_series_info, get_time_series_for_point, get_time_series_for_geometry, get_time_series_for_geometry_collection\n'), ((943, 970), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (956, 970), True, 'import numpy as np\n'), ((1029, 1056), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (1042, 1056), True, 'import numpy as np\n'), ((2319, 2346), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (2332, 2346), True, 'import numpy as np\n'), ((2405, 2432), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (2418, 2432), True, 'import numpy as np\n'), ((3132, 3159), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (3145, 3159), True, 'import numpy as np\n'), ((3218, 3245), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (3231, 3245), True, 'import numpy as np\n'), ((4237, 4264), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (4250, 4264), True, 'import numpy as np\n'), ((4323, 4350), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (4336, 4350), True, 'import numpy as np\n'), ((5441, 5468), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (5454, 5468), True, 'import numpy as np\n'), ((5530, 5557), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (5543, 5557), True, 'import numpy as np\n'), ((9507, 9534), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-15"""'], {}), "('2017-01-15')\n", (9520, 9534), True, 'import numpy as np\n'), ((9607, 9634), 'numpy.datetime64', 'np.datetime64', (['"""2017-01-29"""'], {}), "('2017-01-29')\n", (9620, 9634), True, 'import numpy as np\n')]
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : eval-referential.py # Author : <NAME>, <NAME> # Email : <EMAIL>, <EMAIL> # Date : 30.07.2019 # Last Modified Date: 16.10.2019 # Last Modified By : Chi Han, Jiayuan Mao # # This file is part of the VCML codebase # Distributed under MIT license # -*- coding: utf-8 -*- # File : eval-referential.py # Author : <NAME> # Email : <EMAIL> # Date : 07/30/2019 # # This file is part of eval-clevr-instance-retrieval. # Distributed under terms of the MIT license. import six import functools import sys from IPython.core import ultratb import numpy as np import jacinle.io as io import jacinle.random as random from jacinle.cli.argument import JacArgumentParser from jacinle.utils.tqdm import tqdm_gofor, get_current_tqdm from jacinle.utils.meter import GroupMeters sys.excepthook = ultratb.FormattedTB( mode='Plain', color_scheme='Linux', call_pdb=True) parser = JacArgumentParser() parser.add_argument('--scene-json', required=True, type='checked_file') parser.add_argument('--preds-json', required=True, type='checked_file') args = parser.parse_args() class Definition(object): annotation_attribute_names = ['color', 'material', 'shape', 'size'] annotation_relation_names = ['behind', 'front', 'left', 'right'] concepts = { 'color': ['gray', 'red', 'blue', 'green', 'brown', 'purple', 'cyan', 'yellow'], 'material': ['rubber', 'metal'], 'shape': ['cube', 'sphere', 'cylinder'], 'size': ['small', 'large'] } concept2attribute = { v: k for k, vs in concepts.items() for v in vs } relational_concepts = { 'spatial_relation': ['left', 'right', 'front', 'behind'] } synonyms = { "thing": ["thing", "object"], "sphere": ["sphere", "ball"], "cube": ["cube", "block"], "cylinder": ["cylinder"], "large": ["large", "big"], "small": ["small", "tiny"], "metal": ["metallic", "metal", "shiny"], "rubber": ["rubber", "matte"], } word2lemma = { v: k for k, vs in synonyms.items() for v in vs } def_ = Definition() def get_desc(obj): names = [obj[k] for k in def_.annotation_attribute_names] for i, n in enumerate(names): if n in def_.synonyms: names[i] = random.choice_list(def_.synonyms[n]) return names def run_desc_obj(obj, desc): for d in desc: dd = def_.word2lemma.get(d, d) if dd != obj[def_.concept2attribute[dd]]: return False return True def run_desc_pred(all_preds, desc): s = 10000 for d in desc: s = np.fmin(s, all_preds[d]) return s def test(index, all_objs, all_preds, meter): obj = all_objs[index] nr_descriptors = random.randint(1, 3) desc = random.choice_list(get_desc(obj), size=nr_descriptors) if isinstance(desc, six.string_types): desc = [desc] filtered_objs = [i for i, o in enumerate(all_objs) if not run_desc_obj(o, desc)] all_scores = run_desc_pred(all_preds, desc) rank = (all_scores[filtered_objs] > all_scores[index]).sum() # print(desc) # print(all_scores) # print(all_scores[index]) meter.update('r@01', rank <= 1) meter.update('r@02', rank <= 2) meter.update('r@03', rank <= 3) meter.update('r@04', rank <= 4) meter.update('r@05', rank <= 5) def transpose_scene(scene): ret = dict() for k in scene['0']: ret[k] = np.array([scene[str(o)][k] for o in range(len(scene))]) return ret def main(): scenes = io.load_json(args.scene_json)['scenes'] preds = io.load(args.preds_json) if isinstance(preds, dict): preds = list(preds.values()) if False: preds = [transpose_scene(s) for s in preds] # flattened_objs = [o for s in scenes for o in s['objects']] # flattened_preds = { # k: np.concatenate([np.array(p[k]) for p in preds], axis=0) # for k in preds[0] # } meter = GroupMeters() ''' for i, scene in tqdm_gofor(scenes, mininterval=0.5): for j in range(len(scene['objects'])): test(j, scene['objects'], preds[i], meter) ''' for i, pred in tqdm_gofor(preds, mininterval=0.5): scene = scenes[i] for j in range(len(scene['objects'])): test(j, scene['objects'], pred, meter) print(meter.format_simple('Results:', compressed=False)) if __name__ == '__main__': main()
[ "jacinle.io.load_json", "IPython.core.ultratb.FormattedTB", "jacinle.utils.meter.GroupMeters", "jacinle.random.randint", "jacinle.cli.argument.JacArgumentParser", "jacinle.random.choice_list", "jacinle.io.load", "numpy.fmin", "jacinle.utils.tqdm.tqdm_gofor" ]
[((890, 960), 'IPython.core.ultratb.FormattedTB', 'ultratb.FormattedTB', ([], {'mode': '"""Plain"""', 'color_scheme': '"""Linux"""', 'call_pdb': '(True)'}), "(mode='Plain', color_scheme='Linux', call_pdb=True)\n", (909, 960), False, 'from IPython.core import ultratb\n'), ((976, 995), 'jacinle.cli.argument.JacArgumentParser', 'JacArgumentParser', ([], {}), '()\n', (993, 995), False, 'from jacinle.cli.argument import JacArgumentParser\n'), ((2809, 2829), 'jacinle.random.randint', 'random.randint', (['(1)', '(3)'], {}), '(1, 3)\n', (2823, 2829), True, 'import jacinle.random as random\n'), ((3654, 3678), 'jacinle.io.load', 'io.load', (['args.preds_json'], {}), '(args.preds_json)\n', (3661, 3678), True, 'import jacinle.io as io\n'), ((4023, 4036), 'jacinle.utils.meter.GroupMeters', 'GroupMeters', ([], {}), '()\n', (4034, 4036), False, 'from jacinle.utils.meter import GroupMeters\n'), ((4232, 4266), 'jacinle.utils.tqdm.tqdm_gofor', 'tqdm_gofor', (['preds'], {'mininterval': '(0.5)'}), '(preds, mininterval=0.5)\n', (4242, 4266), False, 'from jacinle.utils.tqdm import tqdm_gofor, get_current_tqdm\n'), ((2677, 2701), 'numpy.fmin', 'np.fmin', (['s', 'all_preds[d]'], {}), '(s, all_preds[d])\n', (2684, 2701), True, 'import numpy as np\n'), ((3602, 3631), 'jacinle.io.load_json', 'io.load_json', (['args.scene_json'], {}), '(args.scene_json)\n', (3614, 3631), True, 'import jacinle.io as io\n'), ((2360, 2396), 'jacinle.random.choice_list', 'random.choice_list', (['def_.synonyms[n]'], {}), '(def_.synonyms[n])\n', (2378, 2396), True, 'import jacinle.random as random\n')]
import pandas as pd from sklearn.pipeline import Pipeline from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import confusion_matrix, roc_auc_score from category_encoders import MEstimateEncoder import numpy as np from collections import defaultdict import os from sklearn.metrics import roc_auc_score from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split def fit_predict(modelo, enc, data, target, test): pipe = Pipeline([("encoder", enc), ("model", modelo)]) pipe.fit(data, target) return pipe.predict(test) def auc_group(model, data, y_true, dicc, group: str = "", min_samples: int = 50): aux = data.copy() aux["target"] = y_true cats = aux[group].value_counts() cats = cats[cats > min_samples].index.tolist() cats = cats + ["all"] if len(dicc) == 0: dicc = defaultdict(list, {k: [] for k in cats}) for cat in cats: if cat != "all": aux2 = aux[aux[group] == cat] preds = model.predict_proba(aux2.drop(columns="target"))[:, 1] truth = aux2["target"] dicc[cat].append(roc_auc_score(truth, preds)) elif cat == "all": dicc[cat].append(roc_auc_score(y_true, model.predict_proba(data)[:, 1])) else: pass return dicc def explain(xgb: bool = True): """ Provide a SHAP explanation by fitting MEstimate and GBDT """ if xgb: pipe = Pipeline( [("encoder", MEstimateEncoder()), ("model", GradientBoostingClassifier())] ) pipe.fit(X_tr, y_tr) explainer = shap.Explainer(pipe[1]) shap_values = explainer(pipe[:-1].transform(X_tr)) shap.plots.beeswarm(shap_values) return pd.DataFrame(np.abs(shap_values.values), columns=X_tr.columns).sum() else: pipe = Pipeline( [("encoder", MEstimateEncoder()), ("model", LogisticRegression())] ) pipe.fit(X_tr, y_tr) coefficients = pd.concat( [pd.DataFrame(X_tr.columns), pd.DataFrame(np.transpose(pipe[1].coef_))], axis=1, ) coefficients.columns = ["feat", "val"] return coefficients.sort_values(by="val", ascending=False) def calculate_cm(true, preds): # Obtain the confusion matrix cm = confusion_matrix(preds, true) # https://stackoverflow.com/questions/31324218/scikit-learn-how-to-obtain-true-positive-true-negative-false-positive-and-fal FP = cm.sum(axis=0) - np.diag(cm) FN = cm.sum(axis=1) - np.diag(cm) TP = np.diag(cm) TN = cm.sum() - (FP + FN + TP) # Sensitivity, hit rate, recall, or true positive rate TPR = TP / (TP + FN) # Specificity or true negative rate TNR = TN / (TN + FP) # Precision or positive predictive value PPV = TP / (TP + FP) # Negative predictive value NPV = TN / (TN + FN) # Fall out or false positive rate FPR = FP / (FP + TN) # False negative rate FNR = FN / (TP + FN) # False discovery rate FDR = FP / (TP + FP) # Overall accuracy ACC = (TP + TN) / (TP + FP + FN + TN) return TPR[0] def metric_calculator( modelo, data: pd.DataFrame, truth: pd.DataFrame, col: str, group1: str, group2: str ): aux = data.copy() aux["target"] = truth # Filter the data g1 = data[data[col] == group1] g2 = data[data[col] == group2] # Filter the ground truth g1_true = aux[aux[col] == group1].target g2_true = aux[aux[col] == group2].target # Do predictions p1 = modelo.predict(g1) p2 = modelo.predict(g2) # Extract metrics for each group res1 = calculate_cm(p1, g1_true) res2 = calculate_cm(p2, g2_true) return res1 - res2 def plot_rolling(data, roll_mean: int = 5, roll_std: int = 20): aux = data.rolling(roll_mean).mean().dropna() stand = data.rolling(roll_std).quantile(0.05, interpolation="lower").dropna() plt.figure() for col in data.columns: plt.plot(aux[col], label=col) # plt.fill_between(aux.index,(aux[col] - stand[col]),(aux[col] + stand[col]),# color="b",alpha=0.1,) plt.legend() plt.show() def scale_output(data): return pd.DataFrame( StandardScaler().fit_transform(data), columns=data.columns, index=data.index ) import numpy as np def psi(expected, actual, buckettype="bins", buckets=10, axis=0): """Calculate the PSI (population stability index) across all variables Args: expected: numpy matrix of original values actual: numpy matrix of new values, same size as expected buckettype: type of strategy for creating buckets, bins splits into even splits, quantiles splits into quantile buckets buckets: number of quantiles to use in bucketing variables axis: axis by which variables are defined, 0 for vertical, 1 for horizontal Returns: psi_values: ndarray of psi values for each variable Author: <NAME> github.com/mwburke worksofchart.com """ def _psi(expected_array, actual_array, buckets): """Calculate the PSI for a single variable Args: expected_array: numpy array of original values actual_array: numpy array of new values, same size as expected buckets: number of percentile ranges to bucket the values into Returns: psi_value: calculated PSI value """ def scale_range(input, min, max): input += -(np.min(input)) input /= np.max(input) / (max - min) input += min return input breakpoints = np.arange(0, buckets + 1) / (buckets) * 100 if buckettype == "bins": breakpoints = scale_range( breakpoints, np.min(expected_array), np.max(expected_array) ) elif buckettype == "quantiles": breakpoints = np.stack( [np.percentile(expected_array, b) for b in breakpoints] ) expected_percents = np.histogram(expected_array, breakpoints)[0] / len( expected_array ) actual_percents = np.histogram(actual_array, breakpoints)[0] / len(actual_array) def sub_psi(e_perc, a_perc): """Calculate the actual PSI value from comparing the values. Update the actual value to a very small number if equal to zero """ if a_perc == 0: a_perc = 0.0001 if e_perc == 0: e_perc = 0.0001 value = (e_perc - a_perc) * np.log(e_perc / a_perc) return value psi_value = np.sum( sub_psi(expected_percents[i], actual_percents[i]) for i in range(0, len(expected_percents)) ) return psi_value if len(expected.shape) == 1: psi_values = np.empty(len(expected.shape)) else: psi_values = np.empty(expected.shape[axis]) for i in range(0, len(psi_values)): if len(psi_values) == 1: psi_values = _psi(expected, actual, buckets) elif axis == 0: psi_values[i] = _psi(expected[:, i], actual[:, i], buckets) elif axis == 1: psi_values[i] = _psi(expected[i, :], actual[i, :], buckets) return psi_values def loop_estimators( estimator_set: list, normal_data, normal_data_ood, shap_data, shap_data_ood, performance_ood, target, state: str, error_type: str, target_shift: bool = False, output_path: str = "", ): """ Loop through the estimators and calculate the performance for each """ res = [] for estimator in estimator_set: ## ONLY DATA X_train, X_test, y_train, y_test = train_test_split( normal_data, target, test_size=0.33, random_state=42 ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict(normal_data_ood), np.nan_to_num(list(performance_ood.values())), ) res.append([state, error_type, estimator, "Only Data", error_te, error_ood]) if target_shift == False: #### ONLY SHAP X_train, X_test, y_train, y_test = train_test_split( shap_data, target, test_size=0.33, random_state=42 ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error( estimator_set[estimator].predict(X_test), y_test ) error_ood = mean_absolute_error( estimator_set[estimator].predict(shap_data_ood), np.nan_to_num(list(performance_ood.values())), ) res.append([state, error_type, estimator, "Only Shap", error_te, error_ood]) ### SHAP + DATA X_train, X_test, y_train, y_test = train_test_split( pd.concat([shap_data, normal_data], axis=1), target, test_size=0.33, random_state=42, ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error( estimator_set[estimator].predict(X_test), y_test ) error_ood = mean_absolute_error( estimator_set[estimator].predict( pd.concat([shap_data_ood, normal_data_ood], axis=1) ), np.nan_to_num(list(performance_ood.values())), ) res.append( [state, error_type, estimator, "Data + Shap", error_te, error_ood] ) folder = os.path.join("results", state + "_" + error_type + ".csv") columnas = ["state", "error_type", "estimator", "data", "error_te", "error_ood"] pd.DataFrame(res, columns=columnas).to_csv(folder, index=False) def loop_estimators_fairness( estimator_set: list, normal_data, normal_data_ood, target_shift, target_shift_ood, shap_data, shap_data_ood, performance_ood, target, state: str, error_type: str, output_path: str = "", ): """ Loop through the estimators and calculate the performance for each Particular fairness case """ res = [] for estimator in estimator_set: ## ONLY DATA X_train, X_test, y_train, y_test = train_test_split( normal_data, target, test_size=0.33, random_state=42 ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict(normal_data_ood), np.nan_to_num(performance_ood), ) res.append([state, error_type, estimator, "Only Data", error_te, error_ood]) #### ONLY SHAP X_train, X_test, y_train, y_test = train_test_split( shap_data, target, test_size=0.33, random_state=42 ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict(shap_data_ood), np.nan_to_num(performance_ood), ) res.append([state, error_type, estimator, "Only Shap", error_te, error_ood]) #### ONLY TARGET X_train, X_test, y_train, y_test = train_test_split( target_shift, target, test_size=0.33, random_state=42 ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict(target_shift_ood), np.nan_to_num(performance_ood), ) res.append([state, error_type, estimator, "Only Target", error_te, error_ood]) #### TARGET + DISTRIBUTION X_train, X_test, y_train, y_test = train_test_split( pd.concat([target_shift, normal_data], axis=1), target, test_size=0.33, random_state=42, ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict( pd.concat([target_shift_ood, normal_data_ood], axis=1) ), np.nan_to_num(performance_ood), ) res.append([state, error_type, estimator, "Data+Target", error_te, error_ood]) ### SHAP + DATA X_train, X_test, y_train, y_test = train_test_split( pd.concat([shap_data, normal_data, target_shift], axis=1), target, test_size=0.33, random_state=42, ) estimator_set[estimator].fit(X_train, y_train) error_te = mean_absolute_error(estimator_set[estimator].predict(X_test), y_test) error_ood = mean_absolute_error( estimator_set[estimator].predict( pd.concat([shap_data_ood, normal_data_ood, target_shift_ood], axis=1) ), np.nan_to_num(performance_ood), ) res.append( [state, error_type, estimator, "Data+Target+Shap", error_te, error_ood] ) folder = os.path.join("results", state + "_" + error_type + ".csv") columnas = ["state", "error_type", "estimator", "data", "error_te", "error_ood"] pd.DataFrame(res, columns=columnas).to_csv(folder, index=False)
[ "numpy.log", "sklearn.metrics.roc_auc_score", "numpy.arange", "numpy.histogram", "numpy.max", "numpy.empty", "numpy.min", "pandas.DataFrame", "sklearn.metrics.confusion_matrix", "numpy.abs", "sklearn.model_selection.train_test_split", "sklearn.pipeline.Pipeline", "sklearn.ensemble.GradientBoostingClassifier", "numpy.transpose", "category_encoders.MEstimateEncoder", "os.path.join", "numpy.diag", "collections.defaultdict", "numpy.percentile", "pandas.concat", "numpy.nan_to_num" ]
[((492, 539), 'sklearn.pipeline.Pipeline', 'Pipeline', (["[('encoder', enc), ('model', modelo)]"], {}), "([('encoder', enc), ('model', modelo)])\n", (500, 539), False, 'from sklearn.pipeline import Pipeline\n'), ((2336, 2365), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['preds', 'true'], {}), '(preds, true)\n', (2352, 2365), False, 'from sklearn.metrics import confusion_matrix, roc_auc_score\n'), ((2582, 2593), 'numpy.diag', 'np.diag', (['cm'], {}), '(cm)\n', (2589, 2593), True, 'import numpy as np\n'), ((9750, 9808), 'os.path.join', 'os.path.join', (['"""results"""', "(state + '_' + error_type + '.csv')"], {}), "('results', state + '_' + error_type + '.csv')\n", (9762, 9808), False, 'import os\n'), ((13496, 13554), 'os.path.join', 'os.path.join', (['"""results"""', "(state + '_' + error_type + '.csv')"], {}), "('results', state + '_' + error_type + '.csv')\n", (13508, 13554), False, 'import os\n'), ((884, 924), 'collections.defaultdict', 'defaultdict', (['list', '{k: [] for k in cats}'], {}), '(list, {k: [] for k in cats})\n', (895, 924), False, 'from collections import defaultdict\n'), ((2523, 2534), 'numpy.diag', 'np.diag', (['cm'], {}), '(cm)\n', (2530, 2534), True, 'import numpy as np\n'), ((2561, 2572), 'numpy.diag', 'np.diag', (['cm'], {}), '(cm)\n', (2568, 2572), True, 'import numpy as np\n'), ((6920, 6950), 'numpy.empty', 'np.empty', (['expected.shape[axis]'], {}), '(expected.shape[axis])\n', (6928, 6950), True, 'import numpy as np\n'), ((7750, 7820), 'sklearn.model_selection.train_test_split', 'train_test_split', (['normal_data', 'target'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(normal_data, target, test_size=0.33, random_state=42)\n', (7766, 7820), False, 'from sklearn.model_selection import train_test_split\n'), ((10461, 10531), 'sklearn.model_selection.train_test_split', 'train_test_split', (['normal_data', 'target'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(normal_data, target, test_size=0.33, random_state=42)\n', (10477, 10531), False, 'from sklearn.model_selection import train_test_split\n'), ((11009, 11077), 'sklearn.model_selection.train_test_split', 'train_test_split', (['shap_data', 'target'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(shap_data, target, test_size=0.33, random_state=42)\n', (11025, 11077), False, 'from sklearn.model_selection import train_test_split\n'), ((11553, 11624), 'sklearn.model_selection.train_test_split', 'train_test_split', (['target_shift', 'target'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(target_shift, target, test_size=0.33, random_state=42)\n', (11569, 11624), False, 'from sklearn.model_selection import train_test_split\n'), ((8354, 8422), 'sklearn.model_selection.train_test_split', 'train_test_split', (['shap_data', 'target'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(shap_data, target, test_size=0.33, random_state=42)\n', (8370, 8422), False, 'from sklearn.model_selection import train_test_split\n'), ((9898, 9933), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'columns': 'columnas'}), '(res, columns=columnas)\n', (9910, 9933), True, 'import pandas as pd\n'), ((10814, 10844), 'numpy.nan_to_num', 'np.nan_to_num', (['performance_ood'], {}), '(performance_ood)\n', (10827, 10844), True, 'import numpy as np\n'), ((11358, 11388), 'numpy.nan_to_num', 'np.nan_to_num', (['performance_ood'], {}), '(performance_ood)\n', (11371, 11388), True, 'import numpy as np\n'), ((11908, 11938), 'numpy.nan_to_num', 'np.nan_to_num', (['performance_ood'], {}), '(performance_ood)\n', (11921, 11938), True, 'import numpy as np\n'), ((12146, 12192), 'pandas.concat', 'pd.concat', (['[target_shift, normal_data]'], {'axis': '(1)'}), '([target_shift, normal_data], axis=1)\n', (12155, 12192), True, 'import pandas as pd\n'), ((12610, 12640), 'numpy.nan_to_num', 'np.nan_to_num', (['performance_ood'], {}), '(performance_ood)\n', (12623, 12640), True, 'import numpy as np\n'), ((12836, 12893), 'pandas.concat', 'pd.concat', (['[shap_data, normal_data, target_shift]'], {'axis': '(1)'}), '([shap_data, normal_data, target_shift], axis=1)\n', (12845, 12893), True, 'import pandas as pd\n'), ((13326, 13356), 'numpy.nan_to_num', 'np.nan_to_num', (['performance_ood'], {}), '(performance_ood)\n', (13339, 13356), True, 'import numpy as np\n'), ((13644, 13679), 'pandas.DataFrame', 'pd.DataFrame', (['res'], {'columns': 'columnas'}), '(res, columns=columnas)\n', (13656, 13679), True, 'import pandas as pd\n'), ((1153, 1180), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['truth', 'preds'], {}), '(truth, preds)\n', (1166, 1180), False, 'from sklearn.metrics import roc_auc_score\n'), ((2043, 2069), 'pandas.DataFrame', 'pd.DataFrame', (['X_tr.columns'], {}), '(X_tr.columns)\n', (2055, 2069), True, 'import pandas as pd\n'), ((5497, 5510), 'numpy.min', 'np.min', (['input'], {}), '(input)\n', (5503, 5510), True, 'import numpy as np\n'), ((5533, 5546), 'numpy.max', 'np.max', (['input'], {}), '(input)\n', (5539, 5546), True, 'import numpy as np\n'), ((5634, 5659), 'numpy.arange', 'np.arange', (['(0)', '(buckets + 1)'], {}), '(0, buckets + 1)\n', (5643, 5659), True, 'import numpy as np\n'), ((5780, 5802), 'numpy.min', 'np.min', (['expected_array'], {}), '(expected_array)\n', (5786, 5802), True, 'import numpy as np\n'), ((5804, 5826), 'numpy.max', 'np.max', (['expected_array'], {}), '(expected_array)\n', (5810, 5826), True, 'import numpy as np\n'), ((6032, 6073), 'numpy.histogram', 'np.histogram', (['expected_array', 'breakpoints'], {}), '(expected_array, breakpoints)\n', (6044, 6073), True, 'import numpy as np\n'), ((6147, 6186), 'numpy.histogram', 'np.histogram', (['actual_array', 'breakpoints'], {}), '(actual_array, breakpoints)\n', (6159, 6186), True, 'import numpy as np\n'), ((6574, 6597), 'numpy.log', 'np.log', (['(e_perc / a_perc)'], {}), '(e_perc / a_perc)\n', (6580, 6597), True, 'import numpy as np\n'), ((9022, 9065), 'pandas.concat', 'pd.concat', (['[shap_data, normal_data]'], {'axis': '(1)'}), '([shap_data, normal_data], axis=1)\n', (9031, 9065), True, 'import pandas as pd\n'), ((12528, 12582), 'pandas.concat', 'pd.concat', (['[target_shift_ood, normal_data_ood]'], {'axis': '(1)'}), '([target_shift_ood, normal_data_ood], axis=1)\n', (12537, 12582), True, 'import pandas as pd\n'), ((13229, 13298), 'pandas.concat', 'pd.concat', (['[shap_data_ood, normal_data_ood, target_shift_ood]'], {'axis': '(1)'}), '([shap_data_ood, normal_data_ood, target_shift_ood], axis=1)\n', (13238, 13298), True, 'import pandas as pd\n'), ((1514, 1532), 'category_encoders.MEstimateEncoder', 'MEstimateEncoder', ([], {}), '()\n', (1530, 1532), False, 'from category_encoders import MEstimateEncoder\n'), ((1545, 1573), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {}), '()\n', (1571, 1573), False, 'from sklearn.ensemble import GradientBoostingClassifier\n'), ((1787, 1813), 'numpy.abs', 'np.abs', (['shap_values.values'], {}), '(shap_values.values)\n', (1793, 1813), True, 'import numpy as np\n'), ((1903, 1921), 'category_encoders.MEstimateEncoder', 'MEstimateEncoder', ([], {}), '()\n', (1919, 1921), False, 'from category_encoders import MEstimateEncoder\n'), ((2084, 2111), 'numpy.transpose', 'np.transpose', (['pipe[1].coef_'], {}), '(pipe[1].coef_)\n', (2096, 2111), True, 'import numpy as np\n'), ((9467, 9518), 'pandas.concat', 'pd.concat', (['[shap_data_ood, normal_data_ood]'], {'axis': '(1)'}), '([shap_data_ood, normal_data_ood], axis=1)\n', (9476, 9518), True, 'import pandas as pd\n'), ((5934, 5966), 'numpy.percentile', 'np.percentile', (['expected_array', 'b'], {}), '(expected_array, b)\n', (5947, 5966), True, 'import numpy as np\n')]
import numpy as np import numpy.linalg as LA from .solve_R1 import problem_R1, Classo_R1, pathlasso_R1 from .solve_R2 import problem_R2, Classo_R2, pathlasso_R2 from .solve_R3 import problem_R3, Classo_R3, pathlasso_R3 from .solve_R4 import problem_R4, Classo_R4, pathlasso_R4 from .path_alg import solve_path, pathalgo_general, h_lambdamax """ Classo and pathlasso are the main functions, they can call every algorithm acording to the method and formulation required """ # can be 'Path-Alg', 'P-PDS' , 'PF-PDS' or 'DR' def Classo( matrix, lam, typ="R1", meth="DR", rho=1.345, get_lambdamax=False, true_lam=False, e=None, rho_classification=-1.0, w=None, intercept=False, return_sigm=True, ): if w is not None: matrices = (matrix[0] / w, matrix[1] / w, matrix[2]) else: matrices = matrix X, C, y = matrices if typ == "R3": if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if meth not in ["Path-Alg", "DR"]: meth = "DR" if e is None or e == len(matrices[0]) / 2: r = 1.0 pb = problem_R3(matrices, meth) e = len(matrices[0]) / 2 else: r = np.sqrt(2 * e / len(matrices[0])) pb = problem_R3((matrices[0] * r, matrices[1], matrices[2] * r), meth) lambdamax = pb.lambdamax if true_lam: beta, s = Classo_R3(pb, lam / lambdamax) else: beta, s = Classo_R3(pb, lam) if intercept: betaO = ybar - np.vdot(Xbar, beta) beta = np.array([betaO] + list(beta)) elif typ == "R4": if meth not in ["Path-Alg", "DR"]: meth = "DR" if e is None or e == len(matrices[0]): r = 1.0 pb = problem_R4(matrices, meth, rho, intercept=intercept) e = len(matrices[0]) else: r = np.sqrt(e / len(matrices[0])) pb = problem_R4( (matrices[0] * r, matrices[1], matrices[2] * r), meth, rho / r, intercept=intercept, ) lambdamax = pb.lambdamax if true_lam: beta, s = Classo_R4(pb, lam / lambdamax) else: beta, s = Classo_R4(pb, lam) elif typ == "R2": if meth not in ["Path-Alg", "P-PDS", "PF-PDS", "DR"]: meth = "ODE" pb = problem_R2(matrices, meth, rho, intercept=intercept) lambdamax = pb.lambdamax if true_lam: beta = Classo_R2(pb, lam / lambdamax) else: beta = Classo_R2(pb, lam) elif typ == "C2": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax( matrices, rho_classification, typ="C2", intercept=intercept ) if true_lam: out = solve_path( matrices, lam / lambdamax, False, rho_classification, "C2", intercept=intercept, ) else: out = solve_path( matrices, lam, False, rho_classification, "C2", intercept=intercept ) if intercept: beta0, beta = out[0][-1], out[1][-1] beta = np.array([beta0] + list(beta)) else: beta = out[0][-1] elif typ == "C1": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax(matrices, 0, typ="C1", intercept=intercept) if true_lam: out = solve_path( matrices, lam / lambdamax, False, 0, "C1", intercept=intercept ) else: out = solve_path(matrices, lam, False, 0, "C1", intercept=intercept) if intercept: beta0, beta = out[0][-1], out[1][-1] beta = np.array([beta0] + list(beta)) else: beta = out[0][-1] else: # LS if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if meth not in ["Path-Alg", "P-PDS", "PF-PDS", "DR"]: meth = "DR" pb = problem_R1(matrices, meth) lambdamax = pb.lambdamax if true_lam: beta = Classo_R1(pb, lam / lambdamax) else: beta = Classo_R1(pb, lam) if intercept: betaO = ybar - np.vdot(Xbar, beta) beta = np.array([betaO] + list(beta)) if w is not None: if intercept: beta[1:] = beta[1:] / w else: beta = beta / w if typ in ["R3", "R4"] and return_sigm: if get_lambdamax: return (lambdamax, beta, s) else: return (beta, s) if get_lambdamax: return (lambdamax, beta) else: return beta def pathlasso( matrix, lambdas=False, n_active=0, lamin=1e-2, typ="R1", meth="Path-Alg", rho=1.345, true_lam=False, e=None, return_sigm=False, rho_classification=-1.0, w=None, intercept=False, ): Nactive = n_active if Nactive == 0: Nactive = False if type(lambdas) is bool: lambdas = lamin ** (np.linspace(0.0, 1, 100)) if lambdas[0] < lambdas[-1]: lambdass = [ lambdas[i] for i in range(len(lambdas) - 1, -1, -1) ] # reverse the list if needed else: lambdass = [lambdas[i] for i in range(len(lambdas))] if w is not None: matrices = (matrix[0] / w, matrix[1] / w, matrix[2]) else: matrices = matrix X, C, y = matrices if typ == "R2": pb = problem_R2(matrices, meth, rho, intercept=intercept) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathlasso_R2(pb, lambdass, n_active=Nactive) elif typ == "R3": if intercept: # here we use the fact that for R1 and R3, the intercept is simple beta0 = ybar-Xbar .vdot(beta) so by changing the X to X-Xbar and y to y-ybar we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) if e is None or e == len(matrices[0]) / 2: r = 1.0 pb = problem_R3(matrices, meth) else: r = np.sqrt(2 * e / len(matrices[0])) pb = problem_R3((matrices[0] * r, matrices[1], matrices[2] * r), meth) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA, S = pathlasso_R3(pb, lambdass, n_active=Nactive) S = np.array(S) / r ** 2 BETA = np.array(BETA) if intercept: BETA = np.array([[ybar - Xbar.dot(beta)] + list(beta) for beta in BETA]) elif typ == "R4": if e is None or e == len(matrices[0]): r = 1.0 pb = problem_R4(matrices, meth, rho, intercept=intercept) else: r = np.sqrt(e / len(matrices[0])) pb = problem_R4( (matrices[0] * r, matrices[1], matrices[2] * r), meth, rho / r, intercept=intercept, ) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA, S = pathlasso_R4(pb, lambdass, n_active=Nactive) S = np.array(S) / r ** 2 BETA = np.array(BETA) elif typ == "C2": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax( matrices, rho_classification, typ="C2", intercept=intercept ) if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathalgo_general( matrices, lambdass, "C2", n_active=Nactive, rho=rho_classification, intercept=intercept, ) elif typ == "C1": assert set(matrices[2]).issubset({1, -1}) lambdamax = h_lambdamax(matrices, 0, typ="C1", intercept=intercept) if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathalgo_general( matrices, lambdass, "C1", n_active=Nactive, intercept=intercept ) else: # R1 if intercept: # here we use the fact that for R1 and R3, # the intercept is simple beta0 = ybar-Xbar .vdot(beta) # so by changing the X to X-Xbar and y to y-ybar # we can solve standard problem Xbar, ybar = np.mean(X, axis=0), np.mean(y) matrices = (X - Xbar, C, y - ybar) pb = problem_R1(matrices, meth) lambdamax = pb.lambdamax if true_lam: lambdass = [lamb / lambdamax for lamb in lambdass] BETA = pathlasso_R1(pb, lambdass, n_active=n_active) if intercept: BETA = np.array([[ybar - Xbar.dot(beta)] + list(beta) for beta in BETA]) real_path = [lam * lambdamax for lam in lambdass] if w is not None: if intercept: ww = np.array([1] + list(w)) else: ww = w BETA = np.array([beta / ww for beta in BETA]) if typ in ["R3", "R4"] and return_sigm: return (np.array(BETA), real_path, S) return (np.array(BETA), real_path)
[ "numpy.vdot", "numpy.array", "numpy.linspace", "numpy.mean" ]
[((9722, 9762), 'numpy.array', 'np.array', (['[(beta / ww) for beta in BETA]'], {}), '([(beta / ww) for beta in BETA])\n', (9730, 9762), True, 'import numpy as np\n'), ((9864, 9878), 'numpy.array', 'np.array', (['BETA'], {}), '(BETA)\n', (9872, 9878), True, 'import numpy as np\n'), ((5733, 5757), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1)', '(100)'], {}), '(0.0, 1, 100)\n', (5744, 5757), True, 'import numpy as np\n'), ((7222, 7236), 'numpy.array', 'np.array', (['BETA'], {}), '(BETA)\n', (7230, 7236), True, 'import numpy as np\n'), ((9822, 9836), 'numpy.array', 'np.array', (['BETA'], {}), '(BETA)\n', (9830, 9836), True, 'import numpy as np\n'), ((1188, 1206), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (1195, 1206), True, 'import numpy as np\n'), ((1208, 1218), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (1215, 1218), True, 'import numpy as np\n'), ((1845, 1864), 'numpy.vdot', 'np.vdot', (['Xbar', 'beta'], {}), '(Xbar, beta)\n', (1852, 1864), True, 'import numpy as np\n'), ((7186, 7197), 'numpy.array', 'np.array', (['S'], {}), '(S)\n', (7194, 7197), True, 'import numpy as np\n'), ((7986, 8000), 'numpy.array', 'np.array', (['BETA'], {}), '(BETA)\n', (7994, 8000), True, 'import numpy as np\n'), ((6654, 6672), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (6661, 6672), True, 'import numpy as np\n'), ((6674, 6684), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (6681, 6684), True, 'import numpy as np\n'), ((7950, 7961), 'numpy.array', 'np.array', (['S'], {}), '(S)\n', (7958, 7961), True, 'import numpy as np\n'), ((4513, 4531), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (4520, 4531), True, 'import numpy as np\n'), ((4533, 4543), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (4540, 4543), True, 'import numpy as np\n'), ((4924, 4943), 'numpy.vdot', 'np.vdot', (['Xbar', 'beta'], {}), '(Xbar, beta)\n', (4931, 4943), True, 'import numpy as np\n'), ((9128, 9146), 'numpy.mean', 'np.mean', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (9135, 9146), True, 'import numpy as np\n'), ((9148, 9158), 'numpy.mean', 'np.mean', (['y'], {}), '(y)\n', (9155, 9158), True, 'import numpy as np\n')]
import argparse import torch from torch.utils.data import DataLoader import sys, os sys.path.insert(0, os.path.join( os.path.dirname(os.path.realpath(__file__)), "../../")) from deep_audio_features.dataloading.dataloading import FeatureExtractorDataset from deep_audio_features.models.cnn import load_cnn from deep_audio_features.lib.training import test from deep_audio_features.utils.model_editing import drop_layers import deep_audio_features.bin.config import numpy def test_model(modelpath, ifile, layers_dropped, test_segmentation=False, verbose=True): """Loads a model and predicts each classes probability Arguments: modelpath {str} : A path where the model was stored. ifile {str} : A path of a given wav file, which will be tested. test_segmentation {bool}: If True extracts segment level predictions of a sequence verbose {bool}: If True prints the predictions Returns: y_pred {np.array} : An array with the probability of each class that the model predicts. posteriors {np.array}: An array containing the unormalized posteriors of each class. """ device = "cuda" if torch.cuda.is_available() else "cpu" # Restore model model, hop_length, window_length = load_cnn(modelpath) model = model.to(device) class_names = model.classes_mapping max_seq_length = model.max_sequence_length zero_pad = model.zero_pad spec_size = model.spec_size fuse = model.fuse # Apply layer drop model = drop_layers(model, layers_dropped) model.max_sequence_length = max_seq_length # print('Model:\n{}'.format(model)) # Move to device model.to(device) # Create test set test_set = FeatureExtractorDataset(X=[ifile], # Random class -- does not matter at all y=[0], fe_method="MEL_SPECTROGRAM", oversampling=False, max_sequence_length=max_seq_length, zero_pad=zero_pad, forced_size=spec_size, fuse=fuse, show_hist=False, test_segmentation=test_segmentation, hop_length=hop_length, window_length=window_length) # Create test dataloader test_loader = DataLoader(dataset=test_set, batch_size=1, num_workers=4, drop_last=False, shuffle=False) # Forward a sample posteriors, y_pred, _ = test(model=model, dataloader=test_loader, cnn=True, classifier=True if layers_dropped == 0 else False) if verbose: print("--> Unormalized posteriors:\n {}\n".format(posteriors)) print("--> Predictions:\n {}".format([class_names[yy] for yy in y_pred])) return y_pred, numpy.array(posteriors) if __name__ == '__main__': # Read arguments -- model parser = argparse.ArgumentParser() parser.add_argument('-m', '--model', required=True, type=str, help='Model') parser.add_argument('-i', '--input', required=True, type=str, help='Input file for testing') parser.add_argument('-s', '--segmentation', required=False, action='store_true', help='Return segment predictions') parser.add_argument('-L', '--layers', required=False, default=0, help='Number of final layers to cut. Default is 0.') args = parser.parse_args() # Get arguments model = args.model ifile = args.input layers_dropped = int(args.layers) segmentation = args.segmentation # Test the model d, p = test_model(modelpath=model, ifile=ifile, layers_dropped=layers_dropped, test_segmentation=segmentation)
