code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# Copyright (c) 2017, Enthought, Inc. # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only # under the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! """ Forest Fire Parameter Exploration ================================= This example shows parallel execution of multiple forest fire simulations with parameters swept over a range of values to collect and display statistics about the model. In this example, we use a modified version of a forest fire simulation with the following states: - Empty cell: 0 - Healthy tree: 1 - Burning tree: 2 - Moldy tree: 3 Every tick: - an empty cell can grow a tree - fires are randomly started and burn down all connected trees - crowded trees have a chance of contracting and dying from mold infection The script runs the simulation with different values for the likelihood of mold infection. As the probability grows, a qualitative decrease can be seen in the size and effect of fires, as the deaths due to mold have the effect of breaking up large groups of trees into less-connected groves, making it harder for fire to spread. """ import numpy as np from cellular_automata.automata_recorder import AutomataRecorder, count_states from cellular_automata.cellular_automaton import CellularAutomaton from cellular_automata.rules.change_state_rule import ChangeStateRule from cellular_automata.rules.forest import BurnGrovesRule, MoldRule # State values EMPTY = 0 TREE = 1 FIRE = 2 MOLD = 3 def simulation(p_mold, size, steps): """ Perform a simulation of a moldy forest, returning statistics. Parameters ---------- p_mold : probability The probability that a crowded tree dies of mold. size : size tuple The number of cells in each direction for the simulation. steps : int The number of ticks to run the simulation for. Returns ------- counts : array Array with shape (4, steps) of counts of each state at each tick. """ np.random.seed(None) # trees grow grow = ChangeStateRule( from_state=EMPTY, to_state=TREE, p_change=0.0025 ) # fires are started, and all connected trees burn burn_groves = BurnGrovesRule() # crowded trees have a chance to be infected with mold mold = MoldRule(dead_state=MOLD, p_mold=p_mold) # trees which are infected with mold die mold_die = ChangeStateRule( from_state=MOLD, to_state=EMPTY, p_change=1.0 ) # fires are extinguished fire_out = ChangeStateRule( from_state=FIRE, to_state=EMPTY, p_change=1.0 ) forest = CellularAutomaton( shape=size, rules=[mold_die, fire_out, grow, burn_groves, mold], ) # record the number of each state recorder = AutomataRecorder(automaton=forest, transform=count_states) forest.start() for i in range(steps): forest.step() return recorder.as_array() if __name__ == '__main__': from joblib import Parallel, delayed import matplotlib.pyplot as plt SHAPE = (256, 256) N_STEPS = 4096 N_SIMULATIONS = 16 results = Parallel(n_jobs=4)( delayed(simulation)(p_mold, SHAPE, N_STEPS, count_states) for p_mold in np.logspace(-4, -1, N_SIMULATIONS) ) for i, result in enumerate(results): # plot count of each non-empty state over time plt.subplot(N_SIMULATIONS, 2, 2*i+1) for state, color in [(TREE, 'g'), (FIRE, 'r'), (MOLD, 'c')]: plt.plot(result[state, :], c=color) # plot histogram plt.subplot(N_SIMULATIONS, 2, 2*i+2) plt.hist( np.log(result[result[1] != 0, 1]), bins=np.linspace(0, 10, 21) ) plt.show()
[ "cellular_automata.rules.forest.BurnGrovesRule", "matplotlib.pyplot.plot", "numpy.log", "numpy.logspace", "joblib.Parallel", "matplotlib.pyplot.subplot", "cellular_automata.rules.forest.MoldRule", "numpy.linspace", "numpy.random.seed", "cellular_automata.automata_recorder.AutomataRecorder", "joblib.delayed", "cellular_automata.rules.change_state_rule.ChangeStateRule", "cellular_automata.cellular_automaton.CellularAutomaton", "matplotlib.pyplot.show" ]
[((2204, 2224), 'numpy.random.seed', 'np.random.seed', (['None'], {}), '(None)\n', (2218, 2224), True, 'import numpy as np\n'), ((2254, 2319), 'cellular_automata.rules.change_state_rule.ChangeStateRule', 'ChangeStateRule', ([], {'from_state': 'EMPTY', 'to_state': 'TREE', 'p_change': '(0.0025)'}), '(from_state=EMPTY, to_state=TREE, p_change=0.0025)\n', (2269, 2319), False, 'from cellular_automata.rules.change_state_rule import ChangeStateRule\n'), ((2423, 2439), 'cellular_automata.rules.forest.BurnGrovesRule', 'BurnGrovesRule', ([], {}), '()\n', (2437, 2439), False, 'from cellular_automata.rules.forest import BurnGrovesRule, MoldRule\n'), ((2511, 2551), 'cellular_automata.rules.forest.MoldRule', 'MoldRule', ([], {'dead_state': 'MOLD', 'p_mold': 'p_mold'}), '(dead_state=MOLD, p_mold=p_mold)\n', (2519, 2551), False, 'from cellular_automata.rules.forest import BurnGrovesRule, MoldRule\n'), ((2613, 2675), 'cellular_automata.rules.change_state_rule.ChangeStateRule', 'ChangeStateRule', ([], {'from_state': 'MOLD', 'to_state': 'EMPTY', 'p_change': '(1.0)'}), '(from_state=MOLD, to_state=EMPTY, p_change=1.0)\n', (2628, 2675), False, 'from cellular_automata.rules.change_state_rule import ChangeStateRule\n'), ((2751, 2813), 'cellular_automata.rules.change_state_rule.ChangeStateRule', 'ChangeStateRule', ([], {'from_state': 'FIRE', 'to_state': 'EMPTY', 'p_change': '(1.0)'}), '(from_state=FIRE, to_state=EMPTY, p_change=1.0)\n', (2766, 2813), False, 'from cellular_automata.rules.change_state_rule import ChangeStateRule\n'), ((2858, 2944), 'cellular_automata.cellular_automaton.CellularAutomaton', 'CellularAutomaton', ([], {'shape': 'size', 'rules': '[mold_die, fire_out, grow, burn_groves, mold]'}), '(shape=size, rules=[mold_die, fire_out, grow, burn_groves,\n mold])\n', (2875, 2944), False, 'from cellular_automata.cellular_automaton import CellularAutomaton\n'), ((3018, 3076), 'cellular_automata.automata_recorder.AutomataRecorder', 'AutomataRecorder', ([], {'automaton': 'forest', 'transform': 'count_states'}), '(automaton=forest, transform=count_states)\n', (3034, 3076), False, 'from cellular_automata.automata_recorder import AutomataRecorder, count_states\n'), ((3963, 3973), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3971, 3973), True, 'import matplotlib.pyplot as plt\n'), ((3365, 3383), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '(4)'}), '(n_jobs=4)\n', (3373, 3383), False, 'from joblib import Parallel, delayed\n'), ((3619, 3659), 'matplotlib.pyplot.subplot', 'plt.subplot', (['N_SIMULATIONS', '(2)', '(2 * i + 1)'], {}), '(N_SIMULATIONS, 2, 2 * i + 1)\n', (3630, 3659), True, 'import matplotlib.pyplot as plt\n'), ((3807, 3847), 'matplotlib.pyplot.subplot', 'plt.subplot', (['N_SIMULATIONS', '(2)', '(2 * i + 2)'], {}), '(N_SIMULATIONS, 2, 2 * i + 2)\n', (3818, 3847), True, 'import matplotlib.pyplot as plt\n'), ((3737, 3772), 'matplotlib.pyplot.plot', 'plt.plot', (['result[state, :]'], {'c': 'color'}), '(result[state, :], c=color)\n', (3745, 3772), True, 'import matplotlib.pyplot as plt\n'), ((3874, 3907), 'numpy.log', 'np.log', (['result[result[1] != 0, 1]'], {}), '(result[result[1] != 0, 1])\n', (3880, 3907), True, 'import numpy as np\n'), ((3393, 3412), 'joblib.delayed', 'delayed', (['simulation'], {}), '(simulation)\n', (3400, 3412), False, 'from joblib import Parallel, delayed\n'), ((3473, 3507), 'numpy.logspace', 'np.logspace', (['(-4)', '(-1)', 'N_SIMULATIONS'], {}), '(-4, -1, N_SIMULATIONS)\n', (3484, 3507), True, 'import numpy as np\n'), ((3926, 3948), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(21)'], {}), '(0, 10, 21)\n', (3937, 3948), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 17 11:02:21 2019 @author: elizabethhutton """ import pandas as pd import numpy as np from sklearn.manifold import TSNE from matplotlib import pyplot as plt from sklearn.cluster import KMeans from wordcloud import WordCloud from yellowbrick.cluster import KElbowVisualizer from sklearn.neighbors import NearestNeighbors import spacy import iterate class Cluster(): def __init__(self,corpus,num_clusters): """Perform k-means clustering on corpus. Keyword Arguments: corpus -- document corpus as Corpus object num_clusters -- k clusters to search for """ self.k = num_clusters self.top_words = None word_vectors = corpus.vectors kmeans_clustering = KMeans(n_clusters = num_clusters, init='k-means++') self.model = kmeans_clustering idx = kmeans_clustering.fit_predict(word_vectors) self.centers = kmeans_clustering.cluster_centers_ #update corpus vectors with cluster labels corpus.clusters = pd.DataFrame(idx,columns=['clusterid'],index=word_vectors.index) return def get_top_words(self, corpus, knn): """Get knn top words for each cluster. Keyword Arguments: corpus -- pandas df of words and their vectors knn -- (int) num words to find per cluster """ word_vectors = corpus.vectors neigh = NearestNeighbors(n_neighbors=knn, metric= 'cosine') neigh.fit(word_vectors) top_word_idxs = list() for center in self.centers: center = center.reshape(1,-1) top_n = neigh.kneighbors(center,n_neighbors=knn,return_distance=False) top_word_idxs.append(top_n) top_n_words = pd.DataFrame() for i, cluster in enumerate(top_word_idxs): cluster_name = 'Cluster ' + str(i) words = list() for idx in cluster[0]: word = word_vectors.iloc[idx].name words.append(word) top_n_words[cluster_name] = words self.top_words = top_n_words return top_n_words def iterate_kmeans(clean_corpus,elbow): #prep for clustering clean_corpus.vectorize() #iterate kmeans over num topics #methods = 'var','dist','c_h' elbow.elbow_kmeans_variance(clean_corpus) elbow.elbow_kmeans_inertia(clean_corpus) elbow.elbow_kmeans_ch(clean_corpus) elbow.elbow_kmeans_dist(clean_corpus) return #fix def plot_tsne(word_vectors): tsne = TSNE(n_components=2, random_state=0, n_iter=5000, perplexity=3) np.set_printoptions(suppress=True) T = tsne.fit_transform(word_vectors) labels = word_vectors.index plt.figure(figsize=(12, 6)) plt.scatter(T[:, 0], T[:, 1], c='orange', edgecolors='r') for label, x, y in zip(labels, T[:, 0], T[:, 1]): plt.annotate(label, xy=(x+1, y+1), xytext=(0, 0), textcoords='offset points') return def get_kmeans(clean_corpus,num_topics): cluster_model = Cluster(clean_corpus,num_topics) top_words_kmeans = cluster_model.get_top_words(clean_corpus, knn=10) return cluster_model,top_words_kmeans
[ "sklearn.cluster.KMeans", "sklearn.manifold.TSNE", "matplotlib.pyplot.annotate", "matplotlib.pyplot.figure", "sklearn.neighbors.NearestNeighbors", "matplotlib.pyplot.scatter", "pandas.DataFrame", "numpy.set_printoptions" ]
[((829, 878), 'sklearn.cluster.KMeans', 'KMeans', ([], {'n_clusters': 'num_clusters', 'init': '"""k-means++"""'}), "(n_clusters=num_clusters, init='k-means++')\n", (835, 878), False, 'from sklearn.cluster import KMeans\n'), ((1131, 1197), 'pandas.DataFrame', 'pd.DataFrame', (['idx'], {'columns': "['clusterid']", 'index': 'word_vectors.index'}), "(idx, columns=['clusterid'], index=word_vectors.index)\n", (1143, 1197), True, 'import pandas as pd\n'), ((1528, 1578), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': 'knn', 'metric': '"""cosine"""'}), "(n_neighbors=knn, metric='cosine')\n", (1544, 1578), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((1878, 1892), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1890, 1892), True, 'import pandas as pd\n'), ((2721, 2784), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)', 'random_state': '(0)', 'n_iter': '(5000)', 'perplexity': '(3)'}), '(n_components=2, random_state=0, n_iter=5000, perplexity=3)\n', (2725, 2784), False, 'from sklearn.manifold import TSNE\n'), ((2793, 2827), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (2812, 2827), True, 'import numpy as np\n'), ((2926, 2953), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (2936, 2953), True, 'from matplotlib import pyplot as plt\n'), ((2962, 3019), 'matplotlib.pyplot.scatter', 'plt.scatter', (['T[:, 0]', 'T[:, 1]'], {'c': '"""orange"""', 'edgecolors': '"""r"""'}), "(T[:, 0], T[:, 1], c='orange', edgecolors='r')\n", (2973, 3019), True, 'from matplotlib import pyplot as plt\n'), ((3090, 3176), 'matplotlib.pyplot.annotate', 'plt.annotate', (['label'], {'xy': '(x + 1, y + 1)', 'xytext': '(0, 0)', 'textcoords': '"""offset points"""'}), "(label, xy=(x + 1, y + 1), xytext=(0, 0), textcoords=\n 'offset points')\n", (3102, 3176), True, 'from matplotlib import pyplot as plt\n')]
""" Code for the optimization and gaming component of the Baselining work. @author: <NAME>, <NAME> @date Mar 2, 2016 """ import numpy as np import pandas as pd import logging from gurobipy import GRB, Model, quicksum, LinExpr from pandas.tseries.holiday import USFederalHolidayCalendar from datetime import datetime from .utils import (get_energy_charges, get_demand_charge, dem_charges, dem_charges_yearly, get_pdp_demand_credit, get_DR_rewards, powerset, E19, carbon_costs) # define some string formatters psform = '%Y-%m-%d %H:%M' dsform = '%Y-%m-%d' class BLModel(object): """ Abstract base class for Baselining models. """ def __init__(self, name): """ Construct an abstract dynamical system object based on the gurobipy Model object 'model'. """ self._name = name self._model = Model() def get_model(self): """ Returns the underlying gurobiy Model object. """ return self._model def set_dynsys(self, dynsys): """ Initialize dynamical system for underlying dynamics. """ self._dynsys = dynsys def set_window(self, index): """ Set the window for the optimization. Here index is a pandas DatetimeIndex. """ self._index = index self._dynsys.set_window(index) def energy_charges(self, tariff, isRT=False, LMP=None, isPDP=False, twindow=None, carbon=False): """ Return total enery consumption charges (as determined by the tariff's energy charge) as a gurobipy LinExpr. """ locidx = self._index.tz_convert('US/Pacific') year = locidx[0].year if isRT and isPDP: raise Exception('Cannot combine RTP and PDP.') nrg_charges = get_energy_charges( self._index, tariff, isRT=isRT, LMP=LMP, isPDP=isPDP, carbon=carbon, year=year)['EnergyCharge'] cons = self._dynsys.get_consumption()['energy'] if twindow is None: # echrg_= quicksum([ec * con for ec, con in # zip(nrg_charges.values, cons.values)]) echrg_ = [ec * con for ec, con in zip(nrg_charges.values, cons.values)] echrg = pd.Series(echrg_, index=locidx) else: nrg_charges_ = nrg_charges.loc[twindow[0]:twindow[1]] cons_ = cons.loc[twindow[0]:twindow[1]] # echrg = quicksum([ec * con for ec, con in # zip(nrg_charges_.values, cons_.values)]) echrg_ = [ec * con for ec, con in zip(nrg_charges_.values, cons_.values)] indx = locidx[locidx.get_loc(twindow[0]): locidx.get_loc(twindow[1])+1] echrg = pd.Series(echrg_, index=indx) return echrg def demand_charges(self, tariff, isPDP=False): """ Return the total demand charges under the tariff as a gurobipy LinExpr. """ # determine which year/month combinations there is a demand charge, # and create a variable for each of them if hasattr(self, '_maxcon'): for maxcon in self._maxcon.values(): self._model.remove(maxcon) del self._maxcon if hasattr(self, '_maxconbnd'): for maxconbnd in self._maxconbnd.values(): self._model.remove(maxconbnd) del self._maxconbnd if hasattr(self, '_maxconppk'): for maxconppk in self._maxconppk.values(): self._model.remove(maxconppk) del self._maxconppk if hasattr(self, '_maxconppkbnd'): for maxconppkbnd in self._maxconppkbnd.values(): self._model.remove(maxconppkbnd) del self._maxconppkbnd if hasattr(self, '_maxconpk'): for maxconpk in self._maxconpk.values(): self._model.remove(maxconpk) del self._maxconpk if hasattr(self, '_maxconpkbnd'): for maxconpkbnd in self._maxconpkbnd.values(): self._model.remove(maxconpkbnd) del self._maxconpkbnd if hasattr(self, '_maxconpks'): for maxconpks in self._maxconpks.values(): self._model.remove(maxconpks) del self._maxconpks if hasattr(self, '_maxconppkw'): for maxconppkw in self._maxconppkw.values(): self._model.remove(maxconppkw) del self._maxconppkw if hasattr(self, '_maxconppkbndw'): for maxconppkbndw in self._maxconppkbndw.values(): self._model.remove(maxconppkbndw) del self._maxconppkbndw if hasattr(self, '_maxconppks'): for maxconppks in self._maxconppks.values(): self._model.remove(maxconppks) del self._maxconppks if hasattr(self, '_maxconppkbnds'): for maxconppkbnds in self._maxconppkbnds.values(): self._model.remove(maxconppkbnds) del self._maxconppkbnds self._model.update() locidx = self._index.tz_convert('US/Pacific') ym_dict = {year: np.unique(locidx[locidx.year == year].month) for year in np.unique(locidx.year)} indx = [] for year, months in ym_dict.items(): for month in months: indx.append(pd.Timestamp(datetime(year, month, 1), tz='US/Pacific')) if tariff in dem_charges: if not(tariff in E19): self._maxcon, self._maxconbnd = {}, {} # locidx = self._index.tz_convert('US/Pacific') # print locidx # the following creates a dictionary with all years in the data # as keys, and for each year the value is an array of (unique) # months that appear during that year. This is used for keeping # track of the peak consumpiton for the demand charge # ym_dict = {year: np.unique(locidx[locidx.year == year].month) # for year in np.unique(locidx.year)} # indx=[] for year, months in ym_dict.items(): for month in months: # declare variable for max consumption self._maxcon[year, month] = self._model.addVar( vtype=GRB.CONTINUOUS, name='maxcon[{},{}]'.format(year, month)) # indx.append(pd.Timestamp(datetime(year,month,1),tz='US/Pacific')) self._model.update() # now add in the necessary constraints and update objective dcharges = [] cons = self._dynsys.get_consumption()['power'] for year, months in ym_dict.items(): for month in months: relcons = cons[(locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(relcons): self._maxconbnd[year, month, i] = self._model.addConstr( lhs=self._maxcon[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconbnd[{},{},{}]'.format( year, month, i)) # dcharges += (get_demand_charge(tariff, month, isPDP)* # self._maxcon[year, month]) dcharges.append( (get_demand_charge(tariff, month, isPDP, year=year) * self._maxcon[year, month])) dcharges = pd.Series(dcharges, index=indx) self._model.update() return dcharges else: # for E19 tarrifs idx_ = self._index.tz_convert('US/Pacific') iswknd = idx_.dayofweek > 5 holidays = USFederalHolidayCalendar().holidays( idx_.min(), idx_.max()) iswknd = iswknd | pd.DatetimeIndex(idx_.date).isin(holidays) issummer = (idx_.month >= 5) & (idx_.month <= 10) ToD = idx_.hour + idx_.minute / 60 ispeak = ~iswknd & issummer & (ToD >= 12) & (ToD < 18) ispartial_summer = (~iswknd & issummer & ( ((ToD >= 8.5) & (ToD < 12)) | ((ToD >= 18) & (ToD < 21.5)))) ispartial_winter = ~iswknd & ~issummer & ( (ToD >= 8.5) & (ToD < 21.5)) # create dictionaries for variables self._maxcon, self._maxconbnd = {}, {} self._maxconppks, self._maxconppkbnds = {}, {} self._maxconpks, self._maxconpkbnds = {}, {} self._maxconpk, self._maxconpkbnd = {}, {} self._maxconppk, self._maxconppkbnd = {}, {} self._maxconppkw, self._maxconppkbndw = {}, {} # locidx = self._index.tz_convert('US/Pacific') # ym_dict = {year: np.unique(locidx[locidx.year == year].month) # for year in np.unique(locidx.year)} # indx=[] for year, months in ym_dict.items(): for month in months: # declare variable for max consumption self._maxcon[year, month] = self._model.addVar( vtype=GRB.CONTINUOUS, name='maxcon[{},{}]'.format(year, month)) # declare variable for part peak consumption self._maxconppk[year, month] = self._model.addVar( vtype=GRB.CONTINUOUS, name='maxconppk[{},{}]'.format(year, month)) # declare variable for max peak only in summer if (5 <= month) & (month <= 10): # add variable for maximum peak usage in summer self._maxconpk[year, month] = self._model.addVar( vtype=GRB.CONTINUOUS, name='maxconpk[{},{}]'.format(year, month)) # indx.append(pd.Timestamp(datetime(year,month,1),tz='US/Pacific')) self._model.update() # update model # now add in the necessary constraints and update objective dcharges = [] cons = self._dynsys.get_consumption()['power'] for year, months in ym_dict.items(): for month in months: dchrg = 0.0 # for peak summer less than max demand if (month >= 5) & (month <= 10): self._maxconpkbnd[year, month] = self._model.addConstr( lhs=self._maxcon[year, month], sense=GRB.GREATER_EQUAL, rhs=self._maxconpk[year, month], name='maxconpkbnd[{},{}]'.format(year, month)) # max partial peak summer greater than consumption ppconsum = cons[(ispartial_summer) & (locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(ppconsum): self._maxconppkbnds[year, month, i] = self._model.addConstr( lhs=self._maxconppk[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconppkbnds[{},{},{}]'.format( year, month, i)) # max peak consumption summer pconsum = cons[(ispeak) & (locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(pconsum): self._maxconpkbnds[year, month, i] = self._model.addConstr( lhs=self._maxconpk[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconpkbnds[{},{},{}]'.format( year, month, i)) # max partial peak winter ppkconwin = cons[(ispartial_winter) & (locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(ppkconwin): self._maxconppkbndw[year, month, i] = self._model.addConstr( lhs=self._maxconppk[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconppkbndw[{},{},{}]'.format( year, month, i)) # max demand each month relcons = cons[(locidx.year == year) & (locidx.month == month)].values for i, con in enumerate(relcons): self._maxconbnd[year, month, i] = self._model.addConstr( lhs=self._maxcon[year, month], sense=GRB.GREATER_EQUAL, rhs=con, name='maxconbnd[{},{},{}]'.format( year, month, i)) # max partial peaks (summer & winter) < than max demand self._maxconppkbnd[year, month, i] = self._model.addConstr( lhs=self._maxcon[year, month], sense=GRB.GREATER_EQUAL, rhs=self._maxconppk[year, month], name='maxconppkbnd[{},{},{}]'.format( year, month, i)) demchrg = get_demand_charge(tariff, month, year=year) if (month >= 5) & (month <= 10): mpeakchg = demchrg['mpeak'] ppeakchg = demchrg['ppeak'] maxchg = demchrg['max'] if isPDP: pdpcred = get_pdp_demand_credit(tariff, month, year=year) mpeakchg = mpeakchg - pdpcred['peak'] dchrg += mpeakchg * self._maxconpk[year, month] # dcharges.append(mpeakchg * self._maxconpk[year, month]) else: ppeakchg = demchrg['ppeak'] maxchg = demchrg['max'] # add partpeak and maximum demand charge dcharges.append( (maxchg * self._maxcon[year, month] + ppeakchg * self._maxconppk[year, month])+dchrg) self._model.update() dcharges = pd.Series(dcharges, index=indx) return dcharges else: return pd.Series([LinExpr(0.0) for ij in range(0, np.size(indx, 0))], index=indx) def DR_compensation(self, LMP, dr_periods, BL='CAISO', **kwargs): """ Return compensation for DR, i.e. reductions w.r.t. baseline. Here LMP is a pandas Series (indexed by a tz-aware pandas Datetimeindex containing all of the object's indices) and dr_periods is a pandas DatetimeIndex. """ # start by removing all variables (might be inefficient, but o/w it # is a pain in the ass do deal with the multihour baselines etc.) self._removeOld() # no work if no DR events are specified if (LMP is None) or (dr_periods is None): return pd.Series([0.0], index=['None']) # get DR rewards (in case we want LMP-G instead of LMP) DR_rewards = get_DR_rewards(LMP, isLMPmG=kwargs.get('isLMPmG'), tariff=kwargs.get('tariff')) # populate optimization problem for proper BL choices if BL == 'CAISO': # print self._DR_comp_CAISO(DR_rewards, dr_periods) return self._DR_comp_CAISO(DR_rewards, dr_periods) elif BL == 'expMA': return self._DR_comp_expMA(DR_rewards, dr_periods, **kwargs) else: raise NotImplementedError( 'Baseline type "{}" not known!'.format(BL)) def _DR_comp_CAISO(self, LMP, dr_periods): """ Return compensation for DR, i.e. reductions w.r.t. CAISO baseline. Here LMP is a pandas Series (indexed by a tz-aware pandas Datetimeindex containing all of the object's indices) and dr_periods is a pandas DatetimeIndex. Note that LMP may also be LMP-G, i.e. the LMP minus the generation component of the tariff. """ valid_periods = dr_periods[dr_periods.isin(self._index)].tz_convert( 'US/Pacific') locidx = self._index.tz_convert('US/Pacific') grouped = valid_periods.groupby(valid_periods.date) # define auxiliary variables for each possible dr period if none exist self._red, self._z, self._bl = {}, {}, {} self._redpos, self._redBL, self._red0, self._blcon = {}, {}, {}, {} self._dr_periods = valid_periods # add variables if there are days w/ multiple possible DR events if np.max([len(grp) for grp in grouped.values()]) > 1: self._zday, self._zdaysum, self._zdaymax = {}, {}, {} # now create variables for different days and periods within each day for day, periods in grouped.items(): daystr = day.strftime(dsform) perstrs = [per.strftime(psform) for per in periods] if len(periods) > 1: self._zday[daystr] = self._model.addVar( vtype=GRB.BINARY, name='zday[{}]'.format(daystr)) for period, perstr in zip(periods, perstrs): self._red[perstr] = self._model.addVar( vtype=GRB.CONTINUOUS, name='red[{}]'.format(perstr)) self._z[perstr] = self._model.addVar( vtype=GRB.BINARY, name='z[{}]'.format(perstr)) self._bl[perstr] = self._model.addVar( vtype=GRB.CONTINUOUS, name='bl[{}]'.format(perstr)) self._model.update() # this must be done before defining constaints # determine "bigM" value from the bounds on the control variables M = np.sum(np.asarray(self._dynsys._opts['nrg_coeffs']) * (self._dynsys._opts['umax'] - self._dynsys._opts['umin']), axis=1).max() # if u is not bounded the the above results in an NaN value. We need # to deal with this in a better way than the following: if np.isnan(M): M = 1e9 # perform some preparations for the constraints # drcomp = 0.0 nrgcons = self._dynsys.get_consumption()['energy'] lmps = LMP.tz_convert('US/Pacific').loc[locidx] / 1000 # to $/kWh holidays = USFederalHolidayCalendar().holidays( start=locidx.min(), end=locidx.max()) isBusiness = (locidx.dayofweek < 5) & (~locidx.isin(holidays)) isBusiness = pd.Series(isBusiness, index=locidx) # add constraints on varible zday (if multiple periods per day) for day, periods in grouped.items(): daystr = day.strftime(dsform) perstrs = [per.strftime(psform) for per in periods] if len(periods) > 1: self._zdaysum[daystr] = self._model.addConstr( lhs=self._zday[daystr], sense=GRB.LESS_EQUAL, rhs=quicksum([self._z[ps] for ps in perstrs]), name='zdaysum[{}]'.format(daystr)) for period, perstr in zip(periods, perstrs): self._zdaymax[perstr] = self._model.addConstr( lhs=self._zday[daystr], sense=GRB.GREATER_EQUAL, rhs=self._z[perstr], name='zdaymax[{}]'.format(perstr)) self._model.update() # formulate constaints and add terms to objective drcomp_ = [] for i, day in enumerate(grouped): periods = grouped[day] # print('Formulating constraints for day {} of {}'.format( # i, len(grouped))) perstrs = [per.strftime(psform) for per in periods] for period, perstr in zip(periods, perstrs): per_select = ((locidx < period) & (locidx.hour == period.hour) & (locidx.minute == period.minute)) if isBusiness.loc[period]: nmax = 10 per_select = per_select & isBusiness.values else: nmax = 4 per_select = per_select & (~isBusiness.values) similars = locidx[per_select].sort_values(ascending=False) # now go through similar days sucessively sim_nonDR, sim_DR, sim_DR_mult = [], [], [] for sim in similars: if len(sim_nonDR) == nmax: continue if sim in self._dr_periods: sim_DR += [sim] if len(grouped[pd.Timestamp(sim.date())]) > 1: sim_DR_mult += [sim] else: sim_nonDR += [sim] sim_DR = pd.DatetimeIndex( sim_DR).sort_values(ascending=False) sim_DR_mult = pd.DatetimeIndex( sim_DR_mult).sort_values(ascending=False) sim_nonDR = pd.DatetimeIndex( sim_nonDR).sort_values(ascending=False) # get consumption variables cons_nonDR = nrgcons.loc[sim_nonDR].values # Now add constraits on the baseline variables for idxset in powerset(range(len(sim_DR))): K = [sim_DR[i] for i in idxset] Kc = [sim_DR[i] for i in range(len(sim_DR)) if i not in idxset] qK = nrgcons.loc[K].values.tolist() # Need to make sure to use zday if there are multiple # events possible that day! zK, zKc = [], [] for k in K: if k in sim_DR_mult: zK.append(self._zday[k.strftime(dsform)]) else: zK.append(self._z[k.strftime(psform)]) for kc in Kc: if kc in sim_DR_mult: zKc.append(self._zday[kc.strftime(dsform)]) else: zKc.append(self._z[kc.strftime(psform)]) # the following uses that the "closest" days appear first qD = cons_nonDR[:nmax-len(idxset)].tolist() n = len(sim_nonDR) if n == 0: print('No non-DR day available for BL computation -' + ' too many DR events!') bnd = (quicksum(qD + qK) / float(n) + M * quicksum(zK) + M * quicksum([(1-z) for z in zKc])) self._blcon[perstr, idxset] = self._model.addConstr( lhs=self._bl[perstr], sense=GRB.LESS_EQUAL, rhs=bnd, name="blcon[{},{}]".format(perstr, idxset)) # add constraints on baseline reduction self._redpos[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.GREATER_EQUAL, rhs=0.0, name='redpos[{}]'.format(perstr)) self._redBL[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.LESS_EQUAL, rhs=self._bl[perstr] - nrgcons.loc[period], name='redBL[{}]'.format(perstr)) self._red0[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.LESS_EQUAL, rhs=self._z[perstr] * M, name='red0[{}]'.format(perstr)) # add DR compensation to objective # drcomp += lmps.loc[period] * self._red[perstr] drcomp_.append(lmps.loc[period] * self._red[perstr]) drcomp = pd.Series(drcomp_, index=self._dr_periods) self._model.update() return drcomp def _DR_comp_expMA(self, LMP, dr_periods, **kwargs): """ Return compensation for DR, i.e. reductions w.r.t. CAISO baseline. Here LMP is a pandas Series (indexed by a tz-aware pandas Datetimeindex containing all of the object's indices) and dr_hours is a pandas DatetimeIndex. Note that LMP may also be LMP-G, i.e. the LMP minus the generation component of the tariff. """ # set default values for alphas if not passed as kwargs if 'alpha_b' in kwargs: alpha_b = kwargs['alpha_b'] else: alpha_b = 0.175 # business day if 'alpha_nb' in kwargs: alpha_nb = kwargs['alpha_nb'] else: alpha_nb = 0.25 # non-business day valid_periods = dr_periods[dr_periods.isin(self._index)] locidx = self._index.tz_convert('US/Pacific') grouped = valid_periods.groupby( valid_periods.tz_convert('US/Pacific').date) # define auxiliary variables for each possible dr period if none exist self._red, self._z, self._bl = {}, {}, {} self._redpos, self._redBL, self._red0, self._blcon = {}, {}, {}, {} self._dr_periods = valid_periods # add variables if there are days w/ multiple possible DR events if np.max([len(grp) for grp in grouped.values()]) > 1: self._zday, self._zdaysum, self._zdaymax = {}, {}, {} # now create variables for different days and periods within each day for day, periods in grouped.items(): daystr = day.strftime(dsform) perstrs = [per.strftime(psform) for per in periods] if len(periods) > 1: self._zday[daystr] = self._model.addVar( vtype=GRB.BINARY, name='zday[{}]'.format(daystr)) for period, perstr in zip(periods, perstrs): self._red[perstr] = self._model.addVar( vtype=GRB.CONTINUOUS, name='red[{}]'.format(perstr)) self._z[perstr] = self._model.addVar( vtype=GRB.BINARY, name='z[{}]'.format(perstr)) # for the expMA we have to define a variable for the bl value # for every period of the simulation range for per in self._index: perstr = per.strftime(psform) self._bl[perstr] = self._model.addVar( vtype=GRB.CONTINUOUS, name='bl[{}]'.format(perstr)) self._model.update() # this must be done before defining constaints # determine "bigM" value from the bounds on the control variables M = np.sum(np.asarray(self._dynsys._opts['nrg_coeffs']) * (self._dynsys._opts['umax'] - self._dynsys._opts['umin']), axis=1).max() # if u is not bounded the the above results in an NaN value. We need # to deal with this in a better way than the following: if np.isnan(M): M = 1e9 # perform some preparations for the constraints drcomp_ = [] nrgcons = self._dynsys.get_consumption()['energy'] lmps = LMP.tz_convert('US/Pacific').loc[locidx] / 1000 # to $/kWh holidays = USFederalHolidayCalendar().holidays( start=locidx.min(), end=locidx.max()) isBusiness = (locidx.dayofweek < 5) & (~locidx.isin(holidays)) isBusiness = pd.Series(isBusiness, index=locidx) # add constraints on varible zday (if multiple periods per day) for day, periods in grouped.items(): daystr = day.strftime(dsform) perstrs = [per.strftime(psform) for per in periods] if len(periods) > 1: self._zdaysum[daystr] = self._model.addConstr( lhs=self._zday[daystr], sense=GRB.LESS_EQUAL, rhs=quicksum([self._z[ps] for ps in perstrs]), name='zdaysum[{}]'.format(daystr)) for period, perstr in zip(periods, perstrs): self._zdaymax[perstr] = self._model.addConstr( lhs=self._zday[daystr], sense=GRB.GREATER_EQUAL, rhs=self._z[perstr], name='zdaymax[{}]'.format(perstr)) self._model.update() # now add the constraints that define the baseline as well as a # bunch of other stuff for cons, alpha in zip([nrgcons[isBusiness], nrgcons[~isBusiness]], [alpha_b, alpha_nb]): # localize consumption index considxloc = cons.index.tz_convert('US/Pacific') # compute BLs for each hour separately con_hrly = {hour: cons[considxloc.hour == hour].sort_index() for hour in range(24)} for hour, con in con_hrly.items(): # set the initial value of the BL to zero (this should not have # an overly large effect of the course of a year or so...) # NOTE: This assumes that the first occurrence of an hour (for # both business and non-business days) is NOT a potential event perstr_pre = con.index[0].strftime(psform) self._blcon[perstr_pre, 'init'] = self._model.addConstr( lhs=self._bl[perstr_pre], sense=GRB.EQUAL, rhs=0.0, name='blcon[{}]'.format(perstr_pre)) # now loop through the rest for period, q in con.iloc[1:].items(): perstr = period.strftime(psform) # if the period under consideration is a DR period, # we have to do some work ... if period in valid_periods: # need to use zday if this day has multiple DR events dt = period.tz_convert('US/Pacific').date() if len(grouped[dt]) > 1: z = self._zday[dt.strftime(dsform)] else: z = self._z[perstr] # add big M constraints on the bl self._blcon[perstr, 'static'] = self._model.addConstr( lhs=self._bl[perstr], sense=GRB.LESS_EQUAL, rhs=self._bl[perstr_pre] + M * (1 - z), name='blcon[{},static]'.format(perstr)) self._blcon[perstr, 'change'] = self._model.addConstr( lhs=self._bl[perstr], sense=GRB.LESS_EQUAL, rhs=alpha*q + (1-alpha)*self._bl[perstr_pre] + M*z, name='blcon[{},change]'.format(perstr)) # add constraints on baseline reduction self._redpos[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.GREATER_EQUAL, rhs=0.0, name='redpos[{}]'.format(perstr)) self._redBL[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.LESS_EQUAL, rhs=self._bl[perstr] - q, name='redBL[{}]'.format(perstr)) self._red0[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.LESS_EQUAL, rhs=self._z[perstr] * M, name='red0[{}]'.format(perstr)) # add DR compensation to objective drcomp_.append( (lmps.loc[period.tz_convert('US/Pacific')] * self._red[perstr])) # ... otherwise this is pretty straightforward else: self._blcon[perstr] = self._model.addConstr( lhs=self._bl[perstr], sense=GRB.EQUAL, rhs=alpha * q + (1 - alpha) * self._bl[perstr_pre], name='blcon[{}]'.format(perstr)) # update and keep track of last bl variable perstr_pre = perstr drcomp = pd.Series(drcomp_, index=self._dr_periods) self._model.update() return drcomp def DR_comp_blfix(self, LMP, bl_values, **kwargs): """ Return compensation for DR, i.e. reductions w.r.t. baseline. Here LMP is a pandas Series (indexed by a tz-aware pandas Datetimeindex containing all of the object's indices) and bl_values is a pandas Series, whose index is a DatetimeIndex, each entry of which represents a possible DR period, and whose values are the baseline values for those periods (assumed fixed). This is used for solving the baseline-taking equilibrium problem. Note that LMP may also be LMP-G, i.e. the LMP minus the generation component of the tariff. """ self._removeOld() self._blvals = bl_values[ bl_values.index.isin(self._index)].tz_convert('US/Pacific') locidx = self._index.tz_convert('US/Pacific') self._grouped = self._blvals.index.groupby(self._blvals.index.date) # define dictionaries to store variables in self._red, self._z = {}, {} self._redpos, self._redBL, self._red0 = {}, {}, {} # create variables for different days and periods within each day for day, periods in self._grouped.items(): perstrs = [per.strftime(psform) for per in periods] for period, perstr in zip(periods, perstrs): self._red[perstr] = self._model.addVar( vtype=GRB.CONTINUOUS, name='red[{}]'.format(perstr)) self._z[perstr] = self._model.addVar( vtype=GRB.BINARY, name='z[{}]'.format(perstr)) self._model.update() # must be done before defining constaints # determine "bigM" value from the bounds on the control variables M = np.sum(np.asarray(self._dynsys._opts['nrg_coeffs']) * (self._dynsys._opts['umax'] - self._dynsys._opts['umin']), axis=1).max() # if u is not bounded the the above results in an NaN value. We # need to deal with this in a better way than the following: if np.isnan(M): M = 1e9 # perform some preparations for the constraints self._drcomp = 0.0 nrgcons = self._dynsys.get_consumption()['energy'] DR_rewards = get_DR_rewards(LMP, isLMPmG=kwargs.get('isLMPmG'), tariff=kwargs.get('tariff')) # Pick out relevant dates and congvert to $/kWh DR_rewards = DR_rewards.tz_convert('US/Pacific').loc[locidx] / 1000 holidays = USFederalHolidayCalendar().holidays( start=locidx.min(), end=locidx.max()) isBusiness = (locidx.dayofweek < 5) & (~locidx.isin(holidays)) isBusiness = pd.Series(isBusiness, index=locidx) # formulate constaints and add terms to objective for i, day in enumerate(self._grouped): periods = self._grouped[day] perstrs = [per.strftime(psform) for per in periods] for period, perstr in zip(periods, perstrs): # add constraints on baseline reduction self._redpos[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.GREATER_EQUAL, rhs=0.0, name='redpos[{}]'.format(perstr)) self._redBL[perstr] = self._model.addConstr( lhs=(self._red[perstr] + nrgcons.loc[period] - (1-self._z[perstr]) * M), sense=GRB.LESS_EQUAL, rhs=self._blvals.loc[period], name='redBL[{}]'.format(perstr)) self._red0[perstr] = self._model.addConstr( lhs=self._red[perstr], sense=GRB.LESS_EQUAL, rhs=self._z[perstr] * M, name='red0[{}]'.format( perstr)) # add DR compensation to objective self._drcomp += DR_rewards.loc[period] * self._red[perstr] self._model.update() return self._drcomp def compute_baseline(self, bl_periods, red_times=None, BL='CAISO', **kwargs): """ Compute the CAISO baseline for all elements of the pandas Datetimeindex bl_periods. If red_times is a Datetimeindex, regard the associated days as "event days" (in addition to weekend days and holidays). """ if BL == 'CAISO': return self._BL_CAISO(bl_periods, red_times=red_times) elif BL == 'expMA': return self._BL_expMA(bl_periods, red_times=red_times, **kwargs) else: raise NotImplementedError( 'Baseline type "{}" not known!'.format(BL)) def _BL_CAISO(self, bl_periods, red_times=None): """ Compute the CAISO baseline for all elements of the pandas Datetimeindex bl_periods. If red_times is a Datetimeindex, regard the associated days as "event days" (in addition to weekend days and holidays). """ locidx = self._index.tz_convert('US/Pacific') cons = self._dynsys.get_consumption()['energy'].tz_convert( 'US/Pacific') holidays = USFederalHolidayCalendar().holidays( start=locidx.min(), end=locidx.max()) isBusiness = (locidx.dayofweek < 5) & (~locidx.isin(holidays)) isBusiness = pd.Series(isBusiness, index=locidx) if red_times is not None: isEventDay = locidx.normalize().isin(red_times.tz_convert( 'US/Pacific').normalize()) blidx, blvals = bl_periods.tz_convert('US/Pacific'), [] for period in blidx: per_select = ((locidx < period) & (locidx.hour == period.hour) & (locidx.minute == period.minute)) if isBusiness.loc[period]: nmax = 10 per_select = per_select & isBusiness.values else: nmax = 4 per_select = per_select & (~isBusiness.values) if red_times is not None: per_select = per_select & (~isEventDay) similars = locidx[per_select].sort_values(ascending=False)[:nmax] blvals.append(np.sum([c.getValue() for c in cons.loc[similars]]) / float(len(similars))) return pd.Series(blvals, index=blidx.tz_convert('GMT')) def _BL_expMA(self, bl_periods, red_times=None, alpha_b=0.14, alpha_nb=0.32): """ Compute the expMA baseline for all elements of the pandas Datetimeindex bl_periods using the smoothing parameter alpha. If red_times is a Datetimeindex, regard the associated days as "event days" (in addition to weekend days and holidays). """ locidx = self._index.tz_convert('US/Pacific') cons = self._dynsys.get_consumption()['energy'].tz_convert( 'US/Pacific') cons = pd.Series([c.getValue() for c in cons], index=cons.index) holidays = USFederalHolidayCalendar().holidays( start=locidx.min(), end=locidx.max()) isBusiness = (locidx.dayofweek < 5) & (~locidx.isin(holidays)) isBusiness = pd.Series(isBusiness, index=locidx) bls = [] for con, alpha in zip([cons[isBusiness], cons[~isBusiness]], [alpha_b, alpha_nb]): # determine intitial values for the BL from non-DR data if red_times is not None: nDRc = con[~con.index.isin(red_times)] else: nDRc = con cmeans = nDRc.groupby(nDRc.index.hour).mean() # compute BL for each hour separately con_hrly = {hour: con[con.index.hour == hour] for hour in range(24)} bl_hrly = [] for hour, conhr in con_hrly.items(): blvals = [cmeans[hour]] if red_times is not None: for period, c in conhr.items(): if period in red_times: blvals.append(blvals[-1]) else: blvals.append(alpha*c + (1-alpha)*blvals[-1]) else: for period, c in conhr.items(): blvals.append(alpha*c + (1-alpha)*blvals[-1]) bl_hrly.append(pd.Series(blvals[1:], index=conhr.index)) bls.append(pd.concat(bl_hrly).tz_convert('GMT')) return pd.concat(bls).loc[bl_periods] def optimize(self, tariff, LMP=None, dr_periods=None, BL='CAISO', isRT=False, isPDP=False, carbon=False, **kwargs): """ Solve the participant's optimization problem. Pass in additional Lin/Quad Expr of other objective terms with 'add_obj_term' kwarg """ if isRT and (dr_periods is not None): raise Exception('Cannot combine DR with RTP.') if isPDP and (dr_periods is not None): raise Exception('Cannot combine DR with PDP.') # extract additonal objective term if given if 'add_obj_term' in kwargs: add_obj_term = kwargs['add_obj_term'] else: add_obj_term = 0 # energy charges are always included (demand charges # are set to zero if tariff has none and DR_compensation is # set to zero if there are no DR events ...) # if (LMP is None) or (dr_periods is None): # #print drc # drc = 0.0 # else: # #print self.DR_compensation(LMP, dr_periods, BL=BL, # # tariff=tariff, **kwargs) # drc=quicksum(self.DR_compensation(LMP, dr_periods, BL=BL, # tariff=tariff, **kwargs).values.tolist()) self._model.setObjective( self._dynsys.additional_cost_term(vals=False) + quicksum(self.energy_charges( tariff, isRT=isRT, LMP=LMP, isPDP=isPDP, carbon=carbon).values) + quicksum(self.demand_charges(tariff, isPDP=False).values) - quicksum(self.DR_compensation(LMP, dr_periods, BL=BL, tariff=tariff, **kwargs).values) + add_obj_term) self._model.optimize() def optimize_blfixed(self, tariff, LMP, bl_values, carbon=False, **kwargs): """ Solve the participant's optimziation problem in case the baseline values are fixed. """ # No option for RTPs. No biggie, since RTP and DR are alternatives. # extract additonal objective term if given if 'add_obj_term' in kwargs: add_obj_term = kwargs['add_obj_term'] else: add_obj_term = 0 self._model.setObjective( quicksum(self.energy_charges(tariff, LMP=LMP, carbon=carbon).values) + self._dynsys.additional_cost_term(vals=False)) self._model.update() # for some tariffs we also have demand charges if tariff in dem_charges: self._model.setObjective( self._model.getObjective() + quicksum(self.demand_charges(tariff).values)) else: if hasattr(self, '_maxcon'): for maxcon in self._maxcon.values(): self._model.remove(maxcon) del self._maxcon if hasattr(self, '_maxconbnd'): for maxconbnd in self._maxconbnd.values(): self._model.remove(maxconbnd) del self._maxconbnd self._model.update() self._nonDRobj = self._model.getObjective() + add_obj_term self._model.setObjective( self._nonDRobj - self.DR_comp_blfix( LMP, bl_values, tariff=tariff, **kwargs)) self._model.optimize() def generation_cost(self, LMP, carbon=False): """ Return the generation cost of the partipant's consumption (= price of consuption according to the LMPs) as a gurobipy LinExpr. """ lmps = LMP.loc[self._index] / 1000 # select and convert price to $/kWh if carbon: lmps += pd.Series(carbon_costs).loc[self._index.tz_convert( 'US/Pacific').year].values / 1000.0 cons = self._dynsys.get_consumption()['energy'] return quicksum([lmp * con for lmp, con in zip(lmps.values, cons.values)]) def get_results(self): """ Return results of optimziation problem. """ columns = {} xopt, uopt = self._dynsys.get_optvals() for i in range(xopt.shape[1]): columns['x{}'.format(i+1)] = xopt[:-1, i] for i in range(uopt.shape[1]): columns['u{}'.format(i+1)] = uopt[:, i] cons = self._dynsys.get_consumption() columns['nrg_cons'] = np.array([e.getValue() for e in cons['energy']]) columns['pwr_cons'] = np.array([e.getValue() for e in cons['power']]) dfs = [pd.DataFrame(columns, index=self._index)] if hasattr(self, '_z'): perstrs, vals = [], [] for perstr, z in self._z.items(): perstrs.append(perstr) vals.append(bool(z.X)) dtidx = pd.to_datetime(perstrs, format=psform).tz_localize( 'US/Pacific').tz_convert('GMT') dfs.append(pd.DataFrame({'z': vals}, index=dtidx)) if hasattr(self, '_red'): perstrs, vals = [], [] for perstr, red in self._red.items(): perstrs.append(perstr) vals.append(red.X) dtidx = pd.to_datetime(perstrs, format=psform).tz_localize( 'US/Pacific').tz_convert('GMT') dfs.append(pd.DataFrame({'red': vals}, index=dtidx)) if hasattr(self, '_bl'): perstrs, vals = [], [] for perstr, bl in self._bl.items(): perstrs.append(perstr) vals.append(bl.X) dtidx = pd.to_datetime(perstrs, format=psform).tz_localize( 'US/Pacific').tz_convert('GMT') dfs.append(pd.DataFrame({'BL': vals}, index=dtidx)) return pd.concat(dfs, axis=1) def _removeOld(self): """ Helper function removing all DR-related variables from the underlying gurobipy optimization model. """ if hasattr(self, '_zday'): for zday in self._zday.values(): self._model.remove(zday) del self._zday if hasattr(self, '_red'): for red in self._red.values(): self._model.remove(red) del self._red if hasattr(self, '_z'): for z in self._z.values(): self._model.remove(z) del self._z if hasattr(self, '_bl'): for bl in self._bl.values(): self._model.remove(bl) del self._bl if hasattr(self, '_zdaysum'): for zdaysum in self._zdaysum.values(): self._model.remove(zdaysum) del self._zdaysum if hasattr(self, '_zdaymax'): for zdaymax in self._zdaymax.values(): self._model.remove(zdaymax) del self._zdaymax if hasattr(self, '_blcon'): for blcon in self._blcon.values(): self._model.remove(blcon) del self._blcon if hasattr(self, '_redpos'): for redpos in self._redpos.values(): self._model.remove(redpos) del self._redpos if hasattr(self, '_redBL'): for redBL in self._redBL.values(): self._model.remove(redBL) del self._redBL if hasattr(self, '_red0'): for red0 in self._red0.values(): self._model.remove(red0) del self._red0 self._model.update() def compute_BLtaking_eq(blmodel, tariff, LMP, dr_periods, BL='CAISO', blinit='noDR', eps=1.0, maxiter=20, carbon=False, **kwargs): """ Function used ot compute Baseline-taking equilibrium. """ if 'logger' in kwargs: logger = kwargs['logger'] if 'isLMPmG' in kwargs: logstr = BL + ' (LMP-G)' else: logstr = BL logger.log(logging.INFO, 'Computing BL-taking eq. for ' '{} BL.'.format(logstr)) dfs, blvals, objs, gencosts, residuals = [], [], [], [], [] if blinit == 'gamed': blmodel.optimize(tariff, LMP=LMP, dr_periods=dr_periods, BL=BL, carbon=carbon, **kwargs) elif blinit == 'noDR': blmodel.optimize(tariff, LMP=LMP, carbon=carbon, **kwargs) else: errmsg = 'Unknown BL initialization parameter {}.'.format(blinit) logger.log(logging.ERROR, errmsg) raise NotImplementedError(errmsg) # retrieve data from the solution for initialization dfs.append(blmodel.get_results()) if 'red' in dfs[-1]: blvals.append(blmodel.compute_baseline( dr_periods, BL=BL, red_times=dfs[-1][dfs[-1]['red'] > 0].index)) else: blvals.append(blmodel.compute_baseline(dr_periods, BL=BL)) objs.append(blmodel._model.getObjective().getValue()) gencosts.append(blmodel.generation_cost(LMP).getValue()) residuals.append(np.NaN) # solve the bl-taking problem for the first time using the bl values # from the previous solution of the problem blmodel.optimize_blfixed(tariff, LMP=LMP, bl_values=blvals[-1], carbon=carbon, **kwargs) dfs.append(blmodel.get_results()) blvals.append(blmodel.compute_baseline( dr_periods, BL=BL, red_times=dfs[-1][dfs[-1]['red'] > 0].index)) logger.info(f"") # todo: what are the units/magnitude of the residuals? I increased the MIPGap (2020-02-05), but that seems to # have resulted in convergence failure. If the mipgap is too big relative to the convergence tolerance, # that seems normal. I need to reason out the implications of a 1e-3 mipgap for the baseline residuals that # implies objs.append(blmodel._model.getObjective().getValue()) gencosts.append(blmodel.generation_cost(LMP).getValue()) # blvalues are in kWh, on the order of 200kWh on average, max 660 for a building # costs are on the order of 0.1 $/kWh. # make the bl convergence in terms of decimal fraction, like the mipgap # require the max deviation over periods to be within x percent of the mean. should be a couple kWh # residuals.append(2*np.max(blvals[1] - blvals[0])/np.mean(blvals[1] + blvals[0])) residuals.append(np.max(blvals[1] - blvals[0])) # had a div by 0 for above n_iter = 0 while (residuals[-1] > eps) and (n_iter < maxiter): if 'logger' in kwargs: logger.log(logging.INFO, 'Residual: {:.2f}, '.format(residuals[-1]) + 'Continuing fixed point iteration.') blmodel.optimize_blfixed( tariff, LMP=LMP, bl_values=blvals[-1], carbon=carbon, **kwargs) dfs.append(blmodel.get_results()) blvals.append(blmodel.compute_baseline( dr_periods, BL=BL, red_times=dfs[-1][dfs[-1]['red'] > 0].index)) objs.append(blmodel._model.getObjective().getValue()) gencosts.append(blmodel.generation_cost(LMP).getValue()) residuals.append(np.linalg.norm(blvals[-2] - blvals[-1])) n_iter += 1 if 'logger' in kwargs: if residuals[-1] <= eps: logger.log(logging.INFO, 'Fixed-point iteration successful. ' + 'BL-taking eq. found.') else: logger.log(logging.WARNING, 'Fixed-point iteration failed.' + 'No BL-taking eq. found. ') return dfs[-1]
[ "pandas.Series", "datetime.datetime", "numpy.unique", "pandas.tseries.holiday.USFederalHolidayCalendar", "pandas.DatetimeIndex", "numpy.size", "numpy.linalg.norm", "numpy.asarray", "numpy.max", "gurobipy.quicksum", "gurobipy.LinExpr", "numpy.isnan", "gurobipy.Model", "pandas.DataFrame", "pandas.concat", "pandas.to_datetime" ]
[((907, 914), 'gurobipy.Model', 'Model', ([], {}), '()\n', (912, 914), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((19530, 19541), 'numpy.isnan', 'np.isnan', (['M'], {}), '(M)\n', (19538, 19541), True, 'import numpy as np\n'), ((19974, 20009), 'pandas.Series', 'pd.Series', (['isBusiness'], {'index': 'locidx'}), '(isBusiness, index=locidx)\n', (19983, 20009), True, 'import pandas as pd\n'), ((25336, 25378), 'pandas.Series', 'pd.Series', (['drcomp_'], {'index': 'self._dr_periods'}), '(drcomp_, index=self._dr_periods)\n', (25345, 25378), True, 'import pandas as pd\n'), ((28369, 28380), 'numpy.isnan', 'np.isnan', (['M'], {}), '(M)\n', (28377, 28380), True, 'import numpy as np\n'), ((28811, 28846), 'pandas.Series', 'pd.Series', (['isBusiness'], {'index': 'locidx'}), '(isBusiness, index=locidx)\n', (28820, 28846), True, 'import pandas as pd\n'), ((33666, 33708), 'pandas.Series', 'pd.Series', (['drcomp_'], {'index': 'self._dr_periods'}), '(drcomp_, index=self._dr_periods)\n', (33675, 33708), True, 'import pandas as pd\n'), ((35856, 35867), 'numpy.isnan', 'np.isnan', (['M'], {}), '(M)\n', (35864, 35867), True, 'import numpy as np\n'), ((36498, 36533), 'pandas.Series', 'pd.Series', (['isBusiness'], {'index': 'locidx'}), '(isBusiness, index=locidx)\n', (36507, 36533), True, 'import pandas as pd\n'), ((39170, 39205), 'pandas.Series', 'pd.Series', (['isBusiness'], {'index': 'locidx'}), '(isBusiness, index=locidx)\n', (39179, 39205), True, 'import pandas as pd\n'), ((41061, 41096), 'pandas.Series', 'pd.Series', (['isBusiness'], {'index': 'locidx'}), '(isBusiness, index=locidx)\n', (41070, 41096), True, 'import pandas as pd\n'), ((48127, 48149), 'pandas.concat', 'pd.concat', (['dfs'], {'axis': '(1)'}), '(dfs, axis=1)\n', (48136, 48149), True, 'import pandas as pd\n'), ((52639, 52668), 'numpy.max', 'np.max', (['(blvals[1] - blvals[0])'], {}), '(blvals[1] - blvals[0])\n', (52645, 52668), True, 'import numpy as np\n'), ((2370, 2401), 'pandas.Series', 'pd.Series', (['echrg_'], {'index': 'locidx'}), '(echrg_, index=locidx)\n', (2379, 2401), True, 'import pandas as pd\n'), ((2895, 2924), 'pandas.Series', 'pd.Series', (['echrg_'], {'index': 'indx'}), '(echrg_, index=indx)\n', (2904, 2924), True, 'import pandas as pd\n'), ((5309, 5353), 'numpy.unique', 'np.unique', (['locidx[locidx.year == year].month'], {}), '(locidx[locidx.year == year].month)\n', (5318, 5353), True, 'import numpy as np\n'), ((16453, 16485), 'pandas.Series', 'pd.Series', (['[0.0]'], {'index': "['None']"}), "([0.0], index=['None'])\n", (16462, 16485), True, 'import pandas as pd\n'), ((46945, 46985), 'pandas.DataFrame', 'pd.DataFrame', (['columns'], {'index': 'self._index'}), '(columns, index=self._index)\n', (46957, 46985), True, 'import pandas as pd\n'), ((53414, 53453), 'numpy.linalg.norm', 'np.linalg.norm', (['(blvals[-2] - blvals[-1])'], {}), '(blvals[-2] - blvals[-1])\n', (53428, 53453), True, 'import numpy as np\n'), ((5385, 5407), 'numpy.unique', 'np.unique', (['locidx.year'], {}), '(locidx.year)\n', (5394, 5407), True, 'import numpy as np\n'), ((7950, 7981), 'pandas.Series', 'pd.Series', (['dcharges'], {'index': 'indx'}), '(dcharges, index=indx)\n', (7959, 7981), True, 'import pandas as pd\n'), ((15600, 15631), 'pandas.Series', 'pd.Series', (['dcharges'], {'index': 'indx'}), '(dcharges, index=indx)\n', (15609, 15631), True, 'import pandas as pd\n'), ((19795, 19821), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (19819, 19821), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((28632, 28658), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (28656, 28658), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((36319, 36345), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (36343, 36345), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((38991, 39017), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (39015, 39017), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((40882, 40908), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (40906, 40908), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((42361, 42375), 'pandas.concat', 'pd.concat', (['bls'], {}), '(bls)\n', (42370, 42375), True, 'import pandas as pd\n'), ((47321, 47359), 'pandas.DataFrame', 'pd.DataFrame', (["{'z': vals}"], {'index': 'dtidx'}), "({'z': vals}, index=dtidx)\n", (47333, 47359), True, 'import pandas as pd\n'), ((47697, 47737), 'pandas.DataFrame', 'pd.DataFrame', (["{'red': vals}"], {'index': 'dtidx'}), "({'red': vals}, index=dtidx)\n", (47709, 47737), True, 'import pandas as pd\n'), ((48071, 48110), 'pandas.DataFrame', 'pd.DataFrame', (["{'BL': vals}"], {'index': 'dtidx'}), "({'BL': vals}, index=dtidx)\n", (48083, 48110), True, 'import pandas as pd\n'), ((15708, 15720), 'gurobipy.LinExpr', 'LinExpr', (['(0.0)'], {}), '(0.0)\n', (15715, 15720), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((42243, 42283), 'pandas.Series', 'pd.Series', (['blvals[1:]'], {'index': 'conhr.index'}), '(blvals[1:], index=conhr.index)\n', (42252, 42283), True, 'import pandas as pd\n'), ((5546, 5570), 'datetime.datetime', 'datetime', (['year', 'month', '(1)'], {}), '(year, month, 1)\n', (5554, 5570), False, 'from datetime import datetime\n'), ((8234, 8260), 'pandas.tseries.holiday.USFederalHolidayCalendar', 'USFederalHolidayCalendar', ([], {}), '()\n', (8258, 8260), False, 'from pandas.tseries.holiday import USFederalHolidayCalendar\n'), ((19220, 19264), 'numpy.asarray', 'np.asarray', (["self._dynsys._opts['nrg_coeffs']"], {}), "(self._dynsys._opts['nrg_coeffs'])\n", (19230, 19264), True, 'import numpy as np\n'), ((20439, 20480), 'gurobipy.quicksum', 'quicksum', (['[self._z[ps] for ps in perstrs]'], {}), '([self._z[ps] for ps in perstrs])\n', (20447, 20480), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((22321, 22345), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['sim_DR'], {}), '(sim_DR)\n', (22337, 22345), True, 'import pandas as pd\n'), ((22426, 22455), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['sim_DR_mult'], {}), '(sim_DR_mult)\n', (22442, 22455), True, 'import pandas as pd\n'), ((22534, 22561), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['sim_nonDR'], {}), '(sim_nonDR)\n', (22550, 22561), True, 'import pandas as pd\n'), ((28059, 28103), 'numpy.asarray', 'np.asarray', (["self._dynsys._opts['nrg_coeffs']"], {}), "(self._dynsys._opts['nrg_coeffs'])\n", (28069, 28103), True, 'import numpy as np\n'), ((29276, 29317), 'gurobipy.quicksum', 'quicksum', (['[self._z[ps] for ps in perstrs]'], {}), '([self._z[ps] for ps in perstrs])\n', (29284, 29317), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((35545, 35589), 'numpy.asarray', 'np.asarray', (["self._dynsys._opts['nrg_coeffs']"], {}), "(self._dynsys._opts['nrg_coeffs'])\n", (35555, 35589), True, 'import numpy as np\n'), ((42308, 42326), 'pandas.concat', 'pd.concat', (['bl_hrly'], {}), '(bl_hrly)\n', (42317, 42326), True, 'import pandas as pd\n'), ((8349, 8376), 'pandas.DatetimeIndex', 'pd.DatetimeIndex', (['idx_.date'], {}), '(idx_.date)\n', (8365, 8376), True, 'import pandas as pd\n'), ((15770, 15786), 'numpy.size', 'np.size', (['indx', '(0)'], {}), '(indx, 0)\n', (15777, 15786), True, 'import numpy as np\n'), ((24190, 24222), 'gurobipy.quicksum', 'quicksum', (['[(1 - z) for z in zKc]'], {}), '([(1 - z) for z in zKc])\n', (24198, 24222), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((46102, 46125), 'pandas.Series', 'pd.Series', (['carbon_costs'], {}), '(carbon_costs)\n', (46111, 46125), True, 'import pandas as pd\n'), ((47198, 47236), 'pandas.to_datetime', 'pd.to_datetime', (['perstrs'], {'format': 'psform'}), '(perstrs, format=psform)\n', (47212, 47236), True, 'import pandas as pd\n'), ((47574, 47612), 'pandas.to_datetime', 'pd.to_datetime', (['perstrs'], {'format': 'psform'}), '(perstrs, format=psform)\n', (47588, 47612), True, 'import pandas as pd\n'), ((47948, 47986), 'pandas.to_datetime', 'pd.to_datetime', (['perstrs'], {'format': 'psform'}), '(perstrs, format=psform)\n', (47962, 47986), True, 'import pandas as pd\n'), ((24082, 24099), 'gurobipy.quicksum', 'quicksum', (['(qD + qK)'], {}), '(qD + qK)\n', (24090, 24099), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n'), ((24144, 24156), 'gurobipy.quicksum', 'quicksum', (['zK'], {}), '(zK)\n', (24152, 24156), False, 'from gurobipy import GRB, Model, quicksum, LinExpr\n')]
# Front matter ############## import os from os import fdopen, remove from tempfile import mkstemp from shutil import move import glob import re import time import pandas as pd import numpy as np from scipy import constants from scipy.optimize import curve_fit, fsolve from scipy.interpolate import interp1d import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from matplotlib import gridspec from scipy.interpolate import spline import math import seaborn as sns matplotlib.rc('xtick', labelsize=16) matplotlib.rc('ytick', labelsize=16) rc = {'lines.linewidth': 1, 'axes.labelsize': 20, 'axes.titlesize': 20, 'legend.fontsize': 26, 'xtick.direction': u'in', 'ytick.direction': u'in'} sns.set_style('ticks', rc=rc) start_time = time.time() # Input scaling parameter results ########################################## xi_filename = 'Results/scalingparameters.csv' xi_df = pd.read_csv(xi_filename) # Rename columns to avoid confusion xi_df = xi_df.rename(columns={'Vi':'Vj', 'dVi':'dVj', 'V':'Vk','dV':'dVk', 'V/Vi':'Vk/Vj','xi':'xi(Vk/Vj)','dxi':'dxi(Vk/Vj)'}) # Transform scaling parameters to each reference volume ####################################################### folder_list = xi_df.drop_duplicates(subset='Ref Folder')['Ref Folder'].values for ref_folder in folder_list: # for ref_folder in ['2009Oct_30GPa']: print('Rescaling to '+ref_folder) # Reference volume to scale everything to Vi = xi_df[xi_df['Ref Folder']==ref_folder].iloc[-1]['Vj'] xi_rescaled_df = xi_df[['Vj','Vk','xi(Vk/Vj)','dxi(Vk/Vj)']].copy() xi_rescaled_df['Vi'] = Vi*np.ones(len(xi_rescaled_df)) # rescaled xi(Vk/Vi) = xi(Vk/Vj) * complementary xi(Vj/Vi) # Complementary xi needed to calculate rescaled xi: xi_rescaled_df['xi(Vj/Vi)'] = [xi_rescaled_df[(xi_rescaled_df['Vj']==Vi) & (xi_rescaled_df['Vk']==Vj)].iloc[-1]['xi(Vk/Vj)'] for Vj in xi_rescaled_df['Vj']] xi_rescaled_df['dxi(Vj/Vi)'] = [xi_rescaled_df[(xi_rescaled_df['Vj']==Vi) & (xi_rescaled_df['Vk']==Vj)].iloc[-1]['dxi(Vk/Vj)'] for Vj in xi_rescaled_df['Vj']] xi_rescaled_df['Vk/Vi'] = xi_rescaled_df['Vk']/xi_rescaled_df['Vi'] # Calculate rescaled xi xi_rescaled_df['xi(Vk/Vi)'] = xi_rescaled_df['xi(Vk/Vj)']*xi_rescaled_df['xi(Vj/Vi)'] # Calculate uncertainty on rescaled xi # If c = a*b, dc = sqrt((b*da)^2 + (a*db)^2) xi_rescaled_df['dxi(Vk/Vi)'] = np.sqrt( (xi_rescaled_df['xi(Vj/Vi)']*xi_rescaled_df['dxi(Vk/Vj)'])**2 + (xi_rescaled_df['xi(Vk/Vj)']*xi_rescaled_df['dxi(Vj/Vi)'])**2) # Eliminate data points where Vi = Vk xi_rescaled_df = xi_rescaled_df[xi_rescaled_df['Vk'] != Vi] xi_rescaled_df = xi_rescaled_df.round(decimals=4) xi_rescaled_df.to_csv(ref_folder+'/rescaledparameters.csv',index=False) # Plot scaling parameters fig, (ax0) = plt.subplots(nrows = 1, ncols=1, figsize=(6,4.5)) ax0.errorbar(xi_rescaled_df['Vk/Vi'],xi_rescaled_df['xi(Vk/Vi)'], yerr=xi_rescaled_df['dxi(Vk/Vi)'], marker = 'o', color = 'gray', mfc='lightgray', ms=6, markeredgewidth=1, ls='none',elinewidth=1) ax0.set_xlabel(r'$V/V_i$',fontsize = 16) ax0.set_ylabel(r'$\xi$',fontsize = 16) ax0.tick_params(direction='in',right='on',top='on') fig.savefig(ref_folder+'/scalingparam.pdf', format='pdf', bbox_inches='tight') plt.close()
[ "numpy.sqrt", "pandas.read_csv", "seaborn.set_style", "matplotlib.pyplot.close", "matplotlib.rc", "time.time", "matplotlib.pyplot.subplots" ]
[((509, 545), 'matplotlib.rc', 'matplotlib.rc', (['"""xtick"""'], {'labelsize': '(16)'}), "('xtick', labelsize=16)\n", (522, 545), False, 'import matplotlib\n'), ((547, 583), 'matplotlib.rc', 'matplotlib.rc', (['"""ytick"""'], {'labelsize': '(16)'}), "('ytick', labelsize=16)\n", (560, 583), False, 'import matplotlib\n'), ((765, 794), 'seaborn.set_style', 'sns.set_style', (['"""ticks"""'], {'rc': 'rc'}), "('ticks', rc=rc)\n", (778, 794), True, 'import seaborn as sns\n'), ((809, 820), 'time.time', 'time.time', ([], {}), '()\n', (818, 820), False, 'import time\n'), ((955, 979), 'pandas.read_csv', 'pd.read_csv', (['xi_filename'], {}), '(xi_filename)\n', (966, 979), True, 'import pandas as pd\n'), ((2411, 2557), 'numpy.sqrt', 'np.sqrt', (["((xi_rescaled_df['xi(Vj/Vi)'] * xi_rescaled_df['dxi(Vk/Vj)']) ** 2 + (\n xi_rescaled_df['xi(Vk/Vj)'] * xi_rescaled_df['dxi(Vj/Vi)']) ** 2)"], {}), "((xi_rescaled_df['xi(Vj/Vi)'] * xi_rescaled_df['dxi(Vk/Vj)']) ** 2 +\n (xi_rescaled_df['xi(Vk/Vj)'] * xi_rescaled_df['dxi(Vj/Vi)']) ** 2)\n", (2418, 2557), True, 'import numpy as np\n'), ((2820, 2868), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(1)', 'figsize': '(6, 4.5)'}), '(nrows=1, ncols=1, figsize=(6, 4.5))\n', (2832, 2868), True, 'import matplotlib.pyplot as plt\n'), ((3294, 3305), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3303, 3305), True, 'import matplotlib.pyplot as plt\n')]
import cv2 import numpy as np import picamera import time def identifySq(pt, w, h): tlx = 80 tly = 210 ppx = 94 ppy = 82 sqx = (pt[0]-(tlx-ppx/2))/ppx sqy = (pt[1]-(tly-ppy/2))/ppy # print ("ID",pt, w, h, sqx, sqy) if sqx < 0 or sqx >= 4 or sqy < 0 or sqy >= 4: return 0, False return sqy*4 + sqx, True if __name__ == '__main__' : # Acquire source image. cam = picamera.PiCamera() cam.capture('newimg.jpg') # Read source image. im_src = cv2.imread('newimg.jpg') # Resize image newWidth = 640.0 rat1 = newWidth / im_src.shape[1] dim1 = (int(newWidth), int(im_src.shape[0] * rat1)) im_small = cv2.resize(im_src, dim1, interpolation = cv2.INTER_AREA) # Four corners of the book in source image pts_src = np.array([[57, 368], [98, 22], [585, 28], [626, 374]], dtype=float) # Read destination image. im_dst = cv2.imread('destimg2.jpg') # Four corners of the book in destination image. pts_dst = np.array([[0, 0], [511, 0], [511, 639], [0, 639]], dtype=float) # Calculate Homography h, status = cv2.findHomography(pts_src, pts_dst) # Warp source image to destination based on homography im_out = cv2.warpPerspective(im_small, h, (im_dst.shape[1], im_dst.shape[0])) im_grey = cv2.cvtColor(im_out, cv2.COLOR_BGR2GRAY) cv2.imwrite('img23.png', im_out) # Match to template tiles tileFiles = ['tile000002.png', 'tile000004.png', 'tile000008.png', 'tile000016.png', 'tile000032.png', 'tile000064.png', 'tile000128.png', 'tile000256.png', 'tile000512.png', 'tile001024.png'] lineThicknessIdx = 1 tileVal = 2 boardCells = [0] * 16 for tileFile in tileFiles: tile = cv2.imread(tileFile, 0) w, h = tile.shape[::-1] # Apply template Matching method = cv2.TM_CCOEFF_NORMED res = cv2.matchTemplate(im_grey, tile, method) threshold = 0.8 loc = np.where(res >= threshold) for pt in zip(*loc[::-1]): sq, sqValid = identifySq(pt, w, h) if sqValid: if boardCells[sq] == 0: boardCells[sq] = tileVal cv2.putText(im_out, str(tileVal), (pt[0],pt[1]+h/3),cv2.FONT_HERSHEY_SCRIPT_COMPLEX, 1, 0, 1) #print(sq, tileVal) # print(pt, tileVal, w, h) #cv2.rectangle(im_out, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), lineThicknessIdx) lineThicknessIdx += 1 # print("Found", len(zip(*loc[::-1])),"tiles of", tileVal) tileVal *= 2 for cellIdx in range(len(boardCells)): print(cellIdx, boardCells[cellIdx]) cv2.imshow("Matched One", im_out) cv2.waitKey(1000) # time.sleep(5)
[ "cv2.imwrite", "cv2.findHomography", "numpy.where", "picamera.PiCamera", "cv2.imshow", "numpy.array", "cv2.warpPerspective", "cv2.waitKey", "cv2.cvtColor", "cv2.resize", "cv2.matchTemplate", "cv2.imread" ]
[((417, 436), 'picamera.PiCamera', 'picamera.PiCamera', ([], {}), '()\n', (434, 436), False, 'import picamera\n'), ((506, 530), 'cv2.imread', 'cv2.imread', (['"""newimg.jpg"""'], {}), "('newimg.jpg')\n", (516, 530), False, 'import cv2\n'), ((682, 736), 'cv2.resize', 'cv2.resize', (['im_src', 'dim1'], {'interpolation': 'cv2.INTER_AREA'}), '(im_src, dim1, interpolation=cv2.INTER_AREA)\n', (692, 736), False, 'import cv2\n'), ((805, 872), 'numpy.array', 'np.array', (['[[57, 368], [98, 22], [585, 28], [626, 374]]'], {'dtype': 'float'}), '([[57, 368], [98, 22], [585, 28], [626, 374]], dtype=float)\n', (813, 872), True, 'import numpy as np\n'), ((917, 943), 'cv2.imread', 'cv2.imread', (['"""destimg2.jpg"""'], {}), "('destimg2.jpg')\n", (927, 943), False, 'import cv2\n'), ((1011, 1074), 'numpy.array', 'np.array', (['[[0, 0], [511, 0], [511, 639], [0, 639]]'], {'dtype': 'float'}), '([[0, 0], [511, 0], [511, 639], [0, 639]], dtype=float)\n', (1019, 1074), True, 'import numpy as np\n'), ((1119, 1155), 'cv2.findHomography', 'cv2.findHomography', (['pts_src', 'pts_dst'], {}), '(pts_src, pts_dst)\n', (1137, 1155), False, 'import cv2\n'), ((1229, 1297), 'cv2.warpPerspective', 'cv2.warpPerspective', (['im_small', 'h', '(im_dst.shape[1], im_dst.shape[0])'], {}), '(im_small, h, (im_dst.shape[1], im_dst.shape[0]))\n', (1248, 1297), False, 'import cv2\n'), ((1312, 1352), 'cv2.cvtColor', 'cv2.cvtColor', (['im_out', 'cv2.COLOR_BGR2GRAY'], {}), '(im_out, cv2.COLOR_BGR2GRAY)\n', (1324, 1352), False, 'import cv2\n'), ((1358, 1390), 'cv2.imwrite', 'cv2.imwrite', (['"""img23.png"""', 'im_out'], {}), "('img23.png', im_out)\n", (1369, 1390), False, 'import cv2\n'), ((2721, 2754), 'cv2.imshow', 'cv2.imshow', (['"""Matched One"""', 'im_out'], {}), "('Matched One', im_out)\n", (2731, 2754), False, 'import cv2\n'), ((2760, 2777), 'cv2.waitKey', 'cv2.waitKey', (['(1000)'], {}), '(1000)\n', (2771, 2777), False, 'import cv2\n'), ((1784, 1807), 'cv2.imread', 'cv2.imread', (['tileFile', '(0)'], {}), '(tileFile, 0)\n', (1794, 1807), False, 'import cv2\n'), ((1927, 1967), 'cv2.matchTemplate', 'cv2.matchTemplate', (['im_grey', 'tile', 'method'], {}), '(im_grey, tile, method)\n', (1944, 1967), False, 'import cv2\n'), ((2006, 2032), 'numpy.where', 'np.where', (['(res >= threshold)'], {}), '(res >= threshold)\n', (2014, 2032), True, 'import numpy as np\n')]
import numpy as np from mpi4py import MPI from tacs import TACS, elements, constitutive, functions from static_analysis_base_test import StaticTestCase ''' Create a two separate cantilevered plates connected by an RBE3 element. Apply a load at the RBE2 center node and test KSFailure, StructuralMass, and Compliance functions and sensitivities ----------- ----------- | |\ /| | | | \ / | | | Plate 1 |__\/__| Plate 2 | | | /\ | | | | / \ | | | |/ \| | ------------ ----------- ''' FUNC_REFS = np.array([1.2600980396870352, 51400.0, 3767896.1409673616, 2.912191091671254]) # Length of plate in x/y direction Lx = 10.0 Ly = 10.0 # Number of elements in x/y direction for each plate nx = 4 ny = 4 # applied force at center node applied_force = np.array([1e8, 0.0, 1.0e6, 0.0, 0.0, 1e8]) # KS function weight ksweight = 10.0 class ProblemTest(StaticTestCase.StaticTest): N_PROCS = 2 # this is how many MPI processes to use for this TestCase. def setup_assembler(self, comm, dtype): """ Setup mesh and tacs assembler for problem we will be testing. """ # Overwrite default check values if dtype == complex: self.rtol = 1e-5 self.atol = 1e-8 self.dh = 1e-50 else: self.rtol = 1e-1 self.atol = 1e-4 self.dh = 1e-5 # Create the stiffness object props = constitutive.MaterialProperties(rho=2570.0, E=70e9, nu=0.3, ys=350e6) stiff = constitutive.IsoShellConstitutive(props, t=0.1, tNum=0) # Set up the element transform function transform = elements.ShellNaturalTransform() shell = elements.Quad4Shell(transform, stiff) num_rbe_nodes = 0 # Allocate the TACSCreator object vars_per_node = shell.getVarsPerNode() creator = TACS.Creator(comm, vars_per_node) if comm.rank == 0: num_elems = nx * ny num_nodes = (nx + 1) * (ny + 1) # discretize (left) plate x = np.linspace(0, Lx, nx + 1, dtype) y = np.linspace(0, Ly, ny + 1, dtype) left_xyz = np.zeros([nx + 1, ny + 1, 3], dtype) left_xyz[:, :, 0], left_xyz[:, :, 1] = np.meshgrid(x, y, indexing='ij') left_node_ids = np.arange(num_nodes, dtype=np.intc).reshape(nx + 1, ny + 1) # Define right plate by copying left plate and shifting 2 m right_xyz = left_xyz.copy() right_xyz[:, :, 0] += 2.0 * Lx right_node_ids = left_node_ids + num_nodes # Double the node/element count num_nodes *= 2 num_elems *= 2 # Set connectivity for each plate element conn = [] for i in range(nx): for j in range(ny): conn.extend([left_node_ids[i, j], left_node_ids[i + 1, j], left_node_ids[i, j + 1], left_node_ids[i + 1, j + 1]]) conn.extend([right_node_ids[i, j], right_node_ids[i + 1, j], right_node_ids[i, j + 1], right_node_ids[i + 1, j + 1]]) # Append connectivity for rbe element center_node_id = num_nodes center_node_xyz = np.array([1.5 * Lx, 0.5 * Ly, 0.0], dtype=dtype) num_nodes += 1 # Add center node as indep rbe node rbe_conn = [center_node_id] dep_nodes = [] dummy_nodes = [] # Append all dependent nodes and a dummy node for each dep node added for j in range(ny + 1): # Add nodes on right edge of left plate as dep RBE nodes dep_nodes.append(left_node_ids[-1, j]) dummy_node_id = num_nodes dummy_nodes.append(dummy_node_id) # Add nodes on left edge of right plate as indep RBE nodes dep_nodes.append(right_node_ids[0, j]) dummy_node_id = num_nodes + 1 dummy_nodes.append(dummy_node_id) # Increment node count for new dummy nodes num_nodes += 2 rbe_conn.extend(dep_nodes) rbe_conn.extend(dummy_nodes) dummy_node_xyz = np.zeros([len(dep_nodes), 3], dtype=dtype) # Add rbe to global connectivity num_rbe_nodes = len(rbe_conn) conn.extend(rbe_conn) num_elems += 1 # Set element info for plates conn = np.array(conn, dtype=np.intc) ptr = np.arange(0, 4 * num_elems + 1, 4, dtype=np.intc) comp_ids = np.zeros(num_elems, dtype=np.intc) # Correct last entries for RBE ptr[-1] = ptr[-2] + num_rbe_nodes comp_ids[-1] = 1 creator.setGlobalConnectivity(num_nodes, ptr, conn, comp_ids) # Set up the boundary conditions (fixed at left hand edge) bcnodes = np.append(left_node_ids[0, :], right_node_ids[-1, :]) creator.setBoundaryConditions(bcnodes) # Set the node locations xyz = np.append(left_xyz.flatten(), right_xyz.flatten()) xyz = np.append(xyz.flatten(), center_node_xyz) xyz = np.append(xyz.flatten(), dummy_node_xyz) creator.setNodes(xyz.flatten()) # Set up rbe object num_rbe_nodes = comm.bcast(num_rbe_nodes, root=0) # Which dependent dofs are connected dep_dofs = np.array([1, 1, 1, 1, 1, 1], np.intc) # Set the artificial stiffness to be low to pass the sensitivity tests # This will affect the accuracy of the element behavior rbe = elements.RBE2(num_rbe_nodes, dep_dofs, C1=1e2, C2=1e-1) # Set the elements for each (only two) component element_list = [shell, rbe] creator.setElements(element_list) # Create the tacs assembler object assembler = creator.createTACS() return assembler def setup_tacs_vecs(self, assembler, force_vec, dv_pert_vec, ans_pert_vec, xpts_pert_vec): """ Setup user-defined vectors for analysis and fd/cs sensitivity verification """ local_num_nodes = assembler.getNumOwnedNodes() vars_per_node = assembler.getVarsPerNode() # The nodes have been distributed across processors now # Let's find which nodes this processor owns xpts0 = assembler.createNodeVec() assembler.getNodes(xpts0) xpts0_array = xpts0.getArray() # Split node vector into numpy arrays for easier parsing of vectors local_xyz = xpts0_array.reshape(local_num_nodes, 3) local_x, local_y, local_z = local_xyz[:, 0], local_xyz[:, 1], local_xyz[:, 2] # Create force vector f_array = force_vec.getArray().reshape(local_num_nodes, vars_per_node) # Apply distributed forces at tip of beam # Apply Qxx f_array[np.logical_and(local_x == 1.5 * Lx, local_y == 0.5 * Ly), :] = applied_force # Create temporary dv vec for doing fd/cs dv_pert_array = dv_pert_vec.getArray() dv_pert_array[:] = 1.0 # Create temporary state variable vec for doing fd/cs ans_pert_array = ans_pert_vec.getArray() # Define perturbation array that uniformly moves all nodes on right edge of left plate to the upward ans_pert_array = ans_pert_array.reshape(local_num_nodes, vars_per_node) ans_pert_array[local_x == Lx, 1] = 1.0 # Define perturbation array that uniformly moves all nodes on right edge of plate to the right xpts_pert_array = xpts_pert_vec.getArray() xpts_pert_array = xpts_pert_array.reshape(local_num_nodes, 3) # Define perturbation array that uniformly moves all nodes on right edge of left plate to the right xpts_pert_array[local_x == Lx, 0] = 1.0 return def setup_funcs(self, assembler): """ Create a list of functions to be tested and their reference values for the problem """ func_list = [functions.KSFailure(assembler, ksWeight=ksweight), functions.StructuralMass(assembler), functions.Compliance(assembler), functions.KSDisplacement(assembler, ksWeight=ksweight, direction=[1.0, 1.0, 1.0])] return func_list, FUNC_REFS
