code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import numpy as np from math import log from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error, classification_report from math import sqrt import json from pprint import pprint import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--problems', type=str, help='file path to problems.json') parser.add_argument('-s', '--submissions', type=str, help='file path to user_submissions.json') parser.add_argument('-k', type=int, default=1, help='k-fold cross validation') args = parser.parse_args() with open(args.problems, 'r') as file: problems = json.load(file) problem_id_2_tag_ids = {problem['id']: problem['tags'] for problem in problems} with open(args.submissions, 'r') as file: user_submissions = json.load(file) max_skill = max([max(problem['tags']) for problem in problems if len(problem['tags']) > 0]) + 1 print('max_skill:', max_skill) def read_data(training, group, expand_tags=False): x = [] y = [] for user_data in user_submissions: user_group = user_data['group'] if training and user_group == group \ or not training and user_group != group: continue submissions = user_data['submissions'] user_success = {} user_fail = {} for sub in submissions: tags = problem_id_2_tag_ids[sub['problem']] if not expand_tags: y.append(sub['verdict']) x.append([0] * 3 * max_skill) for tag in tags: s = user_success.get(tag, 1) f = user_fail.get(tag, 1) x[-1][tag * 3 + 0] = 1 x[-1][tag * 3 + 1] = log(s) x[-1][tag * 3 + 2] = log(f) if sub['verdict'] == 1: user_success[tag] = s + 1 else: user_fail[tag] = f + 1 else: for tag in tags: s = user_success.get(tag, 1) f = user_fail.get(tag, 1) x.append([0] * 3 * max_skill) x[-1][tag * 3 + 0] = 1 x[-1][tag * 3 + 1] = log(s) x[-1][tag * 3 + 2] = log(f) if sub['verdict'] == 1: y.append(1) user_success[tag] = s + 1 else: y.append(0) user_fail[tag] = f + 1 return x, y def train(group): model = LogisticRegression() x, y = read_data(training=True, group=group, expand_tags=False) print('Fitting') model.fit(x, y) x, y = read_data(training=False, group=group, expand_tags=False) print('Predicting') pred = model.predict_proba(x)[:, 1] auc = roc_auc_score(y, pred) rmse = sqrt(mean_squared_error(y, pred)) mae = mean_absolute_error(y, pred) print('ROC AUC: {}'.format(auc)) print('RMSE: {}'.format(rmse)) print('MAE: {}'.format(mae)) # res = np.zeros(pred.shape[0]) # res[pred >= 0.5] = 1 # print(classification_report(y, res)) return auc, rmse, mae def main(): k = args.k auc = np.zeros(k) rmse = np.zeros(k) mae = np.zeros(k) for i in range(k): print('group: %d' % i) auc[i], rmse[i], mae[i] = train(i) print('-' * 20) print('ROC AUC: {} (+/- {})'.format(auc.mean(), auc.std())) print('RMSE: {} (+/- {})'.format(rmse.mean(), rmse.std())) print('MAE: {} (+/- {})'.format(mae.mean(), mae.std())) if __name__ == '__main__': main()
[ "argparse.ArgumentParser", "sklearn.metrics.roc_auc_score", "sklearn.linear_model.LogisticRegression", "sklearn.metrics.mean_squared_error", "numpy.zeros", "math.log", "json.load", "sklearn.metrics.mean_absolute_error" ]
[((295, 374), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), '(formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n', (318, 374), False, 'import argparse\n'), ((724, 739), 'json.load', 'json.load', (['file'], {}), '(file)\n', (733, 739), False, 'import json\n'), ((888, 903), 'json.load', 'json.load', (['file'], {}), '(file)\n', (897, 903), False, 'import json\n'), ((2719, 2739), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (2737, 2739), False, 'from sklearn.linear_model import LogisticRegression\n'), ((2999, 3021), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y', 'pred'], {}), '(y, pred)\n', (3012, 3021), False, 'from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error, classification_report\n'), ((3079, 3107), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['y', 'pred'], {}), '(y, pred)\n', (3098, 3107), False, 'from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error, classification_report\n'), ((3396, 3407), 'numpy.zeros', 'np.zeros', (['k'], {}), '(k)\n', (3404, 3407), True, 'import numpy as np\n'), ((3420, 3431), 'numpy.zeros', 'np.zeros', (['k'], {}), '(k)\n', (3428, 3431), True, 'import numpy as np\n'), ((3443, 3454), 'numpy.zeros', 'np.zeros', (['k'], {}), '(k)\n', (3451, 3454), True, 'import numpy as np\n'), ((3039, 3066), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y', 'pred'], {}), '(y, pred)\n', (3057, 3066), False, 'from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error, classification_report\n'), ((1851, 1857), 'math.log', 'log', (['s'], {}), '(s)\n', (1854, 1857), False, 'from math import log\n'), ((1900, 1906), 'math.log', 'log', (['f'], {}), '(f)\n', (1903, 1906), False, 'from math import log\n'), ((2365, 2371), 'math.log', 'log', (['s'], {}), '(s)\n', (2368, 2371), False, 'from math import log\n'), ((2414, 2420), 'math.log', 'log', (['f'], {}), '(f)\n', (2417, 2420), False, 'from math import log\n')]
from __future__ import unicode_literals import json import numpy as np from builtins import str from abc import ABCMeta, abstractmethod from pychemia import HAS_PYMONGO from pychemia.utils.computing import deep_unicode if HAS_PYMONGO: from pychemia.db import PyChemiaDB class Population: __metaclass__ = ABCMeta """ General class for all optimization algorithms that uses fixed and blocked Generations """ def __init__(self, name, tag, use_mongo=True): name = deep_unicode(name) self.tag = tag self.pcdb = None if isinstance(name, str): self.name = name if use_mongo: self.pcdb = PyChemiaDB(name) else: self.name = name.name if use_mongo: self.pcdb = name def __iter__(self): return self.pcdb.entries.find() def __len__(self): return len(self.members) def __str__(self): ret = ' Population Name: %s\n' % self.name ret += ' Tag: %s\n' % self.tag ret += ' Members: %s\n' % len(self) return ret def disable(self, entry_id): self.pcdb.entries.update({'_id': entry_id}, {'$set': {'status.' + self.tag: False}}) def enable(self, entry_id): self.pcdb.entries.update({'_id': entry_id}, {'$set': {'status.' + self.tag: True}}) def get_values(self, selection): ret = {} for i in selection: ret[i] = self.value(i) return ret def update_properties(self, entry_id, new_properties): self.pcdb.update(entry_id, properties=new_properties) def set_in_properties(self, entry_id, field, value): return self.pcdb.entries.update_one({'_id': entry_id}, {'$set': {'properties.'+field: value}}) def get_population_info(self): return self.pcdb.db.population_info.find_one({'tag': self.tag}) def insert_entry(self, entry): if 'structure' not in entry: entry['structure']={} if 'properties' not in entry: entry['properties']={} if 'status' not in entry: entry['status']={} self.pcdb.entries.insert(entry) def get_structure(self, entry_id): return self.pcdb.get_structure(entry_id) def set_structure(self, entry_id, structure): return self.pcdb.update(entry_id, structure=structure) def get_entry(self, entry_id, projection=None, with_id=True): """ Return an entry identified by 'entry_id' :param with_id: :param projection: Insert that projection into the query :param entry_id: A database identifier :return: """ if projection is None: projection = {} if not with_id: projection['_id']=0 entry = self.pcdb.entries.find_one({'_id': entry_id}, projection) return entry def ids_sorted(self, selection): values = np.array([self.value(i) for i in selection]) sorted_indices = np.argsort(values) return np.array(selection)[sorted_indices] def load_json(self, filename): filep = open(filename, 'r') data = json.load(filep) for entry in data: self.pcdb.entries.insert(entry) def random_population(self, n): """ Create N new random structures to the population :param n: (int) The number of new structures :return: (list) The identifiers for the new structures """ return [self.add_random() for i in range(n)] def replace_failed(self): pass def save_info(self): data = self.pcdb.db.population_info.find_one({'_id': self.tag}) if data is None: data = self.to_dict data['_id'] = self.tag self.pcdb.db.population_info.insert(data) else: self.pcdb.db.population_info.update({'_id': self.tag}, self.to_dict) def save_json(self, filename): ret = [] for entry_id in self.members: ret.append(self.get_entry(entry_id, with_id=False)) filep = open(filename, 'w') json.dump(ret, filep, sort_keys=True, indent=4, separators=(',', ': ')) def unlock_all(self, name=None): for i in self.members: self.pcdb.unlock(i, name=name) @abstractmethod def add_random(self): pass @abstractmethod def check_duplicates(self, ids): pass @abstractmethod def cross(self, ids): pass @abstractmethod def distance(self, entry_id, entry_jd): pass @abstractmethod def get_duplicates(self, ids): pass @abstractmethod def from_dict(self, population_dict): pass @abstractmethod def is_evaluated(self, entry_id): pass @abstractmethod def move_random(self, entry_id, factor=0.2, in_place=False, kind='move'): pass @abstractmethod def move(self, entry_id, entry_jd, factor=0.2, in_place=False): pass @abstractmethod def new_entry(self, data, active=True): pass @abstractmethod def recover(self): pass @abstractmethod def value(self, entry_id): pass @abstractmethod def str_entry(self, entry_id): pass @property def actives(self): return [entry['_id'] for entry in self.pcdb.entries.find({'status.' + self.tag: True}, {'_id': 1})] @property def actives_evaluated(self): return [x for x in self.actives if self.is_evaluated(x)] @property def actives_no_evaluated(self): return [x for x in self.actives if not self.is_evaluated(x)] @property def evaluated(self): return [entry for entry in self.members if self.is_evaluated(entry)] @property def fraction_evaluated(self): ret = np.sum([1 for i in self.actives if self.is_evaluated(i)]) return float(ret) / len(self.actives) @property def members(self): return [x['_id'] for x in self.pcdb.entries.find({}, {'_id': 1})] @property def to_dict(self): return {'name': self.name, 'tag': self.tag} @property def best_candidate(self): return self.ids_sorted(self.evaluated)[0] def refine_progressive(self, entry_id): pass
[ "pychemia.utils.computing.deep_unicode", "pychemia.db.PyChemiaDB", "numpy.argsort", "numpy.array", "json.load", "json.dump" ]
[((501, 519), 'pychemia.utils.computing.deep_unicode', 'deep_unicode', (['name'], {}), '(name)\n', (513, 519), False, 'from pychemia.utils.computing import deep_unicode\n'), ((3036, 3054), 'numpy.argsort', 'np.argsort', (['values'], {}), '(values)\n', (3046, 3054), True, 'import numpy as np\n'), ((3193, 3209), 'json.load', 'json.load', (['filep'], {}), '(filep)\n', (3202, 3209), False, 'import json\n'), ((4151, 4222), 'json.dump', 'json.dump', (['ret', 'filep'], {'sort_keys': '(True)', 'indent': '(4)', 'separators': "(',', ': ')"}), "(ret, filep, sort_keys=True, indent=4, separators=(',', ': '))\n", (4160, 4222), False, 'import json\n'), ((3070, 3089), 'numpy.array', 'np.array', (['selection'], {}), '(selection)\n', (3078, 3089), True, 'import numpy as np\n'), ((685, 701), 'pychemia.db.PyChemiaDB', 'PyChemiaDB', (['name'], {}), '(name)\n', (695, 701), False, 'from pychemia.db import PyChemiaDB\n')]
import os import os.path as osp import pickle import time import numpy as np from multiprocessing import Pool from ..utils import get_bbox_dim from .misc import read_img_info, change_cls_order, get_classes def load_imgs(img_dir, ann_dir=None, classes=None, nproc=10, def_bbox_type='poly'): assert def_bbox_type in ['hbb', 'obb', 'poly', None] assert osp.isdir(img_dir), f'The {img_dir} is not an existing dir!' if ann_dir is not None: print('ann_dir is no use in load_imgs function') print('Starting loading images information') start_time = time.time() imgpaths = [osp.join(img_dir, imgfile) for imgfile in os.listdir(img_dir)] if nproc > 1: pool = Pool(nproc) infos = pool.map(read_img_info, imgpaths) pool.close() else: infos = list(map(read_img_info, imgpaths)) if def_bbox_type is not None: for info in infos: if info is None: continue bbox_dim = get_bbox_dim(def_bbox_type) bboxes = np.zeros((0, bbox_dim), dtype=np.float32) labels = np.zeros((0, ), dtype=np.int64) info['ann'] = dict(bboxes=bboxes, labels=labels) classes = () if classes is None else classes end_time = time.time() print(f'Finishing loading images, get {len(infos)} iamges,', f'using {end_time-start_time:.3f}s.') return infos, classes def load_pkl(ann_dir, img_dir=None, classes=None, nproc=10): assert osp.isfile(ann_dir), f'The {ann_dir} is not an existing pkl file!' assert img_dir is None or osp.isdir(img_dir), f'The {img_dir} is not an existing dir!' print('Starting loading pkl information') start_time = time.time() data = pickle.load(open(ann_dir, 'rb')) old_classes, contents = data['cls'], data['content'] if img_dir is not None: imgpaths = [osp.join(img_dir, content['filename']) for content in contents] if nproc > 1: pool = Pool(nproc) infos = pool.map(read_img_info, imgpaths) pool.close() else: infos = list(map(read_img_info, imgpaths)) for info, content in zip(infos, contents): content.update(info) if classes is None: classes = old_classes else: classes = get_classes(classes) change_cls_order(contents, old_classes, classes) end_time = time.time() print(f'Finishing loading pkl, get {len(contents)} iamges,', f'using {end_time-start_time:.3f}s.') return contents, classes def save_pkl(save_dir, contents, classes): assert save_dir.endswith('.pkl') filepath = osp.split(save_dir)[0] if not osp.exists(filepath): os.makedirs(filepath) data = dict(cls=classes, content=contents) pickle.dump(data, open(save_dir, 'wb'))
[ "os.path.exists", "os.listdir", "os.makedirs", "os.path.join", "os.path.split", "os.path.isfile", "numpy.zeros", "os.path.isdir", "multiprocessing.Pool", "time.time" ]
[((376, 394), 'os.path.isdir', 'osp.isdir', (['img_dir'], {}), '(img_dir)\n', (385, 394), True, 'import os.path as osp\n'), ((589, 600), 'time.time', 'time.time', ([], {}), '()\n', (598, 600), False, 'import time\n'), ((1281, 1292), 'time.time', 'time.time', ([], {}), '()\n', (1290, 1292), False, 'import time\n'), ((1506, 1525), 'os.path.isfile', 'osp.isfile', (['ann_dir'], {}), '(ann_dir)\n', (1516, 1525), True, 'import os.path as osp\n'), ((1728, 1739), 'time.time', 'time.time', ([], {}), '()\n', (1737, 1739), False, 'import time\n'), ((2436, 2447), 'time.time', 'time.time', ([], {}), '()\n', (2445, 2447), False, 'import time\n'), ((617, 643), 'os.path.join', 'osp.join', (['img_dir', 'imgfile'], {}), '(img_dir, imgfile)\n', (625, 643), True, 'import os.path as osp\n'), ((729, 740), 'multiprocessing.Pool', 'Pool', (['nproc'], {}), '(nproc)\n', (733, 740), False, 'from multiprocessing import Pool\n'), ((1603, 1621), 'os.path.isdir', 'osp.isdir', (['img_dir'], {}), '(img_dir)\n', (1612, 1621), True, 'import os.path as osp\n'), ((2687, 2706), 'os.path.split', 'osp.split', (['save_dir'], {}), '(save_dir)\n', (2696, 2706), True, 'import os.path as osp\n'), ((2721, 2741), 'os.path.exists', 'osp.exists', (['filepath'], {}), '(filepath)\n', (2731, 2741), True, 'import os.path as osp\n'), ((2751, 2772), 'os.makedirs', 'os.makedirs', (['filepath'], {}), '(filepath)\n', (2762, 2772), False, 'import os\n'), ((675, 694), 'os.listdir', 'os.listdir', (['img_dir'], {}), '(img_dir)\n', (685, 694), False, 'import os\n'), ((1061, 1102), 'numpy.zeros', 'np.zeros', (['(0, bbox_dim)'], {'dtype': 'np.float32'}), '((0, bbox_dim), dtype=np.float32)\n', (1069, 1102), True, 'import numpy as np\n'), ((1124, 1154), 'numpy.zeros', 'np.zeros', (['(0,)'], {'dtype': 'np.int64'}), '((0,), dtype=np.int64)\n', (1132, 1154), True, 'import numpy as np\n'), ((1890, 1928), 'os.path.join', 'osp.join', (['img_dir', "content['filename']"], {}), "(img_dir, content['filename'])\n", (1898, 1928), True, 'import os.path as osp\n'), ((2015, 2026), 'multiprocessing.Pool', 'Pool', (['nproc'], {}), '(nproc)\n', (2019, 2026), False, 'from multiprocessing import Pool\n')]
import numpy as np import cv2 import math import datetime from datetime import timedelta as Delta h=300 w=300 cap = cv2.VideoCapture(0) SUN_LOC=(200,70) SUN_RSIZE=20 ORBITAL_R=10 def Orbiral(frame,Centerloc,orbit_r,size_r,phi,color): x_orbit=Centerloc[0]+int(orbit_r*np.cos(np.deg2rad(phi))) y_orbit=Centerloc[1]+int(orbit_r*np.sin(np.deg2rad(phi))) #print(f"x:{x_orbit} y:{y_orbit} phi:{int(orbitphi)}") frame= cv2.circle(frame,(x_orbit,y_orbit),size_r, color, -1) return frame ORBITAL_RSIZE=3 ORBITAL_PHI=0 ORBITAL_DPHI=1 #0.5deg delta dr=(SUN_RSIZE+ORBITAL_R) #*(orbitdphi) #*np.pi/180) orbitloc=(SUN_LOC[0],SUN_LOC[1]+SUN_RSIZE+ORBITAL_R) satsn=0 #2021/05/06 Window priority print(cv2.WND_PROP_FULLSCREEN) cv2.namedWindow("Frame", cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty("Frame",cv2.WND_PROP_FULLSCREEN,0) Start_Time=datetime.datetime.today() Delta_T=60 #Sat_Time_Space=Delta(minutes=1) Sat_Time_Space=Delta(seconds=Delta_T) Sat_dic={} Poff=180 Roff=0 #mins=time.minute while True: _, frame = cap.read() frame_time=datetime.datetime.today() if frame_time >= Sat_Time_Space+Start_Time: Start_Time=frame_time dr=(SUN_RSIZE+ORBITAL_R) Sat_dic[satsn]={"Time":Start_Time,"Phi_Offset":Poff,"Sat_Radius":dr} print("New Sat added") print(Sat_dic[satsn]) Poff-=30 satsn+=1 if Poff <=-180: Poff=180 ORBITAL_R+=5 print(frame_time) #frame = cv2.resize(frame,(h,w)) if(frame is None): continue frame = cv2.circle(frame,SUN_LOC,SUN_RSIZE, (0,0,250), -1) #Satn to frame # frame=cv2.putText(frame,str(satsn),(SUN_LOC[0]-15,SUN_LOC[1]+15), # cv2.FONT_HERSHEY_PLAIN,3,(255,255,255)) if satsn: for n,sat in Sat_dic.items(): frame=Orbiral(frame,SUN_LOC,sat["Sat_Radius"],ORBITAL_RSIZE,ORBITAL_PHI-sat["Phi_Offset"],(0,0,255)) #for offphi in range(-180,180,satsn): #if n==satsn: # for R_OFF, fadeSeconds in zip(np.linspace(ORBITAL_RSIZE,1,ORBITAL_RSIZE),np.linspace(0,Delta//2,int(ORBITAL_RSIZE))): # if frame_time >= Sat_Time_Space+fadeSeconds: # print("Fade:",R_OFF) # frame=Orbiral(frame,SUN_LOC,sat["Sat_Radius"],ORBITAL_RSIZE-int(R_OFF),ORBITAL_PHI-sat["Phi_Offset"],(255,0,255)) # else: #frame=Orbiral(frame,SUN_LOC,sat["Sat_Radius"],ORBITAL_RSIZE,ORBITAL_PHI-sat["Phi_Offset"],(0,0,255)) ORBITAL_PHI+=ORBITAL_DPHI if ORBITAL_PHI>=360: ORBITAL_PHI=0 #Line #img = cv2.line(frame,logoloc,orbitloc,(255,0,0),5) cv2.imshow('Frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # VideoCaptureオブジェクト破棄 cap.release() cv2.destroyAllWindows()
[ "cv2.setWindowProperty", "cv2.imshow", "cv2.circle", "numpy.deg2rad", "cv2.destroyAllWindows", "cv2.VideoCapture", "datetime.datetime.today", "datetime.timedelta", "cv2.waitKey", "cv2.namedWindow" ]
[((125, 144), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (141, 144), False, 'import cv2\n'), ((775, 824), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Frame"""', 'cv2.WND_PROP_FULLSCREEN'], {}), "('Frame', cv2.WND_PROP_FULLSCREEN)\n", (790, 824), False, 'import cv2\n'), ((826, 884), 'cv2.setWindowProperty', 'cv2.setWindowProperty', (['"""Frame"""', 'cv2.WND_PROP_FULLSCREEN', '(0)'], {}), "('Frame', cv2.WND_PROP_FULLSCREEN, 0)\n", (847, 884), False, 'import cv2\n'), ((899, 924), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (922, 924), False, 'import datetime\n'), ((987, 1009), 'datetime.timedelta', 'Delta', ([], {'seconds': 'Delta_T'}), '(seconds=Delta_T)\n', (992, 1009), True, 'from datetime import timedelta as Delta\n'), ((2968, 2991), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2989, 2991), False, 'import cv2\n'), ((457, 513), 'cv2.circle', 'cv2.circle', (['frame', '(x_orbit, y_orbit)', 'size_r', 'color', '(-1)'], {}), '(frame, (x_orbit, y_orbit), size_r, color, -1)\n', (467, 513), False, 'import cv2\n'), ((1117, 1142), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (1140, 1142), False, 'import datetime\n'), ((1654, 1708), 'cv2.circle', 'cv2.circle', (['frame', 'SUN_LOC', 'SUN_RSIZE', '(0, 0, 250)', '(-1)'], {}), '(frame, SUN_LOC, SUN_RSIZE, (0, 0, 250), -1)\n', (1664, 1708), False, 'import cv2\n'), ((2839, 2865), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (2849, 2865), False, 'import cv2\n'), ((2874, 2888), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2885, 2888), False, 'import cv2\n'), ((304, 319), 'numpy.deg2rad', 'np.deg2rad', (['phi'], {}), '(phi)\n', (314, 319), True, 'import numpy as np\n'), ((367, 382), 'numpy.deg2rad', 'np.deg2rad', (['phi'], {}), '(phi)\n', (377, 382), True, 'import numpy as np\n')]
import cv2 import urllib import numpy as np import multiprocessing as mp stream = 'http://192.168.53.114:8000/streamLow.mjpg' stream2 = 'http://192.168.53.114:8001/streamLow.mjpg' def procImg(str, wind, stop): bytes = '' stream = urllib.urlopen(str) while not stop.is_set(): try: bytes += stream.read(4096) a = bytes.find('\xff\xd8') b = bytes.find('\xff\xd9') if wind == 'Low': c = bytes.find('\xff\xaa\xee') if a != -1 and b != -1: jpg = bytes[a:b+2] if wind == 'Low': if c != -1: str = bytes[b+2:c] print(str) bytes = bytes[c+3:] else: bytes = bytes[b+2:] else: bytes = bytes[b+2:] i = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8), cv2.IMREAD_COLOR) cv2.imshow(wind, i) cv2.waitKey(1) if cv2.waitKey(1) == ord('q'): stop.set() break except: pass if __name__ == '__main__': st = mp.Event() lowProc = mp.Process(target = procImg, args=(stream, 'Low', st)) HighProc = mp.Process(target = procImg, args=(stream2, 'High', st)) lowProc.start() HighProc.start() lowProc.join() HighProc.join() exit(0)
[ "multiprocessing.Event", "multiprocessing.Process", "urllib.urlopen", "cv2.imshow", "numpy.fromstring", "cv2.waitKey" ]
[((241, 260), 'urllib.urlopen', 'urllib.urlopen', (['str'], {}), '(str)\n', (255, 260), False, 'import urllib\n'), ((1203, 1213), 'multiprocessing.Event', 'mp.Event', ([], {}), '()\n', (1211, 1213), True, 'import multiprocessing as mp\n'), ((1228, 1280), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'procImg', 'args': "(stream, 'Low', st)"}), "(target=procImg, args=(stream, 'Low', st))\n", (1238, 1280), True, 'import multiprocessing as mp\n'), ((1298, 1352), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'procImg', 'args': "(stream2, 'High', st)"}), "(target=procImg, args=(stream2, 'High', st))\n", (1308, 1352), True, 'import multiprocessing as mp\n'), ((991, 1010), 'cv2.imshow', 'cv2.imshow', (['wind', 'i'], {}), '(wind, i)\n', (1001, 1010), False, 'import cv2\n'), ((1027, 1041), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1038, 1041), False, 'import cv2\n'), ((1057, 1071), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1068, 1071), False, 'import cv2\n'), ((921, 955), 'numpy.fromstring', 'np.fromstring', (['jpg'], {'dtype': 'np.uint8'}), '(jpg, dtype=np.uint8)\n', (934, 955), True, 'import numpy as np\n')]
''' This library is used to incorporate ''' import numpy as np def cell_prob_with_nucleus(cell, nucleus): ''' This function is used to figure out whether one region is cell or empty hole (without nucleus) :param cell: segmentations results with different labels :param nucleus: nucleus RawMemb image (after resize) :return cell: cells without cavity :return hole: cavity inside the embryos ''' labels = np.unique(cell).tolist() labels.remove(0) hole = np.zeros_like(cell, dtype=np.uint8) for label in labels: one_cell_mask = (cell == label) # After checking on all intensity values, the segmented region should be regarded as empty when the intensity is # lower than 100. Most are equals 0 if (nucleus[one_cell_mask].sum() == 0): cell[one_cell_mask] = 0 hole[one_cell_mask] = 1 return cell, hole
[ "numpy.zeros_like", "numpy.unique" ]
[((496, 531), 'numpy.zeros_like', 'np.zeros_like', (['cell'], {'dtype': 'np.uint8'}), '(cell, dtype=np.uint8)\n', (509, 531), True, 'import numpy as np\n'), ((439, 454), 'numpy.unique', 'np.unique', (['cell'], {}), '(cell)\n', (448, 454), True, 'import numpy as np\n')]
import numpy as np from .image_transforms import mat_to_gray def rgb2hcv(Blue, Green, Red): """transform red green blue arrays to a color space Parameters ---------- Blue : np.array, size=(m,n) Blue band of satellite image Green : np.array, size=(m,n) Green band of satellite image Red : np.array, size=(m,n) Red band of satellite image Returns ------- V : np.array, size=(m,n) array with dominant frequency H : np.array, size=(m,n) array with amount of color C : np.array, size=(m,n) luminance See also -------- rgb2yiq, rgb2ycbcr, rgb2hsi, rgb2xyz, rgb2lms Notes ----- .. [1] Smith, "Putting colors in order", Dr. Dobb’s Journal, pp 40, 1993. .. [2] Tsai, "A comparative study on shadow compensation of color aerial images in invariant color models", IEEE transactions in geoscience and remote sensing, vol. 44(6) pp. 1661--1671, 2006. """ NanBol = Blue == 0 Blue, Green = mat_to_gray(Blue, NanBol), mat_to_gray(Green, NanBol) Red = Red = mat_to_gray(Red, NanBol) np.amax( np.dstack((Red, Green))) V = 0.3*(Red + Green + Blue) H = np.arctan2( Red-Blue, np.sqrt(3)*(V-Green)) IN = abs(np.cos(H))<= 0.2 C = np.divide(V-Green, np.cos(H)) C2 = np.divide(Red-Blue, np.sqrt(3)*np.sin(H)) C[IN] = C2[IN] return H, C, V def rgb2yiq(Red, Green, Blue): """transform red, green, blue to luminance, inphase, quadrature values Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image Returns ------- Y : np.array, size=(m,n) luminance I : np.array, size=(m,n) inphase Q : np.array, size=(m,n) quadrature See also -------- yiq2rgb, rgb2hcv, rgb2ycbcr, rgb2hsi, rgb2xyz, rgb2lms Notes ----- .. [1] <NAME> "Digital image processing", 1992. """ L = np.array([(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -0.523, +0.311)]) RGB = np.dstack((Red, Green, Blue)) YIQ = np.einsum('ij,klj->kli', L, RGB) Y,I,Q = YIQ[:,:,0], YIQ[:,:,1], YIQ[:,:,2] return Y, I, Q def yiq2rgb(Y,I,Q): """transform luminance, inphase, quadrature values to red, green, blue Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image Returns ------- Y : np.array, size=(m,n) luminance I : np.array, size=(m,n) inphase Q : np.array, size=(m,n) quadrature See also -------- rgb2yiq Notes ----- .. [1] <NAME> "Digital image processing", 1992. """ L = np.array([(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -0.523, +0.311)]) Linv = np.linalg.inv(L) YIQ = np.dstack((Y, I, Q)) RGB = np.einsum('ij,klj->kli', Linv, YIQ) R,G,B = RGB[:,:,0], RGB[:,:,1], RGB[:,:,2] return R, G, B def rgb2ycbcr(Red, Green, Blue): """transform red, green, blue arrays to luna and chroma values Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image Returns ------- Y : np.array, size=(m,n) luma Cb : np.array, size=(m,n) chroma Cr : np.array, size=(m,n) chroma See also -------- rgb2hcv, rgb2yiq, rgb2hsi, rgb2xyz, rgb2lms Notes ----- .. [1] Tsai, "A comparative study on shadow compensation of color aerial images in invariant color models", IEEE transactions in geoscience and remote sensing, vol. 44(6) pp. 1661--1671, 2006. """ L = np.array([(+0.257, +0.504, +0.098), (-0.148, -0.291, +0.439), (+0.439, -0.368, -0.071)]) C = np.array([16, 128, 128])/2**8 RGB = np.dstack((Red, Green, Blue)) YCC = np.einsum('ij,klj->kli', L, RGB) del RGB Y = YCC[:,:,0] + C[0] Cb= YCC[:,:,1] + C[1] Cr= YCC[:,:,2] + C[2] return Y, Cb, Cr def rgb2hsi(Red, Green, Blue): """transform red, green, blue arrays to hue, saturation, intensity arrays Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image Returns ------- Hue : np.array, size=(m,n), range=0...1 Hue Sat : np.array, size=(m,n), range=0...1 Saturation Int : np.array, size=(m,n), range=0...1 Intensity See also -------- erdas2hsi, rgb2hcv, rgb2yiq, rgb2ycbcr, rgb2xyz, rgb2lms Notes ----- .. [1] Tsai, "A comparative study on shadow compensation of color aerial images in invariant color models", IEEE transactions in geoscience and remote sensing, vol. 44(6) pp. 1661--1671, 2006. .. [2] Pratt, "Digital image processing" Wiley, 1991. """ if np.ptp(Red.flatten())>1: Red = mat_to_gray(Red) if np.ptp(Green.flatten())>1: Green = mat_to_gray(Green) if np.ptp(Blue.flatten())>1: Blue = mat_to_gray(Blue) Tsai = np.array([(1/3, 1/3, 1/3), (-np.sqrt(6)/6, -np.sqrt(6)/6, -np.sqrt(6)/3), (1/np.sqrt(6), 2/-np.sqrt(6), 0)]) RGB = np.dstack((Red, Green, Blue)) HSI = np.einsum('ij,klj->kli', Tsai, RGB) Int = HSI[:,:,0] Sat = np.sqrt(HSI[:,:,1] ** 2 + HSI[:,:,2] ** 2) Hue = np.arctan2(HSI[:,:,1], HSI[:,:,2])/np.pi Hue = np.remainder(Hue, 1) # bring to from -.5...+.5 to 0...1 range return Hue, Sat, Int def hsi2rgb(Hue, Sat, Int): #todo Red,Green,Blue = np.zeros_like(Hue), np.zeros_like(Hue), np.zeros_like(Hue) Class = np.ceil(Hue/3) Color = 1 + Sat * np.divide(Hue, np.cos(np.radians(60))) # red-green space Sel = Class==1 Blue[Sel] = np.divide(1 - Sat[Sel], 3) Red[Sel] = np.divide(Int[Sel] + Color[Sel], 3) Green[Sel] = 1 - (Red[Sel] + Blue[Sel]) # green-blue space Sel = Class==2 Red[Sel] = np.divide(1 - Sat[Sel], 3) Green[Sel] = np.divide(Int[Sel] + Color[Sel], 3) Blue[Sel] = 1 - (Green[Sel] + Red[Sel]) # blue-red space Sel = Class==3 Green[Sel] = np.divide(1 - Sat[Sel], 3) Blue[Sel] = np.divide(Int[Sel] + Color[Sel], 3) Red[Sel] = 1 - (Blue[Sel] + Green[Sel]) return Red, Green, Blue def erdas2hsi(Blue, Green, Red): """transform red, green, blue arrays to hue, saturation, intensity arrays Parameters ---------- Blue : np.array, size=(m,n) blue band of satellite image Green : np.array, size=(m,n) green band of satellite image Red : np.array, size=(m,n) red band of satellite image Returns ------- Hue : np.array, size=(m,n), float hue Sat : np.array, size=(m,n), float saturation Int : np.array, size=(m,n), float intensity See also -------- rgb2hsi Notes ----- .. [1] ERDAS, "User handbook", 2013. """ if np.ptp(Red.flatten())>1: Red = mat_to_gray(Red) if np.ptp(Green.flatten())>1: Green = mat_to_gray(Green) if np.ptp(Blue.flatten())>1: Blue = mat_to_gray(Blue) Stack = np.dstack((Blue, Green, Red)) min_Stack = np.amin(Stack, axis=2) max_Stack = np.amax(Stack, axis=2) Int = (max_Stack + min_Stack)/2 Sat = np.copy(Blue) Sat[Int==0] = 0 Sat[Int<=.5] = (max_Stack[Int<=.5] - min_Stack[Int<=.5]) / (max_Stack[Int<=.5] + min_Stack[Int<=.5]) Sat[Int>.5] = (max_Stack[Int>.5] - min_Stack[Int>.5]) / ( 2 - max_Stack[Int>.5] + min_Stack[Int>.5]) Hue = np.copy(Blue) Hue[Blue==max_Stack] = (1/6) *(6 + Green[Blue==max_Stack] - Red[Blue==max_Stack]) Hue[Green==max_Stack] = (1/6) *(4 + Red[Green==max_Stack] - Blue[Green==max_Stack]) Hue[Red==max_Stack] = (1/6) *(2 + Blue[Red==max_Stack] - Green[Red==max_Stack]) return Hue, Sat, Int def rgb2xyz(Red, Green, Blue, method='reinhardt'): """transform red, green, blue arrays to XYZ tristimulus values Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image method : 'reinhardt' XYZitu601-1 axis 'ford' D65 illuminant Returns ------- X : np.array, size=(m,n) Y : np.array, size=(m,n) Z : np.array, size=(m,n) See also -------- rgb2hcv, rgb2ycbcr, rgb2hsi, rgb2yiq, rgb2lms, xyz2lms Notes ----- .. [1] <NAME> al. "Color transfer between images" IEEE Computer graphics and applications vol.21(5) pp.34-41, 2001. .. [2] <NAME>. "Color space conversion", pp. 1--31, 1998. """ if method=='ford': M = np.array([(0.4124564, 0.3575761, 0.1804375), (0.2126729, 0.7151522, 0.0721750), (0.0193339, 0.1191920, 0.9503041)]) else: M = np.array([(0.5141, 0.3239, 0.1604), (0.2651, 0.6702, 0.0641), (0.0241, 0.1228, 0.8444)]) RGB = np.dstack((Red, Green, Blue)) XYZ = np.einsum('ij,klj->kli', M, RGB) X,Y,Z = XYZ[:,:,0], XYZ[:,:,1], XYZ[:,:,2] return X, Y, Z def xyz2lms(X, Y, Z): """transform XYZ tristimulus arrays to LMS values Parameters ---------- X : np.array, size=(m,n) modified XYZitu601-1 axis Y : np.array, size=(m,n) modified XYZitu601-1 axis Z : np.array, size=(m,n) modified XYZitu601-1 axis Returns ------- L : np.array, size=(m,n) M : np.array, size=(m,n) S : np.array, size=(m,n) See also -------- rgb2hcv, rgb2ycbcr, rgb2hsi, rgb2yiq, rgb2lms Notes ----- .. [1] <NAME> al. "Color transfer between images" IEEE Computer graphics and applications vol.21(5) pp.34-41, 2001. """ N = np.array([(+0.3897, +0.6890, -0.0787), (-0.2298, +1.1834, +0.0464), (+0.0000, +0.0000, +0.0000)]) RGB = np.dstack((X, Y, Z)) LMS = np.einsum('ij,klj->kli', N, RGB) L,M,S = LMS[:,:,0], LMS[:,:,1], LMS[:,:,2] return L, M, S def xyz2lab(X, Y, Z, th=0.008856): """transform XYZ tristimulus arrays to Lab values Parameters ---------- X : np.array, size=(m,n) Y : np.array, size=(m,n) Z : np.array, size=(m,n) Returns ------- L : np.array, size=(m,n) a : np.array, size=(m,n) b : np.array, size=(m,n) See also -------- rgb2xyz, xyz2lms, lms2lch Notes ----- .. [1] Ford & Roberts. "Color space conversion", pp. 1--31, 1998. .. [2] Silva et al. "Near real-time shadow detection and removal in aerial motion imagery application" ISPRS journal of photogrammetry and remote sensing, vol.140 pp.104--121, 2018. """ Xn,Yn,Zn = 95.047, 100.00, 108.883 # D65 illuminant YYn = Y/Yn L_1 = 116* YYn**(1/3.) L_2 = 903.3 * YYn L = L_1 L[YYn<=th] = L_2[YYn<=th] def f(tau, th): fx = X**(1/3.) fx[X<=th] = 7.787*X[X<th] + 16/116 return fx a = 500*( f(X/Xn, th) - f(Z/Zn, th) ) b = 200*( f(Y/Yn, th) - f(Z/Zn, th) ) return L, a, b def lab2lch(L, a, b): """transform XYZ tristimulus arrays to Lab values Parameters ---------- L : np.array, size=(m,n) a : np.array, size=(m,n) b : np.array, size=(m,n) Returns ------- C : np.array, size=(m,n) h : np.array, size=(m,n) See also -------- rgb2xyz, xyz2lms, xyz2lab Notes ----- .. [1] Ford & Roberts. "Color space conversion", pp. 1--31, 1998. .. [2] Silva et al. "Near real-time shadow detection and removal in aerial motion imagery application" ISPRS journal of photogrammetry and remote sensing, vol.140 pp.104--121, 2018. """ C = np.sqrt( a**2 + b**2) # calculate angle, and let it range from 0...1 h = ((np.arctan2(b, a) + 2*np.pi)% 2*np.pi) / 2*np.pi return C, h def rgb2lms(Red, Green, Blue): """transform red, green, blue arrays to XYZ tristimulus values Parameters ---------- Red : np.array, size=(m,n) red band of satellite image Green : np.array, size=(m,n) green band of satellite image Blue : np.array, size=(m,n) blue band of satellite image Returns ------- L : np.array, size=(m,n) M : np.array, size=(m,n) S : np.array, size=(m,n) See also -------- rgb2hcv, rgb2ycbcr, rgb2hsi, rgb2yiq, rgb2xyz, xyz2lms Notes ----- .. [1] Reinhard et al. "Color transfer between images", 2001. """ I = np.array([(0.3811, 0.5783, 0.0402), (0.1967, 0.7244, 0.0782), (0.0241, 0.1228, 0.8444)]) RGB = np.dstack((Red, Green, Blue)) LMS = np.einsum('ij,klj->kli', I, RGB) L,M,S = LMS[:,:,0], LMS[:,:,1], LMS[:,:,2] return L, M, S def lms2lab(L, M, S): """transform L, M, S arrays to lab color space Parameters ---------- L : np.array, size=(m,n) M : np.array, size=(m,n) S : np.array, size=(m,n) Returns ------- l : np.array, size=(m,n) a : np.array, size=(m,n) b : np.array, size=(m,n) See also -------- rgb2hcv, rgb2ycbcr, rgb2hsi, rgb2yiq, rgb2xyz, xyz2lms Notes ----- .. [1] Reinhard et al. "Color transfer between images", 2001. """ I = np.matmul(np.array([(1/np.sqrt(3), 0, 0), (0, 1/np.sqrt(6), 0), (0, 0, 1/np.sqrt(2))]), np.array([(+1, +1, +1), (+1, +1, -2), (+1, -1, +0)])) LMS = np.dstack((L, M, S)) lab = np.einsum('ij,klj->kli', I, LMS) l,a,b = lab[:,:,0], lab[:,:,1], lab[:,:,2] return l, a, b
[ "numpy.radians", "numpy.dstack", "numpy.ceil", "numpy.copy", "numpy.sqrt", "numpy.amin", "numpy.divide", "numpy.zeros_like", "numpy.array", "numpy.linalg.inv", "numpy.einsum", "numpy.cos", "numpy.arctan2", "numpy.sin", "numpy.amax", "numpy.remainder" ]
[((2091, 2184), 'numpy.array', 'np.array', (['[(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -0.523, +0.311)]'], {}), '([(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -\n 0.523, +0.311)])\n', (2099, 2184), True, 'import numpy as np\n'), ((2227, 2256), 'numpy.dstack', 'np.dstack', (['(Red, Green, Blue)'], {}), '((Red, Green, Blue))\n', (2236, 2256), True, 'import numpy as np\n'), ((2267, 2299), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'L', 'RGB'], {}), "('ij,klj->kli', L, RGB)\n", (2276, 2299), True, 'import numpy as np\n'), ((2993, 3086), 'numpy.array', 'np.array', (['[(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -0.523, +0.311)]'], {}), '([(+0.299, +0.587, +0.114), (+0.596, -0.275, -0.321), (+0.212, -\n 0.523, +0.311)])\n', (3001, 3086), True, 'import numpy as np\n'), ((3129, 3145), 'numpy.linalg.inv', 'np.linalg.inv', (['L'], {}), '(L)\n', (3142, 3145), True, 'import numpy as np\n'), ((3156, 3176), 'numpy.dstack', 'np.dstack', (['(Y, I, Q)'], {}), '((Y, I, Q))\n', (3165, 3176), True, 'import numpy as np\n'), ((3187, 3222), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'Linv', 'YIQ'], {}), "('ij,klj->kli', Linv, YIQ)\n", (3196, 3222), True, 'import numpy as np\n'), ((4109, 4202), 'numpy.array', 'np.array', (['[(+0.257, +0.504, +0.098), (-0.148, -0.291, +0.439), (+0.439, -0.368, -0.071)]'], {}), '([(+0.257, +0.504, +0.098), (-0.148, -0.291, +0.439), (+0.439, -\n 0.368, -0.071)])\n', (4117, 4202), True, 'import numpy as np\n'), ((4283, 4312), 'numpy.dstack', 'np.dstack', (['(Red, Green, Blue)'], {}), '((Red, Green, Blue))\n', (4292, 4312), True, 'import numpy as np\n'), ((4323, 4355), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'L', 'RGB'], {}), "('ij,klj->kli', L, RGB)\n", (4332, 4355), True, 'import numpy as np\n'), ((5780, 5809), 'numpy.dstack', 'np.dstack', (['(Red, Green, Blue)'], {}), '((Red, Green, Blue))\n', (5789, 5809), True, 'import numpy as np\n'), ((5820, 5855), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'Tsai', 'RGB'], {}), "('ij,klj->kli', Tsai, RGB)\n", (5829, 5855), True, 'import numpy as np\n'), ((5887, 5933), 'numpy.sqrt', 'np.sqrt', (['(HSI[:, :, 1] ** 2 + HSI[:, :, 2] ** 2)'], {}), '(HSI[:, :, 1] ** 2 + HSI[:, :, 2] ** 2)\n', (5894, 5933), True, 'import numpy as np\n'), ((5991, 6011), 'numpy.remainder', 'np.remainder', (['Hue', '(1)'], {}), '(Hue, 1)\n', (6003, 6011), True, 'import numpy as np\n'), ((6205, 6221), 'numpy.ceil', 'np.ceil', (['(Hue / 3)'], {}), '(Hue / 3)\n', (6212, 6221), True, 'import numpy as np\n'), ((6339, 6365), 'numpy.divide', 'np.divide', (['(1 - Sat[Sel])', '(3)'], {}), '(1 - Sat[Sel], 3)\n', (6348, 6365), True, 'import numpy as np\n'), ((6381, 6416), 'numpy.divide', 'np.divide', (['(Int[Sel] + Color[Sel])', '(3)'], {}), '(Int[Sel] + Color[Sel], 3)\n', (6390, 6416), True, 'import numpy as np\n'), ((6519, 6545), 'numpy.divide', 'np.divide', (['(1 - Sat[Sel])', '(3)'], {}), '(1 - Sat[Sel], 3)\n', (6528, 6545), True, 'import numpy as np\n'), ((6563, 6598), 'numpy.divide', 'np.divide', (['(Int[Sel] + Color[Sel])', '(3)'], {}), '(Int[Sel] + Color[Sel], 3)\n', (6572, 6598), True, 'import numpy as np\n'), ((6701, 6727), 'numpy.divide', 'np.divide', (['(1 - Sat[Sel])', '(3)'], {}), '(1 - Sat[Sel], 3)\n', (6710, 6727), True, 'import numpy as np\n'), ((6744, 6779), 'numpy.divide', 'np.divide', (['(Int[Sel] + Color[Sel])', '(3)'], {}), '(Int[Sel] + Color[Sel], 3)\n', (6753, 6779), True, 'import numpy as np\n'), ((7712, 7741), 'numpy.dstack', 'np.dstack', (['(Blue, Green, Red)'], {}), '((Blue, Green, Red))\n', (7721, 7741), True, 'import numpy as np\n'), ((7758, 7780), 'numpy.amin', 'np.amin', (['Stack'], {'axis': '(2)'}), '(Stack, axis=2)\n', (7765, 7780), True, 'import numpy as np\n'), ((7797, 7819), 'numpy.amax', 'np.amax', (['Stack'], {'axis': '(2)'}), '(Stack, axis=2)\n', (7804, 7819), True, 'import numpy as np\n'), ((7867, 7880), 'numpy.copy', 'np.copy', (['Blue'], {}), '(Blue)\n', (7874, 7880), True, 'import numpy as np\n'), ((8245, 8258), 'numpy.copy', 'np.copy', (['Blue'], {}), '(Blue)\n', (8252, 8258), True, 'import numpy as np\n'), ((9996, 10025), 'numpy.dstack', 'np.dstack', (['(Red, Green, Blue)'], {}), '((Red, Green, Blue))\n', (10005, 10025), True, 'import numpy as np\n'), ((10036, 10068), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'M', 'RGB'], {}), "('ij,klj->kli', M, RGB)\n", (10045, 10068), True, 'import numpy as np\n'), ((10785, 10877), 'numpy.array', 'np.array', (['[(+0.3897, +0.689, -0.0787), (-0.2298, +1.1834, +0.0464), (+0.0, +0.0, +0.0)]'], {}), '([(+0.3897, +0.689, -0.0787), (-0.2298, +1.1834, +0.0464), (+0.0, +\n 0.0, +0.0)])\n', (10793, 10877), True, 'import numpy as np\n'), ((10930, 10950), 'numpy.dstack', 'np.dstack', (['(X, Y, Z)'], {}), '((X, Y, Z))\n', (10939, 10950), True, 'import numpy as np\n'), ((10961, 10993), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'N', 'RGB'], {}), "('ij,klj->kli', N, RGB)\n", (10970, 10993), True, 'import numpy as np\n'), ((12752, 12776), 'numpy.sqrt', 'np.sqrt', (['(a ** 2 + b ** 2)'], {}), '(a ** 2 + b ** 2)\n', (12759, 12776), True, 'import numpy as np\n'), ((13538, 13631), 'numpy.array', 'np.array', (['[(0.3811, 0.5783, 0.0402), (0.1967, 0.7244, 0.0782), (0.0241, 0.1228, 0.8444)]'], {}), '([(0.3811, 0.5783, 0.0402), (0.1967, 0.7244, 0.0782), (0.0241, \n 0.1228, 0.8444)])\n', (13546, 13631), True, 'import numpy as np\n'), ((13674, 13703), 'numpy.dstack', 'np.dstack', (['(Red, Green, Blue)'], {}), '((Red, Green, Blue))\n', (13683, 13703), True, 'import numpy as np\n'), ((13714, 13746), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'I', 'RGB'], {}), "('ij,klj->kli', I, RGB)\n", (13723, 13746), True, 'import numpy as np\n'), ((14589, 14609), 'numpy.dstack', 'np.dstack', (['(L, M, S)'], {}), '((L, M, S))\n', (14598, 14609), True, 'import numpy as np\n'), ((14620, 14652), 'numpy.einsum', 'np.einsum', (['"""ij,klj->kli"""', 'I', 'LMS'], {}), "('ij,klj->kli', I, LMS)\n", (14629, 14652), True, 'import numpy as np\n'), ((1137, 1160), 'numpy.dstack', 'np.dstack', (['(Red, Green)'], {}), '((Red, Green))\n', (1146, 1160), True, 'import numpy as np\n'), ((1305, 1314), 'numpy.cos', 'np.cos', (['H'], {}), '(H)\n', (1311, 1314), True, 'import numpy as np\n'), ((4242, 4266), 'numpy.array', 'np.array', (['[16, 128, 128]'], {}), '([16, 128, 128])\n', (4250, 4266), True, 'import numpy as np\n'), ((5940, 5978), 'numpy.arctan2', 'np.arctan2', (['HSI[:, :, 1]', 'HSI[:, :, 2]'], {}), '(HSI[:, :, 1], HSI[:, :, 2])\n', (5950, 5978), True, 'import numpy as np\n'), ((6134, 6152), 'numpy.zeros_like', 'np.zeros_like', (['Hue'], {}), '(Hue)\n', (6147, 6152), True, 'import numpy as np\n'), ((6154, 6172), 'numpy.zeros_like', 'np.zeros_like', (['Hue'], {}), '(Hue)\n', (6167, 6172), True, 'import numpy as np\n'), ((6174, 6192), 'numpy.zeros_like', 'np.zeros_like', (['Hue'], {}), '(Hue)\n', (6187, 6192), True, 'import numpy as np\n'), ((9670, 9788), 'numpy.array', 'np.array', (['[(0.4124564, 0.3575761, 0.1804375), (0.2126729, 0.7151522, 0.072175), (\n 0.0193339, 0.119192, 0.9503041)]'], {}), '([(0.4124564, 0.3575761, 0.1804375), (0.2126729, 0.7151522, \n 0.072175), (0.0193339, 0.119192, 0.9503041)])\n', (9678, 9788), True, 'import numpy as np\n'), ((9852, 9945), 'numpy.array', 'np.array', (['[(0.5141, 0.3239, 0.1604), (0.2651, 0.6702, 0.0641), (0.0241, 0.1228, 0.8444)]'], {}), '([(0.5141, 0.3239, 0.1604), (0.2651, 0.6702, 0.0641), (0.0241, \n 0.1228, 0.8444)])\n', (9860, 9945), True, 'import numpy as np\n'), ((14468, 14520), 'numpy.array', 'np.array', (['[(+1, +1, +1), (+1, +1, -2), (+1, -1, +0)]'], {}), '([(+1, +1, +1), (+1, +1, -2), (+1, -1, +0)])\n', (14476, 14520), True, 'import numpy as np\n'), ((1225, 1235), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (1232, 1235), True, 'import numpy as np\n'), ((1261, 1270), 'numpy.cos', 'np.cos', (['H'], {}), '(H)\n', (1267, 1270), True, 'import numpy as np\n'), ((1345, 1355), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (1352, 1355), True, 'import numpy as np\n'), ((1356, 1365), 'numpy.sin', 'np.sin', (['H'], {}), '(H)\n', (1362, 1365), True, 'import numpy as np\n'), ((5737, 5747), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (5744, 5747), True, 'import numpy as np\n'), ((6264, 6278), 'numpy.radians', 'np.radians', (['(60)'], {}), '(60)\n', (6274, 6278), True, 'import numpy as np\n'), ((5668, 5678), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (5675, 5678), True, 'import numpy as np\n'), ((5683, 5693), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (5690, 5693), True, 'import numpy as np\n'), ((5698, 5708), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (5705, 5708), True, 'import numpy as np\n'), ((5752, 5762), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (5759, 5762), True, 'import numpy as np\n'), ((12836, 12852), 'numpy.arctan2', 'np.arctan2', (['b', 'a'], {}), '(b, a)\n', (12846, 12852), True, 'import numpy as np\n'), ((14329, 14339), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (14336, 14339), True, 'import numpy as np\n'), ((14382, 14392), 'numpy.sqrt', 'np.sqrt', (['(6)'], {}), '(6)\n', (14389, 14392), True, 'import numpy as np\n'), ((14435, 14445), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (14442, 14445), True, 'import numpy as np\n')]
import sys from os.path import exists from unittest.mock import patch import numpy as np # type: ignore import pytest from despace.spatial_sort import SortND sys.path.append("..") coords_1d = np.array([1.0, 0.1, 1.5, -0.3, 0.0]) sorted_coords_1d = np.array([-0.3, 0.0, 0.1, 1.0, 1.5]) coords_2d = np.array( [[1.0, 0.1, 1.5, -0.3, 0.0], [1.5, 0.2, 1.3, -0.1, 0.7]] ).transpose() sorted_coords_2d = np.array( [[-0.3, -0.1], [0.0, 0.7], [0.1, 0.2], [1.0, 1.5], [1.5, 1.3]] ) coords_3d = np.array( [[1.2, 0.0, 1.7, -0.4, 0.1], [1.4, 0.9, 1.0, -0.6, 0.3], [2.0, 0.0, 1.4, -0.2, 0.2]] ).transpose() sorted_coords_3d = np.array( [ [-0.4, -0.6, -0.2], [0.0, 0.9, 0.0], [0.1, 0.3, 0.2], [1.7, 1.0, 1.4], [1.2, 1.4, 2.0], ] ) grid_16 = np.array([[i, j] for i in range(4) for j in range(4)]) morton_grid_16 = np.array( [ [0, 0], [0, 1], [1, 0], [1, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 0], [2, 1], [3, 0], [3, 1], [2, 2], [2, 3], [3, 2], [3, 3], ] ) hilbert_grid_16 = np.array( [ [0, 0], [1, 0], [1, 1], [0, 1], [0, 2], [0, 3], [1, 3], [1, 2], [2, 2], [2, 3], [3, 3], [3, 2], [3, 1], [2, 1], [2, 0], [3, 0], ] ) def test_sort(): # Init and call the sort method t = SortND(coords_1d) assert np.array_equal(t.sort(), sorted_coords_1d) t = SortND(coords_2d) assert np.array_equal(t.sort(), sorted_coords_2d) t = SortND(coords_3d) assert np.array_equal(t.sort(), sorted_coords_3d) with pytest.raises(ValueError): SortND(np.random.rand(2, 2, 2)) # init and directly call s = SortND() assert np.array_equal(s(coords_1d), sorted_coords_1d) assert np.array_equal(s(coords_2d), sorted_coords_2d) assert np.array_equal(s(coords_3d), sorted_coords_3d) with pytest.raises(ValueError): s(np.random.rand(2, 2, 2)) # test Morton s = SortND(sort_type="Morton") assert np.array_equal(s(grid_16), morton_grid_16) # test Hilbert s = SortND(sort_type="Hilbert") assert np.array_equal(s(grid_16), hilbert_grid_16) with pytest.raises(NotImplementedError): s(np.random.rand(5, 3)) @patch("matplotlib.pyplot.show") def test_plot(mock_show): s = SortND() # show plots s(coords_1d) assert s.plot(save_plot=False) assert s.plot(save_plot=False, show_plot=True) s(coords_2d) assert s.plot(save_plot=False) assert s.plot(save_plot=False, show_plot=True) s(coords_3d) assert s.plot(save_plot=False) assert s.plot(save_plot=False, show_plot=True) # save plots s(coords_1d) s.plot(save_plot=True) assert exists("1D_5.png") s.plot(save_plot=True, file_name="test_1d.png") assert exists("test_1d.png") s(coords_2d) s.plot(save_plot=True) assert exists("2D_5.png") s.plot(save_plot=True, file_name="test_2d.png") assert exists("test_2d.png") s(coords_3d) s.plot(save_plot=True) assert exists("3D_5.png") s.plot(save_plot=True, file_name="test_3d.png") assert exists("test_3d.png")
[ "os.path.exists", "numpy.random.rand", "numpy.array", "pytest.raises", "unittest.mock.patch", "sys.path.append", "despace.spatial_sort.SortND" ]
[((162, 183), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (177, 183), False, 'import sys\n'), ((197, 233), 'numpy.array', 'np.array', (['[1.0, 0.1, 1.5, -0.3, 0.0]'], {}), '([1.0, 0.1, 1.5, -0.3, 0.0])\n', (205, 233), True, 'import numpy as np\n'), ((253, 289), 'numpy.array', 'np.array', (['[-0.3, 0.0, 0.1, 1.0, 1.5]'], {}), '([-0.3, 0.0, 0.1, 1.0, 1.5])\n', (261, 289), True, 'import numpy as np\n'), ((407, 479), 'numpy.array', 'np.array', (['[[-0.3, -0.1], [0.0, 0.7], [0.1, 0.2], [1.0, 1.5], [1.5, 1.3]]'], {}), '([[-0.3, -0.1], [0.0, 0.7], [0.1, 0.2], [1.0, 1.5], [1.5, 1.3]])\n', (415, 479), True, 'import numpy as np\n'), ((631, 734), 'numpy.array', 'np.array', (['[[-0.4, -0.6, -0.2], [0.0, 0.9, 0.0], [0.1, 0.3, 0.2], [1.7, 1.0, 1.4], [\n 1.2, 1.4, 2.0]]'], {}), '([[-0.4, -0.6, -0.2], [0.0, 0.9, 0.0], [0.1, 0.3, 0.2], [1.7, 1.0, \n 1.4], [1.2, 1.4, 2.0]])\n', (639, 734), True, 'import numpy as np\n'), ((866, 1009), 'numpy.array', 'np.array', (['[[0, 0], [0, 1], [1, 0], [1, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 0], [2,\n 1], [3, 0], [3, 1], [2, 2], [2, 3], [3, 2], [3, 3]]'], {}), '([[0, 0], [0, 1], [1, 0], [1, 1], [0, 2], [0, 3], [1, 2], [1, 3], [\n 2, 0], [2, 1], [3, 0], [3, 1], [2, 2], [2, 3], [3, 2], [3, 3]])\n', (874, 1009), True, 'import numpy as np\n'), ((1164, 1307), 'numpy.array', 'np.array', (['[[0, 0], [1, 0], [1, 1], [0, 1], [0, 2], [0, 3], [1, 3], [1, 2], [2, 2], [2,\n 3], [3, 3], [3, 2], [3, 1], [2, 1], [2, 0], [3, 0]]'], {}), '([[0, 0], [1, 0], [1, 1], [0, 1], [0, 2], [0, 3], [1, 3], [1, 2], [\n 2, 2], [2, 3], [3, 3], [3, 2], [3, 1], [2, 1], [2, 0], [3, 0]])\n', (1172, 1307), True, 'import numpy as np\n'), ((2406, 2437), 'unittest.mock.patch', 'patch', (['"""matplotlib.pyplot.show"""'], {}), "('matplotlib.pyplot.show')\n", (2411, 2437), False, 'from unittest.mock import patch\n'), ((1507, 1524), 'despace.spatial_sort.SortND', 'SortND', (['coords_1d'], {}), '(coords_1d)\n', (1513, 1524), False, 'from despace.spatial_sort import SortND\n'), ((1587, 1604), 'despace.spatial_sort.SortND', 'SortND', (['coords_2d'], {}), '(coords_2d)\n', (1593, 1604), False, 'from despace.spatial_sort import SortND\n'), ((1667, 1684), 'despace.spatial_sort.SortND', 'SortND', (['coords_3d'], {}), '(coords_3d)\n', (1673, 1684), False, 'from despace.spatial_sort import SortND\n'), ((1853, 1861), 'despace.spatial_sort.SortND', 'SortND', ([], {}), '()\n', (1859, 1861), False, 'from despace.spatial_sort import SortND\n'), ((2134, 2160), 'despace.spatial_sort.SortND', 'SortND', ([], {'sort_type': '"""Morton"""'}), "(sort_type='Morton')\n", (2140, 2160), False, 'from despace.spatial_sort import SortND\n'), ((2243, 2270), 'despace.spatial_sort.SortND', 'SortND', ([], {'sort_type': '"""Hilbert"""'}), "(sort_type='Hilbert')\n", (2249, 2270), False, 'from despace.spatial_sort import SortND\n'), ((2472, 2480), 'despace.spatial_sort.SortND', 'SortND', ([], {}), '()\n', (2478, 2480), False, 'from despace.spatial_sort import SortND\n'), ((2881, 2899), 'os.path.exists', 'exists', (['"""1D_5.png"""'], {}), "('1D_5.png')\n", (2887, 2899), False, 'from os.path import exists\n'), ((2963, 2984), 'os.path.exists', 'exists', (['"""test_1d.png"""'], {}), "('test_1d.png')\n", (2969, 2984), False, 'from os.path import exists\n'), ((3040, 3058), 'os.path.exists', 'exists', (['"""2D_5.png"""'], {}), "('2D_5.png')\n", (3046, 3058), False, 'from os.path import exists\n'), ((3122, 3143), 'os.path.exists', 'exists', (['"""test_2d.png"""'], {}), "('test_2d.png')\n", (3128, 3143), False, 'from os.path import exists\n'), ((3199, 3217), 'os.path.exists', 'exists', (['"""3D_5.png"""'], {}), "('3D_5.png')\n", (3205, 3217), False, 'from os.path import exists\n'), ((3281, 3302), 'os.path.exists', 'exists', (['"""test_3d.png"""'], {}), "('test_3d.png')\n", (3287, 3302), False, 'from os.path import exists\n'), ((303, 369), 'numpy.array', 'np.array', (['[[1.0, 0.1, 1.5, -0.3, 0.0], [1.5, 0.2, 1.3, -0.1, 0.7]]'], {}), '([[1.0, 0.1, 1.5, -0.3, 0.0], [1.5, 0.2, 1.3, -0.1, 0.7]])\n', (311, 369), True, 'import numpy as np\n'), ((499, 597), 'numpy.array', 'np.array', (['[[1.2, 0.0, 1.7, -0.4, 0.1], [1.4, 0.9, 1.0, -0.6, 0.3], [2.0, 0.0, 1.4, -\n 0.2, 0.2]]'], {}), '([[1.2, 0.0, 1.7, -0.4, 0.1], [1.4, 0.9, 1.0, -0.6, 0.3], [2.0, 0.0,\n 1.4, -0.2, 0.2]])\n', (507, 597), True, 'import numpy as np\n'), ((1748, 1773), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1761, 1773), False, 'import pytest\n'), ((2045, 2070), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2058, 2070), False, 'import pytest\n'), ((2335, 2369), 'pytest.raises', 'pytest.raises', (['NotImplementedError'], {}), '(NotImplementedError)\n', (2348, 2369), False, 'import pytest\n'), ((1790, 1813), 'numpy.random.rand', 'np.random.rand', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (1804, 1813), True, 'import numpy as np\n'), ((2082, 2105), 'numpy.random.rand', 'np.random.rand', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (2096, 2105), True, 'import numpy as np\n'), ((2381, 2401), 'numpy.random.rand', 'np.random.rand', (['(5)', '(3)'], {}), '(5, 3)\n', (2395, 2401), True, 'import numpy as np\n')]
import numpy as np def main(): from fuzzi.evaluation import pate_train from fuzzi.generated import pate_label predictions = pate_label.outputs truth = [x[-1] for x in pate_label.db_test] print(predictions) print(truth) print('PATE accuracy = %f' % (np.mean(predictions == truth)))
[ "numpy.mean" ]
[((279, 308), 'numpy.mean', 'np.mean', (['(predictions == truth)'], {}), '(predictions == truth)\n', (286, 308), True, 'import numpy as np\n')]
""" Test functions for regular module. """ import pytest import numpy as np from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.base import clone import tensorflow as tf from tensorflow.keras import Sequential, Model from tensorflow.keras.layers import Dense from tensorflow.keras.optimizers import Adam from adapt.parameter_based import (RegularTransferLR, RegularTransferLC, RegularTransferNN) np.random.seed(0) Xs = np.concatenate(( np.random.randn(50)*0.1, np.random.randn(50)*0.1 + 1., )).reshape(-1, 1) Xt = (np.random.randn(100) * 0.1).reshape(-1, 1) ys_reg = np.array([0.2 * x if x<0.5 else 10 for x in Xs.ravel()]).reshape(-1, 1) yt_reg = np.array([0.2 * x if x<0.5 else 10 for x in Xt.ravel()]).reshape(-1, 1) ys_classif = np.sign(np.array( [x<0 if x<0.5 else x<1 for x in Xs.ravel()] ).astype(float) - 0.5).reshape(-1, 1) yt_classif = np.sign(np.array( [x<0 if x<0.5 else x<1 for x in Xt.ravel()] ).astype(float) - 0.5).reshape(-1, 1) def _get_network(input_shape=(1,), output_shape=(1,)): model = Sequential() model.add(Dense(np.prod(output_shape), input_shape=input_shape, use_bias=False)) model.compile(loss="mse", optimizer=Adam(0.1)) return model def test_setup(): lr = LinearRegression(fit_intercept=False) lr.fit(Xs, ys_reg) assert np.abs(lr.coef_[0][0] - 10) < 1 lr = LogisticRegression(penalty='none', solver='lbfgs') lr.fit(Xs, ys_classif) assert (lr.predict(Xt) == yt_classif.ravel()).sum() < 70 def test_regularlr_fit(): np.random.seed(0) lr = LinearRegression(fit_intercept=False) lr.fit(Xs, ys_reg) model = RegularTransferLR(lr, lambda_=0.) model.fit(Xt, yt_reg) assert np.abs(model.estimator_.coef_[0] - 0.2) < 1 assert np.abs(model.predict(Xt) - yt_reg).sum() < 2 model = RegularTransferLR(lr, lambda_=1000000) model.fit(Xt, yt_reg) assert np.abs(model.estimator_.coef_[0] - 10) < 1 assert np.abs(model.estimator_.coef_[0] - lr.coef_[0]) < 0.001 model = RegularTransferLR(lr, lambda_=1.) model.fit(Xt, yt_reg) assert np.abs(model.estimator_.coef_[0] - 4) < 1 def test_regularlr_multioutput(): np.random.seed(0) X = np.random.randn(100, 5)+2. y = X[:, :2] lr = LinearRegression() lr.fit(X, y) model = RegularTransferLR(lr, lambda_=1.) model.fit(X, y) assert np.abs(model.predict(X) - y).sum() < 2 assert np.all(model.coef_.shape == (2, 5)) assert np.all(model.intercept_.shape == (2,)) assert model.score(X, y) > 0.9 def test_regularlr_error(): np.random.seed(0) Xs = np.random.randn(100, 5) Xt = np.random.randn(100, 5) ys = np.random.randn(100) yt = np.random.randn(100) lr = LinearRegression() lr.fit(Xs, ys) model = RegularTransferLR(lr, lambda_=1.) model.fit(Xt, yt) with pytest.raises(ValueError) as excinfo: model.fit(np.random.randn(100, 4), yt) assert "expected 5, got 4" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: model.fit(Xt, np.random.randn(100, 2)) assert "expected 1, got 2" in str(excinfo.value) def test_regularlc_fit(): np.random.seed(0) lr = LogisticRegression(penalty='none', solver='lbfgs') lr.fit(Xs, ys_classif) model = RegularTransferLC(lr, lambda_=0) model.fit(Xt, yt_classif) assert (model.predict(Xt) == yt_classif.ravel()).sum() > 90 model = RegularTransferLC(lr, lambda_=100000000) model.fit(Xt, yt_classif) assert (model.predict(Xt) == yt_classif.ravel()).sum() < 70 assert np.abs(model.estimator_.coef_[0][0] - lr.coef_[0][0]) < 0.001 assert np.abs(model.estimator_.intercept_ - lr.intercept_[0]) < 0.001 model = RegularTransferLC(lr, lambda_=1.2) model.fit(Xt, yt_classif) assert (model.predict(Xt) == yt_classif.ravel()).sum() > 95 def test_regularlc_multiclass(): np.random.seed(0) X = np.random.randn(100, 5) y = np.zeros(len(X)) y[X[:, :2].sum(1)<0] = 1 y[X[:, 3:].sum(1)>0] = 2 lr = LogisticRegression(penalty='none', solver='lbfgs') lr.fit(X, y) model = RegularTransferLC(lr, lambda_=1.) model.fit(X, y) assert (model.predict(X) == y).sum() > 90 assert np.all(model.coef_.shape == (3, 5)) assert np.all(model.intercept_.shape == (3,)) assert model.score(X, y) > 0.9 def test_regularnn_fit(): tf.random.set_seed(0) np.random.seed(0) network = _get_network() network.fit(Xs, ys_reg, epochs=100, batch_size=100, verbose=0) model = RegularTransferNN(network, lambdas=0., optimizer=Adam(0.1)) model.fit(Xt, yt_reg, epochs=100, batch_size=100, verbose=0) # assert np.abs(network.predict(Xs) - ys_reg).sum() < 1 assert np.sum(np.abs(network.get_weights()[0] - model.get_weights()[0])) > 4. assert np.abs(model.predict(Xt) - yt_reg).sum() < 10 model = RegularTransferNN(network, lambdas=10000000., optimizer=Adam(0.1)) model.fit(Xt, yt_reg, epochs=100, batch_size=100, verbose=0) assert np.sum(np.abs(network.get_weights()[0] - model.get_weights()[0])) < 0.001 assert np.abs(model.predict(Xt) - yt_reg).sum() > 10 def test_regularnn_reg(): tf.random.set_seed(0) np.random.seed(0) network = _get_network() network.fit(Xs, ys_reg, epochs=100, batch_size=100, verbose=0) model = RegularTransferNN(network, regularizer="l1") model.fit(Xt, yt_reg, epochs=100, batch_size=100, verbose=0) with pytest.raises(ValueError) as excinfo: model = RegularTransferNN(network, regularizer="l3") assert "l1' or 'l2', got, l3" in str(excinfo.value) def test_clone(): Xs = np.random.randn(100, 5) ys = np.random.choice(2, 100) lr = LinearRegression() lr.fit(Xs, ys) model = RegularTransferLR(lr, lambda_=1.) model.fit(Xs, ys) new_model = clone(model) new_model.fit(Xs, ys) new_model.predict(Xs); assert model is not new_model lr = LogisticRegression(penalty='none', solver='lbfgs') lr.fit(Xs, ys) model = RegularTransferLC(lr, lambda_=1.) model.fit(Xs, ys) new_model = clone(model) new_model.fit(Xs, ys) new_model.predict(Xs); assert model is not new_model
[ "numpy.abs", "numpy.prod", "adapt.parameter_based.RegularTransferLR", "tensorflow.random.set_seed", "tensorflow.keras.Sequential", "adapt.parameter_based.RegularTransferNN", "numpy.random.choice", "sklearn.base.clone", "sklearn.linear_model.LogisticRegression", "tensorflow.keras.optimizers.Adam", "pytest.raises", "numpy.random.seed", "adapt.parameter_based.RegularTransferLC", "numpy.all", "numpy.random.randn", "sklearn.linear_model.LinearRegression" ]
[((500, 517), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (514, 517), True, 'import numpy as np\n'), ((1173, 1185), 'tensorflow.keras.Sequential', 'Sequential', ([], {}), '()\n', (1183, 1185), False, 'from tensorflow.keras import Sequential, Model\n'), ((1408, 1445), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (1424, 1445), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((1526, 1576), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""', 'solver': '"""lbfgs"""'}), "(penalty='none', solver='lbfgs')\n", (1544, 1576), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((1697, 1714), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (1711, 1714), True, 'import numpy as np\n'), ((1724, 1761), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (1740, 1761), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((1797, 1831), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(0.0)'}), '(lr, lambda_=0.0)\n', (1814, 1831), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((1985, 2023), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(1000000)'}), '(lr, lambda_=1000000)\n', (2002, 2023), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((2188, 2222), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (2205, 2222), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((2349, 2366), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2363, 2366), True, 'import numpy as np\n'), ((2428, 2446), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2444, 2446), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((2476, 2510), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (2493, 2510), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((2591, 2626), 'numpy.all', 'np.all', (['(model.coef_.shape == (2, 5))'], {}), '(model.coef_.shape == (2, 5))\n', (2597, 2626), True, 'import numpy as np\n'), ((2638, 2676), 'numpy.all', 'np.all', (['(model.intercept_.shape == (2,))'], {}), '(model.intercept_.shape == (2,))\n', (2644, 2676), True, 'import numpy as np\n'), ((2754, 2771), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2768, 2771), True, 'import numpy as np\n'), ((2781, 2804), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (2796, 2804), True, 'import numpy as np\n'), ((2814, 2837), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (2829, 2837), True, 'import numpy as np\n'), ((2847, 2867), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (2862, 2867), True, 'import numpy as np\n'), ((2877, 2897), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (2892, 2897), True, 'import numpy as np\n'), ((2907, 2925), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2923, 2925), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((2957, 2991), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (2974, 2991), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((3351, 3368), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (3365, 3368), True, 'import numpy as np\n'), ((3378, 3428), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""', 'solver': '"""lbfgs"""'}), "(penalty='none', solver='lbfgs')\n", (3396, 3428), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((3468, 3500), 'adapt.parameter_based.RegularTransferLC', 'RegularTransferLC', (['lr'], {'lambda_': '(0)'}), '(lr, lambda_=0)\n', (3485, 3500), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((3612, 3652), 'adapt.parameter_based.RegularTransferLC', 'RegularTransferLC', (['lr'], {'lambda_': '(100000000)'}), '(lr, lambda_=100000000)\n', (3629, 3652), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((3911, 3945), 'adapt.parameter_based.RegularTransferLC', 'RegularTransferLC', (['lr'], {'lambda_': '(1.2)'}), '(lr, lambda_=1.2)\n', (3928, 3945), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((4087, 4104), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (4101, 4104), True, 'import numpy as np\n'), ((4113, 4136), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (4128, 4136), True, 'import numpy as np\n'), ((4229, 4279), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""', 'solver': '"""lbfgs"""'}), "(penalty='none', solver='lbfgs')\n", (4247, 4279), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((4309, 4343), 'adapt.parameter_based.RegularTransferLC', 'RegularTransferLC', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (4326, 4343), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((4420, 4455), 'numpy.all', 'np.all', (['(model.coef_.shape == (3, 5))'], {}), '(model.coef_.shape == (3, 5))\n', (4426, 4455), True, 'import numpy as np\n'), ((4467, 4505), 'numpy.all', 'np.all', (['(model.intercept_.shape == (3,))'], {}), '(model.intercept_.shape == (3,))\n', (4473, 4505), True, 'import numpy as np\n'), ((4573, 4594), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['(0)'], {}), '(0)\n', (4591, 4594), True, 'import tensorflow as tf\n'), ((4599, 4616), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (4613, 4616), True, 'import numpy as np\n'), ((5385, 5406), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['(0)'], {}), '(0)\n', (5403, 5406), True, 'import tensorflow as tf\n'), ((5411, 5428), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (5425, 5428), True, 'import numpy as np\n'), ((5537, 5581), 'adapt.parameter_based.RegularTransferNN', 'RegularTransferNN', (['network'], {'regularizer': '"""l1"""'}), "(network, regularizer='l1')\n", (5554, 5581), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((5854, 5877), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (5869, 5877), True, 'import numpy as np\n'), ((5887, 5911), 'numpy.random.choice', 'np.random.choice', (['(2)', '(100)'], {}), '(2, 100)\n', (5903, 5911), True, 'import numpy as np\n'), ((5921, 5939), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (5937, 5939), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((5971, 6005), 'adapt.parameter_based.RegularTransferLR', 'RegularTransferLR', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (5988, 6005), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((6048, 6060), 'sklearn.base.clone', 'clone', (['model'], {}), '(model)\n', (6053, 6060), False, 'from sklearn.base import clone\n'), ((6162, 6212), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""', 'solver': '"""lbfgs"""'}), "(penalty='none', solver='lbfgs')\n", (6180, 6212), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((6244, 6278), 'adapt.parameter_based.RegularTransferLC', 'RegularTransferLC', (['lr'], {'lambda_': '(1.0)'}), '(lr, lambda_=1.0)\n', (6261, 6278), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((6321, 6333), 'sklearn.base.clone', 'clone', (['model'], {}), '(model)\n', (6326, 6333), False, 'from sklearn.base import clone\n'), ((1480, 1507), 'numpy.abs', 'np.abs', (['(lr.coef_[0][0] - 10)'], {}), '(lr.coef_[0][0] - 10)\n', (1486, 1507), True, 'import numpy as np\n'), ((1868, 1907), 'numpy.abs', 'np.abs', (['(model.estimator_.coef_[0] - 0.2)'], {}), '(model.estimator_.coef_[0] - 0.2)\n', (1874, 1907), True, 'import numpy as np\n'), ((2061, 2099), 'numpy.abs', 'np.abs', (['(model.estimator_.coef_[0] - 10)'], {}), '(model.estimator_.coef_[0] - 10)\n', (2067, 2099), True, 'import numpy as np\n'), ((2115, 2162), 'numpy.abs', 'np.abs', (['(model.estimator_.coef_[0] - lr.coef_[0])'], {}), '(model.estimator_.coef_[0] - lr.coef_[0])\n', (2121, 2162), True, 'import numpy as np\n'), ((2259, 2296), 'numpy.abs', 'np.abs', (['(model.estimator_.coef_[0] - 4)'], {}), '(model.estimator_.coef_[0] - 4)\n', (2265, 2296), True, 'import numpy as np\n'), ((2375, 2398), 'numpy.random.randn', 'np.random.randn', (['(100)', '(5)'], {}), '(100, 5)\n', (2390, 2398), True, 'import numpy as np\n'), ((3027, 3052), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3040, 3052), False, 'import pytest\n'), ((3180, 3205), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (3193, 3205), False, 'import pytest\n'), ((3758, 3811), 'numpy.abs', 'np.abs', (['(model.estimator_.coef_[0][0] - lr.coef_[0][0])'], {}), '(model.estimator_.coef_[0][0] - lr.coef_[0][0])\n', (3764, 3811), True, 'import numpy as np\n'), ((3831, 3885), 'numpy.abs', 'np.abs', (['(model.estimator_.intercept_ - lr.intercept_[0])'], {}), '(model.estimator_.intercept_ - lr.intercept_[0])\n', (3837, 3885), True, 'import numpy as np\n'), ((5661, 5686), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5674, 5686), False, 'import pytest\n'), ((5716, 5760), 'adapt.parameter_based.RegularTransferNN', 'RegularTransferNN', (['network'], {'regularizer': '"""l3"""'}), "(network, regularizer='l3')\n", (5733, 5760), False, 'from adapt.parameter_based import RegularTransferLR, RegularTransferLC, RegularTransferNN\n'), ((627, 647), 'numpy.random.randn', 'np.random.randn', (['(100)'], {}), '(100)\n', (642, 647), True, 'import numpy as np\n'), ((1206, 1227), 'numpy.prod', 'np.prod', (['output_shape'], {}), '(output_shape)\n', (1213, 1227), True, 'import numpy as np\n'), ((1351, 1360), 'tensorflow.keras.optimizers.Adam', 'Adam', (['(0.1)'], {}), '(0.1)\n', (1355, 1360), False, 'from tensorflow.keras.optimizers import Adam\n'), ((3084, 3107), 'numpy.random.randn', 'np.random.randn', (['(100)', '(4)'], {}), '(100, 4)\n', (3099, 3107), True, 'import numpy as np\n'), ((3241, 3264), 'numpy.random.randn', 'np.random.randn', (['(100)', '(2)'], {}), '(100, 2)\n', (3256, 3264), True, 'import numpy as np\n'), ((4774, 4783), 'tensorflow.keras.optimizers.Adam', 'Adam', (['(0.1)'], {}), '(0.1)\n', (4778, 4783), False, 'from tensorflow.keras.optimizers import Adam\n'), ((5122, 5131), 'tensorflow.keras.optimizers.Adam', 'Adam', (['(0.1)'], {}), '(0.1)\n', (5126, 5131), False, 'from tensorflow.keras.optimizers import Adam\n'), ((544, 563), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (559, 563), True, 'import numpy as np\n'), ((573, 592), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (588, 592), True, 'import numpy as np\n')]
''' Created on 4 Feb 2022 @author: ucacsjj ''' import random from enum import Enum import numpy as np from gym import Env, spaces from .robot_states_and_actions import * # This environment affords a much lower level control of the robot than the # battery environment. It is partially inspired by the AI Gymn Frozen Lake # example. class RecyclingRobotEnvironment(Env): def __init__(self): # The action space self.action_space = spaces.Discrete(RobotActions.NUMBER_OF_ACTIONS) self.observation_space = spaces.Discrete(RobotBatteryState.NUMBER_OF_STATES) # Values # Probability of discharging high => medium self._alpha = 0.4 # Probability of discharging medium => low self._beta = 0.1 # Probability of discharging low => discharged self._gamma = 0.1 # Probability of charging up a level low => medium, medium => high self._delta = 0.9 self._r_search = 10 self._r_wait = 5 self._r_charge = 0 self._r_discharged = -20 # State transition table. The dictionary consists of (s, a) values. The # value is a tuple which is the conditional value of the probabilities of # DISCHARGED, LOW, MEDIUM, HIGH, conditioned on s and a. self._state_transition_table = { # New state when a=SEARCH (RobotBatteryState.HIGH, RobotActions.SEARCH) : \ (0, self._alpha / 3, 2 * self._alpha / 3, 1 - self._alpha), (RobotBatteryState.MEDIUM, RobotActions.SEARCH) : \ (0, self._beta, 1 - self._beta, 0), (RobotBatteryState.LOW, RobotActions.SEARCH) : \ (self._gamma, 1 - self._gamma, 0 , 0), (RobotBatteryState.DISCHARGED, RobotActions.SEARCH) : \ (0, 0, 0, 0), # a = WAIT (RobotBatteryState.HIGH, RobotActions.WAIT) : \ (0, 0, 0, 1), (RobotBatteryState.MEDIUM, RobotActions.WAIT) : \ (0, 0 ,1, 0), (RobotBatteryState.LOW, RobotActions.WAIT) : \ (0, 1, 0, 0), (RobotBatteryState.DISCHARGED, RobotActions.WAIT) : \ (0, 0, 0, 0), # a = RECHARGE (RobotBatteryState.HIGH, RobotActions.RECHARGE) : \ (0, 0, 0, 1), (RobotBatteryState.MEDIUM, RobotActions.RECHARGE) : \ (0, 0, 1 - self._delta, self._delta), (RobotBatteryState.LOW, RobotActions.RECHARGE) : \ (0, 1 - self._delta, self._delta, 0), (RobotBatteryState.DISCHARGED, RobotActions.RECHARGE) : \ (0, 0, 0, 0) } # The rewards. In this case, they are only a function of the actions # and not the state. self._action_reward_table = { RobotActions.SEARCH : self._r_search, RobotActions.WAIT: self._r_wait, RobotActions.RECHARGE: self._r_charge, RobotActions.TERMINATE: self._r_discharged } # Reset to the initial state self.reset() # Reset the scenario to the initial state def reset(self): self._battery_state = RobotBatteryState.HIGH # Reset the initial value function def initial_value_function(self): v_initial = np.zeros(RobotBatteryState.NUMBER_OF_STATES) v_initial[RobotBatteryState.DISCHARGED] = self._r_discharged return v_initial # An initial random policy under consideration def initial_policy(self): pi_initial = { RobotBatteryState.HIGH: (0, 1/3, 1/3, 1/3), RobotBatteryState.MEDIUM: (0, 1/3, 1/3, 1/3), RobotBatteryState.LOW: (0, 1/3, 1/3, 1/3)} return pi_initial def step(self, action): # From the (s, a) pair, get the appropriate row in the table transition_key = (self._battery_state, action) # Sanity check assert transition_key in self._state_transition_table # Get the state transition probabilities and rewards p = self._state_transition_table[transition_key] r = self._reward_table[transition_key] print(str(self._battery_state) + ":" + str(p) + str(r)) # Work out the state transition sample = random.random() done = False # Probability of transitioning to high state if sample < p[0]: self._battery_state = RobotBatteryState.HIGH reward = r[0] elif sample < p[0] + p[1]: self._battery_state = RobotBatteryState.MEDIUM reward = r[1] elif sample < p[0] + p[1] + p[2]: self._battery_state = RobotBatteryState.LOW reward = r[2] if sample < p[0] + p[1] + p[2] + p[3]: self._battery_state = RobotBatteryState.DISCHARGED reward = r[3] done = True return self._battery_state, reward, done, {} # Return the state, reward and probability distributions def next_state_and_reward_distribution(self, state, action): # From the (s, a) pair, get the appropriate row in the table transition_key = (state, action) # Sanity check #print(transition_key) assert transition_key in self._state_transition_table s_prime = [RobotBatteryState.DISCHARGED, RobotBatteryState.LOW, \ RobotBatteryState.MEDIUM, RobotBatteryState.HIGH] # Get the state transition probabilities and rewards p = self._state_transition_table[transition_key] #r = self._reward_table[transition_key] r = self._action_reward_table[action] return s_prime, r, p
[ "random.random", "numpy.zeros", "gym.spaces.Discrete" ]
[((457, 504), 'gym.spaces.Discrete', 'spaces.Discrete', (['RobotActions.NUMBER_OF_ACTIONS'], {}), '(RobotActions.NUMBER_OF_ACTIONS)\n', (472, 504), False, 'from gym import Env, spaces\n'), ((547, 598), 'gym.spaces.Discrete', 'spaces.Discrete', (['RobotBatteryState.NUMBER_OF_STATES'], {}), '(RobotBatteryState.NUMBER_OF_STATES)\n', (562, 598), False, 'from gym import Env, spaces\n'), ((3664, 3708), 'numpy.zeros', 'np.zeros', (['RobotBatteryState.NUMBER_OF_STATES'], {}), '(RobotBatteryState.NUMBER_OF_STATES)\n', (3672, 3708), True, 'import numpy as np\n'), ((4706, 4721), 'random.random', 'random.random', ([], {}), '()\n', (4719, 4721), False, 'import random\n')]
# coding=utf-8 # National Oceanic and Atmospheric Administration (NOAA) # Alaskan Fisheries Science Center (AFSC) # Resource Assessment and Conservation Engineering (RACE) # Midwater Assessment and Conservation Engineering (MACE) # THIS SOFTWARE AND ITS DOCUMENTATION ARE CONSIDERED TO BE IN THE PUBLIC DOMAIN # AND THUS ARE AVAILABLE FOR UNRESTRICTED PUBLIC USE. THEY ARE FURNISHED "AS IS." # THE AUTHORS, THE UNITED STATES GOVERNMENT, ITS INSTRUMENTALITIES, OFFICERS, # EMPLOYEES, AND AGENTS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE USEFULNESS # OF THE SOFTWARE AND DOCUMENTATION FOR ANY PURPOSE. THEY ASSUME NO RESPONSIBILITY # (1) FOR THE USE OF THE SOFTWARE AND DOCUMENTATION; OR (2) TO PROVIDE TECHNICAL # SUPPORT TO USERS. """ | Developed by: <NAME> <<EMAIL>> | National Oceanic and Atmospheric Administration (NOAA) | Alaska Fisheries Science Center (AFSC) | Midwater Assesment and Conservation Engineering Group (MACE) | | Author: | <NAME> <<EMAIL>> | Maintained by: | <NAME> <<EMAIL>> """ import numpy as np class bottom_data(object): ''' The bottom_data class stores data from TAG0 datagrams in Simrad raw files. It may be useful if other sonar file types have a similar annotation ''' CHUNK_SIZE = 500 def __init__(self, channel_id): # Create a counter to keep track of the number of datagrams. self.n_datagrams = 0 # set the channel ID self.channel_id = channel_id # Create arrays to store MRU0 data self.times = np.empty(bottom_data.CHUNK_SIZE, dtype='datetime64[ms]') self.annotation_text = np.empty(bottom_data.CHUNK_SIZE, dtype=object) def add_datagram(self, time, annotation_datagram): """ Add annotation text Args: annotation_datagram (dict) - The motion datagram dictionary returned by the simrad datagram parser. """ # Check if we need to resize our arrays. if self.n_datagrams == self.annotation_times.shape[0]: self._resize_arrays(self.annotation_times.shape[0] + annotation_data.CHUNK_SIZE) # Add this datagram to our data arrays self.annotation_times[self.n_datagrams] = annotation_datagram['timestamp'] self.annotation_text[self.n_datagrams] = annotation_datagram['text'] # Increment datagram counter. self.n_datagrams += 1 def interpolate(self, p_data, data_type, start_time=None, end_time=None): """ interpolate returns the requested motion data interpolated to the ping times that are present in the provided ping_data object. p_data is a ping_data object that contains the ping_time vector to interpolate to. data_type is a string pecifying the motion attribute to interpolate, valid values are: 'pitch', 'heave', 'roll', and 'heading' start_time is a datetime or datetime64 object defining the starting time of the data to return. If None, the start time is the earliest time. end_time is a datetime or datetime64 object defining the ending time of the data to return. If None, the end time is the latest time. attributes is a string or list of strings specifying the motion attribute(s) to interpolate and return. If None, all attributes are interpolated and returned. Returns a dictionary of numpy arrays keyed by attribute name that contain the interpolated data for that attribute. """ # Create the dictionary to return out_data = {} # Return an empty dict if we don't contain any data if self.n_datagrams < 1: return out_data # Get the index for all datagrams within the time span. return_idxs = self.get_indices(start_time=start_time, end_time=end_time) # Check if we're been given specific attributes to interpolate if data_type is None: # No - interpolate all attributes = ['heave', 'pitch', 'roll', 'heading'] elif isinstance(data_type, str): # We have a string, put it in a list attributes = [data_type] # Work through the attributes and interpolate for attribute in attributes: try: # Interpolate this attribute using the time vector in the # provided ping_data object i_data = np.interp(p_data.ping_time.astype('d'), self.time.astype('d'), getattr(self, attribute), left=np.nan, right=np.nan) out_data[attribute] = i_data[return_idxs] except: # Provided attribute doesn't exist out_data[attribute] = None return (attributes, out_data) def get_indices(self, start_time=None, end_time=None, time_order=True): """ Return index of data contained in speciofied time range. get_indices returns an index array containing the indices contained in the range defined by the times provided. By default the indexes are in time order. Args: start_time is a datetime or datetime64 object defining the starting time of the data to return. If None, the start time is the earliest time. end_time is a datetime or datetime64 object defining the ending time of the data to return. If None, the end time is the latest time. time_order (bool): Control whether if indexes are returned in time order (True) or not. Returns: Index array containing indices of data to return. """ # Ensure that we have times to work with. if start_time is None: start_time = np.min(self.time) if end_time is None: end_time = np.max(self.time) # Sort time index if returning time ordered indexes. if time_order: primary_index = self.time.argsort() else: primary_index = self.time # Determine the indices of the data that fall within the time span # provided. mask = self.time[primary_index] >= start_time mask = np.logical_and(mask, self.time[primary_index] <= end_time) # and return the indices that are included in the specified range return primary_index[mask] def _resize_arrays(self, new_size): """ Resize arrays if needed to hold more data. _resize_arrays expands our data arrays and is called when said arrays are filled with data and more data need to be added. Args: new_size (int): New size for arrays, Since these are all 1d arrays the value is simply an integer. """ self.time = np.resize(self.time,(new_size)) self.pitch = np.resize(self.pitch,(new_size)) self.roll = np.resize(self.roll,(new_size)) self.heading = np.resize(self.heading,(new_size)) self.heave = np.resize(self.heave,(new_size)) def trim(self): """ Trim arrays to proper size after all data are added. trim is called when one is done adding data to the object. It removes empty elements of the data arrays. """ self._resize_arrays(self.n_datagrams) def __str__(self): """ Reimplemented string method that provides some basic info about the nmea_data object. """ # print the class and address msg = str(self.__class__) + " at " + str(hex(id(self))) + "\n" # print some more info about the motion_data instance if (self.n_datagrams > 0): msg = "{0} MRU data start time: {1}\n".format(msg, self.time[0]) msg = "{0} MRU data end time: {1}\n".format(msg,self.time[self.n_datagrams-1]) msg = "{0} Number of datagrams: {1}\n".format(msg,self.n_datagrams+1) else: msg = msg + (" simrad_motion_data object contains no data\n") return msg
[ "numpy.logical_and", "numpy.max", "numpy.resize", "numpy.empty", "numpy.min" ]
[((1558, 1614), 'numpy.empty', 'np.empty', (['bottom_data.CHUNK_SIZE'], {'dtype': '"""datetime64[ms]"""'}), "(bottom_data.CHUNK_SIZE, dtype='datetime64[ms]')\n", (1566, 1614), True, 'import numpy as np\n'), ((1646, 1692), 'numpy.empty', 'np.empty', (['bottom_data.CHUNK_SIZE'], {'dtype': 'object'}), '(bottom_data.CHUNK_SIZE, dtype=object)\n', (1654, 1692), True, 'import numpy as np\n'), ((6366, 6424), 'numpy.logical_and', 'np.logical_and', (['mask', '(self.time[primary_index] <= end_time)'], {}), '(mask, self.time[primary_index] <= end_time)\n', (6380, 6424), True, 'import numpy as np\n'), ((6953, 6983), 'numpy.resize', 'np.resize', (['self.time', 'new_size'], {}), '(self.time, new_size)\n', (6962, 6983), True, 'import numpy as np\n'), ((7006, 7037), 'numpy.resize', 'np.resize', (['self.pitch', 'new_size'], {}), '(self.pitch, new_size)\n', (7015, 7037), True, 'import numpy as np\n'), ((7059, 7089), 'numpy.resize', 'np.resize', (['self.roll', 'new_size'], {}), '(self.roll, new_size)\n', (7068, 7089), True, 'import numpy as np\n'), ((7114, 7147), 'numpy.resize', 'np.resize', (['self.heading', 'new_size'], {}), '(self.heading, new_size)\n', (7123, 7147), True, 'import numpy as np\n'), ((7170, 7201), 'numpy.resize', 'np.resize', (['self.heave', 'new_size'], {}), '(self.heave, new_size)\n', (7179, 7201), True, 'import numpy as np\n'), ((5928, 5945), 'numpy.min', 'np.min', (['self.time'], {}), '(self.time)\n', (5934, 5945), True, 'import numpy as np\n'), ((5998, 6015), 'numpy.max', 'np.max', (['self.time'], {}), '(self.time)\n', (6004, 6015), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np a = np.arange(15) out = a.reshape(5, 3) c = np.arange(15) / 2 y_onehot = c.reshape(5, 3) out_tensor = tf.convert_to_tensor(out, dtype=tf.float32) y_onehot_tensor = tf.convert_to_tensor(y_onehot, dtype=tf.float32) # y_onehot = tf.one_hot(y_onehot_tensor, depth=3) # one-hot编码 loss1 = tf.square(out_tensor - y_onehot_tensor) loss2 = tf.reduce_sum(loss1) / 32 pass
[ "tensorflow.convert_to_tensor", "tensorflow.reduce_sum", "numpy.arange", "tensorflow.square" ]
[((48, 61), 'numpy.arange', 'np.arange', (['(15)'], {}), '(15)\n', (57, 61), True, 'import numpy as np\n'), ((148, 191), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['out'], {'dtype': 'tf.float32'}), '(out, dtype=tf.float32)\n', (168, 191), True, 'import tensorflow as tf\n'), ((210, 258), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['y_onehot'], {'dtype': 'tf.float32'}), '(y_onehot, dtype=tf.float32)\n', (230, 258), True, 'import tensorflow as tf\n'), ((331, 370), 'tensorflow.square', 'tf.square', (['(out_tensor - y_onehot_tensor)'], {}), '(out_tensor - y_onehot_tensor)\n', (340, 370), True, 'import tensorflow as tf\n'), ((89, 102), 'numpy.arange', 'np.arange', (['(15)'], {}), '(15)\n', (98, 102), True, 'import numpy as np\n'), ((379, 399), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['loss1'], {}), '(loss1)\n', (392, 399), True, 'import tensorflow as tf\n')]
# # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Author: <NAME> (<EMAIL>) # Date: 05/15/2019 # import os import numpy as np import math import sys from torch.utils.data import Sampler __all__=['BatchSampler', 'DistributedBatchSampler', 'RandomSampler', 'SequentialSampler'] class BatchSampler(Sampler): def __init__(self, sampler, batch_size): self.sampler = sampler self.batch_size = batch_size def __iter__(self): batch = [] for idx in self.sampler: batch.append(idx) if len(batch)==self.batch_size: yield batch batch = [] if len(batch)>0: yield batch def __len__(self): return (len(self.sampler) + self.batch_size - 1)//self.batch_size class DistributedBatchSampler(Sampler): def __init__(self, sampler, rank=0, world_size = 1, drop_last = False): self.sampler = sampler self.rank = rank self.world_size = world_size self.drop_last = drop_last def __iter__(self): for b in self.sampler: if len(b)%self.world_size != 0: if self.drop_last: break else: b.extend([b[0] for _ in range(self.world_size-len(b)%self.world_size)]) chunk_size = len(b)//self.world_size yield b[self.rank*chunk_size:(self.rank+1)*chunk_size] def __len__(self): return len(self.sampler) class RandomSampler(Sampler): def __init__(self, total_samples:int, data_seed:int = 0): self.indices = np.array(np.arange(total_samples)) self.rng = np.random.RandomState(data_seed) def __iter__(self): self.rng.shuffle(self.indices) for i in self.indices: yield i def __len__(self): return len(self.indices) class SequentialSampler(Sampler): def __init__(self, total_samples:int): self.indices = np.array(np.arange(total_samples)) def __iter__(self): for i in self.indices: yield i def __len__(self): return len(self.indices)
[ "numpy.random.RandomState", "numpy.arange" ]
[((1557, 1589), 'numpy.random.RandomState', 'np.random.RandomState', (['data_seed'], {}), '(data_seed)\n', (1578, 1589), True, 'import numpy as np\n'), ((1516, 1540), 'numpy.arange', 'np.arange', (['total_samples'], {}), '(total_samples)\n', (1525, 1540), True, 'import numpy as np\n'), ((1844, 1868), 'numpy.arange', 'np.arange', (['total_samples'], {}), '(total_samples)\n', (1853, 1868), True, 'import numpy as np\n')]
# Blurring and Sharpening Images # Import Computer Vision package - cv2 import cv2 # Import Numerical Python package - numpy as np import numpy as np # Read the image using imread built-in function image = cv2.imread('image_6.jpg') # Display original image using imshow built-in function cv2.imshow("Original", image) # Wait until any key is pressed cv2.waitKey(0) # Blurring images: Averaging, cv2.blur built-in function # Averaging: Convolving image with normalized box filter # Convolution: Mathematical operation on 2 functions which produces third function. # Normalized box filter having size 3 x 3 would be: # (1/9) [[1, 1, 1], # [1, 1, 1], # [1, 1, 1]] blur = cv2.blur(image,(9,9)) # (9 x 9) filter is used # Display blurred image cv2.imshow('Blurred', blur) # Wait until any key is pressed cv2.waitKey(0) # Sharpening images: Emphasizes edges in an image kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) # If we don't normalize to 1, image would be brighter or darker respectively # cv2.filter2D is the built-in function used for sharpening images # cv2.filter2D(image, ddepth, kernel) sharpened = cv2.filter2D(image, -1, kernel) # ddepth = -1, sharpened images will have same depth as original image # Display sharpenend image cv2.imshow('Sharpened', sharpened) # Wait untill any key is pressed cv2.waitKey(0) # Close all windows cv2.destroyAllWindows()
[ "cv2.filter2D", "cv2.imshow", "numpy.array", "cv2.destroyAllWindows", "cv2.waitKey", "cv2.blur", "cv2.imread" ]
[((218, 243), 'cv2.imread', 'cv2.imread', (['"""image_6.jpg"""'], {}), "('image_6.jpg')\n", (228, 243), False, 'import cv2\n'), ((304, 333), 'cv2.imshow', 'cv2.imshow', (['"""Original"""', 'image'], {}), "('Original', image)\n", (314, 333), False, 'import cv2\n'), ((370, 384), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (381, 384), False, 'import cv2\n'), ((704, 727), 'cv2.blur', 'cv2.blur', (['image', '(9, 9)'], {}), '(image, (9, 9))\n', (712, 727), False, 'import cv2\n'), ((780, 807), 'cv2.imshow', 'cv2.imshow', (['"""Blurred"""', 'blur'], {}), "('Blurred', blur)\n", (790, 807), False, 'import cv2\n'), ((844, 858), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (855, 858), False, 'import cv2\n'), ((924, 975), 'numpy.array', 'np.array', (['[[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]'], {}), '([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])\n', (932, 975), True, 'import numpy as np\n'), ((1242, 1273), 'cv2.filter2D', 'cv2.filter2D', (['image', '(-1)', 'kernel'], {}), '(image, -1, kernel)\n', (1254, 1273), False, 'import cv2\n'), ((1377, 1411), 'cv2.imshow', 'cv2.imshow', (['"""Sharpened"""', 'sharpened'], {}), "('Sharpened', sharpened)\n", (1387, 1411), False, 'import cv2\n'), ((1449, 1463), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1460, 1463), False, 'import cv2\n'), ((1488, 1511), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1509, 1511), False, 'import cv2\n')]
import os.path import scipy.io as sio import numpy as np # for algebraic operations, matrices import keras.models from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout # , Layer, Flatten # from keras.layers import containers from keras.models import model_from_json,Model from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier from hyperas.distributions import choice, uniform, conditional from hyperopt import Trials, STATUS_OK from sklearn.metrics import confusion_matrix from keras.layers.normalization import BatchNormalization from keras.layers.convolutional import Conv2D from keras.layers.convolutional import MaxPooling2D as pool2 from keras.callbacks import EarlyStopping,ModelCheckpoint # from keras.layers.convolutional import ZeroPadding2D as zero2d from keras.regularizers import l2 # , activity_l2 # from theano import functionfrom keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input from keras.optimizers import SGD from keras.layers.merge import concatenate from keras.layers import Input,add from keras.layers.advanced_activations import PReLU,ELU from keras.layers.pooling import GlobalAveragePooling2D #temp/Inception-ResNet for 180180 def create180180Model(patchSize): seed=5 np.random.seed(seed) input=Input(shape=(1,patchSize[0, 0], patchSize[0, 1])) out1=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='valid',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(input) out2=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='valid',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out1) out2=pool2(pool_size=(2,2),data_format='channels_first')(out2) out3=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out2) out4=Conv2D(filters=64,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out3) out4=add([out2,out4]) out4=pool2(pool_size=(2,2),data_format='channels_first')(out4) out_3=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out4) out_4=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_3) out5_1=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_2=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_2=Conv2D(filters=128,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_2) out5_3=Conv2D(filters=32,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out_4) out5_3=Conv2D(filters=128,kernel_size=(5,5),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_3) out5_4=pool2(pool_size=(3,3),strides=(1,1),padding='same',data_format='channels_first')(out_4) out5_4=Conv2D(filters=128,kernel_size=(1,1),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6),activation='relu')(out5_4) out5=concatenate(inputs=[out5_1,out5_2,out5_3],axis=1) out7=Conv2D(filters=288,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out5) out7=add([out5, out7]) out7=pool2(pool_size=(2,2),data_format='channels_first')(out7) sout7=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out7) out8=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out7) out9=Conv2D(filters=256,kernel_size=(3,3),kernel_initializer='he_normal',weights=None,padding='same',strides=(1, 1),kernel_regularizer=l2(1e-6), activation='relu')(out8) out9=add([sout7, out9]) out9=pool2(pool_size=(2,2),data_format='channels_first')(out9) out10=Flatten()(out9) out11=Dense(units=11, kernel_initializer='normal', kernel_regularizer='l2', activation='softmax')(out10) cnn = Model(inputs=input,outputs=out11) return cnn def fTrain(X_train, y_train, X_test, y_test, sOutPath, patchSize, batchSizes=None, learningRates=None, iEpochs=None): # grid search on batch_sizes and learning rates # parse inputs batchSizes = 64 if batchSizes is None else batchSizes learningRates = 0.01 if learningRates is None else learningRates iEpochs = 300 if iEpochs is None else iEpochs for iBatch in batchSizes: for iLearn in learningRates: fTrainInner(X_train, y_train, X_test, y_test, sOutPath, patchSize, iBatch, iLearn, iEpochs) def fTrainInner(X_train, y_train, X_test, y_test, sOutPath, patchSize, batchSize=None, learningRate=None, iEpochs=None): # parse inputs batchSize = 64 if batchSize is None else batchSize learningRate = 0.01 if learningRate is None else learningRate iEpochs = 300 if iEpochs is None else iEpochs print('Training CNN InceptionNet') print('with lr = ' + str(learningRate) + ' , batchSize = ' + str(batchSize)) # save names _, sPath = os.path.splitdrive(sOutPath) sPath, sFilename = os.path.split(sPath) sFilename, sExt = os.path.splitext(sFilename) model_name = sPath + '/' + sFilename + str(patchSize[0, 0]) + str(patchSize[0, 1]) + '_lr_' + str( learningRate) + '_bs_' + str(batchSize) weight_name = model_name + '_weights.h5' model_json = model_name + '_json' model_all = model_name + '_model.h5' model_mat = model_name + '.mat' if (os.path.isfile(model_mat)): # no training if output file exists return # create model if (patchSize[0,0]!=180 & patchSize[0,1]!=180): print('NO model for patch size ' + patchSize[0, 0] + patchSize[0, 0]) else: cnn = create180180Model(patchSize) # opti = SGD(lr=learningRate, momentum=1e-8, decay=0.1, nesterov=True);#Adag(lr=0.01, epsilon=1e-06) opti = keras.optimizers.Adam(lr=learningRate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) callbacks = [EarlyStopping(monitor='val_loss', patience=20, verbose=1), ModelCheckpoint(filepath=model_name+'bestweights.hdf5',monitor='val_acc',verbose=0,save_best_only=True,save_weights_only=False)] #callbacks = [ModelCheckpoint(filepath=model_name+'bestweights.hdf5',monitor='val_acc',verbose=0,save_best_only=True,save_weights_only=False)] cnn.compile(loss='categorical_crossentropy', optimizer=opti, metrics=['accuracy']) cnn.summary() result = cnn.fit(X_train, y_train, validation_data=[X_test, y_test], epochs=iEpochs, batch_size=batchSize, callbacks=callbacks, verbose=1) score_test, acc_test = cnn.evaluate(X_test, y_test, batch_size=batchSize ) prob_test = cnn.predict(X_test, batchSize, 0) y_pred=np.argmax(prob_test,axis=1) y_test=np.argmax(y_test,axis=1) confusion_mat=confusion_matrix(y_test,y_pred) # save model json_string = cnn.to_json() open(model_json, 'w').write(json_string) # wei = cnn.get_weights() cnn.save_weights(weight_name, overwrite=True) # cnn.save(model_all) # keras > v0.7 # matlab acc = result.history['acc'] loss = result.history['loss'] val_acc = result.history['val_acc'] val_loss = result.history['val_loss'] print('Saving results: ' + model_name) sio.savemat(model_name, {'model_settings': model_json, 'model': model_all, 'weights': weight_name, 'acc': acc, 'loss': loss, 'val_acc': val_acc, 'val_loss': val_loss, 'score_test': score_test, 'acc_test': acc_test, 'prob_test': prob_test, 'confusion_mat':confusion_mat}) def fPredict(X_test, y_test, model_name, sOutPath, patchSize, batchSize): weight_name = model_name[0] #model_json = model_name[1] + '_json' #model_all = model_name[0] + '.hdf5' _, sPath = os.path.splitdrive(sOutPath) sPath, sFilename = os.path.split(sOutPath) #sFilename, sExt = os.path.splitext(sFilename) #f = h5py.File(weight_name, 'r+') #del f['optimizer_weights'] #f.close() model=load_model(weight_name) opti = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) callbacks = [EarlyStopping(monitor='val_loss', patience=10, verbose=1)] #model.compile(loss='categorical_crossentropy', optimizer=opti, metrics=['accuracy']) #model.load_weights(weight_name) model.summary(); score_test, acc_test = model.evaluate(X_test, y_test, batch_size=batchSize) prob_pre = model.predict(X_test, batchSize, 0) y_pred=np.argmax(prob_pre,axis=1) y_test=np.argmax(y_test,axis=1) confusion_mat=confusion_matrix(y_test,y_pred) # modelSave = model_name[:-5] + '_pred.mat' modelSave = sOutPath + '/' + sFilename + '_result.mat' sio.savemat(modelSave, {'prob_pre': prob_pre, 'score_test': score_test, 'acc_test': acc_test, 'confusion_mat':confusion_mat})
[ "keras.layers.core.Flatten", "scipy.io.savemat", "keras.callbacks.ModelCheckpoint", "keras.layers.merge.concatenate", "keras.layers.add", "numpy.argmax", "keras.layers.Input", "keras.layers.core.Dense", "keras.regularizers.l2", "keras.models.Model", "numpy.random.seed", "keras.layers.convolutional.MaxPooling2D", "keras.callbacks.EarlyStopping", "sklearn.metrics.confusion_matrix" ]
[((1422, 1442), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1436, 1442), True, 'import numpy as np\n'), ((1450, 1500), 'keras.layers.Input', 'Input', ([], {'shape': '(1, patchSize[0, 0], patchSize[0, 1])'}), '(shape=(1, patchSize[0, 0], patchSize[0, 1]))\n', (1455, 1500), False, 'from keras.layers import Input, add\n'), ((2250, 2267), 'keras.layers.add', 'add', (['[out2, out4]'], {}), '([out2, out4])\n', (2253, 2267), False, 'from keras.layers import Input, add\n'), ((3820, 3872), 'keras.layers.merge.concatenate', 'concatenate', ([], {'inputs': '[out5_1, out5_2, out5_3]', 'axis': '(1)'}), '(inputs=[out5_1, out5_2, out5_3], axis=1)\n', (3831, 3872), False, 'from keras.layers.merge import concatenate\n'), ((4061, 4078), 'keras.layers.add', 'add', (['[out5, out7]'], {}), '([out5, out7])\n', (4064, 4078), False, 'from keras.layers import Input, add\n'), ((4703, 4721), 'keras.layers.add', 'add', (['[sout7, out9]'], {}), '([sout7, out9])\n', (4706, 4721), False, 'from keras.layers import Input, add\n'), ((4966, 5000), 'keras.models.Model', 'Model', ([], {'inputs': 'input', 'outputs': 'out11'}), '(inputs=input, outputs=out11)\n', (4971, 5000), False, 'from keras.models import model_from_json, Model\n'), ((7656, 7684), 'numpy.argmax', 'np.argmax', (['prob_test'], {'axis': '(1)'}), '(prob_test, axis=1)\n', (7665, 7684), True, 'import numpy as np\n'), ((7692, 7717), 'numpy.argmax', 'np.argmax', (['y_test'], {'axis': '(1)'}), '(y_test, axis=1)\n', (7701, 7717), True, 'import numpy as np\n'), ((7732, 7764), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (7748, 7764), False, 'from sklearn.metrics import confusion_matrix\n'), ((8151, 8434), 'scipy.io.savemat', 'sio.savemat', (['model_name', "{'model_settings': model_json, 'model': model_all, 'weights': weight_name,\n 'acc': acc, 'loss': loss, 'val_acc': val_acc, 'val_loss': val_loss,\n 'score_test': score_test, 'acc_test': acc_test, 'prob_test': prob_test,\n 'confusion_mat': confusion_mat}"], {}), "(model_name, {'model_settings': model_json, 'model': model_all,\n 'weights': weight_name, 'acc': acc, 'loss': loss, 'val_acc': val_acc,\n 'val_loss': val_loss, 'score_test': score_test, 'acc_test': acc_test,\n 'prob_test': prob_test, 'confusion_mat': confusion_mat})\n", (8162, 8434), True, 'import scipy.io as sio\n'), ((9546, 9573), 'numpy.argmax', 'np.argmax', (['prob_pre'], {'axis': '(1)'}), '(prob_pre, axis=1)\n', (9555, 9573), True, 'import numpy as np\n'), ((9581, 9606), 'numpy.argmax', 'np.argmax', (['y_test'], {'axis': '(1)'}), '(y_test, axis=1)\n', (9590, 9606), True, 'import numpy as np\n'), ((9621, 9653), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (9637, 9653), False, 'from sklearn.metrics import confusion_matrix\n'), ((9755, 9885), 'scipy.io.savemat', 'sio.savemat', (['modelSave', "{'prob_pre': prob_pre, 'score_test': score_test, 'acc_test': acc_test,\n 'confusion_mat': confusion_mat}"], {}), "(modelSave, {'prob_pre': prob_pre, 'score_test': score_test,\n 'acc_test': acc_test, 'confusion_mat': confusion_mat})\n", (9766, 9885), True, 'import scipy.io as sio\n'), ((1847, 1900), 'keras.layers.convolutional.MaxPooling2D', 'pool2', ([], {'pool_size': '(2, 2)', 'data_format': '"""channels_first"""'}), "(pool_size=(2, 2), data_format='channels_first')\n", (1852, 1900), True, 'from keras.layers.convolutional import MaxPooling2D as pool2\n'), ((2273, 2326), 'keras.layers.convolutional.MaxPooling2D', 'pool2', ([], {'pool_size': '(2, 2)', 'data_format': '"""channels_first"""'}), "(pool_size=(2, 2), data_format='channels_first')\n", (2278, 2326), True, 'from keras.layers.convolutional import MaxPooling2D as pool2\n'), ((3551, 3641), 'keras.layers.convolutional.MaxPooling2D', 'pool2', ([], {'pool_size': '(3, 3)', 'strides': '(1, 1)', 'padding': '"""same"""', 'data_format': '"""channels_first"""'}), "(pool_size=(3, 3), strides=(1, 1), padding='same', data_format=\n 'channels_first')\n", (3556, 3641), True, 'from keras.layers.convolutional import MaxPooling2D as pool2\n'), ((4085, 4138), 'keras.layers.convolutional.MaxPooling2D', 'pool2', ([], {'pool_size': '(2, 2)', 'data_format': '"""channels_first"""'}), "(pool_size=(2, 2), data_format='channels_first')\n", (4090, 4138), True, 'from keras.layers.convolutional import MaxPooling2D as pool2\n'), ((4729, 4782), 'keras.layers.convolutional.MaxPooling2D', 'pool2', ([], {'pool_size': '(2, 2)', 'data_format': '"""channels_first"""'}), "(pool_size=(2, 2), data_format='channels_first')\n", (4734, 4782), True, 'from keras.layers.convolutional import MaxPooling2D as pool2\n'), ((4795, 4804), 'keras.layers.core.Flatten', 'Flatten', ([], {}), '()\n', (4802, 4804), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((4820, 4915), 'keras.layers.core.Dense', 'Dense', ([], {'units': '(11)', 'kernel_initializer': '"""normal"""', 'kernel_regularizer': '"""l2"""', 'activation': '"""softmax"""'}), "(units=11, kernel_initializer='normal', kernel_regularizer='l2',\n activation='softmax')\n", (4825, 4915), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((6843, 6900), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': '(20)', 'verbose': '(1)'}), "(monitor='val_loss', patience=20, verbose=1)\n", (6856, 6900), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint\n'), ((6902, 7039), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', ([], {'filepath': "(model_name + 'bestweights.hdf5')", 'monitor': '"""val_acc"""', 'verbose': '(0)', 'save_best_only': '(True)', 'save_weights_only': '(False)'}), "(filepath=model_name + 'bestweights.hdf5', monitor='val_acc',\n verbose=0, save_best_only=True, save_weights_only=False)\n", (6917, 7039), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint\n'), ((9212, 9269), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'patience': '(10)', 'verbose': '(1)'}), "(monitor='val_loss', patience=10, verbose=1)\n", (9225, 9269), False, 'from keras.callbacks import EarlyStopping, ModelCheckpoint\n'), ((1636, 1645), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (1638, 1645), False, 'from keras.regularizers import l2\n'), ((1807, 1816), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (1809, 1816), False, 'from keras.regularizers import l2\n'), ((2041, 2050), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2043, 2050), False, 'from keras.regularizers import l2\n'), ((2210, 2219), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2212, 2219), False, 'from keras.regularizers import l2\n'), ((2469, 2478), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2471, 2478), False, 'from keras.regularizers import l2\n'), ((2640, 2649), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2642, 2649), False, 'from keras.regularizers import l2\n'), ((2813, 2822), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2815, 2822), False, 'from keras.regularizers import l2\n'), ((2986, 2995), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (2988, 2995), False, 'from keras.regularizers import l2\n'), ((3159, 3168), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (3161, 3168), False, 'from keras.regularizers import l2\n'), ((3333, 3342), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (3335, 3342), False, 'from keras.regularizers import l2\n'), ((3506, 3515), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (3508, 3515), False, 'from keras.regularizers import l2\n'), ((3777, 3786), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (3779, 3786), False, 'from keras.regularizers import l2\n'), ((4007, 4016), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (4009, 4016), False, 'from keras.regularizers import l2\n'), ((4280, 4289), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (4282, 4289), False, 'from keras.regularizers import l2\n'), ((4465, 4474), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (4467, 4474), False, 'from keras.regularizers import l2\n'), ((4649, 4658), 'keras.regularizers.l2', 'l2', (['(1e-06)'], {}), '(1e-06)\n', (4651, 4658), False, 'from keras.regularizers import l2\n')]
import numpy as np import random import matplotlib.pyplot as plt from load_data import loadLabel,loadImage def der_activation_function(x,type): if type==1: return 1 - np.power(np.tanh(x), 2) elif type==2: return (1/(1+np.exp(-x)))*(1-1/(1+np.exp(-x))) else: x[x<=0]=0.25 x[x>0]=1 return x def activation_function(x,type): if type==1: return np.tanh(x) elif type==2: return 1/(1+np.exp(-x)) else: return np.where(x<=0,0.25*x,x) def MLP_train(data,labels,hidden_nodes,epoch,test_data,test_labels): alpha=0.002 size=data.shape w1=np.zeros((hidden_nodes,size[1])) for i in range(hidden_nodes): for j in range(size[1]): w1[i,j]=random.uniform(-0.4,0.4) w2=np.zeros((10,hidden_nodes)) for i in range(10): for j in range(hidden_nodes): w2[i,j]=random.uniform(-0.4,0.4) b1=np.zeros(hidden_nodes) b2=np.zeros(10) for i in range(epoch): for x,y in zip(data,labels): u=np.dot(w1,x.T)+b1 h=activation_function(u,3) v=np.dot(w2,h)+b2 output=activation_function(v,3) delta2=(output-y.T)*der_activation_function(v,3) delta1=der_activation_function(u,3)*np.dot(w2.T,delta2) d_w1=np.dot(np.expand_dims(delta1,axis=1),np.expand_dims(x,axis=0)) d_w2=np.dot(np.expand_dims(delta2,axis=1),np.expand_dims(h,axis=0)) w1=w1-alpha*d_w1 w2=w2-alpha*d_w2 b1=b1-alpha*delta1 b2=b2-alpha*delta2 u_test=np.dot(w1,test_data.T)+np.expand_dims(b1,axis=1) h_test=activation_function(u_test,3) v_test=np.dot(w2,h_test)+np.expand_dims(b2,axis=1) output_test=activation_function(v_test.T,3) right_times=0 for i in range(len(output_test)): if np.argmax(output_test[i])==np.argmax(test_labels[i]): right_times+=1 accuracy=right_times/len(output_test) print(accuracy) if __name__=='__main__': train_imgs=loadImage("train-images-idx3-ubyte") train_labels=loadLabel("train-labels-idx1-ubyte") test_imgs=loadImage("t10k-images-idx3-ubyte") random.seed(2) test_labels=loadLabel("t10k-labels-idx1-ubyte") # MLP_train(train_imgs,train_labels,25,15,test_imgs,test_labels) for nodes in range(30,60,10): print('activation function: PReLU') print(nodes,"hidden nodes:") MLP_train(train_imgs, train_labels, nodes, 30, test_imgs, test_labels)
[ "random.uniform", "numpy.where", "load_data.loadImage", "numpy.tanh", "random.seed", "numpy.argmax", "numpy.exp", "numpy.zeros", "numpy.dot", "numpy.expand_dims", "load_data.loadLabel" ]
[((630, 663), 'numpy.zeros', 'np.zeros', (['(hidden_nodes, size[1])'], {}), '((hidden_nodes, size[1]))\n', (638, 663), True, 'import numpy as np\n'), ((782, 810), 'numpy.zeros', 'np.zeros', (['(10, hidden_nodes)'], {}), '((10, hidden_nodes))\n', (790, 810), True, 'import numpy as np\n'), ((924, 946), 'numpy.zeros', 'np.zeros', (['hidden_nodes'], {}), '(hidden_nodes)\n', (932, 946), True, 'import numpy as np\n'), ((954, 966), 'numpy.zeros', 'np.zeros', (['(10)'], {}), '(10)\n', (962, 966), True, 'import numpy as np\n'), ((2043, 2079), 'load_data.loadImage', 'loadImage', (['"""train-images-idx3-ubyte"""'], {}), "('train-images-idx3-ubyte')\n", (2052, 2079), False, 'from load_data import loadLabel, loadImage\n'), ((2097, 2133), 'load_data.loadLabel', 'loadLabel', (['"""train-labels-idx1-ubyte"""'], {}), "('train-labels-idx1-ubyte')\n", (2106, 2133), False, 'from load_data import loadLabel, loadImage\n'), ((2148, 2183), 'load_data.loadImage', 'loadImage', (['"""t10k-images-idx3-ubyte"""'], {}), "('t10k-images-idx3-ubyte')\n", (2157, 2183), False, 'from load_data import loadLabel, loadImage\n'), ((2188, 2202), 'random.seed', 'random.seed', (['(2)'], {}), '(2)\n', (2199, 2202), False, 'import random\n'), ((2219, 2254), 'load_data.loadLabel', 'loadLabel', (['"""t10k-labels-idx1-ubyte"""'], {}), "('t10k-labels-idx1-ubyte')\n", (2228, 2254), False, 'from load_data import loadLabel, loadImage\n'), ((407, 417), 'numpy.tanh', 'np.tanh', (['x'], {}), '(x)\n', (414, 417), True, 'import numpy as np\n'), ((1598, 1621), 'numpy.dot', 'np.dot', (['w1', 'test_data.T'], {}), '(w1, test_data.T)\n', (1604, 1621), True, 'import numpy as np\n'), ((1621, 1647), 'numpy.expand_dims', 'np.expand_dims', (['b1'], {'axis': '(1)'}), '(b1, axis=1)\n', (1635, 1647), True, 'import numpy as np\n'), ((1699, 1717), 'numpy.dot', 'np.dot', (['w2', 'h_test'], {}), '(w2, h_test)\n', (1705, 1717), True, 'import numpy as np\n'), ((1717, 1743), 'numpy.expand_dims', 'np.expand_dims', (['b2'], {'axis': '(1)'}), '(b2, axis=1)\n', (1731, 1743), True, 'import numpy as np\n'), ((493, 522), 'numpy.where', 'np.where', (['(x <= 0)', '(0.25 * x)', 'x'], {}), '(x <= 0, 0.25 * x, x)\n', (501, 522), True, 'import numpy as np\n'), ((750, 775), 'random.uniform', 'random.uniform', (['(-0.4)', '(0.4)'], {}), '(-0.4, 0.4)\n', (764, 775), False, 'import random\n'), ((892, 917), 'random.uniform', 'random.uniform', (['(-0.4)', '(0.4)'], {}), '(-0.4, 0.4)\n', (906, 917), False, 'import random\n'), ((1858, 1883), 'numpy.argmax', 'np.argmax', (['output_test[i]'], {}), '(output_test[i])\n', (1867, 1883), True, 'import numpy as np\n'), ((1885, 1910), 'numpy.argmax', 'np.argmax', (['test_labels[i]'], {}), '(test_labels[i])\n', (1894, 1910), True, 'import numpy as np\n'), ((189, 199), 'numpy.tanh', 'np.tanh', (['x'], {}), '(x)\n', (196, 199), True, 'import numpy as np\n'), ((1045, 1060), 'numpy.dot', 'np.dot', (['w1', 'x.T'], {}), '(w1, x.T)\n', (1051, 1060), True, 'import numpy as np\n'), ((1116, 1129), 'numpy.dot', 'np.dot', (['w2', 'h'], {}), '(w2, h)\n', (1122, 1129), True, 'import numpy as np\n'), ((1286, 1306), 'numpy.dot', 'np.dot', (['w2.T', 'delta2'], {}), '(w2.T, delta2)\n', (1292, 1306), True, 'import numpy as np\n'), ((1330, 1360), 'numpy.expand_dims', 'np.expand_dims', (['delta1'], {'axis': '(1)'}), '(delta1, axis=1)\n', (1344, 1360), True, 'import numpy as np\n'), ((1360, 1385), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1374, 1385), True, 'import numpy as np\n'), ((1410, 1440), 'numpy.expand_dims', 'np.expand_dims', (['delta2'], {'axis': '(1)'}), '(delta2, axis=1)\n', (1424, 1440), True, 'import numpy as np\n'), ((1440, 1465), 'numpy.expand_dims', 'np.expand_dims', (['h'], {'axis': '(0)'}), '(h, axis=0)\n', (1454, 1465), True, 'import numpy as np\n'), ((456, 466), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (462, 466), True, 'import numpy as np\n'), ((243, 253), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (249, 253), True, 'import numpy as np\n'), ((264, 274), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (270, 274), True, 'import numpy as np\n')]
from utils import (load_data, data_to_series_features, apply_weight, is_minimum) from algorithm import (initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population) from sklearn.metrics import mean_squared_error, mean_absolute_error from tensorflow.keras import optimizers from tensorflow.keras.models import clone_model import argparse import math import numpy as np from model import make_model from copy import copy from sklearn.model_selection import train_test_split def parse_arguments(): # argument parsing parser = argparse.ArgumentParser(description="Specify Params for Experimental Setting") parser.add_argument('--iterations', type=int, default=20, help="Specify the number of evolution iterations") parser.add_argument('--batch_size', type=int, default=256, help="Specify batch size") parser.add_argument('--initial_epochs', type=int, default=100, help="Specify the number of epochs for initial training") parser.add_argument('--num_epochs', type=int, default=20, help="Specify the number of epochs for competitive search") parser.add_argument('--log_step', type=int, default=100, help="Specify log step size for training") parser.add_argument('--learning_rate', type=float, default=1e-3, help="Learning rate") parser.add_argument('--data', type=str, default='pollution.csv', help="Path to the dataset") parser.add_argument('--pop_size', type=int, default=36) parser.add_argument('--code_length', type=int, default=6) parser.add_argument('--n_select', type=int, default=6) parser.add_argument('--time_steps', type=int, default=18) parser.add_argument('--n_hidden', type=int, default=128) parser.add_argument('--n_output', type=int, default=1) parser.add_argument('--max_grad_norm', type=float, default=1.0) return parser.parse_args() def main(): args = parse_arguments() data, y_scaler = load_data(args.data) args.n_features = np.size(data, axis=-1) X, y = data_to_series_features(data, args.time_steps) train_X, X, train_y, y = train_test_split(X, y, test_size=0.3) valid_X, test_X, valid_y, test_y = train_test_split(X, y, test_size=0.5) optimizer = optimizers.Adam(learning_rate=args.learning_rate, clipnorm=args.max_grad_norm) best_model = make_model(args) best_weight = [1.0] * args.time_steps best_model.compile(loss='mse', optimizer=optimizer) print("Initial training before competitive random search") best_model.fit(apply_weight(train_X, best_weight), train_y, epochs=args.initial_epochs, validation_data=(apply_weight(valid_X, best_weight), valid_y), shuffle=True) print("\nInitial training is done. Start competitive random search.\n") pop, weights = initialize_weights(args.pop_size, args.time_steps, args.code_length) key_to_rmse = {} for iteration in range(args.iterations): for enum, (indiv, weight) in enumerate(zip(pop, weights)): print('iteration: [%d/%d] indiv_no: [%d/%d]' % (iteration + 1, args.iterations, enum + 1, args.pop_size)) key = individual_to_key(indiv) if key not in key_to_rmse.keys(): model = make_model(args) model.compile(loss='mse', optimizer=optimizer) model.set_weights(best_model.get_weights()) model.fit(apply_weight(train_X, weight), train_y, epochs=args.num_epochs, validation_data=(apply_weight(valid_X, weight), valid_y), shuffle=True) pred_y = model.predict(apply_weight(valid_X, weight)) inv_pred_y = y_scaler.inverse_transform(pred_y) inv_valid_y = y_scaler.inverse_transform(np.expand_dims(valid_y, axis=1)) rmse = math.sqrt(mean_squared_error(inv_valid_y, inv_pred_y)) mae = mean_absolute_error(inv_valid_y, inv_pred_y) print("RMSE: %.4f, MAE: %.4f" % (rmse, mae)) if is_minimum(rmse, key_to_rmse): best_model.set_weights(model.get_weights()) best_weight = copy(weight) key_to_rmse[key] = rmse pop_selected, fitness_selected = select(pop, args.n_select, key_to_rmse) pop = reconstruct_population(pop_selected, args.pop_size) weights = pop_to_weights(pop, args.time_steps, args.code_length) print('test evaluation:') pred_y = best_model.predict(apply_weight(test_X, best_weight)) inv_pred_y = y_scaler.inverse_transform(pred_y) inv_test_y = y_scaler.inverse_transform(np.expand_dims(test_y, axis=1)) rmse = math.sqrt(mean_squared_error(inv_test_y, inv_pred_y)) mae = mean_absolute_error(inv_test_y, inv_pred_y) print("RMSE: %.4f, MAE: %.4f" % (rmse, mae)) if __name__ == '__main__': main()
[ "utils.data_to_series_features", "utils.is_minimum", "utils.load_data", "argparse.ArgumentParser", "sklearn.model_selection.train_test_split", "algorithm.initialize_weights", "numpy.size", "algorithm.individual_to_key", "algorithm.pop_to_weights", "model.make_model", "algorithm.select", "tensorflow.keras.optimizers.Adam", "sklearn.metrics.mean_squared_error", "copy.copy", "numpy.expand_dims", "utils.apply_weight", "sklearn.metrics.mean_absolute_error", "algorithm.reconstruct_population" ]
[((601, 679), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Specify Params for Experimental Setting"""'}), "(description='Specify Params for Experimental Setting')\n", (624, 679), False, 'import argparse\n'), ((2118, 2138), 'utils.load_data', 'load_data', (['args.data'], {}), '(args.data)\n', (2127, 2138), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((2161, 2183), 'numpy.size', 'np.size', (['data'], {'axis': '(-1)'}), '(data, axis=-1)\n', (2168, 2183), True, 'import numpy as np\n'), ((2195, 2241), 'utils.data_to_series_features', 'data_to_series_features', (['data', 'args.time_steps'], {}), '(data, args.time_steps)\n', (2218, 2241), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((2271, 2308), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.3)'}), '(X, y, test_size=0.3)\n', (2287, 2308), False, 'from sklearn.model_selection import train_test_split\n'), ((2348, 2385), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.5)'}), '(X, y, test_size=0.5)\n', (2364, 2385), False, 'from sklearn.model_selection import train_test_split\n'), ((2403, 2481), 'tensorflow.keras.optimizers.Adam', 'optimizers.Adam', ([], {'learning_rate': 'args.learning_rate', 'clipnorm': 'args.max_grad_norm'}), '(learning_rate=args.learning_rate, clipnorm=args.max_grad_norm)\n', (2418, 2481), False, 'from tensorflow.keras import optimizers\n'), ((2499, 2515), 'model.make_model', 'make_model', (['args'], {}), '(args)\n', (2509, 2515), False, 'from model import make_model\n'), ((2961, 3029), 'algorithm.initialize_weights', 'initialize_weights', (['args.pop_size', 'args.time_steps', 'args.code_length'], {}), '(args.pop_size, args.time_steps, args.code_length)\n', (2979, 3029), False, 'from algorithm import initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population\n'), ((4875, 4918), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['inv_test_y', 'inv_pred_y'], {}), '(inv_test_y, inv_pred_y)\n', (4894, 4918), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n'), ((2696, 2730), 'utils.apply_weight', 'apply_weight', (['train_X', 'best_weight'], {}), '(train_X, best_weight)\n', (2708, 2730), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((4395, 4434), 'algorithm.select', 'select', (['pop', 'args.n_select', 'key_to_rmse'], {}), '(pop, args.n_select, key_to_rmse)\n', (4401, 4434), False, 'from algorithm import initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population\n'), ((4449, 4500), 'algorithm.reconstruct_population', 'reconstruct_population', (['pop_selected', 'args.pop_size'], {}), '(pop_selected, args.pop_size)\n', (4471, 4500), False, 'from algorithm import initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population\n'), ((4519, 4573), 'algorithm.pop_to_weights', 'pop_to_weights', (['pop', 'args.time_steps', 'args.code_length'], {}), '(pop, args.time_steps, args.code_length)\n', (4533, 4573), False, 'from algorithm import initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population\n'), ((4637, 4670), 'utils.apply_weight', 'apply_weight', (['test_X', 'best_weight'], {}), '(test_X, best_weight)\n', (4649, 4670), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((4768, 4798), 'numpy.expand_dims', 'np.expand_dims', (['test_y'], {'axis': '(1)'}), '(test_y, axis=1)\n', (4782, 4798), True, 'import numpy as np\n'), ((4821, 4863), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['inv_test_y', 'inv_pred_y'], {}), '(inv_test_y, inv_pred_y)\n', (4839, 4863), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n'), ((3299, 3323), 'algorithm.individual_to_key', 'individual_to_key', (['indiv'], {}), '(indiv)\n', (3316, 3323), False, 'from algorithm import initialize_weights, individual_to_key, pop_to_weights, select, reconstruct_population\n'), ((2805, 2839), 'utils.apply_weight', 'apply_weight', (['valid_X', 'best_weight'], {}), '(valid_X, best_weight)\n', (2817, 2839), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((3394, 3410), 'model.make_model', 'make_model', (['args'], {}), '(args)\n', (3404, 3410), False, 'from model import make_model\n'), ((4046, 4090), 'sklearn.metrics.mean_absolute_error', 'mean_absolute_error', (['inv_valid_y', 'inv_pred_y'], {}), '(inv_valid_y, inv_pred_y)\n', (4065, 4090), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n'), ((4171, 4200), 'utils.is_minimum', 'is_minimum', (['rmse', 'key_to_rmse'], {}), '(rmse, key_to_rmse)\n', (4181, 4200), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((3560, 3589), 'utils.apply_weight', 'apply_weight', (['train_X', 'weight'], {}), '(train_X, weight)\n', (3572, 3589), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((3761, 3790), 'utils.apply_weight', 'apply_weight', (['valid_X', 'weight'], {}), '(valid_X, weight)\n', (3773, 3790), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n'), ((3913, 3944), 'numpy.expand_dims', 'np.expand_dims', (['valid_y'], {'axis': '(1)'}), '(valid_y, axis=1)\n', (3927, 3944), True, 'import numpy as np\n'), ((3979, 4022), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['inv_valid_y', 'inv_pred_y'], {}), '(inv_valid_y, inv_pred_y)\n', (3997, 4022), False, 'from sklearn.metrics import mean_squared_error, mean_absolute_error\n'), ((4300, 4312), 'copy.copy', 'copy', (['weight'], {}), '(weight)\n', (4304, 4312), False, 'from copy import copy\n'), ((3667, 3696), 'utils.apply_weight', 'apply_weight', (['valid_X', 'weight'], {}), '(valid_X, weight)\n', (3679, 3696), False, 'from utils import load_data, data_to_series_features, apply_weight, is_minimum\n')]