[ "deep_audio_features.models.cnn.load_cnn", "deep_audio_features.utils.model_editing.drop_layers", "argparse.ArgumentParser", "deep_audio_features.dataloading.dataloading.FeatureExtractorDataset", "deep_audio_features.lib.training.test", "os.path.realpath", "numpy.array", "torch.cuda.is_available", "torch.utils.data.DataLoader" ]
[((1363, 1382), 'deep_audio_features.models.cnn.load_cnn', 'load_cnn', (['modelpath'], {}), '(modelpath)\n', (1371, 1382), False, 'from deep_audio_features.models.cnn import load_cnn\n'), ((1621, 1655), 'deep_audio_features.utils.model_editing.drop_layers', 'drop_layers', (['model', 'layers_dropped'], {}), '(model, layers_dropped)\n', (1632, 1655), False, 'from deep_audio_features.utils.model_editing import drop_layers\n'), ((1825, 2127), 'deep_audio_features.dataloading.dataloading.FeatureExtractorDataset', 'FeatureExtractorDataset', ([], {'X': '[ifile]', 'y': '[0]', 'fe_method': '"""MEL_SPECTROGRAM"""', 'oversampling': '(False)', 'max_sequence_length': 'max_seq_length', 'zero_pad': 'zero_pad', 'forced_size': 'spec_size', 'fuse': 'fuse', 'show_hist': '(False)', 'test_segmentation': 'test_segmentation', 'hop_length': 'hop_length', 'window_length': 'window_length'}), "(X=[ifile], y=[0], fe_method='MEL_SPECTROGRAM',\n oversampling=False, max_sequence_length=max_seq_length, zero_pad=\n zero_pad, forced_size=spec_size, fuse=fuse, show_hist=False,\n test_segmentation=test_segmentation, hop_length=hop_length,\n window_length=window_length)\n", (1848, 2127), False, 'from deep_audio_features.dataloading.dataloading import FeatureExtractorDataset\n'), ((2590, 2683), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'test_set', 'batch_size': '(1)', 'num_workers': '(4)', 'drop_last': '(False)', 'shuffle': '(False)'}), '(dataset=test_set, batch_size=1, num_workers=4, drop_last=False,\n shuffle=False)\n', (2600, 2683), False, 'from torch.utils.data import DataLoader\n'), ((2790, 2897), 'deep_audio_features.lib.training.test', 'test', ([], {'model': 'model', 'dataloader': 'test_loader', 'cnn': '(True)', 'classifier': '(True if layers_dropped == 0 else False)'}), '(model=model, dataloader=test_loader, cnn=True, classifier=True if \n layers_dropped == 0 else False)\n', (2794, 2897), False, 'from deep_audio_features.lib.training import test\n'), ((3279, 3304), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3302, 3304), False, 'import argparse\n'), ((1267, 1292), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1290, 1292), False, 'import torch\n'), ((3182, 3205), 'numpy.array', 'numpy.array', (['posteriors'], {}), '(posteriors)\n', (3193, 3205), False, 'import numpy\n'), ((137, 163), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (153, 163), False, 'import sys, os\n')]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from deepspeech.frontend.utility import IGNORE_ID from deepspeech.io.utility import pad_sequence from deepspeech.utils.log import Log __all__ = ["SpeechCollator"] logger = Log(__name__).getlog() class SpeechCollator(): def __init__(self, keep_transcription_text=True): """ Padding audio features with zeros to make them have the same shape (or a user-defined shape) within one bach. if ``keep_transcription_text`` is False, text is token ids else is raw string. """ self._keep_transcription_text = keep_transcription_text def __call__(self, batch): """batch examples Args: batch ([List]): batch is (audio, text) audio (np.ndarray) shape (D, T) text (List[int] or str): shape (U,) Returns: tuple(audio, text, audio_lens, text_lens): batched data. audio : (B, Tmax, D) audio_lens: (B) text : (B, Umax) text_lens: (B) """ audios = [] audio_lens = [] texts = [] text_lens = [] for audio, text in batch: # audio audios.append(audio.T) # [T, D] audio_lens.append(audio.shape[1]) # text # for training, text is token ids # else text is string, convert to unicode ord tokens = [] if self._keep_transcription_text: assert isinstance(text, str), (type(text), text) tokens = [ord(t) for t in text] else: tokens = text # token ids tokens = tokens if isinstance(tokens, np.ndarray) else np.array( tokens, dtype=np.int64) texts.append(tokens) text_lens.append(tokens.shape[0]) padded_audios = pad_sequence( audios, padding_value=0.0).astype(np.float32) #[B, T, D] audio_lens = np.array(audio_lens).astype(np.int64) padded_texts = pad_sequence( texts, padding_value=IGNORE_ID).astype(np.int64) text_lens = np.array(text_lens).astype(np.int64) return padded_audios, audio_lens, padded_texts, text_lens
[ "numpy.array", "deepspeech.io.utility.pad_sequence", "deepspeech.utils.log.Log" ]
[((804, 817), 'deepspeech.utils.log.Log', 'Log', (['__name__'], {}), '(__name__)\n', (807, 817), False, 'from deepspeech.utils.log import Log\n'), ((2330, 2362), 'numpy.array', 'np.array', (['tokens'], {'dtype': 'np.int64'}), '(tokens, dtype=np.int64)\n', (2338, 2362), True, 'import numpy as np\n'), ((2484, 2523), 'deepspeech.io.utility.pad_sequence', 'pad_sequence', (['audios'], {'padding_value': '(0.0)'}), '(audios, padding_value=0.0)\n', (2496, 2523), False, 'from deepspeech.io.utility import pad_sequence\n'), ((2589, 2609), 'numpy.array', 'np.array', (['audio_lens'], {}), '(audio_lens)\n', (2597, 2609), True, 'import numpy as np\n'), ((2650, 2694), 'deepspeech.io.utility.pad_sequence', 'pad_sequence', (['texts'], {'padding_value': 'IGNORE_ID'}), '(texts, padding_value=IGNORE_ID)\n', (2662, 2694), False, 'from deepspeech.io.utility import pad_sequence\n'), ((2745, 2764), 'numpy.array', 'np.array', (['text_lens'], {}), '(text_lens)\n', (2753, 2764), True, 'import numpy as np\n')]
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Laboratorio #3 - Predicción de textos # # * <NAME> - 17315 # * <NAME> - 17509 # * <NAME> - 17088 # %% from keras.layers import Embedding from keras.layers import LSTM from keras.layers import Dense from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.preprocessing.text import Tokenizer from numpy import array import random import collections from wordcloud import WordCloud import matplotlib from nltk.corpus import stopwords import pandas as pd import numpy as np import re import nltk nltk.download('stopwords') # Definirmos lista de stopwords según nltk stopwords = stopwords.words('english') # Para el modelo # %% [markdown] # ## Importación y limpieza de datos # # ### 1. Abrir y leer archivos. # # Cabe mencionar que todos los archivos fueron convertidos a minúsculas, se quitan los urls y en algunas ocasiones, la mayoría de símbolos que consideramos innecesarios. También se quitan las stopwords, los números y finalmente las apostrophes. Además, se separan oraciones mediante los símbolos de **.**, **!** y **?**. Se debe validar que no hayan espacios vacíos luego de estas oraciones. # # #### Caso 1: Blogs # %% # Se instancian arreglos blog = [] with open('./files/en_US.blogs.txt', 'r', encoding='utf-8') as blog_txt: for line in blog_txt: # Quitar saltos de linea y pasar todo a minusculas line = line.rstrip('\n').lower() # Quitar URLS line = re.sub(r'^https?:\/\/.[\r\n]', '', line) # Quitar el resto de expresiones regulares, excepto . ? ! y ' line = re.sub(r"[^\w.?!\d'\s]", '', line) # Quitar números line = re.sub(r'[0-9]', ' ', line) # Quitar espacios extra line = line.strip(' \t\n\r') # Quitamos todas las stopwords line = [word for word in line.split(' ') if word not in stopwords] line = ' '.join(line) # Finalmente, quitamos apostrofes line = line.replace("'", '') # Separar posibles oraciones dotSentences = line.split('.') excSentences = line.split('!') queSentences = line.split('?') # Validar y verificar que valga la pena recorrer varias oraciones if len(dotSentences) > 1: for sentence in dotSentences: # Por cada posible oración, debemos quitar los símbolos de puntuación sentence = re.sub(r'[^\w]', ' ', sentence).strip() if len(sentence) > 1: blog.append(sentence) elif len(excSentences) > 1: for sentence in excSentences: sentence = re.sub(r'[^\w]', ' ', sentence) if len(sentence) > 1: blog.append(sentence) elif len(queSentences) > 1: for sentence in queSentences: sentence = re.sub(r'[^\w]', ' ', sentence) if len(sentence) > 1: blog.append(sentence) elif len(line.split(' ')) > 1: line = re.sub(r'[^\w]', ' ', line).strip() blog.append(line) # %% [markdown] # #### Caso 2: Noticias # # Este caso tuvo un procedimiento igual al caso 1. # %% news = [] with open('./files/en_US.news.txt', 'r', encoding='utf-8') as news_txt: for line in news_txt: # Quitar saltos de linea y pasar todo a minusculas line = line.rstrip('\n').lower() # Quitar URLS line = re.sub(r'^https?:\/\/.[\r\n]', '', line) # Quitar el resto de expresiones regulares, excepto . ? ! y ' line = re.sub(r"[^\w.?!\d'\s]", '', line) # Quitar números line = re.sub(r'[0-9]', ' ', line) # Quitar espacios extra line = line.strip(' \t\n\r') # Quitamos todas las stopwords line = [word for word in line.split(' ') if word not in stopwords] line = ' '.join(line) # Finalmente, quitamos apostrofes line = line.replace("'", '') # Separar posibles oraciones dotSentences = line.split('.') excSentences = line.split('!') queSentences = line.split('?') # Validar y verificar que valga la pena recorrer varias oraciones if len(dotSentences) > 1: for sentence in dotSentences: # Por cada posible oración, debemos quitar los símbolos de puntuación sentence = re.sub(r'[^\w]', ' ', sentence).strip() if len(sentence) > 1: news.append(sentence) elif len(excSentences) > 1: for sentence in excSentences: sentence = re.sub(r'[^\w]', ' ', sentence) if len(sentence) > 1: news.append(sentence) elif len(queSentences) > 1: for sentence in queSentences: sentence = re.sub(r'[^\w]', ' ', sentence) if len(sentence) > 1: news.append(sentence) elif len(line.split(' ')) > 1: line = re.sub(r'[^\w]', ' ', line).strip() news.append(line) # %% [markdown] # #### Caso 3: Twitter # # En este caso, se toma cada distinto tweet como una oración. Es necesario quitar emojis y símbolos como #, $, %, !, @, etc. Además, se quitan urls y se permiten los símbolos: **.** **,** **'** # %% tweets = [] with open('./files/en_US.twitter.txt', 'r', encoding='utf-8') as twitter_txt: for line in twitter_txt: # Quitar \n y pasarlo a minusculas line = line.replace('\n', '').lower() # Quitar URLS line = re.sub(r'^https?:\/\/.[\r\n]', '', line) # Quitar el resto de expresiones regulares, excepto . , y ' line = re.sub(r"[^\w.,\d'\s]", '', line) # Quitar números fuera de contexto line = re.sub('^\d+\s|\s\d+\s|\s\d+$', '', line) # Añadirlos a la lista de tweets tweets.append(line.strip()) # %% complete_data = blog + news + tweets random.shuffle(complete_data) # %% data_size = int(len(complete_data)*0.005) print('Se va a utilizar ' + str(data_size) + ' datos') data = complete_data[:data_size] # %% [markdown] # Crear CSV con las palabras utilizadas para el entrenamiento # %% df = pd.DataFrame(data, columns=["oraciones"]) df.to_csv('training.csv', index=False) # %% [markdown] # Se genera un tokenizer lo cual es una representacion de enteros de cada palabra en nuestra data. # %% tokenizer = Tokenizer() tokenizer.fit_on_texts([data]) encoded = tokenizer.texts_to_sequences([data])[0] # %% # Obtenemos el largo de nuestro vocabulario vocab_size = len(tokenizer.word_index) + 1 # %% # mapeamos 2 palabras a una palabra sequences = list() for i in range(2, len(encoded)): sequence = encoded[i-2:i+1] sequences.append(sequence) max_length = max([len(seq) for seq in sequences]) sequences = pad_sequences(sequences, maxlen=max_length, padding='pre') # %% [markdown] # separamos en los elementos inputs y outputs # # %% sequences = array(sequences) X, y = sequences[:, :-1], sequences[:, -1] y = to_categorical(y, num_classes=vocab_size) # %% [markdown] # Definimos el modelo # %% model = Sequential() model.add(Embedding(vocab_size, 10, input_length=max_length-1)) model.add(LSTM(50)) model.add(Dense(vocab_size, activation='softmax')) print(model.summary()) # %% [markdown] # Compilamos el modelo # %% model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # %% # Entrenaoms el modelo model.fit(X, y, epochs=150, verbose=2) # %% model.save_weights('deep_no_stopwords')
[ "keras.preprocessing.text.Tokenizer", "random.shuffle", "nltk.corpus.stopwords.words", "nltk.download", "keras.utils.to_categorical", "keras.models.Sequential", "numpy.array", "keras.layers.LSTM", "keras.layers.Dense", "pandas.DataFrame", "re.sub", "keras.preprocessing.sequence.pad_sequences", "keras.layers.Embedding" ]
[((684, 710), 'nltk.download', 'nltk.download', (['"""stopwords"""'], {}), "('stopwords')\n", (697, 710), False, 'import nltk\n'), ((767, 793), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (782, 793), False, 'from nltk.corpus import stopwords\n'), ((6048, 6077), 'random.shuffle', 'random.shuffle', (['complete_data'], {}), '(complete_data)\n', (6062, 6077), False, 'import random\n'), ((6305, 6346), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': "['oraciones']"}), "(data, columns=['oraciones'])\n", (6317, 6346), True, 'import pandas as pd\n'), ((6520, 6531), 'keras.preprocessing.text.Tokenizer', 'Tokenizer', ([], {}), '()\n', (6529, 6531), False, 'from keras.preprocessing.text import Tokenizer\n'), ((6928, 6986), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['sequences'], {'maxlen': 'max_length', 'padding': '"""pre"""'}), "(sequences, maxlen=max_length, padding='pre')\n", (6941, 6986), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((7070, 7086), 'numpy.array', 'array', (['sequences'], {}), '(sequences)\n', (7075, 7086), False, 'from numpy import array\n'), ((7134, 7175), 'keras.utils.to_categorical', 'to_categorical', (['y'], {'num_classes': 'vocab_size'}), '(y, num_classes=vocab_size)\n', (7148, 7175), False, 'from keras.utils import to_categorical\n'), ((7229, 7241), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (7239, 7241), False, 'from keras.models import Sequential\n'), ((7252, 7306), 'keras.layers.Embedding', 'Embedding', (['vocab_size', '(10)'], {'input_length': '(max_length - 1)'}), '(vocab_size, 10, input_length=max_length - 1)\n', (7261, 7306), False, 'from keras.layers import Embedding\n'), ((7316, 7324), 'keras.layers.LSTM', 'LSTM', (['(50)'], {}), '(50)\n', (7320, 7324), False, 'from keras.layers import LSTM\n'), ((7336, 7375), 'keras.layers.Dense', 'Dense', (['vocab_size'], {'activation': '"""softmax"""'}), "(vocab_size, activation='softmax')\n", (7341, 7375), False, 'from keras.layers import Dense\n'), ((1595, 1638), 're.sub', 're.sub', (['"""^https?:\\\\/\\\\/.[\\\\r\\\\n]"""', '""""""', 'line'], {}), "('^https?:\\\\/\\\\/.[\\\\r\\\\n]', '', line)\n", (1601, 1638), False, 'import re\n'), ((1721, 1757), 're.sub', 're.sub', (['"""[^\\\\w.?!\\\\d\'\\\\s]"""', '""""""', 'line'], {}), '("[^\\\\w.?!\\\\d\'\\\\s]", \'\', line)\n', (1727, 1757), False, 'import re\n'), ((1796, 1822), 're.sub', 're.sub', (['"""[0-9]"""', '""" """', 'line'], {}), "('[0-9]', ' ', line)\n", (1802, 1822), False, 'import re\n'), ((3561, 3604), 're.sub', 're.sub', (['"""^https?:\\\\/\\\\/.[\\\\r\\\\n]"""', '""""""', 'line'], {}), "('^https?:\\\\/\\\\/.[\\\\r\\\\n]', '', line)\n", (3567, 3604), False, 'import re\n'), ((3687, 3723), 're.sub', 're.sub', (['"""[^\\\\w.?!\\\\d\'\\\\s]"""', '""""""', 'line'], {}), '("[^\\\\w.?!\\\\d\'\\\\s]", \'\', line)\n', (3693, 3723), False, 'import re\n'), ((3762, 3788), 're.sub', 're.sub', (['"""[0-9]"""', '""" """', 'line'], {}), "('[0-9]', ' ', line)\n", (3768, 3788), False, 'import re\n'), ((5669, 5712), 're.sub', 're.sub', (['"""^https?:\\\\/\\\\/.[\\\\r\\\\n]"""', '""""""', 'line'], {}), "('^https?:\\\\/\\\\/.[\\\\r\\\\n]', '', line)\n", (5675, 5712), False, 'import re\n'), ((5793, 5828), 're.sub', 're.sub', (['"""[^\\\\w.,\\\\d\'\\\\s]"""', '""""""', 'line'], {}), '("[^\\\\w.,\\\\d\'\\\\s]", \'\', line)\n', (5799, 5828), False, 'import re\n'), ((5885, 5933), 're.sub', 're.sub', (['"""^\\\\d+\\\\s|\\\\s\\\\d+\\\\s|\\\\s\\\\d+$"""', '""""""', 'line'], {}), "('^\\\\d+\\\\s|\\\\s\\\\d+\\\\s|\\\\s\\\\d+$', '', line)\n", (5891, 5933), False, 'import re\n'), ((2760, 2791), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (2766, 2791), False, 'import re\n'), ((4726, 4757), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (4732, 4757), False, 'import re\n'), ((2534, 2565), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (2540, 2565), False, 'import re\n'), ((2978, 3009), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (2984, 3009), False, 'import re\n'), ((4500, 4531), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (4506, 4531), False, 'import re\n'), ((4944, 4975), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'sentence'], {}), "('[^\\\\w]', ' ', sentence)\n", (4950, 4975), False, 'import re\n'), ((3149, 3176), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'line'], {}), "('[^\\\\w]', ' ', line)\n", (3155, 3176), False, 'import re\n'), ((5115, 5142), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'line'], {}), "('[^\\\\w]', ' ', line)\n", (5121, 5142), False, 'import re\n')]
import hashlib import json import math import os import dill import base64 from sys import exit import requests from bson import ObjectId from Crypto.Cipher import PKCS1_OAEP from Crypto.Hash import SHA256 from Crypto.PublicKey import RSA #from cryptography.hazmat.primitives.asymmetric import padding #from cryptography.hazmat.primitives import serialization, hashes from tqdm import tqdm from requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor from datetime import datetime from .Model import Model from .DataLoader import DataLoader from .Dataset import Dataset from .saving.saving import save_data, determine_model, TF_str, mxnet_str, pytorch_str from .web.urls import TOKEN_URL, HASH_URL, UPLOAD_DATA_URL VERBOSITY = 1 MIN_VERBOSITY = 1 MID_VERBOSITY = 2 FULL_VERBOSITY = 3 _token = "" _project = "" _deployed = False utcnow = datetime.utcnow with open(os.path.join(os.path.dirname(__file__), "pub_cred_key.pub"), "rb") as key_file: #pub_key_encryption = serialization.load_pem_public_key(key_file.read()) pub_key_encryption = PKCS1_OAEP.new(RSA.importKey(key_file.read()), SHA256) # from SO class bcolors: PURPLE = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' ORANGE = '\33[38;5;208m' levels = {"WARNING": bcolors.ORANGE, "INFO": bcolors.PURPLE, "ERROR": bcolors.FAIL} NEURO_AI_STR = f"[{bcolors.OKBLUE}Neuro Ai{bcolors.ENDC}]" def api(token_, project_name, verbosity, deployed): global _token global _project global VERBOSITY global _deployed if token_ == "": token_ = os.environ.get("NPU_API_TOKEN", "") _token = token_ VERBOSITY = verbosity verbose_print(f"Verbosity level set to {VERBOSITY}", MID_VERBOSITY) _deployed = deployed if _deployed: npu_print("DEPLOYMENT MODE") params = {"token": _token, "project_name": project_name} response = post(TOKEN_URL, json=params) if response.status_code == 200: npu_print("Token successfully authenticated") _project = response.json() npu_print(f"Using project: {project_name}") return response else: raise ValueError(response.text) # "API token not valid" def getToken(): return _token def auth_header(): return {"authorization": "Bearer " + getToken()} def get_verbosity(): return VERBOSITY def get_project(): return _project def is_deployed(): return _deployed def get_response(response): try: return response.json() except Exception as e: raise ConnectionError("Invalid response received. Error: {}".format(response.text)) # https://stackoverflow.com/questions/5194057/better-way-to-convert-file-sizes-in-python def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) def add_kwargs_to_params(params, **kwargs): params = {**params, **kwargs} return params def read_in_chunks(file_object, chunk_size=1024): """Lazy function (generator) to read a file piece by piece. Default chunk size: 1k.""" while True: data = file_object.read(chunk_size) if not data: break yield data def check_model(model): from .Task import Task from .Model import Model if not isinstance(model, Task) and not isinstance(model, str) and not isinstance(model, Model): raise ValueError("Model is not a valid format. Please make sure you've compiled it first.") def check_model_type(model, params): from .Task import Task if isinstance(model, Model): params["model_name"] = model.name params["model_attr"] = model.attr elif isinstance(model, str) and not ObjectId.is_valid(model): params["model_name"] = model elif model != "" and not isinstance(model, Task): params["modelId"] = model def check_data_type(data, param_name, params): from .Task import Task if isinstance(data, Dataset): params[param_name + "_name"] = data.id elif isinstance(data, str) and not ObjectId.is_valid(data): params[param_name + "_name"] = data elif isinstance(data, HubDataset): params[param_name + "Id"] = data.hub_meta elif data != "" and not isinstance(data, Task): params[param_name + "Id"] = data params[f"{param_name}_hub_ds"] = isinstance(data, HubDataset) def check_data(data, name=""): if not isinstance(name, str): raise ValueError("Name given is not valid. Please supply a string.") if isinstance(data, dict): return data try: import hub hub_meta = {} if hasattr(data, "dataset"): if hasattr(data, "indexes"): hub_meta["indexes"] = data.indexes if hasattr(data, "subpath"): hub_meta["subpath"] = data.subpath data = data.dataset if isinstance(data, hub.Dataset): encrypted_token = base64.b64encode( pub_key_encryption.encrypt( json.dumps(data.token).encode() )).decode() #pub_key_encryption.encrypt( # json.dumps(data.token).encode(), # padding.OAEP( # mgf=padding.MGF1( # algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None))).decode() hub_meta = {"url": data.url, "schema": data.schema, "token": encrypted_token, **hub_meta} hub_meta = base64.b64encode(dill.dumps(hub_meta)).decode() return HubDataset(hub_meta) except Exception as e: # print(e) pass if isinstance(data, str) and (data.endswith(("npy", "npz")) or ObjectId.is_valid(data) or data == ""): return data elif isinstance(data, Dataset): return data elif isinstance(data, DataLoader): response = upload_data_loader(data, name) else: response = upload_data(data, name) status_code = response.status_code if status_code not in (204, 200, 201): raise ConnectionAbortedError("Data upload has not worked: {}".format(response.content)) if status_code != 204: response = get_response(response) if isinstance(response, dict) and status_code == 200: message = response.get("message") npu_print(message) response = response["id"] return response def slice_data(data): id = data["id"] start = data["indexes"] end = None if isinstance(start, slice): end = start.stop start = start.start return id, start, end def gen(dl): for data_part in dl.numpy(): yield save_data(data_part) def create_callback(encoder): encoder_len = encoder.len bar = tqdm(desc=f"{NEURO_AI_STR} Uploading", unit="B", unit_scale=True, total=encoder_len, unit_divisor=1024) def callback(monitor): bar.n = monitor.bytes_read bar.refresh() if monitor.bytes_read == encoder_len: bar.close() return callback def get_progress_bar_uploader(file, json): encoder = create_upload(file, json) callback = create_callback(encoder) monitor = MultipartEncoderMonitor(encoder, callback) return monitor def create_upload(file, _json): return MultipartEncoder({ 'file': ('file', file, 'application/octet-stream', {'Content-Transfer-Encoding': 'binary'}), 'json': (None, json.dumps(_json), 'application/json', {}), }) def upload_data_loader(dl, name=""): verbose_print("Hashing data locally...", MID_VERBOSITY) hash, size, length = dl.hash() params = {"token": getToken(), "hash": hash, "collection": 1, "chunked": True, "is_last": False, "size": size, "given_name": name, "input_shape": dl.shape, "project": get_project()} # params = {"token": getToken(), "hash": hash, "collection": 1, "size": size, "given_name": name} verbose_print("Checking if data is on servers...", MID_VERBOSITY) response = get(HASH_URL, params=params) if response.status_code == 200: verbose_print("Data already uploaded. Will not reupload.", MID_VERBOSITY) return response npu_print("Data not on servers. Starting to upload. Total size of data is {}".format(convert_size(size))) if length == 1: return upload_data(next(dl.numpy()), name) npu_print("{} chunks to upload...".format(length)) for i, data_part in enumerate(dl.numpy()): verbose_print("Uploading chunk {} out of {}...".format(i + 1, length), MID_VERBOSITY) if i == length - 1: params["is_last"] = True file = save_data(data_part) monitor = get_progress_bar_uploader(file, params) response = post(UPLOAD_DATA_URL, data=monitor, headers={'Content-Type': monitor.content_type}) return response def upload_data(data, name=""): verbose_print("Saving data locally...", FULL_VERBOSITY) generic_file = False if isinstance(data, str): file = open(data, "rb") generic_file = True else: file = save_data(data) verbose_print("Hashing...", FULL_VERBOSITY) hash = hashlib.md5() for piece in read_in_chunks(file): hash.update(piece) size = file.tell() hash = hash.hexdigest() verbose_print("Checking if data is on servers...", MID_VERBOSITY) params = {"token": getToken(), "hash": hash, "collection": 1, "given_name": name, "project": get_project(), "generic_file": generic_file} response = get(HASH_URL, params=params, json=params) if response.status_code == 200: verbose_print("Data already on servers. Returning result...", MID_VERBOSITY) file.close() return response npu_print("Data not found on servers. Total size of data is {}. Uploading now...".format(convert_size(size))) file.seek(0) monitor = get_progress_bar_uploader(file=file, json=params) response = post(UPLOAD_DATA_URL, data=monitor, headers={'Content-Type': monitor.content_type}) if isinstance(data, str): file.close() return response def upload_sample(data, params): required = (len(data[0]) if isinstance(data, (tuple, list)) else len(data)) > 10 if not required: return False data = [d[:10] for d in data] if isinstance(data, (tuple, list)) else data[:10] def hash_file(file): hash = hashlib.md5() for piece in read_in_chunks(file): hash.update(piece) # break hash = hash.hexdigest() return hash def validate_model(model, data): library = determine_model(model) if isinstance(data, str): return # data = convert_to_numpy(data) if library == pytorch_str: from torch import ones elif library == mxnet_str: from mxnet import nd ones = nd.ones elif library == TF_str: from numpy import ones else: return # raise ValueError("Cannot validate library: {} .".format(library)) placeholder_data = ones(data.shape) model(placeholder_data) def determine_data(data): start = end = None name = "" if isinstance(data, dict): data, start, end = slice_data(data) if isinstance(data, Dataset): name = data.id data = data return data, name, start, end def npu_print(val, level="INFO"): log_str = f"{NEURO_AI_STR} {utcnow_formatted()} - [{levels[level]}{level}{bcolors.ENDC}]: {val}" print(f"{log_str}") def verbose_print(str, verbosity): if VERBOSITY >= verbosity: npu_print(str) def utcnow_formatted(): return utcnow().strftime("%H:%M:%S") def make_request(request_type_function, url, data, headers, json, params, **kwargs): if params is None: params = {} if json is None: json = {} if data is None: data = {} if headers is None: headers = {} try: response = request_type_function(url, data=data, headers={**headers, **auth_header()}, json=json, params=params, **kwargs) response.raise_for_status() return response except requests.exceptions.RequestException as _: response = response.json() if "error" in response: npu_print(f"Error: {response['error']}", level="ERROR") elif "message" in response: npu_print(f"Error: {response['message']}", level="ERROR") raise Exception # exit(1) def post(url, data=None, headers=None, json=None, params=None, **kwargs): return make_request(requests.post, url, data, headers, json, params, **kwargs) def get(url, data=None, headers=None, json=None, params=None, **kwargs): return make_request(requests.get, url, data, headers, json, params, **kwargs) class HubDataset: def __init__(self, hub_meta): self.hub_meta = hub_meta
[ "bson.ObjectId.is_valid", "numpy.ones", "hashlib.md5", "requests_toolbelt.MultipartEncoderMonitor", "math.pow", "tqdm.tqdm", "os.environ.get", "json.dumps", "math.log", "os.path.dirname", "dill.dumps" ]
[((3041, 3058), 'math.pow', 'math.pow', (['(1024)', 'i'], {}), '(1024, i)\n', (3049, 3058), False, 'import math\n'), ((7038, 7146), 'tqdm.tqdm', 'tqdm', ([], {'desc': 'f"""{NEURO_AI_STR} Uploading"""', 'unit': '"""B"""', 'unit_scale': '(True)', 'total': 'encoder_len', 'unit_divisor': '(1024)'}), "(desc=f'{NEURO_AI_STR} Uploading', unit='B', unit_scale=True, total=\n encoder_len, unit_divisor=1024)\n", (7042, 7146), False, 'from tqdm import tqdm\n'), ((7457, 7499), 'requests_toolbelt.MultipartEncoderMonitor', 'MultipartEncoderMonitor', (['encoder', 'callback'], {}), '(encoder, callback)\n', (7480, 7499), False, 'from requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor\n'), ((9442, 9455), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (9453, 9455), False, 'import hashlib\n'), ((10688, 10701), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (10699, 10701), False, 'import hashlib\n'), ((11309, 11325), 'numpy.ones', 'ones', (['data.shape'], {}), '(data.shape)\n', (11313, 11325), False, 'from numpy import ones\n'), ((1702, 1737), 'os.environ.get', 'os.environ.get', (['"""NPU_API_TOKEN"""', '""""""'], {}), "('NPU_API_TOKEN', '')\n", (1716, 1737), False, 'import os\n'), ((892, 917), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (907, 917), False, 'import os\n'), ((3004, 3030), 'math.log', 'math.log', (['size_bytes', '(1024)'], {}), '(size_bytes, 1024)\n', (3012, 3030), False, 'import math\n'), ((5998, 6021), 'bson.ObjectId.is_valid', 'ObjectId.is_valid', (['data'], {}), '(data)\n', (6015, 6021), False, 'from bson import ObjectId\n'), ((3999, 4023), 'bson.ObjectId.is_valid', 'ObjectId.is_valid', (['model'], {}), '(model)\n', (4016, 4023), False, 'from bson import ObjectId\n'), ((4346, 4369), 'bson.ObjectId.is_valid', 'ObjectId.is_valid', (['data'], {}), '(data)\n', (4363, 4369), False, 'from bson import ObjectId\n'), ((7707, 7724), 'json.dumps', 'json.dumps', (['_json'], {}), '(_json)\n', (7717, 7724), False, 'import json\n'), ((5801, 5821), 'dill.dumps', 'dill.dumps', (['hub_meta'], {}), '(hub_meta)\n', (5811, 5821), False, 'import dill\n'), ((5315, 5337), 'json.dumps', 'json.dumps', (['data.token'], {}), '(data.token)\n', (5325, 5337), False, 'import json\n')]
""" Code to implement ScaleFactor:: decorator supported in gtlike. The gtlike feature is documented here: https://confluence.slac.stanford.edu/display/ST/Science+Tools+Development+Notes?focusedCommentId=103582318#comment-103582318 Author: <NAME> """ import operator from copy import deepcopy import numpy as np from uw.like.Models import PowerLaw, PowerLawFlux, FileFunction, PLSuperExpCutoff, Gaussian, Constant, CompositeModel from uw.darkmatter.spectral import DMFitFunction def build_scale_factor(model_class): """ First, create the ScaleFactorPowerLaw and a comparison PowerLaw >>> scale = 3.133141 >>> sfpl=ScaleFactorPowerLaw(ScaleFactor=scale) >>> pl = PowerLaw() >>> print sfpl.name ScaleFactorPowerLaw >>> print sfpl.gtlike['name'] ScaleFactor::PowerLaw >>> print sfpl.pretty_name ScaleFactor::PowerLaw >>> print sfpl.full_name() ScaleFactor::PowerLaw, e0=1000, ScaleFactor=3.133141 >>> print sfpl.e0 == pl.e0 True >>> sfpl.default_extra_params == pl.default_extra_params True >>> np.all(sfpl.default_p == [1] + pl.default_p) True >>> print sfpl.param_names == ['ScaleFactor'] + pl.param_names True >>> print np.all(sfpl.default_mappers == Constant.default_mappers + PowerLaw.default_mappers) True >>> sfpl.default_extra_params == pl.default_extra_params True >>> sfpl.default_extra_attrs == sfpl.default_extra_attrs True >>> print sfpl.default_oomp_limits == ['ScaleFactor'] + PowerLaw.default_oomp_limits True Make sure that default_limits acts correclty >>> dl=sfpl.default_limits >>> dl['Norm'] == pl.default_limits['Norm'] True >>> dl['Index'] == pl.default_limits['Index'] True >>> dl['ScaleFactor'] == Constant.default_limits['Scale'] True Make sure the __call__ function is correct >>> energies=np.logspace(1,5,100) >>> np.all(sfpl(energies) == scale*pl(energies)) True And that the gradient follows the chain rule: >>> grad = sfpl.external_gradient(energies) >>> np.all(grad[0] == pl(energies)) True >>> np.all(grad[1:] == scale*pl.external_gradient(energies)) True Note, we can set default limits for ScaleFactor objects (necessary for XML creation): >>> print sfpl.mappers == Constant.default_mappers + PowerLaw.default_mappers True >>> print np.all(sfpl.default_mappers == Constant.default_mappers + PowerLaw.default_mappers) True >>> sfpl.set_default_limits() >>> sfpl.mappers == [Constant.default_limits['Scale'],PowerLaw.default_limits['Norm'],PowerLaw.default_limits['Index']] True Also, you can obtain the unfit parameters either as values of the object or with getp/setp >>> sfpl.e0 == pl.e0 and sfpl['e0'] == pl.e0 and sfpl.getp('e0') == pl.e0 True We can create ScaleFactor object for other models. For PowerLawFlux: >>> sfpl2=ScaleFactorPowerLawFlux(ScaleFactor=scale) >>> pl2 = PowerLawFlux() >>> print sfpl2.name ScaleFactorPowerLawFlux >>> print sfpl2.gtlike['name'] ScaleFactor::PowerLaw2 >>> sfpl2.emax == pl2.emax and sfpl2.emax == pl2.emax True And, of course, the values are just scaled >>> np.all(sfpl2(energies) == scale*pl2(energies)) True There is also a ScaleFactorFileFunction object, which acts just like a FileFunction. >>> from tempfile import NamedTemporaryFile >>> temp = NamedTemporaryFile() >>> filename = temp.name >>> sfpl2.save_profile(filename, emin=1, emax=1e5) >>> temp.seek(0) >>> sfff = ScaleFactorFileFunction(ScaleFactor=5.5, normalization=1, file=filename) >>> np.allclose(sfff(energies),5.5*sfpl2(energies),rtol=1e-10, atol=1e-10) True Note, it sets default_extra_attrs correctly: >>> sfff.default_extra_attrs == FileFunction.default_extra_attrs True >>> sfff.file == filename True """ # For a description of creating classes on the fly, see: # http://jjinux.blogspot.com/2005/03/python-create-new-class-on-fly.html c = type('ScaleFactor' + model_class.__name__, (CompositeModel,), {}) # Note, default_p, param_names, default_mappers, automatically taken care of by CompositeModel c.default_extra_params=model_class.default_extra_params c.default_extra_attrs=model_class.default_extra_attrs c.gtlike = deepcopy(model_class.gtlike) c.gtlike['name']='ScaleFactor::%s' % c.gtlike['name'] c.gtlike['param_names'].insert(0,'ScaleFactor') c.gtlike['topointlike'].insert(0,operator.pos) c.gtlike['togtlike'].insert(0,operator.pos) def __init__(self, **kwargs): scale = Constant(name='ScaleFactor') scale.default_oomp_limits=['ScaleFactor'] if 'ScaleFactor' in kwargs: scale['ScaleFactor'] = kwargs.pop('ScaleFactor') m=model_class(**kwargs) super(c,self).__init__(scale,m) self.scale=scale self.model=m for p in c.default_extra_params.keys() + c.default_extra_attrs.keys(): # Allow getting and setting the default_extra_params and default_extra_attrs # directly through the self.model object. get=lambda self: getattr(self.model,p) set=lambda self, value: setattr(self.model,p,value) setattr(c,p,property(get, set, p)) c.__init__ = __init__ c.__call__ = lambda self,e: self.scale.__call__(e)*self.model.__call__(e) c.pretty_name = property(lambda self: 'ScaleFactor::%s' % self.model.pretty_name) c.full_name = lambda self: 'ScaleFactor::%s, ScaleFactor=%s' % (self.model.full_name(),self['ScaleFactor']) def external_gradient(self, e): a=self.scale.external_gradient(e)*self.model.__call__(e) b=self.scale.__call__(e)*self.model.external_gradient(e) return np.concatenate((a,b),axis=0) c.external_gradient = external_gradient return c ScaleFactorPowerLaw=build_scale_factor(PowerLaw) ScaleFactorPowerLawFlux=build_scale_factor(PowerLawFlux) ScaleFactorFileFunction=build_scale_factor(FileFunction) ScaleFactorDMFitFunction=build_scale_factor(DMFitFunction) ScaleFactorPLSuperExpCutoff=build_scale_factor(PLSuperExpCutoff) ScaleFactorGaussian=build_scale_factor(Gaussian) if __name__ == "__main__": import doctest doctest.testmod()
[ "doctest.testmod", "uw.like.Models.Constant", "numpy.concatenate", "copy.deepcopy" ]
[((5021, 5049), 'copy.deepcopy', 'deepcopy', (['model_class.gtlike'], {}), '(model_class.gtlike)\n', (5029, 5049), False, 'from copy import deepcopy\n'), ((6931, 6948), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (6946, 6948), False, 'import doctest\n'), ((5311, 5339), 'uw.like.Models.Constant', 'Constant', ([], {'name': '"""ScaleFactor"""'}), "(name='ScaleFactor')\n", (5319, 5339), False, 'from uw.like.Models import PowerLaw, PowerLawFlux, FileFunction, PLSuperExpCutoff, Gaussian, Constant, CompositeModel\n'), ((6455, 6485), 'numpy.concatenate', 'np.concatenate', (['(a, b)'], {'axis': '(0)'}), '((a, b), axis=0)\n', (6469, 6485), True, 'import numpy as np\n')]
#This is a class because it stores its model parameters and has a 'prediction' function which returns predictions for input data import numpy as np from baseModel import baseModel, ModellingError as me from datetime import datetime import pandas as pd class ModellingError(me): pass class ConstantMonthlyModel(baseModel): """ A constant consumption model: consumption is estimated as the average of all input data Input_data must respond to the method call 'consumption' """ n_parameters = 1 def __init__(self, data): if len(data) <= 11:#(self.n_parameters + 2): self.mean = np.nan self.std = np.nan #raise ModellingError, "Not enough input data" if 'temperature' in data.dtype.names: x = data['temperature'] self.xrange = [min(x), max(x)] data_pd = pd.DataFrame.from_records(data) data_pd['ts'] = data_pd['timestamp'].apply(datetime.fromtimestamp) data_pd = data_pd.set_index(pd.DatetimeIndex(data_pd['ts'])) data_pd.sort_index(inplace=True) last_month = data_pd[-1:].index.month+1 if data_pd[-1:].index.month != 12 else 1 self.mean = data_pd[data_pd.index.month==last_month]['consumption'].mean() self.std = data_pd[data_pd.index.month==last_month]['consumption'].std() def prediction(self, independent_data): return np.array([self.mean] * len(independent_data)) def simulation(self, independent_data): return self.std * np.random.randn(independent_data.size) + self.mean def parameters(self): return {'mean': self.mean, 'std': self.std}