[ "tacs.functions.Compliance", "tacs.TACS.Creator", "tacs.constitutive.IsoShellConstitutive", "tacs.functions.KSFailure", "numpy.arange", "numpy.logical_and", "tacs.constitutive.MaterialProperties", "tacs.elements.RBE2", "numpy.append", "numpy.array", "numpy.linspace", "tacs.elements.ShellNaturalTransform", "numpy.zeros", "tacs.functions.StructuralMass", "tacs.functions.KSDisplacement", "numpy.meshgrid", "tacs.elements.Quad4Shell" ]
[((612, 690), 'numpy.array', 'np.array', (['[1.2600980396870352, 51400.0, 3767896.1409673616, 2.912191091671254]'], {}), '([1.2600980396870352, 51400.0, 3767896.1409673616, 2.912191091671254])\n', (620, 690), True, 'import numpy as np\n'), ((863, 925), 'numpy.array', 'np.array', (['[100000000.0, 0.0, 1000000.0, 0.0, 0.0, 100000000.0]'], {}), '([100000000.0, 0.0, 1000000.0, 0.0, 0.0, 100000000.0])\n', (871, 925), True, 'import numpy as np\n'), ((1516, 1605), 'tacs.constitutive.MaterialProperties', 'constitutive.MaterialProperties', ([], {'rho': '(2570.0)', 'E': '(70000000000.0)', 'nu': '(0.3)', 'ys': '(350000000.0)'}), '(rho=2570.0, E=70000000000.0, nu=0.3, ys=\n 350000000.0)\n', (1547, 1605), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((1602, 1657), 'tacs.constitutive.IsoShellConstitutive', 'constitutive.IsoShellConstitutive', (['props'], {'t': '(0.1)', 'tNum': '(0)'}), '(props, t=0.1, tNum=0)\n', (1635, 1657), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((1727, 1759), 'tacs.elements.ShellNaturalTransform', 'elements.ShellNaturalTransform', ([], {}), '()\n', (1757, 1759), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((1776, 1813), 'tacs.elements.Quad4Shell', 'elements.Quad4Shell', (['transform', 'stiff'], {}), '(transform, stiff)\n', (1795, 1813), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((1948, 1981), 'tacs.TACS.Creator', 'TACS.Creator', (['comm', 'vars_per_node'], {}), '(comm, vars_per_node)\n', (1960, 1981), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((5711, 5748), 'numpy.array', 'np.array', (['[1, 1, 1, 1, 1, 1]', 'np.intc'], {}), '([1, 1, 1, 1, 1, 1], np.intc)\n', (5719, 5748), True, 'import numpy as np\n'), ((5906, 5962), 'tacs.elements.RBE2', 'elements.RBE2', (['num_rbe_nodes', 'dep_dofs'], {'C1': '(100.0)', 'C2': '(0.1)'}), '(num_rbe_nodes, dep_dofs, C1=100.0, C2=0.1)\n', (5919, 5962), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((2141, 2174), 'numpy.linspace', 'np.linspace', (['(0)', 'Lx', '(nx + 1)', 'dtype'], {}), '(0, Lx, nx + 1, dtype)\n', (2152, 2174), True, 'import numpy as np\n'), ((2191, 2224), 'numpy.linspace', 'np.linspace', (['(0)', 'Ly', '(ny + 1)', 'dtype'], {}), '(0, Ly, ny + 1, dtype)\n', (2202, 2224), True, 'import numpy as np\n'), ((2248, 2284), 'numpy.zeros', 'np.zeros', (['[nx + 1, ny + 1, 3]', 'dtype'], {}), '([nx + 1, ny + 1, 3], dtype)\n', (2256, 2284), True, 'import numpy as np\n'), ((2336, 2368), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {'indexing': '"""ij"""'}), "(x, y, indexing='ij')\n", (2347, 2368), True, 'import numpy as np\n'), ((3503, 3551), 'numpy.array', 'np.array', (['[1.5 * Lx, 0.5 * Ly, 0.0]'], {'dtype': 'dtype'}), '([1.5 * Lx, 0.5 * Ly, 0.0], dtype=dtype)\n', (3511, 3551), True, 'import numpy as np\n'), ((4741, 4770), 'numpy.array', 'np.array', (['conn'], {'dtype': 'np.intc'}), '(conn, dtype=np.intc)\n', (4749, 4770), True, 'import numpy as np\n'), ((4789, 4838), 'numpy.arange', 'np.arange', (['(0)', '(4 * num_elems + 1)', '(4)'], {'dtype': 'np.intc'}), '(0, 4 * num_elems + 1, 4, dtype=np.intc)\n', (4798, 4838), True, 'import numpy as np\n'), ((4862, 4896), 'numpy.zeros', 'np.zeros', (['num_elems'], {'dtype': 'np.intc'}), '(num_elems, dtype=np.intc)\n', (4870, 4896), True, 'import numpy as np\n'), ((5185, 5238), 'numpy.append', 'np.append', (['left_node_ids[0, :]', 'right_node_ids[-1, :]'], {}), '(left_node_ids[0, :], right_node_ids[-1, :])\n', (5194, 5238), True, 'import numpy as np\n'), ((8295, 8344), 'tacs.functions.KSFailure', 'functions.KSFailure', (['assembler'], {'ksWeight': 'ksweight'}), '(assembler, ksWeight=ksweight)\n', (8314, 8344), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((8367, 8402), 'tacs.functions.StructuralMass', 'functions.StructuralMass', (['assembler'], {}), '(assembler)\n', (8391, 8402), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((8425, 8456), 'tacs.functions.Compliance', 'functions.Compliance', (['assembler'], {}), '(assembler)\n', (8445, 8456), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((8479, 8564), 'tacs.functions.KSDisplacement', 'functions.KSDisplacement', (['assembler'], {'ksWeight': 'ksweight', 'direction': '[1.0, 1.0, 1.0]'}), '(assembler, ksWeight=ksweight, direction=[1.0, 1.0,\n 1.0])\n', (8503, 8564), False, 'from tacs import TACS, elements, constitutive, functions\n'), ((7169, 7225), 'numpy.logical_and', 'np.logical_and', (['(local_x == 1.5 * Lx)', '(local_y == 0.5 * Ly)'], {}), '(local_x == 1.5 * Lx, local_y == 0.5 * Ly)\n', (7183, 7225), True, 'import numpy as np\n'), ((2398, 2433), 'numpy.arange', 'np.arange', (['num_nodes'], {'dtype': 'np.intc'}), '(num_nodes, dtype=np.intc)\n', (2407, 2433), True, 'import numpy as np\n')]
import sys import pylab as plb import numpy as np import mountaincar class DummyAgent(): """A not so good agent for the mountain-car task. """ def __init__(self, mountain_car = None, parameter1 = 3.0): if mountain_car is None: self.mountain_car = mountaincar.MountainCar() else: self.mountain_car = mountain_car self.parameter1 = parameter1 def visualize_trial(self, n_steps = 200): """Do a trial without learning, with display. Parameters ---------- n_steps -- number of steps to simulate for """ # prepare for the visualization plb.ion() plb.pause(0.0001) mv = mountaincar.MountainCarViewer(self.mountain_car) mv.create_figure(n_steps, n_steps) plb.show() # make sure the mountain-car is reset self.mountain_car.reset() for n in range(n_steps): print('\rt =', self.mountain_car.t, sys.stdout.flush()) # choose a random action self.mountain_car.apply_force(np.random.randint(3) - 1) # simulate the timestep self.mountain_car.simulate_timesteps(100, 0.01) # update the visualization mv.update_figure() plb.show() plb.pause(0.0001) # check for rewards if self.mountain_car.R > 0.0: print("\rreward obtained at t = ", self.mountain_car.t) break def learn(self): # This is your job! pass if __name__ == "__main__": d = DummyAgent() d.visualize_trial() plb.show()
[ "pylab.ion", "numpy.random.randint", "pylab.pause", "mountaincar.MountainCar", "sys.stdout.flush", "mountaincar.MountainCarViewer", "pylab.show" ]
[((1688, 1698), 'pylab.show', 'plb.show', ([], {}), '()\n', (1696, 1698), True, 'import pylab as plb\n'), ((674, 683), 'pylab.ion', 'plb.ion', ([], {}), '()\n', (681, 683), True, 'import pylab as plb\n'), ((692, 709), 'pylab.pause', 'plb.pause', (['(0.0001)'], {}), '(0.0001)\n', (701, 709), True, 'import pylab as plb\n'), ((723, 771), 'mountaincar.MountainCarViewer', 'mountaincar.MountainCarViewer', (['self.mountain_car'], {}), '(self.mountain_car)\n', (752, 771), False, 'import mountaincar\n'), ((823, 833), 'pylab.show', 'plb.show', ([], {}), '()\n', (831, 833), True, 'import pylab as plb\n'), ((291, 316), 'mountaincar.MountainCar', 'mountaincar.MountainCar', ([], {}), '()\n', (314, 316), False, 'import mountaincar\n'), ((1338, 1348), 'pylab.show', 'plb.show', ([], {}), '()\n', (1346, 1348), True, 'import pylab as plb\n'), ((1361, 1378), 'pylab.pause', 'plb.pause', (['(0.0001)'], {}), '(0.0001)\n', (1370, 1378), True, 'import pylab as plb\n'), ((1021, 1039), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1037, 1039), False, 'import sys\n'), ((1133, 1153), 'numpy.random.randint', 'np.random.randint', (['(3)'], {}), '(3)\n', (1150, 1153), True, 'import numpy as np\n')]
import numpy as np from pyquil import Program from pyquil.api import QuantumComputer, get_qc from grove.alpha.jordan_gradient.gradient_utils import (binary_float_to_decimal_float, measurements_to_bf) from grove.alpha.phaseestimation.phase_estimation import phase_estimation def gradient_program(f_h: float, precision: int) -> Program: """ Gradient estimation via Jordan's algorithm (10.1103/PhysRevLett.95.050501). :param f_h: Oracle output at perturbation h. :param precision: Bit precision of gradient. :return: Quil program to estimate gradient of f. """ # encode oracle values into phase phase_factor = np.exp(1.0j * 2 * np.pi * abs(f_h)) U = np.array([[phase_factor, 0], [0, phase_factor]]) p_gradient = phase_estimation(U, precision) return p_gradient def estimate_gradient(f_h: float, precision: int, gradient_max: int = 1, n_measurements: int = 50, qc: QuantumComputer = None) -> float: """ Estimate the gradient using function evaluation at perturbation, h. :param f_h: Oracle output at perturbation h. :param precision: Bit precision of gradient. :param gradient_max: OOM estimate of largest gradient value. :param n_measurements: Number of times to measure system. :param qc: The QuantumComputer object. :return: Decimal estimate of gradient. """ # scale f_h by range of values gradient can take on f_h *= 1. / gradient_max # generate gradient program perturbation_sign = np.sign(f_h) p_gradient = gradient_program(f_h, precision) # run gradient program if qc is None: qc = get_qc(f"{len(p_gradient.get_qubits())}q-qvm") p_gradient.wrap_in_numshots_loop(n_measurements) executable = qc.compiler.native_quil_to_executable(p_gradient) measurements = qc.run(executable) # summarize measurements bf_estimate = perturbation_sign * measurements_to_bf(measurements) bf_explicit = '{0:.16f}'.format(bf_estimate) deci_estimate = binary_float_to_decimal_float(bf_explicit) # rescale gradient deci_estimate *= gradient_max return deci_estimate
[ "grove.alpha.phaseestimation.phase_estimation.phase_estimation", "grove.alpha.jordan_gradient.gradient_utils.measurements_to_bf", "numpy.array", "grove.alpha.jordan_gradient.gradient_utils.binary_float_to_decimal_float", "numpy.sign" ]
[((744, 792), 'numpy.array', 'np.array', (['[[phase_factor, 0], [0, phase_factor]]'], {}), '([[phase_factor, 0], [0, phase_factor]])\n', (752, 792), True, 'import numpy as np\n'), ((828, 858), 'grove.alpha.phaseestimation.phase_estimation.phase_estimation', 'phase_estimation', (['U', 'precision'], {}), '(U, precision)\n', (844, 858), False, 'from grove.alpha.phaseestimation.phase_estimation import phase_estimation\n'), ((1630, 1642), 'numpy.sign', 'np.sign', (['f_h'], {}), '(f_h)\n', (1637, 1642), True, 'import numpy as np\n'), ((2129, 2171), 'grove.alpha.jordan_gradient.gradient_utils.binary_float_to_decimal_float', 'binary_float_to_decimal_float', (['bf_explicit'], {}), '(bf_explicit)\n', (2158, 2171), False, 'from grove.alpha.jordan_gradient.gradient_utils import binary_float_to_decimal_float, measurements_to_bf\n'), ((2027, 2059), 'grove.alpha.jordan_gradient.gradient_utils.measurements_to_bf', 'measurements_to_bf', (['measurements'], {}), '(measurements)\n', (2045, 2059), False, 'from grove.alpha.jordan_gradient.gradient_utils import binary_float_to_decimal_float, measurements_to_bf\n')]
# -*- coding: utf-8 -*- """ Spyder Editor Code written by <NAME> with modifications by <NAME> and <NAME> This file produces plots comparing our first order sensitivity with BS vega. """ # %% # To run the stuff, you need the package plotly in your anaconda "conda install plotly" import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.io as pio init_notebook_mode() pio.renderers.default='svg' import numpy as np import numpy.random import pandas as pd from scipy.stats import norm, multivariate_normal from scipy.optimize import minimize import time _tstart_stack = [] def tic(): _tstart_stack.append(time.time()) def toc(fmt="Elapsed: %s s"): print(fmt % (time.time() - _tstart_stack.pop())) # %% # We first provide the computation of a call option according to BS (we assume Log normal distribution) # definition of the dplus and minus functions # and the BS formula. def dplus(S, K, T, sigma): sigmaT = sigma * T ** 0.5 return np.log(S/K)/sigmaT + sigmaT/2 def dminus(S, K, T, sigma): sigmaT = sigma * T ** 0.5 return np.log(S/K)/sigmaT - sigmaT/2 def BS(S, K, T, sigma, Type = 1): factor1 = S * norm.cdf(Type * dplus(S, K, T, sigma)) factor2 = K * norm.cdf(Type * dminus(S, K, T, sigma)) return Type * (factor1 - factor2) # Now we provide the computation for the exact call according to the computations in BDT # We take p = 2 def Robust_Call_Exact_fun(S, K, T, sigma, delta): def fun(v): #v[0] = a, v[1] = lambda price = BS(S,max(K - (2 * v[0] + 1)/ (2 * v[1]),0.000001), T, sigma) return price + v[0] ** 2 / (2 * v[1]) + 0.5 * v[1] * delta ** 2 def cons_fun(v): # the value of v[0] should be constrained to keep strike positive tmp = K - (2 * v[0] + 1)/ (2 * v[1]) return tmp cons = ({'type': 'ineq', 'fun' : cons_fun}) guess = np.array([0, 1]) bounds = ((-np.Inf, np.Inf), (0, np.Inf)) res = minimize(fun, guess, constraints=cons, method='SLSQP', bounds=bounds ) return res.fun Robust_Call_Exact = np.vectorize(Robust_Call_Exact_fun) # Now we provide the computation for the first order model uncertainty sensitivity (Upsilon) # and the resulting BS robust price approximation # We take p = 2 def Robust_Call_Upsilon(S, K, T, sigma, delta): muK = norm.cdf(dminus(S, K, T, sigma)) correction = np.sqrt(muK * (1-muK)) return correction def Robust_Call_Approximation(S, K, T, sigma, delta): price = BS(S, K, T, sigma) correction = Robust_Call_Upsilon(S, K, T, sigma, delta) return price + correction * delta # %% # Ploting the robust call and FO appriximation for a given strike and increasing uncertainty radius S = 1 K = 1.2 T = 1 sigma = 0.2 Delta = np.linspace(0, 0.2, 50) Y0 = BS(S, K, T, sigma) Y1 = Robust_Call_Approximation(S, K, T, sigma, Delta) Y2 = Robust_Call_Exact(S, K, T, sigma, Delta) fig = go.Figure() fig.add_scatter(x = Delta, y = Y1, name = 'FO') fig.add_scatter(x = Delta, y = Y2, name = 'RBS') #fig.layout.title = "Exact Robust Call vs First Order Approx: Strike K="+str(K)+", BS Price="+str(np.round(Y0,4)) fig.layout.xaxis.title = "delta" fig.layout.yaxis.title = "Price" iplot(fig) # %% # Ploting the robust call and FO appriximation for a given radius of uncertainty and a range of strikes S = 1 K = np.linspace(0.6, 1.4, 100) T = 1 sigma = 0.2 delta = 0.05 Y0 = Robust_Call_Approximation(S, K, T, sigma, delta) Y1 = Robust_Call_Exact(S, K, T, sigma, delta) Y2 = BS(S, K, T, sigma) fig = go.Figure() fig.add_scatter(x = K, y = Y0, name = 'FO') fig.add_scatter(x = K, y = Y1, name = 'Exact') fig.add_scatter(x = K, y = Y2, name = 'BS') fig.layout.title = "Call Price vs Exact Robust Call and First Order Approx : delta ="+str(delta) fig.layout.xaxis.title = "Strike" fig.layout.yaxis.title = "Price" iplot(fig) # %% # Run a plot to comapre BS Vega and BS Upsilon (Uncertainty Sensitivity) # Plots show the sensitivities S = 1 K = np.linspace(0.4 * S, 2 * S, 100) T = 1 sigma = 0.2 delta = 0.02 #is irrelevant here Y1 = S * (norm.pdf(dplus(S, K , T, sigma))) Y0 = S * (Robust_Call_Upsilon(S, K, T, sigma, delta)) fig = go.Figure() fig.add_scatter(x = K, y = Y0, name = 'BS Upsilon') fig.add_scatter(x = K, y = Y1, name = 'BS Vega') #fig.layout.title = "Call Price Sensitivity: Vega vs Upsilon, sigma= "+str(sigma) fig.layout.xaxis.title = "Strike" fig.layout.yaxis.title = "Price" iplot(fig) # %% # Run a ploting to comapre BS Vega and BS Upsilon (Uncertainty Sensitivity) # Plots show the sensitivities S = 1 K = np.linspace(0.6 * S, 1.4 * S, 100) T = 1 sigma = 0.2 delta = 0.02 #is irrelevant here Y0 = S * (norm.pdf(dplus(S, K * np.exp(T * sigma ** 2), T, sigma)) + 1/2-1/np.sqrt(2 * np.pi)) Y1 = S * (Robust_Call_Upsilon(S, K, T, sigma, delta)) fig = go.Figure() fig.add_scatter(x = K, y = Y0, name = 'BS Vega (shifted) + const') fig.add_scatter(x = K, y = Y1, name = 'BS Upsilon') fig.layout.title = "Call Price Sensitivity: Vega vs Upsilon, sigma= "+str(sigma) fig.layout.xaxis.title = "Strike" fig.layout.yaxis.title = "Price" iplot(fig)
[ "numpy.sqrt", "plotly.offline.iplot", "scipy.optimize.minimize", "plotly.offline.init_notebook_mode", "numpy.log", "numpy.exp", "numpy.array", "numpy.linspace", "time.time", "plotly.graph_objs.Figure", "numpy.vectorize" ]
[((418, 438), 'plotly.offline.init_notebook_mode', 'init_notebook_mode', ([], {}), '()\n', (436, 438), False, 'from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n'), ((2182, 2217), 'numpy.vectorize', 'np.vectorize', (['Robust_Call_Exact_fun'], {}), '(Robust_Call_Exact_fun)\n', (2194, 2217), True, 'import numpy as np\n'), ((2864, 2887), 'numpy.linspace', 'np.linspace', (['(0)', '(0.2)', '(50)'], {}), '(0, 0.2, 50)\n', (2875, 2887), True, 'import numpy as np\n'), ((3021, 3032), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (3030, 3032), True, 'import plotly.graph_objs as go\n'), ((3311, 3321), 'plotly.offline.iplot', 'iplot', (['fig'], {}), '(fig)\n', (3316, 3321), False, 'from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n'), ((3443, 3469), 'numpy.linspace', 'np.linspace', (['(0.6)', '(1.4)', '(100)'], {}), '(0.6, 1.4, 100)\n', (3454, 3469), True, 'import numpy as np\n'), ((3634, 3645), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (3643, 3645), True, 'import plotly.graph_objs as go\n'), ((3946, 3956), 'plotly.offline.iplot', 'iplot', (['fig'], {}), '(fig)\n', (3951, 3956), False, 'from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n'), ((4078, 4110), 'numpy.linspace', 'np.linspace', (['(0.4 * S)', '(2 * S)', '(100)'], {}), '(0.4 * S, 2 * S, 100)\n', (4089, 4110), True, 'import numpy as np\n'), ((4268, 4279), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (4277, 4279), True, 'import plotly.graph_objs as go\n'), ((4533, 4543), 'plotly.offline.iplot', 'iplot', (['fig'], {}), '(fig)\n', (4538, 4543), False, 'from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n'), ((4668, 4702), 'numpy.linspace', 'np.linspace', (['(0.6 * S)', '(1.4 * S)', '(100)'], {}), '(0.6 * S, 1.4 * S, 100)\n', (4679, 4702), True, 'import numpy as np\n'), ((4911, 4922), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (4920, 4922), True, 'import plotly.graph_objs as go\n'), ((5193, 5203), 'plotly.offline.iplot', 'iplot', (['fig'], {}), '(fig)\n', (5198, 5203), False, 'from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n'), ((1909, 1925), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (1917, 1925), True, 'import numpy as np\n'), ((1982, 2051), 'scipy.optimize.minimize', 'minimize', (['fun', 'guess'], {'constraints': 'cons', 'method': '"""SLSQP"""', 'bounds': 'bounds'}), "(fun, guess, constraints=cons, method='SLSQP', bounds=bounds)\n", (1990, 2051), False, 'from scipy.optimize import minimize\n'), ((2487, 2511), 'numpy.sqrt', 'np.sqrt', (['(muK * (1 - muK))'], {}), '(muK * (1 - muK))\n', (2494, 2511), True, 'import numpy as np\n'), ((682, 693), 'time.time', 'time.time', ([], {}), '()\n', (691, 693), False, 'import time\n'), ((1028, 1041), 'numpy.log', 'np.log', (['(S / K)'], {}), '(S / K)\n', (1034, 1041), True, 'import numpy as np\n'), ((1128, 1141), 'numpy.log', 'np.log', (['(S / K)'], {}), '(S / K)\n', (1134, 1141), True, 'import numpy as np\n'), ((4830, 4848), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (4837, 4848), True, 'import numpy as np\n'), ((743, 754), 'time.time', 'time.time', ([], {}), '()\n', (752, 754), False, 'import time\n'), ((4787, 4809), 'numpy.exp', 'np.exp', (['(T * sigma ** 2)'], {}), '(T * sigma ** 2)\n', (4793, 4809), True, 'import numpy as np\n')]
import numpy as np import torchvision.datasets as datasets from pathlib import Path import libs.dirs as dirs import libs.utils as utils import libs.dataset_utils as dutils import models.utils as mutils import libs.commons as commons from libs.vis_functions import plot_confusion_matrix def wrapper_train(epochs, model_path, history_path, dataset_path): seed = None device_id = 0 numImgBatch = 256 use_weights = True # ImageNet statistics dataTransforms = mutils.resnet_transforms(commons.IMAGENET_MEAN, commons.IMAGENET_STD) # Load Dataset objects for train and val sets from folder sets = ['train', 'val'] imageDataset = {} for phase in sets: f = dataset_path / phase imageDataset[phase] = datasets.ImageFolder(str(f), transform=dataTransforms[phase], is_valid_file=utils.check_empty_file) history, _ = mutils.train_network(dataset_path, dataTransforms, epochs=epochs, batch_size=numImgBatch, model_path=model_path, history_path=history_path, seed=seed, weighted_loss=use_weights, device_id=device_id) # Get best epoch results bestValIndex = np.argmin(history['loss-val']) bestValLoss = history['loss-val'][bestValIndex] bestValAcc = history['acc-val'][bestValIndex] confMat = history['conf-val'][bestValIndex] return bestValLoss, bestValAcc, confMat if __name__ == "__main__": numEvals = 5 net_type = dutils.get_input_network_type(commons.network_types) val_type = dutils.get_input_network_type(commons.val_types, message="validation set") rede = int(input("\nEnter net number.\n")) numEpochs = 25 # Dataset root folder datasetPath = Path(dirs.dataset) / "{}_dataset_rede_{}_val_{}".format(net_type, rede, val_type) datasetName = datasetPath.stem modelFolder = Path(dirs.saved_models) / \ "{}_{}_epochs".format(datasetName, numEpochs) historyFolder = Path(dirs.saved_models) / \ "history_{}_{}_epochs".format(datasetName, numEpochs) filePath = Path(dirs.results) / \ "log_evaluation_{}_{}_epochs.txt".format(datasetName, numEpochs) confMatPath = Path(dirs.results) / \ "confusion_matrix_{}.pdf".format(datasetName) valLoss = [] valAcc = [] print() # Run function many times and save best results for i in range(numEvals): print("\nStarting run number {}/{}.\n".format(i+1, numEvals)) modelPath = modelFolder / "model_run_{}.pt".format(i) historyPath = historyFolder / "history_run_{}.pickle".format(i) roundValLoss, roundValAcc, confMat = wrapper_train(numEpochs, modelPath, historyPath, datasetPath) valLoss.append(roundValLoss) classAcc = mutils.compute_class_acc(confMat) avgAcc = np.mean(classAcc) valAcc.append(roundValAcc) print("Debug\nAvg acc: {:.3f}".format(avgAcc)) print("other acc: {:.3f}\n".format(roundValAcc)) # Save best confusion matrix if np.argmin(valLoss) == i: bestConfMat = confMat printString = "" printString += "\nFinished training {} evaluation runs for dataset\n{}\n".format(numEvals, datasetPath) printString += "\nResulting statistics:\n\ Val Loss:\n\ Mean: {:.3f}\n\ Std : {:.3f}\n\ Val Avg Acc:\n\ Mean: {:.5f}\n\ Std {:.5f}\n".format(np.mean(valLoss), np.std(valLoss), np.mean(valAcc), np.std(valAcc)) print(printString) with open(filePath, mode='w') as f: f.write(printString) title = "Confusion Matrix "+str(datasetName) plot_confusion_matrix(confMat, title=title, normalize=True, show=False, save_path=confMatPath) # print("Conf matrix:") # print(confMat)
[ "numpy.mean", "libs.dataset_utils.get_input_network_type", "pathlib.Path", "numpy.std", "numpy.argmin", "models.utils.train_network", "models.utils.compute_class_acc", "models.utils.resnet_transforms", "libs.vis_functions.plot_confusion_matrix" ]
[((556, 625), 'models.utils.resnet_transforms', 'mutils.resnet_transforms', (['commons.IMAGENET_MEAN', 'commons.IMAGENET_STD'], {}), '(commons.IMAGENET_MEAN, commons.IMAGENET_STD)\n', (580, 625), True, 'import models.utils as mutils\n'), ((1045, 1252), 'models.utils.train_network', 'mutils.train_network', (['dataset_path', 'dataTransforms'], {'epochs': 'epochs', 'batch_size': 'numImgBatch', 'model_path': 'model_path', 'history_path': 'history_path', 'seed': 'seed', 'weighted_loss': 'use_weights', 'device_id': 'device_id'}), '(dataset_path, dataTransforms, epochs=epochs,\n batch_size=numImgBatch, model_path=model_path, history_path=\n history_path, seed=seed, weighted_loss=use_weights, device_id=device_id)\n', (1065, 1252), True, 'import models.utils as mutils\n'), ((1533, 1563), 'numpy.argmin', 'np.argmin', (["history['loss-val']"], {}), "(history['loss-val'])\n", (1542, 1563), True, 'import numpy as np\n'), ((1831, 1883), 'libs.dataset_utils.get_input_network_type', 'dutils.get_input_network_type', (['commons.network_types'], {}), '(commons.network_types)\n', (1860, 1883), True, 'import libs.dataset_utils as dutils\n'), ((1899, 1973), 'libs.dataset_utils.get_input_network_type', 'dutils.get_input_network_type', (['commons.val_types'], {'message': '"""validation set"""'}), "(commons.val_types, message='validation set')\n", (1928, 1973), True, 'import libs.dataset_utils as dutils\n'), ((4023, 4121), 'libs.vis_functions.plot_confusion_matrix', 'plot_confusion_matrix', (['confMat'], {'title': 'title', 'normalize': '(True)', 'show': '(False)', 'save_path': 'confMatPath'}), '(confMat, title=title, normalize=True, show=False,\n save_path=confMatPath)\n', (4044, 4121), False, 'from libs.vis_functions import plot_confusion_matrix\n'), ((2087, 2105), 'pathlib.Path', 'Path', (['dirs.dataset'], {}), '(dirs.dataset)\n', (2091, 2105), False, 'from pathlib import Path\n'), ((2223, 2246), 'pathlib.Path', 'Path', (['dirs.saved_models'], {}), '(dirs.saved_models)\n', (2227, 2246), False, 'from pathlib import Path\n'), ((2329, 2352), 'pathlib.Path', 'Path', (['dirs.saved_models'], {}), '(dirs.saved_models)\n', (2333, 2352), False, 'from pathlib import Path\n'), ((2438, 2456), 'pathlib.Path', 'Path', (['dirs.results'], {}), '(dirs.results)\n', (2442, 2456), False, 'from pathlib import Path\n'), ((2556, 2574), 'pathlib.Path', 'Path', (['dirs.results'], {}), '(dirs.results)\n', (2560, 2574), False, 'from pathlib import Path\n'), ((3136, 3169), 'models.utils.compute_class_acc', 'mutils.compute_class_acc', (['confMat'], {}), '(confMat)\n', (3160, 3169), True, 'import models.utils as mutils\n'), ((3187, 3204), 'numpy.mean', 'np.mean', (['classAcc'], {}), '(classAcc)\n', (3194, 3204), True, 'import numpy as np\n'), ((3777, 3793), 'numpy.mean', 'np.mean', (['valLoss'], {}), '(valLoss)\n', (3784, 3793), True, 'import numpy as np\n'), ((3795, 3810), 'numpy.std', 'np.std', (['valLoss'], {}), '(valLoss)\n', (3801, 3810), True, 'import numpy as np\n'), ((3844, 3859), 'numpy.mean', 'np.mean', (['valAcc'], {}), '(valAcc)\n', (3851, 3859), True, 'import numpy as np\n'), ((3861, 3875), 'numpy.std', 'np.std', (['valAcc'], {}), '(valAcc)\n', (3867, 3875), True, 'import numpy as np\n'), ((3401, 3419), 'numpy.argmin', 'np.argmin', (['valLoss'], {}), '(valLoss)\n', (3410, 3419), True, 'import numpy as np\n')]
import cv2 as cv import sys import numpy as np import tifffile as ti import argparse import itertools max_lowThreshold = 100 window_name = 'Edge Map' title_trackbar = 'Min Threshold:' ratio = 3 kernel_size = 3 def CannyThreshold(val): low_threshold = val #img_blur = cv.blur(src_gray, (3,3)) detected_edges = cv.Canny(src_gray, low_threshold, low_threshold*ratio, kernel_size) mask = detected_edges != 0 dst = src * (mask[:,:,None].astype(src.dtype)) cv.imshow(window_name, dst) # Sort grey image colors by frequency of appearance def freq_sort(l): flat_list = [] for sublist in l: for item in sublist: flat_list.append(item) frequencies = {} for item in flat_list: if item in frequencies: frequencies[item] += 1 else: frequencies[item] = 1 return sorted(frequencies.items(), key=lambda x: x[1], reverse=True) # Remove colors of selection ranked by frequency def gray_filter(img, p_map, start, end): # Slice the color range p_map = p_map[start:end] # Break down the dic selected_colors = [] for p in p_map: selected_colors.append(p[0]) # Replace out-off-range colors with black r_len = len(img) c_len = len(img[0]) for i in range(r_len): for j in range(c_len): if img[i][j] not in selected_colors: img[i][j] = 0 return img # Remove disconnected noises def de_noise(img, kernel_size=1, criteria=4, iterations=4, remove_all=False): cur = 0 r_len = len(img) c_len = len(img[0]) while cur < iterations: cur += 1 for i in range(r_len): for j in range(c_len): # If the iterated pixel is already black if img[i][j] == 0: continue try: # X, Y = np.mgrid[j:j+kernel_size, i:i+kernel_size] # print(np.vstack((X.ravel(), Y.ravel()))) # exit(1) # Put adjacent pixels with given kernel size into the list p_list = [] indices = [p for p in itertools.product(range(kernel_size, -kernel_size-1, -1), repeat=2) if p != (0,0)] for idx in indices: p_list.append(img[i+idx[0]][j+idx[1]]) # Remove the pixel if number of adjacent black pixels are greater than the preset value if p_list.count(0) > criteria: img[i][j] = 0 if remove_all: for idx in indices: img[i+idx[0]][j+idx[1]] = 0 except IndexError: pass return img if __name__ == '__main__': src = cv.imread(cv.samples.findFile("input.tif")) img = cv.cvtColor(src, cv.COLOR_BGR2HSV) img_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) cv.imshow('original', img_gray) freq_dic = freq_sort(img_gray) filtered_img = gray_filter(img_gray, freq_dic, 10, -80) cv.imshow('filtered', filtered_img) ti.imwrite("filtered.tif", np.array([[filtered_img] * 90], np.uint8)) # de_noise_img = de_noise(filtered_img, 1, 4, 4) # de_noise_img = de_noise(de_noise_img, 2, 18, 1) de_noise_img = de_noise(filtered_img, 1, 5, 4) ti.imwrite("de_noise_img.tif", np.array([[de_noise_img] * 90], np.uint8)) eroded = cv.dilate(de_noise_img, np.ones((2, 2), np.uint8), iterations=1) dilated = cv.dilate(eroded, np.ones((2, 2), np.uint8), iterations=1) med_blur = cv.medianBlur(de_noise_img, 3) cv.imshow('dilated', dilated) cv.imshow('de-noised-more-aggressive', de_noise_img) cv.imshow('med_blur', med_blur) cv.waitKey() # img_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # print(img_gray) # if img is None: # sys.exit("Could not read the image.") # # # rows, cols, channels = img.shape # dst = img.copy() # a = 2.5 # b = 380 # for i in range(rows): # for j in range(cols): # for c in range(3): # color = img[i, j][c]*a+b # if color > 255: # 防止像素值越界(0~255) # dst[i, j][c] = 255 # elif color < 0: # 防止像素值越界(0~255) # dst[i, j][c] = 0 # # blur_img = cv.GaussianBlur(img, ksize=(5, 5), sigmaX=1, sigmaY=1) # gaussian_gray = cv.GaussianBlur(img_gray, ksize=(5, 5), sigmaX=1, sigmaY=1) # ti.imwrite("Gaussian_blur.tif", np.array([[gaussian_gray]*90], np.uint8)) # # med_blur_img = cv.medianBlur(img_gray, 3) # ti.imwrite("med_blur.tif", np.array([[med_blur_img]*90], np.uint8)) # # ret, threshold = cv.threshold(blur_img, 85, 255, cv.THRESH_TOZERO_INV) # ret_gray, threshold_gray = cv.threshold(gaussian_gray, 85, 255, cv.THRESH_TOZERO_INV) # # kernel = np.ones((2, 2), np.uint8) # erosion = cv.erode(threshold, kernel, iterations=2) # erosion_gray = cv.erode(threshold_gray, kernel, iterations=2) # ti.imwrite("erosion.tif", np.array([[erosion_gray]*90], np.uint8)) # # dilation = cv.dilate(erosion, kernel, iterations=2) # dilation_gray = cv.dilate(threshold_gray, kernel, iterations=2) # ti.imwrite("dilation.tif", np.array([[dilation_gray]*90], np.uint8)) # # lower_grey = np.array([0, 0, 11]) # upper_grey = np.array([0, 0, 60]) # mask = cv.inRange(erosion, lower_grey, upper_grey) # mask = cv.fastNlMeansDenoising(mask, None, 5) # res = cv.bitwise_and(erosion, erosion, mask=mask) # res_gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY) # ti.imwrite("filtered.tif", np.array([[res_gray]*90], np.uint8)) # # # gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY) # # grad_x = cv.Sobel(gray, -1, 1, 0, ksize=5) # # grad_y = cv.Sobel(gray, -1, 0, 1, ksize=5) # # grad = cv.addWeighted(grad_x, 1, grad_y, 1, 0) # # # src = cv.GaussianBlur(src, (3, 3), 0) # # src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # # cv.namedWindow(window_name) # # cv.createTrackbar(title_trackbar, window_name, 0, max_lowThreshold, CannyThreshold) # # CannyThreshold(0) # # cv.waitKey() # # cv.imshow("src", img) # cv.imshow("blur", blur_img) # cv.imshow("threshold", threshold) # # cv.imshow("erosion", erosion) # cv.imshow("dilation", dilation) # # cv.imshow('mask', mask) # cv.imshow('filtered', res) # # # cv.imshow("grad", grad) # cv.imshow("blur", blur_img) # # k = cv.waitKey(0) # if k == ord("s"): # cv.imwrite("starry_night.png", erosion)
[ "numpy.ones", "cv2.samples.findFile", "cv2.medianBlur", "cv2.imshow", "numpy.array", "cv2.cvtColor", "cv2.Canny", "cv2.waitKey" ]
[((339, 408), 'cv2.Canny', 'cv.Canny', (['src_gray', 'low_threshold', '(low_threshold * ratio)', 'kernel_size'], {}), '(src_gray, low_threshold, low_threshold * ratio, kernel_size)\n', (347, 408), True, 'import cv2 as cv\n'), ((496, 523), 'cv2.imshow', 'cv.imshow', (['window_name', 'dst'], {}), '(window_name, dst)\n', (505, 523), True, 'import cv2 as cv\n'), ((2949, 2983), 'cv2.cvtColor', 'cv.cvtColor', (['src', 'cv.COLOR_BGR2HSV'], {}), '(src, cv.COLOR_BGR2HSV)\n', (2960, 2983), True, 'import cv2 as cv\n'), ((3000, 3035), 'cv2.cvtColor', 'cv.cvtColor', (['src', 'cv.COLOR_BGR2GRAY'], {}), '(src, cv.COLOR_BGR2GRAY)\n', (3011, 3035), True, 'import cv2 as cv\n'), ((3041, 3072), 'cv2.imshow', 'cv.imshow', (['"""original"""', 'img_gray'], {}), "('original', img_gray)\n", (3050, 3072), True, 'import cv2 as cv\n'), ((3177, 3212), 'cv2.imshow', 'cv.imshow', (['"""filtered"""', 'filtered_img'], {}), "('filtered', filtered_img)\n", (3186, 3212), True, 'import cv2 as cv\n'), ((3705, 3735), 'cv2.medianBlur', 'cv.medianBlur', (['de_noise_img', '(3)'], {}), '(de_noise_img, 3)\n', (3718, 3735), True, 'import cv2 as cv\n'), ((3741, 3770), 'cv2.imshow', 'cv.imshow', (['"""dilated"""', 'dilated'], {}), "('dilated', dilated)\n", (3750, 3770), True, 'import cv2 as cv\n'), ((3776, 3828), 'cv2.imshow', 'cv.imshow', (['"""de-noised-more-aggressive"""', 'de_noise_img'], {}), "('de-noised-more-aggressive', de_noise_img)\n", (3785, 3828), True, 'import cv2 as cv\n'), ((3834, 3865), 'cv2.imshow', 'cv.imshow', (['"""med_blur"""', 'med_blur'], {}), "('med_blur', med_blur)\n", (3843, 3865), True, 'import cv2 as cv\n'), ((3873, 3885), 'cv2.waitKey', 'cv.waitKey', ([], {}), '()\n', (3883, 3885), True, 'import cv2 as cv\n'), ((2904, 2936), 'cv2.samples.findFile', 'cv.samples.findFile', (['"""input.tif"""'], {}), "('input.tif')\n", (2923, 2936), True, 'import cv2 as cv\n'), ((3245, 3286), 'numpy.array', 'np.array', (['[[filtered_img] * 90]', 'np.uint8'], {}), '([[filtered_img] * 90], np.uint8)\n', (3253, 3286), True, 'import numpy as np\n'), ((3489, 3530), 'numpy.array', 'np.array', (['[[de_noise_img] * 90]', 'np.uint8'], {}), '([[de_noise_img] * 90], np.uint8)\n', (3497, 3530), True, 'import numpy as np\n'), ((3572, 3597), 'numpy.ones', 'np.ones', (['(2, 2)', 'np.uint8'], {}), '((2, 2), np.uint8)\n', (3579, 3597), True, 'import numpy as np\n'), ((3646, 3671), 'numpy.ones', 'np.ones', (['(2, 2)', 'np.uint8'], {}), '((2, 2), np.uint8)\n', (3653, 3671), True, 'import numpy as np\n')]
from ._base import BaseWeight from ..exceptions import NotFittedError from ..utils.functions import mean_log_beta import numpy as np from scipy.special import loggamma class PitmanYorProcess(BaseWeight): def __init__(self, pyd=0, alpha=1, truncation_length=-1, rng=None): super().__init__(rng=rng) assert -pyd < alpha, "alpha param must be greater than -pyd" self.pyd = pyd self.alpha = alpha self.v = np.array([], dtype=np.float64) self.truncation_length = truncation_length def random(self, size=None): if size is None and len(self.d) == 0: raise ValueError("Weight structure not fitted and `n` not passed.") if size is not None: if type(size) is not int: raise TypeError("size parameter must be integer or None") if len(self.d) == 0: pitman_yor_bias = np.arange(size) self.v = self.rng.beta(a=1 - self.pyd, b=self.alpha + pitman_yor_bias * self.pyd, size=size) self.w = self.v * np.cumprod(np.concatenate(([1], 1 - self.v[:-1]))) else: a_c = np.bincount(self.d) b_c = np.concatenate((np.cumsum(a_c[::-1])[-2::-1], [0])) if size is not None and size < len(a_c): a_c = a_c[:size] b_c = b_c[:size] pitman_yor_bias = np.arange(len(a_c)) self.v = self.rng.beta( a=1 - self.pyd + a_c, b=self.alpha + pitman_yor_bias * self.pyd + b_c ) self.w = self.v * np.cumprod(np.concatenate(([1], 1 - self.v[:-1]))) if size is not None: self.complete(size) return self.w def complete(self, size): if type(size) is not int: raise TypeError("size parameter must be integer or None") if self.get_size() < size: pitman_yor_bias = np.arange(self.get_size(), size) self.v = np.concatenate( ( self.v, self.rng.beta(a=1 - self.pyd, b=self.alpha + pitman_yor_bias * self.pyd) ) ) self.w = self.v * np.cumprod(np.concatenate(([1], 1 - self.v[:-1]))) return self.w def fit_variational(self, variational_d): self.variational_d = variational_d self.variational_k = len(self.variational_d) self.variational_params = np.empty((self.variational_k, 2), dtype=np.float64) a_c = np.sum(self.variational_d, 1) b_c = np.concatenate((np.cumsum(a_c[::-1])[-2::-1], [0])) self.variational_params[:, 0] = 1 - self.pyd + a_c self.variational_params[:, 1] = self.alpha + ( 1 + np.arange(self.variational_params.shape[0]) ) * self.pyd + b_c def variational_mean_log_w_j(self, j): if self.variational_d is None: raise NotFittedError res = 0 for jj in range(j): res += mean_log_beta(self.variational_params[jj][1], self.variational_params[jj][0]) res += mean_log_beta(self.variational_params[j, 0], self.variational_params[j, 1] ) return res def variational_mean_log_p_d__w(self, variational_d=None): if variational_d is None: _variational_d = self.variational_d if _variational_d is None: raise NotFittedError else: _variational_d = variational_d res = 0 for j, nj in enumerate(np.sum(_variational_d, 1)): res += nj * self.variational_mean_log_w_j(j) return res def variational_mean_log_p_w(self): if self.variational_d is None: raise NotFittedError res = 0 for j, params in enumerate(self.variational_params): res += mean_log_beta(params[0], params[1]) * -self.pyd res += mean_log_beta(params[1], params[0]) * ( self.alpha + (j + 1) * self.pyd - 1 ) res += loggamma(self.alpha + j * self.pyd + 1) res -= loggamma(self.alpha + (j + 1) * self.pyd + 1) res -= loggamma(1 - self.pyd) return res def variational_mean_log_q_w(self): if self.variational_d is None: raise NotFittedError res = 0 for params in self.variational_params: res += (params[0] - 1) * mean_log_beta(params[0], params[1]) res += (params[1] - 1) * mean_log_beta(params[1], params[0]) res += loggamma(params[0] + params[1]) res -= loggamma(params[0]) + loggamma(params[1]) return res def variational_mean_w(self, j): if j > self.variational_k: return 0 res = 1 for jj in range(j): res *= (self.variational_params[jj][1] / self.variational_params[jj].sum()) res *= self.variational_params[j, 0] / self.variational_params[j].sum() return res def variational_mode_w(self, j): if j > self.variational_k: return 0 res = 1 for jj in range(j): if self.variational_params[jj, 1] <= 1: if self.variational_params[jj, 0] <= 1: raise ValueError('multimodal distribution') else: return 0 elif self.variational_params[jj, 0] <= 1: continue res *= ((self.variational_params[jj, 1] - 1) / (self.variational_params[jj].sum() - 2)) if self.variational_params[j, 0] <= 1: if self.variational_params[j, 1] <= 1: raise ValueError('multimodal distribution') else: return 0 elif self.variational_params[j, 1] <= 1: return res res *= ((self.variational_params[j, 0] - 1) / (self.variational_params[j].sum() - 2)) return res
[ "scipy.special.loggamma", "numpy.array", "numpy.sum", "numpy.empty", "numpy.concatenate", "numpy.cumsum", "numpy.bincount", "numpy.arange" ]
[((449, 479), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.float64'}), '([], dtype=np.float64)\n', (457, 479), True, 'import numpy as np\n'), ((2706, 2757), 'numpy.empty', 'np.empty', (['(self.variational_k, 2)'], {'dtype': 'np.float64'}), '((self.variational_k, 2), dtype=np.float64)\n', (2714, 2757), True, 'import numpy as np\n'), ((2815, 2844), 'numpy.sum', 'np.sum', (['self.variational_d', '(1)'], {}), '(self.variational_d, 1)\n', (2821, 2844), True, 'import numpy as np\n'), ((891, 906), 'numpy.arange', 'np.arange', (['size'], {}), '(size)\n', (900, 906), True, 'import numpy as np\n'), ((1252, 1271), 'numpy.bincount', 'np.bincount', (['self.d'], {}), '(self.d)\n', (1263, 1271), True, 'import numpy as np\n'), ((3901, 3926), 'numpy.sum', 'np.sum', (['_variational_d', '(1)'], {}), '(_variational_d, 1)\n', (3907, 3926), True, 'import numpy as np\n'), ((4410, 4449), 'scipy.special.loggamma', 'loggamma', (['(self.alpha + j * self.pyd + 1)'], {}), '(self.alpha + j * self.pyd + 1)\n', (4418, 4449), False, 'from scipy.special import loggamma\n'), ((4469, 4514), 'scipy.special.loggamma', 'loggamma', (['(self.alpha + (j + 1) * self.pyd + 1)'], {}), '(self.alpha + (j + 1) * self.pyd + 1)\n', (4477, 4514), False, 'from scipy.special import loggamma\n'), ((4534, 4556), 'scipy.special.loggamma', 'loggamma', (['(1 - self.pyd)'], {}), '(1 - self.pyd)\n', (4542, 4556), False, 'from scipy.special import loggamma\n'), ((4917, 4948), 'scipy.special.loggamma', 'loggamma', (['(params[0] + params[1])'], {}), '(params[0] + params[1])\n', (4925, 4948), False, 'from scipy.special import loggamma\n'), ((4968, 4987), 'scipy.special.loggamma', 'loggamma', (['params[0]'], {}), '(params[0])\n', (4976, 4987), False, 'from scipy.special import loggamma\n'), ((4990, 5009), 'scipy.special.loggamma', 'loggamma', (['params[1]'], {}), '(params[1])\n', (4998, 5009), False, 'from scipy.special import loggamma\n'), ((1123, 1161), 'numpy.concatenate', 'np.concatenate', (['([1], 1 - self.v[:-1])'], {}), '(([1], 1 - self.v[:-1]))\n', (1137, 1161), True, 'import numpy as np\n'), ((1706, 1744), 'numpy.concatenate', 'np.concatenate', (['([1], 1 - self.v[:-1])'], {}), '(([1], 1 - self.v[:-1]))\n', (1720, 1744), True, 'import numpy as np\n'), ((2410, 2448), 'numpy.concatenate', 'np.concatenate', (['([1], 1 - self.v[:-1])'], {}), '(([1], 1 - self.v[:-1]))\n', (2424, 2448), True, 'import numpy as np\n'), ((2875, 2895), 'numpy.cumsum', 'np.cumsum', (['a_c[::-1]'], {}), '(a_c[::-1])\n', (2884, 2895), True, 'import numpy as np\n'), ((1306, 1326), 'numpy.cumsum', 'np.cumsum', (['a_c[::-1]'], {}), '(a_c[::-1])\n', (1315, 1326), True, 'import numpy as np\n'), ((3045, 3088), 'numpy.arange', 'np.arange', (['self.variational_params.shape[0]'], {}), '(self.variational_params.shape[0])\n', (3054, 3088), True, 'import numpy as np\n')]
################################################### ## ## ## This file is part of the KinBot code v2.0 ## ## ## ## The contents are covered by the terms of the ## ## BSD 3-clause license included in the LICENSE ## ## file, found at the root. ## ## ## ## Copyright 2018 National Technology & ## ## Engineering Solutions of Sandia, LLC (NTESS). ## ## Under the terms of Contract DE-NA0003525 with ## ## NTESS, the U.S. Government retains certain ## ## rights to this software. ## ## ## ## Authors: ## ## <NAME> ## ## <NAME> ## ## ## ################################################### import os,sys import time import logging import numpy as np import matplotlib.pyplot as plt from constants import * from stationary_pt import * from zmat import * from qc import * import par def generate_hir_geoms(species, natom, atom, mult, charge, cart, wellorts): species.hir_status = [] species.hir_energies = [] species.hir_geoms = [] while len(species.hir_status) < len(species.dihed): species.hir_status.append([-1 for i in range(par.nrotation)]) species.hir_energies.append([-1 for i in range(par.nrotation)]) species.hir_geoms.append([[] for i in range(par.nrotation)]) for rotor in range(len(species.dihed)): cart = np.asarray(cart) zmat_atom, zmat_ref, zmat, zmatorder = make_zmat_from_cart(species, rotor, natom, atom, cart, 0) #first element has same geometry ( TODO: this shouldn't be recalculated) cart_new = make_cart_from_zmat(zmat, zmat_atom, zmat_ref, natom, atom, zmatorder) fi = [(zi+1) for zi in zmatorder[:4]] qc_hir(species,cart_new,wellorts,natom,atom,mult,charge,rotor,0,[fi]) for ai in range(1,par.nrotation): ang = 360. / float(par.nrotation) zmat[3][2] += ang for i in range(4, natom): if zmat_ref[i][2] == 4: zmat[i][2] += ang if zmat_ref[i][2] == 1: zmat[i][2] += ang cart_new = make_cart_from_zmat(zmat, zmat_atom, zmat_ref, natom, atom, zmatorder) qc_hir(species,cart_new,wellorts,natom,atom,mult,charge,rotor,ai,[fi]) return 0 def test_hir(species,natom,atom,mult,charge,wellorts): for rotor in range(len(species.dihed)): for ai in range(par.nrotation): if species.hir_status[rotor][ai] == -1: if wellorts: job = 'hir/' + species.name + '_hir_' + str(rotor) + '_' + str(ai).zfill(2) else: job = 'hir/' + str(species.chemid) + '_hir_' + str(rotor) + '_' + str(ai).zfill(2) err, geom = get_qc_geom(job, natom) if err == 1: #still running continue elif err == -1: #failed species.hir_status[rotor][ai] = 1 species.hir_energies[rotor][ai] = -1 species.hir_geoms[rotor][ai] = geom else: #check if all the bond lenghts are within 15% or the original bond lengths if equal_geom(species.bond,species.geom,geom,0.15): err, energy = get_qc_energy(job) species.hir_status[rotor][ai] = 0 species.hir_energies[rotor][ai] = energy species.hir_geoms[rotor][ai] = geom else: species.hir_status[rotor][ai] = 1 species.hir_energies[rotor][ai] = -1 species.hir_geoms[rotor][ai] = geom return 0 def check_hir(species, natom, atom, mult, charge, wellorts, wait = 0): """ Check for hir calculations and optionally wait for them to finish """ while 1: #check if all the calculations are finished test_hir(species,natom,atom,mult,charge,wellorts) if all([all([test >= 0 for test in status]) for status in species.hir_status]): for rotor in range(len(species.dihed)): if wellorts: job = species.name + '_hir_' + str(rotor) else: job = str(species.chemid) + '_hir_' + str(rotor) angles = [i * 2 * np.pi / float(par.nrotation) for i in range(par.nrotation)] #write profile to file write_profile(species,rotor,job,atom,natom) species.hir_fourier.append(fourier_fit(job,angles,species.hir_energies[rotor],species.hir_status[rotor],plot_fit = 0)) return 1 else: if wait: time.sleep(1) else: return 0 def write_profile(species,rotor,job,atom,natom): """ Write a molden-readable file with the HIR scan (geometries and energies) """ file = open('hir/' + job + '.xyz','w') for i in range(par.nrotation): s = str(natom) + '\n' s += 'energy = ' + str(species.hir_energies[rotor][i]) + '\n' for j,at in enumerate(atom): x,y,z = species.hir_geoms[rotor][i][j] s += '{} {:.8f} {:.8f} {:.8f}\n'.format(at,x,y,z) file.write(s) file.close() def fourier_fit(job,angles,energies,status,plot_fit = 0): """ Create a alternative fourier formulation of a hindered rotor (Vanspeybroeck et al.) profile, the angles are in radians and the eneries in kcal per mol plot_fit: plot the profile and the fit to a png """ n_terms = 6 #the number of sine and cosine terms ang = [angles[i] for i in range(len(status)) if status[i] == 0] ens = [(energies[i] - energies[0])*AUtoKCAL for i in range(len(status)) if status[i] == 0] if len(ens) < par.par.nrotation - 2: #more than two points are off logging.warning("Hindered rotor potential has more than 2 failures for " + job) X = np.zeros((len(ang), 2 * n_terms)) for i,ai in enumerate(ang): for j in range(n_terms): X[i][j] = (1 - np.cos((j+1) * ai)) X[i][j+n_terms] = np.sin((j+1) * ai) A = np.linalg.lstsq(X,np.array(ens))[0] for i,si in enumerate(status): if si == 1: energies[i] = energies[0] + get_fit_value(A,angles[i])/AUtoKCAL if plot_fit: #fit the plot to a png file plt.plot(ang,ens,'ro') fit_angles = [i * 2. * np.pi / 360 for i in range(360)] fit_energies = [get_fit_value(A,ai) for ai in fit_angles] plt.plot(fit_angles,fit_energies) plt.xlabel('Dihedral angle [radians]') plt.ylabel('Energy [kcal/mol]') plt.savefig('hir_profiles/{}.png'.format(job)) plt.clf() return A def get_fit_value(A,ai): """ Get the fitted energy """ e = 0. n_terms = (len(A)) / 2 for j in range(n_terms): e += A[j] * ( 1 - np.cos((j+1) * ai)) e += A[j+n_terms] * np.sin((j+1) * ai) return e def main(): """ Calculate the 1D hindered rotor profiles Create a fourier fit representation of the profile """ if __name__ == "__main__": main()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "logging.warning", "numpy.asarray", "matplotlib.pyplot.clf", "time.sleep", "numpy.array", "numpy.cos", "numpy.sin" ]
[((1651, 1667), 'numpy.asarray', 'np.asarray', (['cart'], {}), '(cart)\n', (1661, 1667), True, 'import numpy as np\n'), ((6232, 6311), 'logging.warning', 'logging.warning', (["('Hindered rotor potential has more than 2 failures for ' + job)"], {}), "('Hindered rotor potential has more than 2 failures for ' + job)\n", (6247, 6311), False, 'import logging\n'), ((6767, 6791), 'matplotlib.pyplot.plot', 'plt.plot', (['ang', 'ens', '"""ro"""'], {}), "(ang, ens, 'ro')\n", (6775, 6791), True, 'import matplotlib.pyplot as plt\n'), ((6928, 6962), 'matplotlib.pyplot.plot', 'plt.plot', (['fit_angles', 'fit_energies'], {}), '(fit_angles, fit_energies)\n', (6936, 6962), True, 'import matplotlib.pyplot as plt\n'), ((6970, 7008), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Dihedral angle [radians]"""'], {}), "('Dihedral angle [radians]')\n", (6980, 7008), True, 'import matplotlib.pyplot as plt\n'), ((7017, 7048), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Energy [kcal/mol]"""'], {}), "('Energy [kcal/mol]')\n", (7027, 7048), True, 'import matplotlib.pyplot as plt\n'), ((7112, 7121), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (7119, 7121), True, 'import matplotlib.pyplot as plt\n'), ((6501, 6521), 'numpy.sin', 'np.sin', (['((j + 1) * ai)'], {}), '((j + 1) * ai)\n', (6507, 6521), True, 'import numpy as np\n'), ((6547, 6560), 'numpy.array', 'np.array', (['ens'], {}), '(ens)\n', (6555, 6560), True, 'import numpy as np\n'), ((7344, 7364), 'numpy.sin', 'np.sin', (['((j + 1) * ai)'], {}), '((j + 1) * ai)\n', (7350, 7364), True, 'import numpy as np\n'), ((5048, 5061), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (5058, 5061), False, 'import time\n'), ((6451, 6471), 'numpy.cos', 'np.cos', (['((j + 1) * ai)'], {}), '((j + 1) * ai)\n', (6457, 6471), True, 'import numpy as np\n'), ((7296, 7316), 'numpy.cos', 'np.cos', (['((j + 1) * ai)'], {}), '((j + 1) * ai)\n', (7302, 7316), True, 'import numpy as np\n')]
import torch.utils.data from torch.utils.tensorboard import SummaryWriter from torch import nn from tqdm import tqdm import numpy as np from datasets.preprocess import DatasetWrapper from utils import AverageMeter class IOC_MLP(torch.nn.Module): def __init__(self, input_features, out_classes): super().__init__() self.model = nn.Sequential( nn.Flatten(), nn.Linear(input_features, 800), nn.BatchNorm1d(800), nn.ELU(), nn.Linear(800, 800), nn.BatchNorm1d(800), nn.ELU(), nn.Linear(800, 800), nn.BatchNorm1d(800), nn.ELU(), nn.Linear(800, out_classes), ) def forward(self, x): output = self.model(x) return output def train_epoch(model: nn.Module, optimizer, loss_func, dataset, train_loader, epoch, n_epochs): model.train() losses = AverageMeter() errors = AverageMeter() with tqdm(total=len(dataset.train_set), desc=f"Epoch {epoch + 1} / {n_epochs}") as pbar: for data, targets in train_loader: if torch.cuda.is_available(): data = data.cuda() targets = targets.cuda() optimizer.zero_grad() outputs = model(data) loss = loss_func(outputs, targets) loss.backward() optimizer.step() # convex ensuring step: for name, param in model.named_parameters(): split = name.split('.') if int(split[1]) >= 2 and split[2] == 'weight': param_data = param.data.cpu().numpy() param_data[param_data < 0] = np.exp( param_data[param_data < 0] - 5) # param.data.copy_(torch.tensor(param_data)) batch_size = targets.size(0) _, pred = outputs.data.cpu().topk(1, dim=1) error = torch.ne(pred.squeeze(), targets.cpu()).float().sum().item() / batch_size errors.update(error, batch_size) losses.update(loss.item()) pbar.update(data.size(0)) pbar.set_postfix(**{ '[Train/Loss]': losses.avg, '[Train/Error]': errors.avg }) return losses.avg, errors.avg # # def test_epoch(model: nn.Module, dataset: DatasetWrapper, test_loader: torch.utils.data.DataLoader): model.eval() # losses = AverageMeter() errors = AverageMeter() with tqdm(total=len(dataset.test_set), desc=f"Valid") as pbar: with torch.no_grad(): for data, targets in test_loader: if torch.cuda.is_available(): data = data.cuda() targets = targets.cuda() outputs = model(data) # loss = loss_func(outputs, targets) batch_size = targets.size(0) _, pred = outputs.data.cpu().topk(1, dim=1) error = torch.ne(pred.squeeze(), targets.cpu()).float().sum().item() / batch_size errors.update(error, batch_size) # losses.update(loss.item()) pbar.update(data.shape[0]) pbar.set_postfix(**{ '[Valid/Error]': errors.avg }) return errors.avg def fit(model: IOC_MLP, dataset: DatasetWrapper, lr=0.0001, batch_size=64, n_epochs=10, path=None): if path is None: path = f'trained_models/ioc_mlp.{dataset.name}' writer = SummaryWriter(f'runs/ioc_mlp.{dataset.name}') if torch.cuda.is_available(): model.cuda() model.train() train_loader = torch.utils.data.DataLoader(dataset.train_set, batch_size=batch_size, shuffle=True, ) test_loader = torch.utils.data.DataLoader(dataset.test_set, batch_size=batch_size, ) valid_loader = torch.utils.data.DataLoader(dataset.valid_set, batch_size=batch_size, ) loss_func = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr) best_error = np.inf counter = 0 for epoch in range(n_epochs): train_loss, train_error = train_epoch(model=model, optimizer=optimizer, loss_func=loss_func, dataset=dataset, train_loader=train_loader, epoch=epoch, n_epochs=n_epochs) valid_error = test_epoch(model, dataset, valid_loader) writer.add_scalars('loss', {'train': train_loss}, epoch) writer.add_scalars('accuracy', {'train': (1 - train_error) * 100, 'valid': (1 - valid_error) * 100}, epoch) print(valid_error) if valid_error < best_error: print('Saving!') torch.save(model.state_dict(), path) best_error = valid_error counter = 0 else: counter += 1 if counter > 7: print("Patience came ending now") break writer.close()
[ "torch.nn.ELU", "torch.utils.tensorboard.SummaryWriter", "torch.nn.CrossEntropyLoss", "torch.nn.Flatten", "numpy.exp", "torch.nn.BatchNorm1d", "torch.nn.Linear", "utils.AverageMeter" ]
[((960, 974), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (972, 974), False, 'from utils import AverageMeter\n'), ((988, 1002), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (1000, 1002), False, 'from utils import AverageMeter\n'), ((2598, 2612), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (2610, 2612), False, 'from utils import AverageMeter\n'), ((3693, 3738), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['f"""runs/ioc_mlp.{dataset.name}"""'], {}), "(f'runs/ioc_mlp.{dataset.name}')\n", (3706, 3738), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((4440, 4461), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (4459, 4461), False, 'from torch import nn\n'), ((378, 390), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (388, 390), False, 'from torch import nn\n'), ((404, 434), 'torch.nn.Linear', 'nn.Linear', (['input_features', '(800)'], {}), '(input_features, 800)\n', (413, 434), False, 'from torch import nn\n'), ((448, 467), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(800)'], {}), '(800)\n', (462, 467), False, 'from torch import nn\n'), ((481, 489), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (487, 489), False, 'from torch import nn\n'), ((503, 522), 'torch.nn.Linear', 'nn.Linear', (['(800)', '(800)'], {}), '(800, 800)\n', (512, 522), False, 'from torch import nn\n'), ((536, 555), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(800)'], {}), '(800)\n', (550, 555), False, 'from torch import nn\n'), ((569, 577), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (575, 577), False, 'from torch import nn\n'), ((591, 610), 'torch.nn.Linear', 'nn.Linear', (['(800)', '(800)'], {}), '(800, 800)\n', (600, 610), False, 'from torch import nn\n'), ((624, 643), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(800)'], {}), '(800)\n', (638, 643), False, 'from torch import nn\n'), ((657, 665), 'torch.nn.ELU', 'nn.ELU', ([], {}), '()\n', (663, 665), False, 'from torch import nn\n'), ((679, 706), 'torch.nn.Linear', 'nn.Linear', (['(800)', 'out_classes'], {}), '(800, out_classes)\n', (688, 706), False, 'from torch import nn\n'), ((1752, 1790), 'numpy.exp', 'np.exp', (['(param_data[param_data < 0] - 5)'], {}), '(param_data[param_data < 0] - 5)\n', (1758, 1790), True, 'import numpy as np\n')]
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from paddle.fluid.framework import program_guard, Program from paddle.fluid.executor import Executor from paddle.fluid import framework from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell from paddle.fluid.layers import rnn as dynamic_rnn from paddle.fluid import contrib from paddle.fluid.contrib.layers import basic_lstm import paddle.fluid.layers.utils as utils import numpy as np class TestLSTMCellError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): batch_size, input_size, hidden_size = 4, 16, 16 inputs = fluid.data(name='inputs', shape=[None, input_size], dtype='float32') pre_hidden = fluid.data(name='pre_hidden', shape=[None, hidden_size], dtype='float32') pre_cell = fluid.data(name='pre_cell', shape=[None, hidden_size], dtype='float32') cell = LSTMCell(hidden_size) def test_input_Variable(): np_input = np.random.random( (batch_size, input_size)).astype("float32") cell(np_input, [pre_hidden, pre_cell]) self.assertRaises(TypeError, test_input_Variable) def test_pre_hidden_Variable(): np_pre_hidden = np.random.random( (batch_size, hidden_size)).astype("float32") cell(inputs, [np_pre_hidden, pre_cell]) self.assertRaises(TypeError, test_pre_hidden_Variable) def test_pre_cell_Variable(): np_pre_cell = np.random.random( (batch_size, input_size)).astype("float32") cell(inputs, [pre_hidden, np_pre_cell]) self.assertRaises(TypeError, test_pre_cell_Variable) def test_input_type(): error_inputs = fluid.data(name='error_inputs', shape=[None, input_size], dtype='int32') cell(error_inputs, [pre_hidden, pre_cell]) self.assertRaises(TypeError, test_input_type) def test_pre_hidden_type(): error_pre_hidden = fluid.data(name='error_pre_hidden', shape=[None, hidden_size], dtype='int32') cell(inputs, [error_pre_hidden, pre_cell]) self.assertRaises(TypeError, test_pre_hidden_type) def test_pre_cell_type(): error_pre_cell = fluid.data(name='error_pre_cell', shape=[None, hidden_size], dtype='int32') cell(inputs, [pre_hidden, error_pre_cell]) self.assertRaises(TypeError, test_pre_cell_type) def test_dtype(): # the input type must be Variable LSTMCell(hidden_size, dtype="int32") self.assertRaises(TypeError, test_dtype) class TestLSTMCell(unittest.TestCase): def setUp(self): self.batch_size = 4 self.input_size = 16 self.hidden_size = 16 def test_run(self): inputs = fluid.data(name='inputs', shape=[None, self.input_size], dtype='float32') pre_hidden = fluid.data(name='pre_hidden', shape=[None, self.hidden_size], dtype='float32') pre_cell = fluid.data(name='pre_cell', shape=[None, self.hidden_size], dtype='float32') cell = LSTMCell(self.hidden_size) lstm_hidden_new, lstm_states_new = cell(inputs, [pre_hidden, pre_cell]) lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit( "basicLSTM", self.hidden_size, None, None, None, None, 1.0, "float32") lstm_hidden, lstm_cell = lstm_unit(inputs, pre_hidden, pre_cell) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) inputs_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.input_size)).astype('float32') pre_hidden_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32') pre_cell_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32') param_names = [[ "LSTMCell/BasicLSTMUnit_0.w_0", "basicLSTM/BasicLSTMUnit_0.w_0" ], ["LSTMCell/BasicLSTMUnit_0.b_0", "basicLSTM/BasicLSTMUnit_0.b_0"]] for names in param_names: param = np.array(fluid.global_scope().find_var( names[0]).get_tensor()) param = np.random.uniform(-0.1, 0.1, size=param.shape).astype('float32') fluid.global_scope().find_var(names[0]).get_tensor().set( param, place) fluid.global_scope().find_var(names[1]).get_tensor().set( param, place) out = exe.run(feed={ 'inputs': inputs_np, 'pre_hidden': pre_hidden_np, 'pre_cell': pre_cell_np }, fetch_list=[lstm_hidden_new, lstm_hidden]) self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0)) class TestGRUCellError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): batch_size, input_size, hidden_size = 4, 16, 16 inputs = fluid.data(name='inputs', shape=[None, input_size], dtype='float32') pre_hidden = layers.data(name='pre_hidden', shape=[None, hidden_size], append_batch_size=False, dtype='float32') cell = GRUCell(hidden_size) def test_input_Variable(): np_input = np.random.random( (batch_size, input_size)).astype("float32") cell(np_input, pre_hidden) self.assertRaises(TypeError, test_input_Variable) def test_pre_hidden_Variable(): np_pre_hidden = np.random.random( (batch_size, hidden_size)).astype("float32") cell(inputs, np_pre_hidden) self.assertRaises(TypeError, test_pre_hidden_Variable) def test_input_type(): error_inputs = fluid.data(name='error_inputs', shape=[None, input_size], dtype='int32') cell(error_inputs, pre_hidden) self.assertRaises(TypeError, test_input_type) def test_pre_hidden_type(): error_pre_hidden = fluid.data(name='error_pre_hidden', shape=[None, hidden_size], dtype='int32') cell(inputs, error_pre_hidden) self.assertRaises(TypeError, test_pre_hidden_type) def test_dtype(): # the input type must be Variable GRUCell(hidden_size, dtype="int32") self.assertRaises(TypeError, test_dtype) class TestGRUCell(unittest.TestCase): def setUp(self): self.batch_size = 4 self.input_size = 16 self.hidden_size = 16 def test_run(self): inputs = fluid.data(name='inputs', shape=[None, self.input_size], dtype='float32') pre_hidden = layers.data(name='pre_hidden', shape=[None, self.hidden_size], append_batch_size=False, dtype='float32') cell = GRUCell(self.hidden_size) gru_hidden_new, _ = cell(inputs, pre_hidden) gru_unit = contrib.layers.rnn_impl.BasicGRUUnit("basicGRU", self.hidden_size, None, None, None, None, "float32") gru_hidden = gru_unit(inputs, pre_hidden) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) inputs_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.input_size)).astype('float32') pre_hidden_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32') param_names = [ ["GRUCell/BasicGRUUnit_0.w_0", "basicGRU/BasicGRUUnit_0.w_0"], ["GRUCell/BasicGRUUnit_0.w_1", "basicGRU/BasicGRUUnit_0.w_1"], ["GRUCell/BasicGRUUnit_0.b_0", "basicGRU/BasicGRUUnit_0.b_0"], ["GRUCell/BasicGRUUnit_0.b_1", "basicGRU/BasicGRUUnit_0.b_1"] ] for names in param_names: param = np.array(fluid.global_scope().find_var( names[0]).get_tensor()) param = np.random.uniform(-0.1, 0.1, size=param.shape).astype('float32') fluid.global_scope().find_var(names[0]).get_tensor().set( param, place) fluid.global_scope().find_var(names[1]).get_tensor().set( param, place) out = exe.run(feed={ 'inputs': inputs_np, 'pre_hidden': pre_hidden_np }, fetch_list=[gru_hidden_new, gru_hidden]) self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0)) class TestRnnError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): batch_size = 4 input_size = 16 hidden_size = 16 seq_len = 4 inputs = fluid.data(name='inputs', shape=[None, input_size], dtype='float32') pre_hidden = layers.data(name='pre_hidden', shape=[None, hidden_size], append_batch_size=False, dtype='float32') inputs_basic_lstm = fluid.data(name='inputs_basic_lstm', shape=[None, None, input_size], dtype='float32') sequence_length = fluid.data(name="sequence_length", shape=[None], dtype='int64') inputs_dynamic_rnn = layers.transpose(inputs_basic_lstm, perm=[1, 0, 2]) cell = LSTMCell(hidden_size, name="LSTMCell_for_rnn") np_inputs_dynamic_rnn = np.random.random( (seq_len, batch_size, input_size)).astype("float32") def test_input_Variable(): dynamic_rnn(cell=cell, inputs=np_inputs_dynamic_rnn, sequence_length=sequence_length, is_reverse=False) self.assertRaises(TypeError, test_input_Variable) def test_input_list(): dynamic_rnn(cell=cell, inputs=[np_inputs_dynamic_rnn], sequence_length=sequence_length, is_reverse=False) self.assertRaises(TypeError, test_input_list) def test_initial_states_type(): cell = GRUCell(hidden_size, name="GRUCell_for_rnn") error_initial_states = np.random.random( (batch_size, hidden_size)).astype("float32") dynamic_rnn(cell=cell, inputs=inputs_dynamic_rnn, initial_states=error_initial_states, sequence_length=sequence_length, is_reverse=False) self.assertRaises(TypeError, test_initial_states_type) def test_initial_states_list(): error_initial_states = [ np.random.random( (batch_size, hidden_size)).astype("float32"), np.random.random( (batch_size, hidden_size)).astype("float32") ] dynamic_rnn(cell=cell, inputs=inputs_dynamic_rnn, initial_states=error_initial_states, sequence_length=sequence_length, is_reverse=False) self.assertRaises(TypeError, test_initial_states_type) def test_sequence_length_type(): np_sequence_length = np.random.random( (batch_size)).astype("float32") dynamic_rnn(cell=cell, inputs=inputs_dynamic_rnn, sequence_length=np_sequence_length, is_reverse=False) self.assertRaises(TypeError, test_sequence_length_type) class TestRnn(unittest.TestCase): def setUp(self): self.batch_size = 4 self.input_size = 16 self.hidden_size = 16 self.seq_len = 4 def test_run(self): inputs_basic_lstm = fluid.data(name='inputs_basic_lstm', shape=[None, None, self.input_size], dtype='float32') sequence_length = fluid.data(name="sequence_length", shape=[None], dtype='int64') inputs_dynamic_rnn = layers.transpose(inputs_basic_lstm, perm=[1, 0, 2]) cell = LSTMCell(self.hidden_size, name="LSTMCell_for_rnn") output, final_state = dynamic_rnn(cell=cell, inputs=inputs_dynamic_rnn, sequence_length=sequence_length, is_reverse=False) output_new = layers.transpose(output, perm=[1, 0, 2]) rnn_out, last_hidden, last_cell = basic_lstm(inputs_basic_lstm, None, None, self.hidden_size, num_layers=1, \ batch_first = False, bidirectional=False, sequence_length=sequence_length, forget_bias = 1.0) if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) inputs_basic_lstm_np = np.random.uniform( -0.1, 0.1, (self.seq_len, self.batch_size, self.input_size)).astype('float32') sequence_length_np = np.ones(self.batch_size, dtype='int64') * self.seq_len inputs_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.input_size)).astype('float32') pre_hidden_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32') pre_cell_np = np.random.uniform( -0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32') param_names = [[ "LSTMCell_for_rnn/BasicLSTMUnit_0.w_0", "basic_lstm_layers_0/BasicLSTMUnit_0.w_0" ], [ "LSTMCell_for_rnn/BasicLSTMUnit_0.b_0", "basic_lstm_layers_0/BasicLSTMUnit_0.b_0" ]] for names in param_names: param = np.array(fluid.global_scope().find_var( names[0]).get_tensor()) param = np.random.uniform(-0.1, 0.1, size=param.shape).astype('float32') fluid.global_scope().find_var(names[0]).get_tensor().set( param, place) fluid.global_scope().find_var(names[1]).get_tensor().set( param, place) out = exe.run(feed={ 'inputs_basic_lstm': inputs_basic_lstm_np, 'sequence_length': sequence_length_np, 'inputs': inputs_np, 'pre_hidden': pre_hidden_np, 'pre_cell': pre_cell_np }, fetch_list=[output_new, rnn_out]) self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4)) class TestRnnUtil(unittest.TestCase): """ Test cases for rnn apis' utility methods for coverage. """ def test_case(self): inputs = {"key1": 1, "key2": 2} func = lambda x: x + 1 outputs = utils.map_structure(func, inputs) utils.assert_same_structure(inputs, outputs) try: inputs["key3"] = 3 utils.assert_same_structure(inputs, outputs) except ValueError as identifier: pass class EncoderCell(RNNCell): """Encoder Cell""" def __init__( self, num_layers, hidden_size, dropout_prob=0., init_scale=0.1, ): self.num_layers = num_layers self.hidden_size = hidden_size self.dropout_prob = dropout_prob self.lstm_cells = [] for i in range(num_layers): self.lstm_cells.append(LSTMCell(hidden_size)) def call(self, step_input, states): new_states = [] for i in range(self.num_layers): out, new_state = self.lstm_cells[i](step_input, states[i]) step_input = layers.dropout( out, self.dropout_prob, ) if self.dropout_prob else out new_states.append(new_state) return step_input, new_states @property def state_shape(self): return [cell.state_shape for cell in self.lstm_cells] class DecoderCell(RNNCell): """Decoder Cell""" def __init__(self, num_layers, hidden_size, dropout_prob=0.): self.num_layers = num_layers self.hidden_size = hidden_size self.dropout_prob = dropout_prob self.lstm_cells = [] for i in range(num_layers): self.lstm_cells.append(LSTMCell(hidden_size)) def call(self, step_input, states): new_lstm_states = [] for i in range(self.num_layers): out, new_lstm_state = self.lstm_cells[i](step_input, states[i]) step_input = layers.dropout( out, self.dropout_prob, ) if self.dropout_prob else out new_lstm_states.append(new_lstm_state) return step_input, new_lstm_states def def_seq2seq_model(num_layers, hidden_size, dropout_prob, src_vocab_size, trg_vocab_size): "vanilla seq2seq model" # data source = fluid.data(name="src", shape=[None, None], dtype="int64") source_length = fluid.data(name="src_sequence_length", shape=[None], dtype="int64") target = fluid.data(name="trg", shape=[None, None], dtype="int64") target_length = fluid.data(name="trg_sequence_length", shape=[None], dtype="int64") label = fluid.data(name="label", shape=[None, None, 1], dtype="int64") # embedding src_emb = fluid.embedding(source, (src_vocab_size, hidden_size)) tar_emb = fluid.embedding(target, (src_vocab_size, hidden_size)) # encoder enc_cell = EncoderCell(num_layers, hidden_size, dropout_prob) enc_output, enc_final_state = dynamic_rnn(cell=enc_cell, inputs=src_emb, sequence_length=source_length) # decoder dec_cell = DecoderCell(num_layers, hidden_size, dropout_prob) dec_output, dec_final_state = dynamic_rnn(cell=dec_cell, inputs=tar_emb, initial_states=enc_final_state) logits = layers.fc(dec_output, size=trg_vocab_size, num_flatten_dims=len(dec_output.shape) - 1, bias_attr=False) # loss loss = layers.softmax_with_cross_entropy(logits=logits, label=label, soft_label=False) loss = layers.unsqueeze(loss, axes=[2]) max_tar_seq_len = layers.shape(target)[1] tar_mask = layers.sequence_mask(target_length, maxlen=max_tar_seq_len, dtype="float32") loss = loss * tar_mask loss = layers.reduce_mean(loss, dim=[0]) loss = layers.reduce_sum(loss) # optimizer optimizer = fluid.optimizer.Adam(0.001) optimizer.minimize(loss) return loss class TestSeq2SeqModel(unittest.TestCase): """ Test cases to confirm seq2seq api training correctly. """ def setUp(self): np.random.seed(123) self.model_hparams = { "num_layers": 2, "hidden_size": 128, "dropout_prob": 0.1, "src_vocab_size": 100, "trg_vocab_size": 100 } self.iter_num = iter_num = 2 self.batch_size = batch_size = 4 src_seq_len = 10 trg_seq_len = 12 self.data = { "src": np.random.randint( 2, self.model_hparams["src_vocab_size"], (iter_num * batch_size, src_seq_len)).astype("int64"), "src_sequence_length": np.random.randint(1, src_seq_len, (iter_num * batch_size, )).astype("int64"), "trg": np.random.randint( 2, self.model_hparams["src_vocab_size"], (iter_num * batch_size, trg_seq_len)).astype("int64"), "trg_sequence_length": np.random.randint(1, trg_seq_len, (iter_num * batch_size, )).astype("int64"), "label": np.random.randint( 2, self.model_hparams["src_vocab_size"], (iter_num * batch_size, trg_seq_len, 1)).astype("int64"), } place = core.CUDAPlace( 0) if core.is_compiled_with_cuda() else core.CPUPlace() self.exe = Executor(place) def test_seq2seq_model(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): cost = def_seq2seq_model(**self.model_hparams) self.exe.run(startup_program) for iter_idx in range(self.iter_num): cost_val = self.exe.run(feed={ "src": self.data["src"][iter_idx * self.batch_size:(iter_idx + 1) * self.batch_size, :], "src_sequence_length": self.data["src_sequence_length"][iter_idx * self.batch_size:(iter_idx + 1) * self.batch_size], "trg": self.data["trg"][iter_idx * self.batch_size:(iter_idx + 1) * self.batch_size, :], "trg_sequence_length": self.data["trg_sequence_length"][iter_idx * self.batch_size:(iter_idx + 1) * self.batch_size], "label": self.data["label"][iter_idx * self.batch_size:(iter_idx + 1) * self.batch_size] }, fetch_list=[cost])[0] print("iter_idx: %d, cost: %f" % (iter_idx, cost_val)) if __name__ == '__main__': unittest.main()
[ "paddle.fluid.embedding", "paddle.fluid.layers.data", "paddle.fluid.layers.shape", "paddle.fluid.layers.sequence_mask", "paddle.fluid.contrib.layers.rnn_impl.BasicLSTMUnit", "unittest.main", "paddle.fluid.optimizer.Adam", "paddle.fluid.layers.transpose", "paddle.fluid.executor.Executor", "paddle.fluid.contrib.layers.basic_lstm", "paddle.fluid.layers.reduce_mean", "numpy.random.random", "paddle.fluid.global_scope", "paddle.fluid.layers.reduce_sum", "numpy.random.seed", "paddle.fluid.core.is_compiled_with_cuda", "paddle.fluid.layers.rnn.LSTMCell", "numpy.allclose", "paddle.fluid.data", "paddle.fluid.layers.utils.assert_same_structure", "paddle.fluid.contrib.layers.rnn_impl.BasicGRUUnit", "paddle.fluid.Program", "numpy.ones", "paddle.fluid.layers.dropout", "paddle.fluid.layers.softmax_with_cross_entropy", "paddle.fluid.layers.rnn", "paddle.fluid.layers.utils.map_structure", "paddle.fluid.layers.unsqueeze", "paddle.fluid.framework.Program", "numpy.random.randint", "paddle.fluid.framework.default_startup_program", "numpy.random.uniform", "paddle.fluid.core.CUDAPlace", "paddle.fluid.layers.rnn.GRUCell", "paddle.fluid.program_guard", "paddle.fluid.core.CPUPlace" ]