""" Oxford Flowers dataset loader 1020 samples spanning 102 classes (avg 10 per class) http://www.robots.ox.ac.uk/~vgg/data/flowers """ from __future__ import print_function import numpy as np from PIL import Image, ImageFile from os.path import join import os import scipy.io import tarfile import shutil from torch.utils.data.dataset import Dataset from torchvision.datasets.utils import download_url class OxfordFlowersDataset(Dataset): # setup some class paths sub_root_dir = 'OxfordFlowers' download_url_prefix = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102' images_dir = 'jpg' def __init__(self, root_dir, split='train', transform=None, target_transform=None, force_download=False, categories_subset=None): """ :param root_dir: (string) the directory where the dataset will be stored :param split: (string) 'train', 'trainval', 'val' or 'test' :param transform: how to transform the input :param target_transform: how to transform the target :param force_download: (boolean) force a new download of the dataset :param categories_subset: (iterable) specify a subset of categories to build this set from """ super(OxfordFlowersDataset, self).__init__() # set instance variables self.root_dir = join(os.path.expanduser(root_dir), self.sub_root_dir) self.split = split self.transform = transform self.target_transform = target_transform self.labels = [] # check if data exists, if not download self.download(force=force_download) # load the data samples for this split self.data, self.labels, self.categories = self.load_data_split(categories_subset=categories_subset) self.samples = list(zip(self.data, self.labels)) self.n_categories = len(np.unique(self.labels)) def __len__(self): return len(self.samples) def __getitem__(self, index): # get the data sample sample_data, sample_target = self.samples[index] # load the image x = self.load_img(join(join(self.root_dir, self.images_dir), "image_%05d.jpg" % (sample_data+1))) y = sample_target # perform the transforms if self.transform: x = self.transform(x) if self.target_transform: y = self.target_transform(y) return x, y def download(self, force=False): # check for existence, if so return if os.path.exists(join(self.root_dir, 'jpg')) and os.path.exists(join(self.root_dir, 'imagelabels.mat'))\ and os.path.exists(join(self.root_dir, 'setid.mat')): if not force and len(os.listdir(join(self.root_dir, 'jpg'))) == 8189: print('Files already downloaded and verified') return else: shutil.rmtree(self.root_dir) # make the dirs and start the downloads os.makedirs(self.root_dir, exist_ok=True) filename = '102flowers' tar_filename = filename + '.tgz' url = join(self.download_url_prefix, tar_filename) download_url(url, self.root_dir, tar_filename, None) with tarfile.open(join(self.root_dir, tar_filename), 'r') as tar_file: tar_file.extractall(self.root_dir) os.remove(join(self.root_dir, tar_filename)) filename = 'imagelabels.mat' url = join(self.download_url_prefix, filename) download_url(url, self.root_dir, filename, None) filename = 'setid.mat' url = join(self.download_url_prefix, filename) download_url(url, self.root_dir, filename, None) def load_data_split(self, categories_subset=None): # assert we can do this split assert self.split in ['train', 'val', 'test'] # load all the samples and their labels all_samples = scipy.io.loadmat(join(self.root_dir, 'setid.mat')) all_categories = scipy.io.loadmat(join(self.root_dir, 'imagelabels.mat'))['labels'] # keep only the split samples and categories if self.split == 'train': split_samples = all_samples['trnid'] elif self.split == 'val': split_samples = all_samples['valid'] elif self.split == 'test': split_samples = all_samples['tstid'] split_samples = list(split_samples[0]-1) # index at 0 not 1 split_categories = list(all_categories[0][split_samples]) # lets now add if they are in the category_subset iterable data = [] categories = [] for index in range(len(split_samples)): category = split_categories[index] if categories_subset: if category in categories_subset: data.append(split_samples[index]) categories.append(split_categories[index]) else: # categories_subset is None so add all data.append(split_samples[index]) categories.append(split_categories[index]) # Build categories to labels (cats can be names, labels are ints starting from 0) self.categories_to_labels = {} self.labels_to_categories = {} for c in categories: if c not in self.categories_to_labels: self.categories_to_labels[c] = len(self.categories_to_labels) self.labels_to_categories[self.categories_to_labels[c]] = c # Build labels list corresponding to each sample labels = [] for c in categories: labels.append(self.categories_to_labels[c]) # set the data, categories and labels used in this dataset # (initially ordered with self.samples and not unique, careful with access post shuffling) self.categories = categories self.labels = labels self.data = data return data, labels, categories @staticmethod def load_img(path): # todo either turn image to tensor in transform or do here # Load the image ImageFile.LOAD_TRUNCATED_IMAGES = True image = Image.open(path)#.convert('RGB') return image def stats(self): # get the stats to print counts = self.class_counts() return "%d samples spanning %d classes (avg %d per class)" % \ (len(self.samples), len(counts), int(float(len(self.samples))/float(len(counts)))) def class_counts(self): # calculate the number of samples per category counts = {} for index in range(len(self.samples)): sample_data, sample_target = self.samples[index] if sample_target not in counts: counts[sample_target] = 1 else: counts[sample_target] += 1 return counts if __name__ == "__main__": # use this for debugging and checks from utils.debug import set_working_dir from config.config import config import matplotlib.pyplot as plt # set the working directory as appropriate set_working_dir() # load the dataset dataset = OxfordFlowersDataset(root_dir=config.dataset.root_dir) # print the stats print(dataset.stats()) # lets plot some samples fig = plt.figure() for i in range(len(dataset)): sample = dataset[i] ax = plt.subplot(1, 4, i + 1) plt.tight_layout() ax.set_title('Sample %d - Class %d' % (i, dataset.labels_to_categories[sample[1]])) # convert label to categ. ax.axis('off') plt.imshow(sample[0]) # todo when tensor will need to convert tensor to img if i == 3: plt.show() break
[ "matplotlib.pyplot.imshow", "PIL.Image.open", "numpy.unique", "os.makedirs", "os.path.join", "torchvision.datasets.utils.download_url", "utils.debug.set_working_dir", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "shutil.rmtree", "matplotlib.pyplot.subplot", "os.path.expanduser", "matplotlib.pyplot.show" ]
[((7147, 7164), 'utils.debug.set_working_dir', 'set_working_dir', ([], {}), '()\n', (7162, 7164), False, 'from utils.debug import set_working_dir\n'), ((7348, 7360), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (7358, 7360), True, 'import matplotlib.pyplot as plt\n'), ((3059, 3100), 'os.makedirs', 'os.makedirs', (['self.root_dir'], {'exist_ok': '(True)'}), '(self.root_dir, exist_ok=True)\n', (3070, 3100), False, 'import os\n'), ((3188, 3232), 'os.path.join', 'join', (['self.download_url_prefix', 'tar_filename'], {}), '(self.download_url_prefix, tar_filename)\n', (3192, 3232), False, 'from os.path import join\n'), ((3241, 3293), 'torchvision.datasets.utils.download_url', 'download_url', (['url', 'self.root_dir', 'tar_filename', 'None'], {}), '(url, self.root_dir, tar_filename, None)\n', (3253, 3293), False, 'from torchvision.datasets.utils import download_url\n'), ((3525, 3565), 'os.path.join', 'join', (['self.download_url_prefix', 'filename'], {}), '(self.download_url_prefix, filename)\n', (3529, 3565), False, 'from os.path import join\n'), ((3574, 3622), 'torchvision.datasets.utils.download_url', 'download_url', (['url', 'self.root_dir', 'filename', 'None'], {}), '(url, self.root_dir, filename, None)\n', (3586, 3622), False, 'from torchvision.datasets.utils import download_url\n'), ((3669, 3709), 'os.path.join', 'join', (['self.download_url_prefix', 'filename'], {}), '(self.download_url_prefix, filename)\n', (3673, 3709), False, 'from os.path import join\n'), ((3718, 3766), 'torchvision.datasets.utils.download_url', 'download_url', (['url', 'self.root_dir', 'filename', 'None'], {}), '(url, self.root_dir, filename, None)\n', (3730, 3766), False, 'from torchvision.datasets.utils import download_url\n'), ((6208, 6224), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (6218, 6224), False, 'from PIL import Image, ImageFile\n'), ((7438, 7462), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(4)', '(i + 1)'], {}), '(1, 4, i + 1)\n', (7449, 7462), True, 'import matplotlib.pyplot as plt\n'), ((7471, 7489), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7487, 7489), True, 'import matplotlib.pyplot as plt\n'), ((7640, 7661), 'matplotlib.pyplot.imshow', 'plt.imshow', (['sample[0]'], {}), '(sample[0])\n', (7650, 7661), True, 'import matplotlib.pyplot as plt\n'), ((1428, 1456), 'os.path.expanduser', 'os.path.expanduser', (['root_dir'], {}), '(root_dir)\n', (1446, 1456), False, 'import os\n'), ((1952, 1974), 'numpy.unique', 'np.unique', (['self.labels'], {}), '(self.labels)\n', (1961, 1974), True, 'import numpy as np\n'), ((3438, 3471), 'os.path.join', 'join', (['self.root_dir', 'tar_filename'], {}), '(self.root_dir, tar_filename)\n', (3442, 3471), False, 'from os.path import join\n'), ((4005, 4037), 'os.path.join', 'join', (['self.root_dir', '"""setid.mat"""'], {}), "(self.root_dir, 'setid.mat')\n", (4009, 4037), False, 'from os.path import join\n'), ((7749, 7759), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7757, 7759), True, 'import matplotlib.pyplot as plt\n'), ((2212, 2248), 'os.path.join', 'join', (['self.root_dir', 'self.images_dir'], {}), '(self.root_dir, self.images_dir)\n', (2216, 2248), False, 'from os.path import join\n'), ((2613, 2639), 'os.path.join', 'join', (['self.root_dir', '"""jpg"""'], {}), "(self.root_dir, 'jpg')\n", (2617, 2639), False, 'from os.path import join\n'), ((2660, 2698), 'os.path.join', 'join', (['self.root_dir', '"""imagelabels.mat"""'], {}), "(self.root_dir, 'imagelabels.mat')\n", (2664, 2698), False, 'from os.path import join\n'), ((2736, 2768), 'os.path.join', 'join', (['self.root_dir', '"""setid.mat"""'], {}), "(self.root_dir, 'setid.mat')\n", (2740, 2768), False, 'from os.path import join\n'), ((2973, 3001), 'shutil.rmtree', 'shutil.rmtree', (['self.root_dir'], {}), '(self.root_dir)\n', (2986, 3001), False, 'import shutil\n'), ((3320, 3353), 'os.path.join', 'join', (['self.root_dir', 'tar_filename'], {}), '(self.root_dir, tar_filename)\n', (3324, 3353), False, 'from os.path import join\n'), ((4081, 4119), 'os.path.join', 'join', (['self.root_dir', '"""imagelabels.mat"""'], {}), "(self.root_dir, 'imagelabels.mat')\n", (4085, 4119), False, 'from os.path import join\n'), ((2815, 2841), 'os.path.join', 'join', (['self.root_dir', '"""jpg"""'], {}), "(self.root_dir, 'jpg')\n", (2819, 2841), False, 'from os.path import join\n')]
import numpy as np import dace as dc M, N = (dc.symbol(s, dtype=dc.int64) for s in ('M', 'N')) @dc.program def flip(A: dc.float64[M]): B = np.ndarray((M, ), dtype=np.float64) for i in dc.map[0:M]: B[i] = A[M - 1 - i] return B @dc.program def kernel(r: dc.float64[N]): y = np.empty_like(r) alpha = -r[0] beta = 1.0 y[0] = -r[0] for k in range(1, N): beta *= 1.0 - alpha * alpha alpha = -(r[k] + np.dot(flip(r[:k]), y[:k])) / beta y[:k] += alpha * flip(y[:k]) y[k] = alpha return y
[ "numpy.empty_like", "numpy.ndarray", "dace.symbol" ]
[((46, 74), 'dace.symbol', 'dc.symbol', (['s'], {'dtype': 'dc.int64'}), '(s, dtype=dc.int64)\n', (55, 74), True, 'import dace as dc\n'), ((146, 180), 'numpy.ndarray', 'np.ndarray', (['(M,)'], {'dtype': 'np.float64'}), '((M,), dtype=np.float64)\n', (156, 180), True, 'import numpy as np\n'), ((302, 318), 'numpy.empty_like', 'np.empty_like', (['r'], {}), '(r)\n', (315, 318), True, 'import numpy as np\n')]
import starry import numpy as np import matplotlib.pyplot as plt import pytest @pytest.mark.parametrize("ydeg,nw", [[0, None], [0, 10], [1, None], [1, 10]]) def test_system(ydeg, nw): # Oblate map map = starry.Map(udeg=2, ydeg=ydeg, oblate=True, nw=nw) map[1] = 0.5 map[2] = 0.25 map.omega = 0.5 map.beta = 1.23 map.tpole = 8000 map.f = 1 - 2 / (map.omega ** 2 + 2) map.obl = 30 # Compute system flux star = starry.Primary(map, r=1.5) planet = starry.Secondary(starry.Map(amp=0, nw=nw), porb=1.0, r=0.1, m=0) sys = starry.System(star, planet) t = np.linspace(-0.1, 0.1, 1000) flux_sys = sys.flux(t, integrated=True) # Compute map flux manually x, y, z = sys.position(t) xo = x[1] / star._r yo = y[1] / star._r flux_map = map.flux(xo=xo, yo=yo, ro=planet._r / star._r, integrated=True) # Check that they agree assert np.allclose(flux_map, flux_sys)
[ "numpy.allclose", "starry.Primary", "starry.Map", "starry.System", "pytest.mark.parametrize", "numpy.linspace" ]
[((82, 158), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ydeg,nw"""', '[[0, None], [0, 10], [1, None], [1, 10]]'], {}), "('ydeg,nw', [[0, None], [0, 10], [1, None], [1, 10]])\n", (105, 158), False, 'import pytest\n'), ((214, 263), 'starry.Map', 'starry.Map', ([], {'udeg': '(2)', 'ydeg': 'ydeg', 'oblate': '(True)', 'nw': 'nw'}), '(udeg=2, ydeg=ydeg, oblate=True, nw=nw)\n', (224, 263), False, 'import starry\n'), ((456, 482), 'starry.Primary', 'starry.Primary', (['map'], {'r': '(1.5)'}), '(map, r=1.5)\n', (470, 482), False, 'import starry\n'), ((571, 598), 'starry.System', 'starry.System', (['star', 'planet'], {}), '(star, planet)\n', (584, 598), False, 'import starry\n'), ((607, 635), 'numpy.linspace', 'np.linspace', (['(-0.1)', '(0.1)', '(1000)'], {}), '(-0.1, 0.1, 1000)\n', (618, 635), True, 'import numpy as np\n'), ((910, 941), 'numpy.allclose', 'np.allclose', (['flux_map', 'flux_sys'], {}), '(flux_map, flux_sys)\n', (921, 941), True, 'import numpy as np\n'), ((513, 537), 'starry.Map', 'starry.Map', ([], {'amp': '(0)', 'nw': 'nw'}), '(amp=0, nw=nw)\n', (523, 537), False, 'import starry\n')]
"""Utility class for multivariate time series transformation.""" # Author: <NAME> <<EMAIL>> # License: BSD-3-Clause import numpy as np from scipy.sparse import csr_matrix, hstack from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.utils.validation import check_is_fitted from ..utils import check_3d_array class MultivariateTransformer(BaseEstimator, TransformerMixin): r"""Transformer for multivariate time series. It provides a convenient class to transform multivariate time series with transformers that can only deal with univariate time series. Parameters ---------- estimator : estimator object or list thereof Transformer. If one estimator is provided, it is cloned and each clone transforms one feature. If a list of estimators is provided, each estimator transforms one feature. flatten : bool (default = True) Affect shape of transform output. If True, ``transform`` returns an array with shape (n_samples, \*). If False, the output of ``transform`` from each estimator must have the same shape and ``transform`` returns an array with shape (n_samples, n_features, \*). Ignored if the transformers return sparse matrices. Attributes ---------- estimators_ : list of estimator objects The collection of fitted transformers. Examples -------- >>> from pyts.datasets import load_basic_motions >>> from pyts.multivariate.transformation import MultivariateTransformer >>> from pyts.image import GramianAngularField >>> X, _, _, _ = load_basic_motions(return_X_y=True) >>> transformer = MultivariateTransformer(GramianAngularField(), ... flatten=False) >>> X_new = transformer.fit_transform(X) >>> X_new.shape (40, 6, 100, 100) """ def __init__(self, estimator, flatten=True): self.estimator = estimator self.flatten = flatten def fit(self, X, y=None): """Pass. Parameters ---------- X : array-like, shape = (n_samples, n_features, n_timestamps) Multivariate time series. y : None or array-like, shape = (n_samples,) (default = None) Class labels. Returns ------- self : object """ X = check_3d_array(X) _, n_features, _ = X.shape self._check_params(n_features) for i, transformer in enumerate(self.estimators_): transformer.fit(X[:, i, :], y) return self def transform(self, X): r"""Apply transform to each feature. Parameters ---------- X : array-like, shape = (n_samples, n_features, n_timestamps) Multivariate time series. Returns ------- X_new : array, shape = (n_samples, *) or (n_samples, n_features, *) Transformed time series. """ X = check_3d_array(X) n_samples, _, _ = X.shape check_is_fitted(self, 'estimators_') X_transformed = [transformer.transform(X[:, i, :]) for i, transformer in enumerate(self.estimators_)] all_sparse = np.all([isinstance(X_transformed_i, csr_matrix) for X_transformed_i in X_transformed]) if all_sparse: X_new = hstack(X_transformed) else: X_new = [self._convert_to_array(X_transformed_i) for X_transformed_i in X_transformed] ndims = [X_new_i.ndim for X_new_i in X_new] shapes = [X_new_i.shape for X_new_i in X_new] one_dim = (np.unique(ndims).size == 1) if one_dim: one_shape = np.unique(shapes, axis=0).shape[0] == 1 else: one_shape = False if (not one_shape) or self.flatten: X_new = [X_new_i.reshape(n_samples, -1) for X_new_i in X_new] X_new = np.concatenate(X_new, axis=1) else: X_new = np.asarray(X_new) axes = [1, 0] + [i for i in range(2, X_new.ndim)] X_new = np.transpose(X_new, axes=axes) return X_new def _check_params(self, n_features): """Check parameters.""" transformer = (isinstance(self.estimator, BaseEstimator) and hasattr(self.estimator, 'transform')) if transformer: self.estimators_ = [clone(self.estimator) for _ in range(n_features)] elif isinstance(self.estimator, list): if len(self.estimator) != n_features: raise ValueError( "If 'estimator' is a list, its length must be equal to " "the number of features ({0} != {1})" .format(len(self.estimator), n_features) ) for i, estimator in enumerate(self.estimator): if not (isinstance(estimator, BaseEstimator) and hasattr(estimator, 'transform')): raise ValueError("Estimator {} must be a transformer." .format(i)) self.estimators_ = self.estimator else: raise TypeError( "'estimator' must be a transformer that inherits from " "sklearn.base.BaseEstimator or a list thereof.") @staticmethod def _convert_to_array(X): """Convert the input data to an array if necessary.""" if isinstance(X, csr_matrix): return X.A elif isinstance(X, np.ndarray): return X else: raise ValueError('Unexpected type for X: {}.' .format(type(X).__name__))
[ "sklearn.utils.validation.check_is_fitted", "numpy.unique", "sklearn.base.clone", "numpy.asarray", "scipy.sparse.hstack", "numpy.concatenate", "numpy.transpose" ]
[((3024, 3060), 'sklearn.utils.validation.check_is_fitted', 'check_is_fitted', (['self', '"""estimators_"""'], {}), "(self, 'estimators_')\n", (3039, 3060), False, 'from sklearn.utils.validation import check_is_fitted\n'), ((3377, 3398), 'scipy.sparse.hstack', 'hstack', (['X_transformed'], {}), '(X_transformed)\n', (3383, 3398), False, 'from scipy.sparse import csr_matrix, hstack\n'), ((3992, 4021), 'numpy.concatenate', 'np.concatenate', (['X_new'], {'axis': '(1)'}), '(X_new, axis=1)\n', (4006, 4021), True, 'import numpy as np\n'), ((4064, 4081), 'numpy.asarray', 'np.asarray', (['X_new'], {}), '(X_new)\n', (4074, 4081), True, 'import numpy as np\n'), ((4172, 4202), 'numpy.transpose', 'np.transpose', (['X_new'], {'axes': 'axes'}), '(X_new, axes=axes)\n', (4184, 4202), True, 'import numpy as np\n'), ((4484, 4505), 'sklearn.base.clone', 'clone', (['self.estimator'], {}), '(self.estimator)\n', (4489, 4505), False, 'from sklearn.base import BaseEstimator, TransformerMixin, clone\n'), ((3670, 3686), 'numpy.unique', 'np.unique', (['ndims'], {}), '(ndims)\n', (3679, 3686), True, 'import numpy as np\n'), ((3750, 3775), 'numpy.unique', 'np.unique', (['shapes'], {'axis': '(0)'}), '(shapes, axis=0)\n', (3759, 3775), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.linear_model import LogisticRegression import pdb from sklearn.metrics import * import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import itertools import json import pickle class User: def __init__(self, id): self.id = id self.positive = [] self.negative = [] def add_positive(self, movie_id): self.positive.append(movie_id) def add_negative(self, movie_id): self.negative.append(movie_id) def get_positive(self): return self.positive def get_negative(self): return self.negative np.random.seed(1) class EventsGenerator: NUM_OF_USERS = 1 def __init__(self, learning_data, buy_probability, opened): self.learning_data = learning_data self.buy_probability = buy_probability self.users = [] self.NUM_OF_OPENED_MOVIES_PER_USER = opened for id in range(1, self.NUM_OF_USERS+1): self.users.append(User(id)) def run(self, pairwise=False): # print (self.users, "hellp") for user in self.users: # print (self.learning_data.index) opened_movies = np.random.choice(self.learning_data.index.values, self.NUM_OF_OPENED_MOVIES_PER_USER) self.__add_positives_and_negatives_to(user, opened_movies) return self.__build_events_data() def __add_positives_and_negatives_to(self, user, opened_movies): # print (opened_movies) for movie_id in opened_movies: if np.random.binomial(1, self.buy_probability.loc[movie_id]): user.add_positive(movie_id) else: user.add_negative(movie_id) def __build_events_data(self): events_data = [] for user in self.users: for positive_id in user.get_positive(): # print(positive_id) tmp = self.learning_data.loc[positive_id].to_dict() tmp['outcome'] = 1 events_data += [tmp] for negative_id in user.get_negative(): tmp = self.learning_data.loc[negative_id].to_dict() tmp['outcome'] = 0 events_data += [tmp] # print(events_data) return pd.DataFrame(events_data) def build_learning_data_from(movie_data): feature_columns = np.setdiff1d(movie_data.columns, np.array(['top_prob'])) learning_data = movie_data.loc[:, feature_columns] scaler = StandardScaler() for i in range(feature_columns.shape[0]): learning_data[feature_columns[i]] = scaler.fit_transform(learning_data[[feature_columns[i]]]) return learning_data, feature_columns def get_test_train_data(events_data, feature_columns): X = events_data.loc[:, feature_columns].values.astype(np.float32) y = events_data.loc[:, ['outcome']].values.astype(np.float32).ravel() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) return [X_train, X_test, y_train, y_test] def get_predicted_outcome(model, data): return np.argmax(model.predict_proba(data), axis=1).astype(np.float32) def get_predicted_rank(model, data): return model.predict_proba(data)[:, 1] def train_model(model, prediction_function, X_train, y_train, X_test, y_test): model.fit(X_train, y_train) y_train_pred = prediction_function(model, X_train) y_test_pred = prediction_function(model, X_test) return model, precision_score(y_train, y_train_pred), recall_score(y_train, y_train_pred), accuracy_score(y_train, y_train_pred),\ precision_score(y_test, y_test_pred), recall_score(y_test, y_test_pred), accuracy_score(y_test, y_test_pred) def decide_rank(model, learning_data, predict_fun): lg_input = learning_data.values.astype(np.float32) learning_data_with_rank = learning_data.copy() learning_data_with_rank['rank'] = predict_fun(model, lg_input) return learning_data_with_rank
[ "sklearn.model_selection.train_test_split", "numpy.random.choice", "sklearn.preprocessing.StandardScaler", "numpy.array", "numpy.random.seed", "pandas.DataFrame", "numpy.random.binomial" ]
[((801, 818), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (815, 818), True, 'import numpy as np\n'), ((2715, 2731), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (2729, 2731), False, 'from sklearn.preprocessing import StandardScaler\n'), ((3169, 3223), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(42)'}), '(X, y, test_size=0.2, random_state=42)\n', (3185, 3223), False, 'from sklearn.model_selection import train_test_split\n'), ((2493, 2518), 'pandas.DataFrame', 'pd.DataFrame', (['events_data'], {}), '(events_data)\n', (2505, 2518), True, 'import pandas as pd\n'), ((2618, 2640), 'numpy.array', 'np.array', (["['top_prob']"], {}), "(['top_prob'])\n", (2626, 2640), True, 'import numpy as np\n'), ((1373, 1463), 'numpy.random.choice', 'np.random.choice', (['self.learning_data.index.values', 'self.NUM_OF_OPENED_MOVIES_PER_USER'], {}), '(self.learning_data.index.values, self.\n NUM_OF_OPENED_MOVIES_PER_USER)\n', (1389, 1463), True, 'import numpy as np\n'), ((1730, 1787), 'numpy.random.binomial', 'np.random.binomial', (['(1)', 'self.buy_probability.loc[movie_id]'], {}), '(1, self.buy_probability.loc[movie_id])\n', (1748, 1787), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """Helper functions for pybaselines. Created on March 5, 2021 @author: <NAME> """ import numpy as np # the minimum positive float values such that a + _MIN_FLOAT != a _MIN_FLOAT = np.finfo(float).eps def relative_difference(old, new, norm_order=None): """ Calculates the relative difference (norm(new-old) / norm(old)) of two values. Used as an exit criteria in many baseline algorithms. Parameters ---------- old : numpy.ndarray or float The array or single value from the previous iteration. new : numpy.ndarray or float The array or single value from the current iteration. norm_order : int, optional The type of norm to calculate. Default is None, which is l2 norm for arrays, abs for scalars. Returns ------- float The relative difference between the old and new values. """ numerator = np.linalg.norm(new - old, norm_order) denominator = np.maximum(np.linalg.norm(old, norm_order), _MIN_FLOAT) return numerator / denominator def gaussian(x, height=1.0, center=0.0, sigma=1.0): """ Generates a gaussian distribution based on height, center, and sigma. Parameters ---------- x : numpy.ndarray The x-values at which to evaluate the distribution. height : float, optional The maximum height of the distribution. Default is 1.0. center : float, optional The center of the distribution. Default is 0.0. sigma : float, optional The standard deviation of the distribution. Default is 1.0. Returns ------- numpy.ndarray The gaussian distribution evaluated with x. """ return height * np.exp(-0.5 * ((x - center)**2) / sigma**2) def gaussian_kernel(window_size, sigma=1.0): """ Creates an area-normalized gaussian kernel for convolution. Parameters ---------- window_size : int The number of points for the entire kernel. sigma : float, optional The standard deviation of the gaussian model. Returns ------- numpy.ndarray, shape (window_size,) The area-normalized gaussian kernel. Notes ----- Return gaus/sum(gaus) rather than creating a unit-area gaussian since the unit-area gaussian would have an area smaller than 1 for window_size < ~ 6 * sigma. """ # centers distribution from -half_window to half_window x = np.arange(0, window_size) - (window_size - 1) / 2 gaus = gaussian(x, 1, 0, sigma) return gaus / np.sum(gaus) def _get_edges(data, pad_length, mode='extrapolate', extrapolate_window=None, **pad_kwargs): """ Provides the left and right edges for padding data. Parameters ---------- data : array-like The array of the data. pad_length : int The number of points to add to the left and right edges. mode : str, optional The method for padding. Default is 'extrapolate'. Any method other than 'extrapolate' will use numpy.pad. extrapolate_window : int, optional The number of values to use for linear fitting on the left and right edges. Default is None, which will set the extrapolate window size equal to the `half_window` size. **pad_kwargs Any keyword arguments to pass to numpy.pad, which will be used if `mode` is not 'extrapolate'. Returns ------- left_edge : numpy.ndarray, shape(pad_length,) The array of data for the left padding. right_edge : numpy.ndarray, shape(pad_length,) The array of data for the right padding. Notes ----- If mode is 'extrapolate', then the left and right edges will be fit with a first order polynomial and then extrapolated. Otherwise, uses numpy.pad. """ y = np.asarray(data) if pad_length == 0: return y mode = mode.lower() if mode == 'extrapolate': if extrapolate_window is None: extrapolate_window = 2 * pad_length + 1 x = np.arange(-pad_length, y.shape[0] + pad_length) left_poly = np.polynomial.Polynomial.fit( x[pad_length:-pad_length][:extrapolate_window], y[:extrapolate_window], 1 ) right_poly = np.polynomial.Polynomial.fit( x[pad_length:-pad_length][-extrapolate_window:], y[-extrapolate_window:], 1 ) left_edge = left_poly(x[:pad_length]) right_edge = right_poly(x[-pad_length:]) else: padded_data = np.pad(y, pad_length, mode, **pad_kwargs) left_edge = padded_data[:pad_length] right_edge = padded_data[-pad_length:] return left_edge, right_edge def pad_edges(data, pad_length, mode='extrapolate', extrapolate_window=None, **pad_kwargs): """ Adds left and right edges to the data. Parameters ---------- data : array-like The array of the data. pad_length : int The number of points to add to the left and right edges. mode : str, optional The method for padding. Default is 'extrapolate'. Any method other than 'extrapolate' will use numpy.pad. extrapolate_window : int, optional The number of values to use for linear fitting on the left and right edges. Default is None, which will set the extrapolate window size equal to the `half_window` size. **pad_kwargs Any keyword arguments to pass to numpy.pad, which will be used if `mode` is not 'extrapolate'. Returns ------- padded_data : numpy.ndarray, shape (N + 2 * half_window,) The data with padding on the left and right edges. Notes ----- If mode is 'extrapolate', then the left and right edges will be fit with a first order polynomial and then extrapolated. Otherwise, uses numpy.pad. """ y = np.asarray(data) if pad_length == 0: return y if mode.lower() == 'extrapolate': left_edge, right_edge = _get_edges(y, pad_length, mode, extrapolate_window) padded_data = np.concatenate((left_edge, y, right_edge)) else: padded_data = np.pad(y, pad_length, mode.lower(), **pad_kwargs) return padded_data def padded_convolve(data, kernel, mode='reflect', **pad_kwargs): """ Pads data before convolving to reduce edge effects. Parameters ---------- data : numpy.ndarray, shape (N,) The data to smooth. kernel : numpy.ndarray, shape (M,) A pre-computed, normalized kernel for the convolution. Indices should span from -half_window to half_window. Returns ------- numpy.ndarray, shape (N,) The smoothed input array. Notes ----- Mirrors the data near the edges so that convolution does not produce edge effects. """ padding = (min(data.shape[0], kernel.shape[0]) // 2) convolution = np.convolve( pad_edges(data, padding, mode, **pad_kwargs), kernel, mode='valid' ) return convolution
[ "numpy.polynomial.Polynomial.fit", "numpy.asarray", "numpy.exp", "numpy.sum", "numpy.concatenate", "numpy.linalg.norm", "numpy.finfo", "numpy.pad", "numpy.arange" ]
[((209, 224), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (217, 224), True, 'import numpy as np\n'), ((919, 956), 'numpy.linalg.norm', 'np.linalg.norm', (['(new - old)', 'norm_order'], {}), '(new - old, norm_order)\n', (933, 956), True, 'import numpy as np\n'), ((3811, 3827), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (3821, 3827), True, 'import numpy as np\n'), ((5866, 5882), 'numpy.asarray', 'np.asarray', (['data'], {}), '(data)\n', (5876, 5882), True, 'import numpy as np\n'), ((986, 1017), 'numpy.linalg.norm', 'np.linalg.norm', (['old', 'norm_order'], {}), '(old, norm_order)\n', (1000, 1017), True, 'import numpy as np\n'), ((1713, 1758), 'numpy.exp', 'np.exp', (['(-0.5 * (x - center) ** 2 / sigma ** 2)'], {}), '(-0.5 * (x - center) ** 2 / sigma ** 2)\n', (1719, 1758), True, 'import numpy as np\n'), ((2441, 2466), 'numpy.arange', 'np.arange', (['(0)', 'window_size'], {}), '(0, window_size)\n', (2450, 2466), True, 'import numpy as np\n'), ((2545, 2557), 'numpy.sum', 'np.sum', (['gaus'], {}), '(gaus)\n', (2551, 2557), True, 'import numpy as np\n'), ((4027, 4074), 'numpy.arange', 'np.arange', (['(-pad_length)', '(y.shape[0] + pad_length)'], {}), '(-pad_length, y.shape[0] + pad_length)\n', (4036, 4074), True, 'import numpy as np\n'), ((4095, 4202), 'numpy.polynomial.Polynomial.fit', 'np.polynomial.Polynomial.fit', (['x[pad_length:-pad_length][:extrapolate_window]', 'y[:extrapolate_window]', '(1)'], {}), '(x[pad_length:-pad_length][:extrapolate_window],\n y[:extrapolate_window], 1)\n', (4123, 4202), True, 'import numpy as np\n'), ((4254, 4364), 'numpy.polynomial.Polynomial.fit', 'np.polynomial.Polynomial.fit', (['x[pad_length:-pad_length][-extrapolate_window:]', 'y[-extrapolate_window:]', '(1)'], {}), '(x[pad_length:-pad_length][-extrapolate_window:\n ], y[-extrapolate_window:], 1)\n', (4282, 4364), True, 'import numpy as np\n'), ((4522, 4563), 'numpy.pad', 'np.pad', (['y', 'pad_length', 'mode'], {}), '(y, pad_length, mode, **pad_kwargs)\n', (4528, 4563), True, 'import numpy as np\n'), ((6069, 6111), 'numpy.concatenate', 'np.concatenate', (['(left_edge, y, right_edge)'], {}), '((left_edge, y, right_edge))\n', (6083, 6111), True, 'import numpy as np\n')]
import numpy as np from pykeops.common.lazy_tensor import GenericLazyTensor from pykeops.numpy.utils import numpytools # Convenient aliases: def Var(x_or_ind, dim=None, cat=None): if dim is None: # init via data: we assume x_or_ind is data return LazyTensor(x_or_ind, axis=cat) else: # init via symbolic variable given as triplet (ind,dim,cat) return LazyTensor((x_or_ind, dim, cat)) def Vi(x_or_ind, dim=None): r""" Simple wrapper that return an instantiation of :class:`LazyTensor` of type 0. """ return Var(x_or_ind, dim, 0) def Vj(x_or_ind, dim=None): r""" Simple wrapper that return an instantiation of :class:`LazyTensor` of type 1. """ return Var(x_or_ind, dim, 1) def Pm(x_or_ind, dim=None): r""" Simple wrapper that return an instantiation of :class:`LazyTensor` of type 2. """ return Var(x_or_ind, dim, 2) class LazyTensor(GenericLazyTensor): r"""Symbolic wrapper for NumPy arrays. :class:`LazyTensor` encode numerical arrays through the combination of a symbolic, **mathematical formula** and a list of **small data arrays**. They can be used to implement efficient algorithms on objects that are **easy to define**, but **impossible to store** in memory (e.g. the matrix of pairwise distances between two large point clouds). :class:`LazyTensor` may be created from standard NumPy arrays or PyTorch tensors, combined using simple mathematical operations and converted back to NumPy arrays or PyTorch tensors with efficient reduction routines, which outperform standard tensorized implementations by two orders of magnitude. """ def __init__(self, x=None, axis=None): super().__init__(x=x, axis=axis) # numpy specialization typex = type(x) if ( typex not in [type(None), tuple, int, float, list, np.ndarray] + self.float_types ): raise TypeError( "LazyTensors should be built from NumPy arrays, " "float/integer numbers, lists of floats or 3-uples of " "integers. Received: {}".format(typex) ) if typex in self.float_types: # NumPy scalar -> NumPy array x = np.array(x).reshape(1) if typex == np.ndarray: self.infer_dim(x, axis) def get_tools(self): self.tools = numpytools self.Genred = numpytools.Genred self.KernelSolve = numpytools.KernelSolve def lt_constructor(self, x=None, axis=None): return LazyTensor(x=x, axis=axis) float_types = [float, np.float16, np.float32, np.float64]
[ "numpy.array" ]
[((2288, 2299), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (2296, 2299), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : tokenzier.py @Time : 2021/09/11 16:00:04 @Author : <NAME> @Version : 1.0 @Contact : <EMAIL> @Desc : None ''' import json import os from typing import List import numpy as np from pypinyin import Style, pinyin from .. import BasicTokenizer, PretrainedTokenizer, WordpieceTokenizer __all__ = ['ChineseBertTokenizer'] class ChineseBertTokenizer(PretrainedTokenizer): resource_files_names = {"vocab_file": "vocab.txt"} # for save_pretrained pretrained_resource_files_map = {} pretrained_init_configuration = {} padding_side = 'right' def __init__(self, bert_path, max_seq_len=512, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]"): vocab_file = os.path.join(bert_path, 'vocab.txt') config_path = os.path.join(bert_path, 'config') if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the " "vocabulary from a pretrained model please use " "`tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" .format(vocab_file)) self.vocab = self.load_vocabulary(vocab_file, unk_token=unk_token) self.max_seq_len = max_seq_len # load pinyin map dict with open(os.path.join(config_path, 'pinyin_map.json'), encoding='utf8') as fin: self.pinyin_dict = json.load(fin) # load char id map tensor with open(os.path.join(config_path, 'id2pinyin.json'), encoding='utf8') as fin: self.id2pinyin = json.load(fin) # load pinyin map tensor with open(os.path.join(config_path, 'pinyin2tensor.json'), encoding='utf8') as fin: self.pinyin2tensor = json.load(fin) self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=unk_token) def tokenize_sentence(self, sentence): # convert sentence to ids tokenizer_output = self.encode(sentence) input_ids = tokenizer_output['input_ids'] pinyin_ids = self.convert_sentence_to_pinyin_ids(sentence) # assert,token nums should be same as pinyin token nums # assert len(input_ids) <= self.max_seq_len # assert len(input_ids) == len(pinyin_ids) # convert list to tensor # input_ids = paddle.to_tensor(input_ids) # pinyin_ids = paddle.to_tensor(pinyin_ids).reshape([-1]) # convert list to np.array input_ids = np.array(input_ids) pinyin_ids = np.array(pinyin_ids).reshape([-1, 8]) return {"input_ids": input_ids, "pinyin_ids": pinyin_ids} def convert_sentence_to_pinyin_ids(self, sentence: str, with_specail_token=True) -> List[List[int]]: # get offsets bert_tokens_offsets = self.get_offset_mapping(sentence) if with_specail_token: bert_tokens_offsets.insert(0, (0, 0)) bert_tokens_offsets.append((0, 0)) # get tokens bert_tokens_tokens = self.tokenize(sentence) if with_specail_token: bert_tokens_tokens.insert(0, '[CLS]') bert_tokens_tokens.append('[SEP]') # get pinyin of a sentence pinyin_list = pinyin(sentence, style=Style.TONE3, heteronym=True, errors=lambda x: [['not chinese'] for _ in x]) pinyin_locs = {} # get pinyin of each location for index, item in enumerate(pinyin_list): pinyin_string = item[0] # not a Chinese character, pass if pinyin_string == "not chinese": continue if pinyin_string in self.pinyin2tensor: pinyin_locs[index] = self.pinyin2tensor[pinyin_string] else: ids = [0] * 8 for i, p in enumerate(pinyin_string): if p not in self.pinyin_dict["char2idx"]: ids = [0] * 8 break ids[i] = self.pinyin_dict["char2idx"][p] pinyin_locs[index] = ids # find chinese character location, and generate pinyin ids pinyin_ids = [] for idx, (token, offset) in enumerate( zip(bert_tokens_tokens, bert_tokens_offsets)): if offset[1] - offset[0] != 1: # 非单个字的token,以及 [CLS] [SEP] 特殊 token pinyin_ids.append([0] * 8) continue if offset[0] in pinyin_locs: # 单个字为token且有拼音tensor pinyin_ids.append(pinyin_locs[offset[0]]) else: # 单个字为token但无拼音tensor pinyin_ids.append([0] * 8) return pinyin_ids def convert_tokens_to_pinyin_ids(self, tokens: List[str]) -> List[List[int]]: """ Example : tokens: ['[CLS]', '你', '多', '大', '了', '?', '[SEP]', '我', '10', '岁', '了', '。', '[SEP]'] """ pinyin_ids = [] for token in tokens: if token == '[CLS]' or token == '[SEP]': # [CLS]、[SEP] 的 token pinyin_ids.append([0] * 8) continue offset = self.get_offset_mapping(token)[0] if offset[1] - offset[0] != 1: # 非单个字组成的 token pinyin_ids.append([0] * 8) continue pinyin_string = pinyin(token, style=Style.TONE3, heteronym=True, errors=lambda x: [['not chinese'] for _ in x])[0][0] if pinyin_string == "not chinese": # 不是中文 pinyin_ids.append([0] * 8) else: if pinyin_string in self.pinyin2tensor: pinyin_ids.append(self.pinyin2tensor[pinyin_string]) else: ids = [0] * 8 for i, p in enumerate(pinyin_string): if p not in self.pinyin_dict["char2idx"]: ids = [0] * 8 break ids[i] = self.pinyin_dict["char2idx"][p] pinyin_ids.append(ids) return pinyin_ids @property def vocab_size(self): """ Return the size of vocabulary. Returns: int: The size of vocabulary. """ return len(self.vocab) def _tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def tokenize(self, text): return self._tokenize(text) def convert_tokens_to_string(self, tokens): out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def num_special_tokens_to_add(self, pair=False): token_ids_0 = [] token_ids_1 = [] return len( self.build_inputs_with_special_tokens( token_ids_0, token_ids_1 if pair else None)) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] _cls = [self.cls_token_id] _sep = [self.sep_token_id] return _cls + token_ids_0 + _sep + token_ids_1 + _sep def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0) ] + offset_mapping_1 + [(0, 0)] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): _sep = [self.sep_token_id] _cls = [self.cls_token_id] if token_ids_1 is None: return len(_cls + token_ids_0 + _sep) * [0] return len(_cls + token_ids_0 + _sep) * [0] + len(token_ids_1 + _sep) * [1] def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list( map( lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ( [0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1]
[ "pypinyin.pinyin", "os.path.join", "os.path.isfile", "numpy.array", "json.load" ]
[((961, 997), 'os.path.join', 'os.path.join', (['bert_path', '"""vocab.txt"""'], {}), "(bert_path, 'vocab.txt')\n", (973, 997), False, 'import os\n'), ((1020, 1053), 'os.path.join', 'os.path.join', (['bert_path', '"""config"""'], {}), "(bert_path, 'config')\n", (1032, 1053), False, 'import os\n'), ((2900, 2919), 'numpy.array', 'np.array', (['input_ids'], {}), '(input_ids)\n', (2908, 2919), True, 'import numpy as np\n'), ((3626, 3729), 'pypinyin.pinyin', 'pinyin', (['sentence'], {'style': 'Style.TONE3', 'heteronym': '(True)', 'errors': "(lambda x: [['not chinese'] for _ in x])"}), "(sentence, style=Style.TONE3, heteronym=True, errors=lambda x: [[\n 'not chinese'] for _ in x])\n", (3632, 3729), False, 'from pypinyin import Style, pinyin\n'), ((1069, 1095), 'os.path.isfile', 'os.path.isfile', (['vocab_file'], {}), '(vocab_file)\n', (1083, 1095), False, 'import os\n'), ((1671, 1685), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (1680, 1685), False, 'import json\n'), ((1855, 1869), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (1864, 1869), False, 'import json\n'), ((2046, 2060), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (2055, 2060), False, 'import json\n'), ((1551, 1595), 'os.path.join', 'os.path.join', (['config_path', '"""pinyin_map.json"""'], {}), "(config_path, 'pinyin_map.json')\n", (1563, 1595), False, 'import os\n'), ((1738, 1781), 'os.path.join', 'os.path.join', (['config_path', '"""id2pinyin.json"""'], {}), "(config_path, 'id2pinyin.json')\n", (1750, 1781), False, 'import os\n'), ((1921, 1968), 'os.path.join', 'os.path.join', (['config_path', '"""pinyin2tensor.json"""'], {}), "(config_path, 'pinyin2tensor.json')\n", (1933, 1968), False, 'import os\n'), ((2941, 2961), 'numpy.array', 'np.array', (['pinyin_ids'], {}), '(pinyin_ids)\n', (2949, 2961), True, 'import numpy as np\n'), ((5864, 5964), 'pypinyin.pinyin', 'pinyin', (['token'], {'style': 'Style.TONE3', 'heteronym': '(True)', 'errors': "(lambda x: [['not chinese'] for _ in x])"}), "(token, style=Style.TONE3, heteronym=True, errors=lambda x: [[\n 'not chinese'] for _ in x])\n", (5870, 5964), False, 'from pypinyin import Style, pinyin\n')]
import numpy as np class Compressor(): def __init__(self, num_particles: int, num_spin_orbitals: int, rdm_ideal=None) -> None: self.num_particles = num_particles self.num_spin_orbitals = num_spin_orbitals self.rdm_ideal = rdm_ideal pass def compress(self, rdm): N = self.num_spin_orbitals ** 2 // 4 # get num of elements by square formula of triangle S = self._get_num_elems_of_tri_mat(N) n = self.num_spin_orbitals // 2 # mat = self._tensor2matrix(rdm) utri_arr = np.zeros((3*S,)) utri_arr[: S] = \ self._compress_matrix_to_upper_triangle_array(self._tensor2matrix(rdm[:n, :n, :n, :n])) utri_arr[S: 2*S] = \ self._compress_matrix_to_upper_triangle_array(self._tensor2matrix(rdm[:n, n:, :n, n:])) utri_arr[2*S: ] = \ self._compress_matrix_to_upper_triangle_array(self._tensor2matrix(rdm[n:, n:, n:, n:])) return utri_arr def decompress(self, utri_arr): # rdm = np.zeros((self.num_spin_orbitals ** 2,) * 2) # matrix rdm = np.zeros((self.num_spin_orbitals,) * 4) # tensor N = self.num_spin_orbitals ** 2 // 4 n = self.num_spin_orbitals // 2 # get num of elements by square formula of triangle S = self._get_num_elems_of_tri_mat(N) # restore from the second triangle A = self._restore_matrix_by_upper_triangle_array(utri_arr[S: 2*S], N) A_tensor = self._matrix2tensor(A) B = - A_tensor.transpose([0, 1, 3, 2]) # B = self._tensor2matrix(B) C = A_tensor.transpose([1, 0, 3, 2]) # C = self._tensor2matrix(C) D = - A_tensor.transpose([1, 0, 2, 3]) # restore middle 4 # rdm[N: 2*N, N: 2*N] = A # diff = np.linalg.norm(self._tensor2matrix(self.rdm_ideal)[N: 2*N, N: 2*N] - A) rdm[:n, n:, :n, n:] = A_tensor # diff = np.linalg.norm(self.rdm_ideal[:n, n:, :n, n:] - A_tensor) # print('A', diff) # rdm[N: 2*N, 2*N: 3*N] = B # diff = np.linalg.norm(self._tensor2matrix(self.rdm_ideal)[N: 2*N, 2*N: 3*N] - B) rdm[:n, n:, n:, :n] = B # diff = np.linalg.norm(self.rdm_ideal[:n, n:, n:, :n] - B) # print('B', diff) # rdm[2*N: 3*N, 2*N: 3*N] = C # diff = np.linalg.norm(self._tensor2matrix(self.rdm_ideal)[2*N: 3*N, 2*N: 3*N] - C) rdm[n:, :n, n:, :n] = C # diff = np.linalg.norm(self.rdm_ideal[n:, :n, n:, :n] - C) # print('C', diff) rdm[n:, :n, :n, n:] = D # diff = np.linalg.norm(self.rdm_ideal[n:, :n, :n, n:] - D) # print('D', diff) # rdm = self._tensor2matrix(rdm) # restore upper left rdm[:n, :n, :n, :n] = \ self._matrix2tensor(self._restore_matrix_by_upper_triangle_array(utri_arr[: S], N)) # diff = np.linalg.norm(self.rdm_ideal[:n, :n, :n, :n] - rdm[:n, :n, :n, :n]) # print('upper left', diff) # restore button right rdm[n:, n:, n:, n:] = \ self._matrix2tensor(self._restore_matrix_by_upper_triangle_array(utri_arr[2*S:], N)) # diff = np.linalg.norm(self.rdm_ideal[n:, n:, n:, n:] - rdm[n:, n:, n:, n:]) # print('button right', diff) # rdm = self._tensor2matrix(rdm) # utri = np.triu(rdm) # diag = np.diag(np.diag(rdm)) # utri -= diag # rdm = utri + utri.T + diag return rdm #self._matrix2tensor(rdm) @staticmethod def _restore_matrix_by_upper_triangle_array(utri_arr, n): cnt = 0 utri = np.zeros((n,) * 2) # upper triangular matrix for i in range(n): for j in range(i, n): utri[i, j] = utri_arr[cnt] cnt += 1 diag = np.diag(np.diag(utri)) mat = utri + utri.T - diag return mat @staticmethod def _compress_matrix_to_upper_triangle_array(mat): n = mat.shape[0] num_elements = Compressor._get_num_elems_of_tri_mat(n) utri_arr = np.zeros((num_elements)) cnt = 0 for i in range(n): for j in range(i, n): utri_arr[cnt] = mat[i, j] cnt += 1 return utri_arr @staticmethod def _get_num_elems_of_tri_mat(n): return (n + 1) * n // 2 @staticmethod def _matrix2tensor(mat, transpose=False): n = int(np.sqrt(mat.shape[0])) if transpose: tensor = mat.reshape((n,) * 4).transpose([0, 1, 3, 2]) else: tensor = mat.reshape((n,) * 4) return tensor @staticmethod def _tensor2matrix(tensor, transpose=False): n = tensor.shape[0] if transpose: mat = tensor.transpose([0, 1, 3, 2]).reshape((n*n,) * 2) else: mat = tensor.reshape((n*n,) * 2) return mat @staticmethod def _utri_mat2real_sym_mat(utri): diag = np.diag(np.diag(utri)) mat = utri + utri.T - diag return mat
[ "numpy.zeros", "numpy.sqrt", "numpy.diag" ]
[((577, 595), 'numpy.zeros', 'np.zeros', (['(3 * S,)'], {}), '((3 * S,))\n', (585, 595), True, 'import numpy as np\n'), ((1132, 1171), 'numpy.zeros', 'np.zeros', (['((self.num_spin_orbitals,) * 4)'], {}), '((self.num_spin_orbitals,) * 4)\n', (1140, 1171), True, 'import numpy as np\n'), ((3642, 3660), 'numpy.zeros', 'np.zeros', (['((n,) * 2)'], {}), '((n,) * 2)\n', (3650, 3660), True, 'import numpy as np\n'), ((4091, 4113), 'numpy.zeros', 'np.zeros', (['num_elements'], {}), '(num_elements)\n', (4099, 4113), True, 'import numpy as np\n'), ((3840, 3853), 'numpy.diag', 'np.diag', (['utri'], {}), '(utri)\n', (3847, 3853), True, 'import numpy as np\n'), ((4462, 4483), 'numpy.sqrt', 'np.sqrt', (['mat.shape[0]'], {}), '(mat.shape[0])\n', (4469, 4483), True, 'import numpy as np\n'), ((5009, 5022), 'numpy.diag', 'np.diag', (['utri'], {}), '(utri)\n', (5016, 5022), True, 'import numpy as np\n')]
import unittest import numpy as np import prml.nn as nn class TestGaussian(unittest.TestCase): def test_gaussian_draw_forward(self): mu = nn.array(0) sigma = nn.softplus(nn.array(-1)) gaussian = nn.Gaussian(mu, sigma) sample = [] for _ in range(1000): sample.append(gaussian.draw().value) self.assertTrue(np.allclose(np.mean(sample), 0, rtol=0.1, atol=0.1), np.mean(sample)) self.assertTrue(np.allclose(np.std(sample), gaussian.std.value, 0.1, 0.1)) def test_gaussian_draw_backward(self): mu = nn.array(0) s = nn.array(2) optimizer = nn.optimizer.Gradient({0: mu, 1: s}, 0.01) prior = nn.Gaussian(1, 1) for _ in range(1000): mu.cleargrad() s.cleargrad() gaussian = nn.Gaussian(mu, nn.softplus(s)) gaussian.draw() loss = nn.loss.kl_divergence(gaussian, prior).sum() optimizer.minimize(loss) self.assertTrue(np.allclose(gaussian.mean.value, 1, 0.1, 0.1)) self.assertTrue(np.allclose(gaussian.std.value, 1, 0.1, 0.1)) if __name__ == "__main__": unittest.main()
[ "numpy.mean", "numpy.allclose", "prml.nn.softplus", "prml.nn.optimizer.Gradient", "prml.nn.loss.kl_divergence", "numpy.std", "unittest.main", "prml.nn.Gaussian", "prml.nn.array" ]
[((1156, 1171), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1169, 1171), False, 'import unittest\n'), ((153, 164), 'prml.nn.array', 'nn.array', (['(0)'], {}), '(0)\n', (161, 164), True, 'import prml.nn as nn\n'), ((226, 248), 'prml.nn.Gaussian', 'nn.Gaussian', (['mu', 'sigma'], {}), '(mu, sigma)\n', (237, 248), True, 'import prml.nn as nn\n'), ((582, 593), 'prml.nn.array', 'nn.array', (['(0)'], {}), '(0)\n', (590, 593), True, 'import prml.nn as nn\n'), ((606, 617), 'prml.nn.array', 'nn.array', (['(2)'], {}), '(2)\n', (614, 617), True, 'import prml.nn as nn\n'), ((638, 684), 'prml.nn.optimizer.Gradient', 'nn.optimizer.Gradient', (['{(0): mu, (1): s}', '(0.01)'], {}), '({(0): mu, (1): s}, 0.01)\n', (659, 684), True, 'import prml.nn as nn\n'), ((697, 714), 'prml.nn.Gaussian', 'nn.Gaussian', (['(1)', '(1)'], {}), '(1, 1)\n', (708, 714), True, 'import prml.nn as nn\n'), ((193, 205), 'prml.nn.array', 'nn.array', (['(-1)'], {}), '(-1)\n', (201, 205), True, 'import prml.nn as nn\n'), ((425, 440), 'numpy.mean', 'np.mean', (['sample'], {}), '(sample)\n', (432, 440), True, 'import numpy as np\n'), ((1006, 1051), 'numpy.allclose', 'np.allclose', (['gaussian.mean.value', '(1)', '(0.1)', '(0.1)'], {}), '(gaussian.mean.value, 1, 0.1, 0.1)\n', (1017, 1051), True, 'import numpy as np\n'), ((1077, 1121), 'numpy.allclose', 'np.allclose', (['gaussian.std.value', '(1)', '(0.1)', '(0.1)'], {}), '(gaussian.std.value, 1, 0.1, 0.1)\n', (1088, 1121), True, 'import numpy as np\n'), ((384, 399), 'numpy.mean', 'np.mean', (['sample'], {}), '(sample)\n', (391, 399), True, 'import numpy as np\n'), ((478, 492), 'numpy.std', 'np.std', (['sample'], {}), '(sample)\n', (484, 492), True, 'import numpy as np\n'), ((837, 851), 'prml.nn.softplus', 'nn.softplus', (['s'], {}), '(s)\n', (848, 851), True, 'import prml.nn as nn\n'), ((900, 938), 'prml.nn.loss.kl_divergence', 'nn.loss.kl_divergence', (['gaussian', 'prior'], {}), '(gaussian, prior)\n', (921, 938), True, 'import prml.nn as nn\n')]
import sys import argparse import matplotlib.pyplot as plt import numpy as np import pickle def load_obj(name): pkl_path = "" with open(pkl_path + name + ".pkl", 'rb') as f: return pickle.load(f) def load_prun_obj(name): pkl_path = "" with open(pkl_path + name + ".pkl", 'rb') as f: return pickle.load(f) def result_plt(results, label): # lists = sorted(results.items()) # x, y = zip(*lists) plt.plot(results, label = label) matrices = ['acc', 'loss'] # labels = ['fedavg_5iid_5niid', 'fedavg_6iid_4niid', 'fedavg_2iid_8niid', 'fedavg_8iid_2niid' ] # labels_prun = ['fedavg_5iid_5niid_prun', 'fedavg_6iid_4niid_prun', 'fedavg_8iid_2niid_prun'] labels = ['Optimal Aggregation', 'FedAvg' ] labels_prun = ['fedadp_5iid_5niid_0.8_prun' , 'fedadp_5iid_5niid_current_prun','fedadp_5iid_5niid'] # iid_list = [5, 6, 2, 8] # niid_list = [10 - x for x in iid_list] iid_list = [10] niid_list = [10] prob_ratio = [0.1] model = [ 'cnn'] num_exp = 10 num_exp_3 = 3 num_round = 50 def define_and_get_arguments(args=sys.argv[1:]): parser = argparse.ArgumentParser( description="Run figure plot" ) parser.add_argument("--matrice", type=str, choices=matrices, default="loss", help = "result matrices") parser.add_argument("--iid", type=int, default=5, help="number of nodes") parser.add_argument("--training_rounds", type=int, default = 50, help= "number of training rounds") args = parser.parse_args(args=args) return args def main(): args = define_and_get_arguments() fedavg_data = {} fedadp_data = {} feddel_data = {} remove_node = {} # for exp in range(1,num_exp+1): # remove_node[exp] = load_obj('remove node_exp%s' %(exp)) # print(remove_node[2][0]) for exp in range(1,num_exp+1): fedadp_data[exp] = load_obj('feddel_mnist_%s_1_exp%s' %(model[0], exp)) for exp in range(1,num_exp+1): fedavg_data[exp] = load_obj('fedavg_mnist_%s_1_exp%s' %(model[0],exp)) if args.matrice == "acc": overall_avg = [] for k in range(1,num_exp+1): # print(fedadp_data[k][0]) overall_avg.extend(fedadp_data[k][0]) temp_adp = np.array([overall_avg[num_round*i:num_round*(i+1)] for i in range(num_exp)]) acc_adp = np.mean(temp_adp, axis=0) # print(acc_adp) result_plt(acc_adp, labels[0]) overall_avg = [] for k in range(1,num_exp+1): overall_avg.extend(fedavg_data[k][0]) temp_avg = np.array([overall_avg[num_round*i:num_round*(i+1)] for i in range(num_exp)]) acc_avg = np.mean(temp_avg, axis=0) # print(acc_avg) result_plt(acc_avg, labels[-1]) ylabel = "Testing Accuracy" elif args.matrice == "loss": overall_avg = [] for k in range(1,num_exp+1): # print(fedadp_data[k][0]) overall_avg.extend(fedadp_data[k][1]) temp_adp = np.array([overall_avg[num_round*i:num_round*(i+1)] for i in range(num_exp)]) acc_adp = np.mean(temp_adp, axis=0) # print(acc_adp) plt.plot(list(range(num_round)), acc_adp, color='#069AF3', linewidth = '1.5', label = labels[0]) overall_avg = [] for k in range(1,num_exp+1): overall_avg.extend(fedavg_data[k][1]) temp_avg = np.array([overall_avg[num_round*i:num_round*(i+1)] for i in range(num_exp)]) acc_avg = np.mean(temp_avg, axis=0) plt.plot(list(range(num_round)), acc_avg, '--', color='#F97306', linewidth = '1.5',label = labels[-1]) plt.xlabel("Communication Round", fontsize=13) plt.gca().spines['right'].set_visible(False) plt.gca().spines['top'].set_visible(False) plt.ylabel( "Training Loss", fontsize=13) plt.legend(frameon=False, loc=7, prop={'size': 10}) elif args.matrice == "sts": x = load_obj('observe node_exp10' ) # print(x[0]) overall_avg = [] for i in range(3): temp = [] for j in range(50): # print(x[0][j][i]) temp.append(x[0][j][i]) overall_avg.extend(temp) data = np.array([overall_avg[num_round*i:num_round*(i+1)] for i in range(3)]) # print(data[0]) # plt.figure() # plt.subplot() # fig, ax = plt.subplots(nrows=2, ncols=1) label = ['Selected', 'Labeled', 'Excluded'] index = np.arange(0, 25, 1) index_2 = np.arange(25, 50, 1) # plt.hist() color_index= ['lightgray','lightsteelblue','springgreen'] plt.subplot(2,1,1) for i in range(3): j = i+1 #index+2:是起始坐标点 #width是bar的宽度 # print(data[i]) plt.bar(index, data[i][:25],width=0.6,color=color_index[i], label= label[i]) plt.xticks(index) plt.xticks(fontsize=7) plt.yticks(fontsize=8) plt.subplot(2,1,2) for i in range(3): j = i+1 #index+2:是起始坐标点 #width是bar的宽度 plt.bar(index_2, data[i][25:],width=0.6,color=color_index[i], label= label[i]) plt.xticks(index_2) plt.yticks([0,15, 5, 10]) plt.legend(loc='best', prop={'size': 7}) plt.xticks(fontsize=7) plt.yticks(fontsize=8) # plt.gca().spines['top'].set_visible(False) # plt.hist(data[i], index, alpha = 0.5) # plt.hist(data[0], index, alpha = 0.5) # plt.hist(data[1], index, alpha = 0.5) fig_path = "" plt.savefig(fig_path + "%s_com_%siid_%s" %(args.matrice, str(iid_list[0]), model[0]) + ".eps", format='eps', dpi=1200) if __name__ == "__main__": main()
[ "numpy.mean", "argparse.ArgumentParser", "matplotlib.pyplot.ylabel", "numpy.arange", "matplotlib.pyplot.xticks", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "pickle.load", "matplotlib.pyplot.gca", "matplotlib.pyplot.bar", "matplotlib.pyplot.yticks", "matplotlib.pyplot.subplot", "matplotlib.pyplot.legend" ]
[((441, 471), 'matplotlib.pyplot.plot', 'plt.plot', (['results'], {'label': 'label'}), '(results, label=label)\n', (449, 471), True, 'import matplotlib.pyplot as plt\n'), ((1087, 1141), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run figure plot"""'}), "(description='Run figure plot')\n", (1110, 1141), False, 'import argparse\n'), ((200, 214), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (211, 214), False, 'import pickle\n'), ((326, 340), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (337, 340), False, 'import pickle\n'), ((2333, 2358), 'numpy.mean', 'np.mean', (['temp_adp'], {'axis': '(0)'}), '(temp_adp, axis=0)\n', (2340, 2358), True, 'import numpy as np\n'), ((2662, 2687), 'numpy.mean', 'np.mean', (['temp_avg'], {'axis': '(0)'}), '(temp_avg, axis=0)\n', (2669, 2687), True, 'import numpy as np\n'), ((3102, 3127), 'numpy.mean', 'np.mean', (['temp_adp'], {'axis': '(0)'}), '(temp_adp, axis=0)\n', (3109, 3127), True, 'import numpy as np\n'), ((3495, 3520), 'numpy.mean', 'np.mean', (['temp_avg'], {'axis': '(0)'}), '(temp_avg, axis=0)\n', (3502, 3520), True, 'import numpy as np\n'), ((3651, 3697), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Communication Round"""'], {'fontsize': '(13)'}), "('Communication Round', fontsize=13)\n", (3661, 3697), True, 'import matplotlib.pyplot as plt\n'), ((3811, 3851), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Training Loss"""'], {'fontsize': '(13)'}), "('Training Loss', fontsize=13)\n", (3821, 3851), True, 'import matplotlib.pyplot as plt\n'), ((3870, 3921), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)', 'loc': '(7)', 'prop': "{'size': 10}"}), "(frameon=False, loc=7, prop={'size': 10})\n", (3880, 3921), True, 'import matplotlib.pyplot as plt\n'), ((4564, 4583), 'numpy.arange', 'np.arange', (['(0)', '(25)', '(1)'], {}), '(0, 25, 1)\n', (4573, 4583), True, 'import numpy as np\n'), ((4602, 4622), 'numpy.arange', 'np.arange', (['(25)', '(50)', '(1)'], {}), '(25, 50, 1)\n', (4611, 4622), True, 'import numpy as np\n'), ((4726, 4746), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (4737, 4746), True, 'import matplotlib.pyplot as plt\n'), ((4963, 4980), 'matplotlib.pyplot.xticks', 'plt.xticks', (['index'], {}), '(index)\n', (4973, 4980), True, 'import matplotlib.pyplot as plt\n'), ((4989, 5011), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(7)'}), '(fontsize=7)\n', (4999, 5011), True, 'import matplotlib.pyplot as plt\n'), ((5020, 5042), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (5030, 5042), True, 'import matplotlib.pyplot as plt\n'), ((5052, 5072), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (5063, 5072), True, 'import matplotlib.pyplot as plt\n'), ((5262, 5281), 'matplotlib.pyplot.xticks', 'plt.xticks', (['index_2'], {}), '(index_2)\n', (5272, 5281), True, 'import matplotlib.pyplot as plt\n'), ((5290, 5316), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0, 15, 5, 10]'], {}), '([0, 15, 5, 10])\n', (5300, 5316), True, 'import matplotlib.pyplot as plt\n'), ((5324, 5364), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'prop': "{'size': 7}"}), "(loc='best', prop={'size': 7})\n", (5334, 5364), True, 'import matplotlib.pyplot as plt\n'), ((5373, 5395), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(7)'}), '(fontsize=7)\n', (5383, 5395), True, 'import matplotlib.pyplot as plt\n'), ((5404, 5426), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(8)'}), '(fontsize=8)\n', (5414, 5426), True, 'import matplotlib.pyplot as plt\n'), ((4878, 4955), 'matplotlib.pyplot.bar', 'plt.bar', (['index', 'data[i][:25]'], {'width': '(0.6)', 'color': 'color_index[i]', 'label': 'label[i]'}), '(index, data[i][:25], width=0.6, color=color_index[i], label=label[i])\n', (4885, 4955), True, 'import matplotlib.pyplot as plt\n'), ((5175, 5254), 'matplotlib.pyplot.bar', 'plt.bar', (['index_2', 'data[i][25:]'], {'width': '(0.6)', 'color': 'color_index[i]', 'label': 'label[i]'}), '(index_2, data[i][25:], width=0.6, color=color_index[i], label=label[i])\n', (5182, 5254), True, 'import matplotlib.pyplot as plt\n'), ((3706, 3715), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3713, 3715), True, 'import matplotlib.pyplot as plt\n'), ((3759, 3768), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3766, 3768), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np import cv2 import proper from cats.cats_simus import * def vortex(wfo, CAL, charge, f_lens, path, Debug_print): n = int(proper.prop_get_gridsize(wfo)) ofst = 0 # no offset ramp_sign = 1 #sign of charge is positive #sampling = n ramp_oversamp = 11. # vortex is oversampled for a better discretization if charge!=0: if CAL==1: # create the vortex for a perfectly circular pupil if (Debug_print == True): print ("CAL:1, charge ", charge) writefield(path,'zz_psf', wfo.wfarr) # write the pre-vortex field nramp = int(n*ramp_oversamp) #oversamp # create the vortex by creating a matrix (theta) representing the ramp (created by atan 2 gradually varying matrix, x and y) y1 = np.ones((nramp,), dtype=np.int) y2 = np.arange(0, nramp, 1.) - (nramp/2) - int(ramp_oversamp)/2 y = np.outer(y2, y1) x = np.transpose(y) theta = np.arctan2(y,x) x = 0 y = 0 #vvc_tmp_complex = np.array(np.zeros((nramp,nramp)), dtype=complex) #vvc_tmp_complex.imag = ofst + ramp_sign*charge*theta #vvc_tmp = np.exp(vvc_tmp_complex) vvc_tmp = np.exp(1j*(ofst + ramp_sign*charge*theta)) theta = 0 vvc_real_resampled = cv2.resize(vvc_tmp.real, (0,0), fx=1/ramp_oversamp, fy=1/ramp_oversamp, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions vvc_imag_resampled = cv2.resize(vvc_tmp.imag, (0,0), fx=1/ramp_oversamp, fy=1/ramp_oversamp, interpolation=cv2.INTER_LINEAR) # scale the pupil to the pupil size of the simualtions vvc = np.array(vvc_real_resampled, dtype=complex) vvc.imag = vvc_imag_resampled vvcphase = np.arctan2(vvc.imag, vvc.real) # create the vortex phase vvc_complex = np.array(np.zeros((n,n)), dtype=complex) vvc_complex.imag = vvcphase vvc = np.exp(vvc_complex) vvc_tmp = 0. writefield(path,'zz_vvc', vvc) # write the theoretical vortex field wfo0 = wfo proper.prop_multiply(wfo, vvc) proper.prop_propagate(wfo, f_lens, 'OAP2') proper.prop_lens(wfo, f_lens) proper.prop_propagate(wfo, f_lens, 'forward to Lyot Stop') proper.prop_circular_obscuration(wfo, 1., NORM=True) # null the amplitude iside the Lyot Stop proper.prop_propagate(wfo, -f_lens) # back-propagation proper.prop_lens(wfo, -f_lens) proper.prop_propagate(wfo, -f_lens) writefield(path,'zz_perf', wfo.wfarr) # write the perfect-result vortex field wfo = wfo0 else: if (Debug_print == True): print ("CAL:0, charge ", charge) vvc = readfield(path,'zz_vvc') # read the theoretical vortex field vvc = proper.prop_shift_center(vvc) scale_psf = wfo._wfarr[0,0] psf_num = readfield(path,'zz_psf') # read the pre-vortex field psf0 = psf_num[0,0] psf_num = psf_num/psf0*scale_psf perf_num = readfield(path,'zz_perf') # read the perfect-result vortex field perf_num = perf_num/psf0*scale_psf wfo._wfarr = (wfo._wfarr - psf_num)*vvc + perf_num # the wavefront takes into account the real pupil with the perfect-result vortex field return
[ "proper.prop_circular_obscuration", "numpy.ones", "proper.prop_lens", "proper.prop_get_gridsize", "proper.prop_multiply", "proper.prop_shift_center", "numpy.exp", "numpy.array", "numpy.zeros", "numpy.outer", "numpy.arctan2", "proper.prop_propagate", "cv2.resize", "numpy.transpose", "numpy.arange" ]
[((146, 175), 'proper.prop_get_gridsize', 'proper.prop_get_gridsize', (['wfo'], {}), '(wfo)\n', (170, 175), False, 'import proper\n'), ((801, 832), 'numpy.ones', 'np.ones', (['(nramp,)'], {'dtype': 'np.int'}), '((nramp,), dtype=np.int)\n', (808, 832), True, 'import numpy as np\n'), ((925, 941), 'numpy.outer', 'np.outer', (['y2', 'y1'], {}), '(y2, y1)\n', (933, 941), True, 'import numpy as np\n'), ((958, 973), 'numpy.transpose', 'np.transpose', (['y'], {}), '(y)\n', (970, 973), True, 'import numpy as np\n'), ((994, 1010), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (1004, 1010), True, 'import numpy as np\n'), ((1261, 1311), 'numpy.exp', 'np.exp', (['(1.0j * (ofst + ramp_sign * charge * theta))'], {}), '(1.0j * (ofst + ramp_sign * charge * theta))\n', (1267, 1311), True, 'import numpy as np\n'), ((1359, 1471), 'cv2.resize', 'cv2.resize', (['vvc_tmp.real', '(0, 0)'], {'fx': '(1 / ramp_oversamp)', 'fy': '(1 / ramp_oversamp)', 'interpolation': 'cv2.INTER_LINEAR'}), '(vvc_tmp.real, (0, 0), fx=1 / ramp_oversamp, fy=1 / ramp_oversamp,\n interpolation=cv2.INTER_LINEAR)\n', (1369, 1471), False, 'import cv2\n'), ((1551, 1663), 'cv2.resize', 'cv2.resize', (['vvc_tmp.imag', '(0, 0)'], {'fx': '(1 / ramp_oversamp)', 'fy': '(1 / ramp_oversamp)', 'interpolation': 'cv2.INTER_LINEAR'}), '(vvc_tmp.imag, (0, 0), fx=1 / ramp_oversamp, fy=1 / ramp_oversamp,\n interpolation=cv2.INTER_LINEAR)\n', (1561, 1663), False, 'import cv2\n'), ((1728, 1771), 'numpy.array', 'np.array', (['vvc_real_resampled'], {'dtype': 'complex'}), '(vvc_real_resampled, dtype=complex)\n', (1736, 1771), True, 'import numpy as np\n'), ((1837, 1867), 'numpy.arctan2', 'np.arctan2', (['vvc.imag', 'vvc.real'], {}), '(vvc.imag, vvc.real)\n', (1847, 1867), True, 'import numpy as np\n'), ((2019, 2038), 'numpy.exp', 'np.exp', (['vvc_complex'], {}), '(vvc_complex)\n', (2025, 2038), True, 'import numpy as np\n'), ((2179, 2209), 'proper.prop_multiply', 'proper.prop_multiply', (['wfo', 'vvc'], {}), '(wfo, vvc)\n', (2199, 2209), False, 'import proper\n'), ((2222, 2264), 'proper.prop_propagate', 'proper.prop_propagate', (['wfo', 'f_lens', '"""OAP2"""'], {}), "(wfo, f_lens, 'OAP2')\n", (2243, 2264), False, 'import proper\n'), ((2277, 2306), 'proper.prop_lens', 'proper.prop_lens', (['wfo', 'f_lens'], {}), '(wfo, f_lens)\n', (2293, 2306), False, 'import proper\n'), ((2319, 2377), 'proper.prop_propagate', 'proper.prop_propagate', (['wfo', 'f_lens', '"""forward to Lyot Stop"""'], {}), "(wfo, f_lens, 'forward to Lyot Stop')\n", (2340, 2377), False, 'import proper\n'), ((2390, 2443), 'proper.prop_circular_obscuration', 'proper.prop_circular_obscuration', (['wfo', '(1.0)'], {'NORM': '(True)'}), '(wfo, 1.0, NORM=True)\n', (2422, 2443), False, 'import proper\n'), ((2496, 2531), 'proper.prop_propagate', 'proper.prop_propagate', (['wfo', '(-f_lens)'], {}), '(wfo, -f_lens)\n', (2517, 2531), False, 'import proper\n'), ((2563, 2593), 'proper.prop_lens', 'proper.prop_lens', (['wfo', '(-f_lens)'], {}), '(wfo, -f_lens)\n', (2579, 2593), False, 'import proper\n'), ((2606, 2641), 'proper.prop_propagate', 'proper.prop_propagate', (['wfo', '(-f_lens)'], {}), '(wfo, -f_lens)\n', (2627, 2641), False, 'import proper\n'), ((2953, 2982), 'proper.prop_shift_center', 'proper.prop_shift_center', (['vvc'], {}), '(vvc)\n', (2977, 2982), False, 'import proper\n'), ((1929, 1945), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (1937, 1945), True, 'import numpy as np\n'), ((850, 874), 'numpy.arange', 'np.arange', (['(0)', 'nramp', '(1.0)'], {}), '(0, nramp, 1.0)\n', (859, 874), True, 'import numpy as np\n')]
bl_info = { "name": "Import Planar Code", "author": "<NAME>", "version": (1, 0), "blender": (2, 80, 0), "location": "File > Import > Planar Code", "description": "Import planar code and construct mesh by assigning vertex positions.", "warning": "", "support": "TESTING", "wiki_url": "", "tracker_url": "", "category": "Import-Export", } import bpy import bmesh import numpy as np import mathutils as mu from bpy.props import StringProperty, IntProperty, BoolProperty import struct import collections import os import random class PlanarCodeReader: def __init__(self, filename, index, embed2d, embed3d): self.faceCounters = [] verts_loc, faces = self.read(filename, index) if (not verts_loc): return if (len(verts_loc) <= 0): return # create new mesh name = os.path.basename(filename) + "_" + str(index) mesh = bpy.data.meshes.new(name) mesh.from_pydata(verts_loc,[],faces) mesh.update(calc_edges=True) # create new bmesh bm = bmesh.new() bm.from_mesh(mesh) # enable lookup bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() if (embed2d): pv = self.embed(bm) print(pv) if (embed3d): self.liftup(bm, pv) bm.to_mesh(mesh) # create new object obj = bpy.data.objects.new(name, mesh) # set object location obj.location = bpy.context.scene.cursor.location # link the object to collection bpy.context.scene.collection.objects.link(obj) def read(self, filename, index): self.f = open(filename, "rb") verts = [] faces = [] try: DEFAULT_HEADER = b">>planar_code<<" header = self.f.read(len(DEFAULT_HEADER)) if (header == DEFAULT_HEADER): print(index) self.skip(index) # create verts num_vert = struct.unpack('b', self.f.read(1)) i = 0 while i < num_vert[0]: # create vertex verts.append((0, 0, 0)) # read adjacant vertices adj = [] while True: tmp = struct.unpack('b', self.f.read(1)) if (tmp[0] <= 0): # 0 means separator break adj.append(tmp[0]) # add face counter lastIndex = len(adj)-1 for j in range(lastIndex): self.addIfAbsent(collections.Counter([i, adj[j]-1, adj[j+1]-1])) self.addIfAbsent(collections.Counter([i, adj[0]-1, adj[lastIndex]-1])) i += 1 for counter in self.faceCounters: faces.append(tuple(counter)) except: print(f"Error in reading {filename}") self.f.close() return self.f.close() del self.f return verts, faces def skip(self, index): # skip to target index for i in range(index): num_vert = struct.unpack('b', self.f.read(1)) n = num_vert[0] while n > 0: d = struct.unpack('b', self.f.read(1)) if (d[0] == 0): n -= 1 def addIfAbsent(self, fc): for counter in self.faceCounters: if (counter == fc): break else: self.faceCounters.append(fc) def embed(self, bm): # randomly pick up a face outerFace = bm.faces[random.randint(0, len(bm.faces)-1)] # embed an outer face to form a regular polygon inscribed into a circle n = len(outerFace.verts) inv_sqrt = 1.0 / np.sqrt(n) angle = 360.0 / n for i, v in enumerate(outerFace.verts): rad = (i * angle / 180.0) * np.pi x = inv_sqrt * np.cos(rad) y = inv_sqrt * np.sin(rad) v.co.x = x v.co.y = y rests = [] for v in bm.verts: if (not v in outerFace.verts): rests.append(v) # variables for the force F_uv on a Edge(u,v) fuv = np.zeros((len(bm.edges), 3)) # force F_v on a Vertex(v) fv = np.zeros((len(bm.verts), 3)) # Constant value n_pi = np.sqrt(len(bm.verts) / np.pi) # final double A = 2.5; avg_area = np.pi / len(bm.verts) loop = 0 # iterations while (loop < 500): # Set F_v to zero fv[:] = 0 # Calculate F_uv for Edges for j, e in enumerate(bm.edges): v = e.verts[0] u = e.verts[1] C = n_pi x = C * np.power(v.co.x - u.co.x, 3) y = C * np.power(v.co.y - u.co.y, 3) if (np.isfinite(x) and np.isfinite(y)): fuv[j] = [x, y, 0] # Update the forces on v and u fv[v.index] -= fuv[j] fv[u.index] += fuv[j] # Move Vertices cool = np.sqrt(avg_area) / (1.0 + np.power(np.sqrt(avg_area * loop), 3)) for v in rests: f = np.linalg.norm(fv[v.index]) size = min(f, cool) if f != 0: fv[v.index] /= f fv[v.index] *= size v.co.x += fv[v.index, 0] v.co.y += fv[v.index, 1] loop += 1 return self.periphericity(bm, outerFace) def periphericity(self, bm, outer): stack0 = [] stack1 = [] per = 0 pv = np.full(len(bm.verts), -1) for v in outer.verts: stack0.append(v) while (stack0): for v in stack0: pv[v.index] = per # Search adjoining verts for vi in stack0: links = vi.link_edges for e in links: vo = e.verts[1] if vi.index == e.verts[0].index else e.verts[0] if (pv[vo.index] < 0): if (not vo in stack1): stack1.append(vo) stack0.clear() stack0.extend(stack1) stack1.clear() per += 1 return pv def liftup(self, bm, pv): H = 0.3 for v in bm.verts: z = H * pv[v.index] v.co.z = z class IMPORT_OT_pcode(bpy.types.Operator): """Import Planar Code Operator""" bl_idname = "import_planarcode.pcode" bl_label = "Import planar code" bl_description = "Embed a graph written in planar code (binary file)" bl_options = {"REGISTER", "UNDO"} bpy.types.Scene.ch = None bpy.types.Scene.poly = None filepath: StringProperty( name="File Path", description="Filepath used for importing the Planar code file", maxlen=1024, default="", ) CODE_INDEX: IntProperty( name="Planer code index", description="An index follows generated order", default=0, min=0, ) EMBED_2D: BoolProperty( name="Embedding in 2D", description="Embed a graph in the plane", default=True, ) EMBED_3D: BoolProperty( name="Realizing a graph", description="Make a polyhedron by giving the heights to the vertices", default=True, ) def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {"RUNNING_MODAL"} def execute(self, context): PlanarCodeReader(self.filepath, self.CODE_INDEX, self.EMBED_2D, self.EMBED_3D) return {"FINISHED"} def menu_func(self, context): self.layout.operator(IMPORT_OT_pcode.bl_idname, text="Planar code (.*)") classes = ( IMPORT_OT_pcode, ) def register(): for cls in classes: bpy.utils.register_class(cls) bpy.types.TOPBAR_MT_file_import.append(menu_func) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) bpy.types.TOPBAR_MT_file_import.remove(menu_func) if __name__ == "__main__": register()
[ "bpy.props.StringProperty", "numpy.sqrt", "bpy.data.objects.new", "bmesh.new", "bpy.types.TOPBAR_MT_file_import.remove", "numpy.isfinite", "numpy.linalg.norm", "numpy.sin", "bpy.context.scene.collection.objects.link", "bpy.utils.unregister_class", "bpy.props.BoolProperty", "bpy.types.TOPBAR_MT_file_import.append", "bpy.props.IntProperty", "numpy.cos", "numpy.power", "bpy.data.meshes.new", "collections.Counter", "os.path.basename", "bpy.utils.register_class" ]
[((7250, 7381), 'bpy.props.StringProperty', 'StringProperty', ([], {'name': '"""File Path"""', 'description': '"""Filepath used for importing the Planar code file"""', 'maxlen': '(1024)', 'default': '""""""'}), "(name='File Path', description=\n 'Filepath used for importing the Planar code file', maxlen=1024, default=''\n )\n", (7264, 7381), False, 'from bpy.props import StringProperty, IntProperty, BoolProperty\n'), ((7433, 7541), 'bpy.props.IntProperty', 'IntProperty', ([], {'name': '"""Planer code index"""', 'description': '"""An index follows generated order"""', 'default': '(0)', 'min': '(0)'}), "(name='Planer code index', description=\n 'An index follows generated order', default=0, min=0)\n", (7444, 7541), False, 'from bpy.props import StringProperty, IntProperty, BoolProperty\n'), ((7596, 7693), 'bpy.props.BoolProperty', 'BoolProperty', ([], {'name': '"""Embedding in 2D"""', 'description': '"""Embed a graph in the plane"""', 'default': '(True)'}), "(name='Embedding in 2D', description=\n 'Embed a graph in the plane', default=True)\n", (7608, 7693), False, 'from bpy.props import StringProperty, IntProperty, BoolProperty\n'), ((7739, 7867), 'bpy.props.BoolProperty', 'BoolProperty', ([], {'name': '"""Realizing a graph"""', 'description': '"""Make a polyhedron by giving the heights to the vertices"""', 'default': '(True)'}), "(name='Realizing a graph', description=\n 'Make a polyhedron by giving the heights to the vertices', default=True)\n", (7751, 7867), False, 'from bpy.props import StringProperty, IntProperty, BoolProperty\n'), ((8438, 8487), 'bpy.types.TOPBAR_MT_file_import.append', 'bpy.types.TOPBAR_MT_file_import.append', (['menu_func'], {}), '(menu_func)\n', (8476, 8487), False, 'import bpy\n'), ((8580, 8629), 'bpy.types.TOPBAR_MT_file_import.remove', 'bpy.types.TOPBAR_MT_file_import.remove', (['menu_func'], {}), '(menu_func)\n', (8618, 8629), False, 'import bpy\n'), ((974, 999), 'bpy.data.meshes.new', 'bpy.data.meshes.new', (['name'], {}), '(name)\n', (993, 999), False, 'import bpy\n'), ((1136, 1147), 'bmesh.new', 'bmesh.new', ([], {}), '()\n', (1145, 1147), False, 'import bmesh\n'), ((1536, 1568), 'bpy.data.objects.new', 'bpy.data.objects.new', (['name', 'mesh'], {}), '(name, mesh)\n', (1556, 1568), False, 'import bpy\n'), ((1708, 1754), 'bpy.context.scene.collection.objects.link', 'bpy.context.scene.collection.objects.link', (['obj'], {}), '(obj)\n', (1749, 1754), False, 'import bpy\n'), ((8401, 8430), 'bpy.utils.register_class', 'bpy.utils.register_class', (['cls'], {}), '(cls)\n', (8425, 8430), False, 'import bpy\n'), ((8543, 8574), 'bpy.utils.unregister_class', 'bpy.utils.unregister_class', (['cls'], {}), '(cls)\n', (8569, 8574), False, 'import bpy\n'), ((4087, 4097), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (4094, 4097), True, 'import numpy as np\n'), ((912, 938), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (928, 938), False, 'import os\n'), ((4249, 4260), 'numpy.cos', 'np.cos', (['rad'], {}), '(rad)\n', (4255, 4260), True, 'import numpy as np\n'), ((4289, 4300), 'numpy.sin', 'np.sin', (['rad'], {}), '(rad)\n', (4295, 4300), True, 'import numpy as np\n'), ((5488, 5505), 'numpy.sqrt', 'np.sqrt', (['avg_area'], {}), '(avg_area)\n', (5495, 5505), True, 'import numpy as np\n'), ((5604, 5631), 'numpy.linalg.norm', 'np.linalg.norm', (['fv[v.index]'], {}), '(fv[v.index])\n', (5618, 5631), True, 'import numpy as np\n'), ((5128, 5156), 'numpy.power', 'np.power', (['(v.co.x - u.co.x)', '(3)'], {}), '(v.co.x - u.co.x, 3)\n', (5136, 5156), True, 'import numpy as np\n'), ((5182, 5210), 'numpy.power', 'np.power', (['(v.co.y - u.co.y)', '(3)'], {}), '(v.co.y - u.co.y, 3)\n', (5190, 5210), True, 'import numpy as np\n'), ((5232, 5246), 'numpy.isfinite', 'np.isfinite', (['x'], {}), '(x)\n', (5243, 5246), True, 'import numpy as np\n'), ((5251, 5265), 'numpy.isfinite', 'np.isfinite', (['y'], {}), '(y)\n', (5262, 5265), True, 'import numpy as np\n'), ((2922, 2978), 'collections.Counter', 'collections.Counter', (['[i, adj[0] - 1, adj[lastIndex] - 1]'], {}), '([i, adj[0] - 1, adj[lastIndex] - 1])\n', (2941, 2978), False, 'import collections\n'), ((5524, 5548), 'numpy.sqrt', 'np.sqrt', (['(avg_area * loop)'], {}), '(avg_area * loop)\n', (5531, 5548), True, 'import numpy as np\n'), ((2836, 2888), 'collections.Counter', 'collections.Counter', (['[i, adj[j] - 1, adj[j + 1] - 1]'], {}), '([i, adj[j] - 1, adj[j + 1] - 1])\n', (2855, 2888), False, 'import collections\n')]
import numpy as np import pandas as pd import scipy.stats as scs import itertools from collections import defaultdict import textwrap import pingouin as pg from statsmodels.stats.multicomp import pairwise_tukeyhsd from sklearn.neighbors import NearestNeighbors from sklearn.decomposition import PCA from sklearn.cluster import DBSCAN, KMeans, OPTICS from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.preprocessing import StandardScaler from sklearn.metrics.pairwise import cosine_distances, cosine_similarity from sklearn.preprocessing import StandardScaler, MinMaxScaler pd.options.display.max_columns = 150 from umap import UMAP from statannot import add_stat_annotation import plotly import plotly.graph_objs as go import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.colors as mcolors import matplotlib.lines as mlines import matplotlib.patches as mpatches from mpl_toolkits import mplot3d import matplotlib.cm as cm from adjustText import adjust_text import matplotlib.patheffects as PathEffects import seaborn as sns import warnings warnings.filterwarnings('ignore') warnings.simplefilter('ignore') ### def simple_axis(ax): ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() def run_by_group(orig_df, **kwargs): g = orig_df.groupby(kwargs['groupby']) base_name = kwargs['save_name'] for group, data in g: kwargs['title'] = group kwargs['save_name'] = base_name+'_'+group run_graph(data, **kwargs) return def run_graph(df, **kwargs): fig, ax = plt.subplots(figsize=kwargs['figsize']) if 'violin' in kwargs['save_name']: ax = run_violin(df, ax, **kwargs) elif 'scatter' in kwargs['save_name']: if '5' in kwargs['save_name']: ax = run_scatter_5(df, ax, **kwargs) else: ax = run_scatter(df, ax, **kwargs) if 'comp_df' in kwargs: ax = run_loadings(df, ax, **kwargs) elif 'reg' in kwargs['save_name']: ax = run_scatter(df, ax, **kwargs) elif 'hist' in kwargs['save_name']: ax = run_hist(df, ax, **kwargs) elif 'bar' in kwargs['save_name']: ax = run_bar(df, ax, **kwargs) elif 'stacked' in kwargs['save_name']: ax = run_stacked_bar(df, ax, **kwargs) elif 'box' in kwargs['save_name']: ax = run_box(df, ax, **kwargs) elif 'sil' in kwargs['save_name']: ax = run_sil(df, ax, **kwargs) elif 'kde' in kwargs['save_name']: ax = run_kde(df, ax, **kwargs) elif 'line' in kwargs['save_name']: ax = run_line(df, ax, **kwargs) if 'log' in kwargs: # ax.set_xscale('symlog', linthreshx=1e-1) # ax.set_yscale('symlog', linthreshy=1e-1) ax.set_xscale('log') ax.set_yscale('log') if 'xlims' in kwargs: if len(kwargs['xlims']) == 1: xlims = ax.get_xlim() kwargs['xlims'] = (kwargs['xlims'][0], xlims[1]) ax.set_xlim(kwargs['xlims']) if 'ylims' in kwargs: if len(kwargs['ylims']) == 1: ylims = ax.get_ylim() kwargs['ylims'] = (kwargs['ylims'][0], ylims[1]) ax.set_ylim(kwargs['ylims']) ax.set_xlabel(kwargs['x_label'], fontweight='bold', fontsize=11) ax.set_ylabel(kwargs['y_label'], fontweight='bold', fontsize=11) # if 'comp_df' in kwargs: # ax2 = ax.twiny() # ax2.set_xticks( ax.get_xticks() ) # ax2.set_xbound(ax.get_xbound()) # ax2.set_xticklabels([x/ax.get_xticks().max() for x in ax.get_xticks()]) # ax2.set_xlabel('Loadings on PC'+str(kwargs['x']+1), fontweight='bold', fontsize=11) # ax3 = ax.twinx() # ax3.set_yticks(ax.get_yticks()) # ax3.set_ybound(ax.get_ybound()) # ax3.set_yticklabels([y/ax.get_yticks().max() for y in ax.get_yticks()]) # ax3.set_ylabel('Loadings on PC'+str(kwargs['y']+1), fontweight='bold', fontsize=11) ax.set_title(kwargs['title'], fontweight='bold', fontsize=12) simple_axis(ax) plt.tight_layout() fig.savefig('viz/'+kwargs['save_name']+'.png') return def sample_df(df, x): if x==1: return df elif x<1: return df.sample(frac=x, random_state=56) else: return df.sample(n=x, random_state=56) def run_violin(data, ax, **kwargs): sub_df = sample_df(data, kwargs['sample_frac']) # get ns from full dataset if kwargs['x'] == 'region': df = pd.melt(data.loc[:, kwargs['cols']], id_vars='region', value_vars='tot_thc').drop(columns=['variable']) sub_df = pd.melt(sub_data.loc[:, kwargs['cols']], id_vars='region', value_vars='tot_thc').drop(columns=['variable']) order, n_dict = violin_order(df, group_by='region') else: if 'cols' in kwargs: df = pd.melt(data.loc[:, kwargs['cols']], var_name=kwargs['x']) sub_df = pd.melt(sub_df.loc[:, kwargs['cols']], var_name=kwargs['x']) order, n_dict = violin_order(df, group_by=kwargs['x']) else: df = data sub_df = sub_df order, n_dict = violin_order(df, group_by=kwargs['x']) # if pre-set order, use that if 'order' in kwargs: order = kwargs['order'] # plot with sampled data if 'palette' in kwargs: sns.violinplot(x=kwargs['x'], y=kwargs['y'], data=sub_df, scale='width', order=order, palette=kwargs['palette'], linewidth=0, ax=ax) else: sns.violinplot(x=kwargs['x'], y=kwargs['y'], data=sub_df, scale='width', order=order, color='lightslategray', linewidth=0, ax=ax) PROPS = { 'boxprops':{'facecolor':'black', 'edgecolor':'black', 'linewidth':3}, 'medianprops':{'color':'white', 'linewidth':2}, 'whiskerprops':{'color':'black', 'linewidth':2} } boxplot = sns.boxplot(x=kwargs['x'], y=kwargs['y'], data=df, order=order, showcaps=False, width=0.06, fliersize=0.5, ax=ax, **PROPS) if kwargs['avg']: avg_avgs = df.groupby(kwargs['x'])[kwargs['y']].mean().mean() ax.axhline(avg_avgs, color='black', linestyle='--') if 'axhline' in kwargs: ax.axhline(kwargs['axhline'], color='black', linestyle='--') if 'sil-scores' in kwargs['save_name']: ax.axhline(0, color='black', linestyle='--') if kwargs['sig_comp']: box_pairs = list(itertools.combinations(order,r=2)) test_results = add_stat_annotation(ax, data=df, x=kwargs['x'], y=kwargs['y'], order=order, box_pairs=box_pairs, text_annot_custom=[get_stats(df, pair, kwargs['x']) for pair in box_pairs], perform_stat_test=False, pvalues=[0, 0, 0], loc='outside', verbose=0) # ttest_df = pd.DataFrame(index=order, columns=['y_val','p_val','cohens_d']) # ttest_df[['y_val','p_val','cohens_d']] = ttest_df.apply(run_cohens, args=(df, ), axis=1, result_type='expand') # p_val_adj = 0.05/ttest_df.shape[0] # ttest_df['reject'] = ttest_df['p_val'] <= p_val_adj # bins = [0, 0.2, 0.5, 0.8, np.inf] # names = ['', '*', '**', '***'] # ttest_df['star'] = pd.cut(np.abs(ttest_df['cohens_d']), bins, labels=names) # for i, region in enumerate(order): # if ttest_df.loc[region, 'reject']: # y = ttest_df.loc[region, 'y_val'] # ax.text(i, y+2, ttest_df.loc[region, 'star'], ha='center', size=20) if 'v_xticklabels' in kwargs: xtick_labels = ax.get_xticklabels() labels = [textwrap.fill(x.get_text(),10) for x in xtick_labels] _ = ax.set_xticklabels(labels, rotation=90, ha='center') else: xtick_labels = ax.get_xticklabels() labels = [x.get_text()+'\nn='+str(n_dict[x.get_text()]['value']) for x in xtick_labels] _ = ax.set_xticklabels(labels) return ax def violin_order(df, group_by='Cannab'): order = df.groupby(group_by).median().sort_values(by='value', ascending=False).index n_dict = df.groupby(group_by).count().T.to_dict(orient='dict') return order.values, n_dict def run_scatter(df, ax, **kwargs): no_nan = df.dropna(subset=[kwargs['x'], kwargs['y']], how='any') sub_df = sample_df(no_nan, kwargs['sample_frac']) if 'size' in kwargs: s = kwargs['size'] else: s = mpl.rcParams['lines.markersize']**2 if 'edgecolor' in kwargs: ec = kwargs['edgecolor'] else: ec = 'white' if 'hue' in kwargs: if 'sort_list' in kwargs: hue_order = kwargs['sort_list'] sub_df = sub_df.sort_values(kwargs['hue'], key=make_sorter(kwargs['sort_list'])) else: hue_order = sub_df[kwargs['hue']].value_counts().index sns.scatterplot(x=kwargs['x'], y=kwargs['y'], hue=kwargs['hue'], data=sub_df, s=s, edgecolor=ec, alpha=0.5, hue_order=hue_order, palette=kwargs['palette'], ax=ax) # include full ns handles, labels = ax.get_legend_handles_labels() if 'n_display' in kwargs: labels_n = [(cat, df.loc[df[kwargs['hue']]==cat].shape[0]) for cat in hue_order] labels = [cat+'\nn='+str(n) for cat, n in labels_n] ax.legend(handles=handles[:kwargs['n_display']], labels=labels[:kwargs['n_display']], title=kwargs['hue'].title(), handlelength=4) else: labels_n = [(cat, df.loc[df[kwargs['hue']]==cat].shape[0]) for cat in hue_order] labels = [cat+'\nn='+str(n) for cat, n in labels_n] ax.legend(handles=handles, labels=labels, title=kwargs['hue'].title(), handlelength=4) else: sns.regplot(x=kwargs['x'], y=kwargs['y'], data=sub_df, scatter_kws={'alpha':0.1, 'color':'lightslategray', 'rasterized':True}, line_kws={'color':'orange'}, ax=ax) r, p = scs.spearmanr(no_nan[kwargs['x']], no_nan[kwargs['y']]) labels = ['rho = {:.2f}'.format(r)] if p < 1e-300: labels.append('p < 1e-300') else: labels.append('p = {:.1e}'.format(p)) ax.legend(labels=['\n'.join(labels)]) if 'prod_strains' in kwargs: s_colors = ['black', 'gray', 'white'] s_markers = ['^', 'D', 'o'] n_strains = len(kwargs['prod_strains']) for strain, color, marker in zip(kwargs['prod_strains'], s_colors[:n_strains], s_markers[:n_strains]): sns.scatterplot(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[sub_df['strain_slug']==strain], s=s+35, edgecolor='black', linewidth=1.5, color=color, label=strain, marker=marker, ax=ax) return ax def get_log(df, cannab_1='tot_thc', cannab_2='tot_cbd'): # get THC_CBD ratio for batches without 0 tot_thc (avoid dividing by 0) df['ratio'] = 0 df.loc[df[cannab_2] != 0, 'ratio'] = (df.loc[df[cannab_2] != 0, cannab_1]) / (df.loc[df[cannab_2] != 0, cannab_2]) # get log_THC_CBD vals df['log_ratio'] = 0 df.loc[df['ratio'] != 0, 'log_ratio'] = np.log10(df.loc[df['ratio'] != 0, 'ratio']) # set the 0 tot_cbd batches to an extraneous high bin df.loc[df[cannab_2] == 0, 'log_ratio'] = 4 df.loc[df[cannab_1] == 0, 'log_ratio'] = -2 log_ratio = df['log_ratio'] return log_ratio def run_hist(df, ax, **kwargs): sub_df = sample_df(df, kwargs['sample_frac']) # some cut-offs ct_thresh_high = 5 ct_thresh_low = 0.25 max_log = 4 min_log = -2.0 # get log data log_cannab = get_log(sub_df, cannab_1='tot_'+kwargs['x'], cannab_2='tot_'+kwargs['y']) # get histogram hist, bins = np.histogram(log_cannab, bins=np.arange(min_log-0.1, max_log+0.1, 0.05)) # get colors colors = [] for low, high in zip(bins,bins[1:]): avg = np.mean([low, high]) if avg >= np.log10(ct_thresh_high): colors.append('darkblue') elif avg <= np.log10(ct_thresh_low): colors.append('black') else: colors.append('steelblue') # plot histogram, thresholds ax.bar(bins[:-1], hist.astype(np.float32) / hist.sum(), width=(bins[1]-bins[0]), color=colors) ax.plot([np.log10(ct_thresh_high), np.log10(ct_thresh_high)], [0, kwargs['ylims'][1]-0.02], linestyle='--', color='k', linewidth=1) ax.plot([np.log10(ct_thresh_low), np.log10(ct_thresh_low)], [0, kwargs['ylims'][1]-0.02], linestyle='--', color='k', linewidth=1) ax.set_xticklabels(['',float("-inf"), -1, 0, 1, 2, 3, float("inf")]) # draw legend chemotypes = ['THC-Dom', 'Bal THC/CBD', 'CBD-Dom'] ct_1 = mpatches.Patch(color='darkblue', label='THC-Dom') ct_2 = mpatches.Patch(color='steelblue', label='Bal THC/CBD') ct_3 = mpatches.Patch(color='black', label='CBD-Dom') ct_handles, ct_labels = ax.get_legend_handles_labels() ct_labels_n = [(x, df.loc[df['chemotype']==x].shape[0]) for x in chemotypes] ct_labels = [x+'\nn='+str(n) for x, n in ct_labels_n] ax.legend(handles=[ct_1,ct_2,ct_3], labels=ct_labels,title='Chemotype',handlelength=4) return ax def normalize(df, cols): df.loc[:, cols] = (df.loc[:, cols] .div(df.loc[:, cols].sum(axis=1), axis=0) .multiply(100)) return df def max_min(arr): return arr/(arr.max()-arr.min()) def make_sorter(sort_list): """ Create a dict from the list to map to 0..len(l) Returns a mapper to map a series to this custom sort order """ sort_order = {k:v for k,v in zip(sort_list, range(len(sort_list)))} return lambda s: s.map(lambda x: sort_order[x]) def run_bar(df, ax, **kwargs): if 'hue' in kwargs: sns.barplot(x=kwargs['x'], y=kwargs['y'], hue=kwargs['hue'], data=df, palette=kwargs['palette'], order=kwargs['order']) elif 'palette' in kwargs: sns.barplot(x=kwargs['x'], y=kwargs['y'], data=df, palette=kwargs['palette'], order=kwargs['order']) else: sns.barplot(x=kwargs['x'], y=kwargs['y'], color='lightslategray') return ax def run_box(df, ax, **kwargs): if 'palette' in kwargs: sns.boxplot(x=kwargs['x'], y=kwargs['y'], data=df, palette=kwargs['palette'], order=kwargs['order']) else: sns.boxplot(x=kwargs['x'], y=kwargs['y'], color='lightslategray') return ax def run_pca(df, cols, norm=True, n_components=2, max_min_arr=False): df[cols] = df[cols].fillna(0) # get rid of rows that are all 0 for specified columns zero_bool = (df[cols]==0).sum(axis=1)==len(cols) df = df[~zero_bool].copy() if norm: X = normalize(df, cols).copy() else: X = df.copy() model = PCA(n_components=n_components) model.fit(X.loc[:, cols]) arr = model.fit_transform(X.loc[:, cols]) if max_min_arr: arr = np.apply_along_axis(max_min, arr=arr, axis=0) # add first three component scores to df X[0] = arr[:,0] X[1] = arr[:,1] X[2] = arr[:,2] return X, arr, model def run_loadings(df, ax, **kwargs): comp_df = kwargs['comp_df'] comp_df['combo_score'] = np.abs(comp_df[[kwargs['x'],kwargs['y']]]).sum(axis=1) comp_df = comp_df.sort_values(by='combo_score', ascending=False).iloc[:kwargs['n_display']] max_x = df[kwargs['x']].max() max_y = df[kwargs['y']].max() texts = [] for x in comp_df.iterrows(): texts.append(ax.text(x[1][kwargs['x']]*max_x, x[1][kwargs['y']]*max_y, x[0], fontweight='bold', bbox=dict(facecolor='white', edgecolor='blue', pad=2, alpha=0.75))) ax.arrow(0, 0, x[1][kwargs['x']]*max_x, x[1][kwargs['y']]*max_y, color='black', alpha=1, lw=2, head_width=1) adjust_text(texts) return ax def run_sil(df, ax, **kwargs): sub_df = sample_df(df, kwargs['sample_frac']) labels = df[kwargs['hue']] sub_labels = sub_df[kwargs['hue']] label_list = labels.value_counts().index silhouette_avg = silhouette_score(df[kwargs['cols']], labels) sample_sil_val = silhouette_samples(sub_df[kwargs['cols']], sub_labels) y_lower=0 for i, label in enumerate(label_list[:kwargs['n_display']]): ith_cluster_sil_val = sample_sil_val[sub_labels==label] ith_cluster_sil_val.sort() size_cluster_i = ith_cluster_sil_val.shape[0] y_upper = y_lower+size_cluster_i color = kwargs['palette'][label] ax.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_sil_val, facecolor=color, edgecolor=color, alpha=0.7) ax.text(-0.05, y_lower+0.5*size_cluster_i, label) y_lower = y_upper+1 ax.axvline(silhouette_avg, color='lightslategray', linestyle='--') ax.legend(labels=['Avg Silhouette Score {:.2f}'.format(silhouette_avg)]) ax.set_ylim(0, y_upper+10) return ax def score2loading(x): return x / x.max() def loading2score(x): return x * x.max() def get_ct(df): # determine THC/CBD ratio df['chemotype_ratio'] = df['tot_thc'].div(df['tot_cbd'], fill_value=0) df.loc[(df['tot_thc']==0)&(df['tot_cbd']!=0), 'chemotype_ratio'] = -np.inf df.loc[(df['tot_thc']!=0)&(df['tot_cbd']==0), 'chemotype_ratio'] = np.inf # bin chemotypes by ratio df['chemotype'] = pd.cut(df['chemotype_ratio'], [-np.inf, 0.2, 5, np.inf], labels=['CBD-Dom','Bal THC/CBD', 'THC-Dom'], include_lowest=True) return df def run_stacked_bar(df, ax, **kwargs): if 'order' in kwargs: df[kwargs['order']].plot(kind='bar', stacked=True, color=kwargs['palette'], ax=ax) else: df.plot(kind='bar', stacked=True, color=kwargs['palette'], ax=ax) # .patches is everything inside of the chart for rect in ax.patches: # Find where everything is located height = rect.get_height() width = rect.get_width() x = rect.get_x() y = rect.get_y() # The height of the bar is the data value and can be used as the label label_text = f'{height:.1f}%' # f'{height:.2f}' to format decimal values # ax.text(x, y, text) label_x = x + width / 2 label_y = y + height / 2 # plot only when height is greater than specified value if height > 5: txt = ax.text(label_x, label_y, label_text, ha='center', va='center', fontsize=10, fontweight='bold', color='black') txt.set_path_effects([PathEffects.withStroke(linewidth=4, foreground='w')]) ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) return ax # def run_polar_plot(df, ax, **kwargs): # # print(df.loc[:,kwargs['cols']]) # mean_cols = list(df.loc[:,kwargs['cols']].mean(axis=0)) # mean_cols2 = mean_cols + mean_cols[:1] # angles = [n / len(mean_cols) * 2 * np.pi for n in range(len(mean_cols))] # angles = angles + angles[:1] # # get color # order = np.argsort(mean_cols)[::-1] # top_val = np.array(kwargs['cols'])[order][0] # if 'colors' in kwargs: # colors = kwargs['colors'] # else: # colors = kwargs['palette'][top_val] # # # error bars # # err_cols = list(df.loc[:,kwargs['cols']].std(axis=0)) # # err_cols2 = err_cols + err_cols[:1] # # ax.errorbar(angles, mean_cols2, yerr=err_cols2, capsize=0, color=colors, linestyle='solid', ecolor='lightslategray') # # plot # if kwargs['avg']: # ax.plot(angles, mean_cols2, color=colors, lw=1, linestyle='solid') # ax.fill(angles, mean_cols2, colors, alpha=0.1) # # y limits # ax.set_ylim(0, np.max(mean_cols2)) # else: # for row_idx, row in df[kwargs['cols']].iterrows(): # row_list = list(row) # row_list2 = row_list + row_list[:1] # if type(colors)==str: # ax.plot(angles, row_list2, color=colors, lw=0.5) # else: # ax.plot(angles, row_list2, color=colors[row_idx], lw=0.5) # ax.set_ylim(0, np.max(df[kwargs['cols']].max())) # # tick labels # tick_labs = kwargs['cols'] # ax.set_xticks(angles[:-1]) # ax.set_xticklabels(tick_labs, color='black', size=10) # ax.set_yticks([]) # return ax def run_polar_plot(df, ax, **kwargs): # print(df.loc[:,kwargs['cols']]) mean_cols = list(df.loc[:,kwargs['cols']].mean(axis=0)) mean_cols2 = mean_cols + mean_cols[:1] angles = [n / len(mean_cols) * 2 * np.pi for n in range(len(mean_cols))] angles = angles + angles[:1] # plot samples if 'sub_n' in kwargs: sub_data = df.sort_values('n_samps', ascending=False)[:kwargs['sub_n']] else: sub_data = df for row_idx, row in sub_data[kwargs['cols']].iterrows(): row_list = list(row) row_list2 = row_list + row_list[:1] if type(kwargs['colors'])==str: ax.plot(angles, row_list2, color=kwargs['colors'], lw=0.5, alpha=0.5) else: ax.plot(angles, row_list2, color=kwargs['colors'][row_idx], lw=0.5) if kwargs['avg']: # get for average color order = np.argsort(mean_cols)[::-1] top_val = np.array(kwargs['cols'])[order][0] avg_color = kwargs['palette'][top_val] ax.plot(angles, mean_cols2, color=avg_color, lw=1, linestyle='solid', zorder=11) ax.fill(angles, mean_cols2, avg_color, alpha=0.5, zorder=10) ax.set_ylim(0, np.max(mean_cols2)) else: ax.set_ylim(0, np.max(sub_data[kwargs['cols']].max())) # tick labels tick_labs = kwargs['cols'] ax.set_xticks(angles[:-1]) ax.set_xticklabels(tick_labs, color='black', size=10) ax.set_yticks([]) return ax def run_pairwise(df, cann_cols, terp_cols): df_sim = pd.DataFrame(columns=['cann','terp','all']) for idx, cols in enumerate([cann_cols, terp_cols, cann_cols+terp_cols]): if idx==2: df[cols] = MinMaxScaler().fit_transform(df[cols].fillna(0)) sim_scores = cosine_similarity(df[cols].fillna(0)) sim_scores[sim_scores > 0.9999999999999] = np.nan df_sim.iloc[:, idx] = np.nanmean(sim_scores, axis=0) return df_sim def get_scaled_dfs(df, cann, terps): X_cann = df[cann].fillna(0) X_cann_standard = MinMaxScaler().fit_transform(X_cann) X_terps = df[terps].fillna(0) X_terps_standard = MinMaxScaler().fit_transform(X_terps) X_all = df[cann+terps].fillna(0) X_all_standard = MinMaxScaler().fit_transform(X_all) return X_cann, X_cann_standard, X_terps, X_terps_standard, X_all, X_all_standard def avg_sd(a,b): num = np.var(a)+np.var(b) return np.sqrt(num/2) def get_stats(df, pair, col): x = df.loc[df[col]==pair[0], 'value'] y = df.loc[df[col]==pair[1], 'value'] ttest = scs.ttest_ind(x, y, equal_var=False) d_prime = (x.mean()-y.mean())/avg_sd(x,y) labels = [] if ttest[1] < 1e-300: labels.append('p < 1e-300') else: labels.append('p = {:.1e}'.format(ttest[1])) labels.append("d'="+str(np.round(np.abs(d_prime),2))) return ', '.join(labels) def get_prod_df(df, n_samp_min, n_prod_min, common_cannabs, common_terps): n_samp_df = df.groupby(['anon_producer','strain_slug'])['u_id'].count() df = df.merge(n_samp_df.rename('n_samp'), left_on=['anon_producer','strain_slug'], right_index=True) # create producer df prod_df = df.loc[(df['n_samp']>=n_samp_min)].groupby(['anon_producer','strain_slug'])[common_cannabs+common_terps].mean() prod_df = get_ct(prod_df) prod_df = prod_df.reset_index(drop=False) # get n_prod counts n_prod_df = prod_df.groupby('strain_slug')['anon_producer'].count() prod_df = prod_df.merge(n_prod_df.rename('n_prod'), left_on='strain_slug', right_index=True) prod_df = prod_df.merge(n_samp_df.rename('n_samps'), left_on=['anon_producer','strain_slug'], right_index=True) # subset to n_prod_min and thc-dom fin_prod_df = prod_df.loc[(prod_df['n_prod']>=n_prod_min)].sort_values(['n_prod','strain_slug','anon_producer'], ascending=[False, False, True]).copy() fin_prod_df['strain_slug'] = fin_prod_df['strain_slug'].astype(str) return fin_prod_df def get_pal_dict(df, common_terps, terp_dict): pal_dict = {} for label in set(df['kmeans_label']): terp_order = df.loc[df['kmeans_label']==label, common_terps].mean().sort_values(ascending=False) pal_dict[label] = terp_dict[terp_order[:1].index[0]] return pal_dict def get_kmeans(df, common_terps, k=3): df_norm, arr, model = run_pca(df, common_terps, norm=True, n_components=3) # set up kmeans clust = KMeans(3, random_state=56) # get cluster labels df_norm['kmeans_label'] = clust.fit_predict(df_norm[common_terps]) clust_dict = {x:y for x,y in zip(df_norm['kmeans_label'].value_counts().index, ['A','B','C'])} df_norm['kmeans_label'] = df_norm['kmeans_label'].replace(clust_dict) return df_norm def get_umap(df, common_terps, n_neighbors=6, random_state=56): umap_ = UMAP(n_components=2, n_neighbors=n_neighbors, random_state=random_state) X_terps_umap = umap_.fit_transform(df[common_terps]) df['umap_0'] = X_terps_umap[:,0] df['umap_1'] = X_terps_umap[:,1] return df def get_round(arr, sig_fig=1): return np.round(arr*100,sig_fig) def get_cos_sim(df, add_nan=False): sim_scores = cosine_similarity(df) if add_nan: sim_scores[sim_scores > 0.9999999999999] = np.nan else: sim_scores[sim_scores > 0.9999999999999] = 1 return sim_scores def group_cos_sim(df, group_level=False): if df.shape[0]==1: # if only one product, do not return cos sim return np.nan else: sim_scores = get_cos_sim(df, add_nan=True) if group_level: return np.mean(np.nanmean(sim_scores, axis=0)) else: return list(np.nanmean(sim_scores, axis=0)) def format_df(df): return df.explode().to_frame().rename(columns={0:'bw_prod_sim'}).reset_index(drop=False) def weighted_avg(avgs, weights): return np.average(avgs, weights=weights) def run_all_cos_sims(df, cols, groupby='strain_slug'): groups = df.groupby(groupby)[cols] bw_prod_df = format_df(groups.apply(lambda x: group_cos_sim(x))) avgs = groups.apply(lambda x: group_cos_sim(x, group_level=True)) weights = groups.size()[groups.size()>1] return bw_prod_df, avgs, weights def run_kde(df, ax, **kwargs): no_nan = df.dropna(subset=[kwargs['x'], kwargs['y']], how='any') sub_df = sample_df(no_nan, kwargs['sample_frac']) _ = sns.kdeplot(x=kwargs['x'], y=kwargs['y'], data=sub_df, fill=True, cmap='RdBu_r', cbar=True, vmin=0, levels=75, ax=ax) return ax def run_line(df, ax, **kwargs): _ = ax.plot(kwargs['x'], kwargs['y']) return ax def run_scatter_5(df, ax, **kwargs): no_nan = df.dropna(subset=[kwargs['x'], kwargs['y']], how='any') sub_df = sample_df(no_nan, kwargs['sample_frac']) if 'size' in kwargs: s = kwargs['size'] else: s = mpl.rcParams['lines.markersize']**2 if 'edgecolor' in kwargs: ec = kwargs['edgecolor'] else: ec = 'white' hue_order = ['THC-Dom', 'Bal THC/CBD', 'CBD-Dom'] s_colors = ['darkblue', 'steelblue', 'black'] s_markers = ['D', '^', 'o'] for ct, color, marker in zip(hue_order, s_colors, s_markers): if ct=='THC-Dom': sns.scatterplot(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[df['chemotype']==ct], alpha=.5, color=color, marker=marker, s=25, edgecolor='white', linewidth=0.5, label=ct, ax=ax) else: sns.scatterplot(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[df['chemotype']==ct], alpha=1, color=color, marker=marker, s=25, edgecolor='white', linewidth=0.5, label=ct, ax=ax) # include full ns handles, labels = ax.get_legend_handles_labels() if 'n_display' in kwargs: labels_n = [(cat, df.loc[df[kwargs['hue']]==cat].shape[0]) for cat in hue_order] labels = [cat+'\nn='+str(n) for cat, n in labels_n] ax.legend(handles=handles[:kwargs['n_display']], labels=labels[:kwargs['n_display']], title=kwargs['hue'].title(), handlelength=4) else: labels_n = [(cat, df.loc[df[kwargs['hue']]==cat].shape[0]) for cat in hue_order] labels = [cat+'\nn='+str(n) for cat, n in labels_n] ax.legend(handles=handles, labels=labels, title=kwargs['hue'].title(), handlelength=4) return ax
[ "numpy.log10", "numpy.sqrt", "numpy.argsort", "numpy.nanmean", "sklearn.metrics.silhouette_samples", "numpy.array", "scipy.stats.ttest_ind", "umap.UMAP", "seaborn.violinplot", "seaborn.scatterplot", "matplotlib.patheffects.withStroke", "numpy.arange", "numpy.mean", "seaborn.regplot", "sklearn.metrics.pairwise.cosine_similarity", "sklearn.decomposition.PCA", "numpy.max", "pandas.DataFrame", "warnings.simplefilter", "scipy.stats.spearmanr", "pandas.melt", "sklearn.preprocessing.MinMaxScaler", "numpy.round", "numpy.abs", "numpy.average", "matplotlib.patches.Patch", "adjustText.adjust_text", "warnings.filterwarnings", "sklearn.cluster.KMeans", "pandas.cut", "seaborn.boxplot", "itertools.combinations", "seaborn.kdeplot", "numpy.apply_along_axis", "matplotlib.pyplot.tight_layout", "seaborn.barplot", "sklearn.metrics.silhouette_score", "matplotlib.pyplot.subplots", "numpy.var" ]
[((1130, 1163), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1153, 1163), False, 'import warnings\n'), ((1164, 1195), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (1185, 1195), False, 'import warnings\n'), ((1725, 1764), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': "kwargs['figsize']"}), "(figsize=kwargs['figsize'])\n", (1737, 1764), True, 'import matplotlib.pyplot as plt\n'), ((4215, 4233), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4231, 4233), True, 'import matplotlib.pyplot as plt\n'), ((6183, 6310), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'df', 'order': 'order', 'showcaps': '(False)', 'width': '(0.06)', 'fliersize': '(0.5)', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=df, order=order, showcaps=\n False, width=0.06, fliersize=0.5, ax=ax, **PROPS)\n", (6194, 6310), True, 'import seaborn as sns\n'), ((12079, 12122), 'numpy.log10', 'np.log10', (["df.loc[df['ratio'] != 0, 'ratio']"], {}), "(df.loc[df['ratio'] != 0, 'ratio'])\n", (12087, 12122), True, 'import numpy as np\n'), ((13719, 13768), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""darkblue"""', 'label': '"""THC-Dom"""'}), "(color='darkblue', label='THC-Dom')\n", (13733, 13768), True, 'import matplotlib.patches as mpatches\n'), ((13780, 13834), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""steelblue"""', 'label': '"""Bal THC/CBD"""'}), "(color='steelblue', label='Bal THC/CBD')\n", (13794, 13834), True, 'import matplotlib.patches as mpatches\n'), ((13846, 13892), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""black"""', 'label': '"""CBD-Dom"""'}), "(color='black', label='CBD-Dom')\n", (13860, 13892), True, 'import matplotlib.patches as mpatches\n'), ((16050, 16080), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n_components'}), '(n_components=n_components)\n', (16053, 16080), False, 'from sklearn.decomposition import PCA\n'), ((17234, 17252), 'adjustText.adjust_text', 'adjust_text', (['texts'], {}), '(texts)\n', (17245, 17252), False, 'from adjustText import adjust_text\n'), ((17501, 17545), 'sklearn.metrics.silhouette_score', 'silhouette_score', (["df[kwargs['cols']]", 'labels'], {}), "(df[kwargs['cols']], labels)\n", (17517, 17545), False, 'from sklearn.metrics import silhouette_samples, silhouette_score\n'), ((17567, 17621), 'sklearn.metrics.silhouette_samples', 'silhouette_samples', (["sub_df[kwargs['cols']]", 'sub_labels'], {}), "(sub_df[kwargs['cols']], sub_labels)\n", (17585, 17621), False, 'from sklearn.metrics import silhouette_samples, silhouette_score\n'), ((18838, 18965), 'pandas.cut', 'pd.cut', (["df['chemotype_ratio']", '[-np.inf, 0.2, 5, np.inf]'], {'labels': "['CBD-Dom', 'Bal THC/CBD', 'THC-Dom']", 'include_lowest': '(True)'}), "(df['chemotype_ratio'], [-np.inf, 0.2, 5, np.inf], labels=['CBD-Dom',\n 'Bal THC/CBD', 'THC-Dom'], include_lowest=True)\n", (18844, 18965), True, 'import pandas as pd\n'), ((23450, 23495), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['cann', 'terp', 'all']"}), "(columns=['cann', 'terp', 'all'])\n", (23462, 23495), True, 'import pandas as pd\n'), ((24329, 24345), 'numpy.sqrt', 'np.sqrt', (['(num / 2)'], {}), '(num / 2)\n', (24336, 24345), True, 'import numpy as np\n'), ((24473, 24509), 'scipy.stats.ttest_ind', 'scs.ttest_ind', (['x', 'y'], {'equal_var': '(False)'}), '(x, y, equal_var=False)\n', (24486, 24509), True, 'import scipy.stats as scs\n'), ((26400, 26426), 'sklearn.cluster.KMeans', 'KMeans', (['(3)'], {'random_state': '(56)'}), '(3, random_state=56)\n', (26406, 26426), False, 'from sklearn.cluster import DBSCAN, KMeans, OPTICS\n'), ((26823, 26895), 'umap.UMAP', 'UMAP', ([], {'n_components': '(2)', 'n_neighbors': 'n_neighbors', 'random_state': 'random_state'}), '(n_components=2, n_neighbors=n_neighbors, random_state=random_state)\n', (26827, 26895), False, 'from umap import UMAP\n'), ((27109, 27137), 'numpy.round', 'np.round', (['(arr * 100)', 'sig_fig'], {}), '(arr * 100, sig_fig)\n', (27117, 27137), True, 'import numpy as np\n'), ((27190, 27211), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['df'], {}), '(df)\n', (27207, 27211), False, 'from sklearn.metrics.pairwise import cosine_distances, cosine_similarity\n'), ((27903, 27936), 'numpy.average', 'np.average', (['avgs'], {'weights': 'weights'}), '(avgs, weights=weights)\n', (27913, 27936), True, 'import numpy as np\n'), ((28454, 28576), 'seaborn.kdeplot', 'sns.kdeplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'sub_df', 'fill': '(True)', 'cmap': '"""RdBu_r"""', 'cbar': '(True)', 'vmin': '(0)', 'levels': '(75)', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df, fill=True, cmap=\n 'RdBu_r', cbar=True, vmin=0, levels=75, ax=ax)\n", (28465, 28576), True, 'import seaborn as sns\n'), ((5534, 5670), 'seaborn.violinplot', 'sns.violinplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'sub_df', 'scale': '"""width"""', 'order': 'order', 'palette': "kwargs['palette']", 'linewidth': '(0)', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df, scale='width',\n order=order, palette=kwargs['palette'], linewidth=0, ax=ax)\n", (5548, 5670), True, 'import seaborn as sns\n'), ((5754, 5887), 'seaborn.violinplot', 'sns.violinplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'sub_df', 'scale': '"""width"""', 'order': 'order', 'color': '"""lightslategray"""', 'linewidth': '(0)', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df, scale='width',\n order=order, color='lightslategray', linewidth=0, ax=ax)\n", (5768, 5887), True, 'import seaborn as sns\n'), ((9469, 9641), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'hue': "kwargs['hue']", 'data': 'sub_df', 's': 's', 'edgecolor': 'ec', 'alpha': '(0.5)', 'hue_order': 'hue_order', 'palette': "kwargs['palette']", 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], hue=kwargs['hue'], data=\n sub_df, s=s, edgecolor=ec, alpha=0.5, hue_order=hue_order, palette=\n kwargs['palette'], ax=ax)\n", (9484, 9641), True, 'import seaborn as sns\n'), ((10533, 10707), 'seaborn.regplot', 'sns.regplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'sub_df', 'scatter_kws': "{'alpha': 0.1, 'color': 'lightslategray', 'rasterized': True}", 'line_kws': "{'color': 'orange'}", 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df, scatter_kws={'alpha':\n 0.1, 'color': 'lightslategray', 'rasterized': True}, line_kws={'color':\n 'orange'}, ax=ax)\n", (10544, 10707), True, 'import seaborn as sns\n'), ((10800, 10855), 'scipy.stats.spearmanr', 'scs.spearmanr', (["no_nan[kwargs['x']]", "no_nan[kwargs['y']]"], {}), "(no_nan[kwargs['x']], no_nan[kwargs['y']])\n", (10813, 10855), True, 'import scipy.stats as scs\n'), ((12855, 12875), 'numpy.mean', 'np.mean', (['[low, high]'], {}), '([low, high])\n', (12862, 12875), True, 'import numpy as np\n'), ((14821, 14944), 'seaborn.barplot', 'sns.barplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'hue': "kwargs['hue']", 'data': 'df', 'palette': "kwargs['palette']", 'order': "kwargs['order']"}), "(x=kwargs['x'], y=kwargs['y'], hue=kwargs['hue'], data=df,\n palette=kwargs['palette'], order=kwargs['order'])\n", (14832, 14944), True, 'import seaborn as sns\n'), ((15407, 15512), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'df', 'palette': "kwargs['palette']", 'order': "kwargs['order']"}), "(x=kwargs['x'], y=kwargs['y'], data=df, palette=kwargs['palette'\n ], order=kwargs['order'])\n", (15418, 15512), True, 'import seaborn as sns\n'), ((15586, 15651), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'color': '"""lightslategray"""'}), "(x=kwargs['x'], y=kwargs['y'], color='lightslategray')\n", (15597, 15651), True, 'import seaborn as sns\n'), ((16196, 16241), 'numpy.apply_along_axis', 'np.apply_along_axis', (['max_min'], {'arr': 'arr', 'axis': '(0)'}), '(max_min, arr=arr, axis=0)\n', (16215, 16241), True, 'import numpy as np\n'), ((23809, 23839), 'numpy.nanmean', 'np.nanmean', (['sim_scores'], {'axis': '(0)'}), '(sim_scores, axis=0)\n', (23819, 23839), True, 'import numpy as np\n'), ((24298, 24307), 'numpy.var', 'np.var', (['a'], {}), '(a)\n', (24304, 24307), True, 'import numpy as np\n'), ((24308, 24317), 'numpy.var', 'np.var', (['b'], {}), '(b)\n', (24314, 24317), True, 'import numpy as np\n'), ((5037, 5095), 'pandas.melt', 'pd.melt', (["data.loc[:, kwargs['cols']]"], {'var_name': "kwargs['x']"}), "(data.loc[:, kwargs['cols']], var_name=kwargs['x'])\n", (5044, 5095), True, 'import pandas as pd\n'), ((5117, 5177), 'pandas.melt', 'pd.melt', (["sub_df.loc[:, kwargs['cols']]"], {'var_name': "kwargs['x']"}), "(sub_df.loc[:, kwargs['cols']], var_name=kwargs['x'])\n", (5124, 5177), True, 'import pandas as pd\n'), ((6810, 6844), 'itertools.combinations', 'itertools.combinations', (['order'], {'r': '(2)'}), '(order, r=2)\n', (6832, 6844), False, 'import itertools\n'), ((11373, 11570), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': "sub_df.loc[sub_df['strain_slug'] == strain]", 's': '(s + 35)', 'edgecolor': '"""black"""', 'linewidth': '(1.5)', 'color': 'color', 'label': 'strain', 'marker': 'marker', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[sub_df[\n 'strain_slug'] == strain], s=s + 35, edgecolor='black', linewidth=1.5,\n color=color, label=strain, marker=marker, ax=ax)\n", (11388, 11570), True, 'import seaborn as sns\n'), ((12723, 12768), 'numpy.arange', 'np.arange', (['(min_log - 0.1)', '(max_log + 0.1)', '(0.05)'], {}), '(min_log - 0.1, max_log + 0.1, 0.05)\n', (12732, 12768), True, 'import numpy as np\n'), ((12894, 12918), 'numpy.log10', 'np.log10', (['ct_thresh_high'], {}), '(ct_thresh_high)\n', (12902, 12918), True, 'import numpy as np\n'), ((13257, 13281), 'numpy.log10', 'np.log10', (['ct_thresh_high'], {}), '(ct_thresh_high)\n', (13265, 13281), True, 'import numpy as np\n'), ((13283, 13307), 'numpy.log10', 'np.log10', (['ct_thresh_high'], {}), '(ct_thresh_high)\n', (13291, 13307), True, 'import numpy as np\n'), ((13406, 13429), 'numpy.log10', 'np.log10', (['ct_thresh_low'], {}), '(ct_thresh_low)\n', (13414, 13429), True, 'import numpy as np\n'), ((13431, 13454), 'numpy.log10', 'np.log10', (['ct_thresh_low'], {}), '(ct_thresh_low)\n', (13439, 13454), True, 'import numpy as np\n'), ((15059, 15164), 'seaborn.barplot', 'sns.barplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': 'df', 'palette': "kwargs['palette']", 'order': "kwargs['order']"}), "(x=kwargs['x'], y=kwargs['y'], data=df, palette=kwargs['palette'\n ], order=kwargs['order'])\n", (15070, 15164), True, 'import seaborn as sns\n'), ((15238, 15303), 'seaborn.barplot', 'sns.barplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'color': '"""lightslategray"""'}), "(x=kwargs['x'], y=kwargs['y'], color='lightslategray')\n", (15249, 15303), True, 'import seaborn as sns\n'), ((16481, 16524), 'numpy.abs', 'np.abs', (["comp_df[[kwargs['x'], kwargs['y']]]"], {}), "(comp_df[[kwargs['x'], kwargs['y']]])\n", (16487, 16524), True, 'import numpy as np\n'), ((17968, 17995), 'numpy.arange', 'np.arange', (['y_lower', 'y_upper'], {}), '(y_lower, y_upper)\n', (17977, 17995), True, 'import numpy as np\n'), ((22773, 22794), 'numpy.argsort', 'np.argsort', (['mean_cols'], {}), '(mean_cols)\n', (22783, 22794), True, 'import numpy as np\n'), ((23092, 23110), 'numpy.max', 'np.max', (['mean_cols2'], {}), '(mean_cols2)\n', (23098, 23110), True, 'import numpy as np\n'), ((23951, 23965), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (23963, 23965), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((24046, 24060), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (24058, 24060), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((24143, 24157), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (24155, 24157), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((29433, 29623), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': "sub_df.loc[df['chemotype'] == ct]", 'alpha': '(0.5)', 'color': 'color', 'marker': 'marker', 's': '(25)', 'edgecolor': '"""white"""', 'linewidth': '(0.5)', 'label': 'ct', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[df[\n 'chemotype'] == ct], alpha=0.5, color=color, marker=marker, s=25,\n edgecolor='white', linewidth=0.5, label=ct, ax=ax)\n", (29448, 29623), True, 'import seaborn as sns\n'), ((29862, 30050), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': "kwargs['x']", 'y': "kwargs['y']", 'data': "sub_df.loc[df['chemotype'] == ct]", 'alpha': '(1)', 'color': 'color', 'marker': 'marker', 's': '(25)', 'edgecolor': '"""white"""', 'linewidth': '(0.5)', 'label': 'ct', 'ax': 'ax'}), "(x=kwargs['x'], y=kwargs['y'], data=sub_df.loc[df[\n 'chemotype'] == ct], alpha=1, color=color, marker=marker, s=25,\n edgecolor='white', linewidth=0.5, label=ct, ax=ax)\n", (29877, 30050), True, 'import seaborn as sns\n'), ((4652, 4728), 'pandas.melt', 'pd.melt', (["data.loc[:, kwargs['cols']]"], {'id_vars': '"""region"""', 'value_vars': '"""tot_thc"""'}), "(data.loc[:, kwargs['cols']], id_vars='region', value_vars='tot_thc')\n", (4659, 4728), True, 'import pandas as pd\n'), ((4793, 4878), 'pandas.melt', 'pd.melt', (["sub_data.loc[:, kwargs['cols']]"], {'id_vars': '"""region"""', 'value_vars': '"""tot_thc"""'}), "(sub_data.loc[:, kwargs['cols']], id_vars='region', value_vars='tot_thc'\n )\n", (4800, 4878), True, 'import pandas as pd\n'), ((12978, 13001), 'numpy.log10', 'np.log10', (['ct_thresh_low'], {}), '(ct_thresh_low)\n', (12986, 13001), True, 'import numpy as np\n'), ((22819, 22843), 'numpy.array', 'np.array', (["kwargs['cols']"], {}), "(kwargs['cols'])\n", (22827, 22843), True, 'import numpy as np\n'), ((27625, 27655), 'numpy.nanmean', 'np.nanmean', (['sim_scores'], {'axis': '(0)'}), '(sim_scores, axis=0)\n', (27635, 27655), True, 'import numpy as np\n'), ((27695, 27725), 'numpy.nanmean', 'np.nanmean', (['sim_scores'], {'axis': '(0)'}), '(sim_scores, axis=0)\n', (27705, 27725), True, 'import numpy as np\n'), ((20062, 20113), 'matplotlib.patheffects.withStroke', 'PathEffects.withStroke', ([], {'linewidth': '(4)', 'foreground': '"""w"""'}), "(linewidth=4, foreground='w')\n", (20084, 20113), True, 'import matplotlib.patheffects as PathEffects\n'), ((23613, 23627), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (23625, 23627), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((24744, 24759), 'numpy.abs', 'np.abs', (['d_prime'], {}), '(d_prime)\n', (24750, 24759), True, 'import numpy as np\n')]
import random import numpy as np import torch from torch import nn from torchbenchmark.tasks import OTHER from ...util.model import BenchmarkModel torch.manual_seed(1337) random.seed(1337) np.random.seed(1337) # pretend we are using MLP to predict CIFAR images class MLP(nn.Module): def __init__(self): super().__init__() self.main = nn.Sequential( nn.Flatten(), nn.Linear(3 * 32 * 32, 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU(), nn.Linear(1024, 10), nn.Softmax(dim=-1), ) def forward(self, x): return self.main(x) class Model(BenchmarkModel): task = OTHER.OTHER_TASKS def __init__(self, device='cpu', jit=False, lr=1e-4, weight_decay=1e-4): super().__init__() self.device = device self.jit = jit batch_size = 4096 # mimic a normalized image self.sample_inputs = torch.randn(batch_size, 3, 32, 32).clamp_(-1, 1).to(device) self.sample_targets = torch.randint(0, 10, (batch_size, )).to(device) self.model = MLP().to(device) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay) self.criterion = nn.CrossEntropyLoss() def train(self, niter=1): if self.jit: raise NotImplementedError() self.model.train() for _ in range(niter): out = self.model(self.sample_inputs) self.optimizer.zero_grad() loss = self.criterion(out, self.sample_targets) loss.backward() self.optimizer.step() def eval(self, niter=1): if self.jit: raise NotImplementedError() self.model.eval() with torch.no_grad(): for _ in range(niter): out = self.model(self.sample_inputs) def get_module(self): if self.jit: raise NotImplementedError() return self.model, self.sample_inputs if __name__ == '__main__': for device in ['cpu', 'cuda']: print("Testing device {}, JIT {}".format(device, False)) m = Model(device=device, jit=False) m.train() m.eval()
[ "torch.manual_seed", "torch.nn.ReLU", "torch.nn.CrossEntropyLoss", "torch.nn.Softmax", "torch.nn.Flatten", "random.seed", "torch.randint", "numpy.random.seed", "torch.nn.Linear", "torch.no_grad", "torch.randn" ]