[ "pandas.DataFrame.from_records", "pandas.DatetimeIndex", "numpy.random.randn" ]
[((823, 854), 'pandas.DataFrame.from_records', 'pd.DataFrame.from_records', (['data'], {}), '(data)\n', (848, 854), True, 'import pandas as pd\n'), ((958, 989), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (["data_pd['ts']"], {}), "(data_pd['ts'])\n", (974, 989), True, 'import pandas as pd\n'), ((1453, 1491), 'numpy.random.randn', 'np.random.randn', (['independent_data.size'], {}), '(independent_data.size)\n', (1468, 1491), True, 'import numpy as np\n')]
# Copyright 2018 <NAME>, <NAME>. # (Strongly inspired by original Google BERT code and Hugging Face's code) """ Fine-tuning on A Classification Task with pretrained Transformer """ import itertools import csv import fire import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import tokenization import models import optim import train import pdb import numpy as np import pandas as pd from utils import set_seeds, get_device, truncate_tokens_pair import os def read_explanations(path): header = [] uid = None df = pd.read_csv(path, sep='\t', dtype=str) for name in df.columns: if name.startswith('[SKIP]'): if 'UID' in name and not uid: uid = name else: header.append(name) if not uid or len(df) == 0: print('Possibly misformatted file: ' + path) return [] return df.apply(lambda r: (r[uid], ' '.join(str(s) for s in list(r[header]) if not pd.isna(s))), 1).tolist() tables = '/data/jacob/code/nlp/tfidf/data/annotation/expl-tablestore-export-2017-08-25-230344/tables' questions = '/data/jacob/code/nlp/tfidf/data/questions/ARC-Elementary+EXPL-Dev.tsv' def parse_e(e): l = e.split(' ') l = [ll.split('|')[0] for ll in l] return l class CsvDataset(Dataset): """ Dataset Class for CSV file """ labels = None def __init__(self, pipeline=[]): # cvs file and pipeline object Dataset.__init__(self) explanations = [] for path, _, files in os.walk(tables): for file in files: explanations += read_explanations(os.path.join(path, file)) if not explanations: warnings.warn('Empty explanations') df_q = pd.read_csv(questions, sep='\t', dtype=str) df_e = pd.DataFrame(explanations, columns=('uid', 'text')) # pdb.set_trace() q_list = [] e_list = [] dict_e = {} num_e = len(df_e['uid']) num_q = len(df_q['questionID']) for i in range(num_e): dict_e[df_e['uid'][i]]= df_e['text'][i] for i in range(num_q): if not df_q['explanation'][i] is np.nan: q_list.append(df_q['Question'][i]) e_list.append(parse_e(df_q['explanation'][i])) self.q_list = q_list self.e_list = e_list self.dict_e = dict_e self.pipeline = pipeline self.es = list(dict_e.keys()) self.num_neg = 75 # pdb.set_trace() # data = [] # with open(file, "r") as f: # # list of splitted lines : line is also list # lines = csv.reader(f, delimiter='\t', quotechar=None) # pdb.set_trace() # for instance in self.get_instances(lines): # instance : tuple of fields # for proc in pipeline: # a bunch of pre-processing # instance = proc(instance) # data.append(instance) # # To Tensors # self.tensors = [torch.tensor(x, dtype=torch.long) for x in zip(*data)] def __len__(self): return len(self.q_list) def __getitem__(self, index): # pdb.set_trace() q = self.q_list[index] e = self.e_list[index] pos = self.dict_e[np.random.choice(e)] # neg = [] samples = [] instance = ('1', q, pos) for proc in self.pipeline: instance = proc(instance) samples.append(instance) for i in range(self.num_neg): # pdb.set_trace() neg = self.dict_e[np.random.choice(self.es)] instance = ('0', q, neg) for proc in self.pipeline: instance = proc(instance) samples.append(instance) # pdb.set_trace() data = [torch.tensor(x, dtype=torch.long) for x in zip(*samples)] # data = [d for d in zip(data)] return data class Pipeline(): """ Preprocess Pipeline Class : callable """ def __init__(self): super().__init__() def __call__(self, instance): raise NotImplementedError class Tokenizing(Pipeline): """ Tokenizing sentence pair """ def __init__(self, preprocessor, tokenize): super().__init__() self.preprocessor = preprocessor # e.g. text normalization self.tokenize = tokenize # tokenize function def __call__(self, instance): label, text_a, text_b = instance label = self.preprocessor(label) tokens_a = self.tokenize(self.preprocessor(text_a)) tokens_b = self.tokenize(self.preprocessor(text_b)) \ if text_b else [] return (label, tokens_a, tokens_b) class AddSpecialTokensWithTruncation(Pipeline): """ Add special tokens [CLS], [SEP] with truncation """ def __init__(self, max_len=512): super().__init__() self.max_len = max_len def __call__(self, instance): label, tokens_a, tokens_b = instance # -3 special tokens for [CLS] text_a [SEP] text_b [SEP] # -2 special tokens for [CLS] text_a [SEP] _max_len = self.max_len - 3 if tokens_b else self.max_len - 2 truncate_tokens_pair(tokens_a, tokens_b, _max_len) # Add Special Tokens tokens_a = ['[CLS]'] + tokens_a + ['[SEP]'] tokens_b = tokens_b + ['[SEP]'] if tokens_b else [] return (label, tokens_a, tokens_b) class TokenIndexing(Pipeline): """ Convert tokens into token indexes and do zero-padding """ def __init__(self, indexer, labels, max_len=512): super().__init__() self.indexer = indexer # function : tokens to indexes # map from a label name to a label index self.label_map = {name: i for i, name in enumerate(labels)} self.max_len = max_len def __call__(self, instance): label, tokens_a, tokens_b = instance input_ids = self.indexer(tokens_a + tokens_b) segment_ids = [0]*len(tokens_a) + [1]*len(tokens_b) # token type ids input_mask = [1]*(len(tokens_a) + len(tokens_b)) label_id = self.label_map[label] # zero padding n_pad = self.max_len - len(input_ids) input_ids.extend([0]*n_pad) segment_ids.extend([0]*n_pad) input_mask.extend([0]*n_pad) return (input_ids, segment_ids, input_mask, label_id) class Classifier(nn.Module): """ Classifier with Transformer """ def __init__(self, cfg, n_labels): super().__init__() self.transformer = models.Transformer(cfg) self.fc = nn.Linear(cfg.dim, cfg.dim) self.activ = nn.Tanh() self.drop = nn.Dropout(cfg.p_drop_hidden) self.classifier = nn.Linear(cfg.dim, n_labels) def forward(self, input_ids, segment_ids, input_mask): h = self.transformer(input_ids, segment_ids, input_mask) # only use the first h in the sequence pooled_h = self.activ(self.fc(h[:, 0])) logits = self.classifier(self.drop(pooled_h)) logits = torch.exp(logits).clamp(0, 100) return logits #pretrain_file='../uncased_L-12_H-768_A-12/bert_model.ckpt', #pretrain_file='../exp/bert/pretrain_100k/model_epoch_3_steps_9732.pt', def neg_logloss(logits): score = logits[0] / logits.sum() loss = -torch.log(score+1e-4) return loss def main(task='mrpc', train_cfg='config/train_mrpc.json', model_cfg='config/bert_base.json', data_file='../glue/MRPC/train.tsv', model_file=None, pretrain_file='../uncased_L-12_H-768_A-12/bert_model.ckpt', data_parallel=True, vocab='../uncased_L-12_H-768_A-12/vocab.txt', save_dir='../exp/bert/mrpc', max_len=128, mode='train'): cfg = train.Config.from_json(train_cfg) model_cfg = models.Config.from_json(model_cfg) set_seeds(cfg.seed) tokenizer = tokenization.FullTokenizer(vocab_file=vocab, do_lower_case=True) pipeline = [Tokenizing(tokenizer.convert_to_unicode, tokenizer.tokenize), AddSpecialTokensWithTruncation(max_len), TokenIndexing(tokenizer.convert_tokens_to_ids, ('0', '1'), max_len)] dataset = CsvDataset(pipeline) # print(dataset[0]) # pdb.set_trace() data_iter = DataLoader(dataset, batch_size=1, shuffle=True) model = Classifier(model_cfg, 1) criterion = nn.CrossEntropyLoss() trainer = train.Trainer(cfg, model, data_iter, optim.optim4GPU(cfg, model), save_dir, get_device()) if mode == 'train': def get_loss(model, batch, global_step): # make sure loss is a scalar tensor # pdb.set_trace() input_ids, segment_ids, input_mask, label_id = [b[0] for b in batch] # pdb.set_trace() logits = model(input_ids, segment_ids, input_mask) # pdb.set_trace() loss = neg_logloss(logits) # loss = criterion(logits, label_id) return loss trainer.train(get_loss, model_file, pretrain_file, data_parallel) elif mode == 'eval': def evaluate(model, batch): input_ids, segment_ids, input_mask, label_id = batch logits = model(input_ids, segment_ids, input_mask) _, label_pred = logits.max(1) result = (label_pred == label_id).float() #.cpu().numpy() accuracy = result.mean() return accuracy, result results = trainer.eval(evaluate, model_file, data_parallel) total_accuracy = torch.cat(results).mean().item() print('Accuracy:', total_accuracy) if __name__ == '__main__': fire.Fire(main)
[ "torch.nn.Dropout", "torch.nn.CrossEntropyLoss", "pandas.read_csv", "fire.Fire", "torch.nn.Tanh", "torch.exp", "os.walk", "utils.truncate_tokens_pair", "pandas.DataFrame", "tokenization.FullTokenizer", "torch.utils.data.Dataset.__init__", "models.Config.from_json", "utils.set_seeds", "numpy.random.choice", "train.Config.from_json", "pandas.isna", "models.Transformer", "torch.cat", "torch.log", "os.path.join", "optim.optim4GPU", "torch.tensor", "torch.nn.Linear", "torch.utils.data.DataLoader", "utils.get_device" ]
[((563, 601), 'pandas.read_csv', 'pd.read_csv', (['path'], {'sep': '"""\t"""', 'dtype': 'str'}), "(path, sep='\\t', dtype=str)\n", (574, 601), True, 'import pandas as pd\n'), ((7755, 7788), 'train.Config.from_json', 'train.Config.from_json', (['train_cfg'], {}), '(train_cfg)\n', (7777, 7788), False, 'import train\n'), ((7805, 7839), 'models.Config.from_json', 'models.Config.from_json', (['model_cfg'], {}), '(model_cfg)\n', (7828, 7839), False, 'import models\n'), ((7845, 7864), 'utils.set_seeds', 'set_seeds', (['cfg.seed'], {}), '(cfg.seed)\n', (7854, 7864), False, 'from utils import set_seeds, get_device, truncate_tokens_pair\n'), ((7882, 7946), 'tokenization.FullTokenizer', 'tokenization.FullTokenizer', ([], {'vocab_file': 'vocab', 'do_lower_case': '(True)'}), '(vocab_file=vocab, do_lower_case=True)\n', (7908, 7946), False, 'import tokenization\n'), ((8295, 8342), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(1)', 'shuffle': '(True)'}), '(dataset, batch_size=1, shuffle=True)\n', (8305, 8342), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((8397, 8418), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (8416, 8418), True, 'import torch.nn as nn\n'), ((9745, 9760), 'fire.Fire', 'fire.Fire', (['main'], {}), '(main)\n', (9754, 9760), False, 'import fire\n'), ((1439, 1461), 'torch.utils.data.Dataset.__init__', 'Dataset.__init__', (['self'], {}), '(self)\n', (1455, 1461), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((1520, 1535), 'os.walk', 'os.walk', (['tables'], {}), '(tables)\n', (1527, 1535), False, 'import os\n'), ((1738, 1781), 'pandas.read_csv', 'pd.read_csv', (['questions'], {'sep': '"""\t"""', 'dtype': 'str'}), "(questions, sep='\\t', dtype=str)\n", (1749, 1781), True, 'import pandas as pd\n'), ((1797, 1848), 'pandas.DataFrame', 'pd.DataFrame', (['explanations'], {'columns': "('uid', 'text')"}), "(explanations, columns=('uid', 'text'))\n", (1809, 1848), True, 'import pandas as pd\n'), ((5181, 5231), 'utils.truncate_tokens_pair', 'truncate_tokens_pair', (['tokens_a', 'tokens_b', '_max_len'], {}), '(tokens_a, tokens_b, _max_len)\n', (5201, 5231), False, 'from utils import set_seeds, get_device, truncate_tokens_pair\n'), ((6527, 6550), 'models.Transformer', 'models.Transformer', (['cfg'], {}), '(cfg)\n', (6545, 6550), False, 'import models\n'), ((6569, 6596), 'torch.nn.Linear', 'nn.Linear', (['cfg.dim', 'cfg.dim'], {}), '(cfg.dim, cfg.dim)\n', (6578, 6596), True, 'import torch.nn as nn\n'), ((6618, 6627), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (6625, 6627), True, 'import torch.nn as nn\n'), ((6648, 6677), 'torch.nn.Dropout', 'nn.Dropout', (['cfg.p_drop_hidden'], {}), '(cfg.p_drop_hidden)\n', (6658, 6677), True, 'import torch.nn as nn\n'), ((6704, 6732), 'torch.nn.Linear', 'nn.Linear', (['cfg.dim', 'n_labels'], {}), '(cfg.dim, n_labels)\n', (6713, 6732), True, 'import torch.nn as nn\n'), ((7286, 7311), 'torch.log', 'torch.log', (['(score + 0.0001)'], {}), '(score + 0.0001)\n', (7295, 7311), False, 'import torch\n'), ((8555, 8582), 'optim.optim4GPU', 'optim.optim4GPU', (['cfg', 'model'], {}), '(cfg, model)\n', (8570, 8582), False, 'import optim\n'), ((8622, 8634), 'utils.get_device', 'get_device', ([], {}), '()\n', (8632, 8634), False, 'from utils import set_seeds, get_device, truncate_tokens_pair\n'), ((3284, 3303), 'numpy.random.choice', 'np.random.choice', (['e'], {}), '(e)\n', (3300, 3303), True, 'import numpy as np\n'), ((3809, 3842), 'torch.tensor', 'torch.tensor', (['x'], {'dtype': 'torch.long'}), '(x, dtype=torch.long)\n', (3821, 3842), False, 'import torch\n'), ((3584, 3609), 'numpy.random.choice', 'np.random.choice', (['self.es'], {}), '(self.es)\n', (3600, 3609), True, 'import numpy as np\n'), ((7024, 7041), 'torch.exp', 'torch.exp', (['logits'], {}), '(logits)\n', (7033, 7041), False, 'import torch\n'), ((1618, 1642), 'os.path.join', 'os.path.join', (['path', 'file'], {}), '(path, file)\n', (1630, 1642), False, 'import os\n'), ((9636, 9654), 'torch.cat', 'torch.cat', (['results'], {}), '(results)\n', (9645, 9654), False, 'import torch\n'), ((976, 986), 'pandas.isna', 'pd.isna', (['s'], {}), '(s)\n', (983, 986), True, 'import pandas as pd\n')]
# Training to a set of multiple objects (e.g. ShapeNet or DTU) # tensorboard logs available in logs/<expname> import sys import os sys.path.insert( 0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")) ) import warnings import trainlib from model import make_model, loss from render import NeRFRenderer from data import get_split_dataset import util import numpy as np import torch.nn.functional as F import torch from model import NeuralRenderer import torchvision.transforms as transforms from dotmap import DotMap from PIL import Image import pdb from torchvision.utils import save_image, make_grid warnings.filterwarnings(action='ignore') def extra_args(parser): parser.add_argument( "--batch_size", "-B", type=int, default=32, help="Object batch size ('SB')" ) parser.add_argument( "--nviews", "-V", type=str, default="1", help="Number of source views (multiview); put multiple (space delim) to pick randomly per batch ('NV')", ) parser.add_argument( "--freeze_enc", action="store_true", default=None, help="Freeze encoder weights and only train MLP", ) parser.add_argument( "--recon", type=float, default=1., help="Loss of reconstruction error", ) parser.add_argument( "--swap", type=float, default=1., help="Weights of swap loss error", ) parser.add_argument( "--epoch-period", type=float, default=1., help="period of using discriminator loss", ) parser.add_argument( "--disc_lr", type=float, default=1., help="Discriminator learning rate ratio", ) parser.add_argument( "--cam", type=float, default=1., help="Loss of camera prediction error", ) parser.add_argument( "--no_bbox_step", type=int, default=100000, help="Step to stop using bbox sampling", ) parser.add_argument( "--fixed_test", action="store_true", default=None, help="Freeze encoder weights and only train MLP", ) return parser args, conf = util.args.parse_args(extra_args, training=True, default_ray_batch_size=128) device = util.get_cuda(args.gpu_id[0]) train_vis_path = os.path.join(args.visual_path, args.name, 'train') dset, val_dset, _ = get_split_dataset(args.dataset_format, args.datadir) print( "dset z_near {}, z_far {}, lindisp {}".format(dset.z_near, dset.z_far, dset.lindisp) ) # make_model: model에 대한 option. net = make_model(conf["model"]).to(device=device) # PixelNeRFNet # conf['renderer'] # renderer { # n_coarse = 64 # n_fine = 32 # # Try using expected depth sample # n_fine_depth = 16 # # Noise to add to depth sample # depth_std = 0.01 # # Decay schedule, not used # sched = [] # # White background color (false : black) # white_bkgd = True # } # Ours로 변경 예정! # from_config: 모델 세팅 알려줌 renderer = NeRFRenderer.from_conf(conf["renderer"], lindisp=dset.lindisp,).to( device=device # NeRFRenderer -> renderer setting ) # Parallize # net: pixelNeRF -> pixelNeRF를 render_par = renderer.bind_parallel(net, args.gpu_id).eval() # -> _RenderWrapper를 선언함 -> 얘의 forward 함수가 class NeRFRenderer 실행하는거! # self까지도 속성받아버림! # renderer.bind_parallel -> _RenderWrapper(net, self, simple_output=simple_output) nviews = list(map(int, args.nviews.split())) # 1. class PixelNeRFTrainer(trainlib.Trainer): def __init__(self): super().__init__(net, dset, val_dset, args, conf["train"], device=device) # superclass에서의 init self.renderer_state_path = "%s/%s/_renderer" % ( self.args.checkpoints_path, self.args.name, ) self.lambda_coarse = conf.get_float("loss.lambda_coarse") self.lambda_fine = conf.get_float("loss.lambda_fine", 1.0) print( "lambda coarse {} and fine {}".format(self.lambda_coarse, self.lambda_fine) ) fine_loss_conf = conf["loss.rgb"] if "rgb_fine" in conf["loss"]: print("using fine loss") fine_loss_conf = conf["loss.rgb_fine"] self.rgb_fine_crit = loss.get_rgb_loss(fine_loss_conf, False) if args.resume: if os.path.exists(self.renderer_state_path): renderer.load_state_dict( torch.load(self.renderer_state_path, map_location=device), strict=False ) self.z_near = dset.z_near # 일단은 그냥 두기 self.z_far = dset.z_far self.focal = torch.tensor([2.187719,]) * 10 self.c = torch.tensor([8.000000, 8.000000]) self.use_bbox = args.no_bbox_step > 0 self.recon_loss = torch.nn.MSELoss() self.cam_loss = torch.nn.MSELoss() # self.optim.add_param_group({'params': self.neural_renderer.parameters()}) def compute_bce(self, d_out, target): targets = d_out.new_full(size=d_out.size(), fill_value=target) loss = F.binary_cross_entropy_with_logits(d_out, targets) return loss def post_batch(self, epoch, batch): renderer.sched_step(args.batch_size) def extra_save_state(self): torch.save(renderer.state_dict(), self.renderer_state_path) def calc_losses_eval(self, data, epoch=None, batch=None, global_step=0): ####################################################################################### ################### 여기서부터 잘 집중해서 읽어보기! ray 가져오는 부분!!! ######################## ####################################################################################### # SB: number of batches if "images" not in data: return {} all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) all_poses = data["poses"].to(device=device) SB, NV, _, H, W = all_images.shape # SB: number of obj, NV: number of view -> 4, 50, 3, 128, 128 all_focals = data["focal"] # (SB) # 각 batch sample마다의 focal length가 존재함 all_c = data.get("c") # (SB) if self.use_bbox and global_step >= args.no_bbox_step: self.use_bbox = False print(">>> Stopped using bbox sampling @ iter", global_step) all_rgb_gt = [] all_rays = [] curr_nviews = nviews[torch.randint(0, len(nviews), ()).item()] if curr_nviews == 1: # (0,) 을 batch size만큼 만들어준다! image_ord = torch.randint(0, NV, (SB, 1)) # ours -> 계속 nviews=1일 예정! else: # Pass image_ord = torch.empty((SB, curr_nviews), dtype=torch.long) val_num = 4 ##### object마다의 Process ##### 여기서는 RGB sampling하는 과정은 아예 빼고, extrinsic을 통한 camera ray를 가져올 것 pix_inds는 필요없음 for obj_idx in range(SB): # batch 안의 index마다 pose가 다르기 때문! # SB: 4 # meshgrid만 괜찮다면 batch 연산으로 큼지막하게 한번 가도 괜찮을듯 # batch size는 작은 편, 각 sample에 대해서 처리함 # 이거 자체가 하나의 batch로서 기능함 # 너무 메모리가 커서 조금 샘플링 해야할 것 같기도.. indices = torch.randint(0, NV, (val_num,)) # (전체 251개의 view 중 5개 뽑기!) # 딱 5개만 뽑아냄! images = all_images[obj_idx][indices] # (NV, 3, H, W) # (50, 3, 128, 128) poses = all_poses[obj_idx][indices] # (NV, 4, 4) # (50, 4, 4) # <- multi-view rotation focal = self.focal c = self.c if curr_nviews > 1: # Pass # Somewhat inefficient, don't know better way image_ord[obj_idx] = torch.from_numpy( # 배치 안의 한 샘플에 대해 5개 중에 하나 뽑기! np.random.choice(indices, curr_nviews, replace=False) # 0부터 4중에 하나 고르기! <- 각 batch마다 어떤 view에서 source image를 가져올지 결정! ) # ex. image_ord[0] = 2 -> 0번째 샘플의 obj index는 2 images_0to1 = images * 0.5 + 0.5 feat_H, feat_W = 16, 16 # ㅇㅇ 다 넣고 봐도 될 듯. 어차피 feature field에 대해서 보는거라! cam_rays = util.gen_rays( # 여기서의 W, H 사이즈는 output target feature image의 resolution이어야 함! poses, feat_W, feat_H, focal, self.z_near, self.z_far, c=c # poses에 해당하는 부분이 extrinsic으로 잘 반영되고 있음..! ) # (NV, H, W, 8) rgb_gt_all = images_0to1 # image는 encoder에 들어가는 그대로 넣어주면 됨 rgb_gt_all = ( rgb_gt_all.permute(0, 2, 3, 1).contiguous().reshape(-1, 3) ) # (NV * H * W, 3) # 여기선 Ray sampling을 해서 pix_inds를 얻어내려고 하는데, 우리는 Feature map을 보고 하기 때문에 # pix_inds로 인덱싱해줄 대상이 없음. 그냥 이거 자체를 없애도 됨. rgb_gt = rgb_gt_all # (ray_batch_size, 3) rays = cam_rays.view(-1, cam_rays.shape[-1]).to( device=device # 그냥 어떤 resolution에 대해 생성하기 때문.. ) # (ray_batch_size, 8) all_rgb_gt.append(rgb_gt) all_rays.append(rays) all_rgb_gt = torch.stack(all_rgb_gt) # (SB, 5*ray_batch_size, 3) # 5장의 이미지 all_rays = torch.stack(all_rays) # (SB, 5*ray_batch_size, 8) image_ord = image_ord.to(device) # single-view이기 때문에 어차피 0으로 전부 indexing 되어있음 src_images = util.batched_index_select_nd( # NS: number of samples all_images, image_ord # 모든 이미지에 대해 랜덤하게 뽑은 source image를 가져오게 됨 ) # (SB, NS, 3, H, W) <- NV에서 NS로 바뀜 -> index_select_nd에 따라서 결정됨! <- ㅇㅋ 인정 어차피 한 obj 안에 50개 있으니까 src_poses = util.batched_index_select_nd(all_poses, image_ord) # (SB, NS, 4, 4) <- 이 src poses를 예측해보자! # 4개의 batch, 각 batch의 NS개 중 일부만 골라서 poses로 처리 <- 오키.. <- 이거는 진짜 camera poses all_poses = all_images = None # 각 batch마다 하나의 sample src image를 고름 ####################################################################################### ################### 여기까지 잘 집중해서 읽어보기! ray 가져오는 부분!!! ######################## ####################################################################################### # remove ############### NeRF encoding하는 부분!!!!!!!! net.encode( src_images, # batch, 1, 3, 128, 128 src_poses, self.focal.to(device=device), # batch c=self.c.to(device=device) if all_c is not None else None, ) # 하나의 source image에 대해 5개의 feature output을 만듦 -> 전체 sample에 대해서! # all_rays: ((SB, ray_batch_size, 8)) <- NV images에서의 전체 rays에 SB만큼을! feat_out = render_par(all_rays, val_num, want_weights=True, training=False) # models.py의 forward 함수를 볼 것 # render par 함수 밑으로 전부 giraffe renderer로 바꾸기 test_out = net.neural_renderer(feat_out) # test out 있는 여기에 self.neural_renderer 놓기 loss_dict = {} test_out_pred = test_out.reshape(SB, -1, 3) rgb_loss = self.recon_loss(test_out_pred, all_rgb_gt) loss_dict["rc"] = rgb_loss.item() * args.recon loss = rgb_loss loss_dict["t"] = loss.item() return loss_dict def calc_losses_train_generator(self, data, epoch=None, batch=None, global_step=0): ####################################################################################### ################### 여기서부터 잘 집중해서 읽어보기! ray 가져오는 부분!!! ######################## ####################################################################################### if "images" not in data: return {} all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) SB, _, H, W = all_images.shape # SB: number of obj, NV: number of view -> 4, 50, 3, 128, 128 all_poses = data["poses"].to(device=device) # (SB, NV, 4, 4) all_focals = data["focal"] # (SB) # 각 batch sample마다의 focal length가 존재함 all_c = data.get("c") # (SB) # 원래는 object for문에 껴있었는데 그냥 바로 배치 단위로 images_0to1 = all_images * 0.5 + 0.5 rgb_gt_all = ( images_0to1.permute(0, 2, 3, 1).contiguous().reshape(-1, 3) ) # (B, H, W, 3) # feat-W, feat-H 받아야 함! feat_H = 16 # <- args로 조정 가능하도록! feat_W = 16 # <- args로 조정 가능하도록! # 아 오키 이거 volume renderer 세팅 따라가고, 다른 부분 있으면 giraffe 모듈 가져오기 net.encode( # <- encode부분은 동일하게 가져오고, forward하는 부분 좀더 신경써서 가져오기! all_images, all_poses, self.focal.to(device=device), c=self.c.to(device=device) ) # encoder 결과로 self.rotmat, self.shape, self.appearance 예측됨 ################################################ ########################### for generated views cam_rays = util.gen_rays( # 여기서의 W, H 사이즈는 output target feature image의 resolution이어야 함! all_poses, feat_W, feat_H, self.focal, self.z_near, self.z_far, self.c # poses에 해당하는 부분이 extrinsic으로 잘 반영되고 있음..! ) # (NV, H, W, 8) rays = cam_rays.view(SB, -1, cam_rays.shape[-1]).to(device=device) # (batch * num_ray * num_points, 8) val_num = 1 featmap = render_par(rays, val_num, want_weights=True, training=True,) # <-outputs.toDict()의 결과 rgb_fake = net.neural_renderer(featmap) ################################################ ########################### for swapped views swap_rot = all_poses.flip(0) swap_cam_rays = util.gen_rays( # 여기서의 W, H 사이즈는 output target feature image의 resolution이어야 함! swap_rot, feat_W, feat_H, self.focal, self.z_near, self.z_far, self.c # poses에 해당하는 부분이 extrinsic으로 잘 반영되고 있음..! ) # (NV, H, W, 8) swap_rays = swap_cam_rays.view(SB, -1, swap_cam_rays.shape[-1]).to(device=device) # (batch * num_ray * num_points, 8) val_num = 1 swap_featmap = render_par(swap_rays, val_num, want_weights=True, training=True,) # <-outputs.toDict()의 결과 rgb_swap = net.neural_renderer(swap_featmap) if global_step % self.vis_interval == 0: image_grid = make_grid(torch.cat((all_images, rgb_fake, rgb_swap), dim=0), nrow=len(all_images)) # row에 들어갈 image 갯수 save_image(image_grid, f'{train_vis_path}/{epoch}_{batch}_out.jpg') # neural renderer를 저 render par 프로세스 안에 넣기! # discriminator가 swap을 지날 예정! d_fake = self.discriminator(rgb_swap) rgb_loss = self.recon_loss(rgb_fake, all_images) # 아 오키. sampling된 points 갯수가 128개인가보군 # net attribute으로 rotmat있는지 확인 + 예측했던 rotmat과 같은지 확인 gen_swap_loss = self.compute_bce(d_fake, 1) loss_gen = rgb_loss * args.recon + gen_swap_loss * args.swap return loss_gen, rgb_loss, gen_swap_loss def calc_losses_train_discriminator(self, data, epoch=None, batch=None, global_step=0): ####################################################################################### ################### 여기서부터 잘 집중해서 읽어보기! ray 가져오는 부분!!! ######################## ####################################################################################### if "images" not in data: return {} all_images = data["images"].to(device=device) # (SB, NV, 3, H, W) SB, _, H, W = all_images.shape # SB: number of obj, NV: number of view -> 4, 50, 3, 128, 128 all_poses = data["poses"].to(device=device) # (SB, NV, 4, 4) all_focals = data["focal"] # (SB) # 각 batch sample마다의 focal length가 존재함 all_c = data.get("c") # (SB) # 원래는 object for문에 껴있었는데 그냥 바로 배치 단위로 images_0to1 = all_images * 0.5 + 0.5 rgb_gt_all = ( images_0to1.permute(0, 2, 3, 1).contiguous().reshape(-1, 3) ) # (B, H, W, 3) # feat-W, feat-H 받아야 함! feat_H = 16 # <- args로 조정 가능하도록! feat_W = 16 # <- args로 조정 가능하도록! # 아 오키 이거 volume renderer 세팅 따라가고, 다른 부분 있으면 giraffe 모듈 가져오기 net.encode( # <- encode부분은 동일하게 가져오고, forward하는 부분 좀더 신경써서 가져오기! all_images, all_poses, self.focal.to(device=device), c=self.c.to(device=device) ) # encoder 결과로 self.rotmat, self.shape, self.appearance 예측됨 # ################################################ # ########################### for generated views # cam_rays = util.gen_rays( # 여기서의 W, H 사이즈는 output target feature image의 resolution이어야 함! # all_poses, feat_W, feat_H, self.focal, self.z_near, self.z_far, self.c # poses에 해당하는 부분이 extrinsic으로 잘 반영되고 있음..! # ) # (NV, H, W, 8) # rays = cam_rays.view(SB, -1, cam_rays.shape[-1]).to(device=device) # (batch * num_ray * num_points, 8) # val_num = 1 # featmap = render_par(rays, val_num, want_weights=True, training=True,) # <-outputs.toDict()의 결과 # rgb_fake = net.neural_renderer(featmap) ################################################ ########################### for swapped views swap_rot = all_poses.flip(0) swap_cam_rays = util.gen_rays( # 여기서의 W, H 사이즈는 output target feature image의 resolution이어야 함! swap_rot, feat_W, feat_H, self.focal, self.z_near, self.z_far, self.c # poses에 해당하는 부분이 extrinsic으로 잘 반영되고 있음..! ) # (NV, H, W, 8) swap_rays = swap_cam_rays.view(SB, -1, swap_cam_rays.shape[-1]).to(device=device) # (batch * num_ray * num_points, 8) val_num = 1 swap_featmap = render_par(swap_rays, val_num, want_weights=True, training=True,) # <-outputs.toDict()의 결과 rgb_swap = net.neural_renderer(swap_featmap) # neural renderer를 저 render par 프로세스 안에 넣기! # discriminator가 swap을 지날 예정! d_real = self.discriminator(all_images) d_fake = self.discriminator(rgb_swap.detach()) disc_swap_loss = self.compute_bce(d_fake, 0) disc_real_loss = self.compute_bce(d_real, 1) loss_disc = disc_swap_loss * args.swap + disc_real_loss * args.swap return loss_disc, disc_swap_loss, disc_real_loss def train_step(self, data, epoch, batch, global_step): # discriminator가 먼저 update dict_ = {} # generator # dict(net.named_parameters())["neural_renderer.conv_rgb.3.weight"][0,0,0] # name neural_renderer.conv_rgb.3.weight | param torch.Size([3, 32, 3, 3]) -> [-0.0322, -0.0191, 0.0099] # discriminator # name conv_out.weight | param torch.Size([1, 512, 4, 4]) [0, 0, 0] -> [0.0052, 0.0011, 0.0091, 0.0003] # ([0.0052, 0.0011, 0.0091, 0.0003], device='cuda:0', <- 얘는 왜 안변해..? if epoch % args.epoch_period == 0: disc_loss, disc_swap, disc_real = self.calc_losses_train_discriminator(data, epoch=epoch, batch=batch, global_step=global_step) self.optim_d.zero_grad() disc_loss.backward() self.optim_d.step() dict_['disc_loss'] = round(disc_loss.item(), 3) dict_['disc_swap'] = round(disc_swap.item(), 3) dict_['disc_real'] = round(disc_real.item(), 3) # name neural_renderer.conv_rgb.3.weight : tensor([-0.0322, -0.0191, 0.0099], device='cuda:0', grad_fn=<SelectBackward0>) <- 안바뀜 # generator 그다음에 update gen_loss, gen_rgb, gen_swap = self.calc_losses_train_generator(data, epoch=epoch, batch=batch, global_step=global_step) self.optim.zero_grad() gen_loss.backward() self.optim.step() # tensor([-0.0321, -0.0190, 0.0100], device='cuda:0', grad_fn=<SelectBackward0>) <- 바뀜 # tensor([0.0052, 0.0011, 0.0091, 0.0003], device='cuda:0') <- 안바뀜 <- discriminator가 학습이 안되고 있음 dict_['gen_loss'] = round(gen_loss.item(), 3) dict_['gen_rgb'] = round(gen_rgb.item(), 3) dict_['gen_swap'] = round(gen_swap.item(), 3) return dict_ def eval_step(self, data, global_step): renderer.eval() losses = self.calc_losses_eval(data, global_step=global_step) renderer.train() return losses # 얘네는 기존의 data loader 그대로 활용하도록 고고 def vis_step(self, data, global_step, epoch, batch, idx=None): if "images" not in data: return {} if idx is None: batch_indices = np.random.randint(0, data["images"].shape[0], 4) # 16 = batch -> (16, 251, 3, 128, 128) else: print(idx) batch_indices = idx total_psnr = 0 cat_list = [] for batch_idx in batch_indices: # 16개 batch objects 중에 하나의 batch index를 images = data["images"][batch_idx].to(device=device) # (NV, 3, H, W) poses = data["poses"][batch_idx].to(device=device) # (NV, 4, 4) focal = self.focal # (1) c = self.c feat_H, feat_W = 16, 16 NV, _, H, W = images.shape cam_rays = util.gen_rays( # (251개의 poses에 대해서 만듦..) poses, feat_W, feat_H, focal, self.z_near, self.z_far, c=c # (251, 16, 16, 8) ) # (NV, H, W, 8) images_0to1 = images * 0.5 + 0.5 # (NV, 3, H, W) # (251, 3, 128, 128) val_num = 3 # curr_nviews를 4개로 잡아볼까 curr_nviews = nviews[torch.randint(0, len(nviews), (1,)).item()] # curr_nviews = 1 views_src = np.sort(np.random.choice(NV, curr_nviews, replace=False)) # NV: 251 -> ex.views_src: 여러 이미지들 나오는디요 시발 view_dests = np.random.randint(0, NV - curr_nviews, val_num) # ex. 63 for vs in range(curr_nviews): view_dests += view_dests >= views_src[vs] views_src = torch.from_numpy(views_src) # set renderer net to eval mode renderer.eval() # <- encoder는 왜 eval() 아니지 # renderer의 parameter 찾고 여기에 2DCNN 포함되는지 확인! source_views = ( images_0to1[views_src].repeat(val_num, 1, 1, 1) .permute(0, 2, 3, 1) .cpu() .numpy() .reshape(-1, H, W, 3) # (3, 128, 128, 3) ) gt = images_0to1[view_dests].permute(0, 2, 3, 1).cpu().numpy().reshape(val_num, H, W, 3) # (128, 128, 3) with torch.no_grad(): # cam_rays: (NV, 16, 16, 8) test_rays_dest = cam_rays[view_dests] # (3, H, W, 8) # -> (val_num, 16, 16, 8) test_rays_src = cam_rays[views_src].repeat(val_num, 1, 1, 1) # (H, W, 8) # -> (16, 16, 8) test_images_src = images[views_src].repeat(val_num, 1, 1, 1) # (NS, 3, H, W) # -> (3, 128, 128) test_images_dest = images[view_dests] # -> # -> (val_num, 3, 128, 128) net.encode( test_images_src, # (val_num, 3, 128, 128) poses[views_src].repeat(val_num, 1, 1), # (val_num, 4, 4) self.focal.to(device=device), c=self.c.to(device=device), ) test_rays_dest = test_rays_dest.reshape(val_num, feat_H * feat_W, -1) # -> (1, 16*16, 8) test_rays_src = test_rays_src.reshape(val_num, feat_H * feat_W, -1) # -> (1, 16*16, 8) # test_rays: 1, 16x16, 8 feat_test_dest = render_par(test_rays_dest, val_num = 1, want_weights=True) # -> (1, 16*16, 8) out_dest = net.neural_renderer(feat_test_dest) feat_test_src = render_par(test_rays_src, val_num = 1, want_weights=True) # -> (1, 16*16, 8) out_src = net.neural_renderer(feat_test_src) rgb_psnr = out_dest.cpu().numpy().reshape(val_num, H, W, 3) # for vals calculation psnr = util.psnr(rgb_psnr, gt) total_psnr += psnr # source views, gt, test_out cat = torch.cat((test_images_src[[0]], test_images_dest.reshape(-1, 3, H, W), out_src[[0]].clamp_(0., 1.), out_dest.reshape(-1, 3, H, W).clamp_(0., 1.)), dim=0) cat_list.append(cat) # new_cat = torch.stack(cat_list, dim=0).reshape(-1, 3, 128, 128) new_cat = torch.cat(cat_list, dim=0) image_grid = make_grid(new_cat, nrow=len(cat)) # row에 들어갈 image 갯수 save_image(image_grid, f'visuals/{args.name}/{epoch}_{batch}_out.jpg') vals = {"psnr": total_psnr / len(batch_indices)} print("psnr", total_psnr / len(batch_indices)) # set the renderer network back to train mode renderer.train() return None, vals trainer = PixelNeRFTrainer() trainer.start()
[ "util.get_cuda", "torch.from_numpy", "torch.nn.MSELoss", "data.get_split_dataset", "torchvision.utils.save_image", "render.NeRFRenderer.from_conf", "os.path.exists", "util.gen_rays", "torch.randint", "model.loss.get_rgb_loss", "util.batched_index_select_nd", "numpy.random.choice", "util.psnr", "model.make_model", "os.path.dirname", "torch.empty", "warnings.filterwarnings", "torch.cat", "torch.load", "torch.stack", "os.path.join", "torch.tensor", "numpy.random.randint", "torch.no_grad", "model.loss.item", "util.args.parse_args", "torch.nn.functional.binary_cross_entropy_with_logits" ]
[((630, 670), 'warnings.filterwarnings', 'warnings.filterwarnings', ([], {'action': '"""ignore"""'}), "(action='ignore')\n", (653, 670), False, 'import warnings\n'), ((2238, 2313), 'util.args.parse_args', 'util.args.parse_args', (['extra_args'], {'training': '(True)', 'default_ray_batch_size': '(128)'}), '(extra_args, training=True, default_ray_batch_size=128)\n', (2258, 2313), False, 'import util\n'), ((2323, 2352), 'util.get_cuda', 'util.get_cuda', (['args.gpu_id[0]'], {}), '(args.gpu_id[0])\n', (2336, 2352), False, 'import util\n'), ((2371, 2421), 'os.path.join', 'os.path.join', (['args.visual_path', 'args.name', '"""train"""'], {}), "(args.visual_path, args.name, 'train')\n", (2383, 2421), False, 'import os\n'), ((2443, 2495), 'data.get_split_dataset', 'get_split_dataset', (['args.dataset_format', 'args.datadir'], {}), '(args.dataset_format, args.datadir)\n', (2460, 2495), False, 'from data import get_split_dataset\n'), ((2634, 2659), 'model.make_model', 'make_model', (["conf['model']"], {}), "(conf['model'])\n", (2644, 2659), False, 'from model import make_model, loss\n'), ((3077, 3139), 'render.NeRFRenderer.from_conf', 'NeRFRenderer.from_conf', (["conf['renderer']"], {'lindisp': 'dset.lindisp'}), "(conf['renderer'], lindisp=dset.lindisp)\n", (3099, 3139), False, 'from render import NeRFRenderer\n'), ((4305, 4345), 'model.loss.get_rgb_loss', 'loss.get_rgb_loss', (['fine_loss_conf', '(False)'], {}), '(fine_loss_conf, False)\n', (4322, 4345), False, 'from model import make_model, loss\n'), ((4735, 4759), 'torch.tensor', 'torch.tensor', (['[8.0, 8.0]'], {}), '([8.0, 8.0])\n', (4747, 4759), False, 'import torch\n'), ((4842, 4860), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (4858, 4860), False, 'import torch\n'), ((4885, 4903), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (4901, 4903), False, 'import torch\n'), ((5117, 5167), 'torch.nn.functional.binary_cross_entropy_with_logits', 'F.binary_cross_entropy_with_logits', (['d_out', 'targets'], {}), '(d_out, targets)\n', (5151, 5167), True, 'import torch.nn.functional as F\n'), ((9023, 9046), 'torch.stack', 'torch.stack', (['all_rgb_gt'], {}), '(all_rgb_gt)\n', (9034, 9046), False, 'import torch\n'), ((9109, 9130), 'torch.stack', 'torch.stack', (['all_rays'], {}), '(all_rays)\n', (9120, 9130), False, 'import torch\n'), ((9273, 9324), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_images', 'image_ord'], {}), '(all_images, image_ord)\n', (9301, 9324), False, 'import util\n'), ((9546, 9596), 'util.batched_index_select_nd', 'util.batched_index_select_nd', (['all_poses', 'image_ord'], {}), '(all_poses, image_ord)\n', (9574, 9596), False, 'import util\n'), ((11058, 11069), 'model.loss.item', 'loss.item', ([], {}), '()\n', (11067, 11069), False, 'from model import make_model, loss\n'), ((12708, 12798), 'util.gen_rays', 'util.gen_rays', (['all_poses', 'feat_W', 'feat_H', 'self.focal', 'self.z_near', 'self.z_far', 'self.c'], {}), '(all_poses, feat_W, feat_H, self.focal, self.z_near, self.\n z_far, self.c)\n', (12721, 12798), False, 'import util\n'), ((13415, 13503), 'util.gen_rays', 'util.gen_rays', (['swap_rot', 'feat_W', 'feat_H', 'self.focal', 'self.z_near', 'self.z_far', 'self.c'], {}), '(swap_rot, feat_W, feat_H, self.focal, self.z_near, self.z_far,\n self.c)\n', (13428, 13503), False, 'import util\n'), ((17042, 17130), 'util.gen_rays', 'util.gen_rays', (['swap_rot', 'feat_W', 'feat_H', 'self.focal', 'self.z_near', 'self.z_far', 'self.c'], {}), '(swap_rot, feat_W, feat_H, self.focal, self.z_near, self.z_far,\n self.c)\n', (17055, 17130), False, 'import util\n'), ((24141, 24167), 'torch.cat', 'torch.cat', (['cat_list'], {'dim': '(0)'}), '(cat_list, dim=0)\n', (24150, 24167), False, 'import torch\n'), ((24252, 24322), 'torchvision.utils.save_image', 'save_image', (['image_grid', 'f"""visuals/{args.name}/{epoch}_{batch}_out.jpg"""'], {}), "(image_grid, f'visuals/{args.name}/{epoch}_{batch}_out.jpg')\n", (24262, 24322), False, 'from torchvision.utils import save_image, make_grid\n'), ((186, 211), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (201, 211), False, 'import os\n'), ((4386, 4426), 'os.path.exists', 'os.path.exists', (['self.renderer_state_path'], {}), '(self.renderer_state_path)\n', (4400, 4426), False, 'import os\n'), ((4687, 4711), 'torch.tensor', 'torch.tensor', (['[2.187719]'], {}), '([2.187719])\n', (4699, 4711), False, 'import torch\n'), ((6573, 6602), 'torch.randint', 'torch.randint', (['(0)', 'NV', '(SB, 1)'], {}), '(0, NV, (SB, 1))\n', (6586, 6602), False, 'import torch\n'), ((6678, 6726), 'torch.empty', 'torch.empty', (['(SB, curr_nviews)'], {'dtype': 'torch.long'}), '((SB, curr_nviews), dtype=torch.long)\n', (6689, 6726), False, 'import torch\n'), ((7166, 7198), 'torch.randint', 'torch.randint', (['(0)', 'NV', '(val_num,)'], {}), '(0, NV, (val_num,))\n', (7179, 7198), False, 'import torch\n'), ((8111, 8184), 'util.gen_rays', 'util.gen_rays', (['poses', 'feat_W', 'feat_H', 'focal', 'self.z_near', 'self.z_far'], {'c': 'c'}), '(poses, feat_W, feat_H, focal, self.z_near, self.z_far, c=c)\n', (8124, 8184), False, 'import util\n'), ((14169, 14236), 'torchvision.utils.save_image', 'save_image', (['image_grid', 'f"""{train_vis_path}/{epoch}_{batch}_out.jpg"""'], {}), "(image_grid, f'{train_vis_path}/{epoch}_{batch}_out.jpg')\n", (14179, 14236), False, 'from torchvision.utils import save_image, make_grid\n'), ((20241, 20289), 'numpy.random.randint', 'np.random.randint', (['(0)', "data['images'].shape[0]", '(4)'], {}), "(0, data['images'].shape[0], 4)\n", (20258, 20289), True, 'import numpy as np\n'), ((20867, 20940), 'util.gen_rays', 'util.gen_rays', (['poses', 'feat_W', 'feat_H', 'focal', 'self.z_near', 'self.z_far'], {'c': 'c'}), '(poses, feat_W, feat_H, focal, self.z_near, self.z_far, c=c)\n', (20880, 20940), False, 'import util\n'), ((21446, 21493), 'numpy.random.randint', 'np.random.randint', (['(0)', '(NV - curr_nviews)', 'val_num'], {}), '(0, NV - curr_nviews, val_num)\n', (21463, 21493), True, 'import numpy as np\n'), ((21628, 21655), 'torch.from_numpy', 'torch.from_numpy', (['views_src'], {}), '(views_src)\n', (21644, 21655), False, 'import torch\n'), ((14062, 14112), 'torch.cat', 'torch.cat', (['(all_images, rgb_fake, rgb_swap)'], {'dim': '(0)'}), '((all_images, rgb_fake, rgb_swap), dim=0)\n', (14071, 14112), False, 'import torch\n'), ((21325, 21373), 'numpy.random.choice', 'np.random.choice', (['NV', 'curr_nviews'], {'replace': '(False)'}), '(NV, curr_nviews, replace=False)\n', (21341, 21373), True, 'import numpy as np\n'), ((22207, 22222), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (22220, 22222), False, 'import torch\n'), ((23728, 23751), 'util.psnr', 'util.psnr', (['rgb_psnr', 'gt'], {}), '(rgb_psnr, gt)\n', (23737, 23751), False, 'import util\n'), ((4490, 4547), 'torch.load', 'torch.load', (['self.renderer_state_path'], {'map_location': 'device'}), '(self.renderer_state_path, map_location=device)\n', (4500, 4547), False, 'import torch\n'), ((7750, 7803), 'numpy.random.choice', 'np.random.choice', (['indices', 'curr_nviews'], {'replace': '(False)'}), '(indices, curr_nviews, replace=False)\n', (7766, 7803), True, 'import numpy as np\n')]