[((20147, 20204), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""src"""', 'shape': '[None, None]', 'dtype': '"""int64"""'}), "(name='src', shape=[None, None], dtype='int64')\n", (20157, 20204), True, 'import paddle.fluid as fluid\n'), ((20225, 20292), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""src_sequence_length"""', 'shape': '[None]', 'dtype': '"""int64"""'}), "(name='src_sequence_length', shape=[None], dtype='int64')\n", (20235, 20292), True, 'import paddle.fluid as fluid\n'), ((20368, 20425), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""trg"""', 'shape': '[None, None]', 'dtype': '"""int64"""'}), "(name='trg', shape=[None, None], dtype='int64')\n", (20378, 20425), True, 'import paddle.fluid as fluid\n'), ((20446, 20513), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""trg_sequence_length"""', 'shape': '[None]', 'dtype': '"""int64"""'}), "(name='trg_sequence_length', shape=[None], dtype='int64')\n", (20456, 20513), True, 'import paddle.fluid as fluid\n'), ((20588, 20650), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""label"""', 'shape': '[None, None, 1]', 'dtype': '"""int64"""'}), "(name='label', shape=[None, None, 1], dtype='int64')\n", (20598, 20650), True, 'import paddle.fluid as fluid\n'), ((20682, 20736), 'paddle.fluid.embedding', 'fluid.embedding', (['source', '(src_vocab_size, hidden_size)'], {}), '(source, (src_vocab_size, hidden_size))\n', (20697, 20736), True, 'import paddle.fluid as fluid\n'), ((20751, 20805), 'paddle.fluid.embedding', 'fluid.embedding', (['target', '(src_vocab_size, hidden_size)'], {}), '(target, (src_vocab_size, hidden_size))\n', (20766, 20805), True, 'import paddle.fluid as fluid\n'), ((20921, 20994), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'enc_cell', 'inputs': 'src_emb', 'sequence_length': 'source_length'}), '(cell=enc_cell, inputs=src_emb, sequence_length=source_length)\n', (20932, 20994), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((21202, 21276), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'dec_cell', 'inputs': 'tar_emb', 'initial_states': 'enc_final_state'}), '(cell=dec_cell, inputs=tar_emb, initial_states=enc_final_state)\n', (21213, 21276), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((21578, 21657), 'paddle.fluid.layers.softmax_with_cross_entropy', 'layers.softmax_with_cross_entropy', ([], {'logits': 'logits', 'label': 'label', 'soft_label': '(False)'}), '(logits=logits, label=label, soft_label=False)\n', (21611, 21657), True, 'import paddle.fluid.layers as layers\n'), ((21759, 21791), 'paddle.fluid.layers.unsqueeze', 'layers.unsqueeze', (['loss'], {'axes': '[2]'}), '(loss, axes=[2])\n', (21775, 21791), True, 'import paddle.fluid.layers as layers\n'), ((21853, 21929), 'paddle.fluid.layers.sequence_mask', 'layers.sequence_mask', (['target_length'], {'maxlen': 'max_tar_seq_len', 'dtype': '"""float32"""'}), "(target_length, maxlen=max_tar_seq_len, dtype='float32')\n", (21873, 21929), True, 'import paddle.fluid.layers as layers\n'), ((22040, 22073), 'paddle.fluid.layers.reduce_mean', 'layers.reduce_mean', (['loss'], {'dim': '[0]'}), '(loss, dim=[0])\n', (22058, 22073), True, 'import paddle.fluid.layers as layers\n'), ((22085, 22108), 'paddle.fluid.layers.reduce_sum', 'layers.reduce_sum', (['loss'], {}), '(loss)\n', (22102, 22108), True, 'import paddle.fluid.layers as layers\n'), ((22142, 22169), 'paddle.fluid.optimizer.Adam', 'fluid.optimizer.Adam', (['(0.001)'], {}), '(0.001)\n', (22162, 22169), True, 'import paddle.fluid as fluid\n'), ((25505, 25520), 'unittest.main', 'unittest.main', ([], {}), '()\n', (25518, 25520), False, 'import unittest\n'), ((4166, 4239), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs"""', 'shape': '[None, self.input_size]', 'dtype': '"""float32"""'}), "(name='inputs', shape=[None, self.input_size], dtype='float32')\n", (4176, 4239), True, 'import paddle.fluid as fluid\n'), ((4317, 4395), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""pre_hidden"""', 'shape': '[None, self.hidden_size]', 'dtype': '"""float32"""'}), "(name='pre_hidden', shape=[None, self.hidden_size], dtype='float32')\n", (4327, 4395), True, 'import paddle.fluid as fluid\n'), ((4479, 4555), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""pre_cell"""', 'shape': '[None, self.hidden_size]', 'dtype': '"""float32"""'}), "(name='pre_cell', shape=[None, self.hidden_size], dtype='float32')\n", (4489, 4555), True, 'import paddle.fluid as fluid\n'), ((4632, 4658), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['self.hidden_size'], {}), '(self.hidden_size)\n', (4640, 4658), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((4760, 4872), 'paddle.fluid.contrib.layers.rnn_impl.BasicLSTMUnit', 'contrib.layers.rnn_impl.BasicLSTMUnit', (['"""basicLSTM"""', 'self.hidden_size', 'None', 'None', 'None', 'None', '(1.0)', '"""float32"""'], {}), "('basicLSTM', self.hidden_size, None,\n None, None, None, 1.0, 'float32')\n", (4797, 4872), False, 'from paddle.fluid import contrib\n'), ((4979, 5007), 'paddle.fluid.core.is_compiled_with_cuda', 'core.is_compiled_with_cuda', ([], {}), '()\n', (5005, 5007), True, 'import paddle.fluid.core as core\n'), ((5111, 5126), 'paddle.fluid.executor.Executor', 'Executor', (['place'], {}), '(place)\n', (5119, 5126), False, 'from paddle.fluid.executor import Executor\n'), ((8669, 8742), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs"""', 'shape': '[None, self.input_size]', 'dtype': '"""float32"""'}), "(name='inputs', shape=[None, self.input_size], dtype='float32')\n", (8679, 8742), True, 'import paddle.fluid as fluid\n'), ((8820, 8928), 'paddle.fluid.layers.data', 'layers.data', ([], {'name': '"""pre_hidden"""', 'shape': '[None, self.hidden_size]', 'append_batch_size': '(False)', 'dtype': '"""float32"""'}), "(name='pre_hidden', shape=[None, self.hidden_size],\n append_batch_size=False, dtype='float32')\n", (8831, 8928), True, 'import paddle.fluid.layers as layers\n'), ((9040, 9065), 'paddle.fluid.layers.rnn.GRUCell', 'GRUCell', (['self.hidden_size'], {}), '(self.hidden_size)\n', (9047, 9065), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((9139, 9244), 'paddle.fluid.contrib.layers.rnn_impl.BasicGRUUnit', 'contrib.layers.rnn_impl.BasicGRUUnit', (['"""basicGRU"""', 'self.hidden_size', 'None', 'None', 'None', 'None', '"""float32"""'], {}), "('basicGRU', self.hidden_size, None,\n None, None, None, 'float32')\n", (9175, 9244), False, 'from paddle.fluid import contrib\n'), ((9471, 9499), 'paddle.fluid.core.is_compiled_with_cuda', 'core.is_compiled_with_cuda', ([], {}), '()\n', (9497, 9499), True, 'import paddle.fluid.core as core\n'), ((9603, 9618), 'paddle.fluid.executor.Executor', 'Executor', (['place'], {}), '(place)\n', (9611, 9618), False, 'from paddle.fluid.executor import Executor\n'), ((14753, 14847), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs_basic_lstm"""', 'shape': '[None, None, self.input_size]', 'dtype': '"""float32"""'}), "(name='inputs_basic_lstm', shape=[None, None, self.input_size],\n dtype='float32')\n", (14763, 14847), True, 'import paddle.fluid as fluid\n'), ((14948, 15011), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""sequence_length"""', 'shape': '[None]', 'dtype': '"""int64"""'}), "(name='sequence_length', shape=[None], dtype='int64')\n", (14958, 15011), True, 'import paddle.fluid as fluid\n'), ((15116, 15167), 'paddle.fluid.layers.transpose', 'layers.transpose', (['inputs_basic_lstm'], {'perm': '[1, 0, 2]'}), '(inputs_basic_lstm, perm=[1, 0, 2])\n', (15132, 15167), True, 'import paddle.fluid.layers as layers\n'), ((15183, 15234), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['self.hidden_size'], {'name': '"""LSTMCell_for_rnn"""'}), "(self.hidden_size, name='LSTMCell_for_rnn')\n", (15191, 15234), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((15265, 15370), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': 'inputs_dynamic_rnn', 'sequence_length': 'sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=inputs_dynamic_rnn, sequence_length=\n sequence_length, is_reverse=False)\n', (15276, 15370), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((15513, 15553), 'paddle.fluid.layers.transpose', 'layers.transpose', (['output'], {'perm': '[1, 0, 2]'}), '(output, perm=[1, 0, 2])\n', (15529, 15553), True, 'import paddle.fluid.layers as layers\n'), ((15597, 15768), 'paddle.fluid.contrib.layers.basic_lstm', 'basic_lstm', (['inputs_basic_lstm', 'None', 'None', 'self.hidden_size'], {'num_layers': '(1)', 'batch_first': '(False)', 'bidirectional': '(False)', 'sequence_length': 'sequence_length', 'forget_bias': '(1.0)'}), '(inputs_basic_lstm, None, None, self.hidden_size, num_layers=1,\n batch_first=False, bidirectional=False, sequence_length=sequence_length,\n forget_bias=1.0)\n', (15607, 15768), False, 'from paddle.fluid.contrib.layers import basic_lstm\n'), ((15795, 15823), 'paddle.fluid.core.is_compiled_with_cuda', 'core.is_compiled_with_cuda', ([], {}), '()\n', (15821, 15823), True, 'import paddle.fluid.core as core\n'), ((15927, 15942), 'paddle.fluid.executor.Executor', 'Executor', (['place'], {}), '(place)\n', (15935, 15942), False, 'from paddle.fluid.executor import Executor\n'), ((18024, 18057), 'paddle.fluid.layers.utils.map_structure', 'utils.map_structure', (['func', 'inputs'], {}), '(func, inputs)\n', (18043, 18057), True, 'import paddle.fluid.layers.utils as utils\n'), ((18066, 18110), 'paddle.fluid.layers.utils.assert_same_structure', 'utils.assert_same_structure', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (18093, 18110), True, 'import paddle.fluid.layers.utils as utils\n'), ((21814, 21834), 'paddle.fluid.layers.shape', 'layers.shape', (['target'], {}), '(target)\n', (21826, 21834), True, 'import paddle.fluid.layers as layers\n'), ((22364, 22383), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (22378, 22383), True, 'import numpy as np\n'), ((23718, 23733), 'paddle.fluid.executor.Executor', 'Executor', (['place'], {}), '(place)\n', (23726, 23733), False, 'from paddle.fluid.executor import Executor\n'), ((23792, 23807), 'paddle.fluid.Program', 'fluid.Program', ([], {}), '()\n', (23805, 23807), True, 'import paddle.fluid as fluid\n'), ((23834, 23849), 'paddle.fluid.Program', 'fluid.Program', ([], {}), '()\n', (23847, 23849), True, 'import paddle.fluid as fluid\n'), ((1382, 1450), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs"""', 'shape': '[None, input_size]', 'dtype': '"""float32"""'}), "(name='inputs', shape=[None, input_size], dtype='float32')\n", (1392, 1450), True, 'import paddle.fluid as fluid\n'), ((1540, 1613), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""pre_hidden"""', 'shape': '[None, hidden_size]', 'dtype': '"""float32"""'}), "(name='pre_hidden', shape=[None, hidden_size], dtype='float32')\n", (1550, 1613), True, 'import paddle.fluid as fluid\n'), ((1709, 1780), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""pre_cell"""', 'shape': '[None, hidden_size]', 'dtype': '"""float32"""'}), "(name='pre_cell', shape=[None, hidden_size], dtype='float32')\n", (1719, 1780), True, 'import paddle.fluid as fluid\n'), ((1868, 1889), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['hidden_size'], {}), '(hidden_size)\n', (1876, 1889), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((5029, 5046), 'paddle.fluid.core.CUDAPlace', 'core.CUDAPlace', (['(0)'], {}), '(0)\n', (5043, 5046), True, 'import paddle.fluid.core as core\n'), ((5081, 5096), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (5094, 5096), True, 'import paddle.fluid.core as core\n'), ((5143, 5178), 'paddle.fluid.framework.default_startup_program', 'framework.default_startup_program', ([], {}), '()\n', (5176, 5178), False, 'from paddle.fluid import framework\n'), ((6416, 6464), 'numpy.allclose', 'np.allclose', (['out[0]', 'out[1]'], {'rtol': '(0.0001)', 'atol': '(0)'}), '(out[0], out[1], rtol=0.0001, atol=0)\n', (6427, 6464), True, 'import numpy as np\n'), ((6668, 6736), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs"""', 'shape': '[None, input_size]', 'dtype': '"""float32"""'}), "(name='inputs', shape=[None, input_size], dtype='float32')\n", (6678, 6736), True, 'import paddle.fluid as fluid\n'), ((6826, 6930), 'paddle.fluid.layers.data', 'layers.data', ([], {'name': '"""pre_hidden"""', 'shape': '[None, hidden_size]', 'append_batch_size': '(False)', 'dtype': '"""float32"""'}), "(name='pre_hidden', shape=[None, hidden_size], append_batch_size\n =False, dtype='float32')\n", (6837, 6930), True, 'import paddle.fluid.layers as layers\n'), ((7056, 7076), 'paddle.fluid.layers.rnn.GRUCell', 'GRUCell', (['hidden_size'], {}), '(hidden_size)\n', (7063, 7076), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((9521, 9538), 'paddle.fluid.core.CUDAPlace', 'core.CUDAPlace', (['(0)'], {}), '(0)\n', (9535, 9538), True, 'import paddle.fluid.core as core\n'), ((9573, 9588), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (9586, 9588), True, 'import paddle.fluid.core as core\n'), ((9635, 9670), 'paddle.fluid.framework.default_startup_program', 'framework.default_startup_program', ([], {}), '()\n', (9668, 9670), False, 'from paddle.fluid import framework\n'), ((10904, 10952), 'numpy.allclose', 'np.allclose', (['out[0]', 'out[1]'], {'rtol': '(0.0001)', 'atol': '(0)'}), '(out[0], out[1], rtol=0.0001, atol=0)\n', (10915, 10952), True, 'import numpy as np\n'), ((11200, 11268), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs"""', 'shape': '[None, input_size]', 'dtype': '"""float32"""'}), "(name='inputs', shape=[None, input_size], dtype='float32')\n", (11210, 11268), True, 'import paddle.fluid as fluid\n'), ((11358, 11462), 'paddle.fluid.layers.data', 'layers.data', ([], {'name': '"""pre_hidden"""', 'shape': '[None, hidden_size]', 'append_batch_size': '(False)', 'dtype': '"""float32"""'}), "(name='pre_hidden', shape=[None, hidden_size], append_batch_size\n =False, dtype='float32')\n", (11369, 11462), True, 'import paddle.fluid.layers as layers\n'), ((11601, 11691), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""inputs_basic_lstm"""', 'shape': '[None, None, input_size]', 'dtype': '"""float32"""'}), "(name='inputs_basic_lstm', shape=[None, None, input_size], dtype=\n 'float32')\n", (11611, 11691), True, 'import paddle.fluid as fluid\n'), ((11803, 11866), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""sequence_length"""', 'shape': '[None]', 'dtype': '"""int64"""'}), "(name='sequence_length', shape=[None], dtype='int64')\n", (11813, 11866), True, 'import paddle.fluid as fluid\n'), ((11983, 12034), 'paddle.fluid.layers.transpose', 'layers.transpose', (['inputs_basic_lstm'], {'perm': '[1, 0, 2]'}), '(inputs_basic_lstm, perm=[1, 0, 2])\n', (11999, 12034), True, 'import paddle.fluid.layers as layers\n'), ((12104, 12150), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['hidden_size'], {'name': '"""LSTMCell_for_rnn"""'}), "(hidden_size, name='LSTMCell_for_rnn')\n", (12112, 12150), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((15845, 15862), 'paddle.fluid.core.CUDAPlace', 'core.CUDAPlace', (['(0)'], {}), '(0)\n', (15859, 15862), True, 'import paddle.fluid.core as core\n'), ((15897, 15912), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (15910, 15912), True, 'import paddle.fluid.core as core\n'), ((15959, 15994), 'paddle.fluid.framework.default_startup_program', 'framework.default_startup_program', ([], {}), '()\n', (15992, 15994), False, 'from paddle.fluid import framework\n'), ((16179, 16218), 'numpy.ones', 'np.ones', (['self.batch_size'], {'dtype': '"""int64"""'}), "(self.batch_size, dtype='int64')\n", (16186, 16218), True, 'import numpy as np\n'), ((17754, 17794), 'numpy.allclose', 'np.allclose', (['out[0]', 'out[1]'], {'rtol': '(0.0001)'}), '(out[0], out[1], rtol=0.0001)\n', (17765, 17794), True, 'import numpy as np\n'), ((18167, 18211), 'paddle.fluid.layers.utils.assert_same_structure', 'utils.assert_same_structure', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (18194, 18211), True, 'import paddle.fluid.layers.utils as utils\n'), ((23649, 23677), 'paddle.fluid.core.is_compiled_with_cuda', 'core.is_compiled_with_cuda', ([], {}), '()\n', (23675, 23677), True, 'import paddle.fluid.core as core\n'), ((23615, 23632), 'paddle.fluid.core.CUDAPlace', 'core.CUDAPlace', (['(0)'], {}), '(0)\n', (23629, 23632), True, 'import paddle.fluid.core as core\n'), ((23683, 23698), 'paddle.fluid.core.CPUPlace', 'core.CPUPlace', ([], {}), '()\n', (23696, 23698), True, 'import paddle.fluid.core as core\n'), ((23863, 23913), 'paddle.fluid.program_guard', 'fluid.program_guard', (['main_program', 'startup_program'], {}), '(main_program, startup_program)\n', (23882, 23913), True, 'import paddle.fluid as fluid\n'), ((1278, 1287), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (1285, 1287), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((1289, 1298), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (1296, 1298), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((2785, 2857), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""error_inputs"""', 'shape': '[None, input_size]', 'dtype': '"""int32"""'}), "(name='error_inputs', shape=[None, input_size], dtype='int32')\n", (2795, 2857), True, 'import paddle.fluid as fluid\n'), ((3136, 3213), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""error_pre_hidden"""', 'shape': '[None, hidden_size]', 'dtype': '"""int32"""'}), "(name='error_pre_hidden', shape=[None, hidden_size], dtype='int32')\n", (3146, 3213), True, 'import paddle.fluid as fluid\n'), ((3501, 3576), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""error_pre_cell"""', 'shape': '[None, hidden_size]', 'dtype': '"""int32"""'}), "(name='error_pre_cell', shape=[None, hidden_size], dtype='int32')\n", (3511, 3576), True, 'import paddle.fluid as fluid\n'), ((3883, 3919), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['hidden_size'], {'dtype': '"""int32"""'}), "(hidden_size, dtype='int32')\n", (3891, 3919), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((5201, 5265), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.input_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.input_size))\n', (5218, 5265), True, 'import numpy as np\n'), ((5321, 5386), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.hidden_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.hidden_size))\n', (5338, 5386), True, 'import numpy as np\n'), ((5440, 5505), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.hidden_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.hidden_size))\n', (5457, 5505), True, 'import numpy as np\n'), ((6564, 6573), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (6571, 6573), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((6575, 6584), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (6582, 6584), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((7671, 7743), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""error_inputs"""', 'shape': '[None, input_size]', 'dtype': '"""int32"""'}), "(name='error_inputs', shape=[None, input_size], dtype='int32')\n", (7681, 7743), True, 'import paddle.fluid as fluid\n'), ((8010, 8087), 'paddle.fluid.data', 'fluid.data', ([], {'name': '"""error_pre_hidden"""', 'shape': '[None, hidden_size]', 'dtype': '"""int32"""'}), "(name='error_pre_hidden', shape=[None, hidden_size], dtype='int32')\n", (8020, 8087), True, 'import paddle.fluid as fluid\n'), ((8388, 8423), 'paddle.fluid.layers.rnn.GRUCell', 'GRUCell', (['hidden_size'], {'dtype': '"""int32"""'}), "(hidden_size, dtype='int32')\n", (8395, 8423), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((9693, 9757), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.input_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.input_size))\n', (9710, 9757), True, 'import numpy as np\n'), ((9813, 9878), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.hidden_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.hidden_size))\n', (9830, 9878), True, 'import numpy as np\n'), ((11048, 11057), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (11055, 11057), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((11059, 11068), 'paddle.fluid.framework.Program', 'Program', ([], {}), '()\n', (11066, 11068), False, 'from paddle.fluid.framework import program_guard, Program\n'), ((12330, 12438), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': 'np_inputs_dynamic_rnn', 'sequence_length': 'sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=np_inputs_dynamic_rnn, sequence_length=\n sequence_length, is_reverse=False)\n', (12341, 12438), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((12633, 12743), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': '[np_inputs_dynamic_rnn]', 'sequence_length': 'sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=[np_inputs_dynamic_rnn], sequence_length=\n sequence_length, is_reverse=False)\n', (12644, 12743), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((12950, 12994), 'paddle.fluid.layers.rnn.GRUCell', 'GRUCell', (['hidden_size'], {'name': '"""GRUCell_for_rnn"""'}), "(hidden_size, name='GRUCell_for_rnn')\n", (12957, 12994), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((13133, 13275), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': 'inputs_dynamic_rnn', 'initial_states': 'error_initial_states', 'sequence_length': 'sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=inputs_dynamic_rnn, initial_states=\n error_initial_states, sequence_length=sequence_length, is_reverse=False)\n', (13144, 13275), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((13786, 13928), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': 'inputs_dynamic_rnn', 'initial_states': 'error_initial_states', 'sequence_length': 'sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=inputs_dynamic_rnn, initial_states=\n error_initial_states, sequence_length=sequence_length, is_reverse=False)\n', (13797, 13928), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((14273, 14381), 'paddle.fluid.layers.rnn', 'dynamic_rnn', ([], {'cell': 'cell', 'inputs': 'inputs_dynamic_rnn', 'sequence_length': 'np_sequence_length', 'is_reverse': '(False)'}), '(cell=cell, inputs=inputs_dynamic_rnn, sequence_length=\n np_sequence_length, is_reverse=False)\n', (14284, 14381), True, 'from paddle.fluid.layers import rnn as dynamic_rnn\n'), ((16028, 16106), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.seq_len, self.batch_size, self.input_size)'], {}), '(-0.1, 0.1, (self.seq_len, self.batch_size, self.input_size))\n', (16045, 16106), True, 'import numpy as np\n'), ((16292, 16356), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.input_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.input_size))\n', (16309, 16356), True, 'import numpy as np\n'), ((16412, 16477), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.hidden_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.hidden_size))\n', (16429, 16477), True, 'import numpy as np\n'), ((16531, 16596), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)', '(self.batch_size, self.hidden_size)'], {}), '(-0.1, 0.1, (self.batch_size, self.hidden_size))\n', (16548, 16596), True, 'import numpy as np\n'), ((18671, 18692), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['hidden_size'], {}), '(hidden_size)\n', (18679, 18692), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((18896, 18934), 'paddle.fluid.layers.dropout', 'layers.dropout', (['out', 'self.dropout_prob'], {}), '(out, self.dropout_prob)\n', (18910, 18934), True, 'import paddle.fluid.layers as layers\n'), ((19532, 19553), 'paddle.fluid.layers.rnn.LSTMCell', 'LSTMCell', (['hidden_size'], {}), '(hidden_size)\n', (19540, 19553), False, 'from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell\n'), ((19767, 19805), 'paddle.fluid.layers.dropout', 'layers.dropout', (['out', 'self.dropout_prob'], {}), '(out, self.dropout_prob)\n', (19781, 19805), True, 'import paddle.fluid.layers as layers\n'), ((5872, 5918), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)'], {'size': 'param.shape'}), '(-0.1, 0.1, size=param.shape)\n', (5889, 5918), True, 'import numpy as np\n'), ((10399, 10445), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)'], {'size': 'param.shape'}), '(-0.1, 0.1, size=param.shape)\n', (10416, 10445), True, 'import numpy as np\n'), ((12187, 12238), 'numpy.random.random', 'np.random.random', (['(seq_len, batch_size, input_size)'], {}), '((seq_len, batch_size, input_size))\n', (12203, 12238), True, 'import numpy as np\n'), ((17113, 17159), 'numpy.random.uniform', 'np.random.uniform', (['(-0.1)', '(0.1)'], {'size': 'param.shape'}), '(-0.1, 0.1, size=param.shape)\n', (17130, 17159), True, 'import numpy as np\n'), ((22770, 22870), 'numpy.random.randint', 'np.random.randint', (['(2)', "self.model_hparams['src_vocab_size']", '(iter_num * batch_size, src_seq_len)'], {}), "(2, self.model_hparams['src_vocab_size'], (iter_num *\n batch_size, src_seq_len))\n", (22787, 22870), True, 'import numpy as np\n'), ((22964, 23023), 'numpy.random.randint', 'np.random.randint', (['(1)', 'src_seq_len', '(iter_num * batch_size,)'], {}), '(1, src_seq_len, (iter_num * batch_size,))\n', (22981, 23023), True, 'import numpy as np\n'), ((23103, 23203), 'numpy.random.randint', 'np.random.randint', (['(2)', "self.model_hparams['src_vocab_size']", '(iter_num * batch_size, trg_seq_len)'], {}), "(2, self.model_hparams['src_vocab_size'], (iter_num *\n batch_size, trg_seq_len))\n", (23120, 23203), True, 'import numpy as np\n'), ((23297, 23356), 'numpy.random.randint', 'np.random.randint', (['(1)', 'trg_seq_len', '(iter_num * batch_size,)'], {}), '(1, trg_seq_len, (iter_num * batch_size,))\n', (23314, 23356), True, 'import numpy as np\n'), ((23438, 23541), 'numpy.random.randint', 'np.random.randint', (['(2)', "self.model_hparams['src_vocab_size']", '(iter_num * batch_size, trg_seq_len, 1)'], {}), "(2, self.model_hparams['src_vocab_size'], (iter_num *\n batch_size, trg_seq_len, 1))\n", (23455, 23541), True, 'import numpy as np\n'), ((1957, 1999), 'numpy.random.random', 'np.random.random', (['(batch_size, input_size)'], {}), '((batch_size, input_size))\n', (1973, 1999), True, 'import numpy as np\n'), ((2234, 2277), 'numpy.random.random', 'np.random.random', (['(batch_size, hidden_size)'], {}), '((batch_size, hidden_size))\n', (2250, 2277), True, 'import numpy as np\n'), ((2514, 2556), 'numpy.random.random', 'np.random.random', (['(batch_size, input_size)'], {}), '((batch_size, input_size))\n', (2530, 2556), True, 'import numpy as np\n'), ((7144, 7186), 'numpy.random.random', 'np.random.random', (['(batch_size, input_size)'], {}), '((batch_size, input_size))\n', (7160, 7186), True, 'import numpy as np\n'), ((7409, 7452), 'numpy.random.random', 'np.random.random', (['(batch_size, hidden_size)'], {}), '((batch_size, hidden_size))\n', (7425, 7452), True, 'import numpy as np\n'), ((13034, 13077), 'numpy.random.random', 'np.random.random', (['(batch_size, hidden_size)'], {}), '((batch_size, hidden_size))\n', (13050, 13077), True, 'import numpy as np\n'), ((14187, 14215), 'numpy.random.random', 'np.random.random', (['batch_size'], {}), '(batch_size)\n', (14203, 14215), True, 'import numpy as np\n'), ((13557, 13600), 'numpy.random.random', 'np.random.random', (['(batch_size, hidden_size)'], {}), '((batch_size, hidden_size))\n', (13573, 13600), True, 'import numpy as np\n'), ((13665, 13708), 'numpy.random.random', 'np.random.random', (['(batch_size, hidden_size)'], {}), '((batch_size, hidden_size))\n', (13681, 13708), True, 'import numpy as np\n'), ((5781, 5801), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (5799, 5801), True, 'import paddle.fluid as fluid\n'), ((10308, 10328), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (10326, 10328), True, 'import paddle.fluid as fluid\n'), ((17022, 17042), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (17040, 17042), True, 'import paddle.fluid as fluid\n'), ((5987, 6007), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (6005, 6007), True, 'import paddle.fluid as fluid\n'), ((6087, 6107), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (6105, 6107), True, 'import paddle.fluid as fluid\n'), ((10514, 10534), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (10532, 10534), True, 'import paddle.fluid as fluid\n'), ((10614, 10634), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (10632, 10634), True, 'import paddle.fluid as fluid\n'), ((17228, 17248), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (17246, 17248), True, 'import paddle.fluid as fluid\n'), ((17328, 17348), 'paddle.fluid.global_scope', 'fluid.global_scope', ([], {}), '()\n', (17346, 17348), True, 'import paddle.fluid as fluid\n')]
#!/usr/bin/python3 import sys from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType import matplotlib import matplotlib.pyplot as plt import numpy as np import pyfsdb def parse_args(): parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter, description=__doc__, epilog="Exmaple Usage: ") parser.add_argument("-c", "--columns", type=str, nargs=2, help="Columns to use") parser.add_argument("-v", "--value-column", default="count", type=str, help="The value column to plot as the heat map") parser.add_argument("-i", "--invert", action="store_true", help="Invert the foreground/background colors") parser.add_argument("-F", "--add-fractions", action="store_true", help="Add text fraction labels to the grid") parser.add_argument("-R", "--add-raw", action="store_true", help="Add text raw-value labels to the grid") parser.add_argument("-L", "--add-labels", action="store_true", help="Add x/y axis labels") parser.add_argument("-fs", "--font-size", default=None, type=int, help="Set the fontsize for labels") parser.add_argument("input_file", type=FileType('r'), nargs='?', default=sys.stdin, help="Input fsdb file to read") parser.add_argument("output_file", type=str, nargs='?', default="out.png", help="Where to write the png file to") args = parser.parse_args() if not args.columns or len(args.columns) != 2: raise ValueError("exactly 2 columns must be passed to -c") return args def main(): args = parse_args() # read in the input data f = pyfsdb.Fsdb(file_handle=args.input_file, return_type=pyfsdb.RETURN_AS_DICTIONARY) max_value = None dataset = {} # nested tree structure ycols = {} # stores each unique second value for row in f: if not max_value: max_value = float(row[args.value_column]) else: max_value = max(max_value, float(row[args.value_column])) if row[args.columns[0]] not in dataset: dataset[row[args.columns[0]]] = \ { row[args.columns[1]]: float(row[args.value_column]) } else: dataset[row[args.columns[0]]][row[args.columns[1]]] = \ float(row[args.value_column]) ycols[row[args.columns[1]]] = 1 # merge the data into a two dimensional array data = [] xcols = sorted(dataset.keys()) ycols = sorted(ycols.keys()) for first_column in xcols: newrow = [] for second_column in ycols: if second_column in dataset[first_column]: newrow.append(dataset[first_column][second_column] / max_value) else: newrow.append(0.0) data.append(newrow) grapharray = np.array(data) if not args.invert: grapharray = 1 - grapharray # generate the graph fig, ax = plt.subplots() ax.imshow(grapharray, vmin=0.0, vmax=1.0, cmap='gray') ax.set_xlabel(args.columns[1]) ax.set_ylabel(args.columns[0]) if args.add_labels: ax.set_yticks(np.arange(len(dataset))) ax.set_yticklabels(xcols) ax.set_xticks(np.arange(len(ycols))) ax.set_xticklabels(ycols) plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") if args.add_fractions: for i in range(len(grapharray)): for j in range(len(grapharray[i])): text = ax.text(j, i, "{:1.1f}".format(grapharray[i][j]), ha="center", va="center", color="r", fontsize=args.font_size) elif args.add_raw: for i, first_column in enumerate(xcols): for j, second_column in enumerate(ycols): try: value = dataset[first_column][second_column] ax.text(j, i, "{}".format(int(value)), ha="center", va="center", color="r", fontsize=args.font_size) except Exception: pass fig.tight_layout() plt.savefig(args.output_file, bbox_inches="tight", pad_inches=0) # import pprint # pprint.pprint(dataset) if __name__ == "__main__": main()
[ "argparse.FileType", "pyfsdb.Fsdb", "matplotlib.pyplot.savefig", "argparse.ArgumentParser", "numpy.array", "matplotlib.pyplot.subplots" ]
[((226, 339), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'formatter_class': 'ArgumentDefaultsHelpFormatter', 'description': '__doc__', 'epilog': '"""Exmaple Usage: """'}), "(formatter_class=ArgumentDefaultsHelpFormatter, description=\n __doc__, epilog='Exmaple Usage: ')\n", (240, 339), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType\n'), ((1892, 1978), 'pyfsdb.Fsdb', 'pyfsdb.Fsdb', ([], {'file_handle': 'args.input_file', 'return_type': 'pyfsdb.RETURN_AS_DICTIONARY'}), '(file_handle=args.input_file, return_type=pyfsdb.\n RETURN_AS_DICTIONARY)\n', (1903, 1978), False, 'import pyfsdb\n'), ((3079, 3093), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (3087, 3093), True, 'import numpy as np\n'), ((3194, 3208), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3206, 3208), True, 'import matplotlib.pyplot as plt\n'), ((4420, 4484), 'matplotlib.pyplot.savefig', 'plt.savefig', (['args.output_file'], {'bbox_inches': '"""tight"""', 'pad_inches': '(0)'}), "(args.output_file, bbox_inches='tight', pad_inches=0)\n", (4431, 4484), True, 'import matplotlib.pyplot as plt\n'), ((1356, 1369), 'argparse.FileType', 'FileType', (['"""r"""'], {}), "('r')\n", (1364, 1369), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType\n')]
# -*- coding: utf-8 -*- """ Created on Tue Mar 27 13:59:43 2018 @author: ofn77899 """ import numpy from ccpi.segmentation.SimpleflexSegmentor import SimpleflexSegmentor from ccpi.viewer.CILViewer import CILViewer from ccpi.viewer.CILViewer2D import CILViewer2D, Converter import vtk #Text-based input system valid = False while valid == False: try: InitialCameraPositionX = int(input('Enter the initital camera position on the x-axis:')) InitialCameraPositionY = int(input('Enter the initital camera position on the y-axis:')) InitialCameraPositionZ = int(input('Enter the initital camera position on the z-axis:')) FrameCount = int(input('Enter number of frames for the animation:')) ViewUp1 = int(input('Enter the first viewup value:')) ViewUp2 = int(input('Enter the second viewup value:')) ViewUp3 = int(input('Enter the third viewup value:')) FocalPointX = int(input('Enter the x-coordinate for the camera focal point:')) FocalPointY = int(input('Enter the y-coordinate for the camera focal point:')) FocalPointZ = int(input('Enter the z-coordinate for the camera focal point:')) AngleRangeStart = int(input('Enter the first value for the angle range:')) AngleRangeEnd = int(input('Enter the last value for the angle range:')) ClippingRangeStart = int(input('Set lowest value for clipping range:')) ClippingRangeEnd = int(input('Set highest value for clipping range:')) InitialCameraPosition = (InitialCameraPositionX, InitialCameraPositionY, InitialCameraPositionZ) FocalPoint = (FocalPointX, FocalPointY, FocalPointZ) AngleRange = (AngleRangeStart, AngleRangeEnd) ClippingRange = (ClippingRangeStart, ClippingRangeEnd) ViewUp = (ViewUp1, ViewUp2, ViewUp3) except ValueError: print('One or more of your inputs were not valid! Try again') else: valid = True def surface2vtkPolyData(coord_list, origin = (0,0,0), spacing=(1,1,1)): ######################################################################## # 7. Display # with the retrieved data we construct polydata actors to be displayed # with VTK. Notice that this part is VTK specific. However, it shows how to # process the data returned by the algorithm. # Create the VTK output # Points coordinates structure triangle_vertices = vtk.vtkPoints() #associate the points to triangles triangle = vtk.vtkTriangle() trianglePointIds = triangle.GetPointIds() # put all triangles in an array triangles = vtk.vtkCellArray() isTriangle = 0 nTriangle = 0 surface = 0 # associate each coordinate with a point: 3 coordinates are needed for a point # in 3D. Additionally we perform a shift from image coordinates (pixel) which # is the default of the Contour Tree Algorithm to the World Coordinates. # TODO: add this in the algorithm. mScaling = numpy.asarray([spacing[0], 0,0,0, 0,spacing[1],0,0, 0,0,spacing[2],0, 0,0,0,1]).reshape((4,4)) mShift = numpy.asarray([1,0,0,origin[0], 0,1,0,origin[1], 0,0,1,origin[2], 0,0,0,1]).reshape((4,4)) mTransform = numpy.dot(mScaling, mShift) point_count = 0 for surf in coord_list: print("Image-to-world coordinate trasformation ... %d" % surface) for point in surf: world_coord = numpy.dot(mTransform, point) xCoord = world_coord[2] yCoord = world_coord[1] zCoord = world_coord[0] # i += 3 triangle_vertices.InsertNextPoint(xCoord, yCoord, zCoord); # The id of the vertex of the triangle (0,1,2) is linked to # the id of the points in the list, so in facts we just link id-to-id trianglePointIds.SetId(isTriangle, point_count) isTriangle += 1 point_count += 1 if (isTriangle == 3) : isTriangle = 0; # insert the current triangle in the triangles array triangles.InsertNextCell(triangle); surface += 1 # polydata object trianglePolyData = vtk.vtkPolyData() trianglePolyData.SetPoints( triangle_vertices ) trianglePolyData.SetPolys( triangles ) return trianglePolyData reader = vtk.vtkMetaImageReader() reader.SetFileName("../../data/fuel_uc_python.mha") reader.Update() seg = SimpleflexSegmentor() seg.setInputData(Converter.vtk2numpy(reader.GetOutput())) seg.calculateContourTree() #seg.setIsoValuePercent(24.) seg.setLocalIsoValuePercent(0.) seg.resetCollapsePriority(seg.PRIORITY_VOLUME) # 5. Construct the iso-surfaces print ("calling resetCollapsePriority") #seg.updateTreeFromLogTreeSize(size=0.6, isGlobal=False) print ("calling setlogtreesize") seg.ct.SetLogTreeSize(1) print ("calling UpdateTreeFromLogTreeSize") seg.ct.UpdateTreeFromLogTreeSize() print ("calling ConstructLocalIsoSurface") #seg.constructLocalIsoSurfaces() seg.ct.ConstructLocalIsoSurface() print ("called ConstructLocalIsoSurface") #seg.constructIsoSurfaces() # 6. Retrieve the isosurfaces and display coord_list = seg.getSurfaces() del (seg) #print ("getSurface " , len(coord_list)) spacing = numpy.asarray(reader.GetOutput().GetSpacing()) s1 = spacing[0] spacing[0] = spacing[2] spacing[2] = s1 print (len(coord_list)) v = CILViewer() v.setInput3DData(reader.GetOutput()) v.displayPolyData(surface2vtkPolyData(coord_list, spacing=spacing)) #v.startRenderLoop() dimX, dimY, dimZ = reader.GetOutput().GetDimensions() #Setting locked values for camera position locX = InitialCameraPosition[0] locY = InitialCameraPosition[1] locZ = InitialCameraPosition[2] #Setting camera position v.getCamera().SetPosition(InitialCameraPosition) v.getCamera().SetFocalPoint(FocalPoint) #Setting camera viewup v.getCamera().SetViewUp(ViewUp) #Set camera clipping range v.getCamera().SetClippingRange(ClippingRange) #Defining distance from camera to focal point r = numpy.sqrt(((InitialCameraPosition[2]-FocalPoint[2])**2) +(InitialCameraPosition[1]-FocalPoint[1])**2) print('Radius: {}'.format(r)) camera = vtk.vtkCamera() camera.SetPosition(InitialCameraPosition) camera.SetFocalPoint(FocalPoint) camera.SetViewUp(ViewUp) v.getRenderer().SetActiveCamera(camera) #Animating the camera for x in range(100): angle = ((numpy.pi)*4/100)*x NewLocationX = r*(numpy.sin(angle))+FocalPoint[0] NewLocationY = r*(numpy.cos(angle))+FocalPoint[1] NewLocationZ = r*(numpy.cos(angle))+FocalPoint[2] NewLocation = (NewLocationX, NewLocationY, locZ) v.getCamera().SetPosition(NewLocation) #Rendering and saving the render v.getRenderer().Render() v.saveRender('test_{}.png'.format(x)) v.startRenderLoop()
[ "numpy.sqrt", "vtk.vtkMetaImageReader", "vtk.vtkTriangle", "vtk.vtkCamera", "vtk.vtkCellArray", "vtk.vtkPolyData", "numpy.asarray", "vtk.vtkPoints", "numpy.dot", "numpy.cos", "ccpi.segmentation.SimpleflexSegmentor.SimpleflexSegmentor", "numpy.sin", "ccpi.viewer.CILViewer.CILViewer" ]
[((4710, 4734), 'vtk.vtkMetaImageReader', 'vtk.vtkMetaImageReader', ([], {}), '()\n', (4732, 4734), False, 'import vtk\n'), ((4814, 4835), 'ccpi.segmentation.SimpleflexSegmentor.SimpleflexSegmentor', 'SimpleflexSegmentor', ([], {}), '()\n', (4833, 4835), False, 'from ccpi.segmentation.SimpleflexSegmentor import SimpleflexSegmentor\n'), ((5786, 5797), 'ccpi.viewer.CILViewer.CILViewer', 'CILViewer', ([], {}), '()\n', (5795, 5797), False, 'from ccpi.viewer.CILViewer import CILViewer\n'), ((6439, 6553), 'numpy.sqrt', 'numpy.sqrt', (['((InitialCameraPosition[2] - FocalPoint[2]) ** 2 + (InitialCameraPosition[1\n ] - FocalPoint[1]) ** 2)'], {}), '((InitialCameraPosition[2] - FocalPoint[2]) ** 2 + (\n InitialCameraPosition[1] - FocalPoint[1]) ** 2)\n', (6449, 6553), False, 'import numpy\n'), ((6588, 6603), 'vtk.vtkCamera', 'vtk.vtkCamera', ([], {}), '()\n', (6601, 6603), False, 'import vtk\n'), ((2541, 2556), 'vtk.vtkPoints', 'vtk.vtkPoints', ([], {}), '()\n', (2554, 2556), False, 'import vtk\n'), ((2613, 2630), 'vtk.vtkTriangle', 'vtk.vtkTriangle', ([], {}), '()\n', (2628, 2630), False, 'import vtk\n'), ((2732, 2750), 'vtk.vtkCellArray', 'vtk.vtkCellArray', ([], {}), '()\n', (2748, 2750), False, 'import vtk\n'), ((3524, 3551), 'numpy.dot', 'numpy.dot', (['mScaling', 'mShift'], {}), '(mScaling, mShift)\n', (3533, 3551), False, 'import numpy\n'), ((4552, 4569), 'vtk.vtkPolyData', 'vtk.vtkPolyData', ([], {}), '()\n', (4567, 4569), False, 'import vtk\n'), ((3120, 3215), 'numpy.asarray', 'numpy.asarray', (['[spacing[0], 0, 0, 0, 0, spacing[1], 0, 0, 0, 0, spacing[2], 0, 0, 0, 0, 1]'], {}), '([spacing[0], 0, 0, 0, 0, spacing[1], 0, 0, 0, 0, spacing[2], \n 0, 0, 0, 0, 1])\n', (3133, 3215), False, 'import numpy\n'), ((3322, 3414), 'numpy.asarray', 'numpy.asarray', (['[1, 0, 0, origin[0], 0, 1, 0, origin[1], 0, 0, 1, origin[2], 0, 0, 0, 1]'], {}), '([1, 0, 0, origin[0], 0, 1, 0, origin[1], 0, 0, 1, origin[2], \n 0, 0, 0, 1])\n', (3335, 3414), False, 'import numpy\n'), ((3742, 3770), 'numpy.dot', 'numpy.dot', (['mTransform', 'point'], {}), '(mTransform, point)\n', (3751, 3770), False, 'import numpy\n'), ((6852, 6868), 'numpy.sin', 'numpy.sin', (['angle'], {}), '(angle)\n', (6861, 6868), False, 'import numpy\n'), ((6907, 6923), 'numpy.cos', 'numpy.cos', (['angle'], {}), '(angle)\n', (6916, 6923), False, 'import numpy\n'), ((6963, 6979), 'numpy.cos', 'numpy.cos', (['angle'], {}), '(angle)\n', (6972, 6979), False, 'import numpy\n')]
from easyvec import Mat2, Vec2 import numpy as np from pytest import approx def test_constructor1(): m = Mat2(1,2,3,4) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor2(): m = Mat2([1,2,3,4]) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor3(): m = Mat2([[1,2],[3,4]]) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor4(): m = Mat2([1,2],[3,4]) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor5(): m = Mat2(Vec2(1,2),Vec2(3,4)) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor6(): m = Mat2([Vec2(1,2),Vec2(3,4)]) assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(2) assert m.m21 == approx(3) assert m.m22 == approx(4) def test_constructor7(): m = Mat2.eye() assert m is not None assert m.m11 == approx(1) assert m.m12 == approx(0) assert m.m21 == approx(0) assert m.m22 == approx(1) def test_constructor8(): from math import sin, cos, pi for angle in np.random.uniform(-720, 720, 1000): angle *= pi/180 m = Mat2.from_angle(angle) assert m is not None assert m.m11 == approx(cos(angle)) assert m.m12 == approx(sin(angle)) assert m.m21 == approx(-sin(angle)) assert m.m22 == approx(cos(angle)) def test_constructor9(): m = Mat2.from_xaxis((1,1)) assert m is not None assert m.m11 == approx(1/2**0.5) assert m.m12 == approx(1/2**0.5) assert m.m21 == approx(-1/2**0.5) assert m.m22 == approx(1/2**0.5) def test_xiyj_axis(): m = Mat2(1,2,3,4) assert m.x_axis() == (1,2) assert m.i_axis() == (1,2) assert m.y_axis() == (3,4) assert m.j_axis() == (3,4) def test_cmp(): m = Mat2(-1,2,-3,4) assert m == [[-1,2],[-3,4]] assert m != [[-1,-2],[-3,4]] def test_T(): m = Mat2(-1,2,-3,4) assert m.T == [[-1,-3], [2,4]] def test_inverse1(): for angle in np.random.uniform(-720,720,1000): m = Mat2.from_angle(angle) assert m._1 == m.T assert m.det() == approx(1) def test_inverse2(): for ms in np.random.uniform(-720,720,(1000,4)): m = Mat2(ms) if abs(m.det()) < 1e-6: continue assert m * m._1 == Mat2.eye() def test_mul1(): for ms in np.random.uniform(-720,720,(1000,5)): m = Mat2(ms[:-1]) assert m * ms[-1] == (ms[:-1] * ms[-1]).reshape(2,2) assert ms[-1] * m == (ms[:-1] * ms[-1]).reshape(2,2) def test_mul2(): for angle, x, y in np.random.uniform(-180,180,(1000,3)): m = Mat2.from_angle(angle, 1) v = Vec2(x, y).norm() v1 = m * v assert v.angle_to(v1, 1) == approx(-angle) v2 = m._1 * v1 assert v2 == v v3 = m._1 * v assert v.angle_to(v3, 1) == approx(angle) def test_imul(): for ms in np.random.uniform(-720,720,(1000,4)): m = Mat2(ms) if abs(m.det()) < 1e-6: continue assert m * m._1 == Mat2.eye() m *= m._1 assert m == Mat2.eye() def test_add1(): for ms in np.random.uniform(-720,720,(1000,5)): m = Mat2(ms[:-1]) m1 = m + ms[-1] m1i = (ms[:-1] + ms[-1]).reshape(2,2) assert m1 == m1i assert ms[-1] + m == (ms[:-1] + ms[-1]).reshape(2,2) def test_add2(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) assert m1 + m2 == m2 + m1 assert m1 + m2 == (ms[:4] + ms[4:]).reshape(2,2) def test_iadd(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) m12 = m1 + m2 m1 += m2 assert m12 == m1 assert m1 == (ms[:4] + ms[4:]).reshape(2,2) def test_sub1(): for ms in np.random.uniform(-720,720,(1000,5)): m = Mat2(ms[:-1]) m1 = m - ms[-1] m1i = (ms[:-1] - ms[-1]).reshape(2,2) assert m1 == m1i assert ms[-1] - m == -(ms[:-1] - ms[-1]).reshape(2,2) def test_sub2(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) assert m1 - m2 == -(m2 - m1) assert m1 - m2 == (ms[:4] - ms[4:]).reshape(2,2) def test_isub(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) m12 = m1 - m2 m1 -= m2 assert m12 == m1 assert m1 == (ms[:4] - ms[4:]).reshape(2,2) def test_div1(): for ms in np.random.uniform(-720,720,(1000,5)): m = Mat2(ms[:-1]) m1 = m / ms[-1] m1i = (ms[:-1] / ms[-1]).reshape(2,2) assert m1 == m1i def test_div2(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) assert m1 / m2 == (ms[:4] / ms[4:]).reshape(2,2) def test_idiv(): for ms in np.random.uniform(-720,720,(1000,8)): m1 = Mat2(ms[:4]) m2 = Mat2(ms[4:]) m12 = m1 / m2 m1 /= m2 assert m12 == m1 assert m1 == (ms[:4] / ms[4:]).reshape(2,2)
[ "pytest.approx", "easyvec.Vec2", "easyvec.Mat2", "easyvec.Mat2.eye", "math.cos", "numpy.random.uniform", "easyvec.Mat2.from_angle", "easyvec.Mat2.from_xaxis", "math.sin" ]
[((110, 126), 'easyvec.Mat2', 'Mat2', (['(1)', '(2)', '(3)', '(4)'], {}), '(1, 2, 3, 4)\n', (114, 126), False, 'from easyvec import Mat2, Vec2\n'), ((304, 322), 'easyvec.Mat2', 'Mat2', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (308, 322), False, 'from easyvec import Mat2, Vec2\n'), ((500, 522), 'easyvec.Mat2', 'Mat2', (['[[1, 2], [3, 4]]'], {}), '([[1, 2], [3, 4]])\n', (504, 522), False, 'from easyvec import Mat2, Vec2\n'), ((700, 720), 'easyvec.Mat2', 'Mat2', (['[1, 2]', '[3, 4]'], {}), '([1, 2], [3, 4])\n', (704, 720), False, 'from easyvec import Mat2, Vec2\n'), ((1313, 1323), 'easyvec.Mat2.eye', 'Mat2.eye', ([], {}), '()\n', (1321, 1323), False, 'from easyvec import Mat2, Vec2\n'), ((1547, 1581), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000)'], {}), '(-720, 720, 1000)\n', (1564, 1581), True, 'import numpy as np\n'), ((1879, 1902), 'easyvec.Mat2.from_xaxis', 'Mat2.from_xaxis', (['(1, 1)'], {}), '((1, 1))\n', (1894, 1902), False, 'from easyvec import Mat2, Vec2\n'), ((2108, 2124), 'easyvec.Mat2', 'Mat2', (['(1)', '(2)', '(3)', '(4)'], {}), '(1, 2, 3, 4)\n', (2112, 2124), False, 'from easyvec import Mat2, Vec2\n'), ((2271, 2289), 'easyvec.Mat2', 'Mat2', (['(-1)', '(2)', '(-3)', '(4)'], {}), '(-1, 2, -3, 4)\n', (2275, 2289), False, 'from easyvec import Mat2, Vec2\n'), ((2375, 2393), 'easyvec.Mat2', 'Mat2', (['(-1)', '(2)', '(-3)', '(4)'], {}), '(-1, 2, -3, 4)\n', (2379, 2393), False, 'from easyvec import Mat2, Vec2\n'), ((2465, 2499), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000)'], {}), '(-720, 720, 1000)\n', (2482, 2499), True, 'import numpy as np\n'), ((2634, 2673), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 4)'], {}), '(-720, 720, (1000, 4))\n', (2651, 2673), True, 'import numpy as np\n'), ((2817, 2856), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 5)'], {}), '(-720, 720, (1000, 5))\n', (2834, 2856), True, 'import numpy as np\n'), ((3045, 3084), 'numpy.random.uniform', 'np.random.uniform', (['(-180)', '(180)', '(1000, 3)'], {}), '(-180, 180, (1000, 3))\n', (3062, 3084), True, 'import numpy as np\n'), ((3372, 3411), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 4)'], {}), '(-720, 720, (1000, 4))\n', (3389, 3411), True, 'import numpy as np\n'), ((3604, 3643), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 5)'], {}), '(-720, 720, (1000, 5))\n', (3621, 3643), True, 'import numpy as np\n'), ((3857, 3896), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (3874, 3896), True, 'import numpy as np\n'), ((4070, 4109), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (4087, 4109), True, 'import numpy as np\n'), ((4308, 4347), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 5)'], {}), '(-720, 720, (1000, 5))\n', (4325, 4347), True, 'import numpy as np\n'), ((4562, 4601), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (4579, 4601), True, 'import numpy as np\n'), ((4778, 4817), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (4795, 4817), True, 'import numpy as np\n'), ((5016, 5055), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 5)'], {}), '(-720, 720, (1000, 5))\n', (5033, 5055), True, 'import numpy as np\n'), ((5207, 5246), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (5224, 5246), True, 'import numpy as np\n'), ((5386, 5425), 'numpy.random.uniform', 'np.random.uniform', (['(-720)', '(720)', '(1000, 8)'], {}), '(-720, 720, (1000, 8))\n', (5403, 5425), True, 'import numpy as np\n'), ((169, 178), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (175, 178), False, 'from pytest import approx\n'), ((199, 208), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (205, 208), False, 'from pytest import approx\n'), ((229, 238), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (235, 238), False, 'from pytest import approx\n'), ((259, 268), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (265, 268), False, 'from pytest import approx\n'), ((365, 374), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (371, 374), False, 'from pytest import approx\n'), ((395, 404), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (401, 404), False, 'from pytest import approx\n'), ((425, 434), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (431, 434), False, 'from pytest import approx\n'), ((455, 464), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (461, 464), False, 'from pytest import approx\n'), ((565, 574), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (571, 574), False, 'from pytest import approx\n'), ((595, 604), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (601, 604), False, 'from pytest import approx\n'), ((625, 634), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (631, 634), False, 'from pytest import approx\n'), ((655, 664), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (661, 664), False, 'from pytest import approx\n'), ((763, 772), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (769, 772), False, 'from pytest import approx\n'), ((793, 802), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (799, 802), False, 'from pytest import approx\n'), ((823, 832), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (829, 832), False, 'from pytest import approx\n'), ((853, 862), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (859, 862), False, 'from pytest import approx\n'), ((903, 913), 'easyvec.Vec2', 'Vec2', (['(1)', '(2)'], {}), '(1, 2)\n', (907, 913), False, 'from easyvec import Mat2, Vec2\n'), ((913, 923), 'easyvec.Vec2', 'Vec2', (['(3)', '(4)'], {}), '(3, 4)\n', (917, 923), False, 'from easyvec import Mat2, Vec2\n'), ((969, 978), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (975, 978), False, 'from pytest import approx\n'), ((999, 1008), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (1005, 1008), False, 'from pytest import approx\n'), ((1029, 1038), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (1035, 1038), False, 'from pytest import approx\n'), ((1059, 1068), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (1065, 1068), False, 'from pytest import approx\n'), ((1177, 1186), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (1183, 1186), False, 'from pytest import approx\n'), ((1207, 1216), 'pytest.approx', 'approx', (['(2)'], {}), '(2)\n', (1213, 1216), False, 'from pytest import approx\n'), ((1237, 1246), 'pytest.approx', 'approx', (['(3)'], {}), '(3)\n', (1243, 1246), False, 'from pytest import approx\n'), ((1267, 1276), 'pytest.approx', 'approx', (['(4)'], {}), '(4)\n', (1273, 1276), False, 'from pytest import approx\n'), ((1369, 1378), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (1375, 1378), False, 'from pytest import approx\n'), ((1399, 1408), 'pytest.approx', 'approx', (['(0)'], {}), '(0)\n', (1405, 1408), False, 'from pytest import approx\n'), ((1429, 1438), 'pytest.approx', 'approx', (['(0)'], {}), '(0)\n', (1435, 1438), False, 'from pytest import approx\n'), ((1459, 1468), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (1465, 1468), False, 'from pytest import approx\n'), ((1619, 1641), 'easyvec.Mat2.from_angle', 'Mat2.from_angle', (['angle'], {}), '(angle)\n', (1634, 1641), False, 'from easyvec import Mat2, Vec2\n'), ((1947, 1967), 'pytest.approx', 'approx', (['(1 / 2 ** 0.5)'], {}), '(1 / 2 ** 0.5)\n', (1953, 1967), False, 'from pytest import approx\n'), ((1984, 2004), 'pytest.approx', 'approx', (['(1 / 2 ** 0.5)'], {}), '(1 / 2 ** 0.5)\n', (1990, 2004), False, 'from pytest import approx\n'), ((2021, 2042), 'pytest.approx', 'approx', (['(-1 / 2 ** 0.5)'], {}), '(-1 / 2 ** 0.5)\n', (2027, 2042), False, 'from pytest import approx\n'), ((2059, 2079), 'pytest.approx', 'approx', (['(1 / 2 ** 0.5)'], {}), '(1 / 2 ** 0.5)\n', (2065, 2079), False, 'from pytest import approx\n'), ((2511, 2533), 'easyvec.Mat2.from_angle', 'Mat2.from_angle', (['angle'], {}), '(angle)\n', (2526, 2533), False, 'from easyvec import Mat2, Vec2\n'), ((2684, 2692), 'easyvec.Mat2', 'Mat2', (['ms'], {}), '(ms)\n', (2688, 2692), False, 'from easyvec import Mat2, Vec2\n'), ((2867, 2880), 'easyvec.Mat2', 'Mat2', (['ms[:-1]'], {}), '(ms[:-1])\n', (2871, 2880), False, 'from easyvec import Mat2, Vec2\n'), ((3095, 3120), 'easyvec.Mat2.from_angle', 'Mat2.from_angle', (['angle', '(1)'], {}), '(angle, 1)\n', (3110, 3120), False, 'from easyvec import Mat2, Vec2\n'), ((3422, 3430), 'easyvec.Mat2', 'Mat2', (['ms'], {}), '(ms)\n', (3426, 3430), False, 'from easyvec import Mat2, Vec2\n'), ((3654, 3667), 'easyvec.Mat2', 'Mat2', (['ms[:-1]'], {}), '(ms[:-1])\n', (3658, 3667), False, 'from easyvec import Mat2, Vec2\n'), ((3908, 3920), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (3912, 3920), False, 'from easyvec import Mat2, Vec2\n'), ((3934, 3946), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (3938, 3946), False, 'from easyvec import Mat2, Vec2\n'), ((4121, 4133), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (4125, 4133), False, 'from easyvec import Mat2, Vec2\n'), ((4147, 4159), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (4151, 4159), False, 'from easyvec import Mat2, Vec2\n'), ((4358, 4371), 'easyvec.Mat2', 'Mat2', (['ms[:-1]'], {}), '(ms[:-1])\n', (4362, 4371), False, 'from easyvec import Mat2, Vec2\n'), ((4613, 4625), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (4617, 4625), False, 'from easyvec import Mat2, Vec2\n'), ((4639, 4651), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (4643, 4651), False, 'from easyvec import Mat2, Vec2\n'), ((4829, 4841), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (4833, 4841), False, 'from easyvec import Mat2, Vec2\n'), ((4855, 4867), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (4859, 4867), False, 'from easyvec import Mat2, Vec2\n'), ((5066, 5079), 'easyvec.Mat2', 'Mat2', (['ms[:-1]'], {}), '(ms[:-1])\n', (5070, 5079), False, 'from easyvec import Mat2, Vec2\n'), ((5258, 5270), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (5262, 5270), False, 'from easyvec import Mat2, Vec2\n'), ((5284, 5296), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (5288, 5296), False, 'from easyvec import Mat2, Vec2\n'), ((5437, 5449), 'easyvec.Mat2', 'Mat2', (['ms[:4]'], {}), '(ms[:4])\n', (5441, 5449), False, 'from easyvec import Mat2, Vec2\n'), ((5463, 5475), 'easyvec.Mat2', 'Mat2', (['ms[4:]'], {}), '(ms[4:])\n', (5467, 5475), False, 'from easyvec import Mat2, Vec2\n'), ((1110, 1120), 'easyvec.Vec2', 'Vec2', (['(1)', '(2)'], {}), '(1, 2)\n', (1114, 1120), False, 'from easyvec import Mat2, Vec2\n'), ((1120, 1130), 'easyvec.Vec2', 'Vec2', (['(3)', '(4)'], {}), '(3, 4)\n', (1124, 1130), False, 'from easyvec import Mat2, Vec2\n'), ((2587, 2596), 'pytest.approx', 'approx', (['(1)'], {}), '(1)\n', (2593, 2596), False, 'from pytest import approx\n'), ((2774, 2784), 'easyvec.Mat2.eye', 'Mat2.eye', ([], {}), '()\n', (2782, 2784), False, 'from easyvec import Mat2, Vec2\n'), ((3206, 3220), 'pytest.approx', 'approx', (['(-angle)'], {}), '(-angle)\n', (3212, 3220), False, 'from pytest import approx\n'), ((3325, 3338), 'pytest.approx', 'approx', (['angle'], {}), '(angle)\n', (3331, 3338), False, 'from pytest import approx\n'), ((3512, 3522), 'easyvec.Mat2.eye', 'Mat2.eye', ([], {}), '()\n', (3520, 3522), False, 'from easyvec import Mat2, Vec2\n'), ((3561, 3571), 'easyvec.Mat2.eye', 'Mat2.eye', ([], {}), '()\n', (3569, 3571), False, 'from easyvec import Mat2, Vec2\n'), ((1702, 1712), 'math.cos', 'cos', (['angle'], {}), '(angle)\n', (1705, 1712), False, 'from math import sin, cos, pi\n'), ((1745, 1755), 'math.sin', 'sin', (['angle'], {}), '(angle)\n', (1748, 1755), False, 'from math import sin, cos, pi\n'), ((1832, 1842), 'math.cos', 'cos', (['angle'], {}), '(angle)\n', (1835, 1842), False, 'from math import sin, cos, pi\n'), ((3133, 3143), 'easyvec.Vec2', 'Vec2', (['x', 'y'], {}), '(x, y)\n', (3137, 3143), False, 'from easyvec import Mat2, Vec2\n'), ((1789, 1799), 'math.sin', 'sin', (['angle'], {}), '(angle)\n', (1792, 1799), False, 'from math import sin, cos, pi\n')]
import numpy as np from two_d_nav.envs.static_maze import StaticMazeNavigation def test_goal(): env = StaticMazeNavigation() for i in range(60): obs, reward, done, _ = env.step(np.array([1.0, -0.1])) env.render() for i in range(30): obs, reward, done, _ = env.step(np.array([-1.0, -0.5])) env.render() for i in range(5): obs, reward, done, _ = env.step(np.array([0.0, -1.0])) env.render() for i in range(15): obs, reward, done, _ = env.step(np.array([-1.0, 0.0])) env.render() for i in range(30): obs, reward, done, _ = env.step(np.array([0.0, -1.0])) env.render() for i in range(18): obs, reward, done, _ = env.step(np.array([-1.0, -0.6])) env.render() if done: print(f"Reach goal: {obs}") print(f"Reward: {reward}") def test_obstacle(): env = StaticMazeNavigation() for i in range(60): obs, reward, done, _ = env.step(np.array([1.0, -0.1])) env.render() for i in range(5): obs, reward, done, _ = env.step(np.array([0.0, -1.0])) env.render() for i in range(30): obs, reward, done, _ = env.step(np.array([-1.0, 0.0])) env.render() if done: print(f"Hit obstacle: {obs}") print(f"Reward: {reward}") def test_wall(): env = StaticMazeNavigation() reward = 0.0 for i in range(20): obs, reward, done, _ = env.step(np.array([-1.0, 0.0])) env.render() print(f"Hit wall reward {reward}") if __name__ == '__main__': test_goal() test_obstacle() test_wall()
[ "two_d_nav.envs.static_maze.StaticMazeNavigation", "numpy.array" ]
[((109, 131), 'two_d_nav.envs.static_maze.StaticMazeNavigation', 'StaticMazeNavigation', ([], {}), '()\n', (129, 131), False, 'from two_d_nav.envs.static_maze import StaticMazeNavigation\n'), ((917, 939), 'two_d_nav.envs.static_maze.StaticMazeNavigation', 'StaticMazeNavigation', ([], {}), '()\n', (937, 939), False, 'from two_d_nav.envs.static_maze import StaticMazeNavigation\n'), ((1394, 1416), 'two_d_nav.envs.static_maze.StaticMazeNavigation', 'StaticMazeNavigation', ([], {}), '()\n', (1414, 1416), False, 'from two_d_nav.envs.static_maze import StaticMazeNavigation\n'), ((197, 218), 'numpy.array', 'np.array', (['[1.0, -0.1]'], {}), '([1.0, -0.1])\n', (205, 218), True, 'import numpy as np\n'), ((306, 328), 'numpy.array', 'np.array', (['[-1.0, -0.5]'], {}), '([-1.0, -0.5])\n', (314, 328), True, 'import numpy as np\n'), ((415, 436), 'numpy.array', 'np.array', (['[0.0, -1.0]'], {}), '([0.0, -1.0])\n', (423, 436), True, 'import numpy as np\n'), ((524, 545), 'numpy.array', 'np.array', (['[-1.0, 0.0]'], {}), '([-1.0, 0.0])\n', (532, 545), True, 'import numpy as np\n'), ((633, 654), 'numpy.array', 'np.array', (['[0.0, -1.0]'], {}), '([0.0, -1.0])\n', (641, 654), True, 'import numpy as np\n'), ((742, 764), 'numpy.array', 'np.array', (['[-1.0, -0.6]'], {}), '([-1.0, -0.6])\n', (750, 764), True, 'import numpy as np\n'), ((1005, 1026), 'numpy.array', 'np.array', (['[1.0, -0.1]'], {}), '([1.0, -0.1])\n', (1013, 1026), True, 'import numpy as np\n'), ((1113, 1134), 'numpy.array', 'np.array', (['[0.0, -1.0]'], {}), '([0.0, -1.0])\n', (1121, 1134), True, 'import numpy as np\n'), ((1222, 1243), 'numpy.array', 'np.array', (['[-1.0, 0.0]'], {}), '([-1.0, 0.0])\n', (1230, 1243), True, 'import numpy as np\n'), ((1499, 1520), 'numpy.array', 'np.array', (['[-1.0, 0.0]'], {}), '([-1.0, 0.0])\n', (1507, 1520), True, 'import numpy as np\n')]
import os import numpy as np import tensorflow as tf import cPickle from utils import shared, get_name from nn import HiddenLayer, EmbeddingLayer, LSTM, forward class Model(object): """ Network architecture. """ def __init__(self, parameters=None, models_path=None, model_path=None): """ Initialize the model. We either provide the parameters and a path where we store the models, or the location of a trained model. """ if model_path is None: assert parameters and models_path # Create a name based on the parameters self.parameters = parameters self.name = get_name(parameters) # Model location model_path = os.path.join(models_path, self.name) self.model_path = model_path self.mappings_path = os.path.join(model_path, 'mappings.pkl') self.parameters_path = os.path.join(model_path, 'parameters.pkl') # Create directory for the model if it does not exist if not os.path.exists(self.model_path): os.makedirs(self.model_path) # Save the parameters to disk with open(self.parameters_path, 'wb') as f: cPickle.dump(parameters, f) else: assert parameters is None and models_path is None # Model location self.model_path = model_path self.mappings_path = os.path.join(model_path, 'mappings.pkl') self.parameters_path = os.path.join(model_path, 'parameters.pkl') # Load the parameters and the mappings from disk with open(self.parameters_path, 'rb') as f: self.parameters = cPickle.load(f) self.reload_mappings() def save_mappings(self, id_to_word, id_to_char, id_to_tag): """ We need to save the mappings if we want to use the model later. """ self.id_to_word = id_to_word self.id_to_char = id_to_char self.id_to_tag = id_to_tag with open(self.mappings_path, 'wb') as f: mappings = { 'id_to_word': self.id_to_word, 'id_to_char': self.id_to_char, 'id_to_tag': self.id_to_tag, } cPickle.dump(mappings, f) def reload_mappings(self): """ Load mappings from disk. """ with open(self.mappings_path, 'rb') as f: mappings = cPickle.load(f) self.id_to_word = mappings['id_to_word'] self.id_to_char = mappings['id_to_char'] self.id_to_tag = mappings['id_to_tag'] def build(self, dropout, char_dim, char_lstm_dim, char_bidirect, word_dim, word_lstm_dim, word_bidirect, lr_method, lr_rate, clip_norm, crf, is_train, **kwargs ): """ Build the network. """ # Training parameters n_words = len(self.id_to_word) n_chars = len(self.id_to_char) n_tags = len(self.id_to_tag) # Network variables self.word_ids = tf.placeholder(tf.int32, shape=[None, None], name='word_ids') # shape:[batch_size, max_word_len] self.word_pos_ids = tf.placeholder(tf.int32, shape=[None], name='word_pos_ids') # shape: [batch_size] self.char_for_ids = tf.placeholder(tf.int32, shape=[None, None, None], name='char_for_ids') # shape: [batch_size, word_max_len, char_max_len] self.char_rev_ids = tf.placeholder(tf.int32, shape=[None, None, None], name='char_rev_ids') # shape: [batch_size, word_max_len, char_max_len] self.char_pos_ids = tf.placeholder(tf.int32, shape=[None, None], name='char_pos_ids') # shape: [batch_size*word_max_len, char_max_len] self.tag_ids = tf.placeholder(tf.int32, shape=[None, None], name='tag_ids') # shape: [batch_size,word_max_len] self.tag_id_trans = tf.placeholder(tf.int32, shape=[None, None, None], name='tag_id_trans') # shape: [batch_size,word_max_len+1,2] self.tag_id_index = tf.placeholder(tf.int32, shape=[None, None, None], name='tag_id_index') # shape: [batch_size,word_max_len,2] # Final input (all word features) input_dim = 0 inputs = [] # # Word inputs # if word_dim: input_dim += word_dim with tf.device("/cpu:0"): word_layer = EmbeddingLayer(n_words, word_dim, name='word_layer') word_input = word_layer.link(self.word_ids) inputs.append(word_input) # # Phars inputs # if char_dim: input_dim += char_lstm_dim char_layer = EmbeddingLayer(n_chars, char_dim, name='char_layer') char_lstm_for = LSTM(char_dim, char_lstm_dim, with_batch=True, name='char_lstm_for') char_lstm_rev = LSTM(char_dim, char_lstm_dim, with_batch=True, name='char_lstm_rev') with tf.device("/cpu:0"): char_for_embedding_batch = char_layer.link(self.char_for_ids) char_rev_embedding_batch = char_layer.link(self.char_rev_ids) shape_for = tf.shape(char_for_embedding_batch) # reshape from [batch_size, word_max_len, char_max_len, char_dim] to [batch_size*word_max_len, char_max_len, char_dim] char_for_embedding = tf.reshape(char_for_embedding_batch, (shape_for[0]*shape_for[1], shape_for[2], shape_for[3])) shape_rev = tf.shape(char_rev_embedding_batch) char_rev_embedding = tf.reshape(char_rev_embedding_batch, (shape_rev[0] * shape_rev[1], shape_rev[2], shape_rev[3])) char_lstm_for_states = char_lstm_for.link(char_for_embedding) char_lstm_rev_states = char_lstm_rev.link(char_rev_embedding) char_lstm_for_h_trans = tf.transpose(char_lstm_for_states[1], (1, 0, 2), name='char_lstm_for_h_trans') char_lstm_rev_h_trans = tf.transpose(char_lstm_rev_states[1], (1, 0, 2), name='char_lstm_rev_h_trans') char_for_output = tf.gather_nd(char_lstm_for_h_trans, self.char_pos_ids, name='char_for_output') char_rev_output = tf.gather_nd(char_lstm_rev_h_trans, self.char_pos_ids, name='char_rev_output') char_for_output_batch = tf.reshape(char_for_output, (shape_for[0], shape_for[1], char_lstm_dim)) char_rev_output_batch = tf.reshape(char_rev_output, (shape_rev[0], shape_rev[1], char_lstm_dim)) inputs.append(char_for_output_batch) if char_bidirect: inputs.append(char_rev_output_batch) input_dim += char_lstm_dim inputs = tf.concat(inputs, axis=-1) # Dropout on final input assert dropout < 1 and 0.0 <= dropout if dropout: input_train = tf.nn.dropout(inputs, 1 - dropout) if is_train: inputs = input_train # LSTM for words word_lstm_for = LSTM(input_dim, word_lstm_dim, with_batch=True, name='word_lstm_for') word_lstm_rev = LSTM(input_dim, word_lstm_dim, with_batch=True, name='word_lstm_rev') # fordword hidden output word_states_for = word_lstm_for.link(inputs) word_lstm_for_output = tf.transpose(word_states_for[1], (1, 0, 2), name='word_lstm_for_h_trans') # reverse hidden ouput inputs_rev = tf.reverse_sequence(inputs, self.word_pos_ids, seq_dim=1, batch_dim=0) word_states_rev = word_lstm_rev.link(inputs_rev) word_lstm_rev_h_trans = tf.transpose(word_states_rev[1], (1, 0, 2), name='word_lstm_rev_h_trans') word_lstm_rev_output = tf.reverse_sequence(word_lstm_rev_h_trans, self.word_pos_ids, seq_dim=1, batch_dim=0) if word_bidirect: final_output = tf.concat([word_lstm_for_output, word_lstm_rev_output],axis=-1) tanh_layer = HiddenLayer(2 * word_lstm_dim, word_lstm_dim, name='tanh_layer', activation='tanh') final_output = tanh_layer.link(final_output) else: final_output = word_lstm_for_output final_layer = HiddenLayer(word_lstm_dim, n_tags, name='final_layer') tags_scores = final_layer.link(final_output) # No CRF if not crf: cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.tag_ids, logits=tags_scores, name='xentropy') cost = tf.reduce_mean(cross_entropy, name='xentropy_mean') else: transitions = shared((n_tags + 2, n_tags + 2), 'transitions') small = -1000 b_s = np.array([[small] * n_tags + [0, small]]).astype(np.float32) e_s = np.array([[small] * n_tags + [small, 0]]).astype(np.float32) # for batch observation #def recurrence(prev, obs): # s_len = tf.shape(obs)[0] # obvs = tf.concat([obs, small * tf.ones((s_len, 2))], axis=1) # observations = tf.concat([b_s, obvs, e_s], axis=0) # return observations #tags_scores_shape = tf.shape(tags_scores) #obs_initial = tf.ones((tags_scores_shape[1] + 2, n_tags + 2)) #obs_batch = tf.scan(fn=recurrence, elems=tags_scores, initializer=obs_initial) # Score from tags def recurrence_real_score(prev,obs): tags_score = obs[0] tag_id_index_ = obs[1] tag_id_trans_= obs[2] word_pos_ = obs[3] + 1 tags_score_slice = tags_score[0:word_pos_,:] tag_id_index_slice = tag_id_index_[0:word_pos_,:] tag_id_trans_slice = tag_id_trans_[0:(word_pos_+1),:] real_path_score = tf.reduce_sum(tf.gather_nd(tags_score_slice, tag_id_index_slice)) real_path_score += tf.reduce_sum(tf.gather_nd(transitions, tag_id_trans_slice)) return tf.reshape(real_path_score,[]) real_path_score_list = tf.scan(fn=recurrence_real_score, elems=[tags_scores, self.tag_id_index, self.tag_id_trans, self.word_pos_ids], initializer=0.0) def recurrence_all_path(prev, obs): tags_score = obs[0] word_pos_ = obs[1] + 1 tags_score_slice = tags_score[0:word_pos_,:] s_len = tf.shape(tags_score_slice)[0] obvs = tf.concat([tags_score_slice, small * tf.ones((s_len, 2))], axis=1) observations = tf.concat([b_s, obvs, e_s], axis=0) all_paths_scores = forward(observations, transitions) return tf.reshape(all_paths_scores,[]) all_paths_scores_list = tf.scan(fn=recurrence_all_path, elems=[tags_scores, self.word_pos_ids], initializer=0.0) cost = - tf.reduce_mean(real_path_score_list - all_paths_scores_list) # Network parameters if not crf: f_score = tf.nn.softmax(tags_scores) else: def recurrence_predict(prev, obs): tags_score = obs[0] word_pos_ = obs[1] + 1 tags_score_slice = tags_score[0:word_pos_,:] s_len = tf.shape(tags_score_slice)[0] obvs = tf.concat([tags_score_slice, small * tf.ones((s_len, 2))], axis=1) observations = tf.concat([b_s, obvs, e_s], axis=0) all_paths_scores = forward(observations, transitions, viterbi=True, return_alpha=False, return_best_sequence=True) all_paths_scores = tf.concat([all_paths_scores, tf.zeros([tf.shape(tags_score)[0]-s_len], tf.int32)], axis=0) return all_paths_scores f_score = tf.scan(fn=recurrence_predict, elems=[tags_scores, self.word_pos_ids], initializer=tf.zeros([tf.shape(tags_scores)[1]+2], tf.int32)) # Optimization tvars = tf.trainable_variables() grads = tf.gradients(cost, tvars) if clip_norm > 0: grads, _ = tf.clip_by_global_norm(grads, clip_norm) if lr_method == 'sgd': optimizer = tf.train.GradientDescentOptimizer(lr_rate) elif lr_method == 'adagrad': optimizer = tf.train.AdagradOptimizer(lr_rate) elif lr_method == 'adadelta': optimizer = tf.train.AdadeltaOptimizer(lr_rate) elif lr_method == 'adam': optimizer = tf.train.AdamOptimizer(lr_rate) elif lr_method == 'rmsprop': optimizer = tf.train.RMSPropOptimizer(lr_rate) else: raise("Not implemented learning method: %s" % lr_method) train_op = optimizer.apply_gradients(zip(grads, tvars)) return cost, f_score, train_op
[ "tensorflow.shape", "tensorflow.transpose", "nn.forward", "tensorflow.gradients", "tensorflow.nn.sparse_softmax_cross_entropy_with_logits", "numpy.array", "nn.LSTM", "tensorflow.nn.dropout", "tensorflow.reverse_sequence", "tensorflow.nn.softmax", "tensorflow.reduce_mean", "tensorflow.scan", "utils.shared", "tensorflow.clip_by_global_norm", "os.path.exists", "tensorflow.placeholder", "tensorflow.concat", "nn.HiddenLayer", "tensorflow.trainable_variables", "tensorflow.train.AdamOptimizer", "tensorflow.device", "cPickle.dump", "cPickle.load", "tensorflow.train.GradientDescentOptimizer", "tensorflow.train.AdadeltaOptimizer", "tensorflow.reshape", "utils.get_name", "nn.EmbeddingLayer", "os.makedirs", "tensorflow.ones", "tensorflow.train.RMSPropOptimizer", "os.path.join", "tensorflow.train.AdagradOptimizer", "tensorflow.gather_nd" ]