[((150, 173), 'torch.manual_seed', 'torch.manual_seed', (['(1337)'], {}), '(1337)\n', (167, 173), False, 'import torch\n'), ((174, 191), 'random.seed', 'random.seed', (['(1337)'], {}), '(1337)\n', (185, 191), False, 'import random\n'), ((192, 212), 'numpy.random.seed', 'np.random.seed', (['(1337)'], {}), '(1337)\n', (206, 212), True, 'import numpy as np\n'), ((1507, 1528), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1526, 1528), False, 'from torch import nn\n'), ((388, 400), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (398, 400), False, 'from torch import nn\n'), ((414, 442), 'torch.nn.Linear', 'nn.Linear', (['(3 * 32 * 32)', '(1024)'], {}), '(3 * 32 * 32, 1024)\n', (423, 442), False, 'from torch import nn\n'), ((456, 465), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (463, 465), False, 'from torch import nn\n'), ((479, 500), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (488, 500), False, 'from torch import nn\n'), ((514, 523), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (521, 523), False, 'from torch import nn\n'), ((537, 558), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (546, 558), False, 'from torch import nn\n'), ((572, 581), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (579, 581), False, 'from torch import nn\n'), ((595, 616), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (604, 616), False, 'from torch import nn\n'), ((630, 639), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (637, 639), False, 'from torch import nn\n'), ((653, 672), 'torch.nn.Linear', 'nn.Linear', (['(1024)', '(10)'], {}), '(1024, 10)\n', (662, 672), False, 'from torch import nn\n'), ((686, 704), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (696, 704), False, 'from torch import nn\n'), ((2021, 2036), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2034, 2036), False, 'import torch\n'), ((1210, 1245), 'torch.randint', 'torch.randint', (['(0)', '(10)', '(batch_size,)'], {}), '(0, 10, (batch_size,))\n', (1223, 1245), False, 'import torch\n'), ((1079, 1113), 'torch.randn', 'torch.randn', (['batch_size', '(3)', '(32)', '(32)'], {}), '(batch_size, 3, 32, 32)\n', (1090, 1113), False, 'import torch\n')]
# Importando librerías from numpy import array # Listas y arreglos a = array(['h', 101, 'l', 'l', 'o']) x = ['h', 101, 'l', 'l', 'o'] print(a) print(x) print("Tamaño: ", len(x)) # Condicionales if isinstance(x[1], int): x[1] = chr(x[1]) elif isinstance(x[1], str): pass else: raise TypeError("Tipo no soportado!. No te pases! >:c") print(' uwu '.join(x)) # Ciclos for item in x: print(item) for i in range(len(x)): print(x[i]) for i in range(1, 10, 2): print(i) while len(x): print(x.pop(0)) while len(x): print(x.pop(0)) else: print('F para x :C') # Operaciones con listas x.append('H') x.append('o') x.append('l') x.append('a') x.insert(1, 'o') # Entrada de datos print(x) respuesta = input("Hola?") print(respuesta) # Operadores aritméticos y booleanos print(x) print(10.1) print(1 + 2 - 4 * 5 / 8 % 2) print(2 ** 5) print(True and True) print(False and True) print(False or True) print(not False) # Listas comprimidas print([i for i in range(1, 11) if i % 2 == 0]) print([j for j in range(2, 101) if all(j % i != 0 for i in range(2, j))]) print([j for j in range(2, 101) if not(j % 2 or j % 3 or j % 5)])
[ "numpy.array" ]
[((72, 104), 'numpy.array', 'array', (["['h', 101, 'l', 'l', 'o']"], {}), "(['h', 101, 'l', 'l', 'o'])\n", (77, 104), False, 'from numpy import array\n')]
import argparse import collections import os import cv2 import numpy as np import pandas as pd import pretrainedmodels import torch import torch.optim as optim import torchsummary from torch.optim import lr_scheduler from torch.utils.data import DataLoader from torchvision import datasets, models, transforms from tqdm import tqdm import skimage.io from sklearn.metrics import f1_score import torch.nn as nn import torch.nn.functional as F import config import utils import classification_dataset from triplet_dataset import TripletDataset, TripletDatasetUpdate, TripletDatasetPredict from logger import Logger from experiments import MODELS class EmbeddingsModel(nn.Module): def __init__(self, nb_embeddings=config.NB_EMBEDDINGS): super().__init__() self.base_model = pretrainedmodels.resnet18() self.fc = nn.Linear(2048, nb_embeddings) def forward(self, x): x = self.base_model.conv1(x) x = self.base_model.bn1(x) x = self.base_model.relu(x) x = self.base_model.maxpool(x) x = self.base_model.layer1(x) x = self.base_model.layer2(x) x = self.base_model.layer3(x) x = self.base_model.layer4(x) x = self.base_model.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class TripletLoss(nn.Module): def __init__(self, margin): super().__init__() self.margin = margin def forward(self, anchor, positive, negative): distance_positive = (anchor - positive).pow(2).sum(1) distance_negative = (anchor - negative).pow(2).sum(1) losses = F.relu(distance_positive - distance_negative + self.margin) return losses.mean() def train(model_name, run=None): run_str = '' if run is None or run == '' else f'_{run}' checkpoints_dir = f'../output/checkpoints_3/{model_name}{run_str}' tensorboard_dir = f'../output/tensorboard_3/{model_name}{run_str}' os.makedirs(checkpoints_dir, exist_ok=True) os.makedirs(tensorboard_dir, exist_ok=True) print('\n', model_name, '\n') logger = Logger(tensorboard_dir) model = EmbeddingsModel() model = model.cuda() dataset_train = TripletDataset( is_train=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), crop_size=256 ) dataset_valid = TripletDataset( is_train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), crop_size=256 ) dataset_update_train = TripletDatasetUpdate(dataset_train) dataset_update_valid = TripletDatasetUpdate(dataset_valid) model.training = True print('using sgd optimiser') optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-5) scheduler = utils.CosineAnnealingLRWithRestarts(optimizer, T_max=8, T_mult=1.2) print('Num training images: {} valid images: {}'.format(len(dataset_train), len(dataset_valid))) data_loader_train = DataLoader( dataset_train, shuffle=True, num_workers=8, batch_size=64) data_loader_valid = DataLoader( dataset_valid, shuffle=False, num_workers=8, batch_size=64) data_loader_update_train = DataLoader( dataset_update_train, shuffle=False, num_workers=8, batch_size=64) data_loader_update_valid = DataLoader( dataset_update_valid, shuffle=False, num_workers=8, batch_size=64) criterium = TripletLoss(margin=1.0) for epoch_num in range(512): model.eval() with torch.set_grad_enabled(False): for iter_num, data in tqdm(enumerate(data_loader_update_train), total=len(data_loader_update_train)): img = data['img'].cuda() samples_idx = data['idx'] vectors = model(img).detach().cpu().numpy() dataset_train.embeddings[samples_idx] = vectors print(np.mean(dataset_train.embeddings, axis=0), np.std(dataset_train.embeddings, axis=0)) for iter_num, data in tqdm(enumerate(data_loader_update_valid), total=len(data_loader_update_valid)): img = data['img'].cuda() samples_idx = data['idx'] vectors = model(img).detach().cpu().numpy() dataset_valid.embeddings[samples_idx] = vectors print(np.mean(dataset_train.embeddings, axis=0), np.std(dataset_valid.embeddings, axis=0)) model.train() epoch_loss = [] with torch.set_grad_enabled(True): data_iter = tqdm(enumerate(data_loader_train), total=len(data_loader_train)) for iter_num, data in data_iter: img = data['img'].cuda() img_pos = data['img_pos'].cuda() img_neg = data['img_neg'].cuda() optimizer.zero_grad() output = model(img) output_pos = model(img_pos) output_neg = model(img_neg) loss = criterium(output, output_pos, output_neg) epoch_loss.append(float(loss.detach().cpu())) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.25) optimizer.step() data_iter.set_description( f'{epoch_num} Loss: {np.mean(epoch_loss):1.4f}') logger.scalar_summary(f'loss_train', np.mean(epoch_loss), epoch_num) epoch_loss = [] with torch.set_grad_enabled(False): data_iter = tqdm(enumerate(data_loader_valid), total=len(data_loader_valid)) for iter_num, data in data_iter: img = data['img'].cuda() img_pos = data['img_pos'].cuda() img_neg = data['img_neg'].cuda() output = model(img) output_pos = model(img_pos) output_neg = model(img_neg) loss = criterium(output, output_pos, output_neg) epoch_loss.append(float(loss)) data_iter.set_description( f'{epoch_num} Loss: {np.mean(epoch_loss):1.4f}') logger.scalar_summary(f'loss_valid', np.mean(epoch_loss), epoch_num) logger.scalar_summary('lr', optimizer.param_groups[0]['lr'], epoch_num) scheduler.step(metrics=np.mean(epoch_loss), epoch=epoch_num) model.eval() torch.save( { 'epoch': epoch_num, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), }, f'{checkpoints_dir}/{epoch_num:03}.pt' ) def predict(model_name, epoch_num, img_dir, sample_ids, run=None): model = EmbeddingsModel() model = model.cuda() run_str = '' if run is None or run == '' else f'_{run}' checkpoints_dir = f'../output/checkpoints_3/{model_name}{run_str}' checkpoint = torch.load(f'{checkpoints_dir}/{epoch_num:03}.pt') model.load_state_dict(checkpoint['model_state_dict']) dataset = TripletDatasetPredict(sample_ids=sample_ids, img_dir=img_dir, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), crop_size=256) data_loader_update_train = DataLoader( dataset, shuffle=False, num_workers=8, batch_size=64) results = [] results_idx = [] with torch.set_grad_enabled(False): for data in tqdm(data_loader_update_train): img = data['img'].cuda() samples_idx = data['idx'] embeddings = model(img).detach().cpu().numpy() results.append(embeddings) results_idx.append(samples_idx) # for image_id in tqdm(sample_ids): # images = [] # for color in ['red', 'green', 'blue']: # try: # img = cv2.imread(f'{img_dir}/{image_id}_{color}.png', cv2.IMREAD_UNCHANGED) # img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA).astype("uint8") # images.append(img) # except: # print(f'failed to open {img_dir}/{image_id}_{color}.png') # raise # # images = np.stack(images, axis=0).astype(np.float32) / 255.0 # images = torch.from_numpy(images).cuda() # images = normalize(images) # images = torch.unsqueeze(images, 0) # embeddings = model(images) # embeddings = embeddings.detach().cpu().numpy() # # print(image_id, embeddings.flatten()) # results.append(embeddings) results = np.concatenate(results, axis=0) results_idx = np.concatenate(results_idx, axis=0) utils.print_stats('results_idx diff', np.diff(results_idx)) return results def predict_extra(model_name, epoch_num, run=None): data = pd.read_csv('../input/folds_4_extra.csv') embeddings = predict(model_name=model_name, epoch_num=epoch_num, img_dir=config.TRAIN_DIR_EXTRA, sample_ids=data.Id.values, run=run) torch.save(embeddings, '../output/embeddings_extra.pt') for i in range(embeddings.shape[1]): data[f'emb_{i}'] = embeddings[:, i] print(np.mean(embeddings, axis=0), np.std(embeddings, axis=0)) data.to_csv('../input/emb_extra.csv', index=False) def predict_train(model_name, epoch_num, run=None): data = pd.read_csv('../input/train.csv') embeddings = predict(model_name=model_name, epoch_num=epoch_num, img_dir=config.TRAIN_DIR, sample_ids=data.Id.values, run=run) torch.save(embeddings, '../output/embeddings_train.pt') for i in range(embeddings.shape[1]): data[f'emb_{i}'] = embeddings[:, i] print(np.mean(embeddings, axis=0), np.std(embeddings, axis=0)) data.to_csv('../input/emb_train.csv', index=False) def predict_test(model_name, epoch_num, run=None): data = pd.read_csv('../input/sample_submission.csv') embeddings = predict(model_name=model_name, epoch_num=epoch_num, img_dir=config.TEST_DIR, sample_ids=data.Id.values, run=run) torch.save(embeddings, '../output/embeddings_test.pt') for i in range(embeddings.shape[1]): data[f'emb_{i}'] = embeddings[:, i] print(np.mean(embeddings, axis=0), np.std(embeddings, axis=0)) data.to_csv('../input/emb_test.csv', index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('action', type=str, default='train') parser.add_argument('--model', type=str, default='tr_resnet18_now_8') parser.add_argument('--epoch', type=int, default=0) args = parser.parse_args() action = args.action model = args.model np.set_printoptions(precision=3, linewidth=200) if action == 'train': try: train(model_name=model) except KeyboardInterrupt: pass if action == 'predict_extra': predict_extra(model_name=model, epoch_num=args.epoch, run=None) if action == 'predict_train': predict_train(model_name=model, epoch_num=args.epoch, run=None) if action == 'predict_test': predict_test(model_name=model, epoch_num=args.epoch, run=None)
[ "pandas.read_csv", "utils.CosineAnnealingLRWithRestarts", "numpy.mean", "argparse.ArgumentParser", "numpy.diff", "numpy.concatenate", "triplet_dataset.TripletDatasetUpdate", "torchvision.transforms.ToTensor", "logger.Logger", "torch.save", "numpy.std", "torch.nn.functional.relu", "torchvision.transforms.Normalize", "numpy.set_printoptions", "os.makedirs", "torch.load", "tqdm.tqdm", "pretrainedmodels.resnet18", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.set_grad_enabled" ]
[((1957, 2000), 'os.makedirs', 'os.makedirs', (['checkpoints_dir'], {'exist_ok': '(True)'}), '(checkpoints_dir, exist_ok=True)\n', (1968, 2000), False, 'import os\n'), ((2005, 2048), 'os.makedirs', 'os.makedirs', (['tensorboard_dir'], {'exist_ok': '(True)'}), '(tensorboard_dir, exist_ok=True)\n', (2016, 2048), False, 'import os\n'), ((2097, 2120), 'logger.Logger', 'Logger', (['tensorboard_dir'], {}), '(tensorboard_dir)\n', (2103, 2120), False, 'from logger import Logger\n'), ((2712, 2747), 'triplet_dataset.TripletDatasetUpdate', 'TripletDatasetUpdate', (['dataset_train'], {}), '(dataset_train)\n', (2732, 2747), False, 'from triplet_dataset import TripletDataset, TripletDatasetUpdate, TripletDatasetPredict\n'), ((2775, 2810), 'triplet_dataset.TripletDatasetUpdate', 'TripletDatasetUpdate', (['dataset_valid'], {}), '(dataset_valid)\n', (2795, 2810), False, 'from triplet_dataset import TripletDataset, TripletDatasetUpdate, TripletDatasetPredict\n'), ((2975, 3042), 'utils.CosineAnnealingLRWithRestarts', 'utils.CosineAnnealingLRWithRestarts', (['optimizer'], {'T_max': '(8)', 'T_mult': '(1.2)'}), '(optimizer, T_max=8, T_mult=1.2)\n', (3010, 3042), False, 'import utils\n'), ((3170, 3239), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_train'], {'shuffle': '(True)', 'num_workers': '(8)', 'batch_size': '(64)'}), '(dataset_train, shuffle=True, num_workers=8, batch_size=64)\n', (3180, 3239), False, 'from torch.utils.data import DataLoader\n'), ((3298, 3368), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_valid'], {'shuffle': '(False)', 'num_workers': '(8)', 'batch_size': '(64)'}), '(dataset_valid, shuffle=False, num_workers=8, batch_size=64)\n', (3308, 3368), False, 'from torch.utils.data import DataLoader\n'), ((3434, 3511), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_update_train'], {'shuffle': '(False)', 'num_workers': '(8)', 'batch_size': '(64)'}), '(dataset_update_train, shuffle=False, num_workers=8, batch_size=64)\n', (3444, 3511), False, 'from torch.utils.data import DataLoader\n'), ((3577, 3654), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset_update_valid'], {'shuffle': '(False)', 'num_workers': '(8)', 'batch_size': '(64)'}), '(dataset_update_valid, shuffle=False, num_workers=8, batch_size=64)\n', (3587, 3654), False, 'from torch.utils.data import DataLoader\n'), ((7147, 7197), 'torch.load', 'torch.load', (['f"""{checkpoints_dir}/{epoch_num:03}.pt"""'], {}), "(f'{checkpoints_dir}/{epoch_num:03}.pt')\n", (7157, 7197), False, 'import torch\n'), ((7729, 7793), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'shuffle': '(False)', 'num_workers': '(8)', 'batch_size': '(64)'}), '(dataset, shuffle=False, num_workers=8, batch_size=64)\n', (7739, 7793), False, 'from torch.utils.data import DataLoader\n'), ((9140, 9171), 'numpy.concatenate', 'np.concatenate', (['results'], {'axis': '(0)'}), '(results, axis=0)\n', (9154, 9171), True, 'import numpy as np\n'), ((9190, 9225), 'numpy.concatenate', 'np.concatenate', (['results_idx'], {'axis': '(0)'}), '(results_idx, axis=0)\n', (9204, 9225), True, 'import numpy as np\n'), ((9374, 9415), 'pandas.read_csv', 'pd.read_csv', (['"""../input/folds_4_extra.csv"""'], {}), "('../input/folds_4_extra.csv')\n", (9385, 9415), True, 'import pandas as pd\n'), ((9632, 9687), 'torch.save', 'torch.save', (['embeddings', '"""../output/embeddings_extra.pt"""'], {}), "(embeddings, '../output/embeddings_extra.pt')\n", (9642, 9687), False, 'import torch\n'), ((9962, 9995), 'pandas.read_csv', 'pd.read_csv', (['"""../input/train.csv"""'], {}), "('../input/train.csv')\n", (9973, 9995), True, 'import pandas as pd\n'), ((10206, 10261), 'torch.save', 'torch.save', (['embeddings', '"""../output/embeddings_train.pt"""'], {}), "(embeddings, '../output/embeddings_train.pt')\n", (10216, 10261), False, 'import torch\n'), ((10535, 10580), 'pandas.read_csv', 'pd.read_csv', (['"""../input/sample_submission.csv"""'], {}), "('../input/sample_submission.csv')\n", (10546, 10580), True, 'import pandas as pd\n'), ((10790, 10844), 'torch.save', 'torch.save', (['embeddings', '"""../output/embeddings_test.pt"""'], {}), "(embeddings, '../output/embeddings_test.pt')\n", (10800, 10844), False, 'import torch\n'), ((11095, 11120), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (11118, 11120), False, 'import argparse\n'), ((11397, 11444), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(3)', 'linewidth': '(200)'}), '(precision=3, linewidth=200)\n', (11416, 11444), True, 'import numpy as np\n'), ((793, 820), 'pretrainedmodels.resnet18', 'pretrainedmodels.resnet18', ([], {}), '()\n', (818, 820), False, 'import pretrainedmodels\n'), ((839, 869), 'torch.nn.Linear', 'nn.Linear', (['(2048)', 'nb_embeddings'], {}), '(2048, nb_embeddings)\n', (848, 869), True, 'import torch.nn as nn\n'), ((1626, 1685), 'torch.nn.functional.relu', 'F.relu', (['(distance_positive - distance_negative + self.margin)'], {}), '(distance_positive - distance_negative + self.margin)\n', (1632, 1685), True, 'import torch.nn.functional as F\n'), ((7875, 7904), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (7897, 7904), False, 'import torch\n'), ((7926, 7956), 'tqdm.tqdm', 'tqdm', (['data_loader_update_train'], {}), '(data_loader_update_train)\n', (7930, 7956), False, 'from tqdm import tqdm\n'), ((9268, 9288), 'numpy.diff', 'np.diff', (['results_idx'], {}), '(results_idx)\n', (9275, 9288), True, 'import numpy as np\n'), ((9784, 9811), 'numpy.mean', 'np.mean', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (9791, 9811), True, 'import numpy as np\n'), ((9813, 9839), 'numpy.std', 'np.std', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (9819, 9839), True, 'import numpy as np\n'), ((10358, 10385), 'numpy.mean', 'np.mean', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (10365, 10385), True, 'import numpy as np\n'), ((10387, 10413), 'numpy.std', 'np.std', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (10393, 10413), True, 'import numpy as np\n'), ((10941, 10968), 'numpy.mean', 'np.mean', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (10948, 10968), True, 'import numpy as np\n'), ((10970, 10996), 'numpy.std', 'np.std', (['embeddings'], {'axis': '(0)'}), '(embeddings, axis=0)\n', (10976, 10996), True, 'import numpy as np\n'), ((3797, 3826), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (3819, 3826), False, 'import torch\n'), ((4739, 4767), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (4761, 4767), False, 'import torch\n'), ((5631, 5650), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (5638, 5650), True, 'import numpy as np\n'), ((5701, 5730), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (5723, 5730), False, 'import torch\n'), ((6402, 6421), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (6409, 6421), True, 'import numpy as np\n'), ((4168, 4209), 'numpy.mean', 'np.mean', (['dataset_train.embeddings'], {'axis': '(0)'}), '(dataset_train.embeddings, axis=0)\n', (4175, 4209), True, 'import numpy as np\n'), ((4211, 4251), 'numpy.std', 'np.std', (['dataset_train.embeddings'], {'axis': '(0)'}), '(dataset_train.embeddings, axis=0)\n', (4217, 4251), True, 'import numpy as np\n'), ((4594, 4635), 'numpy.mean', 'np.mean', (['dataset_train.embeddings'], {'axis': '(0)'}), '(dataset_train.embeddings, axis=0)\n', (4601, 4635), True, 'import numpy as np\n'), ((4637, 4677), 'numpy.std', 'np.std', (['dataset_valid.embeddings'], {'axis': '(0)'}), '(dataset_valid.embeddings, axis=0)\n', (4643, 4677), True, 'import numpy as np\n'), ((6547, 6566), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (6554, 6566), True, 'import numpy as np\n'), ((2288, 2309), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2307, 2309), False, 'from torchvision import datasets, models, transforms\n'), ((2323, 2389), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (2343, 2389), False, 'from torchvision import datasets, models, transforms\n'), ((2542, 2563), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2561, 2563), False, 'from torchvision import datasets, models, transforms\n'), ((2577, 2643), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (2597, 2643), False, 'from torchvision import datasets, models, transforms\n'), ((7476, 7497), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7495, 7497), False, 'from torchvision import datasets, models, transforms\n'), ((7539, 7605), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (7559, 7605), False, 'from torchvision import datasets, models, transforms\n'), ((5557, 5576), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (5564, 5576), True, 'import numpy as np\n'), ((6328, 6347), 'numpy.mean', 'np.mean', (['epoch_loss'], {}), '(epoch_loss)\n', (6335, 6347), True, 'import numpy as np\n')]
import functools import numpy as np def dft2(f, alpha, npix=None, shift=(0, 0), offset=(0, 0), unitary=True, out=None): """Compute the 2-dimensional discrete Fourier Transform. This function allows independent control over input shape, output shape, and output sampling by implementing the matrix triple product algorithm described in [1]. Parameters ---------- f : array_like 2D array to Fourier Transform alpha : float or array_like Output plane sampling interval (frequency). If :attr:`alpha` is an array, ``alpha[1]`` represents row-wise sampling and ``alpha[2]`` represents column-wise sampling. If :attr:`alpha` is a scalar, ``alpha[1] = alpha[2] = alpha`` gives uniform sampling across the rows and columns of the output plane. npix : int or array_like, optional Size of the output array :attr:`F`. If :attr:`npix` is an array, ``F.shape = (npix[1], npix[2])``. If :attr:`npi`` is a scalar, ``F.shape = (npix, npix)``. Default is ``f.shape``. shift : array_like, optional Number of pixels in (r,c) to shift the DC pixel in the output plane with the origin centrally located in the plane. Default is ``(0,0)``. offset : array_like, optional Number of pixels in (r,c) that the input plane is shifted relative to the origin. Default is ``(0,0)``. unitary : bool, optional Normalization flag. If ``True``, a normalization is performed on the output such that the DFT operation is unitary and energy is conserved through the Fourier transform operation (Parseval's theorem). In this way, the energy in in a limited-area DFT is a fraction of the total energy corresponding to the limited area. Default is ``True``. out : ndarray or None A location into which the result is stored. If provided, it must have shape = npix and dtype = np.complex. If not provided or None, a freshly-allocated array is returned. Returns ------- F : complex ndarray Notes ----- * Setting ``alpha = 1/f.shape`` and ``npix = f.shape`` is equivalent to :: F = np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(f))) * ``dft2()`` is designed to place the DC pixel in the same location as a well formed call to any standard FFT for both even and odd sized input arrays. The DC pixel is located at ``np.floor(npix/2) + 1``, which is consistent with calls to Numpy's FFT method where the input and output are correctly shifted: ``np.fft.ifftshift(np.fft.fft2(np.fft.fftshift(f)))``. * If the y-axis shift behavior is not what you are expecting, you most likely have your plotting axes flipped (matplotlib's default behavior is to place [0,0] in the upper left corner of the axes). This may be resolved by either flipping the sign of the y component of ``shift`` or by passing ``origin = 'lower'`` to ``imshow()``. References ---------- [1] Soummer, et. al. Fast computation of Lyot-style coronagraph propagation (2007) """ alpha_row, alpha_col = _sanitize_alpha(alpha) f = np.asarray(f) m, n = f.shape if npix is None: npix = [m, n] M, N = _sanitize_npix(npix) shift_row, shift_col = _sanitize_shift(shift) offset_row, offset_col = _sanitize_npix(offset) if out is not None: if not np.can_cast(complex, out.dtype): raise TypeError(f"Cannot cast complex output to dtype('{out.dtype}')") E1, E2 = _dft2_matrices(m, n, M, N, alpha_row, alpha_col, shift_row, shift_col, offset_row, offset_col) F = np.dot(E1.dot(f), E2, out=out) # now calculate the answer, without reallocating memory if unitary: np.multiply(F, np.sqrt(np.abs(alpha_row * alpha_col)), out=F) return F @functools.lru_cache(maxsize=32) def _dft2_matrices(m, n, M, N, alphar, alphac, shiftr, shiftc, offsetr, offsetc): R, S, U, V = _dft2_coords(m, n, M, N) E1 = np.exp(-2.0 * 1j * np.pi * alphar * np.outer(R-shiftr+offsetr, U-shiftr)).T E2 = np.exp(-2.0 * 1j * np.pi * alphac * np.outer(S-shiftc+offsetc, V-shiftc)) return E1, E2 @functools.lru_cache(maxsize=32) def _dft2_coords(m, n, M, N): # R and S are (r,c) coordinates in the (m x n) input plane f # V and U are (r,c) coordinates in the (M x N) output plane F R = np.arange(m) - np.floor(m/2.0) S = np.arange(n) - np.floor(n/2.0) U = np.arange(M) - np.floor(M/2.0) V = np.arange(N) - np.floor(N/2.0) return R, S, U, V def idft2(F, alpha, npix=None, shift=(0,0), unitary=True, out=None): """Compute the 2-dimensional inverse discrete Fourier Transform. This function allows independent control over input shape, output shape, and output sampling by implementing the matrix triple product algorithm described in [1]. Parameters ---------- F : array_like 2D array to Fourier Transform alpha : float or array_like Input plane sampling interval (frequency). If :attr:`alpha` is an array, ``alpha[1]`` represents row-wise sampling and ``alpha[2]`` represents column-wise sampling. If :attr:`alpha` is a scalar, ``alpha[1] = alpha[2] = alpha`` represents uniform sampling across the rows and columns of the input plane. npix : int or array_like, optional Size of the output array :attr:`F`. If :attr:`npix` is an array, ``F.shape = (npix[1], npix[2])``. If :attr:`npix` is a scalar, ``F.shape = (npix, npix)``. Default is ``F.shape`` shift : array_like, optional Number of pixels in (x,y) to shift the DC pixel in the output plane with the origin centrally located in the plane. Default is `[0,0]`. unitary : bool, optional Normalization flag. If ``True``, a normalization is performed on the output such that the DFT operation is unitary and energy is conserved through the Fourier transform operation (Parseval's theorem). In this way, the energy in in a limited-area DFT is a fraction of the total energy corresponding to the limited area. Default is ``True``. Returns ------- f : complex ndarray Notes ----- * Setting ``alpha = 1/F.shape`` and ``npix = F.shape`` is equivalent to :: F = np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(F))) * ``idft2()`` is designed to place the DC pixel in the same location as a well formed call to any standard FFT for both even and odd sized input arrays. The DC pixel is located at ``np.floor(npix/2) + 1``, which is consistent with calls to Numpy's IFFT method where the input and output are correctly shifted: ``np.fft.ifftshift(np.fft.ifft2(np.fft.fftshift(f)))``. * If the y-axis shift behavior is not what you are expecting, you most likely have your plotting axes flipped (matplotlib's default behavior is to place [0,0] in the upper left corner of the axes). This may be resolved by either flipping the sign of the y component of ``shift`` or by passing ``origin = 'lower'`` to ``imshow()``. References ---------- [1] Soummer, et. al. Fast computation of Lyot-style coronagraph propagation (2007) [2] `Expressing the inverse DFT in terms of the DFT <https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Expressing_the_inverse_DFT_in_terms_of_the_DFT>`_. """ F = np.asarray(F) N = F.size # will allocate memory for F if out == None F = dft2(np.conj(F), alpha, npix, shift, unitary=unitary, out=out) np.conj(F, out=F) return np.divide(F, N, out=F) def _sanitize_alpha(x): """Return consistent representation of alpha as ar, ac""" x = np.asarray(x) if x.size == 1: ar, ac = float(x), float(x) else: ar, ac = float(x[0]), float(x[1]) return ar, ac def _sanitize_npix(x): """Return consistent representation of npix as M, N""" x = np.asarray(x) if x.size == 1: M, N = int(x), int(x) else: M, N = int(x[0]), int(x[1]) return M, N def _sanitize_shift(x): """Return consistent representation of shift as sr, sc""" if isinstance(x, np.ndarray): sr, sc = float(x[0]), float(x[1]) else: sr, sc = x return sr, sc
[ "numpy.abs", "numpy.arange", "numpy.conj", "numpy.asarray", "numpy.floor", "numpy.can_cast", "numpy.outer", "functools.lru_cache", "numpy.divide" ]
[((3906, 3937), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': '(32)'}), '(maxsize=32)\n', (3925, 3937), False, 'import functools\n'), ((4251, 4282), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': '(32)'}), '(maxsize=32)\n', (4270, 4282), False, 'import functools\n'), ((3198, 3211), 'numpy.asarray', 'np.asarray', (['f'], {}), '(f)\n', (3208, 3211), True, 'import numpy as np\n'), ((7523, 7536), 'numpy.asarray', 'np.asarray', (['F'], {}), '(F)\n', (7533, 7536), True, 'import numpy as np\n'), ((7675, 7692), 'numpy.conj', 'np.conj', (['F'], {'out': 'F'}), '(F, out=F)\n', (7682, 7692), True, 'import numpy as np\n'), ((7704, 7726), 'numpy.divide', 'np.divide', (['F', 'N'], {'out': 'F'}), '(F, N, out=F)\n', (7713, 7726), True, 'import numpy as np\n'), ((7823, 7836), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (7833, 7836), True, 'import numpy as np\n'), ((8055, 8068), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (8065, 8068), True, 'import numpy as np\n'), ((4453, 4465), 'numpy.arange', 'np.arange', (['m'], {}), '(m)\n', (4462, 4465), True, 'import numpy as np\n'), ((4468, 4485), 'numpy.floor', 'np.floor', (['(m / 2.0)'], {}), '(m / 2.0)\n', (4476, 4485), True, 'import numpy as np\n'), ((4492, 4504), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (4501, 4504), True, 'import numpy as np\n'), ((4507, 4524), 'numpy.floor', 'np.floor', (['(n / 2.0)'], {}), '(n / 2.0)\n', (4515, 4524), True, 'import numpy as np\n'), ((4531, 4543), 'numpy.arange', 'np.arange', (['M'], {}), '(M)\n', (4540, 4543), True, 'import numpy as np\n'), ((4546, 4563), 'numpy.floor', 'np.floor', (['(M / 2.0)'], {}), '(M / 2.0)\n', (4554, 4563), True, 'import numpy as np\n'), ((4570, 4582), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (4579, 4582), True, 'import numpy as np\n'), ((4585, 4602), 'numpy.floor', 'np.floor', (['(N / 2.0)'], {}), '(N / 2.0)\n', (4593, 4602), True, 'import numpy as np\n'), ((7613, 7623), 'numpy.conj', 'np.conj', (['F'], {}), '(F)\n', (7620, 7623), True, 'import numpy as np\n'), ((3450, 3481), 'numpy.can_cast', 'np.can_cast', (['complex', 'out.dtype'], {}), '(complex, out.dtype)\n', (3461, 3481), True, 'import numpy as np\n'), ((4192, 4234), 'numpy.outer', 'np.outer', (['(S - shiftc + offsetc)', '(V - shiftc)'], {}), '(S - shiftc + offsetc, V - shiftc)\n', (4200, 4234), True, 'import numpy as np\n'), ((3850, 3879), 'numpy.abs', 'np.abs', (['(alpha_row * alpha_col)'], {}), '(alpha_row * alpha_col)\n', (3856, 3879), True, 'import numpy as np\n'), ((4107, 4149), 'numpy.outer', 'np.outer', (['(R - shiftr + offsetr)', '(U - shiftr)'], {}), '(R - shiftr + offsetr, U - shiftr)\n', (4115, 4149), True, 'import numpy as np\n')]
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import math import random import numpy as np import matplotlib.pyplot as plt from scipy.constants import N_A from numba import jit import copy __author__ = "<NAME>, <NAME>, <NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020, The Materials Project" __version__ = "0.1" """ Kinetic Monte Carlo (kMC) simulation for a reaction network, assuming spatial homogeneity. Simulation can be performed with and without ReactionNetwork objects. The version without ReactionNetwork objects is computationally cheaper. The algorithm is described by Gillespie (1976). """ def initialize_simulation(reaction_network, initial_cond, volume=10 ** -24): """ Initial loop through reactions to create lists, mappings, and initial states needed for simulation without reaction network objects. Args: reaction_network: Fully generated ReactionNetwork initial_cond: dict mapping mol_index to initial concentration [M]. mol_index is entry position in reaction_network.entries_list volume: float of system volume :return: initial_state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list initial_state_dict: dict mapping molecule index to initial molecule amounts species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in molid_index_mapping: mapping between species entry id and its molecule index reactants_array: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products_array: (n_rxns x 2) array, each row containing product mol_index of forward reaction coord_array: (2*n_rxns x 1) array, with coordination number of each for and rev rxn: [c1_f, c1_r, c2_f, c2_r...] rate_constants: (2*n_rxns x 1) array, with rate constant of each for and rev rxn: [k1_f, k1_r, k2_f, k2_r ...] propensities: (2*n_rxns x 1) array of reaction propensities, defined as coord_num*rate_constant """ num_rxns = len(reaction_network.reactions) num_species = len(reaction_network.entries_list) molid_index_mapping = dict() initial_state = [0 for i in range(num_species)] initial_state_dict = dict() for ind, mol in enumerate(reaction_network.entries_list): molid_index_mapping[mol.entry_id] = ind this_c = initial_cond.get(mol.entry_id, 0) this_mol_amt = int(volume * N_A * 1000 * this_c) initial_state[ind] = this_mol_amt if mol.entry_id in initial_cond: initial_state_dict[ind] = this_mol_amt # Initially compile each species' reactions in lists, later convert to a 2d array species_rxn_mapping_list = [[] for j in range(num_species)] reactant_array = -1 * np.ones((num_rxns, 2), dtype=int) product_array = -1 * np.ones((num_rxns, 2), dtype=int) coord_array = np.zeros(2 * num_rxns) rate_constants = np.zeros(2 * num_rxns) for id, reaction in enumerate(reaction_network.reactions): # Keep track of reactant amounts, for later calculating coordination number num_reactants_for = list() num_reactants_rev = list() rate_constants[2 * id] = reaction.k_A rate_constants[2 * id + 1] = reaction.k_B for idx, react in enumerate(reaction.reactants): # for each reactant, need to find the corresponding mol_id with the index mol_ind = molid_index_mapping[react.entry_id] reactant_array[id, idx] = mol_ind species_rxn_mapping_list[mol_ind].append(2 * id) num_reactants_for.append(initial_state[mol_ind]) for idx, prod in enumerate(reaction.products): mol_ind = molid_index_mapping[prod.entry_id] product_array[id, idx] = mol_ind species_rxn_mapping_list[mol_ind].append(2 * id + 1) num_reactants_rev.append(initial_state[mol_ind]) if len(reaction.reactants) == 1: coord_array[2 * id] = num_reactants_for[0] elif (len(reaction.reactants) == 2) and ( reaction.reactants[0] == reaction.reactants[1] ): coord_array[2 * id] = num_reactants_for[0] * (num_reactants_for[0] - 1) elif (len(reaction.reactants) == 2) and ( reaction.reactants[0] != reaction.reactants[1] ): coord_array[2 * id] = num_reactants_for[0] * num_reactants_for[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) # For reverse reaction if len(reaction.products) == 1: coord_array[2 * id + 1] = num_reactants_rev[0] elif (len(reaction.products) == 2) and ( reaction.products[0] == reaction.products[1] ): coord_array[2 * id + 1] = num_reactants_rev[0] * (num_reactants_rev[0] - 1) elif (len(reaction.products) == 2) and ( reaction.products[0] != reaction.products[1] ): coord_array[2 * id + 1] = num_reactants_rev[0] * num_reactants_rev[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) rxn_mapping_lengths = [len(rxn_list) for rxn_list in species_rxn_mapping_list] max_mapping_length = max(rxn_mapping_lengths) species_rxn_mapping = -1 * np.ones((num_species, max_mapping_length), dtype=int) for index, rxn_list in enumerate(species_rxn_mapping_list): this_map_length = rxn_mapping_lengths[index] if this_map_length == max_mapping_length: species_rxn_mapping[index, :] = rxn_list else: species_rxn_mapping[ index, : this_map_length - max_mapping_length ] = rxn_list propensities = np.multiply(coord_array, rate_constants) return [ np.array(initial_state, dtype=int), initial_state_dict, species_rxn_mapping, reactant_array, product_array, coord_array, rate_constants, propensities, molid_index_mapping, ] @jit(nopython=True, parallel=True) def kmc_simulate( time_steps, coord_array, rate_constants, propensity_array, species_rxn_mapping, reactants, products, state, ): """ KMC Simulation of reaction network and specified initial conditions. Args are all Numpy arrays, to allow computational speed up with Numba. Args: time_steps: int number of time steps desired to run coord_array: array containing coordination numbers of for and rev rxns. rate_constants: array containing rate constants of for and rev rxns propensity_array: array containing propensities of for and rev rxns species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list :return: A (2 x time_steps) Numpy array. First row contains the indeces of reactions that occurred. Second row are the time steps generated at each iteration. """ total_propensity = np.sum(propensity_array) reaction_history = [0 for step in range(time_steps)] times = [0.0 for step in range(time_steps)] relevant_ind = np.where(propensity_array > 0)[ 0 ] # Take advantage of sparsity - many propensities will be 0. for step_counter in range(time_steps): r1 = random.random() r2 = random.random() tau = -np.log(r1) / total_propensity random_propensity = r2 * total_propensity abrgd_reaction_choice_ind = np.where( np.cumsum(propensity_array[relevant_ind]) >= random_propensity )[0][0] reaction_choice_ind = relevant_ind[abrgd_reaction_choice_ind] converted_rxn_ind = math.floor(reaction_choice_ind / 2) if reaction_choice_ind % 2: reverse = True else: reverse = False state = update_state(reactants, products, state, converted_rxn_ind, reverse) # Log the reactions that need to be altered after reaction is performed, for the coordination array reactions_to_change = list() for reactant_id in reactants[converted_rxn_ind, :]: if reactant_id == -1: continue else: reactions_to_change.extend(list(species_rxn_mapping[reactant_id, :])) for product_id in products[converted_rxn_ind, :]: if product_id == -1: continue else: reactions_to_change.extend(list(species_rxn_mapping[product_id, :])) rxns_change = set(reactions_to_change) for rxn_ind in rxns_change: if rxn_ind == -1: continue elif rxn_ind % 2: this_reverse = True else: this_reverse = False this_h = get_coordination( reactants, products, state, math.floor(rxn_ind / 2), this_reverse ) coord_array[rxn_ind] = this_h propensity_array = np.multiply(rate_constants, coord_array) relevant_ind = np.where(propensity_array > 0)[0] total_propensity = np.sum(propensity_array[relevant_ind]) reaction_history[step_counter] = int(reaction_choice_ind) times[step_counter] = tau return np.vstack((np.array(reaction_history), np.array(times))) @jit(nopython=True) def update_state(reactants, products, state, rxn_ind, reverse): """ Updating the system state based on chosen reaction, during kMC simulation. Args: reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list rxn_ind: int of reaction index, corresponding to position in reaction_network.reactions list reverse: bool of whether this is the reverse reaction or not :return: updated state array, after performing the specified reaction """ if rxn_ind == -1: raise RuntimeError("Incorrect reaction index when updating state") if reverse: for reactant_id in products[rxn_ind, :]: if reactant_id == -1: continue else: state[reactant_id] -= 1 if state[reactant_id] < 0: raise ValueError("State invalid! Negative specie encountered") for product_id in reactants[rxn_ind, :]: if product_id == -1: continue else: state[product_id] += 1 else: for reactant_id in reactants[rxn_ind, :]: if reactant_id == -1: continue else: state[reactant_id] -= 1 if state[reactant_id] < 0: raise ValueError("State invalid! Negative specie encountered") for product_id in products[rxn_ind, :]: if product_id == -1: continue else: state[product_id] += 1 return state @jit(nopython=True) def get_coordination(reactants, products, state, rxn_id, reverse): """ Calculate the coordination number of a reaction, for reactions involving two reactions of less. They are defined as follows: A -> B; coord = n(A) A + A --> B; coord = n(A) * (n(A) - 1) A + B --> C; coord = n(A) * n(B) Args: reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction products: (n_rxns x 2) array, each row containing product mol_index of forward reaction state: array of initial molecule amounts, indexed corresponding to reaction_network.entries_list rxn_ind: int of reaction index, corresponding to position in reaction_network.reactions list reverse: bool of whether this is the reverse reaction or not :return: float of reaction coordination number """ if reverse: reactant_array = products[rxn_id, :] num_reactants = len(np.where(reactant_array != -1)[0]) else: reactant_array = reactants[rxn_id, :] num_reactants = len(np.where(reactant_array != -1)[0]) num_mols_list = list() for reactant_id in reactant_array: num_mols_list.append(state[reactant_id]) if num_reactants == 1: h_prop = num_mols_list[0] elif (num_reactants == 2) and (reactant_array[0] == reactant_array[1]): h_prop = num_mols_list[0] * (num_mols_list[0] - 1) / 2 elif (num_reactants == 2) and (reactant_array[0] != reactant_array[1]): h_prop = num_mols_list[0] * num_mols_list[1] else: raise RuntimeError( "Only single and bimolecular reactions supported by this simulation" ) return h_prop class KmcDataAnalyzer: """ Functions to analyze (function-based) KMC outputs from many simulation runs. Ideally, the reaction history and time history data are list of arrays. Args: reaction_network: fully generated ReactionNetwork, used for kMC simulation molid_ind_mapping: dict mapping each entry's id to its index; of form {entry_id: mol_index, ... } species_rxn_mapping: 2d array; each row i contains reactions which molecule_i takes part in initial_state_dict: dict mapping mol_id to its initial amount {mol1_id: amt_1, mol2_id: amt2 ... } products: (n_rxns x 2) array, each row containing product mol_index of forward reaction reactants: (n_rxns x 2) array, each row containing reactant mol_index of forward reaction reaction_history: list of arrays of reaction histories of each simulation. time_history: list of arrays of time histories of each simulation. """ def __init__( self, reaction_network, molid_ind_mapping, species_rxn_mapping, initial_state_dict, products, reactants, reaction_history, time_history, ): self.reaction_network = reaction_network self.molid_ind_mapping = molid_ind_mapping self.species_rxn_mapping = species_rxn_mapping self.initial_state_dict = initial_state_dict self.products = products self.reactants = reactants self.reaction_history = reaction_history self.time_history = time_history self.num_sims = len(self.reaction_history) if self.num_sims != len(self.time_history): raise RuntimeError( "Number of datasets for rxn history and time step history should be same!" ) self.molind_id_mapping = [ mol.entry_id for mol in self.reaction_network.entries_list ] def generate_time_dep_profiles(self): """ Generate plottable time-dependent profiles of species and rxns from raw KMC output, obtain final states. :return dict containing species profiles, reaction profiles, and final states from each simulation. {species_profiles: [ {mol_ind1: [(t0, n(t0)), (t1, n(t1)...], mol_ind2: [...] , ... }, {...}, ... ] reaction_profiles: [ {rxn_ind1: [t0, t1, ...], rxn_ind2: ..., ...}, {...}, ...] final_states: [ {mol_ind1: n1, mol_ind2: ..., ...}, {...}, ...] } """ species_profiles = list() reaction_profiles = list() final_states = list() for n_sim in range(self.num_sims): sim_time_history = self.time_history[n_sim] sim_rxn_history = self.reaction_history[n_sim] sim_species_profile = dict() sim_rxn_profile = dict() cumulative_time = list(np.cumsum(np.array(sim_time_history))) state = copy.deepcopy(self.initial_state_dict) for mol_ind in state: sim_species_profile[mol_ind] = [(0.0, self.initial_state_dict[mol_ind])] total_iterations = len(sim_rxn_history) for iter in range(total_iterations): rxn_ind = sim_rxn_history[iter] t = cumulative_time[iter] if rxn_ind not in sim_rxn_profile: sim_rxn_profile[rxn_ind] = [t] else: sim_rxn_profile[rxn_ind].append(t) converted_ind = math.floor(rxn_ind / 2) if rxn_ind % 2: reacts = self.products[converted_ind, :] prods = self.reactants[converted_ind, :] else: reacts = self.reactants[converted_ind, :] prods = self.products[converted_ind, :] for r_ind in reacts: if r_ind == -1: continue else: try: state[r_ind] -= 1 if state[r_ind] < 0: raise ValueError( "State invalid: negative specie: {}".format(r_ind) ) sim_species_profile[r_ind].append((t, state[r_ind])) except KeyError: raise ValueError( "Reactant specie {} given is not in state!".format( r_ind ) ) for p_ind in prods: if p_ind == -1: continue else: if (p_ind in state) and (p_ind in sim_species_profile): state[p_ind] += 1 sim_species_profile[p_ind].append((t, state[p_ind])) else: state[p_ind] = 1 sim_species_profile[p_ind] = [(0.0, 0), (t, state[p_ind])] # for plotting convenience, add data point at final time for mol_ind in sim_species_profile: sim_species_profile[mol_ind].append( (cumulative_time[-1], state[mol_ind]) ) species_profiles.append(sim_species_profile) reaction_profiles.append(sim_rxn_profile) final_states.append(state) return { "species_profiles": species_profiles, "reaction_profiles": reaction_profiles, "final_states": final_states, } def final_state_analysis(self, final_states): """ Gather statistical analysis of the final states of simulation. Args: final_states: list of dicts of final states, as generated in generate_time_dep_profiles() :return: list of tuples containing statistical data for each species, sorted from highest to low avg occurrence """ state_arrays = ( dict() ) # For each molecule, compile an array of its final amounts for iter, final_state in enumerate(final_states): for mol_ind, amt in final_state.items(): # Store the amount, and convert key from mol_ind to entry_id if self.molind_id_mapping[mol_ind] not in state_arrays: state_arrays[self.molind_id_mapping[mol_ind]] = np.zeros( self.num_sims ) state_arrays[self.molind_id_mapping[mol_ind]][iter] = amt analyzed_states = dict() # will contain statistical results of final states for mol_entry, state_array in state_arrays.items(): analyzed_states[mol_entry] = (np.mean(state_array), np.std(state_array)) # Sort from highest avg final amount to lowest sorted_analyzed_states = sorted( [(entry_id, data_tup) for entry_id, data_tup in analyzed_states.items()], key=lambda x: x[1][0], reverse=True, ) return sorted_analyzed_states def plot_species_profiles( self, species_profiles, final_states, num_label=12, num_plots=None, filename=None, file_dir=None, ): """ Sorting and plotting species profiles for a specified number of simulations. The profiles might be very similar, so may not need to plot all of the runs for good understanding of results. Args: species_profiles: list of dicts of species as function of time, for each simulation final_states: list of dicts of final states of each simulation num_label: integer number of species in the legend filename (str) file_dir (str) """ if num_plots is None: num_plots = self.num_sims elif num_plots > self.num_sims: num_plots = self.num_sims for n_sim in range(num_plots): # Sorting and plotting: fig, ax = plt.subplots() sorted_state = sorted( [(k, v) for k, v in final_states[n_sim].items()], key=lambda x: x[1], reverse=True, ) sorted_inds = [mol_tuple[0] for mol_tuple in sorted_state] sorted_ind_id_mapping = dict() iter_counter = 0 for id, ind in self.molid_ind_mapping.items(): if ind in sorted_inds[:num_label]: sorted_ind_id_mapping[ind] = id iter_counter += 1 if iter_counter == num_label: break colors = plt.cm.get_cmap("hsv", num_label) this_id = 0 t_end = sum(self.time_history[n_sim]) for mol_ind in species_profiles[n_sim]: # ts = np.append(np.array([e[0] for e in species_profiles[n_sim][mol_ind]]), t_end) ts = np.array([e[0] for e in species_profiles[n_sim][mol_ind]]) nums = np.array([e[1] for e in species_profiles[n_sim][mol_ind]]) if mol_ind in sorted_inds[:num_label]: mol_id = sorted_ind_id_mapping[mol_ind] for entry in self.reaction_network.entries_list: if mol_id == entry.entry_id: this_composition = ( entry.molecule.composition.alphabetical_formula ) this_charge = entry.molecule.charge this_label = this_composition + " " + str(this_charge) this_color = colors(this_id) this_id += 1 break ax.plot(ts, nums, label=this_label, color=this_color) else: ax.plot(ts, nums) title = "KMC simulation, total time {}".format(t_end) ax.set(title=title, xlabel="Time (s)", ylabel="# Molecules") ax.legend( loc="upper right", bbox_to_anchor=(1, 1), ncol=2, fontsize="small" ) sim_filename = filename + "_run_" + str(n_sim + 1) if file_dir is None: plt.show() else: plt.savefig(file_dir + "/" + sim_filename) def analyze_intermediates(self, species_profiles, cutoff=0.9): """ Identify intermediates from species vs time profiles. Species are intermediates if consumed nearly as much as they are created. Args: species_profile: Dict of list of tuples, as generated in generate_time_dep_profiles() cutoff: (float) fraction to adjust definition of intermediate :return: Analyzed data in a dict, of the form: {mol1: {'freqency': (float), 'lifetime': (avg, std), 't_max': (avg, std), 'amt_produced': (avg, std)}, mol2: {...}, ... } """ intermediates = dict() for n_sim in range(self.num_sims): for mol_ind, prof in species_profiles[n_sim].items(): history = np.array([t[1] for t in prof]) diff_history = np.diff(history) max_amt = max(history) amt_produced = np.sum(diff_history == 1) amt_consumed = np.sum(diff_history == -1) # Identify the intermediate, accounting for fluctuations if (amt_produced >= 3) and (amt_consumed > amt_produced * cutoff): if mol_ind not in intermediates: intermediates[mol_ind] = dict() intermediates[mol_ind]["lifetime"] = list() intermediates[mol_ind]["amt_produced"] = list() intermediates[mol_ind]["t_max"] = list() intermediates[mol_ind]["amt_consumed"] = list() # Intermediate lifetime is approximately the time from its max amount to when nearly all consumed max_ind = np.where(history == max_amt)[0][0] t_max = prof[max_ind][0] for state in prof[max_ind + 1 :]: if state[1] < (1 - cutoff) * amt_produced + history[0]: intermediates[mol_ind]["lifetime"].append(state[0] - t_max) intermediates[mol_ind]["t_max"].append(t_max) intermediates[mol_ind]["amt_produced"].append(amt_produced) intermediates[mol_ind]["amt_consumed"].append(amt_consumed) break intermediates_analysis = dict() for mol_ind in intermediates: entry_id = self.molind_id_mapping[mol_ind] intermediates_analysis[entry_id] = dict() # convert keys to entry id if len(intermediates[mol_ind]["lifetime"]) != len( intermediates[mol_ind]["t_max"] ): raise RuntimeError("Intermediates data should be of the same length") intermediates_analysis[entry_id]["frequency"] = ( len(intermediates[mol_ind]["lifetime"]) / self.num_sims ) lifetime_array = np.array(intermediates[mol_ind]["lifetime"]) intermediates_analysis[entry_id]["lifetime"] = ( np.mean(lifetime_array), np.std(lifetime_array), ) t_max_array = np.array(intermediates[mol_ind]["t_max"]) intermediates_analysis[entry_id]["t_max"] = ( np.mean(t_max_array), np.std(t_max_array), ) amt_produced_array = np.array(intermediates[mol_ind]["amt_produced"]) intermediates_analysis[entry_id]["amt_produced"] = ( np.mean(amt_produced_array), np.std(amt_produced_array), ) amt_consumed_array = np.array(intermediates[mol_ind]["amt_consumed"]) intermediates_analysis[entry_id]["amt_consumed"] = ( np.mean(amt_consumed_array), np.std(amt_produced_array), ) # Sort by highest average amount produced sorted_intermediates_analysis = sorted( [ (entry_id, mol_data) for entry_id, mol_data in intermediates_analysis.items() ], key=lambda x: x[1]["amt_produced"][0], reverse=True, ) return sorted_intermediates_analysis def correlate_reactions(self, reaction_inds): """ Correlate two reactions, by finding the average time and steps elapsed for rxn2 to fire after rxn1, and vice-versa. Args: reaction_inds: list, array, or tuple of two reaction indexes :return: dict containing analysis of how reactions are correlated {rxn1: {'time': (float), 'steps': (float), 'occurrences': float}, rxn2: {...} } """ correlation_data = dict() correlation_analysis = dict() for rxn_ind in reaction_inds: correlation_data[rxn_ind] = dict() correlation_data[rxn_ind]["time"] = list() correlation_data[rxn_ind]["steps"] = list() correlation_data[rxn_ind]["occurrences"] = list() correlation_analysis[rxn_ind] = dict() for n_sim in range(self.num_sims): cum_time = np.cumsum(self.time_history[n_sim]) rxn_locations = dict() # Find the step numbers when reactions fire in the simulation for rxn_ind in reaction_inds: rxn_locations[rxn_ind] = list( np.where(self.reaction_history[n_sim] == rxn_ind)[0] ) rxn_locations[rxn_ind].append(len(self.reaction_history[n_sim])) # Correlate between each reaction for (rxn_ind, location_list) in rxn_locations.items(): time_elapse = list() step_elapse = list() occurrences = 0 for (rxn_ind_j, location_list_j) in rxn_locations.items(): if rxn_ind == rxn_ind_j: continue for i in range(1, len(location_list)): for loc_j in location_list_j: # Find location where reaction j happens after reaction i, before reaction i fires again if (loc_j > location_list[i - 1]) and ( loc_j < location_list[i] ): time_elapse.append( cum_time[loc_j] - cum_time[location_list[i - 1]] ) step_elapse.append(loc_j - location_list[i - 1]) occurrences += 1 break if len(time_elapse) == 0: correlation_data[rxn_ind]["occurrences"].append(0) else: correlation_data[rxn_ind]["time"].append( np.mean(np.array(time_elapse)) ) correlation_data[rxn_ind]["steps"].append( np.mean(np.array(step_elapse)) ) correlation_data[rxn_ind]["occurrences"].append(occurrences) for rxn_ind, data_dict in correlation_data.items(): if len(data_dict["time"]) != 0: correlation_analysis[rxn_ind]["time"] = ( np.mean(np.array(data_dict["time"])), np.std(np.array(data_dict["time"])), ) correlation_analysis[rxn_ind]["steps"] = ( np.mean(np.array(data_dict["steps"])), np.std(np.array(data_dict["steps"])), ) correlation_analysis[rxn_ind]["occurrences"] = ( np.mean(np.array(data_dict["occurrences"])), np.std(np.array(data_dict["occurrences"])), ) else: print( "Reaction ", rxn_ind, "does not lead to the other reaction in simulation ", n_sim, ) return correlation_analysis def quantify_specific_reaction(self, reaction_history, reaction_index): """ Quantify a reaction from one simulation reaction history Args: reaction_history: array containing sequence of reactions fired during a simulation. reaction_index: integer of reaction index of interest :return: integer number of times reaction is fired """ if reaction_index not in reaction_history: reaction_count = 0 else: reaction_count = len(reaction_history[reaction_index]) return reaction_count def quantify_rank_reactions(self, reaction_type=None, num_rxns=None): """ Given reaction histories, identify the most commonly occurring reactions, on average. Can rank generally, or by reactions of a certain type. Args: reaction_profiles (list of dicts): reactions fired as a function of time reaction_type (string) num_rxns (int): the amount of reactions interested in collecting data on. If None, record for all. Returns: reaction_data: list of reactions and their avg, std of times fired. Sorted by the average times fired. [(rxn1, (avg, std)), (rxn2, (avg, std)) ... ] """ allowed_rxn_types = [ "One electron reduction", "One electron oxidation", "Intramolecular single bond breakage", "Intramolecular single bond formation", "Coordination bond breaking AM -> A+M", "Coordination bond forming A+M -> AM", "Molecular decomposition breaking one bond A -> B+C", "Molecular formation from one new bond A+B -> C", "Concerted", ] if reaction_type is not None: rxns_of_type = list() if reaction_type not in allowed_rxn_types: raise RuntimeError( "This reaction type does not (yet) exist in our reaction networks." ) for ind, rxn in enumerate(self.reaction_network.reactions): if rxn.reaction_type()["rxn_type_A"] == reaction_type: rxns_of_type.append(2 * ind) elif rxn.reaction_type()["rxn_type_B"] == reaction_type: rxns_of_type.append(2 * ind + 1) reaction_data = dict() # keeping record of each iteration # Loop to count all reactions fired for n_sim in range(self.num_sims): rxns_fired = set(self.reaction_history[n_sim]) if reaction_type is not None: relevant_rxns = [r for r in rxns_fired if r in rxns_of_type] else: relevant_rxns = rxns_fired for rxn_ind in relevant_rxns: if rxn_ind not in reaction_data: reaction_data[rxn_ind] = list() reaction_data[rxn_ind].append( np.sum(self.reaction_history[n_sim] == rxn_ind) ) reaction_analysis = dict() for rxn_ind, counts in reaction_data.items(): reaction_analysis[rxn_ind] = ( np.mean(np.array(counts)), np.std(np.array(counts)), ) # Sort reactions by the average amount fired sorted_reaction_analysis = sorted( [(i, c) for i, c in reaction_analysis.items()], key=lambda x: x[1][0], reverse=True, ) if num_rxns is None: return sorted_reaction_analysis else: return sorted_reaction_analysis[:num_rxns] def frequency_analysis(self, rxn_inds, spec_inds, partitions=100): """ Calculate the frequency of reaction and species formation as a function of time. Simulation data is discretized into time intervals, and probabilities in each set are obtained. Args: rxn_inds: list of indeces of reactions of interest spec_inds: list of molecule indexes of interest partitions: number of intervals in which to discretize time :return: dict of dicts containing the statistics of reaction fired, product formed at each time interval. {reaction_data: {rxn_ind1: [(t0, avg0, std0), (t1, avg1, std1), ...], rxn_ind2: [...], ... rxn_ind_n: [...]} {species_data: {spec1: [(t0, avg0, std0), (t1, avg1, std1), ...], spec2: [...], ... specn: [...]}} """ reaction_frequency_data = dict() reaction_frequency_array = ( dict() ) # Growing arrays of reaction frequencies as fxn of time species_frequency_data = dict() species_frequency_array = dict() new_species_counters = dict() for ind in rxn_inds: reaction_frequency_data[ind] = [0 for j in range(partitions)] for ind in spec_inds: species_frequency_data[ind] = [0 for j in range(partitions)] new_species_counters[ind] = 0 for n_sim in range(self.num_sims): delta_t = np.sum(self.time_history[n_sim]) / partitions ind_0 = 0 t = 0 n = 0 # for tracking which time interval we are in species_counters = copy.deepcopy( new_species_counters ) # for counting species as they appear rxn_freq_data = copy.deepcopy(reaction_frequency_data) spec_freq_data = copy.deepcopy(species_frequency_data) for step_num, tau in enumerate(self.time_history[n_sim]): t += tau this_rxn_ind = int(self.reaction_history[n_sim][step_num]) if this_rxn_ind % 2: # reverse reaction prods = self.reactants[math.floor(this_rxn_ind / 2), :] else: prods = self.products[math.floor(this_rxn_ind / 2), :] for spec_ind in spec_inds: if spec_ind in prods: species_counters[spec_ind] += 1 # When t reaches the next discretized time step, or end of the simulation if (t >= (n + 1) * delta_t) or ( step_num == len(self.reaction_history[n_sim]) - 1 ): n_to_fill = n if t >= (n + 2) * delta_t: n += math.floor(t / delta_t - n) else: n += 1 steps = step_num - ind_0 + 1 for spec_ind in spec_inds: spec_freq_data[spec_ind][n_to_fill] = ( species_counters[spec_ind] / steps ) for rxn_ind in rxn_inds: rxn_freq = ( np.count_nonzero( self.reaction_history[n_sim][ind_0 : step_num + 1] == rxn_ind ) / steps ) # t_mdpt = (self.time_history[n_sim][step_num] + self.time_history[n_sim][ind_0]) / 2 rxn_freq_data[rxn_ind][n_to_fill] = rxn_freq # Reset and update counters species_counters = copy.deepcopy(new_species_counters) ind_0 = step_num + 1 for rxn_ind in rxn_inds: if n_sim == 0: reaction_frequency_array[rxn_ind] = np.array(rxn_freq_data[rxn_ind]) else: reaction_frequency_array[rxn_ind] = np.vstack( (reaction_frequency_array[rxn_ind], rxn_freq_data[rxn_ind]) ) # print('reaction freq array', reaction_frequency_array) for spec_ind in spec_inds: if n_sim == 0: species_frequency_array[spec_ind] = np.array( spec_freq_data[spec_ind] ) else: species_frequency_array[spec_ind] = np.vstack( (species_frequency_array[spec_ind], spec_freq_data[spec_ind]) ) # Statistical analysis statistical_rxn_data = dict() statistical_spec_data = dict() avg_delta_t = ( np.mean(np.array([sum(self.time_history[i]) for i in range(self.num_sims)])) / partitions ) time_list = [i * avg_delta_t + avg_delta_t / 2 for i in range(partitions)] # print('time_list: ', time_list) for rxn_ind in rxn_inds: if self.num_sims == 1: avgs = reaction_frequency_array[rxn_ind] stds = np.zeros(partitions) else: avgs = np.mean(reaction_frequency_array[rxn_ind], 0) stds = np.std(reaction_frequency_array[rxn_ind], 0) statistical_rxn_data[rxn_ind] = [ (time_list[n], avgs[n], stds[n]) for n in range(partitions) ] for spec_ind in spec_inds: if self.num_sims == 1: spec_avgs = species_frequency_array[spec_ind] spec_stds = np.zeros(partitions) else: spec_avgs = np.mean(species_frequency_array[spec_ind], 0) spec_stds = np.std(species_frequency_array[spec_ind], 0) statistical_spec_data[spec_ind] = [ (time_list[n], spec_avgs[n], spec_stds[n]) for n in range(partitions) ] return { "reaction_data": statistical_rxn_data, "species_data": statistical_spec_data, } def find_rxn_index(self, reaction, reverse): """ Find the reaction index of a given reaction object Args: reaction: Reaction object reverse: bool to say whether reaction is reverse or forward :return: integer reaction index """ for ind, rxn in enumerate(self.reaction_network.reactions): if rxn == reaction: if reverse is True: rxn_ind = 2 * ind + 1 else: rxn_ind = 2 * ind break return rxn_ind
[ "math.floor", "numpy.log", "numpy.count_nonzero", "numpy.array", "copy.deepcopy", "numpy.mean", "numpy.multiply", "numpy.where", "numpy.diff", "numpy.vstack", "matplotlib.pyplot.savefig", "numpy.ones", "numba.jit", "numpy.std", "matplotlib.pyplot.cm.get_cmap", "matplotlib.pyplot.show", "numpy.sum", "numpy.zeros", "numpy.cumsum", "random.random", "matplotlib.pyplot.subplots" ]
[((6251, 6284), 'numba.jit', 'jit', ([], {'nopython': '(True)', 'parallel': '(True)'}), '(nopython=True, parallel=True)\n', (6254, 6284), False, 'from numba import jit\n'), ((9817, 9835), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (9820, 9835), False, 'from numba import jit\n'), ((11607, 11625), 'numba.jit', 'jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (11610, 11625), False, 'from numba import jit\n'), ((2996, 3018), 'numpy.zeros', 'np.zeros', (['(2 * num_rxns)'], {}), '(2 * num_rxns)\n', (3004, 3018), True, 'import numpy as np\n'), ((3040, 3062), 'numpy.zeros', 'np.zeros', (['(2 * num_rxns)'], {}), '(2 * num_rxns)\n', (3048, 3062), True, 'import numpy as np\n'), ((5944, 5984), 'numpy.multiply', 'np.multiply', (['coord_array', 'rate_constants'], {}), '(coord_array, rate_constants)\n', (5955, 5984), True, 'import numpy as np\n'), ((7514, 7538), 'numpy.sum', 'np.sum', (['propensity_array'], {}), '(propensity_array)\n', (7520, 7538), True, 'import numpy as np\n'), ((2885, 2918), 'numpy.ones', 'np.ones', (['(num_rxns, 2)'], {'dtype': 'int'}), '((num_rxns, 2), dtype=int)\n', (2892, 2918), True, 'import numpy as np\n'), ((2944, 2977), 'numpy.ones', 'np.ones', (['(num_rxns, 2)'], {'dtype': 'int'}), '((num_rxns, 2), dtype=int)\n', (2951, 2977), True, 'import numpy as np\n'), ((5516, 5569), 'numpy.ones', 'np.ones', (['(num_species, max_mapping_length)'], {'dtype': 'int'}), '((num_species, max_mapping_length), dtype=int)\n', (5523, 5569), True, 'import numpy as np\n'), ((6006, 6040), 'numpy.array', 'np.array', (['initial_state'], {'dtype': 'int'}), '(initial_state, dtype=int)\n', (6014, 6040), True, 'import numpy as np\n'), ((7663, 7693), 'numpy.where', 'np.where', (['(propensity_array > 0)'], {}), '(propensity_array > 0)\n', (7671, 7693), True, 'import numpy as np\n'), ((7828, 7843), 'random.random', 'random.random', ([], {}), '()\n', (7841, 7843), False, 'import random\n'), ((7857, 7872), 'random.random', 'random.random', ([], {}), '()\n', (7870, 7872), False, 'import random\n'), ((8203, 8238), 'math.floor', 'math.floor', (['(reaction_choice_ind / 2)'], {}), '(reaction_choice_ind / 2)\n', (8213, 8238), False, 'import math\n'), ((9481, 9521), 'numpy.multiply', 'np.multiply', (['rate_constants', 'coord_array'], {}), '(rate_constants, coord_array)\n', (9492, 9521), True, 'import numpy as np\n'), ((9606, 9644), 'numpy.sum', 'np.sum', (['propensity_array[relevant_ind]'], {}), '(propensity_array[relevant_ind])\n', (9612, 9644), True, 'import numpy as np\n'), ((9545, 9575), 'numpy.where', 'np.where', (['(propensity_array > 0)'], {}), '(propensity_array > 0)\n', (9553, 9575), True, 'import numpy as np\n'), ((9768, 9794), 'numpy.array', 'np.array', (['reaction_history'], {}), '(reaction_history)\n', (9776, 9794), True, 'import numpy as np\n'), ((9796, 9811), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (9804, 9811), True, 'import numpy as np\n'), ((16248, 16286), 'copy.deepcopy', 'copy.deepcopy', (['self.initial_state_dict'], {}), '(self.initial_state_dict)\n', (16261, 16286), False, 'import copy\n'), ((21452, 21466), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (21464, 21466), True, 'import matplotlib.pyplot as plt\n'), ((22085, 22118), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""hsv"""', 'num_label'], {}), "('hsv', num_label)\n", (22100, 22118), True, 'import matplotlib.pyplot as plt\n'), ((26683, 26727), 'numpy.array', 'np.array', (["intermediates[mol_ind]['lifetime']"], {}), "(intermediates[mol_ind]['lifetime'])\n", (26691, 26727), True, 'import numpy as np\n'), ((26910, 26951), 'numpy.array', 'np.array', (["intermediates[mol_ind]['t_max']"], {}), "(intermediates[mol_ind]['t_max'])\n", (26918, 26951), True, 'import numpy as np\n'), ((27132, 27180), 'numpy.array', 'np.array', (["intermediates[mol_ind]['amt_produced']"], {}), "(intermediates[mol_ind]['amt_produced'])\n", (27140, 27180), True, 'import numpy as np\n'), ((27382, 27430), 'numpy.array', 'np.array', (["intermediates[mol_ind]['amt_consumed']"], {}), "(intermediates[mol_ind]['amt_consumed'])\n", (27390, 27430), True, 'import numpy as np\n'), ((28884, 28919), 'numpy.cumsum', 'np.cumsum', (['self.time_history[n_sim]'], {}), '(self.time_history[n_sim])\n', (28893, 28919), True, 'import numpy as np\n'), ((37088, 37123), 'copy.deepcopy', 'copy.deepcopy', (['new_species_counters'], {}), '(new_species_counters)\n', (37101, 37123), False, 'import copy\n'), ((37221, 37259), 'copy.deepcopy', 'copy.deepcopy', (['reaction_frequency_data'], {}), '(reaction_frequency_data)\n', (37234, 37259), False, 'import copy\n'), ((37289, 37326), 'copy.deepcopy', 'copy.deepcopy', (['species_frequency_data'], {}), '(species_frequency_data)\n', (37302, 37326), False, 'import copy\n'), ((7888, 7898), 'numpy.log', 'np.log', (['r1'], {}), '(r1)\n', (7894, 7898), True, 'import numpy as np\n'), ((9359, 9382), 'math.floor', 'math.floor', (['(rxn_ind / 2)'], {}), '(rxn_ind / 2)\n', (9369, 9382), False, 'import math\n'), ((12570, 12600), 'numpy.where', 'np.where', (['(reactant_array != -1)'], {}), '(reactant_array != -1)\n', (12578, 12600), True, 'import numpy as np\n'), ((12689, 12719), 'numpy.where', 'np.where', (['(reactant_array != -1)'], {}), '(reactant_array != -1)\n', (12697, 12719), True, 'import numpy as np\n'), ((16813, 16836), 'math.floor', 'math.floor', (['(rxn_ind / 2)'], {}), '(rxn_ind / 2)\n', (16823, 16836), False, 'import math\n'), ((20149, 20169), 'numpy.mean', 'np.mean', (['state_array'], {}), '(state_array)\n', (20156, 20169), True, 'import numpy as np\n'), ((20171, 20190), 'numpy.std', 'np.std', (['state_array'], {}), '(state_array)\n', (20177, 20190), True, 'import numpy as np\n'), ((22366, 22424), 'numpy.array', 'np.array', (['[e[0] for e in species_profiles[n_sim][mol_ind]]'], {}), '([e[0] for e in species_profiles[n_sim][mol_ind]])\n', (22374, 22424), True, 'import numpy as np\n'), ((22448, 22506), 'numpy.array', 'np.array', (['[e[1] for e in species_profiles[n_sim][mol_ind]]'], {}), '([e[1] for e in species_profiles[n_sim][mol_ind]])\n', (22456, 22506), True, 'import numpy as np\n'), ((23690, 23700), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (23698, 23700), True, 'import matplotlib.pyplot as plt\n'), ((23735, 23777), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(file_dir + '/' + sim_filename)"], {}), "(file_dir + '/' + sim_filename)\n", (23746, 23777), True, 'import matplotlib.pyplot as plt\n'), ((24569, 24599), 'numpy.array', 'np.array', (['[t[1] for t in prof]'], {}), '([t[1] for t in prof])\n', (24577, 24599), True, 'import numpy as np\n'), ((24631, 24647), 'numpy.diff', 'np.diff', (['history'], {}), '(history)\n', (24638, 24647), True, 'import numpy as np\n'), ((24718, 24743), 'numpy.sum', 'np.sum', (['(diff_history == 1)'], {}), '(diff_history == 1)\n', (24724, 24743), True, 'import numpy as np\n'), ((24775, 24801), 'numpy.sum', 'np.sum', (['(diff_history == -1)'], {}), '(diff_history == -1)\n', (24781, 24801), True, 'import numpy as np\n'), ((26805, 26828), 'numpy.mean', 'np.mean', (['lifetime_array'], {}), '(lifetime_array)\n', (26812, 26828), True, 'import numpy as np\n'), ((26846, 26868), 'numpy.std', 'np.std', (['lifetime_array'], {}), '(lifetime_array)\n', (26852, 26868), True, 'import numpy as np\n'), ((27026, 27046), 'numpy.mean', 'np.mean', (['t_max_array'], {}), '(t_max_array)\n', (27033, 27046), True, 'import numpy as np\n'), ((27064, 27083), 'numpy.std', 'np.std', (['t_max_array'], {}), '(t_max_array)\n', (27070, 27083), True, 'import numpy as np\n'), ((27262, 27289), 'numpy.mean', 'np.mean', (['amt_produced_array'], {}), '(amt_produced_array)\n', (27269, 27289), True, 'import numpy as np\n'), ((27307, 27333), 'numpy.std', 'np.std', (['amt_produced_array'], {}), '(amt_produced_array)\n', (27313, 27333), True, 'import numpy as np\n'), ((27512, 27539), 'numpy.mean', 'np.mean', (['amt_consumed_array'], {}), '(amt_consumed_array)\n', (27519, 27539), True, 'import numpy as np\n'), ((27557, 27583), 'numpy.std', 'np.std', (['amt_produced_array'], {}), '(amt_produced_array)\n', (27563, 27583), True, 'import numpy as np\n'), ((36907, 36939), 'numpy.sum', 'np.sum', (['self.time_history[n_sim]'], {}), '(self.time_history[n_sim])\n', (36913, 36939), True, 'import numpy as np\n'), ((40589, 40609), 'numpy.zeros', 'np.zeros', (['partitions'], {}), '(partitions)\n', (40597, 40609), True, 'import numpy as np\n'), ((40651, 40696), 'numpy.mean', 'np.mean', (['reaction_frequency_array[rxn_ind]', '(0)'], {}), '(reaction_frequency_array[rxn_ind], 0)\n', (40658, 40696), True, 'import numpy as np\n'), ((40720, 40764), 'numpy.std', 'np.std', (['reaction_frequency_array[rxn_ind]', '(0)'], {}), '(reaction_frequency_array[rxn_ind], 0)\n', (40726, 40764), True, 'import numpy as np\n'), ((41062, 41082), 'numpy.zeros', 'np.zeros', (['partitions'], {}), '(partitions)\n', (41070, 41082), True, 'import numpy as np\n'), ((41129, 41174), 'numpy.mean', 'np.mean', (['species_frequency_array[spec_ind]', '(0)'], {}), '(species_frequency_array[spec_ind], 0)\n', (41136, 41174), True, 'import numpy as np\n'), ((41203, 41247), 'numpy.std', 'np.std', (['species_frequency_array[spec_ind]', '(0)'], {}), '(species_frequency_array[spec_ind], 0)\n', (41209, 41247), True, 'import numpy as np\n'), ((16199, 16225), 'numpy.array', 'np.array', (['sim_time_history'], {}), '(sim_time_history)\n', (16207, 16225), True, 'import numpy as np\n'), ((19818, 19841), 'numpy.zeros', 'np.zeros', (['self.num_sims'], {}), '(self.num_sims)\n', (19826, 19841), True, 'import numpy as np\n'), ((34802, 34849), 'numpy.sum', 'np.sum', (['(self.reaction_history[n_sim] == rxn_ind)'], {}), '(self.reaction_history[n_sim] == rxn_ind)\n', (34808, 34849), True, 'import numpy as np\n'), ((35025, 35041), 'numpy.array', 'np.array', (['counts'], {}), '(counts)\n', (35033, 35041), True, 'import numpy as np\n'), ((35067, 35083), 'numpy.array', 'np.array', (['counts'], {}), '(counts)\n', (35075, 35083), True, 'import numpy as np\n'), ((39156, 39191), 'copy.deepcopy', 'copy.deepcopy', (['new_species_counters'], {}), '(new_species_counters)\n', (39169, 39191), False, 'import copy\n'), ((39358, 39390), 'numpy.array', 'np.array', (['rxn_freq_data[rxn_ind]'], {}), '(rxn_freq_data[rxn_ind])\n', (39366, 39390), True, 'import numpy as np\n'), ((39469, 39539), 'numpy.vstack', 'np.vstack', (['(reaction_frequency_array[rxn_ind], rxn_freq_data[rxn_ind])'], {}), '((reaction_frequency_array[rxn_ind], rxn_freq_data[rxn_ind]))\n', (39478, 39539), True, 'import numpy as np\n'), ((39782, 39816), 'numpy.array', 'np.array', (['spec_freq_data[spec_ind]'], {}), '(spec_freq_data[spec_ind])\n', (39790, 39816), True, 'import numpy as np\n'), ((39941, 40013), 'numpy.vstack', 'np.vstack', (['(species_frequency_array[spec_ind], spec_freq_data[spec_ind])'], {}), '((species_frequency_array[spec_ind], spec_freq_data[spec_ind]))\n', (39950, 40013), True, 'import numpy as np\n'), ((8026, 8067), 'numpy.cumsum', 'np.cumsum', (['propensity_array[relevant_ind]'], {}), '(propensity_array[relevant_ind])\n', (8035, 8067), True, 'import numpy as np\n'), ((29138, 29187), 'numpy.where', 'np.where', (['(self.reaction_history[n_sim] == rxn_ind)'], {}), '(self.reaction_history[n_sim] == rxn_ind)\n', (29146, 29187), True, 'import numpy as np\n'), ((31075, 31102), 'numpy.array', 'np.array', (["data_dict['time']"], {}), "(data_dict['time'])\n", (31083, 31102), True, 'import numpy as np\n'), ((31132, 31159), 'numpy.array', 'np.array', (["data_dict['time']"], {}), "(data_dict['time'])\n", (31140, 31159), True, 'import numpy as np\n'), ((31267, 31295), 'numpy.array', 'np.array', (["data_dict['steps']"], {}), "(data_dict['steps'])\n", (31275, 31295), True, 'import numpy as np\n'), ((31325, 31353), 'numpy.array', 'np.array', (["data_dict['steps']"], {}), "(data_dict['steps'])\n", (31333, 31353), True, 'import numpy as np\n'), ((31467, 31501), 'numpy.array', 'np.array', (["data_dict['occurrences']"], {}), "(data_dict['occurrences'])\n", (31475, 31501), True, 'import numpy as np\n'), ((31531, 31565), 'numpy.array', 'np.array', (["data_dict['occurrences']"], {}), "(data_dict['occurrences'])\n", (31539, 31565), True, 'import numpy as np\n'), ((38208, 38235), 'math.floor', 'math.floor', (['(t / delta_t - n)'], {}), '(t / delta_t - n)\n', (38218, 38235), False, 'import math\n'), ((25492, 25520), 'numpy.where', 'np.where', (['(history == max_amt)'], {}), '(history == max_amt)\n', (25500, 25520), True, 'import numpy as np\n'), ((30618, 30639), 'numpy.array', 'np.array', (['time_elapse'], {}), '(time_elapse)\n', (30626, 30639), True, 'import numpy as np\n'), ((30758, 30779), 'numpy.array', 'np.array', (['step_elapse'], {}), '(step_elapse)\n', (30766, 30779), True, 'import numpy as np\n'), ((37597, 37625), 'math.floor', 'math.floor', (['(this_rxn_ind / 2)'], {}), '(this_rxn_ind / 2)\n', (37607, 37625), False, 'import math\n'), ((37694, 37722), 'math.floor', 'math.floor', (['(this_rxn_ind / 2)'], {}), '(this_rxn_ind / 2)\n', (37704, 37722), False, 'import math\n'), ((38653, 38730), 'numpy.count_nonzero', 'np.count_nonzero', (['(self.reaction_history[n_sim][ind_0:step_num + 1] == rxn_ind)'], {}), '(self.reaction_history[n_sim][ind_0:step_num + 1] == rxn_ind)\n', (38669, 38730), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Apr 23 17:18:39 2021 @author: Koustav """ import os import glob import matplotlib.pyplot as plt import seaborn as sea import numpy as np import pandas as pan import math import collections import matplotlib.ticker as mtick from mpl_toolkits import mplot3d from matplotlib.collections import LineCollection from scipy.optimize import curve_fit import powerlaw def pow_law(x, a, expo): return a*(np.power(x, expo)) def trunc_pow_law(x, a, expo, trunc_expo): #Truncated Power Law return a*(np.power(x, expo))*np.exp(trunc_expo*x) def main_ind(): fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. gaol={} #Stores truncated power law fit data. gaol[0.60] =[]; gaol[0.70] =[]; gaol[0.75] =[]; gaol[0.80] =[]; gaol[0.90] =[]; gaol[0.95] =[]; L=0 for i in range(6,7): base_path = r"22Apret\Apres 256+512\256" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | Hai ''' p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) '''if(p == 0.728): print("Skipped") continue''' data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / (a) for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. #Sorting array in increasing order of del(s). #DP_freqs = DP_freqs[DP_freqs[:,0].argsort()] #Next, to convert PDF into 1 - CDF (P(S >= (DEL(S)))) print("Sorted del(s) PDF:") print(DP_freqs) '''DP_freqs[-2,1] += DP_freqs[-1,1]; #DP_freqs[-1,1] = 0 k= len(DP_freqs[:,1]) #Finding total number of del(s) elements print("Total distinct del(s) samples:\t" +str(k)) for j in range(k-3, -1, -1): #Iterate over the PDF function in reverse. DP_freqs[j,1] += DP_freqs[j+1,1] print("Sorted del(s) 1-CDF:") print(DP_freqs)''' os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Individual")==False): os.mkdir("Individual") os.chdir("Individual") '''if(os.path.isdir("1-CDF")==False): os.mkdir("1-CDF") os.chdir("1-CDF")''' if(os.path.isdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1]))==False): os.mkdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) os.chdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) print("p:\t" +str(p) + " L:\t"+ str(L) + " CC:\t" +str(CC)) #hurtlocker= pan.DataFrame(DP_freqs, columns= [r"$|\Delta s|$", r"$P (S \geq \Delta s)$"]) hurtlocker= pan.DataFrame(DP_freqs, columns= [r"$|\Delta s|$", r"$P (S = \Delta s)$"]) fig = plt.figure(figsize=(6.4,4.8)) f = sea.scatterplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S = \Delta s)$") f.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) #Overlaying two seaborn plots. #ax = fig.add_subplot(111) #sea.scatterplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S \geq \Delta s)$", alpha=0.5, s=2, ax= ax) #sea.lineplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S \geq \Delta s)$", alpha=0.2, ax= ax) #, s=1) #ax.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) plt.yscale('log'); plt.xscale('log') plt.xlim(1, 10**5) plt.ylim(10**(-6.4), 10**(0.1)) plt.savefig("0P(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() '''x1 = np.transpose(DP_freqs[:,0]) x2 = np.transpose(DP_freqs[:,1]) popt, pcov = curve_fit(trunc_pow_law, x1, x2, p0= np.asarray([1, -0.75, -0.0005]), maxfev=5000 ) perr = np.sqrt(np.diag(pcov)) print("SD of exponent:\t" +str(perr[1]) + " for p:\t" +str(p)) tukan= (popt[0], popt[1], perr[1], popt[2], perr[2]) plt.plot(x1, trunc_pow_law(x1, *popt), 'm--', label=r'Fit: $ P (S \geq \Delta s) = %3.2f \times \Delta s^{(%4.3f \mp %4.3f)}\times e^{(%4.3f \mp %4.3f)\times \Delta s}$ ' % tukan ) plt.ylim(10**(-6.4), 10**(0.1)); plt.xlim(1, 10**5) plt.legend() plt.savefig("Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() #Saving best fit data. gaol[float(round(CC,2))].append([L, p, -popt[1], perr[1], -popt[2], perr[2]])''' os.chdir(r"..\..\..\..\..\analysis\Mass Action\DP") #break; #Saving as CSVs. '''if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("%d" %(L))==False): os.mkdir("%d" %(L)) os.chdir("%d" %(L)) K= [0.6, 0.7, 0.75, 0.8, 0.9, 0.95] heado = 'L, p, alpha, SD(alpha), lambda, SD(lambda)' for k in K: np.savetxt("BestFitCDF_CC_%3.2F.csv" %(k), gaol[k], delimiter=',', header=heado, comments='#') os.chdir(r"../../")''' def main_ccdf_fit(): fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. gaol={} #Stores truncated power law fit data. gaol[0.60] =[]; gaol[0.70] =[]; gaol[0.75] =[]; gaol[0.80] =[]; gaol[0.90] =[]; gaol[0.95] =[]; L=0; crosc= 0.7 for i in range(0,10): base_path = r"22Apret\Apres 256+512\512" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( p == 0.678): print(str(CC) + " " + str(p) + " shall be skipped.") continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) fit = powerlaw.Fit(data_temp[:,5],discrete=True,estimate_discrete = False) #If you already know xmin pass it as an argument (xmin=value) for speed print("p:\t" +str(p) + " L:\t"+ str(L) + " CC:\t" +str(CC)) print('x_min: ',fit.xmin) print('alpha: ',fit.truncated_power_law.parameter1) print('1/lambda: ',1/fit.truncated_power_law.parameter2) tukan = (-fit.truncated_power_law.parameter1, -fit.truncated_power_law.parameter2) fig = fit.plot_ccdf(color ='cornflowerblue', ls='-', linewidth=1.1, alpha=0.2) fit.plot_ccdf(color='darkcyan',marker='o', linestyle='', ms=1.2, alpha=0.35, ax=fig) #ax = fig.add_subplot(111) fit.truncated_power_law.plot_ccdf(color='darkslateblue', linestyle='--', label=r'Fit: $ P (S \geq \Delta s) \propto \Delta s^{(%4.3f)}\times e^{(%6.5f)\times \Delta s}$ ' % tukan, ax=fig) fig.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) #x = fit.xmins #y = fit.Ds #plt.ylim(10**(-6.4), 10**(0.1)); plt.xlim(1, 10**5.3) plt.xlabel(r"$|\Delta s|$") plt.ylabel(r"$P (S \geq \Delta s)$") plt.legend() os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Individual")==False): os.mkdir("Individual") os.chdir("Individual") if(os.path.isdir("1-CDF")==False): os.mkdir("1-CDF") os.chdir("1-CDF") if(os.path.isdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1]))==False): os.mkdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) os.chdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) plt.savefig("Better Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() os.chdir("../../") if(os.path.isdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1]))==False): os.mkdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) os.chdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) print("Done with CDF Plots And Fits. Moving On To PDF Plots...") fig = fit.plot_pdf(color='darkcyan',marker='o', linestyle='', ms=1.5, alpha=0.4) #fit.plot_pdf(color='darkcyan',marker='o', linestyle='', ms=1.2, alpha=0.35, ax=fig) #ax = fig.add_subplot(111) fit.truncated_power_law.plot_pdf(color='darkslateblue', linestyle='--', label=r'Fit: $ P (S = \Delta s) \propto \Delta s^{(%4.3f)}\times e^{(%6.5f)\times \Delta s}$ ' % tukan, ax=fig) fig.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) #x = fit.xmins #y = fit.Ds #plt.ylim(10**(-6.4), 10**(0.1)); plt.xlim(1, 10**5.3) plt.xlabel(r"$|\Delta s|$") plt.ylabel(r"$P (S = \Delta s)$") plt.legend() plt.savefig("Better Fit PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() comparison_tpl_exp = fit.distribution_compare('truncated_power_law','exponential',normalized_ratio=True) comparison_tpl_streched_exp = fit.distribution_compare('truncated_power_law','stretched_exponential',normalized_ratio=True) comparison_tpl_log_normal = fit.distribution_compare('truncated_power_law','lognormal',normalized_ratio=True) comparison_tpl_pl = fit.distribution_compare('truncated_power_law','power_law',normalized_ratio=True) f = open("Taupe.txt", "w+") f.write("LR (Power Law): " + str(comparison_tpl_pl[0]) +" p-value: "+ str(comparison_tpl_pl[1]) +"\n") f.write("LR (Exponential): " + str(comparison_tpl_exp[0]) +" p-value: "+ str(comparison_tpl_exp[1]) +"\n") f.write("LR (Log-Normal): " + str(comparison_tpl_log_normal[0]) +" p-value: "+ str(comparison_tpl_log_normal[1]) +"\n") f.write("LR (Stretched-Exponential): " + str(comparison_tpl_streched_exp[0]) +" p-value: "+ str(comparison_tpl_streched_exp[1]) +"\n") f.close() print("LR (Power Law): ",comparison_tpl_pl[0]," p-value: ",comparison_tpl_pl[1]) print("LR (Exponential): ",comparison_tpl_exp[0]," p-value: ",comparison_tpl_exp[1]) print("LR (Log-Normal): ",comparison_tpl_log_normal[0]," p-value: ",comparison_tpl_log_normal[1]) print("LR (Stretched-Exponential): ",comparison_tpl_streched_exp[0]," p-value: ",comparison_tpl_streched_exp[1]) gaol[float(round(CC,2))].append([L, p, fit.xmin, fit.truncated_power_law.parameter1, 1/fit.truncated_power_law.parameter2]) os.chdir(r"..\..\..\..\..\analysis\Mass Action\DP") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("%d" %(L))==False): os.mkdir("%d" %(L)) os.chdir("%d" %(L)) K= [0.6, 0.7, 0.75, 0.8, 0.9, 0.95] heado = 'L, p, x_min, alpha, 1/lambda' for k in K: np.savetxt("Nu_Pow_0_6_BestFitCDF_CC_%3.2F.csv" %(k), gaol[k], delimiter=',', header=heado, comments='#') os.chdir(r"../../") def main_cumulative(): p_c = 0.725194 crosc = float(input("Enter a Cross-Correlation Value To Be Analysed (Choose Between 0.95, 0.9, 0.8, 0.75, 0.7 & 0.6):\t")) fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. binder=[]; L=0; for i in range(0,10): base_path = r"22Apret\Apres 256+512\512" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): print('Gandu') continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( CC <= crosc - 0.01 or CC >= crosc + 0.01): print(str(CC) + " shall be skipped.") continue if( p == 0.678): print("Fuck You") continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / a for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. a,b =DP_freqs.shape #col_P= np.zeros((a,1)); col_P = p DP_freqs = np.insert(DP_freqs, 0, p, axis=1) '''DP_freqs looks like: | p, del(s), P(del(s))| ''' '''DP_freqs = list(DP_freqs.items()) #Converting dictionary to list. for j in range(0,len(DP_freqs)): DP_freqs[j].append(p)''' print(DP_freqs) if(len(binder)==0): #First one in the bag. binder = DP_freqs.tolist() else: binder.extend(DP_freqs.tolist()) os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("3D")==False): os.mkdir("3D") os.chdir("3D") if(os.path.isdir("%d" %(L))==False): os.mkdir("%d" %(L)) os.chdir("%d" %(L)) binder= np.array(binder) fig=plt.figure() ax = plt.axes(projection='3d') #surf1 =ax.plot_trisurf(np.log10(binder[:,1]), binder[:,0], np.log10(binder[:,2]), cmap='viridis', edgecolor='none') '''for k in range(0,len(self.x1)): #Plotting SD bars ax.plot([self.x1[k], self.x1[k]], [self.y1[k], self.y1[k]], [self.z1[k] + self.sd_z1[k], self.z1[k] - self.sd_z1[k]], marker="_", markerfacecolor='k', color='k') ''' surf1 =ax.scatter(np.log10(binder[:,1]), binder[:,0], np.log10(binder[:,2]), c= np.log10(binder[:,2]), cmap='viridis', linewidth=0.5) cbar1=fig.colorbar(surf1, shrink=0.75) cbar1.ax.get_yaxis().labelpad = 12 cbar1.ax.set_ylabel(r"$P (S=\Delta s)$", rotation=270) ax.set_xlabel(r"$log_{10}|\Delta s|$") ax.set_zlabel(r"$log_{10}|P (S=\Delta s)|$") ax.set_ylabel("Occupancy rate (p)") #plt.zscale('log'); plt.xscale('log') ax.view_init(elev=36.0, azim=-52.0) ax.legend() ax.set_title(r"$P (S=\Delta s)$ vs $|\Delta s|$, L = %d, $R_{0,0}$ = %3.2f" %(L,crosc)) plt.savefig("Cumulative Scatter P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png" %(L,crosc), dpi=550) plt.show() plt.close() '''Now for scatter plot''' fig=plt.figure(figsize=(6.4,4.8)) #ax = plt.axes(projection='3d') ax = fig.add_subplot(111,projection='3d') surf1 =ax.scatter(np.log10(binder[:,1]), binder[:,0], np.log10(binder[:,2]), c= np.log10(binder[:,2]), cmap='viridis', linewidth=0.5) '''for k in range(0,len(self.x1)): #Plotting SD bars ax.plot([self.x1[k], self.x1[k]], [self.y1[k], self.y1[k]], [self.z1[k] + self.sd_z1[k], self.z1[k] - self.sd_z1[k]], marker="_", markerfacecolor='k', color='k') ''' cbar1=fig.colorbar(surf1, shrink=0.75) cbar1.ax.get_yaxis().labelpad = 12 cbar1.ax.set_ylabel(r"$log|P (S=\Delta s)|$", rotation=270) ax.set_xlabel(r"$log_{10}|\Delta s|$") ax.set_xlim(-0.1, 5) ax.set_zlabel(r"$log_{10}|P (S=\Delta s)|$") ax.set_zlim(-6.1, 0) ax.set_ylabel("Occupancy rate (p)") #plt.zscale('log'); plt.xscale('log') #Plotting p_c plane. x = np.linspace(-1,5.5,10) z = np.linspace(-7,1,10) X,Z = np.meshgrid(x,z) Y= 0*X +0*Z + p_c #ax.hold(True) #Preserve pre-plotted elements. ax.plot_surface(X,Y,Z, alpha= 0.3, color='k', antialiased=True) ax.text(5, p_c, -1, "$p_{c}(q)$", color='0.5') '''p_clin = np.array([[0,p_c], [5,p_c]]) lines = LineCollection([p_clin],zorder=1000,color='0.65',lw=2) ax.add_collection3d(lines, zs=-90)''' ax.view_init(elev=36.0, azim=-52.0) ax.legend() ax.set_title(r"$log|P (S=\Delta s)|$ vs $log|\Delta s|$, L = %d, $R_{0,0}$ = %3.2f" %(L,crosc)) plt.savefig("Cumulative Scatter Plane P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png" %(L,crosc), dpi=550) ax.view_init(elev=62.0, azim=-3.0) plt.savefig("Cumulative Scatter Plane P(del(s)) vs del(s) Top Down --- Grid Size (G)_%d - CC_%3.2f.png" %(L,crosc), dpi=550) plt.show() plt.close() os.chdir(r"..\..\..\..\..\analysis\Mass Action\DP") def main_del_s_count(): p_c = 0.725194 crosc = float(input("Enter a Cross-Correlation Value To Be Analysed (Choose Between 0.95, 0.9, 0.8, 0.75, 0.7 & 0.6):\t")) fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. binder=[]; L=0; for i in range(0,10): base_path = r"22Apret\Apres 256+512\256" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): print('Gandu') continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( CC <= crosc - 0.01 or CC >= crosc + 0.01): print(str(CC) + " shall be skipped.") continue if( p == 0.678): print("Fuck You") continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / a for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. a,b =DP_freqs.shape #col_P= np.zeros((a,1)); col_P = p DP_freqs = np.insert(DP_freqs, 0, p, axis=1) '''DP_freqs looks like: | p, del(s), P(del(s))| ''' '''DP_freqs = list(DP_freqs.items()) #Converting dictionary to list. for j in range(0,len(DP_freqs)): DP_freqs[j].append(p)''' print(DP_freqs) print("Number of del s counts: " + str(a)) binder.append([p, a]) os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Bifurcation")==False): os.mkdir("Bifurcation") os.chdir("Bifurcation") if(os.path.isdir("S Count")==False): os.mkdir("S Count") os.chdir("S Count") binder= np.array(binder) hurtlocker= pan.DataFrame(binder, columns= ["p", r"Number of unique $|\Delta s|$ observations"]) f = sea.scatterplot(data=hurtlocker, x="p" , y=r"Number of unique $|\Delta s|$ observations")#, marker="+") #sea.lineplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S \geq \Delta s)$", alpha=0.2, ax= ax) #, s=1) f.set_title('Unique $|\Delta s|$ observations, Grid Size (G) = %d, Cross-Correlation = %3.2f' %( L, crosc)) #plt.yscale('log'); #plt.xscale('log') #plt.ylim(1, 10**5) plt.axvline(x= p_c, color='0.65') plt.text(p_c+ 0.003,10**2,r'$p_{c}$',rotation=90, color ='0.65') plt.savefig("S Count, Grid Size (G) = %d, CC = %3.2f.png" %(L, crosc), dpi=400) plt.show() plt.close() os.chdir(r"..\..\..\..\..\analysis\Mass Action\DP") def main_del_s_symmetry(): p_mask=[0.658, 0.666, 0.678, 0.689, 0.701, 0.728, 0.739, 0.743, 0.755, 0.773 ] fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. for i in range(0,10): base_path = r"22Apret\Apres 256+512\256" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) MastBind=[]; L=0 for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( p not in p_mask): continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' data_temp[:,5] -= data_temp[:,4] #data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / (a) for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. #Sorting array in increasing order of del(s). DP_freqs = DP_freqs[DP_freqs[:,0].argsort()] #Next, to convert PDF into 1 - CDF (P(S >= (DEL(S)))) print("Sorted del(s) PDF:") print(DP_freqs) #DP_freqs[-2,1] += DP_freqs[-1,1]; #DP_freqs[-1,1] = 0 k= len(DP_freqs[:,1]) #Finding total number of del(s) elements print("Total distinct del(s) samples:\t" +str(k)) '''Performing a log-mod transform https://blogs.sas.com/content/iml/2014/07/14/log-transformation-of-pos-neg.html https://juluribk.com/dealing-with-plotting-negative-zero-and-positive-values-in-log-scale.html ''' DP_freqs[:,0] = np.sign(DP_freqs[:,0])*(np.log10(np.abs(DP_freqs[:,0])+1)) DP_freqs = np.insert(DP_freqs, 2, float(round(CC,2)), axis=1) DP_freqs = np.insert(DP_freqs, 3, p, axis=1) '''DP_freqs looks like: |del(s), P(del(s)), CC, p| ''' print("Final del(s) PDF:") print(DP_freqs) if(len(MastBind)== 0): #Empty MastBind = DP_freqs else: MastBind = np.concatenate((MastBind, DP_freqs), axis=0) '''for j in range(k-3, -1, -1): #Iterate over the PDF function in reverse. DP_freqs[j,1] += DP_freqs[j+1,1] print("Sorted del(s) 1-CDF:") print(DP_freqs)''' os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Individual")==False): os.mkdir("Individual") os.chdir("Individual") if(os.path.isdir("Symmetry")==False): os.mkdir("Symmetry") os.chdir("Symmetry") if(os.path.isdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1]))==False): os.mkdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) os.chdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) print("p:\t" +str(p) + " L:\t"+ str(L) + " CC:\t" +str(CC)) hurtlocker= pan.DataFrame(DP_freqs, columns= [r"$\Delta s$", r"$P (S = \Delta s)$", "Cross-Correlation", "p"]) fig = plt.figure(figsize=(6.4,4.8)) #Overlaying two seaborn plots. #ax = fig.add_subplot(111) f= sea.scatterplot(data=hurtlocker, x=r"$\Delta s$" , y=r"$P (S = \Delta s)$")#, alpha=0.5, s=2, ax= ax) #sea.lineplot(data=hurtlocker, x=r"$\Delta s$" , y=r"$P (S = \Delta s)$", alpha=0.2, ax= ax) #, s=1) f.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) plt.yscale('log'); #plt.xscale('log') #plt.xlim(1, 10**5) plt.ylim(10**(-6.4), 10**(0.1)) #plt.xlim(-5, 5) '''x1 = np.transpose(DP_freqs[:,0]) x2 = np.transpose(DP_freqs[:,1]) popt, pcov = curve_fit(trunc_pow_law, x1, x2, p0= np.asarray([1, -0.75, -0.0005]), maxfev=5000 ) perr = np.sqrt(np.diag(pcov)) print("SD of exponent:\t" +str(perr[1]) + " for p:\t" +str(p)) tukan= (popt[0], popt[1], perr[1], popt[2], perr[2]) plt.plot(x1, trunc_pow_law(x1, *popt), 'm--', label=r'Fit: $ P (S \geq \Delta s) = %3.2f \times \Delta s^{(%4.3f \mp %4.3f)}\times e^{(%4.3f \mp %4.3f)\times \Delta s}$ ' % tukan ) plt.legend()''' plt.savefig("Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() os.chdir(r"..\..\..\..\..\..\analysis\Mass Action\DP") #break; #Plotting cumulative results. os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Individual")==False): os.mkdir("Individual") os.chdir("Individual") if(os.path.isdir("Symmetry")==False): os.mkdir("Symmetry") os.chdir("Symmetry") if(os.path.isdir("Cum")==False): os.mkdir("Cum") os.chdir("Cum") hurtlocker= pan.DataFrame(MastBind, columns= [r"$\Delta s$", r"$P (S = \Delta s)$", "Cross-Correlation", "p"]) fig = plt.figure(figsize=(6.4,4.8)) #Overlaying two seaborn plots. #ax = fig.add_subplot(111) f= sea.scatterplot(data=hurtlocker, x=r"$\Delta s$" , y=r"$P (S = \Delta s)$", hue="Cross-Correlation")#, alpha=0.5, s=2, ax= ax) #sea.lineplot(data=hurtlocker, x=r"$\Delta s$" , y=r"$P (S = \Delta s)$", alpha=0.2, ax= ax) #, s=1) f.set_title('p = %f, Grid Size (G) = %d' %(MastBind[0,3], L)) plt.yscale('log'); #plt.xscale('log') #plt.xlim(1, 10**5) plt.ylim(10**(-6.4), 10**(0.1)) plt.xlim(-5, 5) plt.savefig("Alt Cum Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d.png" %(MastBind[0,3], L), dpi=400) #plt.show() plt.close() os.chdir(r"..\..\..\..\..\..\analysis\Mass Action\DP") def main_bifurcation(): p_c = 0.725194 crosc = float(input("Enter a Cross-Correlation Value To Be Analysed (Choose Between 0.95, 0.9, 0.8, 0.75, 0.7 & 0.6):\t")) #crosc =0.8 fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. binder=[]; L=0; for i in range(0,10): base_path = r"22Apret\Apres 256+512\256" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): print('Gandu') continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( CC <= crosc - 0.01 or CC >= crosc + 0.01): print(str(CC) + " shall be skipped.") continue if( p == 0.678): print("Fuck You") continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / a for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. a,b =DP_freqs.shape split_data = DP_freqs[:,1] < 10**(-5.6) DP_freqs = DP_freqs[split_data] print("Half Done:") print(DP_freqs) split_data = DP_freqs[:,1] > 10**(-6) DP_freqs_band = DP_freqs[split_data] #Stores the band of del(s) values whose probability lie between 10^(-5.85) and 10^(-5.85) #col_P= np.zeros((a,1)); col_P = p DP_freqs_band = np.insert(DP_freqs_band, 0, p, axis=1) DP_freqs_band = DP_freqs_band[DP_freqs_band[:,1].argsort()] #Sorting in increasing values of del(s) print("Total number of points in given gap for p:\t"+str(p) +" is: \t" +str(len(DP_freqs_band[:,2])) +"\n") print(DP_freqs_band) '''DP_freqs looks like: | p, del(s), P(del(s))| ''' flag=0 for j in range(1, len(DP_freqs_band[:,2])-1): if(abs(DP_freqs_band[j,1] -DP_freqs_band[j-1,2]) > 411 or abs(DP_freqs_band[j,1] -DP_freqs_band[j+1,2]) > 411): # 10^(3.3) - 10^(3.2) = 410.369 binder.append([p,DP_freqs_band[j,1]]) flag=1 if(flag==0): #No del(s) value satisfied the bandwidth demand. #if() binder.append([p,DP_freqs_band[-1,1]]) #Append the very last value os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Bifurcation")==False): os.mkdir("Bifurcation") os.chdir("Bifurcation") if(os.path.isdir("%d" %(L))==False): os.mkdir("%d" %(L)) os.chdir("%d" %(L)) binder= np.array(binder) hurtlocker= pan.DataFrame(binder, columns= ["p", r"$|\Delta s|$ s.t. $P (\Delta s \geq 10^{-6})$"]) f = sea.scatterplot(data=hurtlocker, x="p" , y=r"$|\Delta s|$ s.t. $P (\Delta s \geq 10^{-6})$", marker="+") #sea.lineplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S \geq \Delta s)$", alpha=0.2, ax= ax) #, s=1) f.set_title('Bifurcation Map, Grid Size (G) = %d, Cross-Correlation = %3.2f' %( L, crosc)) plt.yscale('log'); #plt.xscale('log') plt.ylim(1, 10**5) plt.axvline(x= p_c, color='0.65') plt.text(p_c+ 0.003,10**1,r'$p_{c}$',rotation=90, color ='0.65') plt.savefig("Bifurcation Map, Grid Size (G) = %d, CC = %3.2f.png" %(L, crosc), dpi=400) plt.show() plt.close() os.chdir(r"..\..\..\..\..\analysis\Mass Action\DP") def plot_fit_pdf(): twist =(-1.2912647288993737, -(1/37.72480211483688)) fandango = np.genfromtxt("PissingAbout15+16.csv", delimiter=",", comments='#', skip_header=1) #Stores decay data of cross-correlation between frames as a function of p. gaol={} #Stores truncated power law fit data. gaol[0.60] =[]; gaol[0.70] =[]; gaol[0.75] =[]; gaol[0.80] =[]; gaol[0.90] =[]; gaol[0.95] =[]; L=0; crosc= 0.7 for i in range(0,1): base_path = r"22Apret\Apres 256+512\256" + "\\" + str(i) files = glob.glob(base_path + "**/**/*.csv", recursive=True) for file in files: if (file == base_path + r"\dump\15_16_KungF---U.csv"): continue if (os.path.getsize(file) > 4096): #Keeping unwanted files out. print(file) data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1, max_rows=3) p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) if( CC <= crosc - 0.01 or CC >= crosc + 0.01 or p != 0.66): print(str(CC) + " " + str(p) + " shall be skipped.") continue data_temp= np.genfromtxt(file, delimiter=",", comments='#', skip_header=1) ''' data_temp resembles: | L, p, lag, #, s, s + del(s) | ''' ''' p= data_temp[0,1]; L= int(data_temp[0,0]); CC= cross_cor(fandango, data_temp[0,2], L, p) data_temp[:,5] -= data_temp[:,4] data_temp[:,5] = np.abs(data_temp[:,5]) temp_freqs = dict(collections.Counter(data_temp[:,5])) a,b = data_temp.shape DP_freqs = {k: v / (a) for k, v in temp_freqs.items()} DP_freqs = np.array(list(DP_freqs.items())) #Converting dictionary to numpy array. #Sorting array in increasing order of del(s). DP_freqs = DP_freqs[DP_freqs[:,0].argsort()] print("Sorted del(s) PDF:") print(DP_freqs) os.chdir("../../../figures") if(os.path.isdir("del_S")==False): os.mkdir("del_S") os.chdir("del_S") if(os.path.isdir("DP")==False): os.mkdir("DP") os.chdir("DP") if(os.path.isdir("Individual")==False): os.mkdir("Individual") os.chdir("Individual") if(os.path.isdir("1-CDF")==False): os.mkdir("1-CDF") os.chdir("1-CDF") if(os.path.isdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1]))==False): os.mkdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) os.chdir("L_%d_p_%4.3f" %(int(data_temp[0,0]), data_temp[0,1])) print("p:\t" +str(p) + " L:\t"+ str(L) + " CC:\t" +str(CC)) hurtlocker= pan.DataFrame(DP_freqs, columns= [r"$|\Delta s|$", r"$P (S = \Delta s)$"]) fig = plt.figure(figsize=(6.4,4.8)) #Overlaying two seaborn plots. ax = fig.add_subplot(111) sea.scatterplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S = \Delta s)$", ax= ax)#, alpha=0.5, s=2, ax= ax) #sea.lineplot(data=hurtlocker, x=r"$|\Delta s|$" , y=r"$P (S = \Delta s)$", alpha=0.2, ax= ax) #, s=1) ax.set_title('p = %f, Grid Size (G) = %d, Cross-Correlation = %3.2f' %(p, L, CC)) plt.yscale('log'); plt.xscale('log') plt.xlim(1, 10**5) plt.ylim(10**(-6.3), 10**(0.1)) x1 = np.transpose(DP_freqs[:,0]) x2 = np.transpose(DP_freqs[:,1]) #popt, pcov = curve_fit(trunc_pow_law, x1, x2, p0= np.asarray([1, -0.75, -0.0005]), maxfev=5000 ) #perr = np.sqrt(np.diag(pcov)) #print("SD of exponent:\t" +str(perr[1]) + " for p:\t" +str(p)) #tukan= (popt[0], popt[1], perr[1], popt[2], perr[2]) plt.plot(x1, trunc_pow_law(x1, *twist), color='darkslateblue', linestyle='--', label=r'Fit: $ P (S = \Delta s) = %3.2f \times \Delta s^{(%4.3f)}\times e^{(%6.5f)\times \Delta s}$ ' % tukan ) plt.ylim(10**(-6.4), 10**(0.1)); plt.xlim(1, 10**5) plt.legend() plt.savefig("Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() #Next, to convert PDF into 1 - CDF (P(S >= (DEL(S)))) DP_freqs[-2,1] += DP_freqs[-1,1]; #DP_freqs[-1,1] = 0 k= len(DP_freqs[:,1]) #Finding total number of del(s) elements print("Total distinct del(s) samples:\t" +str(k)) for j in range(k-3, -1, -1): #Iterate over the PDF function in reverse. DP_freqs[j,1] += DP_freqs[j+1,1] print("Sorted del(s) 1-CDF:") print(DP_freqs) plt.savefig("Even Better Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png" %(p,L,CC), dpi=400) #plt.show() plt.close() comparison_tpl_exp = fit.distribution_compare('truncated_power_law','exponential',normalized_ratio=True) comparison_tpl_streched_exp = fit.distribution_compare('truncated_power_law','stretched_exponential',normalized_ratio=True) comparison_tpl_log_normal = fit.distribution_compare('truncated_power_law','lognormal',normalized_ratio=True) comparison_tpl_pl = fit.distribution_compare('truncated_power_law','power_law',normalized_ratio=True) print("LR (Power Law): ",comparison_tpl_pl[0]," p-value: ",comparison_tpl_pl[1]) print("LR (Exponential): ",comparison_tpl_exp[0]," p-value: ",comparison_tpl_exp[1]) print("LR (Log-Normal): ",comparison_tpl_log_normal[0]," p-value: ",comparison_tpl_log_normal[1]) print("LR (Stretched-Exponential): ",comparison_tpl_streched_exp[0]," p-value: ",comparison_tpl_streched_exp[1]) gaol[float(round(CC,2))].append([L, p, fit.xmin, fit.truncated_power_law.parameter1, 1/fit.truncated_power_law.parameter2]) os.chdir(r"..\..\..\..\..\..\analysis\Mass Action\DP") ''' def cross_cor(grim_fandango, lag, L, p): CC=0; k= 128/L for t in range(0, len(grim_fandango[:,0])): if grim_fandango[t,0] == p: CC = grim_fandango[t,1]+ grim_fandango[t,3]*(math.exp(lag*grim_fandango[t,5]*k*k)); break; #Calculating cross-correlation b/w frames. print("CC:\t"+ str(CC)) return CC; main_ind()
[ "numpy.log10", "powerlaw.Fit", "matplotlib.pyplot.ylabel", "numpy.array", "seaborn.scatterplot", "math.exp", "numpy.genfromtxt", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.close", "numpy.exp", "numpy.linspace", "os.path.isdir", "os.mkdir", "numpy.concatenate", "pandas.DataFrame", "numpy.meshgrid", "matplotlib.pyplot.ylim", "matplotlib.pyplot.yscale", "glob.glob", "numpy.abs", "os.path.getsize", "matplotlib.pyplot.savefig", "matplotlib.pyplot.axes", "numpy.sign", "numpy.savetxt", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "numpy.insert", "matplotlib.pyplot.text", "numpy.power", "os.chdir", "collections.Counter", "matplotlib.pyplot.figure", "matplotlib.pyplot.axvline", "matplotlib.pyplot.xscale" ]
[((627, 713), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (640, 713), True, 'import numpy as np\n'), ((7089, 7175), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (7102, 7175), True, 'import numpy as np\n'), ((14506, 14523), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (14514, 14523), False, 'import os\n'), ((14597, 14615), 'os.chdir', 'os.chdir', (["('%d' % L)"], {}), "('%d' % L)\n", (14605, 14615), False, 'import os\n'), ((14835, 14853), 'os.chdir', 'os.chdir', (['"""../../"""'], {}), "('../../')\n", (14843, 14853), False, 'import os\n'), ((15071, 15157), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (15084, 15157), True, 'import numpy as np\n'), ((17627, 17655), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (17635, 17655), False, 'import os\n'), ((17725, 17742), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (17733, 17742), False, 'import os\n'), ((17806, 17820), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (17814, 17820), False, 'import os\n'), ((17884, 17898), 'os.chdir', 'os.chdir', (['"""3D"""'], {}), "('3D')\n", (17892, 17898), False, 'import os\n'), ((17972, 17990), 'os.chdir', 'os.chdir', (["('%d' % L)"], {}), "('%d' % L)\n", (17980, 17990), False, 'import os\n'), ((18021, 18037), 'numpy.array', 'np.array', (['binder'], {}), '(binder)\n', (18029, 18037), True, 'import numpy as np\n'), ((18051, 18063), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (18061, 18063), True, 'import matplotlib.pyplot as plt\n'), ((18073, 18098), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'projection': '"""3d"""'}), "(projection='3d')\n", (18081, 18098), True, 'import matplotlib.pyplot as plt\n'), ((19094, 19216), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Cumulative Scatter P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc))"], {'dpi': '(550)'}), "(\n 'Cumulative Scatter P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc), dpi=550)\n", (19105, 19216), True, 'import matplotlib.pyplot as plt\n'), ((19209, 19219), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (19217, 19219), True, 'import matplotlib.pyplot as plt\n'), ((19224, 19235), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (19233, 19235), True, 'import matplotlib.pyplot as plt\n'), ((19290, 19320), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6.4, 4.8)'}), '(figsize=(6.4, 4.8))\n', (19300, 19320), True, 'import matplotlib.pyplot as plt\n'), ((20201, 20225), 'numpy.linspace', 'np.linspace', (['(-1)', '(5.5)', '(10)'], {}), '(-1, 5.5, 10)\n', (20212, 20225), True, 'import numpy as np\n'), ((20232, 20254), 'numpy.linspace', 'np.linspace', (['(-7)', '(1)', '(10)'], {}), '(-7, 1, 10)\n', (20243, 20254), True, 'import numpy as np\n'), ((20263, 20280), 'numpy.meshgrid', 'np.meshgrid', (['x', 'z'], {}), '(x, z)\n', (20274, 20280), True, 'import numpy as np\n'), ((20801, 20929), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Cumulative Scatter Plane P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc))"], {'dpi': '(550)'}), "(\n 'Cumulative Scatter Plane P(del(s)) vs del(s) --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc), dpi=550)\n", (20812, 20929), True, 'import matplotlib.pyplot as plt\n'), ((20966, 21102), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Cumulative Scatter Plane P(del(s)) vs del(s) Top Down --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc))"], {'dpi': '(550)'}), "(\n 'Cumulative Scatter Plane P(del(s)) vs del(s) Top Down --- Grid Size (G)_%d - CC_%3.2f.png'\n % (L, crosc), dpi=550)\n", (20977, 21102), True, 'import matplotlib.pyplot as plt\n'), ((21095, 21105), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (21103, 21105), True, 'import matplotlib.pyplot as plt\n'), ((21110, 21121), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (21119, 21121), True, 'import matplotlib.pyplot as plt\n'), ((21131, 21188), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (21139, 21188), False, 'import os\n'), ((21393, 21479), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (21406, 21479), True, 'import numpy as np\n'), ((23828, 23856), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (23836, 23856), False, 'import os\n'), ((23926, 23943), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (23934, 23943), False, 'import os\n'), ((24007, 24021), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (24015, 24021), False, 'import os\n'), ((24103, 24126), 'os.chdir', 'os.chdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (24111, 24126), False, 'import os\n'), ((24200, 24219), 'os.chdir', 'os.chdir', (['"""S Count"""'], {}), "('S Count')\n", (24208, 24219), False, 'import os\n'), ((24249, 24265), 'numpy.array', 'np.array', (['binder'], {}), '(binder)\n', (24257, 24265), True, 'import numpy as np\n'), ((24287, 24374), 'pandas.DataFrame', 'pan.DataFrame', (['binder'], {'columns': "['p', 'Number of unique $|\\\\Delta s|$ observations']"}), "(binder, columns=['p',\n 'Number of unique $|\\\\Delta s|$ observations'])\n", (24300, 24374), True, 'import pandas as pan\n'), ((24380, 24473), 'seaborn.scatterplot', 'sea.scatterplot', ([], {'data': 'hurtlocker', 'x': '"""p"""', 'y': '"""Number of unique $|\\\\Delta s|$ observations"""'}), "(data=hurtlocker, x='p', y=\n 'Number of unique $|\\\\Delta s|$ observations')\n", (24395, 24473), True, 'import seaborn as sea\n'), ((24777, 24809), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'p_c', 'color': '"""0.65"""'}), "(x=p_c, color='0.65')\n", (24788, 24809), True, 'import matplotlib.pyplot as plt\n'), ((24815, 24883), 'matplotlib.pyplot.text', 'plt.text', (['(p_c + 0.003)', '(10 ** 2)', '"""$p_{c}$"""'], {'rotation': '(90)', 'color': '"""0.65"""'}), "(p_c + 0.003, 10 ** 2, '$p_{c}$', rotation=90, color='0.65')\n", (24823, 24883), True, 'import matplotlib.pyplot as plt\n'), ((24889, 24974), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('S Count, Grid Size (G) = %d, CC = %3.2f.png' % (L, crosc))"], {'dpi': '(400)'}), "('S Count, Grid Size (G) = %d, CC = %3.2f.png' % (L, crosc), dpi=400\n )\n", (24900, 24974), True, 'import matplotlib.pyplot as plt\n'), ((24973, 24983), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24981, 24983), True, 'import matplotlib.pyplot as plt\n'), ((24988, 24999), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (24997, 24999), True, 'import matplotlib.pyplot as plt\n'), ((25009, 25066), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (25017, 25066), False, 'import os\n'), ((25206, 25292), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (25219, 25292), True, 'import numpy as np\n'), ((33182, 33268), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (33195, 33268), True, 'import numpy as np\n'), ((36629, 36657), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (36637, 36657), False, 'import os\n'), ((36727, 36744), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (36735, 36744), False, 'import os\n'), ((36808, 36822), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (36816, 36822), False, 'import os\n'), ((36904, 36927), 'os.chdir', 'os.chdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (36912, 36927), False, 'import os\n'), ((37001, 37019), 'os.chdir', 'os.chdir', (["('%d' % L)"], {}), "('%d' % L)\n", (37009, 37019), False, 'import os\n'), ((37050, 37066), 'numpy.array', 'np.array', (['binder'], {}), '(binder)\n', (37058, 37066), True, 'import numpy as np\n'), ((37088, 37180), 'pandas.DataFrame', 'pan.DataFrame', (['binder'], {'columns': "['p', '$|\\\\Delta s|$ s.t. $P (\\\\Delta s \\\\geq 10^{-6})$']"}), "(binder, columns=['p',\n '$|\\\\Delta s|$ s.t. $P (\\\\Delta s \\\\geq 10^{-6})$'])\n", (37101, 37180), True, 'import pandas as pan\n'), ((37184, 37294), 'seaborn.scatterplot', 'sea.scatterplot', ([], {'data': 'hurtlocker', 'x': '"""p"""', 'y': '"""$|\\\\Delta s|$ s.t. $P (\\\\Delta s \\\\geq 10^{-6})$"""', 'marker': '"""+"""'}), "(data=hurtlocker, x='p', y=\n '$|\\\\Delta s|$ s.t. $P (\\\\Delta s \\\\geq 10^{-6})$', marker='+')\n", (37199, 37294), True, 'import seaborn as sea\n'), ((37498, 37515), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (37508, 37515), True, 'import matplotlib.pyplot as plt\n'), ((37540, 37560), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(1)', '(10 ** 5)'], {}), '(1, 10 ** 5)\n', (37548, 37560), True, 'import matplotlib.pyplot as plt\n'), ((37563, 37595), 'matplotlib.pyplot.axvline', 'plt.axvline', ([], {'x': 'p_c', 'color': '"""0.65"""'}), "(x=p_c, color='0.65')\n", (37574, 37595), True, 'import matplotlib.pyplot as plt\n'), ((37601, 37669), 'matplotlib.pyplot.text', 'plt.text', (['(p_c + 0.003)', '(10 ** 1)', '"""$p_{c}$"""'], {'rotation': '(90)', 'color': '"""0.65"""'}), "(p_c + 0.003, 10 ** 1, '$p_{c}$', rotation=90, color='0.65')\n", (37609, 37669), True, 'import matplotlib.pyplot as plt\n'), ((37675, 37767), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Bifurcation Map, Grid Size (G) = %d, CC = %3.2f.png' % (L, crosc))"], {'dpi': '(400)'}), "('Bifurcation Map, Grid Size (G) = %d, CC = %3.2f.png' % (L,\n crosc), dpi=400)\n", (37686, 37767), True, 'import matplotlib.pyplot as plt\n'), ((37767, 37777), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (37775, 37777), True, 'import matplotlib.pyplot as plt\n'), ((37782, 37793), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (37791, 37793), True, 'import matplotlib.pyplot as plt\n'), ((37803, 37860), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (37811, 37860), False, 'import os\n'), ((37967, 38053), 'numpy.genfromtxt', 'np.genfromtxt', (['"""PissingAbout15+16.csv"""'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "('PissingAbout15+16.csv', delimiter=',', comments='#',\n skip_header=1)\n", (37980, 38053), True, 'import numpy as np\n'), ((445, 462), 'numpy.power', 'np.power', (['x', 'expo'], {}), '(x, expo)\n', (453, 462), True, 'import numpy as np\n'), ((568, 590), 'numpy.exp', 'np.exp', (['(trunc_expo * x)'], {}), '(trunc_expo * x)\n', (574, 590), True, 'import numpy as np\n'), ((1058, 1110), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (1067, 1110), False, 'import glob\n'), ((7533, 7585), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (7542, 7585), False, 'import glob\n'), ((14444, 14466), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (14457, 14466), False, 'import os\n'), ((14484, 14501), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (14492, 14501), False, 'import os\n'), ((14531, 14554), 'os.path.isdir', 'os.path.isdir', (["('%d' % L)"], {}), "('%d' % L)\n", (14544, 14554), False, 'import os\n'), ((14573, 14591), 'os.mkdir', 'os.mkdir', (["('%d' % L)"], {}), "('%d' % L)\n", (14581, 14591), False, 'import os\n'), ((14725, 14833), 'numpy.savetxt', 'np.savetxt', (["('Nu_Pow_0_6_BestFitCDF_CC_%3.2F.csv' % k)", 'gaol[k]'], {'delimiter': '""","""', 'header': 'heado', 'comments': '"""#"""'}), "('Nu_Pow_0_6_BestFitCDF_CC_%3.2F.csv' % k, gaol[k], delimiter=',',\n header=heado, comments='#')\n", (14735, 14833), True, 'import numpy as np\n'), ((15360, 15412), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (15369, 15412), False, 'import glob\n'), ((17663, 17685), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (17676, 17685), False, 'import os\n'), ((17703, 17720), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (17711, 17720), False, 'import os\n'), ((17750, 17769), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (17763, 17769), False, 'import os\n'), ((17787, 17801), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (17795, 17801), False, 'import os\n'), ((17828, 17847), 'os.path.isdir', 'os.path.isdir', (['"""3D"""'], {}), "('3D')\n", (17841, 17847), False, 'import os\n'), ((17865, 17879), 'os.mkdir', 'os.mkdir', (['"""3D"""'], {}), "('3D')\n", (17873, 17879), False, 'import os\n'), ((17906, 17929), 'os.path.isdir', 'os.path.isdir', (["('%d' % L)"], {}), "('%d' % L)\n", (17919, 17929), False, 'import os\n'), ((17948, 17966), 'os.mkdir', 'os.mkdir', (["('%d' % L)"], {}), "('%d' % L)\n", (17956, 17966), False, 'import os\n'), ((18485, 18507), 'numpy.log10', 'np.log10', (['binder[:, 1]'], {}), '(binder[:, 1])\n', (18493, 18507), True, 'import numpy as np\n'), ((18521, 18543), 'numpy.log10', 'np.log10', (['binder[:, 2]'], {}), '(binder[:, 2])\n', (18529, 18543), True, 'import numpy as np\n'), ((19424, 19446), 'numpy.log10', 'np.log10', (['binder[:, 1]'], {}), '(binder[:, 1])\n', (19432, 19446), True, 'import numpy as np\n'), ((19460, 19482), 'numpy.log10', 'np.log10', (['binder[:, 2]'], {}), '(binder[:, 2])\n', (19468, 19482), True, 'import numpy as np\n'), ((21682, 21734), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (21691, 21734), False, 'import glob\n'), ((23864, 23886), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (23877, 23886), False, 'import os\n'), ((23904, 23921), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (23912, 23921), False, 'import os\n'), ((23951, 23970), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (23964, 23970), False, 'import os\n'), ((23988, 24002), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (23996, 24002), False, 'import os\n'), ((24029, 24057), 'os.path.isdir', 'os.path.isdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (24042, 24057), False, 'import os\n'), ((24075, 24098), 'os.mkdir', 'os.mkdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (24083, 24098), False, 'import os\n'), ((24134, 24158), 'os.path.isdir', 'os.path.isdir', (['"""S Count"""'], {}), "('S Count')\n", (24147, 24158), False, 'import os\n'), ((24176, 24195), 'os.mkdir', 'os.mkdir', (['"""S Count"""'], {}), "('S Count')\n", (24184, 24195), False, 'import os\n'), ((25475, 25527), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (25484, 25527), False, 'import glob\n'), ((31456, 31484), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (31464, 31484), False, 'import os\n'), ((31575, 31592), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (31583, 31592), False, 'import os\n'), ((31668, 31682), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (31676, 31682), False, 'import os\n'), ((31774, 31796), 'os.chdir', 'os.chdir', (['"""Individual"""'], {}), "('Individual')\n", (31782, 31796), False, 'import os\n'), ((31884, 31904), 'os.chdir', 'os.chdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (31892, 31904), False, 'import os\n'), ((31982, 31997), 'os.chdir', 'os.chdir', (['"""Cum"""'], {}), "('Cum')\n", (31990, 31997), False, 'import os\n'), ((32027, 32128), 'pandas.DataFrame', 'pan.DataFrame', (['MastBind'], {'columns': "['$\\\\Delta s$', '$P (S = \\\\Delta s)$', 'Cross-Correlation', 'p']"}), "(MastBind, columns=['$\\\\Delta s$', '$P (S = \\\\Delta s)$',\n 'Cross-Correlation', 'p'])\n", (32040, 32128), True, 'import pandas as pan\n'), ((32140, 32170), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6.4, 4.8)'}), '(figsize=(6.4, 4.8))\n', (32150, 32170), True, 'import matplotlib.pyplot as plt\n'), ((32272, 32375), 'seaborn.scatterplot', 'sea.scatterplot', ([], {'data': 'hurtlocker', 'x': '"""$\\\\Delta s$"""', 'y': '"""$P (S = \\\\Delta s)$"""', 'hue': '"""Cross-Correlation"""'}), "(data=hurtlocker, x='$\\\\Delta s$', y='$P (S = \\\\Delta s)$',\n hue='Cross-Correlation')\n", (32287, 32375), True, 'import seaborn as sea\n'), ((32586, 32603), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (32596, 32603), True, 'import matplotlib.pyplot as plt\n'), ((32660, 32691), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(10 ** -6.4)', '(10 ** 0.1)'], {}), '(10 ** -6.4, 10 ** 0.1)\n', (32668, 32691), True, 'import matplotlib.pyplot as plt\n'), ((32700, 32715), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-5)', '(5)'], {}), '(-5, 5)\n', (32708, 32715), True, 'import matplotlib.pyplot as plt\n'), ((32733, 32859), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Alt Cum Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d.png' %\n (MastBind[0, 3], L))"], {'dpi': '(400)'}), "(\n 'Alt Cum Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d.png' %\n (MastBind[0, 3], L), dpi=400)\n", (32744, 32859), True, 'import matplotlib.pyplot as plt\n'), ((32877, 32888), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (32886, 32888), True, 'import matplotlib.pyplot as plt\n'), ((32897, 32958), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (32905, 32958), False, 'import os\n'), ((33471, 33523), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (33480, 33523), False, 'import glob\n'), ((36665, 36687), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (36678, 36687), False, 'import os\n'), ((36705, 36722), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (36713, 36722), False, 'import os\n'), ((36752, 36771), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (36765, 36771), False, 'import os\n'), ((36789, 36803), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (36797, 36803), False, 'import os\n'), ((36830, 36858), 'os.path.isdir', 'os.path.isdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (36843, 36858), False, 'import os\n'), ((36876, 36899), 'os.mkdir', 'os.mkdir', (['"""Bifurcation"""'], {}), "('Bifurcation')\n", (36884, 36899), False, 'import os\n'), ((36935, 36958), 'os.path.isdir', 'os.path.isdir', (["('%d' % L)"], {}), "('%d' % L)\n", (36948, 36958), False, 'import os\n'), ((36977, 36995), 'os.mkdir', 'os.mkdir', (["('%d' % L)"], {}), "('%d' % L)\n", (36985, 36995), False, 'import os\n'), ((38410, 38462), 'glob.glob', 'glob.glob', (["(base_path + '**/**/*.csv')"], {'recursive': '(True)'}), "(base_path + '**/**/*.csv', recursive=True)\n", (38419, 38462), False, 'import glob\n'), ((549, 566), 'numpy.power', 'np.power', (['x', 'expo'], {}), '(x, expo)\n', (557, 566), True, 'import numpy as np\n'), ((18547, 18569), 'numpy.log10', 'np.log10', (['binder[:, 2]'], {}), '(binder[:, 2])\n', (18555, 18569), True, 'import numpy as np\n'), ((19486, 19508), 'numpy.log10', 'np.log10', (['binder[:, 2]'], {}), '(binder[:, 2])\n', (19494, 19508), True, 'import numpy as np\n'), ((31505, 31527), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (31518, 31527), False, 'import os\n'), ((31549, 31566), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (31557, 31566), False, 'import os\n'), ((31604, 31623), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (31617, 31623), False, 'import os\n'), ((31645, 31659), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (31653, 31659), False, 'import os\n'), ((31694, 31721), 'os.path.isdir', 'os.path.isdir', (['"""Individual"""'], {}), "('Individual')\n", (31707, 31721), False, 'import os\n'), ((31743, 31765), 'os.mkdir', 'os.mkdir', (['"""Individual"""'], {}), "('Individual')\n", (31751, 31765), False, 'import os\n'), ((31808, 31833), 'os.path.isdir', 'os.path.isdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (31821, 31833), False, 'import os\n'), ((31855, 31875), 'os.mkdir', 'os.mkdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (31863, 31875), False, 'import os\n'), ((31916, 31936), 'os.path.isdir', 'os.path.isdir', (['"""Cum"""'], {}), "('Cum')\n", (31929, 31936), False, 'import os\n'), ((31958, 31973), 'os.mkdir', 'os.mkdir', (['"""Cum"""'], {}), "('Cum')\n", (31966, 31973), False, 'import os\n'), ((1246, 1267), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (1261, 1267), False, 'import os\n'), ((1394, 1457), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (1407, 1457), True, 'import numpy as np\n'), ((1953, 1976), 'numpy.abs', 'np.abs', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (1959, 1976), True, 'import numpy as np\n'), ((3173, 3201), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (3181, 3201), False, 'import os\n'), ((3320, 3337), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (3328, 3337), False, 'import os\n'), ((3437, 3451), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (3445, 3451), False, 'import os\n'), ((3567, 3589), 'os.chdir', 'os.chdir', (['"""Individual"""'], {}), "('Individual')\n", (3575, 3589), False, 'import os\n'), ((4225, 4298), 'pandas.DataFrame', 'pan.DataFrame', (['DP_freqs'], {'columns': "['$|\\\\Delta s|$', '$P (S = \\\\Delta s)$']"}), "(DP_freqs, columns=['$|\\\\Delta s|$', '$P (S = \\\\Delta s)$'])\n", (4238, 4298), True, 'import pandas as pan\n'), ((4322, 4352), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6.4, 4.8)'}), '(figsize=(6.4, 4.8))\n', (4332, 4352), True, 'import matplotlib.pyplot as plt\n'), ((4372, 4448), 'seaborn.scatterplot', 'sea.scatterplot', ([], {'data': 'hurtlocker', 'x': '"""$|\\\\Delta s|$"""', 'y': '"""$P (S = \\\\Delta s)$"""'}), "(data=hurtlocker, x='$|\\\\Delta s|$', y='$P (S = \\\\Delta s)$')\n", (4387, 4448), True, 'import seaborn as sea\n'), ((5030, 5047), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (5040, 5047), True, 'import matplotlib.pyplot as plt\n'), ((5049, 5066), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (5059, 5066), True, 'import matplotlib.pyplot as plt\n'), ((5083, 5103), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1)', '(10 ** 5)'], {}), '(1, 10 ** 5)\n', (5091, 5103), True, 'import matplotlib.pyplot as plt\n'), ((5118, 5149), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(10 ** -6.4)', '(10 ** 0.1)'], {}), '(10 ** -6.4, 10 ** 0.1)\n', (5126, 5149), True, 'import matplotlib.pyplot as plt\n'), ((5183, 5293), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('0P(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png' % (p, L,\n CC))"], {'dpi': '(400)'}), "(\n '0P(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png' % (p,\n L, CC), dpi=400)\n", (5194, 5293), True, 'import matplotlib.pyplot as plt\n'), ((5326, 5337), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (5335, 5337), True, 'import matplotlib.pyplot as plt\n'), ((6510, 6567), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (6518, 6567), False, 'import os\n'), ((7721, 7742), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (7736, 7742), False, 'import os\n'), ((7869, 7944), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (7882, 7944), True, 'import numpy as np\n'), ((8264, 8327), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (8277, 8327), True, 'import numpy as np\n'), ((8695, 8718), 'numpy.abs', 'np.abs', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (8701, 8718), True, 'import numpy as np\n'), ((8757, 8826), 'powerlaw.Fit', 'powerlaw.Fit', (['data_temp[:, 5]'], {'discrete': '(True)', 'estimate_discrete': '(False)'}), '(data_temp[:, 5], discrete=True, estimate_discrete=False)\n', (8769, 8826), False, 'import powerlaw\n'), ((9941, 9963), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1)', '(10 ** 5.3)'], {}), '(1, 10 ** 5.3)\n', (9949, 9963), True, 'import matplotlib.pyplot as plt\n'), ((9978, 10005), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$|\\\\Delta s|$"""'], {}), "('$|\\\\Delta s|$')\n", (9988, 10005), True, 'import matplotlib.pyplot as plt\n'), ((10022, 10059), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$P (S \\\\geq \\\\Delta s)$"""'], {}), "('$P (S \\\\geq \\\\Delta s)$')\n", (10032, 10059), True, 'import matplotlib.pyplot as plt\n'), ((10075, 10087), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (10085, 10087), True, 'import matplotlib.pyplot as plt\n'), ((10121, 10149), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (10129, 10149), False, 'import os\n'), ((10268, 10285), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (10276, 10285), False, 'import os\n'), ((10385, 10399), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (10393, 10399), False, 'import os\n'), ((10515, 10537), 'os.chdir', 'os.chdir', (['"""Individual"""'], {}), "('Individual')\n", (10523, 10537), False, 'import os\n'), ((10643, 10660), 'os.chdir', 'os.chdir', (['"""1-CDF"""'], {}), "('1-CDF')\n", (10651, 10660), False, 'import os\n'), ((10955, 11081), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Better Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png'\n % (p, L, CC))"], {'dpi': '(400)'}), "(\n 'Better Fit 1- CDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png'\n % (p, L, CC), dpi=400)\n", (10966, 11081), True, 'import matplotlib.pyplot as plt\n'), ((11113, 11124), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11122, 11124), True, 'import matplotlib.pyplot as plt\n'), ((11158, 11176), 'os.chdir', 'os.chdir', (['"""../../"""'], {}), "('../../')\n", (11166, 11176), False, 'import os\n'), ((12219, 12241), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1)', '(10 ** 5.3)'], {}), '(1, 10 ** 5.3)\n', (12227, 12241), True, 'import matplotlib.pyplot as plt\n'), ((12256, 12283), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$|\\\\Delta s|$"""'], {}), "('$|\\\\Delta s|$')\n", (12266, 12283), True, 'import matplotlib.pyplot as plt\n'), ((12300, 12333), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$P (S = \\\\Delta s)$"""'], {}), "('$P (S = \\\\Delta s)$')\n", (12310, 12333), True, 'import matplotlib.pyplot as plt\n'), ((12350, 12362), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (12360, 12362), True, 'import matplotlib.pyplot as plt\n'), ((12380, 12503), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Better Fit PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png'\n % (p, L, CC))"], {'dpi': '(400)'}), "(\n 'Better Fit PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png'\n % (p, L, CC), dpi=400)\n", (12391, 12503), True, 'import matplotlib.pyplot as plt\n'), ((12535, 12546), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (12544, 12546), True, 'import matplotlib.pyplot as plt\n'), ((14368, 14425), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (14376, 14425), False, 'import os\n'), ((15579, 15600), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (15594, 15600), False, 'import os\n'), ((15727, 15802), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (15740, 15802), True, 'import numpy as np\n'), ((16237, 16300), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (16250, 16300), True, 'import numpy as np\n'), ((16546, 16569), 'numpy.abs', 'np.abs', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (16552, 16569), True, 'import numpy as np\n'), ((16979, 17012), 'numpy.insert', 'np.insert', (['DP_freqs', '(0)', 'p'], {'axis': '(1)'}), '(DP_freqs, 0, p, axis=1)\n', (16988, 17012), True, 'import numpy as np\n'), ((21901, 21922), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (21916, 21922), False, 'import os\n'), ((22049, 22124), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (22062, 22124), True, 'import numpy as np\n'), ((22559, 22622), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (22572, 22622), True, 'import numpy as np\n'), ((22868, 22891), 'numpy.abs', 'np.abs', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (22874, 22891), True, 'import numpy as np\n'), ((23301, 23334), 'numpy.insert', 'np.insert', (['DP_freqs', '(0)', 'p'], {'axis': '(1)'}), '(DP_freqs, 0, p, axis=1)\n', (23310, 23334), True, 'import numpy as np\n'), ((25688, 25709), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (25703, 25709), False, 'import os\n'), ((25836, 25911), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (25849, 25911), True, 'import numpy as np\n'), ((26179, 26242), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (26192, 26242), True, 'import numpy as np\n'), ((27904, 27937), 'numpy.insert', 'np.insert', (['DP_freqs', '(3)', 'p'], {'axis': '(1)'}), '(DP_freqs, 3, p, axis=1)\n', (27913, 27937), True, 'import numpy as np\n'), ((28705, 28733), 'os.chdir', 'os.chdir', (['"""../../../figures"""'], {}), "('../../../figures')\n", (28713, 28733), False, 'import os\n'), ((28852, 28869), 'os.chdir', 'os.chdir', (['"""del_S"""'], {}), "('del_S')\n", (28860, 28869), False, 'import os\n'), ((28969, 28983), 'os.chdir', 'os.chdir', (['"""DP"""'], {}), "('DP')\n", (28977, 28983), False, 'import os\n'), ((29099, 29121), 'os.chdir', 'os.chdir', (['"""Individual"""'], {}), "('Individual')\n", (29107, 29121), False, 'import os\n'), ((29233, 29253), 'os.chdir', 'os.chdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (29241, 29253), False, 'import os\n'), ((29653, 29754), 'pandas.DataFrame', 'pan.DataFrame', (['DP_freqs'], {'columns': "['$\\\\Delta s$', '$P (S = \\\\Delta s)$', 'Cross-Correlation', 'p']"}), "(DP_freqs, columns=['$\\\\Delta s$', '$P (S = \\\\Delta s)$',\n 'Cross-Correlation', 'p'])\n", (29666, 29754), True, 'import pandas as pan\n'), ((29774, 29804), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6.4, 4.8)'}), '(figsize=(6.4, 4.8))\n', (29784, 29804), True, 'import matplotlib.pyplot as plt\n'), ((29930, 30004), 'seaborn.scatterplot', 'sea.scatterplot', ([], {'data': 'hurtlocker', 'x': '"""$\\\\Delta s$"""', 'y': '"""$P (S = \\\\Delta s)$"""'}), "(data=hurtlocker, x='$\\\\Delta s$', y='$P (S = \\\\Delta s)$')\n", (29945, 30004), True, 'import seaborn as sea\n'), ((30262, 30279), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (30272, 30279), True, 'import matplotlib.pyplot as plt\n'), ((30352, 30383), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(10 ** -6.4)', '(10 ** 0.1)'], {}), '(10 ** -6.4, 10 ** 0.1)\n', (30360, 30383), True, 'import matplotlib.pyplot as plt\n'), ((31141, 31262), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png' %\n (p, L, CC))"], {'dpi': '(400)'}), "(\n 'Symmetry PDF(del(s)) vs del(s) --- p_%f - Grid Size (G)_%d - CC_%3.2f.png'\n % (p, L, CC), dpi=400)\n", (31152, 31262), True, 'import matplotlib.pyplot as plt\n'), ((31294, 31305), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (31303, 31305), True, 'import matplotlib.pyplot as plt\n'), ((31322, 31383), 'os.chdir', 'os.chdir', (['"""..\\\\..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP"""'], {}), "('..\\\\..\\\\..\\\\..\\\\..\\\\..\\\\analysis\\\\Mass Action\\\\DP')\n", (31330, 31383), False, 'import os\n'), ((33690, 33711), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (33705, 33711), False, 'import os\n'), ((33838, 33913), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (33851, 33913), True, 'import numpy as np\n'), ((34348, 34411), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (34361, 34411), True, 'import numpy as np\n'), ((34657, 34680), 'numpy.abs', 'np.abs', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (34663, 34680), True, 'import numpy as np\n'), ((35500, 35538), 'numpy.insert', 'np.insert', (['DP_freqs_band', '(0)', 'p'], {'axis': '(1)'}), '(DP_freqs_band, 0, p, axis=1)\n', (35509, 35538), True, 'import numpy as np\n'), ((38598, 38619), 'os.path.getsize', 'os.path.getsize', (['file'], {}), '(file)\n', (38613, 38619), False, 'import os\n'), ((38746, 38821), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)', 'max_rows': '(3)'}), "(file, delimiter=',', comments='#', skip_header=1, max_rows=3)\n", (38759, 38821), True, 'import numpy as np\n'), ((39185, 39248), 'numpy.genfromtxt', 'np.genfromtxt', (['file'], {'delimiter': '""","""', 'comments': '"""#"""', 'skip_header': '(1)'}), "(file, delimiter=',', comments='#', skip_header=1)\n", (39198, 39248), True, 'import numpy as np\n'), ((2010, 2046), 'collections.Counter', 'collections.Counter', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (2029, 2046), False, 'import collections\n'), ((3234, 3256), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (3247, 3256), False, 'import os\n'), ((3286, 3303), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (3294, 3303), False, 'import os\n'), ((3357, 3376), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (3370, 3376), False, 'import os\n'), ((3406, 3420), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (3414, 3420), False, 'import os\n'), ((3471, 3498), 'os.path.isdir', 'os.path.isdir', (['"""Individual"""'], {}), "('Individual')\n", (3484, 3498), False, 'import os\n'), ((3528, 3550), 'os.mkdir', 'os.mkdir', (['"""Individual"""'], {}), "('Individual')\n", (3536, 3550), False, 'import os\n'), ((10182, 10204), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (10195, 10204), False, 'import os\n'), ((10234, 10251), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (10242, 10251), False, 'import os\n'), ((10305, 10324), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (10318, 10324), False, 'import os\n'), ((10354, 10368), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (10362, 10368), False, 'import os\n'), ((10419, 10446), 'os.path.isdir', 'os.path.isdir', (['"""Individual"""'], {}), "('Individual')\n", (10432, 10446), False, 'import os\n'), ((10476, 10498), 'os.mkdir', 'os.mkdir', (['"""Individual"""'], {}), "('Individual')\n", (10484, 10498), False, 'import os\n'), ((10557, 10579), 'os.path.isdir', 'os.path.isdir', (['"""1-CDF"""'], {}), "('1-CDF')\n", (10570, 10579), False, 'import os\n'), ((10609, 10626), 'os.mkdir', 'os.mkdir', (['"""1-CDF"""'], {}), "('1-CDF')\n", (10617, 10626), False, 'import os\n'), ((16603, 16639), 'collections.Counter', 'collections.Counter', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (16622, 16639), False, 'import collections\n'), ((22925, 22961), 'collections.Counter', 'collections.Counter', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (22944, 22961), False, 'import collections\n'), ((26546, 26582), 'collections.Counter', 'collections.Counter', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (26565, 26582), False, 'import collections\n'), ((27740, 27763), 'numpy.sign', 'np.sign', (['DP_freqs[:, 0]'], {}), '(DP_freqs[:, 0])\n', (27747, 27763), True, 'import numpy as np\n'), ((28331, 28375), 'numpy.concatenate', 'np.concatenate', (['(MastBind, DP_freqs)'], {'axis': '(0)'}), '((MastBind, DP_freqs), axis=0)\n', (28345, 28375), True, 'import numpy as np\n'), ((28766, 28788), 'os.path.isdir', 'os.path.isdir', (['"""del_S"""'], {}), "('del_S')\n", (28779, 28788), False, 'import os\n'), ((28818, 28835), 'os.mkdir', 'os.mkdir', (['"""del_S"""'], {}), "('del_S')\n", (28826, 28835), False, 'import os\n'), ((28889, 28908), 'os.path.isdir', 'os.path.isdir', (['"""DP"""'], {}), "('DP')\n", (28902, 28908), False, 'import os\n'), ((28938, 28952), 'os.mkdir', 'os.mkdir', (['"""DP"""'], {}), "('DP')\n", (28946, 28952), False, 'import os\n'), ((29003, 29030), 'os.path.isdir', 'os.path.isdir', (['"""Individual"""'], {}), "('Individual')\n", (29016, 29030), False, 'import os\n'), ((29060, 29082), 'os.mkdir', 'os.mkdir', (['"""Individual"""'], {}), "('Individual')\n", (29068, 29082), False, 'import os\n'), ((29141, 29166), 'os.path.isdir', 'os.path.isdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (29154, 29166), False, 'import os\n'), ((29196, 29216), 'os.mkdir', 'os.mkdir', (['"""Symmetry"""'], {}), "('Symmetry')\n", (29204, 29216), False, 'import os\n'), ((34714, 34750), 'collections.Counter', 'collections.Counter', (['data_temp[:, 5]'], {}), '(data_temp[:, 5])\n', (34733, 34750), False, 'import collections\n'), ((45291, 45334), 'math.exp', 'math.exp', (['(lag * grim_fandango[t, 5] * k * k)'], {}), '(lag * grim_fandango[t, 5] * k * k)\n', (45299, 45334), False, 'import math\n'), ((27773, 27795), 'numpy.abs', 'np.abs', (['DP_freqs[:, 0]'], {}), '(DP_freqs[:, 0])\n', (27779, 27795), True, 'import numpy as np\n')]