# # File: # color4.py # # Synopsis: # Draws sixteen sample color boxs with RGB labels. # # Category: # Colors # # Author: # <NAME> # # Date of initial publication: # January, 2006 # # Description: # This example draws sixteen color boxes using the RGB # values for named colors. The boxes are labeled with # the color name and the associated RGB values. # # Effects illustrated: # o Drawing lines and polygons in NDC space. # o RGB equivalents for some named colors. # o Converting integer RGB color specifications to floating point. # # Output: # o One plot is produced with sixteen sample color boxes. # from __future__ import print_function import Ngl import numpy # # Define the colors and labels to be used. # colors_and_labels = \ [ \ [233, 150, 122], "DarkSalmon", \ [164, 42, 42], "Brown", \ [255, 127, 0], "DarkOrange1", \ [255, 0, 0], "Red", \ [255, 255, 0], "Yellow", \ [ 0, 255, 0], "Green", \ [ 34, 139, 34], "ForestGreen", \ [ 0, 255, 255], "Cyan", \ [ 79, 148, 205], "SteelBlue3", \ [ 0, 0, 255], "Blue", \ [148, 0, 211], "DarkViolet", \ [255, 0, 255], "Magneta", \ [255, 255, 255], "White", \ [153, 153, 153], "Gray60", \ [102, 102, 102], "Gray40", \ [ 0, 0, 0], "Black" \ ] # # Open a workstation with a default color table having # background color "black" and foreground color "white". # rlist = Ngl.Resources() rlist.wkColorMap = "default" rlist.wkForegroundColor = "White" rlist.wkBackgroundColor = "Black" wks_type = "png" wks = Ngl.open_wks(wks_type,"color4",rlist) # # Extract the colors and labels. # colors = colors_and_labels[0:len(colors_and_labels):2] labels = colors_and_labels[1:len(colors_and_labels):2] # # Set up arrays and resource lists for drawing the boxes. # Select "Helvetica-Bold" for all text. # x = numpy.zeros(5,'f') y = numpy.zeros(5,'f') poly_res = Ngl.Resources() text_res = Ngl.Resources() text_res.txFont = "Helvetica-Bold" # # Draw the color boxes and titles. # for i in range(0,len(colors)): # # delx_0 - horizontal spacing between boxes. # delx_1 - width of a box. # dely_0 - vertical spacing between boxes. # dely_1 - height of a box. # delx_0, delx_1, dely_0, dely_1 = 0.245, 0.235, 0.22, 0.15 x[0], y[0] = 0.015 + delx_0*(i%4), 0.90 - (i//4)*dely_0 x[1], y[1] = x[0] + delx_1 , y[0] x[2], y[2] = x[1] , y[1] - dely_1 x[3], y[3] = x[0] , y[2] x[4], y[4] = x[0] , y[0] # # Convert the integer color values obtained from the # named color chart (as entered above) to floating # point numbers in the range 0. to 1. # r, g, b = colors[i][0]/255., colors[i][1]/255., colors[i][2]/255. poly_res.gsFillColor = [r,g,b] # Ngl.new_color(wks, r, g, b) # # Draw a white outline if the color is black, otherwise draw a colored box. # if (labels[i] == "Black"): Ngl.polyline_ndc(wks, x, y, poly_res) else: Ngl.polygon_ndc(wks, x, y, poly_res) # # Label the boxes. # text_res.txFontHeightF = 0.017 Ngl.text_ndc(wks, labels[i], 0.5*(x[0]+x[1]), y[0] + 0.0125, text_res) rgb_label = "R={:4.2f} G={:4.2f} B={:4.2f}".format(r, g, b) text_res.txFontHeightF = 0.015 Ngl.text_ndc(wks, rgb_label, 0.5*(x[0]+x[1]), y[3] - 0.0125, text_res) # # Plot top and bottom labels. # text_res.txFontHeightF = 0.025 Ngl.text_ndc(wks, "Sixteen Sample Colors", 0.5, 0.96, text_res) text_res.txFontHeightF = 0.018 Ngl.text_ndc(wks, "The titles below each box indicate Red, Green, and Blue intensity values.", 0.5, 0.035, text_res) Ngl.frame(wks) Ngl.end()
[ "Ngl.polyline_ndc", "Ngl.polygon_ndc", "Ngl.Resources", "Ngl.end", "Ngl.open_wks", "Ngl.text_ndc", "numpy.zeros", "Ngl.frame" ]
[((1636, 1651), 'Ngl.Resources', 'Ngl.Resources', ([], {}), '()\n', (1649, 1651), False, 'import Ngl\n'), ((1772, 1811), 'Ngl.open_wks', 'Ngl.open_wks', (['wks_type', '"""color4"""', 'rlist'], {}), "(wks_type, 'color4', rlist)\n", (1784, 1811), False, 'import Ngl\n'), ((2069, 2088), 'numpy.zeros', 'numpy.zeros', (['(5)', '"""f"""'], {}), "(5, 'f')\n", (2080, 2088), False, 'import numpy\n'), ((2092, 2111), 'numpy.zeros', 'numpy.zeros', (['(5)', '"""f"""'], {}), "(5, 'f')\n", (2103, 2111), False, 'import numpy\n'), ((2122, 2137), 'Ngl.Resources', 'Ngl.Resources', ([], {}), '()\n', (2135, 2137), False, 'import Ngl\n'), ((2149, 2164), 'Ngl.Resources', 'Ngl.Resources', ([], {}), '()\n', (2162, 2164), False, 'import Ngl\n'), ((3569, 3632), 'Ngl.text_ndc', 'Ngl.text_ndc', (['wks', '"""Sixteen Sample Colors"""', '(0.5)', '(0.96)', 'text_res'], {}), "(wks, 'Sixteen Sample Colors', 0.5, 0.96, text_res)\n", (3581, 3632), False, 'import Ngl\n'), ((3664, 3789), 'Ngl.text_ndc', 'Ngl.text_ndc', (['wks', '"""The titles below each box indicate Red, Green, and Blue intensity values."""', '(0.5)', '(0.035)', 'text_res'], {}), "(wks,\n 'The titles below each box indicate Red, Green, and Blue intensity values.'\n , 0.5, 0.035, text_res)\n", (3676, 3789), False, 'import Ngl\n'), ((3788, 3802), 'Ngl.frame', 'Ngl.frame', (['wks'], {}), '(wks)\n', (3797, 3802), False, 'import Ngl\n'), ((3803, 3812), 'Ngl.end', 'Ngl.end', ([], {}), '()\n', (3810, 3812), False, 'import Ngl\n'), ((3263, 3337), 'Ngl.text_ndc', 'Ngl.text_ndc', (['wks', 'labels[i]', '(0.5 * (x[0] + x[1]))', '(y[0] + 0.0125)', 'text_res'], {}), '(wks, labels[i], 0.5 * (x[0] + x[1]), y[0] + 0.0125, text_res)\n', (3275, 3337), False, 'import Ngl\n'), ((3431, 3505), 'Ngl.text_ndc', 'Ngl.text_ndc', (['wks', 'rgb_label', '(0.5 * (x[0] + x[1]))', '(y[3] - 0.0125)', 'text_res'], {}), '(wks, rgb_label, 0.5 * (x[0] + x[1]), y[3] - 0.0125, text_res)\n', (3443, 3505), False, 'import Ngl\n'), ((3117, 3154), 'Ngl.polyline_ndc', 'Ngl.polyline_ndc', (['wks', 'x', 'y', 'poly_res'], {}), '(wks, x, y, poly_res)\n', (3133, 3154), False, 'import Ngl\n'), ((3167, 3203), 'Ngl.polygon_ndc', 'Ngl.polygon_ndc', (['wks', 'x', 'y', 'poly_res'], {}), '(wks, x, y, poly_res)\n', (3182, 3203), False, 'import Ngl\n')]
import numpy as np import matplotlib.pyplot as plt import freqent.freqentn as fen import dynamicstructurefactor.sqw as sqw from itertools import product import os import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 savepath = '/media/daniel/storage11/Dropbox/LLM_Danny/frequencySpaceDissipation/tests/freqentn_tests/' plt.close('all') def create_sphericalWave(wavelength, period, phi, v=[0, 0], n_txy=[100, 100, 100], max_txy=[1, 1, 1], r0=[0, 0]): ''' Inputs ------ wavelength : float wavelength of spherical wave period : float period of spherical wave phi : float initial phase of wave v : array-like drift velocity of wave, in format [vx, vy] n_txy : list list of integers for number of time points, x points, y points max_txy : list list of floats for total time and total length in x and y dimensions r0 : array-like initial position of spherical wave ''' n_txy = np.asarray(n_txy) max_txy = np.asarray(max_txy) sample_spacing = max_txy / n_txy tArr = np.linspace(0, max_txy[0], n_txy[0]) xArr = np.linspace(-max_txy[1] / 2, max_txy[1] / 2, n_txy[1]) yArr = np.linspace(-max_txy[2] / 2, max_txy[2] / 2, n_txy[2]) t, x, y = np.meshgrid(tArr, xArr, yArr, indexing='ij') k = 2 * np.pi / wavelength w = 2 * np.pi / period r = np.sqrt((x - r0[0] - (v[0] * t))**2 + (y - r0[1] - (v[1] * t))**2) wave = np.cos(k * r - w * t + phi) return wave, t, x, y # Set up parameters xmax = 6 * np.pi # total distance in physical units ymax = 6 * np.pi tmax = 100 nx = 250 # total number of pixels across ny = 250 nt = 100 dx = xmax / nx # sampling spacing dy = ymax / ny dt = tmax / nt xArr = np.linspace(-xmax / 2, xmax / 2, nx) yArr = np.linspace(-ymax / 2, ymax / 2, ny) tArr = np.linspace(0, tmax, nt) # Set up grid in real space, remembering to multiply by the # sampling periods in time and space tt, xx, yy = np.meshgrid(tArr, xArr, yArr, indexing='ij') # Spatial and temporal frequency (in radians/length or time) lambda0 = np.pi / 6 k0 = 2 * np.pi / lambda0 T0 = 5 w0 = 2 * np.pi / T0 lambda1 = np.pi / 6 k1 = 2 * np.pi / lambda1 T1 = 5 w1 = 2 * np.pi / T1 # Center offset x0 = 0 * dx y0 = 0 * dy x1 = 0 * dx y1 = 0 * dy # phase difference phi = 1 * np.pi / 2 # Function and its power spectrum r0 = ((xx - x0)**2 + (yy - y0)**2)**0.5 r1 = ((xx - x1)**2 + (yy - y1)**2)**0.5 r0t = np.cos(k0 * r0 - w0 * tt) r1t = np.cos(k1 * r1 - w1 * tt + phi) data = np.zeros((2, *r0t.shape)) data[0] = r0t data[1] = r1t c, freqs = fen.corr_matrix(data, sample_spacing=[dt, dx, dy]) c = fen._nd_gauss_smooth(c, stddev=[1, 2, 2]) idx_array = list(product(np.arange(2), repeat=2)) figReal, axReal = plt.subplots(2, 2, sharex=True, sharey=True) figImag, axImag = plt.subplots(2, 2, sharex=True, sharey=True) for idx in idx_array: aziAvg_real, kr_real = sqw.azimuthal_average_3D(c[..., idx[0], idx[1]].real, dx=2 * np.pi / xmax) aziAvg_imag, kr_imag = sqw.azimuthal_average_3D(c[..., idx[0], idx[1]].imag, dx=2 * np.pi / xmax) axReal[idx[0], idx[1]].pcolormesh(kr_real, freqs[0], aziAvg_real, vmin=-1, vmax=15) axImag[idx[0], idx[1]].pcolormesh(kr_imag, freqs[0], aziAvg_imag, vmin=-0.3, vmax=0.3) axReal[1, 0].set(xlabel=r'$k$ (rad/um)', ylabel=r'$\omega$ (rad/s)') axReal[0, 0].set(ylabel=r'$\omega$ (rad/s)') axReal[1, 1].set(xlabel=r'$k$ (rad/um)') figReal.suptitle(r'$\Re[\langle r_i(\mathbf{{k}}, \omega) r_j^*(\mathbf{{k}}, \omega) \rangle]$') # figReal.savefig(os.path.join(savepath, 'sphericalWaveCSD_Real_smoothed_sigma1.pdf'), format='pdf') axImag[1, 0].set(xlabel=r'$k$ (rad/um)', ylabel=r'$\omega$ (rad/s)') axImag[0, 0].set(ylabel=r'$\omega$ (rad/s)') axImag[1, 1].set(xlabel=r'$k$ (rad/um)') figImag.suptitle(r'$\Im[\langle r_i(\mathbf{{k}}, \omega) r_j^*(\mathbf{{k}}, \omega) \rangle]$') # figImag.savefig(os.path.join(savepath, 'sphericalWaveCSD_Imag_smoothed_sigma1.pdf'), format='pdf') plt.show()
[ "numpy.sqrt", "numpy.asarray", "freqent.freqentn._nd_gauss_smooth", "matplotlib.pyplot.close", "freqent.freqentn.corr_matrix", "numpy.linspace", "numpy.zeros", "numpy.cos", "numpy.meshgrid", "dynamicstructurefactor.sqw.azimuthal_average_3D", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((326, 342), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (335, 342), True, 'import matplotlib.pyplot as plt\n'), ((1853, 1889), 'numpy.linspace', 'np.linspace', (['(-xmax / 2)', '(xmax / 2)', 'nx'], {}), '(-xmax / 2, xmax / 2, nx)\n', (1864, 1889), True, 'import numpy as np\n'), ((1897, 1933), 'numpy.linspace', 'np.linspace', (['(-ymax / 2)', '(ymax / 2)', 'ny'], {}), '(-ymax / 2, ymax / 2, ny)\n', (1908, 1933), True, 'import numpy as np\n'), ((1941, 1965), 'numpy.linspace', 'np.linspace', (['(0)', 'tmax', 'nt'], {}), '(0, tmax, nt)\n', (1952, 1965), True, 'import numpy as np\n'), ((2077, 2121), 'numpy.meshgrid', 'np.meshgrid', (['tArr', 'xArr', 'yArr'], {'indexing': '"""ij"""'}), "(tArr, xArr, yArr, indexing='ij')\n", (2088, 2121), True, 'import numpy as np\n'), ((2555, 2580), 'numpy.cos', 'np.cos', (['(k0 * r0 - w0 * tt)'], {}), '(k0 * r0 - w0 * tt)\n', (2561, 2580), True, 'import numpy as np\n'), ((2587, 2618), 'numpy.cos', 'np.cos', (['(k1 * r1 - w1 * tt + phi)'], {}), '(k1 * r1 - w1 * tt + phi)\n', (2593, 2618), True, 'import numpy as np\n'), ((2627, 2652), 'numpy.zeros', 'np.zeros', (['(2, *r0t.shape)'], {}), '((2, *r0t.shape))\n', (2635, 2652), True, 'import numpy as np\n'), ((2693, 2743), 'freqent.freqentn.corr_matrix', 'fen.corr_matrix', (['data'], {'sample_spacing': '[dt, dx, dy]'}), '(data, sample_spacing=[dt, dx, dy])\n', (2708, 2743), True, 'import freqent.freqentn as fen\n'), ((2748, 2789), 'freqent.freqentn._nd_gauss_smooth', 'fen._nd_gauss_smooth', (['c'], {'stddev': '[1, 2, 2]'}), '(c, stddev=[1, 2, 2])\n', (2768, 2789), True, 'import freqent.freqentn as fen\n'), ((2860, 2904), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'sharex': '(True)', 'sharey': '(True)'}), '(2, 2, sharex=True, sharey=True)\n', (2872, 2904), True, 'import matplotlib.pyplot as plt\n'), ((2923, 2967), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'sharex': '(True)', 'sharey': '(True)'}), '(2, 2, sharex=True, sharey=True)\n', (2935, 2967), True, 'import matplotlib.pyplot as plt\n'), ((4189, 4199), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4197, 4199), True, 'import matplotlib.pyplot as plt\n'), ((1085, 1102), 'numpy.asarray', 'np.asarray', (['n_txy'], {}), '(n_txy)\n', (1095, 1102), True, 'import numpy as np\n'), ((1117, 1136), 'numpy.asarray', 'np.asarray', (['max_txy'], {}), '(max_txy)\n', (1127, 1136), True, 'import numpy as np\n'), ((1187, 1223), 'numpy.linspace', 'np.linspace', (['(0)', 'max_txy[0]', 'n_txy[0]'], {}), '(0, max_txy[0], n_txy[0])\n', (1198, 1223), True, 'import numpy as np\n'), ((1235, 1289), 'numpy.linspace', 'np.linspace', (['(-max_txy[1] / 2)', '(max_txy[1] / 2)', 'n_txy[1]'], {}), '(-max_txy[1] / 2, max_txy[1] / 2, n_txy[1])\n', (1246, 1289), True, 'import numpy as np\n'), ((1301, 1355), 'numpy.linspace', 'np.linspace', (['(-max_txy[2] / 2)', '(max_txy[2] / 2)', 'n_txy[2]'], {}), '(-max_txy[2] / 2, max_txy[2] / 2, n_txy[2])\n', (1312, 1355), True, 'import numpy as np\n'), ((1371, 1415), 'numpy.meshgrid', 'np.meshgrid', (['tArr', 'xArr', 'yArr'], {'indexing': '"""ij"""'}), "(tArr, xArr, yArr, indexing='ij')\n", (1382, 1415), True, 'import numpy as np\n'), ((1484, 1550), 'numpy.sqrt', 'np.sqrt', (['((x - r0[0] - v[0] * t) ** 2 + (y - r0[1] - v[1] * t) ** 2)'], {}), '((x - r0[0] - v[0] * t) ** 2 + (y - r0[1] - v[1] * t) ** 2)\n', (1491, 1550), True, 'import numpy as np\n'), ((1563, 1590), 'numpy.cos', 'np.cos', (['(k * r - w * t + phi)'], {}), '(k * r - w * t + phi)\n', (1569, 1590), True, 'import numpy as np\n'), ((3018, 3092), 'dynamicstructurefactor.sqw.azimuthal_average_3D', 'sqw.azimuthal_average_3D', (['c[..., idx[0], idx[1]].real'], {'dx': '(2 * np.pi / xmax)'}), '(c[..., idx[0], idx[1]].real, dx=2 * np.pi / xmax)\n', (3042, 3092), True, 'import dynamicstructurefactor.sqw as sqw\n'), ((3172, 3246), 'dynamicstructurefactor.sqw.azimuthal_average_3D', 'sqw.azimuthal_average_3D', (['c[..., idx[0], idx[1]].imag'], {'dx': '(2 * np.pi / xmax)'}), '(c[..., idx[0], idx[1]].imag, dx=2 * np.pi / xmax)\n', (3196, 3246), True, 'import dynamicstructurefactor.sqw as sqw\n'), ((2816, 2828), 'numpy.arange', 'np.arange', (['(2)'], {}), '(2)\n', (2825, 2828), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """" Bandidos estocásticos: introducción, algoritmos y experimentos TFG Informática Sección 8.4.4 Figuras 26, 27 y 28 Autor: <NAME> """ import math import random import scipy.stats as stats import matplotlib.pyplot as plt import numpy as np def computemTeor(n,Delta): if Delta == 0: return 0 else : return max(1,math.ceil(4/(Delta*Delta)*math.log(n*Delta*Delta/4))) def computemOpt(n,Delta): expectedRegret = np.empty(n//2+1) X = stats.norm(0,1) expectedRegret[0] = 0.5*n*Delta for m in range(1,n//2+1): expectedRegret[m] = m*Delta+(n-m)*Delta*X.cdf(-m*Delta/math.sqrt(2*m)) mOpt = min(range(n//2+1),key = lambda i: expectedRegret[i]) return mOpt def samplePseudoRegretEF(n,k,m,arms,gaps): rwds = k*[0] for i in range(m): for j in range(k): rwds[j] += arms[j].rvs() maximum = max(rwds) bestarm = random.choice([i for i in range(k) if rwds[i] == maximum]) return m*sum(gaps)+(n-m*k)*gaps[bestarm] def samplePseudoRegretUCB(n,k,delta,arms,gaps):#cambiar a pseudo T = k*[0] # número de veces que se ha elegido cada brazo meanReward = k*[0] # media muestral de las recompensas obtenidas por cada brazo UCB = k*[np.inf] # cota superior de confianza de cada brazo regret = 0 for i in range(n): chosenArm = max(range(k),key=lambda i: UCB[i]) rwd = arms[chosenArm].rvs() meanReward[chosenArm] = T[chosenArm]/(T[chosenArm]+1)*meanReward[chosenArm] \ + rwd/(T[chosenArm]+1) T[chosenArm] +=1 UCB[chosenArm] = meanReward[chosenArm] + math.sqrt((2*math.log(1/delta))/T[chosenArm]) regret += gaps[chosenArm] return regret def plotDeltaRegret(): n = 1000 sampleNum = 600 arms = 2*[None] arms[0] = stats.norm(0,1) gaps = 2*[0] nDeltas = 20 Deltas = np.linspace(0,1,nDeltas) regretEF25 = np.empty(nDeltas) regretEF50 = np.empty(nDeltas) regretEF75 = np.empty(nDeltas) regretEF100 = np.empty(nDeltas) regretEFmTeor = np.empty(nDeltas) regretEFOptimo = np.empty(nDeltas) regretUCB = np.empty(nDeltas) mTeor = nDeltas*[0] mOpt = nDeltas*[0] for i in range(nDeltas): Delta = Deltas[i] arms[1]= stats.norm(-Delta,1) gaps[1] = Delta regretEF25[i] = 0 for k in range(sampleNum): regretEF25[i] += samplePseudoRegretEF(n,2,25,arms,gaps) regretEF25[i] /= sampleNum regretEF50[i] = 0 for k in range(sampleNum): regretEF50[i] += samplePseudoRegretEF(n,2,50,arms,gaps) regretEF50[i] /= sampleNum regretEF75[i] = 0 for k in range(sampleNum): regretEF75[i] += samplePseudoRegretEF(n,2,75,arms,gaps) regretEF75[i] /= sampleNum regretEF100[i] = 0 for k in range(sampleNum): regretEF100[i] += samplePseudoRegretEF(n,2,100,arms,gaps) regretEF100[i] /= sampleNum regretEFmTeor[i]= 0 mTeor[i] = computemTeor(n,Delta) for k in range(sampleNum): regretEFmTeor[i] += samplePseudoRegretEF(n,2,mTeor[i],arms,gaps) regretEFmTeor[i] /= sampleNum regretEFOptimo[i] = 0 mOpt[i] = computemOpt(n,Delta) for k in range(sampleNum): regretEFOptimo[i] += samplePseudoRegretEF(n,2,mOpt[i],arms,gaps) regretEFOptimo[i] /= sampleNum regretUCB[i] = 0 for k in range(sampleNum): regretUCB[i] += samplePseudoRegretUCB(n,2,1/(n*n),arms,gaps) regretUCB[i] /= sampleNum fig = plt.figure() plt.plot(Deltas,regretEF25, color='tab:blue',label= 'EP (m = 25)') plt.plot(Deltas,regretEF50, color='tab:green',label = 'EP (m = 50)') plt.plot(Deltas,regretEF75, color='tab:olive',label = 'EP (m = 75)') plt.plot(Deltas,regretEF100, color='tab:red', label = 'EP (m = 100)') plt.plot(Deltas,regretEFmTeor, color='tab:purple',label = 'EP (m = m_Teor)') plt.plot(Deltas,regretEFOptimo, color='tab:gray', label = 'EP (m = m_Opt)') plt.plot(Deltas,regretUCB, color='black', label = 'UCB') plt.xlabel('∆') plt.ylabel('Remordimiento esperado') plt.legend(loc='upper left',ncol = 2) fig.savefig('UCBDeltaRegret.pdf',format='pdf') plt.show() fig = plt.figure() plt.plot(Deltas, mTeor, color='tab:purple', label = 'm_Teor') plt.plot(Deltas,mOpt, color = 'tab:gray', label = 'm_Opt') plt.xlabel('∆') plt.ylabel('m') plt.legend(loc='upper left') fig.savefig('ms.pdf',format='pdf') plt.show() def plotDeltaRegret2(): n = 1000 sampleNum = 600 arms = 2*[None] arms[0] = stats.norm(0,1) gaps = 2*[0] nDeltas = 20 Deltas = np.linspace(0,1,nDeltas) regretEF25 = np.empty(nDeltas) regretEF100 = np.empty(nDeltas) regretEFOptimo = np.empty(nDeltas) regretUCB0 = np.empty(nDeltas) regretUCB2 = np.empty(nDeltas) regretUCB4 = np.empty(nDeltas) regretUCB6 = np.empty(nDeltas) regretUCB8 = np.empty(nDeltas) mOpt = nDeltas*[0] for i in range(nDeltas): Delta = Deltas[i] arms[1]= stats.norm(-Delta,1) gaps[1] = Delta regretEF25[i] = 0 for k in range(sampleNum): regretEF25[i] += samplePseudoRegretEF(n,2,25,arms,gaps) regretEF25[i] /= sampleNum regretEF100[i] = 0 for k in range(sampleNum): regretEF100[i] += samplePseudoRegretEF(n,2,100,arms,gaps) regretEF100[i] /= sampleNum regretEFOptimo[i] = 0 mOpt[i] = computemOpt(n,Delta) for k in range(sampleNum): regretEFOptimo[i] += samplePseudoRegretEF(n,2,mOpt[i],arms,gaps) regretEFOptimo[i] /= sampleNum regretUCB0[i] = 0 for k in range(sampleNum): regretUCB0[i] += samplePseudoRegretUCB(n,2,1,arms,gaps) regretUCB0[i] /= sampleNum regretUCB2[i] = 0 for k in range(sampleNum): regretUCB2[i] += samplePseudoRegretUCB(n,2,1/100,arms,gaps) regretUCB2[i] /= sampleNum regretUCB4[i] = 0 for k in range(sampleNum): regretUCB4[i] += samplePseudoRegretUCB(n,2,1/10000,arms,gaps) regretUCB4[i] /= sampleNum regretUCB6[i] = 0 for k in range(sampleNum): regretUCB6[i] += samplePseudoRegretUCB(n,2,1/(n*n),arms,gaps) regretUCB6[i] /= sampleNum regretUCB8[i] = 0 for k in range(sampleNum): regretUCB8[i] += samplePseudoRegretUCB(n,2,1/(10**8),arms,gaps) regretUCB8[i] /= sampleNum fig = plt.figure() plt.plot(Deltas,regretEF25, color='tab:blue',label= 'EP (m = 25)') plt.plot(Deltas,regretEF100, color='tab:red', label = 'EP (m = 100)') plt.plot(Deltas,regretEFOptimo, color='tab:gray', label = 'EP (m = m_Opt)') plt.plot(Deltas,regretUCB0, color='salmon', label = 'UCB (δ = 1)') plt.plot(Deltas,regretUCB2, color='gold', label = 'UCB (δ = 1/100)') plt.plot(Deltas,regretUCB4, color='mediumspringgreen', label = 'UCB (δ = 1/10⁴)') plt.plot(Deltas,regretUCB6, color='black', label = 'UCB (δ = 1/10⁶)') plt.plot(Deltas,regretUCB8, color='indigo', label = 'UCB (δ = 1/10⁸)') plt.xlabel('∆') plt.ylabel('Remordimiento esperado') plt.legend(loc='upper left',ncol = 2) fig.savefig('UCBDeltaRegret2.pdf',format='pdf') plt.show() plotDeltaRegret() #plotDeltaRegret2()
[ "matplotlib.pyplot.ylabel", "scipy.stats.norm", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "math.sqrt", "math.log", "numpy.linspace", "matplotlib.pyplot.figure", "numpy.empty", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((486, 506), 'numpy.empty', 'np.empty', (['(n // 2 + 1)'], {}), '(n // 2 + 1)\n', (494, 506), True, 'import numpy as np\n'), ((512, 528), 'scipy.stats.norm', 'stats.norm', (['(0)', '(1)'], {}), '(0, 1)\n', (522, 528), True, 'import scipy.stats as stats\n'), ((1994, 2010), 'scipy.stats.norm', 'stats.norm', (['(0)', '(1)'], {}), '(0, 1)\n', (2004, 2010), True, 'import scipy.stats as stats\n'), ((2066, 2092), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nDeltas'], {}), '(0, 1, nDeltas)\n', (2077, 2092), True, 'import numpy as np\n'), ((2109, 2126), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2117, 2126), True, 'import numpy as np\n'), ((2145, 2162), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2153, 2162), True, 'import numpy as np\n'), ((2181, 2198), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2189, 2198), True, 'import numpy as np\n'), ((2218, 2235), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2226, 2235), True, 'import numpy as np\n'), ((2257, 2274), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2265, 2274), True, 'import numpy as np\n'), ((2297, 2314), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2305, 2314), True, 'import numpy as np\n'), ((2332, 2349), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (2340, 2349), True, 'import numpy as np\n'), ((3996, 4008), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4006, 4008), True, 'import matplotlib.pyplot as plt\n'), ((4014, 4081), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF25'], {'color': '"""tab:blue"""', 'label': '"""EP (m = 25)"""'}), "(Deltas, regretEF25, color='tab:blue', label='EP (m = 25)')\n", (4022, 4081), True, 'import matplotlib.pyplot as plt\n'), ((4086, 4154), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF50'], {'color': '"""tab:green"""', 'label': '"""EP (m = 50)"""'}), "(Deltas, regretEF50, color='tab:green', label='EP (m = 50)')\n", (4094, 4154), True, 'import matplotlib.pyplot as plt\n'), ((4160, 4228), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF75'], {'color': '"""tab:olive"""', 'label': '"""EP (m = 75)"""'}), "(Deltas, regretEF75, color='tab:olive', label='EP (m = 75)')\n", (4168, 4228), True, 'import matplotlib.pyplot as plt\n'), ((4234, 4302), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF100'], {'color': '"""tab:red"""', 'label': '"""EP (m = 100)"""'}), "(Deltas, regretEF100, color='tab:red', label='EP (m = 100)')\n", (4242, 4302), True, 'import matplotlib.pyplot as plt\n'), ((4309, 4385), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEFmTeor'], {'color': '"""tab:purple"""', 'label': '"""EP (m = m_Teor)"""'}), "(Deltas, regretEFmTeor, color='tab:purple', label='EP (m = m_Teor)')\n", (4317, 4385), True, 'import matplotlib.pyplot as plt\n'), ((4391, 4465), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEFOptimo'], {'color': '"""tab:gray"""', 'label': '"""EP (m = m_Opt)"""'}), "(Deltas, regretEFOptimo, color='tab:gray', label='EP (m = m_Opt)')\n", (4399, 4465), True, 'import matplotlib.pyplot as plt\n'), ((4472, 4527), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB'], {'color': '"""black"""', 'label': '"""UCB"""'}), "(Deltas, regretUCB, color='black', label='UCB')\n", (4480, 4527), True, 'import matplotlib.pyplot as plt\n'), ((4534, 4549), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""∆"""'], {}), "('∆')\n", (4544, 4549), True, 'import matplotlib.pyplot as plt\n'), ((4555, 4591), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Remordimiento esperado"""'], {}), "('Remordimiento esperado')\n", (4565, 4591), True, 'import matplotlib.pyplot as plt\n'), ((4597, 4633), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""', 'ncol': '(2)'}), "(loc='upper left', ncol=2)\n", (4607, 4633), True, 'import matplotlib.pyplot as plt\n'), ((4692, 4702), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4700, 4702), True, 'import matplotlib.pyplot as plt\n'), ((4720, 4732), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4730, 4732), True, 'import matplotlib.pyplot as plt\n'), ((4738, 4797), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'mTeor'], {'color': '"""tab:purple"""', 'label': '"""m_Teor"""'}), "(Deltas, mTeor, color='tab:purple', label='m_Teor')\n", (4746, 4797), True, 'import matplotlib.pyplot as plt\n'), ((4805, 4860), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'mOpt'], {'color': '"""tab:gray"""', 'label': '"""m_Opt"""'}), "(Deltas, mOpt, color='tab:gray', label='m_Opt')\n", (4813, 4860), True, 'import matplotlib.pyplot as plt\n'), ((4869, 4884), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""∆"""'], {}), "('∆')\n", (4879, 4884), True, 'import matplotlib.pyplot as plt\n'), ((4890, 4905), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""m"""'], {}), "('m')\n", (4900, 4905), True, 'import matplotlib.pyplot as plt\n'), ((4911, 4939), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (4921, 4939), True, 'import matplotlib.pyplot as plt\n'), ((4985, 4995), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4993, 4995), True, 'import matplotlib.pyplot as plt\n'), ((5108, 5124), 'scipy.stats.norm', 'stats.norm', (['(0)', '(1)'], {}), '(0, 1)\n', (5118, 5124), True, 'import scipy.stats as stats\n'), ((5180, 5206), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'nDeltas'], {}), '(0, 1, nDeltas)\n', (5191, 5206), True, 'import numpy as np\n'), ((5223, 5240), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5231, 5240), True, 'import numpy as np\n'), ((5260, 5277), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5268, 5277), True, 'import numpy as np\n'), ((5300, 5317), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5308, 5317), True, 'import numpy as np\n'), ((5342, 5359), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5350, 5359), True, 'import numpy as np\n'), ((5378, 5395), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5386, 5395), True, 'import numpy as np\n'), ((5414, 5431), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5422, 5431), True, 'import numpy as np\n'), ((5450, 5467), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5458, 5467), True, 'import numpy as np\n'), ((5486, 5503), 'numpy.empty', 'np.empty', (['nDeltas'], {}), '(nDeltas)\n', (5494, 5503), True, 'import numpy as np\n'), ((7294, 7306), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7304, 7306), True, 'import matplotlib.pyplot as plt\n'), ((7312, 7379), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF25'], {'color': '"""tab:blue"""', 'label': '"""EP (m = 25)"""'}), "(Deltas, regretEF25, color='tab:blue', label='EP (m = 25)')\n", (7320, 7379), True, 'import matplotlib.pyplot as plt\n'), ((7384, 7452), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEF100'], {'color': '"""tab:red"""', 'label': '"""EP (m = 100)"""'}), "(Deltas, regretEF100, color='tab:red', label='EP (m = 100)')\n", (7392, 7452), True, 'import matplotlib.pyplot as plt\n'), ((7459, 7533), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretEFOptimo'], {'color': '"""tab:gray"""', 'label': '"""EP (m = m_Opt)"""'}), "(Deltas, regretEFOptimo, color='tab:gray', label='EP (m = m_Opt)')\n", (7467, 7533), True, 'import matplotlib.pyplot as plt\n'), ((7540, 7605), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB0'], {'color': '"""salmon"""', 'label': '"""UCB (δ = 1)"""'}), "(Deltas, regretUCB0, color='salmon', label='UCB (δ = 1)')\n", (7548, 7605), True, 'import matplotlib.pyplot as plt\n'), ((7612, 7679), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB2'], {'color': '"""gold"""', 'label': '"""UCB (δ = 1/100)"""'}), "(Deltas, regretUCB2, color='gold', label='UCB (δ = 1/100)')\n", (7620, 7679), True, 'import matplotlib.pyplot as plt\n'), ((7686, 7771), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB4'], {'color': '"""mediumspringgreen"""', 'label': '"""UCB (δ = 1/10⁴)"""'}), "(Deltas, regretUCB4, color='mediumspringgreen', label='UCB (δ = 1/10⁴)'\n )\n", (7694, 7771), True, 'import matplotlib.pyplot as plt\n'), ((7773, 7841), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB6'], {'color': '"""black"""', 'label': '"""UCB (δ = 1/10⁶)"""'}), "(Deltas, regretUCB6, color='black', label='UCB (δ = 1/10⁶)')\n", (7781, 7841), True, 'import matplotlib.pyplot as plt\n'), ((7848, 7917), 'matplotlib.pyplot.plot', 'plt.plot', (['Deltas', 'regretUCB8'], {'color': '"""indigo"""', 'label': '"""UCB (δ = 1/10⁸)"""'}), "(Deltas, regretUCB8, color='indigo', label='UCB (δ = 1/10⁸)')\n", (7856, 7917), True, 'import matplotlib.pyplot as plt\n'), ((7924, 7939), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""∆"""'], {}), "('∆')\n", (7934, 7939), True, 'import matplotlib.pyplot as plt\n'), ((7945, 7981), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Remordimiento esperado"""'], {}), "('Remordimiento esperado')\n", (7955, 7981), True, 'import matplotlib.pyplot as plt\n'), ((7987, 8023), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""', 'ncol': '(2)'}), "(loc='upper left', ncol=2)\n", (7997, 8023), True, 'import matplotlib.pyplot as plt\n'), ((8083, 8093), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8091, 8093), True, 'import matplotlib.pyplot as plt\n'), ((2496, 2517), 'scipy.stats.norm', 'stats.norm', (['(-Delta)', '(1)'], {}), '(-Delta, 1)\n', (2506, 2517), True, 'import scipy.stats as stats\n'), ((5621, 5642), 'scipy.stats.norm', 'stats.norm', (['(-Delta)', '(1)'], {}), '(-Delta, 1)\n', (5631, 5642), True, 'import scipy.stats as stats\n'), ((407, 438), 'math.log', 'math.log', (['(n * Delta * Delta / 4)'], {}), '(n * Delta * Delta / 4)\n', (415, 438), False, 'import math\n'), ((666, 682), 'math.sqrt', 'math.sqrt', (['(2 * m)'], {}), '(2 * m)\n', (675, 682), False, 'import math\n'), ((1764, 1783), 'math.log', 'math.log', (['(1 / delta)'], {}), '(1 / delta)\n', (1772, 1783), False, 'import math\n')]
""" LCCS Level 3 Classification | Class name | Code | Numeric code | |----------------------------------|-----|-----| | Cultivated Terrestrial Vegetated | A11 | 111 | | Natural Terrestrial Vegetated | A12 | 112 | | Cultivated Aquatic Vegetated | A23 | 123 | | Natural Aquatic Vegetated | A24 | 124 | | Artificial Surface | B15 | 215 | | Natural Surface | B16 | 216 | | Artificial Water | B27 | 227 | | Natural Water | B28 | 228 | """ import logging import numpy #: Required input variables LCCS_L3_REQUIRED_VARIABLES = ["vegetat_veg_cat", "aquatic_wat_cat", "cultman_agr_cat", "artific_urb_cat", "artwatr_wat_cat"] #: LCCS Level 3 Colour Scheme LCCS_L3_COLOUR_SCHEME = {111 : (192, 255, 0, 255), 112 : (0, 128, 0, 255), 123 : (0, 255, 245, 255), 124 : (0, 192, 122, 255), 215 : (255, 0, 255, 255), 216 : (255, 192, 160, 255), 227 : (0, 155, 255, 255), 228 : (0, 0, 255, 255)} def colour_lccs_level3(classification_array): """" Colour classification array using LCCS Level 3 standard colour scheme. Returns four arays: * red * green * blue * alpha """ red = numpy.zeros_like(classification_array, dtype=numpy.uint8) green = numpy.zeros_like(red) blue = numpy.zeros_like(red) alpha = numpy.zeros_like(red) for class_id, colours in LCCS_L3_COLOUR_SCHEME.items(): subset = (classification_array == class_id) red[subset], green[subset], blue[subset], alpha[subset] = colours return red, green, blue, alpha def _check_required_variables(classification_data): """ Check requited variables are in xarray """ # Check all input variable exist - warning if they don't for var in LCCS_L3_REQUIRED_VARIABLES: if var not in classification_data.data_vars: logging.warning("Required variable {0} not found".format(var)) def classify_lccs_level3(classification_data): """ Apply Level 3 LCCS Classification Requires xarray containing the following variables * vegetat_veg_cat - Binary mask 1=vegetation, 0=non-vegetation * aquatic_wat_cat - Binary mask 1=aquatic, 0=non-aquatic * cultman_agr_cat - Binary mask 1=cultivated/managed, 0=natural * artific_urb_cat - Binary mask 1=urban, 0=non-urban * artwatr_wat_cat - Binary mask 1=artificial water, 0=natural water Returns three arrays: * level1 * level2 * level3 """ # Check required input and output variables exist. _check_required_variables(classification_data) # Set up arrays for outputs try: vegetation = classification_data["vegetat_veg_cat"].values == 1 except KeyError: raise Exception("No data available for first level of classification " "(vegetation / non-vegetation), can not proceed") level3 = numpy.zeros(vegetation.shape, dtype=numpy.uint8) # Level 1 # Assign level 1 class of primarily vegetated (A,100) or primarily non-vegetated (B,200) level1 = numpy.where(vegetation, numpy.uint8(100), numpy.uint8(200)) # Level 2 # Assign level 2 class of terrestrial (10) or aquatic (20) try: aquatic = classification_data["aquatic_wat_cat"].values == 1 level2 = numpy.where(aquatic, numpy.uint8(20), numpy.uint8(10)) except KeyError: raise Exception("No data available for second level of classification " "(aquatic / non-aquatic), can not proceed") # Level 3 # Assign level 3 (Supercategory) class based on cultivated or artificial try: cultivated = classification_data["cultman_agr_cat"].values == 1 # Cultivated Terrestrial Vegetation (A11) level3[vegetation & ~aquatic & cultivated] = 111 # Cultivated Aquatic Vegetation (A23) level3[vegetation & aquatic & cultivated] = 123 # Natural Terrestrial Vegetation (A12) level3[vegetation & ~aquatic & ~cultivated] = 112 # Natural Aquatic Vegetation (A24) level3[vegetation & aquatic & ~cultivated] = 124 except KeyError: logging.warning("No cultivated vegetation layer available. Skipping " "assigning level 3 catergories for vegetation") try: urban = classification_data["artific_urb_cat"].values == 1 # Artificial Surface (B15) level3[~vegetation & ~aquatic & urban] = 215 # Natural Surface (B16) level3[~vegetation & ~aquatic & ~urban] = 216 except KeyError: logging.warning("No urban layer available. Skipping assigning " "level 3 for terrestrial non-vegetation") try: artificial_water = classification_data["artwatr_wat_cat"].values == 1 # Artificial Water (B27) level3[~vegetation & aquatic & artificial_water] = 227 # Natural Water (B28) level3[~vegetation & aquatic & ~artificial_water] = 228 except KeyError: logging.warning("No artificial water layer available. Skipping assigning " "level 3 for aquatic non-vegetation (water)") return level1, level2, level3