[((3248, 3309), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""word_ids"""'}), "(tf.int32, shape=[None, None], name='word_ids')\n", (3262, 3309), True, 'import tensorflow as tf\n'), ((3373, 3432), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None]', 'name': '"""word_pos_ids"""'}), "(tf.int32, shape=[None], name='word_pos_ids')\n", (3387, 3432), True, 'import tensorflow as tf\n'), ((3483, 3554), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None, None]', 'name': '"""char_for_ids"""'}), "(tf.int32, shape=[None, None, None], name='char_for_ids')\n", (3497, 3554), True, 'import tensorflow as tf\n'), ((3633, 3704), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None, None]', 'name': '"""char_rev_ids"""'}), "(tf.int32, shape=[None, None, None], name='char_rev_ids')\n", (3647, 3704), True, 'import tensorflow as tf\n'), ((3783, 3848), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""char_pos_ids"""'}), "(tf.int32, shape=[None, None], name='char_pos_ids')\n", (3797, 3848), True, 'import tensorflow as tf\n'), ((3921, 3981), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None]', 'name': '"""tag_ids"""'}), "(tf.int32, shape=[None, None], name='tag_ids')\n", (3935, 3981), True, 'import tensorflow as tf\n'), ((4045, 4116), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None, None]', 'name': '"""tag_id_trans"""'}), "(tf.int32, shape=[None, None, None], name='tag_id_trans')\n", (4059, 4116), True, 'import tensorflow as tf\n'), ((4185, 4256), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'shape': '[None, None, None]', 'name': '"""tag_id_index"""'}), "(tf.int32, shape=[None, None, None], name='tag_id_index')\n", (4199, 4256), True, 'import tensorflow as tf\n'), ((6942, 6968), 'tensorflow.concat', 'tf.concat', (['inputs'], {'axis': '(-1)'}), '(inputs, axis=-1)\n', (6951, 6968), True, 'import tensorflow as tf\n'), ((7241, 7310), 'nn.LSTM', 'LSTM', (['input_dim', 'word_lstm_dim'], {'with_batch': '(True)', 'name': '"""word_lstm_for"""'}), "(input_dim, word_lstm_dim, with_batch=True, name='word_lstm_for')\n", (7245, 7310), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((7364, 7433), 'nn.LSTM', 'LSTM', (['input_dim', 'word_lstm_dim'], {'with_batch': '(True)', 'name': '"""word_lstm_rev"""'}), "(input_dim, word_lstm_dim, with_batch=True, name='word_lstm_rev')\n", (7368, 7433), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((7580, 7653), 'tensorflow.transpose', 'tf.transpose', (['word_states_for[1]', '(1, 0, 2)'], {'name': '"""word_lstm_for_h_trans"""'}), "(word_states_for[1], (1, 0, 2), name='word_lstm_for_h_trans')\n", (7592, 7653), True, 'import tensorflow as tf\n'), ((7707, 7777), 'tensorflow.reverse_sequence', 'tf.reverse_sequence', (['inputs', 'self.word_pos_ids'], {'seq_dim': '(1)', 'batch_dim': '(0)'}), '(inputs, self.word_pos_ids, seq_dim=1, batch_dim=0)\n', (7726, 7777), True, 'import tensorflow as tf\n'), ((7867, 7940), 'tensorflow.transpose', 'tf.transpose', (['word_states_rev[1]', '(1, 0, 2)'], {'name': '"""word_lstm_rev_h_trans"""'}), "(word_states_rev[1], (1, 0, 2), name='word_lstm_rev_h_trans')\n", (7879, 7940), True, 'import tensorflow as tf\n'), ((7972, 8061), 'tensorflow.reverse_sequence', 'tf.reverse_sequence', (['word_lstm_rev_h_trans', 'self.word_pos_ids'], {'seq_dim': '(1)', 'batch_dim': '(0)'}), '(word_lstm_rev_h_trans, self.word_pos_ids, seq_dim=1,\n batch_dim=0)\n', (7991, 8061), True, 'import tensorflow as tf\n'), ((8425, 8479), 'nn.HiddenLayer', 'HiddenLayer', (['word_lstm_dim', 'n_tags'], {'name': '"""final_layer"""'}), "(word_lstm_dim, n_tags, name='final_layer')\n", (8436, 8479), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((12164, 12188), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (12186, 12188), True, 'import tensorflow as tf\n'), ((12205, 12230), 'tensorflow.gradients', 'tf.gradients', (['cost', 'tvars'], {}), '(cost, tvars)\n', (12217, 12230), True, 'import tensorflow as tf\n'), ((666, 686), 'utils.get_name', 'get_name', (['parameters'], {}), '(parameters)\n', (674, 686), False, 'from utils import shared, get_name\n'), ((741, 777), 'os.path.join', 'os.path.join', (['models_path', 'self.name'], {}), '(models_path, self.name)\n', (753, 777), False, 'import os\n'), ((852, 892), 'os.path.join', 'os.path.join', (['model_path', '"""mappings.pkl"""'], {}), "(model_path, 'mappings.pkl')\n", (864, 892), False, 'import os\n'), ((928, 970), 'os.path.join', 'os.path.join', (['model_path', '"""parameters.pkl"""'], {}), "(model_path, 'parameters.pkl')\n", (940, 970), False, 'import os\n'), ((1455, 1495), 'os.path.join', 'os.path.join', (['model_path', '"""mappings.pkl"""'], {}), "(model_path, 'mappings.pkl')\n", (1467, 1495), False, 'import os\n'), ((1531, 1573), 'os.path.join', 'os.path.join', (['model_path', '"""parameters.pkl"""'], {}), "(model_path, 'parameters.pkl')\n", (1543, 1573), False, 'import os\n'), ((2286, 2311), 'cPickle.dump', 'cPickle.dump', (['mappings', 'f'], {}), '(mappings, f)\n', (2298, 2311), False, 'import cPickle\n'), ((2474, 2489), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (2486, 2489), False, 'import cPickle\n'), ((4834, 4886), 'nn.EmbeddingLayer', 'EmbeddingLayer', (['n_chars', 'char_dim'], {'name': '"""char_layer"""'}), "(n_chars, char_dim, name='char_layer')\n", (4848, 4886), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((4916, 4984), 'nn.LSTM', 'LSTM', (['char_dim', 'char_lstm_dim'], {'with_batch': '(True)', 'name': '"""char_lstm_for"""'}), "(char_dim, char_lstm_dim, with_batch=True, name='char_lstm_for')\n", (4920, 4984), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((5046, 5114), 'nn.LSTM', 'LSTM', (['char_dim', 'char_lstm_dim'], {'with_batch': '(True)', 'name': '"""char_lstm_rev"""'}), "(char_dim, char_lstm_dim, with_batch=True, name='char_lstm_rev')\n", (5050, 5114), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((5367, 5401), 'tensorflow.shape', 'tf.shape', (['char_for_embedding_batch'], {}), '(char_for_embedding_batch)\n', (5375, 5401), True, 'import tensorflow as tf\n'), ((5566, 5665), 'tensorflow.reshape', 'tf.reshape', (['char_for_embedding_batch', '(shape_for[0] * shape_for[1], shape_for[2], shape_for[3])'], {}), '(char_for_embedding_batch, (shape_for[0] * shape_for[1],\n shape_for[2], shape_for[3]))\n', (5576, 5665), True, 'import tensorflow as tf\n'), ((5728, 5762), 'tensorflow.shape', 'tf.shape', (['char_rev_embedding_batch'], {}), '(char_rev_embedding_batch)\n', (5736, 5762), True, 'import tensorflow as tf\n'), ((5796, 5895), 'tensorflow.reshape', 'tf.reshape', (['char_rev_embedding_batch', '(shape_rev[0] * shape_rev[1], shape_rev[2], shape_rev[3])'], {}), '(char_rev_embedding_batch, (shape_rev[0] * shape_rev[1],\n shape_rev[2], shape_rev[3]))\n', (5806, 5895), True, 'import tensorflow as tf\n'), ((6120, 6198), 'tensorflow.transpose', 'tf.transpose', (['char_lstm_for_states[1]', '(1, 0, 2)'], {'name': '"""char_lstm_for_h_trans"""'}), "(char_lstm_for_states[1], (1, 0, 2), name='char_lstm_for_h_trans')\n", (6132, 6198), True, 'import tensorflow as tf\n'), ((6235, 6313), 'tensorflow.transpose', 'tf.transpose', (['char_lstm_rev_states[1]', '(1, 0, 2)'], {'name': '"""char_lstm_rev_h_trans"""'}), "(char_lstm_rev_states[1], (1, 0, 2), name='char_lstm_rev_h_trans')\n", (6247, 6313), True, 'import tensorflow as tf\n'), ((6344, 6422), 'tensorflow.gather_nd', 'tf.gather_nd', (['char_lstm_for_h_trans', 'self.char_pos_ids'], {'name': '"""char_for_output"""'}), "(char_lstm_for_h_trans, self.char_pos_ids, name='char_for_output')\n", (6356, 6422), True, 'import tensorflow as tf\n'), ((6453, 6531), 'tensorflow.gather_nd', 'tf.gather_nd', (['char_lstm_rev_h_trans', 'self.char_pos_ids'], {'name': '"""char_rev_output"""'}), "(char_lstm_rev_h_trans, self.char_pos_ids, name='char_rev_output')\n", (6465, 6531), True, 'import tensorflow as tf\n'), ((6568, 6640), 'tensorflow.reshape', 'tf.reshape', (['char_for_output', '(shape_for[0], shape_for[1], char_lstm_dim)'], {}), '(char_for_output, (shape_for[0], shape_for[1], char_lstm_dim))\n', (6578, 6640), True, 'import tensorflow as tf\n'), ((6677, 6749), 'tensorflow.reshape', 'tf.reshape', (['char_rev_output', '(shape_rev[0], shape_rev[1], char_lstm_dim)'], {}), '(char_rev_output, (shape_rev[0], shape_rev[1], char_lstm_dim))\n', (6687, 6749), True, 'import tensorflow as tf\n'), ((7094, 7128), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['inputs', '(1 - dropout)'], {}), '(inputs, 1 - dropout)\n', (7107, 7128), True, 'import tensorflow as tf\n'), ((8111, 8175), 'tensorflow.concat', 'tf.concat', (['[word_lstm_for_output, word_lstm_rev_output]'], {'axis': '(-1)'}), '([word_lstm_for_output, word_lstm_rev_output], axis=-1)\n', (8120, 8175), True, 'import tensorflow as tf\n'), ((8200, 8288), 'nn.HiddenLayer', 'HiddenLayer', (['(2 * word_lstm_dim)', 'word_lstm_dim'], {'name': '"""tanh_layer"""', 'activation': '"""tanh"""'}), "(2 * word_lstm_dim, word_lstm_dim, name='tanh_layer', activation\n ='tanh')\n", (8211, 8288), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((8598, 8707), 'tensorflow.nn.sparse_softmax_cross_entropy_with_logits', 'tf.nn.sparse_softmax_cross_entropy_with_logits', ([], {'labels': 'self.tag_ids', 'logits': 'tags_scores', 'name': '"""xentropy"""'}), "(labels=self.tag_ids, logits=\n tags_scores, name='xentropy')\n", (8644, 8707), True, 'import tensorflow as tf\n'), ((8722, 8773), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['cross_entropy'], {'name': '"""xentropy_mean"""'}), "(cross_entropy, name='xentropy_mean')\n", (8736, 8773), True, 'import tensorflow as tf\n'), ((8814, 8861), 'utils.shared', 'shared', (['(n_tags + 2, n_tags + 2)', '"""transitions"""'], {}), "((n_tags + 2, n_tags + 2), 'transitions')\n", (8820, 8861), False, 'from utils import shared, get_name\n'), ((10297, 10429), 'tensorflow.scan', 'tf.scan', ([], {'fn': 'recurrence_real_score', 'elems': '[tags_scores, self.tag_id_index, self.tag_id_trans, self.word_pos_ids]', 'initializer': '(0.0)'}), '(fn=recurrence_real_score, elems=[tags_scores, self.tag_id_index,\n self.tag_id_trans, self.word_pos_ids], initializer=0.0)\n', (10304, 10429), True, 'import tensorflow as tf\n'), ((10995, 11087), 'tensorflow.scan', 'tf.scan', ([], {'fn': 'recurrence_all_path', 'elems': '[tags_scores, self.word_pos_ids]', 'initializer': '(0.0)'}), '(fn=recurrence_all_path, elems=[tags_scores, self.word_pos_ids],\n initializer=0.0)\n', (11002, 11087), True, 'import tensorflow as tf\n'), ((11237, 11263), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['tags_scores'], {}), '(tags_scores)\n', (11250, 11263), True, 'import tensorflow as tf\n'), ((12280, 12320), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (['grads', 'clip_norm'], {}), '(grads, clip_norm)\n', (12302, 12320), True, 'import tensorflow as tf\n'), ((12385, 12427), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['lr_rate'], {}), '(lr_rate)\n', (12418, 12427), True, 'import tensorflow as tf\n'), ((1056, 1087), 'os.path.exists', 'os.path.exists', (['self.model_path'], {}), '(self.model_path)\n', (1070, 1087), False, 'import os\n'), ((1105, 1133), 'os.makedirs', 'os.makedirs', (['self.model_path'], {}), '(self.model_path)\n', (1116, 1133), False, 'import os\n'), ((1248, 1275), 'cPickle.dump', 'cPickle.dump', (['parameters', 'f'], {}), '(parameters, f)\n', (1260, 1275), False, 'import cPickle\n'), ((1725, 1740), 'cPickle.load', 'cPickle.load', (['f'], {}), '(f)\n', (1737, 1740), False, 'import cPickle\n'), ((4492, 4511), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (4501, 4511), True, 'import tensorflow as tf\n'), ((4542, 4594), 'nn.EmbeddingLayer', 'EmbeddingLayer', (['n_words', 'word_dim'], {'name': '"""word_layer"""'}), "(n_words, word_dim, name='word_layer')\n", (4556, 4594), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((5166, 5185), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (5175, 5185), True, 'import tensorflow as tf\n'), ((10231, 10262), 'tensorflow.reshape', 'tf.reshape', (['real_path_score', '[]'], {}), '(real_path_score, [])\n', (10241, 10262), True, 'import tensorflow as tf\n'), ((10798, 10833), 'tensorflow.concat', 'tf.concat', (['[b_s, obvs, e_s]'], {'axis': '(0)'}), '([b_s, obvs, e_s], axis=0)\n', (10807, 10833), True, 'import tensorflow as tf\n'), ((10869, 10903), 'nn.forward', 'forward', (['observations', 'transitions'], {}), '(observations, transitions)\n', (10876, 10903), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((10927, 10959), 'tensorflow.reshape', 'tf.reshape', (['all_paths_scores', '[]'], {}), '(all_paths_scores, [])\n', (10937, 10959), True, 'import tensorflow as tf\n'), ((11105, 11165), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['(real_path_score_list - all_paths_scores_list)'], {}), '(real_path_score_list - all_paths_scores_list)\n', (11119, 11165), True, 'import tensorflow as tf\n'), ((11636, 11671), 'tensorflow.concat', 'tf.concat', (['[b_s, obvs, e_s]'], {'axis': '(0)'}), '([b_s, obvs, e_s], axis=0)\n', (11645, 11671), True, 'import tensorflow as tf\n'), ((11707, 11806), 'nn.forward', 'forward', (['observations', 'transitions'], {'viterbi': '(True)', 'return_alpha': '(False)', 'return_best_sequence': '(True)'}), '(observations, transitions, viterbi=True, return_alpha=False,\n return_best_sequence=True)\n', (11714, 11806), False, 'from nn import HiddenLayer, EmbeddingLayer, LSTM, forward\n'), ((12489, 12523), 'tensorflow.train.AdagradOptimizer', 'tf.train.AdagradOptimizer', (['lr_rate'], {}), '(lr_rate)\n', (12514, 12523), True, 'import tensorflow as tf\n'), ((8906, 8947), 'numpy.array', 'np.array', (['[[small] * n_tags + [0, small]]'], {}), '([[small] * n_tags + [0, small]])\n', (8914, 8947), True, 'import numpy as np\n'), ((8985, 9026), 'numpy.array', 'np.array', (['[[small] * n_tags + [small, 0]]'], {}), '([[small] * n_tags + [small, 0]])\n', (8993, 9026), True, 'import numpy as np\n'), ((10060, 10110), 'tensorflow.gather_nd', 'tf.gather_nd', (['tags_score_slice', 'tag_id_index_slice'], {}), '(tags_score_slice, tag_id_index_slice)\n', (10072, 10110), True, 'import tensorflow as tf\n'), ((10161, 10206), 'tensorflow.gather_nd', 'tf.gather_nd', (['transitions', 'tag_id_trans_slice'], {}), '(transitions, tag_id_trans_slice)\n', (10173, 10206), True, 'import tensorflow as tf\n'), ((10647, 10673), 'tensorflow.shape', 'tf.shape', (['tags_score_slice'], {}), '(tags_score_slice)\n', (10655, 10673), True, 'import tensorflow as tf\n'), ((11485, 11511), 'tensorflow.shape', 'tf.shape', (['tags_score_slice'], {}), '(tags_score_slice)\n', (11493, 11511), True, 'import tensorflow as tf\n'), ((12586, 12621), 'tensorflow.train.AdadeltaOptimizer', 'tf.train.AdadeltaOptimizer', (['lr_rate'], {}), '(lr_rate)\n', (12612, 12621), True, 'import tensorflow as tf\n'), ((12680, 12711), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['lr_rate'], {}), '(lr_rate)\n', (12702, 12711), True, 'import tensorflow as tf\n'), ((10737, 10756), 'tensorflow.ones', 'tf.ones', (['(s_len, 2)'], {}), '((s_len, 2))\n', (10744, 10756), True, 'import tensorflow as tf\n'), ((11575, 11594), 'tensorflow.ones', 'tf.ones', (['(s_len, 2)'], {}), '((s_len, 2))\n', (11582, 11594), True, 'import tensorflow as tf\n'), ((12773, 12807), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', (['lr_rate'], {}), '(lr_rate)\n', (12798, 12807), True, 'import tensorflow as tf\n'), ((12084, 12105), 'tensorflow.shape', 'tf.shape', (['tags_scores'], {}), '(tags_scores)\n', (12092, 12105), True, 'import tensorflow as tf\n'), ((11877, 11897), 'tensorflow.shape', 'tf.shape', (['tags_score'], {}), '(tags_score)\n', (11885, 11897), True, 'import tensorflow as tf\n')]
import numpy as np import json from collections import Counter import matplotlib.pyplot as plt DATASET_DIR = './dataset/tacred/train_mod.json' with open(DATASET_DIR) as f: examples = json.load(f) def plot_counts(data): counts = Counter(data) del counts["no_relation"] labels, values = zip(*counts.items()) indexes = np.arange(len(labels)) width = 1 idx = list(reversed(np.argsort(values))) indexes_sorted = indexes[idx] values_sorted = np.array(values)[idx] labels_sorted = np.array(labels)[idx] print(values_sorted) plt.bar(range(len(indexes_sorted)), values_sorted, width) plt.xticks(indexes_sorted + width * 0.5, labels_sorted, rotation='vertical') plt.ylabel("Number of examples") plt.tight_layout() plt.show() # relation distribution print('NUM EXAMPLES', len(examples)) relations = [e['relation'] for e in examples] print("NUM_UNIQUE_RELATIONS", len(Counter(relations))) plot_counts(relations) def plot_counts_sent(data): plt.hist(sents, range=(0, 100), bins=100) plt.ylabel("Number of examples") plt.xlabel("Sentence Length") plt.show() # sentence length distribution sents = [len(e['token']) for e in examples] plot_counts_sent(sents)
[ "matplotlib.pyplot.hist", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "collections.Counter", "numpy.array", "numpy.argsort", "matplotlib.pyplot.tight_layout", "json.load", "matplotlib.pyplot.show" ]
[((190, 202), 'json.load', 'json.load', (['f'], {}), '(f)\n', (199, 202), False, 'import json\n'), ((240, 253), 'collections.Counter', 'Counter', (['data'], {}), '(data)\n', (247, 253), False, 'from collections import Counter\n'), ((634, 710), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(indexes_sorted + width * 0.5)', 'labels_sorted'], {'rotation': '"""vertical"""'}), "(indexes_sorted + width * 0.5, labels_sorted, rotation='vertical')\n", (644, 710), True, 'import matplotlib.pyplot as plt\n'), ((715, 747), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of examples"""'], {}), "('Number of examples')\n", (725, 747), True, 'import matplotlib.pyplot as plt\n'), ((752, 770), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (768, 770), True, 'import matplotlib.pyplot as plt\n'), ((775, 785), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (783, 785), True, 'import matplotlib.pyplot as plt\n'), ((1005, 1046), 'matplotlib.pyplot.hist', 'plt.hist', (['sents'], {'range': '(0, 100)', 'bins': '(100)'}), '(sents, range=(0, 100), bins=100)\n', (1013, 1046), True, 'import matplotlib.pyplot as plt\n'), ((1051, 1083), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of examples"""'], {}), "('Number of examples')\n", (1061, 1083), True, 'import matplotlib.pyplot as plt\n'), ((1088, 1117), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sentence Length"""'], {}), "('Sentence Length')\n", (1098, 1117), True, 'import matplotlib.pyplot as plt\n'), ((1122, 1132), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1130, 1132), True, 'import matplotlib.pyplot as plt\n'), ((478, 494), 'numpy.array', 'np.array', (['values'], {}), '(values)\n', (486, 494), True, 'import numpy as np\n'), ((520, 536), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (528, 536), True, 'import numpy as np\n'), ((928, 946), 'collections.Counter', 'Counter', (['relations'], {}), '(relations)\n', (935, 946), False, 'from collections import Counter\n'), ((403, 421), 'numpy.argsort', 'np.argsort', (['values'], {}), '(values)\n', (413, 421), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Wed Dec 19 06:10:55 2018 @author: <NAME> Demo of gradient boosting tree A very nice reference for gradient boosting http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf LightGBM https://github.com/Microsoft/LightGBM/tree/master/examples/python-guide Catboost https://github.com/catboost/tutorials Comparative study of different gradient boosting tree https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db """ import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import numpy as np import lightgbm as lgb import catboost as cb df_wine = pd.read_csv('../Data/winequality-red.csv', sep=';') df_shape = df_wine.shape X, y = df_wine.iloc[:, 0:df_shape[1]-1], df_wine.iloc[:, df_shape[1]-1] y = y - np.min(y) X = X.values #covert to numpy array X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=0) gbt = GradientBoostingClassifier( n_estimators=100, learning_rate=0.1, random_state=1) gbt.fit(X_train, y_train) print( "score: {}".format( gbt.score(X_test, y_test) ) ) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = { 'num_leaves': 6, 'metric': ('l1', 'l2'), 'verbose': 0 } print('Starting training...') # train evals_result = {} gbm = lgb.train(params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=['f' + str(i + 1) for i in range(X_train.shape[-1])], categorical_feature=[11], evals_result=evals_result, verbose_eval=10) print('Plotting feature importances...') ax = lgb.plot_importance(gbm, max_num_features=5) plt.show() # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration) # eval print('The rmse of prediction is:{}'.format( mean_squared_error(y_test, y_pred) ** 0.5) )
[ "pandas.read_csv", "sklearn.model_selection.train_test_split", "sklearn.metrics.mean_squared_error", "lightgbm.Dataset", "numpy.min", "sklearn.ensemble.GradientBoostingClassifier", "lightgbm.plot_importance", "matplotlib.pyplot.show" ]
[((768, 819), 'pandas.read_csv', 'pd.read_csv', (['"""../Data/winequality-red.csv"""'], {'sep': '""";"""'}), "('../Data/winequality-red.csv', sep=';')\n", (779, 819), True, 'import pandas as pd\n'), ((1008, 1061), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': '(0)'}), '(X, y, test_size=0.2, random_state=0)\n', (1024, 1061), False, 'from sklearn.model_selection import train_test_split\n'), ((1072, 1151), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {'n_estimators': '(100)', 'learning_rate': '(0.1)', 'random_state': '(1)'}), '(n_estimators=100, learning_rate=0.1, random_state=1)\n', (1098, 1151), False, 'from sklearn.ensemble import GradientBoostingClassifier\n'), ((1279, 1308), 'lightgbm.Dataset', 'lgb.Dataset', (['X_train', 'y_train'], {}), '(X_train, y_train)\n', (1290, 1308), True, 'import lightgbm as lgb\n'), ((1320, 1368), 'lightgbm.Dataset', 'lgb.Dataset', (['X_test', 'y_test'], {'reference': 'lgb_train'}), '(X_test, y_test, reference=lgb_train)\n', (1331, 1368), True, 'import lightgbm as lgb\n'), ((1933, 1977), 'lightgbm.plot_importance', 'lgb.plot_importance', (['gbm'], {'max_num_features': '(5)'}), '(gbm, max_num_features=5)\n', (1952, 1977), True, 'import lightgbm as lgb\n'), ((1978, 1988), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1986, 1988), True, 'import matplotlib.pyplot as plt\n'), ((926, 935), 'numpy.min', 'np.min', (['y'], {}), '(y)\n', (932, 935), True, 'import numpy as np\n'), ((2115, 2149), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (2133, 2149), False, 'from sklearn.metrics import mean_squared_error\n')]
import numpy from scipy.ndimage import gaussian_filter from skimage.data import binary_blobs from skimage.util import random_noise from aydin.it.transforms.fixedpattern import FixedPatternTransform def add_patterned_noise(image, n): image = image.copy() image *= 1 + 0.1 * (numpy.random.rand(n, n) - 0.5) image += 0.1 * numpy.random.rand(n, n) # image += 0.1*numpy.random.rand(n)[] image = random_noise(image, mode="gaussian", var=0.00001, seed=0) image = random_noise(image, mode="s&p", amount=0.000001, seed=0) return image def test_fixed_pattern_real(): n = 128 image = binary_blobs(length=n, seed=1, n_dim=3, volume_fraction=0.01).astype( numpy.float32 ) image = gaussian_filter(image, sigma=4) noisy = add_patterned_noise(image, n).astype(numpy.float32) bs = FixedPatternTransform(sigma=0) preprocessed = bs.preprocess(noisy) postprocessed = bs.postprocess(preprocessed) # import napari # with napari.gui_qt(): # viewer = napari.Viewer() # viewer.add_image(image, name='image') # viewer.add_image(noisy, name='noisy') # viewer.add_image(preprocessed, name='preprocessed') # viewer.add_image(postprocessed, name='postprocessed') assert image.shape == postprocessed.shape assert image.dtype == postprocessed.dtype assert numpy.abs(preprocessed - image).mean() < 0.007 assert preprocessed.dtype == postprocessed.dtype assert numpy.abs(postprocessed - noisy).mean() < 1e-8 # import napari # with napari.gui_qt(): # viewer = napari.Viewer() # viewer.add_image(image, name='image') # viewer.add_image(noisy, name='noisy') # viewer.add_image(corrected, name='corrected')
[ "numpy.abs", "aydin.it.transforms.fixedpattern.FixedPatternTransform", "numpy.random.rand", "skimage.data.binary_blobs", "skimage.util.random_noise", "scipy.ndimage.gaussian_filter" ]
[((413, 468), 'skimage.util.random_noise', 'random_noise', (['image'], {'mode': '"""gaussian"""', 'var': '(1e-05)', 'seed': '(0)'}), "(image, mode='gaussian', var=1e-05, seed=0)\n", (425, 468), False, 'from skimage.util import random_noise\n'), ((483, 536), 'skimage.util.random_noise', 'random_noise', (['image'], {'mode': '"""s&p"""', 'amount': '(1e-06)', 'seed': '(0)'}), "(image, mode='s&p', amount=1e-06, seed=0)\n", (495, 536), False, 'from skimage.util import random_noise\n'), ((724, 755), 'scipy.ndimage.gaussian_filter', 'gaussian_filter', (['image'], {'sigma': '(4)'}), '(image, sigma=4)\n', (739, 755), False, 'from scipy.ndimage import gaussian_filter\n'), ((830, 860), 'aydin.it.transforms.fixedpattern.FixedPatternTransform', 'FixedPatternTransform', ([], {'sigma': '(0)'}), '(sigma=0)\n', (851, 860), False, 'from aydin.it.transforms.fixedpattern import FixedPatternTransform\n'), ((335, 358), 'numpy.random.rand', 'numpy.random.rand', (['n', 'n'], {}), '(n, n)\n', (352, 358), False, 'import numpy\n'), ((614, 675), 'skimage.data.binary_blobs', 'binary_blobs', ([], {'length': 'n', 'seed': '(1)', 'n_dim': '(3)', 'volume_fraction': '(0.01)'}), '(length=n, seed=1, n_dim=3, volume_fraction=0.01)\n', (626, 675), False, 'from skimage.data import binary_blobs\n'), ((285, 308), 'numpy.random.rand', 'numpy.random.rand', (['n', 'n'], {}), '(n, n)\n', (302, 308), False, 'import numpy\n'), ((1361, 1392), 'numpy.abs', 'numpy.abs', (['(preprocessed - image)'], {}), '(preprocessed - image)\n', (1370, 1392), False, 'import numpy\n'), ((1473, 1505), 'numpy.abs', 'numpy.abs', (['(postprocessed - noisy)'], {}), '(postprocessed - noisy)\n', (1482, 1505), False, 'import numpy\n')]
# # Licensed under the BSD license. See full license in LICENSE file. # http://www.lightshowpi.com/ # # Author: <NAME> (<EMAIL>) """FFT methods for computing / analyzing frequency response of audio. This is simply a wrapper around FFT support in numpy. Initial FFT code inspired from the code posted here: http://www.raspberrypi.org/phpBB3/viewtopic.php?t=35838&p=454041 Optimizations from work by S<NAME>: http://www.instructables.com/id/Raspberry-Pi-Spectrum-Analyzer-with-RGB-LED-Strip-/ Third party dependencies: numpy: for FFT calculation - http://www.numpy.org/ """ from numpy import sum as npsum from numpy import abs as npabs from numpy import log10, frombuffer, empty, hanning, fft, delete, int16, zeros def calculate_levels(data, chunk_size, sample_rate, frequency_limits, num_bins, input_channels=2): """Calculate frequency response for each channel defined in frequency_limits :param data: decoder.frames(), audio data for fft calculations :type data: decoder.frames :param chunk_size: chunk size of audio data :type chunk_size: int :param sample_rate: audio file sample rate :type sample_rate: int :param frequency_limits: list of frequency_limits :type frequency_limits: list :param num_bins: length of gpio to process :type num_bins: int :param input_channels: number of audio input channels to process for (default=2) :type input_channels: int :return: :rtype: numpy.array """ # create a numpy array, taking just the left channel if stereo data_stereo = frombuffer(data, dtype=int16) if input_channels == 2: # data has 2 bytes per channel data = empty(len(data) / (2 * input_channels)) # pull out the even values, just using left channel data[:] = data_stereo[::2] elif input_channels == 1: data = data_stereo # if you take an FFT of a chunk of audio, the edges will look like # super high frequency cutoffs. Applying a window tapers the edges # of each end of the chunk down to zero. data = data * hanning(len(data)) # Apply FFT - real data fourier = fft.rfft(data) # Remove last element in array to make it the same size as chunk_size fourier = delete(fourier, len(fourier) - 1) # Calculate the power spectrum power = npabs(fourier) ** 2 matrix = zeros(num_bins, dtype='float64') for pin in range(num_bins): # take the log10 of the resulting sum to approximate how human ears # perceive sound levels # Get the power array index corresponding to a particular frequency. idx1 = int(chunk_size * frequency_limits[pin][0] / sample_rate) idx2 = int(chunk_size * frequency_limits[pin][1] / sample_rate) # if index1 is the same as index2 the value is an invalid value # we can fix this by incrementing index2 by 1, This is a temporary fix # for RuntimeWarning: invalid value encountered in double_scalars # generated while calculating the standard deviation. This warning # results in some channels not lighting up during playback. if idx1 == idx2: idx2 += 1 npsums = npsum(power[idx1:idx2:1]) # if the sum is 0 lets not take log10, just use 0 # eliminates RuntimeWarning: divide by zero encountered in log10, does not insert -inf if npsums == 0: matrix[pin] = 0 else: matrix[pin] = log10(npsums) return matrix
[ "numpy.abs", "numpy.log10", "numpy.fft.rfft", "numpy.sum", "numpy.zeros", "numpy.frombuffer" ]
[((1559, 1588), 'numpy.frombuffer', 'frombuffer', (['data'], {'dtype': 'int16'}), '(data, dtype=int16)\n', (1569, 1588), False, 'from numpy import log10, frombuffer, empty, hanning, fft, delete, int16, zeros\n'), ((2132, 2146), 'numpy.fft.rfft', 'fft.rfft', (['data'], {}), '(data)\n', (2140, 2146), False, 'from numpy import log10, frombuffer, empty, hanning, fft, delete, int16, zeros\n'), ((2352, 2384), 'numpy.zeros', 'zeros', (['num_bins'], {'dtype': '"""float64"""'}), "(num_bins, dtype='float64')\n", (2357, 2384), False, 'from numpy import log10, frombuffer, empty, hanning, fft, delete, int16, zeros\n'), ((2318, 2332), 'numpy.abs', 'npabs', (['fourier'], {}), '(fourier)\n', (2323, 2332), True, 'from numpy import abs as npabs\n'), ((3207, 3232), 'numpy.sum', 'npsum', (['power[idx1:idx2:1]'], {}), '(power[idx1:idx2:1])\n', (3212, 3232), True, 'from numpy import sum as npsum\n'), ((3487, 3500), 'numpy.log10', 'log10', (['npsums'], {}), '(npsums)\n', (3492, 3500), False, 'from numpy import log10, frombuffer, empty, hanning, fft, delete, int16, zeros\n')]
import matplotlib import numpy as np import matplotlib.pyplot as plt default_params = { 'text.usetex': False, 'font.family': 'Times New Roman', 'font.serif': 'Times New Roman' } if __name__ == '__main__': plt.rcParams.update(default_params) myfont1 = matplotlib.font_manager.FontProperties(fname='C:\\times.ttf', size=14) myfont2 = matplotlib.font_manager.FontProperties(fname='C:\\times.ttf', size=12) plt.figure(figsize=(5, 3)) x = np.linspace(0.001, 5, 1000) y1 = 0.001 * x ** 2 + 0.02 * 1 / x + 0.02 y2 = 0.12 * x ** 2 + 0.04 * 1 / x + 0.06 plt.plot(x, y1, color='b', linestyle='--', label='Training error') plt.plot(x, y2, color='g', linestyle='-', label='Generalization error') cx = 0.55 cy = 0.12 * cx ** 2 + 0.04 * 1 / cx + 0.06 plt.plot([cx, cx], [-0.01, cy], color='r', linestyle=':') plt.plot([-0.01, cx], [cy, cy], color='r', linestyle=':') plt.text(cx-0.3, -0.12, 'Optimal capacity', fontproperties=myfont2) plt.arrow(1.6, 0.21, 0.0, 0.12, head_width=0.03, head_length=0.03, shape='full', fc='black', ec='black', linewidth=1) plt.arrow(1.6, 0.21, 0.0, -0.12, head_width=0.03, head_length=0.03, shape='full', fc='black', ec='black', linewidth=1) plt.text(1.65, 0.18, 'Generalization gap', fontproperties=myfont2) plt.legend(loc='upper right', prop=myfont1) plt.xticks([0]) plt.yticks([]) plt.xlabel('Capacity', fontproperties=myfont1) plt.ylabel('Error', fontproperties=myfont1) plt.xlim((-0.01, 2.5)) plt.ylim((-0.01, 1.2)) plt.savefig('gap1.pdf', format='pdf', dpi=900, bbox_inches='tight') plt.figure(figsize=(5, 3)) x = np.linspace(0.001, 5, 1000) y1 = 0.005 * x ** 2 + 0.03 * 1 / x + 0.03 y2 = 0.04 * x ** 2 + 0.05 * 1 / x + 0.03 plt.plot(x, y1, color='b', linestyle='--', label='Training error') plt.plot(x, y2, color='g', linestyle='-', label='Generalization error') cx = 0.855 cy = 0.04 * cx ** 2 + 0.05 * 1 / cx + 0.03 plt.plot([cx, cx], [-0.01, cy], color='r', linestyle=':') plt.plot([-0.01, cx], [cy, cy], color='r', linestyle=':') plt.text(cx-0.3, -0.12, 'Optimal capacity', fontproperties=myfont2) plt.legend(loc='upper right', prop=myfont1) plt.xticks([0]) plt.yticks([]) plt.xlabel('Capacity', fontproperties=myfont1) plt.ylabel('Error', fontproperties=myfont1) plt.xlim((-0.01, 2.5)) plt.ylim((-0.01, 1.2)) plt.savefig('gap2.pdf', format='pdf', dpi=900, bbox_inches='tight')
[ "matplotlib.pyplot.text", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.font_manager.FontProperties", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.yticks", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "matplotlib.pyplot.arrow", "matplotlib.pyplot.legend" ]
[((223, 258), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['default_params'], {}), '(default_params)\n', (242, 258), True, 'import matplotlib.pyplot as plt\n'), ((273, 343), 'matplotlib.font_manager.FontProperties', 'matplotlib.font_manager.FontProperties', ([], {'fname': '"""C:\\\\times.ttf"""', 'size': '(14)'}), "(fname='C:\\\\times.ttf', size=14)\n", (311, 343), False, 'import matplotlib\n'), ((358, 428), 'matplotlib.font_manager.FontProperties', 'matplotlib.font_manager.FontProperties', ([], {'fname': '"""C:\\\\times.ttf"""', 'size': '(12)'}), "(fname='C:\\\\times.ttf', size=12)\n", (396, 428), False, 'import matplotlib\n'), ((433, 459), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 3)'}), '(figsize=(5, 3))\n', (443, 459), True, 'import matplotlib.pyplot as plt\n'), ((468, 495), 'numpy.linspace', 'np.linspace', (['(0.001)', '(5)', '(1000)'], {}), '(0.001, 5, 1000)\n', (479, 495), True, 'import numpy as np\n'), ((591, 657), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y1'], {'color': '"""b"""', 'linestyle': '"""--"""', 'label': '"""Training error"""'}), "(x, y1, color='b', linestyle='--', label='Training error')\n", (599, 657), True, 'import matplotlib.pyplot as plt\n'), ((662, 733), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y2'], {'color': '"""g"""', 'linestyle': '"""-"""', 'label': '"""Generalization error"""'}), "(x, y2, color='g', linestyle='-', label='Generalization error')\n", (670, 733), True, 'import matplotlib.pyplot as plt\n'), ((799, 856), 'matplotlib.pyplot.plot', 'plt.plot', (['[cx, cx]', '[-0.01, cy]'], {'color': '"""r"""', 'linestyle': '""":"""'}), "([cx, cx], [-0.01, cy], color='r', linestyle=':')\n", (807, 856), True, 'import matplotlib.pyplot as plt\n'), ((861, 918), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.01, cx]', '[cy, cy]'], {'color': '"""r"""', 'linestyle': '""":"""'}), "([-0.01, cx], [cy, cy], color='r', linestyle=':')\n", (869, 918), True, 'import matplotlib.pyplot as plt\n'), ((923, 992), 'matplotlib.pyplot.text', 'plt.text', (['(cx - 0.3)', '(-0.12)', '"""Optimal capacity"""'], {'fontproperties': 'myfont2'}), "(cx - 0.3, -0.12, 'Optimal capacity', fontproperties=myfont2)\n", (931, 992), True, 'import matplotlib.pyplot as plt\n'), ((995, 1117), 'matplotlib.pyplot.arrow', 'plt.arrow', (['(1.6)', '(0.21)', '(0.0)', '(0.12)'], {'head_width': '(0.03)', 'head_length': '(0.03)', 'shape': '"""full"""', 'fc': '"""black"""', 'ec': '"""black"""', 'linewidth': '(1)'}), "(1.6, 0.21, 0.0, 0.12, head_width=0.03, head_length=0.03, shape=\n 'full', fc='black', ec='black', linewidth=1)\n", (1004, 1117), True, 'import matplotlib.pyplot as plt\n'), ((1117, 1240), 'matplotlib.pyplot.arrow', 'plt.arrow', (['(1.6)', '(0.21)', '(0.0)', '(-0.12)'], {'head_width': '(0.03)', 'head_length': '(0.03)', 'shape': '"""full"""', 'fc': '"""black"""', 'ec': '"""black"""', 'linewidth': '(1)'}), "(1.6, 0.21, 0.0, -0.12, head_width=0.03, head_length=0.03, shape=\n 'full', fc='black', ec='black', linewidth=1)\n", (1126, 1240), True, 'import matplotlib.pyplot as plt\n'), ((1240, 1306), 'matplotlib.pyplot.text', 'plt.text', (['(1.65)', '(0.18)', '"""Generalization gap"""'], {'fontproperties': 'myfont2'}), "(1.65, 0.18, 'Generalization gap', fontproperties=myfont2)\n", (1248, 1306), True, 'import matplotlib.pyplot as plt\n'), ((1311, 1354), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'prop': 'myfont1'}), "(loc='upper right', prop=myfont1)\n", (1321, 1354), True, 'import matplotlib.pyplot as plt\n'), ((1359, 1374), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0]'], {}), '([0])\n', (1369, 1374), True, 'import matplotlib.pyplot as plt\n'), ((1379, 1393), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (1389, 1393), True, 'import matplotlib.pyplot as plt\n'), ((1398, 1444), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Capacity"""'], {'fontproperties': 'myfont1'}), "('Capacity', fontproperties=myfont1)\n", (1408, 1444), True, 'import matplotlib.pyplot as plt\n'), ((1449, 1492), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Error"""'], {'fontproperties': 'myfont1'}), "('Error', fontproperties=myfont1)\n", (1459, 1492), True, 'import matplotlib.pyplot as plt\n'), ((1497, 1519), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-0.01, 2.5)'], {}), '((-0.01, 2.5))\n', (1505, 1519), True, 'import matplotlib.pyplot as plt\n'), ((1524, 1546), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.01, 1.2)'], {}), '((-0.01, 1.2))\n', (1532, 1546), True, 'import matplotlib.pyplot as plt\n'), ((1551, 1618), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""gap1.pdf"""'], {'format': '"""pdf"""', 'dpi': '(900)', 'bbox_inches': '"""tight"""'}), "('gap1.pdf', format='pdf', dpi=900, bbox_inches='tight')\n", (1562, 1618), True, 'import matplotlib.pyplot as plt\n'), ((1624, 1650), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 3)'}), '(figsize=(5, 3))\n', (1634, 1650), True, 'import matplotlib.pyplot as plt\n'), ((1659, 1686), 'numpy.linspace', 'np.linspace', (['(0.001)', '(5)', '(1000)'], {}), '(0.001, 5, 1000)\n', (1670, 1686), True, 'import numpy as np\n'), ((1782, 1848), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y1'], {'color': '"""b"""', 'linestyle': '"""--"""', 'label': '"""Training error"""'}), "(x, y1, color='b', linestyle='--', label='Training error')\n", (1790, 1848), True, 'import matplotlib.pyplot as plt\n'), ((1853, 1924), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y2'], {'color': '"""g"""', 'linestyle': '"""-"""', 'label': '"""Generalization error"""'}), "(x, y2, color='g', linestyle='-', label='Generalization error')\n", (1861, 1924), True, 'import matplotlib.pyplot as plt\n'), ((1991, 2048), 'matplotlib.pyplot.plot', 'plt.plot', (['[cx, cx]', '[-0.01, cy]'], {'color': '"""r"""', 'linestyle': '""":"""'}), "([cx, cx], [-0.01, cy], color='r', linestyle=':')\n", (1999, 2048), True, 'import matplotlib.pyplot as plt\n'), ((2053, 2110), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.01, cx]', '[cy, cy]'], {'color': '"""r"""', 'linestyle': '""":"""'}), "([-0.01, cx], [cy, cy], color='r', linestyle=':')\n", (2061, 2110), True, 'import matplotlib.pyplot as plt\n'), ((2115, 2184), 'matplotlib.pyplot.text', 'plt.text', (['(cx - 0.3)', '(-0.12)', '"""Optimal capacity"""'], {'fontproperties': 'myfont2'}), "(cx - 0.3, -0.12, 'Optimal capacity', fontproperties=myfont2)\n", (2123, 2184), True, 'import matplotlib.pyplot as plt\n'), ((2187, 2230), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""', 'prop': 'myfont1'}), "(loc='upper right', prop=myfont1)\n", (2197, 2230), True, 'import matplotlib.pyplot as plt\n'), ((2235, 2250), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0]'], {}), '([0])\n', (2245, 2250), True, 'import matplotlib.pyplot as plt\n'), ((2255, 2269), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[]'], {}), '([])\n', (2265, 2269), True, 'import matplotlib.pyplot as plt\n'), ((2274, 2320), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Capacity"""'], {'fontproperties': 'myfont1'}), "('Capacity', fontproperties=myfont1)\n", (2284, 2320), True, 'import matplotlib.pyplot as plt\n'), ((2325, 2368), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Error"""'], {'fontproperties': 'myfont1'}), "('Error', fontproperties=myfont1)\n", (2335, 2368), True, 'import matplotlib.pyplot as plt\n'), ((2373, 2395), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-0.01, 2.5)'], {}), '((-0.01, 2.5))\n', (2381, 2395), True, 'import matplotlib.pyplot as plt\n'), ((2400, 2422), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.01, 1.2)'], {}), '((-0.01, 1.2))\n', (2408, 2422), True, 'import matplotlib.pyplot as plt\n'), ((2427, 2494), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""gap2.pdf"""'], {'format': '"""pdf"""', 'dpi': '(900)', 'bbox_inches': '"""tight"""'}), "('gap2.pdf', format='pdf', dpi=900, bbox_inches='tight')\n", (2438, 2494), True, 'import matplotlib.pyplot as plt\n')]
# # plot-sine-wave.py # Produce a PNG file of a sine wave plot # # <NAME> | https://butiran.github.io # # Execute: py plot-sine-wave.py # Output: sine-t-<time>.png # # 20210212 # 1901 Create this by modifying moving-sine-wave.py from [1]. # 1902 Remove FuncAnimation from matplotlib.animation. # 1904 Can save as PNG as in [2]. # 1949 Add comments and can show figure, learn Line2D [3]. # 1955 Can set axes label [4]. # 2002 Show grid [5]. # 2011 Use arange but modify [6] from xtics to set_xtics. # 2021 Add text box [7]. # 2027 Set figure size [8], but in inch? # 2038 Convert time with certain precision for output [9]. # 2024 Change size for Jekyll blog, hopefully better. # 2120 Add _varphi to the function wave. # # References # 1. <NAME>, "Animations with Mathplotlib", Towards Data Science, 14 Apr 2019, url https://towardsdatascience.com/animation-with-matplotlib-d96375c5442c [20210212]. # 2. Yann, <NAME>, "Answer to 'matplotlib savefig in jpeg format'", StackOverflow, 01 Aug 2018 at 01:48, url https://stackoverflow.com/a/8827350 [20210212]. # 3. SHUBHAMSINGH10, "Matplotlib.axes.Axes.plot() in Python", GeeksforGeeks, 12 Apr 2020, url https://www.geeksforgeeks.org/matplotlib-axes-axes-plot-in-python/ [20210212]. # 4. <NAME>, "Answer to 'How to set X and Y axis Title in matplotlib.pyplot'", StackOverflow, 08 Jun 2020 at 06:29, url https://stackoverflow.com/a/62256244 [20210212]. # 5. <NAME>, <NAME>, "Answer to 'How do I draw a grid onto a plot in Python?'", StackOverflow, 20 Mar 2017 at 17:42, url https://stackoverflow.com/a/8210686 [20210212]. # 6. unutbu, "Answer to 'Changing the “tick frequency” on x or y axis in matplotlib?'", StackOverflow, 26 Sep 20212 at 19:24, url https://stackoverflow.com/a/12608937 [20210212]. # 7. Anake, "Answer to 'automatically position text box in matplotlib'", StackOverflow, 29 Oct 2015 at 14:59, url https://stackoverflow.com/a/33417697 [20210212]. # 8. iPas, cbare, "Answer to 'How do you change the size of figures drawn with matplotlib?'", StackOverflow, 01 Feb 2015 at 06:21, url https://stackoverflow.com/a/24073700 [20210212]. # 9. HAL 9001, "Answer to 'Convert floating point number to a certain precision, and then copy to string'", StackOverflow, 06 Mar 2019 at 19:57, url https://stackoverflow.com/a/15263885 [20210212]. # # Import necessary packages import numpy as np from matplotlib import pyplot as plt from matplotlib.offsetbox import AnchoredText # Define a function representing a sine wave def swave(x, t): A = 1.5 _lambda = 1 k = 2 * np.pi / _lambda T = 1 _omega = 2 * np.pi / T _varphi = 0 y = A * np.sin(k * x - _omega *t + _varphi) return y # Use style plt.style.use("seaborn-pastel") # Create figure with certain size in inch fig = plt.figure(figsize=(2.5, 2.5)) # Set x range xmin = 0 xmax = 2 xrange = (xmin, xmax) # Set y range ymin = -2 ymax = 2 yrange = (ymin, ymax) # Set x and y axes ax = plt.axes(xlim=xrange, ylim=yrange) # Set axes label ax.set_xlabel("x") ax.set_ylabel("y") # Set xtics dx = 0.5 xtics = np.arange(xmin, xmax + dx, dx) ax.set_xticks(xtics) # Set ytics dy = 1 ytics = np.arange(ymin, ymax + dy, dy) ax.set_yticks(ytics) # Get Line2D object representing plotted data line, = ax.plot([], [], lw=3) # Show grid or with True plt.grid() # Create data t = 0 x = np.linspace(0, 4, 100) y = swave(x, t) line.set_data(x, y) # Add time information ts = "{:.2f}".format(t) atext = AnchoredText("t = " + ts, loc=1) ax.add_artist(atext) # Save plot as PNG image plt.savefig("sine-t-" + ts + ".png") # Show plot plt.show()
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "matplotlib.pyplot.style.use", "matplotlib.offsetbox.AnchoredText", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.axes", "numpy.sin", "numpy.arange", "matplotlib.pyplot.show" ]
[((2653, 2684), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-pastel"""'], {}), "('seaborn-pastel')\n", (2666, 2684), True, 'from matplotlib import pyplot as plt\n'), ((2734, 2764), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(2.5, 2.5)'}), '(figsize=(2.5, 2.5))\n', (2744, 2764), True, 'from matplotlib import pyplot as plt\n'), ((2901, 2935), 'matplotlib.pyplot.axes', 'plt.axes', ([], {'xlim': 'xrange', 'ylim': 'yrange'}), '(xlim=xrange, ylim=yrange)\n', (2909, 2935), True, 'from matplotlib import pyplot as plt\n'), ((3022, 3052), 'numpy.arange', 'np.arange', (['xmin', '(xmax + dx)', 'dx'], {}), '(xmin, xmax + dx, dx)\n', (3031, 3052), True, 'import numpy as np\n'), ((3102, 3132), 'numpy.arange', 'np.arange', (['ymin', '(ymax + dy)', 'dy'], {}), '(ymin, ymax + dy, dy)\n', (3111, 3132), True, 'import numpy as np\n'), ((3257, 3267), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (3265, 3267), True, 'from matplotlib import pyplot as plt\n'), ((3293, 3315), 'numpy.linspace', 'np.linspace', (['(0)', '(4)', '(100)'], {}), '(0, 4, 100)\n', (3304, 3315), True, 'import numpy as np\n'), ((3408, 3440), 'matplotlib.offsetbox.AnchoredText', 'AnchoredText', (["('t = ' + ts)"], {'loc': '(1)'}), "('t = ' + ts, loc=1)\n", (3420, 3440), False, 'from matplotlib.offsetbox import AnchoredText\n'), ((3488, 3524), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('sine-t-' + ts + '.png')"], {}), "('sine-t-' + ts + '.png')\n", (3499, 3524), True, 'from matplotlib import pyplot as plt\n'), ((3538, 3548), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3546, 3548), True, 'from matplotlib import pyplot as plt\n'), ((2593, 2629), 'numpy.sin', 'np.sin', (['(k * x - _omega * t + _varphi)'], {}), '(k * x - _omega * t + _varphi)\n', (2599, 2629), True, 'import numpy as np\n')]
import numpy as np from nlpaug.model.audio import Audio class Normalization(Audio): def manipulate(self, data, method, start_pos, end_pos): aug_data = data.copy() if method == 'minmax': new_data = self._min_max(aug_data[start_pos:end_pos]) elif method == 'max': new_data = self._max(aug_data[start_pos:end_pos]) elif method == 'standard': new_data = self._standard(aug_data[start_pos:end_pos]) aug_data[start_pos:end_pos] = new_data return aug_data def get_support_methods(self): return ['minmax', 'max', 'standard'] def _standard(self, data): return (data - np.mean(data)) / np.std(data) def _max(self, data): return data / np.amax(np.abs(data)) def _min_max(self, data): lower = np.amin(np.abs(data)) return (data - lower) / (np.amax(np.abs(data)) - lower)
[ "numpy.abs", "numpy.mean", "numpy.std" ]
[((611, 623), 'numpy.std', 'np.std', (['data'], {}), '(data)\n', (617, 623), True, 'import numpy as np\n'), ((732, 744), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (738, 744), True, 'import numpy as np\n'), ((594, 607), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (601, 607), True, 'import numpy as np\n'), ((672, 684), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (678, 684), True, 'import numpy as np\n'), ((781, 793), 'numpy.abs', 'np.abs', (['data'], {}), '(data)\n', (787, 793), True, 'import numpy as np\n')]
from __future__ import print_function, division import numpy as np weights = np.transpose(np.load('w0.npy')) print(weights.shape) feature_names = ["" for i in range(125)] prev = 0 prev_name = '' for line in open('feature_names.txt'): if line.startswith('#'): continue words = line.split() index = int(words[0]) feature_name = words[1][:-1] feature_type = words[2] if prev_name != '': for i in range(prev, index + 1): if prev + 1 < index: feature_names[i] = prev_name + '_' + str(i - prev) else: feature_names[i] = prev_name prev = index prev_name = feature_name feature_names[-1] = prev_name print(feature_names, len(feature_names)) sorted_indices = np.argsort(np.absolute(weights), axis=1) print(sorted_indices[:, 120:124])
[ "numpy.absolute", "numpy.load" ]
[((92, 109), 'numpy.load', 'np.load', (['"""w0.npy"""'], {}), "('w0.npy')\n", (99, 109), True, 'import numpy as np\n'), ((772, 792), 'numpy.absolute', 'np.absolute', (['weights'], {}), '(weights)\n', (783, 792), True, 'import numpy as np\n')]
""" Generate and save maps for each template. """ import random import numpy as np from scipy import stats import healpy as hp import matplotlib.pyplot as plt import os import pickle from .data_utils import get_fermi_pdf_sampler, masked_to_full from .utils import multipage, auto_garbage_collect import ray import time import warnings def generate_template_maps(params, temp_dict, ray_settings, n_example_plots, job_id=0): """ Generate simulated template maps for each template (output format: NESTED!) :param params: DotDict containing the settings (see parameters.py) :param temp_dict: DotDict containing the templates :param ray_settings: dictionary containing the settings for ray :param n_example_plots: number of maps to plot and save for each template (as a quick check) :param job_id: if running several jobs for the data generation: ID of the current job """ start_time = time.time() # Get settings that will be stored in a separate file together with the maps t_p = params.mod["models_P"] t_ps = params.mod["models_PS"] nside = params.data["nside"] outer_rad = params.data["outer_rad"] inner_band = params.data["inner_band"] mask_type = params.data["mask_type"] do_fermi_psf = params.data["psf"] leakage_delta = params.data["leakage_delta"] if do_fermi_psf else 0 if "db" in params.keys(): do_poisson_scatter_p = False if params.db["deactivate_poiss_scatter_for_P"] else True else: do_poisson_scatter_p = True name = params.tt["filename_base"] n_chunk = params.tt["n_chunk"] n_sim_per_chunk = params.tt["n_sim_per_chunk"] poisson_a_is_log = params.tt["poisson_A_is_log"] add_two_temps_ps = params.tt["add_two_temps_PS"] output_path = params.gen["template_maps_folder"] prior_dict = params.tt.priors save_example_plot = n_example_plots > 0 exp = temp_dict["exp"] rescale_compressed = temp_dict["rescale_compressed"] # Set output dtypes dtype_data = np.uint32 if do_poisson_scatter_p else np.float32 # without Poisson draw, counts are non-integer dtype_flux_arr = np.float32 # Set a random seed for numpy (using random because numpy duplicates random number generator for multiple processes) random_seed = random.randint(0, int(2 ** 32 - 1)) np.random.seed(random_seed) print("Job ID:", job_id, "Random Seed:", random_seed) # PSF: use Fermi-LAT PSF if do_fermi_psf: pdf = get_fermi_pdf_sampler() else: pdf = None # Get the masks total_mask_neg = temp_dict["mask_ROI_full"] # uncompressed, nest format, contains PS mask if desired total_mask_neg_safety = temp_dict["mask_safety_full"] # the same for the slightly larger ROI # Initialise the output dictionary data_out = dict() # Create the output folder (if it doesn't exist yet) os.makedirs(output_path, exist_ok=True) # Print print("Starting map generation for '{0}'.".format(params.tt["data_name"])) print("Number of chunks: {0}, number of simulations per chunk: " "{1}\n -> {2} maps per model.".format(n_chunk, n_sim_per_chunk, n_chunk * n_sim_per_chunk)) if len(add_two_temps_ps) > 0: print(" Twice as many maps will be created for", add_two_temps_ps) # Start with the Poissonian models for temp in t_p: print("Starting with Poissonian model '{:}'".format(temp)) t = temp_dict["T_counts"][temp] # exposure-corrected template in counts space # Get pixels that are not masked indices_roi = temp_dict["indices_roi"] # Mask template and compress t_masked = t * (1 - total_mask_neg) t_masked_compressed = t_masked[indices_roi] # Make a subfolder temp_folder = os.path.join(output_path, temp) os.makedirs(temp_folder, exist_ok=True) # For each chunk for chunk in range(n_chunk): # Draw the (log) amplitude a = np.asarray([random.uniform(prior_dict[temp][0], prior_dict[temp][1]) for _ in range(n_sim_per_chunk)]) # Generate the maps: NOTE: exposure-correction is included in the Poissonian templates ("T_counts") random_draw_fn = np.random.poisson if do_poisson_scatter_p else lambda x: x if poisson_a_is_log: sim_maps = np.asarray([random_draw_fn((10.0 ** a[i]) * t_masked_compressed) for i in range(n_sim_per_chunk)]) else: sim_maps = np.asarray([random_draw_fn(a[i] * t_masked_compressed) for i in range(n_sim_per_chunk)]) # Save settings if chunk == 0 and int(job_id) == 0: settings_out = dict() settings_out["T"] = t settings_out["priors"] = prior_dict[temp] settings_out["is_log_A"] = poisson_a_is_log settings_out["exp"] = exp settings_out["rescale_compressed"] = rescale_compressed settings_out["indices_roi"] = indices_roi settings_out["format"] = "NEST" settings_out["mask_type"] = mask_type settings_out["outer_rad"] = outer_rad settings_out["inner_band"] = inner_band settings_out["leakage_delta"] = leakage_delta settings_out["nside"] = nside print(" Writing settings file...") with open(os.path.join(temp_folder, name + "_settings.pickle"), 'wb') as f: pickle.dump(settings_out, f) # Save maps # The full map can be recovered as # map_full = np.zeros(npix), map_full[data_out["indices_roi"]] = data_out["val"] data_out["data"] = sim_maps.astype(dtype_data) data_out["info"] = dict() data_out["info"]["A"] = a with open(os.path.join(temp_folder, name + "_" + str(job_id) + "_" + str(chunk) + ".pickle"), 'wb') as f: pickle.dump(data_out, f) # Plot some maps and save if chunk == 0 and int(job_id) == 0 and save_example_plot: plt.ioff() hp.mollview(t_masked, title="Template (exposure-corrected)", nest=True) hp.mollview(exp, title="Exposure (nside = " + str(nside) + ")", nest=True) hp.mollview(total_mask_neg, title="Mask (" + str(mask_type) + ")", nest=True) for i in range(n_example_plots): hp.mollview(masked_to_full(sim_maps[i, :], indices_roi, nside=nside), title=int(np.round(sim_maps[i, :].sum())), nest=True) multipage(os.path.join(output_path, temp + "_examples.pdf")) plt.close("all") # Initialise Ray if t_ps: ray.init(**ray_settings) if "num_cpus" in ray_settings.keys(): print("Ray: running on", ray_settings["num_cpus"], "CPUs.") # Put the large array / objects that are template-independent into the object store exp_id = ray.put(exp) pdf_id = ray.put(pdf) # Define a function for the simulation of the point-source models @ray.remote def create_simulated_map(skew_, loc_, scale_, flux_lims_, enforce_upper_flux_, t_, exp_, pdf_, name_, inds_outside_roi_, size_approx_mean_=10000, flux_log_=False): from .ps_mc import run assert np.all(np.isfinite(flux_lims_)), "Flux limits must be finite!" max_total_flux = flux_lims_[1] if enforce_upper_flux_ else -np.infty # Draw the desired flux if flux_log_: flux_desired = 10 ** np.random.uniform(*flux_lims_) else: flux_desired = np.random.uniform(*flux_lims_) # Calculate the expected value of 10^X exp_value = (10 ** stats.skewnorm.rvs(skew_, loc=loc_, scale=scale_, size=int(size_approx_mean_))).mean() # Determine the expected number of sources n_sources_exp = flux_desired / exp_value # Draw the observed number of sources from a Poisson distribution n_sources = np.random.poisson(n_sources_exp) # Initialise total flux tot_flux = np.infty # Draw fluxes until total flux is in valid range flux_arr_ = [] while tot_flux >= max_total_flux: flux_arr_ = 10 ** stats.skewnorm.rvs(skew_, loc=loc_, scale=scale_, size=n_sources) tot_flux = flux_arr_.sum() if not enforce_upper_flux_: break # If total flux > max-total_flux: reduce n_sources if tot_flux > max_total_flux: n_sources = int(max(1, int(n_sources // 1.05))) # Do MC run map_, n_phot_, flux_arr_out = run(np.asarray(flux_arr_), t_, exp_, pdf_, name_, save=False, getnopsf=True, getcts=True, upscale_nside=16384, verbose=False, is_nest=True, inds_outside_roi=inds_outside_roi_, clean_count_list=False) return map_, n_phot_, flux_arr_out # Do the point-source models for temp in t_ps: print("Starting with point-source model '{:}'".format(temp)) t = temp_dict["T_flux"][temp] # for point-sources: template after REMOVING the exposure correction is used # Apply slightly larger mask t_masked = t * (1 - total_mask_neg_safety) # Correct flux limit priors for larger mask (after simulating the counts, ROI mask will be applied) flux_corr_fac = t_masked.sum() / (t * (1 - total_mask_neg)).sum() flux_lims_corr = [None] * 2 for i in range(2): if prior_dict[temp]["flux_log"]: flux_lims_corr[i] = prior_dict[temp]["flux_lims"][i] + np.log10(flux_corr_fac) else: flux_lims_corr[i] = prior_dict[temp]["flux_lims"][i] * flux_corr_fac # Get indices where PSs are sampled although they lie outside ROI inds_ps_outside_roi = set(np.setdiff1d(temp_dict["indices_safety"], temp_dict["indices_roi"])) # Template needs to be normalised to sum up to unity for the new implementation! # Might need to do this twice because of rounding errors t_final = t_masked / t_masked.sum() while t_final.sum() > 1.0: t_final /= t_final.sum() if t_final.sum() != 1.0: warnings.warn("Template sum is not exactly 1, but {:}!".format(t_final.sum())) # Make a subfolder temp_folder = os.path.join(output_path, temp) os.makedirs(temp_folder, exist_ok=True) # Put the large arrays / objects to the object store t_final_id = ray.put(t_final) inds_ps_outside_roi_id = ray.put(inds_ps_outside_roi) # For each chunk this_n_chunk = 2 * n_chunk if temp in add_two_temps_ps else n_chunk for chunk in range(this_n_chunk): print(" Starting with chunk", chunk) # Draw the parameters mean_draw = np.random.uniform(*prior_dict[temp]["mean_exp"], size=n_sim_per_chunk) var_draw = prior_dict[temp]["var_exp"] * np.random.chisquare(1, size=n_sim_per_chunk) skew_draw = np.random.normal(loc=0, scale=prior_dict[temp]["skew_std"], size=n_sim_per_chunk) # This code is for debugging without ray # sim_maps, n_phot, flux_arr = create_simulated_map(skew_draw[0], mean_draw[0], np.sqrt(var_draw[0]), # flux_lims_corr, # prior_dict[temp]["enforce_upper_flux"], # t_final, exp, pdf, "map_" + temp, # flux_log_=prior_dict[temp]["flux_log"], # inds_outside_roi_=inds_ps_outside_roi) sim_maps, n_phot, flux_arr = map(list, zip(*ray.get( [create_simulated_map.remote(skew_draw[i_PS], mean_draw[i_PS], np.sqrt(var_draw[i_PS]), flux_lims_corr, prior_dict[temp]["enforce_upper_flux"], t_final_id, exp_id, pdf_id, "map_" + temp, flux_log_=prior_dict[temp]["flux_log"], inds_outside_roi_=inds_ps_outside_roi_id) for i_PS in range(n_sim_per_chunk)]))) # Apply ROI mask again and cut off counts outside ROI sim_maps = np.asarray(sim_maps) * np.expand_dims((1 - total_mask_neg), [0, -1]) # The following assert is for the scenario where there is NO leakage INTO the ROI, and counts leaking # OUT OF the ROI are deleted from photon-count list n_phot # assert np.all(sim_maps[:, :, 0].sum(1) == [n_phot[i].sum() for i in range(n_sim_per_chunk)]), \ # "Photons counts in maps and n_phot lists are not consistent! Aborting..." # The following assert is for the scenario where there is leakage INTO and OUT OF the ROI, and n_phot # contains ALL the counts (and only those counts) from PSs within the ROI. assert np.all(sim_maps[:, :, 1].sum(1) == [n_phot[i].sum() for i in range(n_sim_per_chunk)]), \ "Photons counts in maps and n_phot lists are not consistent! Aborting..." # Collect garbage auto_garbage_collect() # Save settings if chunk == 0 and int(job_id) == 0: settings_out = dict() settings_out["T"] = t settings_out["priors"] = prior_dict[temp] settings_out["exp"] = exp # exposure settings_out["rescale_compressed"] = rescale_compressed settings_out["max_NP_sources"] = np.nan # not set here settings_out["indices_roi"] = np.argwhere(1 - total_mask_neg).flatten() settings_out["format"] = "NEST" settings_out["mask_type"] = mask_type settings_out["outer_rad"] = outer_rad settings_out["inner_band"] = inner_band settings_out["leakage_delta"] = leakage_delta settings_out["nside"] = nside print(" Writing settings file...") with open(os.path.join(temp_folder, name + "_settings.pickle"), 'wb') as f: pickle.dump(settings_out, f) # Save maps data_out["data"] = (sim_maps[:, temp_dict["indices_roi"], :]).astype(dtype_data) data_out["n_phot"] = n_phot data_out["flux_arr"] = [np.asarray(f, dtype=dtype_flux_arr) for f in flux_arr] data_out["info"] = dict() data_out["info"]["tot_flux"] = np.asarray([np.sum(f) for f in flux_arr]) data_out["info"]["means"] = mean_draw data_out["info"]["vars"] = var_draw data_out["info"]["skew"] = skew_draw with open(os.path.join(temp_folder, name + "_" + str(job_id) + "_" + str(chunk) + ".pickle"), 'wb') as f: pickle.dump(data_out, f) # Plot some maps and save if chunk == 0 and int(job_id) == 0 and save_example_plot: plt.ioff() hp.mollview(t * (1 - total_mask_neg), title="Template (not exposure-corrected)", nest=True) hp.mollview(exp, title="Exposure (nside = " + str(nside) + ")", nest=True) hp.mollview(total_mask_neg, title="Mask (" + str(mask_type) + ")", nest=True) hp.mollview(total_mask_neg_safety, title="Extended mask (allowing leakage into ROI)", nest=True) for i in range(n_example_plots): hp.mollview(sim_maps[i, :, 0], title=int(np.round(sim_maps[i, :, 0].sum())), nest=True) multipage(os.path.join(output_path, temp + "_examples.pdf")) plt.close("all") dash = 80 * "=" print(dash) print("Done! Computation took {0} seconds.".format(time.time() - start_time)) print(dash) # Loading pickle file e.g.: data = pickle.load( open( "./data/<...>.pickle", "rb" ) )
[ "numpy.log10", "numpy.sqrt", "healpy.mollview", "numpy.isfinite", "ray.init", "numpy.random.chisquare", "numpy.random.poisson", "numpy.asarray", "matplotlib.pyplot.close", "numpy.random.seed", "numpy.random.normal", "random.uniform", "matplotlib.pyplot.ioff", "time.time", "pickle.dump", "os.makedirs", "os.path.join", "numpy.sum", "scipy.stats.skewnorm.rvs", "numpy.setdiff1d", "numpy.argwhere", "numpy.expand_dims", "numpy.random.uniform", "ray.put" ]
[((919, 930), 'time.time', 'time.time', ([], {}), '()\n', (928, 930), False, 'import time\n'), ((2321, 2348), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (2335, 2348), True, 'import numpy as np\n'), ((2874, 2913), 'os.makedirs', 'os.makedirs', (['output_path'], {'exist_ok': '(True)'}), '(output_path, exist_ok=True)\n', (2885, 2913), False, 'import os\n'), ((3774, 3805), 'os.path.join', 'os.path.join', (['output_path', 'temp'], {}), '(output_path, temp)\n', (3786, 3805), False, 'import os\n'), ((3814, 3853), 'os.makedirs', 'os.makedirs', (['temp_folder'], {'exist_ok': '(True)'}), '(temp_folder, exist_ok=True)\n', (3825, 3853), False, 'import os\n'), ((6880, 6904), 'ray.init', 'ray.init', ([], {}), '(**ray_settings)\n', (6888, 6904), False, 'import ray\n'), ((7133, 7145), 'ray.put', 'ray.put', (['exp'], {}), '(exp)\n', (7140, 7145), False, 'import ray\n'), ((7163, 7175), 'ray.put', 'ray.put', (['pdf'], {}), '(pdf)\n', (7170, 7175), False, 'import ray\n'), ((8264, 8296), 'numpy.random.poisson', 'np.random.poisson', (['n_sources_exp'], {}), '(n_sources_exp)\n', (8281, 8296), True, 'import numpy as np\n'), ((10842, 10873), 'os.path.join', 'os.path.join', (['output_path', 'temp'], {}), '(output_path, temp)\n', (10854, 10873), False, 'import os\n'), ((10886, 10925), 'os.makedirs', 'os.makedirs', (['temp_folder'], {'exist_ok': '(True)'}), '(temp_folder, exist_ok=True)\n', (10897, 10925), False, 'import os\n'), ((11017, 11033), 'ray.put', 'ray.put', (['t_final'], {}), '(t_final)\n', (11024, 11033), False, 'import ray\n'), ((11071, 11099), 'ray.put', 'ray.put', (['inds_ps_outside_roi'], {}), '(inds_ps_outside_roi)\n', (11078, 11099), False, 'import ray\n'), ((6067, 6091), 'pickle.dump', 'pickle.dump', (['data_out', 'f'], {}), '(data_out, f)\n', (6078, 6091), False, 'import pickle\n'), ((6217, 6227), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (6225, 6227), True, 'import matplotlib.pyplot as plt\n'), ((6244, 6315), 'healpy.mollview', 'hp.mollview', (['t_masked'], {'title': '"""Template (exposure-corrected)"""', 'nest': '(True)'}), "(t_masked, title='Template (exposure-corrected)', nest=True)\n", (6255, 6315), True, 'import healpy as hp\n'), ((6820, 6836), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (6829, 6836), True, 'import matplotlib.pyplot as plt\n'), ((7537, 7560), 'numpy.isfinite', 'np.isfinite', (['flux_lims_'], {}), '(flux_lims_)\n', (7548, 7560), True, 'import numpy as np\n'), ((7854, 7884), 'numpy.random.uniform', 'np.random.uniform', (['*flux_lims_'], {}), '(*flux_lims_)\n', (7871, 7884), True, 'import numpy as np\n'), ((8964, 8985), 'numpy.asarray', 'np.asarray', (['flux_arr_'], {}), '(flux_arr_)\n', (8974, 8985), True, 'import numpy as np\n'), ((10292, 10359), 'numpy.setdiff1d', 'np.setdiff1d', (["temp_dict['indices_safety']", "temp_dict['indices_roi']"], {}), "(temp_dict['indices_safety'], temp_dict['indices_roi'])\n", (10304, 10359), True, 'import numpy as np\n'), ((11377, 11447), 'numpy.random.uniform', 'np.random.uniform', (["*prior_dict[temp]['mean_exp']"], {'size': 'n_sim_per_chunk'}), "(*prior_dict[temp]['mean_exp'], size=n_sim_per_chunk)\n", (11394, 11447), True, 'import numpy as np\n'), ((11578, 11664), 'numpy.random.normal', 'np.random.normal', ([], {'loc': '(0)', 'scale': "prior_dict[temp]['skew_std']", 'size': 'n_sim_per_chunk'}), "(loc=0, scale=prior_dict[temp]['skew_std'], size=\n n_sim_per_chunk)\n", (11594, 11664), True, 'import numpy as np\n'), ((16829, 16840), 'time.time', 'time.time', ([], {}), '()\n', (16838, 16840), False, 'import time\n'), ((3985, 4041), 'random.uniform', 'random.uniform', (['prior_dict[temp][0]', 'prior_dict[temp][1]'], {}), '(prior_dict[temp][0], prior_dict[temp][1])\n', (3999, 4041), False, 'import random\n'), ((5604, 5632), 'pickle.dump', 'pickle.dump', (['settings_out', 'f'], {}), '(settings_out, f)\n', (5615, 5632), False, 'import pickle\n'), ((6753, 6802), 'os.path.join', 'os.path.join', (['output_path', "(temp + '_examples.pdf')"], {}), "(output_path, temp + '_examples.pdf')\n", (6765, 6802), False, 'import os\n'), ((7774, 7804), 'numpy.random.uniform', 'np.random.uniform', (['*flux_lims_'], {}), '(*flux_lims_)\n', (7791, 7804), True, 'import numpy as np\n'), ((8533, 8598), 'scipy.stats.skewnorm.rvs', 'stats.skewnorm.rvs', (['skew_'], {'loc': 'loc_', 'scale': 'scale_', 'size': 'n_sources'}), '(skew_, loc=loc_, scale=scale_, size=n_sources)\n', (8551, 8598), False, 'from scipy import stats\n'), ((11505, 11549), 'numpy.random.chisquare', 'np.random.chisquare', (['(1)'], {'size': 'n_sim_per_chunk'}), '(1, size=n_sim_per_chunk)\n', (11524, 11549), True, 'import numpy as np\n'), ((13058, 13078), 'numpy.asarray', 'np.asarray', (['sim_maps'], {}), '(sim_maps)\n', (13068, 13078), True, 'import numpy as np\n'), ((13081, 13124), 'numpy.expand_dims', 'np.expand_dims', (['(1 - total_mask_neg)', '[0, -1]'], {}), '(1 - total_mask_neg, [0, -1])\n', (13095, 13124), True, 'import numpy as np\n'), ((15318, 15353), 'numpy.asarray', 'np.asarray', (['f'], {'dtype': 'dtype_flux_arr'}), '(f, dtype=dtype_flux_arr)\n', (15328, 15353), True, 'import numpy as np\n'), ((15858, 15882), 'pickle.dump', 'pickle.dump', (['data_out', 'f'], {}), '(data_out, f)\n', (15869, 15882), False, 'import pickle\n'), ((16020, 16030), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (16028, 16030), True, 'import matplotlib.pyplot as plt\n'), ((16051, 16147), 'healpy.mollview', 'hp.mollview', (['(t * (1 - total_mask_neg))'], {'title': '"""Template (not exposure-corrected)"""', 'nest': '(True)'}), "(t * (1 - total_mask_neg), title=\n 'Template (not exposure-corrected)', nest=True)\n", (16062, 16147), True, 'import healpy as hp\n'), ((16356, 16457), 'healpy.mollview', 'hp.mollview', (['total_mask_neg_safety'], {'title': '"""Extended mask (allowing leakage into ROI)"""', 'nest': '(True)'}), "(total_mask_neg_safety, title=\n 'Extended mask (allowing leakage into ROI)', nest=True)\n", (16367, 16457), True, 'import healpy as hp\n'), ((16720, 16736), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (16729, 16736), True, 'import matplotlib.pyplot as plt\n'), ((5518, 5570), 'os.path.join', 'os.path.join', (['temp_folder', "(name + '_settings.pickle')"], {}), "(temp_folder, name + '_settings.pickle')\n", (5530, 5570), False, 'import os\n'), ((10040, 10063), 'numpy.log10', 'np.log10', (['flux_corr_fac'], {}), '(flux_corr_fac)\n', (10048, 10063), True, 'import numpy as np\n'), ((15079, 15107), 'pickle.dump', 'pickle.dump', (['settings_out', 'f'], {}), '(settings_out, f)\n', (15090, 15107), False, 'import pickle\n'), ((15474, 15483), 'numpy.sum', 'np.sum', (['f'], {}), '(f)\n', (15480, 15483), True, 'import numpy as np\n'), ((16649, 16698), 'os.path.join', 'os.path.join', (['output_path', "(temp + '_examples.pdf')"], {}), "(output_path, temp + '_examples.pdf')\n", (16661, 16698), False, 'import os\n'), ((14516, 14547), 'numpy.argwhere', 'np.argwhere', (['(1 - total_mask_neg)'], {}), '(1 - total_mask_neg)\n', (14527, 14547), True, 'import numpy as np\n'), ((14989, 15041), 'os.path.join', 'os.path.join', (['temp_folder', "(name + '_settings.pickle')"], {}), "(temp_folder, name + '_settings.pickle')\n", (15001, 15041), False, 'import os\n'), ((12498, 12521), 'numpy.sqrt', 'np.sqrt', (['var_draw[i_PS]'], {}), '(var_draw[i_PS])\n', (12505, 12521), True, 'import numpy as np\n')]
import numpy as np from numpy.testing import assert_allclose from robogym.envs.rearrange.common.utils import ( get_mesh_bounding_box, make_block, make_blocks_and_targets, ) from robogym.envs.rearrange.simulation.composer import RandomMeshComposer from robogym.mujoco.mujoco_xml import MujocoXML def _get_default_xml(): xml_source = """ <mujoco> <asset> <material name="block_mat" specular="0" shininess="0.5" reflectance="0" rgba="1 0 0 1"></material> </asset> </mujoco> """ xml = MujocoXML.from_string(xml_source) return xml def test_mesh_composer(): for path in [ None, RandomMeshComposer.GEOM_ASSET_PATH, RandomMeshComposer.GEOM_ASSET_PATH, ]: composer = RandomMeshComposer(mesh_path=path) for num_geoms in range(1, 6): xml = _get_default_xml() composer.reset() xml.append(composer.sample("object0", num_geoms, object_size=0.05)) sim = xml.build() assert len(sim.model.geom_names) == num_geoms pos, size = get_mesh_bounding_box(sim, "object0") assert np.isclose(np.max(size), 0.05) pos2, size2 = composer.get_bounding_box(sim, "object0") assert np.allclose(pos, pos2) assert np.allclose(size, size2) def test_block_object(): xml = _get_default_xml() xml.append(make_block("object0", object_size=np.ones(3) * 0.05)) sim = xml.build() assert len(sim.model.geom_size) == 1 assert_allclose(sim.model.geom_size, 0.05) def test_blocks_and_targets(): xml = _get_default_xml() for obj_xml, target_xml in make_blocks_and_targets(num_objects=5, block_size=0.05): xml.append(obj_xml) xml.append(target_xml) sim = xml.build() assert len(sim.model.geom_size) == 10 assert_allclose(sim.model.geom_size, 0.05)
[ "numpy.allclose", "numpy.ones", "robogym.envs.rearrange.common.utils.make_blocks_and_targets", "numpy.testing.assert_allclose", "robogym.envs.rearrange.simulation.composer.RandomMeshComposer", "robogym.envs.rearrange.common.utils.get_mesh_bounding_box", "numpy.max", "robogym.mujoco.mujoco_xml.MujocoXML.from_string" ]
[((536, 569), 'robogym.mujoco.mujoco_xml.MujocoXML.from_string', 'MujocoXML.from_string', (['xml_source'], {}), '(xml_source)\n', (557, 569), False, 'from robogym.mujoco.mujoco_xml import MujocoXML\n'), ((1524, 1566), 'numpy.testing.assert_allclose', 'assert_allclose', (['sim.model.geom_size', '(0.05)'], {}), '(sim.model.geom_size, 0.05)\n', (1539, 1566), False, 'from numpy.testing import assert_allclose\n'), ((1660, 1715), 'robogym.envs.rearrange.common.utils.make_blocks_and_targets', 'make_blocks_and_targets', ([], {'num_objects': '(5)', 'block_size': '(0.05)'}), '(num_objects=5, block_size=0.05)\n', (1683, 1715), False, 'from robogym.envs.rearrange.common.utils import get_mesh_bounding_box, make_block, make_blocks_and_targets\n'), ((1845, 1887), 'numpy.testing.assert_allclose', 'assert_allclose', (['sim.model.geom_size', '(0.05)'], {}), '(sim.model.geom_size, 0.05)\n', (1860, 1887), False, 'from numpy.testing import assert_allclose\n'), ((759, 793), 'robogym.envs.rearrange.simulation.composer.RandomMeshComposer', 'RandomMeshComposer', ([], {'mesh_path': 'path'}), '(mesh_path=path)\n', (777, 793), False, 'from robogym.envs.rearrange.simulation.composer import RandomMeshComposer\n'), ((1090, 1127), 'robogym.envs.rearrange.common.utils.get_mesh_bounding_box', 'get_mesh_bounding_box', (['sim', '"""object0"""'], {}), "(sim, 'object0')\n", (1111, 1127), False, 'from robogym.envs.rearrange.common.utils import get_mesh_bounding_box, make_block, make_blocks_and_targets\n'), ((1265, 1287), 'numpy.allclose', 'np.allclose', (['pos', 'pos2'], {}), '(pos, pos2)\n', (1276, 1287), True, 'import numpy as np\n'), ((1307, 1331), 'numpy.allclose', 'np.allclose', (['size', 'size2'], {}), '(size, size2)\n', (1318, 1331), True, 'import numpy as np\n'), ((1158, 1170), 'numpy.max', 'np.max', (['size'], {}), '(size)\n', (1164, 1170), True, 'import numpy as np\n'), ((1437, 1447), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (1444, 1447), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Mar 9 09:42:00 2021 @author: barraly """ import sabs_pkpd import numpy as np import matplotlib.pyplot as plt import os # Select the folder in which this repo is downloaded in the line below os.chdir('The/location/of/the/root/folder/of/this/repo') # In[Load the model] filename = './Models/Ohara CiPA - analytical voltage.mmt' s = sabs_pkpd.load_model.load_simulation_from_mmt(filename) s.set_tolerance(1e-08, 1e-08) default_state = s.state() # Save the initial conditions published in OHara CiPA model Ohara_init_conds = default_state.copy() # In[Defin the needed functions] # Define the functions to make sure there is consistency between the initial conditions def G0_calc(Ki = 144.65559, Kss = 144.65556, Nai = 7.268, Nass = 7.26809, Cai = 8.6e-5, Cansr = 1.61957, Cajsr = 1.571234014, Cass = 8.49e-5, V=-88, extraK = 5.4, extraNa = 140, extraCa = 1.8): tot_cai = Cai * (1 + 0.05 / (Cai + 0.00238) + 0.07/(Cai + 0.0005)) tot_cass = Cass * (1 + 0.047 / (Cass + 0.00087) + 1.124/(Cass + 0.0087)) tot_cajsr = Cajsr * (1 + 10 / (Cajsr + 0.8)) return V / (96485 * 2.583592e-05) * 0.0001533576 - (Ki + Kss * 0.029411764705882353 + Nai + Nass * 0.029411764705882353 + 2*(tot_cai + tot_cass * 0.029411764705882353 + Cansr * 0.08117647059 + tot_cajsr * 0.007059) - extraK - extraNa - 2 * extraCa) def Ki_calc(G0, Nai = 7.268, Nass = 7.26809, Cai = 8.6e-5, Cansr = 1.61957, Cajsr = 1.571234014, Cass = 8.49e-5, V=-88, extraK = 5.4, extraNa = 140, extraCa = 1.8): tot_cai = Cai * (1 + 0.05 / (Cai + 0.00238) + 0.07/(Cai + 0.0005)) tot_cass = Cass * (1 + 0.047 / (Cass + 0.00087) + 1.124/(Cass + 0.0087)) tot_cajsr = Cajsr * (1 + 10 / (Cajsr + 0.8)) return (V / (96485 * 2.583592e-05) * 0.0001533576 + extraK + extraNa + 2 * extraCa - G0 - Nai - Nass * 0.029411764705882353 - 2*(tot_cai + tot_cass * 0.029411764705882353 + Cansr * 0.08117647059 + tot_cajsr * 0.007059)) / 1.029411764705882353 def compute(Gamma_0): # Reinitialise the myokit.Simulation s.reset() # Set the initial conditions for Ki and Kss so that the initial conditions match with the value of Gamma_0 initial_state = default_state.copy() initial_K = Ki_calc(Gamma_0, Nai = default_state[1], Nass = default_state[2], Cai = default_state[5], Cansr = default_state[7], Cajsr = default_state[8], Cass = default_state[6]) initial_state[3] = initial_K initial_state[4] = initial_K s.set_state(initial_state) # Set the value of Gamma_0 in the myokit.Simulation s.set_constant('membrane.c0', Gamma_0) # Record the action potential at the limit cycle s.pre(2000000) out = s.run(1000, log_interval = 1) print('Potassium at steady-state: ' + str(np.round(out['intracellular_ions.ki'][-1], decimals = 2))) return np.array(out['membrane.V']) # In[Reuse the fitting instructions] # Define the time points on which to read the voltage time_points = np.linspace(0, 999, 1000) # Define the fitted parameters and initial point parameters_to_fit = ['ical.rescale', 'ikr.rescale', 'IKs.rescale', 'INa.rescale', 'INaL.rescale'] true_values = np.array([1, 1, 1, 1, 1]) # In[Compute the fitted data] # Set the parameters values for p, label in enumerate(parameters_to_fit): s.set_constant(label, true_values[p]) # Run the model with the published original initial conditions and the Gamma_0 value associated with it Gamma_0_for_fitting = -7.80116 data_to_fit = compute(Gamma_0_for_fitting) # For validation with 50% IKr inhibition s.set_constant(parameters_to_fit[1], 0.5 * true_values[1]) validation_data = compute(Gamma_0_for_fitting) # In[Report the results from the fitting with Ohara initial conditions] default_state = Ohara_init_conds.copy() found_parameters = [1.000, 1.000, 1.000, 1.000, 1.000] for p, label in enumerate(parameters_to_fit): s.set_constant(label, found_parameters[p]) fitting_with_Ohara_ICs = compute(Gamma_0_for_fitting) print('Gamma_0 for fitting : ' + str(Gamma_0_for_fitting)) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_Ohara_ICs, time_points= time_points, upstroke_time = 50) print('APD_90 at baseline : ' + str(APD90)) # Predict IKr block AP s.set_constant(parameters_to_fit[1], 0.5 * found_parameters[1]) fitting_with_Ohara_ICs_Kr_blocked = compute(Gamma_0_for_fitting) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_Ohara_ICs_Kr_blocked, time_points= time_points, upstroke_time = 50) print('APD_90 after 50% IKr block : ' + str(APD90)) # In[Report the results from the fitting with TT06 initial conditions] default_state[1] = 10.134 default_state[2] = 10.134 default_state[3] = 135.369 default_state[4] = 135.369 default_state[5] = 1.058e-04 default_state[6] = 2.142e-04 default_state[7] = 3.556 default_state[8] = 3.556 initial_voltage = -84.936 Gamma_0_for_fitting = G0_calc(Nai = default_state[1], Nass = default_state[2], Ki = default_state[3], Kss = default_state[4], Cai = default_state[5], Cass = default_state[6], Cansr = default_state[7], Cajsr = default_state[8], V=initial_voltage) found_parameters = [0.8278844, 1.13276793, 0.74292672, 1.08754243, 1.4459109] for p, label in enumerate(parameters_to_fit): s.set_constant(label, found_parameters[p]) fitting_with_TT06_ICs = compute(Gamma_0_for_fitting) print('Gamma_0 for fitting : ' + str(Gamma_0_for_fitting)) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_TT06_ICs, time_points= time_points, upstroke_time = 50) print('APD_90 at baseline : ' + str(APD90)) # Predict IKr block AP s.set_constant(parameters_to_fit[1], 0.5 * found_parameters[1]) fitting_with_TT06_ICs_Kr_blocked = compute(Gamma_0_for_fitting) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_TT06_ICs_Kr_blocked, time_points= time_points, upstroke_time = 50) print('APD_90 after 50% IKr block : ' + str(APD90)) # In[Report the results from the fitting with TT06 initial conditions and Gamma_0] default_state = Ohara_init_conds.copy() found_parameters = [0.9999947, 0.99999936, 0.99995396, 0.999993485, 0.9999772, -7.801077] for p, label in enumerate(parameters_to_fit): s.set_constant(label, found_parameters[p]) fitting_with_TT06_ICs_gamma_0 = compute(found_parameters[-1]) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_TT06_ICs_gamma_0, time_points= time_points, upstroke_time = 50) print('APD_90 at baseline : ' + str(APD90)) # Predict IKr block AP s.set_constant(parameters_to_fit[1], 0.5 * found_parameters[1]) fitting_with_TT06_ICs_gamma_0_Kr_blocked = compute(found_parameters[-1]) APD90 = sabs_pkpd.cardiac.compute_APD(AP = fitting_with_TT06_ICs_gamma_0_Kr_blocked, time_points= time_points, upstroke_time = 50) print('APD_90 after 50% IKr block : ' + str(APD90)) # In[Plot the comparison] def place_caption_label(ax, label, loc='upper left', fontsize=35): from matplotlib.offsetbox import AnchoredText at = AnchoredText(label, loc=loc, prop=dict(size=fontsize), frameon=True, borderpad = 0) ax.add_artist(at) return None from mpl_toolkits.axes_grid1.inset_locator import inset_axes fig, ax = plt.subplots(1, 2, figsize=[15, 7]) size_ticks = 22 size_labels = 25 # Shift x-axis so that AP starts at 0 ms (in the simulations, the stimulus fires at t=50 ms) x = np.linspace(-50, 599, 650) # Plot the fitted APs ax[0].plot(x, data_to_fit[:650], label = 'Data to fit', color = 'k', linewidth = 5) ax[0].plot(x, fitting_with_Ohara_ICs[:650], label = 'Fitting #1', linestyle = '--', linewidth = 3) ax[0].plot(x, fitting_with_TT06_ICs[:650], label = 'Fitting #2', linestyle = '--', linewidth = 3) ax[0].plot(x, fitting_with_TT06_ICs_gamma_0[:650], label = 'Fitting #3', linestyle = '--', linewidth = 3) ax[0].legend(fontsize = 25) ax[0].set_xlabel('Time (ms)', fontsize = size_labels) ax[0].set_ylabel('Voltage (mV)', fontsize = size_labels) ax[0].tick_params(axis = 'both', labelsize = size_ticks) place_caption_label(ax[0], 'A', 'lower right') # Add an inset to zoom into the short pacing periods axins1 = ax[0].inset_axes(bounds = [0.7, 0.2, 0.3, 0.3]) x_inset = np.linspace(270, 299, 30) axins1.plot(x_inset, data_to_fit[320:350], color = 'k', linewidth = 5) axins1.plot(x_inset, fitting_with_Ohara_ICs[320:350], linestyle = '--', linewidth = 3) axins1.plot(x_inset, fitting_with_TT06_ICs[320:350], linestyle = '--', linewidth = 3) axins1.plot(x_inset, fitting_with_TT06_ICs_gamma_0[320:350], linestyle = '--', linewidth = 3) # set up the inset ticks axins1.set_xticks([270, 285, 300]) axins1.tick_params(axis = 'both', labelsize = 15) # Plot the predicted APs with Kr block ax[1].plot(x, validation_data[:650], label = 'Validation data', linestyle = '-', linewidth = 5, color = 'k') ax[1].plot(x, fitting_with_Ohara_ICs_Kr_blocked[:650], label = 'Prediction #1', linestyle = '-', linewidth = 3) ax[1].plot(x, fitting_with_TT06_ICs_Kr_blocked[:650], label = 'Prediction #2', linestyle = '-', linewidth = 3) ax[1].plot(x, fitting_with_TT06_ICs_gamma_0_Kr_blocked[:650], label = 'Prediction #3', linestyle = '-', linewidth = 3) ax[1].legend(fontsize = 25, loc = 'upper right') ax[1].set_xlabel('Time (ms)', fontsize = size_labels) ax[1].set_ylabel('Voltage (mV)', fontsize = size_labels) ax[1].tick_params(axis = 'both', labelsize = size_ticks) place_caption_label(ax[1], 'B', 'lower right') # Add an inset to zoom into the short pacing periods axins2 = ax[1].inset_axes(bounds = [0.7, 0.2, 0.3, 0.3]) x_inset = np.linspace(375, 424, 50) axins2.plot(x_inset, validation_data[425:475], linestyle = '-', linewidth = 5, color = 'k') axins2.plot(x_inset, fitting_with_Ohara_ICs_Kr_blocked[425:475], linestyle = '-', linewidth = 3) axins2.plot(x_inset, fitting_with_TT06_ICs_Kr_blocked[425:475], linestyle = '-', linewidth = 3) axins2.plot(x_inset, fitting_with_TT06_ICs_gamma_0_Kr_blocked[425:475], linestyle = '-', linewidth = 3) # set up the inset ticks axins2.set_xticks([375, 400, 425]) axins2.tick_params(axis = 'both', labelsize = 15) # Save plt.tight_layout() plt.savefig('./Figures/Comparison of optimal APs.png', dpi = 300)