import streamlit as st import numpy as np import pandas as pd import requests import re import altair as alt # Find all available data def find_all_spreadsheets(): available_data = {} r = requests.get('https://www.football-data.co.uk/downloadm.php') if r.status_code != 200: print('Oh dear. Error {}'.format(r.status_code)) return -1 matches = re.findall('(mmz(.*?)[0-9]+-[0-9]+(.*?).[xls]+")',r.text) for match in matches: tmp = match[0].replace('"','') season = re.search('[0-9]+-[0-9]+',tmp).group() available_data[season] = tmp return available_data def load_data(data_url): data = pd.read_csv(data_url) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) data['datetime'] = pd.to_datetime(data['date'] + ' ' + data['time']) data = data.drop(['date','time'],axis=1) # Rearrange columns cols = data.columns.tolist() cols.remove('datetime') cols.insert(0,'datetime') data = data[cols] return data def season_spreadsheet(data_url): url = 'https://www.football-data.co.uk/'+data_url data = pd.read_excel(url,sheet_name=None) return data @st.cache def load_all_data(spreadsheets): # Silly. But it works.. base_url = 'https://www.football-data.co.uk/' big_df = pd.DataFrame() all_keys = list(spreadsheets.keys()) stop_season = '2014-2015' # stop_season = '2018-2019' pos = all_keys.index(stop_season) for c,key in enumerate(all_keys): print(key) if key == stop_season: break data_state.text('Loading season {} ... only {} left to go'.format(key,pos-c)) url = base_url + spreadsheets[key] og_spreadsheet = pd.read_excel(url,None) big_spreadsheet = pd.concat(og_spreadsheet, ignore_index=True) # Convert date to datetime object #big_spreadsheet['Date'] = pd.to_datetime(big_spreadsheet['Date']) big_spreadsheet.loc[big_spreadsheet.index,'Date'] = pd.to_datetime(big_spreadsheet['Date']) #big_spreadsheet['season'] = key big_spreadsheet.loc[big_spreadsheet.index,'season'] = key #big_spreadsheet['s-year'] = key[5:] big_spreadsheet.loc[big_spreadsheet.index,'s-year'] = key[5:] #big_spreadsheet['s-year'] = big_spreadsheet['s-year'].astype(int) big_spreadsheet.loc[big_spreadsheet.index,'s-year'] = big_spreadsheet['s-year'].astype(int) if 'AG' in big_df.columns: #big_spreadsheet['total-goals'] = big_spreadsheet['HG'] + big_spreadsheet['AG'] big_spreadsheet.loc[big_spreadsheet.index,'total-goals'] = big_spreadsheet['HG'] + big_spreadsheet['AG'] else: #big_spreadsheet['total-goals'] = big_spreadsheet['FTHG'] + big_spreadsheet['FTAG'] big_spreadsheet.loc[big_spreadsheet.index,'total-goals'] = big_spreadsheet['FTHG'] + big_spreadsheet['FTAG'] big_df = big_df.append(big_spreadsheet, sort=False,ignore_index=True) big_df = big_df[big_df['total-goals'].isna()==False] return big_df.sort_values('Date',ascending=False)#.dropna(axis=0,how='any') def prev_match(df,order_specific=False): small = df[['Date','HomeTeam','AwayTeam','total-goals']] small = small.dropna(how='all') if order_specific: small.loc[small.index,'hash'] = (small['HomeTeam'] + small['AwayTeam']).apply(hash) else: small.loc[small.index,'hash'] = small['HomeTeam'].apply(hash) + small['AwayTeam'].apply(hash) return small.drop_duplicates(subset='hash', keep="first") def prev_match_selection(df,order_specific=True,sel_type=None,total_goals=2.5): # Return list of pairs where certain condition was satisfied small = df[['Date','HomeTeam','AwayTeam','total-goals']] small = small.dropna(how='all') if order_specific: small.loc[small.index,'hash'] = (small['HomeTeam'] + small['AwayTeam']).apply(hash) else: small.loc[small.index,'hash'] = small['HomeTeam'].apply(hash) + small['AwayTeam'].apply(hash) tmp = sel_type.split('/') games_played = int(tmp[1]) min_goals = int(tmp[0]) # Find the total matches played criteria grouped_matches = small.groupby('hash').head(games_played) # Only select matches where total-goals was satisfied filtered_matches = grouped_matches[grouped_matches['total-goals'].gt(total_goals)] # Count how many matches satisfied the total-goals criterion hash_sizes = filtered_matches.groupby('hash').size().reset_index(name='counts') # Only keep matches that satisfy the criterion good_hashes = hash_sizes[hash_sizes['counts'].ge(min_goals)] # Merge back to find Home and Away team names merged = pd.merge(small,good_hashes,left_on='hash',right_on='hash',copy=False) merged.loc[merged.index,'total-goals'] = np.ceil(total_goals) return merged[['HomeTeam','AwayTeam','total-goals','hash']].drop_duplicates() def find_stats(test_df,decision_df,order_specific=True,stats_type='last-match',misc=None): # Add hashes appropriately if order_specific: test_df.loc[test_df.index,'hash'] = (test_df['HomeTeam']+test_df['AwayTeam']).apply(hash) else: test_df.loc[test_df.index,'hash'] = test_df['HomeTeam'].apply(hash)+test_df['AwayTeam'].apply(hash) o = {'accuracy':0,'data':None} if order_specific: # Match test_df with decision_df on hashes merged = pd.merge(test_df,decision_df,left_on='hash',right_on='hash',copy=False,suffixes=['_t','_d']) merged_full = merged merged = merged_full[['hash','total-goals_t','total-goals_d',#'HomeTeam_t','AwayTeam_t','HomeTeam_d','AwayTeam_d' ]] merged.loc[merged.index,'correct'] = 0 merged.loc[( ((merged['total-goals_t']>2.5) & (merged['total-goals_d']>2.5)) | ((merged['total-goals_t']<2.5) & (merged['total-goals_d']<2.5)) ) ,'correct' ] = 1 o['accuracy'] = merged['correct'].mean() if 'Date_t' in merged_full.keys(): date_var = 'Date_t' else: date_var = 'Date' o['data'] = [merged_full[[date_var,'HomeTeam_t','AwayTeam_t','total-goals_t','total-goals_d']]] else: # This makes it harder, if more than one game, will have to update stats in between # Usually each season has two rounds for each team ?? first_round = test_df.drop_duplicates(subset='hash', keep="last") second_round = test_df.drop(first_round.index) # st.write('first round',first_round) # st.write(first_round.shape) # st.write('second round',second_round) # st.write(second_round.shape) # st.write('test_df',test_df) # Workout decisions for the first round merged1 = pd.merge(first_round,decision_df,on='hash',copy=False,suffixes=['_t','_d']) merged1 = merged1.drop_duplicates(subset='hash', keep="last") merged1 = merged1.drop(columns=['HomeTeam_d','AwayTeam_d']) # st.write(merged1) res = merged1[['hash']] res['total-goals'] = merged1['total-goals_t'] # Flag correct decision merged1.loc[merged1.index,'correct'] = 0 merged1.loc[( ((merged1['total-goals_t']>2.5) & (merged1['total-goals_d']>2.5)) | ((merged1['total-goals_t']<2.5) & (merged1['total-goals_d']<2.5)) ) ,'correct' ] = 1 # st.write('first round choices',merged1[['HomeTeam_t','AwayTeam_t','total-goals_t','total-goals_d','correct']]) # Update stats for second round if not second_round.empty: if stats_type == 'last-match': # Find total goals from previous play merged2 = pd.merge(second_round,res,left_on='hash',right_on='hash',copy=False,suffixes=['_t','_d']) merged2.loc[merged2.index,'correct'] = 0 merged2.loc[( ((merged2['total-goals_t']>2.5) & (merged2['total-goals_d']>2.5)) | ((merged2['total-goals_t']<2.5) & (merged2['total-goals_d']<2.5)) ) ,'correct' ] = 1 elif stats_type == 'xytotal': if not misc is None: x_y_type = misc['sel_type'] total_goals = misc['total_goals'] hist_data = misc['hist_data'] new_data_dirty = merged1.drop(['hash','correct'],axis=1) new_data = new_data_dirty.rename(columns={'HomeTeam_t':'HomeTeam','AwayTeam_t':'AwayTeam','total-goals_t':'total-goals'}).sort_values('Date',ascending=False) combined = new_data.append(hist_data,ignore_index=True) second_round_choices = prev_match_selection(combined,order_specific=order_specific,sel_type=x_y_type,total_goals=total_goals) merged2 = pd.merge(second_round,second_round_choices,on='hash',copy=False,suffixes=['_t','_d']) second_round_choices = second_round_choices[['hash','total-goals']].drop_duplicates() # st.write('second_round_choices',second_round_choices) # st.write(second_round_choices.shape) # Find total goals from previous play merged2 = pd.merge(second_round,second_round_choices,left_on='hash',right_on='hash',copy=False,suffixes=['_t','_d']) merged2.loc[merged2.index,'correct'] = 0 # st.write(merged2[['HomeTeam','AwayTeam','total-goals_t','total-goals_d']]) merged2.loc[( ((merged2['total-goals_t']>2.5) & (merged2['total-goals_d']>2.5)) | ((merged2['total-goals_t']<2.5) & (merged2['total-goals_d']<2.5)) ) ,'correct' ] = 1 o['accuracy'] = np.array(list(merged2['correct'])+list(merged1['correct'])).mean() if 'Date_t' in merged1.keys(): date_val = 'Date_t' else: date_val = 'Date' o['data'] = [merged1[[date_val,'HomeTeam_t','AwayTeam_t','total-goals_t','total-goals_d']], merged2[['Date','HomeTeam','AwayTeam','total-goals_t','total-goals_d']]] else: o['accuracy'] = np.array(list(merged1['correct'])).mean() if 'Date_t' in merged1.keys(): date_val = 'Date_t' else: date_val = 'Date' o['data'] = [merged1[[date_val,'HomeTeam_t','AwayTeam_t','total-goals_t','total-goals_d']]] return o def calc_roi(season_odds,season_results,chosen_odds=None): # > 2.5 goals #BbAv>2.5 = Betbrain average over 2.5 goals #BbAv<2.5 = Betbrain average under 2.5 goals merged = pd.merge(season_odds,season_results,left_on=['Date','AwayTeam','HomeTeam'],right_on=['Date','AwayTeam','HomeTeam'],how='inner') # st.write('season_odds',season_odds.shape) # st.write('season_results',season_results.shape) # # st.write('merged',merged) # st.write('merged',merged.shape) clean = merged bet_size = 1 # Check that total-goals column was created # if not then go by the odds if 'total-goals_t' in clean.keys() and 'total-goals_d' in clean.keys(): # add a flag to mark correctness clean.loc[clean.index,'correct>2.5'] = 0 clean.loc[clean.index,'correct<2.5'] = 0 clean.loc[clean.index,'correct'] = 0 clean.loc[ ((clean['total-goals_t']>2.5) & (clean['total-goals_d']>2.5)) ,'correct>2.5' ] = 1 clean.loc[ ((clean['total-goals_t']<2.5) & (clean['total-goals_d']<2.5)) ,'correct<2.5' ] = 1 clean.loc[(clean['correct>2.5']==1) | (clean['correct<2.5']==1),'correct'] = 1 # st.write(clean) broker_names = [] won_sizes = [] lost_sizes = [] succ_rates = [] avg_prices = [] rois = [] total_costs = [] profits = [] brokers = ['B365','P','GB','BbAv'] avail_brokers = [] # Lowest Broker for selection available_odds_gt = [] available_odds_lt = [] for b in brokers: b_str_gt = '{}>2.5'.format(b) b_str_lt = '{}<2.5'.format(b) if b_str_gt in clean.keys(): available_odds_gt.append(b_str_gt) available_odds_lt.append(b_str_lt) avail_brokers.append(b) # Add new columns clean.loc[clean.index,'min>2.5']=clean[available_odds_gt].min(axis=1) clean.loc[clean.index,'max>2.5']=clean[available_odds_gt].max(axis=1) clean.loc[clean.index,'min<2.5']=clean[available_odds_lt].min(axis=1) clean.loc[clean.index,'max<2.5']=clean[available_odds_lt].max(axis=1) clean.loc[clean.index,'min-odds']=clean[available_odds_lt+available_odds_gt].min(axis=1) clean.loc[clean.index,'max-odds']=clean[list(available_odds_lt)+list(available_odds_gt)].max(axis=1) for c,b in enumerate(avail_brokers): broker = clean[[available_odds_gt[c],available_odds_lt[c],'correct','correct>2.5','correct<2.5']] broker = broker.dropna(axis=0,how='any') if broker.shape[0] > 0: lost_size = broker['correct'].value_counts(dropna=False)[0]*bet_size correct_rows_gt = broker[broker['correct>2.5']==1] correct_rows_lt = broker[broker['correct<2.5']==1] won_size = (bet_size*(correct_rows_gt[available_odds_gt[c]]).sum(skipna=True) + bet_size*(correct_rows_lt[available_odds_lt[c]]).sum(skipna=True)) profit = won_size - lost_size succ_rate = (correct_rows_gt.shape[0]+correct_rows_lt.shape[0])/(broker.shape[0]) avg_price = np.array(list(correct_rows_gt[available_odds_gt[c]])+list(correct_rows_lt[available_odds_lt[c]])).mean() total_cost = bet_size*broker.shape[0] roi = profit/total_cost broker_names.append(b) won_sizes.append(won_size) lost_sizes.append(lost_size) succ_rates.append(succ_rate) avg_prices.append(avg_price) rois.append(roi) total_costs.append(total_cost) profits.append(profit) if 'B365C>2.5' in clean.keys(): broker = clean[['B365C>2.5','B365C<2.5','correct','correct>2.5','correct<2.5']] broker = broker.dropna(axis=0,how='any') if broker.shape[0] > 0: lost_size = broker['correct'].value_counts(dropna=False)[0]*bet_size correct_rows_gt = broker[broker['correct>2.5']==1] correct_rows_lt = broker[broker['correct<2.5']==1] won_size = bet_size*(correct_rows_gt['B365C>2.5']+0).sum(skipna=True) + bet_size*(correct_rows_lt['B365C<2.5']+0).sum(skipna=True) profit = won_size - lost_size succ_rate = (correct_rows_gt.shape[0]+correct_rows_lt.shape[0])/(broker.shape[0]) avg_price = np.array(list(correct_rows_gt['B365C>2.5'])+list(correct_rows_lt['B365C<2.5'])).mean() total_cost = bet_size*broker.shape[0] roi = profit/total_cost broker_names.append('Bet365Close') won_sizes.append(won_size) lost_sizes.append(lost_size) succ_rates.append(succ_rate) avg_prices.append(avg_price) rois.append(roi) total_costs.append(total_cost) profits.append(profit) if 'PC>2.5' in clean.keys(): broker = clean[['PC>2.5','PC<2.5','correct','correct>2.5','correct<2.5']] broker = broker.dropna(axis=0,how='any') if broker.shape[0] > 0: lost_size = broker['correct'].value_counts(dropna=False)[0]*bet_size correct_rows_gt = broker[broker['correct>2.5']==1] correct_rows_lt = broker[broker['correct<2.5']==1] won_size = bet_size*(correct_rows_gt['PC>2.5']+0).sum(skipna=True) + bet_size*(correct_rows_lt['PC<2.5']+0).sum(skipna=True) profit = won_size - lost_size succ_rate = (correct_rows_gt.shape[0]+correct_rows_lt.shape[0])/(broker.shape[0]) avg_price = np.array(list(correct_rows_gt['PC>2.5'])+list(correct_rows_lt['PC<2.5'])).mean() total_cost = bet_size*broker.shape[0] roi = profit/total_cost broker_names.append('PinnacleClose') won_sizes.append(won_size) lost_sizes.append(lost_size) succ_rates.append(succ_rate) avg_prices.append(avg_price) rois.append(roi) total_costs.append(total_cost) profits.append(profit) # Select lowest broker broker = clean[['min>2.5','min<2.5','correct','correct>2.5','correct<2.5']] broker = broker.dropna(axis=0,how='any') if broker.shape[0] > 0: lost_size = broker['correct'].value_counts(dropna=False)[0]*bet_size correct_rows_gt = broker[broker['correct>2.5']==1] correct_rows_lt = broker[broker['correct<2.5']==1] won_size = bet_size*(correct_rows_gt['min>2.5']+0).sum(skipna=True) + bet_size*(correct_rows_lt['min<2.5']+0).sum(skipna=True) profit = won_size - lost_size succ_rate = (correct_rows_gt.shape[0]+correct_rows_lt.shape[0])/(broker.shape[0]) avg_price = np.array(list(correct_rows_gt['min>2.5'])+list(correct_rows_lt['min<2.5'])).mean() total_cost = bet_size*broker.shape[0] roi = profit/total_cost broker_names.append('MinBroker') won_sizes.append(won_size) lost_sizes.append(lost_size) succ_rates.append(succ_rate) avg_prices.append(avg_price) rois.append(roi) total_costs.append(total_cost) profits.append(profit) # Highest Broker broker = clean[['max>2.5','max<2.5','correct','correct>2.5','correct<2.5']] broker = broker.dropna(axis=0,how='any') if broker.shape[0] > 0: lost_size = broker['correct'].value_counts(dropna=False)[0]*bet_size correct_rows_gt = broker[broker['correct>2.5']==1] correct_rows_lt = broker[broker['correct<2.5']==1] won_size = bet_size*(correct_rows_gt['max>2.5']+0).sum(skipna=True) + bet_size*(correct_rows_lt['max<2.5']+0).sum(skipna=True) profit = won_size - lost_size succ_rate = (correct_rows_gt.shape[0]+correct_rows_lt.shape[0])/(broker.shape[0]) avg_price = np.array(list(correct_rows_gt['max>2.5'])+list(correct_rows_lt['max<2.5'])).mean() total_cost = bet_size*broker.shape[0] roi = profit/total_cost broker_names.append('MaxBroker') won_sizes.append(won_size) lost_sizes.append(lost_size) succ_rates.append(succ_rate) avg_prices.append(avg_price) rois.append(roi) total_costs.append(total_cost) profits.append(profit) output_table = pd.DataFrame({'broker-name':broker_names, 'won-size':won_sizes, 'profit':profits, # 'loss':lost_sizes, 'succ-rate':succ_rates, 'avg-price':avg_prices, 'roi':rois, 'total-cost':total_costs }) st.write('### Selected odds',clean) st.write('### Results',output_table) else: #TODO: Calculate results based on odds (highest and lowest) pass def filter_teams(df,chosen_n=5,filter_type='TotalAll'): # Select only last season data last_season = df[df['s-year']==df['s-year'].max()] # Rank = goals/num_games if filter_type == 'Total goals Home+Away': # Rank teams by total scored goals try: home = hist_data[['HomeTeam','FTHG']].rename(columns={'HomeTeam':'Team','FTHG':'Goals'}) except: home = hist_data[['HomeTeam','HG']].rename(columns={'HomeTeam':'Team','HG':'Goals'}) try: away = hist_data[['AwayTeam','FTAG']].rename(columns={'AwayTeam':'Team','FTAG':'Goals'}) except: away = hist_data[['AwayTeam','AG']].rename(columns={'AwayTeam':'Team','AG':'Goals'}) teams = home.append(away) goals_by_teams = teams[['Team','Goals']].groupby('Team').sum() games_by_teams = teams[['Team','Goals']].groupby('Team').count() rank = (goals_by_teams/games_by_teams).sort_values('Goals',ascending=False).head(chosen_n).index home_teams = pd.DataFrame(rank) merge_home = pd.merge(df,home_teams,left_on='HomeTeam',right_on='Team',how='inner') merge_away = pd.merge(df,home_teams,left_on='AwayTeam',right_on='Team',how='inner') merge = merge_home.append(merge_away).reset_index() # st.write(merge) return merge elif filter_type == 'Total goals Home': # Rank teams on total goals when was at home try: goals_by_teams = last_season[['HomeTeam','FTHG']].groupby('HomeTeam').sum() games_by_teams = last_season[['HomeTeam','FTHG']].groupby('HomeTeam').count() rank = (goals_by_teams/games_by_teams).sort_values('FTHG',ascending=False).head(chosen_n) except: goals_by_teams = last_season[['HomeTeam','HG']].groupby('HomeTeam').sum() games_by_teams = last_season[['HomeTeam','HG']].groupby('HomeTeam').count() rank = (goals_by_teams/games_by_teams).sort_values('HG',ascending=False).head(chosen_n).index home_teams = pd.DataFrame(rank) merge = pd.merge(df,home_teams,left_on='HomeTeam',right_on='HomeTeam',how='inner') return merge elif filter_type == 'Total goals Away': # Rank teams on total goals when was away try: goals_by_teams = last_season[['AwayTeam','FTAG']].groupby('AwayTeam').sum() games_by_teams = last_season[['AwayTeam','FTAG']].groupby('AwayTeam').count() rank = (goals_by_teams/games_by_teams).sort_values('FTAG',ascending=False).head(chosen_n) except: goals_by_teams = last_season[['AwayTeam','AG']].groupby('AwayTeam').sum() games_by_teams = last_season[['AwayTeam','AG']].groupby('AwayTeam').count() rank = (goals_by_teams/games_by_teams).sort_values('HG',ascending=False).head(chosen_n).index away_teams = pd.DataFrame(rank) merge = pd.merge(df,away_teams,left_on='AwayTeam',right_on='AwayTeam',how='inner') return merge spreadsheets = find_all_spreadsheets() data_state = st.text('') data_state.text('Pre-processing') big_df = load_all_data(spreadsheets) data_state.text('') season = st.selectbox( "Select season", list(big_df['season'].unique()),1 ) division = st.selectbox( "Select division", list(big_df['Div'].sort_values().unique()),0 ) order_specific = st.sidebar.checkbox('Order specific',1) # Select by exact total number of goals top_n_selection = st.sidebar.checkbox('Top n teams from the previous season',0) st.markdown("""Select a type of Head to head. Two options are available.""") st.markdown("1) Total goals from previous fixture looks at the previous total number of goals in the previous identical match") st.markdown("2) x/y matching with total goals only selects matches where at least x out of y last matches had at least (however many)`total goals'") st.markdown("More filters available i the panel on the left") # Find previous total for all pairs total_type = st.selectbox( "Type of `Head to Head'", ['None','Total goals from previous fixture',"x/y & `total goals' criterion"],0 ) current_year = int(season[5:]) division_data = big_df.loc[big_df['Div'] == division] current_data = division_data.loc[big_df['s-year']==current_year] hist_data = division_data.loc[(big_df['s-year'] < current_year)] if top_n_selection: rank_type = st.sidebar.selectbox( "Rank teams by", ['Total goals Home+Away','Total goals Home','Total goals Away'],0 ) n = st.sidebar.number_input('Number of top teams selected', min_value=1, max_value=len(current_data['HomeTeam'].unique()+current_data['AwayTeam'].unique()), value=5) # Filter teams hist_data = filter_teams(hist_data,chosen_n=n,filter_type=rank_type) test_data = None stats_type = None misc = None if total_type == 'None': pass elif total_type == 'Total goals from previous fixture': test_data = prev_match(hist_data,order_specific=order_specific) stats_type = 'last-match' elif total_type == "x/y & `total goals' criterion": x_y_type = st.selectbox( "Select x/y", ['1/1','1/2','2/2','2/3','3/3','3/4','4/4','4/5','5/5'],5 ) total_goals = st.selectbox( "Select `total goals'", np.linspace(0.5,8.5,9),2 ) test_data = prev_match_selection(hist_data,order_specific=order_specific,sel_type=x_y_type,total_goals=total_goals) stats_type = 'xytotal' misc = {'sel_type':x_y_type,'total_goals':total_goals,'hist_data':hist_data} # Workout how many matches were won with given filters if total_type != 'None': temp = find_stats(current_data,test_data,order_specific=order_specific,stats_type=stats_type,misc=misc) else: temp = {'data':[]} if len(temp['data']) == 1: out_data = temp['data'][0].rename(columns={'HomeTeam_t':'HomeTeam', 'AwayTeam_t':'AwayTeam', # 'total-goals_t':'total-goals', # 'total-goals_d':'total-goals', 'Date_t':'Date', 'Date_d':'Date' }) # st.write('## Selection',out_data) elif len(temp['data']) == 2: out_data1 = temp['data'][0].rename(columns={'HomeTeam_t':'HomeTeam', 'AwayTeam_t':'AwayTeam', # 'total-goals_t':'total-goals', # 'total-goals_d':'total-goals', 'Date_t':'Date', 'Date_d':'Date' }) out_data2 = temp['data'][1].rename(columns={'HomeTeam_t':'HomeTeam', 'AwayTeam_t':'AwayTeam', # 'total-goals_t':'total-goals', # 'total-goals_d':'total-goals', 'Date_t':'Date', 'Date_d':'Date' }) out_data = out_data1.append(out_data2,ignore_index=True) # st.write('## Selection',out_data) if total_type != 'None': calc_roi(current_data,out_data) else: #TODO: Choose best matches based on odds pass
[ "streamlit.markdown", "numpy.ceil", "pandas.read_csv", "pandas.merge", "streamlit.write", "requests.get", "streamlit.sidebar.checkbox", "streamlit.text", "numpy.linspace", "pandas.read_excel", "streamlit.sidebar.selectbox", "streamlit.selectbox", "pandas.DataFrame", "re.findall", "pandas.concat", "pandas.to_datetime", "re.search" ]
[((24432, 24443), 'streamlit.text', 'st.text', (['""""""'], {}), "('')\n", (24439, 24443), True, 'import streamlit as st\n'), ((24732, 24772), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Order specific"""', '(1)'], {}), "('Order specific', 1)\n", (24751, 24772), True, 'import streamlit as st\n'), ((24831, 24893), 'streamlit.sidebar.checkbox', 'st.sidebar.checkbox', (['"""Top n teams from the previous season"""', '(0)'], {}), "('Top n teams from the previous season', 0)\n", (24850, 24893), True, 'import streamlit as st\n'), ((24894, 24966), 'streamlit.markdown', 'st.markdown', (['"""Select a type of Head to head. Two options are available."""'], {}), "('Select a type of Head to head. Two options are available.')\n", (24905, 24966), True, 'import streamlit as st\n'), ((24971, 25108), 'streamlit.markdown', 'st.markdown', (['"""1) Total goals from previous fixture looks at the previous total number of goals in the previous identical match"""'], {}), "(\n '1) Total goals from previous fixture looks at the previous total number of goals in the previous identical match'\n )\n", (24982, 25108), True, 'import streamlit as st\n'), ((25099, 25257), 'streamlit.markdown', 'st.markdown', (['"""2) x/y matching with total goals only selects matches where at least x out of y last matches had at least (however many)`total goals\'"""'], {}), '(\n "2) x/y matching with total goals only selects matches where at least x out of y last matches had at least (however many)`total goals\'"\n )\n', (25110, 25257), True, 'import streamlit as st\n'), ((25248, 25309), 'streamlit.markdown', 'st.markdown', (['"""More filters available i the panel on the left"""'], {}), "('More filters available i the panel on the left')\n", (25259, 25309), True, 'import streamlit as st\n'), ((25360, 25485), 'streamlit.selectbox', 'st.selectbox', (['"""Type of `Head to Head\'"""', '[\'None\', \'Total goals from previous fixture\', "x/y & `total goals\' criterion"]', '(0)'], {}), '("Type of `Head to Head\'", [\'None\',\n \'Total goals from previous fixture\', "x/y & `total goals\' criterion"], 0)\n', (25372, 25485), True, 'import streamlit as st\n'), ((197, 258), 'requests.get', 'requests.get', (['"""https://www.football-data.co.uk/downloadm.php"""'], {}), "('https://www.football-data.co.uk/downloadm.php')\n", (209, 258), False, 'import requests\n'), ((377, 435), 're.findall', 're.findall', (['"""(mmz(.*?)[0-9]+-[0-9]+(.*?).[xls]+")"""', 'r.text'], {}), '(\'(mmz(.*?)[0-9]+-[0-9]+(.*?).[xls]+")\', r.text)\n', (387, 435), False, 'import re\n'), ((657, 678), 'pandas.read_csv', 'pd.read_csv', (['data_url'], {}), '(data_url)\n', (668, 678), True, 'import pandas as pd\n'), ((800, 849), 'pandas.to_datetime', 'pd.to_datetime', (["(data['date'] + ' ' + data['time'])"], {}), "(data['date'] + ' ' + data['time'])\n", (814, 849), True, 'import pandas as pd\n'), ((1149, 1184), 'pandas.read_excel', 'pd.read_excel', (['url'], {'sheet_name': 'None'}), '(url, sheet_name=None)\n', (1162, 1184), True, 'import pandas as pd\n'), ((1335, 1349), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1347, 1349), True, 'import pandas as pd\n'), ((4774, 4847), 'pandas.merge', 'pd.merge', (['small', 'good_hashes'], {'left_on': '"""hash"""', 'right_on': '"""hash"""', 'copy': '(False)'}), "(small, good_hashes, left_on='hash', right_on='hash', copy=False)\n", (4782, 4847), True, 'import pandas as pd\n'), ((4889, 4909), 'numpy.ceil', 'np.ceil', (['total_goals'], {}), '(total_goals)\n', (4896, 4909), True, 'import numpy as np\n'), ((11514, 11653), 'pandas.merge', 'pd.merge', (['season_odds', 'season_results'], {'left_on': "['Date', 'AwayTeam', 'HomeTeam']", 'right_on': "['Date', 'AwayTeam', 'HomeTeam']", 'how': '"""inner"""'}), "(season_odds, season_results, left_on=['Date', 'AwayTeam',\n 'HomeTeam'], right_on=['Date', 'AwayTeam', 'HomeTeam'], how='inner')\n", (11522, 11653), True, 'import pandas as pd\n'), ((25739, 25850), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Rank teams by"""', "['Total goals Home+Away', 'Total goals Home', 'Total goals Away']", '(0)'], {}), "('Rank teams by', ['Total goals Home+Away',\n 'Total goals Home', 'Total goals Away'], 0)\n", (25759, 25850), True, 'import streamlit as st\n'), ((1768, 1792), 'pandas.read_excel', 'pd.read_excel', (['url', 'None'], {}), '(url, None)\n', (1781, 1792), True, 'import pandas as pd\n'), ((1826, 1870), 'pandas.concat', 'pd.concat', (['og_spreadsheet'], {'ignore_index': '(True)'}), '(og_spreadsheet, ignore_index=True)\n', (1835, 1870), True, 'import pandas as pd\n'), ((2049, 2088), 'pandas.to_datetime', 'pd.to_datetime', (["big_spreadsheet['Date']"], {}), "(big_spreadsheet['Date'])\n", (2063, 2088), True, 'import pandas as pd\n'), ((5502, 5604), 'pandas.merge', 'pd.merge', (['test_df', 'decision_df'], {'left_on': '"""hash"""', 'right_on': '"""hash"""', 'copy': '(False)', 'suffixes': "['_t', '_d']"}), "(test_df, decision_df, left_on='hash', right_on='hash', copy=False,\n suffixes=['_t', '_d'])\n", (5510, 5604), True, 'import pandas as pd\n'), ((7027, 7112), 'pandas.merge', 'pd.merge', (['first_round', 'decision_df'], {'on': '"""hash"""', 'copy': '(False)', 'suffixes': "['_t', '_d']"}), "(first_round, decision_df, on='hash', copy=False, suffixes=['_t', '_d']\n )\n", (7035, 7112), True, 'import pandas as pd\n'), ((20676, 20859), 'pandas.DataFrame', 'pd.DataFrame', (["{'broker-name': broker_names, 'won-size': won_sizes, 'profit': profits,\n 'succ-rate': succ_rates, 'avg-price': avg_prices, 'roi': rois,\n 'total-cost': total_costs}"], {}), "({'broker-name': broker_names, 'won-size': won_sizes, 'profit':\n profits, 'succ-rate': succ_rates, 'avg-price': avg_prices, 'roi': rois,\n 'total-cost': total_costs})\n", (20688, 20859), True, 'import pandas as pd\n'), ((21170, 21206), 'streamlit.write', 'st.write', (['"""### Selected odds"""', 'clean'], {}), "('### Selected odds', clean)\n", (21178, 21206), True, 'import streamlit as st\n'), ((21214, 21251), 'streamlit.write', 'st.write', (['"""### Results"""', 'output_table'], {}), "('### Results', output_table)\n", (21222, 21251), True, 'import streamlit as st\n'), ((22388, 22406), 'pandas.DataFrame', 'pd.DataFrame', (['rank'], {}), '(rank)\n', (22400, 22406), True, 'import pandas as pd\n'), ((22428, 22502), 'pandas.merge', 'pd.merge', (['df', 'home_teams'], {'left_on': '"""HomeTeam"""', 'right_on': '"""Team"""', 'how': '"""inner"""'}), "(df, home_teams, left_on='HomeTeam', right_on='Team', how='inner')\n", (22436, 22502), True, 'import pandas as pd\n'), ((22520, 22594), 'pandas.merge', 'pd.merge', (['df', 'home_teams'], {'left_on': '"""AwayTeam"""', 'right_on': '"""Team"""', 'how': '"""inner"""'}), "(df, home_teams, left_on='AwayTeam', right_on='Team', how='inner')\n", (22528, 22594), True, 'import pandas as pd\n'), ((23413, 23431), 'pandas.DataFrame', 'pd.DataFrame', (['rank'], {}), '(rank)\n', (23425, 23431), True, 'import pandas as pd\n'), ((23448, 23526), 'pandas.merge', 'pd.merge', (['df', 'home_teams'], {'left_on': '"""HomeTeam"""', 'right_on': '"""HomeTeam"""', 'how': '"""inner"""'}), "(df, home_teams, left_on='HomeTeam', right_on='HomeTeam', how='inner')\n", (23456, 23526), True, 'import pandas as pd\n'), ((26468, 26566), 'streamlit.selectbox', 'st.selectbox', (['"""Select x/y"""', "['1/1', '1/2', '2/2', '2/3', '3/3', '3/4', '4/4', '4/5', '5/5']", '(5)'], {}), "('Select x/y', ['1/1', '1/2', '2/2', '2/3', '3/3', '3/4', '4/4',\n '4/5', '5/5'], 5)\n", (26480, 26566), True, 'import streamlit as st\n'), ((517, 548), 're.search', 're.search', (['"""[0-9]+-[0-9]+"""', 'tmp'], {}), "('[0-9]+-[0-9]+', tmp)\n", (526, 548), False, 'import re\n'), ((8129, 8228), 'pandas.merge', 'pd.merge', (['second_round', 'res'], {'left_on': '"""hash"""', 'right_on': '"""hash"""', 'copy': '(False)', 'suffixes': "['_t', '_d']"}), "(second_round, res, left_on='hash', right_on='hash', copy=False,\n suffixes=['_t', '_d'])\n", (8137, 8228), True, 'import pandas as pd\n'), ((24248, 24266), 'pandas.DataFrame', 'pd.DataFrame', (['rank'], {}), '(rank)\n', (24260, 24266), True, 'import pandas as pd\n'), ((24283, 24361), 'pandas.merge', 'pd.merge', (['df', 'away_teams'], {'left_on': '"""AwayTeam"""', 'right_on': '"""AwayTeam"""', 'how': '"""inner"""'}), "(df, away_teams, left_on='AwayTeam', right_on='AwayTeam', how='inner')\n", (24291, 24361), True, 'import pandas as pd\n'), ((26648, 26672), 'numpy.linspace', 'np.linspace', (['(0.5)', '(8.5)', '(9)'], {}), '(0.5, 8.5, 9)\n', (26659, 26672), True, 'import numpy as np\n'), ((9464, 9558), 'pandas.merge', 'pd.merge', (['second_round', 'second_round_choices'], {'on': '"""hash"""', 'copy': '(False)', 'suffixes': "['_t', '_d']"}), "(second_round, second_round_choices, on='hash', copy=False,\n suffixes=['_t', '_d'])\n", (9472, 9558), True, 'import pandas as pd\n'), ((9924, 10041), 'pandas.merge', 'pd.merge', (['second_round', 'second_round_choices'], {'left_on': '"""hash"""', 'right_on': '"""hash"""', 'copy': '(False)', 'suffixes': "['_t', '_d']"}), "(second_round, second_round_choices, left_on='hash', right_on=\n 'hash', copy=False, suffixes=['_t', '_d'])\n", (9932, 10041), True, 'import pandas as pd\n')]
"""计算分位数""" from scipy import stats import numpy as np S = 47 N = 100 a = S + 1 b = (N -S) + 1 alpha = 0.05 lu = stats.beta.ppf([alpha/2, 1-alpha/2], a, b) print(lu) ## MC方法 S = 1000 X = stats.beta.rvs(a, b, size=S) X = np.sort(X, axis=0) l = X[round(S*alpha/2)] u = X[round(S*(1-alpha)/2)] print(l,u)
[ "numpy.sort", "scipy.stats.beta.rvs", "scipy.stats.beta.ppf" ]
[((115, 163), 'scipy.stats.beta.ppf', 'stats.beta.ppf', (['[alpha / 2, 1 - alpha / 2]', 'a', 'b'], {}), '([alpha / 2, 1 - alpha / 2], a, b)\n', (129, 163), False, 'from scipy import stats\n'), ((190, 218), 'scipy.stats.beta.rvs', 'stats.beta.rvs', (['a', 'b'], {'size': 'S'}), '(a, b, size=S)\n', (204, 218), False, 'from scipy import stats\n'), ((223, 241), 'numpy.sort', 'np.sort', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (230, 241), True, 'import numpy as np\n')]
# Copyright (c) 2021 PPViT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implement VOLO Class """ import math import copy import numpy as np import paddle import paddle.nn as nn from droppath import DropPath from fold import fold #from utils import MyPrint #myprint = MyPrint() class Identity(nn.Layer): """ Identity layer The output of this layer is the input without any change. Use this layer to avoid using 'if' condition in forward methods """ def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Downsample(nn.Layer): """Apply a Conv2D with kernel size = patch_size and stride = patch_size The shape of input tensor is [N, H, W, C], which will be transposed to [N, C, H, W] and feed into Conv, finally the output is transposed back to [N, H, W, C]. Args: in_embed_dim: int, input feature dimension out_embed_dim: int, output feature dimension patch_size: kernel_size and stride """ def __init__(self, in_embed_dim, out_embed_dim, patch_size): super().__init__() self.proj = nn.Conv2D(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = x.transpose([0, 3, 1, 2]) x = self.proj(x) x = x.transpose([0, 2, 3, 1]) return x class PatchEmbedding(nn.Layer): """Patch Embeddings with stem conv layers If stem conv layers are set, the image is firstly feed into stem layers, stem layers contains 3 conv-bn-relu blocks. Then a proj (conv2d) layer is applied as the patch embedding. Args: image_size: int, input image size, default: 224 stem_conv: bool, if apply stem conv layers, default: False stem_stride: int, conv stride in stem layers, default: 1 patch_size: int, patch size for patch embedding (k and stride for proj conv), default: 8 in_channels: int, input channels, default: 3 hidden_dim: int, input dimension of patch embedding (out dim for stem), default: 64 embed_dim: int, output dimension of patch embedding, default: 384 """ def __init__(self, image_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_channels=3, hidden_dim=64, embed_dim=384): super().__init__() assert patch_size in [4, 8, 16] # define stem conv layers if stem_conv: self.stem = nn.Sequential( nn.Conv2D(in_channels, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias_attr=False), nn.BatchNorm2D(hidden_dim, momentum=0.9), nn.ReLU(), nn.Conv2D(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias_attr=False), nn.BatchNorm2D(hidden_dim, momentum=0.9), nn.ReLU(), nn.Conv2D(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias_attr=False), nn.BatchNorm2D(hidden_dim, momentum=0.9), nn.ReLU(), ) else: self.stem = Identity() # define patch embeddings self.proj = nn.Conv2D(hidden_dim, embed_dim, kernel_size = patch_size // stem_stride, stride = patch_size // stem_stride) # num patches self.num_patches = (image_size // patch_size) * (image_size // patch_size) def forward(self, x): x = self.stem(x) # Identity layer if stem is not set x = self.proj(x) return x class Mlp(nn.Layer): """ MLP module Impl using nn.Linear and activation is GELU, dropout is applied. Ops: fc -> act -> dropout -> fc -> dropout Attributes: fc1: nn.Linear fc2: nn.Linear act: GELU dropout1: dropout after fc1 dropout2: dropout after fc2 """ def __init__(self, in_features, hidden_features, dropout=0.): super(Mlp, self).__init__() w_attr_1, b_attr_1 = self._init_weights() self.fc1 = nn.Linear(in_features, hidden_features, weight_attr=w_attr_1, bias_attr=b_attr_1) w_attr_2, b_attr_2 = self._init_weights() self.fc2 = nn.Linear(hidden_features, in_features, weight_attr=w_attr_2, bias_attr=b_attr_2) self.act = nn.GELU() self.dropout = nn.Dropout(dropout) def _init_weights(self): weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.XavierUniform()) bias_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Normal(std=1e-6)) return weight_attr, bias_attr def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class OutlookerAttention(nn.Layer): """ Outlooker Attention Outlooker attention firstly applies a nn.Linear op, and unfold (im2col) the output tensor, then use tensor reshape to get the 'V'. 'Attn' is obtained by pool, linear and reshape ops applied on input tensor. Then a matmul is applied for 'V' and 'Attn'. Finally, a fold op is applied with a linear projection to get the output. Args: dim: int, all heads dimension num_heads: int, num of heads kernel_size: int, size used in fold/unfold, and pool, default: 3 padding: int, pad used in fold/unfold, default: 1 stride: int, stride used in fold/unfold, and pool, default: 1 qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, qk_scale=None, attention_dropout=0., dropout=0.): super().__init__() self.num_heads = num_heads self.dim = dim self.dim_head = dim // num_heads self.scale = qk_scale or self.dim_head ** -0.5 self.kernel_size = kernel_size self.padding = padding self.stride = stride self.v = nn.Linear(dim, dim, bias_attr=qkv_bias) self.attn = nn.Linear(dim, (kernel_size ** 4) * num_heads) self.attn_dropout = nn.Dropout(attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_dropout = nn.Dropout(dropout) self.softmax = nn.Softmax(axis=-1) self.pool = nn.AvgPool2D(kernel_size=stride, stride=stride, ceil_mode=True) self.unfold = paddle.nn.Unfold(kernel_sizes=kernel_size, strides=self.stride, paddings=self.padding) def forward(self, x): B, H, W, C = x.shape v = self.v(x) # B, H, W, C v = v.transpose([0, 3, 1, 2]) # B, C, H, W h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) # current paddle version has bugs using nn.Unfold v = paddle.nn.functional.unfold(v, kernel_sizes=self.kernel_size, paddings=self.padding, strides=self.stride) # B, C*kernel_size*kernel_size, L(num of patches) v = v.reshape([B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w]) v = v.transpose([0, 1, 4, 3, 2]) x = x.transpose([0, 3, 1, 2]) attn = self.pool(x) attn = attn.transpose([0, 2, 3, 1]) # B, H', W', C attn = self.attn(attn) attn = attn.reshape([B, h*w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size]) attn = attn.transpose([0, 2, 1, 3, 4]) attn = attn * self.scale attn = self.softmax(attn) attn = self.attn_dropout(attn) z = paddle.matmul(attn, v) z = z.transpose([0, 1, 4, 3, 2]) new_shape = [B, C * self.kernel_size * self.kernel_size, h * w] z = z.reshape(new_shape) # Current Paddle dose not have Fold op, we hacked our fold op, see ./fold.py for details z = fold(z, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) z = z.transpose([0, 2, 3, 1]) z = self.proj(z) z = self.proj_dropout(z) return z class Outlooker(nn.Layer): """ Outlooker Outlooker contains norm layers, outlooker attention, mlp and droppath layers, and residual is applied during forward. Args: dim: int, all heads dimension num_heads: int, num of heads kernel_size: int, size used in fold/unfold, and pool, default: 3 padding: int, pad used in fold/unfold, default: 1 mlp_ratio: float, ratio to multiply with dim for mlp hidden feature dim, default: 3. stride: int, stride used in fold/unfold, and pool, default: 1 qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, kernel_size, padding, stride=1, num_heads=1, mlp_ratio=3., attention_dropout=0., droppath=0., qkv_bias=False, qk_scale=None): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = OutlookerAttention(dim, num_heads, kernel_size=kernel_size, padding=padding, stride=stride, qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout) self.drop_path = Droppath(droppath) if droppath > 0. else Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio)) def forward(self, x): h = x x = self.norm1(x) x = self.attn(x) x = self.drop_path(x) x = h + x h = x x = self.norm2(x) x = self.mlp(x) x = self.drop_path(x) x = h + x return x class Attention(nn.Layer): """ Attention Regular Attention module same as ViT Args: dim: int, all heads dimension num_heads: int, num of heads qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attention_dropout=0., dropout=0.): super().__init__() self.num_heads = num_heads self.dim_head = dim // num_heads self.scale = qk_scale or self.dim_head ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(axis=-1) self.proj = nn.Linear(dim, dim) self.proj_dropout = nn.Dropout(dropout) def forward(self, x): B, H, W, C = x.shape qkv = self.qkv(x) qkv = qkv.reshape([B, H * W, 3, self.num_heads, C // self.num_heads]) qkv = qkv.transpose([2, 0, 3, 1, 4]) q, k, v = qkv[0], qkv[1], qkv[2] attn = paddle.matmul(q, k, transpose_y=True) attn = attn * self.scale attn = self.softmax(attn) attn = self.attn_dropout(attn) z = paddle.matmul(attn, v) z = z.transpose([0, 2, 1, 3]) z = z.reshape([B, H, W, C]) z = self.proj(z) z = self.proj_dropout(z) return z class Transformer(nn.Layer): """Transformer Transformer module, same as ViT Args: dim: int, all heads dimension num_heads: int, num of heads mlp_ratio: float, ratio to multiply with dim for mlp hidden feature dim, default: 4. qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, attention_dropout=0, droppath=0.): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout) self.drop_path = DropPath(droppath) if droppath > 0. else Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio)) def forward(self, x): h = x x = self.norm1(x) x = self.attn(x) x = self.drop_path(x) x = h + x h = x x = self.norm2(x) x = self.mlp(x) x = self.drop_path(x) x = h + x return x class ClassAttention(nn.Layer): """ Class Attention Class Attention modlee same as CaiT Args: dim: int, all heads dimension dim_head: int, single heads dimension, default: None num_heads: int, num of heads qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, num_heads=8, dim_head=None, qkv_bias=False, qk_scale=None, attention_dropout=0., dropout=0.): super().__init__() self.num_heads = num_heads if dim_head is not None: self.dim_head = dim_head else: self.dim_head = dim // num_heads self.scale = qk_scale or self.dim_head ** -0.5 self.kv = nn.Linear(dim, self.dim_head * self.num_heads * 2, bias_attr=qkv_bias) self.q = nn.Linear(dim, self.dim_head * self.num_heads, bias_attr=qkv_bias) self.attn_dropout = nn.Dropout(attention_dropout) self.proj = nn.Linear(self.dim_head * self.num_heads, dim) self.proj_dropout = nn.Dropout(dropout) self.softmax = nn.Softmax(axis=-1) def forward(self, x): B, N, C = x.shape kv = self.kv(x) kv = kv.reshape([B, N, 2, self.num_heads, self.dim_head]) kv = kv.transpose([2, 0, 3, 1, 4]) k, v = kv[0], kv[1] q = self.q(x[:, :1, :]) q = q.reshape([B, self.num_heads, 1, self.dim_head]) attn = paddle.matmul(q * self.scale, k, transpose_y=True) attn = self.softmax(attn) attn = self.attn_dropout(attn) cls_embed = paddle.matmul(attn, v) cls_embed = cls_embed.transpose([0, 2, 1, 3]) cls_embed = cls_embed.reshape([B, 1, self.dim_head * self.num_heads]) cls_embed = self.proj(cls_embed) cls_embed = self.proj_dropout(cls_embed) return cls_embed class ClassBlock(nn.Layer): """Class Attention Block (CaiT) CaiT module Args: dim: int, all heads dimension num_heads: int, num of heads mlp_ratio: float, ratio to multiply with dim for mlp hidden feature dim, default: 4. qkv_bias: bool, if True, qkv linear layer is using bias, default: False qk_scale: float, if None, qk_scale is dim_head ** -0.5, default: None attention_dropout: float, dropout rate for attention dropout, default: 0. dropout: float, dropout rate for projection dropout, default: 0. """ def __init__(self, dim, num_heads, dim_head=None, mlp_ratio=4., qkv_bias=False, qk_scale=None, dropout=0., attention_dropout=0., droppath=0.): super().__init__() self.norm1 = nn.LayerNorm(dim) self.attn = ClassAttention(dim, num_heads=num_heads, dim_head=dim_head, qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout, dropout=dropout) self.drop_path = DropPath(droppath) if droppath > 0. else Identity() self.norm2 = nn.LayerNorm(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), dropout=dropout) def forward(self, x): cls_embed = x[:, :1] h = self.norm1(x) h = self.attn(h) h = self.drop_path(h) cls_embed = cls_embed + h h = cls_embed cls_embed = self.norm2(cls_embed) cls_embed = self.mlp(cls_embed) cls_embed = self.drop_path(cls_embed) cls_embed = h + cls_embed out = paddle.concat([cls_embed, x[:, 1:]], axis=1) return out def rand_bbox(size, lam, scale=1): """ get bounding box as token labeling (https://github.com/zihangJiang/TokenLabeling) return: bounding box """ W = size[1] // scale H = size[2] // scale cut_rat = np.sqrt(1. - lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) # uniform cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) # item() get the python native dtype return bbx1.item(), bby1.item(), bbx2.item(), bby2.item() class VOLO(nn.Layer): def __init__(self, layers, image_size=224, in_channels=3, num_classes=1000, patch_size=8, stem_hidden_dim=64, embed_dims=None, num_heads=None, downsamples=None, outlook_attention=None, mlp_ratios=None, qkv_bias=False, qk_scale=None, dropout=0., attention_dropout=0., droppath=0., num_post_layers=2, return_mean=False, return_dense=True, mix_token=True, pooling_scale=2, out_kernel=3, out_stride=2, out_padding=1): super().__init__() self.num_classes = num_classes self.patch_embed = PatchEmbedding(image_size=image_size, stem_conv=True, stem_stride=2, patch_size=patch_size, in_channels=in_channels, hidden_dim=stem_hidden_dim, embed_dim=embed_dims[0]) self.pos_embed = paddle.create_parameter( shape=[1, image_size // patch_size // pooling_scale, image_size // patch_size // pooling_scale, embed_dims[-1]], dtype='float32', default_initializer=nn.initializer.Constant(0.0)) self.pos_dropout = nn.Dropout(dropout) layer_list = [] for i in range(len(layers)): blocks = [] for block_idx in range(layers[i]): block_droppath = droppath * ( block_idx + sum(layers[:i])) / (sum(layers) - 1) if outlook_attention[i]: blocks.append( copy.deepcopy( Outlooker(dim=embed_dims[i], kernel_size=out_kernel, padding=out_padding, stride=out_stride, num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout, droppath=block_droppath))) else: blocks.append( copy.deepcopy( Transformer(dim=embed_dims[i], num_heads=num_heads[i], mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout, droppath=block_droppath)) ) stage = nn.Sequential(*blocks) layer_list.append(stage) if downsamples[i]: layer_list.append(copy.deepcopy(Downsample(embed_dims[i], embed_dims[i + 1], 2))) self.model = nn.LayerList(layer_list) # POST Layers (from CaiT) self.post_model = None if num_post_layers is not None: self.post_model = nn.LayerList([ copy.deepcopy( ClassBlock(dim=embed_dims[-1], num_heads=num_heads[-1], mlp_ratio=mlp_ratios[-1], qkv_bias=qkv_bias, qk_scale=qk_scale, attention_dropout=attention_dropout, droppath=0.) ) for i in range(num_post_layers) ]) self.cls_token = paddle.create_parameter( shape=[1, 1, embed_dims[-1]], dtype='float32', default_initializer=nn.initializer.TruncatedNormal(std=.02)) # Output self.return_mean = return_mean # if True, return mean, not use class token self.return_dense = return_dense # if True, return class token and all feature tokens if return_dense: assert not return_mean, "Cannot return both mean and dense" self.mix_token = mix_token self.pooling_scale = pooling_scale if mix_token: self.beta = 1.0 assert return_dense, 'return all tokens if mix_token is enabled' if return_dense: self.aux_head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else Identity() self.norm = nn.LayerNorm(embed_dims[-1]) self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else Identity() # For training: # TODO: set pos_embed, trunc_normal # TODO: set init weights for linear layers and layernorm layers # TODO: set no weight decay for pos_embed and cls_token def forward(self, x): # Step1: patch embedding x = self.patch_embed(x) x = x.transpose([0, 2, 3, 1]) if self.mix_token and self.training: lam = np.random.beta(self.beta, self.beta) patch_h = x.shape[1] // self.pooling_scale patch_w = x.shape[2] // self.pooling_scale bbx1, bby1, bbx2, bby2 = rand_bbox(x.shape, lam, scale=self.pooling_scale) temp_x = x.clone() sbbx1 = self.pooling_scale * bbx1 sbby1 = self.pooling_scale * bby1 sbbx2 = self.pooling_scale * bbx2 sbby2 = self.pooling_scale * bby2 temp_x[:, sbbx1: sbbx2, sbby1: sbby2, :] = x.flip(axis=[0])[:, sbbx1: sbbx2, sbby1: sbby2, :] x = temp_x else: bbx1, bby1, bbx2, bby2 = 0, 0, 0, 0 # Step2: 2-stages tokens learning for idx, block in enumerate(self.model): if idx == 2: # add pos_embed after outlooker blocks (and a downsample layer) x = x + self.pos_embed x = self.pos_dropout(x) x = block(x) x = x.reshape([x.shape[0], -1, x.shape[-1]]) # B, H*W, C # Step3: post layers (from CaiT) if self.post_model is not None: cls_token = self.cls_token.expand([x.shape[0], -1, -1]) x = paddle.concat([cls_token, x], axis=1) for block in self.post_model: x = block(x) x = self.norm(x) if self.return_mean: return self.head(x.mean(1)) x_cls = self.head(x[:, 0]) if not self.return_dense: return x_cls x_aux = self.aux_head(x[:, 1:]) if not self.training: #NOTE: pytorch Tensor.max() returns a tuple of Tensor: (values, indices), while # paddle Tensor.max() returns a single Tensor: values return x_cls + 0.5 * x_aux.max(1) if self.mix_token and self.training: x_aux = x_aux.reshape([x_aux.shape[0], patch_h, patch_w, x_aux.shape[-1]]) temp_x = x_aux.clone() temp_x[:, bbx1:bbx2, bby1:bby2, :] = x_aux.flip(axis=[0])[:, bbx1:bbx2, bby1:bby2, :] x_aux = temp_x x_aux = x_aux.reshape([x_aux.shape[0], patch_h*patch_w, x_aux.shape[-1]]) return x_cls, x_aux, (bbx1, bby1, bbx2, bby2) def build_volo(config): """build volo model using config""" model = VOLO(image_size=config.DATA.IMAGE_SIZE, layers=config.MODEL.TRANS.LAYERS, embed_dims=config.MODEL.TRANS.EMBED_DIMS, mlp_ratios=config.MODEL.TRANS.MLP_RATIOS, downsamples=config.MODEL.TRANS.DOWNSAMPLES, outlook_attention=config.MODEL.TRANS.OUTLOOK_ATTENTION, stem_hidden_dim=config.MODEL.STEM_HIDDEN_DIM, num_heads=config.MODEL.TRANS.NUM_HEADS, qkv_bias=config.MODEL.TRANS.QKV_BIAS, qk_scale=config.MODEL.TRANS.QK_SCALE) return model
[ "numpy.clip", "numpy.sqrt", "paddle.matmul", "paddle.nn.Sequential", "paddle.nn.LayerNorm", "paddle.nn.LayerList", "fold.fold", "paddle.nn.AvgPool2D", "numpy.random.beta", "paddle.nn.initializer.XavierUniform", "paddle.nn.Softmax", "paddle.nn.Unfold", "paddle.nn.Linear", "paddle.nn.initializer.Normal", "paddle.nn.BatchNorm2D", "paddle.nn.initializer.Constant", "numpy.int", "paddle.nn.Dropout", "math.ceil", "paddle.nn.Conv2D", "droppath.DropPath", "paddle.nn.ReLU", "paddle.nn.GELU", "numpy.random.randint", "paddle.nn.initializer.TruncatedNormal", "paddle.nn.functional.unfold", "paddle.concat" ]
[((20249, 20267), 'numpy.sqrt', 'np.sqrt', (['(1.0 - lam)'], {}), '(1.0 - lam)\n', (20256, 20267), True, 'import numpy as np\n'), ((20279, 20298), 'numpy.int', 'np.int', (['(W * cut_rat)'], {}), '(W * cut_rat)\n', (20285, 20298), True, 'import numpy as np\n'), ((20311, 20330), 'numpy.int', 'np.int', (['(H * cut_rat)'], {}), '(H * cut_rat)\n', (20317, 20330), True, 'import numpy as np\n'), ((20355, 20375), 'numpy.random.randint', 'np.random.randint', (['W'], {}), '(W)\n', (20372, 20375), True, 'import numpy as np\n'), ((20385, 20405), 'numpy.random.randint', 'np.random.randint', (['H'], {}), '(H)\n', (20402, 20405), True, 'import numpy as np\n'), ((20418, 20448), 'numpy.clip', 'np.clip', (['(cx - cut_w // 2)', '(0)', 'W'], {}), '(cx - cut_w // 2, 0, W)\n', (20425, 20448), True, 'import numpy as np\n'), ((20460, 20490), 'numpy.clip', 'np.clip', (['(cy - cut_h // 2)', '(0)', 'H'], {}), '(cy - cut_h // 2, 0, H)\n', (20467, 20490), True, 'import numpy as np\n'), ((20502, 20532), 'numpy.clip', 'np.clip', (['(cx + cut_w // 2)', '(0)', 'W'], {}), '(cx + cut_w // 2, 0, W)\n', (20509, 20532), True, 'import numpy as np\n'), ((20544, 20574), 'numpy.clip', 'np.clip', (['(cy + cut_h // 2)', '(0)', 'H'], {}), '(cy + cut_h // 2, 0, H)\n', (20551, 20574), True, 'import numpy as np\n'), ((1670, 1756), 'paddle.nn.Conv2D', 'nn.Conv2D', (['in_embed_dim', 'out_embed_dim'], {'kernel_size': 'patch_size', 'stride': 'patch_size'}), '(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=\n patch_size)\n', (1679, 1756), True, 'import paddle.nn as nn\n'), ((4290, 4399), 'paddle.nn.Conv2D', 'nn.Conv2D', (['hidden_dim', 'embed_dim'], {'kernel_size': '(patch_size // stem_stride)', 'stride': '(patch_size // stem_stride)'}), '(hidden_dim, embed_dim, kernel_size=patch_size // stem_stride,\n stride=patch_size // stem_stride)\n', (4299, 4399), True, 'import paddle.nn as nn\n'), ((5229, 5315), 'paddle.nn.Linear', 'nn.Linear', (['in_features', 'hidden_features'], {'weight_attr': 'w_attr_1', 'bias_attr': 'b_attr_1'}), '(in_features, hidden_features, weight_attr=w_attr_1, bias_attr=\n b_attr_1)\n', (5238, 5315), True, 'import paddle.nn as nn\n'), ((5472, 5558), 'paddle.nn.Linear', 'nn.Linear', (['hidden_features', 'in_features'], {'weight_attr': 'w_attr_2', 'bias_attr': 'b_attr_2'}), '(hidden_features, in_features, weight_attr=w_attr_2, bias_attr=\n b_attr_2)\n', (5481, 5558), True, 'import paddle.nn as nn\n'), ((5660, 5669), 'paddle.nn.GELU', 'nn.GELU', ([], {}), '()\n', (5667, 5669), True, 'import paddle.nn as nn\n'), ((5693, 5712), 'paddle.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (5703, 5712), True, 'import paddle.nn as nn\n'), ((7760, 7799), 'paddle.nn.Linear', 'nn.Linear', (['dim', 'dim'], {'bias_attr': 'qkv_bias'}), '(dim, dim, bias_attr=qkv_bias)\n', (7769, 7799), True, 'import paddle.nn as nn\n'), ((7820, 7864), 'paddle.nn.Linear', 'nn.Linear', (['dim', '(kernel_size ** 4 * num_heads)'], {}), '(dim, kernel_size ** 4 * num_heads)\n', (7829, 7864), True, 'import paddle.nn as nn\n'), ((7895, 7924), 'paddle.nn.Dropout', 'nn.Dropout', (['attention_dropout'], {}), '(attention_dropout)\n', (7905, 7924), True, 'import paddle.nn as nn\n'), ((7946, 7965), 'paddle.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (7955, 7965), True, 'import paddle.nn as nn\n'), ((7994, 8013), 'paddle.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (8004, 8013), True, 'import paddle.nn as nn\n'), ((8037, 8056), 'paddle.nn.Softmax', 'nn.Softmax', ([], {'axis': '(-1)'}), '(axis=-1)\n', (8047, 8056), True, 'import paddle.nn as nn\n'), ((8078, 8141), 'paddle.nn.AvgPool2D', 'nn.AvgPool2D', ([], {'kernel_size': 'stride', 'stride': 'stride', 'ceil_mode': '(True)'}), '(kernel_size=stride, stride=stride, ceil_mode=True)\n', (8090, 8141), True, 'import paddle.nn as nn\n'), ((8165, 8256), 'paddle.nn.Unfold', 'paddle.nn.Unfold', ([], {'kernel_sizes': 'kernel_size', 'strides': 'self.stride', 'paddings': 'self.padding'}), '(kernel_sizes=kernel_size, strides=self.stride, paddings=\n self.padding)\n', (8181, 8256), False, 'import paddle\n'), ((8538, 8648), 'paddle.nn.functional.unfold', 'paddle.nn.functional.unfold', (['v'], {'kernel_sizes': 'self.kernel_size', 'paddings': 'self.padding', 'strides': 'self.stride'}), '(v, kernel_sizes=self.kernel_size, paddings=self\n .padding, strides=self.stride)\n', (8565, 8648), False, 'import paddle\n'), ((9626, 9648), 'paddle.matmul', 'paddle.matmul', (['attn', 'v'], {}), '(attn, v)\n', (9639, 9648), False, 'import paddle\n'), ((9905, 10009), 'fold.fold', 'fold', (['z'], {'output_size': '(H, W)', 'kernel_size': 'self.kernel_size', 'padding': 'self.padding', 'stride': 'self.stride'}), '(z, output_size=(H, W), kernel_size=self.kernel_size, padding=self.\n padding, stride=self.stride)\n', (9909, 10009), False, 'from fold import fold\n'), ((11387, 11404), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (11399, 11404), True, 'import paddle.nn as nn\n'), ((11963, 11980), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (11975, 11980), True, 'import paddle.nn as nn\n'), ((13236, 13279), 'paddle.nn.Linear', 'nn.Linear', (['dim', '(dim * 3)'], {'bias_attr': 'qkv_bias'}), '(dim, dim * 3, bias_attr=qkv_bias)\n', (13245, 13279), True, 'import paddle.nn as nn\n'), ((13308, 13337), 'paddle.nn.Dropout', 'nn.Dropout', (['attention_dropout'], {}), '(attention_dropout)\n', (13318, 13337), True, 'import paddle.nn as nn\n'), ((13361, 13380), 'paddle.nn.Softmax', 'nn.Softmax', ([], {'axis': '(-1)'}), '(axis=-1)\n', (13371, 13380), True, 'import paddle.nn as nn\n'), ((13401, 13420), 'paddle.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (13410, 13420), True, 'import paddle.nn as nn\n'), ((13449, 13468), 'paddle.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (13459, 13468), True, 'import paddle.nn as nn\n'), ((13733, 13770), 'paddle.matmul', 'paddle.matmul', (['q', 'k'], {'transpose_y': '(True)'}), '(q, k, transpose_y=True)\n', (13746, 13770), False, 'import paddle\n'), ((13890, 13912), 'paddle.matmul', 'paddle.matmul', (['attn', 'v'], {}), '(attn, v)\n', (13903, 13912), False, 'import paddle\n'), ((14938, 14955), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (14950, 14955), True, 'import paddle.nn as nn\n'), ((15305, 15322), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (15317, 15322), True, 'import paddle.nn as nn\n'), ((16774, 16844), 'paddle.nn.Linear', 'nn.Linear', (['dim', '(self.dim_head * self.num_heads * 2)'], {'bias_attr': 'qkv_bias'}), '(dim, self.dim_head * self.num_heads * 2, bias_attr=qkv_bias)\n', (16783, 16844), True, 'import paddle.nn as nn\n'), ((16918, 16984), 'paddle.nn.Linear', 'nn.Linear', (['dim', '(self.dim_head * self.num_heads)'], {'bias_attr': 'qkv_bias'}), '(dim, self.dim_head * self.num_heads, bias_attr=qkv_bias)\n', (16927, 16984), True, 'import paddle.nn as nn\n'), ((17067, 17096), 'paddle.nn.Dropout', 'nn.Dropout', (['attention_dropout'], {}), '(attention_dropout)\n', (17077, 17096), True, 'import paddle.nn as nn\n'), ((17117, 17163), 'paddle.nn.Linear', 'nn.Linear', (['(self.dim_head * self.num_heads)', 'dim'], {}), '(self.dim_head * self.num_heads, dim)\n', (17126, 17163), True, 'import paddle.nn as nn\n'), ((17192, 17211), 'paddle.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (17202, 17211), True, 'import paddle.nn as nn\n'), ((17235, 17254), 'paddle.nn.Softmax', 'nn.Softmax', ([], {'axis': '(-1)'}), '(axis=-1)\n', (17245, 17254), True, 'import paddle.nn as nn\n'), ((17578, 17628), 'paddle.matmul', 'paddle.matmul', (['(q * self.scale)', 'k'], {'transpose_y': '(True)'}), '(q * self.scale, k, transpose_y=True)\n', (17591, 17628), False, 'import paddle\n'), ((17723, 17745), 'paddle.matmul', 'paddle.matmul', (['attn', 'v'], {}), '(attn, v)\n', (17736, 17745), False, 'import paddle\n'), ((18929, 18946), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (18941, 18946), True, 'import paddle.nn as nn\n'), ((19427, 19444), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['dim'], {}), '(dim)\n', (19439, 19444), True, 'import paddle.nn as nn\n'), ((19956, 20000), 'paddle.concat', 'paddle.concat', (['[cls_embed, x[:, 1:]]'], {'axis': '(1)'}), '([cls_embed, x[:, 1:]], axis=1)\n', (19969, 20000), False, 'import paddle\n'), ((22340, 22359), 'paddle.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (22350, 22359), True, 'import paddle.nn as nn\n'), ((24072, 24096), 'paddle.nn.LayerList', 'nn.LayerList', (['layer_list'], {}), '(layer_list)\n', (24084, 24096), True, 'import paddle.nn as nn\n'), ((25575, 25603), 'paddle.nn.LayerNorm', 'nn.LayerNorm', (['embed_dims[-1]'], {}), '(embed_dims[-1])\n', (25587, 25603), True, 'import paddle.nn as nn\n'), ((8411, 8437), 'math.ceil', 'math.ceil', (['(H / self.stride)'], {}), '(H / self.stride)\n', (8420, 8437), False, 'import math\n'), ((8439, 8465), 'math.ceil', 'math.ceil', (['(W / self.stride)'], {}), '(W / self.stride)\n', (8448, 8465), False, 'import math\n'), ((15232, 15250), 'droppath.DropPath', 'DropPath', (['droppath'], {}), '(droppath)\n', (15240, 15250), False, 'from droppath import DropPath\n'), ((19354, 19372), 'droppath.DropPath', 'DropPath', (['droppath'], {}), '(droppath)\n', (19362, 19372), False, 'from droppath import DropPath\n'), ((23860, 23882), 'paddle.nn.Sequential', 'nn.Sequential', (['*blocks'], {}), '(*blocks)\n', (23873, 23882), True, 'import paddle.nn as nn\n'), ((25625, 25663), 'paddle.nn.Linear', 'nn.Linear', (['embed_dims[-1]', 'num_classes'], {}), '(embed_dims[-1], num_classes)\n', (25634, 25663), True, 'import paddle.nn as nn\n'), ((26098, 26134), 'numpy.random.beta', 'np.random.beta', (['self.beta', 'self.beta'], {}), '(self.beta, self.beta)\n', (26112, 26134), True, 'import numpy as np\n'), ((27253, 27290), 'paddle.concat', 'paddle.concat', (['[cls_token, x]'], {'axis': '(1)'}), '([cls_token, x], axis=1)\n', (27266, 27290), False, 'import paddle\n'), ((3220, 3321), 'paddle.nn.Conv2D', 'nn.Conv2D', (['in_channels', 'hidden_dim'], {'kernel_size': '(7)', 'stride': 'stem_stride', 'padding': '(3)', 'bias_attr': '(False)'}), '(in_channels, hidden_dim, kernel_size=7, stride=stem_stride,\n padding=3, bias_attr=False)\n', (3229, 3321), True, 'import paddle.nn as nn\n'), ((3465, 3505), 'paddle.nn.BatchNorm2D', 'nn.BatchNorm2D', (['hidden_dim'], {'momentum': '(0.9)'}), '(hidden_dim, momentum=0.9)\n', (3479, 3505), True, 'import paddle.nn as nn\n'), ((3523, 3532), 'paddle.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3530, 3532), True, 'import paddle.nn as nn\n'), ((3550, 3640), 'paddle.nn.Conv2D', 'nn.Conv2D', (['hidden_dim', 'hidden_dim'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias_attr': '(False)'}), '(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1,\n bias_attr=False)\n', (3559, 3640), True, 'import paddle.nn as nn\n'), ((3784, 3824), 'paddle.nn.BatchNorm2D', 'nn.BatchNorm2D', (['hidden_dim'], {'momentum': '(0.9)'}), '(hidden_dim, momentum=0.9)\n', (3798, 3824), True, 'import paddle.nn as nn\n'), ((3842, 3851), 'paddle.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (3849, 3851), True, 'import paddle.nn as nn\n'), ((3869, 3959), 'paddle.nn.Conv2D', 'nn.Conv2D', (['hidden_dim', 'hidden_dim'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias_attr': '(False)'}), '(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1,\n bias_attr=False)\n', (3878, 3959), True, 'import paddle.nn as nn\n'), ((4103, 4143), 'paddle.nn.BatchNorm2D', 'nn.BatchNorm2D', (['hidden_dim'], {'momentum': '(0.9)'}), '(hidden_dim, momentum=0.9)\n', (4117, 4143), True, 'import paddle.nn as nn\n'), ((4161, 4170), 'paddle.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (4168, 4170), True, 'import paddle.nn as nn\n'), ((5798, 5835), 'paddle.nn.initializer.XavierUniform', 'paddle.nn.initializer.XavierUniform', ([], {}), '()\n', (5833, 5835), False, 'import paddle\n'), ((5886, 5925), 'paddle.nn.initializer.Normal', 'paddle.nn.initializer.Normal', ([], {'std': '(1e-06)'}), '(std=1e-06)\n', (5914, 5925), False, 'import paddle\n'), ((22282, 22310), 'paddle.nn.initializer.Constant', 'nn.initializer.Constant', (['(0.0)'], {}), '(0.0)\n', (22305, 22310), True, 'import paddle.nn as nn\n'), ((25481, 25519), 'paddle.nn.Linear', 'nn.Linear', (['embed_dims[-1]', 'num_classes'], {}), '(embed_dims[-1], num_classes)\n', (25490, 25519), True, 'import paddle.nn as nn\n'), ((24890, 24930), 'paddle.nn.initializer.TruncatedNormal', 'nn.initializer.TruncatedNormal', ([], {'std': '(0.02)'}), '(std=0.02)\n', (24920, 24930), True, 'import paddle.nn as nn\n')]
# -*- coding: UTF-8 -*- import cv2 import numpy as np # 仿射变换(图像位置校正) def img_three(imgPath): # ---------------------------三点得到一个变换矩阵 --------------------------- """ 三点确定一个平面,通过确定三个点的关系来得到转换矩阵 然后再通过warpAffine来进行变换 """ img = cv2.imread(imgPath) rows,cols,_ = img.shape points1 = np.float32([[50,50],[200,50],[50,200]]) points2 = np.float32([[10,100],[200,50],[100,250]]) matrix = cv2.getAffineTransform(points1,points2) output = cv2.warpAffine(img,matrix,(cols,rows)) cv2.imshow('input1',img) cv2.imshow('output1',output) cv2.waitKey(0) cv2.destroyAllWindows() def img_four(imgPath): # ---------------------------四点得到一个变换矩阵--------------------------- """ 进行透视变换 可以先用四个点来确定一个3*3的变换矩阵(cv2.getPerspectiveTransform) 然后通过cv2.warpPerspective和上述矩阵对图像进行变换 """ img = cv2.imread(imgPath) rows,cols,_ = img.shape points1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) points2 = np.float32([[0,0],[300,0],[0,300],[300,300]]) matrix = cv2.getPerspectiveTransform(points1,points2) # 将四个点组成的平面转换成另四个点组成的一个平面 output = cv2.warpPerspective(img, matrix, (cols, rows)) # 通过warpPerspective函数来进行变换 cv2.imshow('input2',img) cv2.imshow('output2',output) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == "__main__": imgPath = 'src/python-opencv/a.jpg' # img_three(imgPath) img_four(imgPath)
[ "cv2.warpAffine", "cv2.getPerspectiveTransform", "cv2.imshow", "cv2.waitKey", "cv2.warpPerspective", "cv2.destroyAllWindows", "cv2.getAffineTransform", "cv2.imread", "numpy.float32" ]
[((260, 279), 'cv2.imread', 'cv2.imread', (['imgPath'], {}), '(imgPath)\n', (270, 279), False, 'import cv2\n'), ((322, 366), 'numpy.float32', 'np.float32', (['[[50, 50], [200, 50], [50, 200]]'], {}), '([[50, 50], [200, 50], [50, 200]])\n', (332, 366), True, 'import numpy as np\n'), ((376, 422), 'numpy.float32', 'np.float32', (['[[10, 100], [200, 50], [100, 250]]'], {}), '([[10, 100], [200, 50], [100, 250]])\n', (386, 422), True, 'import numpy as np\n'), ((432, 472), 'cv2.getAffineTransform', 'cv2.getAffineTransform', (['points1', 'points2'], {}), '(points1, points2)\n', (454, 472), False, 'import cv2\n'), ((485, 526), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'matrix', '(cols, rows)'], {}), '(img, matrix, (cols, rows))\n', (499, 526), False, 'import cv2\n'), ((529, 554), 'cv2.imshow', 'cv2.imshow', (['"""input1"""', 'img'], {}), "('input1', img)\n", (539, 554), False, 'import cv2\n'), ((558, 587), 'cv2.imshow', 'cv2.imshow', (['"""output1"""', 'output'], {}), "('output1', output)\n", (568, 587), False, 'import cv2\n'), ((591, 605), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (602, 605), False, 'import cv2\n'), ((610, 633), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (631, 633), False, 'import cv2\n'), ((872, 891), 'cv2.imread', 'cv2.imread', (['imgPath'], {}), '(imgPath)\n', (882, 891), False, 'import cv2\n'), ((934, 990), 'numpy.float32', 'np.float32', (['[[56, 65], [368, 52], [28, 387], [389, 390]]'], {}), '([[56, 65], [368, 52], [28, 387], [389, 390]])\n', (944, 990), True, 'import numpy as np\n'), ((998, 1050), 'numpy.float32', 'np.float32', (['[[0, 0], [300, 0], [0, 300], [300, 300]]'], {}), '([[0, 0], [300, 0], [0, 300], [300, 300]])\n', (1008, 1050), True, 'import numpy as np\n'), ((1058, 1103), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['points1', 'points2'], {}), '(points1, points2)\n', (1085, 1103), False, 'import cv2\n'), ((1146, 1192), 'cv2.warpPerspective', 'cv2.warpPerspective', (['img', 'matrix', '(cols, rows)'], {}), '(img, matrix, (cols, rows))\n', (1165, 1192), False, 'import cv2\n'), ((1229, 1254), 'cv2.imshow', 'cv2.imshow', (['"""input2"""', 'img'], {}), "('input2', img)\n", (1239, 1254), False, 'import cv2\n'), ((1258, 1287), 'cv2.imshow', 'cv2.imshow', (['"""output2"""', 'output'], {}), "('output2', output)\n", (1268, 1287), False, 'import cv2\n'), ((1291, 1305), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1302, 1305), False, 'import cv2\n'), ((1310, 1333), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1331, 1333), False, 'import cv2\n')]
import matplotlib.pyplot as plt import numpy as np def plot(ac): ac=np.array(ac) ac=ac.reshape((28,28)) ac=[[int(ac2+0.48) for ac2 in ac1] for ac1 in ac] plt.imshow(ac) f=np.load("model.npz",allow_pickle=True) f2=np.load("model2.npz",allow_pickle=True) f3=np.load("model3.npz",allow_pickle=True) f4=np.load("model4.npz",allow_pickle=True) f5=np.load("model5.npz",allow_pickle=True) model=f["model"] print("exp model1") model2=f2["model"] print("exp model2") model3=f3["model"] print("exp model3") model4=f4["model"] print("exp model4") model5=f5["model"] print("exp model5") models=[model,model2,model3,model4,model5] t=f["t"] t0=np.mean(t[np.where(t<0.5)]) t1=np.mean(t[np.where(t>0.5)]) def runmodel(inp,model): x=inp for l in model: x=np.dot(x,l) x=np.maximum(x,0) x=np.mean(x,axis=-1) return x def lossbybool(inp): """input either 0 or 1""" dt=t1-t0 inp/=dt inp+=t0 ret=(runmodel(inp,models[0])-m7[0])**2 for zw,mea in zip(models[1:],m7): ret+=(runmodel(inp,models[0])-mea)**2 return ret/len(m7) m7=[np.mean(runmodel(t,m)) for m in models] print("done loading")
[ "matplotlib.pyplot.imshow", "numpy.mean", "numpy.where", "numpy.array", "numpy.dot", "numpy.maximum", "numpy.load" ]
[((185, 224), 'numpy.load', 'np.load', (['"""model.npz"""'], {'allow_pickle': '(True)'}), "('model.npz', allow_pickle=True)\n", (192, 224), True, 'import numpy as np\n'), ((227, 267), 'numpy.load', 'np.load', (['"""model2.npz"""'], {'allow_pickle': '(True)'}), "('model2.npz', allow_pickle=True)\n", (234, 267), True, 'import numpy as np\n'), ((270, 310), 'numpy.load', 'np.load', (['"""model3.npz"""'], {'allow_pickle': '(True)'}), "('model3.npz', allow_pickle=True)\n", (277, 310), True, 'import numpy as np\n'), ((313, 353), 'numpy.load', 'np.load', (['"""model4.npz"""'], {'allow_pickle': '(True)'}), "('model4.npz', allow_pickle=True)\n", (320, 353), True, 'import numpy as np\n'), ((356, 396), 'numpy.load', 'np.load', (['"""model5.npz"""'], {'allow_pickle': '(True)'}), "('model5.npz', allow_pickle=True)\n", (363, 396), True, 'import numpy as np\n'), ((73, 85), 'numpy.array', 'np.array', (['ac'], {}), '(ac)\n', (81, 85), True, 'import numpy as np\n'), ((167, 181), 'matplotlib.pyplot.imshow', 'plt.imshow', (['ac'], {}), '(ac)\n', (177, 181), True, 'import matplotlib.pyplot as plt\n'), ((801, 820), 'numpy.mean', 'np.mean', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (808, 820), True, 'import numpy as np\n'), ((656, 673), 'numpy.where', 'np.where', (['(t < 0.5)'], {}), '(t < 0.5)\n', (664, 673), True, 'import numpy as np\n'), ((687, 704), 'numpy.where', 'np.where', (['(t > 0.5)'], {}), '(t > 0.5)\n', (695, 704), True, 'import numpy as np\n'), ((763, 775), 'numpy.dot', 'np.dot', (['x', 'l'], {}), '(x, l)\n', (769, 775), True, 'import numpy as np\n'), ((781, 797), 'numpy.maximum', 'np.maximum', (['x', '(0)'], {}), '(x, 0)\n', (791, 797), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import time from datetime import timedelta import os # Importing a helper module for the functions of the Inception model. import inception import cifar10 from cifar10 import num_classes from inception import transfer_values_cache #Importing the color map for plotting each class with different color. import matplotlib.cm as color_map from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.metrics import confusion_matrix cifar10.data_path = "data/CIFAR-10/" cifar10.maybe_download_and_extract() class_names = cifar10.load_class_names() print(class_names) print('Loading the training set...') training_images, training_cls_integers, trainig_one_hot_labels = cifar10.load_training_data() print('Loading the test set...') testing_images, testing_cls_integers, testing_one_hot_labels = cifar10.load_test_data() print("-Number of images in the training set:\t\t{}".format(len(training_images))) print("-Number of images in the testing set:\t\t{}".format(len(testing_images))) def plot_imgs(imgs, true_class, predicted_class=None): assert len(imgs) == len(true_class) # Creating a placeholders for 9 subplots fig, axes = plt.subplots(3, 3) # Adjustting spacing. if predicted_class is None: hspace = 0.3 else: hspace = 0.6 fig.subplots_adjust(hspace=hspace, wspace=0.3) for i, ax in enumerate(axes.flat): # There may be less than 9 images, ensure it doesn't crash. if i < len(imgs): # Plot image. ax.imshow(imgs[i], interpolation='nearest') # Get the actual name of the true class from the class_names array true_class_name = class_names[true_class[i]] # Showing labels for the predicted and true classes if predicted_class is None: xlabel = "True: {0}".format(true_class_name) else: # Name of the predicted class. predicted_class_name = class_names[predicted_class[i]] xlabel = "True: {0}\nPred: {1}".format(true_class_name, predicted_class_name) ax.set_xlabel(xlabel) # Remove ticks from the plot. ax.set_xticks([]) ax.set_yticks([]) plt.show() # get the first 9 images in the test set imgs = testing_images[0:9] # Get the integer representation of the true class. true_class = testing_cls_integers[0:9] # Plotting the images plot_imgs(imgs=imgs, true_class=true_class) print('Downloading the pretrained inception v3 model') inception.maybe_download() # Loading the inception model so that we can inialized it with the pretrained weights and customize for our model inception_model = inception.Inception() file_path_train = os.path.join(cifar10.data_path, 'inception_cifar10_train.pkl') file_path_test = os.path.join(cifar10.data_path, 'inception_cifar10_test.pkl') print("Processing Inception transfer-values for the training images of Cifar-10 ...") # First we need to scale the imgs to fit the Inception model requirements as it requires all pixels to be from 0 to 255, # while our training examples of the CIFAR-10 pixels are between 0.0 and 1.0 imgs_scaled = training_images * 255.0 # Checking if the transfer-values for our training images are already calculated and loading them, if not calcaulate and save them. transfer_values_training = transfer_values_cache(cache_path=file_path_train, images=imgs_scaled, model=inception_model) print("Processing Inception transfer-values for the testing images of Cifar-10 ...") # First we need to scale the imgs to fit the Inception model requirements as it requires all pixels to be from 0 to 255, # while our training examples of the CIFAR-10 pixels are between 0.0 and 1.0 imgs_scaled = testing_images * 255.0 # Checking if the transfer-values for our training images are already calculated and loading them, if not calcaulate and save them. transfer_values_testing = transfer_values_cache(cache_path=file_path_test, images=imgs_scaled, model=inception_model) print('Shape of the training set transfer values...') print(transfer_values_training.shape) print('Shape of the testing set transfer values...') print(transfer_values_testing.shape) def plot_transferValues(ind): print("Original input image:") # Plot the image at index ind of the test set. plt.imshow(testing_images[ind], interpolation='nearest') plt.show() print("Transfer values using Inception model:") # Visualize the transfer values as an image. transferValues_img = transfer_values_testing[ind] transferValues_img = transferValues_img.reshape((32, 64)) # Plotting the transfer values image. plt.imshow(transferValues_img, interpolation='nearest', cmap='Reds') plt.show() plot_transferValues(ind=15) pca_obj = PCA(n_components=2) subset_transferValues = transfer_values_training[0:3000] cls_integers = testing_cls_integers[0:3000] print('Shape of a subset form the transfer values...') print(subset_transferValues.shape) reduced_transferValues = pca_obj.fit_transform(subset_transferValues) print('Shape of the reduced version of the transfer values...') print(reduced_transferValues.shape) def plot_reduced_transferValues(transferValues, cls_integers): # Create a color-map with a different color for each class. c_map = color_map.rainbow(np.linspace(0.0, 1.0, num_classes)) # Getting the color for each sample. colors = c_map[cls_integers] # Getting the x and y values. x_val = transferValues[:, 0] y_val = transferValues[:, 1] # Plot the transfer values in a scatter plot plt.scatter(x_val, y_val, color=colors) plt.show() plot_reduced_transferValues(reduced_transferValues, cls_integers) pca_obj = PCA(n_components=50) transferValues_50d = pca_obj.fit_transform(subset_transferValues) tsne_obj = TSNE(n_components=2) reduced_transferValues = tsne_obj.fit_transform(transferValues_50d) print('Shape of the reduced version of the transfer values using t-SNE method...') print(reduced_transferValues.shape) plot_reduced_transferValues(reduced_transferValues, cls_integers) transferValues_arrLength = inception_model.transfer_len input_values = tf.placeholder(tf.float32, shape=[None, transferValues_arrLength], name='input_values') y_actual = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_actual') y_actual_cls = tf.argmax(y_actual, axis=1) def new_weights(shape): return tf.Variable(tf.truncated_normal(shape, stddev=0.05)) def new_biases(length): return tf.Variable(tf.constant(0.05, shape=[length])) def new_fc_layer(input, # The previous layer. num_inputs, # Num. inputs from prev. layer. num_outputs, # Num. outputs. use_relu=True): # Use Rectified Linear Unit (ReLU)? # Create new weights and biases. weights = new_weights(shape=[num_inputs, num_outputs]) biases = new_biases(length=num_outputs) # Calculate the layer as the matrix multiplication of # the input and weights, and then add the bias-values. layer = tf.matmul(input, weights) + biases # Use ReLU? if use_relu: layer = tf.nn.relu(layer) return layer # First fully-connected layer. layer_fc1 = new_fc_layer(input=input_values, num_inputs=2048, num_outputs=1024, use_relu=True) # Second fully-connected layer. layer_fc2 = new_fc_layer(input=layer_fc1, num_inputs=1024, num_outputs=num_classes, use_relu=False) # Predicted class-label. y_predicted = tf.nn.softmax(layer_fc2) # Cross-entropy for the classification of each image. cross_entropy = \ tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_actual) # Loss aka. cost-measure. # This is the scalar value that must be minimized. loss = tf.reduce_mean(cross_entropy) step = tf.Variable(initial_value=0, name='step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(loss, step) y_predicted_cls = tf.argmax(y_predicted, axis=1) correct_prediction = tf.equal(y_predicted_cls, y_actual_cls) model_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) session = tf.Session() session.run(tf.global_variables_initializer()) training_batch_size = 32 def select_random_batch(): # Number of images (transfer-values) in the training-set. num_imgs = len(transfer_values_training) # Create a random index. ind = np.random.choice(num_imgs, size=training_batch_size, replace=False) # Use the random index to select random x and y-values. # We use the transfer-values instead of images as x-values. x_batch = transfer_values_training[ind] y_batch = trainig_one_hot_labels[ind] return x_batch, y_batch def optimize(num_iterations): for i in range(num_iterations): # Selectin a random batch of images for training # where the transfer values of the images will be stored in input_batch # and the actual labels of those batch of images will be stored in y_actual_batch input_batch, y_actual_batch = select_random_batch() # storing the batch in a dict with the proper names # such as the input placeholder variables that we define above. feed_dict = {input_values: input_batch, y_actual: y_actual_batch} # Now we call the optimizer of this batch of images # TensorFlow will automatically feed the values of the dict we created above # to the model input placeholder variables that we defined above. i_global, _ = session.run([step, optimizer], feed_dict=feed_dict) # print the accuracy every 100 steps. if (i_global % 100 == 0) or (i == num_iterations - 1): # Calculate the accuracy on the training-batch. batch_accuracy = session.run(model_accuracy, feed_dict=feed_dict) msg = "Step: {0:>6}, Training Accuracy: {1:>6.1%}" print(msg.format(i_global, batch_accuracy)) def plot_errors(cls_predicted, cls_correct): # cls_predicted is an array of the predicted class-number for # all images in the test-set. # cls_correct is an array with boolean values to indicate # whether is the model predicted the correct class or not. # Negate the boolean array. incorrect = (cls_correct == False) # Get the images from the test-set that have been # incorrectly classified. incorrectly_classified_images = testing_images[incorrect] # Get the predicted classes for those images. cls_predicted = cls_predicted[incorrect] # Get the true classes for those images. true_class = testing_cls_integers[incorrect] n = min(9, len(incorrectly_classified_images)) # Plot the first n images. plot_imgs(imgs=incorrectly_classified_images[0:n], true_class=true_class[0:n], predicted_class=cls_predicted[0:n]) def plot_confusionMatrix(cls_predicted): # cls_predicted array of all the predicted # classes numbers in the test. # Call the confucion matrix of sklearn cm = confusion_matrix(y_true=testing_cls_integers, y_pred=cls_predicted) # Printing the confusion matrix for i in range(num_classes): # Append the class-name to each line. class_name = "({}) {}".format(i, class_names[i]) print(cm[i, :], class_name) # labeling each column of the confusion matrix with the class number cls_numbers = [" ({0})".format(i) for i in range(num_classes)] print("".join(cls_numbers)) # Split the data-set in batches of this size to limit RAM usage. batch_size = 128 def predict_class(transferValues, labels, cls_true): # Number of images. num_imgs = len(transferValues) # Allocate an array for the predicted classes which # will be calculated in batches and filled into this array. cls_predicted = np.zeros(shape=num_imgs, dtype=np.int) # Now calculate the predicted classes for the batches. # We will just iterate through all the batches. # There might be a more clever and Pythonic way of doing this. # The starting index for the next batch is denoted i. i = 0 while i < num_imgs: # The ending index for the next batch is denoted j. j = min(i + batch_size, num_imgs) # Create a feed-dict with the images and labels # between index i and j. feed_dict = {input_values: transferValues[i:j], y_actual: labels[i:j]} # Calculate the predicted class using TensorFlow. cls_predicted[i:j] = session.run(y_predicted_cls, feed_dict=feed_dict) # Set the start-index for the next batch to the # end-index of the current batch. i = j # Create a boolean array whether each image is correctly classified. correct = [a == p for a, p in zip(cls_true, cls_predicted)] print(type(correct)) return correct, cls_predicted def predict_class_test(): return predict_class(transferValues = transfer_values_testing, labels = trainig_one_hot_labels, cls_true = training_cls_integers) def classification_accuracy(correct): # When averaging a boolean array, False means 0 and True means 1. # So we are calculating: number of True / len(correct) which is # the same as the classification accuracy. # Return the classification accuracy # and the number of correct classifications. return np.mean(correct), np.sum(correct) def test_accuracy(show_example_errors=False, show_confusion_matrix=False): # For all the images in the test-set, # calculate the predicted classes and whether they are correct. correct, cls_pred = predict_class_test() print(type(correct)) # Classification accuracypredict_class_test and the number of correct classifications. accuracy, num_correct = classification_accuracy(correct) # Number of images being classified. num_images = len(correct) # Print the accuracy. msg = "Test set accuracy: {0:.1%} ({1} / {2})" print(msg.format(accuracy, num_correct, num_images)) # Plot some examples of mis-classifications, if desired. if show_example_errors: print("Example errors:") plot_errors(cls_predicted=cls_pred, cls_correct=correct) # Plot the confusion matrix, if desired. if show_confusion_matrix: print("Confusion Matrix:") plot_confusionMatrix(cls_predicted=cls_pred) test_accuracy(show_example_errors=True, show_confusion_matrix=True) optimize(num_iterations=1000) test_accuracy(show_example_errors=True, show_confusion_matrix=True)
[ "tensorflow.equal", "tensorflow.nn.softmax", "cifar10.load_training_data", "inception.Inception", "tensorflow.reduce_mean", "tensorflow.cast", "matplotlib.pyplot.imshow", "numpy.mean", "sklearn.decomposition.PCA", "tensorflow.placeholder", "tensorflow.Session", "inception.maybe_download", "sklearn.manifold.TSNE", "numpy.linspace", "tensorflow.nn.softmax_cross_entropy_with_logits", "matplotlib.pyplot.scatter", "tensorflow.matmul", "cifar10.load_test_data", "tensorflow.train.AdamOptimizer", "sklearn.metrics.confusion_matrix", "inception.transfer_values_cache", "tensorflow.Variable", "numpy.random.choice", "tensorflow.truncated_normal", "matplotlib.pyplot.show", "tensorflow.nn.relu", "os.path.join", "tensorflow.global_variables_initializer", "numpy.sum", "tensorflow.argmax", "numpy.zeros", "tensorflow.constant", "cifar10.load_class_names", "cifar10.maybe_download_and_extract", "matplotlib.pyplot.subplots" ]
[((574, 610), 'cifar10.maybe_download_and_extract', 'cifar10.maybe_download_and_extract', ([], {}), '()\n', (608, 610), False, 'import cifar10\n'), ((626, 652), 'cifar10.load_class_names', 'cifar10.load_class_names', ([], {}), '()\n', (650, 652), False, 'import cifar10\n'), ((775, 803), 'cifar10.load_training_data', 'cifar10.load_training_data', ([], {}), '()\n', (801, 803), False, 'import cifar10\n'), ((901, 925), 'cifar10.load_test_data', 'cifar10.load_test_data', ([], {}), '()\n', (923, 925), False, 'import cifar10\n'), ((2629, 2655), 'inception.maybe_download', 'inception.maybe_download', ([], {}), '()\n', (2653, 2655), False, 'import inception\n'), ((2789, 2810), 'inception.Inception', 'inception.Inception', ([], {}), '()\n', (2808, 2810), False, 'import inception\n'), ((2830, 2892), 'os.path.join', 'os.path.join', (['cifar10.data_path', '"""inception_cifar10_train.pkl"""'], {}), "(cifar10.data_path, 'inception_cifar10_train.pkl')\n", (2842, 2892), False, 'import os\n'), ((2910, 2971), 'os.path.join', 'os.path.join', (['cifar10.data_path', '"""inception_cifar10_test.pkl"""'], {}), "(cifar10.data_path, 'inception_cifar10_test.pkl')\n", (2922, 2971), False, 'import os\n'), ((3456, 3553), 'inception.transfer_values_cache', 'transfer_values_cache', ([], {'cache_path': 'file_path_train', 'images': 'imgs_scaled', 'model': 'inception_model'}), '(cache_path=file_path_train, images=imgs_scaled, model\n =inception_model)\n', (3477, 3553), False, 'from inception import transfer_values_cache\n'), ((4122, 4218), 'inception.transfer_values_cache', 'transfer_values_cache', ([], {'cache_path': 'file_path_test', 'images': 'imgs_scaled', 'model': 'inception_model'}), '(cache_path=file_path_test, images=imgs_scaled, model=\n inception_model)\n', (4143, 4218), False, 'from inception import transfer_values_cache\n'), ((5073, 5092), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (5076, 5092), False, 'from sklearn.decomposition import PCA\n'), ((6016, 6036), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(50)'}), '(n_components=50)\n', (6019, 6036), False, 'from sklearn.decomposition import PCA\n'), ((6114, 6134), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)'}), '(n_components=2)\n', (6118, 6134), False, 'from sklearn.manifold import TSNE\n'), ((6463, 6555), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, transferValues_arrLength]', 'name': '"""input_values"""'}), "(tf.float32, shape=[None, transferValues_arrLength], name=\n 'input_values')\n", (6477, 6555), True, 'import tensorflow as tf\n'), ((6562, 6632), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_classes]', 'name': '"""y_actual"""'}), "(tf.float32, shape=[None, num_classes], name='y_actual')\n", (6576, 6632), True, 'import tensorflow as tf\n'), ((6648, 6675), 'tensorflow.argmax', 'tf.argmax', (['y_actual'], {'axis': '(1)'}), '(y_actual, axis=1)\n', (6657, 6675), True, 'import tensorflow as tf\n'), ((7953, 7977), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['layer_fc2'], {}), '(layer_fc2)\n', (7966, 7977), True, 'import tensorflow as tf\n'), ((8055, 8129), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'layer_fc2', 'labels': 'y_actual'}), '(logits=layer_fc2, labels=y_actual)\n', (8094, 8129), True, 'import tensorflow as tf\n'), ((8263, 8292), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {}), '(cross_entropy)\n', (8277, 8292), True, 'import tensorflow as tf\n'), ((8301, 8359), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': '(0)', 'name': '"""step"""', 'trainable': '(False)'}), "(initial_value=0, name='step', trainable=False)\n", (8312, 8359), True, 'import tensorflow as tf\n'), ((8482, 8512), 'tensorflow.argmax', 'tf.argmax', (['y_predicted'], {'axis': '(1)'}), '(y_predicted, axis=1)\n', (8491, 8512), True, 'import tensorflow as tf\n'), ((8534, 8573), 'tensorflow.equal', 'tf.equal', (['y_predicted_cls', 'y_actual_cls'], {}), '(y_predicted_cls, y_actual_cls)\n', (8542, 8573), True, 'import tensorflow as tf\n'), ((8659, 8671), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (8669, 8671), True, 'import tensorflow as tf\n'), ((1250, 1268), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(3)'], {}), '(3, 3)\n', (1262, 1268), True, 'import matplotlib.pyplot as plt\n'), ((2334, 2344), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2342, 2344), True, 'import matplotlib.pyplot as plt\n'), ((4611, 4667), 'matplotlib.pyplot.imshow', 'plt.imshow', (['testing_images[ind]'], {'interpolation': '"""nearest"""'}), "(testing_images[ind], interpolation='nearest')\n", (4621, 4667), True, 'import matplotlib.pyplot as plt\n'), ((4672, 4682), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4680, 4682), True, 'import matplotlib.pyplot as plt\n'), ((4949, 5017), 'matplotlib.pyplot.imshow', 'plt.imshow', (['transferValues_img'], {'interpolation': '"""nearest"""', 'cmap': '"""Reds"""'}), "(transferValues_img, interpolation='nearest', cmap='Reds')\n", (4959, 5017), True, 'import matplotlib.pyplot as plt\n'), ((5022, 5032), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5030, 5032), True, 'import matplotlib.pyplot as plt\n'), ((5882, 5921), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_val', 'y_val'], {'color': 'colors'}), '(x_val, y_val, color=colors)\n', (5893, 5921), True, 'import matplotlib.pyplot as plt\n'), ((5926, 5936), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5934, 5936), True, 'import matplotlib.pyplot as plt\n'), ((8607, 8646), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (8614, 8646), True, 'import tensorflow as tf\n'), ((8684, 8717), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (8715, 8717), True, 'import tensorflow as tf\n'), ((8920, 8987), 'numpy.random.choice', 'np.random.choice', (['num_imgs'], {'size': 'training_batch_size', 'replace': '(False)'}), '(num_imgs, size=training_batch_size, replace=False)\n', (8936, 8987), True, 'import numpy as np\n'), ((11696, 11763), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', ([], {'y_true': 'testing_cls_integers', 'y_pred': 'cls_predicted'}), '(y_true=testing_cls_integers, y_pred=cls_predicted)\n', (11712, 11763), False, 'from sklearn.metrics import confusion_matrix\n'), ((12511, 12549), 'numpy.zeros', 'np.zeros', ([], {'shape': 'num_imgs', 'dtype': 'np.int'}), '(shape=num_imgs, dtype=np.int)\n', (12519, 12549), True, 'import numpy as np\n'), ((5616, 5650), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'num_classes'], {}), '(0.0, 1.0, num_classes)\n', (5627, 5650), True, 'import numpy as np\n'), ((6724, 6763), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.05)'}), '(shape, stddev=0.05)\n', (6743, 6763), True, 'import tensorflow as tf\n'), ((6813, 6846), 'tensorflow.constant', 'tf.constant', (['(0.05)'], {'shape': '[length]'}), '(0.05, shape=[length])\n', (6824, 6846), True, 'import tensorflow as tf\n'), ((7358, 7383), 'tensorflow.matmul', 'tf.matmul', (['input', 'weights'], {}), '(input, weights)\n', (7367, 7383), True, 'import tensorflow as tf\n'), ((7443, 7460), 'tensorflow.nn.relu', 'tf.nn.relu', (['layer'], {}), '(layer)\n', (7453, 7460), True, 'import tensorflow as tf\n'), ((8399, 8443), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': '(0.0001)'}), '(learning_rate=0.0001)\n', (8421, 8443), True, 'import tensorflow as tf\n'), ((14099, 14115), 'numpy.mean', 'np.mean', (['correct'], {}), '(correct)\n', (14106, 14115), True, 'import numpy as np\n'), ((14117, 14132), 'numpy.sum', 'np.sum', (['correct'], {}), '(correct)\n', (14123, 14132), True, 'import numpy as np\n')]
#!/usr/bin/env python from __future__ import print_function import sys sys.path.insert(0, "/home/liangjiang/code/keras-jl-mean/") from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from keras.models import model_from_json from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.callbacks import EarlyStopping, LearningRateScheduler from keras.regularizers import l2, activity_l1l2 from keras import backend as K import argparse import json import numpy as np import matplotlib.pyplot as plt def argparser(): parser = argparse.ArgumentParser() parser.add_argument("weight_path", action = 'store', help = "Path of learned weight") parser.add_argument("--layer", "-l", action = 'store', type = int, default = 1, dest = 'layer', help = "Layer to be visualized") return parser def random_crop(X_train, size = (3, 3), times = 10): num_samples = times * X_train.shape[0] print("num_samples: ", num_samples) row = X_train.shape[2] col = X_train.shape[3] crop_row = size[0] crop_col = size[1] random_sample = np.random.randint(0, X_train.shape[0], size = num_samples) print("random_sample: ", random_sample) random_col_index = np.random.randint(0, row - crop_row + 1, size = num_samples) print("random_col_index: ", random_col_index) random_row_index = np.random.randint(0, col - crop_col, size = num_samples) print("random_row_index: ", random_row_index) # cropped_x_cols = cropped_x.shape[2] # cropped_x_rows = cropped_x.shape[3] crop_x = np.zeros((num_samples, X_train.shape[1], crop_row, crop_col)) for i in range(num_samples): crop_x[i, :, :, :] = X_train[random_sample[i], :, random_row_index[i] : random_row_index[i] + crop_row, random_col_index[i] : random_col_index[i] + crop_col] # print("crop_x[0]: ", crop_x[0, :, :, :]) return crop_x def main(): parser = argparser() args = parser.parse_args() weight_path = args.weight_path layer = args.layer img_rows, img_cols = 32, 32 # the CIFAR10 images are RGB img_channels = 3 batch_size = 32 nb_classes = 10 model = Sequential() print("Making model") model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=(img_channels, img_rows, img_cols), W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('relu')) model.add(Convolution2D(32, 3, 3, W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Dropout(0.25)) model.add(Convolution2D(64, 3, 3, border_mode='same', W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('relu')) model.add(Convolution2D(64, 3, 3, W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes, W_regularizer = l2(l = 0.), b_regularizer = l2(l = 0.))) model.add(Activation('softmax')) # let's train the model using SGD + momentum (how original). print("Compiling model") sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) print("Going to visualize layer ", layer) print(model.layers[layer].get_config()) # load learned weight print("Loading weight") model.load_weights(weight_path) weight = model.layers[0].get_weights() print("shape of weight: ", weight[0].shape) # generate function to get output at layer to be visualized for i in range(len(model.layers)): print(i) input = model.layers[0].input output = model.layers[layer].output func = K.function([K.learning_phase()] + [input], output) (X_train, y_train), (X_test, y_test) = cifar10.load_data() # im = X_train[100, :, :, :] # im = np.swapaxes(im, 0, 2) # im = np.swapaxes(im, 0, 1) # plt.figure(1) # plt.imshow(im) # plt.show() # sys.exit() X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print(X_test.shape[0], 'test samples') crop_x = X_test # crop_x = random_crop(X_test, size = (9, 9), times = 10) print("shape of crop_x: ", crop_x.shape) im = crop_x[0, :, :, :] # print("crop_x[0]", im) im = im * 255 im = im.astype(np.uint8) # print("im of uint8: ", im) fig = plt.figure() # plt.imshow(im) # plt.show() # sys.exit() # get output from layer to be visualized # print(X_test[50][1]) activation = func([0] + [crop_x]) print("shape of activation: ", activation.shape) # max_sample_index = np.argmax(activation, axis = 0) # max_sample_index = max_sample_index.squeeze() # np.savetxt("max_sample_index", max_sample_index, fmt = "%d") # print("shape of max_sample_index: ", max_sample_index.shape) # # print("max_29", activation[:, 29, :, :]) # for i in range(32): # ax = fig.add_subplot(8, 4, i + 1, frameon=False) # ax.set_xticks([]) # ax.set_yticks([]) # ax.xaxis.set_ticks_position('none') # ax.yaxis.set_ticks_position('none') # im = crop_x[max_sample_index[i], :, :, :] # im = np.swapaxes(im, 0, 2) # im = np.swapaxes(im, 1, 0) # # print("shape of im: ", im.shape) # im = im * 255 # im = im.astype(np.uint8) # ax.imshow(im) # plt.show() if activation.ndim == 4: num = activation.shape[0] print("num: ", num) col = activation.shape[1] print("col: ", col) map_size = activation.shape[2] * activation.shape[3] print("map_size: ", map_size) # temp = np.mean(activation, axis = -1) # matrix_activation = np.mean(temp, axis = -1) flatten_activation = np.reshape(activation, (num, col * map_size)) print("shape of flatten_activation: ", flatten_activation.shape) trans_activation = flatten_activation.transpose() print("shape of trans_activation: ", trans_activation.shape) reshape_activation = np.reshape(trans_activation, (col, num * map_size)) print("shape of reshape_activation: ", reshape_activation.shape) matrix_activation = reshape_activation.transpose() print("shape of matrix_activation: ", matrix_activation.shape) mean = np.mean(matrix_activation, axis = 0, keepdims = True) # mean_p = T.printing.Print('mean')(mean) std = np.std(matrix_activation, axis = 0, keepdims = True) normalized_output = (matrix_activation - mean) / std covariance = np.dot(np.transpose(normalized_output), normalized_output) / num / map_size else: num = activation.shape[0] mean = np.mean(activation, axis = 0, keepdims = True) # mean_p = T.printing.Print('mean')(mean) std = np.std(activation, axis = 0, keepdims = True) normalized_output = (activation - mean) / std covariance = np.dot(np.transpose(normalized_output), normalized_output) / num np.savetxt("mean", mean, fmt = "%f") np.savetxt("std", std, fmt = "%f") np.savetxt("covariance", covariance, fmt = "%f") if "__main__" == __name__: main()
[ "sys.path.insert", "keras.backend.learning_phase", "keras.optimizers.SGD", "keras.layers.Activation", "numpy.mean", "numpy.reshape", "argparse.ArgumentParser", "keras.layers.Flatten", "keras.datasets.cifar10.load_data", "keras.layers.MaxPooling2D", "keras.models.Sequential", "numpy.savetxt", "numpy.std", "keras.regularizers.l2", "numpy.transpose", "keras.layers.Dropout", "numpy.random.randint", "numpy.zeros", "matplotlib.pyplot.figure" ]
[((71, 129), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""/home/liangjiang/code/keras-jl-mean/"""'], {}), "(0, '/home/liangjiang/code/keras-jl-mean/')\n", (86, 129), False, 'import sys\n'), ((734, 759), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (757, 759), False, 'import argparse\n'), ((1282, 1338), 'numpy.random.randint', 'np.random.randint', (['(0)', 'X_train.shape[0]'], {'size': 'num_samples'}), '(0, X_train.shape[0], size=num_samples)\n', (1299, 1338), True, 'import numpy as np\n'), ((1408, 1466), 'numpy.random.randint', 'np.random.randint', (['(0)', '(row - crop_row + 1)'], {'size': 'num_samples'}), '(0, row - crop_row + 1, size=num_samples)\n', (1425, 1466), True, 'import numpy as np\n'), ((1543, 1597), 'numpy.random.randint', 'np.random.randint', (['(0)', '(col - crop_col)'], {'size': 'num_samples'}), '(0, col - crop_col, size=num_samples)\n', (1560, 1597), True, 'import numpy as np\n'), ((1748, 1809), 'numpy.zeros', 'np.zeros', (['(num_samples, X_train.shape[1], crop_row, crop_col)'], {}), '((num_samples, X_train.shape[1], crop_row, crop_col))\n', (1756, 1809), True, 'import numpy as np\n'), ((2375, 2387), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2385, 2387), False, 'from keras.models import Sequential\n'), ((3837, 3891), 'keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.01)', 'decay': '(1e-06)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=0.01, decay=1e-06, momentum=0.9, nesterov=True)\n', (3840, 3891), False, 'from keras.optimizers import SGD\n'), ((4587, 4606), 'keras.datasets.cifar10.load_data', 'cifar10.load_data', ([], {}), '()\n', (4604, 4606), False, 'from keras.datasets import cifar10\n'), ((5214, 5226), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (5224, 5226), True, 'import matplotlib.pyplot as plt\n'), ((7873, 7907), 'numpy.savetxt', 'np.savetxt', (['"""mean"""', 'mean'], {'fmt': '"""%f"""'}), "('mean', mean, fmt='%f')\n", (7883, 7907), True, 'import numpy as np\n'), ((7914, 7946), 'numpy.savetxt', 'np.savetxt', (['"""std"""', 'std'], {'fmt': '"""%f"""'}), "('std', std, fmt='%f')\n", (7924, 7946), True, 'import numpy as np\n'), ((7953, 7999), 'numpy.savetxt', 'np.savetxt', (['"""covariance"""', 'covariance'], {'fmt': '"""%f"""'}), "('covariance', covariance, fmt='%f')\n", (7963, 7999), True, 'import numpy as np\n'), ((2683, 2701), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2693, 2701), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((2869, 2887), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2879, 2887), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((2903, 2933), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (2915, 2933), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), ((3153, 3171), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (3163, 3171), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((3339, 3357), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (3349, 3357), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((3373, 3403), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), '(pool_size=(2, 2))\n', (3385, 3403), False, 'from keras.layers import Convolution2D, MaxPooling2D\n'), ((3451, 3460), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3458, 3460), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((3558, 3576), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (3568, 3576), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((3592, 3604), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3599, 3604), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((3709, 3730), 'keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (3719, 3730), False, 'from keras.layers import Dense, Dropout, Activation, Flatten\n'), ((6636, 6681), 'numpy.reshape', 'np.reshape', (['activation', '(num, col * map_size)'], {}), '(activation, (num, col * map_size))\n', (6646, 6681), True, 'import numpy as np\n'), ((6911, 6962), 'numpy.reshape', 'np.reshape', (['trans_activation', '(col, num * map_size)'], {}), '(trans_activation, (col, num * map_size))\n', (6921, 6962), True, 'import numpy as np\n'), ((7182, 7231), 'numpy.mean', 'np.mean', (['matrix_activation'], {'axis': '(0)', 'keepdims': '(True)'}), '(matrix_activation, axis=0, keepdims=True)\n', (7189, 7231), True, 'import numpy as np\n'), ((7300, 7348), 'numpy.std', 'np.std', (['matrix_activation'], {'axis': '(0)', 'keepdims': '(True)'}), '(matrix_activation, axis=0, keepdims=True)\n', (7306, 7348), True, 'import numpy as np\n'), ((7571, 7613), 'numpy.mean', 'np.mean', (['activation'], {'axis': '(0)', 'keepdims': '(True)'}), '(activation, axis=0, keepdims=True)\n', (7578, 7613), True, 'import numpy as np\n'), ((7682, 7723), 'numpy.std', 'np.std', (['activation'], {'axis': '(0)', 'keepdims': '(True)'}), '(activation, axis=0, keepdims=True)\n', (7688, 7723), True, 'import numpy as np\n'), ((2599, 2608), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (2601, 2608), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((2656, 2665), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (2658, 2665), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((2785, 2794), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (2787, 2794), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((2842, 2851), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (2844, 2851), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3069, 3078), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3071, 3078), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3126, 3135), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3128, 3135), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3255, 3264), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3257, 3264), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3312, 3321), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3314, 3321), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3503, 3512), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3505, 3512), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3531, 3540), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3533, 3540), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3654, 3663), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3656, 3663), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((3682, 3691), 'keras.regularizers.l2', 'l2', ([], {'l': '(0.0)'}), '(l=0.0)\n', (3684, 3691), False, 'from keras.regularizers import l2, activity_l1l2\n'), ((4504, 4522), 'keras.backend.learning_phase', 'K.learning_phase', ([], {}), '()\n', (4520, 4522), True, 'from keras import backend as K\n'), ((7810, 7841), 'numpy.transpose', 'np.transpose', (['normalized_output'], {}), '(normalized_output)\n', (7822, 7841), True, 'import numpy as np\n'), ((7442, 7473), 'numpy.transpose', 'np.transpose', (['normalized_output'], {}), '(normalized_output)\n', (7454, 7473), True, 'import numpy as np\n')]