[ "numpy.uint8", "numpy.zeros", "logging.warning", "numpy.zeros_like" ]
[((1476, 1533), 'numpy.zeros_like', 'numpy.zeros_like', (['classification_array'], {'dtype': 'numpy.uint8'}), '(classification_array, dtype=numpy.uint8)\n', (1492, 1533), False, 'import numpy\n'), ((1546, 1567), 'numpy.zeros_like', 'numpy.zeros_like', (['red'], {}), '(red)\n', (1562, 1567), False, 'import numpy\n'), ((1579, 1600), 'numpy.zeros_like', 'numpy.zeros_like', (['red'], {}), '(red)\n', (1595, 1600), False, 'import numpy\n'), ((1613, 1634), 'numpy.zeros_like', 'numpy.zeros_like', (['red'], {}), '(red)\n', (1629, 1634), False, 'import numpy\n'), ((3163, 3211), 'numpy.zeros', 'numpy.zeros', (['vegetation.shape'], {'dtype': 'numpy.uint8'}), '(vegetation.shape, dtype=numpy.uint8)\n', (3174, 3211), False, 'import numpy\n'), ((3357, 3373), 'numpy.uint8', 'numpy.uint8', (['(100)'], {}), '(100)\n', (3368, 3373), False, 'import numpy\n'), ((3375, 3391), 'numpy.uint8', 'numpy.uint8', (['(200)'], {}), '(200)\n', (3386, 3391), False, 'import numpy\n'), ((3587, 3602), 'numpy.uint8', 'numpy.uint8', (['(20)'], {}), '(20)\n', (3598, 3602), False, 'import numpy\n'), ((3604, 3619), 'numpy.uint8', 'numpy.uint8', (['(10)'], {}), '(10)\n', (3615, 3619), False, 'import numpy\n'), ((4412, 4536), 'logging.warning', 'logging.warning', (['"""No cultivated vegetation layer available. Skipping assigning level 3 catergories for vegetation"""'], {}), "(\n 'No cultivated vegetation layer available. Skipping assigning level 3 catergories for vegetation'\n )\n", (4427, 4536), False, 'import logging\n'), ((4837, 4949), 'logging.warning', 'logging.warning', (['"""No urban layer available. Skipping assigning level 3 for terrestrial non-vegetation"""'], {}), "(\n 'No urban layer available. Skipping assigning level 3 for terrestrial non-vegetation'\n )\n", (4852, 4949), False, 'import logging\n'), ((5277, 5404), 'logging.warning', 'logging.warning', (['"""No artificial water layer available. Skipping assigning level 3 for aquatic non-vegetation (water)"""'], {}), "(\n 'No artificial water layer available. Skipping assigning level 3 for aquatic non-vegetation (water)'\n )\n", (5292, 5404), False, 'import logging\n')]
from manimlib.imports import * from srcs.utils import run import matplotlib.pyplot as plt import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg from sklearn import svm # sklearn = scikit-learn from sklearn.datasets import make_moons def mplfig_to_npimage(fig): """ Converts a matplotlib figure to a RGB frame after updating the canvas""" # only the Agg backend now supports the tostring_rgb function canvas = FigureCanvasAgg(fig) canvas.draw() # update/draw the elements # get the width and the height to resize the matrix l,b,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) # exports the canvas to a string buffer and then to a numpy nd.array buf = canvas.tostring_rgb() image= np.frombuffer(buf, dtype=np.uint8) plt.close() return image.reshape(h, w, 3) def make_frame_mpl(t): fig_mpl, ax = plt.subplots(1, figsize=(5, 3), facecolor='white') xx = np.linspace(-2, 2, 200) # x向量 zz = lambda d: np.sinc(xx ** 2) + np.sin(xx + d) # (变化的)Z向量 ax.set_title("Elevation in y=0") ax.set_ylim(-1.5, 2.5) line, = ax.plot(xx, zz(0), lw=3) line.set_ydata( zz(np.pi*t)) # 更新曲面 return mplfig_to_npimage(fig_mpl) # 图形的RGB图像 def make_frame(t): X, Y = make_moons(50, noise=0.1, random_state=2) # 半随机数据 fig, ax = plt.subplots(1, figsize=(4, 4), facecolor=(1, 1, 1)) fig.subplots_adjust(left=0, right=1, bottom=0) xx, yy = np.meshgrid(np.linspace(-2, 3, 500), np.linspace(-1, 2, 500)) ax.clear() ax.axis('off') ax.set_title("SVC classification", fontsize=16) classifier = svm.SVC(gamma=2, C=1) # 不断变化的权重让数据点一个接一个的出现 weights = np.minimum(1, np.maximum(0, t**2+10-np.arange(50))) classifier.fit(X, Y, sample_weight=weights) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=plt.cm.bone, alpha=0.8, vmin=-2.5, vmax=2.5, levels=np.linspace(-2,2,20)) ax.scatter(X[:,0], X[:,1], c=Y, s=50*weights, cmap=plt.cm.bone) return mplfig_to_npimage(fig) class manim_with_animation(Scene): def construct(self): during_times = ValueTracker(0) self.img = ImageMobject(make_frame_mpl(0)) self.left_img = ImageMobject(make_frame(0)) self.img.add_updater(lambda d: d.set_array(make_frame_mpl(during_times.get_value()))) self.img.shift(2*RIGHT) self.left_img.add_updater(lambda d: d.set_array(make_frame(during_times.get_value()))) self.left_img.shift(2*LEFT) self.play(ShowCreation(self.img), ShowCreation(self.left_img), run_times=2) for i in range(6): self.play(during_times.increment_value, 0.5*i, rate_func=linear,run_times=0.5*i) # # for i in range(6)[::-1]: # self.play(during_times.increment_value, 0.1*i, rate_func=linear,run_times=0.1*i) self.wait() if __name__=="__main__": run([manim_with_animation])
[ "numpy.arange", "numpy.sinc", "matplotlib.pyplot.close", "sklearn.datasets.make_moons", "numpy.linspace", "matplotlib.backends.backend_agg.FigureCanvasAgg", "numpy.sin", "numpy.frombuffer", "matplotlib.pyplot.subplots", "srcs.utils.run", "sklearn.svm.SVC" ]
[((452, 472), 'matplotlib.backends.backend_agg.FigureCanvasAgg', 'FigureCanvasAgg', (['fig'], {}), '(fig)\n', (467, 472), False, 'from matplotlib.backends.backend_agg import FigureCanvasAgg\n'), ((758, 792), 'numpy.frombuffer', 'np.frombuffer', (['buf'], {'dtype': 'np.uint8'}), '(buf, dtype=np.uint8)\n', (771, 792), True, 'import numpy as np\n'), ((797, 808), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (806, 808), True, 'import matplotlib.pyplot as plt\n'), ((886, 936), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': '(5, 3)', 'facecolor': '"""white"""'}), "(1, figsize=(5, 3), facecolor='white')\n", (898, 936), True, 'import matplotlib.pyplot as plt\n'), ((946, 969), 'numpy.linspace', 'np.linspace', (['(-2)', '(2)', '(200)'], {}), '(-2, 2, 200)\n', (957, 969), True, 'import numpy as np\n'), ((1266, 1307), 'sklearn.datasets.make_moons', 'make_moons', (['(50)'], {'noise': '(0.1)', 'random_state': '(2)'}), '(50, noise=0.1, random_state=2)\n', (1276, 1307), False, 'from sklearn.datasets import make_moons\n'), ((1332, 1384), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': '(4, 4)', 'facecolor': '(1, 1, 1)'}), '(1, figsize=(4, 4), facecolor=(1, 1, 1))\n', (1344, 1384), True, 'import matplotlib.pyplot as plt\n'), ((1615, 1636), 'sklearn.svm.SVC', 'svm.SVC', ([], {'gamma': '(2)', 'C': '(1)'}), '(gamma=2, C=1)\n', (1622, 1636), False, 'from sklearn import svm\n'), ((2962, 2989), 'srcs.utils.run', 'run', (['[manim_with_animation]'], {}), '([manim_with_animation])\n', (2965, 2989), False, 'from srcs.utils import run\n'), ((1461, 1484), 'numpy.linspace', 'np.linspace', (['(-2)', '(3)', '(500)'], {}), '(-2, 3, 500)\n', (1472, 1484), True, 'import numpy as np\n'), ((1486, 1509), 'numpy.linspace', 'np.linspace', (['(-1)', '(2)', '(500)'], {}), '(-1, 2, 500)\n', (1497, 1509), True, 'import numpy as np\n'), ((996, 1012), 'numpy.sinc', 'np.sinc', (['(xx ** 2)'], {}), '(xx ** 2)\n', (1003, 1012), True, 'import numpy as np\n'), ((1015, 1029), 'numpy.sin', 'np.sin', (['(xx + d)'], {}), '(xx + d)\n', (1021, 1029), True, 'import numpy as np\n'), ((1973, 1995), 'numpy.linspace', 'np.linspace', (['(-2)', '(2)', '(20)'], {}), '(-2, 2, 20)\n', (1984, 1995), True, 'import numpy as np\n'), ((1713, 1726), 'numpy.arange', 'np.arange', (['(50)'], {}), '(50)\n', (1722, 1726), True, 'import numpy as np\n')]
import copy import datetime import os import random import traceback import numpy as np import torch from torch.utils.data import DataLoader from torchvision.utils import save_image from inference.inference_utils import get_trange, get_tqdm def init_random_seed(value=0): random.seed(value) np.random.seed(value) torch.manual_seed(value) torch.cuda.manual_seed(value) torch.backends.cudnn.deterministic = True def copy_data_to_device(data, device): if torch.is_tensor(data): return data.to(device) elif isinstance(data, (list, tuple)): return [copy_data_to_device(elem, device) for elem in data] elif isinstance(data, dict): return {name: copy_data_to_device(value, device) for name, value in data.items()} raise ValueError('Unexpected data type {}'.format(type(data))) def sum_dicts(current, new): if current is None: return new result = dict(current) for name, new_value in new.items(): result[name] = result.get(name, 0) + new_value return result def norm_dict(current, n): if n == 0: return current return {name: value / (n + 1e-6) for name, value in current.items()} def train_eval_loop(model, train_dataset, val_dataset, criterion, lr=1e-4, epoch_n=10, batch_size=32, device='cuda', early_stopping_patience=10, l2_reg_alpha=0, max_batches_per_epoch_train=10000, max_batches_per_epoch_val=1000, data_loader_ctor=DataLoader, optimizer_ctor=None, lr_scheduler_ctor=None, shuffle_train=True, dataloader_workers_n=0, clip_grad=10, save_vis_images_path=None, save_vis_images_freq=100, save_models_path=None, save_models_freq=10): device = torch.device(device) model.to(device) if optimizer_ctor is None: optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2_reg_alpha) else: optimizer = optimizer_ctor(model.parameters(), lr=lr) if lr_scheduler_ctor is not None: lr_scheduler = lr_scheduler_ctor(optimizer) else: lr_scheduler = None train_dataloader = data_loader_ctor(train_dataset, batch_size=batch_size, shuffle=shuffle_train, num_workers=dataloader_workers_n) val_dataloader = data_loader_ctor(val_dataset, batch_size=batch_size, shuffle=False, num_workers=dataloader_workers_n) best_val_loss = float('inf') best_val_metrics = None best_epoch_i = 0 best_model = copy.deepcopy(model) for epoch_i in get_trange(epoch_n, desc='Epochs'): try: epoch_start = datetime.datetime.now() print('Epoch {}'.format(epoch_i)) model.train() mean_train_loss = 0 mean_train_metrics = None train_batches_n = 0 for batch_i, (batch_x, batch_y) in get_tqdm(enumerate(train_dataloader), desc=f'Epoch {epoch_i}', total=max_batches_per_epoch_train, leave=True): if batch_i > max_batches_per_epoch_train: break batch_x = copy_data_to_device(batch_x, device) batch_y = copy_data_to_device(batch_y, device) pred = model(batch_x) loss, metrics, vis_img = criterion(pred, batch_y) model.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad) optimizer.step() mean_train_loss += float(loss) mean_train_metrics = sum_dicts(mean_train_metrics, metrics) if vis_img is not None and save_vis_images_path is not None and batch_i % save_vis_images_freq == 0: save_image(vis_img, os.path.join(save_vis_images_path, 'epoch{:04d}_iter{:06d}_train.jpg'.format(epoch_i, batch_i)), nrow=batch_y['images'].shape[0], normalize=True, range=(-1, 1)) train_batches_n += 1 mean_train_loss /= train_batches_n mean_train_metrics = norm_dict(mean_train_metrics, train_batches_n) print('Epoch: {} iterations, {:0.2f} sec'.format(train_batches_n, (datetime.datetime.now() - epoch_start).total_seconds())) print('Mean train loss', mean_train_loss, mean_train_metrics) if save_models_path is not None and epoch_i % save_models_freq == 0: torch.save(model, os.path.join(save_models_path, 'model_epoch_{:04d}.pth'.format(epoch_i))) model.eval() mean_val_loss = 0 mean_val_metrics = None val_batches_n = 0 with torch.no_grad(): for batch_i, (batch_x, batch_y) in enumerate(val_dataloader): if batch_i > max_batches_per_epoch_val: break batch_x = copy_data_to_device(batch_x, device) batch_y = copy_data_to_device(batch_y, device) pred = model(batch_x) loss, metrics, vis_img = criterion(pred, batch_y) mean_val_loss += float(loss) mean_val_metrics = sum_dicts(mean_val_metrics, metrics) if vis_img is not None and save_vis_images_path is not None and batch_i % save_vis_images_freq == 0: save_image(vis_img, os.path.join(save_vis_images_path, 'epoch{:04d}_iter{:06d}_val.jpg'.format(epoch_i, batch_i)), nrow=batch_y['images'].shape[0], normalize=True, range=(-1, 1)) val_batches_n += 1 mean_val_loss /= val_batches_n + 1e-6 mean_val_metrics = norm_dict(mean_val_metrics, val_batches_n) print('Mean validation loss', mean_val_loss, mean_val_metrics) if mean_val_loss < best_val_loss: best_epoch_i = epoch_i best_val_loss = mean_val_loss best_val_metrics = mean_val_metrics best_model = copy.deepcopy(model) print('New best model!') if save_models_path is not None: torch.save(best_model, os.path.join(save_models_path, 'best_model.pth')) elif epoch_i - best_epoch_i > early_stopping_patience: print('Model has not improved during the last {} epochs, stopping training early'.format( early_stopping_patience)) break if lr_scheduler is not None: lr_scheduler.step(mean_val_loss) print() except KeyboardInterrupt: print('Interrupted by user') break except Exception as ex: print('Fatal error during training: {}\n{}'.format(ex, traceback.format_exc())) break return best_val_loss, best_val_metrics, best_model def predict_with_model(model, dataset, device='cuda', batch_size=32, num_workers=0, return_labels=False): """ :param model: torch.nn.Module - trained model :param dataset: torch.utils.data.Dataset - data to apply model :param device: cuda/cpu :param batch_size: :return: numpy.array dimensionality len(dataset) x * """ results_by_batch = [] device = torch.device(device) model.to(device) model.eval() dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) labels = [] with torch.no_grad(): import tqdm for batch_x, batch_y in tqdm.tqdm_notebook(dataloader, total=len(dataset)/batch_size): batch_x = copy_data_to_device(batch_x, device) if return_labels: labels.append(batch_y.numpy()) batch_pred = model(batch_x) results_by_batch.append(batch_pred.detach().cpu().numpy()) if return_labels: return np.concatenate(results_by_batch, 0), np.concatenate(labels, 0) else: return np.concatenate(results_by_batch, 0)
[ "torch.manual_seed", "traceback.format_exc", "torch.utils.data.DataLoader", "os.path.join", "random.seed", "torch.is_tensor", "datetime.datetime.now", "numpy.random.seed", "numpy.concatenate", "copy.deepcopy", "torch.no_grad", "torch.cuda.manual_seed", "inference.inference_utils.get_trange", "torch.device" ]
[((280, 298), 'random.seed', 'random.seed', (['value'], {}), '(value)\n', (291, 298), False, 'import random\n'), ((303, 324), 'numpy.random.seed', 'np.random.seed', (['value'], {}), '(value)\n', (317, 324), True, 'import numpy as np\n'), ((329, 353), 'torch.manual_seed', 'torch.manual_seed', (['value'], {}), '(value)\n', (346, 353), False, 'import torch\n'), ((358, 387), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['value'], {}), '(value)\n', (380, 387), False, 'import torch\n'), ((482, 503), 'torch.is_tensor', 'torch.is_tensor', (['data'], {}), '(data)\n', (497, 503), False, 'import torch\n'), ((1943, 1963), 'torch.device', 'torch.device', (['device'], {}), '(device)\n', (1955, 1963), False, 'import torch\n'), ((2746, 2766), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (2759, 2766), False, 'import copy\n'), ((2787, 2821), 'inference.inference_utils.get_trange', 'get_trange', (['epoch_n'], {'desc': '"""Epochs"""'}), "(epoch_n, desc='Epochs')\n", (2797, 2821), False, 'from inference.inference_utils import get_trange, get_tqdm\n'), ((7909, 7929), 'torch.device', 'torch.device', (['device'], {}), '(device)\n', (7921, 7929), False, 'import torch\n'), ((7986, 8073), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': '(False)', 'num_workers': 'num_workers'}), '(dataset, batch_size=batch_size, shuffle=False, num_workers=\n num_workers)\n', (7996, 8073), False, 'from torch.utils.data import DataLoader\n'), ((8094, 8109), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8107, 8109), False, 'import torch\n'), ((8601, 8636), 'numpy.concatenate', 'np.concatenate', (['results_by_batch', '(0)'], {}), '(results_by_batch, 0)\n', (8615, 8636), True, 'import numpy as np\n'), ((2862, 2885), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2883, 2885), False, 'import datetime\n'), ((8513, 8548), 'numpy.concatenate', 'np.concatenate', (['results_by_batch', '(0)'], {}), '(results_by_batch, 0)\n', (8527, 8548), True, 'import numpy as np\n'), ((8550, 8575), 'numpy.concatenate', 'np.concatenate', (['labels', '(0)'], {}), '(labels, 0)\n', (8564, 8575), True, 'import numpy as np\n'), ((5146, 5161), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5159, 5161), False, 'import torch\n'), ((6669, 6689), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (6682, 6689), False, 'import copy\n'), ((6825, 6873), 'os.path.join', 'os.path.join', (['save_models_path', '"""best_model.pth"""'], {}), "(save_models_path, 'best_model.pth')\n", (6837, 6873), False, 'import os\n'), ((7421, 7443), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (7441, 7443), False, 'import traceback\n'), ((4685, 4708), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4706, 4708), False, 'import datetime\n')]
#!/usr/bin/env python3 import numpy as np import h5py import matplotlib.pyplot as plt # import plotly.graph_objects as go #========= Configuration =========== DIR ="../data" file_name = "particle"#"rhoNeutral" #"P" h5 = h5py.File('../data/'+file_name+'.hdf5','r') Lx = h5.attrs["Lx"] Ly = h5.attrs["Ly"] Lz = h5.attrs["Lz"] N = h5.attrs["N"] dp = h5.attrs["dp"] Nt = h5.attrs["Nt"] data_num = np.arange(start=0, stop=Nt, step=1, dtype=int) time = data_num*dp energy = h5["/energy"] energy = 3*(np.array(energy[:-1]))/N fig,ax = plt.subplots(figsize=(6, 6)) plt.plot(time[1:],energy[1:]) ax.set_xlabel("$timestep$") ax.set_ylabel("$Energy$") plt.show()
[ "matplotlib.pyplot.plot", "h5py.File", "numpy.array", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((225, 273), 'h5py.File', 'h5py.File', (["('../data/' + file_name + '.hdf5')", '"""r"""'], {}), "('../data/' + file_name + '.hdf5', 'r')\n", (234, 273), False, 'import h5py\n'), ((407, 453), 'numpy.arange', 'np.arange', ([], {'start': '(0)', 'stop': 'Nt', 'step': '(1)', 'dtype': 'int'}), '(start=0, stop=Nt, step=1, dtype=int)\n', (416, 453), True, 'import numpy as np\n'), ((544, 572), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(6, 6)'}), '(figsize=(6, 6))\n', (556, 572), True, 'import matplotlib.pyplot as plt\n'), ((573, 603), 'matplotlib.pyplot.plot', 'plt.plot', (['time[1:]', 'energy[1:]'], {}), '(time[1:], energy[1:])\n', (581, 603), True, 'import matplotlib.pyplot as plt\n'), ((661, 671), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (669, 671), True, 'import matplotlib.pyplot as plt\n'), ((509, 530), 'numpy.array', 'np.array', (['energy[:-1]'], {}), '(energy[:-1])\n', (517, 530), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Iris classification example, pratice on using high-level API Algorithms: Neutral Network Reference: https://www.tensorflow.org/get_started/tflearn Date: Jun 14, 2017 @author: <NAME> @Library: tensorflow - high-level API with tf.contrib.learn """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # import urllib # only python 2 import urllib.request # python 3 import tensorflow as tf import numpy as np IRIS_TRAINING = "./iris_dataset/iris_training.csv" IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv" IRIS_TEST = "./iris_dataset/iris_test.csv" IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv" def main(): # If the training and test sets aren't stored locally, download them. if not os.path.exists(IRIS_TRAINING): raw = urllib.request.urlopen(IRIS_TRAINING_URL).read() with open(IRIS_TRAINING, 'wb') as f: f.write(raw) if not os.path.exists(IRIS_TEST): raw = urllib.request.urlopen(IRIS_TEST_URL).read() with open(IRIS_TEST, 'wb') as f: f.write(raw) # Load datasets training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename = IRIS_TRAINING, target_dtype = np.int, features_dtype = np.float32) test_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename = IRIS_TEST, target_dtype = np.int, features_dtype = np.float32) # Specify that all features have real-value data feature_columns = [tf.contrib.layers.real_valued_column("", dimension = 4)] # Build 3 layer DNN with 10, 20, 10 units respectively classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, hidden_units = [10, 20, 10], n_classes = 3, model_dir = "./tmp/iris_models") def get_train_inputs(): x = tf.constant(training_set.data) y = tf.constant(training_set.target) return x, y # Fit model classifier.fit(input_fn = get_train_inputs, steps = 2000) # # Equivalent to follows: # classifier.fit(x = training_set.data, y = training_set.target, steps = 1000) # classifier.fit(x = training_set.data, y = training_set.target, steps = 1000) def get_test_inputs(): x = tf.constant(test_set.data) y = tf.constant(test_set.target) return x, y # Evaluate accuracy accuracy_score = classifier.evaluate(input_fn = get_test_inputs, steps = 1)["accuracy"] print("\nTest Accuracy: {0:f}\n".format(accuracy_score)) # Predict for new example def new_samples(): return np.array( [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype = np.float32) predictions = list(classifier.predict(input_fn = new_samples)) print("New samples, Class predictions: {}\n".format(predictions)) if __name__ == "__main__": main()
[ "os.path.exists", "tensorflow.contrib.learn.DNNClassifier", "tensorflow.contrib.layers.real_valued_column", "tensorflow.contrib.learn.datasets.base.load_csv_with_header", "numpy.array", "tensorflow.constant" ]
[((1176, 1303), 'tensorflow.contrib.learn.datasets.base.load_csv_with_header', 'tf.contrib.learn.datasets.base.load_csv_with_header', ([], {'filename': 'IRIS_TRAINING', 'target_dtype': 'np.int', 'features_dtype': 'np.float32'}), '(filename=IRIS_TRAINING,\n target_dtype=np.int, features_dtype=np.float32)\n', (1227, 1303), True, 'import tensorflow as tf\n'), ((1332, 1455), 'tensorflow.contrib.learn.datasets.base.load_csv_with_header', 'tf.contrib.learn.datasets.base.load_csv_with_header', ([], {'filename': 'IRIS_TEST', 'target_dtype': 'np.int', 'features_dtype': 'np.float32'}), '(filename=IRIS_TEST,\n target_dtype=np.int, features_dtype=np.float32)\n', (1383, 1455), True, 'import tensorflow as tf\n'), ((1674, 1812), 'tensorflow.contrib.learn.DNNClassifier', 'tf.contrib.learn.DNNClassifier', ([], {'feature_columns': 'feature_columns', 'hidden_units': '[10, 20, 10]', 'n_classes': '(3)', 'model_dir': '"""./tmp/iris_models"""'}), "(feature_columns=feature_columns,\n hidden_units=[10, 20, 10], n_classes=3, model_dir='./tmp/iris_models')\n", (1704, 1812), True, 'import tensorflow as tf\n'), ((841, 870), 'os.path.exists', 'os.path.exists', (['IRIS_TRAINING'], {}), '(IRIS_TRAINING)\n', (855, 870), False, 'import os\n'), ((1001, 1026), 'os.path.exists', 'os.path.exists', (['IRIS_TEST'], {}), '(IRIS_TEST)\n', (1015, 1026), False, 'import os\n'), ((1544, 1597), 'tensorflow.contrib.layers.real_valued_column', 'tf.contrib.layers.real_valued_column', (['""""""'], {'dimension': '(4)'}), "('', dimension=4)\n", (1580, 1597), True, 'import tensorflow as tf\n'), ((1988, 2018), 'tensorflow.constant', 'tf.constant', (['training_set.data'], {}), '(training_set.data)\n', (1999, 2018), True, 'import tensorflow as tf\n'), ((2027, 2059), 'tensorflow.constant', 'tf.constant', (['training_set.target'], {}), '(training_set.target)\n', (2038, 2059), True, 'import tensorflow as tf\n'), ((2378, 2404), 'tensorflow.constant', 'tf.constant', (['test_set.data'], {}), '(test_set.data)\n', (2389, 2404), True, 'import tensorflow as tf\n'), ((2413, 2441), 'tensorflow.constant', 'tf.constant', (['test_set.target'], {}), '(test_set.target)\n', (2424, 2441), True, 'import tensorflow as tf\n'), ((2692, 2764), 'numpy.array', 'np.array', (['[[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]]'], {'dtype': 'np.float32'}), '([[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)\n', (2700, 2764), True, 'import numpy as np\n')]
# import scipy.signal from gym.spaces import Box, Discrete import numpy as np import torch from torch import nn import IPython # from torch.nn import Parameter import torch.nn.functional as F from torch.distributions import Independent, OneHotCategorical, Categorical from torch.distributions.normal import Normal # # from torch.distributions.categorical import Categorical def mlp(sizes, activation, output_activation=nn.Identity): layers = [] for j in range(len(sizes) - 1): act = activation if j < len(sizes) - 2 else output_activation layers += [nn.Linear(sizes[j], sizes[j + 1]), act()] return nn.Sequential(*layers) class Actor(nn.Module): def _distribution(self, obs): raise NotImplementedError def _log_prob_from_distribution(self, pi, act): raise NotImplementedError def forward(self, obs, act=None): # Produce action distributions for given observations, and optionally # compute the log likelihood of given actions under those distributions. pi = self._distribution(obs) logp_a = None if act is not None: logp_a = self._log_prob_from_distribution(pi, act) return pi, logp_a class MLPCategoricalActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation): super().__init__() self.logits_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): logits = self.logits_net(obs) return Categorical(logits=logits) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act) class MLPGaussianActor(Actor): def __init__(self, obs_dim, act_dim, hidden_sizes, activation): super().__init__() log_std = -0.5 * np.ones(act_dim, dtype=np.float32) self.log_std = nn.Parameter(torch.as_tensor(log_std)) self.mu_net = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation) def _distribution(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) def _log_prob_from_distribution(self, pi, act): return pi.log_prob(act).sum(axis=-1) # Last axis sum needed for Torch Normal distribution class MLPCritic(nn.Module): def __init__(self, obs_dim, hidden_sizes, activation): super().__init__() self.v_net = mlp([obs_dim] + list(hidden_sizes) + [1], activation) def forward(self, obs): return torch.squeeze(self.v_net(obs), -1) # Critical to ensure v has right shape. class MLPActorCritic(nn.Module): def __init__(self, observation_space, action_space, hidden_sizes=(64, 64), activation=nn.Tanh): super().__init__() obs_dim = observation_space.shape[0] # policy builder depends on action space if isinstance(action_space, Box): self.pi = MLPGaussianActor(obs_dim, action_space.shape[0], hidden_sizes, activation) elif isinstance(action_space, Discrete): self.pi = MLPCategoricalActor(obs_dim, action_space.n, hidden_sizes, activation) # build value function critics self.v = MLPCritic(obs_dim, hidden_sizes, activation) self.vc = MLPCritic(obs_dim, hidden_sizes, activation) def step(self, obs): with torch.no_grad(): pi = self.pi._distribution(obs) # print("pi dist! ", pi) a = pi.sample() logp_a = self.pi._log_prob_from_distribution(pi, a) v = self.v(obs) vc = self.vc(obs) return a.numpy(), v.numpy(), vc.numpy(), logp_a.numpy() def act(self, obs): return self.step(obs)[0] class MEMOActor(nn.Module): def __init__(self, state_dim, hidden_size, action_dim, activation=nn.Tanh): super(MEMOActor, self).__init__() log_std = -0.5 * np.ones(action_dim, dtype=np.float32) self.log_std = nn.Parameter(torch.as_tensor(log_std)) self.mu_net = mlp([state_dim] + hidden_size + [action_dim], activation) def _distribution(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) def forward(self, obs): mu = self.mu_net(obs) std = torch.exp(self.log_std) return Normal(mu, std) # the critic is error here would be: reward + gamma*V(s_t+1)-V(s_t) # http://incompleteideas.net/book/first/ebook/node66.html class MEMO(nn.Module): """Multiple Experts, Multiple Objectives; """ def __init__(self, obs_dim, out_dim, encoder_hidden, decoder_hidden, actor_hidden, latent_modes): ''' :param obs_dim: :param latent_dim: :param out_dim: :param encoder_hidden: :param decoder_hidden: ''' super(MEMO, self).__init__() self.found_contexts = [] self.latent_modes = latent_modes self.num_embeddings = self.latent_modes self.embedding_dim = obs_dim self.vq_encoder = VQEncoder(obs_dim, self.embedding_dim) # original self.prenet = nn.Linear(self.embedding_dim, self.embedding_dim) self.vector_quantizer = VectorQuantizer(self.num_embeddings, self.embedding_dim) self.postnet = nn.Linear(self.embedding_dim, encoder_hidden[-1]) self.vq_decoder = VQDecoder(encoder_hidden[-1], decoder_hidden, obs_dim) self.action_decoder = MEMOActor(state_dim=obs_dim + self.latent_modes, hidden_size=actor_hidden, action_dim=out_dim) # self.action_gaussian = GaussianActor(obs_dim=obs_dim + self.latent_modes, act_dim=out_dim, # hidden_sizes=[128]*4, activation=nn.LeakyReLU) self.action_vq_dist = None def compute_quantized_loss(self, state, delta_state, actions): ''' :param state: :param delta_state: :param actions: :return: ''' delta_state_enc = self.vq_encoder(delta_state) # In: [B, OBS_DIM]; Out: # [B, OBS_DIM] encoder_output = self.prenet(delta_state_enc) # In: [B, OBS_DIM]; Out: # [B, OBS_DIM] quantized, categorical_proposal, categorical_proposal_prob = self.vector_quantizer(encoder_output) # update the set of known contexts self.found_contexts = set([t.data.item() for t in categorical_proposal]) # Straight Through Estimator (Some Magic) st_quantized = encoder_output + (quantized - encoder_output).detach() post_quantized = self.postnet(st_quantized) # print("Post Quantized: ", post_quantized) reconstruction = self.vq_decoder(post_quantized) # print("Reconstruction: ", reconstruction) categorical_proposal_reshape = torch.reshape(categorical_proposal, (-1, 1)) categorical_proposal_onehot = F.one_hot(categorical_proposal_reshape, self.latent_modes).squeeze().float() # total_max = torch.tensor(0.) # print("distances max: ", max(total_max, torch.max(categorical_proposal_prob))) # concat_state_vq = torch.cat([state, categorical_proposal_onehot], dim=-1) concat_state_vq = torch.cat([state, categorical_proposal_prob], dim=-1) action_vq_dist = self.action_decoder(concat_state_vq) return encoder_output, quantized, reconstruction, categorical_proposal, action_vq_dist # return encoder_output, quantized, reconstruction, categorical_proposal, action_mse def act(self, state, context_label): concat_state_vq = torch.cat([state, torch.reshape(torch.as_tensor(context_label), (-1,))], dim=-1) action_vq_dist = self.action_decoder(concat_state_vq) action = action_vq_dist.sample() return action def forward(self, X, Delta_X, A, kl_beta=1., recon_gamma=1.): """ Given input tensor, forward propagate, compute the loss, and backward propagate. Represents the lifecycle of a single iteration :param x: Raw state tensor :param Delta_x: State difference tensor :param a: Action tensor :param kl_beta: KL divergence temperance factor :param recon_gamma: State weights : Important to note that both recon and context loss cannot be negative. """ encoder_output, quantized, reconstruction, vq_latent_labels, action_vq_dist =\ self.compute_quantized_loss(X, Delta_X, A) vq_criterion = VQCriterion(beta=kl_beta) vq_total_loss, recons_loss, vq_loss, commitment_loss = vq_criterion(Delta_X, encoder_output, quantized, reconstruction) # original formula loss_pi = (torch.tensor(1.)/(torch.exp(action_vq_dist.log_prob(A)) + torch.tensor(0.1))).sum(axis=-1) loss = loss_pi * vq_total_loss return loss, loss_pi, X, vq_latent_labels, vq_total_loss class VQEncoder(nn.Module): def __init__(self, in_dim, out_dim): super(VQEncoder, self).__init__() self.net = nn.Sequential( nn.Linear(in_dim, out_dim // 2), nn.Tanh(), nn.Linear(out_dim // 2, out_dim), nn.Tanh() ) # self.net = nn.Sequential( # nn.Linear(in_dim, out_dim), # nn.Tanh(), # nn.Linear(out_dim, out_dim), # nn.Tanh(), # nn.Linear(out_dim, out_dim), # nn.Tanh() # ) def forward(self, input): return self.net(input) class Clamper(nn.Module): def __init__(self, min=None, max=None): super().__init__() self.min = min self.max = max def forward(self, input): return torch.clamp(input, self.min, self.max) class VQDecoder(nn.Module): def __init__(self, obs_dim, hidden_dim, out_dim, activation=nn.Tanh): super().__init__() self.initial_act = nn.Tanh() self.net = mlp([obs_dim] + hidden_dim + [out_dim], activation) def forward(self, input): return self.net(self.initial_act(input)) class VectorQuantizer(nn.Module): def __init__(self, num_embeddings, embedding_dim): super().__init__() self.num_embeddings = num_embeddings # E_N self.embedding_dim = embedding_dim # E_D self.embeddings = nn.Embedding(num_embeddings, embedding_dim) self.scale = 1. / self.num_embeddings # decimal print("Quantizer Scale: ", self.scale) nn.init.uniform_(self.embeddings.weight, -self.scale, self.scale) def proposal_distribution(self, input): input_shape = input.shape # [B, OBS_DIM] flatten_input = input.flatten(end_dim=-2).contiguous() # [B, OBS_DIM] distances = (flatten_input ** 2).sum(dim=1, keepdim=True) # [B, 1] distances = distances + (self.embeddings.weight ** 2).sum(dim=1) # [B, E_N] distances -= 2 * flatten_input @ self.embeddings.weight.t() # [B, E_N] categorical_posterior = torch.argmin(distances, dim=-1) # [B] # original categorical_posterior_prob = distances # categorical_posterior_prob = torch.clamp(distances, 0, 10) # 10 is a hyperparameter # categorical_posterior_prob = torch.clamp(distances, 0, 5) # 5 is a hyperparameter return categorical_posterior, categorical_posterior_prob def forward(self, input): proposal, proposal_prob = self.proposal_distribution(input) # [B] quantized = self.embeddings(proposal).contiguous() # [B, OBS_DIM] return quantized, proposal, proposal_prob class VQCriterion(nn.Module): """ vq_loss: \| \text{sg}[I(x, e)] * e - \text{sg}[z_e(x)] \|_2^2 """ def __init__(self, beta): super().__init__() self.beta = beta def forward(self, input, encoder_output, quantized, reconstruction): flatten_quantized = quantized.flatten(end_dim=-2) flatten_encoder_output = encoder_output.flatten(end_dim=-2) reconstruction_loss = F.mse_loss(input, reconstruction) vq_loss = F.mse_loss(flatten_encoder_output.detach(), flatten_quantized) commitment_loss = F.mse_loss(flatten_encoder_output, flatten_quantized.detach()) total_loss = reconstruction_loss + vq_loss + self.beta * commitment_loss # Original. TODO: review this loss. return total_loss, reconstruction_loss, vq_loss, commitment_loss class VDB(nn.Module): def __init__(self, num_inputs, args): super(VDB, self).__init__() self.fc1 = nn.Linear(num_inputs, args.hidden_size) self.fc2 = nn.Linear(args.hidden_size, args.z_size) self.fc3 = nn.Linear(args.hidden_size, args.z_size) self.fc4 = nn.Linear(args.z_size, args.hidden_size) self.fc5 = nn.Linear(args.hidden_size, 1) self.fc5.weight.data.mul_(0.1) self.fc5.bias.data.mul_(0.0) def encoder(self, x): h = torch.tanh(self.fc1(x)) return self.fc2(h), self.fc3(h) def reparameterize(self, mu, logvar): std = torch.exp(logvar / 2) eps = torch.randn_like(std) return mu + std * eps def discriminator(self, z): h = torch.tanh(self.fc4(z)) return torch.sigmoid(self.fc5(h)) def forward(self, x): mu, logvar = self.encoder(x) z = self.reparameterize(mu, logvar) prob = self.discriminator(z) return prob, mu, logvar ###########################################################################3 from torch.autograd import Variable from torch.distributions import Distribution, Normal class TanhNormal(torch.distributions.Distribution): """ Represent distribution of X where X ~ tanh(Z) Z ~ N(mean, std) Note: this is not very numerically stable. """ def __init__(self, normal_mean, normal_std, epsilon=1e-6): """ :param normal_mean: Mean of the normal distribution :param normal_std: Std of the normal distribution :param epsilon: Numerical stability epsilon when computing log-prob. """ self.normal_mean = normal_mean self.normal_std = normal_std self.normal = Normal(normal_mean, normal_std) self.epsilon = epsilon def sample_n(self, n, return_pre_tanh_value=False): z = self.normal.sample_n(n) if return_pre_tanh_value: return torch.tanh(z), z else: return torch.tanh(z) def log_prob(self, value, pre_tanh_value=None): """ :param value: some value, x :param pre_tanh_value: arctanh(x) :return: """ if pre_tanh_value is None: pre_tanh_value = torch.log( (1+value) / (1-value) ) / 2 return self.normal.log_prob(pre_tanh_value) - torch.log( 1 - value * value + self.epsilon ) def sample(self, return_pretanh_value=False): z = self.normal.sample() if return_pretanh_value: return torch.tanh(z), z else: return torch.tanh(z) def rsample(self, return_pretanh_value=False): z = ( self.normal_mean + self.normal_std * Variable(Normal( np.zeros(self.normal_mean.size()), np.ones(self.normal_std.size()) ).sample()) ) # z.requires_grad_() if return_pretanh_value: return torch.tanh(z), z else: return torch.tanh(z)
[ "torch.as_tensor", "torch.distributions.Categorical", "torch.nn.Tanh", "torch.nn.Sequential", "torch.exp", "torch.tanh", "torch.nn.init.uniform_", "torch.nn.Embedding", "torch.nn.functional.mse_loss", "torch.distributions.Normal", "numpy.ones", "torch.randn_like", "torch.nn.functional.one_hot", "torch.argmin", "torch.reshape", "torch.clamp", "torch.cat", "torch.log", "torch.tensor", "torch.nn.Linear", "torch.no_grad" ]