[ "matplotlib.pyplot.savefig", "sabs_pkpd.cardiac.compute_APD", "os.chdir", "numpy.array", "numpy.linspace", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplots", "numpy.round", "sabs_pkpd.load_model.load_simulation_from_mmt" ]
[((250, 306), 'os.chdir', 'os.chdir', (['"""The/location/of/the/root/folder/of/this/repo"""'], {}), "('The/location/of/the/root/folder/of/this/repo')\n", (258, 306), False, 'import os\n'), ((397, 452), 'sabs_pkpd.load_model.load_simulation_from_mmt', 'sabs_pkpd.load_model.load_simulation_from_mmt', (['filename'], {}), '(filename)\n', (442, 452), False, 'import sabs_pkpd\n'), ((3196, 3221), 'numpy.linspace', 'np.linspace', (['(0)', '(999)', '(1000)'], {}), '(0, 999, 1000)\n', (3207, 3221), True, 'import numpy as np\n'), ((3388, 3413), 'numpy.array', 'np.array', (['[1, 1, 1, 1, 1]'], {}), '([1, 1, 1, 1, 1])\n', (3396, 3413), True, 'import numpy as np\n'), ((4298, 4402), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_Ohara_ICs', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_Ohara_ICs, time_points=\n time_points, upstroke_time=50)\n', (4327, 4402), False, 'import sabs_pkpd\n'), ((4614, 4728), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_Ohara_ICs_Kr_blocked', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_Ohara_ICs_Kr_blocked,\n time_points=time_points, upstroke_time=50)\n', (4643, 4728), False, 'import sabs_pkpd\n'), ((5906, 6009), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_TT06_ICs', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_TT06_ICs, time_points=\n time_points, upstroke_time=50)\n', (5935, 6009), False, 'import sabs_pkpd\n'), ((6220, 6333), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_TT06_ICs_Kr_blocked', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_TT06_ICs_Kr_blocked,\n time_points=time_points, upstroke_time=50)\n', (6249, 6333), False, 'import sabs_pkpd\n'), ((6779, 6890), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_TT06_ICs_gamma_0', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_TT06_ICs_gamma_0, time_points\n =time_points, upstroke_time=50)\n', (6808, 6890), False, 'import sabs_pkpd\n'), ((7110, 7231), 'sabs_pkpd.cardiac.compute_APD', 'sabs_pkpd.cardiac.compute_APD', ([], {'AP': 'fitting_with_TT06_ICs_gamma_0_Kr_blocked', 'time_points': 'time_points', 'upstroke_time': '(50)'}), '(AP=fitting_with_TT06_ICs_gamma_0_Kr_blocked,\n time_points=time_points, upstroke_time=50)\n', (7139, 7231), False, 'import sabs_pkpd\n'), ((7651, 7686), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '[15, 7]'}), '(1, 2, figsize=[15, 7])\n', (7663, 7686), True, 'import matplotlib.pyplot as plt\n'), ((7823, 7849), 'numpy.linspace', 'np.linspace', (['(-50)', '(599)', '(650)'], {}), '(-50, 599, 650)\n', (7834, 7849), True, 'import numpy as np\n'), ((8641, 8666), 'numpy.linspace', 'np.linspace', (['(270)', '(299)', '(30)'], {}), '(270, 299, 30)\n', (8652, 8666), True, 'import numpy as np\n'), ((10023, 10048), 'numpy.linspace', 'np.linspace', (['(375)', '(424)', '(50)'], {}), '(375, 424, 50)\n', (10034, 10048), True, 'import numpy as np\n'), ((10570, 10588), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10586, 10588), True, 'import matplotlib.pyplot as plt\n'), ((10590, 10653), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./Figures/Comparison of optimal APs.png"""'], {'dpi': '(300)'}), "('./Figures/Comparison of optimal APs.png', dpi=300)\n", (10601, 10653), True, 'import matplotlib.pyplot as plt\n'), ((3056, 3083), 'numpy.array', 'np.array', (["out['membrane.V']"], {}), "(out['membrane.V'])\n", (3064, 3083), True, 'import numpy as np\n'), ((2979, 3033), 'numpy.round', 'np.round', (["out['intracellular_ions.ki'][-1]"], {'decimals': '(2)'}), "(out['intracellular_ions.ki'][-1], decimals=2)\n", (2987, 3033), True, 'import numpy as np\n')]
import sys import argparse import numpy as np import tensorflow as tf from tensorflow import keras class SampleModel(keras.Model): def __init__(self, num_classes=10): super(SampleModel, self).__init__(name='my_model') self.num_classes = num_classes # Define your layers here. self.dense_1 = keras.layers.Dense(32, activation='relu') self.dense_2 = keras.layers.Dense(num_classes, activation='sigmoid') def call(self, inputs): """ Define your forward pass here, using layers you previously defined in `__init__`). """ x = self.dense_1(inputs) x = self.dense_2(x) return x def compute_output_shape(self, input_shape): # You need to override this function if you want # to use the subclassed model # as part of a functional-style model. # Otherwise, this method is optional. shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.num_classes return tf.TensorShape(shape) def generate_toy_dataset(num_samples=1): # Make toy data. data = np.random.random((num_samples, 32)) labels = np.random.random((num_samples, 10)) # Instantiates a toy dataset instance. dataset = tf.data.Dataset.from_tensor_slices((data, labels)) dataset = dataset.batch(32) dataset = dataset.repeat() return(dataset) def generate_toy_image(num_samples=1): # Make toy data. data = np.random.random((num_samples, 32)) labels = np.random.random((num_samples, 10)) # Instantiates a toy dataset instance. dataset = tf.data.Dataset.from_tensor_slices((data, labels)) dataset = dataset.batch(32) dataset = dataset.repeat() return(dataset) def main(_): dataset = generate_toy_dataset(num_samples=1000) val_dataset = generate_toy_dataset(num_samples=100) if FLAGS.train_with_keras_fit: # Instantiates the subclassed model. sample_model = SampleModel(num_classes=10) # The compile step specifies the training configuration. sample_model.compile(optimizer=tf.train.RMSPropOptimizer(0.001), loss='categorical_crossentropy', metrics=['accuracy']) sample_model.fit(dataset, epochs=100, steps_per_epoch=30, validation_data=val_dataset, validation_steps=3) if FLAGS.train_with_estimator: # Instantiates the subclassed model. sample_model = SampleModel(num_classes=10) # The compile step specifies the training configuration. sample_model.compile(optimizer=tf.train.RMSPropOptimizer(0.001), loss='categorical_crossentropy', metrics=['accuracy']) # Create an Estimator from the compiled Keras model. Note the initial # model state of the keras model is preserved in the created Estimator. sample_est = tf.keras.estimator.model_to_estimator( keras_model=sample_model) sample_est.train(input_fn=generate_toy_dataset, steps=2000) if __name__ == '__main__': # Instantiates an arg parser parser = argparse.ArgumentParser() # Establishes default arguments parser.add_argument("--output_dir", type=str, default="C:\\path\\to\\output\\directory\\", help="The complete desired output filepath.") parser.add_argument("--train_with_estimator", type=bool, default=True, help="") parser.add_argument("--train_with_keras_fit", type=bool, default=True, help="") # Parses known arguments FLAGS, unparsed = parser.parse_known_args() # Runs the tensorflow app tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
[ "tensorflow.keras.estimator.model_to_estimator", "argparse.ArgumentParser", "tensorflow.data.Dataset.from_tensor_slices", "numpy.random.random", "tensorflow.train.RMSPropOptimizer", "tensorflow.keras.layers.Dense", "tensorflow.TensorShape", "tensorflow.app.run" ]
[((1126, 1161), 'numpy.random.random', 'np.random.random', (['(num_samples, 32)'], {}), '((num_samples, 32))\n', (1142, 1161), True, 'import numpy as np\n'), ((1175, 1210), 'numpy.random.random', 'np.random.random', (['(num_samples, 10)'], {}), '((num_samples, 10))\n', (1191, 1210), True, 'import numpy as np\n'), ((1269, 1319), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(data, labels)'], {}), '((data, labels))\n', (1303, 1319), True, 'import tensorflow as tf\n'), ((1477, 1512), 'numpy.random.random', 'np.random.random', (['(num_samples, 32)'], {}), '((num_samples, 32))\n', (1493, 1512), True, 'import numpy as np\n'), ((1526, 1561), 'numpy.random.random', 'np.random.random', (['(num_samples, 10)'], {}), '((num_samples, 10))\n', (1542, 1561), True, 'import numpy as np\n'), ((1620, 1670), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(data, labels)'], {}), '((data, labels))\n', (1654, 1670), True, 'import tensorflow as tf\n'), ((3217, 3242), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3240, 3242), False, 'import argparse\n'), ((3920, 3972), 'tensorflow.app.run', 'tf.app.run', ([], {'main': 'main', 'argv': '([sys.argv[0]] + unparsed)'}), '(main=main, argv=[sys.argv[0]] + unparsed)\n', (3930, 3972), True, 'import tensorflow as tf\n'), ((334, 375), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (352, 375), False, 'from tensorflow import keras\n'), ((399, 452), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['num_classes'], {'activation': '"""sigmoid"""'}), "(num_classes, activation='sigmoid')\n", (417, 452), False, 'from tensorflow import keras\n'), ((1028, 1049), 'tensorflow.TensorShape', 'tf.TensorShape', (['shape'], {}), '(shape)\n', (1042, 1049), True, 'import tensorflow as tf\n'), ((2995, 3058), 'tensorflow.keras.estimator.model_to_estimator', 'tf.keras.estimator.model_to_estimator', ([], {'keras_model': 'sample_model'}), '(keras_model=sample_model)\n', (3032, 3058), True, 'import tensorflow as tf\n'), ((938, 965), 'tensorflow.TensorShape', 'tf.TensorShape', (['input_shape'], {}), '(input_shape)\n', (952, 965), True, 'import tensorflow as tf\n'), ((2117, 2149), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', (['(0.001)'], {}), '(0.001)\n', (2142, 2149), True, 'import tensorflow as tf\n'), ((2668, 2700), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', (['(0.001)'], {}), '(0.001)\n', (2693, 2700), True, 'import tensorflow as tf\n')]
import os import threading import time from collections import deque import numpy as np from threading import Thread from agents.dqn_agent import DqnAgent from main import App # Number of games to play from utils.logger import DataLogger n_episodes = 10000 save_period = 50 # Saves off every n episodes' model batch_size = 32 # multiples of 2 state_size = 10 action_size = 5 # 7 if we want to move, not doing that for now output_dir = 'models/' class Handler: def __init__(self): self.lock = threading.Lock() self.callback_triggered = False self.next_state = None self.reward = None self.game_over = None def callback(self, next_state, reward, game_over): with self.lock: # print("SET TRUE") self.callback_triggered = True self.next_state = next_state self.reward = reward self.game_over = game_over def wait_for_callback(self,): while True: with self.lock: if self.callback_triggered: # print("Next State received!") self.callback_triggered = False break time.sleep(0.0001) return self.next_state, self.reward, self.game_over # Setup our output dir if not os.path.exists(output_dir): os.makedirs(output_dir) # Create a game environment handler = Handler() game = App(training_mode=True, ml_step_callback=handler.callback) thread = Thread(target=game.on_execute) thread.start() # Create the agent agent = DqnAgent(state_size, action_size, force_continue=True) # Set true to continue with low epsilon and loaded model # Create a data logger logger = DataLogger( n_episodes, save_period, batch_size, state_size, action_size ) # Let the game start up time.sleep(5) # Track some times last_play_time = 0 last_train_time = 0 # Sliding window so we can check the winning rate, and see if its increasing winners_window = [] window_size = int(n_episodes*0.1) p1_win_ratio = 0 p2_win_ratio = 0 # Track winner count winners = {} # Play n_episodes count games for e in range(n_episodes): # iterate over new episodes of the game try: # Reset the state of the game with a restart, wait for it to take print("Resetting game state...") game.queue_ml_action(-1) # -1 restarts, -2 quits _ = handler.wait_for_callback() state = np.reshape(game.get_game_state(), [1, state_size]) game_over = False print("Reset. Starting game " + str(e)) time_start = time.time() msg = "Game " + str(e + 1) + " of " + str(n_episodes) + ", LPT: " + \ str(last_play_time) + ", LTT: " + str(last_train_time) + ", epsilon: " + str(agent.get_epsilon()) game.show_message(msg) print(msg) for winner in winners: print(winner + " has " + str(winners[winner]) + " wins so far.") while not game_over: # print("**********************************************") # print("****************** NEW ROUND *****************") # print("**********************************************") # Make our agent act action = agent.act(state) # print("queue action: " + str(action)) game.queue_ml_action(action) # Sends the 'step' commanad # Get the next state, etc from the action # print("wait for next state") next_state, reward, game_over = handler.wait_for_callback() # print("handle next state") # Remember the action next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, game_over) # Save off this round #logger.add_step({ # "state": state, # "action": action, # "reward": reward, # "next_state": next_state, # "game_over": game_over #}) # Save the state as next state state = next_state if game_over: print("GAME OVER: " + game.get_winner().get_name() + " wins!") if game.get_winner().get_name() not in winners: winners[game.get_winner().get_name()] = 1 else: winners[game.get_winner().get_name()] += 1 winners_window.append(game.get_winner().get_name()) print("episode: {}/{}, e: {:.2}" # print the episode's score and agent's epsilon .format(e, n_episodes, agent.get_epsilon())) game_end = time.time() # Train the agent off the game we just played if len(agent.get_memory()) > batch_size: agent.replay(batch_size) train_end = time.time() last_play_time = (int((game_end-time_start) / 60 * 10000)) / 10000 last_train_time = (int((train_end-game_end) / 60 * 10000)) / 10000 print("Playing took: " + str(last_play_time) + " minutes.") print("Training took: " + str(last_train_time) + " minutes.") if len(winners_window) == window_size: win_count_1 = winners_window.count(game.get_player_1().get_name()) win_count_2 = winners_window.count(game.get_player_2().get_name()) p1_win_ratio = win_count_1/window_size p2_win_ratio = win_count_2/window_size winners_window = [] print("Player 1 win ratio: " + str(p1_win_ratio)) print("Player 2 win ratio: " + str(p2_win_ratio)) logger.add_game({ "winner": "Player 1" if game.get_winner() == game.get_player_1() else "Player 2", "play_time": last_play_time, "train_time": last_train_time, "epsilon": agent.get_epsilon(), "player_1_health": game.get_player_1().get_health(), "player_2_health": game.get_player_2().get_health(), "p1_win_ratio": p1_win_ratio, "p2_win_ratio": p2_win_ratio }) # Save off every 50 episodes if e % save_period == 0: agent.save(output_dir + "weights_" + '{:04d}'.format(e + agent.restart_file_number_offset) + ".hdf5") logger.write_object_to_file() logger.add_any('winners', winners) except KeyboardInterrupt: break # End game print("Ending game...") game.queue_ml_action(-2) print("Ended.") print("Writing out log file...") logger.write_object_to_file() print("Log written") print("Showing win graphs...") logger.show_graphs() print("Graphs closed.")
[ "os.path.exists", "numpy.reshape", "os.makedirs", "threading.Lock", "time.sleep", "utils.logger.DataLogger", "main.App", "threading.Thread", "time.time", "agents.dqn_agent.DqnAgent" ]
[((1426, 1484), 'main.App', 'App', ([], {'training_mode': '(True)', 'ml_step_callback': 'handler.callback'}), '(training_mode=True, ml_step_callback=handler.callback)\n', (1429, 1484), False, 'from main import App\n'), ((1494, 1524), 'threading.Thread', 'Thread', ([], {'target': 'game.on_execute'}), '(target=game.on_execute)\n', (1500, 1524), False, 'from threading import Thread\n'), ((1568, 1622), 'agents.dqn_agent.DqnAgent', 'DqnAgent', (['state_size', 'action_size'], {'force_continue': '(True)'}), '(state_size, action_size, force_continue=True)\n', (1576, 1622), False, 'from agents.dqn_agent import DqnAgent\n'), ((1714, 1786), 'utils.logger.DataLogger', 'DataLogger', (['n_episodes', 'save_period', 'batch_size', 'state_size', 'action_size'], {}), '(n_episodes, save_period, batch_size, state_size, action_size)\n', (1724, 1786), False, 'from utils.logger import DataLogger\n'), ((1834, 1847), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1844, 1847), False, 'import time\n'), ((1314, 1340), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (1328, 1340), False, 'import os\n'), ((1346, 1369), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (1357, 1369), False, 'import os\n'), ((517, 533), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (531, 533), False, 'import threading\n'), ((2592, 2603), 'time.time', 'time.time', ([], {}), '()\n', (2601, 2603), False, 'import time\n'), ((4671, 4682), 'time.time', 'time.time', ([], {}), '()\n', (4680, 4682), False, 'import time\n'), ((4845, 4856), 'time.time', 'time.time', ([], {}), '()\n', (4854, 4856), False, 'import time\n'), ((1202, 1220), 'time.sleep', 'time.sleep', (['(0.0001)'], {}), '(0.0001)\n', (1212, 1220), False, 'import time\n'), ((3659, 3698), 'numpy.reshape', 'np.reshape', (['next_state', '[1, state_size]'], {}), '(next_state, [1, state_size])\n', (3669, 3698), True, 'import numpy as np\n')]
import numpy as np from random import sample, seed #import matplotlib.pyplot as plt from sys import argv, stdout #from scipy.stats import gumbel_r from score_matrix import readScoreMatrix, getMatrix from seqali import smithWaterman, smithFast, plotMat, plotTraceMat from multiprocessing import Process, Manager def scrambler_aligner(pn, ssd, N, sa, sb, ms, go, ge): seed() sscores = [] for i in range(N): #print("Process {}, pass {} ".format(pn,i+1)) sa = "".join(sample(sa, len(sa))) s, a, ma, ta = smithFast( sa, sb, ms, gapO=go, gapE=ge) sscores.append(s) ssd[pn] = sscores #seqB = "HEAGAWGHEE" #seqA = "PAWHEAE" # seqB = "GVTAH" # seqA = "AVTLI" seqB = "MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG" seqA = "MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK" #seqB = "MVLSPADKTNVKAAWGKVGAHAGEYG" #seqA = "MVHLTPEEKSAVTALWGKVNVDEVGG" gapOpen = -10 gapExtend = -1 #gapOpen = -8 #gapExtend = -8 matrix = "BLOSUM50" if(len(argv) > 1): N = int(argv[1]) else: N = 100 # init score matrix #matScore = np.zeros((26, 26), dtype=np.int8) #readMat("blosum50.txt", matScore) readScoreMatrix(matrix) matScore = getMatrix() # Calculate unscrambled aligment and score s, a, ma, ta = smithWaterman( seqA, seqB, matScore, gapO=gapOpen, gapE=gapExtend) ua = a uscore = s print("Scoring matrix: ", matrix) print("Unscrambled score:", uscore) print("Unscrambled identity: {:.2%}".format(sum([ua[0][i] == ua[1][i] and ua[0][i] != '-' for i in range(len(ua[0]))])/len(ua[0]))) print("Unscrambled alignment:") print("SeqA - ", ua[0]) print("SeqB - ", ua[1]) print() if N==0 : exit(0) print("Calculating distribution of scrambled alignment scores.") proc_count = 4 procs = [] sscores_dict = Manager().dict() for i in range(proc_count): proc = Process(target=scrambler_aligner, args=(i, sscores_dict, N, seqA, seqB, matScore, gapOpen, gapExtend)) procs.append(proc) proc.start() for proc in procs: proc.join() #print(sscores_dict.values()) sscores = sum(sscores_dict.values(),[]) #print(sscores) #exit(0) N = len(sscores) # for 4 cores its 4 times the initial value # Fit extreme value distribution to data #miu, beta = gumbel_r.fit(sscores) print("Length of sscores: ", len(sscores)) print("Calculed histogram for {} scramble scores".format(N)) print("Max scrambled score:", max(sscores)) print("Min scrambled score:", min(sscores)) print("Median of scrambled scores:", np.median(sscores)) print("Gumbel miu:", miu) print("Gumbel beta:", beta) print() # print("Aligment matrix:") # np.savetxt(sys.stdout, ma, fmt="%3d") print("Saving data to","'smith_{}_{}_{}_{:3.1f}_{:3.1f}.npy'".format( N, len(seqA), matrix, abs(gapOpen), abs(gapExtend))) np.save("smith_{}_{}_{}_{:3.1f}_{:3.1f}".format( N, len(seqA), matrix, abs(gapOpen), abs(gapExtend)),sscores)
[ "score_matrix.readScoreMatrix", "numpy.median", "score_matrix.getMatrix", "multiprocessing.Process", "seqali.smithFast", "seqali.smithWaterman", "random.seed", "multiprocessing.Manager" ]
[((1193, 1216), 'score_matrix.readScoreMatrix', 'readScoreMatrix', (['matrix'], {}), '(matrix)\n', (1208, 1216), False, 'from score_matrix import readScoreMatrix, getMatrix\n'), ((1229, 1240), 'score_matrix.getMatrix', 'getMatrix', ([], {}), '()\n', (1238, 1240), False, 'from score_matrix import readScoreMatrix, getMatrix\n'), ((1300, 1365), 'seqali.smithWaterman', 'smithWaterman', (['seqA', 'seqB', 'matScore'], {'gapO': 'gapOpen', 'gapE': 'gapExtend'}), '(seqA, seqB, matScore, gapO=gapOpen, gapE=gapExtend)\n', (1313, 1365), False, 'from seqali import smithWaterman, smithFast, plotMat, plotTraceMat\n'), ((371, 377), 'random.seed', 'seed', ([], {}), '()\n', (375, 377), False, 'from random import sample, seed\n'), ((1904, 2010), 'multiprocessing.Process', 'Process', ([], {'target': 'scrambler_aligner', 'args': '(i, sscores_dict, N, seqA, seqB, matScore, gapOpen, gapExtend)'}), '(target=scrambler_aligner, args=(i, sscores_dict, N, seqA, seqB,\n matScore, gapOpen, gapExtend))\n', (1911, 2010), False, 'from multiprocessing import Process, Manager\n'), ((2548, 2566), 'numpy.median', 'np.median', (['sscores'], {}), '(sscores)\n', (2557, 2566), True, 'import numpy as np\n'), ((537, 576), 'seqali.smithFast', 'smithFast', (['sa', 'sb', 'ms'], {'gapO': 'go', 'gapE': 'ge'}), '(sa, sb, ms, gapO=go, gapE=ge)\n', (546, 576), False, 'from seqali import smithWaterman, smithFast, plotMat, plotTraceMat\n'), ((1847, 1856), 'multiprocessing.Manager', 'Manager', ([], {}), '()\n', (1854, 1856), False, 'from multiprocessing import Process, Manager\n')]
import numpy as np def make_grid_edges(x, neighborhood=4, return_lists=False): if neighborhood not in [4, 8]: raise ValueError("neighborhood can only be '4' or '8', got %s" % repr(neighborhood)) inds = np.arange(x.shape[0] * x.shape[1]).reshape(x.shape[:2]) inds = inds.astype(np.int64) right = np.c_[inds[:, :-1].ravel(), inds[:, 1:].ravel()] down = np.c_[inds[:-1, :].ravel(), inds[1:, :].ravel()] edges = [right, down] if neighborhood == 8: upright = np.c_[inds[1:, :-1].ravel(), inds[:-1, 1:].ravel()] downright = np.c_[inds[:-1, :-1].ravel(), inds[1:, 1:].ravel()] edges.extend([upright, downright]) if return_lists: return edges return np.vstack(edges) def edge_list_to_features(edge_list): edges = np.vstack(edge_list) edge_features = np.zeros((edges.shape[0], 2)) edge_features[:len(edge_list[0]), 0] = 1 edge_features[len(edge_list[0]):, 1] = 1 return edge_features def generate_binary_edges(length, window): """ [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (0, 2), (1, 3), (2, 4), (3, 5)] """ edges = [] for w in range(1, window + 1): for i in range(length - w): edges.append((i, i + w)) return edges
[ "numpy.zeros", "numpy.vstack", "numpy.arange" ]
[((745, 761), 'numpy.vstack', 'np.vstack', (['edges'], {}), '(edges)\n', (754, 761), True, 'import numpy as np\n'), ((814, 834), 'numpy.vstack', 'np.vstack', (['edge_list'], {}), '(edge_list)\n', (823, 834), True, 'import numpy as np\n'), ((855, 884), 'numpy.zeros', 'np.zeros', (['(edges.shape[0], 2)'], {}), '((edges.shape[0], 2))\n', (863, 884), True, 'import numpy as np\n'), ((245, 279), 'numpy.arange', 'np.arange', (['(x.shape[0] * x.shape[1])'], {}), '(x.shape[0] * x.shape[1])\n', (254, 279), True, 'import numpy as np\n')]
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np from onnx import helper as oh from finn.core.datatype import DataType from finn.transformation import Transformation from finn.util.basic import get_by_name from finn.custom_op.registry import getCustomOp from finn.transformation.infer_datatypes import InferDataTypes class AbsorbAddIntoMultiThreshold(Transformation): """Absorb preceding Add ops into MultiThreshold by updating the threshold values. Only scalar/1D add vectors can be absorbed.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "Add": consumer = model.find_consumer(n.output[0]) if consumer is not None and consumer.op_type == "MultiThreshold": add_weight_name = n.input[1] threshold_name = consumer.input[1] A = model.get_initializer(add_weight_name) T = model.get_initializer(threshold_name) assert A is not None, "Initializer for add weights is not set." assert T is not None, "Initializer for thresholds is not set." start_name = n.input[0] # we can only absorb 0d or 1d adds is_scalar = A.ndim == 0 or all(x == 1 for x in A.shape) actual_ndims = len(tuple(filter(lambda x: x > 1, A.shape))) is_1d = actual_ndims == 1 if is_scalar or is_1d: Tnew = T - A.reshape(-1, 1) # Tnew = T - A.reshape(-1, T.shape[1]) # compute new thresholds and set initializer model.set_initializer(threshold_name, Tnew) # wire add input directly to MultiThreshold consumer.input[0] = start_name # remove the add node graph.node.remove(n) graph_modified = True return (model, graph_modified) class AbsorbMulIntoMultiThreshold(Transformation): """Absorb preceding Mul ops into MultiThreshold by updating the threshold values. Only *positive* scalar/1D mul vectors can be absorbed.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "Mul": mul_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." is_signed = (A < 0).any() is_scalar = A.ndim == 0 or all(x == 1 for x in A.shape) actual_ndims = len(tuple(filter(lambda x: x > 1, A.shape))) is_1d = actual_ndims == 1 consumer = model.find_consumer(n.output[0]) if consumer is not None and consumer.op_type == "MultiThreshold": if not is_signed and (is_1d or is_scalar): threshold_name = consumer.input[1] T = model.get_initializer(threshold_name) assert T is not None, "Initializer for thresholds is not set." start_name = n.input[0] # compute new thresholds and set initializer Tnew = T / A.reshape(-1, 1) # TODO: need to handle negative A values correctly; produce # mul sign mask and merge into preceding matmul? model.set_initializer(threshold_name, Tnew) # wire add input directly to MultiThreshold consumer.input[0] = start_name # remove the mul node graph.node.remove(n) graph_modified = True return (model, graph_modified) class FactorOutMulSignMagnitude(Transformation): """Split multiply-by-constant nodes into two multiply-by-constant nodes, where the first node is a bipolar vector (of signs) and the second is a vector of magnitudes.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "Mul": mul_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." is_scalar = np.prod(A.shape) == 1 actual_ndims = len(tuple(filter(lambda x: x > 1, A.shape))) is_1d = actual_ndims == 1 is_not_bipolar = ( model.get_tensor_datatype(mul_weight_name) != DataType.BIPOLAR ) is_signed = (A < 0).any() if is_signed and (is_scalar or is_1d) and is_not_bipolar: start_name = n.input[0] in_shape = model.get_tensor_shape(start_name) middle_name = model.make_new_valueinfo_name() model.set_tensor_shape(middle_name, in_shape) sign_mul_param_name = model.make_new_valueinfo_name() # create new mul node with sign(A) as the operand sgn = np.sign(A) model.set_initializer(sign_mul_param_name, sgn) model.set_tensor_datatype(sign_mul_param_name, DataType.BIPOLAR) # replace original mul weight by magnitudes model.set_initializer(mul_weight_name, np.abs(A)) new_mul = oh.make_node( "Mul", [start_name, sign_mul_param_name], [middle_name] ) n.input[0] = middle_name graph.node.insert(node_ind - 1, new_mul) graph_modified = True return (model, graph_modified) class Absorb1BitMulIntoMatMul(Transformation): """Absorb bipolar or binary multiplications into the preciding matrix multiply.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "MatMul": matmul_weight_name = n.input[1] W = model.get_initializer(matmul_weight_name) Wdt = model.get_tensor_datatype(matmul_weight_name) assert W is not None, "Initializer for matmul weights is not set." consumer = model.find_consumer(n.output[0]) if consumer is not None and consumer.op_type == "Mul": mul_weight_name = consumer.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." is_1bit = model.get_tensor_datatype(mul_weight_name).bitwidth() == 1 if is_1bit: Wnew = A * W assert ( Wnew.shape == W.shape ), """Shape of new weights is not the same as the shape of the weight matrix before.""" check_fxn = np.vectorize(lambda x: Wdt.allowed(x)) # only absorb if permitted by W datatype if check_fxn(Wnew).all(): model.set_initializer(matmul_weight_name, Wnew) n.output[0] = consumer.output[0] graph.node.remove(consumer) graph_modified = True return (model, graph_modified) class Absorb1BitMulIntoConv(Transformation): """Absorb bipolar or binary multiplications into the preciding convolution.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "Conv": conv_weight_name = n.input[1] W = model.get_initializer(conv_weight_name) Wdt = model.get_tensor_datatype(conv_weight_name) assert W is not None, "Initializer for conv weights is not set." consumer = model.find_consumer(n.output[0]) if consumer is not None and consumer.op_type == "Mul": mul_weight_name = consumer.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." is_1bit = model.get_tensor_datatype(mul_weight_name).bitwidth() == 1 is_scalar = np.prod(A.shape) == 1 actual_ndims = len(tuple(filter(lambda x: x > 1, A.shape))) is_1d = actual_ndims == 1 if is_1bit and (is_1d or is_scalar): # move the mul to the OFM position, since the mul is # applied on the outputs channelwise or as scalar Wnew = A.reshape(-1, 1, 1, 1) * W assert ( Wnew.shape == W.shape ), """Shape of new weights is not the same as the shape of the conv weights before.""" check_fxn = np.vectorize(lambda x: Wdt.allowed(x)) # only absorb if permitted by W datatype if check_fxn(Wnew).all(): model.set_initializer(conv_weight_name, Wnew) n.output[0] = consumer.output[0] graph.node.remove(consumer) graph_modified = True return (model, graph_modified) class AbsorbTransposeIntoMultiThreshold(Transformation): """Change (NHWCTranpose -> MultiThreshold -> NCHWTranspose) to (MultiThreshold) with NHWC mode.""" def apply(self, model): graph = model.graph node_ind = 0 graph_modified = False for n in graph.node: node_ind += 1 if n.op_type == "Transpose": perms = list(get_by_name(n.attribute, "perm").ints) if perms == [0, 3, 1, 2]: mt_cand = model.find_consumer(n.output[0]) if mt_cand.op_type == "MultiThreshold": final_t_cand = model.find_consumer(mt_cand.output[0]) if final_t_cand.op_type == "Transpose": perms = list( get_by_name(final_t_cand.attribute, "perm").ints ) if perms == [0, 2, 3, 1]: mt = getCustomOp(mt_cand) mt.set_nodeattr("data_layout", "NHWC") # get rid of tranpose nodes, wire MT directly mt_cand.input[0] = n.input[0] mt_cand.output[0] = final_t_cand.output[0] graph.node.remove(n) graph.node.remove(final_t_cand) graph_modified = True elif final_t_cand.op_type == "Reshape": oshape = model.get_tensor_shape(final_t_cand.output[0]) if len(oshape) == 2: # transition to FC part, can still use NHWC mt = getCustomOp(mt_cand) mt.set_nodeattr("data_layout", "NHWC") # get rid of first tranpose node mt_cand.input[0] = n.input[0] # fix output shape for MultiThreshold mt_ishape = model.get_tensor_shape(mt_cand.input[0]) (b, h, w, c) = mt_ishape assert ( h == 1 and w == 1 ), """Untested spatial dim in conv->fc transition, proceed with caution!""" model.set_tensor_shape(mt_cand.output[0], mt_ishape) graph.node.remove(n) graph_modified = True if graph_modified: model = model.transform(InferDataTypes()) return (model, graph_modified)
[ "numpy.prod", "finn.transformation.infer_datatypes.InferDataTypes", "numpy.abs", "onnx.helper.make_node", "finn.util.basic.get_by_name", "numpy.sign", "finn.custom_op.registry.getCustomOp" ]
[((14258, 14274), 'finn.transformation.infer_datatypes.InferDataTypes', 'InferDataTypes', ([], {}), '()\n', (14272, 14274), False, 'from finn.transformation.infer_datatypes import InferDataTypes\n'), ((6198, 6214), 'numpy.prod', 'np.prod', (['A.shape'], {}), '(A.shape)\n', (6205, 6214), True, 'import numpy as np\n'), ((7002, 7012), 'numpy.sign', 'np.sign', (['A'], {}), '(A)\n', (7009, 7012), True, 'import numpy as np\n'), ((7330, 7399), 'onnx.helper.make_node', 'oh.make_node', (['"""Mul"""', '[start_name, sign_mul_param_name]', '[middle_name]'], {}), "('Mul', [start_name, sign_mul_param_name], [middle_name])\n", (7342, 7399), True, 'from onnx import helper as oh\n'), ((7289, 7298), 'numpy.abs', 'np.abs', (['A'], {}), '(A)\n', (7295, 7298), True, 'import numpy as np\n'), ((10457, 10473), 'numpy.prod', 'np.prod', (['A.shape'], {}), '(A.shape)\n', (10464, 10473), True, 'import numpy as np\n'), ((11959, 11991), 'finn.util.basic.get_by_name', 'get_by_name', (['n.attribute', '"""perm"""'], {}), "(n.attribute, 'perm')\n", (11970, 11991), False, 'from finn.util.basic import get_by_name\n'), ((12549, 12569), 'finn.custom_op.registry.getCustomOp', 'getCustomOp', (['mt_cand'], {}), '(mt_cand)\n', (12560, 12569), False, 'from finn.custom_op.registry import getCustomOp\n'), ((12379, 12422), 'finn.util.basic.get_by_name', 'get_by_name', (['final_t_cand.attribute', '"""perm"""'], {}), "(final_t_cand.attribute, 'perm')\n", (12390, 12422), False, 'from finn.util.basic import get_by_name\n'), ((13337, 13357), 'finn.custom_op.registry.getCustomOp', 'getCustomOp', (['mt_cand'], {}), '(mt_cand)\n', (13348, 13357), False, 'from finn.custom_op.registry import getCustomOp\n')]
# coding: utf-8 # # This code is part of qclib. # # Copyright (c) 2021, <NAME> import numpy as np from ..math import apply_statevec, apply_density, density_matrix from .measure import measure_qubit, measure_qubit_rho class DensityMatrix: def __init__(self, mat): self._data = np.asarray(mat) def __len__(self): return len(self._data) def __iter__(self): return iter(self._data) def __getitem__(self, item): return self._data[item] def __str__(self): return str(self._data) def copy(self): return self.__class__(self._data.copy()) def apply(self, operator): self._data = apply_density(self._data, operator) def measure(self, qubit, eigvals=None, eigvecs=None): res, self._data = measure_qubit_rho(self._data, qubit, eigvals, eigvecs) return res class StateVector: def __init__(self, vec): self._data = np.asarray(vec) def __len__(self): return len(self._data) def __iter__(self): return iter(self._data) def __getitem__(self, item): return self._data[item] def __str__(self): return str(self._data) def copy(self): return self.__class__(self._data.copy()) def apply(self, operator): self._data = apply_statevec(self._data, operator) def measure(self, qubit, eigvals=None, eigvecs=None): res, self._data = measure_qubit(self._data, qubit, eigvals, eigvecs) return res def to_density(self): return DensityMatrix(density_matrix(self._data))
[ "numpy.asarray" ]
[((292, 307), 'numpy.asarray', 'np.asarray', (['mat'], {}), '(mat)\n', (302, 307), True, 'import numpy as np\n'), ((931, 946), 'numpy.asarray', 'np.asarray', (['vec'], {}), '(vec)\n', (941, 946), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # #### Modeling the elemental stoichiometry of phytoplankton and surrounding surface waters in and upwelling or estuarine system # >Steps to complete project: # >1. Translate matlab physical model into python # >2. Substitute Dynamic CFM into model for eco component # >3. Analyze the results # # In[1]: import numpy as np import matplotlib.pyplot as plt import pandas as pd import math as m from math import pi import time import pylab as lab # In[2]: #create the time grid sperd=60*60*24 #seconds per day spery=365*sperd #seconds per year nyr=1 #number of years to simulate. This can be chagned by the user T=spery*nyr #length of time in seconds to simulate dt=spery/720 #time step t=np.arange(0,T+dt,dt) #create a time array Nt=T/dt+1 #number of time grid points Nt=int(Nt) # In[3]: #create the spatial grid Lx=5e5 #length in meters dx=1e3 #grid spacing Nx=(Lx/dx)+1 #number of grid points Nx=int(Nx) xx=np.arange(0,Lx+dx,dx) #create a space array # In[4]: #wind forcing U0=0.1 #velocity (m/s) subject to change # In[5]: #initial conditions of nutrient variables NO3 (Nnut) and PO4 (Pnut) Pnut=2*np.ones(Nx) #creating a ones array the size of the number of spatial grid points Pnut_i=Pnut[0] #initial value of phosphorus at the coastal boundary Rup_Po=10*Pnut_i/spery #baseline P uptake rate (will be changed with CFM-Phyto) Nnut=Pnut*15 #assume NO3 concentration higher than PO4. Change based on field observations Nnut_i=Pnut_i*15 #intial value of NO3 available at the coastal boundary Rup_No=10*Nnut_i/spery #baseline N uptake rate (will be changed with CFM-Phyto) # In[6]: #initial condition of biomass variables- to be replaced with CFM later Pbio=0.01*Pnut Pbio_i=0.01*Pnut_i #phytoplankton P at coast (boundary condition) Nbio=0.01*Nnut Nbio_i=0.01*Nnut_i #phytoplankton N at coast (boundary condition) print(np.size(Nbio)) # In[7]: #initial biological parameters Kp=0.1 #half-saturation constant for Pnut Kn=1 #half-saturation constant for Nnut mu= 1/sperd #growth rate per sec phi=0.5 #fraction of uptake remineralized locally Snp=16 #redfield N:P ratio of phytoplankton m2=mu*0.2 #quadratic mortality # In[8]: # Period=1 #period of oscillation in forcing (velocity) (yr) w=(2*pi)/Period #frequency of oscillation A0=0.5 #amplitude of oscillation nn=0 #year counter # In[9]: it_Nx=np.arange(0,Nx-1,1) it_Nt=np.arange(0,Nt+1,1) f=[] Ua=[] for n in it_Nt: #vary the circulation rates for y in t: f=A0*(m.sin(w*y/spery)) #fn.append(f) U0_array=np.full_like(f,U0) Ua=U0*f U=U0+Ua #calculate the biological rates-to be replaced by CFM RgrowN=mu*Nbio*(Nnut/(Nnut+Kn)) RmortN=m2*Nbio**2 RbioN=RgrowN-RmortN RnutN=-RgrowN+phi*RmortN RbioP=RbioN/Snp RnutP=RnutN/Snp #update the distribution: Advection scheme for i in it_Nx: Pnut[i+1]=((dt/dx)*U*Pnut[i]+Pnut[i+1]+RnutP[i]*dt)/(1+dt/dx*U) Nnut[i+1]=((dt/dx)*U*Nnut[i]+Nnut[i+1]+RnutN[i]*dt)/(1+dt/dx*U) Pbio[i+1]=((dt/dx)*U*Pbio[i]+Pbio[i+1]+RbioP[i]*dt)/(1+dt/dx*U) Nbio[i+1]=((dt/dx)*U*Nbio[i]+Nbio[i+1]+RbioN[i]*dt)/(1+dt/dx*U) print((Pnut)) # In[33]: #some plotting ax=plt.figure(1) plt.subplot(2,2,1) x=np.arange(0,Lx+dx,dx) x=x*1e-3 plt.plot(x,Pnut,marker='o',color='orange') plt.xlabel('horizontal distance (km)') plt.ylabel('PO4 (uM)') plt.subplot(2,2,2) plt.plot(x,Nnut,marker='o',color='green') plt.xlabel('horizontal distance (km)') plt.ylabel('NO3 (uM)') plt.subplot(2,2,3) plt.plot(x,Pbio,marker='o',color='red') plt.xlabel('horizontal distance (km)') plt.ylabel('Phyto P (uM)') plt.subplot(2,2,4) plt.plot(x,Nbio,marker='o',color='blue') plt.xlabel('horizontal distance (km)') plt.ylabel('Phyto N (uM)') plt.tight_layout() plt.savefig('Nutrient_Concentrations.png') plt.show() # In[ ]:
[ "matplotlib.pyplot.savefig", "numpy.ones", "numpy.full_like", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.size", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "math.sin", "matplotlib.pyplot.subplot", "numpy.arange", "matplotlib.pyplot.show" ]
[((757, 781), 'numpy.arange', 'np.arange', (['(0)', '(T + dt)', 'dt'], {}), '(0, T + dt, dt)\n', (766, 781), True, 'import numpy as np\n'), ((1016, 1041), 'numpy.arange', 'np.arange', (['(0)', '(Lx + dx)', 'dx'], {}), '(0, Lx + dx, dx)\n', (1025, 1041), True, 'import numpy as np\n'), ((2479, 2502), 'numpy.arange', 'np.arange', (['(0)', '(Nx - 1)', '(1)'], {}), '(0, Nx - 1, 1)\n', (2488, 2502), True, 'import numpy as np\n'), ((2505, 2528), 'numpy.arange', 'np.arange', (['(0)', '(Nt + 1)', '(1)'], {}), '(0, Nt + 1, 1)\n', (2514, 2528), True, 'import numpy as np\n'), ((3347, 3360), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3357, 3360), True, 'import matplotlib.pyplot as plt\n'), ((3361, 3381), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (3372, 3381), True, 'import matplotlib.pyplot as plt\n'), ((3382, 3407), 'numpy.arange', 'np.arange', (['(0)', '(Lx + dx)', 'dx'], {}), '(0, Lx + dx, dx)\n', (3391, 3407), True, 'import numpy as np\n'), ((3413, 3458), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'Pnut'], {'marker': '"""o"""', 'color': '"""orange"""'}), "(x, Pnut, marker='o', color='orange')\n", (3421, 3458), True, 'import matplotlib.pyplot as plt\n'), ((3456, 3494), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""horizontal distance (km)"""'], {}), "('horizontal distance (km)')\n", (3466, 3494), True, 'import matplotlib.pyplot as plt\n'), ((3495, 3517), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""PO4 (uM)"""'], {}), "('PO4 (uM)')\n", (3505, 3517), True, 'import matplotlib.pyplot as plt\n'), ((3518, 3538), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (3529, 3538), True, 'import matplotlib.pyplot as plt\n'), ((3537, 3581), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'Nnut'], {'marker': '"""o"""', 'color': '"""green"""'}), "(x, Nnut, marker='o', color='green')\n", (3545, 3581), True, 'import matplotlib.pyplot as plt\n'), ((3579, 3617), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""horizontal distance (km)"""'], {}), "('horizontal distance (km)')\n", (3589, 3617), True, 'import matplotlib.pyplot as plt\n'), ((3618, 3640), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""NO3 (uM)"""'], {}), "('NO3 (uM)')\n", (3628, 3640), True, 'import matplotlib.pyplot as plt\n'), ((3641, 3661), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (3652, 3661), True, 'import matplotlib.pyplot as plt\n'), ((3660, 3702), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'Pbio'], {'marker': '"""o"""', 'color': '"""red"""'}), "(x, Pbio, marker='o', color='red')\n", (3668, 3702), True, 'import matplotlib.pyplot as plt\n'), ((3700, 3738), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""horizontal distance (km)"""'], {}), "('horizontal distance (km)')\n", (3710, 3738), True, 'import matplotlib.pyplot as plt\n'), ((3739, 3765), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Phyto P (uM)"""'], {}), "('Phyto P (uM)')\n", (3749, 3765), True, 'import matplotlib.pyplot as plt\n'), ((3766, 3786), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (3777, 3786), True, 'import matplotlib.pyplot as plt\n'), ((3785, 3828), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'Nbio'], {'marker': '"""o"""', 'color': '"""blue"""'}), "(x, Nbio, marker='o', color='blue')\n", (3793, 3828), True, 'import matplotlib.pyplot as plt\n'), ((3826, 3864), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""horizontal distance (km)"""'], {}), "('horizontal distance (km)')\n", (3836, 3864), True, 'import matplotlib.pyplot as plt\n'), ((3865, 3891), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Phyto N (uM)"""'], {}), "('Phyto N (uM)')\n", (3875, 3891), True, 'import matplotlib.pyplot as plt\n'), ((3893, 3911), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3909, 3911), True, 'import matplotlib.pyplot as plt\n'), ((3912, 3954), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""Nutrient_Concentrations.png"""'], {}), "('Nutrient_Concentrations.png')\n", (3923, 3954), True, 'import matplotlib.pyplot as plt\n'), ((3955, 3965), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3963, 3965), True, 'import matplotlib.pyplot as plt\n'), ((1221, 1232), 'numpy.ones', 'np.ones', (['Nx'], {}), '(Nx)\n', (1228, 1232), True, 'import numpy as np\n'), ((1969, 1982), 'numpy.size', 'np.size', (['Nbio'], {}), '(Nbio)\n', (1976, 1982), True, 'import numpy as np\n'), ((2671, 2690), 'numpy.full_like', 'np.full_like', (['f', 'U0'], {}), '(f, U0)\n', (2683, 2690), True, 'import numpy as np\n'), ((2614, 2634), 'math.sin', 'm.sin', (['(w * y / spery)'], {}), '(w * y / spery)\n', (2619, 2634), True, 'import math as m\n')]
"""Test weighted path counting methods.""" # pylint: disable=redefined-outer-name,too-few-public-methods # pylint: disable=too-many-branches import pytest from pytest import approx import numpy as np import pandas as pd from pathcensus.definitions import PathDefinitionsWeighted from pathcensus import PathCensus @pytest.fixture(scope="session") def paths_edges(random_graph): """Fixture for generating path census data frames for edges and node/global counts based `random_graph` fixture. """ _, S = random_graph E = S.census("edges") return E, S @pytest.fixture(scope="session") def paths_edges_nodes(paths_edges): """Get edge and node path/cycle counts.""" E, S = paths_edges return E, S.census("nodes") @pytest.fixture(scope="session") def paths_edges_global(paths_edges): """Get edge and global path/cycle counts.""" E, S = paths_edges return E, S.census("global") @pytest.fixture(scope="session") def graph_weights_one(random_graph): """Pair of :py:class:`pathcensus.PathCensus` objects for weighted and unweighted version of the same graph with all weights equal to ``1``. """ G, _ = random_graph G.es["weight"] = np.ones((G.ecount(),)) P0 = PathCensus(G, weighted=False) P1 = PathCensus(G, weighted=True) return P0, P1 @pytest.fixture(scope="session") def graph_weights_uniform(random_graph): """Pair of :py:class:`pathcensus.PathCensus` objects for weighted and unweighted version of the same graph with all weights being uniform but other than ``1``. """ G, _ = random_graph G.es["weight"] = 3*np.ones((G.ecount(),)) P0 = PathCensus(G, weighted=False) P1 = PathCensus(G, weighted=True) return P0, P1 class TestPathCounting: """Tests of different path counting methods. All main path counting methods are defined for overall graph counts, node counts and node-pair (edge) counts. The below tests check whether the results of all different counting methods are consistent in a sense that they give the same answers after proper summing. """ class TestAggregationConsistency: """Tests of aggregation consistency between edge, node and global counts. """ paths = PathDefinitionsWeighted().get_column_names() @pytest.mark.parametrize("path", paths) def test_edges_to_nodes(self, path, paths_edges_nodes): """Check consistency between edge and node counts of paths and cycles. """ E, N = paths_edges_nodes m0 = N[path].dropna() m1 = E[path].groupby(level="i").sum() \ .reindex(N.index) \ .fillna(0) arules = PathDefinitionsWeighted().aggregation.get("nodes", {}) m1 /= arules.get(path, 1) assert np.allclose(m0, m1) @pytest.mark.parametrize("path", paths) def test_edges_to_global(self, path, paths_edges_global): """Check consistency between edge and global counts of paths and cycles. """ E, G = paths_edges_global m0 = G[path].iloc[0] m1 = E[path].sum() arules = PathDefinitionsWeighted().aggregation.get("global", {}) m1 /= arules.get(path, 1) assert m0 == approx(m1) class TestCountingAgainstOtherImplementations: """Test weighted path counting against mean weighted local clustering coefficient as defined by Barrat et al. and implemented in :py:mod:`igraph`. In general, weighted `t`-clustering should be equal to the method by Barrat et al. """ @pytest.mark.parametrize("undefined", ["nan", "zero"]) def test_mean_local_clustering(self, random_graph, undefined): G, P = random_graph c0 = G.transitivity_avglocal_undirected(weights="weight", mode=undefined) c1 = P.tclust(undefined=undefined).mean(skipna=False) assert np.isnan([c0, c1]).all() or c0 == approx(c1) class TestConsistencyBounds: """Test consistency in terms of bounds between open and closed paths. In particular, closed paths (e.g. triangles) cannot be more frequent than their open counterparts. Moreover, relational coefficients (similarity and complementarity) must be bounded between their min/max of their corresponding clustering and closure coefficients. """ @pytest.mark.parametrize("mode", ["edges", "nodes", "global"]) def test_path_counts_consistency(self, random_graph, mode): _, P = random_graph C = P.census(mode) tol = 1e-6 assert (C.values >= 0).all() assert (C["twc"] <= C["tw"] + tol).all() assert (C["thc"] <= C["th"] + tol).all() assert (C["q0wc"] <= C["qw"] + tol).all() assert (C["q0hc"] <= C["qh"] + tol).all() @pytest.mark.parametrize("mode", ["edges", "nodes", "global"]) def test_similarity_coefs_consistency(self, random_graph, mode): _, P = random_graph C = P.coefs(mode).dropna() vals = C.values assert (vals >= -1e-6).all() and (vals <= 1+1e-6).all() if mode == "nodes": m0 = C[["tclust", "tclosure"]].min(axis=1) m1 = C[["tclust", "tclosure"]].max(axis=1) assert (C["sim"].between(m0, m1)).all() @pytest.mark.parametrize("mode", ["edges", "nodes", "global"]) def test_complementarity_coefs_consistency(self, random_graph, mode): _, P = random_graph C = P.coefs(mode).dropna() vals = C.values assert (vals >= -1e-6).all() and (vals <= 1+1e-6).all() if mode == "nodes": m0 = C[["qclust", "qclosure"]].min(axis=1) m1 = C[["qclust", "qclosure"]].max(axis=1) assert (C["comp"].between(m0, m1)).all() class TestConsistencyWithUnweightedMethods: """Test whether weighted counts with uniform weights are consistent with the unweighted counts etc. """ @staticmethod def to_unweighted(df): """Combine weighted counts so they have the same columns as unweighted counts. """ return pd.DataFrame({ "t": (df["twc"] + df["thc"]) / 2, "tw": df["tw"], "th": df["th"], "q0": (df["q0wc"] + df["q0hc"]) / 2, "qw": df["qw"], "qh": df["qh"] }) @pytest.mark.parametrize("mode", ["edges", "nodes", "global"]) def test_path_counts_consistency(self, graph_weights_one, mode): """Test consistency of path counts.""" P0, P1 = graph_weights_one assert P1.weighted p0 = P0.census(mode) p1 = self.to_unweighted(P1.census(mode)) assert np.allclose(p0.values, p1.values) @pytest.mark.parametrize("mode", ["edges", "nodes", "global"]) def test_coefs_consistency(self, graph_weights_uniform, mode): """Test consistency of coefficients.""" P0, P1 = graph_weights_uniform assert P1.weighted c0 = P0.coefs(mode, undefined="zero") c1 = P1.coefs(mode, undefined="zero") assert np.allclose(c0.values, c1.values) class TestSimpleMotifs: """Test agreement with counts expected for simple motifs such as triangle, quadrangle and star. """ simcoefs = ("sim_g", "sim", "tclust", "tclosure") compcoefs = ("comp_g", "comp", "qclust", "qclosure") def approx_in(self, obj, vals, allow_nan=False, **kwds): """Auxiliary method for approximate testing if values in ``objs`` are in ``vals``. """ x = obj.values l = np.zeros_like(x, dtype=bool) for val in vals: if allow_nan: l |= np.isnan(x) | np.isclose(x, val, **kwds) else: l |= np.isclose(x, val, **kwds) return l.all() def approx_between(self, obj, lo, hi, allow_nan=False, tol=1e-6): """Auxiliary method for approximate testing if valuesin ``obj`` are between ``lo`` and ``hi``. """ x = obj.values l = np.isnan(x) if allow_nan else np.zeros_like(x, dtype=bool) return (l | (x >= lo-tol) | (x <= hi+tol)).all() @pytest.mark.parametrize("undefined", ["nan", "zero"]) def test_simple_motifs_global(self, simple_motif, undefined): """Check values of global structural coefficients in simple motifs. """ motif, P = simple_motif kwds = dict(undefined=undefined) sim = P.simcoefs("global", **kwds) comp = P.compcoefs("global", **kwds) if motif == "triangle": assert self.approx_in(sim, [1]) assert self.approx_in(comp, [0], allow_nan=True) elif motif == "quadrangle": assert self.approx_in(sim, [0]) assert self.approx_in(comp, [1]) @pytest.mark.parametrize("undefined", ["nan", "zero"]) def test_simple_motifs_nodes(self, simple_motif, undefined): """Check values of node-wise structural coefficients in simple motifs. """ motif, P = simple_motif kwds = dict(undefined=undefined) sim = P.simcoefs("nodes", **kwds) comp = P.compcoefs("nodes", **kwds) if motif == "triangle": assert self.approx_in(sim, [1]) assert self.approx_in(comp, [0], allow_nan=True) elif motif == "quadrangle": assert self.approx_in(sim, [0]) assert self.approx_in(comp, [1]) @pytest.mark.parametrize("undefined", ["nan", "zero"]) def test_simple_motifs_edges(self, simple_motif, undefined): """Check values of edge-wise structural coefficients in simple motifs. """ motif, P = simple_motif kwds = dict(undefined=undefined) sim = P.similarity("edges", **kwds) comp = P.complementarity("edges", **kwds) if motif == "triangle": assert self.approx_in(sim, [1]) assert self.approx_in(comp, [0], allow_nan=True) elif motif == "quadrangle": assert self.approx_in(sim, [0]) assert self.approx_in(comp, [1])
[ "pathcensus.PathCensus", "pytest.approx", "numpy.allclose", "numpy.isclose", "pandas.DataFrame", "pathcensus.definitions.PathDefinitionsWeighted", "pytest.mark.parametrize", "numpy.isnan", "pytest.fixture", "numpy.zeros_like" ]
[((316, 347), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (330, 347), False, 'import pytest\n'), ((575, 606), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (589, 606), False, 'import pytest\n'), ((746, 777), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (760, 777), False, 'import pytest\n'), ((922, 953), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (936, 953), False, 'import pytest\n'), ((1312, 1343), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1326, 1343), False, 'import pytest\n'), ((1224, 1253), 'pathcensus.PathCensus', 'PathCensus', (['G'], {'weighted': '(False)'}), '(G, weighted=False)\n', (1234, 1253), False, 'from pathcensus import PathCensus\n'), ((1263, 1291), 'pathcensus.PathCensus', 'PathCensus', (['G'], {'weighted': '(True)'}), '(G, weighted=True)\n', (1273, 1291), False, 'from pathcensus import PathCensus\n'), ((1644, 1673), 'pathcensus.PathCensus', 'PathCensus', (['G'], {'weighted': '(False)'}), '(G, weighted=False)\n', (1654, 1673), False, 'from pathcensus import PathCensus\n'), ((1683, 1711), 'pathcensus.PathCensus', 'PathCensus', (['G'], {'weighted': '(True)'}), '(G, weighted=True)\n', (1693, 1711), False, 'from pathcensus import PathCensus\n'), ((2307, 2345), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""path"""', 'paths'], {}), "('path', paths)\n", (2330, 2345), False, 'import pytest\n'), ((2871, 2909), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""path"""', 'paths'], {}), "('path', paths)\n", (2894, 2909), False, 'import pytest\n'), ((3688, 3741), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""undefined"""', "['nan', 'zero']"], {}), "('undefined', ['nan', 'zero'])\n", (3711, 3741), False, 'import pytest\n'), ((4499, 4560), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['edges', 'nodes', 'global']"], {}), "('mode', ['edges', 'nodes', 'global'])\n", (4522, 4560), False, 'import pytest\n'), ((4980, 5041), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['edges', 'nodes', 'global']"], {}), "('mode', ['edges', 'nodes', 'global'])\n", (5003, 5041), False, 'import pytest\n'), ((5498, 5559), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['edges', 'nodes', 'global']"], {}), "('mode', ['edges', 'nodes', 'global'])\n", (5521, 5559), False, 'import pytest\n'), ((6651, 6712), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['edges', 'nodes', 'global']"], {}), "('mode', ['edges', 'nodes', 'global'])\n", (6674, 6712), False, 'import pytest\n'), ((7056, 7117), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['edges', 'nodes', 'global']"], {}), "('mode', ['edges', 'nodes', 'global'])\n", (7079, 7117), False, 'import pytest\n'), ((8611, 8664), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""undefined"""', "['nan', 'zero']"], {}), "('undefined', ['nan', 'zero'])\n", (8634, 8664), False, 'import pytest\n'), ((9320, 9373), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""undefined"""', "['nan', 'zero']"], {}), "('undefined', ['nan', 'zero'])\n", (9343, 9373), False, 'import pytest\n'), ((10029, 10082), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""undefined"""', "['nan', 'zero']"], {}), "('undefined', ['nan', 'zero'])\n", (10052, 10082), False, 'import pytest\n'), ((2841, 2860), 'numpy.allclose', 'np.allclose', (['m0', 'm1'], {}), '(m0, m1)\n', (2852, 2860), True, 'import numpy as np\n'), ((6381, 6540), 'pandas.DataFrame', 'pd.DataFrame', (["{'t': (df['twc'] + df['thc']) / 2, 'tw': df['tw'], 'th': df['th'], 'q0': (\n df['q0wc'] + df['q0hc']) / 2, 'qw': df['qw'], 'qh': df['qh']}"], {}), "({'t': (df['twc'] + df['thc']) / 2, 'tw': df['tw'], 'th': df[\n 'th'], 'q0': (df['q0wc'] + df['q0hc']) / 2, 'qw': df['qw'], 'qh': df['qh']}\n )\n", (6393, 6540), True, 'import pandas as pd\n'), ((7012, 7045), 'numpy.allclose', 'np.allclose', (['p0.values', 'p1.values'], {}), '(p0.values, p1.values)\n', (7023, 7045), True, 'import numpy as np\n'), ((7434, 7467), 'numpy.allclose', 'np.allclose', (['c0.values', 'c1.values'], {}), '(c0.values, c1.values)\n', (7445, 7467), True, 'import numpy as np\n'), ((7973, 8001), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'bool'}), '(x, dtype=bool)\n', (7986, 8001), True, 'import numpy as np\n'), ((2252, 2277), 'pathcensus.definitions.PathDefinitionsWeighted', 'PathDefinitionsWeighted', ([], {}), '()\n', (2275, 2277), False, 'from pathcensus.definitions import PathDefinitionsWeighted\n'), ((3332, 3342), 'pytest.approx', 'approx', (['m1'], {}), '(m1)\n', (3338, 3342), False, 'from pytest import approx\n'), ((8481, 8492), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (8489, 8492), True, 'import numpy as np\n'), ((8511, 8539), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'bool'}), '(x, dtype=bool)\n', (8524, 8539), True, 'import numpy as np\n'), ((4050, 4060), 'pytest.approx', 'approx', (['c1'], {}), '(c1)\n', (4056, 4060), False, 'from pytest import approx\n'), ((8174, 8200), 'numpy.isclose', 'np.isclose', (['x', 'val'], {}), '(x, val, **kwds)\n', (8184, 8200), True, 'import numpy as np\n'), ((2729, 2754), 'pathcensus.definitions.PathDefinitionsWeighted', 'PathDefinitionsWeighted', ([], {}), '()\n', (2752, 2754), False, 'from pathcensus.definitions import PathDefinitionsWeighted\n'), ((3213, 3238), 'pathcensus.definitions.PathDefinitionsWeighted', 'PathDefinitionsWeighted', ([], {}), '()\n', (3236, 3238), False, 'from pathcensus.definitions import PathDefinitionsWeighted\n'), ((4016, 4034), 'numpy.isnan', 'np.isnan', (['[c0, c1]'], {}), '([c0, c1])\n', (4024, 4034), True, 'import numpy as np\n'), ((8086, 8097), 'numpy.isnan', 'np.isnan', (['x'], {}), '(x)\n', (8094, 8097), True, 'import numpy as np\n'), ((8100, 8126), 'numpy.isclose', 'np.isclose', (['x', 'val'], {}), '(x, val, **kwds)\n', (8110, 8126), True, 'import numpy as np\n')]
""" Custom Fairness Metrics Note that ratio and difference computation is handled by AIF360's sklearn.metrics module. As of the V 0.4.0 release, these are calculated as [unprivileged/privileged] and [unprivileged - privileged], respectively """ from typing import Callable from aif360.sklearn.metrics import difference, ratio import numpy as np import pandas as pd from warnings import catch_warnings, filterwarnings from .performance_metrics import ( false_positive_rate, true_positive_rate, true_negative_rate, false_negative_rate, precision, ) def __manage_undefined_ratios(func: Callable): """ Wraps ratio functions to return NaN values instead of 0.0 in cases where the ratio is undefined """ def wrapper(*args, **kwargs): funcname = getattr(func, "__name__", "an unknown function") msg = ( "The ratio is ill-defined and being set to 0.0 because" + f" '{funcname}' for privileged samples is 0." ) with catch_warnings(record=True) as w: filterwarnings("ignore", message=msg) res = func(*args, **kwargs) if len(w) > 0: return np.nan else: return res return wrapper @__manage_undefined_ratios def ppv_ratio(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group ratio of Postive Predictive Values Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return ratio(precision, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp) @__manage_undefined_ratios def tpr_ratio(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group ratio of True Positive Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return ratio( true_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) @__manage_undefined_ratios def fpr_ratio(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group ratio of False Positive Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return ratio( false_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) @__manage_undefined_ratios def tnr_ratio(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group ratio of True Negative Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return ratio( true_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) @__manage_undefined_ratios def fnr_ratio(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group ratio of False Negative Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return ratio( false_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) def ppv_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group difference of Positive Predictive Values Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return difference(precision, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp) def tpr_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group difference of True Positive Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return difference( true_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) def fpr_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group difference of False Positive Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return difference( false_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) def tnr_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group difference of True Negative Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return difference( true_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) def fnr_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the between-group difference of False Negative Rates Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ return difference( false_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp ) """ Combined Metrics """ def eq_odds_diff(y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1): """ Returns the greatest discrepancy between the between-group FPR difference and the between-group TPR difference Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values prtc_attr (str): name of the protected attribute priv_grp (int, optional): . Defaults to 1. Returns: Number """ fprD = fpr_diff(y_true, y_pred, pa_name=pa_name, priv_grp=priv_grp) tprD = tpr_diff(y_true, y_pred, pa_name=pa_name, priv_grp=priv_grp) if abs(fprD) > abs(tprD): return fprD else: return tprD def eq_odds_ratio( y_true: pd.Series, y_pred: pd.Series, pa_name: str, priv_grp: int = 1 ): """ Returns the greatest discrepancy between the between-group FPR ratio and the between-group TPR ratio Args: y_true (pd.Series): true target values y_pred (pd.Series): predicted target values priv_grp (int, optional): . Defaults to 1. """ fprR = fpr_ratio(y_true, y_pred, pa_name=pa_name, priv_grp=priv_grp) tprR = tpr_ratio(y_true, y_pred, pa_name=pa_name, priv_grp=priv_grp) if np.isnan(fprR) or np.isnan(tprR): return np.nan elif round(abs(fprR - 1), 6) > round(abs(tprR - 1), 6): return fprR else: return tprR
[ "aif360.sklearn.metrics.ratio", "aif360.sklearn.metrics.difference", "warnings.catch_warnings", "numpy.isnan", "warnings.filterwarnings" ]
[((1702, 1774), 'aif360.sklearn.metrics.ratio', 'ratio', (['precision', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(precision, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp)\n', (1707, 1774), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((2221, 2307), 'aif360.sklearn.metrics.ratio', 'ratio', (['true_positive_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(true_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=\n priv_grp)\n', (2226, 2307), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((2764, 2851), 'aif360.sklearn.metrics.ratio', 'ratio', (['false_positive_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(false_positive_rate, y_true, y_pred, prot_attr=pa_name, priv_group=\n priv_grp)\n', (2769, 2851), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((3307, 3393), 'aif360.sklearn.metrics.ratio', 'ratio', (['true_negative_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(true_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=\n priv_grp)\n', (3312, 3393), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((3850, 3937), 'aif360.sklearn.metrics.ratio', 'ratio', (['false_negative_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(false_negative_rate, y_true, y_pred, prot_attr=pa_name, priv_group=\n priv_grp)\n', (3855, 3937), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((4377, 4454), 'aif360.sklearn.metrics.difference', 'difference', (['precision', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(precision, y_true, y_pred, prot_attr=pa_name, priv_group=priv_grp)\n', (4387, 4454), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((4878, 4968), 'aif360.sklearn.metrics.difference', 'difference', (['true_positive_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(true_positive_rate, y_true, y_pred, prot_attr=pa_name,\n priv_group=priv_grp)\n', (4888, 4968), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((5403, 5494), 'aif360.sklearn.metrics.difference', 'difference', (['false_positive_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(false_positive_rate, y_true, y_pred, prot_attr=pa_name,\n priv_group=priv_grp)\n', (5413, 5494), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((5928, 6018), 'aif360.sklearn.metrics.difference', 'difference', (['true_negative_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(true_negative_rate, y_true, y_pred, prot_attr=pa_name,\n priv_group=priv_grp)\n', (5938, 6018), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((6453, 6544), 'aif360.sklearn.metrics.difference', 'difference', (['false_negative_rate', 'y_true', 'y_pred'], {'prot_attr': 'pa_name', 'priv_group': 'priv_grp'}), '(false_negative_rate, y_true, y_pred, prot_attr=pa_name,\n priv_group=priv_grp)\n', (6463, 6544), False, 'from aif360.sklearn.metrics import difference, ratio\n'), ((7819, 7833), 'numpy.isnan', 'np.isnan', (['fprR'], {}), '(fprR)\n', (7827, 7833), True, 'import numpy as np\n'), ((7837, 7851), 'numpy.isnan', 'np.isnan', (['tprR'], {}), '(tprR)\n', (7845, 7851), True, 'import numpy as np\n'), ((1020, 1047), 'warnings.catch_warnings', 'catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (1034, 1047), False, 'from warnings import catch_warnings, filterwarnings\n'), ((1066, 1103), 'warnings.filterwarnings', 'filterwarnings', (['"""ignore"""'], {'message': 'msg'}), "('ignore', message=msg)\n", (1080, 1103), False, 'from warnings import catch_warnings, filterwarnings\n')]
#***************************************************# # This file is part of PFNET. # # # # Copyright (c) 2015, <NAME>. # # # # PFNET is released under the BSD 2-clause license. # #***************************************************# # Optimization Problems - Constraints import sys sys.path.append('.') import pfnet net = pfnet.Parser(sys.argv[1]).parse(sys.argv[1]) net.set_flags('bus', 'variable', 'any', ['voltage magnitude','voltage angle']) print(net.num_vars == 2*net.num_buses) constr = pfnet.Constraint('AC power balance',net) print(constr.name == 'AC power balance') x = net.get_var_values() constr.analyze() print(constr.num_extra_vars) constr.eval(x + 0.01) constr.eval(x) import numpy as np f = constr.f print(type(f), f.shape) print(np.linalg.norm(f,np.inf)) bus = net.get_bus(5) Hi = constr.get_H_single(bus.dP_index) print(type(Hi), Hi.shape, Hi.nnz) coefficients = np.random.randn(f.size) constr.combine_H(coefficients) H = constr.H_combined print(type(H), H.shape, H.nnz)
[ "pfnet.Parser", "pfnet.Constraint", "numpy.linalg.norm", "sys.path.append", "numpy.random.randn" ]
[((413, 433), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (428, 433), False, 'import sys\n'), ((671, 712), 'pfnet.Constraint', 'pfnet.Constraint', (['"""AC power balance"""', 'net'], {}), "('AC power balance', net)\n", (687, 712), False, 'import pfnet\n'), ((1071, 1094), 'numpy.random.randn', 'np.random.randn', (['f.size'], {}), '(f.size)\n', (1086, 1094), True, 'import numpy as np\n'), ((932, 957), 'numpy.linalg.norm', 'np.linalg.norm', (['f', 'np.inf'], {}), '(f, np.inf)\n', (946, 957), True, 'import numpy as np\n'), ((454, 479), 'pfnet.Parser', 'pfnet.Parser', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (466, 479), False, 'import pfnet\n')]
import os import pytest import pandas as pd import numpy as np from shclassify.utils import (inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs) def test_inverse_logit(): assert inverse_logit(0) == 0.5 def test_choose_from_multinomial_probs(): n_obs = 3 classes = ['a', 'b', 'c'] df = pd.DataFrame( np.random.uniform(size=(n_obs,len(classes))), columns=classes ) classes = choose_from_multinomial_probs(df) assert type(classes) is pd.DataFrame assert classes.shape == (n_obs, 1) assert classes.columns == ['class'] def in_classes(x, classes=classes): x in classes assert classes['class'].apply(in_classes).all() def test_choose_from_multinomial_probs_with_bad_input(): n_obs = 3 classes = ['a'] df = pd.DataFrame( np.random.uniform(size=(n_obs,len(classes))), columns=classes ) with pytest.raises(ValueError) as e: choose_from_multinomial_probs(df) assert 'Data frame must have more than 1 column' in str(e.value) def test_choose_from_binary_probs(): n_obs = 3 df = pd.DataFrame( np.random.uniform(size=(n_obs,1)) ) classes = choose_from_binary_probs(df, 'true', 'false') assert type(classes) is pd.DataFrame assert classes.shape == (n_obs, 1) assert classes.applymap(lambda x: x in ['true', 'false']).all()[0] assert classes.columns == ['class'] def test_choose_from_binary_probs_with_bad_shape(): n_obs = 3 classes = ['a', 'b'] df = pd.DataFrame( np.random.uniform(size=(n_obs,len(classes))), columns=classes ) with pytest.raises(ValueError) as e: choose_from_binary_probs(df, 'true', 'false') assert 'Data frame must have 1 column' == str(e.value) def test_choose_from_binary_probs_with_bad_args(): n_obs = 3 df = pd.DataFrame( np.random.uniform(size=(n_obs,1)) ) with pytest.raises(ValueError) as e: classes = choose_from_binary_probs(df, 'true', 'true') assert 'Class names for true and false results must differ' == str(e.value) with pytest.raises(ValueError) as e: classes = choose_from_binary_probs(df, 'true', 'false', threshold=50) assert 'Threshold must be between 0 and 1' == str(e.value)