""" paw_structure.ion ----------------- Ion complex detection using geometric :ref:`algorithm<Control_ION_algorithm>`. Main routine is :func:`.ion_find_parallel`. Dependencies: :py:mod:`functools` :py:mod:`miniutils` :py:mod:`numpy` :py:mod:`pandas` :mod:`.neighbor` :mod:`.utility` :class:`.Snap` .. autosummary:: ion_find_parallel ion_load ion_save ion_single """ import numpy as np import pandas as pd from functools import partial import miniutils.progress_bar as progress # MODULES WITHIN PROJECT from . import neighbor from . import utility from .tra import Snap ######################################################################################################################## # FIND ION COMPLEX FOR A SINGLE SNAPSHOT ######################################################################################################################## # INPUT # class Snap snap snapshot containing all information # str id1 identifier for atom used as center (e.g. 'MN'); only one allowed to be in snap # str id2 identifier for atoms as possible first neighbors (e.g. 'O_') # str id3 identifier for atoms as possible neighbors of first neighbors (e.g. 'H_') # float cut1 cutoff distance for first neighbor search # float cut2 cutoff distance for second neighbor search ##### # OUTPUT # pandas DataFrame contains the whole complex centered around id1 ######################################################################################################################## def ion_single(snap, id1, id2, id3, cut1, cut2): """ Find ion complex of a single snapshot of atomic positions. Args: snap (:class:`.Snap`): single snapshot containing the atomic information id1 (str): identifier for atom used as center (e.g. 'MN') id2 (str): identifier for atoms as possible first neighbors (e.g. 'O\_') id3 (str): identifier for atoms as possible neighbors of first neighbors (e.g. 'H\_') cut1 (float): cutoff distance for first neighbor search cut2 (float): cutoff distance for second neighbor search Returns: :class:`.Snap`: snapshot containing an ion complex Todo: Implement possibility for more atoms of type id1 or allow selection by name. """ # check if only one atom is selected as ion if len(snap.atoms[snap.atoms['id'] == id1]) != 1: utility.err('ion_single', 0, [len(snap.atoms[snap.atoms['id'] == id1])]) # check if all three are different species if id1 == id2 or id2 == id3 or id1 == id3: utility.err('ion_single', 1, [id1, id2, id3]) # search first neighbors next1 = neighbor.neighbor_name(snap, id1, id2, cut1) # extract name lists id1_list = [atom[0] for atom in next1] id2_list = [y for x in [atom[1:] for atom in next1] for y in x] # search second neighbors next2 = neighbor.neighbor_name(snap, id2, id3, cut2, names=id2_list) # extract name list id3_list = [y for x in [atom[1:] for atom in next2] for y in x] # extract correct atom information id1_list = snap.atoms.loc[snap.atoms['name'].isin(id1_list)] id2_list = snap.atoms.loc[snap.atoms['name'].isin(id2_list)] id3_list = snap.atoms.loc[snap.atoms['name'].isin(id3_list)] comp = pd.concat([id1_list, id2_list, id3_list]) return Snap(snap.iter, snap.time, snap.cell, None, None, dataframe=comp) ######################################################################################################################## # SAVE INFORMATION FROM ion_find TO FILE <root>.ext FOR LATER ANALYSIS # TODO: check if snapshots is empty ######################################################################################################################## # INPUT # str root root name for saving file # list class Snap snapshots list with information to be saved # str id1 identifier for atom used as center (e.g. 'MN'); only one allowed to be in snap # str id2 identifier for atoms as possible first neighbors (e.g. 'O_') # str id3 identifier for atoms as possible neighbors of first neighbors (e.g. 'H_') # float cut1 cutoff distance for first neighbor search # float cut2 cutoff distance for second neighbor search # str ext (optional) extension for the saved file: name = root + ext ######################################################################################################################## def ion_save(root, snapshots, id1, id2, id3, cut1, cut2, ext='.ion'): """ Save results to file :ref:`Output_ion`. Args: root (str): root name for saving file snapshots (list[:class:`.Snap`]): list of snapshots containing an ion complex id1 (str): identifier for atom used as center (e.g. 'MN') id2 (str): identifier for atoms as possible first neighbors (e.g. 'O\_') id3 (str): identifier for atoms as possible neighbors of first neighbors (e.g. 'H\_') cut1 (float): cutoff distance for first neighbor search cut2 (float): cutoff distance for second neighbor search ext (str, optional): default ".ion" - extension for the saved file: name = root + ext Todo: Check if snapshots is empty. """ # open file path = root + ext try: f = open(path, 'w') except IOError: utility.err_file('ion_save', path) # write header f.write(utility.write_header()) f.write("ION COMPLEXES\n") f.write("%-14s%14.8f\n" % ("T1", snapshots[0].time)) f.write("%-14s%14.8f\n" % ("T2", snapshots[-1].time)) f.write("%-14s%14d\n" % ("SNAPSHOTS", len(snapshots))) f.write("%-14s%14s\n" % ("ID1", id1)) f.write("%-14s%14s\n" % ("ID2", id2)) f.write("%-14s%14s\n" % ("ID3", id3)) f.write("%-14s%14.8f\n" % ("CUT1", cut1)) f.write("%-14s%14.8f\n" % ("CUT2", cut2)) f.write("%-14s\n" % ("UNIT CELL")) np.savetxt(f, snapshots[0].cell, fmt="%14.8f") # write structure information for i in range(len(snapshots)): f.write("-" * 84 + "\n") f.write("%-14s%-14.8f%-14s%-14d%-14s%-14d\n" % ("TIME", snapshots[i].time, "ITERATION", snapshots[i].iter, "ATOMS", len(snapshots[i].atoms))) f.write("%-14s%-14s%-14s%14s%14s%14s\n" % ('NAME', 'ID', 'INDEX', 'X', 'Y', 'Z')) np.savetxt(f, snapshots[i].atoms, fmt="%-14s%-14s%-14d%14.8f%14.8f%14.8f") f.close() return ######################################################################################################################## # LOAD INFORMATION PREVIOUSLY SAVED BY ion_save() # WARNING: READING IS LINE SENSITIVE! ONLY USE ON UNCHANGED FILES WRITTEN BY ion_save() ######################################################################################################################## # INPUT # str root root name for the file to be loaded # str ext (optional) extension for the file to be loaded: name = root + ext ##### # OUTPUT # list class Snap snapshots list of all information ######################################################################################################################## def ion_load(root, ext='.ion'): """ Load information from the :ref:`Output_ion` file previously created by :func:`.ion_save`. Args: root (str): root name for the file to be loaded ext (str, optional): default ".ion" - extension for the file to be loaded: name = root + ext Returns: list[:class:`.Snap`]: list of snapshots containing an ion complex Note: Reading is line sensitive. Do not alter the output file before loading. """ path = root + ext try: f = open(path, 'r') except IOError: utility.err_file('ion_load', path) text = f.readlines() # read text as lines for i in range(len(text)): text[i] = text[i].split() # split each line into list with strings as elements snapshots = [] # storage list for i in range(len(text)): if len(text[i]) > 1: if text[i][0] == 'UNIT': cell = np.array(text[i+1:i+4], dtype=float) # get unit cell if text[i][0] == "TIME": # search for trigger of new snapshot iter = int(text[i][3]) time = float(text[i][1]) n_atoms = int(text[i][5]) test = np.array(text[i + 2:i + 2 + n_atoms]) atoms = {} atoms['name'] = test[:, 0] atoms['id'] = test[:, 1] atoms['index'] = np.array(test[:, 2], dtype=int) df = pd.DataFrame(data=atoms) # save information as class Snap snapshots.append(Snap(iter, time, cell, np.array(test[:, 3:6], dtype=np.float64), df)) return snapshots ######################################################################################################################## # FIND ION COMPLEXES IN MULTIPLE SNAPSHOTS # WARNING: NOT IN USE BECAUSE NO PARALLEL COMPUTING ######################################################################################################################## # INPUT # str root root name for saving file # list class Snap snapshots list with information to be saved # str id1 identifier for atom used as center (e.g. 'MN'); only one allowed to be in snap # str id2 identifier for atoms as possible first neighbors (e.g. 'O_') # str id3 identifier for atoms as possible neighbors of first neighbors (e.g. 'H_') # float cut1 (optional) cutoff distance for first neighbor search # float cut2 (optional) cutoff distance for second neighbor search ##### # OUTPUT # list class Snap complex list with all ion complexes found ######################################################################################################################## # def ion_find(root, snapshots, id1, id2, id3, cut1=3.0, cut2=1.4): # complex = [] # # loop through different snapshots # for snap in snapshots: # # get complex information # comp = ion_single(snap, id1, id2, id3, cut1, cut2) # # append Snap object for data storage # complex.append(Snap(snap.iter, snap.time, snap.cell, None, None, dataframe=comp)) # # save information to file # ion_save(root, complex, id1, id2, id3, cut1, cut2) # return complex ######################################################################################################################## # ROUTINE TO FIND ION COMPLEXES FOR MULTIPLE SNAPSHOTS # PARALLEL VERSION OF ion_find() WITH PROGRESS BAR IN CONSOLE ######################################################################################################################## # INPUT # str root root name for saving file # list class Snap snapshots list with information to be saved # str id1 identifier for atom used as center (e.g. 'MN'); only one allowed to be in snap # str id2 identifier for atoms as possible first neighbors (e.g. 'O_') # str id3 identifier for atoms as possible neighbors of first neighbors (e.g. 'H_') # float cut1 (optional) cutoff distance for first neighbor search # float cut2 (optional) cutoff distance for second neighbor search ##### # OUTPUT # list class Snap ion_comp list of ion complexes found ######################################################################################################################## def ion_find_parallel(root, snapshots, id1, id2, id3, cut1, cut2): """ Find ion complexes for multiple snapshots of atomic configurations. Args: root (str): root name of the files snapshots (list[:class:`.Snap`]): list of snapshots containing the atomic information id1 (str): identifier for atom used as center (e.g. 'MN') id2 (str): identifier for atoms as possible first neighbors (e.g. 'O\_') id3 (str): identifier for atoms as possible neighbors of first neighbors (e.g. 'H\_') cut1 (float): cutoff distance for first neighbor search cut2 (float): cutoff distance for second neighbor search Returns: list[:class:`.Snap`]: list of snapshots containing an ion complex Parallelization based on :py:mod:`multiprocessing`. Note: Only one atom of type :data:`id1` allowed to be in a snapshot at the moment. """ print("ION COMPLEX DETECTION IN PROGRESS") # set other arguments (necessary for parallel computing) multi_one = partial(ion_single, id1=id1, id2=id2, id3=id3, cut1=cut1, cut2=cut2) # run data extraction ion_comp = progress.parallel_progbar(multi_one, snapshots) # create output file ion_save(root, ion_comp, id1, id2, id3, cut1, cut2) print("ION COMPLEX DETECTION FINISHED") return ion_comp
[ "pandas.DataFrame", "numpy.array", "functools.partial", "numpy.savetxt", "miniutils.progress_bar.parallel_progbar", "pandas.concat" ]
[((3330, 3371), 'pandas.concat', 'pd.concat', (['[id1_list, id2_list, id3_list]'], {}), '([id1_list, id2_list, id3_list])\n', (3339, 3371), True, 'import pandas as pd\n'), ((6036, 6082), 'numpy.savetxt', 'np.savetxt', (['f', 'snapshots[0].cell'], {'fmt': '"""%14.8f"""'}), "(f, snapshots[0].cell, fmt='%14.8f')\n", (6046, 6082), True, 'import numpy as np\n'), ((12748, 12816), 'functools.partial', 'partial', (['ion_single'], {'id1': 'id1', 'id2': 'id2', 'id3': 'id3', 'cut1': 'cut1', 'cut2': 'cut2'}), '(ion_single, id1=id1, id2=id2, id3=id3, cut1=cut1, cut2=cut2)\n', (12755, 12816), False, 'from functools import partial\n'), ((12858, 12905), 'miniutils.progress_bar.parallel_progbar', 'progress.parallel_progbar', (['multi_one', 'snapshots'], {}), '(multi_one, snapshots)\n', (12883, 12905), True, 'import miniutils.progress_bar as progress\n'), ((6450, 6524), 'numpy.savetxt', 'np.savetxt', (['f', 'snapshots[i].atoms'], {'fmt': '"""%-14s%-14s%-14d%14.8f%14.8f%14.8f"""'}), "(f, snapshots[i].atoms, fmt='%-14s%-14s%-14d%14.8f%14.8f%14.8f')\n", (6460, 6524), True, 'import numpy as np\n'), ((8219, 8259), 'numpy.array', 'np.array', (['text[i + 1:i + 4]'], {'dtype': 'float'}), '(text[i + 1:i + 4], dtype=float)\n', (8227, 8259), True, 'import numpy as np\n'), ((8492, 8529), 'numpy.array', 'np.array', (['text[i + 2:i + 2 + n_atoms]'], {}), '(text[i + 2:i + 2 + n_atoms])\n', (8500, 8529), True, 'import numpy as np\n'), ((8674, 8705), 'numpy.array', 'np.array', (['test[:, 2]'], {'dtype': 'int'}), '(test[:, 2], dtype=int)\n', (8682, 8705), True, 'import numpy as np\n'), ((8727, 8751), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'atoms'}), '(data=atoms)\n', (8739, 8751), True, 'import pandas as pd\n'), ((8857, 8897), 'numpy.array', 'np.array', (['test[:, 3:6]'], {'dtype': 'np.float64'}), '(test[:, 3:6], dtype=np.float64)\n', (8865, 8897), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import pandas as pd from matplotlib.colors import LinearSegmentedColormap ms_color = [0.12156863, 0.46666667, 0.70588235, 1] hc_color = [1., 0.49803922, 0.05490196, 1] SMALL_SIZE = 12 MEDIUM_SIZE = 14 BIGGER_SIZE = 16 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=BIGGER_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title # set serif font plt.rc('font', family='serif') def generate_transparanet_cm(base='coolwarm', name="TransCoWa"): # copy from existing colormap ncolors = 256 color_array = plt.get_cmap(base)(range(ncolors)) # create parabolic decrease decr = [-1*(x**2)+1 for x in range(int(ncolors/2))] # normalize decr = (decr - np.min(decr))/(np.max(decr - np.min(decr))) # use inverted parabola as increase incr = np.copy(decr)[::-1] alphas = np.concatenate((decr, incr)) # update alpha values color_array[:,-1] = alphas # create new colormap and register it transparent_coolwarm = LinearSegmentedColormap.from_list(name, color_array) plt.register_cmap(cmap=transparent_coolwarm) def get_labels_dict(path): import xmltodict with open(path) as f: labels_xml = xmltodict.parse(f.read())['atlas']['data']['label'] labels_dict = {} for row in labels_xml: labels_dict[int(row['index'])] = row['name'] return labels_dict def heatmap_per_region(hm, atlas, positive=True, size_normalize=False, signed=False): # get heatmap mean per region # use only positive values signed_hm = np.copy(hm) if signed: if positive: signed_hm[signed_hm<0] = 0 else: signed_hm[signed_hm>0] = 0 regional_hm = {} for lbl_idx in np.unique(atlas): # skip outside area if lbl_idx != 0: atlas_lbl = atlas.copy() # get region mask for each label atlas_lbl[lbl_idx!=atlas] = 0 atlas_lbl[lbl_idx==atlas] = 1 # multiply region mask with heatmap region_intensity = np.mean(atlas_lbl * np.squeeze(signed_hm)) if size_normalize: region_size = np.sum(atlas_lbl).item() region_intensity /= region_size regional_hm[lbl_idx] = region_intensity return regional_hm def aggregate_regions(regional_hm, all_areas): # aggregate atlas regions to previously defined areas area_hm = {} for name, (min_idx, max_idx) in all_areas.items(): regions_fit = [] for key in regional_hm.keys(): if key in range(min_idx, max_idx+1): regions_fit.append(regional_hm[key]) region_mean = np.mean(regions_fit) area_hm[name] = region_mean return area_hm def get_area_relevance(heatmaps, atlas, area_dict, positive=True, size_normalize=True): keys = [] values = [] for hm in heatmaps: regional_hm = heatmap_per_region(hm, atlas, positive=positive, size_normalize=size_normalize) area_hm = aggregate_regions(regional_hm, area_dict) # sort by values area_hm_sorted = sorted(area_hm.items(), key=lambda kv: kv[1]) keys_sorted = [row[0] for row in area_hm_sorted] values_sorted = [row[1] for row in area_hm_sorted] keys.append(keys_sorted) values.append(values_sorted) return keys, values def translate_keys(keys): names_list = [] for key_list in keys: name_list = [] for key in key_list: name_list.append(short_name_map[key]) names_list.append(name_list) return names_list def wrap_as_df(keys, values): df_ms = pd.DataFrame({"values_ms": values[0]}, keys[0]) df_hc = pd.DataFrame({"values_hc": values[1]}, keys[1]) df = pd.merge(df_ms, df_hc, left_index=True, right_index=True, how='outer') return df def reduce_df(df, take=30): # get order based on relevance sum abs_order = (np.abs(df["values_hc"]) + np.abs(df["values_ms"])).sort_values().index most = abs_order[-take:] short_df = df.loc[most] order = (short_df["values_hc"] + short_df["values_ms"]).sort_values().index short_df = df.loc[order] return short_df def reduce_two_dfs(df_zero, df_one, take=30): abs_order = (df_zero.abs().sum() + df_one.abs().sum()).sort_values().index most = abs_order[-take:] # columns are keys so use [:, key] short_df_zero = df_zero.loc[:,most] short_df_one = df_one.loc[:,most] order = (short_df_zero.sum() + short_df_one.sum()).sort_values().index short_df_zero = short_df_zero.reindex(order, axis=1) short_df_one = short_df_one.reindex(order, axis=1) return short_df_zero, short_df_one def plot_key_value_pairs(keys, values, title, loc="center left"): plt.figure(figsize=(10, 6)) plt.plot(keys[0], values[0], 'o', color=ms_color, label="CDMS") plt.plot(keys[1], values[1], 'o', color=hc_color, label="HC") plt.xticks(rotation='vertical') plt.legend(loc=loc) plt.title(title) plt.show() def plot_dataframe(df, title, loc="center left"): plt.figure(figsize=(10, 6)) plt.plot(df["values_ms"], 'o', color=ms_color, label="CDMS") plt.plot(df["values_hc"], 'o', color=hc_color, label="HC") plt.xticks(rotation='vertical') plt.legend(loc=loc) plt.title(title) plt.show() # Modified areas from Visualizing evidence for AD paper by # Boehle et al. Based on Neuromorphometrics atlas from SPM12 # Name: (min, max) gm_areas= { "Accumbens": (23, 30), "Amygdala": (31, 32), "Brain Stem": (35, 35), "Caudate": (36, 37), "Cerebellum": (38, 41), "Hippocampus": (47, 48), "Parahippocampal gyrus": (170, 171), "Pallidum": (55, 56), "Putamen": (57, 58), "Thalamus": (59, 60), "CWM": (44, 45), "ACG": (100, 101), "Ant. Insula": (102, 103), "Post. Insula": (172, 173), "AOG": (104, 105), "AG": (106, 107), "Cuneus": (114, 115), "Central operculum": (112, 113), "Frontal operculum": (118, 119), "Frontal pole": (120, 121), "Fusiform gyrus": (122, 123), "Temporal pole": (202, 203), "TrIFG": (204, 205), "TTG": (206, 207), "Entorh. cortex": (116, 117), "Parietal operculum": (174, 175), "SPL": (198, 199), "CSF": (46, 46), "3rd Ventricle": (4, 4), "4th Ventricle": (11, 11), "Lateral Ventricles": (49, 52), "Diencephalon": (61, 62), "Vessels": (63, 64), "Optic Chiasm": (69, 69), "Vermal Lobules": (71, 73), "Basal Forebrain": (75, 76), "Calc": (108, 109), "GRe": (124, 125), "IOG": (128, 129), "ITG": (132, 133), "LiG": (134, 135), "LOrG": (136, 137), "MCgG": (138, 139), "MFC": (140, 141), "MFG": (142, 143), "MOG": (144, 145), "MOrG": (146, 147), "MPoG": (148, 149), "MPrG": (150, 151), "MSFG": (152, 153), "MTG": (154, 155), "OCP": (156, 157), "OFuG": (160, 161), "OpIFG": (162, 163), "OrIFG": (164, 165), "PCgG": (166, 167), "PCu": (168, 169), "PoG": (176, 177), "POrG": (178, 179), "PP": (180, 181), "PrG": (182, 183), "PT": (184, 185), "SCA": (186, 187), "SFG": (190, 191), "SMC": (192, 193), "SMG": (194, 195), "SOG": (196, 197), "STG": (200, 201), } short_name_map = { 'Accumbens': 'Accumbens', 'Amygdala': 'Amygdala', 'Brain Stem': 'Brain Stem', 'Caudate': 'Caudate', 'Cerebellum': 'Cerebellum', 'Hippocampus': 'Hippocampus', 'Parahippocampal gyrus': 'Parahippocampal gyr.', 'Pallidum': 'Pallidum', 'Putamen': 'Putamen', 'Thalamus': 'Thalamus', 'Diencephalon': 'Diencephalon', 'CWM': 'Cerebral white matter', 'ACG': 'Ant. cingulate gyr.', 'Ant. Insula': 'Ant. insula', 'Post. Insula': 'Post. insula', 'AOG': 'Ant. orbital gyr.', 'AG': 'Angular gyr.', 'Cuneus': 'Cuneus', 'Central operculum': 'Central operculum', 'Frontal operculum': 'Frontal operculum', 'Frontal pole': 'Frontal pole', 'Fusiform gyrus': 'Fusiform gyr.', 'Temporal pole': 'Temporal pole', 'TrIFG': 'Triangular part of IFG', 'TTG': 'Trans. temporal gyr.', 'Entorh. cortex': 'Entorhinal area', 'Parietal operculum': 'Parietal operculum', 'SPL': 'Sup. parietal lobule', 'CSF': 'CSF', '3rd Ventricle': '3rd Ventricle', '4th Ventricle': '4th Ventricle', 'Lateral Ventricles': 'Inf. Lat. Ventricles', 'Vessels': 'Vessels', 'Optic Chiasm': 'Optic Chiasm', 'Vermal Lobules': 'Cereb. Verm. Lob.', 'Basal Forebrain': 'Basal Forebrain', 'Calc': 'Calcarine cortex', 'GRe': 'Gyrus rectus', 'IOG': 'Inf. occipital gyr.', 'ITG': 'Inf. temporal gyr.', 'LiG': 'Lingual gyr.', 'LOrG': 'Lat. orbital gyr.', 'MCgG': 'Mid. cingulate gyr.', 'MFC': 'Med. frontal cortex', 'MFG': 'Mid. frontal gyr.', 'MOG': 'Mid. occipital gyr.', 'MOrG': 'Med. orbital gyr.', 'MPoG': 'Post. gyr. med. seg.', 'MPrG': 'Pre. gyr. med. seg.', 'MSFG': 'Sup. frontal gyr. med. seg.', 'MTG': 'Mid. temporal gyr.', 'OCP': 'Occipital pole', 'OFuG': 'Occipital fusiform gyr.', 'OpIFG': 'Opercular part of IFG', 'OrIFG': 'Orbital part of IFG', 'PCgG': 'Post. cingulate gyr.', 'PCu': 'Precuneus', 'PoG': 'Postcentral gyr.', 'POrG': 'Post. orbital gyr.', 'PP': 'Planum polare', 'PrG': 'Precentral gyr.', 'PT': 'Planum temporale', 'SCA': 'Subcallosal area', 'SFG': 'Sup. frontal gyr.', 'SMC': 'Supp. motor cortex', 'SMG': 'Supramarginal gyr.', 'SOG': 'Sup. occipital gyr.', 'STG': 'Sup. temporal gyr.' } # Aggregated white matter areas from JHU ICBM DTI atlas from FSL # Name: (min, max) wm_areas= { "Middle cerebellar peduncle": (1, 2), "Corpus callosum": (3, 5), "Fornix": (6, 6), "Corticospinal tract": (7, 8), "Medial lemniscus": (9, 10), "Inferior cerebellar peduncle": (11, 12), "Superior cerebellar peduncle": (13, 14), "Cerebral peduncle": (15, 16), "Anterior limb of internal capsule": (17, 18), "Posterior limb of internal capsule": (19, 20), "Retrolenticular part of internal capsule": (21, 22), "Anterior corona radiata": (23, 24), "Superior corona radiata": (25, 26), "Posterior corona radiata": (27, 28), "Posterior thalamic radiation": (29, 30), "Sagittal stratum": (31, 32), "External capsule": (33, 34), "Cingulum": (35, 38), "Superior longitudinal fasciculus": (41, 42), "Superior fronto-occipital fasciculus": (43, 44), "Uncinate fasciculus": (45, 46), "Tapetum": (47, 48), }
[ "numpy.mean", "matplotlib.pyplot.plot", "numpy.concatenate", "numpy.min", "pandas.DataFrame", "numpy.abs", "matplotlib.pyplot.xticks", "pandas.merge", "numpy.squeeze", "matplotlib.pyplot.register_cmap", "matplotlib.pyplot.title", "matplotlib.colors.LinearSegmentedColormap.from_list", "matplotlib.pyplot.legend", "matplotlib.pyplot.get_cmap", "matplotlib.pyplot.rc", "numpy.copy", "matplotlib.pyplot.show", "numpy.unique", "numpy.sum", "matplotlib.pyplot.figure" ]
[((272, 303), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'size': 'SMALL_SIZE'}), "('font', size=SMALL_SIZE)\n", (278, 303), True, 'import matplotlib.pyplot as plt\n'), ((343, 380), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': 'BIGGER_SIZE'}), "('axes', titlesize=BIGGER_SIZE)\n", (349, 380), True, 'import matplotlib.pyplot as plt\n'), ((414, 451), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': 'MEDIUM_SIZE'}), "('axes', labelsize=MEDIUM_SIZE)\n", (420, 451), True, 'import matplotlib.pyplot as plt\n'), ((488, 525), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': 'SMALL_SIZE'}), "('xtick', labelsize=SMALL_SIZE)\n", (494, 525), True, 'import matplotlib.pyplot as plt\n'), ((559, 596), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': 'SMALL_SIZE'}), "('ytick', labelsize=SMALL_SIZE)\n", (565, 596), True, 'import matplotlib.pyplot as plt\n'), ((630, 667), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': 'SMALL_SIZE'}), "('legend', fontsize=SMALL_SIZE)\n", (636, 667), True, 'import matplotlib.pyplot as plt\n'), ((689, 728), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': 'BIGGER_SIZE'}), "('figure', titlesize=BIGGER_SIZE)\n", (695, 728), True, 'import matplotlib.pyplot as plt\n'), ((779, 809), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""serif"""'}), "('font', family='serif')\n", (785, 809), True, 'import matplotlib.pyplot as plt\n'), ((1235, 1263), 'numpy.concatenate', 'np.concatenate', (['(decr, incr)'], {}), '((decr, incr))\n', (1249, 1263), True, 'import numpy as np\n'), ((1391, 1443), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'LinearSegmentedColormap.from_list', (['name', 'color_array'], {}), '(name, color_array)\n', (1424, 1443), False, 'from matplotlib.colors import LinearSegmentedColormap\n'), ((1448, 1492), 'matplotlib.pyplot.register_cmap', 'plt.register_cmap', ([], {'cmap': 'transparent_coolwarm'}), '(cmap=transparent_coolwarm)\n', (1465, 1492), True, 'import matplotlib.pyplot as plt\n'), ((1934, 1945), 'numpy.copy', 'np.copy', (['hm'], {}), '(hm)\n', (1941, 1945), True, 'import numpy as np\n'), ((2123, 2139), 'numpy.unique', 'np.unique', (['atlas'], {}), '(atlas)\n', (2132, 2139), True, 'import numpy as np\n'), ((4030, 4077), 'pandas.DataFrame', 'pd.DataFrame', (["{'values_ms': values[0]}", 'keys[0]'], {}), "({'values_ms': values[0]}, keys[0])\n", (4042, 4077), True, 'import pandas as pd\n'), ((4090, 4137), 'pandas.DataFrame', 'pd.DataFrame', (["{'values_hc': values[1]}", 'keys[1]'], {}), "({'values_hc': values[1]}, keys[1])\n", (4102, 4137), True, 'import pandas as pd\n'), ((4148, 4218), 'pandas.merge', 'pd.merge', (['df_ms', 'df_hc'], {'left_index': '(True)', 'right_index': '(True)', 'how': '"""outer"""'}), "(df_ms, df_hc, left_index=True, right_index=True, how='outer')\n", (4156, 4218), True, 'import pandas as pd\n'), ((5155, 5182), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (5165, 5182), True, 'import matplotlib.pyplot as plt\n'), ((5187, 5250), 'matplotlib.pyplot.plot', 'plt.plot', (['keys[0]', 'values[0]', '"""o"""'], {'color': 'ms_color', 'label': '"""CDMS"""'}), "(keys[0], values[0], 'o', color=ms_color, label='CDMS')\n", (5195, 5250), True, 'import matplotlib.pyplot as plt\n'), ((5255, 5316), 'matplotlib.pyplot.plot', 'plt.plot', (['keys[1]', 'values[1]', '"""o"""'], {'color': 'hc_color', 'label': '"""HC"""'}), "(keys[1], values[1], 'o', color=hc_color, label='HC')\n", (5263, 5316), True, 'import matplotlib.pyplot as plt\n'), ((5321, 5352), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '"""vertical"""'}), "(rotation='vertical')\n", (5331, 5352), True, 'import matplotlib.pyplot as plt\n'), ((5357, 5376), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': 'loc'}), '(loc=loc)\n', (5367, 5376), True, 'import matplotlib.pyplot as plt\n'), ((5381, 5397), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (5390, 5397), True, 'import matplotlib.pyplot as plt\n'), ((5402, 5412), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5410, 5412), True, 'import matplotlib.pyplot as plt\n'), ((5468, 5495), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (5478, 5495), True, 'import matplotlib.pyplot as plt\n'), ((5500, 5560), 'matplotlib.pyplot.plot', 'plt.plot', (["df['values_ms']", '"""o"""'], {'color': 'ms_color', 'label': '"""CDMS"""'}), "(df['values_ms'], 'o', color=ms_color, label='CDMS')\n", (5508, 5560), True, 'import matplotlib.pyplot as plt\n'), ((5565, 5623), 'matplotlib.pyplot.plot', 'plt.plot', (["df['values_hc']", '"""o"""'], {'color': 'hc_color', 'label': '"""HC"""'}), "(df['values_hc'], 'o', color=hc_color, label='HC')\n", (5573, 5623), True, 'import matplotlib.pyplot as plt\n'), ((5628, 5659), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '"""vertical"""'}), "(rotation='vertical')\n", (5638, 5659), True, 'import matplotlib.pyplot as plt\n'), ((5664, 5683), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': 'loc'}), '(loc=loc)\n', (5674, 5683), True, 'import matplotlib.pyplot as plt\n'), ((5688, 5704), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (5697, 5704), True, 'import matplotlib.pyplot as plt\n'), ((5709, 5719), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5717, 5719), True, 'import matplotlib.pyplot as plt\n'), ((946, 964), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['base'], {}), '(base)\n', (958, 964), True, 'import matplotlib.pyplot as plt\n'), ((1202, 1215), 'numpy.copy', 'np.copy', (['decr'], {}), '(decr)\n', (1209, 1215), True, 'import numpy as np\n'), ((3057, 3077), 'numpy.mean', 'np.mean', (['regions_fit'], {}), '(regions_fit)\n', (3064, 3077), True, 'import numpy as np\n'), ((1106, 1118), 'numpy.min', 'np.min', (['decr'], {}), '(decr)\n', (1112, 1118), True, 'import numpy as np\n'), ((1135, 1147), 'numpy.min', 'np.min', (['decr'], {}), '(decr)\n', (1141, 1147), True, 'import numpy as np\n'), ((2459, 2480), 'numpy.squeeze', 'np.squeeze', (['signed_hm'], {}), '(signed_hm)\n', (2469, 2480), True, 'import numpy as np\n'), ((4318, 4341), 'numpy.abs', 'np.abs', (["df['values_hc']"], {}), "(df['values_hc'])\n", (4324, 4341), True, 'import numpy as np\n'), ((4344, 4367), 'numpy.abs', 'np.abs', (["df['values_ms']"], {}), "(df['values_ms'])\n", (4350, 4367), True, 'import numpy as np\n'), ((2543, 2560), 'numpy.sum', 'np.sum', (['atlas_lbl'], {}), '(atlas_lbl)\n', (2549, 2560), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Provides functions for data transformation (currently only LLS) and normalization. """ import numpy as np def transform(raw_data, mode, direction='direct', **kwargs): """ Apply mathematical transformations to data. Parameters ---------- raw_data : ndarray 2D numpy array with the shape (N, M) containing N data rows to be smoothed. Each data row is represented by row in numpy array and contains M values. If only one data row is present, raw_data has the shape (1, M). mode : str Maths used for transformation. Allowed mode is 'log_log_sqrt' only at the moment which first takes the square root and then does the logarithm twice. direction : str, optional Gives the direction of the tranformation. If 'direct', the data is transformed, if 'inverse', the inverse of the transformation is calculated. The default is 'direct'. **kwargs for the different modes mode is 'log_log_sqrt' and direction is 'inverse': min_value : float Original minimum value of the data before transformation. Has to be known because it is lost upon transformation. Default is 1. Raises ------ ValueError If the value passed as mode or direction is not understood. Returns ------- raw_data : ndarray Transformed data with the same shape as raw_data. """ # list of allowed modes for data transformation transform_modes = ['log_log_sqrt'] if direction == 'direct': if mode == transform_modes[0]: minimum_value = np.min(raw_data) raw_data -= minimum_value raw_data = np.log(np.log(np.sqrt(raw_data + 1) + 1) + 1) else: raise ValueError('No valid transform mode entered. Allowed modes ' 'are {0}'.format(transform_modes)) elif direction == 'inverse': if mode == transform_modes[0]: minimum_value = kwargs.get('min_value', 1) raw_data = (np.exp(np.exp(raw_data) - 1) - 1)**2 - 1 raw_data += minimum_value else: raise ValueError('No valid transform mode entered. Allowed modes ' 'are {0}'.format(transform_modes)) else: raise ValueError('No valid transform direction entered. Allowed ' 'directions are [\'direct\', \'inverse\']') return raw_data def normalize(raw_data, mode, factor=1, **kwargs): raw_data = np.asarray(raw_data) # list of allowed modes for normalization normalize_modes = ['total_intensity'] if mode == normalize_modes[0]: x_data_points = raw_data.shape[1] x_data = kwargs.get('x_data', np.arange(x_data_points)) conversion_factor = 1/np.repeat(np.trapz(raw_data, x=x_data, axis=1), x_data_points).reshape( (-1, x_data_points)) normalized_data = raw_data * conversion_factor * factor else: raise ValueError('No valid normalization mode entered. Allowed modes ' 'are {0}'.format(normalize_modes)) return normalized_data
[ "numpy.trapz", "numpy.sqrt", "numpy.asarray", "numpy.exp", "numpy.min", "numpy.arange" ]
[((2588, 2608), 'numpy.asarray', 'np.asarray', (['raw_data'], {}), '(raw_data)\n', (2598, 2608), True, 'import numpy as np\n'), ((1677, 1693), 'numpy.min', 'np.min', (['raw_data'], {}), '(raw_data)\n', (1683, 1693), True, 'import numpy as np\n'), ((2814, 2838), 'numpy.arange', 'np.arange', (['x_data_points'], {}), '(x_data_points)\n', (2823, 2838), True, 'import numpy as np\n'), ((2880, 2916), 'numpy.trapz', 'np.trapz', (['raw_data'], {'x': 'x_data', 'axis': '(1)'}), '(raw_data, x=x_data, axis=1)\n', (2888, 2916), True, 'import numpy as np\n'), ((1769, 1790), 'numpy.sqrt', 'np.sqrt', (['(raw_data + 1)'], {}), '(raw_data + 1)\n', (1776, 1790), True, 'import numpy as np\n'), ((2117, 2133), 'numpy.exp', 'np.exp', (['raw_data'], {}), '(raw_data)\n', (2123, 2133), True, 'import numpy as np\n')]
#Predictions performed by this module #dependencies import base64 import numpy as np import io from PIL import Image import keras from keras import backend as K from keras.models import Sequential from keras.models import load_model from keras.preprocessing.image import ImageDataGenerator, img_to_array from model import Model, DecoderType from main import infer2 from flask import request from flask import jsonify from flask import Flask from imageio import imread app = Flask(__name__) """ def get_model(): This function loads the already-built keras model global model model = load_model('model.h5') print("Model loaded!")""" def preprocess_image(image, target_size): if image.mode != "RGB": image = image.convert("RGB") image = image.resize(target_size) image = img_to_array(image) image = np.expand_dims(image, axis=0) return image """print(" * Loading Keras model ... ") get_model()""" @app.route("/predict", methods=["POST"]) def predict(): """ whenever something is posted from /predict, this function will process the info posted through POST http method message: json from POST method encoded: key is 'image', value is base64encoded image sent from client decoded: as it says image: decoded is bytes in a file, not an actual image, image.open converts those bytes into PIL file """ message = request.get_json(force=True) encoded = message['image'] encoded = encoded.replace("data:image/jpeg;base64,", "") print(encoded) decoded = base64.b64decode(encoded) image = imread(io.BytesIO(decoded)) """ processed_image = preprocess_image(image, target_size=(224,224))""" """prediction = model.predict(processed_image).tolist()""" model = Model(list(open("/home/shikhar/Desktop/simpleHTR/SimpleHTR/model/charList.txt").read()), decoder_type=0, must_restore=True, dump=True) response = infer2(model, image) response = { 'text': response['text'], 'probability': str(response['probability']) } return jsonify(response) @app.route("/", methods=["GET"]) def hello(): return 'Hello' if __name__ == "__main__": app.run(host='0.0.0.0', port=5000)
[ "keras.preprocessing.image.img_to_array", "flask.Flask", "io.BytesIO", "base64.b64decode", "flask.request.get_json", "numpy.expand_dims", "main.infer2", "flask.jsonify" ]
[((478, 493), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (483, 493), False, 'from flask import Flask\n'), ((815, 834), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['image'], {}), '(image)\n', (827, 834), False, 'from keras.preprocessing.image import ImageDataGenerator, img_to_array\n'), ((847, 876), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (861, 876), True, 'import numpy as np\n'), ((1412, 1440), 'flask.request.get_json', 'request.get_json', ([], {'force': '(True)'}), '(force=True)\n', (1428, 1440), False, 'from flask import request\n'), ((1566, 1591), 'base64.b64decode', 'base64.b64decode', (['encoded'], {}), '(encoded)\n', (1582, 1591), False, 'import base64\n'), ((1938, 1958), 'main.infer2', 'infer2', (['model', 'image'], {}), '(model, image)\n', (1944, 1958), False, 'from main import infer2\n'), ((2085, 2102), 'flask.jsonify', 'jsonify', (['response'], {}), '(response)\n', (2092, 2102), False, 'from flask import jsonify\n'), ((1611, 1630), 'io.BytesIO', 'io.BytesIO', (['decoded'], {}), '(decoded)\n', (1621, 1630), False, 'import io\n')]
from __future__ import division from __future__ import print_function import numpy as np import copy from scipy import stats class QuantizeLayer: def __init__(self, name="None", num_bin=2001): self.name = name self.min = 0.0 self.max = 0.0 self.edge = 0.0 self.num_bins = num_bin self.distribution_interval = 0.0 self.data_distribution = [] @staticmethod def get_max_min_edge(blob_data): max_val = np.max(blob_data) min_val = np.min(blob_data) data_edge = max(abs(max_val), abs(min_val)) return max_val, min_val, data_edge def initial_histograms(self, blob_data): max_val, min_val, data_edge = self.get_max_min_edge(blob_data) hist, hist_edges = np.histogram(blob_data, bins=self.num_bins, range=(-data_edge, data_edge)) self.distribution_interval = 2 * data_edge / len(hist) self.data_distribution = hist self.edge = data_edge self.min = min_val self.max = max_val def combine_histograms(self, blob_data): """ :param blob_data: :return: """ # hist is the num of each bin, the edge of each bin is [) max_val, min_val, data_edge = self.get_max_min_edge(blob_data) if data_edge <= self.edge: hist, _ = np.histogram(blob_data, bins=len(self.data_distribution), range=(-self.edge, self.edge)) self.data_distribution += hist else: old_num_bins = len(self.data_distribution) old_step = 2 * self.edge / old_num_bins half_increased_bins = int((data_edge - self.edge) // old_step + 1) new_num_bins = half_increased_bins * 2 + old_num_bins data_edge = half_increased_bins * old_step + self.edge hist, hist_edges = np.histogram(blob_data, bins=new_num_bins, range=(-data_edge, data_edge)) hist[half_increased_bins:new_num_bins - half_increased_bins] += self.data_distribution self.data_distribution = hist self.edge = data_edge self.min = min(min_val, self.min) self.max = max(max_val, self.max) self.distribution_interval = 2 * self.edge / len(self.data_distribution) @staticmethod def smooth_distribution(p, eps=0.0001): is_zeros = (p == 0).astype(np.float32) is_nonzeros = (p != 0).astype(np.float32) n_zeros = is_zeros.sum() n_nonzeros = p.size - n_zeros if not n_nonzeros: raise ValueError('The discrete probability distribution is malformed. All entries are 0.') eps1 = eps * float(n_zeros) / float(n_nonzeros) assert eps1 < 1.0, 'n_zeros=%d, n_nonzeros=%d, eps1=%f' % (n_zeros, n_nonzeros, eps1) hist = p.astype(np.float32) hist += eps * is_zeros + (-eps1) * is_nonzeros assert (hist <= 0).sum() == 0 return hist @property def threshold_distribution(self, target_bin=256): """ :param quantized_dtype: :param target_bin: :return: """ num_bins = len(self.data_distribution) distribution = self.data_distribution assert (num_bins % 2 == 1) # if min_val >= 0 and quantized_dtype in ['auto', 'uint8']: # target_bin = 128 threshold_sum = sum(distribution[target_bin:]) kl_divergence = np.zeros(num_bins - target_bin) for threshold in range(target_bin, num_bins): sliced_nd_hist = copy.deepcopy(distribution[:threshold]) # generate reference distribution p p = sliced_nd_hist.copy() p[threshold - 1] += threshold_sum threshold_sum = threshold_sum - distribution[threshold] # is_nonzeros[k] indicates whether hist[k] is nonzero p = np.array(p) nonzero_loc = (p != 0).astype(np.int64) # quantized_bins = np.zeros(target_bin, dtype=np.int64) # calculate how many bins should be merged to generate quantized distribution q num_merged_bins = len(sliced_nd_hist) // target_bin # merge hist into num_quantized_bins bins for j in range(target_bin): start = j * num_merged_bins stop = start + num_merged_bins quantized_bins[j] = sliced_nd_hist[start:stop].sum() quantized_bins[-1] += sliced_nd_hist[target_bin * num_merged_bins:].sum() # expand quantized_bins into p.size bins q = np.zeros(sliced_nd_hist.size, dtype=np.float64) for j in range(target_bin): start = j * num_merged_bins if j == target_bin - 1: stop = -1 else: stop = start + num_merged_bins norm = nonzero_loc[start:stop].sum() if norm != 0: q[start:stop] = quantized_bins[j] / norm q[p == 0] = 0.0001 p = self.smooth_distribution(p) # calculate kl_divergence between q and p kl_divergence[threshold - target_bin] = stats.entropy(p, q) min_kl_divergence = np.argmin(kl_divergence) threshold_bin = min_kl_divergence + target_bin threshold_value = (threshold_bin + 0.5) * self.distribution_interval + (-self.edge) return threshold_value @staticmethod def max_slide_window(seq, m): num = len(seq) seq = seq.tolist() assert isinstance(seq, (list, tuple, set)) and isinstance(m, int), "seq array" assert len(seq) > m, "len(seq) must >m" max_seq = 0 loc = 0 for i in range(0, num): if (i + m) <= num: temp_seq = seq[i:i + m] temp_sum = sum(temp_seq) if max_seq <= temp_sum: max_seq = temp_sum loc = i else: return max_seq, loc @property def distribution_min_max(self, target_bin=256): num_bins = len(self.data_distribution) distribution = self.data_distribution assert (num_bins % 2 == 1) kl_divergence = np.zeros(num_bins - target_bin) kl_loc = np.zeros(num_bins - target_bin) for threshold in range(target_bin, num_bins): #print("num:", threshold) _, loc = self.max_slide_window(distribution, threshold) sliced_nd_hist = copy.deepcopy(distribution[loc:loc + threshold]) # generate reference distribution p p = sliced_nd_hist.copy() right_sum = sum(distribution[loc + threshold:]) left_sum = sum(distribution[:loc]) p[threshold - 1] += right_sum p[0] += left_sum # is_nonzeros[k] indicates whether hist[k] is nonzero p = np.array(p) nonzero_loc = (p != 0).astype(np.int64) # quantized_bins = np.zeros(target_bin, dtype=np.int64) # calculate how many bins should be merged to generate quantized distribution q num_merged_bins = len(sliced_nd_hist) // target_bin # merge hist into num_quantized_bins bins for j in range(target_bin): start = j * num_merged_bins stop = start + num_merged_bins quantized_bins[j] = sliced_nd_hist[start:stop].sum() quantized_bins[-1] += sliced_nd_hist[target_bin * num_merged_bins:].sum() # expand quantized_bins into p.size bins q = np.zeros(sliced_nd_hist.size, dtype=np.float64) for j in range(target_bin): start = j * num_merged_bins if j == target_bin - 1: stop = -1 else: stop = start + num_merged_bins norm = nonzero_loc[start:stop].sum() if norm != 0: q[start:stop] = quantized_bins[j] / norm q[p == 0] = 0.0001 p = self.smooth_distribution(p) # calculate kl_divergence between q and p kl_divergence[threshold - target_bin] = stats.entropy(p, q) kl_loc[threshold - target_bin] = loc min_kl_divergence = np.argmin(kl_divergence) min = kl_loc[min_kl_divergence] max = min + target_bin + min_kl_divergence min = (min + 0.5) * self.distribution_interval + (-self.edge) max = (max + 0.5) * self.distribution_interval + (-self.edge) return min, max @property def distribution_test(self, target_bin=256): num_bins = len(self.data_distribution) distribution = self.data_distribution assert (num_bins % 2 == 1) kl_divergence = np.zeros(num_bins - target_bin) kl_loc = np.zeros(num_bins - target_bin) for threshold in range(target_bin, num_bins): #print("num:", threshold) _, loc = self.max_slide_window(distribution, threshold) sliced_nd_hist = copy.deepcopy(distribution[loc:loc + threshold]) # generate reference distribution p p = sliced_nd_hist.copy() right_sum = sum(distribution[loc + threshold:]) left_sum = sum(distribution[:loc]) p[threshold - 1] += right_sum p[0] += left_sum # is_nonzeros[k] indicates whether hist[k] is nonzero p = np.array(p) nonzero_loc = (p != 0).astype(np.int64) # quantized_bins = np.zeros(target_bin, dtype=np.int64) # calculate how many bins should be merged to generate quantized distribution q num_merged_bins = len(sliced_nd_hist) // target_bin # merge hist into num_quantized_bins bins for j in range(target_bin): start = j * num_merged_bins stop = start + num_merged_bins quantized_bins[j] = sliced_nd_hist[start:stop].sum() quantized_bins[-1] += sliced_nd_hist[target_bin * num_merged_bins:].sum() # expand quantized_bins into p.size bins q = np.zeros(sliced_nd_hist.size, dtype=np.float64) for j in range(target_bin): start = j * num_merged_bins if j == target_bin - 1: stop = -1 else: stop = start + num_merged_bins norm = nonzero_loc[start:stop].sum() if norm != 0: q[start:stop] = quantized_bins[j] / norm q[p == 0] = 0.0001 p = self.smooth_distribution(p) # calculate kl_divergence between q and p kl_divergence[threshold - target_bin] = stats.wasserstein_distance(p, q) kl_loc[threshold - target_bin] = loc min_kl_divergence = np.argmin(kl_divergence) min = kl_loc[min_kl_divergence] max = min + target_bin + min_kl_divergence min = (min + 0.5) * self.distribution_interval + (-self.edge) max = (max + 0.5) * self.distribution_interval + (-self.edge) return min, max data = np.random.randn(10000,) print(data) layer = QuantizeLayer(name="con_1") layer.initial_histograms(data) print("min:", layer.min) print("max:", layer.max) print("edge:", layer.edge) print("distribution_interval:", layer.distribution_interval) print("bins:", len(layer.data_distribution)) data = np.random.randn(10000,).astype() layer.combine_histograms(data) print("min:", layer.min) print("max:", layer.max) print("edge:", layer.edge) print("distribution_interval:", layer.distribution_interval) print("bins:", len(layer.data_distribution)) data = np.random.randn(10000,) data[9999] = 20 layer.combine_histograms(data) print("min:", layer.min) print("max:", layer.max) print("edge:", layer.edge) print("distribution_interval:", layer.distribution_interval) print("bins:", len(layer.data_distribution)) import matplotlib.pyplot as plt plt.plot(layer.data_distribution) plt.show() print(layer.threshold_distribution) print(layer.distribution_min_max) #print(layer.distribution_test)
[ "numpy.histogram", "scipy.stats.entropy", "copy.deepcopy", "matplotlib.pyplot.plot", "numpy.max", "numpy.array", "numpy.zeros", "scipy.stats.wasserstein_distance", "numpy.min", "numpy.argmin", "numpy.random.randn", "matplotlib.pyplot.show" ]
[((11155, 11177), 'numpy.random.randn', 'np.random.randn', (['(10000)'], {}), '(10000)\n', (11170, 11177), True, 'import numpy as np\n'), ((11703, 11725), 'numpy.random.randn', 'np.random.randn', (['(10000)'], {}), '(10000)\n', (11718, 11725), True, 'import numpy as np\n'), ((11990, 12023), 'matplotlib.pyplot.plot', 'plt.plot', (['layer.data_distribution'], {}), '(layer.data_distribution)\n', (11998, 12023), True, 'import matplotlib.pyplot as plt\n'), ((12024, 12034), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (12032, 12034), True, 'import matplotlib.pyplot as plt\n'), ((477, 494), 'numpy.max', 'np.max', (['blob_data'], {}), '(blob_data)\n', (483, 494), True, 'import numpy as np\n'), ((513, 530), 'numpy.min', 'np.min', (['blob_data'], {}), '(blob_data)\n', (519, 530), True, 'import numpy as np\n'), ((770, 844), 'numpy.histogram', 'np.histogram', (['blob_data'], {'bins': 'self.num_bins', 'range': '(-data_edge, data_edge)'}), '(blob_data, bins=self.num_bins, range=(-data_edge, data_edge))\n', (782, 844), True, 'import numpy as np\n'), ((3386, 3417), 'numpy.zeros', 'np.zeros', (['(num_bins - target_bin)'], {}), '(num_bins - target_bin)\n', (3394, 3417), True, 'import numpy as np\n'), ((5188, 5212), 'numpy.argmin', 'np.argmin', (['kl_divergence'], {}), '(kl_divergence)\n', (5197, 5212), True, 'import numpy as np\n'), ((6192, 6223), 'numpy.zeros', 'np.zeros', (['(num_bins - target_bin)'], {}), '(num_bins - target_bin)\n', (6200, 6223), True, 'import numpy as np\n'), ((6241, 6272), 'numpy.zeros', 'np.zeros', (['(num_bins - target_bin)'], {}), '(num_bins - target_bin)\n', (6249, 6272), True, 'import numpy as np\n'), ((8274, 8298), 'numpy.argmin', 'np.argmin', (['kl_divergence'], {}), '(kl_divergence)\n', (8283, 8298), True, 'import numpy as np\n'), ((8772, 8803), 'numpy.zeros', 'np.zeros', (['(num_bins - target_bin)'], {}), '(num_bins - target_bin)\n', (8780, 8803), True, 'import numpy as np\n'), ((8821, 8852), 'numpy.zeros', 'np.zeros', (['(num_bins - target_bin)'], {}), '(num_bins - target_bin)\n', (8829, 8852), True, 'import numpy as np\n'), ((10867, 10891), 'numpy.argmin', 'np.argmin', (['kl_divergence'], {}), '(kl_divergence)\n', (10876, 10891), True, 'import numpy as np\n'), ((11448, 11470), 'numpy.random.randn', 'np.random.randn', (['(10000)'], {}), '(10000)\n', (11463, 11470), True, 'import numpy as np\n'), ((1834, 1907), 'numpy.histogram', 'np.histogram', (['blob_data'], {'bins': 'new_num_bins', 'range': '(-data_edge, data_edge)'}), '(blob_data, bins=new_num_bins, range=(-data_edge, data_edge))\n', (1846, 1907), True, 'import numpy as np\n'), ((3502, 3541), 'copy.deepcopy', 'copy.deepcopy', (['distribution[:threshold]'], {}), '(distribution[:threshold])\n', (3515, 3541), False, 'import copy\n'), ((3826, 3837), 'numpy.array', 'np.array', (['p'], {}), '(p)\n', (3834, 3837), True, 'import numpy as np\n'), ((3933, 3969), 'numpy.zeros', 'np.zeros', (['target_bin'], {'dtype': 'np.int64'}), '(target_bin, dtype=np.int64)\n', (3941, 3969), True, 'import numpy as np\n'), ((4537, 4584), 'numpy.zeros', 'np.zeros', (['sliced_nd_hist.size'], {'dtype': 'np.float64'}), '(sliced_nd_hist.size, dtype=np.float64)\n', (4545, 4584), True, 'import numpy as np\n'), ((5139, 5158), 'scipy.stats.entropy', 'stats.entropy', (['p', 'q'], {}), '(p, q)\n', (5152, 5158), False, 'from scipy import stats\n'), ((6465, 6513), 'copy.deepcopy', 'copy.deepcopy', (['distribution[loc:loc + threshold]'], {}), '(distribution[loc:loc + threshold])\n', (6478, 6513), False, 'import copy\n'), ((6863, 6874), 'numpy.array', 'np.array', (['p'], {}), '(p)\n', (6871, 6874), True, 'import numpy as np\n'), ((6970, 7006), 'numpy.zeros', 'np.zeros', (['target_bin'], {'dtype': 'np.int64'}), '(target_bin, dtype=np.int64)\n', (6978, 7006), True, 'import numpy as np\n'), ((7574, 7621), 'numpy.zeros', 'np.zeros', (['sliced_nd_hist.size'], {'dtype': 'np.float64'}), '(sliced_nd_hist.size, dtype=np.float64)\n', (7582, 7621), True, 'import numpy as np\n'), ((8176, 8195), 'scipy.stats.entropy', 'stats.entropy', (['p', 'q'], {}), '(p, q)\n', (8189, 8195), False, 'from scipy import stats\n'), ((9045, 9093), 'copy.deepcopy', 'copy.deepcopy', (['distribution[loc:loc + threshold]'], {}), '(distribution[loc:loc + threshold])\n', (9058, 9093), False, 'import copy\n'), ((9443, 9454), 'numpy.array', 'np.array', (['p'], {}), '(p)\n', (9451, 9454), True, 'import numpy as np\n'), ((9550, 9586), 'numpy.zeros', 'np.zeros', (['target_bin'], {'dtype': 'np.int64'}), '(target_bin, dtype=np.int64)\n', (9558, 9586), True, 'import numpy as np\n'), ((10154, 10201), 'numpy.zeros', 'np.zeros', (['sliced_nd_hist.size'], {'dtype': 'np.float64'}), '(sliced_nd_hist.size, dtype=np.float64)\n', (10162, 10201), True, 'import numpy as np\n'), ((10756, 10788), 'scipy.stats.wasserstein_distance', 'stats.wasserstein_distance', (['p', 'q'], {}), '(p, q)\n', (10782, 10788), False, 'from scipy import stats\n')]
import numpy as np import torch from scipy.stats import truncnorm from pymoo.factory import get_sampling, get_crossover, get_mutation from pymoo.operators.mixed_variable_operator import MixedVariableSampling, MixedVariableMutation, MixedVariableCrossover from pymoo.model.sampling import Sampling class TruncatedNormalRandomSampling(Sampling): def __init__(self, var_type=np.float): super().__init__() self.var_type = var_type def _do(self, problem, n_samples, **kwargs): return truncnorm.rvs(-2, 2, size=(n_samples, problem.n_var)).astype(np.float32) class NormalRandomSampling(Sampling): def __init__(self, mu=0, std=1, var_type=np.float): super().__init__() self.mu = mu self.std = std self.var_type = var_type def _do(self, problem, n_samples, **kwargs): return np.random.normal(self.mu, self.std, size=(n_samples, problem.n_var)) class BinaryRandomSampling(Sampling): def __init__(self, prob=0.5): super().__init__() self.prob = prob def _do(self, problem, n_samples, **kwargs): val = np.random.random((n_samples, problem.n_var)) return (val < self.prob).astype(np.bool) def get_operators(config): if config.config == "DeepMindBigGAN256" or config.config == "DeepMindBigGAN512": mask = ["real"]*config.dim_z + ["bool"]*config.num_classes real_sampling = None if config.config == "DeepMindBigGAN256" or config.config == "DeepMindBigGAN512": real_sampling = TruncatedNormalRandomSampling() sampling = MixedVariableSampling(mask, { "real": real_sampling, "bool": BinaryRandomSampling(prob=5/1000) }) crossover = MixedVariableCrossover(mask, { "real": get_crossover("real_sbx", prob=1.0, eta=3.0), "bool": get_crossover("bin_hux", prob=0.2) }) mutation = MixedVariableMutation(mask, { "real": get_mutation("real_pm", prob=0.5, eta=3.0), "bool": get_mutation("bin_bitflip", prob=10/1000) }) return dict( sampling=sampling, crossover=crossover, mutation=mutation ) elif config.config.split("_")[0] == "StyleGAN2": return dict( sampling=NormalRandomSampling(), crossover=get_crossover("real_sbx", prob=1.0, eta=3.0), mutation=get_mutation("real_pm", prob=0.5, eta=3.0) ) elif config.config.split("_")[0] == "Adaily": return dict( sampling=NormalRandomSampling(), crossover=get_crossover("real_sbx", prob=1.0, eta=3.0), mutation=get_mutation("real_pm", prob=0.5, eta=3.0) ) elif config.config == "GPT2": return dict( sampling=get_sampling("int_random"), crossover=get_crossover("int_sbx", prob=1.0, eta=3.0), mutation=get_mutation("int_pm", prob=0.5, eta=3.0) ) else: raise Exception("Unknown config")
[ "numpy.random.normal", "numpy.random.random", "pymoo.factory.get_mutation", "pymoo.factory.get_sampling", "pymoo.factory.get_crossover", "scipy.stats.truncnorm.rvs" ]
[((851, 919), 'numpy.random.normal', 'np.random.normal', (['self.mu', 'self.std'], {'size': '(n_samples, problem.n_var)'}), '(self.mu, self.std, size=(n_samples, problem.n_var))\n', (867, 919), True, 'import numpy as np\n'), ((1109, 1153), 'numpy.random.random', 'np.random.random', (['(n_samples, problem.n_var)'], {}), '((n_samples, problem.n_var))\n', (1125, 1153), True, 'import numpy as np\n'), ((514, 567), 'scipy.stats.truncnorm.rvs', 'truncnorm.rvs', (['(-2)', '(2)'], {'size': '(n_samples, problem.n_var)'}), '(-2, 2, size=(n_samples, problem.n_var))\n', (527, 567), False, 'from scipy.stats import truncnorm\n'), ((1785, 1829), 'pymoo.factory.get_crossover', 'get_crossover', (['"""real_sbx"""'], {'prob': '(1.0)', 'eta': '(3.0)'}), "('real_sbx', prob=1.0, eta=3.0)\n", (1798, 1829), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((1851, 1885), 'pymoo.factory.get_crossover', 'get_crossover', (['"""bin_hux"""'], {'prob': '(0.2)'}), "('bin_hux', prob=0.2)\n", (1864, 1885), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((1967, 2009), 'pymoo.factory.get_mutation', 'get_mutation', (['"""real_pm"""'], {'prob': '(0.5)', 'eta': '(3.0)'}), "('real_pm', prob=0.5, eta=3.0)\n", (1979, 2009), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2031, 2074), 'pymoo.factory.get_mutation', 'get_mutation', (['"""bin_bitflip"""'], {'prob': '(10 / 1000)'}), "('bin_bitflip', prob=10 / 1000)\n", (2043, 2074), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2352, 2396), 'pymoo.factory.get_crossover', 'get_crossover', (['"""real_sbx"""'], {'prob': '(1.0)', 'eta': '(3.0)'}), "('real_sbx', prob=1.0, eta=3.0)\n", (2365, 2396), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2419, 2461), 'pymoo.factory.get_mutation', 'get_mutation', (['"""real_pm"""'], {'prob': '(0.5)', 'eta': '(3.0)'}), "('real_pm', prob=0.5, eta=3.0)\n", (2431, 2461), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2611, 2655), 'pymoo.factory.get_crossover', 'get_crossover', (['"""real_sbx"""'], {'prob': '(1.0)', 'eta': '(3.0)'}), "('real_sbx', prob=1.0, eta=3.0)\n", (2624, 2655), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2678, 2720), 'pymoo.factory.get_mutation', 'get_mutation', (['"""real_pm"""'], {'prob': '(0.5)', 'eta': '(3.0)'}), "('real_pm', prob=0.5, eta=3.0)\n", (2690, 2720), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2808, 2834), 'pymoo.factory.get_sampling', 'get_sampling', (['"""int_random"""'], {}), "('int_random')\n", (2820, 2834), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2858, 2901), 'pymoo.factory.get_crossover', 'get_crossover', (['"""int_sbx"""'], {'prob': '(1.0)', 'eta': '(3.0)'}), "('int_sbx', prob=1.0, eta=3.0)\n", (2871, 2901), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n'), ((2924, 2965), 'pymoo.factory.get_mutation', 'get_mutation', (['"""int_pm"""'], {'prob': '(0.5)', 'eta': '(3.0)'}), "('int_pm', prob=0.5, eta=3.0)\n", (2936, 2965), False, 'from pymoo.factory import get_sampling, get_crossover, get_mutation\n')]
import config as cfg import cv2 import numpy as np from keras.models import load_model from keras.preprocessing.image import img_to_array from keras import backend as K import tensorflow as tf import keras ''' esto es necesario para que no haya errores a la hora de exponer el servicio con flask info --> https://github.com/tensorflow/tensorflow/issues/28287#issuecomment-495005162 ''' from keras.backend import set_session sess = tf.Session() graph = tf.get_default_graph() set_session(sess) model_emotions = load_model(cfg.path_model) class predict_emotions(): ''' def __init__(self): # cargo modelo de deteccion de emociones global graph self.graph = tf.get_default_graph() self.model_emotions = load_model(cfg.path_model) ''' def preprocess_img(self,face_image,rgb=True,w=48,h=48): face_image = cv2.resize(face_image, (w,h)) if rgb == False: face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY) face_image = face_image.astype("float") / 255.0 face_image= img_to_array(face_image) face_image = np.expand_dims(face_image, axis=0) return face_image def get_emotion(self,img,boxes_face): emotions = [] if len(boxes_face)!=0: for box in boxes_face: y0,x0,y1,x1 = box face_image = img[x0:x1,y0:y1] # preprocesar data face_image = self.preprocess_img(face_image ,cfg.rgb, cfg.w, cfg.h) # predecir imagen global sess global graph with graph.as_default(): set_session(sess) prediction = model_emotions.predict(face_image) emotion = cfg.labels[prediction.argmax()] emotions.append(emotion) else: emotions = [] boxes_face = [] return boxes_face,emotions
[ "keras.preprocessing.image.img_to_array", "keras.models.load_model", "tensorflow.Session", "keras.backend.set_session", "numpy.expand_dims", "cv2.cvtColor", "cv2.resize", "tensorflow.get_default_graph" ]
[((432, 444), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (442, 444), True, 'import tensorflow as tf\n'), ((453, 475), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (473, 475), True, 'import tensorflow as tf\n'), ((477, 494), 'keras.backend.set_session', 'set_session', (['sess'], {}), '(sess)\n', (488, 494), False, 'from keras.backend import set_session\n'), ((512, 538), 'keras.models.load_model', 'load_model', (['cfg.path_model'], {}), '(cfg.path_model)\n', (522, 538), False, 'from keras.models import load_model\n'), ((860, 890), 'cv2.resize', 'cv2.resize', (['face_image', '(w, h)'], {}), '(face_image, (w, h))\n', (870, 890), False, 'import cv2\n'), ((1061, 1085), 'keras.preprocessing.image.img_to_array', 'img_to_array', (['face_image'], {}), '(face_image)\n', (1073, 1085), False, 'from keras.preprocessing.image import img_to_array\n'), ((1107, 1141), 'numpy.expand_dims', 'np.expand_dims', (['face_image'], {'axis': '(0)'}), '(face_image, axis=0)\n', (1121, 1141), True, 'import numpy as np\n'), ((940, 984), 'cv2.cvtColor', 'cv2.cvtColor', (['face_image', 'cv2.COLOR_BGR2GRAY'], {}), '(face_image, cv2.COLOR_BGR2GRAY)\n', (952, 984), False, 'import cv2\n'), ((1650, 1667), 'keras.backend.set_session', 'set_session', (['sess'], {}), '(sess)\n', (1661, 1667), False, 'from keras.backend import set_session\n')]
import rclpy import json,numpy from numpy import clip from rclpy.node import Node from std_msgs.msg import Float64MultiArray from sensor_msgs.msg import JointState from diagnostic_msgs.msg import DiagnosticStatus, KeyValue import can from tinymovr import Tinymovr from tinymovr.iface.can import CAN from tinymovr.units import get_registry from math import pi ureg = get_registry() amps = ureg.ampere s = ureg.second minute = ureg.minute tick = ureg.tick rad = ureg.radian turn = ureg.turn deg = ureg.degree class HardwareAbstractionLayer(Node): def __init__(self): super().__init__('HardwareAbstractionLayer') # Lecture du fichier de configuration des moteurs f = open("/home/vanille/ros2_ws/src/hal/config.json","r") self.config = json.load(f) f.close() self.can_bus = can.Bus(bustype='slcan',channel='/dev/ttyACM0',bitrate=1000000) self.iface = CAN(self.can_bus) for kmotor,motor in self.config['motors'].items(): if "id_can" in motor : motor["tm"]=Tinymovr(node_id=int(motor["id_can"]), iface=self.iface) assert(motor["tm"].motor_config.flags == 1) motor["offset"] = motor["tm"].encoder_estimates.position self.declare_parameter(kmotor+"_max_speed",motor["max_speed"]) self.declare_parameter(kmotor+"_max_current",motor["max_current"]) motor["tm"].set_limits(motor["max_speed"]*turn/minute,motor["max_current"]*amps) self.declare_parameter(kmotor+"_gain_integrator",motor["gain_integrator"]) motor["tm"].set_integrator_gains(motor["gain_integrator"]) self.publisherJoint_ = self.create_publisher(JointState, '/vanille/joint_states', 1) self.publisherDiag_ = self.create_publisher(DiagnosticStatus, 'diagnostic',1) self.subscription = self.create_subscription( JointState, '/vanille/joint_position_cmd', self.update_position_cmd, 1) timer_period = 0.01 # seconds timer_period_diag = 2 # seconds self.timer = self.create_timer(timer_period, self.routine) self.timerDiag = self.create_timer(timer_period_diag, self.updateDiagnostic) def update_position_cmd(self, msg : JointState): for imotor in range(len(msg.name)): kmotor = msg.name[imotor] if kmotor in self.config['motors']: motor = self.config['motors'][kmotor] position_target = msg.position[imotor]*rad if numpy.isnan(position_target) : motor["tm"].current_control() motor["tm"].set_cur_setpoint(0.0*amps) else: position_target = clip(position_target,motor["limit_lower"]*deg, motor["limit_upper"]*deg) if motor["orientation"] == "direct": motor["tm"].position_control() # motor["tm"].set_pos_setpoint(motor["offset"]+position_target*float(motor["ratio"])) motor["tm"].set_pos_setpoint(motor["offset"]+position_target*motor["ratio"]) elif motor["orientation"] == "indirect": motor["tm"].position_control() # motor["tm"].set_pos_setpoint(motor["offset"]-position_target*float(motor["ratio"])) motor["tm"].set_pos_setpoint(motor["offset"]-position_target*motor["ratio"]) def read_positions(self): msg = JointState() msg.header.stamp = super().get_clock().now().to_msg() msg.name = [] msg.position = [] msg.velocity = [] msg.effort = [] for kmotor,motor in self.config['motors'].items(): msg.name.append(motor["joint_name"]) if motor["orientation"] == "direct": msg.position.append(float((motor["tm"].encoder_estimates.position-motor["offset"])/float(motor["ratio"]))) msg.velocity.append(motor["tm"].encoder_estimates.velocity.to(rad/s).m/float(motor["ratio"])) msg.effort.append(motor["tm"].Iq.estimate.m*float(motor["ratio"])) elif motor["orientation"] == "indirect": msg.position.append(float(-(motor["tm"].encoder_estimates.position-motor["offset"])/float(motor["ratio"]))) msg.velocity.append(-motor["tm"].encoder_estimates.velocity.to(rad/s).m/float(motor["ratio"])) msg.effort.append(-motor["tm"].Iq.estimate.m*float(motor["ratio"])) self.publisherJoint_.publish(msg) def updateDiagnostic(self): # tmx.device_info = {"device_id": 99999, "fw_major": 0, "fw_minor": 7, "fw_patch": 1, "temp": 45} # tmx.motor_config = {"flags": 1, "R": 200, "pole_pairs": 11, "L": 100} msg = DiagnosticStatus() msg1 = KeyValue() for kmotor,motor in self.config['motors'].items(): msg.values= [] msg.hardware_id = kmotor msg.name = kmotor msg.message = "device_info motor_config" for kinfo,info in motor["tm"].device_info.items(): msg1 = KeyValue() msg1.key=kinfo msg1.value=str(info) msg.values.append(msg1) for kinfo,info in motor["tm"].motor_config.items(): msg1 = KeyValue() msg1.key=kinfo msg1.value=str(info) msg.values.append(msg1) self.publisherDiag_.publish(msg) def routine(self): self.read_positions() def stop(self): self.get_logger().info(f'Stopping HAL Node') for kmotor,motor in self.config['motors'].items(): motor["tm"].idle() def main(args=None): print('Hi from hal.') rclpy.init(args=args) hal_node = HardwareAbstractionLayer() try: rclpy.spin(hal_node) except KeyboardInterrupt: pass hal_node.stop() # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) hal_node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main()
[ "diagnostic_msgs.msg.KeyValue", "numpy.clip", "tinymovr.units.get_registry", "rclpy.spin", "diagnostic_msgs.msg.DiagnosticStatus", "sensor_msgs.msg.JointState", "can.Bus", "numpy.isnan", "json.load", "rclpy.init", "rclpy.shutdown", "tinymovr.iface.can.CAN" ]
[((370, 384), 'tinymovr.units.get_registry', 'get_registry', ([], {}), '()\n', (382, 384), False, 'from tinymovr.units import get_registry\n'), ((5874, 5895), 'rclpy.init', 'rclpy.init', ([], {'args': 'args'}), '(args=args)\n', (5884, 5895), False, 'import rclpy\n'), ((6223, 6239), 'rclpy.shutdown', 'rclpy.shutdown', ([], {}), '()\n', (6237, 6239), False, 'import rclpy\n'), ((783, 795), 'json.load', 'json.load', (['f'], {}), '(f)\n', (792, 795), False, 'import json, numpy\n'), ((846, 911), 'can.Bus', 'can.Bus', ([], {'bustype': '"""slcan"""', 'channel': '"""/dev/ttyACM0"""', 'bitrate': '(1000000)'}), "(bustype='slcan', channel='/dev/ttyACM0', bitrate=1000000)\n", (853, 911), False, 'import can\n'), ((931, 948), 'tinymovr.iface.can.CAN', 'CAN', (['self.can_bus'], {}), '(self.can_bus)\n', (934, 948), False, 'from tinymovr.iface.can import CAN\n'), ((3582, 3594), 'sensor_msgs.msg.JointState', 'JointState', ([], {}), '()\n', (3592, 3594), False, 'from sensor_msgs.msg import JointState\n'), ((4888, 4906), 'diagnostic_msgs.msg.DiagnosticStatus', 'DiagnosticStatus', ([], {}), '()\n', (4904, 4906), False, 'from diagnostic_msgs.msg import DiagnosticStatus, KeyValue\n'), ((4922, 4932), 'diagnostic_msgs.msg.KeyValue', 'KeyValue', ([], {}), '()\n', (4930, 4932), False, 'from diagnostic_msgs.msg import DiagnosticStatus, KeyValue\n'), ((5956, 5976), 'rclpy.spin', 'rclpy.spin', (['hal_node'], {}), '(hal_node)\n', (5966, 5976), False, 'import rclpy\n'), ((2605, 2633), 'numpy.isnan', 'numpy.isnan', (['position_target'], {}), '(position_target)\n', (2616, 2633), False, 'import json, numpy\n'), ((5225, 5235), 'diagnostic_msgs.msg.KeyValue', 'KeyValue', ([], {}), '()\n', (5233, 5235), False, 'from diagnostic_msgs.msg import DiagnosticStatus, KeyValue\n'), ((5431, 5441), 'diagnostic_msgs.msg.KeyValue', 'KeyValue', ([], {}), '()\n', (5439, 5441), False, 'from diagnostic_msgs.msg import DiagnosticStatus, KeyValue\n'), ((2805, 2882), 'numpy.clip', 'clip', (['position_target', "(motor['limit_lower'] * deg)", "(motor['limit_upper'] * deg)"], {}), "(position_target, motor['limit_lower'] * deg, motor['limit_upper'] * deg)\n", (2809, 2882), False, 'from numpy import clip\n')]
#!/usr/bin/python from __future__ import print_function from __future__ import absolute_import from past.builtins import basestring import sys import numpy as np import moby2 trace = moby2.util.log.logger.trace # transitional... _fp_formats = { 'det_uid': '%4d', 'ok': '%1d', 'x0': '%9.6f', 'x0_err': '%9.6f', 'y0': '%9.6f', 'y0_err': '%9.6f', 'tau': '%8.5f', 'tau_err': '%8.5f', 'h': '%.4e', 'w': '%9.6f', 'sn': '%9.1f', 'base': '%.5e', 'n_obs': '%3d', } _fp_fields = ['ok', 'x0', 'x0_err', 'y0', 'y0_err', 'tau', 'tau_err', 'h', 'w', 'sn', 'base', 'n_obs'] _fp_columns_format_str = ' '.join(['{%s:%s}'%(k, _fp_formats[k][1:]) for k in _fp_fields]) + '\n' class FPFitFile(moby2.detectors._SimpleDetData): fields = _fp_fields dtypes = {'ok': bool, 'n_obs': int} columns_format_str = _fp_columns_format_str xcfs = '{det_uid:4d} {ok:1d} '\ '{x0:9.6f} {x0_err:9.6f} {y0:9.6f} {y0_err:9.6f} '\ '{tau:8.5f} {tau_err:8.5f} '\ '{h:.4e} {w:9.6f} {sn:9.1f} {n_obs:3d}\n' header = '# det_uid ok x0 x0_err y0 y0_err '\ 'tau tau_err h w sn n_obs' def __init__(self, det_uid=None): if det_uid is not None: self.det_uid = np.array(det_uid, dtype='int64') n = len(det_uid) for f in self.fields: setattr(self, f, np.zeros(n, self.dtypes.get(f, 'float64'))) def __repr__(self): name = repr(self.__class__) return '%s with %i det_uid for fields ' % (name, len(self.det_uid)) + \ ','.join(self.fields) def update_row(self, row, data): for k in self.fields: if k in data: getattr(self, k)[row] = data[k] @classmethod def from_columns_file(cls, filename): data = np.loadtxt(filename, unpack=1) det_uid = data[0].astype('int') self = cls(det_uid) self.ok = data[1].astype('int').astype('bool') if len(data[2:]) == 11: self.x0, self.x0_err, self.y0, self.y0_err, self.tau, self.tau_err, self.h, self.w, self.sn, self.base, self.n_obs = data[2:] elif len(data[2:-1]) == 9: self.x0, self.x0_err, self.y0, self.y0_err, self.tau, self.tau_err, self.h, self.w, self.sn = data[2:-1] self.base = 0 * self.w elif len(data[2:-1]) == 8: self.x0, self.x0_err, self.y0, self.y0_err, self.tau, self.tau_err, self.h, self.sn = data[2:-1] self.w = 0 * self.x0 self.base = 0 * self.x0 elif len(data[2:-1]) == 4: self.x0, self.x0_err, self.y0, self.y0_err = data[2:-1] self.base = 0 else: raise ValueError("Strange number of columns in %s" % filename) self.n_obs = data[-1].astype('int') return self @classmethod def from_file(cls, filename): if filename.endswith('fits') or filename.endswith('fits.gz'): return cls.from_fits_table(filename) return cls.from_columns_file(filename) # This supercedes _SimpleDetData.write def write(self, filename, format=None): if format is None: if filename.endswith('fits') or filename.endswith('fits.gz'): format = 'fits' else: format = 'txt' data = [('det_uid', self.det_uid)] for k in self.fields: v = getattr(self, k) if v.dtype == bool: v = v.astype('int8') data.append((k, v)) odb = moby2.util.StructDB.from_data(data,formats=_fp_formats) if format == 'fits': odb.to_fits_table(filename) elif format == 'txt': odb.to_column_file(filename) else: raise ValueError("Unknown format request, %s." % format) def write_reduced(self, filename, scale_amp=1.): format = 'txt' if filename.endswith('.fits') or filename.endswith('.fits.gz'): format = 'fits' s = self.ok.astype(bool) # det_uid peak_DAC SN tau data = [('det_uid', self.det_uid[s]), ('peak_dac', self.h[s] * scale_amp), ('time_const', self.tau[s]), ('sn', self.sn[s]), ] odb = moby2.util.StructDB.from_data( data, formats={'peak_dac': '%12.3f', 'time_const': '%12.5f', 'sn': '%12.3f'}) if format == 'txt': odb.to_column_file(filename) elif format == 'fits': odb.to_fits_table(filename) @classmethod def from_focal_plane(cls, fp): """ Initialize from a FocalPlane object. """ self = cls(fp.det_uid) self.x0 = fp.x.copy() self.y0 = fp.y.copy() self.ok = fp.mask.copy() zeros = np.zeros(self.ok.shape) self.tau, self.h, self.w = zeros.copy(), zeros.copy(), zeros.copy() self.base = zeros return self @classmethod def combine_fits(cls, fits, template=None, params={}): """ Combine fits by shifting each one to match a template, and averaging the good fits for each detector. If a template is not provided, match to the first one. """ trace(1, 'Fitting and averaging %i fits' % len(fits)) if template is None: template = fits[0] # Start by shifting each fit to match the template. orig_fits, fits = fits, [] fitter = FPTemplateFitter() fitter.set_template(template) fit_params = {'shift': True, 'rotation': False} fit_params.update(params) fit_results = [None for fi in range(len(orig_fits))] for fi,f0 in enumerate(orig_fits): if f0.ok.sum() < params.get('min_dets', 50): trace(2, 'Discarding fit with only %i good fits' % f0.ok.sum()) continue ok, result = fitter.fit(f0, fit_params) if not ok: trace(2, 'Discarding fit due to failed template match') continue f1 = f0.copy() f1.x0 += result[0] f1.y0 += result[1] fits.append(f1) fit_results[fi] = result trace(1, 'Cut %i of %i fits (increase verbosity to see why).' % \ (len(orig_fits) - len(fits), len(orig_fits))) if len(fits) == 0: return None, None print([len(f.det_uid) for f in fits]) n_det_uid = max([f.det_uid.max() for f in fits]) + 1 output = cls(np.arange(n_det_uid)) output.ok[:] = False ARCMIN = np.pi/180/60 trace(1, 'Combining data for %i detectors' % n_det_uid) for uid in output.det_uid: ok = np.array([f.get_property('ok', det_uid=uid)[1] for f in fits]) x, y, tau = np.transpose([f.get_property(['x0','y0','tau'], det_uid=uid)[1] for f in fits]) for _x in [x, y, tau]: # Yes, this happens... ok *= ~np.isnan(_x) * ~np.isinf(_x) x, y, tau = [_x[ok] for _x in [x,y,tau]] if ok.sum() < params.get('min_obs', 1): trace(2, 'Discarding det_uid=%i due to only %i contributors' % (uid, ok.sum())) continue # Majority rules. x0, y0 = np.median(x), np.median(y) for iteration in [0,1,2]: d0 = ((x - x0)**2 + (y-y0)**2)**.5 s0 = d0 < params.get('max_separation', 1)*ARCMIN if s0.sum() == 0: break x0, y0 = x[s0].mean(), y[s0].mean() if s0.sum() <= 0: trace(2, 'Discarding det_uid=%i due to only %i items in '\ ' combination' % (uid, s0.sum())) continue vals = { 'x0': x0, 'y0': y0, 'x0_err': x[s0].std(), 'y0_err': y[s0].std(), 'tau': tau[s0].mean(), 'tau_err': tau[s0].std(), 'n_obs': s0.sum(), 'ok': s0.sum() >= params.get('min_obs', 1) } output.update_row(uid, vals) trace(2, 'Result for det_uid=%i' % uid) for k in ['x0', 'y0', 'tau']: trace(2, ' %s = %10.5f +- %10.5f' % (k, vals[k], vals[k+'_err'])) return output, fit_results def plot_positions(self, filename, auto_zoom=True, params={}, title='', fig=None): import pylab as pl if fig is None: pl.figure() pl.gcf().set_size_inches(6., 6.) else: pl.figure(fig.number) s = self.ok if s.sum() == 0: pl.title(title + ' - no good fits') pl.savefig(filename) pl.clf() units = params.get('units', 'deg') scale = {'rad': 1., 'deg': 180/np.pi, 'arcmin': 60*180/np.pi}[units] x, y = self.x0[s]*scale, self.y0[s]*scale x0, y0 = np.median(x), np.median(y) r = ((x-x0)**2 + (y-y0)**2)**.5 window = np.median(r)*3 inside = r < params.get('zoom', scale*window) pl.scatter(x, y, alpha=0.5) if params.get('limits') is None: if np.any(inside): for vect,limiter in [(x,pl.xlim), (y,pl.ylim)]: lo, hi = limiter() lo = min(lo, vect[inside].min()) hi = max(hi, vect[inside].max()) limiter(lo, hi) else: xlims, ylims = params['limits'] pl.xlim(*xlims), pl.ylim(*ylims) pl.title(title + ' - %i dets outside window' % (~inside).sum()) pl.xlabel('X (%s)' % units) pl.ylabel('Y (%s)' % units) def smart_locate(ax, n_max, bases=[1,2,5]): x0, x1 = ax.get_view_interval() if x1 == x0: return delta = (x1-x0) / (n_max-1) # Find smallest base and p such delta < base*10^p log_spacing = min([ np.ceil(np.log10(delta) - np.log10(b)) + np.log10(b) for b in bases]) loc = pl.MultipleLocator(10**log_spacing) ax.set_major_locator(loc) smart_locate(pl.gca().xaxis, 6) smart_locate(pl.gca().yaxis, 9) pl.savefig(filename) pl.clf() pl.figure() def plot_rowcol_summaries(self, filename, array_data): import pylab as pl def x_eyes(bads=None): # Mark bad fits with an x. if bads is None: bads = ~s pl.scatter(cols[bads], rows[bads], marker='x', edgecolor='gray') def limit_args(data, kw={}): lo, hi = data.min(), data.max() if s.sum() > 1: lo, hi = data[s].min(), data[s].max() if hi == lo: hi = lo + 1 kw.update({'vmin': lo, 'vmax': hi}) return kw def bin(data, dtype='float'): out = np.zeros((n_rows, n_cols), dtype) out[rows, cols] = data return out def imshow_reformat(): # Tighten boundaries, add labels... pl.xlabel('Column') pl.ylabel('Row') pl.xlim(-0.5, n_cols-0.5) pl.ylim(-0.5, n_rows-0.5) s = self.ok rows, cols = array_data.get_property(['row', 'col'], det_uid=self.det_uid) n_rows, n_cols = rows.max()+1, cols.max()+1 # Init plotting pl.figure() pl.gcf().set_size_inches(6., 6.) pl.subplots_adjust(left=.1, right=.95, top=.95, bottom=.1, hspace=.2, wspace=.3) title_fs = 12 # Time constants... # pl.subplot(2,2,1) z = self.tau * 1e3 pl.imshow(bin(z), interpolation='nearest', **limit_args(z)) pl.colorbar() x_eyes() pl.title('Time constants (ms)', fontsize=title_fs) imshow_reformat() pl.subplot(2,2,2) z = self.tau_err * 1e3 pl.imshow(bin(z), interpolation='nearest', **limit_args(z)) pl.colorbar() x_eyes() pl.title('Time constant errors (ms)', fontsize=title_fs) imshow_reformat() if self.ok.sum() > 10: pl.subplot(2,2,3) pl.hist(self.tau[self.ok]*1e3, bins=20) #min(20,self.ok.sum()//10) pl.xlabel('Time constant (ms)') pl.ylabel('N_dets') pl.subplot(2,2,4) pl.hist(self.tau_err[self.ok]*1e3, bins=self.ok.sum()//10) pl.xlabel('Time constant errors (ms)') pl.ylabel('N_dets') pl.savefig(filename+'time_const.png') pl.clf() # Positions and stuff # for i in [0,1]: pl.subplot(2,2,1+i) z = {0: self.x0_err, 1:self.y0_err}[i] z = z * 180*3600/np.pi # to arcseconds pl.imshow(bin(z), interpolation='nearest', **limit_args(z)) pl.colorbar() x_eyes() imshow_reformat() pl.title('%s position RMS' % {0: 'X', 1: 'Y'}[i], fontsize=title_fs) pl.subplot(2,2,3) z = self.n_obs pl.imshow(bin(z), interpolation='nearest') pl.colorbar() imshow_reformat() pl.title('N_obs', fontsize=title_fs) pl.savefig(filename+'positions.png') pl.clf() # Destroy our subplot adjustments pl.figure() class FPTemplateFitter: """ Class for shift/rotate/shearing a template FPFitFile to match a target FPFitFile. After initializing, set the template to use: fitter = FPTemplateFitter() fitter.set_template(my_template_fp) ok, params = fitter.fit(my_target_fp) Those params are stored internally, so you can get the model FP: model_for_target = fitter.get_modeled(my_target_fp) """ param_names = ['dx', 'dy', 'theta', 'scale', 'shear_theta', 'shear_scale'] formats = {'dx': '%9.6f', 'dy': '%9.6f', 'scale': '%11.4e', 'n_dets': '%4i', 'theta': '%9.6f', 'shear_scale': '%11.4e', 'shear_theta': '%9.6f', } @classmethod def from_params(cls, opts, tod_info=None): if '_execcfg' in opts: tod_id = moby2.scripting.products.get_tod_id(tod_info=tod_info) ic = moby2.scripting.execcfg.InputChooser() opts1 = ic.get_config(opts['_execcfg'], tod_id=tod_id) for k,v in list(opts1.items()): if not k in opts: opts[k] = v if 'depot' in opts: depot = moby2.scripting.get_depot(opts['depot']) if not 'structure' in opts: opts['structure'] = '{tag}' filename = depot.get_full_path(**opts) else: filename = opts['filename'] trace(2, 'Loading as template: %s' % filename) load_args = opts['column_def'] pos_data = moby2.util.StructDB.from_column_file(filename, load_args) r = opts.get('template_rescale', (1.,1.)) if 'ok' in pos_data.dtype.names: mask = (pos_data['ok'].astype(int) != 0) else: mask = np.ones(pos_data['x'].shape, bool) template_fits = FPFitFile(det_uid=pos_data['det_uid'][mask]) template_fits.x0[:] = pos_data['x'][mask] * r[0] template_fits.y0[:] = pos_data['y'][mask] * r[1] template_fits.ok[:] = True self = cls() self.set_template(template_fits) return self def set_template(self, template): self.template = template self.pivot = self.template.x0[self.template.ok].mean(), \ self.template.y0[self.template.ok].mean() @staticmethod def _rotate(theta, x, y): c, s = np.cos(theta), np.sin(theta) return x*c - y*s, y*c + x*s def model(self, params, x=None, y=None): """ Shift, rotate, shear the current template according to params dict. Return the resulting offsets (x, y). """ dx, dy, theta, scale, sh_theta, sh_scale = params scale, sh_scale = np.exp(scale), np.exp(sh_scale) # Shift away array center and rescale if x is None: tp = self.template x, y = tp.x0, tp.y0 out_x, out_y = scale*(x - self.pivot[0]), scale*(y - self.pivot[1]) # Shear out_x, out_y = self._rotate(+sh_theta, out_x, out_y) out_x *= sh_scale out_x, out_y = self._rotate(-sh_theta, out_x, out_y) # Rotate out_x, out_y = self._rotate(theta, out_x, out_y) # Restore array center and apply additional shift. return out_x + self.pivot[0] - dx, out_y + self.pivot[1] - dy def model_inverse(self, params, out_x, out_y): """ Inverse of self.model. Keep it up to date! """ dx, dy, theta, scale, sh_theta, sh_scale = params scale, sh_scale = np.exp(scale), np.exp(sh_scale) # Remove additional shift. x, y = out_x - self.pivot[0] + dx, out_y - self.pivot[1] + dy # Unrotate x, y = self._rotate(-theta, x, y) # Unshear x, y = self._rotate(+sh_theta, x, y) x /= sh_scale x, y = self._rotate(-sh_theta, x, y) x, y = x/scale + self.pivot[0], y/scale + self.pivot[1] return x, y def fit(self, fp, params, trace_level=0): """ Fit positions to a template, which is also an FPFitFile but may represent different det_uid. 'params' should be a dict like this one: params = { 'shift': True, 'rotation': True, 'scale': True, 'shear': True, } Returns (ok, params). The fitted_template has the same det_uid as self. """ template = self.template # Get mask of items that are ok in both the template and fits fp_ok = fp.ok.astype('bool').copy() _, temp_ok = template.get_property('ok', fp.det_uid) fp_ok *= temp_ok # Get the template and fits positions for those ok items _, x0 = template.get_property('x0', fp.det_uid[fp_ok]) _, y0 = template.get_property('y0', fp.det_uid[fp_ok]) x1, y1 = fp.x0[fp_ok], fp.y0[fp_ok] self.A = x0,y0 self.B = x1,y1 # Identify parameters we want to vary free_params = [params.get('shift', True)]*2 free_params.append(params.get('rotation', True)) free_params.append(params.get('scale', False)) free_params.extend([params.get('shear', False)]*2) if fp.ok.sum() == 0: trace(trace_level+0, 'No items for template fit') self.result = False, [0. for f in free_params] return self.result trace(trace_level+0, 'Fitting template using %i items' % fp_ok.sum()) # Start fit with shift based on mean displacement params0 = [x1.mean()-self.pivot[0], y1.mean()-self.pivot[1], 0., 0., 0., 0.] trace(trace_level+1, 'Starting parameters: %s' % str(params0)) trace(trace_level+1, 'Free parameters: %s' % str(free_params)) def fit_chi2(params): x_model, y_model = self.model(params, x0, y0) var = (x1 - x_model)**2 + (y1 - y_model)**2 #return var.sum() # Attenuate contribution of outliers? Not clear this works... mvar = np.median(var) var_roll = var * (10*mvar / (10*mvar + var)) return var_roll.sum() # Minimize... start with position or all is lost. params1 = params0 for iters in [0,1]: for free_mask in [ # Fit position only... [True , True , False, False, False, False], # Fit rotation and scale [False, False, True , True , False, False], # Fit skew [False, False, False, False, True , True ], # Fit skew and position [True , True , False, False, True , True ], # Let everything float [True , True , True , True , True , True ]]: free = np.array(free_params) * free_mask if free.sum() > 0: params1 = moby2.util.fitting.multi_fmin( fit_chi2, params1, free=free, disp=0, xtol=1e-6, ftol=1e-6) trace(trace_level+2, 'params snapshot: %s' % str(params1)) trace(trace_level+1, 'Final parameters: %s' % str(params1)) self.result = True, params1 return self.result def check_result(self, opts): """ Check self.result against ranges passed in by user. User passes in a dict with keys like "<name>_range", where <name> is one of self.param_names. The values are the range (lo, hi) of acceptable values. If any range checks fail, the function returns false. """ ok, params = self.result if not ok: return False for k, v in zip(self.param_names, params): k = '%s_range' % k if not k in opts: continue if not ((opts[k][0] <= v) and (v < opts[k][1])): return False return True def get_modeled(self, det_uid=None): """ Return a FPFitFile with the modeled detector positions. Pass in the desired det_uid, or the template det_uid will be used. """ if det_uid is None: det_uid = self.det_uid matched = FPFitFile(det_uid=det_uid) _, ok = self.template.get_property('ok', matched.det_uid) _, x0 = self.template.get_property('x0', matched.det_uid) _, y0 = self.template.get_property('y0', matched.det_uid) matched.ok = ok params = self.result[1] matched.x0, matched.y0 = self.model(params, x0, y0) return matched def make_plots(self, fp, modeled, plot_prefix='./', title=None): """ Show fit quality in a few plots. """ import pylab as pl def sane_axes(): fig.gca().xaxis.set_major_locator(pl.MaxNLocator(4)) fig.gca().yaxis.set_major_locator(pl.MaxNLocator(5)) fig.gca().set_aspect('equal', 'datalim') DEG = 180./np.pi fig = pl.figure() fig.set_size_inches(8., 4.) pl.subplots_adjust(left=.1, right=.98, top=.85, bottom=.1, hspace=.2, wspace=.3) pl.subplot(121) tp = self.template s, x, y = tp.ok, tp.x0, tp.y0 pl.scatter(x[s], y[s], marker='o', s=4, alpha=.5) pl.xlabel('X') pl.ylabel('Y') pl.title('Input template') sane_axes() # The model positions pl.subplot(122) s, x, y = modeled.ok, modeled.x0 * DEG, modeled.y0 * DEG pl.scatter(x[s], y[s], alpha=.2) # And the fit positions s, x, y = fp.ok, fp.x0 * DEG, fp.y0 * DEG pl.scatter(x[s], y[s], marker='x') # Now connect them with lines... u = fp.det_uid[s] ok1, (x1, y1) = modeled.get_property(['x0','y0'], det_uid=u) x, y = x[s], y[s] for i in ok1.nonzero()[0]: pl.plot([x1[i]*DEG, x[i]], [y1[i]*DEG, y[i]], color='k', alpha=.4) pl.xlabel('X (deg)') pl.ylabel('Y (deg)') pl.title('Fitted result') sane_axes() if title != None: pl.figtext(0.5, 0.93, title, va='bottom', ha='center') pl.savefig(plot_prefix + 'fit.png') pl.figure() # destroy our settings... def old_make_plots(self, fp, modeled, plot_prefix='./', title=None): """ Show fit quality in a few plots. """ import pylab as pl DEG = 180./np.pi pl.figure() pl.gcf().set_size_inches(6., 6.) pl.subplots_adjust(left=.15, right=.95, top=.90, bottom=.1, hspace=.2, wspace=.3) tp = self.template s, x, y = tp.ok, tp.x0, tp.y0 pl.scatter(x[s], y[s], marker='x') pl.savefig(plot_prefix + '0template.png') pl.clf() s, x, y = modeled.ok, modeled.x0 * DEG, modeled.y0 * DEG pl.scatter(x[s], y[s], alpha=.2) pl.xlabel('X (deg)') pl.ylabel('Y (deg)') pl.savefig(plot_prefix + '1model.png') pl.clf() # The model positions s, x, y = modeled.ok, modeled.x0 * DEG, modeled.y0 * DEG pl.scatter(x[s], y[s], alpha=.2) # And the fit positions s, x, y = fp.ok, fp.x0 * DEG, fp.y0 * DEG pl.scatter(x[s], y[s], marker='x') # Now connect them with lines... u = fp.det_uid[s] ok1, (x1, y1) = modeled.get_property(['x0','y0'], det_uid=u) x, y = x[s], y[s] for i in ok1.nonzero()[0]: pl.plot([x1[i]*DEG, x[i]], [y1[i]*DEG, y[i]], color='k', alpha=.4) pl.xlabel('X (deg)') pl.ylabel('Y (deg)') if title is not None: pl.title(title) pl.savefig(plot_prefix + '2fit.png') pl.figure() # destroy our settings... # Formatted output... def get_ascii(self, names=None, params=None): if names is None: names = self.param_names if params is None: params = self.result[1] idx = [self.param_names.index(f) for f in names] text = [ self.formats.get(n, '%11.4e') % params[i] for n,i in zip(names,idx) ] return ' '.join(text) @staticmethod def write_fit_list(filename, keys, fits, format=None): if format == 'fits': columns = list(zip(*[f.result[1] for f in fits])) col_defs = ([('id', keys), ('ok', [int(f.result[0]) for f in fits])] + list(zip(fits[0].param_names, columns))) db_out = moby2.util.StructDB.from_data( col_defs, formats=fits[0].formats) db_out.to_fits_table(filename) else: if isinstance(filename, basestring): filename = open(filename, 'w') names = fits[0].param_names filename.write('# %s\n' % ' '.join(names)) for key, fit in zip(keys, fits): text = fit.get_ascii(names=names) filename.write('%s %s\n' % (key, text))
[ "pylab.title", "pylab.scatter", "numpy.log10", "pylab.subplots_adjust", "moby2.scripting.get_depot", "pylab.MaxNLocator", "pylab.savefig", "pylab.xlabel", "moby2.scripting.execcfg.InputChooser", "numpy.array", "numpy.sin", "moby2.util.StructDB.from_column_file", "pylab.gca", "numpy.arange", "pylab.ylabel", "pylab.ylim", "pylab.plot", "pylab.figtext", "numpy.exp", "pylab.xlim", "numpy.isinf", "numpy.ones", "pylab.subplot", "numpy.any", "pylab.figure", "numpy.isnan", "numpy.cos", "moby2.util.StructDB.from_data", "pylab.gcf", "numpy.median", "pylab.hist", "pylab.MultipleLocator", "moby2.util.fitting.multi_fmin", "numpy.zeros", "pylab.colorbar", "moby2.scripting.products.get_tod_id", "numpy.loadtxt", "pylab.clf" ]
[((1905, 1935), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'unpack': '(1)'}), '(filename, unpack=1)\n', (1915, 1935), True, 'import numpy as np\n'), ((3620, 3676), 'moby2.util.StructDB.from_data', 'moby2.util.StructDB.from_data', (['data'], {'formats': '_fp_formats'}), '(data, formats=_fp_formats)\n', (3649, 3676), False, 'import moby2\n'), ((4358, 4469), 'moby2.util.StructDB.from_data', 'moby2.util.StructDB.from_data', (['data'], {'formats': "{'peak_dac': '%12.3f', 'time_const': '%12.5f', 'sn': '%12.3f'}"}), "(data, formats={'peak_dac': '%12.3f',\n 'time_const': '%12.5f', 'sn': '%12.3f'})\n", (4387, 4469), False, 'import moby2\n'), ((4935, 4958), 'numpy.zeros', 'np.zeros', (['self.ok.shape'], {}), '(self.ok.shape)\n', (4943, 4958), True, 'import numpy as np\n'), ((9370, 9397), 'pylab.scatter', 'pl.scatter', (['x', 'y'], {'alpha': '(0.5)'}), '(x, y, alpha=0.5)\n', (9380, 9397), True, 'import pylab as pl\n'), ((9894, 9921), 'pylab.xlabel', 'pl.xlabel', (["('X (%s)' % units)"], {}), "('X (%s)' % units)\n", (9903, 9921), True, 'import pylab as pl\n'), ((9930, 9957), 'pylab.ylabel', 'pl.ylabel', (["('Y (%s)' % units)"], {}), "('Y (%s)' % units)\n", (9939, 9957), True, 'import pylab as pl\n'), ((10528, 10548), 'pylab.savefig', 'pl.savefig', (['filename'], {}), '(filename)\n', (10538, 10548), True, 'import pylab as pl\n'), ((10557, 10565), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (10563, 10565), True, 'import pylab as pl\n'), ((10574, 10585), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (10583, 10585), True, 'import pylab as pl\n'), ((11714, 11725), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (11723, 11725), True, 'import pylab as pl\n'), ((11775, 11865), 'pylab.subplots_adjust', 'pl.subplots_adjust', ([], {'left': '(0.1)', 'right': '(0.95)', 'top': '(0.95)', 'bottom': '(0.1)', 'hspace': '(0.2)', 'wspace': '(0.3)'}), '(left=0.1, right=0.95, top=0.95, bottom=0.1, hspace=0.2,\n wspace=0.3)\n', (11793, 11865), True, 'import pylab as pl\n'), ((11952, 11971), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (11962, 11971), True, 'import pylab as pl\n'), ((12073, 12086), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (12084, 12086), True, 'import pylab as pl\n'), ((12112, 12162), 'pylab.title', 'pl.title', (['"""Time constants (ms)"""'], {'fontsize': 'title_fs'}), "('Time constants (ms)', fontsize=title_fs)\n", (12120, 12162), True, 'import pylab as pl\n'), ((12198, 12217), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (12208, 12217), True, 'import pylab as pl\n'), ((12323, 12336), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (12334, 12336), True, 'import pylab as pl\n'), ((12362, 12418), 'pylab.title', 'pl.title', (['"""Time constant errors (ms)"""'], {'fontsize': 'title_fs'}), "('Time constant errors (ms)', fontsize=title_fs)\n", (12370, 12418), True, 'import pylab as pl\n'), ((12855, 12894), 'pylab.savefig', 'pl.savefig', (["(filename + 'time_const.png')"], {}), "(filename + 'time_const.png')\n", (12865, 12894), True, 'import pylab as pl\n'), ((12901, 12909), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (12907, 12909), True, 'import pylab as pl\n'), ((13370, 13389), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (13380, 13389), True, 'import pylab as pl\n'), ((13470, 13483), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (13481, 13483), True, 'import pylab as pl\n'), ((13518, 13554), 'pylab.title', 'pl.title', (['"""N_obs"""'], {'fontsize': 'title_fs'}), "('N_obs', fontsize=title_fs)\n", (13526, 13554), True, 'import pylab as pl\n'), ((13564, 13602), 'pylab.savefig', 'pl.savefig', (["(filename + 'positions.png')"], {}), "(filename + 'positions.png')\n", (13574, 13602), True, 'import pylab as pl\n'), ((13609, 13617), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (13615, 13617), True, 'import pylab as pl\n'), ((13669, 13680), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (13678, 13680), True, 'import pylab as pl\n'), ((15252, 15309), 'moby2.util.StructDB.from_column_file', 'moby2.util.StructDB.from_column_file', (['filename', 'load_args'], {}), '(filename, load_args)\n', (15288, 15309), False, 'import moby2\n'), ((22738, 22749), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (22747, 22749), True, 'import pylab as pl\n'), ((22794, 22884), 'pylab.subplots_adjust', 'pl.subplots_adjust', ([], {'left': '(0.1)', 'right': '(0.98)', 'top': '(0.85)', 'bottom': '(0.1)', 'hspace': '(0.2)', 'wspace': '(0.3)'}), '(left=0.1, right=0.98, top=0.85, bottom=0.1, hspace=0.2,\n wspace=0.3)\n', (22812, 22884), True, 'import pylab as pl\n'), ((22910, 22925), 'pylab.subplot', 'pl.subplot', (['(121)'], {}), '(121)\n', (22920, 22925), True, 'import pylab as pl\n'), ((22999, 23049), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'marker': '"""o"""', 's': '(4)', 'alpha': '(0.5)'}), "(x[s], y[s], marker='o', s=4, alpha=0.5)\n", (23009, 23049), True, 'import pylab as pl\n'), ((23057, 23071), 'pylab.xlabel', 'pl.xlabel', (['"""X"""'], {}), "('X')\n", (23066, 23071), True, 'import pylab as pl\n'), ((23080, 23094), 'pylab.ylabel', 'pl.ylabel', (['"""Y"""'], {}), "('Y')\n", (23089, 23094), True, 'import pylab as pl\n'), ((23103, 23129), 'pylab.title', 'pl.title', (['"""Input template"""'], {}), "('Input template')\n", (23111, 23129), True, 'import pylab as pl\n'), ((23189, 23204), 'pylab.subplot', 'pl.subplot', (['(122)'], {}), '(122)\n', (23199, 23204), True, 'import pylab as pl\n'), ((23278, 23311), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'alpha': '(0.2)'}), '(x[s], y[s], alpha=0.2)\n', (23288, 23311), True, 'import pylab as pl\n'), ((23401, 23435), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'marker': '"""x"""'}), "(x[s], y[s], marker='x')\n", (23411, 23435), True, 'import pylab as pl\n'), ((23720, 23740), 'pylab.xlabel', 'pl.xlabel', (['"""X (deg)"""'], {}), "('X (deg)')\n", (23729, 23740), True, 'import pylab as pl\n'), ((23749, 23769), 'pylab.ylabel', 'pl.ylabel', (['"""Y (deg)"""'], {}), "('Y (deg)')\n", (23758, 23769), True, 'import pylab as pl\n'), ((23778, 23803), 'pylab.title', 'pl.title', (['"""Fitted result"""'], {}), "('Fitted result')\n", (23786, 23803), True, 'import pylab as pl\n'), ((23927, 23962), 'pylab.savefig', 'pl.savefig', (["(plot_prefix + 'fit.png')"], {}), "(plot_prefix + 'fit.png')\n", (23937, 23962), True, 'import pylab as pl\n'), ((23971, 23982), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (23980, 23982), True, 'import pylab as pl\n'), ((24227, 24238), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (24236, 24238), True, 'import pylab as pl\n'), ((24288, 24378), 'pylab.subplots_adjust', 'pl.subplots_adjust', ([], {'left': '(0.15)', 'right': '(0.95)', 'top': '(0.9)', 'bottom': '(0.1)', 'hspace': '(0.2)', 'wspace': '(0.3)'}), '(left=0.15, right=0.95, top=0.9, bottom=0.1, hspace=0.2,\n wspace=0.3)\n', (24306, 24378), True, 'import pylab as pl\n'), ((24470, 24504), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'marker': '"""x"""'}), "(x[s], y[s], marker='x')\n", (24480, 24504), True, 'import pylab as pl\n'), ((24513, 24554), 'pylab.savefig', 'pl.savefig', (["(plot_prefix + '0template.png')"], {}), "(plot_prefix + '0template.png')\n", (24523, 24554), True, 'import pylab as pl\n'), ((24563, 24571), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (24569, 24571), True, 'import pylab as pl\n'), ((24646, 24679), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'alpha': '(0.2)'}), '(x[s], y[s], alpha=0.2)\n', (24656, 24679), True, 'import pylab as pl\n'), ((24687, 24707), 'pylab.xlabel', 'pl.xlabel', (['"""X (deg)"""'], {}), "('X (deg)')\n", (24696, 24707), True, 'import pylab as pl\n'), ((24716, 24736), 'pylab.ylabel', 'pl.ylabel', (['"""Y (deg)"""'], {}), "('Y (deg)')\n", (24725, 24736), True, 'import pylab as pl\n'), ((24745, 24783), 'pylab.savefig', 'pl.savefig', (["(plot_prefix + '1model.png')"], {}), "(plot_prefix + '1model.png')\n", (24755, 24783), True, 'import pylab as pl\n'), ((24792, 24800), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (24798, 24800), True, 'import pylab as pl\n'), ((24905, 24938), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'alpha': '(0.2)'}), '(x[s], y[s], alpha=0.2)\n', (24915, 24938), True, 'import pylab as pl\n'), ((25028, 25062), 'pylab.scatter', 'pl.scatter', (['x[s]', 'y[s]'], {'marker': '"""x"""'}), "(x[s], y[s], marker='x')\n", (25038, 25062), True, 'import pylab as pl\n'), ((25347, 25367), 'pylab.xlabel', 'pl.xlabel', (['"""X (deg)"""'], {}), "('X (deg)')\n", (25356, 25367), True, 'import pylab as pl\n'), ((25376, 25396), 'pylab.ylabel', 'pl.ylabel', (['"""Y (deg)"""'], {}), "('Y (deg)')\n", (25385, 25396), True, 'import pylab as pl\n'), ((25463, 25499), 'pylab.savefig', 'pl.savefig', (["(plot_prefix + '2fit.png')"], {}), "(plot_prefix + '2fit.png')\n", (25473, 25499), True, 'import pylab as pl\n'), ((25508, 25519), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (25517, 25519), True, 'import pylab as pl\n'), ((1340, 1372), 'numpy.array', 'np.array', (['det_uid'], {'dtype': '"""int64"""'}), "(det_uid, dtype='int64')\n", (1348, 1372), True, 'import numpy as np\n'), ((6684, 6704), 'numpy.arange', 'np.arange', (['n_det_uid'], {}), '(n_det_uid)\n', (6693, 6704), True, 'import numpy as np\n'), ((8769, 8780), 'pylab.figure', 'pl.figure', ([], {}), '()\n', (8778, 8780), True, 'import pylab as pl\n'), ((8852, 8873), 'pylab.figure', 'pl.figure', (['fig.number'], {}), '(fig.number)\n', (8861, 8873), True, 'import pylab as pl\n'), ((8932, 8967), 'pylab.title', 'pl.title', (["(title + ' - no good fits')"], {}), "(title + ' - no good fits')\n", (8940, 8967), True, 'import pylab as pl\n'), ((8980, 9000), 'pylab.savefig', 'pl.savefig', (['filename'], {}), '(filename)\n', (8990, 9000), True, 'import pylab as pl\n'), ((9013, 9021), 'pylab.clf', 'pl.clf', ([], {}), '()\n', (9019, 9021), True, 'import pylab as pl\n'), ((9209, 9221), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (9218, 9221), True, 'import numpy as np\n'), ((9223, 9235), 'numpy.median', 'np.median', (['y'], {}), '(y)\n', (9232, 9235), True, 'import numpy as np\n'), ((9293, 9305), 'numpy.median', 'np.median', (['r'], {}), '(r)\n', (9302, 9305), True, 'import numpy as np\n'), ((9454, 9468), 'numpy.any', 'np.any', (['inside'], {}), '(inside)\n', (9460, 9468), True, 'import numpy as np\n'), ((10365, 10402), 'pylab.MultipleLocator', 'pl.MultipleLocator', (['(10 ** log_spacing)'], {}), '(10 ** log_spacing)\n', (10383, 10402), True, 'import pylab as pl\n'), ((10810, 10874), 'pylab.scatter', 'pl.scatter', (['cols[bads]', 'rows[bads]'], {'marker': '"""x"""', 'edgecolor': '"""gray"""'}), "(cols[bads], rows[bads], marker='x', edgecolor='gray')\n", (10820, 10874), True, 'import pylab as pl\n'), ((11217, 11250), 'numpy.zeros', 'np.zeros', (['(n_rows, n_cols)', 'dtype'], {}), '((n_rows, n_cols), dtype)\n', (11225, 11250), True, 'import numpy as np\n'), ((11400, 11419), 'pylab.xlabel', 'pl.xlabel', (['"""Column"""'], {}), "('Column')\n", (11409, 11419), True, 'import pylab as pl\n'), ((11432, 11448), 'pylab.ylabel', 'pl.ylabel', (['"""Row"""'], {}), "('Row')\n", (11441, 11448), True, 'import pylab as pl\n'), ((11461, 11488), 'pylab.xlim', 'pl.xlim', (['(-0.5)', '(n_cols - 0.5)'], {}), '(-0.5, n_cols - 0.5)\n', (11468, 11488), True, 'import pylab as pl\n'), ((11499, 11526), 'pylab.ylim', 'pl.ylim', (['(-0.5)', '(n_rows - 0.5)'], {}), '(-0.5, n_rows - 0.5)\n', (11506, 11526), True, 'import pylab as pl\n'), ((12489, 12508), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (12499, 12508), True, 'import pylab as pl\n'), ((12519, 12563), 'pylab.hist', 'pl.hist', (['(self.tau[self.ok] * 1000.0)'], {'bins': '(20)'}), '(self.tau[self.ok] * 1000.0, bins=20)\n', (12526, 12563), True, 'import pylab as pl\n'), ((12598, 12629), 'pylab.xlabel', 'pl.xlabel', (['"""Time constant (ms)"""'], {}), "('Time constant (ms)')\n", (12607, 12629), True, 'import pylab as pl\n'), ((12642, 12661), 'pylab.ylabel', 'pl.ylabel', (['"""N_dets"""'], {}), "('N_dets')\n", (12651, 12661), True, 'import pylab as pl\n'), ((12674, 12693), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (12684, 12693), True, 'import pylab as pl\n'), ((12775, 12813), 'pylab.xlabel', 'pl.xlabel', (['"""Time constant errors (ms)"""'], {}), "('Time constant errors (ms)')\n", (12784, 12813), True, 'import pylab as pl\n'), ((12826, 12845), 'pylab.ylabel', 'pl.ylabel', (['"""N_dets"""'], {}), "('N_dets')\n", (12835, 12845), True, 'import pylab as pl\n'), ((12988, 13011), 'pylab.subplot', 'pl.subplot', (['(2)', '(2)', '(1 + i)'], {}), '(2, 2, 1 + i)\n', (12998, 13011), True, 'import pylab as pl\n'), ((13194, 13207), 'pylab.colorbar', 'pl.colorbar', ([], {}), '()\n', (13205, 13207), True, 'import pylab as pl\n'), ((13271, 13343), 'pylab.title', 'pl.title', (["('%s position RMS' % {(0): 'X', (1): 'Y'}[i])"], {'fontsize': 'title_fs'}), "('%s position RMS' % {(0): 'X', (1): 'Y'}[i], fontsize=title_fs)\n", (13279, 13343), True, 'import pylab as pl\n'), ((14570, 14624), 'moby2.scripting.products.get_tod_id', 'moby2.scripting.products.get_tod_id', ([], {'tod_info': 'tod_info'}), '(tod_info=tod_info)\n', (14605, 14624), False, 'import moby2\n'), ((14642, 14680), 'moby2.scripting.execcfg.InputChooser', 'moby2.scripting.execcfg.InputChooser', ([], {}), '()\n', (14678, 14680), False, 'import moby2\n'), ((14907, 14947), 'moby2.scripting.get_depot', 'moby2.scripting.get_depot', (["opts['depot']"], {}), "(opts['depot'])\n", (14932, 14947), False, 'import moby2\n'), ((15488, 15522), 'numpy.ones', 'np.ones', (["pos_data['x'].shape", 'bool'], {}), "(pos_data['x'].shape, bool)\n", (15495, 15522), True, 'import numpy as np\n'), ((16080, 16093), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (16086, 16093), True, 'import numpy as np\n'), ((16095, 16108), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (16101, 16108), True, 'import numpy as np\n'), ((16425, 16438), 'numpy.exp', 'np.exp', (['scale'], {}), '(scale)\n', (16431, 16438), True, 'import numpy as np\n'), ((16440, 16456), 'numpy.exp', 'np.exp', (['sh_scale'], {}), '(sh_scale)\n', (16446, 16456), True, 'import numpy as np\n'), ((17243, 17256), 'numpy.exp', 'np.exp', (['scale'], {}), '(scale)\n', (17249, 17256), True, 'import numpy as np\n'), ((17258, 17274), 'numpy.exp', 'np.exp', (['sh_scale'], {}), '(sh_scale)\n', (17264, 17274), True, 'import numpy as np\n'), ((19773, 19787), 'numpy.median', 'np.median', (['var'], {}), '(var)\n', (19782, 19787), True, 'import numpy as np\n'), ((23645, 23716), 'pylab.plot', 'pl.plot', (['[x1[i] * DEG, x[i]]', '[y1[i] * DEG, y[i]]'], {'color': '"""k"""', 'alpha': '(0.4)'}), "([x1[i] * DEG, x[i]], [y1[i] * DEG, y[i]], color='k', alpha=0.4)\n", (23652, 23716), True, 'import pylab as pl\n'), ((23863, 23917), 'pylab.figtext', 'pl.figtext', (['(0.5)', '(0.93)', 'title'], {'va': '"""bottom"""', 'ha': '"""center"""'}), "(0.5, 0.93, title, va='bottom', ha='center')\n", (23873, 23917), True, 'import pylab as pl\n'), ((25272, 25343), 'pylab.plot', 'pl.plot', (['[x1[i] * DEG, x[i]]', '[y1[i] * DEG, y[i]]'], {'color': '"""k"""', 'alpha': '(0.4)'}), "([x1[i] * DEG, x[i]], [y1[i] * DEG, y[i]], color='k', alpha=0.4)\n", (25279, 25343), True, 'import pylab as pl\n'), ((25439, 25454), 'pylab.title', 'pl.title', (['title'], {}), '(title)\n', (25447, 25454), True, 'import pylab as pl\n'), ((26281, 26345), 'moby2.util.StructDB.from_data', 'moby2.util.StructDB.from_data', (['col_defs'], {'formats': 'fits[0].formats'}), '(col_defs, formats=fits[0].formats)\n', (26310, 26345), False, 'import moby2\n'), ((7539, 7551), 'numpy.median', 'np.median', (['x'], {}), '(x)\n', (7548, 7551), True, 'import numpy as np\n'), ((7553, 7565), 'numpy.median', 'np.median', (['y'], {}), '(y)\n', (7562, 7565), True, 'import numpy as np\n'), ((9781, 9796), 'pylab.xlim', 'pl.xlim', (['*xlims'], {}), '(*xlims)\n', (9788, 9796), True, 'import pylab as pl\n'), ((9798, 9813), 'pylab.ylim', 'pl.ylim', (['*ylims'], {}), '(*ylims)\n', (9805, 9813), True, 'import pylab as pl\n'), ((10461, 10469), 'pylab.gca', 'pl.gca', ([], {}), '()\n', (10467, 10469), True, 'import pylab as pl\n'), ((10501, 10509), 'pylab.gca', 'pl.gca', ([], {}), '()\n', (10507, 10509), True, 'import pylab as pl\n'), ((11734, 11742), 'pylab.gcf', 'pl.gcf', ([], {}), '()\n', (11740, 11742), True, 'import pylab as pl\n'), ((22561, 22578), 'pylab.MaxNLocator', 'pl.MaxNLocator', (['(4)'], {}), '(4)\n', (22575, 22578), True, 'import pylab as pl\n'), ((22626, 22643), 'pylab.MaxNLocator', 'pl.MaxNLocator', (['(5)'], {}), '(5)\n', (22640, 22643), True, 'import pylab as pl\n'), ((24247, 24255), 'pylab.gcf', 'pl.gcf', ([], {}), '()\n', (24253, 24255), True, 'import pylab as pl\n'), ((8793, 8801), 'pylab.gcf', 'pl.gcf', ([], {}), '()\n', (8799, 8801), True, 'import pylab as pl\n'), ((20533, 20554), 'numpy.array', 'np.array', (['free_params'], {}), '(free_params)\n', (20541, 20554), True, 'import numpy as np\n'), ((20632, 20728), 'moby2.util.fitting.multi_fmin', 'moby2.util.fitting.multi_fmin', (['fit_chi2', 'params1'], {'free': 'free', 'disp': '(0)', 'xtol': '(1e-06)', 'ftol': '(1e-06)'}), '(fit_chi2, params1, free=free, disp=0, xtol=\n 1e-06, ftol=1e-06)\n', (20661, 20728), False, 'import moby2\n'), ((7211, 7223), 'numpy.isnan', 'np.isnan', (['_x'], {}), '(_x)\n', (7219, 7223), True, 'import numpy as np\n'), ((7227, 7239), 'numpy.isinf', 'np.isinf', (['_x'], {}), '(_x)\n', (7235, 7239), True, 'import numpy as np\n'), ((10298, 10309), 'numpy.log10', 'np.log10', (['b'], {}), '(b)\n', (10306, 10309), True, 'import numpy as np\n'), ((10265, 10280), 'numpy.log10', 'np.log10', (['delta'], {}), '(delta)\n', (10273, 10280), True, 'import numpy as np\n'), ((10283, 10294), 'numpy.log10', 'np.log10', (['b'], {}), '(b)\n', (10291, 10294), True, 'import numpy as np\n')]
from numpy.random import seed seed(5393) from tensorflow import set_random_seed set_random_seed(12011) import os import numpy as np import pandas as pd from scipy import sparse from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.pipeline import FeatureUnion from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split, StratifiedKFold from joblib import Parallel, delayed from tqdm import tqdm import logging logging.basicConfig(level = logging.INFO) EMBED_DIM = 300 VOCAB_SIZE = 5000 max_len = 1000 batch_size = 16 n_folds = 5 fold_dir = "/data/victor/violence-workshop/batches/reversefolds" data_pkl = "../../data/dataframe_with_scores_withdoc2vec.pkl" def pad_csr(a, newshape): """ Pads csr_matrix with zeros. Modifies a inplace. """ n, m = a.shape a._shape = newshape a.indptr = np.pad(a.indptr, (0, newshape[0] - n), 'edge') def filter_nans(seq): """ Filters out floats (np.nan) from list """ return np.array([x for x in seq if not isinstance(x, float)]) def pad_or_trim(seq, max_len=1000): """ Pads or trims seq to have max_len rows """ n, m = seq.shape if n > max_len: seq = seq[-max_len:, :] elif n < max_len: if sparse.issparse(seq): pad_csr(seq, (max_len, m)) else: seq = np.r_[seq, np.zeros((max_len - n, m))] return seq def process_ngrams(batch_features, ngram_features): """ Transform batch_features into tensor of dims: (n, max_len, #features) where n is len(batch_features)""" n = batch_features.shape[0] batch_features = batch_features.apply(ngram_features.transform)\ .apply(pad_or_trim) batch_features = sparse.vstack(batch_features) batch_features = batch_features.toarray()\ .reshape(n, max_len, -1) return batch_features def process_scores(X): """ Transforms X into tensor of dims: (n, max_len, #features) where n is len(X). This is a special case of process for lists of scores""" batch_scores = X.apply(np.array)\ .apply(lambda x: x.reshape(-1, 1))\ .apply(pad_or_trim) batch_scores = np.concatenate(batch_scores.values, axis = 0)\ .reshape(-1, max_len, 1) return batch_scores ############################################################ # Load Data ############################################################ data = pd.read_pickle(data_pkl) # Encode genre lb_genre = LabelEncoder() data['genre'] = lb_genre.fit_transform(data['genre']) ############################################################ # 3 to 5 chars w/ spaces # unigrams + bigrams ############################################################ # This defines the analyzer to be used with Countvectorizer def char_ngram_tokenizer(text, ngram_range): def aux(text, ngram_size): for i in range(len(text) - ngram_size): yield text[i : i + ngram_size] for n in range(*ngram_range): for ngram in aux(text, n): yield ngram ngram_features = FeatureUnion([ ("char_ngrams", CountVectorizer(analyzer = lambda text: char_ngram_tokenizer(text, ngram_range=(3, 6)), max_features = VOCAB_SIZE)), ("token_ngrams", CountVectorizer(ngram_range=(1, 2), max_features=VOCAB_SIZE)) ]) tfidf_ = TfidfVectorizer(ngram_range=(1, 2), max_features=VOCAB_SIZE) ############################################################ # Batch generation ############################################################ def process(X, Y, i, ngram_features, batch_dir, tfidf_transformer = None): # Features ## ngrams #logging.info("ngrams") #batch_ngrams = process_ngrams(X['sentences'].iloc[i : i + batch_size], ngram_features) #np.savez(os.path.join(batch_dir, "{}_ngrams".format(i)), # features = batch_ngrams) #batch_ngrams = None ## tfidf #logging.info("tfidf") #batch_tfidf = process_ngrams(X['sentences'].iloc[i : i + batch_size], tfidf_transformer) #np.savez(os.path.join(batch_dir, "{}_tfidf".format(i)), # features = batch_tfidf) #batch_tfidf = None # ## Word2vec #logging.info("word2vec") #batch_word2vec = X['word2vec_sent_mean_vec'].iloc[i : i + batch_size]\ # .apply(filter_nans)\ # .apply(pad_or_trim) #np.savez(os.path.join(batch_dir, "{}_word2vec".format(i)), # features = batch_word2vec) #batch_word2vec = None # paragraph2vec logging.info("paragraph2vec") batch_paragraph2vec = X['doc2vec_vectors'].iloc[i : i + batch_size]\ .apply(filter_nans)\ .apply(pad_or_trim) np.savez(os.path.join(batch_dir, "{}_doc2vec".format(i)), features = batch_paragraph2vec) batch_paragraph2vec = None # ## Lexicons #logging.info("Empath") #batch_empath = X['empath_sentence'].iloc[i : i + batch_size]\ # .apply(np.array)\ # .apply(pad_or_trim) #np.savez(os.path.join(batch_dir, "{}_empath".format(i)), # empath = batch_empath) #logging.info("Lexicons") #batch_lexicon = process_scores(X['abusive_scores'].iloc[i : i + batch_size]) #batch_vader = process_scores(X['vader_scores'].iloc[i : i + batch_size]) #batch_afinn = process_scores(X['afinn_scores'].iloc[i : i + batch_size]) #batch_hatebase = X['hatebase_sentence'].iloc[i : i + batch_size].apply(pad_or_trim) #np.savez(os.path.join(batch_dir, "{}_lexicon".format(i)), # abusive_scores = batch_lexicon, # vader = batch_vader, # afinn = batch_afinn, # hatebase = batch_hatebase) # batch_lexicon = None #batch_vader = None #batch_afinn = None #batch_hatebase = None ## Save labels #logging.info("Labels") #batch_labels = Y[i : i + batch_size] #np.savez(os.path.join(batch_dir, "{}_labels".format(i)), # labels = batch_labels) ## Save metadata #logging.info("Metadata") #batch_genre = X['genre'][i : i + batch_size] #np.savez(os.path.join(batch_dir, "{}_meta".format(i)), # genre = batch_genre) logging.info("Done for {}".format(i)) skf = StratifiedKFold(n_splits = n_folds, random_state = 42) lb = LabelBinarizer() Y = lb.fit_transform(data['violence_rating']) for k, (train, test) in enumerate(skf.split(data.violence_rating, data.violence_rating)): train_dir = os.path.join(fold_dir, str(k), "train") test_dir = os.path.join(fold_dir, str(k), "test") eval_dir = os.path.join(fold_dir, str(k), "eval") for t in [train_dir, test_dir, eval_dir]: os.makedirs(t, exist_ok = True) X_train, X_test = data.iloc[train], data.iloc[test] Y_train, Y_test = Y[train], Y[test] X_train, X_eval, Y_train, Y_eval = train_test_split(X_train, Y_train, test_size = 64, random_state = 666) # Fit vocab ngram_features.fit(data.iloc[train]['text'], Y_train) tfidf_.fit(data.iloc[train]['text'], Y_train) # Create batches for i in tqdm(range(0, X_train.shape[0], batch_size)): process(X_train, Y_train, i, ngram_features = ngram_features, batch_dir = train_dir, tfidf_transformer = tfidf_) for i in tqdm(range(0, X_eval.shape[0], batch_size)): process(X_eval, Y_eval, i, ngram_features = ngram_features, batch_dir = eval_dir, tfidf_transformer = tfidf_) for i in tqdm(range(0, X_test.shape[0], batch_size)): process(X_test, Y_test, i, ngram_features = ngram_features, batch_dir = test_dir, tfidf_transformer = tfidf_)
[ "logging.basicConfig", "pandas.read_pickle", "sklearn.preprocessing.LabelEncoder", "sklearn.preprocessing.LabelBinarizer", "scipy.sparse.vstack", "os.makedirs", "sklearn.model_selection.train_test_split", "sklearn.feature_extraction.text.CountVectorizer", "scipy.sparse.issparse", "sklearn.model_selection.StratifiedKFold", "sklearn.feature_extraction.text.TfidfVectorizer", "numpy.zeros", "numpy.random.seed", "numpy.concatenate", "numpy.pad", "tensorflow.set_random_seed", "logging.info" ]
[((30, 40), 'numpy.random.seed', 'seed', (['(5393)'], {}), '(5393)\n', (34, 40), False, 'from numpy.random import seed\n'), ((80, 102), 'tensorflow.set_random_seed', 'set_random_seed', (['(12011)'], {}), '(12011)\n', (95, 102), False, 'from tensorflow import set_random_seed\n'), ((509, 548), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (528, 548), False, 'import logging\n'), ((2543, 2567), 'pandas.read_pickle', 'pd.read_pickle', (['data_pkl'], {}), '(data_pkl)\n', (2557, 2567), True, 'import pandas as pd\n'), ((2595, 2609), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (2607, 2609), False, 'from sklearn.preprocessing import LabelEncoder, LabelBinarizer\n'), ((3525, 3585), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'ngram_range': '(1, 2)', 'max_features': 'VOCAB_SIZE'}), '(ngram_range=(1, 2), max_features=VOCAB_SIZE)\n', (3540, 3585), False, 'from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n'), ((6470, 6520), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'n_folds', 'random_state': '(42)'}), '(n_splits=n_folds, random_state=42)\n', (6485, 6520), False, 'from sklearn.model_selection import train_test_split, StratifiedKFold\n'), ((6530, 6546), 'sklearn.preprocessing.LabelBinarizer', 'LabelBinarizer', ([], {}), '()\n', (6544, 6546), False, 'from sklearn.preprocessing import LabelEncoder, LabelBinarizer\n'), ((901, 947), 'numpy.pad', 'np.pad', (['a.indptr', '(0, newshape[0] - n)', '"""edge"""'], {}), "(a.indptr, (0, newshape[0] - n), 'edge')\n", (907, 947), True, 'import numpy as np\n'), ((1781, 1810), 'scipy.sparse.vstack', 'sparse.vstack', (['batch_features'], {}), '(batch_features)\n', (1794, 1810), False, 'from scipy import sparse\n'), ((4746, 4775), 'logging.info', 'logging.info', (['"""paragraph2vec"""'], {}), "('paragraph2vec')\n", (4758, 4775), False, 'import logging\n'), ((7076, 7142), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X_train', 'Y_train'], {'test_size': '(64)', 'random_state': '(666)'}), '(X_train, Y_train, test_size=64, random_state=666)\n', (7092, 7142), False, 'from sklearn.model_selection import train_test_split, StratifiedKFold\n'), ((6908, 6937), 'os.makedirs', 'os.makedirs', (['t'], {'exist_ok': '(True)'}), '(t, exist_ok=True)\n', (6919, 6937), False, 'import os\n'), ((1285, 1305), 'scipy.sparse.issparse', 'sparse.issparse', (['seq'], {}), '(seq)\n', (1300, 1305), False, 'from scipy import sparse\n'), ((2282, 2325), 'numpy.concatenate', 'np.concatenate', (['batch_scores.values'], {'axis': '(0)'}), '(batch_scores.values, axis=0)\n', (2296, 2325), True, 'import numpy as np\n'), ((3409, 3469), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {'ngram_range': '(1, 2)', 'max_features': 'VOCAB_SIZE'}), '(ngram_range=(1, 2), max_features=VOCAB_SIZE)\n', (3424, 3469), False, 'from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer\n'), ((1389, 1415), 'numpy.zeros', 'np.zeros', (['(max_len - n, m)'], {}), '((max_len - n, m))\n', (1397, 1415), True, 'import numpy as np\n')]