[((628, 650), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (641, 650), False, 'from torch import nn\n'), ((1513, 1539), 'torch.distributions.Categorical', 'Categorical', ([], {'logits': 'logits'}), '(logits=logits)\n', (1524, 1539), False, 'from torch.distributions import Independent, OneHotCategorical, Categorical\n'), ((2037, 2060), 'torch.exp', 'torch.exp', (['self.log_std'], {}), '(self.log_std)\n', (2046, 2060), False, 'import torch\n'), ((2076, 2091), 'torch.distributions.Normal', 'Normal', (['mu', 'std'], {}), '(mu, std)\n', (2082, 2091), False, 'from torch.distributions import Distribution, Normal\n'), ((4125, 4148), 'torch.exp', 'torch.exp', (['self.log_std'], {}), '(self.log_std)\n', (4134, 4148), False, 'import torch\n'), ((4164, 4179), 'torch.distributions.Normal', 'Normal', (['mu', 'std'], {}), '(mu, std)\n', (4170, 4179), False, 'from torch.distributions import Distribution, Normal\n'), ((4253, 4276), 'torch.exp', 'torch.exp', (['self.log_std'], {}), '(self.log_std)\n', (4262, 4276), False, 'import torch\n'), ((4292, 4307), 'torch.distributions.Normal', 'Normal', (['mu', 'std'], {}), '(mu, std)\n', (4298, 4307), False, 'from torch.distributions import Distribution, Normal\n'), ((5074, 5123), 'torch.nn.Linear', 'nn.Linear', (['self.embedding_dim', 'self.embedding_dim'], {}), '(self.embedding_dim, self.embedding_dim)\n', (5083, 5123), False, 'from torch import nn\n'), ((5236, 5285), 'torch.nn.Linear', 'nn.Linear', (['self.embedding_dim', 'encoder_hidden[-1]'], {}), '(self.embedding_dim, encoder_hidden[-1])\n', (5245, 5285), False, 'from torch import nn\n'), ((6716, 6760), 'torch.reshape', 'torch.reshape', (['categorical_proposal', '(-1, 1)'], {}), '(categorical_proposal, (-1, 1))\n', (6729, 6760), False, 'import torch\n'), ((7115, 7168), 'torch.cat', 'torch.cat', (['[state, categorical_proposal_prob]'], {'dim': '(-1)'}), '([state, categorical_proposal_prob], dim=-1)\n', (7124, 7168), False, 'import torch\n'), ((9586, 9624), 'torch.clamp', 'torch.clamp', (['input', 'self.min', 'self.max'], {}), '(input, self.min, self.max)\n', (9597, 9624), False, 'import torch\n'), ((9782, 9791), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (9789, 9791), False, 'from torch import nn\n'), ((10190, 10233), 'torch.nn.Embedding', 'nn.Embedding', (['num_embeddings', 'embedding_dim'], {}), '(num_embeddings, embedding_dim)\n', (10202, 10233), False, 'from torch import nn\n'), ((10347, 10412), 'torch.nn.init.uniform_', 'nn.init.uniform_', (['self.embeddings.weight', '(-self.scale)', 'self.scale'], {}), '(self.embeddings.weight, -self.scale, self.scale)\n', (10363, 10412), False, 'from torch import nn\n'), ((10859, 10890), 'torch.argmin', 'torch.argmin', (['distances'], {'dim': '(-1)'}), '(distances, dim=-1)\n', (10871, 10890), False, 'import torch\n'), ((11868, 11901), 'torch.nn.functional.mse_loss', 'F.mse_loss', (['input', 'reconstruction'], {}), '(input, reconstruction)\n', (11878, 11901), True, 'import torch.nn.functional as F\n'), ((12387, 12426), 'torch.nn.Linear', 'nn.Linear', (['num_inputs', 'args.hidden_size'], {}), '(num_inputs, args.hidden_size)\n', (12396, 12426), False, 'from torch import nn\n'), ((12446, 12486), 'torch.nn.Linear', 'nn.Linear', (['args.hidden_size', 'args.z_size'], {}), '(args.hidden_size, args.z_size)\n', (12455, 12486), False, 'from torch import nn\n'), ((12506, 12546), 'torch.nn.Linear', 'nn.Linear', (['args.hidden_size', 'args.z_size'], {}), '(args.hidden_size, args.z_size)\n', (12515, 12546), False, 'from torch import nn\n'), ((12566, 12606), 'torch.nn.Linear', 'nn.Linear', (['args.z_size', 'args.hidden_size'], {}), '(args.z_size, args.hidden_size)\n', (12575, 12606), False, 'from torch import nn\n'), ((12626, 12656), 'torch.nn.Linear', 'nn.Linear', (['args.hidden_size', '(1)'], {}), '(args.hidden_size, 1)\n', (12635, 12656), False, 'from torch import nn\n'), ((12894, 12915), 'torch.exp', 'torch.exp', (['(logvar / 2)'], {}), '(logvar / 2)\n', (12903, 12915), False, 'import torch\n'), ((12930, 12951), 'torch.randn_like', 'torch.randn_like', (['std'], {}), '(std)\n', (12946, 12951), False, 'import torch\n'), ((14018, 14049), 'torch.distributions.Normal', 'Normal', (['normal_mean', 'normal_std'], {}), '(normal_mean, normal_std)\n', (14024, 14049), False, 'from torch.distributions import Distribution, Normal\n'), ((575, 608), 'torch.nn.Linear', 'nn.Linear', (['sizes[j]', 'sizes[j + 1]'], {}), '(sizes[j], sizes[j + 1])\n', (584, 608), False, 'from torch import nn\n'), ((1779, 1813), 'numpy.ones', 'np.ones', (['act_dim'], {'dtype': 'np.float32'}), '(act_dim, dtype=np.float32)\n', (1786, 1813), True, 'import numpy as np\n'), ((1850, 1874), 'torch.as_tensor', 'torch.as_tensor', (['log_std'], {}), '(log_std)\n', (1865, 1874), False, 'import torch\n'), ((3316, 3331), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3329, 3331), False, 'import torch\n'), ((3866, 3903), 'numpy.ones', 'np.ones', (['action_dim'], {'dtype': 'np.float32'}), '(action_dim, dtype=np.float32)\n', (3873, 3903), True, 'import numpy as np\n'), ((3940, 3964), 'torch.as_tensor', 'torch.as_tensor', (['log_std'], {}), '(log_std)\n', (3955, 3964), False, 'import torch\n'), ((8948, 8979), 'torch.nn.Linear', 'nn.Linear', (['in_dim', '(out_dim // 2)'], {}), '(in_dim, out_dim // 2)\n', (8957, 8979), False, 'from torch import nn\n'), ((8993, 9002), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (9000, 9002), False, 'from torch import nn\n'), ((9016, 9048), 'torch.nn.Linear', 'nn.Linear', (['(out_dim // 2)', 'out_dim'], {}), '(out_dim // 2, out_dim)\n', (9025, 9048), False, 'from torch import nn\n'), ((9062, 9071), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (9069, 9071), False, 'from torch import nn\n'), ((14277, 14290), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (14287, 14290), False, 'import torch\n'), ((14648, 14691), 'torch.log', 'torch.log', (['(1 - value * value + self.epsilon)'], {}), '(1 - value * value + self.epsilon)\n', (14657, 14691), False, 'import torch\n'), ((14900, 14913), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (14910, 14913), False, 'import torch\n'), ((15334, 15347), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (15344, 15347), False, 'import torch\n'), ((14227, 14240), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (14237, 14240), False, 'import torch\n'), ((14527, 14563), 'torch.log', 'torch.log', (['((1 + value) / (1 - value))'], {}), '((1 + value) / (1 - value))\n', (14536, 14563), False, 'import torch\n'), ((14850, 14863), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (14860, 14863), False, 'import torch\n'), ((15284, 15297), 'torch.tanh', 'torch.tanh', (['z'], {}), '(z)\n', (15294, 15297), False, 'import torch\n'), ((7521, 7551), 'torch.as_tensor', 'torch.as_tensor', (['context_label'], {}), '(context_label)\n', (7536, 7551), False, 'import torch\n'), ((8591, 8608), 'torch.tensor', 'torch.tensor', (['(1.0)'], {}), '(1.0)\n', (8603, 8608), False, 'import torch\n'), ((6799, 6857), 'torch.nn.functional.one_hot', 'F.one_hot', (['categorical_proposal_reshape', 'self.latent_modes'], {}), '(categorical_proposal_reshape, self.latent_modes)\n', (6808, 6857), True, 'import torch.nn.functional as F\n'), ((8649, 8666), 'torch.tensor', 'torch.tensor', (['(0.1)'], {}), '(0.1)\n', (8661, 8666), False, 'import torch\n')]
"""This module contains the code related to the DAG and the scheduler.""" from pathlib import Path import matplotlib.pyplot as plt import networkx as nx import numpy as np from matplotlib.colors import LinearSegmentedColormap from mpl_toolkits.axes_grid1 import make_axes_locatable from networkx.drawing import nx_pydot from pipeline.shared import ensure_list BLUE = "#547482" YELLOW_TO_RED = ["#C8B05C", "#C89D64", "#F1B05D", "#EE8445", "#C87259", "#6C4A4D"] class Scheduler: """This class allows to schedule tasks. The functionality is inspired by func:`networkx.topological_sort` which allows to loop over a directed acyclic graph such that all preceding nodes are executed before a dependent node. The scheduler keeps track of all unfinished tasks and their dependencies in the `task_dict`. If a task has no dependencies, it is eligible to be executed. All submitted tasks are remove from `task_dict`. If a task finishes, it is removed as a dependency from all tasks in `task_dict`. The scheduler can take task priorities into account and proposes only tasks with the highest priorities. """ def __init__(self, dag, unfinished_tasks, priority): self.dag = dag self.task_dict = self._create_task_dependency_dict(unfinished_tasks) self.submitted_tasks = set() self.priority = priority def _create_task_dependency_dict(self, unfinished_tasks): """Create a task-dependency dictionary. For each unfinished task, this function collects the tasks which have to be executed in advance. """ task_dict = {} for id_ in unfinished_tasks: task_dict[id_] = { preceding_task for dependency in ensure_list(self.dag.nodes[id_].get("depends_on", [])) for preceding_task in self.dag.predecessors(dependency) if preceding_task in unfinished_tasks } return task_dict def propose(self, n_proposals=1): """Propose a number of tasks. This function proposes tasks which can be executed. If a task is proposed, remove it from the `task_dict`. Parameters ---------- n_proposals : int Number of tasks which should be proposed. For any nonnegative number, return a set of task ids. For `-1` return all possible tasks. Returns ------- proposals : set A set of task ids which should be executed. """ # Get task candidates. candidates = [id_ for id_ in self.task_dict if len(self.task_dict[id_]) == 0] if self.priority: candidates = sorted( candidates, key=lambda id_: self.dag.nodes[id_]["priority"], reverse=True, ) if 0 <= n_proposals: proposals = set(candidates[:n_proposals]) elif n_proposals == -1: proposals = set(candidates) else: raise NotImplementedError self.submitted_tasks = self.submitted_tasks.union(proposals) for id_ in proposals: del self.task_dict[id_] return proposals def process_finished(self, finished_tasks): """Process finished tasks. The executor passes an id or a list of ids of finished tasks back to the scheduler. The scheduler removes the ids from the set of submitted tasks and removes the finished tasks from the dependency sets of all unfinished tasks in `task_dict`. Parameters ---------- finished_tasks : str or list An id or a list of ids of finished tasks. """ finished_tasks = ensure_list(finished_tasks) for id_ in finished_tasks: self.submitted_tasks.remove(id_) for id__ in self.task_dict: self.task_dict[id__].discard(id_) @property def are_tasks_left(self): return len(self.task_dict) != 0 or len(self.submitted_tasks) != 0 def create_dag(tasks, config): """Create a directed acyclic graph (DAG) capturing dependencies between functions. Parameters ---------- tasks : dict Dictionary containing tasks. Returns ------- dag : nx.DiGraph The directed acyclic graph. """ dag_dict = _create_dag_dict(tasks) dag = nx.DiGraph(dag_dict).reverse() dag = _insert_tasks_in_dag(dag, tasks) dag = _assign_priority_to_nodes(dag, config) _draw_dag(dag, config) return dag def _create_dag_dict(tasks): dag_dict = {} for id_, task_info in tasks.items(): # Add the task to the graph as a node. depends_on = ensure_list(task_info.get("depends_on", [])).copy() depends_on.extend(ensure_list(task_info.get("template", []))) depends_on.append(task_info["config"]) dag_dict[id_] = depends_on # If the task produces anything, register the output as a node. for target in ensure_list(task_info.get("produces", [])): dag_dict[target] = [id_] return dag_dict def _insert_tasks_in_dag(dag, tasks): for id_ in dag.nodes: if id_ in tasks: dag.nodes[id_].update(**tasks[id_], _is_task=True) else: dag.nodes[id_].update(_is_task=False) return dag def _assign_priority_to_nodes(dag, config): """Assign a priority to a node. Task priorities trickle down from the last nodes in the DAG to the first nodes. The total priority of a task is its own priority plus the discounted sum of priorities of its targets. """ discount_factor = config["priority_discount_factor"] reversed_dag = dag.reverse() for id_ in nx.topological_sort(reversed_dag): if reversed_dag.nodes[id_]["_is_task"] and config["priority_scheduling"]: sum_priorities = 0 for pre in reversed_dag.predecessors(id_): for pre_task in reversed_dag.predecessors(pre): sum_priorities += dag.nodes[pre_task].get("priority", 0) dag.nodes[id_]["priority"] = ( dag.nodes[id_].get("priority", 0) + discount_factor * sum_priorities ) else: pass return dag def _draw_dag(dag, config): fig, ax = plt.subplots(figsize=(16, 12)) fig.suptitle("Task Graph", fontsize=24) # Relabel absolute paths to path names. project_directory = Path(config["project_directory"]) mapping = { node: Path(node).relative_to(project_directory) for node in dag.nodes if Path(node).is_absolute() } dag = nx.relabel_nodes(dag, mapping) layout = nx_pydot.pydot_layout(dag, prog="dot") nx.draw_networkx_edges(dag, pos=layout, ax=ax) nx.draw_networkx_labels(dag, pos=layout, ax=ax) # Draw non-task nodes. non_task_nodes = [node for node in dag.nodes if not dag.nodes[node]["_is_task"]] nx.draw_networkx_nodes( dag, pos=layout, nodelist=non_task_nodes, node_color=BLUE, ax=ax ) task_nodes = [node for node in dag.nodes if dag.nodes[node]["_is_task"]] if config["priority_scheduling"]: node_size = np.array([dag.nodes[node]["priority"] for node in task_nodes]) node_size_demeaned = node_size - node_size.min() node_size_relative = node_size_demeaned / node_size_demeaned.max() node_size = node_size_relative * 1_000 + 300 cmap = LinearSegmentedColormap.from_list("cmap", YELLOW_TO_RED) priority_kwargs = { "node_size": node_size, "node_color": node_size_relative, "cmap": cmap, } else: priority_kwargs = {"node_color": BLUE} im = nx.draw_networkx_nodes( dag, pos=layout, nodelist=task_nodes, **priority_kwargs, ax=ax ) if config["priority_scheduling"]: divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="3%", pad=0.1) fig.colorbar(im, cax=cax, orientation="vertical") cax.set_title("Priority") path = Path(config["hidden_build_directory"], ".dag.png") path.parent.mkdir(parents=True, exist_ok=True) plt.savefig(path) plt.close()
[ "networkx.relabel_nodes", "matplotlib.pyplot.savefig", "networkx.topological_sort", "pathlib.Path", "networkx.drawing.nx_pydot.pydot_layout", "networkx.DiGraph", "matplotlib.colors.LinearSegmentedColormap.from_list", "networkx.draw_networkx_nodes", "matplotlib.pyplot.close", "numpy.array", "networkx.draw_networkx_labels", "mpl_toolkits.axes_grid1.make_axes_locatable", "pipeline.shared.ensure_list", "networkx.draw_networkx_edges", "matplotlib.pyplot.subplots" ]
[((5769, 5802), 'networkx.topological_sort', 'nx.topological_sort', (['reversed_dag'], {}), '(reversed_dag)\n', (5788, 5802), True, 'import networkx as nx\n'), ((6347, 6377), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(16, 12)'}), '(figsize=(16, 12))\n', (6359, 6377), True, 'import matplotlib.pyplot as plt\n'), ((6492, 6525), 'pathlib.Path', 'Path', (["config['project_directory']"], {}), "(config['project_directory'])\n", (6496, 6525), False, 'from pathlib import Path\n'), ((6680, 6710), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['dag', 'mapping'], {}), '(dag, mapping)\n', (6696, 6710), True, 'import networkx as nx\n'), ((6725, 6763), 'networkx.drawing.nx_pydot.pydot_layout', 'nx_pydot.pydot_layout', (['dag'], {'prog': '"""dot"""'}), "(dag, prog='dot')\n", (6746, 6763), False, 'from networkx.drawing import nx_pydot\n'), ((6769, 6815), 'networkx.draw_networkx_edges', 'nx.draw_networkx_edges', (['dag'], {'pos': 'layout', 'ax': 'ax'}), '(dag, pos=layout, ax=ax)\n', (6791, 6815), True, 'import networkx as nx\n'), ((6820, 6867), 'networkx.draw_networkx_labels', 'nx.draw_networkx_labels', (['dag'], {'pos': 'layout', 'ax': 'ax'}), '(dag, pos=layout, ax=ax)\n', (6843, 6867), True, 'import networkx as nx\n'), ((6985, 7078), 'networkx.draw_networkx_nodes', 'nx.draw_networkx_nodes', (['dag'], {'pos': 'layout', 'nodelist': 'non_task_nodes', 'node_color': 'BLUE', 'ax': 'ax'}), '(dag, pos=layout, nodelist=non_task_nodes, node_color\n =BLUE, ax=ax)\n', (7007, 7078), True, 'import networkx as nx\n'), ((7757, 7848), 'networkx.draw_networkx_nodes', 'nx.draw_networkx_nodes', (['dag'], {'pos': 'layout', 'nodelist': 'task_nodes', 'ax': 'ax'}), '(dag, pos=layout, nodelist=task_nodes, **\n priority_kwargs, ax=ax)\n', (7779, 7848), True, 'import networkx as nx\n'), ((8106, 8156), 'pathlib.Path', 'Path', (["config['hidden_build_directory']", '""".dag.png"""'], {}), "(config['hidden_build_directory'], '.dag.png')\n", (8110, 8156), False, 'from pathlib import Path\n'), ((8212, 8229), 'matplotlib.pyplot.savefig', 'plt.savefig', (['path'], {}), '(path)\n', (8223, 8229), True, 'import matplotlib.pyplot as plt\n'), ((8234, 8245), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8243, 8245), True, 'import matplotlib.pyplot as plt\n'), ((3754, 3781), 'pipeline.shared.ensure_list', 'ensure_list', (['finished_tasks'], {}), '(finished_tasks)\n', (3765, 3781), False, 'from pipeline.shared import ensure_list\n'), ((7224, 7286), 'numpy.array', 'np.array', (["[dag.nodes[node]['priority'] for node in task_nodes]"], {}), "([dag.nodes[node]['priority'] for node in task_nodes])\n", (7232, 7286), True, 'import numpy as np\n'), ((7488, 7544), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'LinearSegmentedColormap.from_list', (['"""cmap"""', 'YELLOW_TO_RED'], {}), "('cmap', YELLOW_TO_RED)\n", (7521, 7544), False, 'from matplotlib.colors import LinearSegmentedColormap\n'), ((7915, 7938), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', (['ax'], {}), '(ax)\n', (7934, 7938), False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((4416, 4436), 'networkx.DiGraph', 'nx.DiGraph', (['dag_dict'], {}), '(dag_dict)\n', (4426, 4436), True, 'import networkx as nx\n'), ((6556, 6566), 'pathlib.Path', 'Path', (['node'], {}), '(node)\n', (6560, 6566), False, 'from pathlib import Path\n'), ((6639, 6649), 'pathlib.Path', 'Path', (['node'], {}), '(node)\n', (6643, 6649), False, 'from pathlib import Path\n')]
#!/usr/bin/env python # coding: utf-8 # ## E2E Xgboost MLFLOW # In[45]: from pyspark.sql import SparkSession from pyspark.sql.functions import col, pandas_udf,udf,lit import azure.synapse.ml.predict as pcontext import azure.synapse.ml.predict.utils._logger as synapse_predict_logger import numpy as np import pandas as pd import xgboost as xgb import mlflow # In[46]: spark.conf.set("spark.synapse.ml.predict.enabled","true") # ## Train and Save Model # ### Training # In[47]: data = np.random.rand(5, 10) # 5 entities, each contains 10 features label = np.random.randint(1, size=5) # binary target dtrain = xgb.DMatrix(data, label=label) xgr = xgb.XGBRFRegressor(objective='reg:linear', n_estimators=10, seed=123) xgr.fit(data, label) # In[48]: xgr.save_model('./model.json') # In[49]: mlflow.pyfunc.save_model( data_path='./model.json', path='./xgboost_pyfunc_model_path', loader_module='mlflow.xgboost') # In[50]: MODEL_URI = './xgboost_pyfunc_model_path' RETURN_TYPES = 'float' # In[51]: model = pcontext.bind_model( return_types = RETURN_TYPES, runtime = 'mlflow', model_alias = 'xgb_model', model_uri = MODEL_URI,).register() # In[52]: type(model) # In[53]: data = np.random.rand(5, 10) df = spark.createDataFrame(pd.DataFrame(data)) df.createOrReplaceTempView("data") df.show() # In[54]: predictions = spark.sql( """ SELECT PREDICT('xgb_model', *) AS predict FROM data """ ).show()
[ "mlflow.pyfunc.save_model", "numpy.random.rand", "azure.synapse.ml.predict.bind_model", "numpy.random.randint", "pandas.DataFrame", "xgboost.DMatrix", "xgboost.XGBRFRegressor" ]
[((500, 521), 'numpy.random.rand', 'np.random.rand', (['(5)', '(10)'], {}), '(5, 10)\n', (514, 521), True, 'import numpy as np\n'), ((571, 599), 'numpy.random.randint', 'np.random.randint', (['(1)'], {'size': '(5)'}), '(1, size=5)\n', (588, 599), True, 'import numpy as np\n'), ((626, 656), 'xgboost.DMatrix', 'xgb.DMatrix', (['data'], {'label': 'label'}), '(data, label=label)\n', (637, 656), True, 'import xgboost as xgb\n'), ((664, 733), 'xgboost.XGBRFRegressor', 'xgb.XGBRFRegressor', ([], {'objective': '"""reg:linear"""', 'n_estimators': '(10)', 'seed': '(123)'}), "(objective='reg:linear', n_estimators=10, seed=123)\n", (682, 733), True, 'import xgboost as xgb\n'), ((814, 937), 'mlflow.pyfunc.save_model', 'mlflow.pyfunc.save_model', ([], {'data_path': '"""./model.json"""', 'path': '"""./xgboost_pyfunc_model_path"""', 'loader_module': '"""mlflow.xgboost"""'}), "(data_path='./model.json', path=\n './xgboost_pyfunc_model_path', loader_module='mlflow.xgboost')\n", (838, 937), False, 'import mlflow\n'), ((1234, 1255), 'numpy.random.rand', 'np.random.rand', (['(5)', '(10)'], {}), '(5, 10)\n', (1248, 1255), True, 'import numpy as np\n'), ((1283, 1301), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (1295, 1301), True, 'import pandas as pd\n'), ((1047, 1161), 'azure.synapse.ml.predict.bind_model', 'pcontext.bind_model', ([], {'return_types': 'RETURN_TYPES', 'runtime': '"""mlflow"""', 'model_alias': '"""xgb_model"""', 'model_uri': 'MODEL_URI'}), "(return_types=RETURN_TYPES, runtime='mlflow',\n model_alias='xgb_model', model_uri=MODEL_URI)\n", (1066, 1161), True, 'import azure.synapse.ml.predict as pcontext\n')]
import numpy as np import matplotlib.pyplot as plt import g_functions as g_f R1 = 2 R2 = .6 M = 500 Delta = .1 NB_POINTS = 2**10 EPSILON_IMAG = 1e-8 parameters = { 'M' : M, 'R1' : R1, 'R2' : R2, 'NB_POINTS' : NB_POINTS, 'EPSILON_IMAG' : EPSILON_IMAG, 'verbosity' : 1, 'ENSAMBLE' : 'Wishart' } # Compute sample S, Y = g_f.make_sample(parameters, Delta) # Computer rho from theory rho_theory = g_f.find_rho(parameters, Delta) # Compute deoising function from theory denoiser_plot = np.zeros(parameters["NB_POINTS"]) for (i_z, z) in enumerate(rho_theory["zs"]): denoiser_plot[i_z] = g_f.denoiser(z, parameters, Delta) plt.hist(g_f.find_spectrum(Y), 80, density=True) # plt.hist(g_f.find_spectrum(g_f.denoise_sample(Y, parameters, Delta)), 160, density=True) plt.plot(rho_theory['zs'],rho_theory['rho'],color='red') # plt.plot(rho_theory['zs'],denoiser_plot) plt.title(f"R2 = {parameters['R2']}, R1 = {parameters['R1']}") plt.ylabel("Frequency") plt.xlabel("Singular value") plt.show()
[ "g_functions.find_rho", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "g_functions.denoiser", "numpy.zeros", "g_functions.find_spectrum", "g_functions.make_sample", "matplotlib.pyplot.title", "matplotlib.pyplot.show" ]
[((398, 432), 'g_functions.make_sample', 'g_f.make_sample', (['parameters', 'Delta'], {}), '(parameters, Delta)\n', (413, 432), True, 'import g_functions as g_f\n'), ((474, 505), 'g_functions.find_rho', 'g_f.find_rho', (['parameters', 'Delta'], {}), '(parameters, Delta)\n', (486, 505), True, 'import g_functions as g_f\n'), ((563, 596), 'numpy.zeros', 'np.zeros', (["parameters['NB_POINTS']"], {}), "(parameters['NB_POINTS'])\n", (571, 596), True, 'import numpy as np\n'), ((846, 904), 'matplotlib.pyplot.plot', 'plt.plot', (["rho_theory['zs']", "rho_theory['rho']"], {'color': '"""red"""'}), "(rho_theory['zs'], rho_theory['rho'], color='red')\n", (854, 904), True, 'import matplotlib.pyplot as plt\n'), ((946, 1008), 'matplotlib.pyplot.title', 'plt.title', (['f"""R2 = {parameters[\'R2\']}, R1 = {parameters[\'R1\']}"""'], {}), '(f"R2 = {parameters[\'R2\']}, R1 = {parameters[\'R1\']}")\n', (955, 1008), True, 'import matplotlib.pyplot as plt\n'), ((1009, 1032), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {}), "('Frequency')\n", (1019, 1032), True, 'import matplotlib.pyplot as plt\n'), ((1033, 1061), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Singular value"""'], {}), "('Singular value')\n", (1043, 1061), True, 'import matplotlib.pyplot as plt\n'), ((1062, 1072), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1070, 1072), True, 'import matplotlib.pyplot as plt\n'), ((667, 701), 'g_functions.denoiser', 'g_f.denoiser', (['z', 'parameters', 'Delta'], {}), '(z, parameters, Delta)\n', (679, 701), True, 'import g_functions as g_f\n'), ((714, 734), 'g_functions.find_spectrum', 'g_f.find_spectrum', (['Y'], {}), '(Y)\n', (731, 734), True, 'import g_functions as g_f\n')]
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm import datetime as dt from statsmodels.stats.multitest import fdrcorrection from pylab import savefig # FUNCTIONS YOU CAN USE: # analyses(filepath) spits out a nifty heatmap to let you check correlation between variables # # regress(option, df) churns out a saucy graph of the linear regression for the variables you provided, where # option is 'snr_total' or 'tsnr', whichever you want to make the dependent variable of your model # df is the pandas DataFrame containing your data. To modify which variables you want in your model, you'll # have to directly modify the regress function # NOTABLE FILENAMES # ../data/extractions/p2_BOLD.csv - all dates for p2_BOLD # ../data/extractions/p2Xs4X35mm_BOLD.csv - all dates for p2Xs4X35mm_BOLD # ../data/extractions/anat.csv - all possible dates for anatomical data def filter(option, df): is_p2 = df['Filetype'] == "task-rest_acq-p2_bold.json" is_x = df['Filetype'] == "task-rest_acq-p2Xs4X35mm_bold.json" if option == 'x': return df[is_x] elif option == 'p2': return df[is_p2] def analyses(filepath): files = pd.read_csv(filepath) # FIRST CHECK: CONVERSION SOFTWARE VERSIONS check = files.iloc[0, 7] valid = True for i in files.index: if check != files.iloc[i, 7]: valid = False print("All Conversion Softwares are the same: " + str(valid)) # SECOND CHECK: HEATMAP figure = sns.heatmap(files.corr(), cmap=sns.diverging_palette(h_neg=240, h_pos=10, n=9, sep=1, center="dark"), center=0) figure save = figure.get_figure() save.savefig('heatmap.svg', pad_inches = 0.1) def add_seasonal_simple(df, col='Date', start='2017-01-01'): # Add a very simplistic seasonal regressors as cos and sin since some date in a year time_delta = df[col] - np.datetime64(start) time_delta_rad = time_delta.apply(lambda d: d.days) * 2 * np.pi / 365.25 df['Seasonal (sin)'] = np.sin(time_delta_rad) df['Seasonal (cos)'] = np.cos(time_delta_rad) def Ftest(model, var_prefix, queue, prints=False): var_columns = [c for c in model.params.index if c.startswith(var_prefix)] if var_columns: f_test = model.f_test(' = '.join(var_columns) + " = 0") if f_test.pvalue < 0.05: if var_prefix == "Shim": for i in range(8): queue.append("Shim" + str(i+1)) elif var_prefix == "IOPD": for i in range(6): queue.append("IOPD" + str(i+1)) if prints: print("%s F-test: %s" % (var_prefix, f_test)) return f_test else: if prints: print("No %s variables in the model" % var_prefix) return None # copy pasted from nipy function, renamed from _orthogonalize def orthogonalize(X): """ Orthogonalize every column of design `X` w.r.t preceding columns Parameters ---------- X: array of shape(n, p), the data to be orthogonalized Returns ------- X: after orthogonalization Notes ----- X is changed in place. the columns are not normalized """ if X.size == X.shape[0]: return X for i in range(1, X.shape[1]): X[:, i] -= np.dot(X[:, i], np.dot(X[:, :i], np.linalg.pinv(X[:, :i]))) return X def regress(target_variable, model_df, plot=True, print_summary=True, add_qa=True, add_seasonal=True, real_data=False): """ creates a regression graph plotted against actual data from certain QA metrics Parameters ---------- target_variable: takes str value of either snr_total or tsnr to model against model_df : takes pandas DataFrame with data to be used for predictive modeling plot : boolean to turn the plotted graph on/off print_summary : boolean to turn the printed summary of OLS regression on/off add_qa : boolean to add/not add snr_total_qa into list of variables to be modeled add_seasonal : boolean to add/not add seasonal variables into list of variables to be modeled real_data : boolean to indicate whether or not the pandas DataFrame being fed in is from real data or not """ if type(model_df) is not pd.core.frame.DataFrame: return "DataFrame must be of type pandas.core.frame.DataFrame" ########## adding seasonal curves to the model add_seasonal_simple(model_df) ########## Converting date to a format that can be parsed by statsmodels API model_df = model_df.copy() date_df = model_df['Date'] model_df['Date'] = pd.to_datetime(model_df['Date'], format="%Y%m%d") model_df['Date'] = model_df['Date'].map(lambda x: x.toordinal()) f_tests_todo = ['IOPD'] excluded_cols = ['Date', 'IOPD1', 'IOPD2', 'IOPD3', 'IOPD4', 'IOPD5', 'IOPD6', 'Seasonal (sin)', 'Seasonal (cos)'] seasonal_cols = ['Seasonal (sin)', 'Seasonal (cos)',] cols = ['Date'] if not real_data: # preparing model_df for orthogonalization cols += ['AcquisitionTime', 'SAR', 'TxRefAmp', 'IOPD1', 'IOPD2', 'IOPD3', 'IOPD4', 'IOPD5', 'IOPD6'] if add_seasonal: cols += seasonal_cols else: cols += ['age', 'sex_male', 'PatientWeight',] if add_seasonal: cols += seasonal_cols if add_qa: cols += ['snr_total_qa'] cols += ['IOPD1_real', 'IOPD2_real', 'IOPD3_real', 'IOPD4_real', 'IOPD5_real', 'IOPD6_real'] if add_seasonal: f_tests_todo += ['Seasonal'] cols.append(target_variable) model_df = model_df[cols] # There is apparently a sample date (20170626) with SAR being unknown None/NaN # For now we will just filter out those samples if 'SAR' in model_df.columns: finite_SAR = np.isfinite(model_df['SAR']) if not np.all(finite_SAR): print("Following dates didn't have SAR, excluding them: %s" % str(model_df['Date'][~finite_SAR])) model_df = model_df[finite_SAR] orthogonalized_df = model_df.drop(target_variable, axis=1) # avoid orthogonalizing target variable cols = cols[:-1] # remove target variable from column list # orthogonalize dataframe after its conversion to NumPy array, then convert back and replace in original model_df model_array = orthogonalize(orthogonalized_df.to_numpy()) orthogonalized_df = pd.DataFrame(model_array) orthogonalized_df.columns = [cols] orthogonalized_df[target_variable] = pd.Series(model_df[target_variable]) model_df = orthogonalized_df # add datetime64[ns] formatted date time model_df.columns=[x[0] for x in model_df.columns] model_df['Date'] = pd.to_datetime(model_df['Date']) model_df = model_df.drop('Date', axis=1) model_df['Date'] = date_df ########## Assigning independent and dependent variables model_vars = [] for item in model_df.std().iteritems(): if item[0] != 'Date' and item[0] != target_variable: model_vars.append(item[0]) X = model_df[model_vars] y = model_df[target_variable] X = X.sub(X.mean()) X = sm.add_constant(X) model_df = sm.add_constant(model_df) ########## modeling predictions model = sm.OLS(y, X).fit() predictions = model.predict(X) ################ CODE FOR TESTING INDIVIDUAL VARIABLE EFFECTS #################### significant_variables = [] F_tests_pvals = { v: float(Ftest(model, v, significant_variables).pvalue) for v in f_tests_todo } # get p-values for key, value in dict(model.pvalues).items(): if key not in significant_variables and value < 0.05 or key.lower() == 'const': # identify statistically insignificant variables in df significant_variables.append(key) ######## set statistically insignificant variables to 0, then predict partial_fits = {} # partial_fits = {} for variable in significant_variables: X2 = X.copy(True) # prepare for mods for col in X2: if col != variable: X2[col] = 0 partial_fits[str(variable)] = model.predict(X2) if print_summary: print("Statistically significant variables: " + str(significant_variables)) ################ END CODE FOR TESTING INDIVIDUAL VARIABLE EFFECTS #################### # Functionality for carrying out FDR correction outvars = {} # dict containing all predictive variables and their p values from the model for var in cols: is_f_test = False for f_test in f_tests_todo: if var.startswith(f_test): is_f_test = True break if is_f_test: continue if var not in excluded_cols: var_pvalue = getattr(model.pvalues, var) outvars[var] = var_pvalue outvars.update(F_tests_pvals) # add previously conducted F test p values to the outvars FDR_tuple = fdrcorrection(list(outvars.values())) # actual FDR test conduct t_f = list(FDR_tuple[0]) # split tuple into true/false array FDR_pvals = list(FDR_tuple[1]) # split tuple into p value array print("FDR-corrected p-values:") for (var, value), fdr_pval, is_sign in zip(outvars.items(), FDR_pvals, t_f): print("%15s | Original p-value: %8.3g" % (var, value) + " | FDR-corrected p-value: %8.3g%s" % (fdr_pval, '**' if is_sign else '')) print("\n") # giving additional data if print_summary: print(model.summary()) print("AIC: " + str(model.aic)) print("BIC: " + str(model.bic)) if not plot: return model ######### converting the above predictions to a format that can be plotted plot_df = predictions.to_frame() # new DataFrame containing only data needed for the plot plot_df.columns = ['full fit'] plot_df = plot_df.join(model_df['Date']) plot_df = plot_df.join(model_df[target_variable]) summation_df = None for key, value in partial_fits.items(): column = value.to_frame() column.columns = ['partial fit'] if summation_df is None: summation_df = column # used to add up the values else: summation_df = summation_df.add(column, axis=1) plot_df = pd.concat([plot_df, summation_df], axis=1) # plotting the graph plt.figure(figsize=(15, 6)) ax = sns.lineplot(x="Date", y=target_variable, data=plot_df, color="#000000") # plotting partial fit ax_partial = plt.twinx() sns.lineplot(x="Date", y="full fit", data=plot_df, color="r", ax=ax) if partial_fits: sns.lineplot(x="Date", y="partial fit", data=plot_df, color="#ffcccc", ax=ax_partial) plt.ylim(145, 305) ax_partial.legend(['partial fit']) ax.legend(['actual', 'full fit'], loc='upper left') plt.savefig("test.svg") return model def scrape_var_significance(targets, p_var, df): dummy = [] # dud list for Seasonal f test comparison columns = ['Variable', p_var + ' p value', 'R2 value'] result = pd.DataFrame(columns = columns) raw_pvals = [] for target in targets: input_df = pd.DataFrame(df,columns=['Date', 'sid', 'ses', target, 'age', 'tsnr', 'snr_total_qa', 'IOPD1_real', 'IOPD2_real', 'IOPD3_real', 'IOPD4_real', 'IOPD5_real', 'IOPD6_real', 'sex_male', 'PatientWeight']) model = regress(target, input_df, plot=False, print_summary=False, real_data=True) if p_var == 'Seasonal': seasonal_ftest = Ftest(model, 'Seasonal', dummy).pvalue result.loc[len(result)] = [target, seasonal_ftest, model.rsquared] raw_pvals.append(seasonal_ftest) else: var_pval = model.pvalues[p_var] result.loc[len(result)] = [target, var_pval, model.rsquared] raw_pvals.append(var_pval) fdr_df = pd.DataFrame({'FDR-corrected': fdrcorrection(raw_pvals)[1].tolist()}) result = result.join(fdr_df) return result
[ "numpy.linalg.pinv", "pandas.read_csv", "numpy.isfinite", "numpy.sin", "statsmodels.api.OLS", "pandas.to_datetime", "matplotlib.pyplot.twinx", "numpy.datetime64", "pandas.DataFrame", "matplotlib.pyplot.ylim", "statsmodels.stats.multitest.fdrcorrection", "matplotlib.pyplot.savefig", "seaborn.diverging_palette", "seaborn.lineplot", "statsmodels.api.add_constant", "numpy.cos", "pandas.Series", "matplotlib.pyplot.figure", "numpy.all", "pandas.concat" ]
[((1308, 1329), 'pandas.read_csv', 'pd.read_csv', (['filepath'], {}), '(filepath)\n', (1319, 1329), True, 'import pandas as pd\n'), ((2167, 2189), 'numpy.sin', 'np.sin', (['time_delta_rad'], {}), '(time_delta_rad)\n', (2173, 2189), True, 'import numpy as np\n'), ((2217, 2239), 'numpy.cos', 'np.cos', (['time_delta_rad'], {}), '(time_delta_rad)\n', (2223, 2239), True, 'import numpy as np\n'), ((4849, 4898), 'pandas.to_datetime', 'pd.to_datetime', (["model_df['Date']"], {'format': '"""%Y%m%d"""'}), "(model_df['Date'], format='%Y%m%d')\n", (4863, 4898), True, 'import pandas as pd\n'), ((6673, 6698), 'pandas.DataFrame', 'pd.DataFrame', (['model_array'], {}), '(model_array)\n', (6685, 6698), True, 'import pandas as pd\n'), ((6779, 6815), 'pandas.Series', 'pd.Series', (['model_df[target_variable]'], {}), '(model_df[target_variable])\n', (6788, 6815), True, 'import pandas as pd\n'), ((6976, 7008), 'pandas.to_datetime', 'pd.to_datetime', (["model_df['Date']"], {}), "(model_df['Date'])\n", (6990, 7008), True, 'import pandas as pd\n'), ((7422, 7440), 'statsmodels.api.add_constant', 'sm.add_constant', (['X'], {}), '(X)\n', (7437, 7440), True, 'import statsmodels.api as sm\n'), ((7461, 7486), 'statsmodels.api.add_constant', 'sm.add_constant', (['model_df'], {}), '(model_df)\n', (7476, 7486), True, 'import statsmodels.api as sm\n'), ((10718, 10760), 'pandas.concat', 'pd.concat', (['[plot_df, summation_df]'], {'axis': '(1)'}), '([plot_df, summation_df], axis=1)\n', (10727, 10760), True, 'import pandas as pd\n'), ((10795, 10822), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 6)'}), '(figsize=(15, 6))\n', (10805, 10822), True, 'import matplotlib.pyplot as plt\n'), ((10833, 10905), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': '"""Date"""', 'y': 'target_variable', 'data': 'plot_df', 'color': '"""#000000"""'}), "(x='Date', y=target_variable, data=plot_df, color='#000000')\n", (10845, 10905), True, 'import seaborn as sns\n'), ((10955, 10966), 'matplotlib.pyplot.twinx', 'plt.twinx', ([], {}), '()\n', (10964, 10966), True, 'import matplotlib.pyplot as plt\n'), ((10971, 11039), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': '"""Date"""', 'y': '"""full fit"""', 'data': 'plot_df', 'color': '"""r"""', 'ax': 'ax'}), "(x='Date', y='full fit', data=plot_df, color='r', ax=ax)\n", (10983, 11039), True, 'import seaborn as sns\n'), ((11290, 11313), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""test.svg"""'], {}), "('test.svg')\n", (11301, 11313), True, 'import matplotlib.pyplot as plt\n'), ((11516, 11545), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'columns'}), '(columns=columns)\n', (11528, 11545), True, 'import pandas as pd\n'), ((2042, 2062), 'numpy.datetime64', 'np.datetime64', (['start'], {}), '(start)\n', (2055, 2062), True, 'import numpy as np\n'), ((6073, 6101), 'numpy.isfinite', 'np.isfinite', (["model_df['SAR']"], {}), "(model_df['SAR'])\n", (6084, 6101), True, 'import numpy as np\n'), ((11069, 11159), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': '"""Date"""', 'y': '"""partial fit"""', 'data': 'plot_df', 'color': '"""#ffcccc"""', 'ax': 'ax_partial'}), "(x='Date', y='partial fit', data=plot_df, color='#ffcccc', ax=\n ax_partial)\n", (11081, 11159), True, 'import seaborn as sns\n'), ((11163, 11181), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(145)', '(305)'], {}), '(145, 305)\n', (11171, 11181), True, 'import matplotlib.pyplot as plt\n'), ((11618, 11826), 'pandas.DataFrame', 'pd.DataFrame', (['df'], {'columns': "['Date', 'sid', 'ses', target, 'age', 'tsnr', 'snr_total_qa', 'IOPD1_real',\n 'IOPD2_real', 'IOPD3_real', 'IOPD4_real', 'IOPD5_real', 'IOPD6_real',\n 'sex_male', 'PatientWeight']"}), "(df, columns=['Date', 'sid', 'ses', target, 'age', 'tsnr',\n 'snr_total_qa', 'IOPD1_real', 'IOPD2_real', 'IOPD3_real', 'IOPD4_real',\n 'IOPD5_real', 'IOPD6_real', 'sex_male', 'PatientWeight'])\n", (11630, 11826), True, 'import pandas as pd\n'), ((1680, 1749), 'seaborn.diverging_palette', 'sns.diverging_palette', ([], {'h_neg': '(240)', 'h_pos': '(10)', 'n': '(9)', 'sep': '(1)', 'center': '"""dark"""'}), "(h_neg=240, h_pos=10, n=9, sep=1, center='dark')\n", (1701, 1749), True, 'import seaborn as sns\n'), ((6117, 6135), 'numpy.all', 'np.all', (['finite_SAR'], {}), '(finite_SAR)\n', (6123, 6135), True, 'import numpy as np\n'), ((7545, 7557), 'statsmodels.api.OLS', 'sm.OLS', (['y', 'X'], {}), '(y, X)\n', (7551, 7557), True, 'import statsmodels.api as sm\n'), ((3511, 3535), 'numpy.linalg.pinv', 'np.linalg.pinv', (['X[:, :i]'], {}), '(X[:, :i])\n', (3525, 3535), True, 'import numpy as np\n'), ((12473, 12497), 'statsmodels.stats.multitest.fdrcorrection', 'fdrcorrection', (['raw_pvals'], {}), '(raw_pvals)\n', (12486, 12497), False, 'from statsmodels.stats.multitest import fdrcorrection\n')]