[ "shclassify.utils.choose_from_multinomial_probs", "shclassify.utils.inverse_logit", "pytest.raises", "numpy.random.uniform", "shclassify.utils.choose_from_binary_probs" ]
[((489, 522), 'shclassify.utils.choose_from_multinomial_probs', 'choose_from_multinomial_probs', (['df'], {}), '(df)\n', (518, 522), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((1242, 1287), 'shclassify.utils.choose_from_binary_probs', 'choose_from_binary_probs', (['df', '"""true"""', '"""false"""'], {}), "(df, 'true', 'false')\n", (1266, 1287), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((264, 280), 'shclassify.utils.inverse_logit', 'inverse_logit', (['(0)'], {}), '(0)\n', (277, 280), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((960, 985), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (973, 985), False, 'import pytest\n'), ((1000, 1033), 'shclassify.utils.choose_from_multinomial_probs', 'choose_from_multinomial_probs', (['df'], {}), '(df)\n', (1029, 1033), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((1187, 1221), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(n_obs, 1)'}), '(size=(n_obs, 1))\n', (1204, 1221), True, 'import numpy as np\n'), ((1681, 1706), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1694, 1706), False, 'import pytest\n'), ((1721, 1766), 'shclassify.utils.choose_from_binary_probs', 'choose_from_binary_probs', (['df', '"""true"""', '"""false"""'], {}), "(df, 'true', 'false')\n", (1745, 1766), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((1924, 1958), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(n_obs, 1)'}), '(size=(n_obs, 1))\n', (1941, 1958), True, 'import numpy as np\n'), ((1974, 1999), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1987, 1999), False, 'import pytest\n'), ((2024, 2068), 'shclassify.utils.choose_from_binary_probs', 'choose_from_binary_probs', (['df', '"""true"""', '"""true"""'], {}), "(df, 'true', 'true')\n", (2048, 2068), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n'), ((2160, 2185), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2173, 2185), False, 'import pytest\n'), ((2210, 2269), 'shclassify.utils.choose_from_binary_probs', 'choose_from_binary_probs', (['df', '"""true"""', '"""false"""'], {'threshold': '(50)'}), "(df, 'true', 'false', threshold=50)\n", (2234, 2269), False, 'from shclassify.utils import inverse_logit, choose_from_multinomial_probs, choose_from_binary_probs\n')]
import numpy as np from scipy import interpolate, signal from scipy.special import gamma import ndmath import warnings import pkg_resources class PlaningBoat(): """Prismatic planing craft Attributes: speed (float): Speed (m/s). It is an input to :class:`PlaningBoat`. weight (float): Weight (N). It is an input to :class:`PlaningBoat`. beam (float): Beam (m). It is an input to :class:`PlaningBoat`. lcg (float): Longitudinal center of gravity, measured from the stern (m). It is an input to :class:`PlaningBoat`. vcg (float): Vertical center of gravity, measured from the keel (m). It is an input to :class:`PlaningBoat`. r_g (float): Radius of gyration (m). It is an input to :class:`PlaningBoat`. beta (float): Deadrise (deg). It is an input to :class:`PlaningBoat`. epsilon (float): Thrust angle w.r.t. keel, CCW with body-fixed origin at 9 o'clock (deg). It is an input to :class:`PlaningBoat`. vT (float): Thrust vertical distance, measured from keel, and positive up (m). It is an input to :class:`PlaningBoat`. lT (float): Thrust horizontal distance, measured from stern, and positive forward (m). It is an input to :class:`PlaningBoat`. length (float): Vessel LOA for seaway behavior estimates (m). Defaults to None. It is an input to :class:`PlaningBoat`. H_sig (float): Significant wave heigth in an irregular sea state (m). Defaults to None. It is an input to :class:`PlaningBoat`. ahr (float): Average hull roughness (m). Defaults to 150*10**-6. It is an input to :class:`PlaningBoat`. Lf (float): Flap chord (m). Defaults to 0. It is an input to :class:`PlaningBoat`. sigma (float): Flap span-beam ratio (dimensionless). Defaults to 0. It is an input to :class:`PlaningBoat`. delta (float): Flap deflection (deg). Defaults to 0. It is an input to :class:`PlaningBoat`. l_air (float): Distance from stern to center of air pressure (m). Defaults to 0. It is an input to :class:`PlaningBoat`. h_air (float): Height from keel to top of square which bounds the air-drag-inducing area (m). Defaults to 0. It is an input to :class:`PlaningBoat`. b_air (float): Transverse width of square which bounds the air-drag-inducing area (m). Defaults to 0. It is an input to :class:`PlaningBoat`. C_shape (float): Area coefficient for air-drag-inducing area (dimensionless). C_shape = 1 means the air drag reference area is h_air*b_air. Defaults to 0. It is an input to :class:`PlaningBoat`. C_D (float): Air drag coefficient (dimensionless). Defaults to 0.7. It is an input to :class:`PlaningBoat`. rho (float): Water density (kg/m^3). Defaults to 1025.87. It is an input to :class:`PlaningBoat`. nu (float): Water kinematic viscosity (m^2/s). Defaults to 1.19*10**-6. It is an input to :class:`PlaningBoat`. rho_air (float): Air density (kg/m^3). Defaults to 1.225. It is an input to :class:`PlaningBoat`. g (float): Gravitational acceleration (m/s^2). Defaults to 9.8066. It is an input to :class:`PlaningBoat`. z_wl (float): Vertical distance of center of gravity to the calm water line (m). Defaults to 0. It is an input to :class:`PlaningBoat`, but modified when running :meth:`get_steady_trim`. tau (float): Trim angle (deg). Defaults to 5. It is an input to :class:`PlaningBoat`, but modified when running :meth:`get_steady_trim`. eta_3 (float): Additional heave (m). Initiates to 0. eta_5 (float): Additional trim (deg). Initiates to zero. wetted_lengths_type (int): 1 = Use Faltinsen 2005 wave rise approximation, 2 = Use Savitsky's '64 approach, 3 = Use Savitsky's '76 approach. Defaults to 1. It is an input to :class:`PlaningBoat`. z_max_type (int): 1 = Uses 3rd order polynomial fit, 2 = Uses cubic interpolation from table. This is only used if wetted_lenghts_type == 1. Defaults to 1. It is an input to :class:`PlaningBoat`. L_K (float): Keel wetted length (m). It is updated when running :meth:`get_geo_lengths`. L_C (float): Chine wetted length (m). It is updated when running :meth:`get_geo_lengths`. lambda_W (float): Mean wetted-length to beam ratio, (L_K+L_C)/(2*beam) (dimensionless). It is updated when running :meth:`get_geo_lengths`. x_s (float): Distance from keel/water-line intersection to start of wetted chine (m). It is updated when running :meth:`get_geo_lengths`. z_max (float): Maximum pressure coordinate coefficient, z_max/Ut (dimensionless). It is updated when running :meth:`get_geo_lengths`. hydrodynamic_force ((3,) ndarray): Hydrodynamic force (N, N, N*m). [F_x, F_z, M_cg] with x, y, rot directions in intertial coordinates. It is updated when running :meth:`get_forces`. skin_friction ((3,) ndarray): Skin friction force (N, N, N*m). [F_x, F_z, M_cg]. It is updated when running :meth:`get_forces`. air_resistance ((3,) ndarray): Air resistance force (N, N, N*m). [F_x, F_z, M_cg]. It is updated when running :meth:`get_forces`. flap_force ((3,) ndarray): Flap resultant force (N, N, N*m). [F_x, F_z, M_cg]. It is updated when running :meth:`get_forces`. thrust_force ((3,) ndarray): Thrust resultant force (N, N, N*m). [F_x, F_z, M_cg]. It is updated when running :meth:`get_forces`. net_force ((3,) ndarray): Net force (N, N, N*m). [F_x, F_z, M_cg]. It is updated when running :meth:`get_forces`. mass_matrix ((2, 2) ndarray): Mass coefficients matrix. [[A_33 (kg), A_35 (kg*m/rad)], [A_53 (kg*m), A_55 (kg*m^2/rad)]]. It is updated when running :meth:`get_eom_matrices`. damping_matrix ((2, 2) ndarray): Damping coefficients matrix. [[B_33 (kg/s), B_35 (kg*m/(s*rad))], [B_53 (kg*m/s), B_55 (kg*m**2/(s*rad))]]. It is updated when running :meth:`get_eom_matrices`. restoring_matrix ((2, 2) ndarray): Restoring coefficients matrix. [[C_33 (N/m), C_35 (N/rad)], [C_53 (N), C_55 (N*m/rad)]]. It is updated when running :meth:`get_eom_matrices`. porpoising (list): [[eigenvalue result (bool), est. pitch settling time (s)], [Savitsky chart result (bool), critical trim angle (deg)]]. It is updated when running :meth:`check_porpoising`. seaway_drag_type (int): 1 = Use Savitsky's '76 approximation, 2 = Use Fridsma's '71 designs charts. Defaults to 1. It is an input to :class:`PlaningBoat`. avg_impact_acc ((2,) ndarray): Average impact acceleration at center of gravity and bow (g's). [n_cg, n_bow]. It is updated when running :meth:`get_seaway_behavior`. R_AW (float): Added resistance in waves (N). It is updated when running :meth:`get_seaway_behavior`. """ def __init__(self, speed, weight, beam, lcg, vcg, r_g, beta, epsilon, vT, lT, length=None, H_sig=None, ahr=150e-6, Lf=0, sigma=0, delta=0, l_air=0, h_air=0, b_air=0, C_shape=0, C_D=0.7, z_wl=0, tau=5, rho=1025.87, nu=1.19e-6, rho_air=1.225, g=9.8066, wetted_lengths_type=1, z_max_type=1, seaway_drag_type=1): """Initialize attributes for PlaningBoat Args: speed (float): Speed (m/s). weight (float): Weidght (N). beam (float): Beam (m). lcg (float): Longitudinal center of gravity, measured from the stern (m). vcg (float): Vertical center of gravity, measured from the keel (m). r_g (float): Radius of gyration (m). beta (float): Deadrise (deg). epsilon (float): Thrust angle w.r.t. keel, CCW with body-fixed origin at 9 o'clock (deg). vT (float): Thrust vertical distance, measured from keel, and positive up (m). lT (float): Thrust horizontal distance, measured from stern, and positive forward (m). length (float, optional): Vessel LOA for seaway behavior estimates (m). Defaults to None. H_sig (float, optional): Significant wave heigth in an irregular sea state (m). Defaults to None. ahr (float, optional): Average hull roughness (m). Defaults to 150*10**-6. Lf (float, optional): Flap chord (m). Defaults to 0. sigma (float, optional): Flap span-beam ratio (dimensionless). Defaults to 0. delta (float, optional): Flap deflection (deg). Defaults to 0. l_air (float, optional): Distance from stern to center of air pressure (m). Defaults to 0. h_air (float, optional): Height from keel to top of square which bounds the air-drag-inducing area (m). Defaults to 0. b_air (float, optional): Transverse width of square which bounds the air-drag-inducing area (m). Defaults to 0. C_shape (float, optional): Area coefficient for air-drag-inducing area (dimensionless). C_shape = 1 means the air drag reference area is h_air*b_air. Defaults to 0. C_D (float, optional): Air drag coefficient (dimensionless). Defaults to 0.7. z_wl (float, optional): Vertical distance of center of gravity to the calm water line (m). Defaults to 0. tau (float, optional): Trim angle (deg). Defaults to 5. rho (float, optional): Water density (kg/m^3). Defaults to 1025.87. nu (float, optional): Water kinematic viscosity (m^2/s). Defaults to 1.19*10**-6. rho_air (float, optional): Air density (kg/m^3). Defaults to 1.225. g (float, optional): Gravitational acceleration (m/s^2). Defaults to 9.8066. wetted_lengths_type (int, optional): 1 = Use Faltinsen 2005 wave rise approximation, 2 = Use Savitsky's '64 approach, 3 = Use Savitsky's '76 approach. Defaults to 1. z_max_type (int, optional): 1 = Uses 3rd order polynomial fit, 2 = Uses cubic interpolation from table. This is only used if wetted_lenghts_type == 1. Defaults to 1. seaway_drag_type (int, optional): 1 = Use Savitsky's '76 approximation, 2 = Use Fridsma's '71 designs charts. Defaults to 1. """ self.speed = speed self.weight = weight self.beam = beam self.lcg = lcg self.vcg = vcg self.r_g = r_g self.beta = beta self.epsilon = epsilon self.vT = vT self.lT = lT self.length = length self.H_sig = H_sig self.ahr = ahr self.Lf = Lf self.sigma = sigma self.delta = delta self.l_air = l_air self.h_air = h_air self.b_air= b_air self.C_shape = C_shape self.z_wl = z_wl self.tau = tau self.eta_3 = 0 self.eta_5 = 0 self.rho = rho self.nu = nu self.rho_air = rho_air self.C_D = C_D self.g = g self.gravity_force = np.array([0, -self.weight, 0]) self.wetted_lengths_type = wetted_lengths_type self.z_max_type = z_max_type self.seaway_drag_type = seaway_drag_type def print_description(self, sigFigs=7, runAllFunctions=True): """Returns a formatted description of the vessel. Args: sigFigs (int, optional): Number of significant figures to display. Defaults to 7. runAllFunctions (bool, optional): Runs all functions with default values before printing results. Defaults to True. """ if runAllFunctions: self.get_geo_lengths() self.get_forces(runGeoLengths=False) self.get_eom_matrices(runGeoLengths=False) self.get_seaway_behavior() self.check_porpoising() volume = self.weight/(self.g*self.rho) table = [ ['---VESSEL---'], ['Speed', self.speed, 'm/s'], ['V_k', self.speed*1.944, 'knot'], ['Fn (beam)', self.speed/np.sqrt(self.g*self.beam), ''], ['Fn (volume)', self.speed/np.sqrt(self.g*(self.weight/(self.g*self.rho))**(1/3)), ''], [''], ['Weight', self.weight, 'N'], ['Mass', self.weight/self.g, 'kg'], ['Volume', self.weight/(self.g*self.rho), 'm\u00B3'], ['Beam', self.beam, 'm'], ['LCG', self.lcg, 'm from stern'], ['VCG', self.vcg, 'm from keel'], ['R_g', self.r_g, 'm'], ['Deadrise', self.beta, 'deg'], #'\N{greek small letter beta}' [''], ['LOA', self.length, 'm'], ['AHR', self.ahr, 'm, average hull roughness'], [''], ['---ATTITUDE---'], ['z_wl', self.z_wl, 'm, vertical distance of center of gravity to the calm water line'], ['tau', self.tau, 'deg, trim angle'], ['\u03B7\u2083', self.eta_3, 'deg, additional heave'], ['\u03B7\u2085', self.eta_5, 'deg, additional trim'], ['Transom draft', self.L_K*np.sin((self.tau+self.eta_5)*np.pi/180), 'm, draft of keel at transom'], [''], ['---PROPULSION---'], ['Thrust angle', self.epsilon, 'deg w.r.t. keel (CCW with body-fixed origin at 9 o\'clock)'], ['LCT', self.lT, 'm from stern, positive forward'], ['VCT', self.vT, 'm from keel, positive up'], [''], ['---FLAP---'], ['Chord', self.Lf, 'm'], ['Span/Beam', self.sigma, ''], ['Angle', self.delta, 'deg w.r.t. keel (CCW with body-fixed origin at 9 o\'clock)'], [''], ['---AIR DRAG---'], ['l_air', self.l_air, 'm, distance from stern to center of air pressure'], ['h_air', self.h_air, 'm, height from keel to top of square which bounds the air-drag-inducing shape'], ['b_air', self.b_air, 'm, transverse width of square which bounds the air-drag-inducing shape'], ['C_shape', self.C_shape, 'area coefficient for air-drag-inducing shape. C_shape = 1 means the air drag reference area is h_air*b_air'], ['C_D', self.C_D, 'air drag coefficient'], [''], ['---ENVIRONMENT---'], ['\u03C1', self.rho, 'kg/m\u00B3, water density'], ['\u03BD', self.nu, 'm\u00B2/s, water kinematic viscosity'], ['\u03C1_air', self.rho_air, 'kg/m\u00B3, air density'], ['g', self.g, 'm/s\u00B2, gravitational acceleration'], [''], ['---WETTED LENGTH OPTIONS---'], ['wetted_lengths_type', self.wetted_lengths_type, '(1 = Use Faltinsen 2005 wave rise approximation, 2 = Use Savitsky\'s \'64 approach, 3 = Use Savitsky\'s \'76 approach)'], ['z_max_type', self.z_max_type, '(1 = Uses 3rd order polynomial fit (faster, recommended), 2 = Use cubic interpolation)'], [''], ['---WETTED LENGTHS---'], ['L_K', self.L_K, 'm, keel wetted length'], ['L_C', self.L_C, 'm, chine wetted length'], ['\u03BB', self.lambda_W, 'mean wetted-length to beam ratio (L_K+L_C)/(2*beam)'], ['x_s', self.x_s, 'm, distance from keel/water-line intersection to start of wetted chine'], ['z_max', self.z_max, 'maximum pressure coordinate coefficient (z_max/Ut)'], [''], ['---FORCES [F_x (N, +aft), F_z (N, +up), M_cg (N*m, +pitch up)]---'], ['Hydrodynamic Force', self.hydrodynamic_force, ''], ['Skin Friction', self.skin_friction, ''], ['Air Resistance', self.air_resistance, ''], ['Flap Force', self.flap_force, ''], ['Net Force', self.net_force, ''], ['Resultant Thrust', self.thrust_force, ''], [''], ['---THURST & POWER---'], ['Thrust Magnitude', np.sqrt(self.thrust_force[0]**2+self.thrust_force[1]**2), 'N'], ['Effective Thrust', -self.thrust_force[0], 'N'], ['Eff. Power', -self.thrust_force[0]*self.speed/1000, 'kW'], ['Eff. Horsepower', -self.thrust_force[0]*self.speed/1000/0.7457, 'hp'], [''], ['---EOM MATRICES---'], ['Mass matrix, [kg, kg*m/rad; kg*m, kg*m\u00B2/rad]', self.mass_matrix, ''], ['Damping matrix, [kg/s, kg*m/(s*rad); kg*m/s, kg*m\u00B2/(s*rad)]', self.damping_matrix, ''], ['Restoring matrix, [N/m, N/rad; N, N*m/rad]', self.restoring_matrix, ''], [''], ['---PORPOISING---'], ['[[Eigenvalue check result, Est. pitch settling time (s)],\n [Savitsky chart result, Critical trim angle (deg)]]', np.array(self.porpoising), ''], [''], ['---BEHAVIOR IN WAVES---'], ['H_sig', self.H_sig, 'm, significant wave heigth'], ['R_AW', self.R_AW, 'N, added resistance in waves'], ['Average impact acceleration [n_cg, n_bow] (g\'s)', self.avg_impact_acc, ''], ] cLens=[16,0,0] #Min spacing for columns for row in table: if len(row)==3: if row[1] is None: print('{desc:<{cL0}} {val:<{cL1}} {unit:<{cL2}}'.format(desc=row[0], val=row[1], unit='None', cL0='', cL1=cLens[1], cL2=cLens[2])) elif isinstance(row[1], (list,np.ndarray)): print(row[0]+' =') with np.printoptions(formatter={'float': f'{{:.{sigFigs}g}}'.format}): print(row[1]) print(row[2]) else: print('{desc:<{cL0}} {val:<{cL1}.{sNum}g} {unit:<{cL2}}'.format(desc=row[0], val=row[1], unit=row[2], cL0=cLens[0], cL1=cLens[1], cL2=cLens[2], sNum=sigFigs)) else: print(row[0]) def get_geo_lengths(self): """This function outputs the geometric lengths. Adds/updates the following attributes: - :attr:`L_K` - :attr:`L_C` - :attr:`lambda_W` - :attr:`x_s` - :attr:`z_max` """ b = self.beam lcg = self.lcg vcg = self.vcg z_wl = self.z_wl tau = self.tau beta = self.beta eta_3 = self.eta_3 eta_5 = self.eta_5 pi = np.pi wetted_lengths_type = self.wetted_lengths_type z_max_type = self.z_max_type #Keel wetted length, Eq. 9.50 of Faltinsen 2005, page 367 L_K = lcg + vcg / np.tan(pi/180*(tau + eta_5)) - (z_wl + eta_3) / np.sin(pi/180*(tau + eta_5)) if L_K < 0: L_K = 0 if wetted_lengths_type == 1: #z_max/Vt coefficient, Table 8.3 of Faltinsen 2005, page 303--------------- beta_table = [4, 7.5, 10, 15, 20, 25, 30, 40] z_max_table = [0.5695, 0.5623, 0.5556, 0.5361, 0.5087, 0.4709, 0.4243, 0.2866] #Extrapolation warning if beta < beta_table[0] or beta > beta_table[-1]: warnings.warn('Deadrise ({0:.3f}) outside the interpolation range of 4-40 deg (Table 8.3 of Faltinsen 2005). Extrapolated values might be inaccurate.'.format(beta), stacklevel=2) if z_max_type == 1: z_max = np.polyval([-2.100644618790201e-006, -6.815747611588763e-005, -1.130563334939335e-003, 5.754510457848798e-001], beta) elif z_max_type == 2: z_max_func = interpolate.interp1d(beta_table, z_max_table, kind='cubic', fill_value='extrapolate') #Interpolation of the table z_max = z_max_func(beta) #-------------------------------------------------------------------------- #Distance from keel/water-line intersection to start of wetted chine (Eq. 9.10 of Faltinsen) x_s = 0.5 * b * np.tan(pi/180*beta) / ((1 + z_max) * (pi/180)*(tau + eta_5)) if x_s < 0: x_s = 0 #Chine wetted length, Eq. 9.51 of Faltinsen 2005 L_C = L_K - x_s if L_C < 0: L_C = 0 x_s = L_K warnings.warn('Vessel operating with dry chines (L_C = 0).', stacklevel=2) #Mean wetted length-to-beam ratio lambda_W = (L_K + L_C) / (2 * b) elif wetted_lengths_type == 2: #Eq. 3 of Savitsky '64 x_s = b/pi*np.tan(pi/180*beta)/np.tan(pi/180*(tau + eta_5)) #Chine wetted length L_C = L_K - x_s if L_C < 0: L_C = 0 x_s = L_K warnings.warn('Vessel operating with dry chines (L_C = 0).', stacklevel=2) #Mean wetted length-to-beam ratio lambda_W = (L_K + L_C)/(2*b) #z_max/Vt coefficient (E. 9.10 of Faltinsen 2005 rearranged) z_max = 0.5 * b * np.tan(pi/180*beta) / (x_s * (pi/180)*(tau + eta_5)) - 1 elif wetted_lengths_type == 3: #Eq. 12 of Savitsky '76 w = (0.57 + beta/1000)*(np.tan(pi/180*beta)/(2*np.tan(pi/180*(tau+eta_5)))-beta/167) lambda_K = L_K/b #Eq. 14 of Savitsky '76 lambda_C = (lambda_K-w)-0.2*np.exp(-(lambda_K-w)/0.3) if lambda_C < 0: lambda_C = 0 L_C = lambda_C*b #Mean wetted length-to-beam ratio, Eq. 15 of Savitsky '76 lambda_W = (lambda_K + lambda_C)/2+0.03 x_s = L_K-L_C #z_max/Vt coefficient (E. 9.10 of Faltinsen 2005 rearranged) z_max = 0.5 * b * np.tan(pi/180*beta) / (x_s * (pi/180)*(tau + eta_5)) - 1 if self.length is not None: if L_K > self.length: warnings.warn('The estimated wetted chine length ({0:.3f}) is larger than the vessel length ({1:.3f}).'.format(L_K, self.length), stacklevel=2) #Update values self.L_K = L_K self.L_C = L_C self.lambda_W = lambda_W self.x_s = x_s self.z_max = z_max def get_forces(self, runGeoLengths=True): """This function calls all the force functions to update the respective object attributes. Adds/updates the following attributes: - :attr:`hydrodynamic_force` - :attr:`skin_friction` - :attr:`air_resistance` - :attr:`flap_force` - :attr:`thrust_force` - :attr:`net_force` Args: runGeoLengths (boolean, optional): Calculate the wetted lengths before calculating the forces. Defaults to True. Methods: get_hydrodynamic_force(): This function follows Savitsky 1964 and Faltinsen 2005 in calculating the vessel's hydrodynamic forces and moment. get_skin_friction(): This function outputs the frictional force of the vessel using ITTC 1957 and the Bowden and Davison 1974 roughness coefficient. get_air_resistance(): This function estimates the air drag. It assumes a square shape projected area with a shape coefficient. get_flap_force(): This function outputs the flap forces w.r.t. global coordinates (Savitsky & Brown 1976). Horz: Positive Aft, Vert: Positive Up, Moment: Positive CCW. sum_forces(): This function gets the sum of forces and moments, and consequently the required net thrust. The coordinates are positive aft, positive up, and positive counterclockwise. """ if runGeoLengths: self.get_geo_lengths() #Calculated wetted lengths in get_forces() g = self.g rho_air = self.rho_air C_D = self.C_D rho = self.rho nu = self.nu AHR = self.ahr W = self.weight epsilon = self.epsilon vT = self.vT lT = self.lT U = self.speed b = self.beam lcg = self.lcg vcg = self.vcg Lf = self.Lf sigma = self.sigma delta = self.delta beam = self.beam l_air = self.l_air h_air = self.h_air b_air = self.b_air C_shape = self.C_shape z_wl = self.z_wl tau = self.tau beta = self.beta eta_3 = self.eta_3 eta_5 = self.eta_5 L_K = self.L_K L_C = self.L_C lambda_W = self.lambda_W x_s = self.x_s z_max = self.z_max pi = np.pi def get_hydrodynamic_force(): """This function follows Savitsky 1964 and Faltinsen 2005 in calculating the vessel's hydrodynamic forces and moment. """ #Beam Froude number Fn_B = U/np.sqrt(g*b) #Warnings if Fn_B < 0.6 or Fn_B > 13: warnings.warn('Beam Froude number = {0:.3f}, outside of range of applicability (0.60 <= U/sqrt(g*b) <= 13.00) for planing lift equation. Results are extrapolations.'.format(Fn_B), stacklevel=2) if lambda_W > 4: warnings.warn('Mean wetted length-beam ratio = {0:.3f}, outside of range of applicability (lambda <= 4) for planing lift equation. Results are extrapolations.'.format(lambda_W), stacklevel=2) if tau < 2 or tau > 15: warnings.warn('Vessel trim = {0:.3f}, outside of range of applicability (2 deg <= tau <= 15 deg) for planing lift equation. Results are extrapolations.'.format(tau), stacklevel=2) #0-Deadrise lift coefficient C_L0 = (tau + eta_5)**1.1 * (0.012 * lambda_W**0.5 + 0.0055 * lambda_W**2.5 / Fn_B**2) #Lift coefficient with deadrise, C_Lbeta C_Lbeta = C_L0 - 0.0065 * beta * C_L0**0.6 #Vertical force (lift) F_z = C_Lbeta * 0.5 * rho * U**2 * b**2 #Horizontal force F_x = F_z*np.tan(pi/180*(tau + eta_5)) #Lift's Normal force w.r.t. keel F_N = F_z / np.cos(pi/180*(tau + eta_5)) #Longitudinal position of the center of pressure, l_p (Eq. 4.41, Doctors 1985) l_p = lambda_W * b * (0.75 - 1 / (5.21 * (Fn_B / lambda_W)**2 + 2.39)) #Limits for this is (0.60 < Fn_B < 13.0, lambda < 4.0) #Moment about CG (Axis consistent with Fig. 9.24 of Faltinsen (P. 366) M_cg = - F_N * (lcg - l_p) #Update values self.hydrodynamic_force = np.array([F_x, F_z, M_cg]) def get_skin_friction(): """This function outputs the frictional force of the vessel using ITTC 1957 and the Bowden and Davison 1974 roughness coefficient. """ #Surface area of the dry-chine region S1 = x_s * b / (2 * np.cos(pi/180*beta)) if L_K < x_s: S1 = S1 * (L_K / x_s)**2 #Surface area of the wetted-chine region S2 = b * L_C / np.cos(pi/180*beta) #Total surface area S = S1 + S2 if S == 0: F_x = 0 F_z = 0 M_cg = 0 else: #Mean bottom fluid velocity, Savitsky 1964 - Hadler's empirical formula V_m = U * np.sqrt(1 - (0.012 * tau**1.1 * np.sqrt(lambda_W) - 0.0065 * beta * (0.012 * np.sqrt(lambda_W) * tau**1.1)**0.6) / (lambda_W * np.cos(tau * pi/180))) #Reynolds number (with bottom fluid velocity) Rn = V_m * lambda_W * b / nu #'Friction coefficient' ITTC 1957 C_f = 0.075/(np.log10(Rn) - 2)**2 #Additional 'friction coefficient' due to skin friction, Bowden and Davison (1974) deltaC_f = (44*((AHR/(lambda_W*b))**(1/3) - 10*Rn**(-1/3)) + 0.125)/10**3 #Frictional force R_f = 0.5 * rho * (C_f + deltaC_f) * S * U**2 #Geometric vertical distance from keel l_f = (b / 4 * np.tan(pi/180*beta) * S2 + b / 6 * np.tan(pi/180*beta) * S1) / (S1 + S2) #Horizontal force F_x = R_f * np.cos(pi/180*(tau + eta_5)) #Vertical force F_z = - R_f * np.sin(pi/180*(tau + eta_5)) #Moment about CG (Axis consistent with Fig. 9.24 of Faltinsen (P. 366)) M_cg = R_f * (l_f - vcg) #Update values self.skin_friction = np.array([F_x, F_z, M_cg]) def get_air_resistance(): """This function estimates the air drag. It assumes a square shape projected area with a shape coefficient. """ if C_shape == 0 or b_air == 0: self.air_resistance = np.array([0, 0, 0]) return #Vertical distance from calm water line to keel at LOA a_dist = np.sin(pi/180*(tau + eta_5))*(l_air-L_K) #Vertical distance from keel to horizontal line level with boat's height b_dist = np.cos(pi/180*(tau + eta_5))*h_air #Vertical distance from CG to center of square (moment arm, positive is CG above) momArm = z_wl - (a_dist + b_dist)/2 #Square projected area Area = (a_dist+b_dist)*b_air*C_shape if Area < 0: Area = 0 #Horizontal force (Positive aft) F_x = 0.5*rho_air*C_D*Area*U**2 #Vertical force (Positive up) F_z = 0 #Moment (positve CCW) M_cg = -F_x*momArm #Update values self.air_resistance = np.array([F_x, F_x, M_cg]) def get_flap_force(): """This function outputs the flap forces w.r.t. global coordinates (Savitsky & Brown 1976). Horz: Positive Aft, Vert: Positive Up, Moment: Positive CCW. """ if Lf == 0: self.flap_force = np.array([0, 0, 0]) return #Warnings if Lf > 0.10*(L_K + L_C)/2 or Lf < 0: warnings.warn('Flap chord = {0:.3f} outside of bounds (0-10% of mean wetted length) for flap forces estimates with Savitsky & Brown 1976'.format(Lf), stacklevel=2) if delta < 0 or delta > 15: warnings.warn('Flap deflection angle = {0:.3f} out of bounds (0-15 deg) for flap forces estimates with Savitsky & Brown 1976'.format(delta), stacklevel=2) Fn_B = U/np.sqrt(g*b) if Fn_B < 2 or Fn_B > 7: warnings.warn('Beam-based Froude number Fn_B = {0:.3f} out of bounds (2-7) for flap forces estimates with Savitsky & Brown 1976'.format(Fn_B), stacklevel=2) F_z = 0.046*(Lf*3.28084)*delta*sigma*(b*3.28084)*(rho/515.379)/2*(U*3.28084)**2*4.44822 F_x = 0.0052*F_z*(tau+eta_5+delta) l_flap = 0.6*b+Lf*(1-sigma) M_cg = -F_z*(lcg-l_flap) #Update values self.flap_force = np.array([F_x, F_z, M_cg]) def sum_forces(): """This function gets the sum of forces and moments, and consequently the required net thrust. The coordinates are positive aft, positive up, and positive counterclockwise. """ #Call all force functions------- get_hydrodynamic_force() get_skin_friction() get_air_resistance() get_flap_force() #------------------------------- forcesMatrix = np.column_stack((self.gravity_force, self.hydrodynamic_force, self.skin_friction, self.air_resistance, self.flap_force)) #Forces and moments F_sum = np.sum(forcesMatrix, axis=1) #F[0] is x-dir, F[1] is z-dir, and F[2] is moment #Required thrust and resultant forces T = F_sum[0]/np.cos(pi/180*(epsilon+tau+eta_5)); #Magnitude T_z = T*np.sin(pi/180*(epsilon+tau+eta_5)); #Vertical T_cg = T*np.cos(pi/180*epsilon)*(vcg - vT) - T*np.sin(pi/180*epsilon)*(lcg - lT); #Moment about cg #Update resultant thurst values self.thrust_force = np.array([-F_sum[0], T_z, T_cg]) #Include resultant thrust forces in sum F_sum[1] = F_sum[1]+T_z F_sum[2] = F_sum[2]+T_cg #Update values self.net_force = F_sum #Call functions sum_forces() def get_steady_trim(self, x0=[0, 3], tauLims=[0.5, 35], tolF=10**-6, maxiter=50): """This function finds and sets the equilibrium point when the vessel is steadily running in calm water. Updates the following attributes: - :attr:`z_wl` - :attr:`tau` Args: x0 (list of float): Initial guess for equilibirum point [z_wl (m), tau (deg)]. Defaults to [0, 3]. tauLims (list of float): Limits for equilibrium trim search. Defaults to [0.5, 35]. tolF (float): Tolerance for convergence to zero. Defaults to 10**-6. maxiter (float): Maximum iterations. Defaults to 50. """ def _boatForces(x): self.z_wl = x[0]/10 #the division is for normalization of the variables self.tau = x[1] self.get_forces() return self.net_force[1:3] def _boatForcesPrime(x): return ndmath.complexGrad(_boatForces, x) def _L_K(x): # self.z_wl = x[0]/10 # self.tau = x[1] # self.get_geo_lengths() #No need to call, because ndmath's nDimNewton allways calls the obj function before calling this "constraint" return [-self.L_K] xlims = np.array([[-np.Inf, np.Inf], tauLims]) warnings.filterwarnings("ignore", category=UserWarning) [self.z_wl, self.tau] = ndmath.nDimNewton(_boatForces, x0, _boatForcesPrime, tolF, maxiter, xlims, hehcon=_L_K)/[10, 1] warnings.filterwarnings("default", category=UserWarning) def get_eom_matrices(self, runGeoLengths=True): """This function returns the mass, damping, and stiffness matrices following Faltinsen 2005. Adds/updates the following parameters: - :attr:`mass_matrix` - :attr:`damping_matrix` - :attr:`restoring_matrix` Args: runGeoLengths (boolean, optional): Calculate the wetted lengths before calculating the EOM matrices. Defaults to True. Methods: get_mass_matrix(): This function returns the added mass coefficients following Sec. 9.4.1 of Faltinsen 2005, including weight and moment of inertia. get_damping_matrix(): This function returns the damping coefficients following Sec. 9.4.1 of Faltinsen 2005. get_restoring_matrix(diffType=1, step=10**-6.6): This function returns the restoring coefficients following the approach in Sec. 9.4.1 of Faltinsen 2005. """ if runGeoLengths: self.get_geo_lengths() #Calculated wetted lengths in get_eom_matrices() W = self.weight U = self.speed rho = self.rho b = self.beam lcg = self.lcg tau = self.tau beta = self.beta g = self.g r_g = self.r_g eta_5 = self.eta_5 L_K = self.L_K L_C = self.L_C lambda_W = self.lambda_W x_s = self.x_s z_max = self.z_max pi = np.pi def get_mass_matrix(): """This function returns the added mass coefficients following Sec. 9.4.1 of Faltinsen 2005, including weight and moment of inertia """ #Distance of CG from keel-WL intersection x_G = L_K - lcg #K constant (Eq. 9.63 of Faltinsen 2005) K = (pi / np.sin(pi/180*beta) * gamma(1.5 - beta/180) / (gamma(1 - beta/180)**2 * gamma(0.5 + beta/180)) - 1) / np.tan(pi/180*beta) kappa = (1 + z_max) * (pi/180)*(tau + eta_5) #User defined constant #Based on Faltinsen's A1_33 = rho * kappa**2 * K * x_s**3 / 3 A1_35 = A1_33 * (x_G - x_s * 3/4) A1_53 = A1_35 A1_55 = A1_33 * (x_G**2 - 3/2 * x_G * x_s + 3/5 * x_s**2) #Contribution from wet-chine region if L_C > 0: C_1 = 2 * np.tan(pi/180*beta)**2 / pi * K A2_33 = (rho * b**3) * C_1 * pi / 8 * L_C / b A2_35 = (rho * b**4) * (- C_1 * pi / 16 * ((L_K / b)**2 - (x_s / b)**2) + x_G / b * A2_33 / (rho * b**3)) A2_53 = A2_35 A2_55 = (rho * b**5) * (C_1 * pi / 24 * ((L_K / b)**3 - (x_s / b)**3) - C_1 / 8 * pi * (x_G / b) * ((L_K / b)**2 - (x_s / b)**2) + (x_G / b)**2 * A2_33 / (rho * b**3)) else: A2_33 = 0 A2_35 = 0 A2_53 = 0 A2_55 = 0 #Total added mass & update values A_33 = A1_33 + A2_33 + W/g # kg, A_33 A_35 = A1_35 + A2_35 # kg*m/rad, A_35 A_53 = A1_53 + A2_53 # kg*m, A_53 A_55 = A1_55 + A2_55 + W/g*r_g**2 # kg*m^2/rad, A_55 self.mass_matrix = np.array([[A_33, A_35], [A_53, A_55]]) def get_damping_matrix(): """This function returns the damping coefficients following Sec. 9.4.1 of Faltinsen 2005 """ #Heave-heave added mass (need to substract W/g since it was added) A_33 = self.mass_matrix[0,0] - W/g if L_C > 0: d = 0.5 * b * np.tan(pi/180*beta) else: d = (1 + z_max) * (pi/180)*(tau + eta_5) * L_K #K constant (Eq. 9.63 of Faltinsen 2005, P. 369) K = (pi / np.sin(pi/180*beta) * gamma(1.5 - beta/180) / (gamma(1 - beta/180)**2 * gamma(0.5 + beta/180)) - 1) / np.tan(pi/180*beta) #2D Added mass coefficient in heave a_33 = rho * d**2 * K #Infinite Fn lift coefficient C_L0 = (tau + eta_5)**1.1 * 0.012 * lambda_W**0.5 #Derivative w.r.t. tau (rad) of inf. Fn C_L0 dC_L0 = (180 / pi)**1.1 * 0.0132 * (pi/180*(tau + eta_5))**0.1 * lambda_W**0.5 #Derivative w.r.t. tau (rad) of inf. Fn C_Lbeta dC_Lbeta = dC_L0 * (1 - 0.0039 * beta * C_L0**-0.4) #Damping coefficients & update values B_33 = rho / 2 * U * b**2 * dC_Lbeta # kg/s, B_33, Savitsky based B_35 = - U * (A_33 + lcg * a_33) # kg*m/(s*rad), B_35, Infinite frequency based B_53 = B_33 * (0.75 * lambda_W * b - lcg) # kg*m/s, B_53, Savitsky based B_55 = U * lcg**2 * a_33 # kg*m**2/(s*rad), B_55, Infinite frequency based self.damping_matrix = np.array([[B_33, B_35], [B_53, B_55]]) def get_restoring_matrix(diffType=1, step=10**-6.6): """This function returns the restoring coefficients following the approach in Sec. 9.4.1 of Faltinsen 2005 Args: diffType (int, optional): 1 (recommended) = Complex step method, 2 = Foward step difference. Defaults to 1. step (float, optional): Step size if using diffType == 2. Defaults to 10**-6. """ def _func(eta): self.eta_3 = eta[0] self.eta_5 = eta[1] self.get_forces() return self.net_force[1:3] temp_eta_3 = self.eta_3 temp_eta_5 = self.eta_5 if diffType == 1: C_full = -ndmath.complexGrad(_func, [temp_eta_3, temp_eta_5]) elif diffType == 2: C_full = -ndmath.finiteGrad(_func, [temp_eta_3, temp_eta_5], 10**-6.6) #Reset values self.eta_3 = temp_eta_3 self.eta_5 = temp_eta_5 self.get_forces() #Conversion deg to rad (degree in denominator) C_full[0,1] = C_full[0,1] / (pi/180) # N/rad, C_35 C_full[1,1] = C_full[1,1] / (pi/180) # N*m/rad, C_55 #Update values self.restoring_matrix = C_full #Call functions get_mass_matrix() get_damping_matrix() get_restoring_matrix() def check_porpoising(self, stepEstimateType=1): """This function checks for porpoising. Adds/updates the following parameters: - :attr:`porpoising` (list): Args: stepEstimateType (int, optional): Pitch step response settling time estimate type, 1 = -3/np.real(eigVals[0])], 2 = Time-domain simulation estimate. Defaults to 1. """ #Eigenvalue analysis try: self.mass_matrix except AttributeError: warnings.warn('No Equation Of Motion (EOM) matrices found. Running get_eom_matrices().', stacklevel=2) self.get_eom_matrices() M = self.mass_matrix C = self.damping_matrix K = self.restoring_matrix nDim = len(M) A_ss = np.concatenate((np.concatenate((np.zeros((nDim,nDim)), np.identity(nDim)), axis=1), np.concatenate((-np.linalg.solve(M,K), -np.linalg.solve(M,C)), axis=1))) #State space reprecentation eigVals = np.linalg.eigvals(A_ss) eig_porpoise = any(eigVal >= 0 for eigVal in eigVals) if stepEstimateType == 1: settling_time = -3/np.real(eigVals[0]) elif stepEstimateType == 2: B_ss = np.array([[1],[0],[0],[0]]) #Pitch only C_ss = np.array([[1,0,0,0]]) #Pitch only D_ss = np.array([[0]]) system = (A_ss,B_ss,C_ss,D_ss) t, y = signal.step(system) settling_time = (t[next(len(y)-i for i in range(2,len(y)-1) if abs(y[-i]/y[-1])>1.02)]-t[0]) #Savitsky '64 chart method C_L = self.weight/(1/2*self.rho*self.speed**2*self.beam**2) x = np.sqrt(C_L/2) #Warnings if x > 0.3 or x < 0.13: warnings.warn('Lift Coefficient = {0:.3f} outside of bounds (0.0338-0.18) for porpoising estimates with Savitsky 1964. Results are extrapolations.'.format(C_L), stacklevel=2) if self.beta > 20: warnings.warn('Deadrise = {0:.3f} outside of bounds (0-20 deg) for porpoising estimates with Savitsky 1964. Results are extrapolations.'.format(self.beta), stacklevel=2) tau_crit_0 = -376.37*x**3 + 329.74*x**2 - 38.485*x + 1.3415 tau_crit_10 = -356.05*x**3 + 314.36*x**2 - 41.674*x + 3.5786 tau_crit_20 = -254.51*x**3 + 239.65*x**2 - 23.936*x + 3.0195 tau_crit_func = interpolate.interp1d([0, 10, 20], [tau_crit_0, tau_crit_10, tau_crit_20], kind='quadratic', fill_value='extrapolate') tau_crit = tau_crit_func(self.beta) if self.tau > tau_crit: chart_porpoise = True else: chart_porpoise = False #Update values self.porpoising = [[eig_porpoise, settling_time], [chart_porpoise, float(tau_crit)]] def get_seaway_behavior(self): """This function calculates the seaway behavior as stated in Savitsky & Brown '76. Adds/updates the following parameters: - :attr:`avg_impact_acc` - :attr:`R_AW` """ if self.H_sig is None: self.H_sig = self.beam*0.5 #Arbitrary wave height if no user-defined wave height warnings.warn('Significant wave height has not been specified. Using beam*0.5 = {0:.3f} m.'.format(self.H_sig), stacklevel=2) if self.length is None: self.length = self.beam*3 warnings.warn('Vessel length has not been specified. Using beam*3 = {0:.3f} m.'.format(self.length), stacklevel=2) H_sig = self.H_sig W = self.weight beta = self.beta tau = self.tau pi = np.pi Delta_LT = W/9964 #Displacement in long tons Delta = Delta_LT*2240 #Displacement in lbf L = self.length*3.281 #Length in ft b = self.beam*3.281 #Beam in ft Vk = self.speed*1.944 #Speed in knots Vk_L = Vk/np.sqrt(L) #Vk/sqrt(L) H_sig = H_sig*3.281 #Significant wave height in ft w = self.rho*self.g/(4.448*35.315) #Specific weight in lbf/ft^3 C_Delta = Delta/(w*b**3) #Static beam-loading coefficient if self.seaway_drag_type == 1: #Savitsky '76 #Check that variables are inside range of applicability (P. 395 of Savitsky & Brown '76) P1 = Delta_LT/(0.01*L)**3 P2 = L/b P5 = H_sig/b P6 = Vk_L if P1 < 100 or P1 > 250: warnings.warn('Vessel displacement coefficient = {0:.3f}, outside of range of applicability (100 <= Delta_LT/(0.01*L)^3 <= 250, with units LT/ft^3). Results are extrapolations.'.format(P1), stacklevel=2) if P2 < 3 or P2 > 5: warnings.warn('Vessel length/beam = {0:.3f}, outside of range of applicability (3 <= L/b <= 5). Results are extrapolations.'.format(P2), stacklevel=2) if tau < 3 or tau > 7: warnings.warn('Vessel trim = {0:.3f}, outside of range of applicability (3 deg <= tau <= 7 deg). Results are extrapolations.'.format(tau), stacklevel=2) if beta < 10 or beta > 30: warnings.warn('Vessel deadrise = {0:.3f}, outside of range of applicability (10 deg <= beta <= 30 deg). Results are extrapolations.'.format(beta), stacklevel=2) if P5 < 0.2 or P5 > 0.7: warnings.warn('Significant wave height / beam = {0:.3f}, outside of range of applicability (0.2 <= H_sig/b <= 0.7). Results are extrapolations.'.format(P5), stacklevel=2) if P6 < 2 or P6 > 6: warnings.warn('Speed coefficient = {0:.3f}, outside of range of applicability (2 <= Vk/sqrt(L) <= 6, with units knots/ft^0.5). Results are extrapolations.'.format(P6), stacklevel=2) R_AW_2 = (w*b**3)*66*10**-6*(H_sig/b+0.5)*(L/b)**3/C_Delta+0.0043*(tau-4) #Added resistance at Vk/sqrt(L) = 2 R_AW_4 = (Delta)*(0.3*H_sig/b)/(1+2*H_sig/b)*(1.76-tau/6-2*np.tan(beta*pi/180)**3) #Vk/sqrt(L) = 4 R_AW_6 = (w*b**3)*(0.158*H_sig/b)/(1+(H_sig/b)*(0.12*beta-21*C_Delta*(5.6-L/b)+7.5*(6-L/b))) #Vk/sqrt(L) = 6 R_AWs = np.array([R_AW_2, R_AW_4, R_AW_6]) R_AWs_interp = interpolate.interp1d([2,4,6], R_AWs, kind='quadratic', fill_value='extrapolate') R_AW = R_AWs_interp([Vk_L])[0] elif self.seaway_drag_type == 2: #Fridsma '71 design charts #Check that variables are inside range of applicability (P. R-1495 of Fridsma '71) if C_Delta < 0.3 or C_Delta > 0.9: warnings.warn('C_Delta = {0:.3f}, outside of range of applicability (0.3 <= C_Delta <= 0.9). Results are extrapolations'.format(C_Delta), stacklevel=2) if L/b < 3 or L/b > 6: warnings.warn('L/b = {0:.3f}, outside of range of applicability (3 <= L/b <= 6). Results are extrapolations'.format(L/b), stacklevel=2) if C_Delta/(L/b) < 0.06 or C_Delta/(L/b) > 0.18: warnings.warn('C_Delta/(L/b) = {0:.3f}, outside of range of applicability (0.06 <= C_Delta/(L/b) <= 0.18). Results are extrapolations'.format(C_Delta/(L/b)), stacklevel=2) if tau < 3 or tau > 7: warnings.warn('tau = {0:.3f}, outside of range of applicability (3 <= tau <= 7). Results are extrapolations'.format(tau), stacklevel=2) if beta < 10 or beta > 30: warnings.warn('beta = {0:.3f}, outside of range of applicability (10 <= beta <= 30). Results are extrapolations'.format(beta), stacklevel=2) if H_sig/b > 0.8: warnings.warn('H_sig/b = {0:.3f}, outside of range of applicability (H_sig/b <= 0.8). Results are extrapolations'.format(H_sig/b), stacklevel=2) if Vk_L > 6: warnings.warn('Vk_L = {0:.3f}, outside of range of applicability (Vk_L <= 6). Results are extrapolations'.format(Vk_L), stacklevel=2) #Get data tables (required for when package is distributed) Raw2_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_0.2.csv') Raw4_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_0.4.csv') Raw6_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_0.6.csv') V2_tab = pkg_resources.resource_filename(__name__, 'tables\V_0.2.csv') V4_tab = pkg_resources.resource_filename(__name__, 'tables\V_0.4.csv') RawV2_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_V_0.2.csv') RawV4_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_V_0.4.csv') RawV6_tab = pkg_resources.resource_filename(__name__, 'tables\Raw_V_0.6.csv') #Read values from extracted chart points arr_Raw2 = np.genfromtxt(Raw2_tab, delimiter=',', skip_header=1) arr_Raw4 = np.genfromtxt(Raw4_tab, delimiter=',', skip_header=1) arr_Raw6 = np.genfromtxt(Raw6_tab, delimiter=',', skip_header=1) arr_V2 = np.genfromtxt(V2_tab, delimiter=',', skip_header=1) arr_V4 = np.genfromtxt(V4_tab, delimiter=',', skip_header=1) arr_Raw_V2 = np.genfromtxt(RawV2_tab, delimiter=',', skip_header=1) arr_Raw_V4 = np.genfromtxt(RawV4_tab, delimiter=',', skip_header=1) arr_Raw_V6 = np.genfromtxt(RawV6_tab, delimiter=',', skip_header=1) #Create interpolation functions interp1Type = 'linear' interp2Type = 'linear' Raw2m_interp = interpolate.interp2d(arr_Raw2[:, 1], arr_Raw2[:, 0], arr_Raw2[:, 2], kind=interp2Type) Raw4m_interp = interpolate.interp2d(arr_Raw4[:, 1], arr_Raw4[:, 0], arr_Raw4[:, 2], kind=interp2Type) Raw6m_interp = interpolate.interp2d(arr_Raw6[:, 1], arr_Raw6[:, 0], arr_Raw6[:, 2], kind=interp2Type) V2m_interp = interpolate.interp2d(arr_V2[:, 1], arr_V2[:, 0], arr_V2[:, 2], kind=interp2Type) V4m_interp = interpolate.interp2d(arr_V4[:, 1], arr_V4[:, 0], arr_V4[:, 2], kind=interp2Type) V6m_interp = V4m_interp RawRaw2m_interp = interpolate.interp1d(arr_Raw_V2[:, 0], arr_Raw_V2[:, 1], kind=interp1Type, fill_value='extrapolate') RawRaw4m_interp = interpolate.interp1d(arr_Raw_V4[:, 0], arr_Raw_V4[:, 1], kind=interp1Type, fill_value='extrapolate') RawRaw6m_interp = interpolate.interp1d(arr_Raw_V6[:, 0], arr_Raw_V6[:, 1], kind=interp1Type, fill_value='extrapolate') #Get values following procedure shown in Fridsma 1971 paper VLm = [V2m_interp(beta, tau)[0], V4m_interp(beta, tau)[0], V6m_interp(beta, tau)[0]] Rwbm = [Raw2m_interp(beta, tau)[0], Raw4m_interp(beta, tau)[0], Raw6m_interp(beta, tau)[0]] VVm = Vk_L/VLm RRm = [RawRaw2m_interp(VVm[0]), RawRaw4m_interp(VVm[1]), RawRaw6m_interp(VVm[2])] Rwb = np.multiply(RRm, Rwbm) E1 = lambda H_sig: 1 + ((L/b)**2/25 - 1)/(1 + 0.895*(H_sig/b - 0.6)) #V/sqrt(L) = 2 E2 = lambda H_sig: 1 + 10*H_sig/b*(C_Delta/(L/b) - 0.12) #V/sqrt(L) = 4 E3 = lambda H_sig: 1 + 2*H_sig/b*(0.9*(C_Delta-0.6)-0.7*(C_Delta-0.6)**2) #V/sqrt(L) = 6 E_interp = lambda H_sig: interpolate.interp1d([2, 4, 6], [E1(H_sig), E2(H_sig), E3(H_sig)], kind=interp1Type, fill_value='extrapolate') E = [E_interp(0.2*b)(Vk_L), E_interp(0.4*b)(Vk_L), E_interp(0.6*b)(Vk_L)] Rwb_final = np.multiply(Rwb,E) Rwb_final_interp = interpolate.interp1d([0.2, 0.4, 0.6], Rwb_final, kind=interp1Type, fill_value='extrapolate') R_AW = Rwb_final_interp(H_sig/b)*w*b**3 warnings.warn('Average impact acceleration based on the Fridsma charts is currently not implemented. Using Savitsky & Brown approximation.', stacklevel=2) n_cg = 0.0104*(H_sig/b+0.084)*tau/4*(5/3-beta/30)*(Vk_L)**2*L/b/C_Delta #g, at CG n_bow = n_cg*(1+3.8*(L/b-2.25)/(Vk_L)) #g, at bow avg_impact_acc = np.array([n_cg, n_bow]) #Update values self.avg_impact_acc = avg_impact_acc self.R_AW = R_AW*4.448 #lbf to N conversion
[ "numpy.log10", "numpy.sqrt", "ndmath.complexGrad", "numpy.column_stack", "scipy.interpolate.interp1d", "numpy.array", "numpy.sin", "numpy.genfromtxt", "scipy.interpolate.interp2d", "ndmath.nDimNewton", "scipy.signal.step", "numpy.multiply", "numpy.exp", "numpy.real", "numpy.polyval", "warnings.warn", "numpy.identity", "numpy.linalg.eigvals", "scipy.special.gamma", "numpy.cos", "warnings.filterwarnings", "numpy.linalg.solve", "numpy.tan", "ndmath.finiteGrad", "pkg_resources.resource_filename", "numpy.sum", "numpy.zeros", "numpy.printoptions" ]
[((10728, 10758), 'numpy.array', 'np.array', (['[0, -self.weight, 0]'], {}), '([0, -self.weight, 0])\n', (10736, 10758), True, 'import numpy as np\n'), ((33506, 33544), 'numpy.array', 'np.array', (['[[-np.Inf, np.Inf], tauLims]'], {}), '([[-np.Inf, np.Inf], tauLims])\n', (33514, 33544), True, 'import numpy as np\n'), ((33553, 33608), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'UserWarning'}), "('ignore', category=UserWarning)\n", (33576, 33608), False, 'import warnings\n'), ((33745, 33801), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""default"""'], {'category': 'UserWarning'}), "('default', category=UserWarning)\n", (33768, 33801), False, 'import warnings\n'), ((41166, 41189), 'numpy.linalg.eigvals', 'np.linalg.eigvals', (['A_ss'], {}), '(A_ss)\n', (41183, 41189), True, 'import numpy as np\n'), ((41855, 41871), 'numpy.sqrt', 'np.sqrt', (['(C_L / 2)'], {}), '(C_L / 2)\n', (41862, 41871), True, 'import numpy as np\n'), ((42549, 42670), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['[0, 10, 20]', '[tau_crit_0, tau_crit_10, tau_crit_20]'], {'kind': '"""quadratic"""', 'fill_value': '"""extrapolate"""'}), "([0, 10, 20], [tau_crit_0, tau_crit_10, tau_crit_20],\n kind='quadratic', fill_value='extrapolate')\n", (42569, 42670), False, 'from scipy import interpolate, signal\n'), ((52146, 52169), 'numpy.array', 'np.array', (['[n_cg, n_bow]'], {}), '([n_cg, n_bow])\n', (52154, 52169), True, 'import numpy as np\n'), ((26165, 26191), 'numpy.array', 'np.array', (['[F_x, F_z, M_cg]'], {}), '([F_x, F_z, M_cg])\n', (26173, 26191), True, 'import numpy as np\n'), ((28154, 28180), 'numpy.array', 'np.array', (['[F_x, F_z, M_cg]'], {}), '([F_x, F_z, M_cg])\n', (28162, 28180), True, 'import numpy as np\n'), ((29400, 29426), 'numpy.array', 'np.array', (['[F_x, F_x, M_cg]'], {}), '([F_x, F_x, M_cg])\n', (29408, 29426), True, 'import numpy as np\n'), ((30778, 30804), 'numpy.array', 'np.array', (['[F_x, F_z, M_cg]'], {}), '([F_x, F_z, M_cg])\n', (30786, 30804), True, 'import numpy as np\n'), ((31302, 31427), 'numpy.column_stack', 'np.column_stack', (['(self.gravity_force, self.hydrodynamic_force, self.skin_friction, self.\n air_resistance, self.flap_force)'], {}), '((self.gravity_force, self.hydrodynamic_force, self.\n skin_friction, self.air_resistance, self.flap_force))\n', (31317, 31427), True, 'import numpy as np\n'), ((31463, 31491), 'numpy.sum', 'np.sum', (['forcesMatrix'], {'axis': '(1)'}), '(forcesMatrix, axis=1)\n', (31469, 31491), True, 'import numpy as np\n'), ((31931, 31963), 'numpy.array', 'np.array', (['[-F_sum[0], T_z, T_cg]'], {}), '([-F_sum[0], T_z, T_cg])\n', (31939, 31963), True, 'import numpy as np\n'), ((33182, 33216), 'ndmath.complexGrad', 'ndmath.complexGrad', (['_boatForces', 'x'], {}), '(_boatForces, x)\n', (33200, 33216), False, 'import ndmath\n'), ((33641, 33732), 'ndmath.nDimNewton', 'ndmath.nDimNewton', (['_boatForces', 'x0', '_boatForcesPrime', 'tolF', 'maxiter', 'xlims'], {'hehcon': '_L_K'}), '(_boatForces, x0, _boatForcesPrime, tolF, maxiter, xlims,\n hehcon=_L_K)\n', (33658, 33732), False, 'import ndmath\n'), ((37017, 37055), 'numpy.array', 'np.array', (['[[A_33, A_35], [A_53, A_55]]'], {}), '([[A_33, A_35], [A_53, A_55]])\n', (37025, 37055), True, 'import numpy as np\n'), ((38597, 38635), 'numpy.array', 'np.array', (['[[B_33, B_35], [B_53, B_55]]'], {}), '([[B_33, B_35], [B_53, B_55]])\n', (38605, 38635), True, 'import numpy as np\n'), ((44076, 44086), 'numpy.sqrt', 'np.sqrt', (['L'], {}), '(L)\n', (44083, 44086), True, 'import numpy as np\n'), ((46298, 46332), 'numpy.array', 'np.array', (['[R_AW_2, R_AW_4, R_AW_6]'], {}), '([R_AW_2, R_AW_4, R_AW_6])\n', (46306, 46332), True, 'import numpy as np\n'), ((46373, 46460), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['[2, 4, 6]', 'R_AWs'], {'kind': '"""quadratic"""', 'fill_value': '"""extrapolate"""'}), "([2, 4, 6], R_AWs, kind='quadratic', fill_value=\n 'extrapolate')\n", (46393, 46460), False, 'from scipy import interpolate, signal\n'), ((15647, 15709), 'numpy.sqrt', 'np.sqrt', (['(self.thrust_force[0] ** 2 + self.thrust_force[1] ** 2)'], {}), '(self.thrust_force[0] ** 2 + self.thrust_force[1] ** 2)\n', (15654, 15709), True, 'import numpy as np\n'), ((16448, 16473), 'numpy.array', 'np.array', (['self.porpoising'], {}), '(self.porpoising)\n', (16456, 16473), True, 'import numpy as np\n'), ((18328, 18360), 'numpy.sin', 'np.sin', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (18334, 18360), True, 'import numpy as np\n'), ((19030, 19144), 'numpy.polyval', 'np.polyval', (['[-2.100644618790201e-06, -6.815747611588763e-05, -0.001130563334939335, \n 0.5754510457848798]', 'beta'], {}), '([-2.100644618790201e-06, -6.815747611588763e-05, -\n 0.001130563334939335, 0.5754510457848798], beta)\n', (19040, 19144), True, 'import numpy as np\n'), ((19877, 19951), 'warnings.warn', 'warnings.warn', (['"""Vessel operating with dry chines (L_C = 0)."""'], {'stacklevel': '(2)'}), "('Vessel operating with dry chines (L_C = 0).', stacklevel=2)\n", (19890, 19951), False, 'import warnings\n'), ((24448, 24462), 'numpy.sqrt', 'np.sqrt', (['(g * b)'], {}), '(g * b)\n', (24455, 24462), True, 'import numpy as np\n'), ((25606, 25638), 'numpy.tan', 'np.tan', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (25612, 25638), True, 'import numpy as np\n'), ((25705, 25737), 'numpy.cos', 'np.cos', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (25711, 25737), True, 'import numpy as np\n'), ((26649, 26672), 'numpy.cos', 'np.cos', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (26655, 26672), True, 'import numpy as np\n'), ((28449, 28468), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (28457, 28468), True, 'import numpy as np\n'), ((28581, 28613), 'numpy.sin', 'np.sin', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (28587, 28613), True, 'import numpy as np\n'), ((28741, 28773), 'numpy.cos', 'np.cos', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (28747, 28773), True, 'import numpy as np\n'), ((29705, 29724), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (29713, 29724), True, 'import numpy as np\n'), ((30245, 30259), 'numpy.sqrt', 'np.sqrt', (['(g * b)'], {}), '(g * b)\n', (30252, 30259), True, 'import numpy as np\n'), ((31618, 31660), 'numpy.cos', 'np.cos', (['(pi / 180 * (epsilon + tau + eta_5))'], {}), '(pi / 180 * (epsilon + tau + eta_5))\n', (31624, 31660), True, 'import numpy as np\n'), ((31685, 31727), 'numpy.sin', 'np.sin', (['(pi / 180 * (epsilon + tau + eta_5))'], {}), '(pi / 180 * (epsilon + tau + eta_5))\n', (31691, 31727), True, 'import numpy as np\n'), ((35746, 35769), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (35752, 35769), True, 'import numpy as np\n'), ((37688, 37711), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (37694, 37711), True, 'import numpy as np\n'), ((40660, 40771), 'warnings.warn', 'warnings.warn', (['"""No Equation Of Motion (EOM) matrices found. Running get_eom_matrices()."""'], {'stacklevel': '(2)'}), "(\n 'No Equation Of Motion (EOM) matrices found. Running get_eom_matrices().',\n stacklevel=2)\n", (40673, 40771), False, 'import warnings\n'), ((41327, 41346), 'numpy.real', 'np.real', (['eigVals[0]'], {}), '(eigVals[0])\n', (41334, 41346), True, 'import numpy as np\n'), ((41403, 41433), 'numpy.array', 'np.array', (['[[1], [0], [0], [0]]'], {}), '([[1], [0], [0], [0]])\n', (41411, 41433), True, 'import numpy as np\n'), ((41462, 41486), 'numpy.array', 'np.array', (['[[1, 0, 0, 0]]'], {}), '([[1, 0, 0, 0]])\n', (41470, 41486), True, 'import numpy as np\n'), ((41515, 41530), 'numpy.array', 'np.array', (['[[0]]'], {}), '([[0]])\n', (41523, 41530), True, 'import numpy as np\n'), ((41606, 41625), 'scipy.signal.step', 'signal.step', (['system'], {}), '(system)\n', (41617, 41625), False, 'from scipy import interpolate, signal\n'), ((48157, 48221), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_0.2.csv"""'], {}), "(__name__, 'tables\\\\Raw_0.2.csv')\n", (48188, 48221), False, 'import pkg_resources\n'), ((48244, 48308), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_0.4.csv"""'], {}), "(__name__, 'tables\\\\Raw_0.4.csv')\n", (48275, 48308), False, 'import pkg_resources\n'), ((48331, 48395), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_0.6.csv"""'], {}), "(__name__, 'tables\\\\Raw_0.6.csv')\n", (48362, 48395), False, 'import pkg_resources\n'), ((48417, 48479), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\V_0.2.csv"""'], {}), "(__name__, 'tables\\\\V_0.2.csv')\n", (48448, 48479), False, 'import pkg_resources\n'), ((48500, 48562), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\V_0.4.csv"""'], {}), "(__name__, 'tables\\\\V_0.4.csv')\n", (48531, 48562), False, 'import pkg_resources\n'), ((48599, 48665), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_V_0.2.csv"""'], {}), "(__name__, 'tables\\\\Raw_V_0.2.csv')\n", (48630, 48665), False, 'import pkg_resources\n'), ((48689, 48755), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_V_0.4.csv"""'], {}), "(__name__, 'tables\\\\Raw_V_0.4.csv')\n", (48720, 48755), False, 'import pkg_resources\n'), ((48779, 48845), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['__name__', '"""tables\\\\Raw_V_0.6.csv"""'], {}), "(__name__, 'tables\\\\Raw_V_0.6.csv')\n", (48810, 48845), False, 'import pkg_resources\n'), ((48922, 48975), 'numpy.genfromtxt', 'np.genfromtxt', (['Raw2_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(Raw2_tab, delimiter=',', skip_header=1)\n", (48935, 48975), True, 'import numpy as np\n'), ((48999, 49052), 'numpy.genfromtxt', 'np.genfromtxt', (['Raw4_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(Raw4_tab, delimiter=',', skip_header=1)\n", (49012, 49052), True, 'import numpy as np\n'), ((49076, 49129), 'numpy.genfromtxt', 'np.genfromtxt', (['Raw6_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(Raw6_tab, delimiter=',', skip_header=1)\n", (49089, 49129), True, 'import numpy as np\n'), ((49152, 49203), 'numpy.genfromtxt', 'np.genfromtxt', (['V2_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(V2_tab, delimiter=',', skip_header=1)\n", (49165, 49203), True, 'import numpy as np\n'), ((49225, 49276), 'numpy.genfromtxt', 'np.genfromtxt', (['V4_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(V4_tab, delimiter=',', skip_header=1)\n", (49238, 49276), True, 'import numpy as np\n'), ((49303, 49357), 'numpy.genfromtxt', 'np.genfromtxt', (['RawV2_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(RawV2_tab, delimiter=',', skip_header=1)\n", (49316, 49357), True, 'import numpy as np\n'), ((49383, 49437), 'numpy.genfromtxt', 'np.genfromtxt', (['RawV4_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(RawV4_tab, delimiter=',', skip_header=1)\n", (49396, 49437), True, 'import numpy as np\n'), ((49463, 49517), 'numpy.genfromtxt', 'np.genfromtxt', (['RawV6_tab'], {'delimiter': '""","""', 'skip_header': '(1)'}), "(RawV6_tab, delimiter=',', skip_header=1)\n", (49476, 49517), True, 'import numpy as np\n'), ((49673, 49764), 'scipy.interpolate.interp2d', 'interpolate.interp2d', (['arr_Raw2[:, 1]', 'arr_Raw2[:, 0]', 'arr_Raw2[:, 2]'], {'kind': 'interp2Type'}), '(arr_Raw2[:, 1], arr_Raw2[:, 0], arr_Raw2[:, 2], kind=\n interp2Type)\n', (49693, 49764), False, 'from scipy import interpolate, signal\n'), ((49787, 49878), 'scipy.interpolate.interp2d', 'interpolate.interp2d', (['arr_Raw4[:, 1]', 'arr_Raw4[:, 0]', 'arr_Raw4[:, 2]'], {'kind': 'interp2Type'}), '(arr_Raw4[:, 1], arr_Raw4[:, 0], arr_Raw4[:, 2], kind=\n interp2Type)\n', (49807, 49878), False, 'from scipy import interpolate, signal\n'), ((49901, 49992), 'scipy.interpolate.interp2d', 'interpolate.interp2d', (['arr_Raw6[:, 1]', 'arr_Raw6[:, 0]', 'arr_Raw6[:, 2]'], {'kind': 'interp2Type'}), '(arr_Raw6[:, 1], arr_Raw6[:, 0], arr_Raw6[:, 2], kind=\n interp2Type)\n', (49921, 49992), False, 'from scipy import interpolate, signal\n'), ((50014, 50099), 'scipy.interpolate.interp2d', 'interpolate.interp2d', (['arr_V2[:, 1]', 'arr_V2[:, 0]', 'arr_V2[:, 2]'], {'kind': 'interp2Type'}), '(arr_V2[:, 1], arr_V2[:, 0], arr_V2[:, 2], kind=interp2Type\n )\n', (50034, 50099), False, 'from scipy import interpolate, signal\n'), ((50120, 50205), 'scipy.interpolate.interp2d', 'interpolate.interp2d', (['arr_V4[:, 1]', 'arr_V4[:, 0]', 'arr_V4[:, 2]'], {'kind': 'interp2Type'}), '(arr_V4[:, 1], arr_V4[:, 0], arr_V4[:, 2], kind=interp2Type\n )\n', (50140, 50205), False, 'from scipy import interpolate, signal\n'), ((50268, 50372), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['arr_Raw_V2[:, 0]', 'arr_Raw_V2[:, 1]'], {'kind': 'interp1Type', 'fill_value': '"""extrapolate"""'}), "(arr_Raw_V2[:, 0], arr_Raw_V2[:, 1], kind=interp1Type,\n fill_value='extrapolate')\n", (50288, 50372), False, 'from scipy import interpolate, signal\n'), ((50399, 50503), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['arr_Raw_V4[:, 0]', 'arr_Raw_V4[:, 1]'], {'kind': 'interp1Type', 'fill_value': '"""extrapolate"""'}), "(arr_Raw_V4[:, 0], arr_Raw_V4[:, 1], kind=interp1Type,\n fill_value='extrapolate')\n", (50419, 50503), False, 'from scipy import interpolate, signal\n'), ((50530, 50634), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['arr_Raw_V6[:, 0]', 'arr_Raw_V6[:, 1]'], {'kind': 'interp1Type', 'fill_value': '"""extrapolate"""'}), "(arr_Raw_V6[:, 0], arr_Raw_V6[:, 1], kind=interp1Type,\n fill_value='extrapolate')\n", (50550, 50634), False, 'from scipy import interpolate, signal\n'), ((51044, 51066), 'numpy.multiply', 'np.multiply', (['RRm', 'Rwbm'], {}), '(RRm, Rwbm)\n', (51055, 51066), True, 'import numpy as np\n'), ((51608, 51627), 'numpy.multiply', 'np.multiply', (['Rwb', 'E'], {}), '(Rwb, E)\n', (51619, 51627), True, 'import numpy as np\n'), ((51658, 51754), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['[0.2, 0.4, 0.6]', 'Rwb_final'], {'kind': 'interp1Type', 'fill_value': '"""extrapolate"""'}), "([0.2, 0.4, 0.6], Rwb_final, kind=interp1Type,\n fill_value='extrapolate')\n", (51678, 51754), False, 'from scipy import interpolate, signal\n'), ((51817, 51981), 'warnings.warn', 'warnings.warn', (['"""Average impact acceleration based on the Fridsma charts is currently not implemented. Using Savitsky & Brown approximation."""'], {'stacklevel': '(2)'}), "(\n 'Average impact acceleration based on the Fridsma charts is currently not implemented. Using Savitsky & Brown approximation.'\n , stacklevel=2)\n", (51830, 51981), False, 'import warnings\n'), ((11781, 11808), 'numpy.sqrt', 'np.sqrt', (['(self.g * self.beam)'], {}), '(self.g * self.beam)\n', (11788, 11808), True, 'import numpy as np\n'), ((11852, 11916), 'numpy.sqrt', 'np.sqrt', (['(self.g * (self.weight / (self.g * self.rho)) ** (1 / 3))'], {}), '(self.g * (self.weight / (self.g * self.rho)) ** (1 / 3))\n', (11859, 11916), True, 'import numpy as np\n'), ((12819, 12864), 'numpy.sin', 'np.sin', (['((self.tau + self.eta_5) * np.pi / 180)'], {}), '((self.tau + self.eta_5) * np.pi / 180)\n', (12825, 12864), True, 'import numpy as np\n'), ((18280, 18312), 'numpy.tan', 'np.tan', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (18286, 18312), True, 'import numpy as np\n'), ((19211, 19301), 'scipy.interpolate.interp1d', 'interpolate.interp1d', (['beta_table', 'z_max_table'], {'kind': '"""cubic"""', 'fill_value': '"""extrapolate"""'}), "(beta_table, z_max_table, kind='cubic', fill_value=\n 'extrapolate')\n", (19231, 19301), False, 'from scipy import interpolate, signal\n'), ((19588, 19611), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (19594, 19611), True, 'import numpy as np\n'), ((20174, 20206), 'numpy.tan', 'np.tan', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (20180, 20206), True, 'import numpy as np\n'), ((20367, 20441), 'warnings.warn', 'warnings.warn', (['"""Vessel operating with dry chines (L_C = 0)."""'], {'stacklevel': '(2)'}), "('Vessel operating with dry chines (L_C = 0).', stacklevel=2)\n", (20380, 20441), False, 'import warnings\n'), ((26479, 26502), 'numpy.cos', 'np.cos', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (26485, 26502), True, 'import numpy as np\n'), ((27826, 27858), 'numpy.cos', 'np.cos', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (27832, 27858), True, 'import numpy as np\n'), ((27918, 27950), 'numpy.sin', 'np.sin', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (27924, 27950), True, 'import numpy as np\n'), ((37401, 37424), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (37407, 37424), True, 'import numpy as np\n'), ((39426, 39477), 'ndmath.complexGrad', 'ndmath.complexGrad', (['_func', '[temp_eta_3, temp_eta_5]'], {}), '(_func, [temp_eta_3, temp_eta_5])\n', (39444, 39477), False, 'import ndmath\n'), ((20154, 20177), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (20160, 20177), True, 'import numpy as np\n'), ((31752, 31778), 'numpy.cos', 'np.cos', (['(pi / 180 * epsilon)'], {}), '(pi / 180 * epsilon)\n', (31758, 31778), True, 'import numpy as np\n'), ((31790, 31816), 'numpy.sin', 'np.sin', (['(pi / 180 * epsilon)'], {}), '(pi / 180 * epsilon)\n', (31796, 31816), True, 'import numpy as np\n'), ((39536, 39598), 'ndmath.finiteGrad', 'ndmath.finiteGrad', (['_func', '[temp_eta_3, temp_eta_5]', '(10 ** -6.6)'], {}), '(_func, [temp_eta_3, temp_eta_5], 10 ** -6.6)\n', (39553, 39598), False, 'import ndmath\n'), ((40985, 41007), 'numpy.zeros', 'np.zeros', (['(nDim, nDim)'], {}), '((nDim, nDim))\n', (40993, 41007), True, 'import numpy as np\n'), ((41008, 41025), 'numpy.identity', 'np.identity', (['nDim'], {}), '(nDim)\n', (41019, 41025), True, 'import numpy as np\n'), ((17203, 17267), 'numpy.printoptions', 'np.printoptions', ([], {'formatter': "{'float': f'{{:.{sigFigs}g}}'.format}"}), "(formatter={'float': f'{{:.{sigFigs}g}}'.format})\n", (17218, 17267), True, 'import numpy as np\n'), ((20646, 20669), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (20652, 20669), True, 'import numpy as np\n'), ((20992, 21021), 'numpy.exp', 'np.exp', (['(-(lambda_K - w) / 0.3)'], {}), '(-(lambda_K - w) / 0.3)\n', (20998, 21021), True, 'import numpy as np\n'), ((27295, 27307), 'numpy.log10', 'np.log10', (['Rn'], {}), '(Rn)\n', (27303, 27307), True, 'import numpy as np\n'), ((35666, 35689), 'scipy.special.gamma', 'gamma', (['(1.5 - beta / 180)'], {}), '(1.5 - beta / 180)\n', (35671, 35689), False, 'from scipy.special import gamma\n'), ((35716, 35739), 'scipy.special.gamma', 'gamma', (['(0.5 + beta / 180)'], {}), '(0.5 + beta / 180)\n', (35721, 35739), False, 'from scipy.special import gamma\n'), ((37608, 37631), 'scipy.special.gamma', 'gamma', (['(1.5 - beta / 180)'], {}), '(1.5 - beta / 180)\n', (37613, 37631), False, 'from scipy.special import gamma\n'), ((37658, 37681), 'scipy.special.gamma', 'gamma', (['(0.5 + beta / 180)'], {}), '(0.5 + beta / 180)\n', (37663, 37681), False, 'from scipy.special import gamma\n'), ((41054, 41075), 'numpy.linalg.solve', 'np.linalg.solve', (['M', 'K'], {}), '(M, K)\n', (41069, 41075), True, 'import numpy as np\n'), ((41077, 41098), 'numpy.linalg.solve', 'np.linalg.solve', (['M', 'C'], {}), '(M, C)\n', (41092, 41098), True, 'import numpy as np\n'), ((46117, 46140), 'numpy.tan', 'np.tan', (['(beta * pi / 180)'], {}), '(beta * pi / 180)\n', (46123, 46140), True, 'import numpy as np\n'), ((20823, 20846), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (20829, 20846), True, 'import numpy as np\n'), ((21359, 21382), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (21365, 21382), True, 'import numpy as np\n'), ((27690, 27713), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (27696, 27713), True, 'import numpy as np\n'), ((27725, 27748), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (27731, 27748), True, 'import numpy as np\n'), ((35644, 35667), 'numpy.sin', 'np.sin', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (35650, 35667), True, 'import numpy as np\n'), ((35691, 35712), 'scipy.special.gamma', 'gamma', (['(1 - beta / 180)'], {}), '(1 - beta / 180)\n', (35696, 35712), False, 'from scipy.special import gamma\n'), ((36175, 36198), 'numpy.tan', 'np.tan', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (36181, 36198), True, 'import numpy as np\n'), ((37586, 37609), 'numpy.sin', 'np.sin', (['(pi / 180 * beta)'], {}), '(pi / 180 * beta)\n', (37592, 37609), True, 'import numpy as np\n'), ((37633, 37654), 'scipy.special.gamma', 'gamma', (['(1 - beta / 180)'], {}), '(1 - beta / 180)\n', (37638, 37654), False, 'from scipy.special import gamma\n'), ((20846, 20878), 'numpy.tan', 'np.tan', (['(pi / 180 * (tau + eta_5))'], {}), '(pi / 180 * (tau + eta_5))\n', (20852, 20878), True, 'import numpy as np\n'), ((27084, 27106), 'numpy.cos', 'np.cos', (['(tau * pi / 180)'], {}), '(tau * pi / 180)\n', (27090, 27106), True, 'import numpy as np\n'), ((26989, 27006), 'numpy.sqrt', 'np.sqrt', (['lambda_W'], {}), '(lambda_W)\n', (26996, 27006), True, 'import numpy as np\n'), ((27034, 27051), 'numpy.sqrt', 'np.sqrt', (['lambda_W'], {}), '(lambda_W)\n', (27041, 27051), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Tue Oct 6 09:54:17 2015 @author: jmilli """ import numpy as np from scipy.interpolate import interp1d def create2dMap(values,inputRadii=None,maxRadius=None): """ This function takes a 1D radial distribution in input and builds a 2map """ nbValues=len(values) if inputRadii==None: inputRadii=np.arange(0,nbValues) maxRadius=nbValues else: if maxRadius==None: raise ValueError('You must provide a maximum radius') imageAxis = np.arange(-maxRadius/2,maxRadius/2) x,y = np.meshgrid(imageAxis,imageAxis) distmap = abs(x+1j*y) # map2d = np.ndarray(distmap.shape) radiusOK = np.isfinite(values) func = interp1d(inputRadii[radiusOK],values[radiusOK],kind='cubic', bounds_error=False,fill_value=np.nan) map2d = func(distmap) return map2d,distmap
[ "numpy.meshgrid", "numpy.isfinite", "numpy.arange", "scipy.interpolate.interp1d" ]
[((533, 573), 'numpy.arange', 'np.arange', (['(-maxRadius / 2)', '(maxRadius / 2)'], {}), '(-maxRadius / 2, maxRadius / 2)\n', (542, 573), True, 'import numpy as np\n'), ((579, 612), 'numpy.meshgrid', 'np.meshgrid', (['imageAxis', 'imageAxis'], {}), '(imageAxis, imageAxis)\n', (590, 612), True, 'import numpy as np\n'), ((692, 711), 'numpy.isfinite', 'np.isfinite', (['values'], {}), '(values)\n', (703, 711), True, 'import numpy as np\n'), ((723, 829), 'scipy.interpolate.interp1d', 'interp1d', (['inputRadii[radiusOK]', 'values[radiusOK]'], {'kind': '"""cubic"""', 'bounds_error': '(False)', 'fill_value': 'np.nan'}), "(inputRadii[radiusOK], values[radiusOK], kind='cubic', bounds_error\n =False, fill_value=np.nan)\n", (731, 829), False, 'from scipy.interpolate import interp1d\n'), ((364, 386), 'numpy.arange', 'np.arange', (['(0)', 'nbValues'], {}), '(0, nbValues)\n', (373, 386), True, 'import numpy as np\n')]