""" 参考自https://github.com/bojone/crf/ """ import tensorflow as tf k = tf.keras kl = tf.keras.layers K = tf.keras.backend from sklearn.model_selection import train_test_split import numpy as np import re from tqdm import tqdm import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation class CRF(kl.Layer): """ CRF层本质上是一个带训练参数的loss计算层,因此CRF层只用来训练模型, 而预测则需要另外建立模型。 """ def __init__(self, ignore_last_label=False, lr_mult=1., **kwargs): """ignore_last_label:定义要不要忽略最后一个标签,起到mask的效果 """ super().__init__(**kwargs) self.ignore_last_label = 1 if ignore_last_label else 0 self.lr_mult = lr_mult def build(self, input_shape): self.num_labels = input_shape[-1] - self.ignore_last_label self._trans: tf.Variable = self.add_weight(name='crf_trans', shape=(self.num_labels, self.num_labels), initializer='glorot_uniform', trainable=True) self._trans.assign(self._trans / self.lr_mult) self.trans = lambda: self._trans * self.lr_mult def get_weights(self): weights = super().get_weights() return [w * self.lr_mult for w in weights] def log_norm_step(self, inputs, states): """递归计算归一化因子 要点:1、递归计算;2、用logsumexp避免溢出。 技巧:通过expand_dims来对齐张量。 """ inputs, mask = inputs[:, :-1], inputs[:, -1:] states = K.expand_dims(states[0], 2) # (batch_size, output_dim, 1) trans = K.expand_dims(self.trans(), 0) # (1, output_dim, output_dim) outputs = tf.math.reduce_logsumexp(states + trans, 1) # (batch_size, output_dim) outputs = outputs + inputs outputs = mask * outputs + (1 - mask) * states[:, :, 0] return outputs, [outputs] def path_score(self, inputs, labels): """计算目标路径的相对概率(还没有归一化) 要点:逐标签得分,加上转移概率得分。 技巧:用“预测”点乘“目标”的方法抽取出目标路径的得分。 """ point_score = K.sum(K.sum(inputs * labels, 2), 1, keepdims=True) # 逐标签得分 labels1 = K.expand_dims(labels[:, :-1], 3) labels2 = K.expand_dims(labels[:, 1:], 2) labels = labels1 * labels2 # 两个错位labels,负责从转移矩阵中抽取目标转移得分 trans = K.expand_dims(K.expand_dims(self.trans(), 0), 0) trans_score = K.sum(K.sum(trans * labels, [2, 3]), 1, keepdims=True) return point_score + trans_score # 两部分得分之和 def call(self, inputs): # CRF本身不改变输出,它只是一个loss return inputs def loss(self, y_true, y_pred): # 目标y_pred需要是one hot形式 if self.ignore_last_label: mask = 1 - y_true[:, :, -1:] else: mask = K.ones_like(y_pred[:, :, :1]) y_true, y_pred = y_true[:, :, :self.num_labels], y_pred[:, :, :self.num_labels] path_score = self.path_score(y_pred, y_true) # 计算分子(对数) init_states = [y_pred[:, 0]] # 初始状态 y_pred = K.concatenate([y_pred, mask]) log_norm, _, _ = K.rnn(self.log_norm_step, y_pred[:, 1:], init_states) # 计算Z向量(对数) log_norm = tf.math.reduce_logsumexp(log_norm, 1, keepdims=True) # 计算Z(对数) return log_norm - path_score # 即log(分子/分母) def accuracy(self, y_true, y_pred): # 训练过程中显示逐帧准确率的函数,排除了mask的影响 mask = 1 - y_true[:, :, -1] if self.ignore_last_label else None y_true, y_pred = y_true[:, :, :self.num_labels], y_pred[:, :, :self.num_labels] isequal = K.equal(K.argmax(y_true, 2), K.argmax(y_pred, 2)) isequal = K.cast(isequal, 'float32') if mask == None: return K.mean(isequal) else: return K.sum(isequal * mask) / K.sum(mask) def max_in_dict(d): # 定义一个求字典中最大值的函数 dict_items = list(d.items()) key, value = dict_items[0] for i, j in dict_items[1:]: if j > value: key, value = i, j return key, value def viterbi(nodes, trans): # viterbi算法,跟前面的HMM一致 paths = nodes[0] # 初始化起始路径 for l in range(1, len(nodes)): # 遍历后面的节点 paths_old, paths = paths, {} for n, ns in nodes[l].items(): # 当前时刻的所有节点 max_path, max_score = '', -1e10 for p, ps in paths_old.items(): # 截止至前一时刻的最优路径集合 score = ns + ps + trans[p[-1] + n] # 计算新分数 if score > max_score: # 如果新分数大于已有的最大分 max_path, max_score = p + n, score # 更新路径 paths[max_path] = max_score # 储存到当前时刻所有节点的最优路径 return max_in_dict(paths) def cut(s, trans, char2id): # 分词函数,也跟前面的HMM基本一致 if not s: # 空字符直接返回 return [] # 字序列转化为id序列。注意,经过我们前面对语料的预处理,字符集是没有空格的, # 所以这里简单将空格的id跟句号的id等同起来 sent_ids = np.array([[char2id.get(c, 0) if c != ' ' else char2id[u'。'] for c in s]]) probas = model.predict(sent_ids)[0] # [n,5] nodes = [dict(zip('sbme', i)) for i in probas[:, :4]] # 只取前4个,因为最后一个是mask nodes[0] = {i: j for i, j in nodes[0].items() if i in 'bs'} # 首字标签只能是b或s nodes[-1] = {i: j for i, j in nodes[-1].items() if i in 'es'} # 末字标签只能是e或s tags = viterbi(nodes, trans)[0] result = [s[0]] for i, j in zip(s[1:], tags[1:]): if j in 'bs': # 词的开始 result.append(i) else: # 接着原来的词 result[-1] += i return result class Evaluate(k.callbacks.Callback): def __init__(self, tag2id, char2id): self.highest = 0. self.tag2id = tag2id self.char2id = char2id self.history = [] def on_train_batch_end(self, batch, logs=None): A = self.model.get_layer('crf').get_weights()[0][:4, :4] # 从训练模型中取出最新得到的转移矩阵 self.history.append(A) # def on_epoch_end(self, epoch, logs=None): # A = self.model.get_weights()[-1][:4, :4] # 从训练模型中取出最新得到的转移矩阵 # trans = {} # for i in 'sbme': # for j in 'sbme': # trans[i + j] = A[self.tag2id[i], self.tag2id[j]] # right = 0. # total = 0. # for s in tqdm(iter(valid_sents), desc=u'验证模型中'): # result = cut(''.join(s), trans, self.char2id) # total += len(set(s)) # right += len(set(s) & set(result)) # 直接将词集的交集作为正确数。该指标比较简单, # # 也许会导致估计偏高。读者可以考虑自定义指标 # acc = right / total # if acc > self.highest: # self.highest = acc # print('val acc: %s, highest: %s' % (acc, self.highest)) def show_anime(self, save_path='gif/crf.gif'): fig, ax = plt.subplots() fig.set_tight_layout(True) ax: plt.Axes A = self.history[0] c = ax.pcolor(A, cmap='RdBu_r', vmin=A.min(), vmax=A.max(), edgecolors='w', linewidths=30) ax.set_xticks(np.arange(4) + 0.5) ax.set_yticks(np.arange(4) + 0.5) ax.set_xticklabels(list('sbme')) ax.set_yticklabels(list('sbme')) for i in range(4): for j in range(4): text = ax.text(j + 0.5, i + 0.5, f'{A[i, j]:^4.2f}', ha="center", va="center", color="w") def update(t): ax.cla() ax.set_title(f'iter {t}') ax.set_xticks(np.arange(4) + 0.5) ax.set_yticks(np.arange(4) + 0.5) ax.set_xticklabels(list('sbme')) ax.set_yticklabels(list('sbme')) A = self.history[t] c = ax.pcolor(A, cmap='RdBu_r', vmin=A.min(), vmax=A.max(), edgecolors='w', linewidths=30) for i in range(4): for j in range(4): text = ax.text(j + 0.5, i + 0.5, f'{A[i, j]:^4.2f}', ha="center", va="center", color="w") anim = FuncAnimation(fig, update, frames=len(self.history), interval=100) anim.save(save_path, writer='imagemagick', fps=5) plt.show() if __name__ == "__main__": physical_devices = tf.config.experimental.list_physical_devices('GPU') assert len(physical_devices) > 0, "Not enough GPU hardware devices available" tf.config.experimental.set_memory_growth(physical_devices[0], True) sents = [] with open('CRF/msr_training.utf8', 'r') as f: for line in f.readlines(): sents.append(line.strip()) sents = [re.split(' +', s) for s in sents] # 词之间以空格隔开 sents = [[w for w in s if w] for s in sents] # 去掉空字符串 np.random.shuffle(sents) # 打乱语料,以便后面划分验证集 chars = {} # 统计字表 for s in sents: for c in ''.join(s): if c in chars: chars[c] += 1 else: chars[c] = 1 # 过滤低频字 min_count = 2 chars = {i: j for i, j in chars.items() if j >= min_count} id2char = {i + 1: j for i, j in enumerate(chars)} # id到字的映射 char2id = {j: i for i, j in id2char.items()} # 字到id的映射 id2tag = {0: 's', 1: 'b', 2: 'm', 3: 'e'} # 标签(sbme)与id之间的映射 tag2id = {j: i for i, j in id2tag.items()} train_sents, valid_sents = train_test_split(sents, test_size=0.05) batch_size = 128 def train_generator(): while True: X, Y = [], [] for i, s in enumerate(train_sents): # 遍历每个句子 sx, sy = [], [] for w in s: # 遍历句子中的每个词 sx.extend([char2id.get(c, 0) for c in w]) # 遍历词中的每个字 if len(w) == 1: sy.append(0) # 单字词的标签 elif len(w) == 2: sy.extend([1, 3]) # 双字词的标签 else: sy.extend([1] + [2] * (len(w) - 2) + [3]) # 多于两字的词的标签 X.append(sx) Y.append(sy) if len(X) == batch_size or i == len(train_sents) - 1: # 如果达到一个batch maxlen = max([len(x) for x in X]) # 找出最大字数 X = [x + [0] * (maxlen - len(x)) for x in X] # 不足则补零 Y = [y + [4] * (maxlen - len(y)) for y in Y] # 不足则补第五个标签 yield np.array(X), tf.keras.utils.to_categorical(Y, 5) X, Y = [], [] embedding_size = 128 sequence = kl.Input(shape=(None,), dtype='int32') # 建立输入层,输入长度设为None embedding = kl.Embedding(len(chars) + 1, embedding_size)(sequence) # 去掉了mask_zero=True cnn = kl.Conv1D(128, 3, activation='relu', padding='same')(embedding) cnn = kl.Conv1D(128, 3, activation='relu', padding='same')(cnn) cnn = kl.Conv1D(128, 3, activation='relu', padding='same')(cnn) # 层叠了3层CNN crf = CRF(True, lr_mult=100.) # 定义crf层,参数为True,自动mask掉最后一个标签,同时增大crf学习率100倍 tag_score = kl.Dense(5)(cnn) # 变成了5分类,第五个标签用来mask掉 tag_score = crf(tag_score) # 包装一下原来的tag_score model = k.Model(inputs=sequence, outputs=tag_score) model.summary() model.compile(loss=crf.loss, # 用crf自带的loss optimizer=k.optimizers.Adam(0.001), metrics=[crf.accuracy] # 用crf自带的accuracy ) evaluator = Evaluate(tag2id, char2id) model.fit_generator(train_generator(), steps_per_epoch=100, epochs=1, callbacks=[evaluator]) # 训练并将evaluator加入到训练过程 A = model.get_layer('crf').get_weights()[0][:4, :4] # :4是为了去除mask的转义概率 trans = {} for i in 'sbme': for j in 'sbme': trans[i + j] = A[tag2id[i], tag2id[j]] right = 0. total = 0. for s in range(5): s = valid_sents[s] result = cut(''.join(s), trans, char2id) print(''.join(s), '\n', result) evaluator.show_anime()
[ "re.split", "tensorflow.keras.utils.to_categorical", "matplotlib.pyplot.show", "tensorflow.config.experimental.set_memory_growth", "sklearn.model_selection.train_test_split", "numpy.array", "tensorflow.config.experimental.list_physical_devices", "tensorflow.math.reduce_logsumexp", "matplotlib.pyplot.subplots", "numpy.arange", "numpy.random.shuffle" ]
[((7282, 7333), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (7326, 7333), True, 'import tensorflow as tf\n'), ((7416, 7483), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (7456, 7483), True, 'import tensorflow as tf\n'), ((7726, 7750), 'numpy.random.shuffle', 'np.random.shuffle', (['sents'], {}), '(sents)\n', (7743, 7750), True, 'import numpy as np\n'), ((8258, 8297), 'sklearn.model_selection.train_test_split', 'train_test_split', (['sents'], {'test_size': '(0.05)'}), '(sents, test_size=0.05)\n', (8274, 8297), False, 'from sklearn.model_selection import train_test_split\n'), ((1581, 1624), 'tensorflow.math.reduce_logsumexp', 'tf.math.reduce_logsumexp', (['(states + trans)', '(1)'], {}), '(states + trans, 1)\n', (1605, 1624), True, 'import tensorflow as tf\n'), ((2900, 2952), 'tensorflow.math.reduce_logsumexp', 'tf.math.reduce_logsumexp', (['log_norm', '(1)'], {'keepdims': '(True)'}), '(log_norm, 1, keepdims=True)\n', (2924, 2952), True, 'import tensorflow as tf\n'), ((5971, 5985), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5983, 5985), True, 'import matplotlib.pyplot as plt\n'), ((7221, 7231), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7229, 7231), True, 'import matplotlib.pyplot as plt\n'), ((7621, 7638), 're.split', 're.split', (['""" +"""', 's'], {}), "(' +', s)\n", (7629, 7638), False, 'import re\n'), ((6189, 6201), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (6198, 6201), True, 'import numpy as np\n'), ((6227, 6239), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (6236, 6239), True, 'import numpy as np\n'), ((6600, 6612), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (6609, 6612), True, 'import numpy as np\n'), ((6640, 6652), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (6649, 6652), True, 'import numpy as np\n'), ((9086, 9097), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (9094, 9097), True, 'import numpy as np\n'), ((9099, 9134), 'tensorflow.keras.utils.to_categorical', 'tf.keras.utils.to_categorical', (['Y', '(5)'], {}), '(Y, 5)\n', (9128, 9134), True, 'import tensorflow as tf\n')]
import numpy as np import torch import torch.nn as nn from collections import OrderedDict def tf2th(conv_weights): """Possibly convert HWIO to OIHW.""" if conv_weights.ndim == 4: conv_weights = conv_weights.transpose([3, 2, 0, 1]) return torch.from_numpy(conv_weights) def _rename_conv_weights_for_deformable_conv_layers(state_dict, cfg): import re layer_keys = sorted(state_dict.keys()) for ix, stage_with_dcn in enumerate(cfg.MODEL.RESNETS.STAGE_WITH_DCN, 1): if not stage_with_dcn: continue for old_key in layer_keys: pattern = ".*block{}.*conv2.*".format(ix) r = re.match(pattern, old_key) if r is None: continue for param in ["weight", "bias"]: if old_key.find(param) is -1: continue if 'unit01' in old_key: continue new_key = old_key.replace( "conv2.{}".format(param), "conv2.conv.{}".format(param) ) print("pattern: {}, old_key: {}, new_key: {}".format( pattern, old_key, new_key )) # Calculate SD conv weight w = state_dict[old_key] v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) w = (w - m) / torch.sqrt(v + 1e-10) state_dict[new_key] = w del state_dict[old_key] return state_dict def load_big_format(cfg, f): model = OrderedDict() weights = np.load(f) cmap = {'a':1, 'b':2, 'c':3} for key, val in weights.items(): old_key = key.replace('resnet/', '') if 'root_block' in old_key: new_key = 'root.conv.weight' elif '/proj/standardized_conv2d/kernel' in old_key: key_pattern = old_key.replace('/proj/standardized_conv2d/kernel', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.downsample.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) elif '/standardized_conv2d/kernel' in old_key: key_pattern = old_key.replace('/standardized_conv2d/kernel', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.conv{}.weight'.format(bname,uname,cmap[cidx]) elif '/group_norm/gamma' in old_key: key_pattern = old_key.replace('/group_norm/gamma', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.gn{}.weight'.format(bname,uname,cmap[cidx]) elif '/group_norm/beta' in old_key: key_pattern = old_key.replace('/group_norm/beta', '').replace('resnet/', '') bname, uname, cidx = key_pattern.split('/') new_key = '{}.{}.gn{}.bias'.format(bname,uname,cmap[cidx]) else: print('Unknown key {}'.format(old_key)) continue print('Map {} -> {}'.format(key, new_key)) model[new_key] = tf2th(val) model = _rename_conv_weights_for_deformable_conv_layers(model, cfg) return dict(model=model)
[ "collections.OrderedDict", "re.match", "torch.sqrt", "torch.from_numpy", "torch.var_mean", "numpy.load" ]
[((272, 302), 'torch.from_numpy', 'torch.from_numpy', (['conv_weights'], {}), '(conv_weights)\n', (288, 302), False, 'import torch\n'), ((1609, 1622), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1620, 1622), False, 'from collections import OrderedDict\n'), ((1638, 1648), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (1645, 1648), True, 'import numpy as np\n'), ((678, 704), 're.match', 're.match', (['pattern', 'old_key'], {}), '(pattern, old_key)\n', (686, 704), False, 'import re\n'), ((1339, 1401), 'torch.var_mean', 'torch.var_mean', (['w'], {'dim': '[1, 2, 3]', 'keepdim': '(True)', 'unbiased': '(False)'}), '(w, dim=[1, 2, 3], keepdim=True, unbiased=False)\n', (1353, 1401), False, 'import torch\n'), ((1433, 1454), 'torch.sqrt', 'torch.sqrt', (['(v + 1e-10)'], {}), '(v + 1e-10)\n', (1443, 1454), False, 'import torch\n')]
# Licensed under a 3-clause BSD style license - see LICENSE.rst """WCS related utility functions.""" from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from astropy.wcs import WCS from astropy.coordinates import Angle __all__ = [ 'linear_wcs_to_arrays', 'linear_arrays_to_wcs', 'get_wcs_ctype', 'get_resampled_wcs' ] def get_wcs_ctype(wcs): """ Get celestial coordinate type of WCS instance. Parameters ---------- wcs : `~astropy.wcs.WCS` WCS transformation instance. Returns ------- ctype : {'galatic', 'icrs'} String specifying the coordinate type, that can be used with `~astropy.coordinates.SkyCoord` """ ctype = wcs.wcs.ctype if 'GLON' in ctype[0] or 'GLON' in ctype[1]: return 'galactic' elif 'RA' in ctype[0] or 'RA' in ctype[1]: return 'icrs' else: raise TypeError("Can't determine WCS coordinate type.") def get_resampled_wcs(wcs, factor, downsampled): """ Get resampled WCS object. """ wcs = wcs.deepcopy() if not downsampled: factor = 1. / factor wcs.wcs.cdelt *= factor wcs.wcs.crpix = (wcs.wcs.crpix - 0.5) / factor + 0.5 return wcs def linear_wcs_to_arrays(wcs, nbins_x, nbins_y): """Make a 2D linear binning from a WCS object. This method gives the correct answer only for linear X, Y binning. The method expects angular quantities in the WCS object. X is identified with WCS axis 1, Y is identified with WCS axis 2. The method needs the number of bins as input, since it is not in the WCS object. Parameters ---------- wcs : `~astropy.wcs.WCS` WCS object describing the bin coordinates nbins_x : int number of bins in X coordinate nbins_y : int number of bins in Y coordinate Returns ------- bin_edges_x : `~astropy.coordinates.Angle` array with the bin edges for the X coordinate bin_edges_y : `~astropy.coordinates.Angle` array with the bin edges for the Y coordinate """ # check number of dimensions if wcs.wcs.naxis != 2: raise ValueError("Expected exactly 2 dimensions, got {}" .format(wcs.wcs.naxis)) # check that wcs axes are linear # TODO: is there an easy way to do this? # set bins unit_x, unit_y = wcs.wcs.cunit delta_x, delta_y = wcs.wcs.cdelt delta_x = Angle(delta_x, unit_x) delta_y = Angle(delta_y, unit_y) bin_edges_x = np.arange(nbins_x + 1) * delta_x bin_edges_y = np.arange(nbins_y + 1) * delta_y # translate bins to correct values according to WCS reference # In FITS, the edge of the image is at pixel coordinate +0.5. refpix_x, refpix_y = wcs.wcs.crpix refval_x, refval_y = wcs.wcs.crval refval_x = Angle(refval_x, unit_x) refval_y = Angle(refval_y, unit_y) bin_edges_x += refval_x - (refpix_x - 0.5) * delta_x bin_edges_y += refval_y - (refpix_y - 0.5) * delta_y # set small values (compared to delta (i.e. step)) to 0 for i in np.arange(len(bin_edges_x)): if np.abs(bin_edges_x[i] / delta_x) < 1.e-10: bin_edges_x[i] = Angle(0., unit_x) for i in np.arange(len(bin_edges_y)): if np.abs(bin_edges_y[i] / delta_y) < 1.e-10: bin_edges_y[i] = Angle(0., unit_y) return bin_edges_x, bin_edges_y def linear_arrays_to_wcs(name_x, name_y, bin_edges_x, bin_edges_y): """Make a 2D linear WCS object from arrays of bin edges. This method gives the correct answer only for linear X, Y binning. X is identified with WCS axis 1, Y is identified with WCS axis 2. Parameters ---------- name_x : str name of X coordinate, to be used as 'CTYPE' value name_y : str name of Y coordinate, to be used as 'CTYPE' value bin_edges_x : `~astropy.coordinates.Angle` array with the bin edges for the X coordinate bin_edges_y : `~astropy.coordinates.Angle` array with the bin edges for the Y coordinate Returns ------- wcs : `~astropy.wcs.WCS` WCS object describing the bin coordinates """ # check units unit_x = bin_edges_x.unit unit_y = bin_edges_y.unit if unit_x != unit_y: ss_error = "Units of X ({0}) and Y ({1}) bins do not match!".format( unit_x, unit_y) ss_error += " Is this expected?" raise ValueError(ss_error) # Create a new WCS object. The number of axes must be set from the start wcs = WCS(naxis=2) # Set up DET coordinates in degrees nbins_x = len(bin_edges_x) - 1 nbins_y = len(bin_edges_y) - 1 range_x = Angle([bin_edges_x[0], bin_edges_x[-1]]) range_y = Angle([bin_edges_y[0], bin_edges_y[-1]]) delta_x = (range_x[1] - range_x[0]) / nbins_x delta_y = (range_y[1] - range_y[0]) / nbins_y wcs.wcs.ctype = [name_x, name_y] wcs.wcs.cunit = [unit_x, unit_y] wcs.wcs.cdelt = [delta_x.to(unit_x).value, delta_y.to(unit_y).value] # ref as lower left corner (start of (X, Y) bin coordinates) # coordinate start at pix = 0.5 wcs.wcs.crpix = [0.5, 0.5] wcs.wcs.crval = [(bin_edges_x[0] + (wcs.wcs.crpix[0] - 0.5) * delta_x).to(unit_x).value, (bin_edges_y[0] + (wcs.wcs.crpix[1] - 0.5) * delta_y).to(unit_y).value] return wcs
[ "numpy.abs", "astropy.wcs.WCS", "numpy.arange", "astropy.coordinates.Angle" ]
[((2472, 2494), 'astropy.coordinates.Angle', 'Angle', (['delta_x', 'unit_x'], {}), '(delta_x, unit_x)\n', (2477, 2494), False, 'from astropy.coordinates import Angle\n'), ((2509, 2531), 'astropy.coordinates.Angle', 'Angle', (['delta_y', 'unit_y'], {}), '(delta_y, unit_y)\n', (2514, 2531), False, 'from astropy.coordinates import Angle\n'), ((2859, 2882), 'astropy.coordinates.Angle', 'Angle', (['refval_x', 'unit_x'], {}), '(refval_x, unit_x)\n', (2864, 2882), False, 'from astropy.coordinates import Angle\n'), ((2898, 2921), 'astropy.coordinates.Angle', 'Angle', (['refval_y', 'unit_y'], {}), '(refval_y, unit_y)\n', (2903, 2921), False, 'from astropy.coordinates import Angle\n'), ((4560, 4572), 'astropy.wcs.WCS', 'WCS', ([], {'naxis': '(2)'}), '(naxis=2)\n', (4563, 4572), False, 'from astropy.wcs import WCS\n'), ((4698, 4738), 'astropy.coordinates.Angle', 'Angle', (['[bin_edges_x[0], bin_edges_x[-1]]'], {}), '([bin_edges_x[0], bin_edges_x[-1]])\n', (4703, 4738), False, 'from astropy.coordinates import Angle\n'), ((4753, 4793), 'astropy.coordinates.Angle', 'Angle', (['[bin_edges_y[0], bin_edges_y[-1]]'], {}), '([bin_edges_y[0], bin_edges_y[-1]])\n', (4758, 4793), False, 'from astropy.coordinates import Angle\n'), ((2550, 2572), 'numpy.arange', 'np.arange', (['(nbins_x + 1)'], {}), '(nbins_x + 1)\n', (2559, 2572), True, 'import numpy as np\n'), ((2601, 2623), 'numpy.arange', 'np.arange', (['(nbins_y + 1)'], {}), '(nbins_y + 1)\n', (2610, 2623), True, 'import numpy as np\n'), ((3150, 3182), 'numpy.abs', 'np.abs', (['(bin_edges_x[i] / delta_x)'], {}), '(bin_edges_x[i] / delta_x)\n', (3156, 3182), True, 'import numpy as np\n'), ((3222, 3240), 'astropy.coordinates.Angle', 'Angle', (['(0.0)', 'unit_x'], {}), '(0.0, unit_x)\n', (3227, 3240), False, 'from astropy.coordinates import Angle\n'), ((3293, 3325), 'numpy.abs', 'np.abs', (['(bin_edges_y[i] / delta_y)'], {}), '(bin_edges_y[i] / delta_y)\n', (3299, 3325), True, 'import numpy as np\n'), ((3365, 3383), 'astropy.coordinates.Angle', 'Angle', (['(0.0)', 'unit_y'], {}), '(0.0, unit_y)\n', (3370, 3383), False, 'from astropy.coordinates import Angle\n')]
import cv2 import numpy as np import os under_layer_path = '/home/ubuntu/share/cam_lidar/Tu_indoor/red2' upper_layer_path = "/home/ubuntu/share/cam_lidar/Tu_indoor/aisle02_dir" target_files = os.listdir(upper_layer_path) target_imgs = [f for f in target_files if os.path.isfile(os.path.join(upper_layer_path, f))] try: target_imgs.remove(".DS_Store") except ValueError: pass lower = np.array([0, 0, 128]) upper = np.array([0, 0, 128]) target_colors = np.array([ [0, 0, 0], [192, 0, 0], [128, 64, 128], [0, 0, 128], [0, 64, 64], [128, 128, 192], [128, 0, 64], [128, 128, 128], ]) for img_name in target_imgs: base_img = cv2.imread(os.path.join(under_layer_path, img_name), cv2.IMREAD_COLOR) result_img = np.zeros(base_img.shape, dtype=base_img.dtype) img_mask = cv2.inRange(base_img, lower, upper) img_mask_color = cv2.bitwise_and(base_img, base_img, mask=img_mask) result_img = cv2.add(result_img, img_mask_color) cv2.imwrite("result.png", result_img) target_img = cv2.imread(os.path.join(upper_layer_path, img_name), cv2.IMREAD_COLOR) for color in target_colors: img_mask = cv2.inRange(target_img, color, color) img_mask_inv = cv2.bitwise_not(img_mask) img_mask_color = cv2.bitwise_and(target_img, target_img, mask=img_mask) result_img = cv2.bitwise_and(result_img, result_img, mask=img_mask_inv) result_img = cv2.add(result_img, img_mask_color) print(os.path.join(upper_layer_path, img_name[:-3]) + "png") cv2.imwrite(os.path.join(upper_layer_path, img_name[:-3] + "png"), result_img)
[ "cv2.imwrite", "os.listdir", "cv2.inRange", "cv2.bitwise_and", "os.path.join", "numpy.array", "numpy.zeros", "cv2.bitwise_not", "cv2.add" ]
[((193, 221), 'os.listdir', 'os.listdir', (['upper_layer_path'], {}), '(upper_layer_path)\n', (203, 221), False, 'import os\n'), ((393, 414), 'numpy.array', 'np.array', (['[0, 0, 128]'], {}), '([0, 0, 128])\n', (401, 414), True, 'import numpy as np\n'), ((423, 444), 'numpy.array', 'np.array', (['[0, 0, 128]'], {}), '([0, 0, 128])\n', (431, 444), True, 'import numpy as np\n'), ((461, 589), 'numpy.array', 'np.array', (['[[0, 0, 0], [192, 0, 0], [128, 64, 128], [0, 0, 128], [0, 64, 64], [128, \n 128, 192], [128, 0, 64], [128, 128, 128]]'], {}), '([[0, 0, 0], [192, 0, 0], [128, 64, 128], [0, 0, 128], [0, 64, 64],\n [128, 128, 192], [128, 0, 64], [128, 128, 128]])\n', (469, 589), True, 'import numpy as np\n'), ((938, 984), 'numpy.zeros', 'np.zeros', (['base_img.shape'], {'dtype': 'base_img.dtype'}), '(base_img.shape, dtype=base_img.dtype)\n', (946, 984), True, 'import numpy as np\n'), ((1001, 1036), 'cv2.inRange', 'cv2.inRange', (['base_img', 'lower', 'upper'], {}), '(base_img, lower, upper)\n', (1012, 1036), False, 'import cv2\n'), ((1058, 1108), 'cv2.bitwise_and', 'cv2.bitwise_and', (['base_img', 'base_img'], {'mask': 'img_mask'}), '(base_img, base_img, mask=img_mask)\n', (1073, 1108), False, 'import cv2\n'), ((1126, 1161), 'cv2.add', 'cv2.add', (['result_img', 'img_mask_color'], {}), '(result_img, img_mask_color)\n', (1133, 1161), False, 'import cv2\n'), ((1166, 1203), 'cv2.imwrite', 'cv2.imwrite', (['"""result.png"""', 'result_img'], {}), "('result.png', result_img)\n", (1177, 1203), False, 'import cv2\n'), ((861, 901), 'os.path.join', 'os.path.join', (['under_layer_path', 'img_name'], {}), '(under_layer_path, img_name)\n', (873, 901), False, 'import os\n'), ((1233, 1273), 'os.path.join', 'os.path.join', (['upper_layer_path', 'img_name'], {}), '(upper_layer_path, img_name)\n', (1245, 1273), False, 'import os\n'), ((1344, 1381), 'cv2.inRange', 'cv2.inRange', (['target_img', 'color', 'color'], {}), '(target_img, color, color)\n', (1355, 1381), False, 'import cv2\n'), ((1405, 1430), 'cv2.bitwise_not', 'cv2.bitwise_not', (['img_mask'], {}), '(img_mask)\n', (1420, 1430), False, 'import cv2\n'), ((1456, 1510), 'cv2.bitwise_and', 'cv2.bitwise_and', (['target_img', 'target_img'], {'mask': 'img_mask'}), '(target_img, target_img, mask=img_mask)\n', (1471, 1510), False, 'import cv2\n'), ((1532, 1590), 'cv2.bitwise_and', 'cv2.bitwise_and', (['result_img', 'result_img'], {'mask': 'img_mask_inv'}), '(result_img, result_img, mask=img_mask_inv)\n', (1547, 1590), False, 'import cv2\n'), ((1612, 1647), 'cv2.add', 'cv2.add', (['result_img', 'img_mask_color'], {}), '(result_img, img_mask_color)\n', (1619, 1647), False, 'import cv2\n'), ((1731, 1784), 'os.path.join', 'os.path.join', (['upper_layer_path', "(img_name[:-3] + 'png')"], {}), "(upper_layer_path, img_name[:-3] + 'png')\n", (1743, 1784), False, 'import os\n'), ((279, 312), 'os.path.join', 'os.path.join', (['upper_layer_path', 'f'], {}), '(upper_layer_path, f)\n', (291, 312), False, 'import os\n'), ((1659, 1704), 'os.path.join', 'os.path.join', (['upper_layer_path', 'img_name[:-3]'], {}), '(upper_layer_path, img_name[:-3])\n', (1671, 1704), False, 'import os\n')]
## -*- coding: utf-8 -*- """ Created on Tue Sep 26 13:38:17 2017 @author: Administrator """ import dlib import cv2 import numpy as np from sklearn.externals import joblib import os import pathAttributes #ap = argparse.ArgumentParser() #ap.add_argument("-p", "--shape-predictor", metavar="D:\\用户目录\\下载\\shape_predictor_68_face_landmarks.dat\\shape_predictor_68_face_landmarks.dat", required=True, # help="path to facial landmark predictor") #ap.add_argument("-r", "--picamera", type=int, default=-1, #help="whether or not the Raspberry Pi camera should be used") #args = vars(ap.parse_args()) def faceRecognition(): f = open(pathAttributes.dictionary, 'r') result = {} for line in f.readlines(): line = line.strip() print(line) if not len(line): continue result[line.split(':')[0]] = line.split(':')[1] f.close() #face_detection_model = "C:\\Users\\Administrator\\shape_predictor_68_face_landmarks.dat" #print(result) print("[INFO] loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(pathAttributes.face_detection_model) face_encoder = dlib.face_recognition_model_v1(pathAttributes.face_recognition_model) print("[INFO] camera sensor warming up...") #vs = VideoStream().start() video_capture = cv2.VideoCapture(0) #open camra by calling opencv's function #time.sleep(2.0) """ chris_image = cv2.imread('E:\\49.png') #chris_image_gray = cv2.cvtColor(chris_image, cv2.COLOR_GRAY2RGB) chris = detector(chris_image, 1) chris_shape = predictor(chris_image, chris[0]) chris_face_encoding = face_encoder.compute_face_descriptor(chris_image, chris_shape, 1) print("Chris:"+str(chris_face_encoding)) julie_image = cv2.imread('E:\\1.png') #julie_image_gray = cv2.cvtColor(julie_image, cv2.COLOR_GRAY2RGB) julie = detector(julie_image, 1) julie_shape = predictor(julie_image, julie[0]) julie_face_encoding = face_encoder.compute_face_descriptor(julie_image, julie_shape, 1) print("JULIE:"+str(julie_face_encoding)) """ face_locations = [] face_encodings = [] face_names = [] raw_list = [] while True: raw_list = [] face_names = [] # grab the frame from the threaded video stream, resize it to # have a maximum width of 400 pixels, and convert it to # grayscale #frame = vs.read() #frame = imutils.resize(frame, width=400) ret, frame = video_capture.read() #dim = (int(frame.shape[1] * 0.25), int(frame.shape[0] * 0.25)) dim = (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)) small_frame = cv2.resize(frame, dim) gray_one_channel = cv2.cvtColor(small_frame, cv2.COLOR_BGR2GRAY) #face_locations = face_recognition.face_locations(small_frame) gray = cv2.cvtColor(gray_one_channel, cv2.COLOR_GRAY2RGB) # detect faces in the grayscale frame rects = detector(gray, 1) #print("rects:"+str(rects)) for rect in rects: #print("rect:"+str(rect)) css = [rect.top(), rect.right(), rect.bottom(), rect.left()] location = max(css[0], 0), min(css[1], gray.shape[1]), min(css[2], gray.shape[0]), max(css[3], 0) face_location = dlib.rectangle(location[3], location[0], location[1], location[2]) face_locations.append(face_location) raw_list.append(css) shape = predictor(gray, face_location) face_encoding = face_encoder.compute_face_descriptor(gray, shape, 1) #print("random:"+str(face_encoding)) """ match_chris = [] match_julie = [] chris_norm = 0 julie_norm = 0 if len([chris_face_encoding]) == 0: match_chris = list(0<=0.6) else: chris_norm = np.linalg.norm(np.array([chris_face_encoding]) - np.array([face_encoding]), axis=1) match_chris = list(chris_norm<= 0.6) print("chris:"+str(chris_norm)) name = "Unknown" if len([julie_face_encoding]) == 0: match_julie = list(0<=0.6) else: julie_norm = np.linalg.norm(np.array([julie_face_encoding]) - np.array([face_encoding]), axis=1) match_julie = list(julie_norm <= 0.6) print("julie:"+str(julie_norm)) if match_chris[0]!=0 and match_julie[0]!=0: if julie_norm>chris_norm: name = "Chris" else: name = "Julie" elif match_julie[0] == 0 and match_chris[0] !=0: name = "Chris" elif match_julie[0] != 0 and match_chris[0] ==0: name = "Julie" else: name = "Unknown" """ threshold = -0.05 #-0.1 for C=0.1 4-8 6 for 0.3 proba = 0.72 clf = joblib.load(pathAttributes.SVM_model) feeaturesArray = np.array(face_encoding) ID = clf.predict(feeaturesArray.reshape(1,-1))[0] name = result[str(ID)] #scores = clf.decision_function(feeaturesArray.reshape(1,-1)) scores = clf.predict_proba(feeaturesArray.reshape(1,-1)) """ scores_sorted = np.sort(scores) second_biggest = scores_sorted[0][-2] minimum = scores_sorted[0][0] biggest_score = np.max(scores) gap = biggest_score - minimum gap_2 = biggest_score - second_biggest print(gap_2) percentage = gap_2/gap *100 print(percentage) if percentage < 30: name = "unknown" """ """ biggest_score = np.max(scores) if biggest_score < threshold: name = "unknown" """ biggest_score = np.max(scores) if biggest_score < proba: name="unknown" #scores = scores - np.min(scores) #scores = scores/np.max(scores) print(scores,name) face_names.append(name) #print(face_names) for (top, right, bottom, left), name in zip(raw_list, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 5 right *= 5 bottom *= 5 left *= 5 # Draw a box around the faceq cv2.rectangle(frame, (left-10, top-10), (right+10, bottom+10), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left-10, bottom+10), (right+10, bottom+45), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left, bottom + 30), font, 1.0, (255, 255, 255), 1) cv2.imshow('Video', frame) #display the camra # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() faceRecognition()
[ "cv2.rectangle", "dlib.face_recognition_model_v1", "dlib.rectangle", "sklearn.externals.joblib.load", "dlib.shape_predictor", "cv2.imshow", "numpy.max", "dlib.get_frontal_face_detector", "numpy.array", "cv2.putText", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.cvtColor", "cv2.resize", "cv2.waitKey" ]
[((1116, 1148), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (1146, 1148), False, 'import dlib\n'), ((1166, 1223), 'dlib.shape_predictor', 'dlib.shape_predictor', (['pathAttributes.face_detection_model'], {}), '(pathAttributes.face_detection_model)\n', (1186, 1223), False, 'import dlib\n'), ((1244, 1313), 'dlib.face_recognition_model_v1', 'dlib.face_recognition_model_v1', (['pathAttributes.face_recognition_model'], {}), '(pathAttributes.face_recognition_model)\n', (1274, 1313), False, 'import dlib\n'), ((1423, 1442), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (1439, 1442), False, 'import cv2\n'), ((7424, 7447), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (7445, 7447), False, 'import cv2\n'), ((2802, 2824), 'cv2.resize', 'cv2.resize', (['frame', 'dim'], {}), '(frame, dim)\n', (2812, 2824), False, 'import cv2\n'), ((2853, 2898), 'cv2.cvtColor', 'cv2.cvtColor', (['small_frame', 'cv2.COLOR_BGR2GRAY'], {}), '(small_frame, cv2.COLOR_BGR2GRAY)\n', (2865, 2898), False, 'import cv2\n'), ((2987, 3037), 'cv2.cvtColor', 'cv2.cvtColor', (['gray_one_channel', 'cv2.COLOR_GRAY2RGB'], {}), '(gray_one_channel, cv2.COLOR_GRAY2RGB)\n', (2999, 3037), False, 'import cv2\n'), ((7219, 7245), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame'], {}), "('Video', frame)\n", (7229, 7245), False, 'import cv2\n'), ((3435, 3501), 'dlib.rectangle', 'dlib.rectangle', (['location[3]', 'location[0]', 'location[1]', 'location[2]'], {}), '(location[3], location[0], location[1], location[2])\n', (3449, 3501), False, 'import dlib\n'), ((5170, 5207), 'sklearn.externals.joblib.load', 'joblib.load', (['pathAttributes.SVM_model'], {}), '(pathAttributes.SVM_model)\n', (5181, 5207), False, 'from sklearn.externals import joblib\n'), ((5238, 5261), 'numpy.array', 'np.array', (['face_encoding'], {}), '(face_encoding)\n', (5246, 5261), True, 'import numpy as np\n'), ((6161, 6175), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (6167, 6175), True, 'import numpy as np\n'), ((6802, 6893), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left - 10, top - 10)', '(right + 10, bottom + 10)', '(0, 0, 255)', '(2)'], {}), '(frame, (left - 10, top - 10), (right + 10, bottom + 10), (0, \n 0, 255), 2)\n', (6815, 6893), False, 'import cv2\n'), ((6967, 7070), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left - 10, bottom + 10)', '(right + 10, bottom + 45)', '(0, 0, 255)', 'cv2.FILLED'], {}), '(frame, (left - 10, bottom + 10), (right + 10, bottom + 45), (\n 0, 0, 255), cv2.FILLED)\n', (6980, 7070), False, 'import cv2\n'), ((7123, 7199), 'cv2.putText', 'cv2.putText', (['frame', 'name', '(left, bottom + 30)', 'font', '(1.0)', '(255, 255, 255)', '(1)'], {}), '(frame, name, (left, bottom + 30), font, 1.0, (255, 255, 255), 1)\n', (7134, 7199), False, 'import cv2\n'), ((7330, 7344), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (7341, 7344), False, 'import cv2\n')]
from gamegym.game import Game, Situation from gamegym.utils import get_rng from gamegym.distribution import Explicit from gamegym.value_learning.valuestore import LinearValueStore import numpy as np import pytest from scipy.sparse import csr_matrix def test_init(): LinearValueStore(shape=(3, 3)) LinearValueStore(np.zeros((4, 3))) LinearValueStore(np.zeros((4, 3)), shape=(4, 3)) with pytest.raises(Exception): LinearValueStore((3, 3)) with pytest.raises(Exception): LinearValueStore(np.zeros((4, 3)), shape=(4, 4)) def test_value_update(): a = np.ones((4, )) vs = LinearValueStore(a) f = [0, 2, -1, 3] assert vs.get(f) == pytest.approx(4.0) assert vs.get(np.array(f)) == pytest.approx(4.0) #assert vs.get(csr_matrix(f)) == pytest.approx(4.0) vs.update(f, -0.5) assert vs.values == pytest.approx([1, 0, 1.5, -0.5]) assert vs.get(f) == pytest.approx(-3.0) def test_norm(): vs = LinearValueStore(shape=(2, 3), fix_mean=1.0)
[ "pytest.approx", "numpy.ones", "gamegym.value_learning.valuestore.LinearValueStore", "numpy.array", "numpy.zeros", "pytest.raises" ]
[((272, 302), 'gamegym.value_learning.valuestore.LinearValueStore', 'LinearValueStore', ([], {'shape': '(3, 3)'}), '(shape=(3, 3))\n', (288, 302), False, 'from gamegym.value_learning.valuestore import LinearValueStore\n'), ((590, 603), 'numpy.ones', 'np.ones', (['(4,)'], {}), '((4,))\n', (597, 603), True, 'import numpy as np\n'), ((614, 633), 'gamegym.value_learning.valuestore.LinearValueStore', 'LinearValueStore', (['a'], {}), '(a)\n', (630, 633), False, 'from gamegym.value_learning.valuestore import LinearValueStore\n'), ((960, 1004), 'gamegym.value_learning.valuestore.LinearValueStore', 'LinearValueStore', ([], {'shape': '(2, 3)', 'fix_mean': '(1.0)'}), '(shape=(2, 3), fix_mean=1.0)\n', (976, 1004), False, 'from gamegym.value_learning.valuestore import LinearValueStore\n'), ((324, 340), 'numpy.zeros', 'np.zeros', (['(4, 3)'], {}), '((4, 3))\n', (332, 340), True, 'import numpy as np\n'), ((363, 379), 'numpy.zeros', 'np.zeros', (['(4, 3)'], {}), '((4, 3))\n', (371, 379), True, 'import numpy as np\n'), ((404, 428), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (417, 428), False, 'import pytest\n'), ((438, 462), 'gamegym.value_learning.valuestore.LinearValueStore', 'LinearValueStore', (['(3, 3)'], {}), '((3, 3))\n', (454, 462), False, 'from gamegym.value_learning.valuestore import LinearValueStore\n'), ((472, 496), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (485, 496), False, 'import pytest\n'), ((680, 698), 'pytest.approx', 'pytest.approx', (['(4.0)'], {}), '(4.0)\n', (693, 698), False, 'import pytest\n'), ((733, 751), 'pytest.approx', 'pytest.approx', (['(4.0)'], {}), '(4.0)\n', (746, 751), False, 'import pytest\n'), ((855, 887), 'pytest.approx', 'pytest.approx', (['[1, 0, 1.5, -0.5]'], {}), '([1, 0, 1.5, -0.5])\n', (868, 887), False, 'import pytest\n'), ((912, 931), 'pytest.approx', 'pytest.approx', (['(-3.0)'], {}), '(-3.0)\n', (925, 931), False, 'import pytest\n'), ((523, 539), 'numpy.zeros', 'np.zeros', (['(4, 3)'], {}), '((4, 3))\n', (531, 539), True, 'import numpy as np\n'), ((717, 728), 'numpy.array', 'np.array', (['f'], {}), '(f)\n', (725, 728), True, 'import numpy as np\n')]
import math from itertools import product from typing import Tuple, List, Optional, Union import numpy as np import torch import torch.nn as nn import torch.nn.init as init class EMA: """ Class that keeps track of exponential moving average of model parameters of a particular model. Also see https://github.com/chrischute/squad/blob/master/util.py#L174-L220. """ def __init__(self, model: torch.nn.Module, decay: float): """ Initialization method for the EMA class. Parameters ---------- model: torch.nn.Module Torch model for which the EMA instance is used to track the exponential moving average of parameter values decay: float Decay rate used for exponential moving average of parameters calculation: ema_t = decay * p_t + (1-decay) * ema_(t-1) """ self.decay = decay self.shadow = {} self.original = {} # Register model parameters for name, param in model.named_parameters(): if param.requires_grad: self.shadow[name] = param.clone().detach() def __call__(self, model): """ Implements call method of EMA class Parameters ---------- model: torch.nn.Module Current model based on which the EMA parameters are updated """ with torch.no_grad(): for name, param in model.named_parameters(): if param.requires_grad: assert name in self.shadow new_average = (1.0 - self.decay) * param + self.decay * self.shadow[ name ] self.shadow[name] = new_average def assign(self, model: torch.nn.Module): """ This method assigns the parameter EMAs saved in self.shadow to the given model. The current parameter values of the model are saved to self.original. These original parameters can be restored using self.resume. Parameters ---------- model: torch.nn.Module Model to which the current parameter EMAs are assigned. """ for name, param in model.named_parameters(): if param.requires_grad: self.original[name] = param.clone() param.data.copy_(self.shadow[name].data) def resume(self, model: torch.nn.Module): """ This method restores the parameters saved in self.original to the given model. It is usually called after the `assign` method. Parameters ---------- model: torch.nn.Module Torch model to which the original parameters are restored """ for name, param in model.named_parameters(): if param.requires_grad: param.data.copy_(self.original[name].data) class ModelWrapper: """ ModelWrapper which can be used to extract outputs of intermediate layer of a network. """ def __init__(self, task_model: nn.Module, to_extract: Tuple): """ Initializes a model wrapper for the specified task model and layer names to extract. Parameters ---------- task_model: torch.nn.Module Torch model to which the original parameters are restored to_extract: Tuple Tuple that holds names of layers for which intermediate results should be extracted and returned, e.g. to_extract=(`avgpool`, `fc`) to extract intermediate results after the avgpool layer and last fully connected layer in a ResNet for example. """ self.task_model = task_model self.to_extract = to_extract def __call__(self, x: torch.Tensor): """ The __call__ method iterates through all modules of the provided `task_model` separately. It extracts and returns the intermediate results at layers specified by to_extract Parameters ---------- x: torch.Tensor Batch of samples, e.g. images, which are passed through the network and for which specified intermediate results are extracted Returns ---------- results: Optional[torch.Tensor, List[torch.Tensor]] Results of forward pass of input batch through the given task model. If len(to_extract) is 1, only the single result tensor is returned. Otherwise, a list of tensors is returned, which holds the intermediate results of specified layers in the order of occurrence in the network. """ results = [] for name, child in self.task_model.named_children(): x = child(x) if name == "avgpool": x = torch.flatten(x, 1) if name in self.to_extract: results.append(x) return results[-1] if len(results) == 1 else results def train(self): self.task_model.train() def eval(self): self.task_model.eval() def cuda(self): self.task_model.cuda() def to(self, device: Union[str, torch.device]): self.task_model.to(device) def get_embedding_dim(self): last_layer = list(self.task_model.modules())[-1] return last_layer.in_features def model_init(m: torch.nn.Module): """ Method that initializes torch modules depending on their type: - Convolutional Layers: Xavier Uniform Initialization - BatchNorm Layers: Standard initialization - Fully connected / linear layers: Xavier Normal Initialization# Parameters ---------- m: torch.nn.Module Torch module which to be initialized. The specific initialization used depends on the type of module. """ classname = m.__class__.__name__ if classname.find("Conv") != -1: init.xavier_uniform_(m.weight, gain=math.sqrt(2)) if m.bias is not None: init.constant_(m.bias, 0) elif classname.find("BatchNorm") != -1: init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif classname.find("Linear") != -1: init.xavier_normal_(m.weight, gain=math.sqrt(2)) if m.bias is not None: init.constant_(m.bias, 0) def wd_check(wd_tuple: Tuple, name: str): """ Method that checks if parameter name matches the key words in wd_tuple. This check is used to filter certain types of parameters independent of the layer, which it belongs to, e.g. `conv1.weight`. Parameters ---------- wd_tuple: Tuple Tuple which contains the phrases which are checked for, e.g. (`conv`, `weight`) or (`fc`, `weight`) name: str Name of parameter as saved in state dict, e.g. `conv1.weight` Returns ---------- wd_check: bool Returns a bool indicating whether all strings in wd_tuple are contained in name. """ return all([x in name for x in wd_tuple]) def apply_wd(model: torch.nn.Module, wd: float, param_names: List = ["conv", "fc"], types: List = ["weight"]): """ Method that manually applies weight decay to model parameters that match the specified parameter names and types. Parameters ---------- model: torch.nn.Module Model to which weight decay is applied wd: float Float specifying weight decay. Parameters are updated to: param = (1-wd) * param param_names: List (default: ["conv", "fc"]) Parameter names (or substring of names) for which the weight decay is applied. types: List (default: ["weight"]) Parameter types for which weight decay is applied. """ with torch.no_grad(): for name, param in model.state_dict().items(): if any( [wd_check(wd_tuple, name) for wd_tuple in product(param_names, types)] ): param.mul_(1 - wd) def set_bn_running_updates(model, enable: bool, bn_momentum: float = 0.001): """ Method that enables or disables updates of the running batch norm vars by setting the momentum parameter to 0 """ for m in model.modules(): if isinstance(m, nn.BatchNorm2d): m.momentum = bn_momentum if enable else 0.0 def linear_rampup(current: int, rampup_length: int): if rampup_length == 0: return 1.0 else: current = np.clip(current / rampup_length, 0.0, 1.0) return float(current) def set_grads(model: torch.nn.Module, trainable_layers: List[str]): """ Method that enables or disables gradients of model parameters according to specified layers. Parameters ---------- model: torch.nn.Module Torch model for which parameter gradients should be set trainable_layers: List List of strings, i.e. layer / parameter names, for which training is enabled. For model parameters, which do not match any pattern specified in trainable_layers, training is disable by setting requires_grad to False. """ def is_trainable(x, trainable_layers): return any([(layer in x) or ('fc' in x) for layer in trainable_layers]) for p in model.parameters(): p.requires_grad = False trainable_parameters = [n for n, p in model.named_parameters() if is_trainable(n, trainable_layers)] for n, p in model.named_parameters(): if n in trainable_parameters: p.requires_grad = True
[ "numpy.clip", "torch.nn.init.constant_", "itertools.product", "math.sqrt", "torch.no_grad", "torch.flatten" ]
[((7623, 7638), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7636, 7638), False, 'import torch\n'), ((8322, 8364), 'numpy.clip', 'np.clip', (['(current / rampup_length)', '(0.0)', '(1.0)'], {}), '(current / rampup_length, 0.0, 1.0)\n', (8329, 8364), True, 'import numpy as np\n'), ((1390, 1405), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1403, 1405), False, 'import torch\n'), ((5931, 5956), 'torch.nn.init.constant_', 'init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (5945, 5956), True, 'import torch.nn.init as init\n'), ((6009, 6036), 'torch.nn.init.constant_', 'init.constant_', (['m.weight', '(1)'], {}), '(m.weight, 1)\n', (6023, 6036), True, 'import torch.nn.init as init\n'), ((6045, 6070), 'torch.nn.init.constant_', 'init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (6059, 6070), True, 'import torch.nn.init as init\n'), ((4755, 4774), 'torch.flatten', 'torch.flatten', (['x', '(1)'], {}), '(x, 1)\n', (4768, 4774), False, 'import torch\n'), ((5874, 5886), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (5883, 5886), False, 'import math\n'), ((6212, 6237), 'torch.nn.init.constant_', 'init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (6226, 6237), True, 'import torch.nn.init as init\n'), ((6155, 6167), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (6164, 6167), False, 'import math\n'), ((7777, 7804), 'itertools.product', 'product', (['param_names', 'types'], {}), '(param_names, types)\n', (7784, 7804), False, 'from itertools import product\n')]
import matplotlib import matplotlib.pyplot as plt import numpy as np import csv import seaborn as sns import itertools import pandas as pd import scipy from scipy.signal import savgol_filter from scipy.signal import find_peaks_cwt from scipy.signal import boxcar sns.set(font_scale=1.2) sns.set_style("white") colors = ["#95a5a6", "amber"] sns.set_palette(sns.color_palette()) hr_24 = np.loadtxt("MDA DTX_1 4_24hr.txt", skiprows=1) ctl = np.loadtxt("MDA DTX_1 Ctl.txt", skiprows=1) hr_4 = np.loadtxt("MDA DTX_1 4hr.txt", skiprows=1) # hr_2 = np.loadtxt("MDA-DTX-#2hr.txt", skiprows=1) hr_8 = np.loadtxt("MDA DTX 8hr.txt", skiprows=1) dmso = np.loadtxt("MDA DTX DMSO.txt", skiprows=1) def filterDat(data): num = 9 ones = boxcar(num)/num result = np.abs(np.convolve(data, ones, mode='same')) return np.interp(result, (result.min(), result.max()), (0, 100)) def shift(data): """ firstIndex = 200 index = np.argmax(data) if index < firstIndex: data = np.insert(data, 0, np.zeros( firstIndex-index))[:-(firstIndex-index)] elif index > firstIndex: data = data[index-firstIndex:] data = np.insert(data, len(data)-1, np.zeros(index-firstIndex)) """ # Stretch secondIndex = 400 indexes = find_peaks_cwt(data, np.arange(1, 100)) # find max of indexes peaks = data[indexes] secondMax = 0 lastPeak = 0 for x in range(len(peaks)): if peaks[x] < 95.0: if peaks[x] > lastPeak: lastPeak = peaks[x] secondMax = x secondMaxIndex = indexes[secondMax] difference = secondIndex-secondMaxIndex ratio = secondIndex/(secondIndex-difference) old_x = np.linspace(0, int(len(data))-1, int(len(data))) new_x = np.linspace(0, int(len(data))-1, int(len(data)*ratio)) new_data = np.interp(new_x, old_x, data) return new_data, np.linspace(0, int(len(new_x))-1, int(len(new_x))) fig, axes = plt.subplots(figsize=(8, 6)) filterData = filterDat(ctl[:, 2]) y, x = shift(filterData) axes.plot(x, y, label="Control", color='black') axes.fill_between(x, y, alpha=0.3) """filterData = filterDat(hr_4[:, 2]) y, x = shift(filterData) axes.plot(x, y, label="4 hour") axes.fill_between(x, y, alpha=0.3) filterData = filterDat(hr_8[:, 2]) y, x = shift(filterData) axes.plot(x, y, label="8 hour") axes.fill_between(x, y, alpha=0.3) """ filterData = filterDat(hr_24[:, 2]) y, x = shift(filterData) axes.plot(x, y, label="24 hour", color='maroon') axes.fill_between(x, y, alpha=0.3) axes.legend() axes.set_ylabel('% of Max') axes.set_xlabel('Fluorescence') axes.set_xlim((0, 800)) plt.show()
[ "seaborn.set", "numpy.convolve", "seaborn.color_palette", "seaborn.set_style", "scipy.signal.boxcar", "numpy.interp", "numpy.loadtxt", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((264, 287), 'seaborn.set', 'sns.set', ([], {'font_scale': '(1.2)'}), '(font_scale=1.2)\n', (271, 287), True, 'import seaborn as sns\n'), ((288, 310), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (301, 310), True, 'import seaborn as sns\n'), ((387, 433), 'numpy.loadtxt', 'np.loadtxt', (['"""MDA DTX_1 4_24hr.txt"""'], {'skiprows': '(1)'}), "('MDA DTX_1 4_24hr.txt', skiprows=1)\n", (397, 433), True, 'import numpy as np\n'), ((440, 483), 'numpy.loadtxt', 'np.loadtxt', (['"""MDA DTX_1 Ctl.txt"""'], {'skiprows': '(1)'}), "('MDA DTX_1 Ctl.txt', skiprows=1)\n", (450, 483), True, 'import numpy as np\n'), ((491, 534), 'numpy.loadtxt', 'np.loadtxt', (['"""MDA DTX_1 4hr.txt"""'], {'skiprows': '(1)'}), "('MDA DTX_1 4hr.txt', skiprows=1)\n", (501, 534), True, 'import numpy as np\n'), ((594, 635), 'numpy.loadtxt', 'np.loadtxt', (['"""MDA DTX 8hr.txt"""'], {'skiprows': '(1)'}), "('MDA DTX 8hr.txt', skiprows=1)\n", (604, 635), True, 'import numpy as np\n'), ((643, 685), 'numpy.loadtxt', 'np.loadtxt', (['"""MDA DTX DMSO.txt"""'], {'skiprows': '(1)'}), "('MDA DTX DMSO.txt', skiprows=1)\n", (653, 685), True, 'import numpy as np\n'), ((1958, 1986), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (1970, 1986), True, 'import matplotlib.pyplot as plt\n'), ((2636, 2646), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2644, 2646), True, 'import matplotlib.pyplot as plt\n'), ((357, 376), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (374, 376), True, 'import seaborn as sns\n'), ((1841, 1870), 'numpy.interp', 'np.interp', (['new_x', 'old_x', 'data'], {}), '(new_x, old_x, data)\n', (1850, 1870), True, 'import numpy as np\n'), ((732, 743), 'scipy.signal.boxcar', 'boxcar', (['num'], {}), '(num)\n', (738, 743), False, 'from scipy.signal import boxcar\n'), ((768, 804), 'numpy.convolve', 'np.convolve', (['data', 'ones'], {'mode': '"""same"""'}), "(data, ones, mode='same')\n", (779, 804), True, 'import numpy as np\n'), ((1294, 1311), 'numpy.arange', 'np.arange', (['(1)', '(100)'], {}), '(1, 100)\n', (1303, 1311), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import matplotlib.colors as colorplt import matplotlib.pyplot as plt import numpy as np from sktime.distances._distance import distance_alignment_path, pairwise_distance gray_cmap = colorplt.LinearSegmentedColormap.from_list("", ["#c9cacb", "white"]) def _path_mask(cost_matrix, path, ax, theme=gray_cmap): plot_matrix = np.zeros_like(cost_matrix) max_size = max(cost_matrix.shape) for i in range(max_size): for j in range(max_size): if (i, j) in path: plot_matrix[i, j] = 1.0 elif cost_matrix[i, j] == np.inf: plot_matrix[i, j] = 0.0 else: plot_matrix[i, j] = 0.25 for i in range(max_size): for j in range(max_size): c = cost_matrix[j, i] ax.text(i, j, str(round(c, 2)), va="center", ha="center", size=10) ax.text(i, j, str(round(c, 2)), va="center", ha="center", size=10) ax.matshow(plot_matrix, cmap=theme) def _pairwise_path(x, y, metric): pw_matrix = pairwise_distance(x, y, metric=metric) path = [] for i in range(pw_matrix.shape[0]): for j in range(pw_matrix.shape[1]): if i == j: path.append((i, j)) return path, pw_matrix.trace(), pw_matrix def _plot_path( x: np.ndarray, y: np.ndarray, metric: str, dist_kwargs: dict = None, title: str = "", plot_over_pw: bool = False, ): if dist_kwargs is None: dist_kwargs = {} try: path, dist, cost_matrix = distance_alignment_path( x, y, metric=metric, return_cost_matrix=True, **dist_kwargs ) if metric == "lcss": _path = [] for tup in path: _path.append(tuple(x + 1 for x in tup)) path = _path if plot_over_pw is True: if metric == "lcss": pw = pairwise_distance(x, y, metric="euclidean") cost_matrix = np.zeros_like(cost_matrix) cost_matrix[1:, 1:] = pw else: pw = pairwise_distance(x, y, metric="squared") cost_matrix = pw except NotImplementedError: path, dist, cost_matrix = _pairwise_path(x, y, metric) plt.figure(1, figsize=(8, 8)) x_size = x.shape[0] # definitions for the axes left, bottom = 0.01, 0.1 w_ts = h_ts = 0.2 left_h = left + w_ts + 0.02 width = height = 0.65 bottom_h = bottom + height + 0.02 rect_s_y = [left, bottom, w_ts, height] rect_gram = [left_h, bottom, width, height] rect_s_x = [left_h, bottom_h, width, h_ts] ax_gram = plt.axes(rect_gram) ax_s_x = plt.axes(rect_s_x) ax_s_y = plt.axes(rect_s_y) _path_mask(cost_matrix, path, ax_gram) ax_gram.axis("off") ax_gram.autoscale(False) # ax_gram.plot([j for (i, j) in path], [i for (i, j) in path], "w-", # linewidth=3.) ax_s_x.plot(np.arange(x_size), y, "b-", linewidth=3.0, color="#818587") ax_s_x.axis("off") ax_s_x.set_xlim((0, x_size - 1)) ax_s_y.plot(-x, np.arange(x_size), "b-", linewidth=3.0, color="#818587") ax_s_y.axis("off") ax_s_y.set_ylim((0, x_size - 1)) ax_s_x.set_title(title, size=10) return plt def _plot_alignment(x, y, metric, dist_kwargs: dict = None, title: str = ""): if dist_kwargs is None: dist_kwargs = {} try: path, dist, cost_matrix = distance_alignment_path( x, y, metric=metric, return_cost_matrix=True, **dist_kwargs ) except NotImplementedError: path, dist, cost_matrix = _pairwise_path(x, y, metric) plt.figure(1, figsize=(8, 8)) plt.plot(x, "b-", color="black") plt.plot(y, "g-", color="black") for positions in path: try: plt.plot( [positions[0], positions[1]], [x[positions[0]], y[positions[1]]], "--", color="#818587", ) except: continue plt.legend() plt.title(title) plt.tight_layout() return plt if __name__ == "__main__": x = np.array( [ -0.7553383207, 0.4460987596, 1.197682907, 0.1714334808, 0.5639929213, 0.6891222874, 1.793828873, 0.06570866314, 0.2877381702, 1.633620422, ] ) y = np.array( [ 0.01765193577, 1.536784164, -0.1413292622, -0.7609346135, -0.1767363331, -2.192007072, -0.1933165696, -0.4648166839, -0.9444888843, -0.239523623, ] ) import os def _save_plt(plt): plt[0].savefig(f"{metric_path}/{plt[1]}") plt[0].cla() plt[0].clf() if not os.path.exists("./plots"): os.makedirs("./plots") metrics = [ "euclidean", "erp", "edr", "lcss", "squared", "dtw", "ddtw", "wdtw", "wddtw", "msm", ] # metrics = ['lcss'] for metric in metrics: metric_path = f"./plots/{metric}" if not os.path.exists(metric_path): os.makedirs(metric_path) save_plt( ( _plot_path(x, y, metric, {"epsilon": 1.0}), f"{metric}_path_through_cost_matrix", ) ) _save_plt( ( _plot_path(x, y, metric, {"window": 0.2, "epsilon": 1.0}), f"{metric}_path_through_20_cost_matrix", ) ) if metric == "wdtw": g_val = [0.2, 0.3] for g in g_val: file_save = str(g).split(".") _save_plt( ( _plot_path(x, y, metric, {"g": g}), f"{metric}_path_through_g{file_save[1]}_cost_matrix", ) ) _save_plt((_plot_alignment(x, y, metric), f"{metric}_alignment")) _save_plt( (_plot_alignment(x, y, metric, {"window": 0.2}), f"{metric}_alignment_20") )
[ "os.path.exists", "os.makedirs", "numpy.arange", "matplotlib.pyplot.plot", "matplotlib.colors.LinearSegmentedColormap.from_list", "sktime.distances._distance.pairwise_distance", "numpy.array", "matplotlib.pyplot.figure", "matplotlib.pyplot.axes", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.title", "numpy.zeros_like", "matplotlib.pyplot.legend", "sktime.distances._distance.distance_alignment_path" ]
[((208, 276), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'colorplt.LinearSegmentedColormap.from_list', (['""""""', "['#c9cacb', 'white']"], {}), "('', ['#c9cacb', 'white'])\n", (250, 276), True, 'import matplotlib.colors as colorplt\n'), ((353, 379), 'numpy.zeros_like', 'np.zeros_like', (['cost_matrix'], {}), '(cost_matrix)\n', (366, 379), True, 'import numpy as np\n'), ((1048, 1086), 'sktime.distances._distance.pairwise_distance', 'pairwise_distance', (['x', 'y'], {'metric': 'metric'}), '(x, y, metric=metric)\n', (1065, 1086), False, 'from sktime.distances._distance import distance_alignment_path, pairwise_distance\n'), ((2259, 2288), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(8, 8)'}), '(1, figsize=(8, 8))\n', (2269, 2288), True, 'import matplotlib.pyplot as plt\n'), ((2647, 2666), 'matplotlib.pyplot.axes', 'plt.axes', (['rect_gram'], {}), '(rect_gram)\n', (2655, 2666), True, 'import matplotlib.pyplot as plt\n'), ((2680, 2698), 'matplotlib.pyplot.axes', 'plt.axes', (['rect_s_x'], {}), '(rect_s_x)\n', (2688, 2698), True, 'import matplotlib.pyplot as plt\n'), ((2712, 2730), 'matplotlib.pyplot.axes', 'plt.axes', (['rect_s_y'], {}), '(rect_s_y)\n', (2720, 2730), True, 'import matplotlib.pyplot as plt\n'), ((3646, 3675), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(8, 8)'}), '(1, figsize=(8, 8))\n', (3656, 3675), True, 'import matplotlib.pyplot as plt\n'), ((3681, 3713), 'matplotlib.pyplot.plot', 'plt.plot', (['x', '"""b-"""'], {'color': '"""black"""'}), "(x, 'b-', color='black')\n", (3689, 3713), True, 'import matplotlib.pyplot as plt\n'), ((3718, 3750), 'matplotlib.pyplot.plot', 'plt.plot', (['y', '"""g-"""'], {'color': '"""black"""'}), "(y, 'g-', color='black')\n", (3726, 3750), True, 'import matplotlib.pyplot as plt\n'), ((4022, 4034), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4032, 4034), True, 'import matplotlib.pyplot as plt\n'), ((4039, 4055), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (4048, 4055), True, 'import matplotlib.pyplot as plt\n'), ((4061, 4079), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4077, 4079), True, 'import matplotlib.pyplot as plt\n'), ((4132, 4291), 'numpy.array', 'np.array', (['[-0.7553383207, 0.4460987596, 1.197682907, 0.1714334808, 0.5639929213, \n 0.6891222874, 1.793828873, 0.06570866314, 0.2877381702, 1.633620422]'], {}), '([-0.7553383207, 0.4460987596, 1.197682907, 0.1714334808, \n 0.5639929213, 0.6891222874, 1.793828873, 0.06570866314, 0.2877381702, \n 1.633620422])\n', (4140, 4291), True, 'import numpy as np\n'), ((4436, 4601), 'numpy.array', 'np.array', (['[0.01765193577, 1.536784164, -0.1413292622, -0.7609346135, -0.1767363331, -\n 2.192007072, -0.1933165696, -0.4648166839, -0.9444888843, -0.239523623]'], {}), '([0.01765193577, 1.536784164, -0.1413292622, -0.7609346135, -\n 0.1767363331, -2.192007072, -0.1933165696, -0.4648166839, -0.9444888843,\n -0.239523623])\n', (4444, 4601), True, 'import numpy as np\n'), ((1545, 1634), 'sktime.distances._distance.distance_alignment_path', 'distance_alignment_path', (['x', 'y'], {'metric': 'metric', 'return_cost_matrix': '(True)'}), '(x, y, metric=metric, return_cost_matrix=True, **\n dist_kwargs)\n', (1568, 1634), False, 'from sktime.distances._distance import distance_alignment_path, pairwise_distance\n'), ((2951, 2968), 'numpy.arange', 'np.arange', (['x_size'], {}), '(x_size)\n', (2960, 2968), True, 'import numpy as np\n'), ((3092, 3109), 'numpy.arange', 'np.arange', (['x_size'], {}), '(x_size)\n', (3101, 3109), True, 'import numpy as np\n'), ((3439, 3528), 'sktime.distances._distance.distance_alignment_path', 'distance_alignment_path', (['x', 'y'], {'metric': 'metric', 'return_cost_matrix': '(True)'}), '(x, y, metric=metric, return_cost_matrix=True, **\n dist_kwargs)\n', (3462, 3528), False, 'from sktime.distances._distance import distance_alignment_path, pairwise_distance\n'), ((4881, 4906), 'os.path.exists', 'os.path.exists', (['"""./plots"""'], {}), "('./plots')\n", (4895, 4906), False, 'import os\n'), ((4916, 4938), 'os.makedirs', 'os.makedirs', (['"""./plots"""'], {}), "('./plots')\n", (4927, 4938), False, 'import os\n'), ((3804, 3905), 'matplotlib.pyplot.plot', 'plt.plot', (['[positions[0], positions[1]]', '[x[positions[0]], y[positions[1]]]', '"""--"""'], {'color': '"""#818587"""'}), "([positions[0], positions[1]], [x[positions[0]], y[positions[1]]],\n '--', color='#818587')\n", (3812, 3905), True, 'import matplotlib.pyplot as plt\n'), ((5235, 5262), 'os.path.exists', 'os.path.exists', (['metric_path'], {}), '(metric_path)\n', (5249, 5262), False, 'import os\n'), ((5276, 5300), 'os.makedirs', 'os.makedirs', (['metric_path'], {}), '(metric_path)\n', (5287, 5300), False, 'import os\n'), ((1903, 1946), 'sktime.distances._distance.pairwise_distance', 'pairwise_distance', (['x', 'y'], {'metric': '"""euclidean"""'}), "(x, y, metric='euclidean')\n", (1920, 1946), False, 'from sktime.distances._distance import distance_alignment_path, pairwise_distance\n'), ((1977, 2003), 'numpy.zeros_like', 'np.zeros_like', (['cost_matrix'], {}), '(cost_matrix)\n', (1990, 2003), True, 'import numpy as np\n'), ((2084, 2125), 'sktime.distances._distance.pairwise_distance', 'pairwise_distance', (['x', 'y'], {'metric': '"""squared"""'}), "(x, y, metric='squared')\n", (2101, 2125), False, 'from sktime.distances._distance import distance_alignment_path, pairwise_distance\n')]
import numpy as np import pytest from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, \ average_true_noise_covariance, naive_noise_covariance test_cases_real_variance = [ (2 - 3j, 0, 0, 0), (0, 1, 1, np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), (2j, 1, 1, 4 * np.exp(-2) * (np.sinh(2) - np.sinh(1)) + np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), (-2j, 1, 1, 4 * np.exp(-2) * (np.sinh(2) - np.sinh(1)) + np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), ] test_cases_imag_variance = [ (4 - 3j, 0, 0, 0), (0, 1, 1, np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))), (2j, 1, 1, 4 * np.exp(-2) * (np.cosh(2) - np.cosh(1)) + np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), (-2j, 1, 1, 4 * np.exp(-2) * (np.cosh(2) - np.cosh(1)) + np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))), ] test_cases_covariance = [ (4 - 3j, 0, 0, 0), (0, 1, 1, 0), (2j, 1, 1, 0), (-2j, 1, 1, 0), (np.sqrt(2) * (1 + 1j), 1, 1, 0.5 * np.exp(-4) * (1 + 5 * (1 - np.exp(1)))), ] @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_real_variance) def test_variance_of_real_noise(m, sd_magnitude, sd_phase, expected): res = average_true_var_real(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected) @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_imag_variance) def test_variance_of_imag_noise(m, sd_magnitude, sd_phase, expected): res = average_true_var_imag(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected) @pytest.mark.parametrize("m,sd_magnitude,sd_phase,expected", test_cases_covariance) def test_covariance_of_noise(m, sd_magnitude, sd_phase, expected): res = average_true_cov(m, sd_magnitude, sd_phase) np.testing.assert_allclose(res, expected, rtol=0, atol=1e-10) def test_cartesian_noise_covariance_matrix(): sd_magnitude = 1 sd_phase = 1 measurement = np.zeros(2) res = average_true_noise_covariance(measurement, sd_magnitude, sd_phase) expected = np.diag( [np.exp(-2) * (2 * np.cosh(2) - np.cosh(1))] * 2 + [np.exp(-2) * (2 * np.sinh(2) - np.sinh(1))] * 2) np.testing.assert_allclose(res.todense(), expected) def test_naive_covariance_matrix(): sd_magnitude = 1 sd_phase = 1 measurement = np.array([0, 1j]) expected = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1], ], dtype=np.float) res = naive_noise_covariance(measurement, sd_magnitude, sd_phase) np.testing.assert_allclose(res.todense(), expected, rtol=0, atol=1e-10)
[ "src.models.noise_transformation.naive_noise_covariance", "numpy.sqrt", "src.models.noise_transformation.average_true_var_imag", "numpy.testing.assert_allclose", "src.models.noise_transformation.average_true_cov", "numpy.sinh", "numpy.exp", "pytest.mark.parametrize", "numpy.zeros", "src.models.noise_transformation.average_true_var_real", "numpy.array", "numpy.cosh", "src.models.noise_transformation.average_true_noise_covariance" ]
[((1045, 1134), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""m,sd_magnitude,sd_phase,expected"""', 'test_cases_real_variance'], {}), "('m,sd_magnitude,sd_phase,expected',\n test_cases_real_variance)\n", (1068, 1134), False, 'import pytest\n'), ((1309, 1398), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""m,sd_magnitude,sd_phase,expected"""', 'test_cases_imag_variance'], {}), "('m,sd_magnitude,sd_phase,expected',\n test_cases_imag_variance)\n", (1332, 1398), False, 'import pytest\n'), ((1573, 1659), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""m,sd_magnitude,sd_phase,expected"""', 'test_cases_covariance'], {}), "('m,sd_magnitude,sd_phase,expected',\n test_cases_covariance)\n", (1596, 1659), False, 'import pytest\n'), ((1211, 1259), 'src.models.noise_transformation.average_true_var_real', 'average_true_var_real', (['m', 'sd_magnitude', 'sd_phase'], {}), '(m, sd_magnitude, sd_phase)\n', (1232, 1259), False, 'from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, average_true_noise_covariance, naive_noise_covariance\n'), ((1264, 1305), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'expected'], {}), '(res, expected)\n', (1290, 1305), True, 'import numpy as np\n'), ((1475, 1523), 'src.models.noise_transformation.average_true_var_imag', 'average_true_var_imag', (['m', 'sd_magnitude', 'sd_phase'], {}), '(m, sd_magnitude, sd_phase)\n', (1496, 1523), False, 'from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, average_true_noise_covariance, naive_noise_covariance\n'), ((1528, 1569), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'expected'], {}), '(res, expected)\n', (1554, 1569), True, 'import numpy as np\n'), ((1733, 1776), 'src.models.noise_transformation.average_true_cov', 'average_true_cov', (['m', 'sd_magnitude', 'sd_phase'], {}), '(m, sd_magnitude, sd_phase)\n', (1749, 1776), False, 'from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, average_true_noise_covariance, naive_noise_covariance\n'), ((1781, 1842), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'expected'], {'rtol': '(0)', 'atol': '(1e-10)'}), '(res, expected, rtol=0, atol=1e-10)\n', (1807, 1842), True, 'import numpy as np\n'), ((1947, 1958), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (1955, 1958), True, 'import numpy as np\n'), ((1969, 2035), 'src.models.noise_transformation.average_true_noise_covariance', 'average_true_noise_covariance', (['measurement', 'sd_magnitude', 'sd_phase'], {}), '(measurement, sd_magnitude, sd_phase)\n', (1998, 2035), False, 'from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, average_true_noise_covariance, naive_noise_covariance\n'), ((2319, 2338), 'numpy.array', 'np.array', (['[0, 1.0j]'], {}), '([0, 1.0j])\n', (2327, 2338), True, 'import numpy as np\n'), ((2352, 2439), 'numpy.array', 'np.array', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float'}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]], dtype=np\n .float)\n', (2360, 2439), True, 'import numpy as np\n'), ((2484, 2543), 'src.models.noise_transformation.naive_noise_covariance', 'naive_noise_covariance', (['measurement', 'sd_magnitude', 'sd_phase'], {}), '(measurement, sd_magnitude, sd_phase)\n', (2506, 2543), False, 'from src.models.noise_transformation import average_true_var_real, average_true_var_imag, average_true_cov, average_true_noise_covariance, naive_noise_covariance\n'), ((269, 279), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (275, 279), True, 'import numpy as np\n'), ((594, 604), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (600, 604), True, 'import numpy as np\n'), ((964, 974), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (971, 974), True, 'import numpy as np\n'), ((300, 310), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (307, 310), True, 'import numpy as np\n'), ((374, 384), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (380, 384), True, 'import numpy as np\n'), ((480, 490), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (486, 490), True, 'import numpy as np\n'), ((625, 635), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (632, 635), True, 'import numpy as np\n'), ((699, 709), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (705, 709), True, 'import numpy as np\n'), ((805, 815), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (811, 815), True, 'import numpy as np\n'), ((999, 1009), 'numpy.exp', 'np.exp', (['(-4)'], {}), '(-4)\n', (1005, 1009), True, 'import numpy as np\n'), ((287, 297), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (294, 297), True, 'import numpy as np\n'), ((333, 343), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (339, 343), True, 'import numpy as np\n'), ((347, 357), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (354, 357), True, 'import numpy as np\n'), ((360, 370), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (367, 370), True, 'import numpy as np\n'), ((405, 415), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (412, 415), True, 'import numpy as np\n'), ((439, 449), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (445, 449), True, 'import numpy as np\n'), ((453, 463), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (460, 463), True, 'import numpy as np\n'), ((466, 476), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (473, 476), True, 'import numpy as np\n'), ((511, 521), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (518, 521), True, 'import numpy as np\n'), ((612, 622), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (619, 622), True, 'import numpy as np\n'), ((658, 668), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (664, 668), True, 'import numpy as np\n'), ((672, 682), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (679, 682), True, 'import numpy as np\n'), ((685, 695), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (692, 695), True, 'import numpy as np\n'), ((730, 740), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (737, 740), True, 'import numpy as np\n'), ((764, 774), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (770, 774), True, 'import numpy as np\n'), ((778, 788), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (785, 788), True, 'import numpy as np\n'), ((791, 801), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (798, 801), True, 'import numpy as np\n'), ((836, 846), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (843, 846), True, 'import numpy as np\n'), ((392, 402), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (399, 402), True, 'import numpy as np\n'), ((498, 508), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (505, 508), True, 'import numpy as np\n'), ((717, 727), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (724, 727), True, 'import numpy as np\n'), ((823, 833), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (830, 833), True, 'import numpy as np\n'), ((1026, 1035), 'numpy.exp', 'np.exp', (['(1)'], {}), '(1)\n', (1032, 1035), True, 'import numpy as np\n'), ((2069, 2079), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (2075, 2079), True, 'import numpy as np\n'), ((2120, 2130), 'numpy.exp', 'np.exp', (['(-2)'], {}), '(-2)\n', (2126, 2130), True, 'import numpy as np\n'), ((2100, 2110), 'numpy.cosh', 'np.cosh', (['(1)'], {}), '(1)\n', (2107, 2110), True, 'import numpy as np\n'), ((2151, 2161), 'numpy.sinh', 'np.sinh', (['(1)'], {}), '(1)\n', (2158, 2161), True, 'import numpy as np\n'), ((2087, 2097), 'numpy.cosh', 'np.cosh', (['(2)'], {}), '(2)\n', (2094, 2097), True, 'import numpy as np\n'), ((2138, 2148), 'numpy.sinh', 'np.sinh', (['(2)'], {}), '(2)\n', (2145, 2148), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import os import sys # ensure `tests` directory path is on top of Python's module search filedir = os.path.dirname(__file__) sys.path.insert(0, filedir) while filedir in sys.path[1:]: sys.path.pop(sys.path.index(filedir)) # avoid duplication import pytest import numpy as np from copy import deepcopy from backend import K, AE_CONFIGS, BASEDIR, tempdir, notify, make_autoencoder from backend import _init_session, _do_test_load, _get_test_names from deeptrain.util.preprocessors import Preprocessor from deeptrain.metrics import _standardize, _weighted_loss #### CONFIGURE TESTING ####################################################### batch_size = 128 width, height = 28, 28 channels = 1 datadir = os.path.join(BASEDIR, 'tests', 'data', 'image') tests_done = {} CONFIGS = deepcopy(AE_CONFIGS) CONFIGS['model']['batch_shape'] = (batch_size, width, height, channels) CONFIGS['datagen']['batch_size'] = batch_size CONFIGS['val_datagen']['batch_size'] = batch_size def init_session(C, weights_path=None, loadpath=None, model=None): return _init_session(C, weights_path=weights_path, loadpath=loadpath, model=model, model_fn=make_autoencoder) def mean_L_error(y_true, y_pred, sample_weight=1): L = 1.5 # configurable y_true, y_pred, sample_weight = _standardize(y_true, y_pred, sample_weight) return _weighted_loss(np.mean(np.abs(y_true - y_pred) ** L, axis=-1), sample_weight) def mLe(y_true, y_pred): L = 1.5 # configurable return K.mean(K.pow(K.abs(y_true - y_pred), L), axis=-1) def numpy_loader(self, set_num): # allow_pickle is irrelevant here, just for demo return np.load(self._path(set_num), allow_pickle=True) class RandCropPreprocessor(Preprocessor): """2D random crop. MNIST is 28x28, we try 25x25 crops, e.g. batch[2:27, 3:28].""" def __init__(self, size, crop_batch=True, crop_labels=False, crop_same=False): # length -> (length, length) # (width, height) -> (width, height) assert isinstance(size, (tuple, int)) self.size = size if isinstance(size, tuple) else (size, size) self.crop_batch = crop_batch self.crop_labels = crop_labels self.crop_same = crop_same def process(self, batch, labels): if self.crop_batch: (x_start, x_end), (y_start, y_end) = self._make_crop_mask(batch) batch = batch[:, x_start:x_end, y_start:y_end] if self.crop_labels: if not self.crop_same or not self.crop_batch: (x_start, x_end), (y_start, y_end ) = self._make_crop_mask(labels) labels = labels[:, x_start:x_end, y_start:y_end] return batch, labels def _make_crop_mask(self, data): _, w, h, *_ = data.shape # (samples, width, height, channels) x_offset = np.random.randint(0, w - self.size[0]) y_offset = np.random.randint(0, h - self.size[1]) x_start, x_end = x_offset, x_offset + self.size[0] y_start, y_end = y_offset, y_offset + self.size[1] return (x_start, x_end), (y_start, y_end) ############################################################################## @notify(tests_done) def test_main(): C = deepcopy(AE_CONFIGS) C['model' ].update({'loss': mLe, 'batch_shape': (128, 24, 24, 1)}) C['datagen' ].update({'data_loader': numpy_loader, 'preprocessor': RandCropPreprocessor(size=24)}) C['val_datagen'].update({'data_loader': numpy_loader, 'preprocessor': RandCropPreprocessor(size=24)}) C['traingen']['custom_metrics'] = {'mLe': mean_L_error} with tempdir(C['traingen']['logs_dir']), \ tempdir(C['traingen']['best_models_dir']): tg = init_session(C) tg.train() _do_test_load(tg, C, init_session) ############################################################################## tests_done.update({name: None for name in _get_test_names(__name__)}) if __name__ == '__main__': pytest.main([__file__, "-s"])
[ "numpy.abs", "sys.path.insert", "backend.notify", "backend.tempdir", "os.path.join", "backend._do_test_load", "pytest.main", "os.path.dirname", "numpy.random.randint", "sys.path.index", "backend._get_test_names", "copy.deepcopy", "backend.K.abs", "deeptrain.metrics._standardize", "backend._init_session" ]
[((123, 148), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (138, 148), False, 'import os\n'), ((149, 176), 'sys.path.insert', 'sys.path.insert', (['(0)', 'filedir'], {}), '(0, filedir)\n', (164, 176), False, 'import sys\n'), ((734, 781), 'os.path.join', 'os.path.join', (['BASEDIR', '"""tests"""', '"""data"""', '"""image"""'], {}), "(BASEDIR, 'tests', 'data', 'image')\n", (746, 781), False, 'import os\n'), ((809, 829), 'copy.deepcopy', 'deepcopy', (['AE_CONFIGS'], {}), '(AE_CONFIGS)\n', (817, 829), False, 'from copy import deepcopy\n'), ((3320, 3338), 'backend.notify', 'notify', (['tests_done'], {}), '(tests_done)\n', (3326, 3338), False, 'from backend import K, AE_CONFIGS, BASEDIR, tempdir, notify, make_autoencoder\n'), ((1078, 1184), 'backend._init_session', '_init_session', (['C'], {'weights_path': 'weights_path', 'loadpath': 'loadpath', 'model': 'model', 'model_fn': 'make_autoencoder'}), '(C, weights_path=weights_path, loadpath=loadpath, model=model,\n model_fn=make_autoencoder)\n', (1091, 1184), False, 'from backend import _init_session, _do_test_load, _get_test_names\n'), ((1323, 1366), 'deeptrain.metrics._standardize', '_standardize', (['y_true', 'y_pred', 'sample_weight'], {}), '(y_true, y_pred, sample_weight)\n', (1335, 1366), False, 'from deeptrain.metrics import _standardize, _weighted_loss\n'), ((3364, 3384), 'copy.deepcopy', 'deepcopy', (['AE_CONFIGS'], {}), '(AE_CONFIGS)\n', (3372, 3384), False, 'from copy import deepcopy\n'), ((4193, 4222), 'pytest.main', 'pytest.main', (["[__file__, '-s']"], {}), "([__file__, '-s'])\n", (4204, 4222), False, 'import pytest\n'), ((225, 248), 'sys.path.index', 'sys.path.index', (['filedir'], {}), '(filedir)\n', (239, 248), False, 'import sys\n'), ((2973, 3011), 'numpy.random.randint', 'np.random.randint', (['(0)', '(w - self.size[0])'], {}), '(0, w - self.size[0])\n', (2990, 3011), True, 'import numpy as np\n'), ((3031, 3069), 'numpy.random.randint', 'np.random.randint', (['(0)', '(h - self.size[1])'], {}), '(0, h - self.size[1])\n', (3048, 3069), True, 'import numpy as np\n'), ((3830, 3864), 'backend.tempdir', 'tempdir', (["C['traingen']['logs_dir']"], {}), "(C['traingen']['logs_dir'])\n", (3837, 3864), False, 'from backend import K, AE_CONFIGS, BASEDIR, tempdir, notify, make_autoencoder\n'), ((3876, 3917), 'backend.tempdir', 'tempdir', (["C['traingen']['best_models_dir']"], {}), "(C['traingen']['best_models_dir'])\n", (3883, 3917), False, 'from backend import K, AE_CONFIGS, BASEDIR, tempdir, notify, make_autoencoder\n'), ((3975, 4009), 'backend._do_test_load', '_do_test_load', (['tg', 'C', 'init_session'], {}), '(tg, C, init_session)\n', (3988, 4009), False, 'from backend import _init_session, _do_test_load, _get_test_names\n'), ((1610, 1632), 'backend.K.abs', 'K.abs', (['(y_true - y_pred)'], {}), '(y_true - y_pred)\n', (1615, 1632), False, 'from backend import K, AE_CONFIGS, BASEDIR, tempdir, notify, make_autoencoder\n'), ((4133, 4158), 'backend._get_test_names', '_get_test_names', (['__name__'], {}), '(__name__)\n', (4148, 4158), False, 'from backend import _init_session, _do_test_load, _get_test_names\n'), ((1450, 1473), 'numpy.abs', 'np.abs', (['(y_true - y_pred)'], {}), '(y_true - y_pred)\n', (1456, 1473), True, 'import numpy as np\n')]
""" Main call. TODO: - parallize the mda processing portion? (dask) """ import numpy as np import matplotlib.pyplot as plt import MDAnalysis as mda from command_line import create_cmd_arguments, handle_command_line from calc_relax import Calc_19F_Relaxation from calc_fh_dists import Calc_FH_Dists from plot_relax import Plot_Relaxation # if python file is being used if __name__ == '__main__': # args_list to save time for now (TODO) magnet = 14.1 # Tesla (600 MHz of 1H+) tc = 8.2e-9 # 8.2ns for CypA, tc in sec """ Command line """ # Create command line arguments with argparse argument_parser = create_cmd_arguments() # Retrieve list of args args = handle_command_line(argument_parser) # TODO: hack for now, later put as seperate args? # CSA tensors for 4F-Trp if args.system == "w4f": sgm11 = 11.2 sgm22 = -48.3 sgm33 = -112.8 elif args.system == "w5f": sgm11 = 4.8 sgm22 = -60.5 sgm33 = -86.1 elif args.system == "w6f": sgm11 = 12.9 sgm22 = -51.2 sgm33 = -91.6 elif args.system == "w7f": sgm11 = 4.6 sgm22 = -48.3 sgm33 = -123.3 """ Load trajectory or pdb data and calc all F-H distances. # TODO: do for each frame, also test with water """ # TODO: for big trajectories, can't load in_memory, must stream it but this can be slow traj = mda.Universe(args.parm, args.crd, in_memory=True, in_memory_step=args.step_size) fh_dist_base = Calc_FH_Dists(traj, dist=3).run() """ For each distance value, calculate the R1 and R2 value. """ # TODO: update to ndarrays, maybe make into function, seperate script? # test speed and optimize # TODO: make this able to take multiple files and find stdev, maybe a seperate proc function # array of size frames x 3 columns (frame, avg R1, avg R2) # TODO: add stdev? r1_r2 = np.zeros(shape=(len(fh_dist_base.results[:,1:]), 3)) r1_r2[:, 0] = fh_dist_base.results[:,0] # Here: calling each calc class seperately and only sum the dd contributions, csa is not dependent # note this new implementation is alot slower... (compared to having just one calc_relax and averaging later) # but not sure, didn't test the difference for num, dists in enumerate(fh_dist_base.results[:,1:]): calc_relax = Calc_19F_Relaxation(tc, magnet, sgm11, sgm22, sgm33) r1_csa = calc_relax.calc_csa_r1() r2_csa = calc_relax.calc_csa_r2() # TODO: these are relatively small lists, may not need to change to ndarray # but if I do, then I need to cut out the NaN or zero values before the np.mean step r1_dd = 0 r2_dd = 0 for fh_dist in dists: if fh_dist == 0: continue # TODO: is there a better way to do this? # instantiate the calc_relax class and then call individual class methods calc_relax = Calc_19F_Relaxation(tc, magnet, sgm11, sgm22, sgm33, fh_dist) # sum each dd contribution r1_dd += calc_relax.calc_dd_r1() r2_dd += calc_relax.calc_dd_r2() # fill in col 1 (R1), col 2 (R2) r1_r2[num, 1] = r1_dd + r1_csa r1_r2[num, 2] = r2_dd + r2_csa # test seperate values print(r1_dd, r1_csa) print(r2_dd, r2_csa) """ Save the frame, avg and stdev R1 and R2 data as a tsv? """ if args.output_file is not None: np.savetxt(args.output_file, r1_r2, delimiter="\t") """ Plot the R1 and R2 data. """ # plt.plot(fh_dist_base.results[:,0], r1_r2[:,0]) # plt.plot(fh_dist_base.results[:,0], r1_r2[:,1]) plt.plot(r1_r2[:, 0], r1_r2[:, 1]) plt.plot(r1_r2[:, 0], r1_r2[:, 2]) print(f"R1-AVG={np.mean(r1_r2[:,1])}\nR2-AVG={np.mean(r1_r2[:,2])}") #plt.hlines(1.99, xmin=0, xmax=fh_dist_base.results[-1,0]) # R1 #plt.hlines(109.1, xmin=0, xmax=fh_dist_base.results[-1,0]) # R2 plt.show() # plotter class # plotter = Plot_Relaxation(r1_r2, "dist") # plotter.plot_r2() # plt.show()
[ "numpy.mean", "calc_fh_dists.Calc_FH_Dists", "calc_relax.Calc_19F_Relaxation", "command_line.handle_command_line", "matplotlib.pyplot.plot", "command_line.create_cmd_arguments", "numpy.savetxt", "MDAnalysis.Universe", "matplotlib.pyplot.show" ]
[((681, 703), 'command_line.create_cmd_arguments', 'create_cmd_arguments', ([], {}), '()\n', (701, 703), False, 'from command_line import create_cmd_arguments, handle_command_line\n'), ((743, 779), 'command_line.handle_command_line', 'handle_command_line', (['argument_parser'], {}), '(argument_parser)\n', (762, 779), False, 'from command_line import create_cmd_arguments, handle_command_line\n'), ((1482, 1567), 'MDAnalysis.Universe', 'mda.Universe', (['args.parm', 'args.crd'], {'in_memory': '(True)', 'in_memory_step': 'args.step_size'}), '(args.parm, args.crd, in_memory=True, in_memory_step=args.step_size\n )\n', (1494, 1567), True, 'import MDAnalysis as mda\n'), ((3759, 3793), 'matplotlib.pyplot.plot', 'plt.plot', (['r1_r2[:, 0]', 'r1_r2[:, 1]'], {}), '(r1_r2[:, 0], r1_r2[:, 1])\n', (3767, 3793), True, 'import matplotlib.pyplot as plt\n'), ((3798, 3832), 'matplotlib.pyplot.plot', 'plt.plot', (['r1_r2[:, 0]', 'r1_r2[:, 2]'], {}), '(r1_r2[:, 0], r1_r2[:, 2])\n', (3806, 3832), True, 'import matplotlib.pyplot as plt\n'), ((4052, 4062), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4060, 4062), True, 'import matplotlib.pyplot as plt\n'), ((2444, 2496), 'calc_relax.Calc_19F_Relaxation', 'Calc_19F_Relaxation', (['tc', 'magnet', 'sgm11', 'sgm22', 'sgm33'], {}), '(tc, magnet, sgm11, sgm22, sgm33)\n', (2463, 2496), False, 'from calc_relax import Calc_19F_Relaxation\n'), ((3549, 3600), 'numpy.savetxt', 'np.savetxt', (['args.output_file', 'r1_r2'], {'delimiter': '"""\t"""'}), "(args.output_file, r1_r2, delimiter='\\t')\n", (3559, 3600), True, 'import numpy as np\n'), ((1582, 1609), 'calc_fh_dists.Calc_FH_Dists', 'Calc_FH_Dists', (['traj'], {'dist': '(3)'}), '(traj, dist=3)\n', (1595, 1609), False, 'from calc_fh_dists import Calc_FH_Dists\n'), ((3035, 3096), 'calc_relax.Calc_19F_Relaxation', 'Calc_19F_Relaxation', (['tc', 'magnet', 'sgm11', 'sgm22', 'sgm33', 'fh_dist'], {}), '(tc, magnet, sgm11, sgm22, sgm33, fh_dist)\n', (3054, 3096), False, 'from calc_relax import Calc_19F_Relaxation\n'), ((3853, 3873), 'numpy.mean', 'np.mean', (['r1_r2[:, 1]'], {}), '(r1_r2[:, 1])\n', (3860, 3873), True, 'import numpy as np\n'), ((3883, 3903), 'numpy.mean', 'np.mean', (['r1_r2[:, 2]'], {}), '(r1_r2[:, 2])\n', (3890, 3903), True, 'import numpy as np\n')]
import numpy as np class BoundBox: """ Adopted from https://github.com/thtrieu/darkflow/blob/master/darkflow/utils/box.py """ def __init__(self, obj_prob, probs=None, box_coord=[float() for i in range(4)]): self.x, self.y = float(box_coord[0]), float(box_coord[1]) self.w, self.h = float(box_coord[2]), float(box_coord[3]) self.c = 0. self.obj_prob = obj_prob self.class_probs = None if probs is None else np.array(probs) def get_score(self): return max(self.class_probs) def get_classindex(self): return np.argmax(self.class_probs) # class_index = np.argmax(box.classes) def get_coordinates(self): return self.x, self.y, self.w, self.h def overlap(x1, w1, x2, w2): l1 = x1 - w1 / 2. l2 = x2 - w2 / 2. left = max(l1, l2) r1 = x1 + w1 / 2. r2 = x2 + w2 / 2. right = min(r1, r2) return right - left def box_intersection(a, b): w = overlap(a.x, a.w, b.x, b.w) h = overlap(a.y, a.h, b.y, b.h) if w < 0 or h < 0: return 0; area = w * h return area def box_union(a, b): i = box_intersection(a, b) u = a.w * a.h + b.w * b.h - i return u def box_iou(a, b): # Box intersect over union. return box_intersection(a, b) / box_union(a, b) def prob_compare(box): return box.probs[box.class_num] def prob_compare2(boxa, boxb): if (boxa.pi < boxb.pi): return 1 elif (boxa.pi == boxb.pi): return 0 else: return -1
[ "numpy.array", "numpy.argmax" ]
[((594, 621), 'numpy.argmax', 'np.argmax', (['self.class_probs'], {}), '(self.class_probs)\n', (603, 621), True, 'import numpy as np\n'), ((469, 484), 'numpy.array', 'np.array', (['probs'], {}), '(probs)\n', (477, 484), True, 'import numpy as np\n')]
import pandas as pd import numpy as np import click import os PRIORITY = ('Read-through', 'Protein coding', 'Pseudogene', 'TUCP', 'lncrna', 'lncRNA', 'other', 'ncRNA,other') type_map = { 'other': 'lncRNA', 'ncRNA,other': 'lncRNA', 'lncrna': 'lncRNA', 'protein_coding': 'Protein coding', 'pseudogene': 'Pseudogene', 'read_through': 'Read-through' } @click.command() @click.option( '-m', '--meta_table', type=click.Path(exists=True, dir_okay=False), help='taco compare metadata', required=True, ) @click.option( '-t', '--tucp', type=click.Path(exists=True, dir_okay=False), help='tucp transcripts.', required=True, ) @click.option( '-o', '--out_dir', type=click.Path(file_okay=False), help='gene classify/summary directory based on \ taco compare result and feelnc classify.', required=True ) @click.option( '-n', '--name', type=click.STRING, help='Summary table name', default=None ) def main(meta_table, tucp, out_dir, name): meta_table_df = pd.read_table(meta_table, index_col=0) tucp_df = pd.read_table(tucp, header=None, index_col=0) tucp_series = tucp_df.index.intersection(meta_table_df.index) # label TUCP meta_table_df.loc[tucp_series, 'category'] = 'TUCP' # label read_through mask = meta_table_df.category_relative_detail == 'read_through' meta_table_df.loc[mask, 'category'] = 'read_through' # filter out intronic transcripts meta_table_df = meta_table_df[meta_table_df.category_relative_detail != 'intronic_same_strand'] # rename gene type to analysis name meta_table_df.loc[:, 'category'].replace(type_map, inplace=True) # function to summarize transcript/gene type def type_summary(type_df, col_name): type_df.columns = ['category', 'novel_status'] type_summary = type_df.groupby( ['category', 'novel_status']).size() type_summary.name = col_name type_summary = pd.DataFrame(type_summary) f_sum = type_summary.unstack('novel_status', fill_value=0) f_sum.loc[:, (col_name, 'Total')] = ( f_sum.loc[:, (col_name, 'Annotated')] + f_sum.loc[:, (col_name, 'Unannotated')]) return f_sum # annotation status according to exonic_overlap meta_table_df.loc[:, 'novel_status'] = np.where( meta_table_df.category_relative == 'exonic_overlap', 'Annotated', 'Unannotated') meta_table_df = meta_table_df.reset_index() tr_sum = type_summary(meta_table_df.loc[:, ['category', 'novel_status']], 'Transcript') meta_table_df.loc[:, 'new_gene_id'] = meta_table_df.novel_status + \ '.' + meta_table_df.gene_id tr_type_df = meta_table_df.loc[:, ['transcript_id', 'new_gene_id', 'category']] meta_table_type_df = meta_table_df.loc[:, [ 'new_gene_id', 'category', 'novel_status']] meta_table_type_df.columns = ['gene_id', 'category', 'novel_status'] gene_type_map = meta_table_type_df.groupby( ['gene_id', 'novel_status'])['category'].unique() meta_table_df = meta_table_df.reset_index() gene_name_df = meta_table_df.loc[:, ['new_gene_id', 'category_relative', 'ref_gene_id', 'ref_gene_name']] gene_name_df.columns = [ 'gene_id', 'category_relative', 'ref_gene_id', 'ref_gene_name'] gene_name_df = gene_name_df[gene_name_df.category_relative == 'exonic_overlap'] gene_name_df = gene_name_df.loc[:, [ 'gene_id', 'ref_gene_id', 'ref_gene_name']].drop_duplicates() def get_type(type_list): for each_type in PRIORITY: if each_type in type_list: return type_map.get(each_type, each_type) gene_type_list = map(get_type, gene_type_map) gene_type_df = pd.DataFrame( gene_type_list, index=gene_type_map.index, columns=['type']) gene_type_df = gene_type_df.reset_index().set_index('gene_id') read_through_genes = gene_type_df[gene_type_df.type == "Read-through"].index gene_name_df = gene_name_df[~gene_name_df.gene_id.isin(read_through_genes)] gene_name_df = gene_name_df.set_index('gene_id') read_through_sup = gene_name_df[ gene_name_df.index.value_counts() > 1].index.unique() gene_type_df.loc[read_through_sup, 'type'] = 'Read-through' g_sum = type_summary(gene_type_df.loc[:, ['type', 'novel_status']], 'Gene') type_stats = pd.concat([tr_sum, g_sum], axis=1) type_stats.index.name = 'Category' summary_file = os.path.join(out_dir, 'assembly.number.summary.txt') classify_file = os.path.join(out_dir, 'gene.classify.txt') tr_classify_file = os.path.join(out_dir, 'tr.classify.txt') name_file = os.path.join(out_dir, 'gene.name.txt') if name is not None: type_stats.loc[:, ('', 'Name')] = name output_header = False else: output_header = True gene_type_df = gene_type_df.drop('novel_status', axis=1) type_stats.to_csv(summary_file, sep='\t', header=output_header) gene_type_df.to_csv(classify_file, sep='\t') tr_type_df.to_csv(tr_classify_file, sep='\t', index=False) gene_name_df = gene_name_df[gene_name_df.index.value_counts() == 1] gene_name_df.to_csv(name_file, sep='\t') if __name__ == '__main__': main()
[ "click.option", "numpy.where", "os.path.join", "click.Path", "pandas.read_table", "pandas.DataFrame", "click.command", "pandas.concat" ]
[((390, 405), 'click.command', 'click.command', ([], {}), '()\n', (403, 405), False, 'import click\n'), ((897, 989), 'click.option', 'click.option', (['"""-n"""', '"""--name"""'], {'type': 'click.STRING', 'help': '"""Summary table name"""', 'default': 'None'}), "('-n', '--name', type=click.STRING, help='Summary table name',\n default=None)\n", (909, 989), False, 'import click\n'), ((1071, 1109), 'pandas.read_table', 'pd.read_table', (['meta_table'], {'index_col': '(0)'}), '(meta_table, index_col=0)\n', (1084, 1109), True, 'import pandas as pd\n'), ((1124, 1169), 'pandas.read_table', 'pd.read_table', (['tucp'], {'header': 'None', 'index_col': '(0)'}), '(tucp, header=None, index_col=0)\n', (1137, 1169), True, 'import pandas as pd\n'), ((2397, 2490), 'numpy.where', 'np.where', (["(meta_table_df.category_relative == 'exonic_overlap')", '"""Annotated"""', '"""Unannotated"""'], {}), "(meta_table_df.category_relative == 'exonic_overlap', 'Annotated',\n 'Unannotated')\n", (2405, 2490), True, 'import numpy as np\n'), ((3983, 4056), 'pandas.DataFrame', 'pd.DataFrame', (['gene_type_list'], {'index': 'gene_type_map.index', 'columns': "['type']"}), "(gene_type_list, index=gene_type_map.index, columns=['type'])\n", (3995, 4056), True, 'import pandas as pd\n'), ((4670, 4704), 'pandas.concat', 'pd.concat', (['[tr_sum, g_sum]'], {'axis': '(1)'}), '([tr_sum, g_sum], axis=1)\n', (4679, 4704), True, 'import pandas as pd\n'), ((4763, 4815), 'os.path.join', 'os.path.join', (['out_dir', '"""assembly.number.summary.txt"""'], {}), "(out_dir, 'assembly.number.summary.txt')\n", (4775, 4815), False, 'import os\n'), ((4836, 4878), 'os.path.join', 'os.path.join', (['out_dir', '"""gene.classify.txt"""'], {}), "(out_dir, 'gene.classify.txt')\n", (4848, 4878), False, 'import os\n'), ((4902, 4942), 'os.path.join', 'os.path.join', (['out_dir', '"""tr.classify.txt"""'], {}), "(out_dir, 'tr.classify.txt')\n", (4914, 4942), False, 'import os\n'), ((4959, 4997), 'os.path.join', 'os.path.join', (['out_dir', '"""gene.name.txt"""'], {}), "(out_dir, 'gene.name.txt')\n", (4971, 4997), False, 'import os\n'), ((2035, 2061), 'pandas.DataFrame', 'pd.DataFrame', (['type_summary'], {}), '(type_summary)\n', (2047, 2061), True, 'import pandas as pd\n'), ((460, 499), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'dir_okay': '(False)'}), '(exists=True, dir_okay=False)\n', (470, 499), False, 'import click\n'), ((604, 643), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'dir_okay': '(False)'}), '(exists=True, dir_okay=False)\n', (614, 643), False, 'import click\n'), ((747, 774), 'click.Path', 'click.Path', ([], {'file_okay': '(False)'}), '(file_okay=False)\n', (757, 774), False, 'import click\n')]
#!/usr/bin/env python """Module for global fitting titrations (pH and cl) on 2 datasets """ import os import sys import argparse import numpy as np from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit import pandas as pd import matplotlib.pyplot as plt # from scipy import optimize def ci_report(ci): """return text of a report for confidence intervals""" maxlen = max([len(i) for i in ci]) buff = [] add = buff.append convp = lambda x: ("%.2f" % (x[0]*100))+'%' # I modified "%.5f" conv = lambda x: "%.6G" % x[1] title_shown = False for name, row in ci.items(): if not title_shown: add("".join([''.rjust(maxlen)] + [i.rjust(10) for i in map(convp, row)])) title_shown = True add("".join([name.rjust(maxlen)] + [i.rjust(10) for i in map(conv, row)])) return '\n'.join(buff) def residual(pars, x, data=None, titration_type=None): """residual function for lmfit Parameters ---------- pars: lmfit Parameters() x : list of x vectors data : list of y vectors Return ------ a vector for the residues (yfit - data) or the fitted values """ vals = pars.valuesdict() SA1 = vals['SA1'] SB1 = vals['SB1'] K = vals['K'] SA2 = vals['SA2'] SB2 = vals['SB2'] if titration_type == 'pH': model1 = (SB1 + SA1 * 10 ** (K - x[0])) / (1 + 10 ** (K - x[0])) model2 = (SB2 + SA2 * 10 ** (K - x[1])) / (1 + 10 ** (K - x[1])) elif titration_type == 'cl': model1 = (SA1 + SB1 * x[0] / K) / (1 + x[0] / K) model2 = (SA2 + SB2 * x[1] / K) / (1 + x[1] / K) else: print('Error: residual call must indicate a titration type') sys.exit() if data is None: return np.r_[model1, model2] return np.r_[model1 - data[0], model2 - data[1]] def main(): description = "Fit a pH or Cl titration file: x y1 y2" parser = argparse.ArgumentParser(description=description) parser.add_argument('file', help='the file <x y1 y2> without heads') parser.add_argument('out_folder', help='The folder to output the .txt and .png files') parser.add_argument('-t', '--titration-of', dest='titration_type', action="store", default="pH", choices=["pH", "cl"], help='Type of titration, pH or cl') parser.add_argument('-v', '--verbose', action='store_true', help='Printout runtime information.increase verbosity') parser.add_argument('--boot', dest='nboot', type=int, help='bootstraping using <n> iterations') args = parser.parse_args() ttype = args.titration_type #df = pd.read_csv(args.file, sep=' ', names=['x', 'y1', 'y2']) df = pd.read_csv(args.file) if not os.path.isdir(args.out_folder): os.makedirs(args.out_folder) fit_params = Parameters() fit_params.add('SA1', value=df.y1[df.x == min(df.x)].values[0], min=0) fit_params.add('SB1', value=df.y1[df.x == max(df.x)].values[0], min=0) fit_params.add('SA2', value=df.y2[df.x == min(df.x)].values[0], min=0) fit_params.add('SB2', value=df.y2[df.x == max(df.x)].values[0], min=0) if args.titration_type == "pH": fit_params.add('K', value=7, min=4, max=10) elif args.titration_type == "cl": fit_params.add('K', value=20, min=0, max=1000) mini = Minimizer(residual, fit_params, fcn_args=([df.x, df.x],), fcn_kws={'data': [df.y1, df.y2], 'titration_type': ttype}) res = mini.minimize() report_fit(fit_params) ci = conf_interval(mini, res, sigmas=[.674, .95]) print(ci_report(ci)) # plotting xfit = np.linspace(df.x.min(), df.x.max(), 100) yfit = residual(fit_params, [xfit, xfit], titration_type=ttype) # kws={} yfit = yfit.reshape(2, len(yfit) // 2) plt.plot(df.x, df.y1, 'o', df.x, df.y2, 's', xfit, yfit[0], '-', xfit, yfit[1], '-') plt.grid(True) f_out = os.path.join(args.out_folder, os.path.split(args.file)[1]) plt.savefig(f_out + ".png") if args.nboot: bootstrap(df, args.nboot, fit_params, f_out, ttype) def bootstrap(df, nboot, fit_params, f_out, ttype): """Perform bootstrap to estimate parameters variance Parameters ---------- df : DataFrame nboot : int fit_params: lmfit.fit_params f_out : string Output ------ print results plot """ import seaborn as sns n_points = len(df) kds = [] sa1 = [] sb1 = [] sa2 = [] sb2 = [] for i in range(nboot): boot_idxs = np.random.randint(0, n_points-1, n_points) df2 = df.loc[boot_idxs] df2.reset_index(drop=True, inplace=True) boot_idxs = np.random.randint(0, n_points-1, n_points) df3 = df.loc[boot_idxs] df3.reset_index(drop=True, inplace=True) try: res = minimize(residual, fit_params, args=([df2.x, df3.x],), kws={'data': [df2.y1, df3.y2], 'titration_type': ttype}) kds.append(res.params['K'].value) sa1.append(res.params['SA1'].value) sb1.append(res.params['SB1'].value) sa2.append(res.params['SA2'].value) sb2.append(res.params['SB2'].value) except: print(df2) print(df3) dff = pd.DataFrame({'K': kds, 'SA1': sa1, 'SB1': sb1, 'SA2': sa2, 'SB2': sb2}) print("bootstrap: ", round(dff.K.quantile(.025), 3), round(dff.K.quantile(.163), 3), round(dff.K.median(), 3), round(dff.K.quantile(.837), 3), round(dff.K.quantile(.975), 3)) sns.set_style('darkgrid') g = sns.PairGrid(dff) # g.map_diag(sns.kdeplot, lw=3) g.map_diag(plt.hist, alpha=0.4) g.map_upper(plt.scatter, s=9, alpha=0.6) g.map_lower(sns.kdeplot, cmap="Blues_d") plt.savefig(f_out + "-bs" + ".png") if __name__ == '__main__': main()
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "lmfit.Minimizer", "argparse.ArgumentParser", "pandas.read_csv", "lmfit.conf_interval", "os.makedirs", "matplotlib.pyplot.plot", "os.path.split", "seaborn.set_style", "numpy.random.randint", "os.path.isdir", "lmfit.report_fit", "sys.exit", "pandas.DataFrame", "seaborn.PairGrid", "lmfit.Parameters", "lmfit.minimize" ]
[((1986, 2034), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'description'}), '(description=description)\n', (2009, 2034), False, 'import argparse\n'), ((2861, 2883), 'pandas.read_csv', 'pd.read_csv', (['args.file'], {}), '(args.file)\n', (2872, 2883), True, 'import pandas as pd\n'), ((2981, 2993), 'lmfit.Parameters', 'Parameters', ([], {}), '()\n', (2991, 2993), False, 'from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit\n'), ((3486, 3606), 'lmfit.Minimizer', 'Minimizer', (['residual', 'fit_params'], {'fcn_args': '([df.x, df.x],)', 'fcn_kws': "{'data': [df.y1, df.y2], 'titration_type': ttype}"}), "(residual, fit_params, fcn_args=([df.x, df.x],), fcn_kws={'data':\n [df.y1, df.y2], 'titration_type': ttype})\n", (3495, 3606), False, 'from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit\n'), ((3652, 3674), 'lmfit.report_fit', 'report_fit', (['fit_params'], {}), '(fit_params)\n', (3662, 3674), False, 'from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit\n'), ((3684, 3730), 'lmfit.conf_interval', 'conf_interval', (['mini', 'res'], {'sigmas': '[0.674, 0.95]'}), '(mini, res, sigmas=[0.674, 0.95])\n', (3697, 3730), False, 'from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit\n'), ((3947, 4036), 'matplotlib.pyplot.plot', 'plt.plot', (['df.x', 'df.y1', '"""o"""', 'df.x', 'df.y2', '"""s"""', 'xfit', 'yfit[0]', '"""-"""', 'xfit', 'yfit[1]', '"""-"""'], {}), "(df.x, df.y1, 'o', df.x, df.y2, 's', xfit, yfit[0], '-', xfit, yfit\n [1], '-')\n", (3955, 4036), True, 'import matplotlib.pyplot as plt\n'), ((4049, 4063), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (4057, 4063), True, 'import matplotlib.pyplot as plt\n'), ((4139, 4166), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(f_out + '.png')"], {}), "(f_out + '.png')\n", (4150, 4166), True, 'import matplotlib.pyplot as plt\n'), ((5436, 5508), 'pandas.DataFrame', 'pd.DataFrame', (["{'K': kds, 'SA1': sa1, 'SB1': sb1, 'SA2': sa2, 'SB2': sb2}"], {}), "({'K': kds, 'SA1': sa1, 'SB1': sb1, 'SA2': sa2, 'SB2': sb2})\n", (5448, 5508), True, 'import pandas as pd\n'), ((5766, 5791), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (5779, 5791), True, 'import seaborn as sns\n'), ((5800, 5817), 'seaborn.PairGrid', 'sns.PairGrid', (['dff'], {}), '(dff)\n', (5812, 5817), True, 'import seaborn as sns\n'), ((5984, 6019), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(f_out + '-bs' + '.png')"], {}), "(f_out + '-bs' + '.png')\n", (5995, 6019), True, 'import matplotlib.pyplot as plt\n'), ((2895, 2925), 'os.path.isdir', 'os.path.isdir', (['args.out_folder'], {}), '(args.out_folder)\n', (2908, 2925), False, 'import os\n'), ((2935, 2963), 'os.makedirs', 'os.makedirs', (['args.out_folder'], {}), '(args.out_folder)\n', (2946, 2963), False, 'import os\n'), ((4693, 4737), 'numpy.random.randint', 'np.random.randint', (['(0)', '(n_points - 1)', 'n_points'], {}), '(0, n_points - 1, n_points)\n', (4710, 4737), True, 'import numpy as np\n'), ((4837, 4881), 'numpy.random.randint', 'np.random.randint', (['(0)', '(n_points - 1)', 'n_points'], {}), '(0, n_points - 1, n_points)\n', (4854, 4881), True, 'import numpy as np\n'), ((1778, 1788), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1786, 1788), False, 'import sys\n'), ((4106, 4130), 'os.path.split', 'os.path.split', (['args.file'], {}), '(args.file)\n', (4119, 4130), False, 'import os\n'), ((4992, 5107), 'lmfit.minimize', 'minimize', (['residual', 'fit_params'], {'args': '([df2.x, df3.x],)', 'kws': "{'data': [df2.y1, df3.y2], 'titration_type': ttype}"}), "(residual, fit_params, args=([df2.x, df3.x],), kws={'data': [df2.y1,\n df3.y2], 'titration_type': ttype})\n", (5000, 5107), False, 'from lmfit import Parameters, Minimizer, minimize, conf_interval, report_fit\n')]
#!/usr/bin/env python from __future__ import division import numpy as np from lfd.environment.simulation import DynamicSimulationRobotWorld from lfd.environment.simulation_object import XmlSimulationObject, BoxSimulationObject from lfd.environment import environment from lfd.environment import sim_util from lfd.demonstration.demonstration import Demonstration from lfd.registration.registration import TpsRpmRegistrationFactory from lfd.registration.plotting_openrave import registration_plot_cb from lfd.transfer.transfer import FingerTrajectoryTransferer from lfd.transfer.registration_transfer import TwoStepRegistrationAndTrajectoryTransferer from move_rope import create_augmented_traj, create_rope def create_rope_demo(env, rope_poss): rope_sim_obj = create_rope(rope_poss) env.sim.add_objects([rope_sim_obj]) env.sim.settle() scene_state = env.observe_scene() env.sim.remove_objects([rope_sim_obj]) pick_pos = rope_poss[0] + .1 * (rope_poss[1] - rope_poss[0]) drop_pos = rope_poss[3] + .1 * (rope_poss[2] - rope_poss[3]) + np.r_[0, .2, 0] pick_R = np.array([[0, 0, 1], [0, 1, 0], [-1, 0, 0]]) drop_R = np.array([[0, 1, 0], [0, 0, -1], [-1, 0, 0]]) move_height = .2 aug_traj = create_augmented_traj(env.sim.robot, pick_pos, drop_pos, pick_R, drop_R, move_height) demo = Demonstration("rope_demo", scene_state, aug_traj) return demo def main(): # define simulation objects table_height = 0.77 sim_objs = [] sim_objs.append(XmlSimulationObject("robots/pr2-beta-static.zae", dynamic=False)) sim_objs.append(BoxSimulationObject("table", [1, 0, table_height-.1], [.85, .85, .1], dynamic=False)) # initialize simulation world and environment sim = DynamicSimulationRobotWorld() sim.add_objects(sim_objs) sim.create_viewer() sim.robot.SetDOFValues([0.25], [sim.robot.GetJoint('torso_lift_joint').GetJointIndex()]) sim.robot.SetDOFValues([1.25], [sim.robot.GetJoint('head_tilt_joint').GetJointIndex()]) # move head down so it can see the rope sim_util.reset_arms_to_side(sim) env = environment.LfdEnvironment(sim, sim, downsample_size=0.025) demo_rope_poss = np.array([[.2, -.2, table_height+0.006], [.8, -.2, table_height+0.006], [.8, .2, table_height+0.006], [.2, .2, table_height+0.006]]) demo = create_rope_demo(env, demo_rope_poss) test_rope_poss = np.array([[.2, -.2, table_height+0.006], [.5, -.4, table_height+0.006], [.8, .0, table_height+0.006], [.8, .2, table_height+0.006], [.6, .0, table_height+0.006], [.4, .2, table_height+0.006], [.2, .2, table_height+0.006]]) test_rope_sim_obj = create_rope(test_rope_poss) sim.add_objects([test_rope_sim_obj]) sim.settle() test_scene_state = env.observe_scene() reg_factory = TpsRpmRegistrationFactory() traj_transferer = FingerTrajectoryTransferer(sim) plot_cb = lambda i, i_em, x_nd, y_md, xtarg_nd, wt_n, f, corr_nm, rad: registration_plot_cb(sim, x_nd, y_md, f) reg_and_traj_transferer = TwoStepRegistrationAndTrajectoryTransferer(reg_factory, traj_transferer) test_aug_traj = reg_and_traj_transferer.transfer(demo, test_scene_state, callback=plot_cb, plotting=True) env.execute_augmented_trajectory(test_aug_traj) if __name__ == '__main__': main()
[ "move_rope.create_rope", "lfd.environment.environment.LfdEnvironment", "move_rope.create_augmented_traj", "lfd.transfer.registration_transfer.TwoStepRegistrationAndTrajectoryTransferer", "lfd.environment.sim_util.reset_arms_to_side", "lfd.registration.registration.TpsRpmRegistrationFactory", "lfd.environment.simulation_object.XmlSimulationObject", "numpy.array", "lfd.demonstration.demonstration.Demonstration", "lfd.environment.simulation.DynamicSimulationRobotWorld", "lfd.environment.simulation_object.BoxSimulationObject", "lfd.registration.plotting_openrave.registration_plot_cb", "lfd.transfer.transfer.FingerTrajectoryTransferer" ]
[((767, 789), 'move_rope.create_rope', 'create_rope', (['rope_poss'], {}), '(rope_poss)\n', (778, 789), False, 'from move_rope import create_augmented_traj, create_rope\n'), ((1098, 1142), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 1, 0], [-1, 0, 0]]'], {}), '([[0, 0, 1], [0, 1, 0], [-1, 0, 0]])\n', (1106, 1142), True, 'import numpy as np\n'), ((1156, 1201), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, -1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, -1], [-1, 0, 0]])\n', (1164, 1201), True, 'import numpy as np\n'), ((1238, 1327), 'move_rope.create_augmented_traj', 'create_augmented_traj', (['env.sim.robot', 'pick_pos', 'drop_pos', 'pick_R', 'drop_R', 'move_height'], {}), '(env.sim.robot, pick_pos, drop_pos, pick_R, drop_R,\n move_height)\n', (1259, 1327), False, 'from move_rope import create_augmented_traj, create_rope\n'), ((1340, 1389), 'lfd.demonstration.demonstration.Demonstration', 'Demonstration', (['"""rope_demo"""', 'scene_state', 'aug_traj'], {}), "('rope_demo', scene_state, aug_traj)\n", (1353, 1389), False, 'from lfd.demonstration.demonstration import Demonstration\n'), ((1750, 1779), 'lfd.environment.simulation.DynamicSimulationRobotWorld', 'DynamicSimulationRobotWorld', ([], {}), '()\n', (1777, 1779), False, 'from lfd.environment.simulation import DynamicSimulationRobotWorld\n'), ((2068, 2100), 'lfd.environment.sim_util.reset_arms_to_side', 'sim_util.reset_arms_to_side', (['sim'], {}), '(sim)\n', (2095, 2100), False, 'from lfd.environment import sim_util\n'), ((2116, 2175), 'lfd.environment.environment.LfdEnvironment', 'environment.LfdEnvironment', (['sim', 'sim'], {'downsample_size': '(0.025)'}), '(sim, sim, downsample_size=0.025)\n', (2142, 2175), False, 'from lfd.environment import environment\n'), ((2202, 2360), 'numpy.array', 'np.array', (['[[0.2, -0.2, table_height + 0.006], [0.8, -0.2, table_height + 0.006], [0.8,\n 0.2, table_height + 0.006], [0.2, 0.2, table_height + 0.006]]'], {}), '([[0.2, -0.2, table_height + 0.006], [0.8, -0.2, table_height + \n 0.006], [0.8, 0.2, table_height + 0.006], [0.2, 0.2, table_height + 0.006]]\n )\n', (2210, 2360), True, 'import numpy as np\n'), ((2508, 2773), 'numpy.array', 'np.array', (['[[0.2, -0.2, table_height + 0.006], [0.5, -0.4, table_height + 0.006], [0.8,\n 0.0, table_height + 0.006], [0.8, 0.2, table_height + 0.006], [0.6, 0.0,\n table_height + 0.006], [0.4, 0.2, table_height + 0.006], [0.2, 0.2, \n table_height + 0.006]]'], {}), '([[0.2, -0.2, table_height + 0.006], [0.5, -0.4, table_height + \n 0.006], [0.8, 0.0, table_height + 0.006], [0.8, 0.2, table_height + \n 0.006], [0.6, 0.0, table_height + 0.006], [0.4, 0.2, table_height + \n 0.006], [0.2, 0.2, table_height + 0.006]])\n', (2516, 2773), True, 'import numpy as np\n'), ((2952, 2979), 'move_rope.create_rope', 'create_rope', (['test_rope_poss'], {}), '(test_rope_poss)\n', (2963, 2979), False, 'from move_rope import create_augmented_traj, create_rope\n'), ((3104, 3131), 'lfd.registration.registration.TpsRpmRegistrationFactory', 'TpsRpmRegistrationFactory', ([], {}), '()\n', (3129, 3131), False, 'from lfd.registration.registration import TpsRpmRegistrationFactory\n'), ((3154, 3185), 'lfd.transfer.transfer.FingerTrajectoryTransferer', 'FingerTrajectoryTransferer', (['sim'], {}), '(sim)\n', (3180, 3185), False, 'from lfd.transfer.transfer import FingerTrajectoryTransferer\n'), ((3337, 3409), 'lfd.transfer.registration_transfer.TwoStepRegistrationAndTrajectoryTransferer', 'TwoStepRegistrationAndTrajectoryTransferer', (['reg_factory', 'traj_transferer'], {}), '(reg_factory, traj_transferer)\n', (3379, 3409), False, 'from lfd.transfer.registration_transfer import TwoStepRegistrationAndTrajectoryTransferer\n'), ((1513, 1577), 'lfd.environment.simulation_object.XmlSimulationObject', 'XmlSimulationObject', (['"""robots/pr2-beta-static.zae"""'], {'dynamic': '(False)'}), "('robots/pr2-beta-static.zae', dynamic=False)\n", (1532, 1577), False, 'from lfd.environment.simulation_object import XmlSimulationObject, BoxSimulationObject\n'), ((1599, 1693), 'lfd.environment.simulation_object.BoxSimulationObject', 'BoxSimulationObject', (['"""table"""', '[1, 0, table_height - 0.1]', '[0.85, 0.85, 0.1]'], {'dynamic': '(False)'}), "('table', [1, 0, table_height - 0.1], [0.85, 0.85, 0.1],\n dynamic=False)\n", (1618, 1693), False, 'from lfd.environment.simulation_object import XmlSimulationObject, BoxSimulationObject\n'), ((3266, 3306), 'lfd.registration.plotting_openrave.registration_plot_cb', 'registration_plot_cb', (['sim', 'x_nd', 'y_md', 'f'], {}), '(sim, x_nd, y_md, f)\n', (3286, 3306), False, 'from lfd.registration.plotting_openrave import registration_plot_cb\n')]
import csv import os.path import random import numpy as np import scipy.io import torch import torchvision from torch.utils.data import Dataset # from .util import * from data.util import default_loader, read_img, augment, get_image_paths class PIPALFolder(Dataset): def __init__(self, root=None, index=None, transform=None, opt=None): if index is None: index = list(range(0, 200)) if opt is not None: self.opt = opt root = opt['datasets']['pipal'] patch_num = opt['patch_num'] else: patch_num = 32 refpath = os.path.join(root, 'Train_Ref') refname = self.getFileName(refpath, '.bmp') dispath = os.path.join(root, 'Train_Dis') txtpath = os.path.join(root, 'Train_Label') sample = [] for i, item in enumerate(index): ref = refname[item] # print(ref, end=' ') txtname = ref.split('.')[0] + '.txt' fh = open(os.path.join(txtpath, txtname), 'r') for line in fh: line = line.split('\n') words = line[0].split(',') for aug in range(patch_num): sample.append(( (os.path.join(dispath, words[0]), os.path.join(refpath, ref)), np.array(words[1]).astype(np.float32) / 1000.0 )) # print('') self.samples = sorted(sample) self.transform = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.patch_size = opt['patch_size'] # self.loader = default_loader def __getitem__(self, index): path, target = self.samples[index] '''img_dis = self.loader(path[0]) img_ref = self.loader(path[1])''' img_dis = read_img(env=None, path=path[0]) img_ref = read_img(env=None, path=path[1]) '''if self.transform is not None: img_dis = self.transform(img_dis) img_ref = self.transform(img_ref)''' if self.patch_size < 288: H, W, _ = img_ref.shape crop_size = self.patch_size rnd_h = random.randint(0, max(0, (H - crop_size))) rnd_w = random.randint(0, max(0, (W - crop_size))) img_dis = img_dis[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :] img_ref = img_ref[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :] # augmentation - flip, rotate img_dis, img_ref = augment([img_dis, img_ref], self.opt['use_flip'], rot=False) if img_ref.shape[2] == 3: img_ref = img_ref[:, :, [2, 1, 0]] img_dis = img_dis[:, :, [2, 1, 0]] img_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(img_ref, (2, 0, 1)))).float() img_dis = torch.from_numpy(np.ascontiguousarray(np.transpose(img_dis, (2, 0, 1)))).float() img_dis = self.transform(img_dis) img_ref = self.transform(img_ref) return {'Dis': img_dis, 'Ref': img_ref, 'Label': target} def __len__(self): length = len(self.samples) return length @staticmethod def getFileName(path, suffix): filename = [] f_list = os.listdir(path) # print f_list for i in f_list: if os.path.splitext(i)[1] == suffix: filename.append(i) filename.sort() return filename # TODO class IQATestDataset(Dataset): def __init__(self, opt): super(IQATestDataset, self).__init__() self.opt = opt self.paths_Dis = None self.paths_Ref = None refpath = os.path.join(root, 'Train_Ref') refname = self.getFileName(refpath, '.bmp') dispath = os.path.join(root, 'Train_Dis') txtpath = os.path.join(root, 'Train_Label') sample = [] for i, item in enumerate(index): ref = refname[item] # print(ref, end=' ') txtname = ref.split('.')[0] + '.txt' fh = open(os.path.join(txtpath, txtname), 'r') for line in fh: line = line.split('\n') words = line[0].split(',') sample.append(( (os.path.join(dispath, words[0]), os.path.join(refpath, ref)), np.array(words[1]).astype(np.float32) )) # print('') self.samples = sample self.transform = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def __getitem__(self, index): path, target = self.samples[index] img_dis = read_img(env=None, path=path[0]) img_ref = read_img(env=None, path=path[1]) '''H, W, _ = img_ref.shape crop_size = 224 rnd_h = random.randint(0, max(0, (H - crop_size) // 2)) rnd_w = random.randint(0, max(0, (W - crop_size) // 2)) img_dis = img_dis[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :] img_ref = img_ref[rnd_h:rnd_h + crop_size, rnd_w:rnd_w + crop_size, :] # augmentation - flip, rotate img_dis, img_ref = augment([img_dis, img_ref], self.opt['use_flip'], rot=False)''' if img_ref.shape[2] == 3: img_ref = img_ref[:, :, [2, 1, 0]] img_dis = img_dis[:, :, [2, 1, 0]] img_ref = torch.from_numpy(np.ascontiguousarray(np.transpose(img_ref, (2, 0, 1)))).float() img_dis = torch.from_numpy(np.ascontiguousarray(np.transpose(img_dis, (2, 0, 1)))).float() img_dis = self.transform(img_dis) img_ref = self.transform(img_ref) return {'Dis': img_dis, 'Ref': img_ref, 'Label': target, 'Dis_path': path[0]} def __len__(self): return len(self.samples) @staticmethod def getFileName(path, suffix): filename = [] f_list = os.listdir(path) # print f_list for i in f_list: if os.path.splitext(i)[1] == suffix: filename.append(i) filename.sort() return filename
[ "data.util.augment", "numpy.array", "torchvision.transforms.Normalize", "data.util.read_img", "numpy.transpose" ]
[((1538, 1630), 'torchvision.transforms.Normalize', 'torchvision.transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n', (1570, 1630), False, 'import torchvision\n'), ((1956, 1988), 'data.util.read_img', 'read_img', ([], {'env': 'None', 'path': 'path[0]'}), '(env=None, path=path[0])\n', (1964, 1988), False, 'from data.util import default_loader, read_img, augment, get_image_paths\n'), ((2008, 2040), 'data.util.read_img', 'read_img', ([], {'env': 'None', 'path': 'path[1]'}), '(env=None, path=path[1])\n', (2016, 2040), False, 'from data.util import default_loader, read_img, augment, get_image_paths\n'), ((2663, 2723), 'data.util.augment', 'augment', (['[img_dis, img_ref]', "self.opt['use_flip']"], {'rot': '(False)'}), "([img_dis, img_ref], self.opt['use_flip'], rot=False)\n", (2670, 2723), False, 'from data.util import default_loader, read_img, augment, get_image_paths\n'), ((4654, 4746), 'torchvision.transforms.Normalize', 'torchvision.transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, \n 0.224, 0.225])\n', (4686, 4746), False, 'import torchvision\n'), ((4903, 4935), 'data.util.read_img', 'read_img', ([], {'env': 'None', 'path': 'path[0]'}), '(env=None, path=path[0])\n', (4911, 4935), False, 'from data.util import default_loader, read_img, augment, get_image_paths\n'), ((4955, 4987), 'data.util.read_img', 'read_img', ([], {'env': 'None', 'path': 'path[1]'}), '(env=None, path=path[1])\n', (4963, 4987), False, 'from data.util import default_loader, read_img, augment, get_image_paths\n'), ((2916, 2948), 'numpy.transpose', 'np.transpose', (['img_ref', '(2, 0, 1)'], {}), '(img_ref, (2, 0, 1))\n', (2928, 2948), True, 'import numpy as np\n'), ((3016, 3048), 'numpy.transpose', 'np.transpose', (['img_dis', '(2, 0, 1)'], {}), '(img_dis, (2, 0, 1))\n', (3028, 3048), True, 'import numpy as np\n'), ((5666, 5698), 'numpy.transpose', 'np.transpose', (['img_ref', '(2, 0, 1)'], {}), '(img_ref, (2, 0, 1))\n', (5678, 5698), True, 'import numpy as np\n'), ((5766, 5798), 'numpy.transpose', 'np.transpose', (['img_dis', '(2, 0, 1)'], {}), '(img_dis, (2, 0, 1))\n', (5778, 5798), True, 'import numpy as np\n'), ((4516, 4534), 'numpy.array', 'np.array', (['words[1]'], {}), '(words[1])\n', (4524, 4534), True, 'import numpy as np\n'), ((1379, 1397), 'numpy.array', 'np.array', (['words[1]'], {}), '(words[1])\n', (1387, 1397), True, 'import numpy as np\n')]
import pytest import numpy as np import pandas as pd from SPARTACUS10 import spatial_silhouette as spasi import sklearn.metrics as metrics import os def find_path(name, path = None): if path is None: path = os.getcwd() for root, dirs, files in os.walk(path): if name in files: return os.path.join(root, name) def test_silhouette(): """ Does silhouette_coefficient() function produce the same results as silhouette_score() function from sklearn.metrics using Euclidean metric? """ # Test on matrixA X = np.genfromtxt(find_path("matrixA.csv"), delimiter=",", skip_header=1, usecols = range(1,21)) V = X.shape[1] for i in range(3, 11): labels = np.random.randint(1, i+1, V) sil_score1 = spasi.silhouette_coefficient(X, labels, metric = "euclidean", iter_max = 10) sil_score2 = metrics.silhouette_score(X.T, labels, metric = "euclidean") assert np.round(sil_score1,10) == np.round(sil_score2, 10), "Silhouette function (Euclidean) produces different results than that implemented in scikit-learn" # Test on random data comparison with existing function V = 100 X = np.random.normal(size = (10, V)) for i in range(3, 11): labels = np.random.randint(1, i+1, V) sil_score1 = spasi.silhouette_coefficient(X, labels, metric = "euclidean", iter_max = 10) sil_score2 = metrics.silhouette_score(X.T, labels, metric = "euclidean") assert np.round(sil_score1,10) == np.round(sil_score2, 10), "Silhouette function (Euclidean) produces different results than that implemented in scikit-learn" # Test on random data random_data = np.genfromtxt(find_path("random_data.csv"), delimiter=",") random_labels = np.genfromtxt(find_path("random_labels.csv"), delimiter=",") silhouette_score_Eucl = spasi.silhouette_coefficient(random_data, random_labels, metric = "euclidean") assert np.isclose(silhouette_score_Eucl, -0.018137954346288798), "Error in Euclidean silhouette_coefficient function" silhouette_score_corr = spasi.silhouette_coefficient(random_data, random_labels, metric = "correlation") assert np.isclose(silhouette_score_corr, -0.01710701512585803), "Error in correlation silhouette_coefficient function" def test_ensemble_silhouette(): X = np.array([[1,1,2,2,3,3,4,4], [1,1,2,2,3,3,4,4], [1,1,2,2,3,3,4,4], [1,1,2,2,5,5,6,6], [1,1,1,2,3,3,3,4], [1,1,1,2,3,3,3,4]]) labels = [1,1,2,2,3,3,4,4] assert spasi.silhouette_coefficient(X[0:4,], labels, metric = "jaccard", iter_max = 4) == 1, "Ensemble silhouette produces wrong results" sil_score1 = spasi.silhouette_coefficient(X, labels, metric = "jaccard", iter_max = 4) assert np.round(sil_score1, 8) == 0.79166667, "Ensemble silhouette produces wrong results" X1 = np.array([[1,1,2,2], [1,2,2,2], [1,1,1,2]]) labels1 = [1,1,2,2] sil_score2 = spasi.silhouette_coefficient(X1, labels1, metric = "jaccard", iter_max = 4) assert np.round(sil_score2, 8) == 0.46666667, "Ensemble silhouette produces wrong results" def test_simplified_silhouette(): # Test on random data random_data = np.genfromtxt(find_path("random_data.csv"), delimiter=",") random_labels = np.genfromtxt(find_path("random_labels.csv"), delimiter=",") simp_silhouette_score_Eucl = spasi.simplified_silhouette_coefficient(random_data, random_labels, metric = "euclidean") assert np.isclose(simp_silhouette_score_Eucl, 0.01761300723620632), "Error in Euclidean simplified_silhouette_coefficient function" simp_silhouette_score_corr = spasi.simplified_silhouette_coefficient(random_data, random_labels, metric = "correlation") assert np.isclose(simp_silhouette_score_corr, 0.07464102055366918), "Error in correlation simplified_silhouette_coefficient function" def test_spatial_silhouette(): # Test on random data random_data = np.genfromtxt(find_path("random_data_spatial.csv"), delimiter=",") matXYZ = np.argwhere(np.zeros((8, 3, 2)) == 0) labels = np.repeat(np.array([1,2,3,4]), 2*3*2) list_neighbors = spasi.get_list_neighbors(matXYZ) spatial_silhouette_score_Eucl = spasi.silhouette_coefficient_spatial(random_data, labels, list_neighbors, metric = "euclidean") assert np.isclose(spatial_silhouette_score_Eucl, -0.0019062813008068388), "Error in Euclidean silhouette_coefficient_spatial function" spatial_silhouette_score_corr = spasi.silhouette_coefficient_spatial(random_data, labels, list_neighbors, metric = "correlation") assert np.isclose(spatial_silhouette_score_corr, -0.0013034499248535598), "Error in correlation silhouette_coefficient_spatial function" def test_spatial_simplified_silhouette(): # Test on random data random_data = np.genfromtxt(find_path("random_data_spatial.csv"), delimiter=",") matXYZ = np.argwhere(np.zeros((8, 3, 2)) == 0) labels = np.repeat(np.array([1,2,3,4]), 2*3*2) list_neighbors = spasi.get_list_neighbors(matXYZ) spatial_simp_silhouette_score_Eucl = spasi.simplified_silhouette_coefficient_spatial(random_data, labels, list_neighbors, metric = "euclidean") assert np.isclose(spatial_simp_silhouette_score_Eucl, 0.06783823739924444), "Error in Euclidean simplified_silhouette_coefficient_spatial function" spatial_simp_silhouette_score_corr = spasi.simplified_silhouette_coefficient_spatial(random_data, labels, list_neighbors, metric = "correlation") assert np.isclose(spatial_simp_silhouette_score_corr, 0.22422765231602626), "Error in correlation simplified_silhouette_coefficient_spatial function" def test_list_neighbors(): list_neighbors_true = pd.read_csv(find_path("list_neighbors.csv")) list_neighbors_true.columns = pd.RangeIndex(start=0, stop=5, step=1) matXYZ = np.argwhere(np.zeros((4, 3, 2)) == 0) list_neighbors = spasi.get_list_neighbors(matXYZ) list_neighbors = pd.DataFrame(list_neighbors) list_neighbors.columns = pd.RangeIndex(start=0, stop=5, step=1) assert pd.DataFrame.equals(list_neighbors_true, list_neighbors), "list_neighbors does not work" # pd.testing.assert_frame_equal(list_neighbors_true, list_neighbors, check_dtype = False, check_column_type = False) # def test_main(): # assert main([]) == 0