"""Implement the Unit class.""" import numpy as np from .. import config, constants __all__ = ["Pixels", "Degrees", "Munits", "Percent"] class _PixelUnits: def __mul__(self, val): return val * config.frame_width / config.pixel_width def __rmul__(self, val): return val * config.frame_width / config.pixel_width class Percent: def __init__(self, axis): if np.array_equal(axis, constants.X_AXIS): self.length = config.frame_width if np.array_equal(axis, constants.Y_AXIS): self.length = config.frame_height if np.array_equal(axis, constants.Z_AXIS): raise NotImplementedError("length of Z axis is undefined") def __mul__(self, val): return val / 100 * self.length def __rmul__(self, val): return val / 100 * self.length Pixels = _PixelUnits() Degrees = constants.PI / 180 Munits = 1
[ "numpy.array_equal" ]
[((399, 437), 'numpy.array_equal', 'np.array_equal', (['axis', 'constants.X_AXIS'], {}), '(axis, constants.X_AXIS)\n', (413, 437), True, 'import numpy as np\n'), ((495, 533), 'numpy.array_equal', 'np.array_equal', (['axis', 'constants.Y_AXIS'], {}), '(axis, constants.Y_AXIS)\n', (509, 533), True, 'import numpy as np\n'), ((592, 630), 'numpy.array_equal', 'np.array_equal', (['axis', 'constants.Z_AXIS'], {}), '(axis, constants.Z_AXIS)\n', (606, 630), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 2D linear elasticity example Solve the equilibrium equation -\nabla \cdot \sigma(x) = f(x) for x\in\Omega with the strain-displacement equation: \epsilon = 1/2(\nabla u + \nabla u^T) and the constitutive law: \sigma = 2*\mu*\epsilon + \lambda*(\nabla\cdot u)I, where \mu and \lambda are Lame constants, I is the identity tensor. Dirichlet boundary conditions: u(x)=\hat{u} for x\in\Gamma_D Neumann boundary conditions: \sigma n = \hat{t} for x\in \Gamma_N, where n is the normal vector. For this example: \Omega is a quarter annulus in the 1st quadrant, centered at origin with inner radius 1, outer radius 4 Symmetry (Dirichlet) boundary conditions on the bottom and left u_x(x,y) = 0 for x=0 u_y(x,y) = 0 for y=0 and pressure boundary conditions for the curved boundaries: \sigma n = P_int n on the interior boundary with P_int = 10 MPa \sigma n = P_ext n on the exterior boundary with P_ext = 0 MPa. Use DEM """ import tensorflow as tf import numpy as np import time from utils.tfp_loss import tfp_function_factory from utils.Geom_examples import QuarterAnnulus from utils.Solvers import Elasticity2D_DEM_dist from utils.Plotting import plot_field_2d import tensorflow_probability as tfp import matplotlib.pyplot as plt #make figures bigger on HiDPI monitors import matplotlib as mpl mpl.rcParams['figure.dpi'] = 200 np.random.seed(42) tf.random.set_seed(42) class Elast_ThickCylinder(Elasticity2D_DEM_dist): ''' Class including the symmetry boundary conditions for the thick cylinder problem ''' def __init__(self, layers, train_op, num_epoch, print_epoch, model_data, data_type): super().__init__(layers, train_op, num_epoch, print_epoch, model_data, data_type) @tf.function def dirichletBound(self, X, xPhys, yPhys): # multiply by x,y for strong imposition of boundary conditions u_val = X[:,0:1] v_val = X[:,1:2] u_val = xPhys*u_val v_val = yPhys*v_val return u_val, v_val #define the model properties model_data = dict() model_data["radius_int"] = 1. model_data["radius_ext"] = 4. model_data["E"] = 1e2 model_data["nu"] = 0.3 model_data["state"] = "plane strain" model_data["inner_pressure"] = 10. model_data["outer_pressure"] = 0. # generate the model geometry geomDomain = QuarterAnnulus(model_data["radius_int"], model_data["radius_ext"]) # define the input and output data set numElemU = 10 numElemV = 10 numGauss = 5 #xPhys, yPhys = myQuad.getRandomIntPts(numPtsU*numPtsV) xPhys, yPhys, Wint = geomDomain.getQuadIntPts(numElemU, numElemV, numGauss) data_type = "float32" Xint = np.concatenate((xPhys,yPhys),axis=1).astype(data_type) Wint = np.array(Wint).astype(data_type) # prepare boundary points in the fromat Xbnd = [Xcoord, Ycoord, norm_x, norm_y] and # Wbnd for boundary integration weights and # Ybnd = [trac_x, trac_y], where Xcoord, Ycoord are the x and y coordinates of the point, # norm_x, norm_y are the x and y components of the unit normals # trac_x, trac_y are the x and y components of the traction vector at each point # inner curved boundary, include both x and y directions xPhysBnd, yPhysBnd , xNorm, yNorm, Wbnd = geomDomain.getQuadEdgePts(numElemV, numGauss, 4) Xbnd = np.concatenate((xPhysBnd, yPhysBnd), axis=1).astype(data_type) Wbnd = np.array(Wbnd).astype(data_type) plt.scatter(xPhys, yPhys, s=0.1) plt.scatter(xPhysBnd, yPhysBnd, s=1, c='red') plt.title("Boundary and interior integration points") plt.show() # define loading Ybnd_x = -model_data["inner_pressure"]*xNorm Ybnd_y = -model_data["inner_pressure"]*yNorm Ybnd = np.concatenate((Ybnd_x, Ybnd_y), axis=1).astype(data_type) #define the model tf.keras.backend.set_floatx(data_type) l1 = tf.keras.layers.Dense(20, "swish") l2 = tf.keras.layers.Dense(20, "swish") l3 = tf.keras.layers.Dense(20, "swish") l4 = tf.keras.layers.Dense(2, None) train_op = tf.keras.optimizers.Adam() train_op2 = "TFP-BFGS" num_epoch = 1000 print_epoch = 100 pred_model = Elast_ThickCylinder([l1, l2, l3, l4], train_op, num_epoch, print_epoch, model_data, data_type) #convert the training data to tensors Xint_tf = tf.convert_to_tensor(Xint) Wint_tf = tf.convert_to_tensor(Wint) Xbnd_tf = tf.convert_to_tensor(Xbnd) Wbnd_tf = tf.convert_to_tensor(Wbnd) Ybnd_tf = tf.convert_to_tensor(Ybnd) #training t0 = time.time() print("Training (ADAM)...") pred_model.network_learn(Xint_tf, Wint_tf, Xbnd_tf, Wbnd_tf, Ybnd_tf) t1 = time.time() print("Time taken (ADAM)", t1-t0, "seconds") print("Training (TFP-BFGS)...") loss_func = tfp_function_factory(pred_model, Xint_tf, Wint_tf, Xbnd_tf, Wbnd_tf, Ybnd_tf) # convert initial model parameters to a 1D tf.Tensor init_params = tf.dynamic_stitch(loss_func.idx, pred_model.trainable_variables) # train the model with L-BFGS solver results = tfp.optimizer.bfgs_minimize( value_and_gradients_function=loss_func, initial_position=init_params, max_iterations=10000, tolerance=1e-14) # after training, the final optimized parameters are still in results.position # so we have to manually put them back to the model loss_func.assign_new_model_parameters(results.position) t2 = time.time() print("Time taken (BFGS)", t2-t1, "seconds") print("Time taken (all)", t2-t0, "seconds") def cart2pol(x, y): rho = np.sqrt(np.array(x)**2 + np.array(y)**2) phi = np.arctan2(y, x) return rho, phi # define the exact displacements def exact_disp(x,y,model): nu = model["nu"] r = np.hypot(x,y) a = model["radius_int"] b = model["radius_ext"] mu = model["E"]/(2*(1+nu)) p1 = model["inner_pressure"] p0 = model["outer_pressure"] dispxy = 1/(2*mu*(b**2-a**2))*((1-2*nu)*(p1*a**2-p0*b**2)+(p1-p0)*a**2*b**2/r**2) ux = x*dispxy uy = y*dispxy return ux, uy #define the exact stresses def exact_stresses(x,y,model): r = np.hypot(x,y) a = model["radius_int"] b = model["radius_ext"] p1 = model["inner_pressure"] p0 = model["outer_pressure"] term_fact = a**2*b**2/(b**2-a**2) term_one = p1/b**2 - p0/a**2 + (p1-p0)/r**2 term_two = 2*(p1-p0)/r**4 sigma_xx = term_fact*(term_one - term_two*x**2) sigma_yy = term_fact*(term_one - term_two*y**2) sigma_xy = term_fact*(-term_two*x*y) return sigma_xx, sigma_yy, sigma_xy print("Testing...") numPtsUTest = 2*numElemU*numGauss numPtsVTest = 2*numElemV*numGauss xPhysTest, yPhysTest = geomDomain.getUnifIntPts(numPtsUTest, numPtsVTest, [1,1,1,1]) XTest = np.concatenate((xPhysTest,yPhysTest),axis=1).astype(data_type) XTest_tf = tf.convert_to_tensor(XTest) YTest = pred_model(XTest_tf).numpy() xPhysTest = xPhysTest.astype(data_type) yPhysTest = yPhysTest.astype(data_type) stress_xx_comp, stress_yy_comp, stress_xy_comp = pred_model.constitutiveEq(xPhysTest, yPhysTest) stress_xx_comp = stress_xx_comp.numpy() stress_yy_comp = stress_yy_comp.numpy() stress_xy_comp = stress_xy_comp.numpy() # plot the displacement plot_field_2d(XTest, YTest[:,0], numPtsUTest, numPtsVTest, title="Computed x-displacement") plot_field_2d(XTest, YTest[:,1], numPtsUTest, numPtsVTest, title="Computed y-displacement") # comparison with exact solution ux_exact, uy_exact = exact_disp(xPhysTest, yPhysTest, model_data) ux_test = YTest[:,0:1] uy_test = YTest[:,1:2] err_norm = np.sqrt(np.sum((ux_exact-ux_test)**2+(uy_exact-uy_test)**2)) ex_norm = np.sqrt(np.sum(ux_exact**2 + uy_exact**2)) rel_err_l2 = err_norm/ex_norm print("Relative L2 error: ", rel_err_l2) stress_xx_exact, stress_yy_exact, stress_xy_exact = exact_stresses(xPhysTest, yPhysTest, model_data) stress_xx_err = stress_xx_exact - stress_xx_comp stress_yy_err = stress_yy_exact - stress_yy_comp stress_xy_err = stress_xx_exact - stress_xx_comp C_inv = np.linalg.inv(pred_model.Emat.numpy()) energy_err = 0. energy_norm = 0. numPts = len(xPhysTest) for i in range(numPts): err_pt = np.array([stress_xx_err[i,0],stress_yy_err[i,0],stress_xy_err[i,0]]) norm_pt = np.array([stress_xx_exact[i,0],stress_yy_exact[i,0],stress_xy_exact[i,0]]) energy_err = energy_err + err_pt@C_inv@err_pt.T energy_norm = energy_norm + norm_pt@C_inv@norm_pt.T print("Relative energy error: ", np.sqrt(energy_err/energy_norm)) plot_field_2d(XTest, ux_exact-YTest[:,0:1], numPtsUTest, numPtsVTest, title="Error for x-displacement") plot_field_2d(XTest, uy_exact-YTest[:,1:2], numPtsUTest, numPtsVTest, title="Error for y-displacement") # plot the stresses plot_field_2d(XTest, stress_xx_comp, numPtsUTest, numPtsVTest, title="Computed sigma_xx") plot_field_2d(XTest, stress_yy_comp, numPtsUTest, numPtsVTest, title="Computed sigma_yy") plot_field_2d(XTest, stress_xy_comp, numPtsUTest, numPtsVTest, title="Computed sigma_xy") plot_field_2d(XTest, stress_xx_err, numPtsUTest, numPtsVTest, title="Error for sigma_xx") plot_field_2d(XTest, stress_yy_err, numPtsUTest, numPtsVTest, title="Error for sigma_yy") plot_field_2d(XTest, stress_xy_err, numPtsUTest, numPtsVTest, title="Error for sigma_xy")
[ "numpy.sqrt", "utils.Geom_examples.QuarterAnnulus", "numpy.array", "tensorflow.keras.layers.Dense", "numpy.arctan2", "utils.tfp_loss.tfp_function_factory", "tensorflow.dynamic_stitch", "numpy.random.seed", "matplotlib.pyplot.scatter", "numpy.concatenate", "tensorflow.convert_to_tensor", "numpy.hypot", "tensorflow.keras.backend.set_floatx", "matplotlib.pyplot.title", "time.time", "matplotlib.pyplot.show", "utils.Plotting.plot_field_2d", "tensorflow.random.set_seed", "tensorflow_probability.optimizer.bfgs_minimize", "tensorflow.keras.optimizers.Adam", "numpy.sum" ]
[((1429, 1447), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (1443, 1447), True, 'import numpy as np\n'), ((1448, 1470), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['(42)'], {}), '(42)\n', (1466, 1470), True, 'import tensorflow as tf\n'), ((2429, 2495), 'utils.Geom_examples.QuarterAnnulus', 'QuarterAnnulus', (["model_data['radius_int']", "model_data['radius_ext']"], {}), "(model_data['radius_int'], model_data['radius_ext'])\n", (2443, 2495), False, 'from utils.Geom_examples import QuarterAnnulus\n'), ((3458, 3490), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xPhys', 'yPhys'], {'s': '(0.1)'}), '(xPhys, yPhys, s=0.1)\n', (3469, 3490), True, 'import matplotlib.pyplot as plt\n'), ((3491, 3536), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xPhysBnd', 'yPhysBnd'], {'s': '(1)', 'c': '"""red"""'}), "(xPhysBnd, yPhysBnd, s=1, c='red')\n", (3502, 3536), True, 'import matplotlib.pyplot as plt\n'), ((3537, 3590), 'matplotlib.pyplot.title', 'plt.title', (['"""Boundary and interior integration points"""'], {}), "('Boundary and interior integration points')\n", (3546, 3590), True, 'import matplotlib.pyplot as plt\n'), ((3591, 3601), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3599, 3601), True, 'import matplotlib.pyplot as plt\n'), ((3796, 3834), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['data_type'], {}), '(data_type)\n', (3823, 3834), True, 'import tensorflow as tf\n'), ((3840, 3874), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(20)', '"""swish"""'], {}), "(20, 'swish')\n", (3861, 3874), True, 'import tensorflow as tf\n'), ((3880, 3914), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(20)', '"""swish"""'], {}), "(20, 'swish')\n", (3901, 3914), True, 'import tensorflow as tf\n'), ((3920, 3954), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(20)', '"""swish"""'], {}), "(20, 'swish')\n", (3941, 3954), True, 'import tensorflow as tf\n'), ((3960, 3990), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(2)', 'None'], {}), '(2, None)\n', (3981, 3990), True, 'import tensorflow as tf\n'), ((4002, 4028), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {}), '()\n', (4026, 4028), True, 'import tensorflow as tf\n'), ((4281, 4307), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['Xint'], {}), '(Xint)\n', (4301, 4307), True, 'import tensorflow as tf\n'), ((4318, 4344), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['Wint'], {}), '(Wint)\n', (4338, 4344), True, 'import tensorflow as tf\n'), ((4355, 4381), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['Xbnd'], {}), '(Xbnd)\n', (4375, 4381), True, 'import tensorflow as tf\n'), ((4392, 4418), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['Wbnd'], {}), '(Wbnd)\n', (4412, 4418), True, 'import tensorflow as tf\n'), ((4429, 4455), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['Ybnd'], {}), '(Ybnd)\n', (4449, 4455), True, 'import tensorflow as tf\n'), ((4473, 4484), 'time.time', 'time.time', ([], {}), '()\n', (4482, 4484), False, 'import time\n'), ((4589, 4600), 'time.time', 'time.time', ([], {}), '()\n', (4598, 4600), False, 'import time\n'), ((4691, 4768), 'utils.tfp_loss.tfp_function_factory', 'tfp_function_factory', (['pred_model', 'Xint_tf', 'Wint_tf', 'Xbnd_tf', 'Wbnd_tf', 'Ybnd_tf'], {}), '(pred_model, Xint_tf, Wint_tf, Xbnd_tf, Wbnd_tf, Ybnd_tf)\n', (4711, 4768), False, 'from utils.tfp_loss import tfp_function_factory\n'), ((4836, 4900), 'tensorflow.dynamic_stitch', 'tf.dynamic_stitch', (['loss_func.idx', 'pred_model.trainable_variables'], {}), '(loss_func.idx, pred_model.trainable_variables)\n', (4853, 4900), True, 'import tensorflow as tf\n'), ((4948, 5088), 'tensorflow_probability.optimizer.bfgs_minimize', 'tfp.optimizer.bfgs_minimize', ([], {'value_and_gradients_function': 'loss_func', 'initial_position': 'init_params', 'max_iterations': '(10000)', 'tolerance': '(1e-14)'}), '(value_and_gradients_function=loss_func,\n initial_position=init_params, max_iterations=10000, tolerance=1e-14)\n', (4975, 5088), True, 'import tensorflow_probability as tfp\n'), ((5298, 5309), 'time.time', 'time.time', ([], {}), '()\n', (5307, 5309), False, 'import time\n'), ((6676, 6703), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['XTest'], {}), '(XTest)\n', (6696, 6703), True, 'import tensorflow as tf\n'), ((7066, 7163), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'YTest[:, 0]', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Computed x-displacement"""'}), "(XTest, YTest[:, 0], numPtsUTest, numPtsVTest, title=\n 'Computed x-displacement')\n", (7079, 7163), False, 'from utils.Plotting import plot_field_2d\n'), ((7158, 7255), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'YTest[:, 1]', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Computed y-displacement"""'}), "(XTest, YTest[:, 1], numPtsUTest, numPtsVTest, title=\n 'Computed y-displacement')\n", (7171, 7255), False, 'from utils.Plotting import plot_field_2d\n'), ((8385, 8495), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', '(ux_exact - YTest[:, 0:1])', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Error for x-displacement"""'}), "(XTest, ux_exact - YTest[:, 0:1], numPtsUTest, numPtsVTest,\n title='Error for x-displacement')\n", (8398, 8495), False, 'from utils.Plotting import plot_field_2d\n'), ((8489, 8599), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', '(uy_exact - YTest[:, 1:2])', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Error for y-displacement"""'}), "(XTest, uy_exact - YTest[:, 1:2], numPtsUTest, numPtsVTest,\n title='Error for y-displacement')\n", (8502, 8599), False, 'from utils.Plotting import plot_field_2d\n'), ((8614, 8708), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_xx_comp', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Computed sigma_xx"""'}), "(XTest, stress_xx_comp, numPtsUTest, numPtsVTest, title=\n 'Computed sigma_xx')\n", (8627, 8708), False, 'from utils.Plotting import plot_field_2d\n'), ((8704, 8798), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_yy_comp', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Computed sigma_yy"""'}), "(XTest, stress_yy_comp, numPtsUTest, numPtsVTest, title=\n 'Computed sigma_yy')\n", (8717, 8798), False, 'from utils.Plotting import plot_field_2d\n'), ((8794, 8888), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_xy_comp', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Computed sigma_xy"""'}), "(XTest, stress_xy_comp, numPtsUTest, numPtsVTest, title=\n 'Computed sigma_xy')\n", (8807, 8888), False, 'from utils.Plotting import plot_field_2d\n'), ((8885, 8979), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_xx_err', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Error for sigma_xx"""'}), "(XTest, stress_xx_err, numPtsUTest, numPtsVTest, title=\n 'Error for sigma_xx')\n", (8898, 8979), False, 'from utils.Plotting import plot_field_2d\n'), ((8975, 9069), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_yy_err', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Error for sigma_yy"""'}), "(XTest, stress_yy_err, numPtsUTest, numPtsVTest, title=\n 'Error for sigma_yy')\n", (8988, 9069), False, 'from utils.Plotting import plot_field_2d\n'), ((9065, 9159), 'utils.Plotting.plot_field_2d', 'plot_field_2d', (['XTest', 'stress_xy_err', 'numPtsUTest', 'numPtsVTest'], {'title': '"""Error for sigma_xy"""'}), "(XTest, stress_xy_err, numPtsUTest, numPtsVTest, title=\n 'Error for sigma_xy')\n", (9078, 9159), False, 'from utils.Plotting import plot_field_2d\n'), ((5482, 5498), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (5492, 5498), True, 'import numpy as np\n'), ((5609, 5623), 'numpy.hypot', 'np.hypot', (['x', 'y'], {}), '(x, y)\n', (5617, 5623), True, 'import numpy as np\n'), ((5983, 5997), 'numpy.hypot', 'np.hypot', (['x', 'y'], {}), '(x, y)\n', (5991, 5997), True, 'import numpy as np\n'), ((7423, 7484), 'numpy.sum', 'np.sum', (['((ux_exact - ux_test) ** 2 + (uy_exact - uy_test) ** 2)'], {}), '((ux_exact - ux_test) ** 2 + (uy_exact - uy_test) ** 2)\n', (7429, 7484), True, 'import numpy as np\n'), ((7494, 7531), 'numpy.sum', 'np.sum', (['(ux_exact ** 2 + uy_exact ** 2)'], {}), '(ux_exact ** 2 + uy_exact ** 2)\n', (7500, 7531), True, 'import numpy as np\n'), ((8050, 8123), 'numpy.array', 'np.array', (['[stress_xx_err[i, 0], stress_yy_err[i, 0], stress_xy_err[i, 0]]'], {}), '([stress_xx_err[i, 0], stress_yy_err[i, 0], stress_xy_err[i, 0]])\n', (8058, 8123), True, 'import numpy as np\n'), ((8133, 8212), 'numpy.array', 'np.array', (['[stress_xx_exact[i, 0], stress_yy_exact[i, 0], stress_xy_exact[i, 0]]'], {}), '([stress_xx_exact[i, 0], stress_yy_exact[i, 0], stress_xy_exact[i, 0]])\n', (8141, 8212), True, 'import numpy as np\n'), ((8350, 8383), 'numpy.sqrt', 'np.sqrt', (['(energy_err / energy_norm)'], {}), '(energy_err / energy_norm)\n', (8357, 8383), True, 'import numpy as np\n'), ((2739, 2777), 'numpy.concatenate', 'np.concatenate', (['(xPhys, yPhys)'], {'axis': '(1)'}), '((xPhys, yPhys), axis=1)\n', (2753, 2777), True, 'import numpy as np\n'), ((2801, 2815), 'numpy.array', 'np.array', (['Wint'], {}), '(Wint)\n', (2809, 2815), True, 'import numpy as np\n'), ((3354, 3398), 'numpy.concatenate', 'np.concatenate', (['(xPhysBnd, yPhysBnd)'], {'axis': '(1)'}), '((xPhysBnd, yPhysBnd), axis=1)\n', (3368, 3398), True, 'import numpy as np\n'), ((3424, 3438), 'numpy.array', 'np.array', (['Wbnd'], {}), '(Wbnd)\n', (3432, 3438), True, 'import numpy as np\n'), ((3717, 3757), 'numpy.concatenate', 'np.concatenate', (['(Ybnd_x, Ybnd_y)'], {'axis': '(1)'}), '((Ybnd_x, Ybnd_y), axis=1)\n', (3731, 3757), True, 'import numpy as np\n'), ((6602, 6648), 'numpy.concatenate', 'np.concatenate', (['(xPhysTest, yPhysTest)'], {'axis': '(1)'}), '((xPhysTest, yPhysTest), axis=1)\n', (6616, 6648), True, 'import numpy as np\n'), ((5439, 5450), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (5447, 5450), True, 'import numpy as np\n'), ((5456, 5467), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (5464, 5467), True, 'import numpy as np\n')]
import datetime import os import sys from cmath import inf from typing import Any import hypothesis.extra.numpy as xps import hypothesis.strategies as st import numpy import pytest from hypothesis import assume, given from eopf.product.utils import ( apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure, ) @pytest.fixture def tree(EMBEDED_TEST_DATA_FOLDER: str): snippet_path = os.path.join(EMBEDED_TEST_DATA_FOLDER, "snippet_xfdumanifest.xml") with open(snippet_path) as f: return parse_xml(f) @st.composite def value_with_type(draw, elements=st.integers(), expected_type=int, expected_container_type=None): if isinstance(expected_type, st.SearchStrategy): expected_type = draw(expected_type) if expected_container_type is not None: if isinstance(expected_container_type, st.SearchStrategy): expected_container_type = draw(expected_container_type) return (draw(elements), expected_type, expected_container_type) return (draw(elements), expected_type) @st.composite def numpy_value(draw, dtype_st=xps.scalar_dtypes(), allow_infinity=True, allow_nan=True): return draw(xps.from_dtype(draw(dtype_st), allow_infinity=allow_infinity, allow_nan=allow_nan)) @pytest.mark.unit def test_parse_xml(tree): """Given an input xml, the output of the function must match the expected output""" result = "" display_namespaces = True for element in tree.iter(): tag = element.tag result += f"{tag}\n" if display_namespaces: display_namespaces = False for key, value in element.nsmap.items(): result += f"{key} : {value}\n" attributes = element.attrib for key, value in attributes.items(): result += f"{key} : {value}\n" textual_content = element.text if textual_content and textual_content.strip(): result += textual_content + "\n" file_path = os.path.join(os.path.abspath("tests/data"), "solutions.txt") with open(file_path, "r") as f: expected = f.read() assert result == expected @pytest.mark.unit def test_translate_structure(tree): """Given an input xml, the output of the function must match the expected output""" MAP = { "title": "concat('',metadataSection/metadataObject[@ID='generalProductInformation']/metadataWrap/xmlData/" "sentinel3:generalProductInformation/sentinel3:productName/text())", "Conventions": "'CF-1.9'", } NAMESPACES = { "xfdu": "urn:ccsds:schema:xfdu:1", "gml": "http://www.opengis.net/gml", "sentinel-safe": "http://www.esa.int/safe/sentinel/1.1", "sentinel3": "http://www.esa.int/safe/sentinel/sentinel-3/1.0", "olci": "http://www.esa.int/safe/sentinel/sentinel-3/olci/1.0", } result = translate_structure(MAP, tree, NAMESPACES) assert result == { "title": "S3A_OL_1_EFR____20220116T092821_20220116T093121_20220117T134858_0179_081_036_2160_LN1_O_NT_002.SEN3", "Conventions": "CF-1.9", } @pytest.mark.unit def test_apply_xpath(tree): """Given an input xml, the output of the function must match the expected output""" MAP = { "title": "concat('',metadataSection/metadataObject[@ID='generalProductInformation']/metadataWrap/xmlData/" "sentinel3:generalProductInformation/sentinel3:productName/text())", "Conventions": "'CF-1.9'", } NAMESPACES = { "xfdu": "urn:ccsds:schema:xfdu:1", "gml": "http://www.opengis.net/gml", "sentinel-safe": "http://www.esa.int/safe/sentinel/1.1", "sentinel3": "http://www.esa.int/safe/sentinel/sentinel-3/1.0", "olci": "http://www.esa.int/safe/sentinel/sentinel-3/olci/1.0", } result = {attr: apply_xpath(tree, MAP[attr], NAMESPACES) for attr in MAP} assert result == { "title": "S3A_OL_1_EFR____20220116T092821_20220116T093121_20220117T134858_0179_081_036_2160_LN1_O_NT_002.SEN3", "Conventions": "CF-1.9", } @pytest.mark.unit def test_is_date(): string_date_1 = "2020-03-31T17:19:29.230522Z" # Zulu time string_date_2 = "2020-03-31T17:19:29.230522GMT+3" # GMT+3 Time string_date_3 = "some_random_string" dt_date = datetime.datetime(2020, 3, 31, 17, 19, 29, 230522) assert is_date(string_date_1) assert is_date(string_date_2) assert is_date(str(dt_date)) assert not is_date(string_date_3) @pytest.mark.unit def test_convert_unix_time(): import pytz # Define datetime-like string and verify if conversion match with datetime object and expected unix time. (MS) string_date = "2020-03-31T17:19:29.230522Z" dt_date = datetime.datetime(2020, 3, 31, 17, 19, 29, 230522, pytz.UTC) expected_unix_time = 1585675169230522 assert convert_to_unix_time(string_date) == convert_to_unix_time(dt_date) == expected_unix_time # Define datetime-like string in Zulu Time Zone, and verify that it doesnt match with expected unix time string_date = "2020-03-31T17:19:29.230522GMT-3" assert convert_to_unix_time(string_date) != convert_to_unix_time(dt_date) assert convert_to_unix_time(string_date) != expected_unix_time # try: string_date = "a string that is not a valid date" convert_to_unix_time(string_date) except ValueError: assert True @pytest.mark.unit @given( value_and_types=st.one_of( value_with_type( st.lists(elements=st.floats(allow_infinity=False, allow_nan=False), unique=True, min_size=10), float, list, ), value_with_type(st.lists(elements=st.integers(), unique=True, min_size=10), int, list), value_with_type(st.lists(elements=st.booleans(), unique=True, min_size=2), int, list), value_with_type(st.sets(elements=st.floats(allow_infinity=False, allow_nan=False), min_size=10), float, set), value_with_type(st.sets(elements=st.integers(), min_size=10), int, set), value_with_type(st.sets(elements=st.booleans(), min_size=2), int, set), value_with_type(st.dictionaries(st.text(), st.integers(), min_size=10), int, dict), value_with_type(st.dictionaries(st.text(), st.booleans(), min_size=10), int, dict), value_with_type( st.dictionaries(st.text(), st.floats(allow_infinity=False, allow_nan=False), min_size=10), float, dict, ), value_with_type(xps.arrays(xps.floating_dtypes(), 10, unique=True), float, list), value_with_type(xps.arrays(xps.integer_dtypes(), 10, unique=True), int, list), value_with_type(xps.arrays(xps.boolean_dtypes(), 10, unique=True), int, list), ), ) def test_conv_sequences(value_and_types: tuple[Any, type, type]): values, type_, container_type = value_and_types assume(inf not in values) converted_list = conv(values) assert isinstance(converted_list, container_type) # Check if size of converted value doesn't change assert len(converted_list) == len(values) # Check if type of each item from converted value is correct if isinstance(converted_list, dict): iterator = converted_list.values() original = values.values() else: iterator = converted_list original = values for converted_value, value in zip(sorted(iterator), sorted(original)): assert isinstance(converted_value, type_) conv_value = conv(value) # check if converted values are the same or both are nan assert converted_value == conv_value or (converted_value != converted_value and conv_value != conv_value) @pytest.mark.unit @pytest.mark.parametrize("EPSILON", [0.1]) @given(value=numpy_value(xps.floating_dtypes(), allow_infinity=False, allow_nan=False)) def test_epsilon_on_fp_conv(value, EPSILON): converted_value = conv(value) assert value - converted_value < EPSILON assert converted_value - value < EPSILON @pytest.mark.unit @given( value_and_type=st.one_of( value_with_type( elements=numpy_value(xps.floating_dtypes(), allow_infinity=False, allow_nan=False), expected_type=float, ), value_with_type( elements=numpy_value(xps.integer_dtypes(), allow_infinity=False, allow_nan=False), expected_type=int, ), value_with_type( elements=st.datetimes(), expected_type=int, ), ), ) def test_conv(value_and_type): value, expected_type = value_and_type converted_value = conv(value) assert isinstance(converted_value, expected_type) @pytest.mark.unit @pytest.mark.parametrize( "sysmax, maxint", [ (numpy.int64(sys.maxsize), numpy.int64(9223372036854775807)), ], ) def test_maxint_conv(sysmax, maxint): # Robustness assert conv(sysmax) == maxint @pytest.mark.unit @given( value_and_types=st.one_of( value_with_type( st.integers(min_value=numpy.iinfo("int64").min, max_value=numpy.iinfo("int64").max), int, xps.integer_dtypes(endianness="=", sizes=(64,)), ), value_with_type( st.integers(min_value=numpy.iinfo("int32").min, max_value=numpy.iinfo("int32").max), int, xps.integer_dtypes(endianness="=", sizes=(32,)), ), value_with_type( st.integers(min_value=numpy.iinfo("int16").min, max_value=numpy.iinfo("int16").max), int, xps.integer_dtypes(endianness="=", sizes=(16,)), ), value_with_type( st.integers(min_value=numpy.iinfo("int8").min, max_value=numpy.iinfo("int8").max), int, xps.integer_dtypes(endianness="=", sizes=(8,)), ), value_with_type(st.floats(width=16), float, xps.floating_dtypes(endianness="=", sizes=(16,))), value_with_type(st.floats(width=32), float, xps.floating_dtypes(endianness="=", sizes=(32,))), value_with_type(st.floats(width=64), float, xps.floating_dtypes(endianness="=", sizes=(64,))), ), ) def test_reverse_conv(value_and_types): value, current_type, data_type = value_and_types # verify if the current data type is as expected (int or float) assert isinstance(value, current_type) # convert value to given data type (int64, int32, float64 etc .. ) converted_value = reverse_conv(data_type, value) # check if conversion is performed according to given data (int -> numpy.int64, float -> numpy.float64) assert numpy.issubdtype(type(converted_value), data_type) # check if converted data type is changed and not match with old one assert type(converted_value) != current_type
[ "numpy.iinfo", "eopf.product.utils.convert_to_unix_time", "hypothesis.extra.numpy.integer_dtypes", "eopf.product.utils.conv", "hypothesis.extra.numpy.boolean_dtypes", "datetime.datetime", "eopf.product.utils.is_date", "numpy.int64", "hypothesis.strategies.booleans", "hypothesis.strategies.text", "eopf.product.utils.translate_structure", "hypothesis.assume", "hypothesis.strategies.datetimes", "eopf.product.utils.reverse_conv", "hypothesis.extra.numpy.scalar_dtypes", "hypothesis.strategies.integers", "eopf.product.utils.parse_xml", "os.path.join", "hypothesis.strategies.floats", "eopf.product.utils.apply_xpath", "pytest.mark.parametrize", "os.path.abspath", "hypothesis.extra.numpy.floating_dtypes" ]
[((7718, 7759), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""EPSILON"""', '[0.1]'], {}), "('EPSILON', [0.1])\n", (7741, 7759), False, 'import pytest\n'), ((457, 523), 'os.path.join', 'os.path.join', (['EMBEDED_TEST_DATA_FOLDER', '"""snippet_xfdumanifest.xml"""'], {}), "(EMBEDED_TEST_DATA_FOLDER, 'snippet_xfdumanifest.xml')\n", (469, 523), False, 'import os\n'), ((637, 650), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (648, 650), True, 'import hypothesis.strategies as st\n'), ((1142, 1161), 'hypothesis.extra.numpy.scalar_dtypes', 'xps.scalar_dtypes', ([], {}), '()\n', (1159, 1161), True, 'import hypothesis.extra.numpy as xps\n'), ((2906, 2948), 'eopf.product.utils.translate_structure', 'translate_structure', (['MAP', 'tree', 'NAMESPACES'], {}), '(MAP, tree, NAMESPACES)\n', (2925, 2948), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4324, 4374), 'datetime.datetime', 'datetime.datetime', (['(2020)', '(3)', '(31)', '(17)', '(19)', '(29)', '(230522)'], {}), '(2020, 3, 31, 17, 19, 29, 230522)\n', (4341, 4374), False, 'import datetime\n'), ((4386, 4408), 'eopf.product.utils.is_date', 'is_date', (['string_date_1'], {}), '(string_date_1)\n', (4393, 4408), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4420, 4442), 'eopf.product.utils.is_date', 'is_date', (['string_date_2'], {}), '(string_date_2)\n', (4427, 4442), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4758, 4818), 'datetime.datetime', 'datetime.datetime', (['(2020)', '(3)', '(31)', '(17)', '(19)', '(29)', '(230522)', 'pytz.UTC'], {}), '(2020, 3, 31, 17, 19, 29, 230522, pytz.UTC)\n', (4775, 4818), False, 'import datetime\n'), ((6892, 6917), 'hypothesis.assume', 'assume', (['(inf not in values)'], {}), '(inf not in values)\n', (6898, 6917), False, 'from hypothesis import assume, given\n'), ((6939, 6951), 'eopf.product.utils.conv', 'conv', (['values'], {}), '(values)\n', (6943, 6951), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((7915, 7926), 'eopf.product.utils.conv', 'conv', (['value'], {}), '(value)\n', (7919, 7926), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((8610, 8621), 'eopf.product.utils.conv', 'conv', (['value'], {}), '(value)\n', (8614, 8621), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((10433, 10463), 'eopf.product.utils.reverse_conv', 'reverse_conv', (['data_type', 'value'], {}), '(data_type, value)\n', (10445, 10463), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((573, 585), 'eopf.product.utils.parse_xml', 'parse_xml', (['f'], {}), '(f)\n', (582, 585), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((2036, 2065), 'os.path.abspath', 'os.path.abspath', (['"""tests/data"""'], {}), "('tests/data')\n", (2051, 2065), False, 'import os\n'), ((3858, 3898), 'eopf.product.utils.apply_xpath', 'apply_xpath', (['tree', 'MAP[attr]', 'NAMESPACES'], {}), '(tree, MAP[attr], NAMESPACES)\n', (3869, 3898), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4491, 4513), 'eopf.product.utils.is_date', 'is_date', (['string_date_3'], {}), '(string_date_3)\n', (4498, 4513), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4873, 4906), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['string_date'], {}), '(string_date)\n', (4893, 4906), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((4910, 4939), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['dt_date'], {}), '(dt_date)\n', (4930, 4939), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((5135, 5168), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['string_date'], {}), '(string_date)\n', (5155, 5168), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((5172, 5201), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['dt_date'], {}), '(dt_date)\n', (5192, 5201), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((5213, 5246), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['string_date'], {}), '(string_date)\n', (5233, 5246), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((5351, 5384), 'eopf.product.utils.convert_to_unix_time', 'convert_to_unix_time', (['string_date'], {}), '(string_date)\n', (5371, 5384), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((7506, 7517), 'eopf.product.utils.conv', 'conv', (['value'], {}), '(value)\n', (7510, 7517), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((8895, 8907), 'eopf.product.utils.conv', 'conv', (['sysmax'], {}), '(sysmax)\n', (8899, 8907), False, 'from eopf.product.utils import apply_xpath, conv, convert_to_unix_time, is_date, parse_xml, reverse_conv, translate_structure\n'), ((7785, 7806), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {}), '()\n', (7804, 7806), True, 'import hypothesis.extra.numpy as xps\n'), ((8759, 8783), 'numpy.int64', 'numpy.int64', (['sys.maxsize'], {}), '(sys.maxsize)\n', (8770, 8783), False, 'import numpy\n'), ((8785, 8817), 'numpy.int64', 'numpy.int64', (['(9223372036854775807)'], {}), '(9223372036854775807)\n', (8796, 8817), False, 'import numpy\n'), ((9128, 9175), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {'endianness': '"""="""', 'sizes': '(64,)'}), "(endianness='=', sizes=(64,))\n", (9146, 9175), True, 'import hypothesis.extra.numpy as xps\n'), ((9339, 9386), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {'endianness': '"""="""', 'sizes': '(32,)'}), "(endianness='=', sizes=(32,))\n", (9357, 9386), True, 'import hypothesis.extra.numpy as xps\n'), ((9550, 9597), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {'endianness': '"""="""', 'sizes': '(16,)'}), "(endianness='=', sizes=(16,))\n", (9568, 9597), True, 'import hypothesis.extra.numpy as xps\n'), ((9759, 9805), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {'endianness': '"""="""', 'sizes': '(8,)'}), "(endianness='=', sizes=(8,))\n", (9777, 9805), True, 'import hypothesis.extra.numpy as xps\n'), ((9842, 9861), 'hypothesis.strategies.floats', 'st.floats', ([], {'width': '(16)'}), '(width=16)\n', (9851, 9861), True, 'import hypothesis.strategies as st\n'), ((9870, 9918), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {'endianness': '"""="""', 'sizes': '(16,)'}), "(endianness='=', sizes=(16,))\n", (9889, 9918), True, 'import hypothesis.extra.numpy as xps\n'), ((9945, 9964), 'hypothesis.strategies.floats', 'st.floats', ([], {'width': '(32)'}), '(width=32)\n', (9954, 9964), True, 'import hypothesis.strategies as st\n'), ((9973, 10021), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {'endianness': '"""="""', 'sizes': '(32,)'}), "(endianness='=', sizes=(32,))\n", (9992, 10021), True, 'import hypothesis.extra.numpy as xps\n'), ((10048, 10067), 'hypothesis.strategies.floats', 'st.floats', ([], {'width': '(64)'}), '(width=64)\n', (10057, 10067), True, 'import hypothesis.strategies as st\n'), ((10076, 10124), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {'endianness': '"""="""', 'sizes': '(64,)'}), "(endianness='=', sizes=(64,))\n", (10095, 10124), True, 'import hypothesis.extra.numpy as xps\n'), ((6177, 6186), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (6184, 6186), True, 'import hypothesis.strategies as st\n'), ((6188, 6201), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (6199, 6201), True, 'import hypothesis.strategies as st\n'), ((6269, 6278), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (6276, 6278), True, 'import hypothesis.strategies as st\n'), ((6280, 6293), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (6291, 6293), True, 'import hypothesis.strategies as st\n'), ((6374, 6383), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (6381, 6383), True, 'import hypothesis.strategies as st\n'), ((6385, 6433), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_infinity': '(False)', 'allow_nan': '(False)'}), '(allow_infinity=False, allow_nan=False)\n', (6394, 6433), True, 'import hypothesis.strategies as st\n'), ((6532, 6553), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {}), '()\n', (6551, 6553), True, 'import hypothesis.extra.numpy as xps\n'), ((6622, 6642), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {}), '()\n', (6640, 6642), True, 'import hypothesis.extra.numpy as xps\n'), ((6709, 6729), 'hypothesis.extra.numpy.boolean_dtypes', 'xps.boolean_dtypes', ([], {}), '()\n', (6727, 6729), True, 'import hypothesis.extra.numpy as xps\n'), ((8448, 8462), 'hypothesis.strategies.datetimes', 'st.datetimes', ([], {}), '()\n', (8460, 8462), True, 'import hypothesis.strategies as st\n'), ((5542, 5590), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_infinity': '(False)', 'allow_nan': '(False)'}), '(allow_infinity=False, allow_nan=False)\n', (5551, 5590), True, 'import hypothesis.strategies as st\n'), ((5709, 5722), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (5720, 5722), True, 'import hypothesis.strategies as st\n'), ((5805, 5818), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (5816, 5818), True, 'import hypothesis.strategies as st\n'), ((5899, 5947), 'hypothesis.strategies.floats', 'st.floats', ([], {'allow_infinity': '(False)', 'allow_nan': '(False)'}), '(allow_infinity=False, allow_nan=False)\n', (5908, 5947), True, 'import hypothesis.strategies as st\n'), ((6017, 6030), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (6028, 6030), True, 'import hypothesis.strategies as st\n'), ((6098, 6111), 'hypothesis.strategies.booleans', 'st.booleans', ([], {}), '()\n', (6109, 6111), True, 'import hypothesis.strategies as st\n'), ((8133, 8154), 'hypothesis.extra.numpy.floating_dtypes', 'xps.floating_dtypes', ([], {}), '()\n', (8152, 8154), True, 'import hypothesis.extra.numpy as xps\n'), ((8298, 8318), 'hypothesis.extra.numpy.integer_dtypes', 'xps.integer_dtypes', ([], {}), '()\n', (8316, 8318), True, 'import hypothesis.extra.numpy as xps\n'), ((9036, 9056), 'numpy.iinfo', 'numpy.iinfo', (['"""int64"""'], {}), "('int64')\n", (9047, 9056), False, 'import numpy\n'), ((9072, 9092), 'numpy.iinfo', 'numpy.iinfo', (['"""int64"""'], {}), "('int64')\n", (9083, 9092), False, 'import numpy\n'), ((9247, 9267), 'numpy.iinfo', 'numpy.iinfo', (['"""int32"""'], {}), "('int32')\n", (9258, 9267), False, 'import numpy\n'), ((9283, 9303), 'numpy.iinfo', 'numpy.iinfo', (['"""int32"""'], {}), "('int32')\n", (9294, 9303), False, 'import numpy\n'), ((9458, 9478), 'numpy.iinfo', 'numpy.iinfo', (['"""int16"""'], {}), "('int16')\n", (9469, 9478), False, 'import numpy\n'), ((9494, 9514), 'numpy.iinfo', 'numpy.iinfo', (['"""int16"""'], {}), "('int16')\n", (9505, 9514), False, 'import numpy\n'), ((9669, 9688), 'numpy.iinfo', 'numpy.iinfo', (['"""int8"""'], {}), "('int8')\n", (9680, 9688), False, 'import numpy\n'), ((9704, 9723), 'numpy.iinfo', 'numpy.iinfo', (['"""int8"""'], {}), "('int8')\n", (9715, 9723), False, 'import numpy\n')]