# !/usr/bin/env python # Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # Modified by <NAME> on 20 April 2020 import argparse import datetime import glob import os import random import sys import time from PIL import Image from PIL.PngImagePlugin import PngInfo try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla import math from dotmap import DotMap try: import pygame except ImportError: raise RuntimeError('cannot import pygame, make sure pygame package is installed') try: import numpy as np except ImportError: raise RuntimeError('cannot import numpy, make sure numpy package is installed') try: import queue except ImportError: import Queue as queue from agents.navigation.agent import Agent, AgentState from agents.navigation.local_planner import LocalPlanner from agents.navigation.global_route_planner import GlobalRoutePlanner from agents.tools.misc import is_within_distance_ahead, compute_magnitude_angle from agents.navigation.global_route_planner_dao import GlobalRoutePlannerDAO def is_within_distance(target_location, current_location, orientation, max_distance, d_angle_th_up, d_angle_th_low=0): """ Check if a target object is within a certain distance from a reference object. A vehicle in front would be something around 0 deg, while one behind around 180 deg. :param target_location: location of the target object :param current_location: location of the reference object :param orientation: orientation of the reference object :param max_distance: maximum allowed distance :param d_angle_th_up: upper thereshold for angle :param d_angle_th_low: low thereshold for angle (optional, default is 0) :return: True if target object is within max_distance ahead of the reference object """ target_vector = np.array([target_location.x - current_location.x, target_location.y - current_location.y]) norm_target = np.linalg.norm(target_vector) # If the vector is too short, we can simply stop here if norm_target < 0.001: return True if norm_target > max_distance: return False forward_vector = np.array( [math.cos(math.radians(orientation)), math.sin(math.radians(orientation))]) d_angle = math.degrees(math.acos(np.clip(np.dot(forward_vector, target_vector) / norm_target, -1., 1.))) return d_angle_th_low < d_angle < d_angle_th_up def compute_distance(location_1, location_2): """ Euclidean distance between 3D points :param location_1, location_2: 3D points """ x = location_2.x - location_1.x y = location_2.y - location_1.y z = location_2.z - location_1.z norm = np.linalg.norm([x, y, z]) + np.finfo(float).eps return norm class CarlaSyncMode(object): """ Context manager to synchronize output from different sensors. Synchronous mode is enabled as long as we are inside this context with CarlaSyncMode(world, sensors) as sync_mode: while True: data = sync_mode.tick(timeout=1.0) """ def __init__(self, world, *sensors, **kwargs): self.world = world self.sensors = sensors self.frame = None self.delta_seconds = 1.0 / kwargs.get('fps', 20) self._queues = [] self._settings = None self.start() def start(self): self._settings = self.world.get_settings() self.frame = self.world.apply_settings(carla.WorldSettings( no_rendering_mode=False, synchronous_mode=True, fixed_delta_seconds=self.delta_seconds)) def make_queue(register_event): q = queue.Queue() register_event(q.put) self._queues.append(q) make_queue(self.world.on_tick) for sensor in self.sensors: make_queue(sensor.listen) def tick(self, timeout): self.frame = self.world.tick() data = [self._retrieve_data(q, timeout) for q in self._queues] assert all(x.frame == self.frame for x in data) return data def __exit__(self, *args, **kwargs): self.world.apply_settings(self._settings) def _retrieve_data(self, sensor_queue, timeout): while True: data = sensor_queue.get(timeout=timeout) if data.frame == self.frame: return data def draw_image(surface, image, blend=False): array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) array = np.reshape(array, (image.height, image.width, 4)) array = array[:, :, :3] array = array[:, :, ::-1] image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) if blend: image_surface.set_alpha(100) surface.blit(image_surface, (0, 0)) def get_font(): fonts = [x for x in pygame.font.get_fonts()] default_font = 'ubuntumono' font = default_font if default_font in fonts else fonts[0] font = pygame.font.match_font(font) return pygame.font.Font(font, 14) def should_quit(): for event in pygame.event.get(): if event.type == pygame.QUIT: return True elif event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: return True return False def clamp(value, minimum=0.0, maximum=100.0): return max(minimum, min(value, maximum)) class Sun(object): def __init__(self, azimuth, altitude): self.azimuth = azimuth self.altitude = altitude self._t = 0.0 def tick(self, delta_seconds): self._t += 0.008 * delta_seconds self._t %= 2.0 * math.pi self.azimuth += 0.25 * delta_seconds self.azimuth %= 360.0 min_alt, max_alt = [20, 90] self.altitude = 0.5 * (max_alt + min_alt) + 0.5 * (max_alt - min_alt) * math.cos(self._t) def __str__(self): return 'Sun(alt: %.2f, azm: %.2f)' % (self.altitude, self.azimuth) class Storm(object): def __init__(self, precipitation): self._t = precipitation if precipitation > 0.0 else -50.0 self._increasing = True self.clouds = 0.0 self.rain = 0.0 self.wetness = 0.0 self.puddles = 0.0 self.wind = 0.0 self.fog = 0.0 def tick(self, delta_seconds): delta = (1.3 if self._increasing else -1.3) * delta_seconds self._t = clamp(delta + self._t, -250.0, 100.0) self.clouds = clamp(self._t + 40.0, 0.0, 90.0) self.clouds = clamp(self._t + 40.0, 0.0, 60.0) self.rain = clamp(self._t, 0.0, 80.0) delay = -10.0 if self._increasing else 90.0 self.puddles = clamp(self._t + delay, 0.0, 85.0) self.wetness = clamp(self._t * 5, 0.0, 100.0) self.wind = 5.0 if self.clouds <= 20 else 90 if self.clouds >= 70 else 40 self.fog = clamp(self._t - 10, 0.0, 30.0) if self._t == -250.0: self._increasing = True if self._t == 100.0: self._increasing = False def __str__(self): return 'Storm(clouds=%d%%, rain=%d%%, wind=%d%%)' % (self.clouds, self.rain, self.wind) class Weather(object): def __init__(self, world, changing_weather_speed): self.world = world self.reset() self.weather = world.get_weather() self.changing_weather_speed = changing_weather_speed self._sun = Sun(self.weather.sun_azimuth_angle, self.weather.sun_altitude_angle) self._storm = Storm(self.weather.precipitation) def reset(self): weather_params = carla.WeatherParameters(sun_altitude_angle=90.) self.world.set_weather(weather_params) def tick(self): self._sun.tick(self.changing_weather_speed) self._storm.tick(self.changing_weather_speed) self.weather.cloudiness = self._storm.clouds self.weather.precipitation = self._storm.rain self.weather.precipitation_deposits = self._storm.puddles self.weather.wind_intensity = self._storm.wind self.weather.fog_density = self._storm.fog self.weather.wetness = self._storm.wetness self.weather.sun_azimuth_angle = self._sun.azimuth self.weather.sun_altitude_angle = self._sun.altitude self.world.set_weather(self.weather) def __str__(self): return '%s %s' % (self._sun, self._storm) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--vision_size', type=int, default=84) parser.add_argument('--vision_fov', type=int, default=90) parser.add_argument('--weather', default=False, action='store_true') parser.add_argument('--frame_skip', type=int, default=1), parser.add_argument('--steps', type=int, default=100000) parser.add_argument('--multiagent', default=False, action='store_true'), parser.add_argument('--lane', type=int, default=0) parser.add_argument('--lights', default=False, action='store_true') args = parser.parse_args() return args class LocalPlannerModified(LocalPlanner): def __del__(self): pass # otherwise it deletes our vehicle object def run_step(self): return super().run_step(debug=False) # otherwise by default shows waypoints, that interfere with our camera class RoamingAgent(Agent): """ RoamingAgent implements a basic agent that navigates scenes making random choices when facing an intersection. This agent respects traffic lights and other vehicles. NOTE: need to re-create after each env reset """ def __init__(self, env): """ :param vehicle: actor to apply to local planner logic onto """ vehicle = env.vehicle follow_traffic_lights = env.follow_traffic_lights super(RoamingAgent, self).__init__(vehicle) self._proximity_threshold = 10.0 # meters self._state = AgentState.NAVIGATING self._local_planner = LocalPlannerModified(self._vehicle) self._follow_traffic_lights = follow_traffic_lights def compute_action(self): action, traffic_light = self.run_step() throttle = action.throttle brake = action.brake steer = action.steer #print('tbsl:', throttle, brake, steer, traffic_light) if brake == 0.0: return np.array([throttle, steer]) else: return np.array([-brake, steer]) def run_step(self): """ Execute one step of navigation. :return: carla.VehicleControl """ # is there an obstacle in front of us? hazard_detected = False # retrieve relevant elements for safe navigation, i.e.: traffic lights and other vehicles actor_list = self._world.get_actors() vehicle_list = actor_list.filter("*vehicle*") lights_list = actor_list.filter("*traffic_light*") # check possible obstacles vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list) if vehicle_state: self._state = AgentState.BLOCKED_BY_VEHICLE hazard_detected = True # check for the state of the traffic lights traffic_light_color = self._is_light_red(lights_list) if traffic_light_color == 'RED' and self._follow_traffic_lights: self._state = AgentState.BLOCKED_RED_LIGHT hazard_detected = True if hazard_detected: control = self.emergency_stop() else: self._state = AgentState.NAVIGATING # standard local planner behavior control = self._local_planner.run_step() #print ('Action chosen: ', control) return control, traffic_light_color # override case class def _is_light_red_europe_style(self, lights_list): """ This method is specialized to check European style traffic lights. Only suitable for Towns 03 -- 07. """ ego_vehicle_location = self._vehicle.get_location() ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location) traffic_light_color = "NONE" # default, if no traffic lights are seen for traffic_light in lights_list: object_waypoint = self._map.get_waypoint(traffic_light.get_location()) if object_waypoint.road_id != ego_vehicle_waypoint.road_id or \ object_waypoint.lane_id != ego_vehicle_waypoint.lane_id: continue if is_within_distance_ahead(traffic_light.get_transform(), self._vehicle.get_transform(), self._proximity_threshold): if traffic_light.state == carla.TrafficLightState.Red: return "RED" elif traffic_light.state == carla.TrafficLightState.Yellow: traffic_light_color = "YELLOW" elif traffic_light.state == carla.TrafficLightState.Green: if traffic_light_color is not "YELLOW": # (more severe) traffic_light_color = "GREEN" else: import pdb; pdb.set_trace() # investigate https://carla.readthedocs.io/en/latest/python_api/#carlatrafficlightstate return traffic_light_color # override case class def _is_light_red_us_style(self, lights_list, debug=False): ego_vehicle_location = self._vehicle.get_location() ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location) traffic_light_color = "NONE" # default, if no traffic lights are seen if ego_vehicle_waypoint.is_junction: # It is too late. Do not block the intersection! Keep going! return "JUNCTION" if self._local_planner.target_waypoint is not None: if self._local_planner.target_waypoint.is_junction: min_angle = 180.0 sel_magnitude = 0.0 sel_traffic_light = None for traffic_light in lights_list: loc = traffic_light.get_location() magnitude, angle = compute_magnitude_angle(loc, ego_vehicle_location, self._vehicle.get_transform().rotation.yaw) if magnitude < 60.0 and angle < min(25.0, min_angle): sel_magnitude = magnitude sel_traffic_light = traffic_light min_angle = angle if sel_traffic_light is not None: if debug: print('=== Magnitude = {} | Angle = {} | ID = {}'.format( sel_magnitude, min_angle, sel_traffic_light.id)) if self._last_traffic_light is None: self._last_traffic_light = sel_traffic_light if self._last_traffic_light.state == carla.TrafficLightState.Red: return "RED" elif self._last_traffic_light.state == carla.TrafficLightState.Yellow: traffic_light_color = "YELLOW" elif self._last_traffic_light.state == carla.TrafficLightState.Green: if traffic_light_color is not "YELLOW": # (more severe) traffic_light_color = "GREEN" else: import pdb; pdb.set_trace() # investigate https://carla.readthedocs.io/en/latest/python_api/#carlatrafficlightstate else: self._last_traffic_light = None return traffic_light_color if __name__ == '__main__': # example call: # ./PythonAPI/util/config.py --map Town01 --delta-seconds 0.05 # python PythonAPI/carla/agents/navigation/data_collection_agent.py --vision_size 256 --vision_fov 90 --steps 10000 --weather --lights args = parse_args() env = CarlaEnv(args) try: done = False while not done: action, traffic_light_color = env.compute_action() next_obs, reward, done, info = env.step(action, traffic_light_color) print ('Reward: ', reward, 'Done: ', done, 'Location: ', env.vehicle.get_location()) if done: # env.reset_init() # env.reset() done = False finally: env.finish()
[ "numpy.dtype", "pygame.font.get_fonts", "numpy.reshape", "argparse.ArgumentParser", "pygame.event.get", "carla.WeatherParameters", "pygame.font.match_font", "math.radians", "math.cos", "numpy.array", "numpy.dot", "pdb.set_trace", "numpy.linalg.norm", "numpy.finfo", "pygame.font.Font", "Queue.Queue", "glob.glob", "carla.WorldSettings" ]
[((2198, 2292), 'numpy.array', 'np.array', (['[target_location.x - current_location.x, target_location.y - current_location.y\n ]'], {}), '([target_location.x - current_location.x, target_location.y -\n current_location.y])\n', (2206, 2292), True, 'import numpy as np\n'), ((2307, 2336), 'numpy.linalg.norm', 'np.linalg.norm', (['target_vector'], {}), '(target_vector)\n', (2321, 2336), True, 'import numpy as np\n'), ((4855, 4904), 'numpy.reshape', 'np.reshape', (['array', '(image.height, image.width, 4)'], {}), '(array, (image.height, image.width, 4))\n', (4865, 4904), True, 'import numpy as np\n'), ((5299, 5327), 'pygame.font.match_font', 'pygame.font.match_font', (['font'], {}), '(font)\n', (5321, 5327), False, 'import pygame\n'), ((5339, 5365), 'pygame.font.Font', 'pygame.font.Font', (['font', '(14)'], {}), '(font, 14)\n', (5355, 5365), False, 'import pygame\n'), ((5404, 5422), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (5420, 5422), False, 'import pygame\n'), ((8700, 8725), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8723, 8725), False, 'import argparse\n'), ((3052, 3077), 'numpy.linalg.norm', 'np.linalg.norm', (['[x, y, z]'], {}), '([x, y, z])\n', (3066, 3077), True, 'import numpy as np\n'), ((7876, 7924), 'carla.WeatherParameters', 'carla.WeatherParameters', ([], {'sun_altitude_angle': '(90.0)'}), '(sun_altitude_angle=90.0)\n', (7899, 7924), False, 'import carla\n'), ((462, 620), 'glob.glob', 'glob.glob', (["('../carla/dist/carla-*%d.%d-%s.egg' % (sys.version_info.major, sys.\n version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))"], {}), "('../carla/dist/carla-*%d.%d-%s.egg' % (sys.version_info.major,\n sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64')\n )\n", (471, 620), False, 'import glob\n'), ((3080, 3095), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (3088, 3095), True, 'import numpy as np\n'), ((3825, 3936), 'carla.WorldSettings', 'carla.WorldSettings', ([], {'no_rendering_mode': '(False)', 'synchronous_mode': '(True)', 'fixed_delta_seconds': 'self.delta_seconds'}), '(no_rendering_mode=False, synchronous_mode=True,\n fixed_delta_seconds=self.delta_seconds)\n', (3844, 3936), False, 'import carla\n'), ((4028, 4041), 'Queue.Queue', 'queue.Queue', ([], {}), '()\n', (4039, 4041), True, 'import Queue as queue\n'), ((4824, 4841), 'numpy.dtype', 'np.dtype', (['"""uint8"""'], {}), "('uint8')\n", (4832, 4841), True, 'import numpy as np\n'), ((5168, 5191), 'pygame.font.get_fonts', 'pygame.font.get_fonts', ([], {}), '()\n', (5189, 5191), False, 'import pygame\n'), ((10600, 10627), 'numpy.array', 'np.array', (['[throttle, steer]'], {}), '([throttle, steer])\n', (10608, 10627), True, 'import numpy as np\n'), ((10661, 10686), 'numpy.array', 'np.array', (['[-brake, steer]'], {}), '([-brake, steer])\n', (10669, 10686), True, 'import numpy as np\n'), ((2551, 2576), 'math.radians', 'math.radians', (['orientation'], {}), '(orientation)\n', (2563, 2576), False, 'import math\n'), ((2588, 2613), 'math.radians', 'math.radians', (['orientation'], {}), '(orientation)\n', (2600, 2613), False, 'import math\n'), ((6161, 6178), 'math.cos', 'math.cos', (['self._t'], {}), '(self._t)\n', (6169, 6178), False, 'import math\n'), ((2662, 2699), 'numpy.dot', 'np.dot', (['forward_vector', 'target_vector'], {}), '(forward_vector, target_vector)\n', (2668, 2699), True, 'import numpy as np\n'), ((13423, 13438), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (13436, 13438), False, 'import pdb\n'), ((15792, 15807), 'pdb.set_trace', 'pdb.set_trace', ([], {}), '()\n', (15805, 15807), False, 'import pdb\n')]
import warnings from collections.abc import Iterable from collections import OrderedDict import torch import numpy as np from torch.utils.data import Dataset from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense from deep_staple.utils.common_utils import LabelDisturbanceMode class HybridIdLoader(Dataset): def __init__(self, data_load_function, ensure_labeled_pairs=True, use_additional_data=False, resample=True, size:tuple=(96,96,60), normalize:bool=True, max_load_3d_num=None, crop_3d_w_dim_range=None, modified_3d_label_override=None, prevent_disturbance=False, use_2d_normal_to=None, crop_2d_slices_gt_num_threshold=None, pre_interpolation_factor=2., fixed_weight_file = None, fixed_weight_min_quantile=None, fixed_weight_min_value=None ): self.label_tags = [] self.use_2d_normal_to = use_2d_normal_to self.crop_2d_slices_gt_num_threshold = crop_2d_slices_gt_num_threshold self.prevent_disturbance = prevent_disturbance self.do_augment = False self.use_modified = False self.disturbed_idxs = [] self.augment_at_collate = False self.pre_interpolation_factor = pre_interpolation_factor self.extract_3d_id = lambda _:_ self.extract_short_3d_id = lambda _:_ self.img_paths = {} self.label_paths = {} self.img_data_3d = {} self.label_data_3d = {} self.modified_label_data_3d = {} # Load base 3D data (self.img_paths, self.label_paths, self.img_data_3d, self.label_data_3d, self.modified_label_data_3d, self.extract_3d_id, self.extract_short_3d_id) = data_load_function() # Retrieve slices and plugin modified data self.img_data_2d = {} self.label_data_2d = {} self.modified_label_data_2d = {} # Postprocessing of 3d volumes print("Postprocessing 3D volumes") orig_3d_num = len(self.label_data_3d.keys()) if ensure_labeled_pairs: labelled_keys = set(self.label_data_3d.keys()) unlabelled_imgs = set(self.img_data_3d.keys()) - labelled_keys unlabelled_modified_labels = set([self.extract_3d_id(key) for key in self.modified_label_data_3d.keys()]) - labelled_keys for del_key in unlabelled_imgs: del self.img_data_3d[del_key] for del_key in unlabelled_modified_labels: del self.modified_label_data_3d[del_key] if max_load_3d_num: for del_key in sorted(list(self.img_data_3d.keys()))[max_load_3d_num:]: del self.img_data_3d[del_key] for del_key in sorted(list(self.label_data_3d.keys()))[max_load_3d_num:]: del self.label_data_3d[del_key] for del_key in sorted(list(self.modified_label_data_3d.keys()))[max_load_3d_num:]: del self.modified_label_data_3d[del_key] postprocessed_3d_num = len(self.label_data_3d.keys()) print(f"Removed {orig_3d_num - postprocessed_3d_num} 3D images in postprocessing") #check for consistency print(f"Equal image and label numbers: {set(self.img_data_3d)==set(self.label_data_3d)==set(self.modified_label_data_3d)} ({len(self.img_data_3d)})") img_stack = torch.stack(list(self.img_data_3d.values()), dim=0) img_mean, img_std = img_stack.mean(), img_stack.std() label_stack = torch.stack(list(self.label_data_3d.values()), dim=0) print("Image shape: {}, mean.: {:.2f}, std.: {:.2f}".format(img_stack.shape, img_mean, img_std)) print("Label shape: {}, max.: {}".format(label_stack.shape,torch.max(label_stack))) if use_2d_normal_to: if use_2d_normal_to == "D": slice_dim = -3 if use_2d_normal_to == "H": slice_dim = -2 if use_2d_normal_to == "W": slice_dim = -1 for _3d_id, image in self.img_data_3d.items(): for idx, img_slc in [(slice_idx, image.select(slice_dim, slice_idx)) \ for slice_idx in range(image.shape[slice_dim])]: # Set data view for id like "003rW100" self.img_data_2d[f"{_3d_id}{use_2d_normal_to}{idx:03d}"] = img_slc for _3d_id, label in self.label_data_3d.items(): for idx, lbl_slc in [(slice_idx, label.select(slice_dim, slice_idx)) \ for slice_idx in range(label.shape[slice_dim])]: # Set data view for id like "003rW100" self.label_data_2d[f"{_3d_id}{use_2d_normal_to}{idx:03d}"] = lbl_slc for _3d_id, label in self.modified_label_data_3d.items(): for idx, lbl_slc in [(slice_idx, label.select(slice_dim, slice_idx)) \ for slice_idx in range(label.shape[slice_dim])]: # Set data view for id like "003rW100" self.modified_label_data_2d[f"{_3d_id}{use_2d_normal_to}{idx:03d}"] = lbl_slc # Postprocessing of 2d slices print("Postprocessing 2D slices") orig_2d_num = len(self.label_data_2d.keys()) if self.crop_2d_slices_gt_num_threshold > 0: for key, label in list(self.label_data_2d.items()): uniq_vals = label.unique() if sum(label[label > 0]) < self.crop_2d_slices_gt_num_threshold: # Delete 2D slices with less than n gt-pixels (but keep 3d data) del self.img_data_2d[key] del self.label_data_2d[key] del self.modified_label_data_2d[key] postprocessed_2d_num = len(self.label_data_2d.keys()) print(f"Removed {orig_2d_num - postprocessed_2d_num} of {orig_2d_num} 2D slices in postprocessing") if fixed_weight_file is not None and any([fixed_weight_min_quantile, fixed_weight_min_value]): fixed_weightdata = torch.load(fixed_weight_file) fixed_weights = fixed_weightdata['data_parameters'].detach().cpu() fixed_d_ids = fixed_weightdata['d_ids'] print(f"Fixed weight quantiles are: {np.quantile(fixed_weights, np.linspace(0.,1.,5))}") if fixed_weight_min_quantile is not None: fixed_weight_min_value = np.quantile(fixed_weights, fixed_weight_min_quantile) elif fixed_weight_min_value is not None: pass fixed_del_counter = 0 for key, weight in zip(fixed_d_ids, fixed_weights): if weight < fixed_weight_min_value: if use_2d_normal_to: del self.img_data_2d[key] del self.label_data_2d[key] del self.modified_label_data_2d[key] else: del self.img_data_3d[key] del self.label_data_3d[key] del self.modified_label_data_3d[key] fixed_del_counter+=1 print(f"Removed {fixed_del_counter} data samples by cropping data with fixed weight min value = {fixed_weight_min_value:.3f}") # Now make sure dicts are ordered self.img_paths = OrderedDict(sorted(self.img_paths.items())) self.label_paths = OrderedDict(sorted(self.label_paths.items())) self.img_data_3d = OrderedDict(sorted(self.img_data_3d.items())) self.label_data_3d = OrderedDict(sorted(self.label_data_3d.items())) self.modified_label_data_3d = OrderedDict(sorted(self.modified_label_data_3d.items())) self.img_data_2d = OrderedDict(sorted(self.img_data_2d.items())) self.label_data_2d = OrderedDict(sorted(self.label_data_2d.items())) self.modified_label_data_2d = OrderedDict(sorted(self.modified_label_data_2d.items())) nonzero_lbl_percentage = torch.tensor([lbl.sum((-2,-1)) > 0 for lbl in self.label_data_2d.values()]).sum() nonzero_lbl_percentage = nonzero_lbl_percentage/len(self.label_data_2d) print(f"Nonzero labels: " f"{nonzero_lbl_percentage*100:.2f}%") nonzero_mod_lbl_percentage = torch.tensor([ensure_dense(lbl)[0].sum((-2,-1)) > 0 for lbl in self.modified_label_data_2d.values()]).sum() nonzero_mod_lbl_percentage = nonzero_mod_lbl_percentage/len(self.modified_label_data_2d) print(f"Nonzero modified labels: " f"{nonzero_mod_lbl_percentage*100:.2f}%") print(f"Loader will use {postprocessed_2d_num} of {orig_2d_num} 2D slices.") print("Data import finished.") print(f"Dataloader will yield {'2D' if self.use_2d_normal_to else '3D'} samples") def get_short_3d_ids(self): return [self.extract_short_3d_id(_id) for _id in self.get_3d_ids()] def get_3d_ids(self): return list(self.img_data_3d.keys()) def get_2d_ids(self): assert self.use_2d(), "Dataloader does not provide 2D data." return list(self.img_data_2d.keys()) def get_id_dicts(self, use_2d_override=None): all_3d_ids = self.get_3d_ids() id_dicts = [] if self.use_2d(use_2d_override): for _2d_dataset_idx, _2d_id in enumerate(self.get_2d_ids()): _3d_id = _2d_id[:-4] id_dicts.append( { '2d_id': _2d_id, '2d_dataset_idx': _2d_dataset_idx, '3d_id': _3d_id, '3d_dataset_idx': all_3d_ids.index(_3d_id), } ) else: for _3d_dataset_idx, _3d_id in enumerate(self.get_3d_ids()): id_dicts.append( { '3d_id': _3d_id, '3d_dataset_idx': all_3d_ids.index(_3d_id), } ) return id_dicts def switch_2d_identifiers(self, _2d_identifiers): assert self.use_2d(), "Dataloader does not provide 2D data." if isinstance(_2d_identifiers, (torch.Tensor, np.ndarray)): _2d_identifiers = _2d_identifiers.tolist() elif not isinstance(_2d_identifiers, Iterable) or isinstance(_2d_identifiers, str): _2d_identifiers = [_2d_identifiers] _ids = self.get_2d_ids() if all([isinstance(elem, int) for elem in _2d_identifiers]): vals = [_ids[elem] for elem in _2d_identifiers] elif all([isinstance(elem, str) for elem in _2d_identifiers]): vals = [_ids.index(elem) for elem in _2d_identifiers] else: raise ValueError return vals[0] if len(vals) == 1 else vals def switch_3d_identifiers(self, _3d_identifiers): if isinstance(_3d_identifiers, (torch.Tensor, np.ndarray)): _3d_identifiers = _3d_identifiers.tolist() elif not isinstance(_3d_identifiers, Iterable) or isinstance(_3d_identifiers, str): _3d_identifiers = [_3d_identifiers] _ids = self.get_3d_ids() if all([isinstance(elem, int) for elem in _3d_identifiers]): vals = [_ids[elem] for elem in _3d_identifiers] elif all([isinstance(elem, str) for elem in _3d_identifiers]): vals = [_ids.index(elem) if elem in _ids else None for elem in _3d_identifiers] else: raise ValueError return vals[0] if len(vals) == 1 else vals def get_3d_from_2d_identifiers(self, _2d_identifiers, retrn='id'): assert self.use_2d(), "Dataloader does not provide 2D data." assert retrn in ['id', 'idx'] if isinstance(_2d_identifiers, (torch.Tensor, np.ndarray)): _2d_identifiers = _2d_identifiers.tolist() elif not isinstance(_2d_identifiers, Iterable) or isinstance(_2d_identifiers, str): _2d_identifiers = [_2d_identifiers] if isinstance(_2d_identifiers[0], int): _2d_identifiers = self.switch_2d_identifiers(_2d_identifiers) vals = [] for item in _2d_identifiers: _3d_id = self.extract_3d_id(item) if retrn == 'id': vals.append(_3d_id) elif retrn == 'idx': vals.append(self.switch_3d_identifiers(_3d_id)) return vals[0] if len(vals) == 1 else vals def use_2d(self, override=None): if not self.use_2d_normal_to: return False elif override is not None: return override else: return True def __len__(self, use_2d_override=None): if self.use_2d(use_2d_override): return len(self.img_data_2d) return len(self.img_data_3d) def __getitem__(self, dataset_idx, use_2d_override=None): use_2d = self.use_2d(use_2d_override) if use_2d: all_ids = self.get_2d_ids() _id = all_ids[dataset_idx] image = self.img_data_2d.get(_id, torch.tensor([])) label = self.label_data_2d.get(_id, torch.tensor([])) # For 2D id cut last 4 "003rW100" _3d_id = self.get_3d_from_2d_identifiers(_id) image_path = self.img_paths[_3d_id] label_path = self.label_paths[_3d_id] else: all_ids = self.get_3d_ids() _id = all_ids[dataset_idx] image = self.img_data_3d.get(_id, torch.tensor([])) label = self.label_data_3d.get(_id, torch.tensor([])) image_path = self.img_paths[_id] label_path = self.label_paths[_id] spat_augment_grid = [] if self.use_modified: if use_2d: modified_label = self.modified_label_data_2d.get(_id, label.detach().clone()) else: modified_label = self.modified_label_data_3d.get(_id, label.detach().clone()) else: modified_label = label.detach().clone() b_image = image.unsqueeze(0).cuda() b_label = label.unsqueeze(0).cuda() modified_label, _ = ensure_dense(modified_label) b_modified_label = modified_label.unsqueeze(0).cuda() if self.do_augment and not self.augment_at_collate: b_image, b_label, b_spat_augment_grid = self.augment( b_image, b_label, use_2d, pre_interpolation_factor=self.pre_interpolation_factor ) _, b_modified_label, _ = spatial_augment( b_label=b_modified_label, use_2d=use_2d, b_grid_override=b_spat_augment_grid, pre_interpolation_factor=self.pre_interpolation_factor ) spat_augment_grid = b_spat_augment_grid.squeeze(0).detach().cpu().clone() elif not self.do_augment: b_image, b_label = interpolate_sample(b_image, b_label, 2., use_2d) _, b_modified_label = interpolate_sample(b_label=b_modified_label, scale_factor=2., use_2d=use_2d) image = b_image.squeeze(0).cpu() label = b_label.squeeze(0).cpu() modified_label = b_modified_label.squeeze(0).cpu() if use_2d: assert image.dim() == label.dim() == 2 else: assert image.dim() == label.dim() == 3 return { 'image': image, 'label': label, 'modified_label': modified_label, # if disturbance is off, modified label is equals label 'dataset_idx': dataset_idx, 'id': _id, 'image_path': image_path, 'label_path': label_path, 'spat_augment_grid': spat_augment_grid } def get_3d_item(self, _3d_dataset_idx): return self.__getitem__(_3d_dataset_idx, use_2d_override=False) def get_data(self, use_2d_override=None): if self.use_2d(use_2d_override): img_stack = torch.stack(list(self.img_data_2d.values()), dim=0) label_stack = torch.stack(list(self.label_data_2d.values()), dim=0) modified_label_stack = torch.stack(list(self.modified_label_data_2d.values()), dim=0) else: img_stack = torch.stack(list(self.img_data_3d.values()), dim=0) label_stack = torch.stack(list(self.label_data_3d.values()), dim=0) modified_label_stack = torch.stack(list(self.modified_label_data_3d.values()), dim=0) return img_stack, label_stack, modified_label_stack def disturb_idxs(self, all_idxs, disturbance_mode, disturbance_strength=1., use_2d_override=None): if self.prevent_disturbance: warnings.warn("Disturbed idxs shall be set but disturbance is prevented for dataset.") return use_2d = self.use_2d(use_2d_override) if all_idxs is not None: if isinstance(all_idxs, (np.ndarray, torch.Tensor)): all_idxs = all_idxs.tolist() self.disturbed_idxs = all_idxs else: self.disturbed_idxs = [] # Reset modified data for idx in range(self.__len__(use_2d_override=use_2d)): if use_2d: label_id = self.get_2d_ids()[idx] self.modified_label_data_2d[label_id] = self.label_data_2d[label_id] else: label_id = self.get_3d_ids()[idx] self.modified_label_data_3d[label_id] = self.label_data_3d[label_id] # Now apply disturbance if idx in self.disturbed_idxs: if use_2d: label = self.modified_label_data_2d[label_id].detach().clone() else: label = self.modified_label_data_3d[label_id].detach().clone() with torch_manual_seeded(idx): if str(disturbance_mode)==str(LabelDisturbanceMode.FLIP_ROLL): roll_strength = 10*disturbance_strength if use_2d: modified_label = \ torch.roll( label.transpose(-2,-1), ( int(torch.randn(1)*roll_strength), int(torch.randn(1)*roll_strength) ),(-2,-1) ) else: modified_label = \ torch.roll( label.permute(1,2,0), ( int(torch.randn(1)*roll_strength), int(torch.randn(1)*roll_strength), int(torch.randn(1)*roll_strength) ),(-3,-2,-1) ) elif str(disturbance_mode)==str(LabelDisturbanceMode.AFFINE): b_modified_label = label.unsqueeze(0).cuda() _, b_modified_label, _ = spatial_augment(b_label=b_modified_label, use_2d=use_2d, bspline_num_ctl_points=6, bspline_strength=0., bspline_probability=0., affine_strength=0.09*disturbance_strength, add_affine_translation=0.18*disturbance_strength, affine_probability=1.) modified_label = b_modified_label.squeeze(0).cpu() else: raise ValueError(f"Disturbance mode {disturbance_mode} is not implemented.") if use_2d: self.modified_label_data_2d[label_id] = modified_label else: self.modified_label_data_3d[label_id] = modified_label def train(self, augment=True, use_modified=True): self.do_augment = augment self.use_modified = use_modified def eval(self, augment=False, use_modified=False): self.train(augment, use_modified) def set_augment_at_collate(self, augment_at_collate=True): self.augment_at_collate = augment_at_collate def get_efficient_augmentation_collate_fn(self): use_2d = True if self.use_2d_normal_to else False def collate_closure(batch): batch = torch.utils.data._utils.collate.default_collate(batch) if self.augment_at_collate and self.do_augment: # Augment the whole batch not just one sample b_image = batch['image'].cuda() b_label = batch['label'].cuda() b_modified_label = batch['modified_label'].cuda() b_image, b_label, b_spat_augment_grid = self.augment( b_image, b_label, use_2d, pre_interpolation_factor=self.pre_interpolation_factor ) _, b_modified_label, _ = spatial_augment( b_label=b_modified_label, use_2d=use_2d, b_grid_override=b_spat_augment_grid, pre_interpolation_factor=self.pre_interpolation_factor ) b_spat_augment_grid = b_spat_augment_grid.detach().clone() batch['image'], batch['label'], batch['modified_label'], batch['spat_augment_grid'] = b_image, b_label, b_modified_label, b_spat_augment_grid return batch return collate_closure def augment(self, b_image, b_label, use_2d, noise_strength=0.05, bspline_num_ctl_points=6, bspline_strength=0.03, bspline_probability=.95, affine_strength=0.2, affine_probability=.45, pre_interpolation_factor=2.): if use_2d: assert b_image.dim() == b_label.dim() == 3, \ f"Augmenting 2D. Input batch of image and " \ f"label should be BxHxW but are {b_image.shape} and {b_label.shape}" else: assert b_image.dim() == b_label.dim() == 4, \ f"Augmenting 3D. Input batch of image and " \ f"label should be BxDxHxW but are {b_image.shape} and {b_label.shape}" b_image = augmentNoise(b_image, strength=noise_strength) b_image, b_label, b_spat_augment_grid = spatial_augment( b_image, b_label, bspline_num_ctl_points=bspline_num_ctl_points, bspline_strength=bspline_strength, bspline_probability=bspline_probability, affine_strength=affine_strength, affine_probability=affine_probability, pre_interpolation_factor=pre_interpolation_factor, use_2d=use_2d) b_label = b_label.long() return b_image, b_label, b_spat_augment_grid
[ "torch.utils.data._utils.collate.default_collate", "deep_staple.utils.torch_utils.ensure_dense", "torch.load", "torch.max", "deep_staple.utils.torch_utils.augmentNoise", "torch.tensor", "numpy.quantile", "numpy.linspace", "deep_staple.utils.torch_utils.interpolate_sample", "deep_staple.utils.torch_utils.spatial_augment", "deep_staple.utils.torch_utils.torch_manual_seeded", "warnings.warn", "torch.randn" ]
[((14231, 14259), 'deep_staple.utils.torch_utils.ensure_dense', 'ensure_dense', (['modified_label'], {}), '(modified_label)\n', (14243, 14259), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((22241, 22287), 'deep_staple.utils.torch_utils.augmentNoise', 'augmentNoise', (['b_image'], {'strength': 'noise_strength'}), '(b_image, strength=noise_strength)\n', (22253, 22287), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((22336, 22648), 'deep_staple.utils.torch_utils.spatial_augment', 'spatial_augment', (['b_image', 'b_label'], {'bspline_num_ctl_points': 'bspline_num_ctl_points', 'bspline_strength': 'bspline_strength', 'bspline_probability': 'bspline_probability', 'affine_strength': 'affine_strength', 'affine_probability': 'affine_probability', 'pre_interpolation_factor': 'pre_interpolation_factor', 'use_2d': 'use_2d'}), '(b_image, b_label, bspline_num_ctl_points=\n bspline_num_ctl_points, bspline_strength=bspline_strength,\n bspline_probability=bspline_probability, affine_strength=\n affine_strength, affine_probability=affine_probability,\n pre_interpolation_factor=pre_interpolation_factor, use_2d=use_2d)\n', (22351, 22648), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((6159, 6188), 'torch.load', 'torch.load', (['fixed_weight_file'], {}), '(fixed_weight_file)\n', (6169, 6188), False, 'import torch\n'), ((14597, 14756), 'deep_staple.utils.torch_utils.spatial_augment', 'spatial_augment', ([], {'b_label': 'b_modified_label', 'use_2d': 'use_2d', 'b_grid_override': 'b_spat_augment_grid', 'pre_interpolation_factor': 'self.pre_interpolation_factor'}), '(b_label=b_modified_label, use_2d=use_2d, b_grid_override=\n b_spat_augment_grid, pre_interpolation_factor=self.pre_interpolation_factor\n )\n', (14612, 14756), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((16728, 16819), 'warnings.warn', 'warnings.warn', (['"""Disturbed idxs shall be set but disturbance is prevented for dataset."""'], {}), "(\n 'Disturbed idxs shall be set but disturbance is prevented for dataset.')\n", (16741, 16819), False, 'import warnings\n'), ((20456, 20510), 'torch.utils.data._utils.collate.default_collate', 'torch.utils.data._utils.collate.default_collate', (['batch'], {}), '(batch)\n', (20503, 20510), False, 'import torch\n'), ((3757, 3779), 'torch.max', 'torch.max', (['label_stack'], {}), '(label_stack)\n', (3766, 3779), False, 'import torch\n'), ((6518, 6571), 'numpy.quantile', 'np.quantile', (['fixed_weights', 'fixed_weight_min_quantile'], {}), '(fixed_weights, fixed_weight_min_quantile)\n', (6529, 6571), True, 'import numpy as np\n'), ((13152, 13168), 'torch.tensor', 'torch.tensor', (['[]'], {}), '([])\n', (13164, 13168), False, 'import torch\n'), ((13218, 13234), 'torch.tensor', 'torch.tensor', (['[]'], {}), '([])\n', (13230, 13234), False, 'import torch\n'), ((13579, 13595), 'torch.tensor', 'torch.tensor', (['[]'], {}), '([])\n', (13591, 13595), False, 'import torch\n'), ((13645, 13661), 'torch.tensor', 'torch.tensor', (['[]'], {}), '([])\n', (13657, 13661), False, 'import torch\n'), ((14945, 14994), 'deep_staple.utils.torch_utils.interpolate_sample', 'interpolate_sample', (['b_image', 'b_label', '(2.0)', 'use_2d'], {}), '(b_image, b_label, 2.0, use_2d)\n', (14963, 14994), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((15028, 15105), 'deep_staple.utils.torch_utils.interpolate_sample', 'interpolate_sample', ([], {'b_label': 'b_modified_label', 'scale_factor': '(2.0)', 'use_2d': 'use_2d'}), '(b_label=b_modified_label, scale_factor=2.0, use_2d=use_2d)\n', (15046, 15105), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((21026, 21185), 'deep_staple.utils.torch_utils.spatial_augment', 'spatial_augment', ([], {'b_label': 'b_modified_label', 'use_2d': 'use_2d', 'b_grid_override': 'b_spat_augment_grid', 'pre_interpolation_factor': 'self.pre_interpolation_factor'}), '(b_label=b_modified_label, use_2d=use_2d, b_grid_override=\n b_spat_augment_grid, pre_interpolation_factor=self.pre_interpolation_factor\n )\n', (21041, 21185), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((17843, 17867), 'deep_staple.utils.torch_utils.torch_manual_seeded', 'torch_manual_seeded', (['idx'], {}), '(idx)\n', (17862, 17867), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((6397, 6421), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', '(5)'], {}), '(0.0, 1.0, 5)\n', (6408, 6421), True, 'import numpy as np\n'), ((19194, 19457), 'deep_staple.utils.torch_utils.spatial_augment', 'spatial_augment', ([], {'b_label': 'b_modified_label', 'use_2d': 'use_2d', 'bspline_num_ctl_points': '(6)', 'bspline_strength': '(0.0)', 'bspline_probability': '(0.0)', 'affine_strength': '(0.09 * disturbance_strength)', 'add_affine_translation': '(0.18 * disturbance_strength)', 'affine_probability': '(1.0)'}), '(b_label=b_modified_label, use_2d=use_2d,\n bspline_num_ctl_points=6, bspline_strength=0.0, bspline_probability=0.0,\n affine_strength=0.09 * disturbance_strength, add_affine_translation=\n 0.18 * disturbance_strength, affine_probability=1.0)\n', (19209, 19457), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((8419, 8436), 'deep_staple.utils.torch_utils.ensure_dense', 'ensure_dense', (['lbl'], {}), '(lbl)\n', (8431, 8436), False, 'from deep_staple.utils.torch_utils import interpolate_sample, augmentNoise, spatial_augment, torch_manual_seeded, ensure_dense\n'), ((18284, 18298), 'torch.randn', 'torch.randn', (['(1)'], {}), '(1)\n', (18295, 18298), False, 'import torch\n'), ((18359, 18373), 'torch.randn', 'torch.randn', (['(1)'], {}), '(1)\n', (18370, 18373), False, 'import torch\n'), ((18730, 18744), 'torch.randn', 'torch.randn', (['(1)'], {}), '(1)\n', (18741, 18744), False, 'import torch\n'), ((18805, 18819), 'torch.randn', 'torch.randn', (['(1)'], {}), '(1)\n', (18816, 18819), False, 'import torch\n'), ((18880, 18894), 'torch.randn', 'torch.randn', (['(1)'], {}), '(1)\n', (18891, 18894), False, 'import torch\n')]
from __future__ import annotations from argparse import ArgumentParser from collections import deque import numpy as np def count_lte(mat: np.ndarray) -> np.ndarray: """ lte[i,j] = count (neighbours <= mat[i,j]) . t . l . r . b . """ aug = np.pad(mat.astype(float), (1, 1), mode="constant", constant_values=np.inf) l = aug[1:-1, :-2] <= mat r = aug[1:-1, 2:] <= mat t = aug[:-2, 1:-1] <= mat b = aug[2:, 1:-1] <= mat return l + r + t + b def part1(xs): lte = count_lte(xs) return np.sum(1 + xs[lte == 0]) def get_basin(xs: np.ndarray, row: int, col: int) -> list[tuple[int, int]]: """ Return the indices of the locations flowing towards the low point `row, col`. """ h, w = xs.shape out = [] q = deque() v = np.zeros_like(xs).astype(bool) q.append((row, col)) v[row, col] = True while q: i, j = q.popleft() out.append((i, j)) for di, dj in [(0, -1), (0, 1), (-1, 0), (1, 0)]: i2 = i + di j2 = j + dj if not (0 <= i2 < h) or not (0 <= j2 < w): continue if v[i2, j2]: continue if xs[i2, j2] == 9: continue q.append((i2, j2)) v[i2, j2] = True return out def part2(xs): lte = count_lte(xs) basins = [get_basin(xs, row, col) for row, col in zip(*np.where(lte == 0))] top = sorted(map(len, basins), reverse=True) return np.product(top[:3]) def visualize(xs): import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap lte = count_lte(xs) cmap = cm.Blues_r(np.linspace(0, 1, 10)) cmap[-1] = [0, 0, 0, 1] plt.imshow(xs, cmap=ListedColormap(cmap)) basins = sorted( [get_basin(xs, row, col) for row, col in zip(*np.where(lte == 0))], key=len, reverse=True, ) cmap = cm.viridis(np.linspace(0.8, 0.2, 6)) for i in range(3): r, c = zip(*basins[i]) plt.scatter(c, r, c=[cmap[i * 2]], marker="s") r, c = np.where(lte == 0) plt.scatter(c, r, c="red", marker="x") plt.show() def main(): with open(args.file) as fp: xs = np.array([[int(i) for i in x.strip()] for x in fp.readlines()]) if args.visualize: visualize(xs) return print("Part 1:", part1(xs)) print("Part 2:", part2(xs)) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--file", type=str, required=True) parser.add_argument( "--visualize", action="store_true", help="Visualize the map with low points and basins", ) args = parser.parse_args() main()
[ "numpy.product", "collections.deque", "argparse.ArgumentParser", "numpy.where", "matplotlib.colors.ListedColormap", "numpy.sum", "numpy.linspace", "matplotlib.pyplot.scatter", "numpy.zeros_like", "matplotlib.pyplot.show" ]
[((544, 568), 'numpy.sum', 'np.sum', (['(1 + xs[lte == 0])'], {}), '(1 + xs[lte == 0])\n', (550, 568), True, 'import numpy as np\n'), ((787, 794), 'collections.deque', 'deque', ([], {}), '()\n', (792, 794), False, 'from collections import deque\n'), ((1510, 1529), 'numpy.product', 'np.product', (['top[:3]'], {}), '(top[:3])\n', (1520, 1529), True, 'import numpy as np\n'), ((2125, 2143), 'numpy.where', 'np.where', (['(lte == 0)'], {}), '(lte == 0)\n', (2133, 2143), True, 'import numpy as np\n'), ((2148, 2186), 'matplotlib.pyplot.scatter', 'plt.scatter', (['c', 'r'], {'c': '"""red"""', 'marker': '"""x"""'}), "(c, r, c='red', marker='x')\n", (2159, 2186), True, 'import matplotlib.pyplot as plt\n'), ((2192, 2202), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2200, 2202), True, 'import matplotlib.pyplot as plt\n'), ((2494, 2510), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (2508, 2510), False, 'from argparse import ArgumentParser\n'), ((1714, 1735), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(10)'], {}), '(0, 1, 10)\n', (1725, 1735), True, 'import numpy as np\n'), ((1978, 2002), 'numpy.linspace', 'np.linspace', (['(0.8)', '(0.2)', '(6)'], {}), '(0.8, 0.2, 6)\n', (1989, 2002), True, 'import numpy as np\n'), ((2066, 2112), 'matplotlib.pyplot.scatter', 'plt.scatter', (['c', 'r'], {'c': '[cmap[i * 2]]', 'marker': '"""s"""'}), "(c, r, c=[cmap[i * 2]], marker='s')\n", (2077, 2112), True, 'import matplotlib.pyplot as plt\n'), ((803, 820), 'numpy.zeros_like', 'np.zeros_like', (['xs'], {}), '(xs)\n', (816, 820), True, 'import numpy as np\n'), ((1790, 1810), 'matplotlib.colors.ListedColormap', 'ListedColormap', (['cmap'], {}), '(cmap)\n', (1804, 1810), False, 'from matplotlib.colors import ListedColormap\n'), ((1427, 1445), 'numpy.where', 'np.where', (['(lte == 0)'], {}), '(lte == 0)\n', (1435, 1445), True, 'import numpy as np\n'), ((1888, 1906), 'numpy.where', 'np.where', (['(lte == 0)'], {}), '(lte == 0)\n', (1896, 1906), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf def split_reim(array): """Split a complex valued matrix into its real and imaginary parts. Args: array(complex): An array of shape (batch_size, N, N) or (batch_size, N, N, 1) Returns: split_array(float): An array of shape (batch_size, N, N, 2) containing the real part on one channel and the imaginary part on another channel """ real = np.real(array) imag = np.imag(array) split_array = np.stack((real, imag), axis=3) return split_array def split_reim_tensor(array): """Split a complex valued tensor into its real and imaginary parts. Args: array(complex): A tensor of shape (batch_size, N, N) or (batch_size, N, N, 1) Returns: split_array(float): A tensor of shape (batch_size, N, N, 2) containing the real part on one channel and the imaginary part on another channel """ real = tf.math.real(array) imag = tf.math.imag(array) split_array = tf.stack((real, imag), axis=3) return split_array def split_reim_channels(array): """Split a complex valued tensor into its real and imaginary parts. Args: array(complex): A tensor of shape (batch_size, N, N) or (batch_size, N, N, 1) Returns: split_array(float): A tensor of shape (batch_size, N, N, 2) containing the real part on one channel and the imaginary part on another channel """ real = tf.math.real(array) imag = tf.math.imag(array) n_ch = array.get_shape().as_list()[3] split_array = tf.concat((real, imag), axis=3) return split_array def join_reim(array): """Join the real and imaginary channels of a matrix to a single complex-valued matrix. Args: array(float): An array of shape (batch_size, N, N, 2) Returns: joined_array(complex): An complex-valued array of shape (batch_size, N, N, 1) """ joined_array = array[:, :, :, 0] + 1j * array[:, :, :, 1] return joined_array def join_reim_tensor(array): """Join the real and imaginary channels of a matrix to a single complex-valued matrix. Args: array(float): An array of shape (batch_size, N, N, 2) Returns: joined_array(complex): A complex-valued array of shape (batch_size, N, N) """ joined_array = tf.cast(array[:, :, :, 0], 'complex64') + \ 1j * tf.cast(array[:, :, :, 1], 'complex64') return joined_array def join_reim_channels(array): """Join the real and imaginary channels of a matrix to a single complex-valued matrix. Args: array(float): An array of shape (batch_size, N, N, ch) Returns: joined_array(complex): A complex-valued array of shape (batch_size, N, N, ch/2) """ ch = array.get_shape().as_list()[3] joined_array = tf.cast(array[:, :, :, :int(ch / 2)], dtype=tf.complex64) + 1j * tf.cast(array[:, :, :, int(ch / 2):], dtype=tf.complex64) return joined_array def convert_to_frequency_domain(images): """Convert an array of images to their Fourier transforms. Args: images(float): An array of shape (batch_size, N, N, 2) Returns: spectra(float): An FFT-ed array of shape (batch_size, N, N, 2) """ n = images.shape[1] spectra = split_reim(np.fft.fft2(join_reim(images), axes=(1, 2))) return spectra def convert_tensor_to_frequency_domain(images): """Convert a tensor of images to their Fourier transforms. Args: images(float): A tensor of shape (batch_size, N, N, 2) Returns: spectra(float): An FFT-ed tensor of shape (batch_size, N, N, 2) """ n = images.shape[1] spectra = split_reim_tensor(tf.signal.fft2d(join_reim_tensor(images))) return spectra def convert_to_image_domain(spectra): """Convert an array of Fourier spectra to the corresponding images. Args: spectra(float): An array of shape (batch_size, N, N, 2) Returns: images(float): An IFFT-ed array of shape (batch_size, N, N, 2) """ n = spectra.shape[1] images = split_reim(np.fft.ifft2(join_reim(spectra), axes=(1, 2))) return images def convert_tensor_to_image_domain(spectra): """Convert an array of Fourier spectra to the corresponding images. Args: spectra(float): An array of shape (batch_size, N, N, 2) Returns: images(float): An IFFT-ed array of shape (batch_size, N, N, 2) """ n = spectra.shape[1] images = split_reim_tensor(tf.signal.ifft2d(join_reim_tensor(spectra))) return images
[ "tensorflow.math.imag", "numpy.real", "numpy.stack", "tensorflow.concat", "tensorflow.math.real", "tensorflow.cast", "numpy.imag", "tensorflow.stack" ]
[((417, 431), 'numpy.real', 'np.real', (['array'], {}), '(array)\n', (424, 431), True, 'import numpy as np\n'), ((443, 457), 'numpy.imag', 'np.imag', (['array'], {}), '(array)\n', (450, 457), True, 'import numpy as np\n'), ((476, 506), 'numpy.stack', 'np.stack', (['(real, imag)'], {'axis': '(3)'}), '((real, imag), axis=3)\n', (484, 506), True, 'import numpy as np\n'), ((911, 930), 'tensorflow.math.real', 'tf.math.real', (['array'], {}), '(array)\n', (923, 930), True, 'import tensorflow as tf\n'), ((942, 961), 'tensorflow.math.imag', 'tf.math.imag', (['array'], {}), '(array)\n', (954, 961), True, 'import tensorflow as tf\n'), ((980, 1010), 'tensorflow.stack', 'tf.stack', (['(real, imag)'], {'axis': '(3)'}), '((real, imag), axis=3)\n', (988, 1010), True, 'import tensorflow as tf\n'), ((1417, 1436), 'tensorflow.math.real', 'tf.math.real', (['array'], {}), '(array)\n', (1429, 1436), True, 'import tensorflow as tf\n'), ((1448, 1467), 'tensorflow.math.imag', 'tf.math.imag', (['array'], {}), '(array)\n', (1460, 1467), True, 'import tensorflow as tf\n'), ((1528, 1559), 'tensorflow.concat', 'tf.concat', (['(real, imag)'], {'axis': '(3)'}), '((real, imag), axis=3)\n', (1537, 1559), True, 'import tensorflow as tf\n'), ((2277, 2316), 'tensorflow.cast', 'tf.cast', (['array[:, :, :, 0]', '"""complex64"""'], {}), "(array[:, :, :, 0], 'complex64')\n", (2284, 2316), True, 'import tensorflow as tf\n'), ((2334, 2373), 'tensorflow.cast', 'tf.cast', (['array[:, :, :, 1]', '"""complex64"""'], {}), "(array[:, :, :, 1], 'complex64')\n", (2341, 2373), True, 'import tensorflow as tf\n')]
# /bin/env python # coding: utf-8 from __future__ import print_function import sys import argparse import logging import os import math import cv2 import numpy as np class GenerateSyntheticData: import PythonMagick as Magick def __init__(self, logger=None): if logger == None: logging.basicConfig(stream=sys.stdout, level=logging.INFO) self.logger = logging.getLogger() else: self.logger = logger @staticmethod def appendArgumentParser(argparser): argparser.add_argument('--shift-x', type=int, help='') argparser.add_argument('--shift-y', type=int, help='') argparser.add_argument('--skew-x', type=float, help='') argparser.add_argument('--skew-y', type=float, help='') argparser.add_argument('--rotate', type=float, help='rotates image clock- or counterclock-wise (angle in degrees)') argparser.add_argument('--horizontal_flip', action='store_true', help='horizontally flips image') argparser.add_argument('--zoom', type=str, help='resize image; argument given in percentage') argparser.add_argument('--contrast', type=int, help='default=0; 0~infinity (integer times contract is applided to image)') argparser.add_argument('--brightness', type=float, help='default=100') argparser.add_argument('--saturation', type=float, help='default=100') argparser.add_argument('--hue', type=float, help='default=100') argparser.add_argument('--blur', action='store_true', help='') argparser.add_argument('--blur_radius', type=float, default=10, help='') argparser.add_argument('--blur_sigma', type=float, default=1, help='') argparser.add_argument('--gaussianBlur', action='store_true', help='') argparser.add_argument('--gaussianBlur_width', type=float, default=5, help='') argparser.add_argument('--gaussianBlur_sigma', type=float, default=1, help='') argparser.add_argument('--despeckle', action='store_true', help='') argparser.add_argument('--enhance', action='store_true', help='') argparser.add_argument('--equalize', action='store_true', help='') argparser.add_argument('--gamma', type=float, help='0 ~ 2; 1 is default') argparser.add_argument('--implode', type=float, help='Implode factor 0~1; 0 (nothing) to 1 (full); 0.0 ~ 0.5 recommended.') argparser.add_argument('--negate', action='store_true', help='') argparser.add_argument('--normalize', action='store_true', help='') argparser.add_argument('--quantize', action='store_true', help='') argparser.add_argument('--reduceNoise', type=int, help='default=1') argparser.add_argument('--shade', action='store_true', help='') argparser.add_argument('--shade_azimuth', type=float, default=50, help='') argparser.add_argument('--shade_elevation', type=float, default=50, help='') argparser.add_argument('--sharpen', action='store_true', help='') argparser.add_argument('--sharpen_radius', type=float, default=1, help='') argparser.add_argument('--sharpen_sigma', type=float, default=0.5, help='') argparser.add_argument('--swirl', type=float, help='degree; default=10') argparser.add_argument('--wave', action='store_true', help='') argparser.add_argument('--wave_amplitude', type=float, default=5, help='') argparser.add_argument('--wave_wavelength', type=float, default=100, help='') argparser.add_argument('--auto', action='store_true', help='') argparser.add_argument('--auto_ops', type=str, default='', help='') argparser.add_argument('--auto_rotate_min', type=float, default=0, help='') argparser.add_argument('--auto_rotate_max', type=float, default=0, help='') argparser.add_argument('--auto_zoom_min', type=float, default=0, help='') argparser.add_argument('--auto_zoom_max', type=float, default=0, help='') def generateRandomOptions(self, cmdArg): def _generateRandomOptionsShift(args): args.shift_x = int(np.abs(np.random.normal(0, 3))) # -10 ~ +10 args.shift_y = int(np.abs(np.random.normal(0, 1))) # -3 ~ +3 def _generateRandomOptionsSkew(args): args.skew_x = int(np.random.normal(0, 3)) # -10 ~ +10 args.skew_y = int(np.random.normal(0, 3)) # -10 ~ +10 def _generateRandomOptionsRotate(args): if cmdArg.auto_rotate_min != cmdArg.auto_rotate_max: args.rotate = int(np.random.uniform(cmdArg.auto_rotate_min, cmdArg.auto_rotate_max)) else: args.rotate = int(np.random.normal(0, 3)) # -10 ~ +10 def _generateRandomOptionsZoom(args): if cmdArg.auto_zoom_min != cmdArg.auto_zoom_max: args.zoom = str(int(np.random.uniform(cmdArg.auto_zoom_min, cmdArg.auto_zoom_max))) + '%' else: args.zoom = str(int(np.random.normal(100, 3))) + '%' # 90% ~ 110% def _generateRandomOptionsContrast(args): args.contrast = int(np.abs(np.random.normal(0, 1))) # 0 ~ +3 def _generateRandomOptionsBrightness(args): args.brightness = np.random.normal(100, 5) # 85 ~ 115 def _generateRandomOptionsSaturation(args): args.saturation = np.random.normal(100, 5) # 85 ~ 115 def _generateRandomOptionsHue(args): args.hue = np.random.normal(100, 5) # 85 ~ 115 def _generateRandomOptionsBlur(args): if np.random.binomial(1,0.1): # do blur if np.random.binomial(1,0.5): args.blur = True else: args.gaussianBlur = True if args.blur: args.blur_radius = np.abs(np.random.normal(0, 3)) # 0 ~ 10 args.blur_sigma = np.abs(np.random.normal(0, 0.7)) # 0 ~ 2 if args.gaussianBlur: args.gaussianBlur_width = np.abs(np.random.normal(0, 3)) # 0 ~ 10 args.gaussianBlur_sigma = np.abs(np.random.normal(0, 0.7)) # 0 ~ 2 def _generateRandomOptionsHorizontalFlip(args): args.horizontal_flip = (np.random.binomial(1,0.1) > 0) def _generateRandomOptionsDespeckle(args): args.despeckle = (np.random.binomial(1,0.5) > 0) def _generateRandomOptionsEnhance(args): args.enhance = (np.random.binomial(1,0.5) > 0) def _generateRandomOptionsEqualize(args): args.equalize = (np.random.binomial(1,0.1) == 1) def _generateRandomOptionsNegate(args): args.negate = (np.random.binomial(1,0.1) == 1) def _generateRandomOptionsNormalize(args): args.normalize = (np.random.binomial(1,0.1) > 0) def _generateRandomOptionsQuantize(args): args.quantize = (np.random.binomial(1,0.1) > 0) def _generateRandomOptionsGamma(args): args.gamma = np.abs(np.random.normal(1, 0.03)) # 0 ~ 2 def _generateRandomOptionsImplode(args): args.implode = 0 if np.random.binomial(1,0.5) > 0: args.implode = np.random.normal(0, 0.15) # -0.5 ~ 0.5 def _generateRandomOptionsReduceNoise(args): args.reduceNoise = int(np.abs(np.random.normal(0, 0.7))) # 0 ~ 2 def _generateRandomOptionsShade(args): args.shade = (np.random.binomial(1,0.1) > 0) if args.shade: args.shade_azimuth = np.random.normal(50, 17) # 0 ~ 100 args.shade_elevation = np.random.normal(50, 17) # 0 ~ 100 def _generateRandomOptionsSharpen(args): args.sharpen = (np.random.binomial(1,0.1) > 0) if args.sharpen: args.sharpen_radius = np.abs(np.random.normal(0, 0.7)) # 0 ~ 2 args.sharpen_sigma = np.abs(np.random.normal(0, 0.3)) # 0 ~ 1 def _generateRandomOptionsSwirl(args): args.swirl = np.random.normal(0, 5) # -15 ~ +15 def _generateRandomOptionsWave(args): args.wave = (np.random.binomial(1,0.3) > 0) if args.wave: args.wave_amplitude = np.abs(np.random.normal(5, 0.3)) # 0 ~ 10 args.wave_wavelength = np.abs(np.random.normal(100, 10)) # 0 ~ 200 args = argparse.Namespace() args.shift_x = args.shift_y = None args.skew_x = args.skew_y = None args.rotate = args.zoom = None args.contrast = args.brightness = args.saturation = args.hue = None args.blur = args.gaussianBlur = None args.horizontal_flip = None args.despeckle = args.enhance = args.reduceNoise = None args.equalize = args.negate = args.normalize = args.quantize = args.gamma = None args.shade = None args.sharpen = None args.implode = args.swirl = args.wave = None if len(cmdArg.auto_ops)>0: for op in cmdArg.auto_ops.split(","): if op == 'shift': _generateRandomOptionsShift(args) elif op == 'skew': _generateRandomOptionsSkew(args) elif op == 'rotate': _generateRandomOptionsRotate(args) elif op == 'zoom': _generateRandomOptionsZoom(args) elif op == 'contrast': _generateRandomOptionsContrast(args) elif op == 'brightness': _generateRandomOptionsBrightness(args) elif op == 'saturation': _generateRandomOptionsSaturation(args) elif op == 'hue': _generateRandomOptionsHue(args) elif op == 'blur': _generateRandomOptionsBlur(args) elif op == 'horizontal_flip': _generateRandomOptionsHorizontalFlip(args) elif op == 'despeckle': _generateRandomOptionsDespeckle(args) elif op == 'enhance': _generateRandomOptionsEnhance(args) elif op == 'equalize': _generateRandomOptionsEqualize(args) elif op == 'negate': _generateRandomOptionsNegate(args) elif op == 'normalize': _generateRandomOptionsNormalize(args) elif op == 'quantize': _generateRandomOptionsQuantize(args) elif op == 'gamma': _generateRandomOptionsGamma(args) elif op == 'implode': _generateRandomOptionsImplode(args) elif op == 'reduceNoise': _generateRandomOptionsReduceNoise(args) elif op == 'shade': _generateRandomOptionsShade(args) elif op == 'sharpen': _generateRandomOptionsSharpen(args) elif op == 'swirl': _generateRandomOptionsSwirl(args) elif op == 'wave': _generateRandomOptionsWave(args) else: self.logger.error('Unknown Operation Name ' + op) else: # apply all operations _generateRandomOptionsShift(args) _generateRandomOptionsSkew(args) _generateRandomOptionsRotate(args) _generateRandomOptionsZoom(args) _generateRandomOptionsContrast(args) _generateRandomOptionsBrightness(args) _generateRandomOptionsSaturation(args) _generateRandomOptionsHue(args) _generateRandomOptionsBlur(args) #_generateRandomOptionsHorizontalFlip(args) _generateRandomOptionsDespeckle(args) _generateRandomOptionsEnhance(args) #_generateRandomOptionsEqualize(args) #_generateRandomOptionsNegate(args) _generateRandomOptionsNormalize(args) _generateRandomOptionsQuantize(args) _generateRandomOptionsGamma(args) _generateRandomOptionsImplode(args) _generateRandomOptionsReduceNoise(args) _generateRandomOptionsShade(args) _generateRandomOptionsSharpen(args) _generateRandomOptionsSwirl(args) #_generateRandomOptionsWave(args) self.logger.debug('Randomly generated options: ') for key in vars(args): self.logger.debug(' -- %s: %s' % (key, getattr(args, key))) self.logger.debug('') return args def isVideo(self, inputF): video_file_extensions = ( '.264', '.3g2', '.3gp', '.3gp2', '.3gpp', '.3gpp2', '.3mm', '.3p2', '.60d', '.787', '.89', '.aaf', '.aec', '.aep', '.aepx', '.aet', '.aetx', '.ajp', '.ale', '.am', '.amc', '.amv', '.amx', '.anim', '.aqt', '.arcut', '.arf', '.asf', '.asx', '.avb', '.avc', '.avd', '.avi', '.avp', '.avs', '.avs', '.avv', '.axm', '.bdm', '.bdmv', '.bdt2', '.bdt3', '.bik', '.bin', '.bix', '.bmk', '.bnp', '.box', '.bs4', '.bsf', '.bvr', '.byu', '.camproj', '.camrec', '.camv', '.ced', '.cel', '.cine', '.cip', '.clpi', '.cmmp', '.cmmtpl', '.cmproj', '.cmrec', '.cpi', '.cst', '.cvc', '.cx3', '.d2v', '.d3v', '.dat', '.dav', '.dce', '.dck', '.dcr', '.dcr', '.ddat', '.dif', '.dir', '.divx', '.dlx', '.dmb', '.dmsd', '.dmsd3d', '.dmsm', '.dmsm3d', '.dmss', '.dmx', '.dnc', '.dpa', '.dpg', '.dream', '.dsy', '.dv', '.dv-avi', '.dv4', '.dvdmedia', '.dvr', '.dvr-ms', '.dvx', '.dxr', '.dzm', '.dzp', '.dzt', '.edl', '.evo', '.eye', '.ezt', '.f4p', '.f4v', '.fbr', '.fbr', '.fbz', '.fcp', '.fcproject', '.ffd', '.flc', '.flh', '.fli', '.flv', '.flx', '.gfp', '.gl', '.gom', '.grasp', '.gts', '.gvi', '.gvp', '.h264', '.hdmov', '.hkm', '.ifo', '.imovieproj', '.imovieproject', '.ircp', '.irf', '.ism', '.ismc', '.ismv', '.iva', '.ivf', '.ivr', '.ivs', '.izz', '.izzy', '.jss', '.jts', '.jtv', '.k3g', '.kmv', '.ktn', '.lrec', '.lsf', '.lsx', '.m15', '.m1pg', '.m1v', '.m21', '.m21', '.m2a', '.m2p', '.m2t', '.m2ts', '.m2v', '.m4e', '.m4u', '.m4v', '.m75', '.mani', '.meta', '.mgv', '.mj2', '.mjp', '.mjpg', '.mk3d', '.mkv', '.mmv', '.mnv', '.mob', '.mod', '.modd', '.moff', '.moi', '.moov', '.mov', '.movie', '.mp21', '.mp21', '.mp2v', '.mp4', '.mp4v', '.mpe', '.mpeg', '.mpeg1', '.mpeg4', '.mpf', '.mpg', '.mpg2', '.mpgindex', '.mpl', '.mpl', '.mpls', '.mpsub', '.mpv', '.mpv2', '.mqv', '.msdvd', '.mse', '.msh', '.mswmm', '.mts', '.mtv', '.mvb', '.mvc', '.mvd', '.mve', '.mvex', '.mvp', '.mvp', '.mvy', '.mxf', '.mxv', '.mys', '.ncor', '.nsv', '.nut', '.nuv', '.nvc', '.ogm', '.ogv', '.ogx', '.osp', '.otrkey', '.pac', '.par', '.pds', '.pgi', '.photoshow', '.piv', '.pjs', '.playlist', '.plproj', '.pmf', '.pmv', '.pns', '.ppj', '.prel', '.pro', '.prproj', '.prtl', '.psb', '.psh', '.pssd', '.pva', '.pvr', '.pxv', '.qt', '.qtch', '.qtindex', '.qtl', '.qtm', '.qtz', '.r3d', '.rcd', '.rcproject', '.rdb', '.rec', '.rm', '.rmd', '.rmd', '.rmp', '.rms', '.rmv', '.rmvb', '.roq', '.rp', '.rsx', '.rts', '.rts', '.rum', '.rv', '.rvid', '.rvl', '.sbk', '.sbt', '.scc', '.scm', '.scm', '.scn', '.screenflow', '.sec', '.sedprj', '.seq', '.sfd', '.sfvidcap', '.siv', '.smi', '.smi', '.smil', '.smk', '.sml', '.smv', '.spl', '.sqz', '.srt', '.ssf', '.ssm', '.stl', '.str', '.stx', '.svi', '.swf', '.swi', '.swt', '.tda3mt', '.tdx', '.thp', '.tivo', '.tix', '.tod', '.tp', '.tp0', '.tpd', '.tpr', '.trp', '.ts', '.tsp', '.ttxt', '.tvs', '.usf', '.usm', '.vc1', '.vcpf', '.vcr', '.vcv', '.vdo', '.vdr', '.vdx', '.veg', '.vem', '.vep', '.vf', '.vft', '.vfw', '.vfz', '.vgz', '.vid', '.video', '.viewlet', '.viv', '.vivo', '.vlab', '.vob', '.vp3', '.vp6', '.vp7', '.vpj', '.vro', '.vs4', '.vse', '.vsp', '.w32', '.wcp', '.webm', '.wlmp', '.wm', '.wmd', '.wmmp', '.wmv', '.wmx', '.wot', '.wp3', '.wpl', '.wtv', '.wve', '.wvx', '.xej', '.xel', '.xesc', '.xfl', '.xlmv', '.xmv', '.xvid', '.y4m', '.yog', '.yuv', '.zeg', '.zm1', '.zm2', '.zm3', '.zmv') if inputF.endswith((video_file_extensions)): return True return False def getFPS(self, vF): video = cv2.VideoCapture(vF); major_ver, _, _ = (cv2.__version__).split('.') if int(major_ver) < 3 : fps = video.get(cv2.cv.CV_CAP_PROP_FPS) else : fps = video.get(cv2.CAP_PROP_FPS) video.release() return fps def splitFromVideo(self, inputF, outputFPrefix): retVal = [] vid = cv2.VideoCapture(inputF) idx = 0 while(True): ret, frame = vid.read() if not ret: break name = outputFPrefix + '_frame' + str(idx) + '.png' cv2.imwrite(name, frame) retVal.append(name) idx += 1 return retVal def mergeIntoVideo(self, inFs, outputF, FPS): frame = cv2.imread(inFs[0]) height, width, _ = frame.shape video = cv2.VideoWriter(outputF, cv2.VideoWriter_fourcc(*'mp4v'), FPS, (width, height)) for inF in inFs: video.write(cv2.imread(inF)) video.release() def generate(self, inputF, outputF, args): if args.auto: auto_options = self.generateRandomOptions(args) logger.info('Random options: ' + str(auto_options)) if self.isVideo(inputF): FPS = self.getFPS(inputF) inputFs = self.splitFromVideo(inputF, outputF+'_input') outputFs = [] for idx in range(0, len(inputFs)): iF = inputFs[idx] oF = outputF + '_output_frame' + str(idx) + '.png' if args.auto: self._generate(iF, oF, auto_options) else: self._generate(iF, oF, args) outputFs.append(oF) self.mergeIntoVideo(outputFs, outputF, FPS) for f in inputFs: os.remove(f) for f in outputFs: os.remove(f) return True else: if args.auto: return self._generate(inputF, outputF, auto_options) else: return self._generate(inputF, outputF, args) def _generate(self, inputF, outputF, args): inputImage = self.Magick.Image(inputF) input_width = inputImage.size().width() input_height = inputImage.size().height() self.logger.debug('Input width and height: %d x %d' % (input_width, input_height)) # make image ready to be modified inputImage.modifyImage() inputImage.backgroundColor(self.Magick.Color('black')) if args.shift_x != None: inputImage.roll(args.shift_x, 0) if args.shift_y != None: inputImage.roll(0, args.shift_y) if args.skew_x != None and args.skew_y != None: inputImage.shear(args.skew_x, args.skew_y) elif args.skew_x != None: inputImage.shear(args.skew_x, 0) if args.skew_y != None: inputImage.shear(0, args.skew_y) if args.rotate != None: inputImage.rotate(args.rotate) inputImage.crop(self.Magick.Geometry(input_width, input_height, 0, 0)) if args.horizontal_flip: inputImage.flop() if args.zoom != None: inputImage.sample(self.Magick.Geometry(args.zoom)) if int(args.zoom.strip()[0:-1]) >= 100: inputImage.crop(self.Magick.Geometry(input_width, input_height, int((inputImage.size().width() - input_width) / 2), int((inputImage.size().height() - input_height) / 2))) else: # PythonMagick is missing extent() API # inputImage.exent(Magick.Geometry(input_width, input_height), Magick.GravityType.CenterGravity) smallWidth = inputImage.size().width() smallHeight = inputImage.size().height() inputImage.size(self.Magick.Geometry(input_width, input_height)) inputImage.draw(self.Magick.DrawableRectangle(smallWidth, smallHeight, input_width, input_height)) inputImage.draw(self.Magick.DrawableRectangle(smallWidth, 0, input_width, smallHeight)) inputImage.draw(self.Magick.DrawableRectangle(0, smallHeight, smallWidth, input_height)) inputImage.roll(int((input_width - smallWidth) / 2), int((input_height - smallHeight) / 2)) if args.contrast != None: for _ in range(0, args.contrast): inputImage.contrast(args.contrast) if args.brightness != None or args.saturation != None or args.hue != None: if args.brightness is None: args.brightness = 100 if args.saturation is None: args.saturation = 100 if args.hue is None: args.hue = 100 inputImage.modulate(args.brightness, args.saturation, args.hue) if args.blur: inputImage.blur(args.blur_radius, args.blur_sigma) if args.gaussianBlur: inputImage.gaussianBlur(args.gaussianBlur_width, args.gaussianBlur_sigma) if args.despeckle: inputImage.despeckle() if args.enhance: inputImage.enhance() if args.equalize: inputImage.equalize() if args.gamma != None: inputImage.gamma(args.gamma) if args.implode != None: inputImage.implode(args.implode) if args.negate: inputImage.negate() if args.normalize: inputImage.normalize() if args.quantize: inputImage.quantize() if args.reduceNoise != None: inputImage.reduceNoise(args.reduceNoise) if args.shade: inputImage.shade(args.shade_azimuth, args.shade_elevation) if args.sharpen: inputImage.sharpen(args.sharpen_radius, args.sharpen_sigma) if args.swirl != None: inputImage.swirl(args.swirl) if args.wave: inputImage.wave(args.wave_amplitude, args.wave_wavelength) inputImage.crop(self.Magick.Geometry(input_width, input_height, int(math.fabs((inputImage.size().width() - input_width) / 2)), int(math.fabs((inputImage.size().height() - input_height) / 2)))) inputImage.write(outputF) self.logger.debug('Output width and height: %d x %d' % (inputImage.size().width(), inputImage.size().height())) return True if __name__ == "__main__": argparser = argparse.ArgumentParser() argparser.add_argument('-l', '--log-level', default='INFO', help="log-level (INFO|WARN|DEBUG|FATAL|ERROR)") argparser.add_argument('-i', '--input', required=True, help='Input image file name') argparser.add_argument('-o', '--output', required=True, help='Output image file name') argparser.add_argument('-w', '--overwrite', action='store_true', help='If set, will overwrite the existing output file') GenerateSyntheticData.appendArgumentParser(argparser) args = argparser.parse_args() logging.basicConfig(stream=sys.stdout, level=args.log_level) logger = logging.getLogger("DragonFly-ASL-GSD") logger.debug('CLI arguments') for key in vars(args): logger.debug(' -- %s: %s' % (key, getattr(args, key))) logger.debug('') # check input file exists if not os.path.isfile(args.input): logger.error('Input file %s does not exist: ' % args.input) sys.exit(1) # check if output file exists if os.path.isfile(args.output) and not args.overwrite: try: input = raw_input except NameError: pass yn = input('Do you wish to overwrite %s? (y/n) ' % args.output) if yn != 'y' and yn != 'Y': logger.error('Output file %s will not be overwritten.' % args.output) sys.exit(1) GSD = GenerateSyntheticData(logger=logger) status = GSD.generate(args.input, args.output, args) logger.debug('Generation status: %r' % status)
[ "logging.basicConfig", "logging.getLogger", "cv2.__version__.split", "numpy.random.normal", "cv2.imwrite", "argparse.ArgumentParser", "os.path.isfile", "numpy.random.uniform", "argparse.Namespace", "cv2.VideoCapture", "cv2.VideoWriter_fourcc", "sys.exit", "cv2.imread", "numpy.random.binomial", "os.remove" ]
[((23128, 23153), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (23151, 23153), False, 'import argparse\n'), ((23668, 23728), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'args.log_level'}), '(stream=sys.stdout, level=args.log_level)\n', (23687, 23728), False, 'import logging\n'), ((23742, 23780), 'logging.getLogger', 'logging.getLogger', (['"""DragonFly-ASL-GSD"""'], {}), "('DragonFly-ASL-GSD')\n", (23759, 23780), False, 'import logging\n'), ((8491, 8511), 'argparse.Namespace', 'argparse.Namespace', ([], {}), '()\n', (8509, 8511), False, 'import argparse\n'), ((16372, 16392), 'cv2.VideoCapture', 'cv2.VideoCapture', (['vF'], {}), '(vF)\n', (16388, 16392), False, 'import cv2\n'), ((16420, 16446), 'cv2.__version__.split', 'cv2.__version__.split', (['"""."""'], {}), "('.')\n", (16441, 16446), False, 'import cv2\n'), ((16726, 16750), 'cv2.VideoCapture', 'cv2.VideoCapture', (['inputF'], {}), '(inputF)\n', (16742, 16750), False, 'import cv2\n'), ((17113, 17132), 'cv2.imread', 'cv2.imread', (['inFs[0]'], {}), '(inFs[0])\n', (17123, 17132), False, 'import cv2\n'), ((23969, 23995), 'os.path.isfile', 'os.path.isfile', (['args.input'], {}), '(args.input)\n', (23983, 23995), False, 'import os\n'), ((24073, 24084), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (24081, 24084), False, 'import sys\n'), ((24126, 24153), 'os.path.isfile', 'os.path.isfile', (['args.output'], {}), '(args.output)\n', (24140, 24153), False, 'import os\n'), ((311, 369), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'logging.INFO'}), '(stream=sys.stdout, level=logging.INFO)\n', (330, 369), False, 'import logging\n'), ((396, 415), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (413, 415), False, 'import logging\n'), ((5361, 5385), 'numpy.random.normal', 'np.random.normal', (['(100)', '(5)'], {}), '(100, 5)\n', (5377, 5385), True, 'import numpy as np\n'), ((5485, 5509), 'numpy.random.normal', 'np.random.normal', (['(100)', '(5)'], {}), '(100, 5)\n', (5501, 5509), True, 'import numpy as np\n'), ((5591, 5615), 'numpy.random.normal', 'np.random.normal', (['(100)', '(5)'], {}), '(100, 5)\n', (5607, 5615), True, 'import numpy as np\n'), ((5690, 5716), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (5708, 5716), True, 'import numpy as np\n'), ((8145, 8167), 'numpy.random.normal', 'np.random.normal', (['(0)', '(5)'], {}), '(0, 5)\n', (8161, 8167), True, 'import numpy as np\n'), ((16946, 16970), 'cv2.imwrite', 'cv2.imwrite', (['name', 'frame'], {}), '(name, frame)\n', (16957, 16970), False, 'import cv2\n'), ((17213, 17244), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (17235, 17244), False, 'import cv2\n'), ((24442, 24453), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (24450, 24453), False, 'import sys\n'), ((4426, 4448), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (4442, 4448), True, 'import numpy as np\n'), ((4493, 4515), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (4509, 4515), True, 'import numpy as np\n'), ((5747, 5773), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.5)'], {}), '(1, 0.5)\n', (5765, 5773), True, 'import numpy as np\n'), ((6350, 6376), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (6368, 6376), True, 'import numpy as np\n'), ((6463, 6489), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.5)'], {}), '(1, 0.5)\n', (6481, 6489), True, 'import numpy as np\n'), ((6572, 6598), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.5)'], {}), '(1, 0.5)\n', (6590, 6598), True, 'import numpy as np\n'), ((6683, 6709), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (6701, 6709), True, 'import numpy as np\n'), ((6791, 6817), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (6809, 6817), True, 'import numpy as np\n'), ((6909, 6935), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (6927, 6935), True, 'import numpy as np\n'), ((7020, 7046), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (7038, 7046), True, 'import numpy as np\n'), ((7131, 7156), 'numpy.random.normal', 'np.random.normal', (['(1)', '(0.03)'], {}), '(1, 0.03)\n', (7147, 7156), True, 'import numpy as np\n'), ((7261, 7287), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.5)'], {}), '(1, 0.5)\n', (7279, 7287), True, 'import numpy as np\n'), ((7323, 7348), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.15)'], {}), '(0, 0.15)\n', (7339, 7348), True, 'import numpy as np\n'), ((7569, 7595), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (7587, 7595), True, 'import numpy as np\n'), ((7664, 7688), 'numpy.random.normal', 'np.random.normal', (['(50)', '(17)'], {}), '(50, 17)\n', (7680, 7688), True, 'import numpy as np\n'), ((7739, 7763), 'numpy.random.normal', 'np.random.normal', (['(50)', '(17)'], {}), '(50, 17)\n', (7755, 7763), True, 'import numpy as np\n'), ((7853, 7879), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.1)'], {}), '(1, 0.1)\n', (7871, 7879), True, 'import numpy as np\n'), ((8253, 8279), 'numpy.random.binomial', 'np.random.binomial', (['(1)', '(0.3)'], {}), '(1, 0.3)\n', (8271, 8279), True, 'import numpy as np\n'), ((17317, 17332), 'cv2.imread', 'cv2.imread', (['inF'], {}), '(inF)\n', (17327, 17332), False, 'import cv2\n'), ((18165, 18177), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (18174, 18177), False, 'import os\n'), ((18225, 18237), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (18234, 18237), False, 'import os\n'), ((4237, 4259), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (4253, 4259), True, 'import numpy as np\n'), ((4313, 4335), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {}), '(0, 1)\n', (4329, 4335), True, 'import numpy as np\n'), ((4678, 4743), 'numpy.random.uniform', 'np.random.uniform', (['cmdArg.auto_rotate_min', 'cmdArg.auto_rotate_max'], {}), '(cmdArg.auto_rotate_min, cmdArg.auto_rotate_max)\n', (4695, 4743), True, 'import numpy as np\n'), ((4797, 4819), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (4813, 4819), True, 'import numpy as np\n'), ((5239, 5261), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)'], {}), '(0, 1)\n', (5255, 5261), True, 'import numpy as np\n'), ((5946, 5968), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (5962, 5968), True, 'import numpy as np\n'), ((6021, 6045), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.7)'], {}), '(0, 0.7)\n', (6037, 6045), True, 'import numpy as np\n'), ((6139, 6161), 'numpy.random.normal', 'np.random.normal', (['(0)', '(3)'], {}), '(0, 3)\n', (6155, 6161), True, 'import numpy as np\n'), ((6222, 6246), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.7)'], {}), '(0, 0.7)\n', (6238, 6246), True, 'import numpy as np\n'), ((7459, 7483), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.7)'], {}), '(0, 0.7)\n', (7475, 7483), True, 'import numpy as np\n'), ((7958, 7982), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.7)'], {}), '(0, 0.7)\n', (7974, 7982), True, 'import numpy as np\n'), ((8037, 8061), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.3)'], {}), '(0, 0.3)\n', (8053, 8061), True, 'import numpy as np\n'), ((8355, 8379), 'numpy.random.normal', 'np.random.normal', (['(5)', '(0.3)'], {}), '(5, 0.3)\n', (8371, 8379), True, 'import numpy as np\n'), ((8437, 8462), 'numpy.random.normal', 'np.random.normal', (['(100)', '(10)'], {}), '(100, 10)\n', (8453, 8462), True, 'import numpy as np\n'), ((4978, 5039), 'numpy.random.uniform', 'np.random.uniform', (['cmdArg.auto_zoom_min', 'cmdArg.auto_zoom_max'], {}), '(cmdArg.auto_zoom_min, cmdArg.auto_zoom_max)\n', (4995, 5039), True, 'import numpy as np\n'), ((5102, 5126), 'numpy.random.normal', 'np.random.normal', (['(100)', '(3)'], {}), '(100, 3)\n', (5118, 5126), True, 'import numpy as np\n')]