[ "numpy.random.normal", "numpy.isclose", "SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient_spatial", "numpy.round", "os.path.join", "SPARTACUS10.spatial_silhouette.silhouette_coefficient_spatial", "os.getcwd", "numpy.array", "numpy.random.randint", "SPARTACUS10.spatial_silhouette.get_list_neighbors", "numpy.zeros", "SPARTACUS10.spatial_silhouette.silhouette_coefficient", "pandas.RangeIndex", "pandas.DataFrame", "pandas.DataFrame.equals", "SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient", "os.walk", "sklearn.metrics.silhouette_score" ]
[((268, 281), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (275, 281), False, 'import os\n'), ((1207, 1237), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(10, V)'}), '(size=(10, V))\n', (1223, 1237), True, 'import numpy as np\n'), ((1882, 1958), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['random_data', 'random_labels'], {'metric': '"""euclidean"""'}), "(random_data, random_labels, metric='euclidean')\n", (1910, 1958), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((1972, 2028), 'numpy.isclose', 'np.isclose', (['silhouette_score_Eucl', '(-0.018137954346288798)'], {}), '(silhouette_score_Eucl, -0.018137954346288798)\n', (1982, 2028), True, 'import numpy as np\n'), ((2111, 2189), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['random_data', 'random_labels'], {'metric': '"""correlation"""'}), "(random_data, random_labels, metric='correlation')\n", (2139, 2189), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((2203, 2258), 'numpy.isclose', 'np.isclose', (['silhouette_score_corr', '(-0.01710701512585803)'], {}), '(silhouette_score_corr, -0.01710701512585803)\n', (2213, 2258), True, 'import numpy as np\n'), ((2360, 2535), 'numpy.array', 'np.array', (['[[1, 1, 2, 2, 3, 3, 4, 4], [1, 1, 2, 2, 3, 3, 4, 4], [1, 1, 2, 2, 3, 3, 4, \n 4], [1, 1, 2, 2, 5, 5, 6, 6], [1, 1, 1, 2, 3, 3, 3, 4], [1, 1, 1, 2, 3,\n 3, 3, 4]]'], {}), '([[1, 1, 2, 2, 3, 3, 4, 4], [1, 1, 2, 2, 3, 3, 4, 4], [1, 1, 2, 2, \n 3, 3, 4, 4], [1, 1, 2, 2, 5, 5, 6, 6], [1, 1, 1, 2, 3, 3, 3, 4], [1, 1,\n 1, 2, 3, 3, 3, 4]])\n', (2368, 2535), True, 'import numpy as np\n'), ((2788, 2857), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['X', 'labels'], {'metric': '"""jaccard"""', 'iter_max': '(4)'}), "(X, labels, metric='jaccard', iter_max=4)\n", (2816, 2857), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((2966, 3018), 'numpy.array', 'np.array', (['[[1, 1, 2, 2], [1, 2, 2, 2], [1, 1, 1, 2]]'], {}), '([[1, 1, 2, 2], [1, 2, 2, 2], [1, 1, 1, 2]])\n', (2974, 3018), True, 'import numpy as np\n'), ((3051, 3122), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['X1', 'labels1'], {'metric': '"""jaccard"""', 'iter_max': '(4)'}), "(X1, labels1, metric='jaccard', iter_max=4)\n", (3079, 3122), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((3482, 3574), 'SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient', 'spasi.simplified_silhouette_coefficient', (['random_data', 'random_labels'], {'metric': '"""euclidean"""'}), "(random_data, random_labels, metric=\n 'euclidean')\n", (3521, 3574), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((3583, 3642), 'numpy.isclose', 'np.isclose', (['simp_silhouette_score_Eucl', '(0.01761300723620632)'], {}), '(simp_silhouette_score_Eucl, 0.01761300723620632)\n', (3593, 3642), True, 'import numpy as np\n'), ((3741, 3835), 'SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient', 'spasi.simplified_silhouette_coefficient', (['random_data', 'random_labels'], {'metric': '"""correlation"""'}), "(random_data, random_labels, metric=\n 'correlation')\n", (3780, 3835), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((3844, 3903), 'numpy.isclose', 'np.isclose', (['simp_silhouette_score_corr', '(0.07464102055366918)'], {}), '(simp_silhouette_score_corr, 0.07464102055366918)\n', (3854, 3903), True, 'import numpy as np\n'), ((4237, 4269), 'SPARTACUS10.spatial_silhouette.get_list_neighbors', 'spasi.get_list_neighbors', (['matXYZ'], {}), '(matXYZ)\n', (4261, 4269), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((4307, 4404), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient_spatial', 'spasi.silhouette_coefficient_spatial', (['random_data', 'labels', 'list_neighbors'], {'metric': '"""euclidean"""'}), "(random_data, labels, list_neighbors,\n metric='euclidean')\n", (4343, 4404), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((4417, 4482), 'numpy.isclose', 'np.isclose', (['spatial_silhouette_score_Eucl', '(-0.0019062813008068388)'], {}), '(spatial_silhouette_score_Eucl, -0.0019062813008068388)\n', (4427, 4482), True, 'import numpy as np\n'), ((4581, 4680), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient_spatial', 'spasi.silhouette_coefficient_spatial', (['random_data', 'labels', 'list_neighbors'], {'metric': '"""correlation"""'}), "(random_data, labels, list_neighbors,\n metric='correlation')\n", (4617, 4680), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((4693, 4758), 'numpy.isclose', 'np.isclose', (['spatial_silhouette_score_corr', '(-0.0013034499248535598)'], {}), '(spatial_silhouette_score_corr, -0.0013034499248535598)\n', (4703, 4758), True, 'import numpy as np\n'), ((5100, 5132), 'SPARTACUS10.spatial_silhouette.get_list_neighbors', 'spasi.get_list_neighbors', (['matXYZ'], {}), '(matXYZ)\n', (5124, 5132), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((5175, 5283), 'SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient_spatial', 'spasi.simplified_silhouette_coefficient_spatial', (['random_data', 'labels', 'list_neighbors'], {'metric': '"""euclidean"""'}), "(random_data, labels,\n list_neighbors, metric='euclidean')\n", (5222, 5283), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((5296, 5363), 'numpy.isclose', 'np.isclose', (['spatial_simp_silhouette_score_Eucl', '(0.06783823739924444)'], {}), '(spatial_simp_silhouette_score_Eucl, 0.06783823739924444)\n', (5306, 5363), True, 'import numpy as np\n'), ((5478, 5588), 'SPARTACUS10.spatial_silhouette.simplified_silhouette_coefficient_spatial', 'spasi.simplified_silhouette_coefficient_spatial', (['random_data', 'labels', 'list_neighbors'], {'metric': '"""correlation"""'}), "(random_data, labels,\n list_neighbors, metric='correlation')\n", (5525, 5588), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((5601, 5668), 'numpy.isclose', 'np.isclose', (['spatial_simp_silhouette_score_corr', '(0.22422765231602626)'], {}), '(spatial_simp_silhouette_score_corr, 0.22422765231602626)\n', (5611, 5668), True, 'import numpy as np\n'), ((5881, 5919), 'pandas.RangeIndex', 'pd.RangeIndex', ([], {'start': '(0)', 'stop': '(5)', 'step': '(1)'}), '(start=0, stop=5, step=1)\n', (5894, 5919), True, 'import pandas as pd\n'), ((5992, 6024), 'SPARTACUS10.spatial_silhouette.get_list_neighbors', 'spasi.get_list_neighbors', (['matXYZ'], {}), '(matXYZ)\n', (6016, 6024), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((6046, 6074), 'pandas.DataFrame', 'pd.DataFrame', (['list_neighbors'], {}), '(list_neighbors)\n', (6058, 6074), True, 'import pandas as pd\n'), ((6104, 6142), 'pandas.RangeIndex', 'pd.RangeIndex', ([], {'start': '(0)', 'stop': '(5)', 'step': '(1)'}), '(start=0, stop=5, step=1)\n', (6117, 6142), True, 'import pandas as pd\n'), ((6154, 6210), 'pandas.DataFrame.equals', 'pd.DataFrame.equals', (['list_neighbors_true', 'list_neighbors'], {}), '(list_neighbors_true, list_neighbors)\n', (6173, 6210), True, 'import pandas as pd\n'), ((227, 238), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (236, 238), False, 'import os\n'), ((741, 771), 'numpy.random.randint', 'np.random.randint', (['(1)', '(i + 1)', 'V'], {}), '(1, i + 1, V)\n', (758, 771), True, 'import numpy as np\n'), ((791, 863), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['X', 'labels'], {'metric': '"""euclidean"""', 'iter_max': '(10)'}), "(X, labels, metric='euclidean', iter_max=10)\n", (819, 863), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((893, 950), 'sklearn.metrics.silhouette_score', 'metrics.silhouette_score', (['X.T', 'labels'], {'metric': '"""euclidean"""'}), "(X.T, labels, metric='euclidean')\n", (917, 950), True, 'import sklearn.metrics as metrics\n'), ((1284, 1314), 'numpy.random.randint', 'np.random.randint', (['(1)', '(i + 1)', 'V'], {}), '(1, i + 1, V)\n', (1301, 1314), True, 'import numpy as np\n'), ((1334, 1406), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['X', 'labels'], {'metric': '"""euclidean"""', 'iter_max': '(10)'}), "(X, labels, metric='euclidean', iter_max=10)\n", (1362, 1406), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((1436, 1493), 'sklearn.metrics.silhouette_score', 'metrics.silhouette_score', (['X.T', 'labels'], {'metric': '"""euclidean"""'}), "(X.T, labels, metric='euclidean')\n", (1460, 1493), True, 'import sklearn.metrics as metrics\n'), ((2640, 2715), 'SPARTACUS10.spatial_silhouette.silhouette_coefficient', 'spasi.silhouette_coefficient', (['X[0:4,]', 'labels'], {'metric': '"""jaccard"""', 'iter_max': '(4)'}), "(X[0:4,], labels, metric='jaccard', iter_max=4)\n", (2668, 2715), True, 'from SPARTACUS10 import spatial_silhouette as spasi\n'), ((2873, 2896), 'numpy.round', 'np.round', (['sil_score1', '(8)'], {}), '(sil_score1, 8)\n', (2881, 2896), True, 'import numpy as np\n'), ((3139, 3162), 'numpy.round', 'np.round', (['sil_score2', '(8)'], {}), '(sil_score2, 8)\n', (3147, 3162), True, 'import numpy as np\n'), ((4188, 4210), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (4196, 4210), True, 'import numpy as np\n'), ((5051, 5073), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (5059, 5073), True, 'import numpy as np\n'), ((328, 352), 'os.path.join', 'os.path.join', (['root', 'name'], {}), '(root, name)\n', (340, 352), False, 'import os\n'), ((970, 994), 'numpy.round', 'np.round', (['sil_score1', '(10)'], {}), '(sil_score1, 10)\n', (978, 994), True, 'import numpy as np\n'), ((997, 1021), 'numpy.round', 'np.round', (['sil_score2', '(10)'], {}), '(sil_score2, 10)\n', (1005, 1021), True, 'import numpy as np\n'), ((1513, 1537), 'numpy.round', 'np.round', (['sil_score1', '(10)'], {}), '(sil_score1, 10)\n', (1521, 1537), True, 'import numpy as np\n'), ((1540, 1564), 'numpy.round', 'np.round', (['sil_score2', '(10)'], {}), '(sil_score2, 10)\n', (1548, 1564), True, 'import numpy as np\n'), ((4139, 4158), 'numpy.zeros', 'np.zeros', (['(8, 3, 2)'], {}), '((8, 3, 2))\n', (4147, 4158), True, 'import numpy as np\n'), ((5002, 5021), 'numpy.zeros', 'np.zeros', (['(8, 3, 2)'], {}), '((8, 3, 2))\n', (5010, 5021), True, 'import numpy as np\n'), ((5945, 5964), 'numpy.zeros', 'np.zeros', (['(4, 3, 2)'], {}), '((4, 3, 2))\n', (5953, 5964), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import pickle as pk import random from sklearn.metrics import accuracy_score from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import Imputer def read_csv(csv_path): df = pd.read_csv(csv_path) return df def encode_label(Y): le = preprocessing.LabelEncoder() cls = le.fit(Y) cls = le.transform(Y) return cls def split_test(num_data, percent): select_id = random.sample(range(num_data), int(num_data*percent)) return select_id def save_pk(data, pk_path): with open(pk_path, 'wb') as f: pk.dump(data, f) def read_pk(pk_path): with open(pk_path, 'rb') as f: data = pk.load(f) return data def random_split_test_save(num_data, pk_path, ratio=0.1): selected_id = split_test(num_data, ratio) save_pk(selected_id, pk_path) def list_to_float(data): power = 0 val = 0 data = data[::-1] for d in data: val += int(d)*(10**power) power += len(d) return val def X_preprocessing(X, scenario): # print ('X.shape = {}'.format(X.shape)) r = X.shape[0] c = X.shape[1] # convert ip to float for i in range(r): for j in [0, 2]: if scenario == 'A': X[i, j] = list_to_float(X[i, j].split('.')) elif scenario == 'B': pass nan_idx = np.where(X == np.nan)[0] print ('nan_idx = {}'.format(nan_idx)) inf_idx = np.where(X == 'Infinity')[0] print ('inf_idx = {}'.format(inf_idx)) print('finite_idx = {}'.format(np.isfinite(X.all()))) X[nan_idx] = 0 X[inf_idx] = 0 return X if __name__ == '__main__': csv_path = '../../TorCSV/CSV/Scenario-A/merged_5s.csv' df = read_csv(csv_path) print ('read CSV !!!') df_mat = df.as_matrix() # get input X and label Y # X = df_mat[:, :-1] Y = df_mat[:, -1] X = X_preprocessing(X) # read the list idx to test # pk_path = 'selected_id.pkl' test_idx = read_pk(pk_path) # print (test_idx) # encode label # le = preprocessing.LabelEncoder() cls = le.fit(Y) Y = le.transform(Y) X_test = X[test_idx, :] Y_test = Y[test_idx] X_train = np.delete(X, test_idx, axis=0) Y_train = np.delete(Y, test_idx, axis=0) clf = RandomForestClassifier(max_depth=2, random_state=0) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) print ('accuracy = {}'.format(accuracy_score(Y_test, Y_pred))) filename = 'randomForest.sav' pk.dump(clf, open(filename, 'wb'))
[ "sklearn.preprocessing.LabelEncoder", "pickle.dump", "pandas.read_csv", "numpy.where", "numpy.delete", "pickle.load", "sklearn.ensemble.RandomForestClassifier", "sklearn.metrics.accuracy_score" ]
[((281, 302), 'pandas.read_csv', 'pd.read_csv', (['csv_path'], {}), '(csv_path)\n', (292, 302), True, 'import pandas as pd\n'), ((349, 377), 'sklearn.preprocessing.LabelEncoder', 'preprocessing.LabelEncoder', ([], {}), '()\n', (375, 377), False, 'from sklearn import preprocessing\n'), ((2115, 2143), 'sklearn.preprocessing.LabelEncoder', 'preprocessing.LabelEncoder', ([], {}), '()\n', (2141, 2143), False, 'from sklearn import preprocessing\n'), ((2256, 2286), 'numpy.delete', 'np.delete', (['X', 'test_idx'], {'axis': '(0)'}), '(X, test_idx, axis=0)\n', (2265, 2286), True, 'import numpy as np\n'), ((2301, 2331), 'numpy.delete', 'np.delete', (['Y', 'test_idx'], {'axis': '(0)'}), '(Y, test_idx, axis=0)\n', (2310, 2331), True, 'import numpy as np\n'), ((2343, 2394), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'max_depth': '(2)', 'random_state': '(0)'}), '(max_depth=2, random_state=0)\n', (2365, 2394), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((641, 657), 'pickle.dump', 'pk.dump', (['data', 'f'], {}), '(data, f)\n', (648, 657), True, 'import pickle as pk\n'), ((732, 742), 'pickle.load', 'pk.load', (['f'], {}), '(f)\n', (739, 742), True, 'import pickle as pk\n'), ((1423, 1444), 'numpy.where', 'np.where', (['(X == np.nan)'], {}), '(X == np.nan)\n', (1431, 1444), True, 'import numpy as np\n'), ((1505, 1530), 'numpy.where', 'np.where', (["(X == 'Infinity')"], {}), "(X == 'Infinity')\n", (1513, 1530), True, 'import numpy as np\n'), ((2493, 2523), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_test', 'Y_pred'], {}), '(Y_test, Y_pred)\n', (2507, 2523), False, 'from sklearn.metrics import accuracy_score\n')]
# -*- coding: utf-8 -*- """ Created on Wed Nov 22 21:44:55 2017 @author: Mike """ import numpy as np import cv2 import glob import pickle import matplotlib.pyplot as plt from matplotlib.pyplot import * import os from scipy import stats from moviepy.editor import VideoFileClip from IPython.display import HTML from camera_calibration import calibrate_camera, distortion_correct from sobel_library import abs_sobel_image, sobel_mag_thresh, sobel_dir_thresh from collections import deque run_camera_cal = 1 #HLS Color space threshold filter def color_binary(img, colorspace, color_thresh): if colorspace == 'HLS': hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) H = hls[:,:,0] L = hls[:,:,1] S = hls[:,:,2] binary_output = np.zeros_like(S) binary_output[((S > color_thresh [0]) & (S < color_thresh [1]))] = 1 return binary_output #combine the thresholds for the color map and the gradient threshold # send in an image with binary color scheme and binary gradient scheme def bin_color_gradient(binary_gradient , binary_color): binary_output = np.zeros_like(binary_gradient) binary_output[((binary_gradient == 1) | (binary_color == 1))] = 1 # polys = np.array([[(350,720),(580,500),(800,500),(1000,720)]], dtype = np.int32) polys = np.array([[(350,720),(580,500),(800,500),(900,720)]], dtype = np.int32) cv2.fillPoly(binary_output, polys, 0, lineType=8, shift=0) return binary_output #Function to warp images to birds eye view def warp(img,source_points, destination_points): img_shape = (img.shape[1], img.shape[0]) src = np.float32(source_points) dst = np.float32(destination_points) M = cv2.getPerspectiveTransform(src,dst) Minv = cv2.getPerspectiveTransform(dst,src) warped = cv2.warpPerspective(img,M,img_shape, flags = cv2.INTER_LINEAR) return warped, M, Minv global left_fit_deque global right_fit_deque deque_size = 3 left_fit_deque = [] left_fit_deque = deque(maxlen = deque_size) right_fit_deque = [] right_fit_deque = deque(maxlen = deque_size) class Lane(): def __init__(self): self.llm = [] self.rlm = [] mylane = Lane() coeffs = [] C0_L = np.zeros(deque_size) C1_L = np.zeros(deque_size) C2_L = np.zeros(deque_size) C0_R = np.zeros(deque_size) C1_R = np.zeros(deque_size) C2_R = np.zeros(deque_size) def polyfit(warped_image, orig_img, Minv): #def polyfit(warped_image): # print('Initiating line overlay onto binary warped image') # Assuming you have created a warped binary image called "binary_warped" # Take a histogram of the bottom half of the image histogram = np.sum(warped_image[warped_image.shape[0]//2:,:], axis=0) #histogram = np.sum(binary_warped[binary_warped.shape[0]/2:,:], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((warped_image, warped_image, warped_image))*255 # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]/2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # Choose the number of sliding windows nwindows = 9 # Set height of windows window_height = np.int(warped_image.shape[0]/nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = warped_image.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated for each window leftx_current = leftx_base rightx_current = rightx_base # Set the width of the windows +/- margin margin = 100 # Set minimum number of pixels found to recenter window minpix = 50 # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = warped_image.shape[0] - (window+1)*window_height win_y_high = warped_image.shape[0] - window*window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high), (0,255,0), 2) cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high), (0,255,0), 2) # Identify the nonzero pixels in x and y within the window good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > minpix pixels, recenter next window on their mean position if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit a second order polynomial to each left_fit = np.polyfit(lefty, leftx, 2) #Store the left poly coefficient in a deque for later use left_fit_deque.append(left_fit) # Take the deque of polynomial data and extract the three coefficients, avearge them for stability for idx, coeffs in enumerate(left_fit_deque): C0_L[idx] = coeffs[0] C1_L[idx] = coeffs[1] C2_L[idx] = coeffs[2] average_C0_L = np.mean(C0_L) average_C1_L = np.mean(C1_L) average_C2_L = np.mean(C2_L) left_fit[0] = average_C0_L left_fit[1] = average_C1_L left_fit[2] = average_C2_L right_fit = np.polyfit(righty, rightx, 2) #Store the left poly coefficient in a deque for later use right_fit_deque.append(right_fit) # Take the deque of polynomial data and extract the three coefficients, avearge them for stability for idx, coeffs in enumerate(right_fit_deque): C0_R[idx] = coeffs[0] C1_R[idx] = coeffs[1] C2_R[idx] = coeffs[2] average_C0_R = np.mean(C0_R) average_C1_R = np.mean(C1_R) average_C2_R = np.mean(C2_R) right_fit[0] = average_C0_R right_fit[1] = average_C1_R right_fit[2] = average_C2_R # Generate x and y values for plotting ploty = np.linspace(0, warped_image.shape[0]-1, warped_image.shape[0] ) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] # left_fitx = left_fit_deque[0]*ploty**2 + left_fit_deque[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # plt.figure(figsize = (20,10)) # plt.imshow(out_img) # plt.plot(left_fitx, ploty, color='blue') # plt.plot(right_fitx, ploty, color='red') # plt.xlim(0, 1280) # plt.ylim(720, 0) # plt.show() # Create an image to draw the lines on warp_zero = np.zeros_like(warped_image).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) # ============================================================================= # In this section we calculate the radius of curvature for the warped lines # ============================================================================= # Define y-value where we want radius of curvature # I'll choose the maximum y-value, corresponding to the bottom of the image y_eval = np.max(ploty) left_curverad = ((1 + (2*left_fit[0]*y_eval + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0]) right_curverad = ((1 + (2*right_fit[0]*y_eval + right_fit[1])**2)**1.5) / np.absolute(2*right_fit[0]) # print(left_curverad, right_curverad) # Example values: 1926.74 1908.48 # Define conversions in x and y from pixels space to meters ym_per_pix = 30/720 # meters per pixel in y dimension xm_per_pix = 3.7/700 # meters per pixel in x dimension # Fit new polynomials to x,y in world space left_fit_cr = np.polyfit(ploty*ym_per_pix, left_fitx*xm_per_pix, 2) right_fit_cr = np.polyfit(ploty*ym_per_pix, right_fitx*xm_per_pix, 2) # Calculate the new radii of curvature left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0]) right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0]) # Now our radius of curvature is in meters # print(left_curverad, 'm', right_curverad, 'm') # Example values: 632.1 m 626.2 m # ============================================================================= # Calculate the position from center for the vehicle relative to the left lane # ============================================================================= # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (orig_img.shape[1], orig_img.shape[0])) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(newwarp,'Recording: project_video',(10,50), font, 1,(255,0,0),3,cv2.LINE_AA) cv2.putText(newwarp,'Road Radius of curvature: {} km'.format(left_curverad/1000),(10,100), font, 1,(255,0,0),3,cv2.LINE_AA) # ============================================================================= # Add the Section for fitting the radius of curvature to the image # ============================================================================= vehicle_center = newwarp.shape[1]/2 #assuming that the video feed is from veh center y_pixels = np.arange(newwarp.shape[0]-10, newwarp.shape[0]+1) # y_pixels = 719 lx_loc = left_fit_cr[0]*y_pixels**2+left_fit_cr[1]*y_pixels+left_fit_cr[2] rx_loc = right_fit_cr[0]*y_pixels**2+right_fit_cr[1]*y_pixels+right_fit_cr[2] lane_center_pixel = (right_fitx[0] + left_fitx[0])/2 vehicle_offset = (vehicle_center - lane_center_pixel)*xm_per_pix # pct_difference = vehicle_offset/ if vehicle_offset > 0: cv2.putText(newwarp,'Ego Vehicle is {} meters right of lane center'.format(vehicle_offset),(10,150), font, 1,(255,0,0),3,cv2.LINE_AA) if vehicle_offset < 0: cv2.putText(newwarp,'Ego Vehicle is {} meters left of lane center'.format(vehicle_offset),(10,150), font, 1,(255,0,0),3,cv2.LINE_AA) if vehicle_offset == 0: cv2.putText(newwarp,'Ego Vehicle is directly on center!! Great job!',(10,150), font, 1,(255,0,0),3,cv2.LINE_AA) # ============================================================================= # This plots the lane line data for debugging vehicle center # ============================================================================= # plt.plot(lx_loc,y_pixels,'x') # plt.title('Left Lane Line Pixel Locations') # plt.show() # # plt.plot(rx_loc,y_pixels,'x') # plt.title('Right Lane Line Pixel Locations') # plt.show() # # plt.plot(left_fitx,'x') # plt.plot(right_fitx,'o') # plt.title('Left Lane and Right Lane overlay, horizontal dir i "y" in image space') # plt.show() # # plt.figure(figsize = (15,15)) # plt.imshow(newwarp) # plt.show() # # Combine the result with the original image #img = cv2.imread(img) img = cv2.cvtColor(orig_img,cv2.COLOR_BGR2RGB) # result = cv2.addWeighted(orig_img, 1, newwarp, 0.3, 0) result = cv2.addWeighted(img, 1, newwarp, 0.3, 0) #This is the final overlaid image with the texxto n it # plt.figure(figsize = (10,10)) # plt.title('final result') # plt.imshow(result) # plt.show() return result, left_fitx, right_fitx, ploty if run_camera_cal == 1: #--------------------- CAll functions and initiate camera cal and distortion corrrect----------------------- #This section calls the camera calibration function # Call the function to parse through the calibration image array and return #the base object point, corners and a grascale image for reference size #***** TURN THIS ON LATER!!!!!! when you want to calibrate the camera # Make a list of calibration images image_dir = "C:\\Users\\mrpal\\Documents\\Projects\\CarND-Advanced-Lane-Lines\\camera_cal\\" images = os.listdir('camera_cal') corners, imgpoints, objpoints, gray = calibrate_camera(image_dir, images) ##Generate the distortion coefficients and camera matrix, trans vector and rot vector print('Generating distortion coefficients and camera matrix parameters') ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,gray.shape[::-1], None, None) #Undistort the images in the test_images folder image_dir = "C:\\Users\\mrpal\\Documents\\Projects\\CarND-Advanced-Lane-Lines\\test_images\\" images = os.listdir('test_images') print('Selected image directory is: {} '.format(image_dir)) print('The images in the directory are: {}' .format(images)) distortion_corrected = distortion_correct(image_dir, images, mtx, dist) cv2.destroyAllWindows() #--------------------- CAll functions to initiate a pipeline for image processing---------------------- image_dir = "C:\\Users\\mrpal\\Documents\\Projects\\CarND-Advanced-Lane-Lines\\test_images\\" images = os.listdir('test_images') print('Selected image directory is: {} '.format(image_dir)) print('The images in the directory are: {} \n' .format(images)) #print('The images in the directory are: {} \n' .format(images_new)) sobel_kernel = 9 #mag_thresh = [30,255] #keep it grad_threshold = [50,150] sobel_mag = [0,255] #distortion correct if len(glob.glob('./test_images/*Distortion*.jpg')) == 0: print('there are no distortion corrected images in the directory, let us create them') distortion_corrected = distortion_correct(image_dir, images, mtx, dist) images = glob.glob('./test_images/*Distortion*.jpg') def process_image(images): # for idx, fname in enumerate(images): img = cv2.cvtColor(images, cv2.COLOR_BGR2RGB) # img = cv2.cvtColor(images, cv2.COLOR_RGB2BGR) # orig_image = img # img = cv2.imread(fname) # plt.figure(figsize = (20,10)) # plt.imshow(img) # plt.show() #pull in the absolute binary gradient data in X and Y gradx_binary = abs_sobel_image(img,'x',grad_threshold , sobel_kernel) # plt.figure(figsize = (20,10)) # plt.title('Binary Gradient Thresholding in X direction') # plt.imshow(gradx_binary, cmap='gray') # plt.show() grady_binary = abs_sobel_image(img,'y',grad_threshold , sobel_kernel) # plt.figure(figsize = (20,10)) # plt.title('Binary Gradient Thresholding in Y direction') # plt.imshow(grady_binary, cmap='gray') # plt.show() #Calculate the Sobel direction gradient binary threshold dir_binary = sobel_dir_thresh(img, sobel_kernel=15, thresh=(0.6, np.pi/2)) # print(dir_binary.dtype) # plt.figure(figsize = (20,10)) # plt.title('Binary Sobel (Absolute) Gradient Thresholding') # plt.imshow(dir_binary, cmap = 'gray') # mag_binary = sobel_mag_thresh(img, sobel_kernel, mag_thresh= (50, 150)) mag_binary = sobel_mag_thresh(img, sobel_kernel, mag_thresh= (80, 150)) # plt.figure(figsize = (20,10)) # plt.title('Binary Gradient Magnitude Thresholding') # plt.imshow(mag_binary, cmap='gray') # mag_binary #Combine the gradient thresholds into a coherent image, there still may be gaps where color thresholding comes in combined_binary = np.zeros_like(dir_binary) # combined_binary[(gradx_binary == 1) | ((mag_binary == 1) | (dir_binary == 1))] = 1 combined_binary[(gradx_binary == 1) | ((mag_binary == 1) & (dir_binary == 1))] = 1 #combined_binary[((gradx_binary == 1) & (grady_binary == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1 # plt.figure(figsize = (20,10)) # plt.title('Combined Binary Gradient Thresholding (X,Mag,Dir)') # plt.imshow(combined_binary, cmap = 'gray') # plt.show() binary_color = color_binary(img, 'HLS', color_thresh = [80,255]) # binary_color = color_binary(img, 'HLS', color_thresh = [80,180]) # plt.figure(figsize = (20,10)) # plt.title('Binary Color Thresholding in HLS') # plt.imshow(binary_color, cmap = 'gray') # plt.show() #Visualize the overall combined thresholding on the test images color_grad_combined = bin_color_gradient(combined_binary , binary_color) # plt.figure(figsize = (20,10)) # plt.title('Combined color and gradient mag thresholding') # plt.imshow(color_grad_combined, cmap = 'gray') # plt.show() img_size = img.shape offset = 100 src = np.float32([(200, 720), (580, 480), (720, 480), (1050, 720)]) dst = np.float32([(280, 720), (400, 190), (920, 190), (960, 720)]) destination_points = np.float32([[offset, img_size[1]-offset], [img_size[0]-offset, img_size[1]-offset], [img_size[0]-offset, offset], [offset, offset]]) source_points = np.float32(([450,780], [680, 1050], [680,250], [450, 500])) binary_warped, M, Minv = warp(color_grad_combined,src, dst) #warped_image_test = warp(img,source_points, destination_points) # plt.figure(figsize = (20,10)) # plt.imshow(binary_warped, cmap='gray') # plt.show() # # # import numpy as np # plt.figure(figsize = (20,10)) # histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0) # plt.plot(histogram) # plt.show() # #Need the line data to be fed back out out, left_fitx, right_fitx, ploty = polyfit(binary_warped,img, Minv) # out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB) return out #######-------------------------- ##os.system("ffmpeg -i project_video.mp4 -vf fps=15/1 out_%03d.jpg' Test_Video_dir = os.listdir("test_videos/") video_output = 'project_video_output.mp4' clip1 = VideoFileClip("test_videos/project_video.mp4").subclip(13,18) #clip1 = VideoFileClip("test_videos/project_video.mp4") clip = clip1.fl_image(process_image) #NOTE: this function expects color images!! clip.write_videofile(video_output, audio=False) #-------------------------------------------
[ "cv2.rectangle", "numpy.polyfit", "numpy.hstack", "numpy.array", "cv2.warpPerspective", "sobel_library.abs_sobel_image", "cv2.destroyAllWindows", "cv2.calibrateCamera", "camera_calibration.calibrate_camera", "numpy.arange", "numpy.mean", "os.listdir", "collections.deque", "camera_calibration.distortion_correct", "numpy.max", "sobel_library.sobel_dir_thresh", "cv2.addWeighted", "numpy.linspace", "numpy.vstack", "numpy.concatenate", "moviepy.editor.VideoFileClip", "glob.glob", "cv2.fillPoly", "cv2.getPerspectiveTransform", "numpy.argmax", "cv2.putText", "cv2.cvtColor", "numpy.int_", "numpy.int", "numpy.dstack", "sobel_library.sobel_mag_thresh", "numpy.absolute", "numpy.sum", "numpy.zeros", "numpy.zeros_like", "numpy.float32" ]
[((2065, 2089), 'collections.deque', 'deque', ([], {'maxlen': 'deque_size'}), '(maxlen=deque_size)\n', (2070, 2089), False, 'from collections import deque\n'), ((2133, 2157), 'collections.deque', 'deque', ([], {'maxlen': 'deque_size'}), '(maxlen=deque_size)\n', (2138, 2157), False, 'from collections import deque\n'), ((2315, 2335), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2323, 2335), True, 'import numpy as np\n'), ((2344, 2364), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2352, 2364), True, 'import numpy as np\n'), ((2373, 2393), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2381, 2393), True, 'import numpy as np\n'), ((2402, 2422), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2410, 2422), True, 'import numpy as np\n'), ((2431, 2451), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2439, 2451), True, 'import numpy as np\n'), ((2460, 2480), 'numpy.zeros', 'np.zeros', (['deque_size'], {}), '(deque_size)\n', (2468, 2480), True, 'import numpy as np\n'), ((20018, 20044), 'os.listdir', 'os.listdir', (['"""test_videos/"""'], {}), "('test_videos/')\n", (20028, 20044), False, 'import os\n'), ((804, 820), 'numpy.zeros_like', 'np.zeros_like', (['S'], {}), '(S)\n', (817, 820), True, 'import numpy as np\n'), ((1153, 1183), 'numpy.zeros_like', 'np.zeros_like', (['binary_gradient'], {}), '(binary_gradient)\n', (1166, 1183), True, 'import numpy as np\n'), ((1355, 1431), 'numpy.array', 'np.array', (['[[(350, 720), (580, 500), (800, 500), (900, 720)]]'], {'dtype': 'np.int32'}), '([[(350, 720), (580, 500), (800, 500), (900, 720)]], dtype=np.int32)\n', (1363, 1431), True, 'import numpy as np\n'), ((1434, 1492), 'cv2.fillPoly', 'cv2.fillPoly', (['binary_output', 'polys', '(0)'], {'lineType': '(8)', 'shift': '(0)'}), '(binary_output, polys, 0, lineType=8, shift=0)\n', (1446, 1492), False, 'import cv2\n'), ((1691, 1716), 'numpy.float32', 'np.float32', (['source_points'], {}), '(source_points)\n', (1701, 1716), True, 'import numpy as np\n'), ((1728, 1758), 'numpy.float32', 'np.float32', (['destination_points'], {}), '(destination_points)\n', (1738, 1758), True, 'import numpy as np\n'), ((1768, 1805), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (1795, 1805), False, 'import cv2\n'), ((1817, 1854), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['dst', 'src'], {}), '(dst, src)\n', (1844, 1854), False, 'import cv2\n'), ((1868, 1930), 'cv2.warpPerspective', 'cv2.warpPerspective', (['img', 'M', 'img_shape'], {'flags': 'cv2.INTER_LINEAR'}), '(img, M, img_shape, flags=cv2.INTER_LINEAR)\n', (1887, 1930), False, 'import cv2\n'), ((2773, 2833), 'numpy.sum', 'np.sum', (['warped_image[warped_image.shape[0] // 2:, :]'], {'axis': '(0)'}), '(warped_image[warped_image.shape[0] // 2:, :], axis=0)\n', (2779, 2833), True, 'import numpy as np\n'), ((3200, 3230), 'numpy.int', 'np.int', (['(histogram.shape[0] / 2)'], {}), '(histogram.shape[0] / 2)\n', (3206, 3230), True, 'import numpy as np\n'), ((3247, 3278), 'numpy.argmax', 'np.argmax', (['histogram[:midpoint]'], {}), '(histogram[:midpoint])\n', (3256, 3278), True, 'import numpy as np\n'), ((3459, 3499), 'numpy.int', 'np.int', (['(warped_image.shape[0] / nwindows)'], {}), '(warped_image.shape[0] / nwindows)\n', (3465, 3499), True, 'import numpy as np\n'), ((3625, 3645), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (3633, 3645), True, 'import numpy as np\n'), ((3662, 3682), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (3670, 3682), True, 'import numpy as np\n'), ((5759, 5789), 'numpy.concatenate', 'np.concatenate', (['left_lane_inds'], {}), '(left_lane_inds)\n', (5773, 5789), True, 'import numpy as np\n'), ((5813, 5844), 'numpy.concatenate', 'np.concatenate', (['right_lane_inds'], {}), '(right_lane_inds)\n', (5827, 5844), True, 'import numpy as np\n'), ((6119, 6146), 'numpy.polyfit', 'np.polyfit', (['lefty', 'leftx', '(2)'], {}), '(lefty, leftx, 2)\n', (6129, 6146), True, 'import numpy as np\n'), ((6560, 6573), 'numpy.mean', 'np.mean', (['C0_L'], {}), '(C0_L)\n', (6567, 6573), True, 'import numpy as np\n'), ((6594, 6607), 'numpy.mean', 'np.mean', (['C1_L'], {}), '(C1_L)\n', (6601, 6607), True, 'import numpy as np\n'), ((6628, 6641), 'numpy.mean', 'np.mean', (['C2_L'], {}), '(C2_L)\n', (6635, 6641), True, 'import numpy as np\n'), ((6775, 6804), 'numpy.polyfit', 'np.polyfit', (['righty', 'rightx', '(2)'], {}), '(righty, rightx, 2)\n', (6785, 6804), True, 'import numpy as np\n'), ((7225, 7238), 'numpy.mean', 'np.mean', (['C0_R'], {}), '(C0_R)\n', (7232, 7238), True, 'import numpy as np\n'), ((7259, 7272), 'numpy.mean', 'np.mean', (['C1_R'], {}), '(C1_R)\n', (7266, 7272), True, 'import numpy as np\n'), ((7293, 7306), 'numpy.mean', 'np.mean', (['C2_R'], {}), '(C2_R)\n', (7300, 7306), True, 'import numpy as np\n'), ((7475, 7539), 'numpy.linspace', 'np.linspace', (['(0)', '(warped_image.shape[0] - 1)', 'warped_image.shape[0]'], {}), '(0, warped_image.shape[0] - 1, warped_image.shape[0])\n', (7486, 7539), True, 'import numpy as np\n'), ((8305, 8349), 'numpy.dstack', 'np.dstack', (['(warp_zero, warp_zero, warp_zero)'], {}), '((warp_zero, warp_zero, warp_zero))\n', (8314, 8349), True, 'import numpy as np\n'), ((8595, 8627), 'numpy.hstack', 'np.hstack', (['(pts_left, pts_right)'], {}), '((pts_left, pts_right))\n', (8604, 8627), True, 'import numpy as np\n'), ((9157, 9170), 'numpy.max', 'np.max', (['ploty'], {}), '(ploty)\n', (9163, 9170), True, 'import numpy as np\n'), ((9727, 9784), 'numpy.polyfit', 'np.polyfit', (['(ploty * ym_per_pix)', '(left_fitx * xm_per_pix)', '(2)'], {}), '(ploty * ym_per_pix, left_fitx * xm_per_pix, 2)\n', (9737, 9784), True, 'import numpy as np\n'), ((9801, 9859), 'numpy.polyfit', 'np.polyfit', (['(ploty * ym_per_pix)', '(right_fitx * xm_per_pix)', '(2)'], {}), '(ploty * ym_per_pix, right_fitx * xm_per_pix, 2)\n', (9811, 9859), True, 'import numpy as np\n'), ((10668, 10745), 'cv2.warpPerspective', 'cv2.warpPerspective', (['color_warp', 'Minv', '(orig_img.shape[1], orig_img.shape[0])'], {}), '(color_warp, Minv, (orig_img.shape[1], orig_img.shape[0]))\n', (10687, 10745), False, 'import cv2\n'), ((10795, 10895), 'cv2.putText', 'cv2.putText', (['newwarp', '"""Recording: project_video"""', '(10, 50)', 'font', '(1)', '(255, 0, 0)', '(3)', 'cv2.LINE_AA'], {}), "(newwarp, 'Recording: project_video', (10, 50), font, 1, (255, 0,\n 0), 3, cv2.LINE_AA)\n", (10806, 10895), False, 'import cv2\n'), ((11385, 11439), 'numpy.arange', 'np.arange', (['(newwarp.shape[0] - 10)', '(newwarp.shape[0] + 1)'], {}), '(newwarp.shape[0] - 10, newwarp.shape[0] + 1)\n', (11394, 11439), True, 'import numpy as np\n'), ((13097, 13138), 'cv2.cvtColor', 'cv2.cvtColor', (['orig_img', 'cv2.COLOR_BGR2RGB'], {}), '(orig_img, cv2.COLOR_BGR2RGB)\n', (13109, 13138), False, 'import cv2\n'), ((13215, 13255), 'cv2.addWeighted', 'cv2.addWeighted', (['img', '(1)', 'newwarp', '(0.3)', '(0)'], {}), '(img, 1, newwarp, 0.3, 0)\n', (13230, 13255), False, 'import cv2\n'), ((14131, 14155), 'os.listdir', 'os.listdir', (['"""camera_cal"""'], {}), "('camera_cal')\n", (14141, 14155), False, 'import os\n'), ((14209, 14244), 'camera_calibration.calibrate_camera', 'calibrate_camera', (['image_dir', 'images'], {}), '(image_dir, images)\n', (14225, 14244), False, 'from camera_calibration import calibrate_camera, distortion_correct\n'), ((14456, 14527), 'cv2.calibrateCamera', 'cv2.calibrateCamera', (['objpoints', 'imgpoints', 'gray.shape[::-1]', 'None', 'None'], {}), '(objpoints, imgpoints, gray.shape[::-1], None, None)\n', (14475, 14527), False, 'import cv2\n'), ((14705, 14730), 'os.listdir', 'os.listdir', (['"""test_images"""'], {}), "('test_images')\n", (14715, 14730), False, 'import os\n'), ((14890, 14938), 'camera_calibration.distortion_correct', 'distortion_correct', (['image_dir', 'images', 'mtx', 'dist'], {}), '(image_dir, images, mtx, dist)\n', (14908, 14938), False, 'from camera_calibration import calibrate_camera, distortion_correct\n'), ((14944, 14967), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (14965, 14967), False, 'import cv2\n'), ((15208, 15233), 'os.listdir', 'os.listdir', (['"""test_images"""'], {}), "('test_images')\n", (15218, 15233), False, 'import os\n'), ((15895, 15938), 'glob.glob', 'glob.glob', (['"""./test_images/*Distortion*.jpg"""'], {}), "('./test_images/*Distortion*.jpg')\n", (15904, 15938), False, 'import glob\n'), ((16037, 16076), 'cv2.cvtColor', 'cv2.cvtColor', (['images', 'cv2.COLOR_BGR2RGB'], {}), '(images, cv2.COLOR_BGR2RGB)\n', (16049, 16076), False, 'import cv2\n'), ((16352, 16407), 'sobel_library.abs_sobel_image', 'abs_sobel_image', (['img', '"""x"""', 'grad_threshold', 'sobel_kernel'], {}), "(img, 'x', grad_threshold, sobel_kernel)\n", (16367, 16407), False, 'from sobel_library import abs_sobel_image, sobel_mag_thresh, sobel_dir_thresh\n'), ((16589, 16644), 'sobel_library.abs_sobel_image', 'abs_sobel_image', (['img', '"""y"""', 'grad_threshold', 'sobel_kernel'], {}), "(img, 'y', grad_threshold, sobel_kernel)\n", (16604, 16644), False, 'from sobel_library import abs_sobel_image, sobel_mag_thresh, sobel_dir_thresh\n'), ((16896, 16959), 'sobel_library.sobel_dir_thresh', 'sobel_dir_thresh', (['img'], {'sobel_kernel': '(15)', 'thresh': '(0.6, np.pi / 2)'}), '(img, sobel_kernel=15, thresh=(0.6, np.pi / 2))\n', (16912, 16959), False, 'from sobel_library import abs_sobel_image, sobel_mag_thresh, sobel_dir_thresh\n'), ((17235, 17292), 'sobel_library.sobel_mag_thresh', 'sobel_mag_thresh', (['img', 'sobel_kernel'], {'mag_thresh': '(80, 150)'}), '(img, sobel_kernel, mag_thresh=(80, 150))\n', (17251, 17292), False, 'from sobel_library import abs_sobel_image, sobel_mag_thresh, sobel_dir_thresh\n'), ((17595, 17620), 'numpy.zeros_like', 'np.zeros_like', (['dir_binary'], {}), '(dir_binary)\n', (17608, 17620), True, 'import numpy as np\n'), ((18783, 18844), 'numpy.float32', 'np.float32', (['[(200, 720), (580, 480), (720, 480), (1050, 720)]'], {}), '([(200, 720), (580, 480), (720, 480), (1050, 720)])\n', (18793, 18844), True, 'import numpy as np\n'), ((18856, 18916), 'numpy.float32', 'np.float32', (['[(280, 720), (400, 190), (920, 190), (960, 720)]'], {}), '([(280, 720), (400, 190), (920, 190), (960, 720)])\n', (18866, 18916), True, 'import numpy as np\n'), ((18955, 19100), 'numpy.float32', 'np.float32', (['[[offset, img_size[1] - offset], [img_size[0] - offset, img_size[1] -\n offset], [img_size[0] - offset, offset], [offset, offset]]'], {}), '([[offset, img_size[1] - offset], [img_size[0] - offset, img_size\n [1] - offset], [img_size[0] - offset, offset], [offset, offset]])\n', (18965, 19100), True, 'import numpy as np\n'), ((19193, 19254), 'numpy.float32', 'np.float32', (['([450, 780], [680, 1050], [680, 250], [450, 500])'], {}), '(([450, 780], [680, 1050], [680, 250], [450, 500]))\n', (19203, 19254), True, 'import numpy as np\n'), ((668, 704), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2HLS'], {}), '(img, cv2.COLOR_RGB2HLS)\n', (680, 704), False, 'import cv2\n'), ((2990, 3043), 'numpy.dstack', 'np.dstack', (['(warped_image, warped_image, warped_image)'], {}), '((warped_image, warped_image, warped_image))\n', (2999, 3043), True, 'import numpy as np\n'), ((3298, 3329), 'numpy.argmax', 'np.argmax', (['histogram[midpoint:]'], {}), '(histogram[midpoint:])\n', (3307, 3329), True, 'import numpy as np\n'), ((4619, 4719), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_xleft_low, win_y_low)', '(win_xleft_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(out_img, (win_xleft_low, win_y_low), (win_xleft_high,\n win_y_high), (0, 255, 0), 2)\n', (4632, 4719), False, 'import cv2\n'), ((4729, 4831), 'cv2.rectangle', 'cv2.rectangle', (['out_img', '(win_xright_low, win_y_low)', '(win_xright_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(out_img, (win_xright_low, win_y_low), (win_xright_high,\n win_y_high), (0, 255, 0), 2)\n', (4742, 4831), False, 'import cv2\n'), ((8713, 8727), 'numpy.int_', 'np.int_', (['[pts]'], {}), '([pts])\n', (8720, 8727), True, 'import numpy as np\n'), ((9247, 9275), 'numpy.absolute', 'np.absolute', (['(2 * left_fit[0])'], {}), '(2 * left_fit[0])\n', (9258, 9275), True, 'import numpy as np\n'), ((9353, 9382), 'numpy.absolute', 'np.absolute', (['(2 * right_fit[0])'], {}), '(2 * right_fit[0])\n', (9364, 9382), True, 'import numpy as np\n'), ((9993, 10024), 'numpy.absolute', 'np.absolute', (['(2 * left_fit_cr[0])'], {}), '(2 * left_fit_cr[0])\n', (10004, 10024), True, 'import numpy as np\n'), ((10119, 10151), 'numpy.absolute', 'np.absolute', (['(2 * right_fit_cr[0])'], {}), '(2 * right_fit_cr[0])\n', (10130, 10151), True, 'import numpy as np\n'), ((12177, 12300), 'cv2.putText', 'cv2.putText', (['newwarp', '"""Ego Vehicle is directly on center!! Great job!"""', '(10, 150)', 'font', '(1)', '(255, 0, 0)', '(3)', 'cv2.LINE_AA'], {}), "(newwarp, 'Ego Vehicle is directly on center!! Great job!', (10,\n 150), font, 1, (255, 0, 0), 3, cv2.LINE_AA)\n", (12188, 12300), False, 'import cv2\n'), ((15826, 15874), 'camera_calibration.distortion_correct', 'distortion_correct', (['image_dir', 'images', 'mtx', 'dist'], {}), '(image_dir, images, mtx, dist)\n', (15844, 15874), False, 'from camera_calibration import calibrate_camera, distortion_correct\n'), ((20097, 20143), 'moviepy.editor.VideoFileClip', 'VideoFileClip', (['"""test_videos/project_video.mp4"""'], {}), "('test_videos/project_video.mp4')\n", (20110, 20143), False, 'from moviepy.editor import VideoFileClip\n'), ((8242, 8269), 'numpy.zeros_like', 'np.zeros_like', (['warped_image'], {}), '(warped_image)\n', (8255, 8269), True, 'import numpy as np\n'), ((15647, 15690), 'glob.glob', 'glob.glob', (['"""./test_images/*Distortion*.jpg"""'], {}), "('./test_images/*Distortion*.jpg')\n", (15656, 15690), False, 'import glob\n'), ((5531, 5564), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (5538, 5564), True, 'import numpy as np\n'), ((5654, 5688), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (5661, 5688), True, 'import numpy as np\n'), ((8466, 8495), 'numpy.vstack', 'np.vstack', (['[left_fitx, ploty]'], {}), '([left_fitx, ploty])\n', (8475, 8495), True, 'import numpy as np\n'), ((8549, 8579), 'numpy.vstack', 'np.vstack', (['[right_fitx, ploty]'], {}), '([right_fitx, ploty])\n', (8558, 8579), True, 'import numpy as np\n')]
from IMLearn.learners import UnivariateGaussian, MultivariateGaussian import numpy as np import plotly.graph_objects as go import plotly.io as pio pio.templates.default = "simple_white" SAMPLES_NUM = 1000 LEFT_CIRCLE = '(' RIGHT_CIRCLE = ')' COMMA = ', ' GRAPH_SIZE = 500 HEATMAP_SIZE = 700 def test_univariate_gaussian(): # Question 1 - Draw samples and print fitted model uni = UnivariateGaussian() mu, sigma = 10, 1 s = np.random.normal(mu, sigma, SAMPLES_NUM) res = uni.fit(s) print(LEFT_CIRCLE + str(res.mu_) + COMMA + str(res.var_) + RIGHT_CIRCLE) # Question 2 - Empirically showing sample mean is consistent ms = np.linspace(10, 1000, 100).astype(int) diff = [] for m in ms: diff.append(abs(uni.fit(s[0:m]).mu_ - mu)) go.Figure([go.Scatter(x=ms, y=diff, mode='markers+lines')], layout=go.Layout(title=r"$\text{ Distance between estimated " r"and true value of the expectation as a function of samples number}$", xaxis_title="$m\\text{ - number of samples}$", yaxis_title="r$distance$", height=GRAPH_SIZE)).show() # Question 3 - Plotting Empirical PDF of fitted model pdf_values = uni.pdf(s) go.Figure([go.Scatter(x=s, y=pdf_values, mode='markers')], layout=go.Layout(title=r"$\text{ Sampled values distribution}$", xaxis_title="$m\\text{ - sampled values}$", yaxis_title="r$ pdf - values$", height=GRAPH_SIZE)).show() # As I expected, the samples' distribution is gaussian around the expectation (10) def test_multivariate_gaussian(): # Question 4 - Draw samples and print fitted model multi_uni = MultivariateGaussian() mu = np.array([0, 0, 4, 0]) sigma = np.asarray([[1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1]]) s = np.random.multivariate_normal(mu, sigma, SAMPLES_NUM) res = multi_uni.fit(s) print(str(res.mu_) + '\n' + str(res.cov_)) # Question 5 - Likelihood evaluation ms = np.linspace(-10, 10, 200) logs = np.zeros((200, 200)) i = 0 j = 0 for f1 in ms: for f3 in ms: logs[i][j] = (MultivariateGaussian.log_likelihood(np.transpose([f1, 0, f3, 0]), sigma, s)) j += 1 j = 0 i += 1 go.Figure([go.Heatmap(x=ms, y=ms, z=np.asarray(logs), colorbar=dict(title="Log Likelihood"))], layout=go.Layout(title= r"$\text{ Log Likelihood as function of " r"different expectancies}$", width=HEATMAP_SIZE, height=HEATMAP_SIZE, xaxis_title="$f3$", yaxis_title="$f1$")).show() # Question 6 - Maximum likelihood index = np.argmax(logs) row = int(index / 200) col = int(index % 200) print("Maximum value is achieved for the pair: f1 = " + str(round(ms[row], 3)) + " f3 = " + str(round(ms[col], 3))) if __name__ == '__main__': np.random.seed(0) test_univariate_gaussian() test_multivariate_gaussian()
[ "numpy.random.normal", "numpy.transpose", "plotly.graph_objects.Layout", "numpy.random.multivariate_normal", "numpy.asarray", "numpy.argmax", "numpy.array", "numpy.linspace", "numpy.zeros", "plotly.graph_objects.Scatter", "numpy.random.seed", "IMLearn.learners.UnivariateGaussian", "IMLearn.learners.MultivariateGaussian" ]
[((392, 412), 'IMLearn.learners.UnivariateGaussian', 'UnivariateGaussian', ([], {}), '()\n', (410, 412), False, 'from IMLearn.learners import UnivariateGaussian, MultivariateGaussian\n'), ((443, 483), 'numpy.random.normal', 'np.random.normal', (['mu', 'sigma', 'SAMPLES_NUM'], {}), '(mu, sigma, SAMPLES_NUM)\n', (459, 483), True, 'import numpy as np\n'), ((1848, 1870), 'IMLearn.learners.MultivariateGaussian', 'MultivariateGaussian', ([], {}), '()\n', (1868, 1870), False, 'from IMLearn.learners import UnivariateGaussian, MultivariateGaussian\n'), ((1880, 1902), 'numpy.array', 'np.array', (['[0, 0, 4, 0]'], {}), '([0, 0, 4, 0])\n', (1888, 1902), True, 'import numpy as np\n'), ((1915, 1991), 'numpy.asarray', 'np.asarray', (['[[1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1]]'], {}), '([[1, 0.2, 0, 0.5], [0.2, 2, 0, 0], [0, 0, 1, 0], [0.5, 0, 0, 1]])\n', (1925, 1991), True, 'import numpy as np\n'), ((2066, 2119), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu', 'sigma', 'SAMPLES_NUM'], {}), '(mu, sigma, SAMPLES_NUM)\n', (2095, 2119), True, 'import numpy as np\n'), ((2246, 2271), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(200)'], {}), '(-10, 10, 200)\n', (2257, 2271), True, 'import numpy as np\n'), ((2283, 2303), 'numpy.zeros', 'np.zeros', (['(200, 200)'], {}), '((200, 200))\n', (2291, 2303), True, 'import numpy as np\n'), ((3176, 3191), 'numpy.argmax', 'np.argmax', (['logs'], {}), '(logs)\n', (3185, 3191), True, 'import numpy as np\n'), ((3399, 3416), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (3413, 3416), True, 'import numpy as np\n'), ((658, 684), 'numpy.linspace', 'np.linspace', (['(10)', '(1000)', '(100)'], {}), '(10, 1000, 100)\n', (669, 684), True, 'import numpy as np\n'), ((2426, 2454), 'numpy.transpose', 'np.transpose', (['[f1, 0, f3, 0]'], {}), '([f1, 0, f3, 0])\n', (2438, 2454), True, 'import numpy as np\n'), ((796, 842), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'ms', 'y': 'diff', 'mode': '"""markers+lines"""'}), "(x=ms, y=diff, mode='markers+lines')\n", (806, 842), True, 'import plotly.graph_objects as go\n'), ((866, 1096), 'plotly.graph_objects.Layout', 'go.Layout', ([], {'title': '"""$\\\\text{ Distance between estimated and true value of the expectation as a function of samples number}$"""', 'xaxis_title': '"""$m\\\\text{ - number of samples}$"""', 'yaxis_title': '"""r$distance$"""', 'height': 'GRAPH_SIZE'}), "(title=\n '$\\\\text{ Distance between estimated and true value of the expectation as a function of samples number}$'\n , xaxis_title='$m\\\\text{ - number of samples}$', yaxis_title=\n 'r$distance$', height=GRAPH_SIZE)\n", (875, 1096), True, 'import plotly.graph_objects as go\n'), ((1328, 1373), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 's', 'y': 'pdf_values', 'mode': '"""markers"""'}), "(x=s, y=pdf_values, mode='markers')\n", (1338, 1373), True, 'import plotly.graph_objects as go\n'), ((1397, 1559), 'plotly.graph_objects.Layout', 'go.Layout', ([], {'title': '"""$\\\\text{ Sampled values distribution}$"""', 'xaxis_title': '"""$m\\\\text{ - sampled values}$"""', 'yaxis_title': '"""r$ pdf - values$"""', 'height': 'GRAPH_SIZE'}), "(title='$\\\\text{ Sampled values distribution}$', xaxis_title=\n '$m\\\\text{ - sampled values}$', yaxis_title='r$ pdf - values$', height=\n GRAPH_SIZE)\n", (1406, 1559), True, 'import plotly.graph_objects as go\n'), ((2687, 2863), 'plotly.graph_objects.Layout', 'go.Layout', ([], {'title': '"""$\\\\text{ Log Likelihood as function of different expectancies}$"""', 'width': 'HEATMAP_SIZE', 'height': 'HEATMAP_SIZE', 'xaxis_title': '"""$f3$"""', 'yaxis_title': '"""$f1$"""'}), "(title=\n '$\\\\text{ Log Likelihood as function of different expectancies}$',\n width=HEATMAP_SIZE, height=HEATMAP_SIZE, xaxis_title='$f3$',\n yaxis_title='$f1$')\n", (2696, 2863), True, 'import plotly.graph_objects as go\n'), ((2556, 2572), 'numpy.asarray', 'np.asarray', (['logs'], {}), '(logs)\n', (2566, 2572), True, 'import numpy as np\n')]
import csv import random from functools import partial from typing import Callable, Optional from pdb import set_trace as st import os import random import pandas as pd from typing import Any, Callable, Dict, Iterable, List, Tuple, Union import numpy as np import tensorflow as tf from foolbox.attacks import ( FGSM, Attack, DeepFoolAttack, IterativeGradientSignAttack, SaliencyMapAttack, ) # from foolbox.criteria import TargetClass # from foolbox.models import TensorFlowModel from tensorflow.python.training import saver from tensorflow.python.training.session_manager import SessionManager import tensorflow as tf import numpy as np import sklearn.metrics as metrics import matplotlib.pyplot as plt plt.switch_backend('Agg') from model.config import LENET from model import LeNet import nninst_mode as mode from dataset import mnist from dataset.config import MNIST_TRAIN, MNIST_PATH from dataset.mnist_transforms import * from trace.lenet_mnist_class_trace_v2 import ( data_config, ) from trace.common import ( class_trace, ) from tf_utils import new_session_config from nninst_statistics import calc_trace_side_overlap from nninst_trace import TraceKey from nninst_utils.numpy import arg_approx from nninst_utils.ray import ray_init from nninst_utils.fs import ensure_dir, IOAction, CsvIOAction, abspath from .common import get_overlay_summary, clean_overlap_ratio, \ translation_overlap_ratio, attack_overlap_ratio, \ lenet_mnist_example from .cw_attack import cw_generate_adversarial_example from .eval_mnist import foolbox_generate_adversarial_example from .cw_attacks import CarliniL2 from nninst_graph import AttrMap, Graph, GraphAttrKey from nninst_utils.ray import ray_iter from tf_graph import ( MaskWeightWithTraceHook, model_fn_with_fetch_hook, ) from trace.common import ( get_predicted_value, get_rank, predict, reconstruct_class_trace_from_tf, reconstruct_trace_from_tf, reconstruct_trace_from_tf_brute_force, ) from .analyse_class_trace import reconstruct_edge # Model config model_label = "augmentation" model_dir = f"result/lenet/model_{model_label}" # Trace config trace_dir = f"{model_dir}/traces" trace_name = "noop" # Result dir result_name = "test" key = TraceKey.POINT # Result dir key_name = key.split('.')[1] # reduce_mode includes output, channel, none reduce_mode = "none" result_dir = f"{model_dir}/conv_point_NOT/{reduce_mode}_{trace_name}_attack_overlap" # result_dir = f"result/lenet/test" images_per_class = 100 attack_name = "FGSM" attacks = { "FGSM": [FGSM], "BIM": [IterativeGradientSignAttack], "JSMA": [SaliencyMapAttack], "DeepFool": [DeepFoolAttack], # "DeepFool_full": [DeepFoolAttack, dict(subsample=None)], # "CWL2": [CarliniL2], } adversarial_label = 1 normal_label = -1 class_trace_fn=lambda class_id: lenet_mnist_class_trace( class_id, threshold, label=model_label, trace_dir = trace_dir, ) lenet_mnist_class_trace = class_trace( trace_name, model_config=LENET, data_config=data_config, ) def reconstruct_point( trace, graph, key, node_name, ): attrs = trace.nodes[node_name] def to_bitmap(shape, attr): mask = np.zeros(np.prod(shape), dtype=np.int8) mask[TraceKey.to_array(attr)] = 1 return mask.reshape(shape) if key in attrs: return to_bitmap(attrs[key + "_shape"], attrs[key]) else: for attr_name, attr in attrs.items(): if attr_name.startswith(TraceKey.POINT + ".") and attr is not None: return to_bitmap(attrs[TraceKey.POINT_SHAPE], attr) RuntimeError(f"Key not found") def filter_point_by_key( trace: AttrMap, key: str =TraceKey.POINT, graph = LENET.network_class.graph().load(), ): reconstruct_point_fn = partial( reconstruct_point, trace, graph, key, ) op_to_mask = {} # print(trace.nodes.keys()) for node_name in sorted(trace.nodes): # print(f"{node_name}: {trace.nodes[node_name].keys()}") if key in trace.nodes[node_name]: op_to_mask[node_name] = reconstruct_point_fn(node_name) # for op in op_to_mask: # print(f"{op}: {op_to_mask[op].shape}") # st() return op_to_mask def reduce_edge_mask(edge_mask: AttrMap, reduce_mode="none"): reduced_edge = {} for node_name in edge_mask: # shape of edge (Ci, Hk, Wk, Co, Ho, Wo) edge = edge_mask[node_name] if "conv2d" in node_name: if reduce_mode == "channel": edge_sum = edge_mask[node_name].sum(0) edge_sum[edge_sum>0] = 1 elif reduce_mode == "output": edge_sum = edge_mask[node_name].sum(-1).sum(-1) edge_sum[edge_sum>0] = 1 else: edge_sum = edge_mask[node_name] else: edge_sum = edge reduced_edge[node_name] = edge_sum return reduced_edge def detect_by_reduced_edge(class_trace, trace, reduce_mode = "none"): class_masks = filter_point_by_key( class_trace, key = key ) sample_masks = filter_point_by_key( trace, key = key ) class_masks = reduce_edge_mask(class_masks, reduce_mode = reduce_mode) sample_masks = reduce_edge_mask(sample_masks, reduce_mode = reduce_mode) is_adversarial = False for node_name in class_masks: if "conv2d" not in node_name or "Relu" not in node_name: continue class_mask = class_masks[node_name] sample_mask = sample_masks[node_name] class_zero = class_mask==0 sample_zero_sum = sample_mask[class_zero].sum() if sample_zero_sum>0: is_adversarial = True if is_adversarial: return adversarial_label else: return normal_label # Compute the mean overlap ratio of attacked image def attack_reduced_edge_detection( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, images_per_class: int = 1, num_gpus: float = 0.2, model_dir = "result/lenet/model_augmentation", transforms = None, transform_name = "noop", reduce_mode = "none", **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: nonlocal model_dir mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath(model_dir) ckpt_dir = f"{model_dir}/ckpts" create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=ckpt_dir, ) if predicted_label != class_id: return [{}] if per_node else {} adversarial_example = lenet_mnist_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, # model_dir not ckpt_dir model_dir=model_dir, transforms = transforms, transform_name = transform_name, mode = "test", ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_predicted_label = predict( create_model=create_model, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), model_dir=ckpt_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir, transforms=transforms) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} adversarial_trace = reconstruct_trace_from_tf_brute_force( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] row = { "image_id": image_id, "class_id": class_id, "original.prediction": detect_by_reduced_edge( class_trace_fn(class_id).load(), trace, reduce_mode, ), "adversarial.prediction": detect_by_reduced_edge( class_trace_fn(adversarial_label).load(), adversarial_trace, reduce_mode, ), } return row detections = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), # ((-1, image_id) for image_id in range(mnist_info.test().size)), chunksize=1, out_of_order=True, num_gpus=num_gpus, ) traces = [detection for detection in detections if len(detection) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def attack_transform_overlap(attack_name, transform_name, transforms, reduce_mode = "none", result_dir = "result/lenet/9transform_attack_overlap"): name = attack_name+'_'+transform_name lenet_mnist_class_trace = class_trace( trace_name, model_config=LENET, data_config=data_config, ) threshold = 0.5 # DeepFool will shutdown when num_gpu<0.2 num_gpus = 0.2 overlap_fn = calc_trace_side_overlap per_channel = False path = os.path.join(result_dir, f"{name}_overlap.csv") # print(f"Computing {name}") # lenet_overlap_ratio = attack_reduced_edge_detection_count_violation( lenet_overlap_ratio = attack_reduced_edge_detection( attack_name=attack_name, attack_fn=attacks[attack_name][0], generate_adversarial_fn=cw_generate_adversarial_example if attack_name.startswith("CW") else foolbox_generate_adversarial_example, class_trace_fn=lambda class_id: lenet_mnist_class_trace( class_id, threshold, label=model_label, trace_dir = trace_dir, ), select_fn=lambda input: arg_approx(input, threshold), overlap_fn=overlap_fn, path=path, per_channel=per_channel, preprocessing=(0.1307, 0.3081), image_size=28, class_num=10, norm_fn=mnist.normalize, data_format="channels_first", **(attacks[attack_name][1] if len(attacks[attack_name]) == 2 else {}), images_per_class=images_per_class, model_dir=model_dir, num_gpus = num_gpus, transforms = transforms, transform_name = transform_name, reduce_mode = reduce_mode, ) lenet_overlap_ratio.save() return lenet_overlap_ratio.load() def compute_accuracy(trace_frame): adversarial_metric = trace_frame["adversarial.prediction"] original_metric = trace_frame["original.prediction"] predictions = np.concatenate([adversarial_metric, original_metric]) row_filter = np.isfinite(predictions) labels = np.concatenate( [ np.repeat(1, adversarial_metric.shape[0]), np.repeat(-1, original_metric.shape[0]), ] ) labels = labels[row_filter] predictions = predictions[row_filter] fpr, tpr, thresholds = metrics.roc_curve(labels, predictions) roc_auc = metrics.auc(fpr, tpr) return fpr, tpr, roc_auc def draw_attack_transform_roc(exp_to_roc, save_name, result_dir): plt.title('ROC') detection_results = {} for exp_name, item in exp_to_roc.items(): fpr, tpr, roc_auc, color = item print(f"{exp_name}: fpr={fpr}, tpr={tpr}") plt.plot(fpr, tpr,color,label=f"{exp_name}_AUC={roc_auc:.2f}") detection_results[exp_name] = [fpr, tpr] plt.legend(loc='lower right') plt.plot([0,1],[0,1],'r--') plt.ylabel('TPR') plt.xlabel('FPR') path = os.path.join(result_dir, f"{save_name}.png") plt.savefig(path) path = os.path.join(result_dir, f"{save_name}.txt") with open(path, "w") as f: for name in detection_results: print(f"{exp_name}: fpr={fpr}, tpr={tpr}", file=f) def attack_exp(): exp_to_roc = {} os.makedirs(result_dir, exist_ok=True) for transforms, transform_name, color in [ [None, "noop", 'b'], # [Translate(dx=-5,dy=-5), "leftup", 'g'], # [Translate(dx=5,dy=5), "rightdown", 'c'], # [Translate(dx=-5), "left", 'y'], # [Translate(dy=-5), "up", 'm'], ]: exp_name = attack_name+"_"+transform_name print(f"Computing {exp_name}") trace_frame = attack_transform_overlap(attack_name, transform_name, transforms, reduce_mode = reduce_mode, result_dir=result_dir) exp_to_roc[exp_name] = compute_accuracy(trace_frame) + (color,) draw_attack_transform_roc(exp_to_roc, save_name=attack_name, result_dir=result_dir) if __name__ == "__main__": # mode.debug() mode.local() # ray_init("gpu") ray_init( log_to_driver=False ) tf.set_random_seed(3) np.random.seed(3) random.seed(3) attack_exp()
[ "numpy.prod", "matplotlib.pyplot.ylabel", "sklearn.metrics.auc", "model.config.LENET.network_class.graph", "nninst_utils.numpy.arg_approx", "sklearn.metrics.roc_curve", "numpy.isfinite", "nninst_utils.fs.abspath", "nninst_utils.ray.ray_init", "matplotlib.pyplot.switch_backend", "tensorflow.set_random_seed", "nninst_mode.local", "numpy.repeat", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "nninst_mode.check", "numpy.random.seed", "numpy.concatenate", "pandas.DataFrame", "model.LeNet.graph", "tensorflow.convert_to_tensor", "dataset.mnist.test", "nninst_utils.fs.CsvIOAction", "matplotlib.pyplot.savefig", "trace.common.class_trace", "model.LeNet", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "dataset.mnist.normalize", "os.makedirs", "os.path.join", "random.seed", "functools.partial", "nninst_trace.TraceKey.to_array" ]
[((724, 749), 'matplotlib.pyplot.switch_backend', 'plt.switch_backend', (['"""Agg"""'], {}), "('Agg')\n", (742, 749), True, 'import matplotlib.pyplot as plt\n'), ((3011, 3079), 'trace.common.class_trace', 'class_trace', (['trace_name'], {'model_config': 'LENET', 'data_config': 'data_config'}), '(trace_name, model_config=LENET, data_config=data_config)\n', (3022, 3079), False, 'from trace.common import class_trace\n'), ((3961, 4006), 'functools.partial', 'partial', (['reconstruct_point', 'trace', 'graph', 'key'], {}), '(reconstruct_point, trace, graph, key)\n', (3968, 4006), False, 'from functools import partial\n'), ((11111, 11155), 'nninst_utils.fs.CsvIOAction', 'CsvIOAction', (['path'], {'init_fn': 'get_overlap_ratio'}), '(path, init_fn=get_overlap_ratio)\n', (11122, 11155), False, 'from nninst_utils.fs import ensure_dir, IOAction, CsvIOAction, abspath\n'), ((11492, 11560), 'trace.common.class_trace', 'class_trace', (['trace_name'], {'model_config': 'LENET', 'data_config': 'data_config'}), '(trace_name, model_config=LENET, data_config=data_config)\n', (11503, 11560), False, 'from trace.common import class_trace\n'), ((11853, 11900), 'os.path.join', 'os.path.join', (['result_dir', 'f"""{name}_overlap.csv"""'], {}), "(result_dir, f'{name}_overlap.csv')\n", (11865, 11900), False, 'import os\n'), ((13327, 13380), 'numpy.concatenate', 'np.concatenate', (['[adversarial_metric, original_metric]'], {}), '([adversarial_metric, original_metric])\n', (13341, 13380), True, 'import numpy as np\n'), ((13398, 13422), 'numpy.isfinite', 'np.isfinite', (['predictions'], {}), '(predictions)\n', (13409, 13422), True, 'import numpy as np\n'), ((13687, 13725), 'sklearn.metrics.roc_curve', 'metrics.roc_curve', (['labels', 'predictions'], {}), '(labels, predictions)\n', (13704, 13725), True, 'import sklearn.metrics as metrics\n'), ((13740, 13761), 'sklearn.metrics.auc', 'metrics.auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (13751, 13761), True, 'import sklearn.metrics as metrics\n'), ((13863, 13879), 'matplotlib.pyplot.title', 'plt.title', (['"""ROC"""'], {}), "('ROC')\n", (13872, 13879), True, 'import matplotlib.pyplot as plt\n'), ((14170, 14199), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (14180, 14199), True, 'import matplotlib.pyplot as plt\n'), ((14204, 14235), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]', '"""r--"""'], {}), "([0, 1], [0, 1], 'r--')\n", (14212, 14235), True, 'import matplotlib.pyplot as plt\n'), ((14236, 14253), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""TPR"""'], {}), "('TPR')\n", (14246, 14253), True, 'import matplotlib.pyplot as plt\n'), ((14258, 14275), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""FPR"""'], {}), "('FPR')\n", (14268, 14275), True, 'import matplotlib.pyplot as plt\n'), ((14288, 14332), 'os.path.join', 'os.path.join', (['result_dir', 'f"""{save_name}.png"""'], {}), "(result_dir, f'{save_name}.png')\n", (14300, 14332), False, 'import os\n'), ((14337, 14354), 'matplotlib.pyplot.savefig', 'plt.savefig', (['path'], {}), '(path)\n', (14348, 14354), True, 'import matplotlib.pyplot as plt\n'), ((14367, 14411), 'os.path.join', 'os.path.join', (['result_dir', 'f"""{save_name}.txt"""'], {}), "(result_dir, f'{save_name}.txt')\n", (14379, 14411), False, 'import os\n'), ((14589, 14627), 'os.makedirs', 'os.makedirs', (['result_dir'], {'exist_ok': '(True)'}), '(result_dir, exist_ok=True)\n', (14600, 14627), False, 'import os\n'), ((15572, 15584), 'nninst_mode.local', 'mode.local', ([], {}), '()\n', (15582, 15584), True, 'import nninst_mode as mode\n'), ((15612, 15641), 'nninst_utils.ray.ray_init', 'ray_init', ([], {'log_to_driver': '(False)'}), '(log_to_driver=False)\n', (15620, 15641), False, 'from nninst_utils.ray import ray_init\n'), ((15661, 15682), 'tensorflow.set_random_seed', 'tf.set_random_seed', (['(3)'], {}), '(3)\n', (15679, 15682), True, 'import tensorflow as tf\n'), ((15687, 15704), 'numpy.random.seed', 'np.random.seed', (['(3)'], {}), '(3)\n', (15701, 15704), True, 'import numpy as np\n'), ((15709, 15723), 'random.seed', 'random.seed', (['(3)'], {}), '(3)\n', (15720, 15723), False, 'import random\n'), ((11078, 11098), 'pandas.DataFrame', 'pd.DataFrame', (['traces'], {}), '(traces)\n', (11090, 11098), True, 'import pandas as pd\n'), ((14053, 14117), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr', 'color'], {'label': 'f"""{exp_name}_AUC={roc_auc:.2f}"""'}), "(fpr, tpr, color, label=f'{exp_name}_AUC={roc_auc:.2f}')\n", (14061, 14117), True, 'import matplotlib.pyplot as plt\n'), ((3357, 3371), 'numpy.prod', 'np.prod', (['shape'], {}), '(shape)\n', (3364, 3371), True, 'import numpy as np\n'), ((3401, 3424), 'nninst_trace.TraceKey.to_array', 'TraceKey.to_array', (['attr'], {}), '(attr)\n', (3418, 3424), False, 'from nninst_trace import TraceKey\n'), ((3891, 3918), 'model.config.LENET.network_class.graph', 'LENET.network_class.graph', ([], {}), '()\n', (3916, 3918), False, 'from model.config import LENET\n'), ((6819, 6836), 'nninst_mode.check', 'mode.check', (['(False)'], {}), '(False)\n', (6829, 6836), True, 'import nninst_mode as mode\n'), ((6860, 6879), 'nninst_utils.fs.abspath', 'abspath', (['MNIST_PATH'], {}), '(MNIST_PATH)\n', (6867, 6879), False, 'from nninst_utils.fs import ensure_dir, IOAction, CsvIOAction, abspath\n'), ((6904, 6922), 'nninst_utils.fs.abspath', 'abspath', (['model_dir'], {}), '(model_dir)\n', (6911, 6922), False, 'from nninst_utils.fs import ensure_dir, IOAction, CsvIOAction, abspath\n'), ((7102, 7175), 'functools.partial', 'partial', (['model_fn_with_fetch_hook'], {'create_model': 'create_model', 'graph': 'graph'}), '(model_fn_with_fetch_hook, create_model=create_model, graph=graph)\n', (7109, 7175), False, 'from functools import partial\n'), ((13474, 13515), 'numpy.repeat', 'np.repeat', (['(1)', 'adversarial_metric.shape[0]'], {}), '(1, adversarial_metric.shape[0])\n', (13483, 13515), True, 'import numpy as np\n'), ((13529, 13568), 'numpy.repeat', 'np.repeat', (['(-1)', 'original_metric.shape[0]'], {}), '(-1, original_metric.shape[0])\n', (13538, 13568), True, 'import numpy as np\n'), ((7002, 7037), 'model.LeNet', 'LeNet', ([], {'data_format': '"""channels_first"""'}), "(data_format='channels_first')\n", (7007, 7037), False, 'from model import LeNet\n'), ((12518, 12546), 'nninst_utils.numpy.arg_approx', 'arg_approx', (['input', 'threshold'], {}), '(input, threshold)\n', (12528, 12546), False, 'from nninst_utils.numpy import arg_approx\n'), ((7058, 7071), 'model.LeNet.graph', 'LeNet.graph', ([], {}), '()\n', (7069, 7071), False, 'from model import LeNet\n'), ((8539, 8575), 'dataset.mnist.normalize', 'mnist.normalize', (['adversarial_example'], {}), '(adversarial_example)\n', (8554, 8575), False, 'from dataset import mnist\n'), ((9630, 9666), 'dataset.mnist.normalize', 'mnist.normalize', (['adversarial_example'], {}), '(adversarial_example)\n', (9645, 9666), False, 'from dataset import mnist\n'), ((7338, 7358), 'dataset.mnist.test', 'mnist.test', (['data_dir'], {}), '(data_dir)\n', (7348, 7358), False, 'from dataset import mnist\n'), ((7459, 7505), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['class_id'], {'dtype': 'tf.int32'}), '(class_id, dtype=tf.int32)\n', (7479, 7505), True, 'import tensorflow as tf\n'), ((8908, 8951), 'dataset.mnist.test', 'mnist.test', (['data_dir'], {'transforms': 'transforms'}), '(data_dir, transforms=transforms)\n', (8918, 8951), False, 'from dataset import mnist\n'), ((9052, 9098), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['class_id'], {'dtype': 'tf.int32'}), '(class_id, dtype=tf.int32)\n', (9072, 9098), True, 'import tensorflow as tf\n')]
import numpy as np from multiagent.core import World, Agent, Landmark from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self): world = World() # set any world properties first world.dim_c = 2 num_agents = 2 num_adversaries = 1 num_landmarks = 5 # add agents world.agents = [Agent() for i in range(num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = True agent.silent = True if i < num_adversaries: agent.adversary = True agent.color = np.array([0.75, 0.25, 0.25]) else: agent.adversary = False agent.color = np.array([0.25, 0.25, 0.75]) # add landmarks for goal posts and puck goal_posts = [[-0.25, -1.0], [-0.25, 1.0], [0.25, -1.0], [0.25, 1.0]] world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i if i > 0: landmark.collide = True landmark.movable = False landmark.state.p_pos = np.array(goal_posts[i-1]) landmark.state.p_vel = np.zeros(world.dim_p) else: landmark.collide = True landmark.movable = True # add landmarks for rink boundary #world.landmarks += self.set_boundaries(world) # make initial conditions self.reset_world(world) return world def set_boundaries(self, world): boundary_list = [] landmark_size = 1 edge = 1 + landmark_size num_landmarks = int(edge * 2 / landmark_size) for x_pos in [-edge, edge]: for i in range(num_landmarks): l = Landmark() l.state.p_pos = np.array([x_pos, -1 + i * landmark_size]) boundary_list.append(l) for y_pos in [-edge, edge]: for i in range(num_landmarks): l = Landmark() l.state.p_pos = np.array([-1 + i * landmark_size, y_pos]) boundary_list.append(l) for i, l in enumerate(boundary_list): l.name = 'boundary %d' % i l.collide = True l.movable = False l.boundary = True l.color = np.array([0.75, 0.75, 0.75]) l.size = landmark_size l.state.p_vel = np.zeros(world.dim_p) return boundary_list def reset_world(self, world): # random properties for landmarks for i, landmark in enumerate(world.landmarks): if i > 0: landmark.color = np.array([0.7, 0.7, 0.7]) else: landmark.color = np.array([0.1, 0.1, 0.1]) landmark.index = i # set random initial states for agent in world.agents: agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) world.landmarks[0].state.p_pos = np.random.uniform(-1, +1, world.dim_p) world.landmarks[0].state.p_vel = np.zeros(world.dim_p) # return all agents of the blue team def blue_agents(self, world): return [agent for agent in world.agents if not agent.adversary] # return all agents of the red team def red_agents(self, world): return [agent for agent in world.agents if agent.adversary] def reward(self, agent, world): # Agents are rewarded based on team they belong to return self.adversary_reward(agent, world) if agent.adversary else self.agent_reward(agent, world) def agent_reward(self, agent, world): # reward for blue team agent return 0.0 def adversary_reward(self, agent, world): # reward for red team agent return 0.0 def observation(self, agent, world): # get positions/vel of all entities in this agent's reference frame entity_pos = [] entity_vel = [] for entity in world.landmarks: # world.entities: entity_pos.append(entity.state.p_pos - agent.state.p_pos) if entity.movable: entity_vel.append(entity.state.p_vel) # get positions/vel of all other agents in this agent's reference frame other_pos = [] other_vel = [] for other in world.agents: if other is agent: continue other_pos.append(other.state.p_pos - agent.state.p_pos) other_vel.append(other.state.p_vel) return np.concatenate([agent.state.p_vel] + entity_pos + entity_vel + other_pos + other_vel)
[ "multiagent.core.Landmark", "numpy.array", "numpy.zeros", "multiagent.core.World", "numpy.concatenate", "numpy.random.uniform", "multiagent.core.Agent" ]
[((188, 195), 'multiagent.core.World', 'World', ([], {}), '()\n', (193, 195), False, 'from multiagent.core import World, Agent, Landmark\n'), ((3273, 3311), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(+1)', 'world.dim_p'], {}), '(-1, +1, world.dim_p)\n', (3290, 3311), True, 'import numpy as np\n'), ((3353, 3374), 'numpy.zeros', 'np.zeros', (['world.dim_p'], {}), '(world.dim_p)\n', (3361, 3374), True, 'import numpy as np\n'), ((4795, 4884), 'numpy.concatenate', 'np.concatenate', (['([agent.state.p_vel] + entity_pos + entity_vel + other_pos + other_vel)'], {}), '([agent.state.p_vel] + entity_pos + entity_vel + other_pos +\n other_vel)\n', (4809, 4884), True, 'import numpy as np\n'), ((383, 390), 'multiagent.core.Agent', 'Agent', ([], {}), '()\n', (388, 390), False, 'from multiagent.core import World, Agent, Landmark\n'), ((1043, 1053), 'multiagent.core.Landmark', 'Landmark', ([], {}), '()\n', (1051, 1053), False, 'from multiagent.core import World, Agent, Landmark\n'), ((2521, 2549), 'numpy.array', 'np.array', (['[0.75, 0.75, 0.75]'], {}), '([0.75, 0.75, 0.75])\n', (2529, 2549), True, 'import numpy as np\n'), ((2613, 2634), 'numpy.zeros', 'np.zeros', (['world.dim_p'], {}), '(world.dim_p)\n', (2621, 2634), True, 'import numpy as np\n'), ((3089, 3127), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(+1)', 'world.dim_p'], {}), '(-1, +1, world.dim_p)\n', (3106, 3127), True, 'import numpy as np\n'), ((3160, 3181), 'numpy.zeros', 'np.zeros', (['world.dim_p'], {}), '(world.dim_p)\n', (3168, 3181), True, 'import numpy as np\n'), ((3210, 3231), 'numpy.zeros', 'np.zeros', (['world.dim_c'], {}), '(world.dim_c)\n', (3218, 3231), True, 'import numpy as np\n'), ((678, 706), 'numpy.array', 'np.array', (['[0.75, 0.25, 0.25]'], {}), '([0.75, 0.25, 0.25])\n', (686, 706), True, 'import numpy as np\n'), ((795, 823), 'numpy.array', 'np.array', (['[0.25, 0.25, 0.75]'], {}), '([0.25, 0.25, 0.75])\n', (803, 823), True, 'import numpy as np\n'), ((1328, 1355), 'numpy.array', 'np.array', (['goal_posts[i - 1]'], {}), '(goal_posts[i - 1])\n', (1336, 1355), True, 'import numpy as np\n'), ((1393, 1414), 'numpy.zeros', 'np.zeros', (['world.dim_p'], {}), '(world.dim_p)\n', (1401, 1414), True, 'import numpy as np\n'), ((1974, 1984), 'multiagent.core.Landmark', 'Landmark', ([], {}), '()\n', (1982, 1984), False, 'from multiagent.core import World, Agent, Landmark\n'), ((2017, 2058), 'numpy.array', 'np.array', (['[x_pos, -1 + i * landmark_size]'], {}), '([x_pos, -1 + i * landmark_size])\n', (2025, 2058), True, 'import numpy as np\n'), ((2199, 2209), 'multiagent.core.Landmark', 'Landmark', ([], {}), '()\n', (2207, 2209), False, 'from multiagent.core import World, Agent, Landmark\n'), ((2242, 2283), 'numpy.array', 'np.array', (['[-1 + i * landmark_size, y_pos]'], {}), '([-1 + i * landmark_size, y_pos])\n', (2250, 2283), True, 'import numpy as np\n'), ((2852, 2877), 'numpy.array', 'np.array', (['[0.7, 0.7, 0.7]'], {}), '([0.7, 0.7, 0.7])\n', (2860, 2877), True, 'import numpy as np\n'), ((2929, 2954), 'numpy.array', 'np.array', (['[0.1, 0.1, 0.1]'], {}), '([0.1, 0.1, 0.1])\n', (2937, 2954), True, 'import numpy as np\n')]
# Imports import numpy as np # Single to double frame # Combines images by 2, returning an array with two frames (one for each image). # # Input: 5 images with step 1. # Output: 4 double-framed images. # FrameA: 1 2 3 4 # FrameB: 2 3 4 5 # # Input: 8 images with step 3. # Output: 5 doubled-framed images. # FrameA: 1 2 3 4 5 # FrameB: 4 5 6 7 8 # # This function also crops the image according to the provided Region of Interest (ROI), that must be passed as: # ROI = [X-start X-end Y-start Y-end], for example: [1 100 1 50]. # # Output: # Array with the following dimensions: 0 - Image; 1 - Frame; 2 - Height (Y); 3 - Width (X). def single_to_double_frame(images, step=1, roi=None): total_images = images.shape[0] frameA_idx = list(range(0, total_images-step)) frameB_idx = [idx+1 for idx in frameA_idx] images_double_framed = [] for idx in frameA_idx: double_frame = [images[frameA_idx[idx]], images[frameB_idx[idx]]] if roi and len(roi) == 4: size_y, size_x = double_frame[0].shape min_x, max_x = max(0, roi[0]-1), min(roi[1], size_x) min_y, max_y = max(0, roi[2]-1), min(roi[3], size_x) double_frame[0] = np.array(double_frame[0][min_y:max_y, min_x:max_x]) double_frame[1] = np.array(double_frame[1][min_y:max_y, min_x:max_x]) images_double_framed += [double_frame] return np.array(images_double_framed)
[ "numpy.array" ]
[((1479, 1509), 'numpy.array', 'np.array', (['images_double_framed'], {}), '(images_double_framed)\n', (1487, 1509), True, 'import numpy as np\n'), ((1273, 1324), 'numpy.array', 'np.array', (['double_frame[0][min_y:max_y, min_x:max_x]'], {}), '(double_frame[0][min_y:max_y, min_x:max_x])\n', (1281, 1324), True, 'import numpy as np\n'), ((1355, 1406), 'numpy.array', 'np.array', (['double_frame[1][min_y:max_y, min_x:max_x]'], {}), '(double_frame[1][min_y:max_y, min_x:max_x])\n', (1363, 1406), True, 'import numpy as np\n')]
#! /usr/bin/env python """ This script parses and cleans up a provided Flow Cytometry Standard (fcs) file and saves it as a Comma Separated Value (csv). """ import os import re import numpy as np import pandas as pd import optparse import fcsparser # ######################################################################### def main(): # Initialize the option parser parser = optparse.OptionParser() #Add options. parser.add_option('-i', '--input_file', dest='filename', help='name of single\ file to be processed.', metavar="filename") parser.add_option('-d', '--directory', dest='inputdir', help='name of\ input directory to be processed') parser.add_option('-p', '--pattern', dest='pattern', help='filename\ pattern to parse files.') parser.add_option('-o', '--output', dest='out', help='name of output directory') parser.add_option('-c', '--channel', action='append', dest='channels', help=' individual channels to extract. Each channel must have its\ own -c flag.') parser.add_option('-v', '--verbose', action='store_true', dest='verbose',\ help='print progress to stdout', default=False) parser.add_option('-f', '--force', action='store_true', dest='force', help='force saving of files to output directory if needed.', default=False) # get the ops and args ops, args = parser.parse_args() # List files if (ops.inputdir == None) & (ops.filename == None): raise ValueError('no input directory/file provided! Please indicate\ the input directory that contains the fcs files') # get all the files in the directory files = [] if ops.inputdir != None: usr_files = np.array(os.listdir(ops.inputdir)) # Use the pattern to identify all of the files. files_idx = np.array([ops.pattern in f for f in usr_files]) file_names = usr_files[files_idx] #Add the input directory ahead of each file. for f in file_names: files.append('%s/%s' %(ops.inputdir, f)) else: files.append(ops.filename) # Test that the output directory exists and is empty. if ops.out != None: if os.path.isdir(ops.out) == False: os.mkdir(ops.out) print("Made new ouptut directory %s. I hope that's okay..." %ops.out) elif len(os.listdir(ops.out)) != None: if ops.force == True: cont = 'y' else: cont = raw_input('Output directory is not empty! Continue? [y/n]: ') # loop through the files for i,f in enumerate(files): # consider only the fcs files if f.endswith('.fcs'): # read the file meta, data = fcsparser.parse(f) # if there are set channels, get all the channels if ops.channels != None: data = data.loc[:, ops.channels] #parse the file name to change the extension filename = re.sub('.fcs', '.csv', f) #Determine if they should be saved to an output directory or not. if ops.out == None: data.to_csv(filename, index=False) if ops.verbose == True: print(f + ' -> ' + filename) else: find_split = filename.rsplit('/', 1) if len(find_split) != 1: filename = filename.rsplit('/', 1)[1] # Determine how to save the file. if len(os.listdir(ops.out)) != None: if cont.lower() == 'y': data.to_csv(ops.out + '/' + filename, index=False) if ops.verbose == True: print(f + ' -> ' + ops.out + '/' + filename) else: raise ValueError('output directory is not empty.') if __name__ == '__main__': main() print('thank you -- come again')
[ "os.listdir", "optparse.OptionParser", "numpy.array", "os.path.isdir", "fcsparser.parse", "os.mkdir", "re.sub" ]
[((386, 409), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (407, 409), False, 'import optparse\n'), ((1906, 1955), 'numpy.array', 'np.array', (['[(ops.pattern in f) for f in usr_files]'], {}), '([(ops.pattern in f) for f in usr_files])\n', (1914, 1955), True, 'import numpy as np\n'), ((1804, 1828), 'os.listdir', 'os.listdir', (['ops.inputdir'], {}), '(ops.inputdir)\n', (1814, 1828), False, 'import os\n'), ((2281, 2303), 'os.path.isdir', 'os.path.isdir', (['ops.out'], {}), '(ops.out)\n', (2294, 2303), False, 'import os\n'), ((2326, 2343), 'os.mkdir', 'os.mkdir', (['ops.out'], {}), '(ops.out)\n', (2334, 2343), False, 'import os\n'), ((2824, 2842), 'fcsparser.parse', 'fcsparser.parse', (['f'], {}), '(f)\n', (2839, 2842), False, 'import fcsparser\n'), ((3076, 3101), 're.sub', 're.sub', (['""".fcs"""', '""".csv"""', 'f'], {}), "('.fcs', '.csv', f)\n", (3082, 3101), False, 'import re\n'), ((2443, 2462), 'os.listdir', 'os.listdir', (['ops.out'], {}), '(ops.out)\n', (2453, 2462), False, 'import os\n'), ((3627, 3646), 'os.listdir', 'os.listdir', (['ops.out'], {}), '(ops.out)\n', (3637, 3646), False, 'import os\n')]
from traits.api import HasTraits, Bool, Enum, List, Str from numpy import array, cos, sin class ElementalRotationDefinition(HasTraits): ''' A definition of an elemental rotation and its angle's name ''' angle_name = Str("undefined angle") axis = Enum('around_x', 'around_y', 'around_z') isClockwiseCameraSystemRotation = Bool(False) class TaitBryanAnglesDefinition(HasTraits): ''' Tait-Bryan angle rotations are defined by three rotation angles around the x,y & z-axis. The resulting rotation will be different according to 1. The order in which the rotations are applied 2. The rotation direction (clockwise vs. counter-clockwise) ''' angles_in_order_applied = List(ElementalRotationDefinition) def angles_yaw_pitch_roll(): ''' Returns a definition of the "Yaw, Pitch, Roll" Tait-Bryan angles set widespread in aerospace applications. ''' definition = TaitBryanAnglesDefinition() # first roll is applied definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Roll", axis='around_x', isClockwiseCameraSystemRotation=False)) # then pitch definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Pitch", axis='around_y', isClockwiseCameraSystemRotation=False)) # then yaw definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Yaw", axis='around_z', isClockwiseCameraSystemRotation=False)) return definition def angles_pix4d_omega_phi_kappa(): ''' Returns a definition of the "Omega, Phi, Kappa" Tait-Bryan angles set used by pix4d. ''' definition = TaitBryanAnglesDefinition() # first kappa is applied definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Kappa", axis='around_z', isClockwiseCameraSystemRotation=False)) # then phi definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Phi", axis='around_y', isClockwiseCameraSystemRotation=False)) # last omega definition.angles_in_order_applied.append( ElementalRotationDefinition(angle_name="Omega", axis='around_x', isClockwiseCameraSystemRotation=False)) return definition def camera_to_world_rotation_around_x(cc_angle = 0): ''' Compute a rotation matrix that is used to transform a point in camera coordinates to a point in world coordinates. when the camera(system) rotates counter-clockwise. (Seeing the camera(system) as fixed, the rotation would transform points clockwise around its x axis) ''' return array([[1., 0., 0.], [0., cos(cc_angle), -sin(cc_angle)], [0., sin(cc_angle), cos(cc_angle)]]) def camera_to_world_rotation_around_y(cc_angle = 0): ''' Compute a rotation matrix that is used to transform a point in camera coordinates to a point in world coordinates. when the camera(system) rotates counter-clockwise. (Seeing the camera(system) as fixed, the rotation would transform points clockwise around its x axis) ''' return array([[cos(cc_angle), 0., sin(cc_angle)], [0., 1., 0.], [-sin(cc_angle), 0., cos(cc_angle)]]) def camera_to_world_rotation_around_z(cc_angle = 0): ''' Compute a rotation matrix that is used to transform a point in camera coordinates to a point in world coordinates when the camera(system) rotates counter-clockwise. (Seeing the camera(system) as fixed, the rotation would transform points clockwise around its x axis) ''' return array([[cos(cc_angle), -sin(cc_angle), 0.], [sin(cc_angle), cos(cc_angle), 0.], [0., 0., 1.]]) def world_angle(angle, world_axis): ''' Correction on the angle for possibly inverted axes due to the world system definition (w.r.t. the mayavi world system) ''' if(world_axis in ['Down', 'West', 'South']): angle = -angle return angle def elemental_rotation(angle_and_definition, worldsystem): ''' Returns an elemental rotation matrix that is used to transform a point in camera coordinates to a point in world coordinates given an euler angle and its definition. ''' angle, definition = angle_and_definition if (definition.isClockwiseCameraSystemRotation): angle = -angle if definition.axis == 'around_x': return camera_to_world_rotation_around_x(world_angle(angle, worldsystem.x_axis)) if definition.axis == 'around_y': return camera_to_world_rotation_around_y(world_angle(angle, worldsystem.y_axis)) if definition.axis == 'around_z': return camera_to_world_rotation_around_z(world_angle(angle, worldsystem.z_axis)) def camera_to_world_rotation_matrix(first_angle_and_definition, second_angle_and_definition, last_angle_and_definition, world_system): ''' Compute a rotation matrix that is used to transform a point in camera coordinates to a point in world coordinates given Tait-Bryan angles and their definition. Note: Matrices application order is opposite to reading order ''' return elemental_rotation(last_angle_and_definition, world_system).dot( elemental_rotation(second_angle_and_definition, world_system)).dot( elemental_rotation(first_angle_and_definition, world_system))
[ "traits.api.Enum", "traits.api.Str", "numpy.cos", "numpy.sin", "traits.api.Bool", "traits.api.List" ]
[((234, 256), 'traits.api.Str', 'Str', (['"""undefined angle"""'], {}), "('undefined angle')\n", (237, 256), False, 'from traits.api import HasTraits, Bool, Enum, List, Str\n'), ((268, 308), 'traits.api.Enum', 'Enum', (['"""around_x"""', '"""around_y"""', '"""around_z"""'], {}), "('around_x', 'around_y', 'around_z')\n", (272, 308), False, 'from traits.api import HasTraits, Bool, Enum, List, Str\n'), ((347, 358), 'traits.api.Bool', 'Bool', (['(False)'], {}), '(False)\n', (351, 358), False, 'from traits.api import HasTraits, Bool, Enum, List, Str\n'), ((722, 755), 'traits.api.List', 'List', (['ElementalRotationDefinition'], {}), '(ElementalRotationDefinition)\n', (726, 755), False, 'from traits.api import HasTraits, Bool, Enum, List, Str\n'), ((2700, 2713), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (2703, 2713), False, 'from numpy import array, cos, sin\n'), ((2758, 2771), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (2761, 2771), False, 'from numpy import array, cos, sin\n'), ((2774, 2787), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (2777, 2787), False, 'from numpy import array, cos, sin\n'), ((3170, 3183), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (3173, 3183), False, 'from numpy import array, cos, sin\n'), ((3192, 3205), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (3195, 3205), False, 'from numpy import array, cos, sin\n'), ((3295, 3308), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (3298, 3308), False, 'from numpy import array, cos, sin\n'), ((3690, 3703), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (3693, 3703), False, 'from numpy import array, cos, sin\n'), ((3748, 3761), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (3751, 3761), False, 'from numpy import array, cos, sin\n'), ((3766, 3779), 'numpy.cos', 'cos', (['cc_angle'], {}), '(cc_angle)\n', (3769, 3779), False, 'from numpy import array, cos, sin\n'), ((2717, 2730), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (2720, 2730), False, 'from numpy import array, cos, sin\n'), ((3274, 3287), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (3277, 3287), False, 'from numpy import array, cos, sin\n'), ((3709, 3722), 'numpy.sin', 'sin', (['cc_angle'], {}), '(cc_angle)\n', (3712, 3722), False, 'from numpy import array, cos, sin\n')]
import torch from torch.utils.data import Dataset, DataLoader from torch.distributions.multivariate_normal import MultivariateNormal import numpy as np from tqdm import tqdm import random def get_rotation(theta): rad = np.radians(theta) c, s = np.cos(rad), np.sin(rad) R = np.array([[c, -s], [s, c]]) return R class CircleDataset(Dataset): def __init__(self, n_samples, n_centers=9, sigma=0.1, ysigma=0.01, include_zero=True, target_label=1., seed = None, radius=1.): super().__init__() if seed != None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True self.include_zero = include_zero self.nus = [] if include_zero: self.nus.append(torch.zeros(2)) self.sigma = sigma self.ysigma = ysigma self.radius = radius for i in range(n_centers-include_zero): R = get_rotation(i*360/(n_centers-include_zero)) self.nus.append(torch.tensor([radius, 0] @ R, dtype=torch.float)) classes = torch.multinomial(torch.ones(n_centers), n_samples, replacement=True) data = [] target = [] for i in range(n_centers): n_samples_class = torch.sum(classes == i) if n_samples_class == 0: continue dist = MultivariateNormal(self.nus[i], torch.eye(2)*sigma**2) data.append(dist.sample([n_samples_class.item()])) enc = torch.full((n_samples_class, n_centers), -target_label) enc[:, i] = target_label target.append(enc + ysigma * torch.randn(n_samples_class)[:, None]) self.data = torch.cat(data).float() self.target = torch.cat(target).float() def __getitem__(self, idx): return self.data[idx], self.target[idx] def __len__(self): return self.data.shape[0] def gaussian_sampler_2d(gaussian_center, cov_matrix): mu_distr = MultivariateNormal(gaussian_center, cov_matrix) return mu_distr def gaussian_data_sampling(gaussian_center, cov_matrix, data_num, seed = None): if seed is not None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True sampler = gaussian_sampler_2d(gaussian_center, cov_matrix) data = sampler.sample(sample_shape=torch.Size([data_num])) return data def gaussian_mixture_data_sampling(centers, cov_matrix, data_num, seed = None, device = None): if seed is not None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True index_to_choice = np.random.randint(centers.shape[0], size = data_num) data_clusters = gaussian_data_sampling(centers[index_to_choice[0]], cov_matrix, 1) for i in range(1, data_num): cur_data = gaussian_data_sampling(centers[index_to_choice[i]], cov_matrix, 1) data_clusters = torch.cat((data_clusters, cur_data), 0) return data_clusters def model_1d(data): real_labels = torch.sin(12*data) + 0.66*torch.cos(25*data) + 3 return real_labels def noise_labels_model(real_labels, sigma_noise, seed = None): loc = 0. # mean zero scale = 1. normal = torch.distributions.Normal(loc, scale) # create a normal distribution object if seed is not None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True x = normal.rsample([real_labels.shape[0]]) real_labels = real_labels + x*sigma_noise return real_labels def get_sample_regression(n_samples, noise = 0.1, seed = 42): """ Returns (x_train, y_train), (x_true, y_true) """ gaussian_centers = torch.Tensor([[-1.0/(2**0.5)], [1.0/(2**0.5)]]) data_num = n_samples data_sigma_noise = noise sigma = 0.01 init_cov_matrix = torch.eye(1) cov_matrix_default = sigma*init_cov_matrix data_1d = gaussian_mixture_data_sampling(gaussian_centers, cov_matrix_default, data_num, seed) real_labels = model_1d(data_1d[:, 0]) noise_labels = noise_labels_model(real_labels, sigma_noise = data_sigma_noise, seed = seed).reshape((real_labels.shape[0], 1)) range_for_real_labels = torch.linspace(-1, 1, steps = 1000) real_labels_range = model_1d(range_for_real_labels) # data, range_for_real_labels, real_labels, noise_labels, return (data_1d[:, 0], noise_labels[:, 0]), (range_for_real_labels, real_labels_range)
[ "numpy.radians", "torch.sin", "numpy.array", "torch.cos", "torch.sum", "numpy.sin", "torch.eye", "numpy.random.seed", "torch.randn", "torch.distributions.Normal", "torch.Tensor", "numpy.cos", "torch.Size", "torch.cat", "torch.manual_seed", "torch.full", "random.seed", "torch.tensor", "numpy.random.randint", "torch.distributions.multivariate_normal.MultivariateNormal", "torch.zeros", "torch.linspace", "torch.ones" ]
[((224, 241), 'numpy.radians', 'np.radians', (['theta'], {}), '(theta)\n', (234, 241), True, 'import numpy as np\n'), ((286, 313), 'numpy.array', 'np.array', (['[[c, -s], [s, c]]'], {}), '([[c, -s], [s, c]])\n', (294, 313), True, 'import numpy as np\n'), ((2140, 2187), 'torch.distributions.multivariate_normal.MultivariateNormal', 'MultivariateNormal', (['gaussian_center', 'cov_matrix'], {}), '(gaussian_center, cov_matrix)\n', (2158, 2187), False, 'from torch.distributions.multivariate_normal import MultivariateNormal\n'), ((2878, 2928), 'numpy.random.randint', 'np.random.randint', (['centers.shape[0]'], {'size': 'data_num'}), '(centers.shape[0], size=data_num)\n', (2895, 2928), True, 'import numpy as np\n'), ((3457, 3495), 'torch.distributions.Normal', 'torch.distributions.Normal', (['loc', 'scale'], {}), '(loc, scale)\n', (3483, 3495), False, 'import torch\n'), ((3965, 4016), 'torch.Tensor', 'torch.Tensor', (['[[-1.0 / 2 ** 0.5], [1.0 / 2 ** 0.5]]'], {}), '([[-1.0 / 2 ** 0.5], [1.0 / 2 ** 0.5]])\n', (3977, 4016), False, 'import torch\n'), ((4106, 4118), 'torch.eye', 'torch.eye', (['(1)'], {}), '(1)\n', (4115, 4118), False, 'import torch\n'), ((4677, 4710), 'torch.linspace', 'torch.linspace', (['(-1)', '(1)'], {'steps': '(1000)'}), '(-1, 1, steps=1000)\n', (4691, 4710), False, 'import torch\n'), ((253, 264), 'numpy.cos', 'np.cos', (['rad'], {}), '(rad)\n', (259, 264), True, 'import numpy as np\n'), ((266, 277), 'numpy.sin', 'np.sin', (['rad'], {}), '(rad)\n', (272, 277), True, 'import numpy as np\n'), ((2322, 2339), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (2333, 2339), False, 'import random\n'), ((2348, 2368), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2362, 2368), True, 'import numpy as np\n'), ((2377, 2400), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (2394, 2400), False, 'import torch\n'), ((2727, 2744), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (2738, 2744), False, 'import random\n'), ((2753, 2773), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2767, 2773), True, 'import numpy as np\n'), ((2782, 2805), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (2799, 2805), False, 'import torch\n'), ((3161, 3200), 'torch.cat', 'torch.cat', (['(data_clusters, cur_data)', '(0)'], {}), '((data_clusters, cur_data), 0)\n', (3170, 3200), False, 'import torch\n'), ((3567, 3584), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (3578, 3584), False, 'import random\n'), ((3593, 3613), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (3607, 3613), True, 'import numpy as np\n'), ((3622, 3645), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (3639, 3645), False, 'import torch\n'), ((592, 609), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (603, 609), False, 'import random\n'), ((622, 642), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (636, 642), True, 'import numpy as np\n'), ((655, 678), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (672, 678), False, 'import torch\n'), ((1173, 1194), 'torch.ones', 'torch.ones', (['n_centers'], {}), '(n_centers)\n', (1183, 1194), False, 'import torch\n'), ((1374, 1397), 'torch.sum', 'torch.sum', (['(classes == i)'], {}), '(classes == i)\n', (1383, 1397), False, 'import torch\n'), ((1654, 1709), 'torch.full', 'torch.full', (['(n_samples_class, n_centers)', '(-target_label)'], {}), '((n_samples_class, n_centers), -target_label)\n', (1664, 1709), False, 'import torch\n'), ((2553, 2575), 'torch.Size', 'torch.Size', (['[data_num]'], {}), '([data_num])\n', (2563, 2575), False, 'import torch\n'), ((3266, 3286), 'torch.sin', 'torch.sin', (['(12 * data)'], {}), '(12 * data)\n', (3275, 3286), False, 'import torch\n'), ((849, 863), 'torch.zeros', 'torch.zeros', (['(2)'], {}), '(2)\n', (860, 863), False, 'import torch\n'), ((1087, 1135), 'torch.tensor', 'torch.tensor', (['([radius, 0] @ R)'], {'dtype': 'torch.float'}), '([radius, 0] @ R, dtype=torch.float)\n', (1099, 1135), False, 'import torch\n'), ((1847, 1862), 'torch.cat', 'torch.cat', (['data'], {}), '(data)\n', (1856, 1862), False, 'import torch\n'), ((1893, 1910), 'torch.cat', 'torch.cat', (['target'], {}), '(target)\n', (1902, 1910), False, 'import torch\n'), ((3292, 3312), 'torch.cos', 'torch.cos', (['(25 * data)'], {}), '(25 * data)\n', (3301, 3312), False, 'import torch\n'), ((1550, 1562), 'torch.eye', 'torch.eye', (['(2)'], {}), '(2)\n', (1559, 1562), False, 'import torch\n'), ((1788, 1816), 'torch.randn', 'torch.randn', (['n_samples_class'], {}), '(n_samples_class)\n', (1799, 1816), False, 'import torch\n')]
# -*- coding: utf-8 -*- """ Created on Sat May 23 11:28:30 2020 @author: rener """ import numpy as np import pandas as pd import os from datetime import date import time import sys dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) #%% For the various companies we have data going back differently far. # # frames=[] for file in os.listdir('Stocks'): frames.append( pd.read_csv('Stocks/' +file,index_col=0)) # For the various companies we have data going back differently far. # So there is decision to make: We could discard look for the shortest # available timeseries, and trim all other datasets to the same length. # But then whenever we compute a covariance for two longer datasets # we will not use all available information. # So we only trim every pair in the covariance computing function. df=pd.concat(frames) # Add column with Estimated Average of the day df['EstAvg'] = df[['open','high','low','close']].apply(np.mean,axis=1) df.to_csv('fulltable.csv') #%% pivot = df.pivot(columns = 'symbol', values = 'EstAvg') # Note that we are taking the symbols from the Pivot Table. # This is the case, because when the Alphavantage API does not give # us a dataset for some symbol, it does not appear in the pivot table, # so we avoid a Key Error. symbols = pivot.columns # Next we initialize an 'empty' dataframe, and start filling it. CovMatrix = pd.DataFrame(index=symbols,columns=symbols) #%% def covariance(a,b): return np.mean((a-np.mean(a)*(b-np.mean(b)))) for col in CovMatrix: for row in CovMatrix.index: CovMatrix[row][col]=covariance(pivot[row], pivot[col])
[ "numpy.mean", "os.listdir", "pandas.read_csv", "os.chdir", "os.path.realpath", "pandas.DataFrame", "pandas.concat" ]
[((238, 256), 'os.chdir', 'os.chdir', (['dir_path'], {}), '(dir_path)\n', (246, 256), False, 'import os\n'), ((362, 382), 'os.listdir', 'os.listdir', (['"""Stocks"""'], {}), "('Stocks')\n", (372, 382), False, 'import os\n'), ((856, 873), 'pandas.concat', 'pd.concat', (['frames'], {}), '(frames)\n', (865, 873), True, 'import pandas as pd\n'), ((1411, 1455), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'symbols', 'columns': 'symbols'}), '(index=symbols, columns=symbols)\n', (1423, 1455), True, 'import pandas as pd\n'), ((210, 236), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (226, 236), False, 'import os\n'), ((411, 453), 'pandas.read_csv', 'pd.read_csv', (["('Stocks/' + file)"], {'index_col': '(0)'}), "('Stocks/' + file, index_col=0)\n", (422, 453), True, 'import pandas as pd\n'), ((1503, 1513), 'numpy.mean', 'np.mean', (['a'], {}), '(a)\n', (1510, 1513), True, 'import numpy as np\n'), ((1517, 1527), 'numpy.mean', 'np.mean', (['b'], {}), '(b)\n', (1524, 1527), True, 'import numpy as np\n')]
__copyright__ = "Copyright (C) 2019 <NAME>" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import loopy as lp from pystella.field import Field, index_fields from pystella.elementwise import ElementWiseMap from pymbolic import var from pymbolic.primitives import Subscript, Variable __doc__ = """ .. currentmodule:: pystella.step .. autoclass:: Stepper .. currentmodule:: pystella Low-storage Runge-Kutta methods ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. currentmodule:: pystella.step .. autoclass:: LowStorageRKStepper .. currentmodule:: pystella .. autoclass:: LowStorageRK54 .. autoclass:: LowStorageRK3Williamson .. autoclass:: LowStorageRK3Inhomogeneous .. autoclass:: LowStorageRK3SSP Classical Runge-Kutta methods ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ "Classical" Runge-Kutta methods are also implemented, though are not recommended over the low-storage methods above. .. currentmodule:: pystella.step .. autoclass:: RungeKuttaStepper .. currentmodule:: pystella .. autoclass:: RungeKutta4 .. autoclass:: RungeKutta3SSP .. autoclass:: RungeKutta3Heun .. autoclass:: RungeKutta3Nystrom .. autoclass:: RungeKutta3Ralston .. autoclass:: RungeKutta2Midpoint .. autoclass:: RungeKutta2Ralston """ class Stepper: """ The base class for time steppers, with no implementation of a particular time stepper. :arg input: May be one of the following: * a :class:`dict` whose values represent the right-hand side of the ODEs to solve, i.e., `(key, value)` pairs corresponding to :math:`(y, f)` such that .. math:: \\frac{\\mathrm{d} y}{\\mathrm{d} t} = f, where :math:`f` is an arbitrary function of kernel data. Both keys and values must be :mod:`pymbolic` expressions. * a :class:`~pystella.Sector`. In this case, the right-hand side dictionary will be obtained from :attr:`~pystella.Sector.rhs_dict`. * a :class:`list` of :class:`~pystella.Sector`\\ s. In this case, the input obtained from each :class:`~pystella.Sector` (as described above) will be combined. The following keyword arguments are recognized: :arg MapKernel: The kernel class which each substep/stage will be an instance of---i.e., one of :class:`~pystella.ElementWiseMap` or its subclasses. Defaults to :class:`~pystella.ElementWiseMap`. :arg dt: A :class:`float` fixing the value of the timestep interval. Defaults to *None*, in which case it is not fixed at kernel creation. The remaining arguments are passed to :meth:`MapKernel` for each substep of the timestepper (i.e., see the documentation of :class:`~pystella.ElementWiseMap`). .. automethod:: __call__ .. attribute:: num_stages The number of substeps/stages per timestep. .. attribute:: expected_order The expected convergence order of *global* error, i.e. :math:`n` such that the global error is :math:`\\mathcal{O}(\\Delta t^n)`. .. attribute:: num_unknowns The number of unknown degrees of freedom which are evolved. """ num_stages = None expected_order = None num_copies = None def make_steps(self, MapKernel=ElementWiseMap, **kwargs): raise NotImplementedError def __init__(self, input, MapKernel=ElementWiseMap, **kwargs): single_stage = kwargs.pop("single_stage", True) from pystella import Sector if isinstance(input, Sector): self.rhs_dict = input.rhs_dict elif isinstance(input, list): self.rhs_dict = dict(i for s in input for i in s.rhs_dict.items()) elif isinstance(input, dict): self.rhs_dict = input if not single_stage: prepend_with = (self.num_copies,) else: prepend_with = None args = kwargs.pop("args", [...]) args = args + [lp.ValueArg("dt")] from pystella import get_field_args inferred_args = get_field_args(self.rhs_dict, prepend_with=prepend_with) from pystella.elementwise import append_new_args self.args = append_new_args(args, inferred_args) dt = kwargs.pop("dt", None) fixed_parameters = kwargs.pop("fixed_parameters", dict()) if dt is not None: fixed_parameters.update(dict(dt=dt)) self.num_unknowns = len(self.rhs_dict.keys()) self.steps = self.make_steps(**kwargs, fixed_parameters=fixed_parameters) def __call__(self, stage, queue=None, **kwargs): """ Calls substep/stage ``stage`` (:attr:`steps[stage]`) of the timestepper, i.e., :func:`pystella.ElementWiseMap.__call__` for the kernel for substep/stage ``stage``. :arg stage: The substep/stage of time timestepper to call. :returns: The :class:`pyopencl.Event` associated with the kernel invocation. """ evt, _ = self.steps[stage](queue, **kwargs) return evt class RungeKuttaStepper(Stepper): """ The base implementation of classical, explicit Runge-Kutta time steppers, which operate by storing and operating on multiple copies of each unknown array. Subclasses must provide an implementation of :meth:`step_statements` which returns a key-value pair implementing a specific substep of the particular timestepper. .. warning:: To minimize the required storage per unknown (i.e., number of temporaries), the implementation of most subclasses overwrite arrays that are being read as input to compute right-hand sides. This means that any non-local (stencil-type) operations must be precomputed and cached *globally* (unless otherwise noted). :raises ValueError: if the keys of :attr:`rhs_dict` are not :class:`~pystella.Field`\\ s (or :class:`pymbolic.primitives.Subscript`\\ s thereof). This is required for :meth:`make_steps` to be able to prepend unknown arrays' subscripts with the index corresponding to the temporary storage axis. """ def __init__(self, input, **kwargs): super().__init__(input, single_stage=False, **kwargs) def step_statements(self, stage, f, dt, rhs): raise NotImplementedError def make_steps(self, MapKernel=ElementWiseMap, **kwargs): rhs = var("rhs") dt = var("dt") q = var("q") fixed_parameters = kwargs.pop("fixed_parameters", dict()) rhs_statements = {rhs[i]: index_fields(value, prepend_with=(q,)) for i, value in enumerate(self.rhs_dict.values())} steps = [] for stage in range(self.num_stages): RK_dict = {} for i, f in enumerate(self.rhs_dict.keys()): # ensure that key is either a Field or a Subscript of a Field # so that index_fields can prepend the q index key_has_field = False if isinstance(f, Field): key_has_field = True elif isinstance(f, Subscript): if isinstance(f.aggregate, Field): key_has_field = True if not key_has_field: raise ValueError("rhs_dict keys must be Field instances") statements = self.step_statements(stage, f, dt, rhs[i]) for k, v in statements.items(): RK_dict[k] = v fixed_parameters.update(q=0 if stage == 0 else 1) options = lp.Options(enforce_variable_access_ordered="no_check") step = MapKernel(RK_dict, tmp_instructions=rhs_statements, args=self.args, **kwargs, options=options, fixed_parameters=fixed_parameters) steps.append(step) return steps class RungeKutta4(RungeKuttaStepper): """ The classical, four-stage, fourth-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length three. """ num_stages = 4 expected_order = 4 num_copies = 3 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(3)] if stage == 0: return {fq[1]: fq[0] + dt/2 * rhs, fq[2]: fq[0] + dt/6 * rhs} elif stage == 1: return {fq[1]: fq[0] + dt/2 * rhs, fq[2]: fq[2] + dt/3 * rhs} elif stage == 2: return {fq[1]: fq[0] + dt * rhs, fq[2]: fq[2] + dt/3 * rhs} elif stage == 3: return {fq[0]: fq[2] + dt/6 * rhs} class RungeKutta3Heun(RungeKuttaStepper): """ Heun's three-stage, third-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length three. """ num_stages = 3 expected_order = 3 num_copies = 3 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(3)] if stage == 0: return {fq[1]: fq[0] + dt/3 * rhs, fq[2]: fq[0] + dt/4 * rhs} elif stage == 1: return {fq[1]: fq[0] + dt*2/3 * rhs} elif stage == 2: return {fq[0]: fq[2] + dt*3/4 * rhs} class RungeKutta3Nystrom(RungeKuttaStepper): """ Nystrom's three-stage, third-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length three. """ num_stages = 3 expected_order = 3 num_copies = 3 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(3)] if stage == 0: return {fq[1]: fq[0] + dt*2/3 * rhs, fq[2]: fq[0] + dt*2/8 * rhs} elif stage == 1: return {fq[1]: fq[0] + dt*2/3 * rhs, fq[2]: fq[2] + dt*3/8 * rhs} elif stage == 2: return {fq[0]: fq[2] + dt*3/8 * rhs} class RungeKutta3Ralston(RungeKuttaStepper): """ Ralston's three-stage, third-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length three. """ num_stages = 3 expected_order = 3 num_copies = 3 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(3)] if stage == 0: return {fq[1]: fq[0] + dt/2 * rhs, fq[2]: fq[0] + dt*2/9 * rhs} elif stage == 1: return {fq[1]: fq[0] + dt*3/4 * rhs, fq[2]: fq[2] + dt*1/3 * rhs} elif stage == 2: return {fq[0]: fq[2] + dt*4/9 * rhs} class RungeKutta3SSP(RungeKuttaStepper): """ A three-stage, third-order strong-stability preserving Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length two. """ num_stages = 3 expected_order = 3 num_copies = 2 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(3)] if stage == 0: return {fq[1]: fq[0] + dt * rhs} elif stage == 1: return {fq[1]: 3/4 * fq[0] + 1/4 * fq[1] + dt/4 * rhs} elif stage == 2: return {fq[0]: 1/3 * fq[0] + 2/3 * fq[1] + dt*2/3 * rhs} class RungeKutta2Midpoint(RungeKuttaStepper): """ The "midpoint" method, a two-stage, second-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length two. Note that right-hand side operations *can* safely involve non-local computations of unknown arrays for this method. """ num_stages = 2 expected_order = 2 num_copies = 2 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(2)] if stage == 0: return {fq[1]: fq[0] + dt/2 * rhs} elif stage == 1: return {fq[0]: fq[0] + dt * rhs} # possible order reduction class RungeKutta2Heun(RungeKuttaStepper): num_stages = 2 expected_order = 2 num_copies = 2 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(2)] if stage == 0: return {fq[1]: fq[0] + dt * rhs, fq[0]: fq[0] + dt/2 * rhs} elif stage == 1: return {fq[0]: fq[0] + dt/2 * rhs} class RungeKutta2Ralston(RungeKuttaStepper): """ Ralstons's two-stage, second-order Runge-Kutta method. Requires unknown arrays to have temporary storage axes of length two. """ num_stages = 2 expected_order = 2 num_copies = 2 def step_statements(self, stage, f, dt, rhs): fq = [index_fields(f, prepend_with=(q,)) for q in range(2)] if stage == 0: return {fq[1]: fq[0] + dt*2/3 * rhs, fq[0]: fq[0] + dt/4 * rhs} elif stage == 1: return {fq[0]: fq[0] + dt*3/4 * rhs} def get_name(expr): if isinstance(expr, Field): return get_name(expr.child) elif isinstance(expr, Subscript): return get_name(expr.aggregate) elif isinstance(expr, Variable): return expr.name elif isinstance(expr, str): return expr def gen_tmp_name(expr, prefix="_", suffix="_tmp"): name = get_name(expr) return prefix + name + suffix def copy_and_rename(expr): if isinstance(expr, Field): return expr.copy(child=copy_and_rename(expr.child)) elif isinstance(expr, Subscript): return Subscript(copy_and_rename(expr.aggregate), expr.index) elif isinstance(expr, Variable): return Variable(gen_tmp_name(expr)) elif isinstance(expr, str): return gen_tmp_name(expr) class LowStorageRKStepper(Stepper): """ The base implementation of low-storage, explicit Runge-Kutta time steppers, which operate by storing and operating on a single copy of each unknown array, plus an auxillary temporary array. The substeps are expressed in a standard form, drawing coefficients from a subclass's provided values of :attr:`_A`, :attr:`_B`, and :attr:`_C`. Allocation of the auxillary arrays is handled internally by: .. automethod:: get_tmp_arrays_like :meth:`get_tmp_arrays_like` is called the first time :meth:`__call__` is called, with the result stored in the attribute :attr:`tmp_arrays`. These arrays must not be modified between substages of a single timestep, but may be safely modified in between timesteps. .. versionchanged:: 2020.2 Auxillary arrays handled internally by :meth:`get_tmp_arrays_like`. Previously, manual allocation (and passing) of a single temporary array ``k_tmp`` was required. """ _A = [] _B = [] _C = [] tmp_arrays = {} def make_steps(self, MapKernel=ElementWiseMap, **kwargs): tmp_arrays = [copy_and_rename(key) for key in self.rhs_dict.keys()] self.dof_names = {get_name(key) for key in self.rhs_dict.keys()} rhs_statements = {var(gen_tmp_name(key, suffix=f"_rhs_{i}")): val for i, (key, val) in enumerate(self.rhs_dict.items())} steps = [] for stage in range(self.num_stages): RK_dict = {} for i, (f, k) in enumerate(zip(self.rhs_dict.keys(), tmp_arrays)): rhs = var(gen_tmp_name(f, suffix=f"_rhs_{i}")) RK_dict[k] = self._A[stage] * k + var("dt") * rhs RK_dict[f] = f + self._B[stage] * k step = MapKernel(RK_dict, tmp_instructions=rhs_statements, args=self.args, **kwargs) steps.append(step) return steps def get_tmp_arrays_like(self, **kwargs): """ Allocates required temporary arrays matching those passed via keyword. :returns: A :class:`dict` of named arrays, suitable for passing via dictionary expansion. .. versionadded:: 2020.2 """ tmp_arrays = {} for name in self.dof_names: f = kwargs[name] tmp_name = gen_tmp_name(name) import pyopencl.array as cla if isinstance(f, cla.Array): tmp_arrays[tmp_name] = cla.empty_like(f) elif isinstance(f, np.ndarray): tmp_arrays[tmp_name] = np.empty_like(f) else: raise ValueError(f"Could not generate tmp array for {f}" f"of type {type(f)}") tmp_arrays[tmp_name][...] = 0. return tmp_arrays def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for step in self.steps: step.knl = lp.add_inames_for_unused_hw_axes(step.knl) def __call__(self, stage, *, queue=None, **kwargs): if len(self.tmp_arrays) == 0: self.tmp_arrays = self.get_tmp_arrays_like(**kwargs) return super().__call__(stage, queue=queue, **kwargs, **self.tmp_arrays) class LowStorageRK54(LowStorageRKStepper): """ A five-stage, fourth-order, low-storage Runge-Kutta method. See <NAME>., and <NAME>., Fourth-order-2N-storage Runge-Kutta schemes, NASA Langley Tech Report TM 109112, 1994 """ num_stages = 5 expected_order = 4 _A = [ 0, -567301805773 / 1357537059087, -2404267990393 / 2016746695238, -3550918686646 / 2091501179385, -1275806237668 / 842570457699, ] _B = [ 1432997174477 / 9575080441755, 5161836677717 / 13612068292357, 1720146321549 / 2090206949498, 3134564353537 / 4481467310338, 2277821191437 / 14882151754819, ] _C = [ 0, 1432997174477 / 9575080441755, 2526269341429 / 6820363962896, 2006345519317 / 3224310063776, 2802321613138 / 2924317926251, ] class LowStorageRK144(LowStorageRKStepper): """ A 14-stage, fourth-order low-storage Runge-Kutta method optimized for elliptic stability regions. See Niegemann, Jens & Diehl, Richard & <NAME>. (2012). Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Physics. 231. 364-372. 10.1016/j.jcp.2011.09.003. """ num_stages = 14 expected_order = 4 _A = [ 0, -0.7188012108672410, -0.7785331173421570, -0.0053282796654044, -0.8552979934029281, -3.9564138245774565, -1.5780575380587385, -2.0837094552574054, -0.7483334182761610, -0.7032861106563359, 0.0013917096117681, -0.0932075369637460, -0.9514200470875948, -7.1151571693922548 ] _B = [ 0.0367762454319673, 0.3136296607553959, 0.1531848691869027, 0.0030097086818182, 0.3326293790646110, 0.2440251405350864, 0.3718879239592277, 0.6204126221582444, 0.1524043173028741, 0.0760894927419266, 0.0077604214040978, 0.0024647284755382, 0.0780348340049386, 5.5059777270269628 ] _C = [ 0, 0.0367762454319673, 0.1249685262725025, 0.2446177702277698, 0.2476149531070420, 0.2969311120382472, 0.3978149645802642, 0.5270854589440328, 0.6981269994175695, 0.8190890835352128, 0.8527059887098624, 0.8604711817462826, 0.8627060376969976, 0.8734213127600976 ] class LowStorageRK134(LowStorageRKStepper): """ A 13-stage, fourth-order low-storage Runge-Kutta method optimized for circular stability regions. See Niegemann, Jens & Diehl, Richard & Busch, Kurt. (2012). Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Physics. 231. 364-372. 10.1016/j.jcp.2011.09.003. """ num_stages = 13 expected_order = 4 _A = [ 0, 0.6160178650170565, 0.4449487060774118, 1.0952033345276178, 1.2256030785959187, 0.2740182222332805, 0.0411952089052647, 0.179708489915356, 1.1771530652064288, 0.4078831463120878, 0.8295636426191777, 4.789597058425229, 0.6606671432964504 ] _B = [ 0.0271990297818803, 0.1772488819905108, 0.0378528418949694, 0.6086431830142991, 0.21543139743161, 0.2066152563885843, 0.0415864076069797, 0.0219891884310925, 0.9893081222650993, 0.0063199019859826, 0.3749640721105318, 1.6080235151003195, 0.0961209123818189 ] _C = [ 0, 0.0271990297818803, 0.0952594339119365, 0.1266450286591127, 0.1825883045699772, 0.3737511439063931, 0.5301279418422206, 0.5704177433952291, 0.5885784947099155, 0.6160769826246714, 0.6223252334314046, 0.6897593128753419, 0.9126827615920843 ] class LowStorageRK124(LowStorageRKStepper): """ A 12-stage, fourth-order low-storage Runge-Kutta method optimized for inviscid problems. See Niegemann, Jens & <NAME> & <NAME>. (2012). Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Physics. 231. 364-372. 10.1016/j.jcp.2011.09.003. """ num_stages = 12 expected_order = 4 _A = [ 0, 0.0923311242368072, 0.9441056581158819, 4.327127324757639, 2.155777132902607, 0.9770727190189062, 0.7581835342571139, 1.79775254708255, 2.691566797270077, 4.646679896026814, 0.1539613783825189, 0.5943293901830616 ] _B = [ 0.0650008435125904, 0.0161459902249842, 0.5758627178358159, 0.1649758848361671, 0.3934619494248182, 0.0443509641602719, 0.2074504268408778, 0.6914247433015102, 0.3766646883450449, 0.0757190350155483, 0.2027862031054088, 0.2167029365631842 ] _C = [ 0, 0.0650008435125904, 0.0796560563081853, 0.1620416710085376, 0.2248877362907778, 0.2952293985641261, 0.3318332506149405, 0.4094724050198658, 0.6356954475753369, 0.6806551557645497, 0.714377371241835, 0.9032588871651854, ] class LowStorageRK3Williamson(LowStorageRKStepper): """ A three-stage, third-order, low-storage Runge-Kutta method. See <NAME>., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48-56, 1980 """ num_stages = 3 expected_order = 3 _A = [0, -5/9, -153/128] _B = [1/3, 15/16, 8/15] _C = [0, 4/9, 15/32] class LowStorageRK3Inhomogeneous(LowStorageRKStepper): """ A three-stage, third-order, low-storage Runge-Kutta method. """ num_stages = 3 expected_order = 3 _A = [0, -17/32, -32/27] _B = [1/4, 8/9, 3/4] _C = [0, 15/32, 4/9] # possible order reduction class LowStorageRK3Symmetric(LowStorageRKStepper): num_stages = 3 expected_order = 3 _A = [0, -2/3, -1] _B = [1/3, 1, 1/2] _C = [0, 1/3, 2/3] # possible order reduction class LowStorageRK3PredictorCorrector(LowStorageRKStepper): num_stages = 3 expected_order = 3 _A = [0, -1/4, -4/3] _B = [1/2, 2/3, 1/2] _C = [0, 1/2, 1] c2 = .924574 z1 = np.sqrt(36 * c2**4 + 36 * c2**3 - 135 * c2**2 + 84 * c2 - 12) z2 = 2 * c2**2 + c2 - 2 z3 = 12 * c2**4 - 18 * c2**3 + 18 * c2**2 - 11 * c2 + 2 z4 = 36 * c2**4 - 36 * c2**3 + 13 * c2**2 - 8 * c2 + 4 z5 = 69 * c2**3 - 62 * c2**2 + 28 * c2 - 8 z6 = 34 * c2**4 - 46 * c2**3 + 34 * c2**2 - 13 * c2 + 2 B1 = c2 B2 = ((12 * c2 * (c2 - 1) * (3 * z2 - z1) - (3 * z2 - z1)**2) / (144 * c2 * (3 * c2 - 2) * (c2 - 1)**2)) B3 = (- 24 * (3 * c2 - 2) * (c2 - 1)**2 / ((3 * z2 - z1)**2 - 12 * c2 * (c2 - 1) * (3 * z2 - z1))) A2 = ((- z1 * (6 * c2**2 - 4 * c2 + 1) + 3 * z3) / ((2 * c2 + 1) * z1 - 3 * (c2 + 2) * (2 * c2 - 1)**2)) A3 = ((- z4 * z1 + 108 * (2 * c2 - 1) * c2**5 - 3 * (2 * c2 - 1) * z5) / (24 * z1 * c2 * (c2 - 1)**4 + 72 * c2 * z6 + 72 * c2**6 * (2 * c2 - 13))) class LowStorageRK3SSP(LowStorageRKStepper): """ A three-stage, third-order, strong-stability preserving, low-storage Runge-Kutta method. """ num_stages = 3 expected_order = 3 _A = [0, A2, A3] _B = [B1, B2, B3] _C = [0, B1, B1 + B2 * (A2 + 1)] all_steppers = [RungeKutta4, RungeKutta3SSP, RungeKutta3Heun, RungeKutta3Nystrom, RungeKutta3Ralston, RungeKutta2Midpoint, RungeKutta2Ralston, LowStorageRK54, LowStorageRK144, LowStorageRK3Williamson, LowStorageRK3Inhomogeneous, LowStorageRK3SSP]
[ "pyopencl.array.empty_like", "loopy.Options", "loopy.ValueArg", "numpy.sqrt", "pymbolic.var", "pystella.elementwise.append_new_args", "numpy.empty_like", "loopy.add_inames_for_unused_hw_axes", "pystella.field.index_fields", "pystella.get_field_args" ]