import pandas as pd import numpy as np import math import matplotlib.pyplot as plt from sklearn import feature_selection as fs from sklearn import naive_bayes from sklearn import model_selection from sklearn import metrics from sklearn import linear_model from sklearn import svm from imblearn.under_sampling import NeighbourhoodCleaningRule from imblearn.over_sampling import SMOTE, RandomOverSampler COLUMN_NAMES = ['sex', 'length', 'diameter', 'height', 'whole weight', 'shucked weight', 'viscera weight', 'shell weight', 'rings'] # feature selection def cal_features_mutual_info(data): y = data['rings'] features = data.loc[:, data.columns != 'rings'] info = fs.mutual_info_regression(features, y) print('========== mutual info ==============') for idx, col in enumerate(COLUMN_NAMES): if col == 'rings': break name = COLUMN_NAMES[idx] print('{0} ==> {1}'.format(name, info[idx])) def cal_feature_variance(data): vt = fs.VarianceThreshold() vt.fit_transform(data) print('======== variance ================') for idx, col in enumerate(COLUMN_NAMES): print('{0} ==> {1}'.format(col, vt.variances_[idx])) def draw_class_hist(Y): bins = [x for x in range(1, 29, 5)] Y.plot.hist(bins=bins) plt.show() # data loading / preprocessing def preprocessing(data): _, v = np.unique(data['sex'], return_inverse=True) data['sex'] = v def load_data(): data = pd.read_csv('../uci_data/abalone.data.txt', header=None, names=COLUMN_NAMES) preprocessing(data) print(data.describe()) return data def oversampling(X, Y): # some class has only one sample # to apply SMOTE we first oversample it randomly X_resampled, Y_resampled = RandomOverSampler().fit_sample(X, Y) X_resampled, Y_resampled = SMOTE().fit_sample(X_resampled, Y_resampled) return (X_resampled, Y_resampled) def undersampling(X, Y): rus = NeighbourhoodCleaningRule(ratio='majority') x_new, y_new = rus.fit_sample(X, Y) return (x_new, y_new) # metrics # 1. metrics for multi-class classification problem def cal_metrics(y_test, y_pred, label): acc = metrics.accuracy_score(y_test, y_pred) print('{0} acc: {1}'.format(label, acc)) prec = metrics.precision_score(y_test, y_pred, average='weighted') print('{0} precision: {1}'.format(label, prec)) recall = metrics.recall_score(y_test, y_pred, average='weighted') print('{0} recall: {1}'.format(label, recall)) # models def gaussian_naive_bayes(x_train, y_train, x_test, y_test): model = naive_bayes.GaussianNB() model.fit(x_train, y_train) y_pred = model.predict(x_test) cal_metrics(y_test, y_pred, 'gaussianNB') def multinomial_naive_bayes(x_train, y_train, x_test, y_test): model = naive_bayes.MultinomialNB() model.fit(x_train, y_train) y_pred = model.predict(x_test) cal_metrics(y_test, y_pred, 'multinomialNB') def logistics_regression(x_train, y_train, x_test, y_test): model = linear_model.LogisticRegression(solver='sag', multi_class='multinomial') model.fit(x_train, y_train) y_pred = model.predict(x_test) cal_metrics(y_test, y_pred, 'logisticsc regression') def select_features_by_stat_info(data): cal_features_mutual_info(data) cal_feature_variance(data) print('==================') # ignore features with low variance return['sex', 'length', 'whole weight', 'shucked weight', 'viscera weight', 'shell weight'] def select_feature_by_L1(data_train, data_test): all_cols = ['sex', 'length', 'diameter', 'height', 'whole weight', 'shucked weight', 'viscera weight', 'shell weight'] Y = data_train['rings'] X = data_train[all_cols] X_test = data_test[all_cols] svc = svm.LinearSVC(penalty='l1', dual=False).fit(X, Y) model = fs.SelectFromModel(svc, threshold=0.5, prefit=True) return (model.transform(X), model.transform(X_test)) if __name__ == '__main__': data = load_data() split_point = math.floor(len(data) * 0.8) data_train = data[: split_point] data_test = data[split_point:] y_train = data_train['rings'] y_test = data_test['rings'] print('======== select features by stat info ========') selected_features = select_features_by_stat_info(data) x_train = data_train[selected_features] x_test = data_test[selected_features] gaussian_naive_bayes(x_train, y_train, x_test, y_test) logistics_regression(x_train, y_train, x_test, y_test) multinomial_naive_bayes(x_train, y_train, x_test, y_test) print('=========== select features by L1 =============') x_train, x_test = select_feature_by_L1(data_train, data_test) gaussian_naive_bayes(x_train, y_train, x_test, y_test) logistics_regression(x_train, y_train, x_test, y_test) multinomial_naive_bayes(x_train, y_train, x_test, y_test) print('============ under sampling ==============') x_res, y_res = undersampling(x_train, y_train) gaussian_naive_bayes(x_res, y_res, x_test, y_test) logistics_regression(x_res, y_res, x_test, y_test) multinomial_naive_bayes(x_res, y_res, x_test, y_test) print('============ over sampling ==============') x_res, y_res = oversampling(x_train, y_train) gaussian_naive_bayes(x_res, y_res, x_test, y_test) logistics_regression(x_res, y_res, x_test, y_test) multinomial_naive_bayes(x_res, y_res, x_test, y_test) #draw_class_hist(data['rings'])
[ "numpy.unique", "sklearn.feature_selection.VarianceThreshold", "pandas.read_csv", "imblearn.under_sampling.NeighbourhoodCleaningRule", "sklearn.feature_selection.SelectFromModel", "imblearn.over_sampling.SMOTE", "sklearn.svm.LinearSVC", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "sklearn.linear_model.LogisticRegression", "imblearn.over_sampling.RandomOverSampler", "sklearn.naive_bayes.MultinomialNB", "sklearn.naive_bayes.GaussianNB", "sklearn.feature_selection.mutual_info_regression", "sklearn.metrics.accuracy_score", "matplotlib.pyplot.show" ]
[((714, 752), 'sklearn.feature_selection.mutual_info_regression', 'fs.mutual_info_regression', (['features', 'y'], {}), '(features, y)\n', (739, 752), True, 'from sklearn import feature_selection as fs\n'), ((1027, 1049), 'sklearn.feature_selection.VarianceThreshold', 'fs.VarianceThreshold', ([], {}), '()\n', (1047, 1049), True, 'from sklearn import feature_selection as fs\n'), ((1331, 1341), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1339, 1341), True, 'import matplotlib.pyplot as plt\n'), ((1411, 1454), 'numpy.unique', 'np.unique', (["data['sex']"], {'return_inverse': '(True)'}), "(data['sex'], return_inverse=True)\n", (1420, 1454), True, 'import numpy as np\n'), ((1504, 1580), 'pandas.read_csv', 'pd.read_csv', (['"""../uci_data/abalone.data.txt"""'], {'header': 'None', 'names': 'COLUMN_NAMES'}), "('../uci_data/abalone.data.txt', header=None, names=COLUMN_NAMES)\n", (1515, 1580), True, 'import pandas as pd\n'), ((1981, 2024), 'imblearn.under_sampling.NeighbourhoodCleaningRule', 'NeighbourhoodCleaningRule', ([], {'ratio': '"""majority"""'}), "(ratio='majority')\n", (2006, 2024), False, 'from imblearn.under_sampling import NeighbourhoodCleaningRule\n'), ((2205, 2243), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (2227, 2243), False, 'from sklearn import metrics\n'), ((2301, 2360), 'sklearn.metrics.precision_score', 'metrics.precision_score', (['y_test', 'y_pred'], {'average': '"""weighted"""'}), "(y_test, y_pred, average='weighted')\n", (2324, 2360), False, 'from sklearn import metrics\n'), ((2427, 2483), 'sklearn.metrics.recall_score', 'metrics.recall_score', (['y_test', 'y_pred'], {'average': '"""weighted"""'}), "(y_test, y_pred, average='weighted')\n", (2447, 2483), False, 'from sklearn import metrics\n'), ((2618, 2642), 'sklearn.naive_bayes.GaussianNB', 'naive_bayes.GaussianNB', ([], {}), '()\n', (2640, 2642), False, 'from sklearn import naive_bayes\n'), ((2832, 2859), 'sklearn.naive_bayes.MultinomialNB', 'naive_bayes.MultinomialNB', ([], {}), '()\n', (2857, 2859), False, 'from sklearn import naive_bayes\n'), ((3049, 3121), 'sklearn.linear_model.LogisticRegression', 'linear_model.LogisticRegression', ([], {'solver': '"""sag"""', 'multi_class': '"""multinomial"""'}), "(solver='sag', multi_class='multinomial')\n", (3080, 3121), False, 'from sklearn import linear_model\n'), ((3942, 3993), 'sklearn.feature_selection.SelectFromModel', 'fs.SelectFromModel', (['svc'], {'threshold': '(0.5)', 'prefit': '(True)'}), '(svc, threshold=0.5, prefit=True)\n', (3960, 3993), True, 'from sklearn import feature_selection as fs\n'), ((1794, 1813), 'imblearn.over_sampling.RandomOverSampler', 'RandomOverSampler', ([], {}), '()\n', (1811, 1813), False, 'from imblearn.over_sampling import SMOTE, RandomOverSampler\n'), ((1862, 1869), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {}), '()\n', (1867, 1869), False, 'from imblearn.over_sampling import SMOTE, RandomOverSampler\n'), ((3880, 3919), 'sklearn.svm.LinearSVC', 'svm.LinearSVC', ([], {'penalty': '"""l1"""', 'dual': '(False)'}), "(penalty='l1', dual=False)\n", (3893, 3919), False, 'from sklearn import svm\n')]
import os import sys import numpy as np import pandas as pd import tensorflow as tf from losses import focal_loss,weighted_binary_crossentropy from utils import Dataset class DeepFM(object): def __init__(self, params): self.feature_size = params['feature_size'] self.field_size = params['field_size'] self.embedding_size = params['embedding_size'] self.deep_layers = params['deep_layers'] self.l2_reg_coef = params['l2_reg'] self.learning_rate = params['learning_rate'] self.pos_ratio = params['pos_ratio'] self.keep_prob_v = params['keep_prob'] self.activate = tf.nn.relu self.weight = {} self.saver=None self.checkpoint_dir = params['checkpoint_dir'] self.build() def build(self): """ feature_size: N field_size: F embedding_size: K batch_size: None """ self.feat_index = tf.placeholder(tf.int32, shape=[None, None], name='feature_index') self.feat_value = tf.placeholder(tf.float32, shape=[None, None], name='feature_value') self.label = tf.placeholder(tf.float32, shape=[None,1], name='label') self.keep_prob = tf.placeholder(tf.float32, shape=[], name='keep_prob') # scaler self.is_training= tf.placeholder(tf.bool, shape=[],name='is_training') #1、-------------------------定义权值----------------------------------------- # FM部分中一次项的权值定义 self.weight['first_order'] = tf.Variable(tf.random_normal([self.feature_size, 1], 0.0, 0.05), # N * 1 name='first_order') # One-hot编码后的输入层与Dense embeddings层的权值定义,即DNN的输入embedding。 self.weight['embedding_weight'] = tf.Variable(tf.random_normal([self.feature_size, self.embedding_size], 0.0, 0.05), # N*K name='embedding_weight') # deep网络部分的weight和bias, deep网络初始输入维度:input_size = F*K num_layer = len(self.deep_layers) input_size = self.field_size * self.embedding_size # glorot_normal = np.sqrt(2.0 / (input_size + self.deep_layers[0])) # for sigmoid he_normal = np.sqrt(2.0 /input_size) # for relu self.weight['layer_0'] = tf.Variable(np.random.normal(loc=0, scale=he_normal, size=(input_size, self.deep_layers[0])), dtype=np.float32) self.weight['bias_0'] = tf.Variable(np.random.normal(loc=0, scale=he_normal, size=(1, self.deep_layers[0])), dtype=np.float32) # 生成deep network里面每层的weight 和 bias for i in range(1, num_layer): he_normal = np.sqrt(2.0 / (self.deep_layers[i - 1])) self.weight['layer_' + str(i)] = tf.Variable(np.random.normal(loc=0, scale=he_normal, size=(self.deep_layers[i - 1], self.deep_layers[i])), dtype=np.float32) self.weight['bias_' + str(i)] = tf.Variable(np.random.normal(loc=0, scale=he_normal, size=(1, self.deep_layers[i])),dtype=np.float32) # deep部分output_size + 一次项output_size + 二次项output_size last_layer_size = self.deep_layers[-1] + self.field_size + self.embedding_size glorot_normal = np.sqrt(2.0 / (last_layer_size + 1)) # 生成最后一层的weight和bias self.weight['last_layer'] = tf.Variable(np.random.normal(loc=0, scale=glorot_normal, size=(last_layer_size, 1)), dtype=np.float32) self.weight['last_bias'] = tf.Variable(tf.constant(0.0), dtype=np.float32) #2、----------------------前向传播------------------------------------ # None*F*K self.embedding_index = tf.nn.embedding_lookup(self.weight['embedding_weight'],self.feat_index) # [None*F*K] .*[None*F*1] = None*F*K self.embedding_part = tf.multiply(self.embedding_index, tf.reshape(self.feat_value, [-1, self.field_size, 1])) # FM部分一阶特征 # None * F*1 self.embedding_first = tf.nn.embedding_lookup(self.weight['first_order'], self.feat_index) #[None*F*1].*[None*F*1] = None*F*1 self.embedding_first = tf.multiply(self.embedding_first, tf.reshape(self.feat_value, [-1, self.field_size, 1])) # None*F self.first_order = tf.reduce_sum(self.embedding_first, 2) # 二阶特征 None*K self.sum_second_order = tf.reduce_sum(self.embedding_part, 1) self.sum_second_order_square = tf.square(self.sum_second_order) self.square_second_order = tf.square(self.embedding_part) self.square_second_order_sum = tf.reduce_sum(self.square_second_order, 1) # 1/2*((a+b)^2 - a^2 - b^2)=ab # None*K self.second_order = 0.5 * tf.subtract(self.sum_second_order_square, self.square_second_order_sum) # FM部分的输出 None*(F+K) self.fm_part = tf.concat([self.first_order, self.second_order], axis=1) # DNN部分 # None*(F*K) self.deep_embedding = tf.reshape(self.embedding_part, [-1, self.field_size * self.embedding_size]) # 全连接部分 for i in range(0, len(self.deep_layers)): self.deep_embedding = tf.add(tf.matmul(self.deep_embedding, self.weight["layer_%d" % i]), self.weight["bias_%d" % i]) # self.deep_embedding =tf.matmul(self.deep_embedding, self.weight["layer_%d" % i]) self.bn_out = tf.layers.batch_normalization(self.deep_embedding, training=self.is_training) # self.bn_out = tf.layers.dropout(self.deep_embedding, rate=self.keep_prob,training=self.is_training) self.deep_embedding = self.activate(self.bn_out) self.deep_embedding = tf.layers.dropout(self.deep_embedding, rate =1.0-self.keep_prob, training= self.is_training) # FM输出与DNN输出拼接 None*(F+K+layer[-1]]) din_all = tf.concat([self.fm_part, self.deep_embedding], axis=1) #None*1 self.out = tf.add(tf.matmul(din_all, self.weight['last_layer']), self.weight['last_bias']) #3. ------------------确定损失--------------------------------------- # loss部分 None*1 self.prob = tf.nn.sigmoid(self.out) # self.entropy_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels= self.label, logits= self.out)) # self.entropy_loss = -tf.reduce_mean( # self.label * tf.log(tf.clip_by_value(self.prob, 1e-10, 1.0))+ (1 - self.label)* tf.log(tf.clip_by_value(1-self.prob,1e-10,1.0))) self.entropy_loss = focal_loss(self.prob, self.label, alpha=0.5, gamma=2) # self.entropy_loss = weighted_binary_crossentropy(self.prob, self.label, pos_ratio=self.pos_ratio) # 正则:sum(w^2)/2*l2_reg_coef self.reg_loss = tf.contrib.layers.l2_regularizer(self.l2_reg_coef)(self.weight["last_layer"]) for i in range(len(self.deep_layers)): self.reg_loss += tf.contrib.layers.l2_regularizer(self.l2_reg_coef)(self.weight["layer_%d" % i]) # tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(self.l2_reg_coef)(self.weight['layer_1'])) # print(self.entropy_loss.shape.as_list(), self.reg_loss.shape.as_list()) self.loss = self.entropy_loss + self.reg_loss self.global_step = tf.Variable(0, trainable=False, name='global_step') self.learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,3000, 0.99,staircase=False) opt = tf.train.AdamOptimizer(self.learning_rate) # opt = tf.train.GradientDescentOptimizer(self.learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) trainable_params = tf.trainable_variables() gradients = tf.gradients(self.loss, trainable_params) clip_gradients, _ = tf.clip_by_global_norm(gradients, 5) with tf.control_dependencies(update_ops): # self.train_op = opt.minimize(self.loss, global_step = self.global_step) self.train_op = opt.apply_gradients(zip(clip_gradients, trainable_params), global_step=self.global_step) self.saver = tf.train.Saver(max_to_keep=3) def train(self, sess, feat_index, feat_value, label): _, step = sess.run([self.train_op, self.global_step], feed_dict={ self.feat_index: feat_index, self.feat_value: feat_value, self.label: label, self.keep_prob: self.keep_prob_v, self.is_training:True}) return step def predict(self, sess, feat_index, feat_value, batch_size=None): if batch_size is None: prob = sess.run([self.prob], feed_dict={ self.feat_index: feat_index, self.feat_value: feat_value, self.keep_prob: 1, self.is_training:False})[0] else: data =Dataset(feat_value, feat_index, [None]*len(feat_index), batch_size, shuffle=False) probs =[] for feat_index, feat_value, _ in data: prob = sess.run([self.prob], feed_dict={ self.feat_index: feat_index, self.feat_value: feat_value, self.keep_prob: 1, self.is_training:False})[0] probs.append(prob.ravel()) prob = np.concatenate(probs) return prob.ravel() def evaluate(self, sess, feat_index, feat_value, label, batch_size=None): tloss, entloss,regloss = 0,0,0 if batch_size is None: tloss, entloss,regloss = sess.run([self.loss, self.entropy_loss, self.reg_loss],feed_dict={ self.feat_index: feat_index, self.feat_value: feat_value, self.label: label, self.keep_prob: 1, self.is_training:False}) else: data = Dataset(feat_value,feat_index,label, batch_size, shuffle=False) for i, (feat_index, feat_value, label) in enumerate(data,1): _tloss, _entloss, _regloss = sess.run([self.loss, self.entropy_loss, self.reg_loss],feed_dict={ self.feat_index: feat_index, self.feat_value: feat_value, self.label: label, self.keep_prob: 1, self.is_training:False}) tloss = tloss+ (_tloss-tloss)/i entloss = entloss + (_entloss-entloss)/i regloss = regloss + (_regloss-regloss)/i return tloss, entloss, regloss def save(self, sess, path, global_step): if self.saver is not None: self.saver.save(sess, save_path=path, global_step= global_step) def restore(self, sess, path): model_file = tf.train.latest_checkpoint(path) if model_file is not None: print('restore model:', model_file) self.saver.restore(sess, save_path=model_file) if __name__ == '__main__': BASE_PATH = os.path.dirname(os.path.abspath(__file__)) params ={'feature_size':None, 'field_size':None, 'embedding_size':4, 'deep_layers':[32,32,32], 'epoch':200, 'batch_size':128, 'learning_rate':0.001, 'l2_reg': 0.001, 'keep_prob':0.7, 'checkpoint_dir':os.path.join(BASE_PATH,'data/deepfm'), 'training_model':True} with tf.Session() as sess: model = DeepFM(params) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # global_step counter etc. sys.stdout.flush() if params['training_model']: #---------------training--------------------------------- for i in range(params['epoch']): print('epoch ={}'.format(i).center(50,'-')) for j, (xi, xv, y) in enumerate(train_data): loss,_, step = model.train(sess, xi, xv, y) if j %1000 ==0: train_loss,train_entropy,train_reg = model.evaluate(sess, Xi,Xv, Y) val_loss,val_entropy, val_reg = model.evaluate(sess, val_Xi, val_Xv, val_y) print('---batch= %d--- \n train_loss=%f,\t train_entropy=%f,\t train_reg=%f \n val_loss=%f,\t val_entropy=%f,\t val_reg=%f' % ( j,train_loss,train_entropy,train_reg, val_loss,val_entropy,val_reg)) if i%10 ==0 or i == params['epoch']-1: model.save(sess, model.checkpoint_dir, i) prob = model.predict(sess, Xi, Xv) hit_rate, top_k = top_ratio_hit_rate(np.array(Y).ravel(), np.array(prob[0]).ravel(), top_ratio=0.001) # ravel return view, flatten return copy print('top-k={}, train-hit-rate={}'.format(top_k ,hit_rate)) #-----------------test----------------------------------- probs =[] test_y=[] for xi, xv, y in test_data: prob = model.predict(sess, xi, xv) # list of np.ndarry probs.extend(prob[0].ravel().tolist()) test_y.extend(y.tolist()) hit_rate, top_k = top_ratio_hit_rate(np.array(test_y).ravel(), np.array(probs).ravel(), top_ratio=0.001) print('top-k={}, test-hit-rate={}'.format(top_k ,hit_rate)) calc_threshold_vs_depth(np.asarray(test_y).ravel(), np.asarray(probs).ravel()) else: model.restore(sess, os.path.split(model.checkpoint_dir)[0]) probs=[] Y =[] for xi, xv, y in train_data: prob = model.predict(sess, xi, xv) # np.ndarry probs.extend(prob[0].ravel().tolist()) Y.extend(y.tolist()) hit_rate, top_k = top_ratio_hit_rate(np.array(Y).ravel(), np.array(probs).ravel(), top_ratio=0.001) print('train-top-k={}, train-hit-rate={}'.format(top_k ,hit_rate)) probs=[] test_y=[] for xi, xv, y in test_data: prob = model.predict(sess, xi, xv) # np.ndarry probs.extend(prob[0].ravel().tolist()) test_y.extend(y.tolist()) hit_rate, top_k = top_ratio_hit_rate(np.array(test_y).ravel(), np.array(probs).ravel(), top_ratio=0.001) print('test-top-k={}, test-hit-rate={}'.format(top_k ,hit_rate))
[ "tensorflow.local_variables_initializer", "numpy.sqrt", "tensorflow.contrib.layers.l2_regularizer", "tensorflow.reduce_sum", "tensorflow.gradients", "numpy.array", "tensorflow.control_dependencies", "tensorflow.clip_by_global_norm", "tensorflow.nn.embedding_lookup", "tensorflow.random_normal", "tensorflow.placeholder", "tensorflow.Session", "numpy.asarray", "os.path.split", "tensorflow.concat", "tensorflow.nn.sigmoid", "tensorflow.layers.dropout", "tensorflow.layers.batch_normalization", "tensorflow.train.exponential_decay", "tensorflow.square", "tensorflow.matmul", "tensorflow.trainable_variables", "tensorflow.train.AdamOptimizer", "sys.stdout.flush", "numpy.concatenate", "numpy.random.normal", "tensorflow.Variable", "losses.focal_loss", "tensorflow.reshape", "tensorflow.subtract", "tensorflow.train.latest_checkpoint", "tensorflow.train.Saver", "os.path.join", "utils.Dataset", "tensorflow.global_variables_initializer", "tensorflow.constant", "os.path.abspath", "tensorflow.get_collection" ]
[((945, 1011), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""feature_index"""'}), "(tf.int32, shape=[None, None], name='feature_index')\n", (959, 1011), True, 'import tensorflow as tf\n'), ((1038, 1106), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, None]', 'name': '"""feature_value"""'}), "(tf.float32, shape=[None, None], name='feature_value')\n", (1052, 1106), True, 'import tensorflow as tf\n'), ((1128, 1185), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 1]', 'name': '"""label"""'}), "(tf.float32, shape=[None, 1], name='label')\n", (1142, 1185), True, 'import tensorflow as tf\n'), ((1210, 1264), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[]', 'name': '"""keep_prob"""'}), "(tf.float32, shape=[], name='keep_prob')\n", (1224, 1264), True, 'import tensorflow as tf\n'), ((1300, 1353), 'tensorflow.placeholder', 'tf.placeholder', (['tf.bool'], {'shape': '[]', 'name': '"""is_training"""'}), "(tf.bool, shape=[], name='is_training')\n", (1314, 1353), True, 'import tensorflow as tf\n'), ((2200, 2225), 'numpy.sqrt', 'np.sqrt', (['(2.0 / input_size)'], {}), '(2.0 / input_size)\n', (2207, 2225), True, 'import numpy as np\n'), ((3212, 3248), 'numpy.sqrt', 'np.sqrt', (['(2.0 / (last_layer_size + 1))'], {}), '(2.0 / (last_layer_size + 1))\n', (3219, 3248), True, 'import numpy as np\n'), ((3625, 3697), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.weight['embedding_weight']", 'self.feat_index'], {}), "(self.weight['embedding_weight'], self.feat_index)\n", (3647, 3697), True, 'import tensorflow as tf\n'), ((3943, 4010), 'tensorflow.nn.embedding_lookup', 'tf.nn.embedding_lookup', (["self.weight['first_order']", 'self.feat_index'], {}), "(self.weight['first_order'], self.feat_index)\n", (3965, 4010), True, 'import tensorflow as tf\n'), ((4272, 4310), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.embedding_first', '(2)'], {}), '(self.embedding_first, 2)\n', (4285, 4310), True, 'import tensorflow as tf\n'), ((4367, 4404), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.embedding_part', '(1)'], {}), '(self.embedding_part, 1)\n', (4380, 4404), True, 'import tensorflow as tf\n'), ((4444, 4476), 'tensorflow.square', 'tf.square', (['self.sum_second_order'], {}), '(self.sum_second_order)\n', (4453, 4476), True, 'import tensorflow as tf\n'), ((4512, 4542), 'tensorflow.square', 'tf.square', (['self.embedding_part'], {}), '(self.embedding_part)\n', (4521, 4542), True, 'import tensorflow as tf\n'), ((4582, 4624), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.square_second_order', '(1)'], {}), '(self.square_second_order, 1)\n', (4595, 4624), True, 'import tensorflow as tf\n'), ((4841, 4897), 'tensorflow.concat', 'tf.concat', (['[self.first_order, self.second_order]'], {'axis': '(1)'}), '([self.first_order, self.second_order], axis=1)\n', (4850, 4897), True, 'import tensorflow as tf\n'), ((4966, 5042), 'tensorflow.reshape', 'tf.reshape', (['self.embedding_part', '[-1, self.field_size * self.embedding_size]'], {}), '(self.embedding_part, [-1, self.field_size * self.embedding_size])\n', (4976, 5042), True, 'import tensorflow as tf\n'), ((5846, 5900), 'tensorflow.concat', 'tf.concat', (['[self.fm_part, self.deep_embedding]'], {'axis': '(1)'}), '([self.fm_part, self.deep_embedding], axis=1)\n', (5855, 5900), True, 'import tensorflow as tf\n'), ((6143, 6166), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['self.out'], {}), '(self.out)\n', (6156, 6166), True, 'import tensorflow as tf\n'), ((6509, 6562), 'losses.focal_loss', 'focal_loss', (['self.prob', 'self.label'], {'alpha': '(0.5)', 'gamma': '(2)'}), '(self.prob, self.label, alpha=0.5, gamma=2)\n', (6519, 6562), False, 'from losses import focal_loss, weighted_binary_crossentropy\n'), ((7268, 7319), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)', 'name': '"""global_step"""'}), "(0, trainable=False, name='global_step')\n", (7279, 7319), True, 'import tensorflow as tf\n'), ((7349, 7446), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['self.learning_rate', 'self.global_step', '(3000)', '(0.99)'], {'staircase': '(False)'}), '(self.learning_rate, self.global_step, 3000, 0.99,\n staircase=False)\n', (7375, 7446), True, 'import tensorflow as tf\n'), ((7455, 7497), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['self.learning_rate'], {}), '(self.learning_rate)\n', (7477, 7497), True, 'import tensorflow as tf\n'), ((7589, 7631), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS'], {}), '(tf.GraphKeys.UPDATE_OPS)\n', (7606, 7631), True, 'import tensorflow as tf\n'), ((7660, 7684), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (7682, 7684), True, 'import tensorflow as tf\n'), ((7705, 7746), 'tensorflow.gradients', 'tf.gradients', (['self.loss', 'trainable_params'], {}), '(self.loss, trainable_params)\n', (7717, 7746), True, 'import tensorflow as tf\n'), ((7775, 7811), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['gradients', '(5)'], {}), '(gradients, 5)\n', (7797, 7811), True, 'import tensorflow as tf\n'), ((8086, 8115), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(3)'}), '(max_to_keep=3)\n', (8100, 8115), True, 'import tensorflow as tf\n'), ((10976, 11008), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['path'], {}), '(path)\n', (11002, 11008), True, 'import tensorflow as tf\n'), ((11214, 11239), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (11229, 11239), False, 'import os\n'), ((11526, 11564), 'os.path.join', 'os.path.join', (['BASE_PATH', '"""data/deepfm"""'], {}), "(BASE_PATH, 'data/deepfm')\n", (11538, 11564), False, 'import os\n'), ((11607, 11619), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (11617, 11619), True, 'import tensorflow as tf\n'), ((11798, 11816), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (11814, 11816), False, 'import sys\n'), ((1517, 1568), 'tensorflow.random_normal', 'tf.random_normal', (['[self.feature_size, 1]', '(0.0)', '(0.05)'], {}), '([self.feature_size, 1], 0.0, 0.05)\n', (1533, 1568), True, 'import tensorflow as tf\n'), ((1770, 1839), 'tensorflow.random_normal', 'tf.random_normal', (['[self.feature_size, self.embedding_size]', '(0.0)', '(0.05)'], {}), '([self.feature_size, self.embedding_size], 0.0, 0.05)\n', (1786, 1839), True, 'import tensorflow as tf\n'), ((2284, 2369), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'he_normal', 'size': '(input_size, self.deep_layers[0])'}), '(loc=0, scale=he_normal, size=(input_size, self.deep_layers[0])\n )\n', (2300, 2369), True, 'import numpy as np\n'), ((2428, 2499), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'he_normal', 'size': '(1, self.deep_layers[0])'}), '(loc=0, scale=he_normal, size=(1, self.deep_layers[0]))\n', (2444, 2499), True, 'import numpy as np\n'), ((2625, 2663), 'numpy.sqrt', 'np.sqrt', (['(2.0 / self.deep_layers[i - 1])'], {}), '(2.0 / self.deep_layers[i - 1])\n', (2632, 2663), True, 'import numpy as np\n'), ((3326, 3397), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'glorot_normal', 'size': '(last_layer_size, 1)'}), '(loc=0, scale=glorot_normal, size=(last_layer_size, 1))\n', (3342, 3397), True, 'import numpy as np\n'), ((3464, 3480), 'tensorflow.constant', 'tf.constant', (['(0.0)'], {}), '(0.0)\n', (3475, 3480), True, 'import tensorflow as tf\n'), ((3808, 3861), 'tensorflow.reshape', 'tf.reshape', (['self.feat_value', '[-1, self.field_size, 1]'], {}), '(self.feat_value, [-1, self.field_size, 1])\n', (3818, 3861), True, 'import tensorflow as tf\n'), ((4173, 4226), 'tensorflow.reshape', 'tf.reshape', (['self.feat_value', '[-1, self.field_size, 1]'], {}), '(self.feat_value, [-1, self.field_size, 1])\n', (4183, 4226), True, 'import tensorflow as tf\n'), ((4716, 4787), 'tensorflow.subtract', 'tf.subtract', (['self.sum_second_order_square', 'self.square_second_order_sum'], {}), '(self.sum_second_order_square, self.square_second_order_sum)\n', (4727, 4787), True, 'import tensorflow as tf\n'), ((5402, 5479), 'tensorflow.layers.batch_normalization', 'tf.layers.batch_normalization', (['self.deep_embedding'], {'training': 'self.is_training'}), '(self.deep_embedding, training=self.is_training)\n', (5431, 5479), True, 'import tensorflow as tf\n'), ((5689, 5786), 'tensorflow.layers.dropout', 'tf.layers.dropout', (['self.deep_embedding'], {'rate': '(1.0 - self.keep_prob)', 'training': 'self.is_training'}), '(self.deep_embedding, rate=1.0 - self.keep_prob, training=\n self.is_training)\n', (5706, 5786), True, 'import tensorflow as tf\n'), ((5943, 5988), 'tensorflow.matmul', 'tf.matmul', (['din_all', "self.weight['last_layer']"], {}), "(din_all, self.weight['last_layer'])\n", (5952, 5988), True, 'import tensorflow as tf\n'), ((6741, 6791), 'tensorflow.contrib.layers.l2_regularizer', 'tf.contrib.layers.l2_regularizer', (['self.l2_reg_coef'], {}), '(self.l2_reg_coef)\n', (6773, 6791), True, 'import tensorflow as tf\n'), ((7825, 7860), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['update_ops'], {}), '(update_ops)\n', (7848, 7860), True, 'import tensorflow as tf\n'), ((9266, 9287), 'numpy.concatenate', 'np.concatenate', (['probs'], {}), '(probs)\n', (9280, 9287), True, 'import numpy as np\n'), ((9948, 10013), 'utils.Dataset', 'Dataset', (['feat_value', 'feat_index', 'label', 'batch_size'], {'shuffle': '(False)'}), '(feat_value, feat_index, label, batch_size, shuffle=False)\n', (9955, 10013), False, 'from utils import Dataset\n'), ((11677, 11710), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (11708, 11710), True, 'import tensorflow as tf\n'), ((11729, 11761), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (11759, 11761), True, 'import tensorflow as tf\n'), ((2723, 2820), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'he_normal', 'size': '(self.deep_layers[i - 1], self.deep_layers[i])'}), '(loc=0, scale=he_normal, size=(self.deep_layers[i - 1],\n self.deep_layers[i]))\n', (2739, 2820), True, 'import numpy as np\n'), ((2947, 3018), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': 'he_normal', 'size': '(1, self.deep_layers[i])'}), '(loc=0, scale=he_normal, size=(1, self.deep_layers[i]))\n', (2963, 3018), True, 'import numpy as np\n'), ((5151, 5210), 'tensorflow.matmul', 'tf.matmul', (['self.deep_embedding', "self.weight['layer_%d' % i]"], {}), "(self.deep_embedding, self.weight['layer_%d' % i])\n", (5160, 5210), True, 'import tensorflow as tf\n'), ((6895, 6945), 'tensorflow.contrib.layers.l2_regularizer', 'tf.contrib.layers.l2_regularizer', (['self.l2_reg_coef'], {}), '(self.l2_reg_coef)\n', (6927, 6945), True, 'import tensorflow as tf\n'), ((13867, 13902), 'os.path.split', 'os.path.split', (['model.checkpoint_dir'], {}), '(model.checkpoint_dir)\n', (13880, 13902), False, 'import os\n'), ((14205, 14216), 'numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (14213, 14216), True, 'import numpy as np\n'), ((14226, 14241), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (14234, 14241), True, 'import numpy as np\n'), ((14640, 14656), 'numpy.array', 'np.array', (['test_y'], {}), '(test_y)\n', (14648, 14656), True, 'import numpy as np\n'), ((14666, 14681), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (14674, 14681), True, 'import numpy as np\n'), ((12917, 12928), 'numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (12925, 12928), True, 'import numpy as np\n'), ((12938, 12955), 'numpy.array', 'np.array', (['prob[0]'], {}), '(prob[0])\n', (12946, 12955), True, 'import numpy as np\n'), ((13561, 13577), 'numpy.array', 'np.array', (['test_y'], {}), '(test_y)\n', (13569, 13577), True, 'import numpy as np\n'), ((13587, 13602), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (13595, 13602), True, 'import numpy as np\n'), ((13753, 13771), 'numpy.asarray', 'np.asarray', (['test_y'], {}), '(test_y)\n', (13763, 13771), True, 'import numpy as np\n'), ((13781, 13798), 'numpy.asarray', 'np.asarray', (['probs'], {}), '(probs)\n', (13791, 13798), True, 'import numpy as np\n')]