[((25354, 25421), 'numpy.sqrt', 'np.sqrt', (['(36 * c2 ** 4 + 36 * c2 ** 3 - 135 * c2 ** 2 + 84 * c2 - 12)'], {}), '(36 * c2 ** 4 + 36 * c2 ** 3 - 135 * c2 ** 2 + 84 * c2 - 12)\n', (25361, 25421), True, 'import numpy as np\n'), ((5142, 5198), 'pystella.get_field_args', 'get_field_args', (['self.rhs_dict'], {'prepend_with': 'prepend_with'}), '(self.rhs_dict, prepend_with=prepend_with)\n', (5156, 5198), False, 'from pystella import get_field_args\n'), ((5278, 5314), 'pystella.elementwise.append_new_args', 'append_new_args', (['args', 'inferred_args'], {}), '(args, inferred_args)\n', (5293, 5314), False, 'from pystella.elementwise import append_new_args\n'), ((7538, 7548), 'pymbolic.var', 'var', (['"""rhs"""'], {}), "('rhs')\n", (7541, 7548), False, 'from pymbolic import var\n'), ((7563, 7572), 'pymbolic.var', 'var', (['"""dt"""'], {}), "('dt')\n", (7566, 7572), False, 'from pymbolic import var\n'), ((7586, 7594), 'pymbolic.var', 'var', (['"""q"""'], {}), "('q')\n", (7589, 7594), False, 'from pymbolic import var\n'), ((7699, 7737), 'pystella.field.index_fields', 'index_fields', (['value'], {'prepend_with': '(q,)'}), '(value, prepend_with=(q,))\n', (7711, 7737), False, 'from pystella.field import Field, index_fields\n'), ((8754, 8808), 'loopy.Options', 'lp.Options', ([], {'enforce_variable_access_ordered': '"""no_check"""'}), "(enforce_variable_access_ordered='no_check')\n", (8764, 8808), True, 'import loopy as lp\n'), ((9412, 9446), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (9424, 9446), False, 'from pystella.field import Field, index_fields\n'), ((10237, 10271), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (10249, 10271), False, 'from pystella.field import Field, index_fields\n'), ((10904, 10938), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (10916, 10938), False, 'from pystella.field import Field, index_fields\n'), ((11625, 11659), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (11637, 11659), False, 'from pystella.field import Field, index_fields\n'), ((12358, 12392), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (12370, 12392), False, 'from pystella.field import Field, index_fields\n'), ((13152, 13186), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (13164, 13186), False, 'from pystella.field import Field, index_fields\n'), ((13559, 13593), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (13571, 13593), False, 'from pystella.field import Field, index_fields\n'), ((14144, 14178), 'pystella.field.index_fields', 'index_fields', (['f'], {'prepend_with': '(q,)'}), '(f, prepend_with=(q,))\n', (14156, 14178), False, 'from pystella.field import Field, index_fields\n'), ((18279, 18321), 'loopy.add_inames_for_unused_hw_axes', 'lp.add_inames_for_unused_hw_axes', (['step.knl'], {}), '(step.knl)\n', (18311, 18321), True, 'import loopy as lp\n'), ((5053, 5070), 'loopy.ValueArg', 'lp.ValueArg', (['"""dt"""'], {}), "('dt')\n", (5064, 5070), True, 'import loopy as lp\n'), ((17793, 17810), 'pyopencl.array.empty_like', 'cla.empty_like', (['f'], {}), '(f)\n', (17807, 17810), True, 'import pyopencl.array as cla\n'), ((17896, 17912), 'numpy.empty_like', 'np.empty_like', (['f'], {}), '(f)\n', (17909, 17912), True, 'import numpy as np\n'), ((16973, 16982), 'pymbolic.var', 'var', (['"""dt"""'], {}), "('dt')\n", (16976, 16982), False, 'from pymbolic import var\n')]
# -*- coding: utf-8 -*- # # <NAME> 2021 gpSTS ########################################### ###Configuration File###################### ###for gpSTS steering of experiments###### ########################################### import os import numpy as np from gpsts.NanonisInterface.nanonis_interface import Nanonis from gpsts.NanonisInterface.data_class import ScanData, SpecCounter, PointList, ImageInfo from gpsts.NanonisInterface.kernel import kernel_l2 import json ############################### ###Initialize################## ############################### nanonis_config = { "Nanonis_Settings": { "File": "gpSTSinit", "ExperimentName": "Test Out", "Version": "0.0.1", "ImageStart": "test_img001.sxm", "FolderLocation": "C:\\gpSTS\\src\\", "DataLocation": "C:\\gpSTS\\src\\data\\", "Channel": "Z", "ImDirection": "forward", "SpectralRange": [-1,1], "NumSpectralPoints": 1200, "Center_Point": [174,34], "Search_Window": 40, "Feature_Window": 20, "ScanCurrent": 30e-12, "SpecCurrent": 200e-12, "STSbias": "Bias calc (V)", "STSsignal": "Current (A)" }, "Neural_Network": { "TrainingPath": "C:\\gpSTS\\src\\train\\", "EpochNumber": 2, "ClassNumber": 4, "LearningRate": 0.001, "BatchSizeTrain": 5, "BatchSizeVal": 1, "BatchSizeTest": 1 } } with open('data/'+str(nanonis_config['Nanonis_Settings']['File'])+'.json','w') as fil: json.dump(nanonis_config, fil, sort_keys = True, indent = 4, ensure_ascii = False) Vals = ScanData() Vals.update_file_info(nanonis_config['Nanonis_Settings']['FolderLocation'], nanonis_config['Nanonis_Settings']['ImageStart'], nanonis_config['Nanonis_Settings']['Channel'], nanonis_config['Nanonis_Settings']['ImDirection']) Vals.update_search_conditions(nanonis_config['Nanonis_Settings']['Center_Point'], nanonis_config['Nanonis_Settings']['Search_Window'],nanonis_config['Nanonis_Settings']['Feature_Window'], nanonis_config['Nanonis_Settings']['SpectralRange']) fil_path, imfile, channel, imdirection = Vals.get_file_info() try: imoff, impix, imsize = Nanonis.readheader(fil_path+'data'+'\\',imfile) except Exception as e: print('Error. Please save '+str(imfile)+' within '+str(fil_path)+'data\\') raise e Vals.update_scan_conditions(imoff, impix, imsize) imdirectory = fil_path+'data'+'\\'+'impath' if not os.path.exists(imdirectory): os.makedirs(imdirectory) datadirectory = fil_path+'data' if not os.path.exists(datadirectory): os.makedirs(datadirectory) def return_scandata(): return Vals spec_counter = SpecCounter() spec_counter.update_maxcnt(10) def return_cnt(): return spec_counter recorded_points = PointList() def return_pntlist(): return recorded_points imout = Nanonis.readimage(fil_path+'data'+'\\'+imfile,channel,imdirection) current_image = ImageInfo(imout) def return_image(): return current_image Nanonis.sxm_plot(imout,imdirectory,'current',recorded_points.get_list()) center_point, search_window, feature_window, spec_range = Vals.get_search_conditions() imx1, imx2 = int((center_point[0]-(feature_window/2))), int((center_point[0]+(feature_window/2))) imy1, imy2 = int((center_point[1]-(feature_window/2))), int((center_point[1]+(feature_window/2))) imtrack = imout[imx1:imx2,imy1:imy2] Nanonis.sxm_plot(imtrack,imdirectory,'feature',recorded_points.get_list()) ############################### ###General##################### ############################### from controls import perform_NanonisExp_BiasSpec, perform_experiment_overlap2 from gpsts.NanonisInterface.graph import plot_2d_function parameters = { "x1": { "element interval": [1,int(impix[0][0])], }, "x2": { "element interval": [1,int(impix[0][0])], }, } ###acquisition functions### def my_ac_func(x,obj): mean = obj.posterior_mean(x)["f(x)"] cov = obj.posterior_covariance(x)["v(x)"] sig = obj.shannon_information_gain(x)["sig"] ucb = mean + 3.0 * np.sqrt(cov) return cov gaussian_processes = { "model_1": { "kernel function": kernel_l2, "hyperparameters": [1.0,1.0,1.0], "hyperparameter bounds": [[1.0,100.0],[0.10,100.0],[0.10,100.0]], "input hyper parameters": [1.0,1.0,1.0], "output hyper parameters": [1.0], "input hyper parameter bounds": [[0.01,1000000.0],[0.01,10.0],[0.01,10.0]], "output hyper parameter bounds":[[0.9,1.1]], "number of returns": 1, "dimensionality of return": 1, "variance optimization tolerance": 0.001, "adjust optimization threshold": [True,0.1], "steering mode": "covariance", "run function in every iteration": None, "data acquisition function": perform_NanonisExp_BiasSpec, "acquisition function": my_ac_func, "objective function": None, "mean function": None, "cost function": None, "cost update function": None, "cost function parameters": {"offset": 10,"slope":2.0}, "cost function optimization bounds": [[0.0,10.0],[0.0,10.0]], "cost optimization chance" : 0.1, "plot function": plot_2d_function, "acquisition function optimization tolerance": 0.001 }, } compute_device = "cpu" sparse = False compute_inverse = False initial_likelihood_optimization_method = "global" training_dask_client = False prediction_dask_client = False likelihood_optimization_tolerance = 1e-12 likelihood_optimization_max_iter = 200 automatic_signal_variance_range_determination = True acquisition_function_optimization_method = "global" chance_for_local_acquisition_function_optimization = 0.5 acquisition_function_optimization_population_size = 20 acquisition_function_optimization_max_iter = 20 global_likelihood_optimization_at = [200] hgdl_likelihood_optimization_at = [] local_likelihood_optimization_at = [] breaking_error = 1e-18 ######################################## ###Variance Optimization################ ######################################## objective_function_optimization_population_size = 20 likelihood_optimization_population_size = 20 number_of_suggested_measurements = 1 ######################################## ###Computation Parameters############### ######################################## global_kernel_optimization_frequency = 0.2 local_kernel_optimization_frequency = 0.5 gpu_acceleration = False rank_n_update = [False,0.2] gp_system_solver = "inv" # "inv", "cg" or "minres" switch_system_solver_to_after = [True, "cg", 5000] ############################### ###DATA ACQUISITION############ ############################### initial_data_set_size = 1 max_number_of_measurements = 10 ##################################################################### ###############END################################################### #####################################################################
[ "gpsts.NanonisInterface.data_class.PointList", "os.path.exists", "gpsts.NanonisInterface.data_class.SpecCounter", "numpy.sqrt", "os.makedirs", "json.dump", "gpsts.NanonisInterface.nanonis_interface.Nanonis.readheader", "gpsts.NanonisInterface.nanonis_interface.Nanonis.readimage", "gpsts.NanonisInterface.data_class.ImageInfo", "gpsts.NanonisInterface.data_class.ScanData" ]
[((1551, 1561), 'gpsts.NanonisInterface.data_class.ScanData', 'ScanData', ([], {}), '()\n', (1559, 1561), False, 'from gpsts.NanonisInterface.data_class import ScanData, SpecCounter, PointList, ImageInfo\n'), ((2616, 2629), 'gpsts.NanonisInterface.data_class.SpecCounter', 'SpecCounter', ([], {}), '()\n', (2627, 2629), False, 'from gpsts.NanonisInterface.data_class import ScanData, SpecCounter, PointList, ImageInfo\n'), ((2721, 2732), 'gpsts.NanonisInterface.data_class.PointList', 'PointList', ([], {}), '()\n', (2730, 2732), False, 'from gpsts.NanonisInterface.data_class import ScanData, SpecCounter, PointList, ImageInfo\n'), ((2790, 2864), 'gpsts.NanonisInterface.nanonis_interface.Nanonis.readimage', 'Nanonis.readimage', (["(fil_path + 'data' + '\\\\' + imfile)", 'channel', 'imdirection'], {}), "(fil_path + 'data' + '\\\\' + imfile, channel, imdirection)\n", (2807, 2864), False, 'from gpsts.NanonisInterface.nanonis_interface import Nanonis\n'), ((2873, 2889), 'gpsts.NanonisInterface.data_class.ImageInfo', 'ImageInfo', (['imout'], {}), '(imout)\n', (2882, 2889), False, 'from gpsts.NanonisInterface.data_class import ScanData, SpecCounter, PointList, ImageInfo\n'), ((1461, 1537), 'json.dump', 'json.dump', (['nanonis_config', 'fil'], {'sort_keys': '(True)', 'indent': '(4)', 'ensure_ascii': '(False)'}), '(nanonis_config, fil, sort_keys=True, indent=4, ensure_ascii=False)\n', (1470, 1537), False, 'import json\n'), ((2139, 2191), 'gpsts.NanonisInterface.nanonis_interface.Nanonis.readheader', 'Nanonis.readheader', (["(fil_path + 'data' + '\\\\')", 'imfile'], {}), "(fil_path + 'data' + '\\\\', imfile)\n", (2157, 2191), False, 'from gpsts.NanonisInterface.nanonis_interface import Nanonis\n'), ((2402, 2429), 'os.path.exists', 'os.path.exists', (['imdirectory'], {}), '(imdirectory)\n', (2416, 2429), False, 'import os\n'), ((2435, 2459), 'os.makedirs', 'os.makedirs', (['imdirectory'], {}), '(imdirectory)\n', (2446, 2459), False, 'import os\n'), ((2499, 2528), 'os.path.exists', 'os.path.exists', (['datadirectory'], {}), '(datadirectory)\n', (2513, 2528), False, 'import os\n'), ((2534, 2560), 'os.makedirs', 'os.makedirs', (['datadirectory'], {}), '(datadirectory)\n', (2545, 2560), False, 'import os\n'), ((3996, 4008), 'numpy.sqrt', 'np.sqrt', (['cov'], {}), '(cov)\n', (4003, 4008), True, 'import numpy as np\n')]
import numpy as np from numpy import array from numpy.linalg import det from numpy.linalg import matrix_rank from numpy.linalg import solve """ *** remember the following useful tools*** from numpy import transpose from numpy import dot from numpy import argmax from numpy import abs from numpy.linalg import eig from numpy.linalg import inv """ def linear_equations(matrix, vector) -> array: """ this function resolve a system of linear equations :param matrix: matrix of coefficients :param vector: vector of constant terms >>> linear_equations(np.eye(2),np.array([1,1])) The system has a single unique solution. [1. 1.] >>> linear_equations(np.array([[1,0],[1,0]]),np.array([1,0])) The system has no solution. """ B = np.c_[matrix, vector] rank_A = matrix_rank(matrix) rank_B = matrix_rank(B) if rank_A == rank_B: if rank_A == len(matrix): print(f'\n The system has a single unique solution.\n {solve(matrix, vector)}\n ') return solve(matrix, vector) else: print('\n The system has infinitely many solutions. \n') if input('Do you want the matrix after the gauss_elimination elimination? [y/n]\n') == 'y': S = gauss_elimination(B) print(S) return S else: print('\n The system has no solution.\n') return None # esercizio 2 def linear_dependence(matrix: array) -> int: """ This function answer to the question "Are these vectors linearly independent?" :param matrix: matrix with vectors as rows :return: the number of linearly independent vectors """ rank = matrix_rank(matrix) if rank == matrix.shape[0]: print('The vectors are linearly independents') else: print(f'The vectors are linearly dependents and only {rank} of them are linearly independents') if input('Do you want the matrix after the gauss_elimination elimination? [y/n]\n') == 'y': S = gauss_elimination(matrix) print(S) return rank # esercizio3 def cartesian_representation_line(vec_1: np.array, vec_2: np.array, type: int = 1) -> None: """ This function print the cartesian presentation of a line a: numpy-array of the b: numpy-array of the :param vec_1: first point :param vec_2: direction (type = 0) or the second point (type = 1) :param type: it switches between two points and one point and a direction """ if type: vec_2 = vec_2 - vec_1 for i in range(len(vec_1)): print(f' x_{i + 1} = {vec_1[i]} + {vec_2[i]}t') return None def gauss_elimination(matrix) -> np.array: """ This function compute Gauss elimination process :param matrix: generic matrix :return: matrix after the Gauss elimination """ import sympy return np.array(sympy.Matrix(matrix).rref()[0]) def conic_section_classification(coeff: list) -> None: """ This function provides a classification of a conic section :param coeff: list of the coefficient of the equation of the conic section if the equation is A x^2 + B xy + C y^2 + D x + E y + F = 0 then the array coeff is [A,B,C,D,E,F] """ A = array([[coeff[0], coeff[1] / 2, coeff[3] / 2], [coeff[1] / 2, coeff[2], coeff[4] / 2], [coeff[3], coeff[4] / 2, coeff[5]]]) rank = matrix_rank(A) if rank == 3: d = det(A[:2, :2]) # remember that we have a finite precision on floats, for this reason we consider 1e-09 as tolerance if d > 1e-09: print('This conic section is an ellipse') elif d < -1e-09: print('This conic section is a hyperbola') else: print('This conic section is a parabola') elif rank == 2: print('This conic section is a degenerate conic, ', end="") d = det(A[:2, :2]) if d > 1e-09: print('in particular we have one point') elif d < -1e-09: print('in particular we have two incident lines') else: print('in particular we have two parallel lines') else: print('This conic section is a degenerate conic, in particular we have two coincident lines') return None
[ "numpy.linalg.matrix_rank", "numpy.linalg.solve", "sympy.Matrix", "numpy.linalg.det", "numpy.array" ]
[((811, 830), 'numpy.linalg.matrix_rank', 'matrix_rank', (['matrix'], {}), '(matrix)\n', (822, 830), False, 'from numpy.linalg import matrix_rank\n'), ((844, 858), 'numpy.linalg.matrix_rank', 'matrix_rank', (['B'], {}), '(B)\n', (855, 858), False, 'from numpy.linalg import matrix_rank\n'), ((1689, 1708), 'numpy.linalg.matrix_rank', 'matrix_rank', (['matrix'], {}), '(matrix)\n', (1700, 1708), False, 'from numpy.linalg import matrix_rank\n'), ((3262, 3390), 'numpy.array', 'array', (['[[coeff[0], coeff[1] / 2, coeff[3] / 2], [coeff[1] / 2, coeff[2], coeff[4] /\n 2], [coeff[3], coeff[4] / 2, coeff[5]]]'], {}), '([[coeff[0], coeff[1] / 2, coeff[3] / 2], [coeff[1] / 2, coeff[2], \n coeff[4] / 2], [coeff[3], coeff[4] / 2, coeff[5]]])\n', (3267, 3390), False, 'from numpy import array\n'), ((3412, 3426), 'numpy.linalg.matrix_rank', 'matrix_rank', (['A'], {}), '(A)\n', (3423, 3426), False, 'from numpy.linalg import matrix_rank\n'), ((3457, 3471), 'numpy.linalg.det', 'det', (['A[:2, :2]'], {}), '(A[:2, :2])\n', (3460, 3471), False, 'from numpy.linalg import det\n'), ((1032, 1053), 'numpy.linalg.solve', 'solve', (['matrix', 'vector'], {}), '(matrix, vector)\n', (1037, 1053), False, 'from numpy.linalg import solve\n'), ((3907, 3921), 'numpy.linalg.det', 'det', (['A[:2, :2]'], {}), '(A[:2, :2])\n', (3910, 3921), False, 'from numpy.linalg import det\n'), ((2885, 2905), 'sympy.Matrix', 'sympy.Matrix', (['matrix'], {}), '(matrix)\n', (2897, 2905), False, 'import sympy\n'), ((985, 1006), 'numpy.linalg.solve', 'solve', (['matrix', 'vector'], {}), '(matrix, vector)\n', (990, 1006), False, 'from numpy.linalg import solve\n')]
""" Module to execute the simulation for a given instance. """ """ import packages """ import logging from importlib import import_module import numpy.random as rdm import copy import numpy as np """ import project configurations """ import configurations.settings_simulation as config """ import project libraries """ import modules.data.datamgm as dtm from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log # Global logger logger = dtm.initialise_logger(__name__) """ GLOBAL VARIABLES ---------------- - These variables must be resetted after every simulation run """ #: now Simulation Clock now = -1 #: last_now Last event last_now = 0 #:event_queue Event queue event_queue = [] #:trams List of running trams trams = [] #:stops List of stops stops = [] #:cargo List of cargo cargo = [] #:updates List of updates updates = set() #:numEvents Number of total events numEvents = 0 def reset_variables(): """ Function to reset all global variables """ global now, last_now, numEvents, trams, stops, event_queue, cargo, updates now = -1 last_now = 0 numEvents = 0 if trams: trams[0].reset() trams.clear() for stop in stops: stop.reset() stops.clear() event_queue.clear() Passengers.reset() if cargo: cargo[0].reset() cargo.clear() updates.clear() """ SIMULATION LOGGING ------------------ - Simluation log (Text File): Includes all information about the events in the simulation - Entities Log (csv file): Includes the relevant data information of single entities """ # "Simulation Log": What does in a single simulation run happen? (Descriptive) sim_log = logging.getLogger("simulation") # "Entities Log": How do the variables change during one simulation run? ent_log = logging.getLogger("entities") """ SIMULATION METHODS ------------------ """ def run(instance, passengerData, seed=False, index_child_seed=False): """ Run the simulation :param instance: Path to the instance file :param passengerData: Path to the passenger data file :param seed: Seed to replicate the simulation :param index_child_see: Index of the child of the global seedsequence """ # Used global variables global inst, now, last_now, event_queue, numEvents """ Initialise random generator """ # Check seed for random generator if seed: # seed sequence entropy = seed.entropy else: seed = rdm.SeedSequence() entropy = seed.entropy # Import instance (from .py-file) inst = dtm.import_instance(instance) # Initialize the simulation passenger = initialize(seed, passengerData) # Run the simulation running = True while running: # sort the upcoming events according to the time they occur event_queue = sorted(event_queue,key = lambda i: i['time']) if event_queue: if event_queue[0]['time'] != now: if now >= 0: status(now) for entity in updates: if entity == "passenger": entity = passenger entity.last_event = now write_entities_log(entity,now) updates.clear() last_now = now now = event_queue[0]['time'] sim_log.info("\n-----------------------------------------------------------------------------------") sim_log.info(f"Events at {now}:") sim_log.info("***") next_event() numEvents+= 1 event_queue.pop(0) # No more events else: last_time_period(inst.numPeriods-1,passenger) running = False # Save values for replicability sim_log.info(f"\nentropy:\n{entropy}\n") sim_log.info(f"index_child_seed:\n{entropy}\n") # Reset after simulation run reset_variables() # Initialisation def initialize(seed, passengerData): """ This function initialises the simulation run, i.e., creates the needed variables and adds the first events to the event log. :param seed: Seed for replicability :type seed: int :param passengerData: Path to passenger data file :type passengerData: string or path :return: Global passenger object to track number of passengers :rtype: Passengers object """ global event_queue sim_log.info("Initialisation...\n--------------------------------------") # Create child seedsequence per entity seeds = seed.spawn(10) # Entities Log init_entities_log() # initialize stops for s in range(inst.numStops): #sim_log.info("Creating Stop {}.".format(s)) distance_to = {"Stop": inst.stops_distance[s],"Customer": [0]} distance_from = {"Stop": [inst.stops_distance[j][s] for j in range(inst.numStops)], "Customer": [0]} if s == 0: stops.append(Stop(distance_to,distance_from,True)) else: stops.append(Stop(distance_to,distance_from)) pas = dtm.import_instance(passengerData) """ Initialize passengers """ passenger_seeds = seeds[0].spawn(6) if config.random_passenger_arrival: arriving = pas.arriving_intensity config.random_passenger_arrival = passenger_seeds[0] else: arriving = pas.passenger_arriving # instantiate passenger arrivals nonzero = np.nonzero(arriving) for i in range(len(nonzero[0])): p = nonzero[0][i] s = nonzero[1][i] create_event(p, 6, [s]) if config.random_passenger_boarding: config.random_passenger_boarding = passenger_seeds[1] if config.random_passenger_alighting: config.random_passenger_boarding = passenger_seeds[2] if config.random_passenger_changing: config.random_passenger_changing = passenger_seeds[3] if config.random_boarding_time: config.random_boarding_time = passenger_seeds[4] if config.random_alighting_time: config.random_alighting_time = passenger_seeds[5] """ Global passenger variables """ passenger = Passengers( # passenger arrival random_arrival = config.random_passenger_arrival, arriving_passengers = arriving, arriving_passengers_cum = pas.passenger_arriving_acc, # passenger boarding random_boarding = config.random_passenger_boarding, boarding_rate = [1 for tram in range(inst.numTrams)], # passenger alighting random_alighting = config.random_passenger_alighting, alighting_rate = pas.passenger_allighting_rate, # passenger changing random_changing = config.random_passenger_changing, changing_rate = [0 for tram in range(inst.numStops)], # time random_boarding_time = config.random_boarding_time, random_alighting_time = config.random_alighting_time, service_time = inst.passenger_service_time_board, service_time_alight = inst.passenger_service_time_alight, ) # Initialize the starting times of each tram tram_seeds = seeds[1].spawn(inst.numTrams) for t in range(inst.numTrams): sim_log.info(f"Tram {t} will start at {inst.tram_time_arrival[t][0]}.") Tram.numTotal += 1 create_event(inst.tram_time_arrival[t][0],1,[t,tram_seeds[t]]) # Initialize the cargo release cargo_seeds = seeds[2].spawn(inst.numCargo) for c in range(inst.numCargo): sim_log.info(f"Cargo request {c} will start at {inst.cargo_release[c]}.") create_event(inst.cargo_release[c],5,[c,cargo_seeds[c]]) # sort the event queue according to the time event_queue = sorted(event_queue,key = lambda i: i['time']) sim_log.info("\n-----------------------------------------------------------------------------------\n") return passenger def last_time_period(time,passenger): """ Write the log for the last period of the simulation :param time: last period :type time: float :param passenger: passenger object :type passenger: Passengers object """ status(time) for t in trams: write_entities_log(t,time) for s in stops: write_entities_log(s,time) write_entities_log(passenger,time) for c in cargo: c.estimate_delay(time) write_entities_log(c,time) def status(time): """ Add the status of all entities to the simulation log :param time: Time of update :type time: float """ global updates sim_log.info("\n*~* Status *~*") for t in trams: t.info() if len(t.sequences) < t.stopped: t.sequences.append( {"time": time, "cargo": t.cargosize, "passengers": t.passengers, "delay": t.delay} ) for t in stops: t.info() if len(t.sequences) < t.stopped: t.sequences.append( {"time": time, "cargo": t.cargosize, "passengers": t.passengers} ) CargoRequest.info() Passengers.info() """ METHODS FOR HANDLING EVENTS --------------------------- """ def create_event(t,event_id,par): """ Creating a new event given an event id and a list of parameters (if the event is within the time horizon) :param t: time :type t: float :param event_id: event id :type event_id: int :param par: event parameters :type par: list """ if np.ceil(t) < inst.numPeriods: event_queue.append({"time": t, "id":event_id,"par":par}) def next_event(): """ Execute the next event in the event queue """ # Choose the next event event = event_queue[0] # Extract event id and parameters event_id = event["id"] par = event["par"] # Event-id: 1 # Description: Starting a new tram if event_id == 1: starting_tram(par[0],seed=par[1]) # Event-id: 2 # Description: Tram reaches stop (but does not enter yet) if event_id == 2: tram_reaches_stop(par[0]) # Event-id: 3 # Description: Tram enters stop if event_id == 3: tram_entering_stop(par[0]) # Event-id: 4 # Description: Tram leaves stop (and next tram can enter this stop) if event_id == 4: tram_leaves_stop(par[0]) # Event-id: 5 # Description: Cargo is released if event_id == 5: starting_cargo(par[0], seed=par[1]) # Event-id 6: # Description: Update passengers if event_id == 6: passenger_update(par[0]) """ EVENT METHODS ----------------------------------- """ def starting_tram(index,seed): """ Event no. 1: Starting a tram :param index: Index of the tram :type index: int :param seed: Seed for replicability :type seed: int """ global now, updates tram_id = len(trams) if config.random_travel_time: config.random_travel_time = seed # debugging #logger.debug(f"tram_travel_deviation: {config.tram_travel_deviation}") # if passengers and cargo share vehicles if inst.scheme == "SV": trams.append(Tram( tour = inst.tram_tour[index], capacity_passenger = inst.tram_capacity-inst.tram_capacity_min_cargo, capacity_cargo = inst.tram_capacity-inst.tram_capacity_min_passenger, capacity_total = inst.tram_capacity, schedule_arrival = inst.tram_time_arrival[index], schedule_departure = inst.tram_time_departure[index], speed = inst.tram_speed, # Simulation deterministic by default random_travel_time = config.random_travel_time, travel_deviation = config.tram_travel_deviation, max_service = inst.tram_max_service ) ) # if passengers and cargo have dedicated vehicles elif inst.scheme == "SI": if index in inst.cargo_tram_assignment: # cargo tram trams.append(Tram( tour = inst.tram_tour[index], capacity_passenger = 0, capacity_cargo = inst.tram_capacity_cargo, capacity_total = inst.tram_capacity, schedule_arrival = inst.tram_time_arrival[index], schedule_departure = inst.tram_time_departure[index], speed = inst.tram_speed, # Simulation deterministic by default random_travel_time = config.random_travel_time, travel_deviation = config.tram_travel_deviation, max_service = inst.tram_max_service ) ) else: # passenger tram trams.append(Tram( tour = inst.tram_tour[index], capacity_passenger = inst.tram_capacity, capacity_cargo = 0, capacity_total = inst.tram_capacity, schedule_arrival = inst.tram_time_arrival[index], schedule_departure = inst.tram_time_departure[index], speed = inst.tram_speed, # Simulation deterministic by default random_travel_time = config.random_travel_time, travel_deviation = config.tram_travel_deviation, max_service = inst.tram_max_service ) ) tram = trams[-1] if tram.is_operating: tram_reaches_stop(tram_id) else: updates.add(tram) def tram_reaches_stop(tram_id): """ Event no. 2: Tram reaches stop. It either queues up or enters the stop. :param tram_id: tram id :type tram_id: int """ global now tram = trams[tram_id] tram.reach_next_location(now) stop = stops[tram.tour[tram.position]] if stop.check_queue(tram): tram_entering_stop(tram_id) else: updates.add(tram) def tram_entering_stop(tram_id): """ Event no. 3: Tram enters the platform of the stop. :param tram_id: tram id :type tram_id: int """ global now, updates tram = trams[tram_id] stop=stops[tram.tour[tram.position]] tram.enter_next_stop(stop,now) boarding_time = 0 alighting_time = 0 # Update passengers if tram.passenger_transport: boarding_time, alighting_time = passenger_update(stop.index,True,True) # Compute leaving time with passengers only leaving_time = tram.compute_leaving_time(now,boarding_time,alighting_time) new_leaving_time = False if tram.cargo_transport: # unloading tram_cargoload = copy.copy(tram.cargoload) for c in tram_cargoload: request = cargo[c] if request.end_stop == stop.index: unloading_time = request.unload(tram,stop,now) new_leaving_time = tram.compute_leaving_time(now,unloading_time=unloading_time) updates.add(request) tram_cargoload.clear() # loading stop_cargoload = copy.copy(stop.cargoload) for c in stop_cargoload: request = cargo[c] if request.assigned_vehicle == tram.index: loading_time = request.load(tram,stop) new_leaving_time = tram.compute_leaving_time(now,loading_time=loading_time) updates.add(request) stop_cargoload.clear() updates.add(tram) create_event(tram.leaving_time, 4, [tram_id]) return updates def tram_leaves_stop(tram_id): """ Event no. 4: Tram leaves the stop. :param tram_id: tram id :type tram_id: int """ global now tram = trams[tram_id] stop = stops[tram.tour[tram.position]] if tram.leaving_time == now: travel_time = tram.leave_location(stop,now) updates.add(tram) updates.add(stop) if tram.is_operating: create_event(now + travel_time, 2, [tram_id]) next_tram = stop.next_tram_in_queue(tram) if next_tram >= 0: create_event(now + inst.min_time_next_tram , 3, [next_tram]) def starting_cargo(index,seed): """ Event no. 5: New cargo request arrives :param index: cargo index :type index: int :param seed: seed for randomisation :type seed: int """ global now, updates, trams # Generate new cargo request cargo.append(CargoRequest( release = inst.cargo_release[index], deadline = inst.cargo_station_deadline[index], end_stop = inst.cargo_station_destination[index], assigned_vehicle = inst.cargo_tram_assignment[index], stop = stops[0], service_time = inst.cargo_service_time_load, service_time_unload = inst.cargo_service_time_unload, size = inst.cargo_size, random_service_time = seed, ) ) request = cargo[-1] # Check if tram is currently at platform stop = stops[request.start_stop] # Update the log of stop and request updates.add(stop) updates.add(request) # If the assigned vehicle is currently at the depot if stop.current_tram == request.assigned_vehicle: # load tram tram = trams[request.assigned_vehicle] # update the current loading and leaving time of the tram loading_time = request.load(tram, stop) leaving_time = tram.compute_leaving_time(now,loading_time = loading_time) # update the log of the tram updates.add(tram) # Did the leaving time change? if leaving_time: # -> Create a new event for leaving the stop create_event(leaving_time, 4, [tram.index]) def passenger_update(stop_id,recent_tram_arrival = False, consider_tram=False): """ Event no. 6: New passengers arrive and/or alight and board a vehicle :param stop_id: Index of the stop :type stop_id: int :param recent_tram_arrival: New arrival of tram (True) or update while tram is waiting (False)?, defaults to False :type recent_tram_arrival: bool, optional :param consider_tram: Consider boarding and alighting process (True) or only arrival (False), defaults to False :type consider_tram: bool, optional :return: boarding and alighting time :rtype: tuple """ global now, updates stop = stops[stop_id] if consider_tram: tram_id = stop.current_tram else: tram_id = -1 # Update arriving passengers Passengers.arrival(now,stop) boarding_time = 0 alighting_time = 0 # if currently a tram waits at the platform if tram_id >= 0: tram = trams[tram_id] if recent_tram_arrival or tram.leaving_time != now: if recent_tram_arrival: # compute number and time for alighting passengers alighting_passengers, alighting_time = Passengers.alighting(stop,tram,now) # compute number and time for boarding passengers boarding_passengers, boarding_time = Passengers.boarding(stop,tram,now) if recent_tram_arrival: # compute number and time for changing passengers changing_passengers = Passengers.changing(stop,alighting_passengers,now) # Update leaving time if not recent_tram_arrival: leaving_time = tram.compute_leaving_time(now,boarding_time,alighting_time, 0, 0) updates.add(tram) #write_entities_log(tram,now) # Did the leaving time change? if leaving_time: create_event(leaving_time, 4, [tram_id]) #next_arrival = Passengers.compute_next_arrival_time(now,stop,tram) #if next_arrival: # create new event (for passengers that may arrive before the current tram leaves) #create_event(next_arrival, 6, [stop_id]) updates.add(stop) updates.add("passenger") return boarding_time, alighting_time
[ "logging.getLogger", "modules.simulation.entities.Tram", "modules.simulation.entities.Passengers.reset", "modules.simulation.entities.Passengers.boarding", "modules.simulation.entities.Passengers.alighting", "modules.simulation.entities.Stop", "modules.data.datamgm.initialise_logger", "modules.simulation.entities.Passengers.arrival", "copy.copy", "modules.data.datamgm.import_instance", "modules.simulation.entities.Passengers.info", "numpy.random.SeedSequence", "modules.simulation.entities.write_entities_log", "numpy.ceil", "modules.simulation.entities.CargoRequest", "modules.simulation.entities.CargoRequest.info", "numpy.nonzero", "modules.simulation.entities.Passengers.changing", "modules.simulation.entities.init_entities_log" ]
[((506, 537), 'modules.data.datamgm.initialise_logger', 'dtm.initialise_logger', (['__name__'], {}), '(__name__)\n', (527, 537), True, 'import modules.data.datamgm as dtm\n'), ((1746, 1777), 'logging.getLogger', 'logging.getLogger', (['"""simulation"""'], {}), "('simulation')\n", (1763, 1777), False, 'import logging\n'), ((1863, 1892), 'logging.getLogger', 'logging.getLogger', (['"""entities"""'], {}), "('entities')\n", (1880, 1892), False, 'import logging\n'), ((1335, 1353), 'modules.simulation.entities.Passengers.reset', 'Passengers.reset', ([], {}), '()\n', (1351, 1353), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((2674, 2703), 'modules.data.datamgm.import_instance', 'dtm.import_instance', (['instance'], {}), '(instance)\n', (2693, 2703), True, 'import modules.data.datamgm as dtm\n'), ((4872, 4891), 'modules.simulation.entities.init_entities_log', 'init_entities_log', ([], {}), '()\n', (4889, 4891), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((5355, 5389), 'modules.data.datamgm.import_instance', 'dtm.import_instance', (['passengerData'], {}), '(passengerData)\n', (5374, 5389), True, 'import modules.data.datamgm as dtm\n'), ((8672, 8707), 'modules.simulation.entities.write_entities_log', 'write_entities_log', (['passenger', 'time'], {}), '(passenger, time)\n', (8690, 8707), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((9408, 9427), 'modules.simulation.entities.CargoRequest.info', 'CargoRequest.info', ([], {}), '()\n', (9425, 9427), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((9441, 9458), 'modules.simulation.entities.Passengers.info', 'Passengers.info', ([], {}), '()\n', (9456, 9458), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((19199, 19228), 'modules.simulation.entities.Passengers.arrival', 'Passengers.arrival', (['now', 'stop'], {}), '(now, stop)\n', (19217, 19228), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((2565, 2583), 'numpy.random.SeedSequence', 'rdm.SeedSequence', ([], {}), '()\n', (2581, 2583), True, 'import numpy.random as rdm\n'), ((5734, 5754), 'numpy.nonzero', 'np.nonzero', (['arriving'], {}), '(arriving)\n', (5744, 5754), True, 'import numpy as np\n'), ((8575, 8602), 'modules.simulation.entities.write_entities_log', 'write_entities_log', (['t', 'time'], {}), '(t, time)\n', (8593, 8602), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((8636, 8663), 'modules.simulation.entities.write_entities_log', 'write_entities_log', (['s', 'time'], {}), '(s, time)\n', (8654, 8663), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((8772, 8799), 'modules.simulation.entities.write_entities_log', 'write_entities_log', (['c', 'time'], {}), '(c, time)\n', (8790, 8799), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((9852, 9862), 'numpy.ceil', 'np.ceil', (['t'], {}), '(t)\n', (9859, 9862), True, 'import numpy as np\n'), ((15133, 15158), 'copy.copy', 'copy.copy', (['tram.cargoload'], {}), '(tram.cargoload)\n', (15142, 15158), False, 'import copy\n'), ((15608, 15633), 'copy.copy', 'copy.copy', (['stop.cargoload'], {}), '(stop.cargoload)\n', (15617, 15633), False, 'import copy\n'), ((17054, 17424), 'modules.simulation.entities.CargoRequest', 'CargoRequest', ([], {'release': 'inst.cargo_release[index]', 'deadline': 'inst.cargo_station_deadline[index]', 'end_stop': 'inst.cargo_station_destination[index]', 'assigned_vehicle': 'inst.cargo_tram_assignment[index]', 'stop': 'stops[0]', 'service_time': 'inst.cargo_service_time_load', 'service_time_unload': 'inst.cargo_service_time_unload', 'size': 'inst.cargo_size', 'random_service_time': 'seed'}), '(release=inst.cargo_release[index], deadline=inst.\n cargo_station_deadline[index], end_stop=inst.cargo_station_destination[\n index], assigned_vehicle=inst.cargo_tram_assignment[index], stop=stops[\n 0], service_time=inst.cargo_service_time_load, service_time_unload=inst\n .cargo_service_time_unload, size=inst.cargo_size, random_service_time=seed)\n', (17066, 17424), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((11590, 12076), 'modules.simulation.entities.Tram', 'Tram', ([], {'tour': 'inst.tram_tour[index]', 'capacity_passenger': '(inst.tram_capacity - inst.tram_capacity_min_cargo)', 'capacity_cargo': '(inst.tram_capacity - inst.tram_capacity_min_passenger)', 'capacity_total': 'inst.tram_capacity', 'schedule_arrival': 'inst.tram_time_arrival[index]', 'schedule_departure': 'inst.tram_time_departure[index]', 'speed': 'inst.tram_speed', 'random_travel_time': 'config.random_travel_time', 'travel_deviation': 'config.tram_travel_deviation', 'max_service': 'inst.tram_max_service'}), '(tour=inst.tram_tour[index], capacity_passenger=inst.tram_capacity -\n inst.tram_capacity_min_cargo, capacity_cargo=inst.tram_capacity - inst.\n tram_capacity_min_passenger, capacity_total=inst.tram_capacity,\n schedule_arrival=inst.tram_time_arrival[index], schedule_departure=inst\n .tram_time_departure[index], speed=inst.tram_speed, random_travel_time=\n config.random_travel_time, travel_deviation=config.\n tram_travel_deviation, max_service=inst.tram_max_service)\n', (11594, 12076), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((19796, 19832), 'modules.simulation.entities.Passengers.boarding', 'Passengers.boarding', (['stop', 'tram', 'now'], {}), '(stop, tram, now)\n', (19815, 19832), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((5230, 5268), 'modules.simulation.entities.Stop', 'Stop', (['distance_to', 'distance_from', '(True)'], {}), '(distance_to, distance_from, True)\n', (5234, 5268), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((5307, 5339), 'modules.simulation.entities.Stop', 'Stop', (['distance_to', 'distance_from'], {}), '(distance_to, distance_from)\n', (5311, 5339), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((19632, 19669), 'modules.simulation.entities.Passengers.alighting', 'Passengers.alighting', (['stop', 'tram', 'now'], {}), '(stop, tram, now)\n', (19652, 19669), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((19989, 20041), 'modules.simulation.entities.Passengers.changing', 'Passengers.changing', (['stop', 'alighting_passengers', 'now'], {}), '(stop, alighting_passengers, now)\n', (20008, 20041), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((3371, 3402), 'modules.simulation.entities.write_entities_log', 'write_entities_log', (['entity', 'now'], {}), '(entity, now)\n', (3389, 3402), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((12460, 12865), 'modules.simulation.entities.Tram', 'Tram', ([], {'tour': 'inst.tram_tour[index]', 'capacity_passenger': '(0)', 'capacity_cargo': 'inst.tram_capacity_cargo', 'capacity_total': 'inst.tram_capacity', 'schedule_arrival': 'inst.tram_time_arrival[index]', 'schedule_departure': 'inst.tram_time_departure[index]', 'speed': 'inst.tram_speed', 'random_travel_time': 'config.random_travel_time', 'travel_deviation': 'config.tram_travel_deviation', 'max_service': 'inst.tram_max_service'}), '(tour=inst.tram_tour[index], capacity_passenger=0, capacity_cargo=inst.\n tram_capacity_cargo, capacity_total=inst.tram_capacity,\n schedule_arrival=inst.tram_time_arrival[index], schedule_departure=inst\n .tram_time_departure[index], speed=inst.tram_speed, random_travel_time=\n config.random_travel_time, travel_deviation=config.\n tram_travel_deviation, max_service=inst.tram_max_service)\n', (12464, 12865), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n'), ((13191, 13590), 'modules.simulation.entities.Tram', 'Tram', ([], {'tour': 'inst.tram_tour[index]', 'capacity_passenger': 'inst.tram_capacity', 'capacity_cargo': '(0)', 'capacity_total': 'inst.tram_capacity', 'schedule_arrival': 'inst.tram_time_arrival[index]', 'schedule_departure': 'inst.tram_time_departure[index]', 'speed': 'inst.tram_speed', 'random_travel_time': 'config.random_travel_time', 'travel_deviation': 'config.tram_travel_deviation', 'max_service': 'inst.tram_max_service'}), '(tour=inst.tram_tour[index], capacity_passenger=inst.tram_capacity,\n capacity_cargo=0, capacity_total=inst.tram_capacity, schedule_arrival=\n inst.tram_time_arrival[index], schedule_departure=inst.\n tram_time_departure[index], speed=inst.tram_speed, random_travel_time=\n config.random_travel_time, travel_deviation=config.\n tram_travel_deviation, max_service=inst.tram_max_service)\n', (13195, 13590), False, 'from modules.simulation.entities import Tram, Stop, Passengers, CargoRequest, write_entities_log, init_entities_log\n')]
import numpy as np import matplotlib.pyplot as plt from scipy import linalg as la def PCA(dat, center=False, percentage=0.8): M, N = dat.shape if center: mu = np.mean(dat,0) dat -= mu U, L, Vh = la.svd(dat, full_matrices=False) V = Vh.T.conjugate() SIGMA = np.diag(L) X = U.dot(SIGMA) Lam = L**2 normalized_eigenvalues = Lam/Lam.sum(dtype=float) csum = [normalized_eigenvalues[:i+1].sum() for i in xrange(N)] n_components = [x < percentage for x in csum].index(False) + 1 return (normalized_eigenvalues, V[:,0:n_components], SIGMA[0:n_components,0:n_components], X[:,0:n_components]) def scree(normalized_eigenvalues): fig = plt.figure() plt.plot(normalized_eigenvalues,'b-', normalized_eigenvalues, 'bo') plt.xlabel("Principal Components") plt.ylabel("Percentage of Variance") return fig
[ "numpy.mean", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.diag", "matplotlib.pyplot.figure", "scipy.linalg.svd" ]
[((225, 257), 'scipy.linalg.svd', 'la.svd', (['dat'], {'full_matrices': '(False)'}), '(dat, full_matrices=False)\n', (231, 257), True, 'from scipy import linalg as la\n'), ((300, 310), 'numpy.diag', 'np.diag', (['L'], {}), '(L)\n', (307, 310), True, 'import numpy as np\n'), ((738, 750), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (748, 750), True, 'import matplotlib.pyplot as plt\n'), ((755, 823), 'matplotlib.pyplot.plot', 'plt.plot', (['normalized_eigenvalues', '"""b-"""', 'normalized_eigenvalues', '"""bo"""'], {}), "(normalized_eigenvalues, 'b-', normalized_eigenvalues, 'bo')\n", (763, 823), True, 'import matplotlib.pyplot as plt\n'), ((827, 861), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Principal Components"""'], {}), "('Principal Components')\n", (837, 861), True, 'import matplotlib.pyplot as plt\n'), ((866, 902), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Percentage of Variance"""'], {}), "('Percentage of Variance')\n", (876, 902), True, 'import matplotlib.pyplot as plt\n'), ((176, 191), 'numpy.mean', 'np.mean', (['dat', '(0)'], {}), '(dat, 0)\n', (183, 191), True, 'import numpy as np\n')]
# -------------------------------------------------------- # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import os import torch import torch.nn.functional as F import numpy as np from core import networks from core.utils import * from core.loss import * import IPython import time class Agent(object): """ A general agent class """ def __init__(self, num_inputs, action_space, args, name): for key, val in args.items(): setattr(self, key, val) self.name = name self.device = "cuda" self.update_step = 1 self.init_step = 1 self.action_dim = action_space.shape[0] self.has_critic = self.name != "BC" self.action_space = action_space self.num_inputs = num_inputs + self.num_input_extra self.traj_feat = None self.latent_sample = None self.test_mode = False self.use_debug_latent = False self.gaddpg_pred = 0. if has_check(self, 'traj_goal_mutual_conditioned') : self.num_inputs += self.policy_traj_latent_size self.policy, self.policy_optim, self.policy_scheduler, self.policy_target = get_policy_class('GaussianPolicy', self) def unpack_batch( self, state, point_state=None, vis=False, gt_goal=None, val=False, grasp_set=None, vis_image=False, repeat=False, traj_latent=None, separate=True ): """ Extract features from point cloud input """ if type(point_state) is list or type(point_state) is np.ndarray: point_state = torch.cuda.FloatTensor(point_state ) if type(state) is list or type(state) is np.ndarray: state = torch.cuda.FloatTensor(state) state_feature, network_input = self.state_feature_extractor( point_state, feature_2=val, traj_latent=traj_latent, train=not self.test_mode) if len(state_feature) != 2 or type(state_feature) is torch.Tensor: state_feature = [state_feature, None] return state_feature def gaddpg_step(self, state, remain_timestep, curr_joint ): """ use GADDPG to forward pass """ state = select_target_point(state) gaddpg_remain_step = max(min(remain_timestep + 1, 25), 1) return self.gaddpg.select_action(state, remain_timestep=gaddpg_remain_step, curr_joint=curr_joint) @torch.no_grad() def batch_select_action( self, state, actions=None, goal_state=None, vis=False, remain_timestep=0, repeat=False, curr_joint=None, gt_traj=None, sample_num=None ): """ run policy forward pass in batch simulation """ self.set_mode(True) traj = None curr_joint_th = torch.cuda.FloatTensor(curr_joint)[:, :7] img_state = torch.cuda.FloatTensor(state[0][1]) point_state = torch.cuda.FloatTensor(state[0][0]) timestep = remain_timestep self.timestep = timestep agent = self feature, extra = agent.extract_feature( img_state, point_state, time_batch=timestep, goal_batch=goal_state, vis=vis, value=False, train=False, repeat=repeat, curr_joint=curr_joint_th ) actions = agent.policy.sample(feature) action = actions[0].detach().cpu().numpy() extra_pred = actions[1].detach().cpu().numpy() action_sample = actions[2].detach().cpu().numpy() aux_pred = actions[3].detach().cpu().numpy() return action, traj, extra_pred, aux_pred @torch.no_grad() def select_action( self, state, actions=None, goal_state=None, vis=False, remain_timestep=0, repeat=False, curr_joint=None, gt_traj=None, sample_num=None ): """ policy output in test time """ self.set_mode(True) multi_sample = has_check(self, 'multi_traj_sample') and gt_traj is None if multi_sample and hasattr(self, 'critic') and self.train_traj_sampler and self.critic_mpc: return self.critic_select_action(state, remain_timestep, curr_joint, vis=vis) if self.name == 'DQN_HRL' and gt_traj is None and vis: return self.critic_select_action(state, remain_timestep, curr_joint, vis=vis) curr_joint_th = torch.Tensor([curr_joint.flatten()]).float().cuda()[:, :7] img_state = torch.cuda.FloatTensor(state[0][1])[None] point_state = torch.cuda.FloatTensor(state[0][0])[None] timestep = torch.cuda.FloatTensor([remain_timestep]) self.timestep = timestep if has_check(self, 'train_traj_sampler') and gt_traj is None and has_check(self, 'train_traj_feature'): if multi_sample: # multiple traj samples traj = self.select_traj(img_state, point_state.repeat((self.test_traj_num, 1, 1)), goal_state, vis=vis, remain_timestep=remain_timestep, curr_joint=curr_joint_th.repeat((self.test_traj_num, 1))) timestep = torch.Tensor([remain_timestep]).float().cuda() opt_idx = 0 self.traj_feat = self.traj_feat[[opt_idx]] else: traj = self.select_traj(img_state, point_state, goal_state, vis=vis, remain_timestep=remain_timestep, curr_joint=curr_joint_th ) else: traj = None # policy feature, extra = self.extract_feature( img_state, point_state, time_batch=timestep, goal_batch=goal_state, value=False, train=False, repeat=repeat, curr_joint=curr_joint_th[:,:7] ) if self.name == 'DQN_HRL' and vis and hasattr(self, 'sampler_traj_feat'): self.compute_critic_value( img_state, point_state, timestep, curr_joint_th, goal_state) actions = self.policy.sample(feature) action = actions[0].detach().cpu().numpy()[0] extra_pred = actions[1].detach().cpu().numpy()[0] action_sample = actions[2].detach().cpu().numpy()[0] aux_pred = actions[3].detach().cpu().numpy()[0] return action, traj, extra_pred, aux_pred def update_parameters(self, batch_data, updates, k): """ To be inherited """ return {} def compute_loss(self): """ compute loss for policy and trajectory embedding """ self.policy_grasp_aux_loss = goal_pred_loss(self.aux_pred[self.target_goal_reward_mask, :7], self.target_grasp_batch[self.target_goal_reward_mask, :7] ) self.bc_loss = traj_action_loss(self, self.pi, self.traj_expert_action_batch, self.target_expert_mask) return sum([getattr(self, name) for name in self.loss_info if name.endswith('loss') and not name.startswith('critic')]) def prepare_data(self, batch_data): """ load batch data dictionary and compute extra data """ update_step = self.update_step - self.init_step self.loss_info = list(get_loss_info_dict().keys()) for name in self.loss_info: setattr(self, name, torch.zeros(1, device=torch.device('cuda'))) for k, v in batch_data.items(): setattr(self, k, torch.cuda.FloatTensor(v)) self.traj_time_batch = self.traj_idx_batch[:, 1, None] self.cont_traj_inbatch_index = self.traj_idx_batch[:, 0].cuda().long() self.traj_feat = None self.reward_mask = (self.return_batch > 0).view(-1) self.expert_mask = (self.expert_flag_batch >= 1).view(-1) self.expert_reward_mask = self.reward_mask * (self.expert_flag_batch >= 1).squeeze() self.perturb_flag_batch = self.perturb_flag_batch.bool() self.traj_expert_reward_mask = self.expert_reward_mask[self.cont_traj_inbatch_index] self.train_traj_idx_batch = self.cont_traj_inbatch_index self.sparsify_sim_traj_time_batch = self.sparsify_sim_traj_idx_batch[:, 1, None] self.sparsify_sim_cont_traj_inbatch_index = self.sparsify_sim_traj_idx_batch[:, 0].cuda().long() self.sparsify_sim_traj_expert_reward_mask = self.expert_reward_mask[self.sparsify_sim_cont_traj_inbatch_index] self.goal_reward_mask = torch.ones_like(self.time_batch).bool() self.traj_goal_reward_mask = torch.ones_like(self.traj_integer_time_batch).bool() self.target_grasp_batch = self.traj_goal_batch[:, :7] if self.full_traj_embedding else self.goal_batch[:, :7] self.target_goal_reward_mask = self.goal_reward_mask[self.cont_traj_inbatch_index] if self.full_traj_embedding else self.goal_reward_mask self.target_reward_mask = self.reward_mask[self.cont_traj_inbatch_index] if self.full_traj_embedding else self.reward_mask self.target_return = self.return_batch[self.cont_traj_inbatch_index] if self.full_traj_embedding else self.return_batch self.target_expert_mask = self.expert_mask[self.cont_traj_inbatch_index] if self.full_traj_embedding else self.expert_mask self.target_gaddpg_batch = (self.gaddpg_batch * self.reward_mask) self.target_expert_reward_mask = self.traj_expert_reward_mask if self.full_traj_embedding else self.expert_reward_mask self.next_time_batch = self.time_batch - 1 self.next_traj_time_batch = self.traj_integer_time_batch - 1 self.target_reward_batch = self.traj_reward_batch if self.full_traj_embedding else self.reward_batch self.target_mask_batch = self.traj_mask_batch if self.full_traj_embedding else self.mask_batch def log_stat(self): """ log grad and param statistics for tensorboard """ self.policy_grad = module_max_gradient(self.policy) self.feat_grad = module_max_gradient(self.state_feature_extractor.module.encoder) self.feat_param = module_max_param(self.state_feature_extractor.module.encoder) self.val_feat_grad = module_max_gradient(self.state_feature_extractor.module.value_encoder) self.val_feat_param = module_max_param(self.state_feature_extractor.module.value_encoder) self.policy_param = module_max_param(self.policy) self.reward_mask_num = self.reward_mask.float().sum() self.max_traj_sample_len = torch.unique(self.cont_traj_inbatch_index, return_counts=True)[1].max() self.traj_num = len(self.reward_mask) self.train_batch_size = len(self.target_expert_reward_mask) if hasattr(self, 'traj_feature_extractor'): self.traj_grad = module_max_gradient(self.traj_feature_extractor) self.traj_param = module_max_param(self.traj_feature_extractor) if hasattr(self, 'sampler_gaussian'): self.sampler_mean = self.sampler_gaussian[0].mean().item() self.sampler_logsigma = self.sampler_gaussian[1].mean().item() if self.train_traj_sampler and hasattr(self, 'sampler_traj_feat'): self.traj_sampler_grad = module_max_gradient(self.traj_feature_sampler) self.traj_sampler_param = module_max_param(self.traj_feature_sampler) if self.has_critic: self.value_mean, self.value_mean_2 = self.qf1.mean(), self.qf2.mean() self.target_mean = self.next_q_value.mean() self.return_mean = self.traj_return_batch.mean() self.value_min, self.value_max = self.qf1.min(), self.qf1.max() self.expert_reward_mask_num = self.expert_reward_mask.sum() self.goal_reward_mask_num = self.goal_reward_mask.sum() self.reward_mask_num = self.reward_mask.sum() self.return_min, self.return_max = self.return_batch.min(), self.return_batch.max() self.critic_grad = module_max_gradient(self.critic) self.critic_param = module_max_param(self.critic) def set_mode(self, test): """ set training or test mode for network """ self.test_mode = test if not test: self.state_feature_extractor.train() self.policy.train() if hasattr(self, "critic"): self.critic.train() self.critic_optim.zero_grad() self.state_feat_val_encoder_optim.zero_grad() if hasattr(self, 'traj_feature_extractor'): if self.train_traj_feature and not self.fix_traj_feature: self.traj_feature_extractor.train() else: self.traj_feature_extractor.eval() if self.train_traj_sampler: self.traj_feature_sampler.train() else: torch.no_grad() self.policy.eval() self.state_feature_extractor.eval() if hasattr(self, "critic"): self.critic.eval() if hasattr(self, "traj_feature_extractor"): self.traj_feature_extractor.eval() if hasattr(self, "traj_feature_sampler"): self.traj_feature_sampler.eval() def setup_feature_extractor(self, net_dict, test_time=False): """ Load networks """ if "traj_feature_extractor" in net_dict: self.traj_feature_extractor = net_dict["traj_feature_extractor"]["net"] self.traj_feature_extractor_opt = net_dict["traj_feature_extractor"]["opt"] self.traj_feature_extractor_sch = net_dict["traj_feature_extractor"]["scheduler"] else: self.traj_feature_extractor = net_dict["state_feature_extractor"]["net"] if 'traj_feature_sampler' in net_dict: self.traj_feature_sampler = net_dict["traj_feature_sampler"]["net"] self.traj_feature_sampler_opt = net_dict["traj_feature_sampler"]["opt"] self.traj_feature_sampler_sch = net_dict["traj_feature_sampler"]["scheduler"] self.state_feature_extractor = net_dict["state_feature_extractor"]["net"] self.state_feature_extractor_optim = net_dict["state_feature_extractor"]["opt"] self.state_feature_extractor_scheduler = net_dict["state_feature_extractor"]["scheduler"] self.state_feat_encoder_optim = net_dict["state_feature_extractor"][ "encoder_opt" ] self.state_feat_encoder_scheduler = net_dict["state_feature_extractor"][ "encoder_scheduler" ] self.state_feat_val_encoder_optim = net_dict["state_feature_extractor"][ "val_encoder_opt" ] self.state_feat_val_encoder_scheduler = net_dict["state_feature_extractor"][ "val_encoder_scheduler" ] self.test_time = test_time def get_mix_ratio(self, update_step): """ Get a mixed schedule for supervised learning and RL """ idx = int((self.update_step > np.array(self.mix_milestones)).sum()) mix_policy_ratio = get_valid_index(self.mix_policy_ratio_list, idx) mix_policy_ratio = min(mix_policy_ratio, self.ddpg_coefficients[4]) mix_value_ratio = get_valid_index(self.mix_value_ratio_list, idx) mix_value_ratio = min(mix_value_ratio, self.ddpg_coefficients[3]) return mix_value_ratio, mix_policy_ratio def get_lr(self): """ Get network learning rates """ lrs = { "policy_lr": self.policy_optim.param_groups[0]["lr"], "feature_lr": self.state_feature_extractor_optim.param_groups[0]["lr"], } if self.train_traj_feature: lrs["traj_feature_lr"] = self.traj_feature_extractor_opt.param_groups[0]["lr"] if self.train_traj_sampler: lrs["traj_sampler_lr"] = self.traj_feature_sampler_opt.param_groups[0]["lr"] if hasattr(self, 'critic_optim'): lrs["value_lr"] = self.critic_optim.param_groups[0]["lr"] lrs["val_feat_lr"] = self.state_feat_val_encoder_optim.param_groups[0]["lr"] headers = ["network", "learning rate"] data = [(name, lr) for name, lr in lrs.items()] return lrs def optimize(self, loss, update_step): """ Backward loss and update optimizer """ self.state_feat_encoder_optim.zero_grad() self.policy_optim.zero_grad() if self.train_traj_feature: self.traj_feature_extractor_opt.zero_grad() if self.train_traj_sampler: self.traj_feature_sampler_opt.zero_grad() loss.backward(retain_graph=self.re_sampler_step) self.policy_optim.step() if self.train_feature: self.state_feat_encoder_optim.step() if self.train_traj_feature: self.traj_feature_extractor_opt.step() if self.train_traj_sampler: self.traj_feature_sampler_opt.step() def step_scheduler(self, step=None): """ Update network scheduler """ if self.train_traj_sampler: self.traj_feature_sampler_sch.step() if self.train_traj_feature: self.traj_feature_extractor_sch.step() if hasattr(self, "critic"): self.critic_scheduler.step() if hasattr(self, "policy"): self.policy_scheduler.step() if self.train_feature or self.train_value_feature: self.state_feature_extractor_scheduler.step() self.state_feat_encoder_scheduler.step() if self.train_value_feature and hasattr(self, 'state_feat_val_encoder_scheduler'): self.state_feat_val_encoder_scheduler.step() def save_model( self, step, output_dir="", surfix="latest", actor_path=None, critic_path=None, traj_feat_path=None, state_feat_path=None, ): """ save model """ if not os.path.exists(output_dir): os.makedirs(output_dir) actor_path, critic_path, traj_feat_path, traj_sampler_path, state_feat_path = get_model_path(output_dir, self.name, self.env_name, surfix) print("Saving models to {} and {}".format(actor_path, critic_path)) if hasattr(self, "policy"): torch.save( { "net": self.policy.state_dict(), "opt": self.policy_optim.state_dict(), "sch": self.policy_scheduler.state_dict(), }, actor_path, ) if hasattr(self, "critic"): torch.save( { "net": self.critic.state_dict(), "opt": self.critic_optim.state_dict(), "sch": self.critic_scheduler.state_dict(), }, critic_path, ) if hasattr(self, 'traj_feature_extractor_opt'): torch.save( { "net": self.traj_feature_extractor.state_dict(), "opt": self.traj_feature_extractor_opt.state_dict(), "sch": self.traj_feature_extractor_sch.state_dict(), }, traj_feat_path, ) if hasattr(self, 'traj_feature_sampler_opt'): torch.save( { "net": self.traj_feature_sampler.state_dict(), "opt": self.traj_feature_sampler_opt.state_dict(), "sch": self.traj_feature_sampler_sch.state_dict(), }, traj_sampler_path, ) torch.save( { "net": self.state_feature_extractor.state_dict(), "opt": self.state_feature_extractor_optim.state_dict(), "encoder_opt": self.state_feat_encoder_optim.state_dict(), "sch": self.state_feature_extractor_scheduler.state_dict(), "encoder_sch": self.state_feat_encoder_scheduler.state_dict(), "val_encoder_opt": self.state_feat_val_encoder_optim.state_dict(), "val_encoder_sch": self.state_feat_val_encoder_scheduler.state_dict(), "step": step, }, state_feat_path, ) def load_model( self, output_dir, surfix="latest", set_init_step=False, reinit_value_feat=False ): """ Load saved model """ actor_path, critic_path, traj_feat_path, traj_sampler_path, state_feat_path = get_model_path(output_dir, self.name, self.env_name, surfix) if hasattr(self, "policy") and os.path.exists(actor_path): net_dict = torch.load(actor_path) self.policy.load_state_dict(net_dict["net"]) self.policy_optim.load_state_dict(net_dict["opt"]) self.policy_scheduler.load_state_dict(net_dict["sch"]) if self.reinit_optim and set_init_step: for g in self.policy_optim.param_groups: g["lr"] = self.reinit_lr self.policy_scheduler = torch.optim.lr_scheduler.MultiStepLR( self.policy_optim, milestones=self.policy_milestones, gamma=0.5 ) self.policy_scheduler.initial_lr = self.reinit_lr self.policy_scheduler.base_lrs[0] = self.reinit_lr print("reinit policy optim") print("load policy weight: {:.3f} from {} !!!!".format(module_max_param(self.policy), actor_path)) hard_update(self.policy_target, self.policy, self.tau) if hasattr(self, "critic") and os.path.exists(critic_path): net_dict = torch.load(critic_path) self.critic.load_state_dict(net_dict["net"]) self.critic_optim.load_state_dict(net_dict["opt"]) self.critic_scheduler.load_state_dict(net_dict["sch"]) print("load critic weight: {:.3f} !!!!".format(module_max_param(self.critic))) hard_update(self.critic_target, self.critic, self.tau) if hasattr(self, 'traj_feature_extractor') and os.path.exists(traj_feat_path): net_dict = torch.load(traj_feat_path) self.traj_feature_extractor.load_state_dict(net_dict["net"], strict=False) print('load traj feature weight: {:.3f} from {} !!!!'.format(module_max_param(self.traj_feature_extractor), traj_feat_path)) try: self.traj_feature_extractor_opt.load_state_dict(net_dict["opt"]) self.traj_feature_extractor_sch.load_state_dict(net_dict["sch"]) except: pass if hasattr(self, 'train_traj_sampler') and os.path.exists(traj_sampler_path): net_dict = torch.load(traj_sampler_path) self.traj_feature_sampler.load_state_dict(net_dict["net"], strict=False) print('load traj sampler weight: {:.3f} from {} !!!!'.format(module_max_param(self.traj_feature_sampler), traj_sampler_path)) try: self.traj_feature_sampler_opt.load_state_dict(net_dict["opt"]) self.traj_feature_sampler_sch.load_state_dict(net_dict["sch"]) except: pass if os.path.exists(state_feat_path): net_dict = torch.load(state_feat_path) if has_check(self, 'reinit_feat_opt'): self.state_feature_extractor.load_state_dict(dict([(n, p) for n, p in net_dict["net"].items() if 'value' not in n ]),strict=False) else: self.state_feature_extractor.load_state_dict(net_dict["net"] ) self.state_feature_extractor_optim.load_state_dict(net_dict["opt"]) self.state_feature_extractor_scheduler.load_state_dict( net_dict["sch"] ) self.state_feat_encoder_optim.load_state_dict( net_dict["encoder_opt"] ) self.state_feat_encoder_scheduler.load_state_dict( net_dict["encoder_sch"] ) if not has_check(self, 'reinit_feat_opt'): self.state_feat_val_encoder_optim.load_state_dict( net_dict["val_encoder_opt"] ) self.state_feat_val_encoder_scheduler.load_state_dict( net_dict["val_encoder_sch"] ) print( "load feature weight: {} !!!! from: {} step :{}".format( module_max_param(self.state_feature_extractor), state_feat_path, net_dict["step"])) self.update_step = net_dict["step"] self.init_step = self.update_step return self.update_step return 0
[ "os.path.exists", "torch.ones_like", "torch.unique", "torch.cuda.FloatTensor", "torch.optim.lr_scheduler.MultiStepLR", "os.makedirs", "torch.load", "torch.Tensor", "numpy.array", "torch.no_grad", "torch.device" ]
[((2639, 2654), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2652, 2654), False, 'import torch\n'), ((4199, 4214), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4212, 4214), False, 'import torch\n'), ((3116, 3151), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['state[0][1]'], {}), '(state[0][1])\n', (3138, 3151), False, 'import torch\n'), ((3174, 3209), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['state[0][0]'], {}), '(state[0][0])\n', (3196, 3209), False, 'import torch\n'), ((5202, 5243), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['[remain_timestep]'], {}), '([remain_timestep])\n', (5224, 5243), False, 'import torch\n'), ((24157, 24188), 'os.path.exists', 'os.path.exists', (['state_feat_path'], {}), '(state_feat_path)\n', (24171, 24188), False, 'import os\n'), ((1706, 1741), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['point_state'], {}), '(point_state)\n', (1728, 1741), False, 'import torch\n'), ((1824, 1853), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['state'], {}), '(state)\n', (1846, 1853), False, 'import torch\n'), ((3054, 3088), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['curr_joint'], {}), '(curr_joint)\n', (3076, 3088), False, 'import torch\n'), ((5077, 5112), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['state[0][1]'], {}), '(state[0][1])\n', (5099, 5112), False, 'import torch\n'), ((5141, 5176), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['state[0][0]'], {}), '(state[0][0])\n', (5163, 5176), False, 'import torch\n'), ((13765, 13780), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (13778, 13780), False, 'import torch\n'), ((18770, 18796), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (18784, 18796), False, 'import os\n'), ((18810, 18833), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (18821, 18833), False, 'import os\n'), ((21583, 21609), 'os.path.exists', 'os.path.exists', (['actor_path'], {}), '(actor_path)\n', (21597, 21609), False, 'import os\n'), ((21634, 21656), 'torch.load', 'torch.load', (['actor_path'], {}), '(actor_path)\n', (21644, 21656), False, 'import torch\n'), ((22560, 22587), 'os.path.exists', 'os.path.exists', (['critic_path'], {}), '(critic_path)\n', (22574, 22587), False, 'import os\n'), ((22612, 22635), 'torch.load', 'torch.load', (['critic_path'], {}), '(critic_path)\n', (22622, 22635), False, 'import torch\n'), ((23039, 23069), 'os.path.exists', 'os.path.exists', (['traj_feat_path'], {}), '(traj_feat_path)\n', (23053, 23069), False, 'import os\n'), ((23094, 23120), 'torch.load', 'torch.load', (['traj_feat_path'], {}), '(traj_feat_path)\n', (23104, 23120), False, 'import torch\n'), ((23618, 23651), 'os.path.exists', 'os.path.exists', (['traj_sampler_path'], {}), '(traj_sampler_path)\n', (23632, 23651), False, 'import os\n'), ((23676, 23705), 'torch.load', 'torch.load', (['traj_sampler_path'], {}), '(traj_sampler_path)\n', (23686, 23705), False, 'import torch\n'), ((24213, 24240), 'torch.load', 'torch.load', (['state_feat_path'], {}), '(state_feat_path)\n', (24223, 24240), False, 'import torch\n'), ((8394, 8419), 'torch.cuda.FloatTensor', 'torch.cuda.FloatTensor', (['v'], {}), '(v)\n', (8416, 8419), False, 'import torch\n'), ((9385, 9417), 'torch.ones_like', 'torch.ones_like', (['self.time_batch'], {}), '(self.time_batch)\n', (9400, 9417), False, 'import torch\n'), ((9462, 9507), 'torch.ones_like', 'torch.ones_like', (['self.traj_integer_time_batch'], {}), '(self.traj_integer_time_batch)\n', (9477, 9507), False, 'import torch\n'), ((22039, 22145), 'torch.optim.lr_scheduler.MultiStepLR', 'torch.optim.lr_scheduler.MultiStepLR', (['self.policy_optim'], {'milestones': 'self.policy_milestones', 'gamma': '(0.5)'}), '(self.policy_optim, milestones=self.\n policy_milestones, gamma=0.5)\n', (22075, 22145), False, 'import torch\n'), ((11399, 11461), 'torch.unique', 'torch.unique', (['self.cont_traj_inbatch_index'], {'return_counts': '(True)'}), '(self.cont_traj_inbatch_index, return_counts=True)\n', (11411, 11461), False, 'import torch\n'), ((8301, 8321), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (8313, 8321), False, 'import torch\n'), ((15804, 15833), 'numpy.array', 'np.array', (['self.mix_milestones'], {}), '(self.mix_milestones)\n', (15812, 15833), True, 'import numpy as np\n'), ((5863, 5894), 'torch.Tensor', 'torch.Tensor', (['[remain_timestep]'], {}), '([remain_timestep])\n', (5875, 5894), False, 'import torch\n')]
import gym import datetime import os import numpy as np from agent import DeepQAgent def main(): env = gym.make("LunarLander-v2") timestamp = '{:%Y-%m-%d-%H:%M}'.format(datetime.datetime.now()) o_dir = "LunarLander-v2/{}/models".format(timestamp) if not os.path.exists(o_dir): os.makedirs(o_dir) nof_episodes = 500 # 8 values in [0, 1] state_size = env.observation_space.shape[0] # 0, 1, 2, 3 action_size = env.action_space.n agent = DeepQAgent(state_size, action_size, model=2) batch_size = 32 for episode in range(nof_episodes): state = env.reset() state = np.reshape(state, [1, state_size]) done = False t = 0 episode_reward = 0 # Iterate over the timesteps while not done: env.render() # Instruct the agent to choose an action based on the current state of the environment # This may be a random action depending on the value of the exploration_rate(epsilon) action = agent.act(state) # Execute said action next_state, reward, done, _ = env.step(action) episode_reward += reward next_state = np.reshape(next_state, [1, state_size]) agent.memorize(state, action, reward, next_state, done) state = next_state if done: print("episode: {}/{}, time: {}, total_reward: {}" .format(episode, nof_episodes - 1, t, episode_reward)) t += 1 if len(agent.memory) / batch_size > 1: agent.train(batch_size) # Save model after training if episode % batch_size == 1: agent.save(o_dir + "/model_" + str(episode) + ".hdf5") if __name__ == "__main__": main()
[ "os.path.exists", "numpy.reshape", "os.makedirs", "agent.DeepQAgent", "datetime.datetime.now", "gym.make" ]
[((110, 136), 'gym.make', 'gym.make', (['"""LunarLander-v2"""'], {}), "('LunarLander-v2')\n", (118, 136), False, 'import gym\n'), ((487, 531), 'agent.DeepQAgent', 'DeepQAgent', (['state_size', 'action_size'], {'model': '(2)'}), '(state_size, action_size, model=2)\n', (497, 531), False, 'from agent import DeepQAgent\n'), ((181, 204), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (202, 204), False, 'import datetime\n'), ((274, 295), 'os.path.exists', 'os.path.exists', (['o_dir'], {}), '(o_dir)\n', (288, 295), False, 'import os\n'), ((305, 323), 'os.makedirs', 'os.makedirs', (['o_dir'], {}), '(o_dir)\n', (316, 323), False, 'import os\n'), ((637, 671), 'numpy.reshape', 'np.reshape', (['state', '[1, state_size]'], {}), '(state, [1, state_size])\n', (647, 671), True, 'import numpy as np\n'), ((1212, 1251), 'numpy.reshape', 'np.reshape', (['next_state', '[1, state_size]'], {}), '(next_state, [1, state_size])\n', (1222, 1251), True, 'import numpy as np\n')]
import glob import os import sys from sgfmill.sgfmill import sgf import global_vars_go as gvg import loader import utils import board3d as go_board import numpy as np kifuPath = "./kifu" num_games = gvg.num_games from_game = gvg.from_test_games lb_size = 250. correct = 0 total = 0 num_lb = int((num_games-1)/lb_size) + 1 # Number of loading batches model = loader.load_model_from_file(gvg.nn_type) for lb in range(num_lb): games = [] print("Loading game data...") i = 0 for filename in glob.glob(os.path.join(kifuPath, "*.sgf")): load_limit = min((lb+1) * lb_size, num_games) if from_game + (lb) * lb_size <= i < from_game + load_limit: with open(filename, "rb") as f: games.append(sgf.Sgf_game.from_bytes(f.read())) i += 1 print("Done loading {} games".format(len(games))) print("Being data processing...") train_boards = [] train_next_moves = [] for game_index in range(len(games)): board = go_board.setup_board(games[game_index]) for node in games[game_index].get_main_sequence(): board = go_board.switch_player_perspec(board) # Changes player perspective, black becomes white and vice versa node_move = node.get_move()[1] if node_move is not None: train_boards.append(go_board.get_encoded_board(board)) next_move = np.zeros(gvg.board_size * gvg.board_size).reshape(gvg.board_size, gvg.board_size) next_move[node_move[0], node_move[1]] = gvg.filled # y = an array in the form [board_x_position, board_y_position] train_next_moves.append(next_move.reshape(gvg.board_size * gvg.board_size)) board = go_board.make_move(board, node_move, gvg.bot_channel, gvg.player_channel) # Update board with new move if board is None: print("ERROR! Illegal move, {}, while training".format(node_move)) print("Finished data processing...") print("Begin testing...") for i in range(len(train_boards)): pred = np.asarray(model.predict(train_boards[i].reshape(1, gvg.board_size, gvg.board_size, gvg.enc_board_channels))) \ .reshape(gvg.board_size * gvg.board_size) if pred.argmax() == train_next_moves[i].argmax(): correct += 1 total += 1 print("Accuracy: {}".format(correct/total)) print("Finished testing")
[ "board3d.make_move", "os.path.join", "board3d.get_encoded_board", "board3d.setup_board", "numpy.zeros", "board3d.switch_player_perspec", "loader.load_model_from_file" ]
[((380, 420), 'loader.load_model_from_file', 'loader.load_model_from_file', (['gvg.nn_type'], {}), '(gvg.nn_type)\n', (407, 420), False, 'import loader\n'), ((544, 575), 'os.path.join', 'os.path.join', (['kifuPath', '"""*.sgf"""'], {}), "(kifuPath, '*.sgf')\n", (556, 575), False, 'import os\n'), ((1036, 1075), 'board3d.setup_board', 'go_board.setup_board', (['games[game_index]'], {}), '(games[game_index])\n', (1056, 1075), True, 'import board3d as go_board\n'), ((1157, 1194), 'board3d.switch_player_perspec', 'go_board.switch_player_perspec', (['board'], {}), '(board)\n', (1187, 1194), True, 'import board3d as go_board\n'), ((1780, 1853), 'board3d.make_move', 'go_board.make_move', (['board', 'node_move', 'gvg.bot_channel', 'gvg.player_channel'], {}), '(board, node_move, gvg.bot_channel, gvg.player_channel)\n', (1798, 1853), True, 'import board3d as go_board\n'), ((1382, 1415), 'board3d.get_encoded_board', 'go_board.get_encoded_board', (['board'], {}), '(board)\n', (1408, 1415), True, 'import board3d as go_board\n'), ((1446, 1487), 'numpy.zeros', 'np.zeros', (['(gvg.board_size * gvg.board_size)'], {}), '(gvg.board_size * gvg.board_size)\n', (1454, 1487), True, 'import numpy as np\n')]
import os import numpy as np from allennlp.predictors import Predictor from isanlp.annotation_rst import DiscourseUnit from symbol_map import SYMBOL_MAP class AllenNLPSegmenter: def __init__(self, model_dir_path, cuda_device=-1): self._model_path = os.path.join(model_dir_path, 'segmenter_neural', 'model.tar.gz') self._cuda_device = cuda_device self.predictor = Predictor.from_path(self._model_path, cuda_device=self._cuda_device) self._separator = 'U-S' self._symbol_map = SYMBOL_MAP def __call__(self, annot_text, annot_tokens, annot_sentences, annot_lemma, annot_postag, annot_synt_dep_tree, start_id=0): return self._build_discourse_units(annot_text, annot_tokens, self._predict(annot_tokens, annot_sentences), start_id) def _predict(self, tokens, sentences): """ :return: numbers of tokens predicted as EDU left boundaries """ _sentences = [] for sentence in sentences: text = ' '.join([self._prepare_token(token.text) for token in tokens[sentence.begin:sentence.end]]).strip() if text: _sentences.append(text) predictions = self.predictor.predict_batch_json([{'sentence': sentence} for sentence in _sentences]) result = [] for i, prediction in enumerate(predictions): pred = np.array(prediction['tags'][:sentences[i].end - sentences[i].begin]) == self._separator # The first token in a sentence is a separator # if it is not a point in a list if len(pred) > 0: if i > 0: if predictions[i - 1]['words'][1] == '.' and predictions[i - 1]['words'][0] in "0123456789": pred[0] = False else: pred[0] = True # No single-token EDUs for j, token in enumerate(pred[:-1]): if token and pred[j + 1]: if j == 0: pred[j + 1] = False else: pred[j] = False result += list(pred) return np.argwhere(np.array(result) == True)[:, 0] def _build_discourse_units(self, text, tokens, numbers, start_id): """ :param text: original text :param list tokens: isanlp.annotation.Token :param numbers: positions of tokens predicted as EDU left boundaries (beginners) :return: list of DiscourseUnit """ edus = [] if numbers.shape[0]: for i in range(0, len(numbers) - 1): new_edu = DiscourseUnit(start_id + i, start=tokens[numbers[i]].begin, end=tokens[numbers[i + 1]].begin - 1, text=text[tokens[numbers[i]].begin:tokens[numbers[i + 1]].begin], relation='elementary', nuclearity='_') edus.append(new_edu) if numbers.shape[0] == 1: i = -1 new_edu = DiscourseUnit(start_id + i + 1, start=tokens[numbers[-1]].begin, end=tokens[-1].end, text=text[tokens[numbers[-1]].begin:tokens[-1].end], relation='elementary', nuclearity='_') edus.append(new_edu) return edus def _prepare_token(self, token): for key, value in self._symbol_map.items(): token = token.replace(key, value) for keyword in ['www', 'http']: if keyword in token: return '_html_' return token
[ "allennlp.predictors.Predictor.from_path", "numpy.array", "os.path.join", "isanlp.annotation_rst.DiscourseUnit" ]
[((265, 329), 'os.path.join', 'os.path.join', (['model_dir_path', '"""segmenter_neural"""', '"""model.tar.gz"""'], {}), "(model_dir_path, 'segmenter_neural', 'model.tar.gz')\n", (277, 329), False, 'import os\n'), ((395, 463), 'allennlp.predictors.Predictor.from_path', 'Predictor.from_path', (['self._model_path'], {'cuda_device': 'self._cuda_device'}), '(self._model_path, cuda_device=self._cuda_device)\n', (414, 463), False, 'from allennlp.predictors import Predictor\n'), ((3207, 3393), 'isanlp.annotation_rst.DiscourseUnit', 'DiscourseUnit', (['(start_id + i + 1)'], {'start': 'tokens[numbers[-1]].begin', 'end': 'tokens[-1].end', 'text': 'text[tokens[numbers[-1]].begin:tokens[-1].end]', 'relation': '"""elementary"""', 'nuclearity': '"""_"""'}), "(start_id + i + 1, start=tokens[numbers[-1]].begin, end=tokens\n [-1].end, text=text[tokens[numbers[-1]].begin:tokens[-1].end], relation\n ='elementary', nuclearity='_')\n", (3220, 3393), False, 'from isanlp.annotation_rst import DiscourseUnit\n'), ((1425, 1493), 'numpy.array', 'np.array', (["prediction['tags'][:sentences[i].end - sentences[i].begin]"], {}), "(prediction['tags'][:sentences[i].end - sentences[i].begin])\n", (1433, 1493), True, 'import numpy as np\n'), ((2682, 2894), 'isanlp.annotation_rst.DiscourseUnit', 'DiscourseUnit', (['(start_id + i)'], {'start': 'tokens[numbers[i]].begin', 'end': '(tokens[numbers[i + 1]].begin - 1)', 'text': 'text[tokens[numbers[i]].begin:tokens[numbers[i + 1]].begin]', 'relation': '"""elementary"""', 'nuclearity': '"""_"""'}), "(start_id + i, start=tokens[numbers[i]].begin, end=tokens[\n numbers[i + 1]].begin - 1, text=text[tokens[numbers[i]].begin:tokens[\n numbers[i + 1]].begin], relation='elementary', nuclearity='_')\n", (2695, 2894), False, 'from isanlp.annotation_rst import DiscourseUnit\n'), ((2215, 2231), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (2223, 2231), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # 2次元累積和 S の [x1, x2) × [y1, y2) 総和 def ac2(s, x1, x2, y1, y2): return s[x2][y2] - s[x1][y2] - s[x2][y1] + s[x1][y1] import numpy as np _, *d = open(0) n, k = map(int, _.split()) B = np.zeros((2*k, 2*k)) for e in d: *z, c = e.split() x, y = map(int, z) B[x % (2*k)][(y + k * (z == "W")) % (2*k)] += 1 B.cumsum(axis = 0) B.cumsum(axis = 1) B = np.tile(B, (2,2)) print(B) # 書きかけ
[ "numpy.tile", "numpy.zeros" ]
[((211, 235), 'numpy.zeros', 'np.zeros', (['(2 * k, 2 * k)'], {}), '((2 * k, 2 * k))\n', (219, 235), True, 'import numpy as np\n'), ((383, 401), 'numpy.tile', 'np.tile', (['B', '(2, 2)'], {}), '(B, (2, 2))\n', (390, 401), True, 'import numpy as np\n')]
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 # pyKratos imports from .Element import Element # Other imports import numpy as np class TriangleElement(Element): def __init__(self, elem_id, nodes): super(TriangleElement, self).__init__(elem_id, nodes) if(len(self.GetNodes()) != 3): raise Exception("wrong number of nodes! should be 3!") for node in self.GetNodes(): if(node.Id < 0): raise Exception("node with Id smaller than 0 found") def ShapeFunctions(self, order=1): '''this function provides the shape function values, derivatives and integration_weight at the location of the gauss points. Order of integration is controlled by the optional parameter "order". N[gauss][i] contains the shape function of node i computed at the position of "gauss" derivatives[gauss][i,k] contains the derivative of node i, component k at the position of gauss weights[gauss] includes the integration weights, including the det of the jacobian, to be used at the gauss point''' derivatives = [] weights = [] Ncontainer = [] x10 = self.nodes[1].coordinates[0] - self.nodes[0].coordinates[0] y10 = self.nodes[1].coordinates[1] - self.nodes[0].coordinates[1] x20 = self.nodes[2].coordinates[0] - self.nodes[0].coordinates[0] y20 = self.nodes[2].coordinates[1] - self.nodes[0].coordinates[1] detJ = x10 * y20 - y10 * x20 DN_DX = np.zeros((3, 2), dtype=float) DN_DX[0, 0] = -y20 + y10 DN_DX[0, 1] = x20 - x10 DN_DX[1, 0] = y20 DN_DX[1, 1] = -x20 DN_DX[2, 0] = -y10 DN_DX[2, 1] = x10 DN_DX /= detJ if(order == 1): # give back 1 single integration point one_third = 1.0 / 3.0 Ncontainer = [np.array([one_third, one_third, one_third])] Area = 0.5 * detJ weights = [Area] derivatives = [DN_DX] elif(order == 2): # gives back 3 integration points one_sixt = 1.0 / 6.0 two_third = 2.0 / 3.0 Ncontainer.append(np.array([one_sixt, one_sixt, two_third])) Ncontainer.append(np.array([one_sixt, two_third, one_sixt])) Ncontainer.append(np.array([two_third, one_sixt, one_sixt])) weights = [one_sixt * detJ, one_sixt * detJ, one_sixt * detJ] derivatives = [DN_DX, DN_DX, DN_DX] else: raise Exception("integration order not implemented") return [Ncontainer, derivatives, weights]
[ "numpy.array", "numpy.zeros" ]
[((1609, 1638), 'numpy.zeros', 'np.zeros', (['(3, 2)'], {'dtype': 'float'}), '((3, 2), dtype=float)\n', (1617, 1638), True, 'import numpy as np\n'), ((1958, 2001), 'numpy.array', 'np.array', (['[one_third, one_third, one_third]'], {}), '([one_third, one_third, one_third])\n', (1966, 2001), True, 'import numpy as np\n'), ((2256, 2297), 'numpy.array', 'np.array', (['[one_sixt, one_sixt, two_third]'], {}), '([one_sixt, one_sixt, two_third])\n', (2264, 2297), True, 'import numpy as np\n'), ((2329, 2370), 'numpy.array', 'np.array', (['[one_sixt, two_third, one_sixt]'], {}), '([one_sixt, two_third, one_sixt])\n', (2337, 2370), True, 'import numpy as np\n'), ((2402, 2443), 'numpy.array', 'np.array', (['[two_third, one_sixt, one_sixt]'], {}), '([two_third, one_sixt, one_sixt])\n', (2410, 2443), True, 'import numpy as np\n')]
import os import tempfile from glob import glob import json from collections import OrderedDict import numpy as np from .adding_features import adding_no_features def iterate_json_data(filepath, columns_to_keep=None, feature_adder=adding_no_features, data_filter=lambda datum: True, missing_val_default={}): inputfile = open(filepath, 'r') for line in inputfile: datum = json.loads(line) datum = feature_adder(datum) if not data_filter(datum): continue if columns_to_keep is not None: filtered_datum = OrderedDict() for column in columns_to_keep: filtered_datum[column] = datum[column] if column in missing_val_default.keys() and datum[column] is None: filtered_datum[column] = missing_val_default[column] yield filtered_datum else: yield OrderedDict(datum) def iterate_json_files_directory(dir, columns_to_keep=None, feature_adder=adding_no_features, data_filter=lambda datum: True, missing_val_default={} ): print('\tReading {}'.format(dir)) print('\tColumns: {}'.format(', '.join(columns_to_keep) if columns_to_keep is not None else 'ALL')) for filepath in glob(os.path.join(dir, '*.json')): for datum in iterate_json_data(filepath, columns_to_keep=columns_to_keep, feature_adder=feature_adder, data_filter=data_filter, missing_val_default=missing_val_default): yield datum def process_data(traindatafilepath, qual_features, binary_features, quant_features, target_label, feature_adder=adding_no_features, nb_lines_per_tempfile=10000, data_filter=lambda datum: True, missing_val_default={}, filename_fmt='data_{0:09d}.json'): tempdir = tempfile.TemporaryDirectory() fileid = 0 tmpfile = None nbdata = 0 for i, datum in enumerate(iterate_json_data(traindatafilepath, columns_to_keep=qual_features+binary_features+quant_features+[target_label], feature_adder=feature_adder, data_filter=data_filter, missing_val_default=missing_val_default)): if i % nb_lines_per_tempfile == 0: if tmpfile is not None: tmpfile.close() tmpfile = open(os.path.join(tempdir.name, filename_fmt.format(fileid)), 'w') fileid += 1 print('\tRead {} lines...'.format(i)) nbdata += 1 tmpfile.write(json.dumps(datum)+'\n') tmpfile.close() return tempdir, nbdata def assign_partitions(nbdata, cv_nfold, heldout_fraction, seed=None): if seed is not None: np.random.seed(seed) return np.random.choice([-1] + list(range(cv_nfold)), # -1 indicating hold-out set p=[heldout_fraction] + [(1 - heldout_fraction) / cv_nfold] * cv_nfold, size=nbdata)
[ "tempfile.TemporaryDirectory", "json.loads", "collections.OrderedDict", "json.dumps", "os.path.join", "numpy.random.seed" ]
[((2255, 2284), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (2282, 2284), False, 'import tempfile\n'), ((480, 496), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (490, 496), False, 'import json\n'), ((1497, 1524), 'os.path.join', 'os.path.join', (['dir', '"""*.json"""'], {}), "(dir, '*.json')\n", (1509, 1524), False, 'import os\n'), ((3259, 3279), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (3273, 3279), True, 'import numpy as np\n'), ((659, 672), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (670, 672), False, 'from collections import OrderedDict\n'), ((992, 1010), 'collections.OrderedDict', 'OrderedDict', (['datum'], {}), '(datum)\n', (1003, 1010), False, 'from collections import OrderedDict\n'), ((3083, 3100), 'json.dumps', 'json.dumps', (['datum'], {}), '(datum)\n', (3093, 3100), False, 'import json\n')]
# -*- coding: utf-8 -*- """ Combination of http://scipy-central.org/item/52/1/zplane-function and http://www.dsprelated.com/showcode/244.php with my own modifications """ # Copyright (c) 2011 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # The following is derived from the slides presented by # <NAME> for CS506/606 "Special Topics: Speech Signal Processing" # CSLU / OHSU, Spring Term 2011. import numpy as np import matplotlib.pyplot as plt from matplotlib import patches from matplotlib.pyplot import axvline, axhline from collections import defaultdict def zplane(z, p, filename=None): """Plot the complex z-plane given zeros and poles. """ # get a figure/plot ax = plt.subplot(2, 2, 1) # TODO: should just inherit whatever subplot it's called in? # Add unit circle and zero axes unit_circle = patches.Circle((0,0), radius=1, fill=False, color='black', ls='solid', alpha=0.1) ax.add_patch(unit_circle) axvline(0, color='0.7') axhline(0, color='0.7') # Plot the poles and set marker properties poles = plt.plot(p.real, p.imag, 'x', markersize=9, alpha=0.5) # Plot the zeros and set marker properties zeros = plt.plot(z.real, z.imag, 'o', markersize=9, color='none', alpha=0.5, markeredgecolor=poles[0].get_color(), # same color as poles ) # Scale axes to fit r = 1.5 * np.amax(np.concatenate((abs(z), abs(p), [1]))) plt.axis('scaled') plt.axis([-r, r, -r, r]) # ticks = [-1, -.5, .5, 1] # plt.xticks(ticks) # plt.yticks(ticks) """ If there are multiple poles or zeros at the same point, put a superscript next to them. TODO: can this be made to self-update when zoomed? """ # Finding duplicates by same pixel coordinates (hacky for now): poles_xy = ax.transData.transform(np.vstack(poles[0].get_data()).T) zeros_xy = ax.transData.transform(np.vstack(zeros[0].get_data()).T) # dict keys should be ints for matching, but coords should be floats for # keeping location of text accurate while zooming # TODO make less hacky, reduce duplication of code d = defaultdict(int) coords = defaultdict(tuple) for xy in poles_xy: key = tuple(np.rint(xy).astype('int')) d[key] += 1 coords[key] = xy print(d) for key, value in d.items(): if value > 1: x, y = ax.transData.inverted().transform(coords[key]) plt.text(x, y, r' ${}^{' + str(value) + '}$', fontsize=13, ) d = defaultdict(int) coords = defaultdict(tuple) for xy in zeros_xy: key = tuple(np.rint(xy).astype('int')) d[key] += 1 coords[key] = xy for key, value in d.items(): if value > 1: x, y = ax.transData.inverted().transform(coords[key]) plt.text(x, y, r' ${}^{' + str(value) + '}$', fontsize=13, ) if filename is None: plt.show() else: plt.savefig(filename) print( 'Pole-zero plot saved to ' + str(filename)) if __name__ == "__main__": from scipy.signal import (freqz, butter, bessel, cheby1, cheby2, ellip, tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap ) from numpy import asarray, tan, array, pi, arange, cos, log10, unwrap, angle from matplotlib.pyplot import (stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins) # # Cosine function # omega = pi/4 # b = array([1.0, -cos(omega)]) # a = array([1, -2*cos(omega), 1.0]) b, a = butter(2, [0.06, 0.7], 'bandpass') # Get the poles and zeros z, p, k = tf2zpk(b, a) # Create zero-pole plot figure(figsize=(16, 9)) subplot(2, 2, 1) zplane(z, p) grid(True, color='0.9', linestyle='-', which='both', axis='both') title('Poles and zeros') # Display zeros, poles and gain print( str(len(z)) + " zeros: " + str(z)) print( str(len(p)) + " poles: " + str(p)) print( "gain: " + str(k)) # Impulse response index = arange(0,20) u = 1.0*(index==0) y = lfilter(b, a, u) subplot(2, 2, 3) stem(index,y) title('Impulse response') margins(0, 0.1) grid(True, color='0.9', linestyle='-', which='both', axis='both') show() # Frequency response w, h = freqz(b, a) subplot(2, 2, 2) plot(w/pi, 20*log10(abs(h))) xscale('log') title('Frequency response') xlabel('Normalized frequency') ylabel('Amplitude [dB]') margins(0, 0.1) grid(True, color = '0.7', linestyle='-', which='major', axis='both') grid(True, color = '0.9', linestyle='-', which='minor', axis='both') show() # Phase subplot(2, 2, 4) plot(w/pi, 180/pi * unwrap(angle(h))) xscale('log') xlabel('Normalized frequency') ylabel('Phase [degrees]') grid(True, color = '0.7', linestyle='-', which='major') grid(True, color = '0.9', linestyle='-', which='minor') show()
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.margins", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.axhline", "numpy.rint", "scipy.signal.tf2zpk", "matplotlib.pyplot.axis", "matplotlib.patches.Circle", "matplotlib.pyplot.savefig", "matplotlib.pyplot.stem", "matplotlib.pyplot.title", "scipy.signal.freqz", "matplotlib.pyplot.show", "scipy.signal.butter", "numpy.angle", "matplotlib.pyplot.figure", "scipy.signal.lfilter", "collections.defaultdict", "matplotlib.pyplot.subplot", "matplotlib.pyplot.axvline", "matplotlib.pyplot.xscale" ]
[((1321, 1341), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (1332, 1341), True, 'import matplotlib.pyplot as plt\n'), ((1466, 1552), 'matplotlib.patches.Circle', 'patches.Circle', (['(0, 0)'], {'radius': '(1)', 'fill': '(False)', 'color': '"""black"""', 'ls': '"""solid"""', 'alpha': '(0.1)'}), "((0, 0), radius=1, fill=False, color='black', ls='solid',\n alpha=0.1)\n", (1480, 1552), False, 'from matplotlib import patches\n'), ((1615, 1638), 'matplotlib.pyplot.axvline', 'axvline', (['(0)'], {'color': '"""0.7"""'}), "(0, color='0.7')\n", (1622, 1638), False, 'from matplotlib.pyplot import axvline, axhline\n'), ((1643, 1666), 'matplotlib.pyplot.axhline', 'axhline', (['(0)'], {'color': '"""0.7"""'}), "(0, color='0.7')\n", (1650, 1666), False, 'from matplotlib.pyplot import axvline, axhline\n'), ((1731, 1785), 'matplotlib.pyplot.plot', 'plt.plot', (['p.real', 'p.imag', '"""x"""'], {'markersize': '(9)', 'alpha': '(0.5)'}), "(p.real, p.imag, 'x', markersize=9, alpha=0.5)\n", (1739, 1785), True, 'import matplotlib.pyplot as plt\n'), ((2112, 2130), 'matplotlib.pyplot.axis', 'plt.axis', (['"""scaled"""'], {}), "('scaled')\n", (2120, 2130), True, 'import matplotlib.pyplot as plt\n'), ((2135, 2159), 'matplotlib.pyplot.axis', 'plt.axis', (['[-r, r, -r, r]'], {}), '([-r, r, -r, r])\n', (2143, 2159), True, 'import matplotlib.pyplot as plt\n'), ((2818, 2834), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (2829, 2834), False, 'from collections import defaultdict\n'), ((2848, 2866), 'collections.defaultdict', 'defaultdict', (['tuple'], {}), '(tuple)\n', (2859, 2866), False, 'from collections import defaultdict\n'), ((3281, 3297), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (3292, 3297), False, 'from collections import defaultdict\n'), ((3311, 3329), 'collections.defaultdict', 'defaultdict', (['tuple'], {}), '(tuple)\n', (3322, 3329), False, 'from collections import defaultdict\n'), ((4496, 4530), 'scipy.signal.butter', 'butter', (['(2)', '[0.06, 0.7]', '"""bandpass"""'], {}), "(2, [0.06, 0.7], 'bandpass')\n", (4502, 4530), False, 'from scipy.signal import freqz, butter, bessel, cheby1, cheby2, ellip, tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap\n'), ((4576, 4588), 'scipy.signal.tf2zpk', 'tf2zpk', (['b', 'a'], {}), '(b, a)\n', (4582, 4588), False, 'from scipy.signal import freqz, butter, bessel, cheby1, cheby2, ellip, tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap\n'), ((4622, 4645), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (4628, 4645), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((4650, 4666), 'matplotlib.pyplot.subplot', 'subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (4657, 4666), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((4688, 4753), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.9"""', 'linestyle': '"""-"""', 'which': '"""both"""', 'axis': '"""both"""'}), "(True, color='0.9', linestyle='-', which='both', axis='both')\n", (4692, 4753), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((4758, 4782), 'matplotlib.pyplot.title', 'title', (['"""Poles and zeros"""'], {}), "('Poles and zeros')\n", (4763, 4782), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((4986, 4999), 'numpy.arange', 'arange', (['(0)', '(20)'], {}), '(0, 20)\n', (4992, 4999), False, 'from numpy import asarray, tan, array, pi, arange, cos, log10, unwrap, angle\n'), ((5030, 5046), 'scipy.signal.lfilter', 'lfilter', (['b', 'a', 'u'], {}), '(b, a, u)\n', (5037, 5046), False, 'from scipy.signal import freqz, butter, bessel, cheby1, cheby2, ellip, tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap\n'), ((5051, 5067), 'matplotlib.pyplot.subplot', 'subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (5058, 5067), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5072, 5086), 'matplotlib.pyplot.stem', 'stem', (['index', 'y'], {}), '(index, y)\n', (5076, 5086), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5090, 5115), 'matplotlib.pyplot.title', 'title', (['"""Impulse response"""'], {}), "('Impulse response')\n", (5095, 5115), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5120, 5135), 'matplotlib.pyplot.margins', 'margins', (['(0)', '(0.1)'], {}), '(0, 0.1)\n', (5127, 5135), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5140, 5205), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.9"""', 'linestyle': '"""-"""', 'which': '"""both"""', 'axis': '"""both"""'}), "(True, color='0.9', linestyle='-', which='both', axis='both')\n", (5144, 5205), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5210, 5216), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (5214, 5216), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5258, 5269), 'scipy.signal.freqz', 'freqz', (['b', 'a'], {}), '(b, a)\n', (5263, 5269), False, 'from scipy.signal import freqz, butter, bessel, cheby1, cheby2, ellip, tf2zpk, zpk2tf, lfilter, buttap, bilinear, cheb2ord, cheb2ap\n'), ((5274, 5290), 'matplotlib.pyplot.subplot', 'subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (5281, 5290), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5328, 5341), 'matplotlib.pyplot.xscale', 'xscale', (['"""log"""'], {}), "('log')\n", (5334, 5341), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5347, 5374), 'matplotlib.pyplot.title', 'title', (['"""Frequency response"""'], {}), "('Frequency response')\n", (5352, 5374), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5379, 5409), 'matplotlib.pyplot.xlabel', 'xlabel', (['"""Normalized frequency"""'], {}), "('Normalized frequency')\n", (5385, 5409), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5414, 5438), 'matplotlib.pyplot.ylabel', 'ylabel', (['"""Amplitude [dB]"""'], {}), "('Amplitude [dB]')\n", (5420, 5438), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5443, 5458), 'matplotlib.pyplot.margins', 'margins', (['(0)', '(0.1)'], {}), '(0, 0.1)\n', (5450, 5458), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5463, 5529), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.7"""', 'linestyle': '"""-"""', 'which': '"""major"""', 'axis': '"""both"""'}), "(True, color='0.7', linestyle='-', which='major', axis='both')\n", (5467, 5529), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5536, 5602), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.9"""', 'linestyle': '"""-"""', 'which': '"""minor"""', 'axis': '"""both"""'}), "(True, color='0.9', linestyle='-', which='minor', axis='both')\n", (5540, 5602), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5609, 5615), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (5613, 5615), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5633, 5649), 'matplotlib.pyplot.subplot', 'subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (5640, 5649), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5696, 5709), 'matplotlib.pyplot.xscale', 'xscale', (['"""log"""'], {}), "('log')\n", (5702, 5709), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5714, 5744), 'matplotlib.pyplot.xlabel', 'xlabel', (['"""Normalized frequency"""'], {}), "('Normalized frequency')\n", (5720, 5744), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5749, 5774), 'matplotlib.pyplot.ylabel', 'ylabel', (['"""Phase [degrees]"""'], {}), "('Phase [degrees]')\n", (5755, 5774), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5779, 5832), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.7"""', 'linestyle': '"""-"""', 'which': '"""major"""'}), "(True, color='0.7', linestyle='-', which='major')\n", (5783, 5832), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5839, 5892), 'matplotlib.pyplot.grid', 'grid', (['(True)'], {'color': '"""0.9"""', 'linestyle': '"""-"""', 'which': '"""minor"""'}), "(True, color='0.9', linestyle='-', which='minor')\n", (5843, 5892), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((5899, 5905), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (5903, 5905), False, 'from matplotlib.pyplot import stem, title, grid, show, plot, xlabel, ylabel, subplot, xscale, figure, xlim, margins\n'), ((3747, 3757), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3755, 3757), True, 'import matplotlib.pyplot as plt\n'), ((3776, 3797), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (3787, 3797), True, 'import matplotlib.pyplot as plt\n'), ((5681, 5689), 'numpy.angle', 'angle', (['h'], {}), '(h)\n', (5686, 5689), False, 'from numpy import asarray, tan, array, pi, arange, cos, log10, unwrap, angle\n'), ((2911, 2922), 'numpy.rint', 'np.rint', (['xy'], {}), '(xy)\n', (2918, 2922), True, 'import numpy as np\n'), ((3374, 3385), 'numpy.rint', 'np.rint', (['xy'], {}), '(xy)\n', (3381, 3385), True, 'import numpy as np\n')]
import os import numpy as np from constants import DATABASE_FILE_NAME, PLAYER_ONE, PLAYER_TWO, POSITION_TO_DATABASE from Agents.random import Random from othello import Othello import multiprocessing as mp class Database: def __init__(self): """ load database data and store them in self._db_data self._db_data = 3 dim array: 60 turns 9 game categories [0] : won games of player1 [1] : won games of player2 [2] : total played games """ # check if database file exists if not os.path.isfile(DATABASE_FILE_NAME): self._create_new_database() # load csv in self_data as 3 dim. array csv = np.loadtxt(DATABASE_FILE_NAME, delimiter=';', dtype='int64') self._db_data = csv.reshape((60, 9, 3)) def _create_new_database(self): """ Reset stored played / won games change self._db_data to array of 0 """ self._db_data = np.zeros(shape=(60, 9, 3), dtype='int64') # save modified array in file self.store_database() def store_database(self): """ store database on filesystem :return: """ with open(DATABASE_FILE_NAME, 'w') as outfile: # write 3 dim. array as list of 2 dim. array's for row in self._db_data: # write one row (turn number) of matrix np.savetxt(outfile, row, fmt='%d', delimiter=';') def get_change_of_winning(self, move, turn_nr, current_player): """ calculate chance of winning for given move and turn_number :param move: move is a pair <row, column> in available_moves :param turn_nr: actual turn_number :param current_player: use constants PLAYER_ONE and PLAYER_TWO :return: chance of winning for given field at the given turn number """ # translate move to category in array category = POSITION_TO_DATABASE[move] # access data of one category in one turn number of the database to compute statistic won_games_pl1, won_games_pl2, total_games_played = self._db_data[turn_nr][category] # avoid dividing with 0 if total_games_played == 0: return 0 # return win probability if current_player == PLAYER_ONE: return won_games_pl1 / total_games_played return won_games_pl2 / total_games_played def update_field_stat(self, turn_nr, field_type, winner): """ update database with new played move :param turn_nr: turn number of move to store :param field_type: field category of move :param winner: winner of whole played game :return: nothing update self._db_data at given turn number and field type """ # get actual database entry (won_games_pl1, won_games_pl2, total_games_played) = self._db_data[turn_nr][field_type] if winner == PLAYER_ONE: won_games_pl1 += 1 elif winner == PLAYER_TWO: won_games_pl2 += 1 # store updated entry at same position in database self._db_data[turn_nr][field_type] = (won_games_pl1, won_games_pl2, total_games_played + 1) def update_fields_stats_for_single_game(self, moves, winner): """ update statistics of each taken move in game :param moves: list of taken moves :param winner: PLAYER_ONE or PLAYER_TWO """ for turn_nr in enumerate(moves): # translate move 1,0 to position 8 position = POSITION_TO_DATABASE[moves[turn_nr]] # update array at position position self.update_field_stat(turn_nr, position, winner) @staticmethod def _play_n_random_games(count): """ play count random games :param count: number of played games :return: winning statistics statistics = list of pair <taken moves, winner of this game> """ multi_stats = [] for i in range(count): # print each 100 games actual game played position if i % 100 == 0: print(f"Game No: {i}") g = Othello() g.init_game() # play whole game while not g.game_is_over(): g.play_position(Random.get_move(g)) winner = g.get_winner() # add winner and taken moves to statistic multi_stats.append((g.get_taken_mv(), winner)) return multi_stats def train_db_multi_threaded(self, count): """ play count random games and update database winning statistics :param count: number of games to play :return: """ # Create a pool of worker processes. # Workload can be distributed equally on the processes when their number is known number_of_processes = mp.cpu_count() pool = mp.Pool() # Use Worker processes asynchronous # split calculation in number_of_processes parts to calculate multi threaded list_of_stats = [pool.apply_async(self._play_n_random_games, args=(count // number_of_processes,)) for _ in range(number_of_processes)] # Collect the result of the first worker # update statistics of number_of_processes results sequential for single_process_list in list_of_stats: list_of_games = single_process_list.get() for single_game in list_of_games: moves, winner = single_game self.update_fields_stats_for_single_game(moves, winner) # Close the worker pool. pool.close() db = Database()
[ "othello.Othello", "Agents.random.Random.get_move", "multiprocessing.cpu_count", "os.path.isfile", "numpy.zeros", "multiprocessing.Pool", "numpy.savetxt", "numpy.loadtxt" ]
[((765, 825), 'numpy.loadtxt', 'np.loadtxt', (['DATABASE_FILE_NAME'], {'delimiter': '""";"""', 'dtype': '"""int64"""'}), "(DATABASE_FILE_NAME, delimiter=';', dtype='int64')\n", (775, 825), True, 'import numpy as np\n'), ((1042, 1083), 'numpy.zeros', 'np.zeros', ([], {'shape': '(60, 9, 3)', 'dtype': '"""int64"""'}), "(shape=(60, 9, 3), dtype='int64')\n", (1050, 1083), True, 'import numpy as np\n'), ((4957, 4971), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (4969, 4971), True, 'import multiprocessing as mp\n'), ((4987, 4996), 'multiprocessing.Pool', 'mp.Pool', ([], {}), '()\n', (4994, 4996), True, 'import multiprocessing as mp\n'), ((627, 661), 'os.path.isfile', 'os.path.isfile', (['DATABASE_FILE_NAME'], {}), '(DATABASE_FILE_NAME)\n', (641, 661), False, 'import os\n'), ((4253, 4262), 'othello.Othello', 'Othello', ([], {}), '()\n', (4260, 4262), False, 'from othello import Othello\n'), ((1485, 1534), 'numpy.savetxt', 'np.savetxt', (['outfile', 'row'], {'fmt': '"""%d"""', 'delimiter': '""";"""'}), "(outfile, row, fmt='%d', delimiter=';')\n", (1495, 1534), True, 'import numpy as np\n'), ((4391, 4409), 'Agents.random.Random.get_move', 'Random.get_move', (['g'], {}), '(g)\n', (4406, 4409), False, 'from Agents.random import Random\n')]
import argparse import json import os.path import random import re import time import cv2 import numpy as np import requests from PIL import Image from config import config class GermanLicensePlateImagesGenerator: def __init__(self, output): self.output = output self.COUNTRY_MARKS = np.asarray([d['CM'] for d in json.loads(open(config.GERMAN_COUNTY_MARKS, encoding='utf-8').read())]) self.LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZÄÖÜ" self.DIGITS = "0123456789" self.COUNTRIES = ['BW', 'BY', 'BE', 'BB', 'HB', 'HH', 'HE', 'MV', 'NI', 'NW', 'RP', 'SL', 'SN', 'ST', 'SH', 'TH'] self.MONTHS = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'] self.YEARS = ['06', '07', '08', '09', '10', '11', '12', '13', '14', '15', '16', '17'] random.seed() @staticmethod def get_image_url(license_number, country, month, year): license_number = license_number.replace("-", "%3A").replace("Ä", "%C4").replace("Ö", "%D6").replace("Ü", "%DC") return "http://nummernschild.heisnbrg.net/fe/task?action=startTask&kennzeichen={0}&kennzeichenZeile2=&engschrift=false&pixelHoehe=32&breiteInMM=520&breiteInMMFest=true&sonder=FE&dd=01&mm=01&yy=00&kreis={1}&kreisName=&humm={2}&huyy={3}&sonderKreis=LEER&mm1=01&mm2=01&farbe=SCHWARZ&effekt=KEIN&tgaDownload=false".format( license_number, country, month, year) def __generate_license_number(self): country = random.choice(self.COUNTRY_MARKS) letter_count = random.randint(1, 2) letters = "{}".format(random.choice(self.LETTERS)) if letter_count == 1 else "{}{}".format( random.choice(self.LETTERS), random.choice(self.LETTERS)) min = 1 if letter_count == 2 else 1 digit_count = random.randint(min, max((8 - len(country) - letter_count), 4)) digits = "" for i in range(digit_count): digits += random.choice(self.DIGITS) return "{}-{}{}".format(country, letters, digits) def __create_license_plate_picture(self, n, license_number, country, front): file_path = self.output + '/{0}#{1}.png'.format("F" if front else "R", license_number) if os.path.exists(file_path): return False month = random.choice(self.MONTHS) if front else '' year = random.choice(self.YEARS) if front else '' create_image_url = GermanLicensePlateImagesGenerator.get_image_url(license_number, country, month, year) r = requests.get(create_image_url) if r.status_code != 200: return False id = re.compile('<id>(.*?)</id>', re.DOTALL | re.IGNORECASE).findall( r.content.decode("utf-8"))[0] status_url = 'http://nummernschild.heisnbrg.net/fe/task?action=status&id=%s' % id time.sleep(.200) r = requests.get(status_url) if r.status_code != 200: return False show_image_url = 'http://nummernschild.heisnbrg.net/fe/task?action=showInPage&id=%s' show_image_url = show_image_url % id time.sleep(.200) r = requests.get(show_image_url) if r.status_code != 200: return False # sometimes the web service returns a corrupted image, check the image by getting the size and skip if corrupted try: numpyarray = np.fromstring(r.content, np.uint8) image = cv2.imdecode(numpyarray, cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) im = Image.fromarray(image) # don't use cv2.imwrite() because there is a bug with utf-8 encoded filepaths im.save(file_path) print("{0:06d} : {1}".format(n, file_path)) return True except: return False def generate(self, items): for n in range(items): while True: license_number = self.__generate_license_number() country = random.choice(self.COUNTRIES) if not self.__create_license_plate_picture(n, license_number, country, True): break time.sleep(.200) self.__create_license_plate_picture(n, license_number, country, False) time.sleep(.200) ap = argparse.ArgumentParser() ap.add_argument("-i", "--items", default="60000", help="Number of items to generate") ap.add_argument("-o", "--output", default=config.PLATE_IMAGES, help="Output path") args = vars(ap.parse_args()) lpdg = GermanLicensePlateImagesGenerator(os.path.abspath(args["output"])) lpdg.generate(int(args["items"]))
[ "PIL.Image.fromarray", "random.choice", "argparse.ArgumentParser", "re.compile", "requests.get", "random.seed", "time.sleep", "cv2.imdecode", "cv2.cvtColor", "numpy.fromstring", "random.randint" ]
[((4263, 4288), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4286, 4288), False, 'import argparse\n'), ((819, 832), 'random.seed', 'random.seed', ([], {}), '()\n', (830, 832), False, 'import random\n'), ((1470, 1503), 'random.choice', 'random.choice', (['self.COUNTRY_MARKS'], {}), '(self.COUNTRY_MARKS)\n', (1483, 1503), False, 'import random\n'), ((1528, 1548), 'random.randint', 'random.randint', (['(1)', '(2)'], {}), '(1, 2)\n', (1542, 1548), False, 'import random\n'), ((2499, 2529), 'requests.get', 'requests.get', (['create_image_url'], {}), '(create_image_url)\n', (2511, 2529), False, 'import requests\n'), ((2808, 2823), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (2818, 2823), False, 'import time\n'), ((2837, 2861), 'requests.get', 'requests.get', (['status_url'], {}), '(status_url)\n', (2849, 2861), False, 'import requests\n'), ((3067, 3082), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3077, 3082), False, 'import time\n'), ((3096, 3124), 'requests.get', 'requests.get', (['show_image_url'], {}), '(show_image_url)\n', (3108, 3124), False, 'import requests\n'), ((1928, 1954), 'random.choice', 'random.choice', (['self.DIGITS'], {}), '(self.DIGITS)\n', (1941, 1954), False, 'import random\n'), ((2271, 2297), 'random.choice', 'random.choice', (['self.MONTHS'], {}), '(self.MONTHS)\n', (2284, 2297), False, 'import random\n'), ((2330, 2355), 'random.choice', 'random.choice', (['self.YEARS'], {}), '(self.YEARS)\n', (2343, 2355), False, 'import random\n'), ((3343, 3377), 'numpy.fromstring', 'np.fromstring', (['r.content', 'np.uint8'], {}), '(r.content, np.uint8)\n', (3356, 3377), True, 'import numpy as np\n'), ((3398, 3440), 'cv2.imdecode', 'cv2.imdecode', (['numpyarray', 'cv2.IMREAD_COLOR'], {}), '(numpyarray, cv2.IMREAD_COLOR)\n', (3410, 3440), False, 'import cv2\n'), ((3461, 3500), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (3473, 3500), False, 'import cv2\n'), ((3518, 3540), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (3533, 3540), False, 'from PIL import Image\n'), ((1579, 1606), 'random.choice', 'random.choice', (['self.LETTERS'], {}), '(self.LETTERS)\n', (1592, 1606), False, 'import random\n'), ((1661, 1688), 'random.choice', 'random.choice', (['self.LETTERS'], {}), '(self.LETTERS)\n', (1674, 1688), False, 'import random\n'), ((1690, 1717), 'random.choice', 'random.choice', (['self.LETTERS'], {}), '(self.LETTERS)\n', (1703, 1717), False, 'import random\n'), ((3952, 3981), 'random.choice', 'random.choice', (['self.COUNTRIES'], {}), '(self.COUNTRIES)\n', (3965, 3981), False, 'import random\n'), ((4119, 4134), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (4129, 4134), False, 'import time\n'), ((4239, 4254), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (4249, 4254), False, 'import time\n'), ((2602, 2657), 're.compile', 're.compile', (['"""<id>(.*?)</id>"""', '(re.DOTALL | re.IGNORECASE)'], {}), "('<id>(.*?)</id>', re.DOTALL | re.IGNORECASE)\n", (2612, 2657), False, 'import re\n')]
import sys sys.path.append("/home/ly/workspace/mmsa") seed = 1938 import numpy as np import torch from torch import nn from torch import optim np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) from models.bigru_rcnn_gate import * from utils.train import * from typing import * from utils.load_raw_yelp import * from utils.dataset import * from utils.train import * from utils.train import * def main(): train_set, valid_set, test_set = load_glove_data(config) batch_size = 2 workers = 2 train_loader, valid_loader, test_loader = get_loader(batch_size, workers, get_collate_fn(config), train_set, valid_set, test_set) model = Model(config) #X, y = iter(valid_loader).next() #res = model(X) loss = nn.CrossEntropyLoss() # get_parameter_number(model), loss viz = get_Visdom() lr = 1e-3 epoches = 20 optimizer = get_regal_optimizer(model, optim.AdamW, lr) k_batch_train_visdom(model, optimizer, loss, valid_loader, viz, 30, 10, use_cuda=False) if __name__ == "__main__": # torch.cuda.set_device(1) main()
[ "torch.cuda.manual_seed_all", "torch.manual_seed", "torch.nn.CrossEntropyLoss", "numpy.random.seed", "torch.cuda.manual_seed", "sys.path.append" ]
[((11, 53), 'sys.path.append', 'sys.path.append', (['"""/home/ly/workspace/mmsa"""'], {}), "('/home/ly/workspace/mmsa')\n", (26, 53), False, 'import sys\n'), ((144, 164), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (158, 164), True, 'import numpy as np\n'), ((165, 188), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (182, 188), False, 'import torch\n'), ((189, 217), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (211, 217), False, 'import torch\n'), ((218, 250), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (244, 250), False, 'import torch\n'), ((820, 841), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (839, 841), False, 'from torch import nn\n')]
#!/usr/bin/env python # -*- coding: UTF-8 -*- ######################################################################## # GNU General Public License v3.0 # GNU GPLv3 # Copyright (c) 2019, <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. ######################################################################## """ Constants for project. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import platform import numpy as np DL_FRAMEWORKS = np.array(['caffe', 'tensorflow', 'pytorch', 'keras', 'caffe2']) DL_FRAMEWORK = None GPU_CORE_ID = 0 CNN_FEATURE_SIZES = np.array([2048, 2048, 1000, 1024, 1000, 2048, 2048]) CNN_FEATURE_TYPES = np.array(['fc6', 'fc7', 'fc1000', 'fc1024', 'fc365', 'prob', 'pool5', 'fc8a', 'res3b7', 'res4b35', 'res5c']) CNN_MODEL_TYPES = np.array(['resnet152', 'googlenet1k', 'vgg16', 'places365-resnet152', 'places365-vgg', 'googlenet13k']) RESIZE_TYPES = np.array(['resize', 'resize_crop', 'resize_crop_scaled', 'resize_keep_aspect_ratio_padded']) ROOT_PATH_TYPES = np.array(['data', 'project']) TRAIN_SCHEMES = np.array(['ete', 'tco']) MODEL_CLASSIFICATION_TYPES = np.array(['ml', 'sl']) MODEL_MULTISCALE_TYPES = np.array(['dl', 'ks']) SOLVER_NAMES = np.array(['adam', 'sgd']) DATASET_NAMES = np.array(['charades', 'kinetics400', 'breakfast_actions', 'you_cook_2', 'multi_thumos']) DATA_ROOT_PATH = './data' PROJECT_ROOT_PATH = '../' MACHINE_NAME = platform.node()
[ "numpy.array", "platform.node" ]
[((1150, 1213), 'numpy.array', 'np.array', (["['caffe', 'tensorflow', 'pytorch', 'keras', 'caffe2']"], {}), "(['caffe', 'tensorflow', 'pytorch', 'keras', 'caffe2'])\n", (1158, 1213), True, 'import numpy as np\n'), ((1271, 1323), 'numpy.array', 'np.array', (['[2048, 2048, 1000, 1024, 1000, 2048, 2048]'], {}), '([2048, 2048, 1000, 1024, 1000, 2048, 2048])\n', (1279, 1323), True, 'import numpy as np\n'), ((1344, 1456), 'numpy.array', 'np.array', (["['fc6', 'fc7', 'fc1000', 'fc1024', 'fc365', 'prob', 'pool5', 'fc8a',\n 'res3b7', 'res4b35', 'res5c']"], {}), "(['fc6', 'fc7', 'fc1000', 'fc1024', 'fc365', 'prob', 'pool5',\n 'fc8a', 'res3b7', 'res4b35', 'res5c'])\n", (1352, 1456), True, 'import numpy as np\n'), ((1471, 1578), 'numpy.array', 'np.array', (["['resnet152', 'googlenet1k', 'vgg16', 'places365-resnet152',\n 'places365-vgg', 'googlenet13k']"], {}), "(['resnet152', 'googlenet1k', 'vgg16', 'places365-resnet152',\n 'places365-vgg', 'googlenet13k'])\n", (1479, 1578), True, 'import numpy as np\n'), ((1590, 1686), 'numpy.array', 'np.array', (["['resize', 'resize_crop', 'resize_crop_scaled',\n 'resize_keep_aspect_ratio_padded']"], {}), "(['resize', 'resize_crop', 'resize_crop_scaled',\n 'resize_keep_aspect_ratio_padded'])\n", (1598, 1686), True, 'import numpy as np\n'), ((1701, 1730), 'numpy.array', 'np.array', (["['data', 'project']"], {}), "(['data', 'project'])\n", (1709, 1730), True, 'import numpy as np\n'), ((1747, 1771), 'numpy.array', 'np.array', (["['ete', 'tco']"], {}), "(['ete', 'tco'])\n", (1755, 1771), True, 'import numpy as np\n'), ((1801, 1823), 'numpy.array', 'np.array', (["['ml', 'sl']"], {}), "(['ml', 'sl'])\n", (1809, 1823), True, 'import numpy as np\n'), ((1849, 1871), 'numpy.array', 'np.array', (["['dl', 'ks']"], {}), "(['dl', 'ks'])\n", (1857, 1871), True, 'import numpy as np\n'), ((1887, 1912), 'numpy.array', 'np.array', (["['adam', 'sgd']"], {}), "(['adam', 'sgd'])\n", (1895, 1912), True, 'import numpy as np\n'), ((1929, 2021), 'numpy.array', 'np.array', (["['charades', 'kinetics400', 'breakfast_actions', 'you_cook_2', 'multi_thumos']"], {}), "(['charades', 'kinetics400', 'breakfast_actions', 'you_cook_2',\n 'multi_thumos'])\n", (1937, 2021), True, 'import numpy as np\n'), ((2085, 2100), 'platform.node', 'platform.node', ([], {}), '()\n', (2098, 2100), False, 'import platform\n')]