from service_objects import services import numpy as np import pandas as pd from django.db import connection import datetime from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface class IngestMatchesService(services.Service): def process(self): cursor = connection.cursor() errors = '' total_matches_updated = 0 total_matches_inserted = 0 tourneys = {} surfaces = {} tourney_levels = {} players = {} for year in range(1990, 2021): csv_file = pd.read_csv('https://raw.githubusercontent.com/JeffSackmann/tennis_atp/master/atp_matches_' + str(year) + '.csv', header=1, names=self.getColumns()) for row in csv_file.itertuples(): created_at = datetime.datetime.now() updated_at = datetime.datetime.now() #try: id = str(row.tourney_id) + '-' + str(row.match_num) match = Match.objects.filter(id=id) if (not match): match = Match() match.id = id match.year = row.tourney_id.split('-')[0] match.match_num = row.match_num match.result = row.score match.best_of = row.best_of match.minutes = None if np.isnan(row.minutes) else row.minutes match.round = row.round if not tourneys.get(str(row.tourney_id)): tourney = Tourney.objects.filter(id=row.tourney_id) if (not tourney): tourney = Tourney() tourney.id = row.tourney_id tourney.name = row.tourney_name tourney.date = datetime.datetime.strptime(str(int(row.tourney_date)), '%Y%m%d').date() tourney.created_at = created_at tourney.updated_at = updated_at if not surfaces.get(str(row.surface)): surfaces[str(row.surface)] = self.getSurface(str(row.surface)) tourney.surface = surfaces[str(row.surface)] if not tourney_levels.get(str(row.tourney_level)): tourney_levels[str(row.tourney_level)] = self.getTourneyLevel(str(row.tourney_level)) tourney.tourney_level = tourney_levels[str(row.tourney_level)] tourney.created_at = created_at tourney.updated_at = updated_at tourney.save() else: tourney = tourney[0] tourneys[str(row.tourney_id)] = tourney match.tourney = tourneys[str(row.tourney_id)] match.created_at = created_at match.updated_at = updated_at match.save() total_matches_inserted += 1 else: match[0].year = row.tourney_id.split('-')[0] match[0].save() total_matches_updated += 1 match = match[0] match_stats_id = str(row.tourney_id) + '-' + str(row.match_num) + '-' + str(row.winner_id) match_stats = Match_Stats.objects.filter(id=match_stats_id) if (not match_stats): seed = row.winner_seed if pd.isnull(row.winner_seed) or not str(row.winner_seed).isnumeric(): seed = None match_stats = Match_Stats() match_stats.id = match_stats_id match_stats.type = "" match_stats.seed = seed match_stats.aces = None if np.isnan(row.w_ace) else row.w_ace match_stats.double_faults = None if np.isnan(row.w_df) else row.w_df match_stats.service_points = None if np.isnan(row.w_svpt) else row.w_svpt match_stats.first_services = None if np.isnan(row.w_1stIn) else row.w_1stIn match_stats.first_services_won = None if np.isnan(row.w_1stWon) else row.w_1stWon match_stats.second_services_won = None if np.isnan(row.w_2ndWon) else row.w_2ndWon match_stats.service_game_won = None if np.isnan(row.w_SvGms) else row.w_SvGms match_stats.break_points_saved = None if np.isnan(row.w_bpSaved) else row.w_bpSaved match_stats.break_points_played = None if np.isnan(row.w_bpFaced) else row.w_bpFaced match_stats.rank = None if np.isnan(row.winner_rank) else row.winner_rank match_stats.rank_points = None if np.isnan(row.winner_rank_points) else row.winner_rank_points match_stats.is_winner = True match_stats.created_at = created_at match_stats.updated_at = updated_at players[row.winner_id] = self.getPlayer(str(row.winner_id)) match_stats.player = players[row.winner_id] match_stats.match = match match_stats.save() match_stats_id = str(row.tourney_id) + '-' + str(row.match_num) + '-' + str(row.loser_id) match_stats = Match_Stats.objects.filter(id=match_stats_id) if (not match_stats): seed = row.loser_seed if pd.isnull(row.loser_seed) or not str(row.loser_seed).isnumeric(): seed = None match_stats = Match_Stats() match_stats.id = match_stats_id match_stats.type = "" match_stats.seed = seed match_stats.aces = None if np.isnan(row.l_ace) else row.l_ace match_stats.double_faults = None if np.isnan(row.l_df) else row.l_df match_stats.service_points = None if np.isnan(row.l_svpt) else row.l_svpt match_stats.first_services = None if np.isnan(row.l_1stIn) else row.l_1stIn match_stats.first_services_won = None if np.isnan(row.l_1stWon) else row.l_1stWon match_stats.second_services_won = None if np.isnan(row.l_2ndWon) else row.l_2ndWon match_stats.service_game_won = None if np.isnan(row.l_SvGms) else row.l_SvGms match_stats.break_points_saved = None if np.isnan(row.l_bpSaved) else row.l_bpSaved match_stats.break_points_played = None if np.isnan(row.l_bpFaced) else row.l_bpFaced match_stats.rank = None if np.isnan(row.loser_rank) else row.loser_rank match_stats.rank_points = None if np.isnan(row.loser_rank_points) else row.loser_rank_points match_stats.is_winner = False match_stats.created_at = created_at match_stats.updated_at = updated_at players[row.loser_id] = self.getPlayer(str(row.loser_id)) match_stats.player = players[row.loser_id] match_stats.match = match match_stats.save() #except: # assert False, (row.tourney_date, ) #errors = errors + '|||' + str(row.tourney_id) + '-' + str(row.match_num) return {'inserts': total_matches_inserted, 'updates': total_matches_updated} def getColumns(self): return ["tourney_id","tourney_name","surface","draw_size","tourney_level","tourney_date","match_num","winner_id","winner_seed","winner_entry","winner_name","winner_hand","winner_ht","winner_ioc","winner_age", "loser_id","loser_seed","loser_entry","loser_name","loser_hand","loser_ht","loser_ioc","loser_age","score","best_of","round","minutes","w_ace","w_df","w_svpt","w_1stIn","w_1stWon","w_2ndWon","w_SvGms","w_bpSaved", "w_bpFaced","l_ace","l_df","l_svpt","l_1stIn","l_1stWon","l_2ndWon","l_SvGms","l_bpSaved","l_bpFaced","winner_rank","winner_rank_points","loser_rank","loser_rank_points"] def getPlayer(self, id): player = Player.objects.filter(id=id) if (not player): return None else: player = player[0] return player def getSurface(self, name): surface = Surface.objects.filter(name=name) if (not surface): surface = Surface() surface.name = name surface.created_at = datetime.datetime.now() surface.updated_at = datetime.datetime.now() surface.save() else: surface = surface[0] return surface def getTourneyLevel(self, code): tourney_level = Tourney_Level.objects.filter(code=code) if (not tourney_level): tourney_level = Tourney_Level() tourney_level.code = code tourney_level.name = code tourney_level.created_at = datetime.datetime.now() tourney_level.updated_at = datetime.datetime.now() tourney_level.save() else: tourney_level = tourney_level[0] return tourney_level
[ "front.models.Tourney_Level.objects.filter", "pandas.isnull", "front.models.Match.objects.filter", "front.models.Surface", "front.models.Tourney_Level", "datetime.datetime.now", "front.models.Match_Stats.objects.filter", "front.models.Player.objects.filter", "django.db.connection.cursor", "numpy.isnan", "front.models.Tourney.objects.filter", "front.models.Tourney", "front.models.Surface.objects.filter", "front.models.Match_Stats", "front.models.Match" ]
[((299, 318), 'django.db.connection.cursor', 'connection.cursor', ([], {}), '()\n', (316, 318), False, 'from django.db import connection\n'), ((9006, 9034), 'front.models.Player.objects.filter', 'Player.objects.filter', ([], {'id': 'id'}), '(id=id)\n', (9027, 9034), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((9206, 9239), 'front.models.Surface.objects.filter', 'Surface.objects.filter', ([], {'name': 'name'}), '(name=name)\n', (9228, 9239), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((9611, 9650), 'front.models.Tourney_Level.objects.filter', 'Tourney_Level.objects.filter', ([], {'code': 'code'}), '(code=code)\n', (9639, 9650), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((9288, 9297), 'front.models.Surface', 'Surface', ([], {}), '()\n', (9295, 9297), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((9363, 9386), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9384, 9386), False, 'import datetime\n'), ((9420, 9443), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9441, 9443), False, 'import datetime\n'), ((9712, 9727), 'front.models.Tourney_Level', 'Tourney_Level', ([], {}), '()\n', (9725, 9727), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((9843, 9866), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9864, 9866), False, 'import datetime\n'), ((9906, 9929), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9927, 9929), False, 'import datetime\n'), ((797, 820), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (818, 820), False, 'import datetime\n'), ((854, 877), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (875, 877), False, 'import datetime\n'), ((1000, 1027), 'front.models.Match.objects.filter', 'Match.objects.filter', ([], {'id': 'id'}), '(id=id)\n', (1020, 1027), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((3823, 3868), 'front.models.Match_Stats.objects.filter', 'Match_Stats.objects.filter', ([], {'id': 'match_stats_id'}), '(id=match_stats_id)\n', (3849, 3868), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((6011, 6056), 'front.models.Match_Stats.objects.filter', 'Match_Stats.objects.filter', ([], {'id': 'match_stats_id'}), '(id=match_stats_id)\n', (6037, 6056), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((1097, 1104), 'front.models.Match', 'Match', ([], {}), '()\n', (1102, 1104), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((4132, 4145), 'front.models.Match_Stats', 'Match_Stats', ([], {}), '()\n', (4143, 4145), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((6317, 6330), 'front.models.Match_Stats', 'Match_Stats', ([], {}), '()\n', (6328, 6330), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((1414, 1435), 'numpy.isnan', 'np.isnan', (['row.minutes'], {}), '(row.minutes)\n', (1422, 1435), True, 'import numpy as np\n'), ((1650, 1691), 'front.models.Tourney.objects.filter', 'Tourney.objects.filter', ([], {'id': 'row.tourney_id'}), '(id=row.tourney_id)\n', (1672, 1691), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n'), ((3985, 4011), 'pandas.isnull', 'pd.isnull', (['row.winner_seed'], {}), '(row.winner_seed)\n', (3994, 4011), True, 'import pandas as pd\n'), ((4347, 4366), 'numpy.isnan', 'np.isnan', (['row.w_ace'], {}), '(row.w_ace)\n', (4355, 4366), True, 'import numpy as np\n'), ((4442, 4460), 'numpy.isnan', 'np.isnan', (['row.w_df'], {}), '(row.w_df)\n', (4450, 4460), True, 'import numpy as np\n'), ((4536, 4556), 'numpy.isnan', 'np.isnan', (['row.w_svpt'], {}), '(row.w_svpt)\n', (4544, 4556), True, 'import numpy as np\n'), ((4634, 4655), 'numpy.isnan', 'np.isnan', (['row.w_1stIn'], {}), '(row.w_1stIn)\n', (4642, 4655), True, 'import numpy as np\n'), ((4738, 4760), 'numpy.isnan', 'np.isnan', (['row.w_1stWon'], {}), '(row.w_1stWon)\n', (4746, 4760), True, 'import numpy as np\n'), ((4845, 4867), 'numpy.isnan', 'np.isnan', (['row.w_2ndWon'], {}), '(row.w_2ndWon)\n', (4853, 4867), True, 'import numpy as np\n'), ((4949, 4970), 'numpy.isnan', 'np.isnan', (['row.w_SvGms'], {}), '(row.w_SvGms)\n', (4957, 4970), True, 'import numpy as np\n'), ((5053, 5076), 'numpy.isnan', 'np.isnan', (['row.w_bpSaved'], {}), '(row.w_bpSaved)\n', (5061, 5076), True, 'import numpy as np\n'), ((5162, 5185), 'numpy.isnan', 'np.isnan', (['row.w_bpFaced'], {}), '(row.w_bpFaced)\n', (5170, 5185), True, 'import numpy as np\n'), ((5256, 5281), 'numpy.isnan', 'np.isnan', (['row.winner_rank'], {}), '(row.winner_rank)\n', (5264, 5281), True, 'import numpy as np\n'), ((5361, 5393), 'numpy.isnan', 'np.isnan', (['row.winner_rank_points'], {}), '(row.winner_rank_points)\n', (5369, 5393), True, 'import numpy as np\n'), ((6172, 6197), 'pandas.isnull', 'pd.isnull', (['row.loser_seed'], {}), '(row.loser_seed)\n', (6181, 6197), True, 'import pandas as pd\n'), ((6532, 6551), 'numpy.isnan', 'np.isnan', (['row.l_ace'], {}), '(row.l_ace)\n', (6540, 6551), True, 'import numpy as np\n'), ((6627, 6645), 'numpy.isnan', 'np.isnan', (['row.l_df'], {}), '(row.l_df)\n', (6635, 6645), True, 'import numpy as np\n'), ((6721, 6741), 'numpy.isnan', 'np.isnan', (['row.l_svpt'], {}), '(row.l_svpt)\n', (6729, 6741), True, 'import numpy as np\n'), ((6819, 6840), 'numpy.isnan', 'np.isnan', (['row.l_1stIn'], {}), '(row.l_1stIn)\n', (6827, 6840), True, 'import numpy as np\n'), ((6923, 6945), 'numpy.isnan', 'np.isnan', (['row.l_1stWon'], {}), '(row.l_1stWon)\n', (6931, 6945), True, 'import numpy as np\n'), ((7030, 7052), 'numpy.isnan', 'np.isnan', (['row.l_2ndWon'], {}), '(row.l_2ndWon)\n', (7038, 7052), True, 'import numpy as np\n'), ((7134, 7155), 'numpy.isnan', 'np.isnan', (['row.l_SvGms'], {}), '(row.l_SvGms)\n', (7142, 7155), True, 'import numpy as np\n'), ((7238, 7261), 'numpy.isnan', 'np.isnan', (['row.l_bpSaved'], {}), '(row.l_bpSaved)\n', (7246, 7261), True, 'import numpy as np\n'), ((7347, 7370), 'numpy.isnan', 'np.isnan', (['row.l_bpFaced'], {}), '(row.l_bpFaced)\n', (7355, 7370), True, 'import numpy as np\n'), ((7441, 7465), 'numpy.isnan', 'np.isnan', (['row.loser_rank'], {}), '(row.loser_rank)\n', (7449, 7465), True, 'import numpy as np\n'), ((7544, 7575), 'numpy.isnan', 'np.isnan', (['row.loser_rank_points'], {}), '(row.loser_rank_points)\n', (7552, 7575), True, 'import numpy as np\n'), ((1780, 1789), 'front.models.Tourney', 'Tourney', ([], {}), '()\n', (1787, 1789), False, 'from front.models import Match, Match_Stats, Player, Tourney, Tourney_Level, Surface\n')]
import numpy as np import cv2 import os from matplotlib import pyplot as plt #### INPUT #### # folder that contains datapoints folderName = '2dIR' #### SETTINGS #### # settings listed below are suitable for 2D data # intensity of noise filtering; higher values mean more blurring medianKernel = 5 # blurring radius in x and y direction; higher values mean more blurring; note: these values need to be odd gaussian_x = 9 gaussian_y = 181 # decay blurring strength; higher values mean blurring will be more focused on the center gaussianSigma = 60 # number of pixels that are averaged on both sides when iterating over each pixel in a row pixelsAveraged1 = 10 # number of pixels that are averaged on both sides when iterating over pixels closer to the leading edge; this number should be smaller than pixelsAveraged1 since higher precision is needed pixelsAveraged2 = 6 # vertical range of pixels considered when determining transition line; range is selected so that noise at the root and the tip is disregarded rangeVer = (40, 400) # maximal fraction of standard deviation for the point to be included during filtering maxStd = 0.9 # minimal fraction of the points left after filtering for the line to be considered as transition line minFiltered = 0.5 # critical angle at which the line closest to the leading edge is considered to be the transition line criticalAngle = 7.5 # margin of averaged pixels between the leading edge and detected transition points margin = 2 # minimal average difference of the more aft lines to be considered as transition line minDifference1 = 4.68 # minimal average difference of the more forward lines to be considered as transition line minDifference2 = 3.1 # width of the cropped image width = 360 # settings listed below are suitable for 3D data # medianKernel = 5 # gaussian_x = 9 # gaussian_y = 181 # gaussianSigma = 60 # pixelsAveraged1 = 9 # pixelsAveraged2 = 6 # rangeVer = (40, 400) # maxStd = 1.5 # minFiltered = 0.5 # criticalAngle = 9.5 # margin = 2 # minDifference1 = 3.84 # minDifference2 = 3.1 # width = 360 # processing image def findTransition(data, angle): # removing NaN values from the array data = data[:, ~np.isnan(data).all(axis=0)] # normalising data data = ((data - np.amin(data)) / (np.amax(data) - np.amin(data)) * 255) # converting to pixel data data = data.astype(np.uint8) # processing data using median and gaussian blur blurred = cv2.medianBlur(data, medianKernel) blurred = cv2.GaussianBlur(blurred, (gaussian_x, gaussian_y), gaussianSigma) # creating empty arrays to store locations of edges and potential transitions edges = np.zeros((len(blurred), 2), dtype=int) edge = (0, 0) differencesVer = np.zeros((len(blurred), 3)) transitions1 = np.zeros((len(blurred), 2), dtype=int) transitions2 = np.zeros((len(blurred), 2), dtype=int) # iterating over each row of pixels for i in range(len(blurred)): # iterating over each pixel in a row and calculating differences between pixels to the right and to the left differencesHor1 = np.zeros(len(blurred[i])) for j in range(len(blurred[i])): if j - pixelsAveraged1 >= 0 and j + pixelsAveraged1 <= len(blurred[i]): differencesHor1[j] = np.absolute(np.average(blurred[i, j - pixelsAveraged1:j]) - np.average(blurred[i, j:j + pixelsAveraged1])) # selecting two locations where differences are the highest edges[i, 0] = np.argmax(differencesHor1) for j in range(len(differencesHor1)): if differencesHor1[j] > differencesHor1[edges[i, 1]] and np.absolute(edges[i, 0] - j) > pixelsAveraged1: edges[i, 1] = j edges = np.sort(edges, axis=1) # averaging the detected locations to determine position of the edges edge = int(np.average(edges[rangeVer[0]:rangeVer[1], 0])), int(np.average([edges[rangeVer[0]:rangeVer[1], 1]])) # iterating over each pixel between edges and calculating differences between pixels to the right and to the left differencesHor1 = np.zeros(len(blurred[i])) for j in range(len(blurred[i])): if edges[i, 0] + 2 * pixelsAveraged1 <= j <= edges[i, 1] - margin * pixelsAveraged1: differencesHor1[j] = np.absolute(np.average(blurred[i, j - pixelsAveraged1:j]) - np.average(blurred[i, j:j + pixelsAveraged1])) # selecting two locations where differences are the highest transitions1[i, 0] = np.argmax(differencesHor1) for j in range(len(differencesHor1)): if differencesHor1[j] > differencesHor1[transitions1[i, 1]] and np.absolute(transitions1[i, 0] - j) > 3 * pixelsAveraged1: transitions1[i, 1] = j transitions1 = np.sort(transitions1, axis=1) # iterating over pixels closer to the leading edge and calculating differences between pixels to the right and to the left differencesHor2 = np.zeros(len(blurred[i])) for j in range(len(blurred[i])): if edges[i, 0] + 10 * pixelsAveraged2 <= j <= edges[i, 1] - pixelsAveraged2: differencesHor2[j] = np.absolute(np.average(blurred[i, j - pixelsAveraged2:j]) - np.average(blurred[i, j:j + pixelsAveraged2])) # selecting two locations where differences are the highest transitions2[i, 0] = np.argmax(differencesHor2) for j in range(len(differencesHor2)): if differencesHor2[j] > differencesHor2[transitions2[i, 1]] and np.absolute(transitions2[i, 0] - j) > pixelsAveraged2: transitions2[i, 1] = j transitions2 = np.sort(transitions2, axis=1) # saving maximal horizontal differences to calculate vertical differences differencesVer[i, 0] = differencesHor1[transitions1[i, 0]] differencesVer[i, 1] = differencesHor1[transitions1[i, 1]] differencesVer[i, 2] = differencesHor2[transitions2[i, 0]] # cropping locations of transitions and vertical differences transitions1 = transitions1[rangeVer[0]:rangeVer[1], :] transitions2 = transitions2[rangeVer[0]:rangeVer[1], :] differencesVer = differencesVer[rangeVer[0]:rangeVer[1], :] # calculating average and standard deviation of the first detected transition line transitions1Avg = np.average(transitions1[:, 0]) transitions1Std = np.std(transitions1[:, 0]) # filtering locations that are too far from the average transitions1Filtered = [] for i in range(len(transitions1)): if round(transitions1Avg - maxStd * transitions1Std) <= transitions1[i, 0] <= round(transitions1Avg + maxStd * transitions1Std): transitions1Filtered.append(transitions1[i, 0]) # calculating average and standard deviation of the second detected transition line transitions2Avg = np.average(transitions1[:, 1]) transitions2Std = np.std(transitions1[:, 1]) # filtering locations that are too far from the average transitions2Filtered = [] for i in range(len(transitions1)): if round(transitions2Avg - maxStd * transitions2Std) <= transitions1[i, 1] <= round(transitions2Avg + maxStd * transitions2Std): transitions2Filtered.append(transitions1[i, 1]) # calculating average and standard deviation of the third detected transition line transitions3Avg = [np.average(transitions2[:, 0]), np.average(transitions2[:, 1])] transitions3Std = [np.std(transitions2[:, 0]), np.std(transitions2[:, 1])] # filtering locations that are too far from the average transitions3Filtered = [] for i in range(len(transitions2)): if round(transitions3Avg[0] - maxStd * transitions3Std[0]) <= transitions2[i, 0] <= round(transitions3Avg[0] + maxStd * transitions3Std[0]) \ and round(transitions3Avg[1] - maxStd * transitions3Std[1]) <= transitions2[i, 1] <= round(transitions3Avg[1] + maxStd * transitions3Std[1]): transitions3Filtered.append(np.average(transitions2[i, :])) # calculating the average of vertical differences for each transition line differences = np.zeros(3) differences[0] = np.average(differencesVer[:, 0]) differences[1] = np.average(differencesVer[:, 1]) differences[2] = np.average(differencesVer[:, 2]) # choosing one of the three detected lines if differences[0] >= minDifference1 and len(transitions1Filtered) > minFiltered * (rangeVer[1] - rangeVer[0]) and angle < criticalAngle: transition = round(np.average(transitions1Filtered)) elif differences[1] >= minDifference1 and len(transitions2Filtered) > minFiltered * (rangeVer[1] - rangeVer[0]) and angle < criticalAngle: transition = round(np.average(transitions2Filtered)) elif differences[2] >= minDifference2: transition = round(np.average(transitions3Filtered)) else: transition = edge[1] # printing parameters for debugging # print('Differences 1: ' + differences[0]) # print('Differences 2: ' + differences[1]) # print('Differences 3: ' + differences[2]) # print('Length of filtered transitions 1:' + str(len(transitions1Filtered))) # print('Length of filtered transitions 1:' + str(len(transitions2Filtered))) # print('Length of filtered transitions 1:' + str(len(transitions3Filtered))) # calculating the location of transition as percentage of chord length XC = 1 - ((transition - edge[0]) / (edge[1] - edge[0])) # printing edges and transition line on the generated image for i in range(len(data)): data[i, edge[0] - 1:edge[0] + 1] = 0 data[i, edge[1] - 1:edge[1] + 1] = 0 data[i, transition - 1:transition + 1] = 0 # data[i, edges[i, 0] - 1:edges[i, 0] + 1] = 0 # data[i, edges[i, 1] - 1:edges[i, 1] + 1] = 0 # printing detected lines on the generated image # for i in range(len(transitions1)): # data[i + rangeVer[0], transitions1[i, 0] - 1:transitions1[i, 0] + 1] = 0 # data[i + rangeVer[0], transitions1[i, 1] - 1:transitions1[i, 1] + 1] = 0 # data[i + rangeVer[0], transitions2[i, 0] - 1:transitions2[i, 0] + 1] = 0 # data[i + rangeVer[0], transitions2[i, 1] - 1:transitions2[i, 1] + 1] = 0 # calculating midpoint between edges and cropping the image midpoint = int((edge[1] - edge[0]) / 2 + edge[0]) data = data[:, int(midpoint - width / 2):int(midpoint + width / 2)] blurred = blurred[:, int(midpoint - width / 2):int(midpoint + width / 2)] # converting data to contiguous array data = np.ascontiguousarray(data, dtype=np.uint8) # settings for placing AoA and transition location on the image text1 = 'AoA: ' + str(angle) text2 = 'x/c = ' + str(round(XC, 3)) org1 = (60, 20) org2 = (60, 40) font = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.5 color = (255, 0, 0) thickness = 1 # inserting text to the image data = cv2.putText(data, text1, org1, font, fontScale, color, thickness, cv2.LINE_AA) data = cv2.putText(data, text2, org2, font, fontScale, color, thickness, cv2.LINE_AA) # showing generated images # cv2.imshow("data", data) # cv2.imshow("blurred", blurred) # cv2.waitKey(0) # saving generated images path = 'Images' fileName = 'AoA=' + str(angle) + ',XC=' + str(round(XC, 3)) + '.jpg' cv2.imwrite(os.path.join(path, fileName), data) # cv2.imwrite(os.path.join(path, 'blurred.jpg'), blurred) return XC # detecting all folders in the selected directory folders = os.listdir(folderName + '/.') # creating empty array for results results = np.zeros((len(folders), 2)) # iterating over each folder for i, folder in enumerate(folders): # detecting all files in the selected folder folderPath = folderName + '/' + folder + '/.' files = os.listdir(folderPath) # creating empty array in the size of data dataPoints = np.zeros((480, 640)) # monitoring progress of the program print('---------------------------------------') print('Progress: ' + str(round(i / len(folders) * 100, 2)) + '%') print('AoA: ' + folder) # iterating over detected files for file in files: # importing data into array filePath = folderName + '/' + folder + '/' + file dataPoint = np.genfromtxt(filePath, delimiter=';') # removing NaN values from the array dataPoint = dataPoint[:, ~np.isnan(dataPoint).all(axis=0)] # adding imported data to the array dataPoints += dataPoint break # calculating average of the data # dataPoints = dataPoints / len(files) # calculating location of transition and saving it into the results transitionXC = findTransition(dataPoints, float(folder)) results[i] = [float(folder), transitionXC] # saving results to text file results = results[results[:, 0].argsort()] np.savetxt('results.txt', results, delimiter=',') # generating graph of location vs angle of attack plt.plot(results[:, 0], results[:, 1]) plt.xlabel("Angle of attack [deg]") plt.ylabel("Location of transition [x/c]") plt.show()
[ "matplotlib.pyplot.ylabel", "numpy.ascontiguousarray", "numpy.genfromtxt", "os.listdir", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.sort", "cv2.medianBlur", "numpy.amin", "numpy.average", "numpy.argmax", "cv2.putText", "numpy.isnan", "numpy.savetxt", "numpy.std", "cv2.GaussianBlur", "matplotlib.pyplot.show", "numpy.absolute", "os.path.join", "numpy.zeros", "numpy.amax" ]
[((11748, 11777), 'os.listdir', 'os.listdir', (["(folderName + '/.')"], {}), "(folderName + '/.')\n", (11758, 11777), False, 'import os\n'), ((13133, 13182), 'numpy.savetxt', 'np.savetxt', (['"""results.txt"""', 'results'], {'delimiter': '""","""'}), "('results.txt', results, delimiter=',')\n", (13143, 13182), True, 'import numpy as np\n'), ((13237, 13275), 'matplotlib.pyplot.plot', 'plt.plot', (['results[:, 0]', 'results[:, 1]'], {}), '(results[:, 0], results[:, 1])\n', (13245, 13275), True, 'from matplotlib import pyplot as plt\n'), ((13277, 13312), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Angle of attack [deg]"""'], {}), "('Angle of attack [deg]')\n", (13287, 13312), True, 'from matplotlib import pyplot as plt\n'), ((13314, 13356), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Location of transition [x/c]"""'], {}), "('Location of transition [x/c]')\n", (13324, 13356), True, 'from matplotlib import pyplot as plt\n'), ((13358, 13368), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13366, 13368), True, 'from matplotlib import pyplot as plt\n'), ((2527, 2561), 'cv2.medianBlur', 'cv2.medianBlur', (['data', 'medianKernel'], {}), '(data, medianKernel)\n', (2541, 2561), False, 'import cv2\n'), ((2577, 2643), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['blurred', '(gaussian_x, gaussian_y)', 'gaussianSigma'], {}), '(blurred, (gaussian_x, gaussian_y), gaussianSigma)\n', (2593, 2643), False, 'import cv2\n'), ((6442, 6472), 'numpy.average', 'np.average', (['transitions1[:, 0]'], {}), '(transitions1[:, 0])\n', (6452, 6472), True, 'import numpy as np\n'), ((6496, 6522), 'numpy.std', 'np.std', (['transitions1[:, 0]'], {}), '(transitions1[:, 0])\n', (6502, 6522), True, 'import numpy as np\n'), ((6970, 7000), 'numpy.average', 'np.average', (['transitions1[:, 1]'], {}), '(transitions1[:, 1])\n', (6980, 7000), True, 'import numpy as np\n'), ((7024, 7050), 'numpy.std', 'np.std', (['transitions1[:, 1]'], {}), '(transitions1[:, 1])\n', (7030, 7050), True, 'import numpy as np\n'), ((8260, 8271), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (8268, 8271), True, 'import numpy as np\n'), ((8294, 8326), 'numpy.average', 'np.average', (['differencesVer[:, 0]'], {}), '(differencesVer[:, 0])\n', (8304, 8326), True, 'import numpy as np\n'), ((8349, 8381), 'numpy.average', 'np.average', (['differencesVer[:, 1]'], {}), '(differencesVer[:, 1])\n', (8359, 8381), True, 'import numpy as np\n'), ((8404, 8436), 'numpy.average', 'np.average', (['differencesVer[:, 2]'], {}), '(differencesVer[:, 2])\n', (8414, 8436), True, 'import numpy as np\n'), ((10742, 10784), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['data'], {'dtype': 'np.uint8'}), '(data, dtype=np.uint8)\n', (10762, 10784), True, 'import numpy as np\n'), ((11125, 11203), 'cv2.putText', 'cv2.putText', (['data', 'text1', 'org1', 'font', 'fontScale', 'color', 'thickness', 'cv2.LINE_AA'], {}), '(data, text1, org1, font, fontScale, color, thickness, cv2.LINE_AA)\n', (11136, 11203), False, 'import cv2\n'), ((11216, 11294), 'cv2.putText', 'cv2.putText', (['data', 'text2', 'org2', 'font', 'fontScale', 'color', 'thickness', 'cv2.LINE_AA'], {}), '(data, text2, org2, font, fontScale, color, thickness, cv2.LINE_AA)\n', (11227, 11294), False, 'import cv2\n'), ((12041, 12063), 'os.listdir', 'os.listdir', (['folderPath'], {}), '(folderPath)\n', (12051, 12063), False, 'import os\n'), ((12132, 12152), 'numpy.zeros', 'np.zeros', (['(480, 640)'], {}), '((480, 640))\n', (12140, 12152), True, 'import numpy as np\n'), ((3585, 3611), 'numpy.argmax', 'np.argmax', (['differencesHor1'], {}), '(differencesHor1)\n', (3594, 3611), True, 'import numpy as np\n'), ((3827, 3849), 'numpy.sort', 'np.sort', (['edges'], {'axis': '(1)'}), '(edges, axis=1)\n', (3834, 3849), True, 'import numpy as np\n'), ((4616, 4642), 'numpy.argmax', 'np.argmax', (['differencesHor1'], {}), '(differencesHor1)\n', (4625, 4642), True, 'import numpy as np\n'), ((4890, 4919), 'numpy.sort', 'np.sort', (['transitions1'], {'axis': '(1)'}), '(transitions1, axis=1)\n', (4897, 4919), True, 'import numpy as np\n'), ((5485, 5511), 'numpy.argmax', 'np.argmax', (['differencesHor2'], {}), '(differencesHor2)\n', (5494, 5511), True, 'import numpy as np\n'), ((5755, 5784), 'numpy.sort', 'np.sort', (['transitions2'], {'axis': '(1)'}), '(transitions2, axis=1)\n', (5762, 5784), True, 'import numpy as np\n'), ((7498, 7528), 'numpy.average', 'np.average', (['transitions2[:, 0]'], {}), '(transitions2[:, 0])\n', (7508, 7528), True, 'import numpy as np\n'), ((7530, 7560), 'numpy.average', 'np.average', (['transitions2[:, 1]'], {}), '(transitions2[:, 1])\n', (7540, 7560), True, 'import numpy as np\n'), ((7586, 7612), 'numpy.std', 'np.std', (['transitions2[:, 0]'], {}), '(transitions2[:, 0])\n', (7592, 7612), True, 'import numpy as np\n'), ((7614, 7640), 'numpy.std', 'np.std', (['transitions2[:, 1]'], {}), '(transitions2[:, 1])\n', (7620, 7640), True, 'import numpy as np\n'), ((11566, 11594), 'os.path.join', 'os.path.join', (['path', 'fileName'], {}), '(path, fileName)\n', (11578, 11594), False, 'import os\n'), ((12533, 12571), 'numpy.genfromtxt', 'np.genfromtxt', (['filePath'], {'delimiter': '""";"""'}), "(filePath, delimiter=';')\n", (12546, 12571), True, 'import numpy as np\n'), ((8657, 8689), 'numpy.average', 'np.average', (['transitions1Filtered'], {}), '(transitions1Filtered)\n', (8667, 8689), True, 'import numpy as np\n'), ((2334, 2347), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (2341, 2347), True, 'import numpy as np\n'), ((2352, 2365), 'numpy.amax', 'np.amax', (['data'], {}), '(data)\n', (2359, 2365), True, 'import numpy as np\n'), ((2368, 2381), 'numpy.amin', 'np.amin', (['data'], {}), '(data)\n', (2375, 2381), True, 'import numpy as np\n'), ((3951, 3996), 'numpy.average', 'np.average', (['edges[rangeVer[0]:rangeVer[1], 0]'], {}), '(edges[rangeVer[0]:rangeVer[1], 0])\n', (3961, 3996), True, 'import numpy as np\n'), ((4003, 4050), 'numpy.average', 'np.average', (['[edges[rangeVer[0]:rangeVer[1], 1]]'], {}), '([edges[rangeVer[0]:rangeVer[1], 1]])\n', (4013, 4050), True, 'import numpy as np\n'), ((8127, 8157), 'numpy.average', 'np.average', (['transitions2[i, :]'], {}), '(transitions2[i, :])\n', (8137, 8157), True, 'import numpy as np\n'), ((8863, 8895), 'numpy.average', 'np.average', (['transitions2Filtered'], {}), '(transitions2Filtered)\n', (8873, 8895), True, 'import numpy as np\n'), ((3729, 3757), 'numpy.absolute', 'np.absolute', (['(edges[i, 0] - j)'], {}), '(edges[i, 0] - j)\n', (3740, 3757), True, 'import numpy as np\n'), ((4767, 4802), 'numpy.absolute', 'np.absolute', (['(transitions1[i, 0] - j)'], {}), '(transitions1[i, 0] - j)\n', (4778, 4802), True, 'import numpy as np\n'), ((5636, 5671), 'numpy.absolute', 'np.absolute', (['(transitions2[i, 0] - j)'], {}), '(transitions2[i, 0] - j)\n', (5647, 5671), True, 'import numpy as np\n'), ((8969, 9001), 'numpy.average', 'np.average', (['transitions3Filtered'], {}), '(transitions3Filtered)\n', (8979, 9001), True, 'import numpy as np\n'), ((2261, 2275), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (2269, 2275), True, 'import numpy as np\n'), ((3396, 3441), 'numpy.average', 'np.average', (['blurred[i, j - pixelsAveraged1:j]'], {}), '(blurred[i, j - pixelsAveraged1:j])\n', (3406, 3441), True, 'import numpy as np\n'), ((3444, 3489), 'numpy.average', 'np.average', (['blurred[i, j:j + pixelsAveraged1]'], {}), '(blurred[i, j:j + pixelsAveraged1])\n', (3454, 3489), True, 'import numpy as np\n'), ((4420, 4465), 'numpy.average', 'np.average', (['blurred[i, j - pixelsAveraged1:j]'], {}), '(blurred[i, j - pixelsAveraged1:j])\n', (4430, 4465), True, 'import numpy as np\n'), ((4468, 4513), 'numpy.average', 'np.average', (['blurred[i, j:j + pixelsAveraged1]'], {}), '(blurred[i, j:j + pixelsAveraged1])\n', (4478, 4513), True, 'import numpy as np\n'), ((5289, 5334), 'numpy.average', 'np.average', (['blurred[i, j - pixelsAveraged2:j]'], {}), '(blurred[i, j - pixelsAveraged2:j])\n', (5299, 5334), True, 'import numpy as np\n'), ((5337, 5382), 'numpy.average', 'np.average', (['blurred[i, j:j + pixelsAveraged2]'], {}), '(blurred[i, j:j + pixelsAveraged2])\n', (5347, 5382), True, 'import numpy as np\n'), ((12655, 12674), 'numpy.isnan', 'np.isnan', (['dataPoint'], {}), '(dataPoint)\n', (12663, 12674), True, 'import numpy as np\n')]
import numpy as np from matplotlib import pyplot as plt from env import DrivingEnv from solvers import GridSolver, SampleGraphSolver def time_compare(seed=1234, min_sample=10, max_sample=50, count=10): sample_count = np.linspace(min_sample, max_sample, count).astype(int) grid_times = [] graph_times = [] for size in sample_count: env = DrivingEnv(15, random_seed=seed) solver = GridSolver(size) grid_times.append(solver.solve(env, max_steps=500)) env = DrivingEnv(15, random_seed=seed) solver = SampleGraphSolver(size*size) graph_times.append(solver.solve(env, max_steps=500)) plt.figure() plt.semilogy(sample_count, grid_times, label="Grid-based") plt.semilogy(sample_count, graph_times, label="Graph-based") plt.xlabel("Equivalent sample size") plt.ylabel("Running time (s)") plt.legend() plt.show() def grid_size_reward_compare(seed=1234, min_sample=10, max_sample=50, count=10, repeat=5): env = DrivingEnv(15, random_seed=seed) size_list = np.linspace(min_sample, max_sample, count).astype(int) cost_list = [] for size in size_list: cost_cases = [] for _ in range(repeat): solver = SampleGraphSolver(size*size) solver.solve(env, max_steps=200, early_stop=False) states, cost = env.simulate(solver) cost_cases.append(cost) cost_list.append(cost_cases) plt.figure() plt.plot(size_list, np.mean(cost_list, axis=1)) plt.xlabel("Graph size") plt.ylabel("Time and safety cost") plt.title("Graph based policy performance versus graph size") plt.show() def grid_with_different_safety_cost(cost_type="linear"): env = DrivingEnv(15, random_seed=1234) def render_graph(solver, ax): solution = solver.report_solution() solution_set = set() for i in range(len(solution) - 1): solution_set.add((solution[i], solution[i+1])) for n1, n2 in solver._connections: if (n1, n2) in solution_set or (n2, n1) in solution_set: color = "#1A090D" lwidth = 5 else: color = "#4A139488" lwidth = 1 ax.plot([solver._samples[n1].x, solver._samples[n2].x], [solver._samples[n1].y, solver._samples[n2].y], lw=lwidth, c=color) ax.scatter([p.x for p in solver._samples], [p.y for p in solver._samples], c=solver._safety_cost_cache) solver = SampleGraphSolver(800) solver.solve(env, max_steps=200, safety_weight=100, safety_type=cost_type) fig, ax = plt.subplots(1) env.render(ax) render_graph(solver, ax) plt.title("Graph-based solution with %s cost" % cost_type) plt.show() def graph_with_different_weight(seed=1234, ratio_count=7): ratios = np.logspace(-3, 3, ratio_count) fig, ax = plt.subplots(1) DrivingEnv(15, random_seed=seed).render(ax) handles = [None] * ratio_count for rid, ratio in enumerate(ratios): coeff = np.sqrt(ratio) env = DrivingEnv(15, random_seed=seed) solver = SampleGraphSolver(800) solver.solve(env, max_steps=100, early_stop=False, safety_weight=coeff, time_weight=1/coeff, safety_type="linear") solution = solver.report_solution() solution_set = set() for i in range(len(solution) - 1): solution_set.add((solution[i], solution[i+1])) for n1, n2 in solver._connections: if (n1, n2) in solution_set or (n2, n1) in solution_set: lwidth, color = 4, "C%d" % rid handles[rid], = ax.plot([solver._samples[n1].x, solver._samples[n2].x], [solver._samples[n1].y, solver._samples[n2].y], lw=lwidth, c=color) # fig.legend(handles, ["safety/time=%f" % ratio for ratio in ratios], loc=1) plt.title("Difference path under different weights") plt.show() graph_with_different_weight()
[ "matplotlib.pyplot.semilogy", "env.DrivingEnv", "solvers.SampleGraphSolver", "numpy.mean", "numpy.sqrt", "matplotlib.pyplot.ylabel", "solvers.GridSolver", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.figure", "numpy.linspace", "matplotlib.pyplot.title", "numpy.logspace", "matplotlib.pyplot.subplots", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((650, 662), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (660, 662), True, 'from matplotlib import pyplot as plt\n'), ((667, 725), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['sample_count', 'grid_times'], {'label': '"""Grid-based"""'}), "(sample_count, grid_times, label='Grid-based')\n", (679, 725), True, 'from matplotlib import pyplot as plt\n'), ((730, 790), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['sample_count', 'graph_times'], {'label': '"""Graph-based"""'}), "(sample_count, graph_times, label='Graph-based')\n", (742, 790), True, 'from matplotlib import pyplot as plt\n'), ((795, 831), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Equivalent sample size"""'], {}), "('Equivalent sample size')\n", (805, 831), True, 'from matplotlib import pyplot as plt\n'), ((836, 866), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Running time (s)"""'], {}), "('Running time (s)')\n", (846, 866), True, 'from matplotlib import pyplot as plt\n'), ((871, 883), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (881, 883), True, 'from matplotlib import pyplot as plt\n'), ((888, 898), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (896, 898), True, 'from matplotlib import pyplot as plt\n'), ((1001, 1033), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': 'seed'}), '(15, random_seed=seed)\n', (1011, 1033), False, 'from env import DrivingEnv\n'), ((1446, 1458), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1456, 1458), True, 'from matplotlib import pyplot as plt\n'), ((1515, 1539), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Graph size"""'], {}), "('Graph size')\n", (1525, 1539), True, 'from matplotlib import pyplot as plt\n'), ((1544, 1578), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Time and safety cost"""'], {}), "('Time and safety cost')\n", (1554, 1578), True, 'from matplotlib import pyplot as plt\n'), ((1583, 1644), 'matplotlib.pyplot.title', 'plt.title', (['"""Graph based policy performance versus graph size"""'], {}), "('Graph based policy performance versus graph size')\n", (1592, 1644), True, 'from matplotlib import pyplot as plt\n'), ((1649, 1659), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1657, 1659), True, 'from matplotlib import pyplot as plt\n'), ((1728, 1760), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': '(1234)'}), '(15, random_seed=1234)\n', (1738, 1760), False, 'from env import DrivingEnv\n'), ((2488, 2510), 'solvers.SampleGraphSolver', 'SampleGraphSolver', (['(800)'], {}), '(800)\n', (2505, 2510), False, 'from solvers import GridSolver, SampleGraphSolver\n'), ((2605, 2620), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (2617, 2620), True, 'from matplotlib import pyplot as plt\n'), ((2673, 2731), 'matplotlib.pyplot.title', 'plt.title', (["('Graph-based solution with %s cost' % cost_type)"], {}), "('Graph-based solution with %s cost' % cost_type)\n", (2682, 2731), True, 'from matplotlib import pyplot as plt\n'), ((2736, 2746), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2744, 2746), True, 'from matplotlib import pyplot as plt\n'), ((2820, 2851), 'numpy.logspace', 'np.logspace', (['(-3)', '(3)', 'ratio_count'], {}), '(-3, 3, ratio_count)\n', (2831, 2851), True, 'import numpy as np\n'), ((2867, 2882), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (2879, 2882), True, 'from matplotlib import pyplot as plt\n'), ((3827, 3879), 'matplotlib.pyplot.title', 'plt.title', (['"""Difference path under different weights"""'], {}), "('Difference path under different weights')\n", (3836, 3879), True, 'from matplotlib import pyplot as plt\n'), ((3884, 3894), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3892, 3894), True, 'from matplotlib import pyplot as plt\n'), ((363, 395), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': 'seed'}), '(15, random_seed=seed)\n', (373, 395), False, 'from env import DrivingEnv\n'), ((413, 429), 'solvers.GridSolver', 'GridSolver', (['size'], {}), '(size)\n', (423, 429), False, 'from solvers import GridSolver, SampleGraphSolver\n'), ((505, 537), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': 'seed'}), '(15, random_seed=seed)\n', (515, 537), False, 'from env import DrivingEnv\n'), ((555, 585), 'solvers.SampleGraphSolver', 'SampleGraphSolver', (['(size * size)'], {}), '(size * size)\n', (572, 585), False, 'from solvers import GridSolver, SampleGraphSolver\n'), ((1483, 1509), 'numpy.mean', 'np.mean', (['cost_list'], {'axis': '(1)'}), '(cost_list, axis=1)\n', (1490, 1509), True, 'import numpy as np\n'), ((3024, 3038), 'numpy.sqrt', 'np.sqrt', (['ratio'], {}), '(ratio)\n', (3031, 3038), True, 'import numpy as np\n'), ((3053, 3085), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': 'seed'}), '(15, random_seed=seed)\n', (3063, 3085), False, 'from env import DrivingEnv\n'), ((3103, 3125), 'solvers.SampleGraphSolver', 'SampleGraphSolver', (['(800)'], {}), '(800)\n', (3120, 3125), False, 'from solvers import GridSolver, SampleGraphSolver\n'), ((223, 265), 'numpy.linspace', 'np.linspace', (['min_sample', 'max_sample', 'count'], {}), '(min_sample, max_sample, count)\n', (234, 265), True, 'import numpy as np\n'), ((1050, 1092), 'numpy.linspace', 'np.linspace', (['min_sample', 'max_sample', 'count'], {}), '(min_sample, max_sample, count)\n', (1061, 1092), True, 'import numpy as np\n'), ((1228, 1258), 'solvers.SampleGraphSolver', 'SampleGraphSolver', (['(size * size)'], {}), '(size * size)\n', (1245, 1258), False, 'from solvers import GridSolver, SampleGraphSolver\n'), ((2887, 2919), 'env.DrivingEnv', 'DrivingEnv', (['(15)'], {'random_seed': 'seed'}), '(15, random_seed=seed)\n', (2897, 2919), False, 'from env import DrivingEnv\n')]
import numpy as np import math from scipy.stats import truncnorm class ElectricMotor: """ Base class for all technical electrical motor models. A motor consists of the ode-state. These are the dynamic quantities of its ODE. For example: ODE-State of a DC-shunt motor: `` [i_a, i_e ] `` * i_a: Anchor circuit current * i_e: Exciting circuit current Each electric motor can be parametrized by a dictionary of motor parameters, the nominal state dictionary and the limit dictionary. Initialization is given by initializer(dict). Can be constant state value or random value in given interval. dict should be like: { 'states'(dict): with state names and initital values 'interval'(array like): boundaries for each state (only for random init), shape(num states, 2) 'random_init'(str): 'uniform' or 'normal' 'random_params(tuple): mue(float), sigma(int) Example initializer(dict) for constant initialization: { 'states': {'omega': 16.0}} Example initializer(dict) for random initialization: { 'random_init': 'normal'} """ #: Parameter indicating if the class is implementing the optional jacobian function HAS_JACOBIAN = False #: CURRENTS_IDX(list(int)): Indices for accessing all motor currents. CURRENTS_IDX = [] #: CURRENTS(list(str)): List of the motor currents names CURRENTS = [] #: VOLTAGES(list(str)): List of the motor input voltages names VOLTAGES = [] #: _default_motor_parameter(dict): Default parameter dictionary for the motor _default_motor_parameter = {} #: _default_nominal_values(dict(float)): Default nominal motor state array _default_nominal_values = {} #: _default_limits(dict(float)): Default motor limits (0 for unbounded limits) _default_limits = {} #: _default_initial_state(dict): Default initial motor-state values #_default_initializer = {} _default_initializer = {'states': {}, 'interval': None, 'random_init': None, 'random_params': None} #: _default_initial_limits(dict): Default limit for initialization _default_initial_limits = {} @property def nominal_values(self): """ Readonly motors nominal values. Returns: dict(float): Current nominal values of the motor. """ return self._nominal_values @property def limits(self): """ Readonly motors limit state array. Entries are set to the maximum physical possible values in case of unspecified limits. Returns: dict(float): Limits of the motor. """ return self._limits @property def motor_parameter(self): """ Returns: dict(float): The motors parameter dictionary """ return self._motor_parameter @property def initializer(self): """ Returns: dict: Motor initial state and additional initializer parameter """ return self._initializer @property def initial_limits(self): """ Returns: dict: nominal motor limits for choosing initial values """ return self._initial_limits def __init__(self, motor_parameter=None, nominal_values=None, limit_values=None, motor_initializer=None, initial_limits=None, **__): """ :param motor_parameter: Motor parameter dictionary. Contents specified for each motor. :param nominal_values: Nominal values for the motor quantities. :param limit_values: Limits for the motor quantities. :param motor_initializer: Initial motor states (currents) ('constant', 'uniform', 'gaussian' sampled from given interval or out of nominal motor values) :param initial_limits: limits for of the initial state-value """ motor_parameter = motor_parameter or {} self._motor_parameter = self._default_motor_parameter.copy() self._motor_parameter.update(motor_parameter) limit_values = limit_values or {} self._limits = self._default_limits.copy() self._limits.update(limit_values) nominal_values = nominal_values or {} self._nominal_values = self._default_nominal_values.copy() self._nominal_values.update(nominal_values) motor_initializer = motor_initializer or {} self._initializer = self._default_initializer.copy() self._initializer.update(motor_initializer) self._initial_states = {} if self._initializer['states'] is not None: self._initial_states.update(self._initializer['states']) # intialize limits, in general they're not needed to be changed # during training or episodes initial_limits = initial_limits or {} self._initial_limits = self._nominal_values.copy() self._initial_limits.update(initial_limits) # preventing wrong user input for the basic case assert isinstance(self._initializer, dict), 'wrong initializer' def electrical_ode(self, state, u_in, omega, *_): """ Calculation of the derivatives of each motor state variable for the given inputs / The motors ODE-System. Args: state(ndarray(float)): The motors state. u_in(list(float)): The motors input voltages. omega(float): Angular velocity of the motor Returns: ndarray(float): Derivatives of the motors ODE-system for the given inputs. """ raise NotImplementedError def electrical_jacobian(self, state, u_in, omega, *_): """ Calculation of the jacobian of each motor ODE for the given inputs / The motors ODE-System. Overriding this method is optional for each subclass. If it is overridden, the parameter HAS_JACOBIAN must also be set to True. Otherwise, the jacobian will not be called. Args: state(ndarray(float)): The motors state. u_in(list(float)): The motors input voltages. omega(float): Angular velocity of the motor Returns: Tuple(ndarray, ndarray, ndarray): [0]: Derivatives of all electrical motor states over all electrical motor states shape:(states x states) [1]: Derivatives of all electrical motor states over omega shape:(states,) [2]: Derivative of Torque over all motor states shape:(states,) """ pass def initialize(self, state_space, state_positions, **__): """ Initializes given state values. Values can be given as a constant or sampled random out of a statistical distribution. Initial value is in range of the nominal values or a given interval. Values are written in initial_states attribute Args: state_space(gym.Box): normalized state space boundaries (given by physical system) state_positions(dict): indexes of system states (given by physical system) Returns: """ # for organization purposes interval = self._initializer['interval'] random_dist = self._initializer['random_init'] random_params = self._initializer['random_params'] self._initial_states.update(self._default_initializer['states']) if self._initializer['states'] is not None: self._initial_states.update(self._initializer['states']) # different limits for InductionMotor if any(map(lambda state: state in self._initial_states.keys(), ['psi_ralpha', 'psi_rbeta'])): nominal_values_ = [self._initial_limits[state] for state in self._initial_states] upper_bound = np.asarray(np.abs(nominal_values_), dtype=float) # state space for Induction Envs based on documentation # ['i_salpha', 'i_sbeta', 'psi_ralpha', 'psi_rbeta', 'epsilon'] # hardcoded for Inductionmotors currently given in the toolbox state_space_low = np.array([-1, -1, -1, -1, -1]) lower_bound = upper_bound * state_space_low else: if isinstance(self._nominal_values, dict): nominal_values_ = [self._nominal_values[state] for state in self._initial_states.keys()] nominal_values_ = np.asarray(nominal_values_) else: nominal_values_ = np.asarray(self._nominal_values) state_space_idx = [state_positions[state] for state in self._initial_states.keys()] upper_bound = np.asarray(nominal_values_, dtype=float) lower_bound = upper_bound * \ np.asarray(state_space.low, dtype=float)[state_space_idx] # clip nominal boundaries to user defined if interval is not None: lower_bound = np.clip(lower_bound, a_min= np.asarray(interval, dtype=float).T[0], a_max=None) upper_bound = np.clip(upper_bound, a_min=None, a_max= np.asarray(interval, dtype=float).T[1]) # random initialization for each motor state (current, epsilon) if random_dist is not None: if random_dist == 'uniform': initial_value = (upper_bound - lower_bound) * \ np.random.random_sample( len(self._initial_states.keys())) + \ lower_bound # writing initial values in initial_states dict random_states = \ {state: initial_value[idx] for idx, state in enumerate(self._initial_states.keys())} self._initial_states.update(random_states) elif random_dist in ['normal', 'gaussian']: # specific input or middle of interval mue = random_params[0] or (upper_bound - lower_bound) / 2 + lower_bound sigma = random_params[1] or 1 a, b = (lower_bound - mue) / sigma, (upper_bound - mue) / sigma initial_value = truncnorm.rvs(a, b, loc=mue, scale=sigma, size=(len(self._initial_states.keys()))) # writing initial values in initial_states dict random_states = \ {state: initial_value[idx] for idx, state in enumerate(self._initial_states.keys())} self._initial_states.update(random_states) else: # todo implement other distribution raise NotImplementedError # constant initialization for each motor state (current, epsilon) elif self._initial_states is not None: initial_value = np.atleast_1d(list(self._initial_states.values())) # check init_value meets interval boundaries if ((lower_bound <= initial_value).all() and (initial_value <= upper_bound).all()): initial_states_ = \ {state: initial_value[idx] for idx, state in enumerate(self._initial_states.keys())} self._initial_states.update(initial_states_) else: raise Exception('Initialization value has to be within nominal boundaries') else: raise Exception('No matching Initialization Case') def reset(self, state_space, state_positions, **__): """ Reset the motors state to a new initial state. (Default 0) Args: state_space(gym.Box): normalized state space boundaries state_positions(dict): indexes of system states Returns: numpy.ndarray(float): The initial motor states. """ # check for valid initializer if self._initializer and self._initializer['states']: self.initialize(state_space, state_positions) return np.asarray(list(self._initial_states.values())) else: return np.zeros(len(self.CURRENTS)) def i_in(self, state): """ Args: state(ndarray(float)): ODE state of the motor Returns: list(float): List of all currents flowing into the motor. """ raise NotImplementedError def _update_limits(self, limits_d={}, nominal_d={}): """Replace missing limits and nominal values with physical maximums. Args: limits_d(dict): Mapping: quantitity to its limit if not specified """ # omega is replaced the same way for all motor types limits_d.update(dict(omega=self._default_limits['omega'])) for qty, lim in limits_d.items(): if self._limits.get(qty, 0) == 0: self._limits[qty] = lim for entry in self._limits.keys(): if self._nominal_values.get(entry, 0) == 0: self._nominal_values[entry] = nominal_d.get(entry, None) or \ self._limits[entry] def _update_initial_limits(self, nominal_new={}, **kwargs): """ Complete initial states with further state limits Args: nominal_new(dict): new/further state limits """ self._initial_limits.update(nominal_new) class DcMotor(ElectricMotor): """ The DcMotor and its subclasses implement the technical system of a dc motor. This includes the system equations, the motor parameters of the equivalent circuit diagram, as well as limits. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_a Ohm 0.78 Armature circuit resistance r_e Ohm 25 Exciting circuit resistance l_a H 6.3e-3 Armature circuit inductance l_e H 1.2 Exciting circuit inductance l_e_prime H 0.0094 Effective excitation inductance j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_a A Armature circuit current i_e A Exciting circuit current =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_a V Armature circuit voltage u_e v Exciting circuit voltage =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i_a Armature current i_e Exciting current omega Angular Velocity torque Motor generated torque u_a Armature Voltage u_e Exciting Voltage ======== =========================================================== """ # Indices for array accesses I_A_IDX = 0 I_E_IDX = 1 CURRENTS_IDX = [0, 1] CURRENTS = ['i_a', 'i_e'] VOLTAGES = ['u_a', 'u_e'] _default_motor_parameter = { 'r_a': 0.78, 'r_e': 25, 'l_a': 6.3e-3, 'l_e': 1.2, 'l_e_prime': 0.0094, 'j_rotor': 0.017, } _default_nominal_values = {'omega': 368, 'torque': 0.0, 'i_a': 50, 'i_e': 1.2, 'u': 420} _default_limits = {'omega': 500, 'torque': 0.0, 'i_a': 75, 'i_e': 2, 'u': 420} _default_initializer = {'states': {'i_a': 0.0, 'i_e': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} def __init__(self, motor_parameter=None, nominal_values=None, limit_values=None, motor_initializer=None, **__): # Docstring of superclass super().__init__(motor_parameter, nominal_values, limit_values, motor_initializer) #: Matrix that contains the constant parameters of the systems equation for faster computation self._model_constants = None self._update_model() self._update_limits() def _update_model(self): """ Update the motors model parameters with the motor parameters. Called internally when the motor parameters are changed or the motor is initialized. """ mp = self._motor_parameter self._model_constants = np.array([ [-mp['r_a'], 0, -mp['l_e_prime'], 1, 0], [0, -mp['r_e'], 0, 0, 1] ]) self._model_constants[self.I_A_IDX] = self._model_constants[ self.I_A_IDX] / mp['l_a'] self._model_constants[self.I_E_IDX] = self._model_constants[ self.I_E_IDX] / mp['l_e'] def torque(self, currents): # Docstring of superclass return self._motor_parameter['l_e_prime'] * currents[self.I_A_IDX] * \ currents[self.I_E_IDX] def i_in(self, currents): # Docstring of superclass return list(currents) def electrical_ode(self, state, u_in, omega, *_): # Docstring of superclass return np.matmul(self._model_constants, np.array([ state[self.I_A_IDX], state[self.I_E_IDX], omega * state[self.I_E_IDX], u_in[0], u_in[1], ])) def get_state_space(self, input_currents, input_voltages): """ Calculate the possible normalized state space for the motor as a tuple of dictionaries "low" and "high". Args: input_currents: Tuple of the two converters possible output currents. input_voltages: Tuple of the two converters possible output voltages. Returns: tuple(dict,dict): Dictionaries defining if positive and negative values are possible for each motors state. """ a_converter = 0 e_converter = 1 low = { 'omega': -1 if input_voltages.low[a_converter] == -1 or input_voltages.low[e_converter] == -1 else 0, 'torque': -1 if input_currents.low[a_converter] == -1 or input_currents.low[e_converter] == -1 else 0, 'i_a': -1 if input_currents.low[a_converter] == -1 else 0, 'i_e': -1 if input_currents.low[e_converter] == -1 else 0, 'u_a': -1 if input_voltages.low[a_converter] == -1 else 0, 'u_e': -1 if input_voltages.low[e_converter] == -1 else 0, } high = { 'omega': 1, 'torque': 1, 'i_a': 1, 'i_e': 1, 'u_a': 1, 'u_e': 1 } return low, high def _update_limits(self, limits_d={}): # Docstring of superclass # torque is replaced the same way for all DC motors limits_d.update(dict(torque=self.torque([self._limits[state] for state in self.CURRENTS]))) super()._update_limits(limits_d) class DcShuntMotor(DcMotor): """ The DcShuntMotor is a DC motor with parallel armature and exciting circuit connected to one input voltage. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_a Ohm 0.78 Armature circuit resistance r_e Ohm 25 Exciting circuit resistance l_a H 6.3e-3 Armature circuit inductance l_e H 1.2 Exciting circuit inductance l_e_prime H 0.0094 Effective excitation inductance j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_a A Armature circuit current i_e A Exciting circuit current =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u V Voltage applied to both circuits =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i_a Armature current i_e Exciting current omega Angular Velocity torque Motor generated torque u Voltage ======== =========================================================== """ HAS_JACOBIAN = True VOLTAGES = ['u'] _default_nominal_values = {'omega': 368, 'torque': 0.0, 'i_a': 50, 'i_e': 1.2, 'u': 420} _default_limits = {'omega': 500, 'torque': 0.0, 'i_a': 75, 'i_e': 2, 'u': 420} _default_initializer = {'states': {'i_a': 0.0, 'i_e': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} def i_in(self, state): # Docstring of superclass return [state[self.I_A_IDX] + state[self.I_E_IDX]] def electrical_ode(self, state, u_in, omega, *_): # Docstring of superclass return super().electrical_ode(state, (u_in[0], u_in[0]), omega) def electrical_jacobian(self, state, u_in, omega, *_): mp = self._motor_parameter return ( np.array([ [-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [0, -mp['r_e'] / mp['l_e']] ]), np.array([-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0]), np.array([mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[self.I_A_IDX]]) ) def get_state_space(self, input_currents, input_voltages): """ Calculate the possible normalized state space for the motor as a tuple of dictionaries "low" and "high". Args: input_currents: The converters possible output currents. input_voltages: The converters possible output voltages. Returns: tuple(dict,dict): Dictionaries defining if positive and negative values are possible for each motors state. """ lower_limit = 0 low = { 'omega': 0, 'torque': -1 if input_currents.low[0] == -1 else 0, 'i_a': -1 if input_currents.low[0] == -1 else 0, 'i_e': -1 if input_currents.low[0] == -1 else 0, 'u': -1 if input_voltages.low[0] == -1 else 0, } high = { 'omega': 1, 'torque': 1, 'i_a': 1, 'i_e': 1, 'u': 1, } return low, high def _update_limits(self): # Docstring of superclass # R_a might be 0, protect against that r_a = 1 if self._motor_parameter['r_a'] == 0 else self._motor_parameter['r_a'] limit_agenda = \ {'u': self._default_limits['u'], 'i_a': self._limits.get('i', None) or self._limits['u'] / r_a, 'i_e': self._limits.get('i', None) or self._limits['u'] / self.motor_parameter['r_e'], } super()._update_limits(limit_agenda) class DcSeriesMotor(DcMotor): """ The DcSeriesMotor is a DcMotor with an armature and exciting circuit connected in series to one input voltage. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_a Ohm 2.78 Armature circuit resistance r_e Ohm 1.0 Exciting circuit resistance l_a H 6.3e-3 Armature circuit inductance l_e H 1.6e-3 Exciting circuit inductance l_e_prime H 0.05 Effective excitation inductance j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i A Circuit current =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u V Circuit voltage =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i Circuit Current omega Angular Velocity torque Motor generated torque u Circuit Voltage ======== =========================================================== """ HAS_JACOBIAN = True I_IDX = 0 CURRENTS_IDX = [0] CURRENTS = ['i'] VOLTAGES = ['u'] _default_motor_parameter = { 'r_a': 2.78, 'r_e': 1.0, 'l_a': 6.3e-3, 'l_e': 1.6e-3, 'l_e_prime': 0.05, 'j_rotor': 0.017, } _default_nominal_values = dict(omega=80, torque=0.0, i=50, u=420) _default_limits = dict(omega=100, torque=0.0, i=100, u=420) _default_initializer = {'states': {'i': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} def _update_model(self): # Docstring of superclass mp = self._motor_parameter self._model_constants = np.array([ [-mp['r_a'] - mp['r_e'], -mp['l_e_prime'], 1] ]) self._model_constants[self.I_IDX] = self._model_constants[ self.I_IDX] / ( mp['l_a'] + mp['l_e']) def torque(self, currents): # Docstring of superclass return super().torque([currents[self.I_IDX], currents[self.I_IDX]]) def electrical_ode(self, state, u_in, omega, *_): # Docstring of superclass return np.matmul( self._model_constants, np.array([ state[self.I_IDX], omega * state[self.I_IDX], u_in[0] ]) ) def i_in(self, state): # Docstring of superclass return state[self.CURRENTS_IDX] def _update_limits(self): # Docstring of superclass # R_a might be 0, protect against that r_a = 1 if self._motor_parameter['r_a'] == 0 else self._motor_parameter['r_a'] limits_agenda = { 'u': self._default_limits['u'], 'i': self._limits['u'] / (r_a + self._motor_parameter['r_e']), } super()._update_limits(limits_agenda) def get_state_space(self, input_currents, input_voltages): # Docstring of superclass lower_limit = 0 low = { 'omega': 0, 'torque': 0, 'i': -1 if input_currents.low[0] == -1 else 0, 'u': -1 if input_voltages.low[0] == -1 else 0, } high = { 'omega': 1, 'torque': 1, 'i': 1, 'u': 1, } return low, high def electrical_jacobian(self, state, u_in, omega, *_): mp = self._motor_parameter return ( np.array([[-(mp['r_a'] + mp['r_e'] + mp['l_e_prime'] * omega) / ( mp['l_a'] + mp['l_e'])]]), np.array([-mp['l_e_prime'] * state[self.I_IDX] / ( mp['l_a'] + mp['l_e'])]), np.array([2 * mp['l_e_prime'] * state[self.I_IDX]]) ) class DcPermanentlyExcitedMotor(DcMotor): """ The DcPermanentlyExcitedMotor is a DcMotor with a Permanent Magnet instead of the excitation circuit. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_a Ohm 25.0 Armature circuit resistance l_a H 3.438e-2 Armature circuit inductance psi_e Wb 18 Magnetic Flux of the permanent magnet j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i A Circuit current =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u V Circuit voltage =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i Circuit Current omega Angular Velocity torque Motor generated torque u Circuit Voltage ======== =========================================================== """ I_IDX = 0 CURRENTS_IDX = [0] CURRENTS = ['i'] VOLTAGES = ['u'] HAS_JACOBIAN = True _default_motor_parameter = { 'r_a': 25.0, 'l_a': 3.438e-2, 'psi_e': 18, 'j_rotor': 0.017 } _default_nominal_values = dict(omega=22, torque=0.0, i=16, u=400) _default_limits = dict(omega=50, torque=0.0, i=25, u=400) _default_initializer = {'states': {'i': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} # placeholder for omega, currents and u_in _ode_placeholder = np.zeros(2 + len(CURRENTS_IDX), dtype=np.float64) def torque(self, state): # Docstring of superclass return self._motor_parameter['psi_e'] * state[self.I_IDX] def _update_model(self): # Docstring of superclass mp = self._motor_parameter self._model_constants = np.array([ [-mp['psi_e'], -mp['r_a'], 1.0] ]) self._model_constants[self.I_IDX] /= mp['l_a'] def i_in(self, state): # Docstring of superclass return state[self.CURRENTS_IDX] def electrical_ode(self, state, u_in, omega, *_): # Docstring of superclass self._ode_placeholder[:] = [omega] + np.atleast_1d( state[self.I_IDX]).tolist() \ + [u_in[0]] return np.matmul(self._model_constants, self._ode_placeholder) def electrical_jacobian(self, state, u_in, omega, *_): mp = self._motor_parameter return ( np.array([[-mp['r_a'] / mp['l_a']]]), np.array([-mp['psi_e'] / mp['l_a']]), np.array([mp['psi_e']]) ) def _update_limits(self): # Docstring of superclass # R_a might be 0, protect against that r_a = 1 if self._motor_parameter['r_a'] == 0 else self._motor_parameter['r_a'] limits_agenda = { 'u': self._default_limits['u'], 'i': self._limits['u'] / r_a, } super()._update_limits(limits_agenda) def get_state_space(self, input_currents, input_voltages): # Docstring of superclass lower_limit = 0 low = { 'omega': -1 if input_voltages.low[0] == -1 else 0, 'torque': -1 if input_currents.low[0] == -1 else 0, 'i': -1 if input_currents.low[0] == -1 else 0, 'u': -1 if input_voltages.low[0] == -1 else 0, } high = { 'omega': 1, 'torque': 1, 'i': 1, 'u': 1, } return low, high class DcExternallyExcitedMotor(DcMotor): # Equals DC Base Motor HAS_JACOBIAN = True def electrical_jacobian(self, state, u_in, omega, *_): mp = self._motor_parameter return ( np.array([ [-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [0, -mp['r_e'] / mp['l_e']] ]), np.array([-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0]), np.array([mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[self.I_A_IDX]]) ) def _update_limits(self): # Docstring of superclass # R_a might be 0, protect against that r_a = 1 if self._motor_parameter['r_a'] == 0 else self._motor_parameter['r_a'] limit_agenda = \ {'u_a': self._default_limits['u'], 'u_e': self._default_limits['u'], 'i_a': self._limits.get('i', None) or self._limits['u'] / r_a, 'i_e': self._limits.get('i', None) or self._limits['u'] / self.motor_parameter['r_e'], } super()._update_limits(limit_agenda) class ThreePhaseMotor(ElectricMotor): """ The ThreePhaseMotor and its subclasses implement the technical system of Three Phase Motors. This includes the system equations, the motor parameters of the equivalent circuit diagram, as well as limits and bandwidth. """ # transformation matrix from abc to alpha-beta representation _t23 = 2 / 3 * np.array([ [1, -0.5, -0.5], [0, 0.5 * np.sqrt(3), -0.5 * np.sqrt(3)] ]) # transformation matrix from alpha-beta to abc representation _t32 = np.array([ [1, 0], [-0.5, 0.5 * np.sqrt(3)], [-0.5, -0.5 * np.sqrt(3)] ]) @staticmethod def t_23(quantities): """ Transformation from abc representation to alpha-beta representation Args: quantities: The properties in the abc representation like ''[u_a, u_b, u_c]'' Returns: The converted quantities in the alpha-beta representation like ''[u_alpha, u_beta]'' """ return np.matmul(ThreePhaseMotor._t23, quantities) @staticmethod def t_32(quantities): """ Transformation from alpha-beta representation to abc representation Args: quantities: The properties in the alpha-beta representation like ``[u_alpha, u_beta]`` Returns: The converted quantities in the abc representation like ``[u_a, u_b, u_c]`` """ return np.matmul(ThreePhaseMotor._t32, quantities) @staticmethod def q(quantities, epsilon): """ Transformation of the dq-representation into alpha-beta using the electrical angle Args: quantities: Array of two quantities in dq-representation. Example [i_d, i_q] epsilon: Current electrical angle of the motor Returns: Array of the two quantities converted to alpha-beta-representation. Example [u_alpha, u_beta] """ cos = math.cos(epsilon) sin = math.sin(epsilon) return cos * quantities[0] - sin * quantities[1], sin * quantities[ 0] + cos * quantities[1] @staticmethod def q_inv(quantities, epsilon): """ Transformation of the alpha-beta-representation into dq using the electrical angle Args: quantities: Array of two quantities in alpha-beta-representation. Example [u_alpha, u_beta] epsilon: Current electrical angle of the motor Returns: Array of the two quantities converted to dq-representation. Example [u_d, u_q] Note: The transformation from alpha-beta to dq is just its inverse conversion with negated epsilon. So this method calls q(quantities, -epsilon). """ return SynchronousMotor.q(quantities, -epsilon) def q_me(self, quantities, epsilon): """ Transformation of the dq-representation into alpha-beta using the mechanical angle Args: quantities: Array of two quantities in dq-representation. Example [i_d, i_q] epsilon: Current mechanical angle of the motor Returns: Array of the two quantities converted to alpha-beta-representation. Example [u_alpha, u_beta] """ return self.q(quantities, epsilon * self._motor_parameter['p']) def q_inv_me(self, quantities, epsilon): """ Transformation of the alpha-beta-representation into dq using the mechanical angle Args: quantities: Array of two quantities in alpha-beta-representation. Example [u_alpha, u_beta] epsilon: Current mechanical angle of the motor Returns: Array of the two quantities converted to dq-representation. Example [u_d, u_q] Note: The transformation from alpha-beta to dq is just its inverse conversion with negated epsilon. So this method calls q(quantities, -epsilon). """ return self.q_me(quantities, -epsilon) def _torque_limit(self): """ Returns: Maximal possible torque for the given limits in self._limits """ raise NotImplementedError() def _update_limits(self, limits_d={}, nominal_d={}): # Docstring of superclass super()._update_limits(limits_d, nominal_d) super()._update_limits(dict(torque=self._torque_limit())) def _update_initial_limits(self, nominal_new={}, **kwargs): # Docstring of superclass super()._update_initial_limits(self._nominal_values) super()._update_initial_limits(nominal_new) class SynchronousMotor(ThreePhaseMotor): """ The SynchronousMotor and its subclasses implement the technical system of a three phase synchronous motor. This includes the system equations, the motor parameters of the equivalent circuit diagram, as well as limits and bandwidth. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 0.78 Stator resistance l_d H 1.2 Direct axis inductance l_q H 6.3e-3 Quadrature axis inductance psi_p Wb 0.0094 Effective excitation flux (PMSM only) p 1 2 Pole pair number j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_a A Current through branch a i_b A Current through branch b i_c A Current through branch c i_alpha A Current in alpha axis i_beta A Current in beta axis =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd A Direct axis voltage u_sq A Quadrature axis voltage u_a A Voltage through branch a u_b A Voltage through branch b u_c A Voltage through branch c u_alpha A Voltage in alpha axis u_beta A Voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_a Current in phase a i_b Current in phase b i_c Current in phase c i_alpha Current in alpha axis i_beta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity epsilon Electrical rotational angle torque Motor generated torque u_a Voltage in phase a u_b Voltage in phase b u_c Voltage in phase c u_alpha Voltage in alpha axis u_beta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ I_SD_IDX = 0 I_SQ_IDX = 1 EPSILON_IDX = 2 CURRENTS_IDX = [0, 1] CURRENTS = ['i_sd', 'i_sq'] VOLTAGES = ['u_sd', 'u_sq'] _model_constants = None _initializer = None def __init__(self, motor_parameter=None, nominal_values=None, limit_values=None, motor_initializer=None, **kwargs): # Docstring of superclass nominal_values = nominal_values or {} limit_values = limit_values or {} super().__init__(motor_parameter, nominal_values, limit_values, motor_initializer) self._update_model() self._update_limits() @property def motor_parameter(self): # Docstring of superclass return self._motor_parameter @property def initializer(self): # Docstring of superclass return self._initializer def reset(self, state_space, state_positions, **__): # Docstring of superclass if self._initializer and self._initializer['states']: self.initialize(state_space, state_positions) return np.asarray(list(self._initial_states.values())) else: return np.zeros(len(self.CURRENTS) + 1) def torque(self, state): # Docstring of superclass raise NotImplementedError def _update_model(self): """ Set motor parameters into a matrix for faster computation """ raise NotImplementedError def electrical_ode(self, state, u_dq, omega, *_): """ The differential equation of the Synchronous Motor. Args: state: The current state of the motor. [i_sd, i_sq, epsilon] omega: The mechanical load u_qd: The input voltages [u_sd, u_sq] Returns: The derivatives of the state vector d/dt([i_sd, i_sq, epsilon]) """ return np.matmul(self._model_constants, np.array([ omega, state[self.I_SD_IDX], state[self.I_SQ_IDX], u_dq[0], u_dq[1], omega * state[self.I_SD_IDX], omega * state[self.I_SQ_IDX], ])) def i_in(self, state): # Docstring of superclass return state[self.CURRENTS_IDX] def _update_limits(self): # Docstring of superclass voltage_limit = 0.5 * self._limits['u'] voltage_nominal = 0.5 * self._nominal_values['u'] limits_agenda = {} nominal_agenda = {} for u, i in zip(self.IO_VOLTAGES, self.IO_CURRENTS): limits_agenda[u] = voltage_limit nominal_agenda[u] = voltage_nominal limits_agenda[i] = self._limits.get('i', None) or \ self._limits[u] / self._motor_parameter['r_s'] nominal_agenda[i] = self._nominal_values.get('i', None) or \ self._nominal_values[u] / \ self._motor_parameter['r_s'] super()._update_limits(limits_agenda, nominal_agenda) # def initialize(self, # state_space, # state_positions, # **__): # super().initialize(state_space, state_positions) class SynchronousReluctanceMotor(SynchronousMotor): """ ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 0.78 Stator resistance l_d H 1.2 Direct axis inductance l_q H 6.3e-3 Quadrature axis inductance p 1 2 Pole pair number j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_a A Current through branch a i_b A Current through branch b i_c A Current through branch c i_alpha A Current in alpha axis i_beta A Current in beta axis =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd V Direct axis voltage u_sq V Quadrature axis voltage u_a V Voltage through branch a u_b V Voltage through branch b u_c V Voltage through branch c u_alpha V Voltage in alpha axis u_beta V Voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_a Current in phase a i_b Current in phase b i_c Current in phase c i_alpha Current in alpha axis i_beta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity epsilon Electrical rotational angle torque Motor generated torque u_a Voltage in phase a u_b Voltage in phase b u_c Voltage in phase c u_alpha Voltage in alpha axis u_beta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ HAS_JACOBIAN = True #### Parameters taken from DOI: 10.1109/AMC.2008.4516099 (<NAME>, <NAME>, <NAME>) _default_motor_parameter = {'p': 4, 'l_d': 10.1e-3, 'l_q': 4.1e-3, 'j_rotor': 0.8e-3, 'r_s': 0.57 } _default_nominal_values = {'i': 10, 'torque': 0, 'omega': 3e3 * np.pi / 30, 'epsilon': np.pi, 'u': 100} _default_limits = {'i': 13, 'torque': 0, 'omega': 4.3e3 * np.pi / 30, 'epsilon': np.pi, 'u': 100} _default_initializer = {'states': {'i_sq': 0.0, 'i_sd': 0.0, 'epsilon': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} IO_VOLTAGES = ['u_a', 'u_b', 'u_c', 'u_sd', 'u_sq'] IO_CURRENTS = ['i_a', 'i_b', 'i_c', 'i_sd', 'i_sq'] def _update_model(self): # Docstring of superclass mp = self._motor_parameter self._model_constants = np.array([ # omega, i_sd, i_sq, u_sd, u_sq, omega * i_sd, omega * i_sq [ 0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [ 0, 0, -mp['r_s'], 0, 1, -mp['l_d'] * mp['p'], 0], [mp['p'], 0, 0, 0, 0, 0, 0] ]) self._model_constants[self.I_SD_IDX] = self._model_constants[self.I_SD_IDX] / mp['l_d'] self._model_constants[self.I_SQ_IDX] = self._model_constants[self.I_SQ_IDX] / mp['l_q'] def _torque_limit(self): # Docstring of superclass return self.torque([self._limits['i_sd'] / np.sqrt(2), self._limits['i_sq'] / np.sqrt(2), 0]) def torque(self, currents): # Docstring of superclass mp = self._motor_parameter return 1.5 * mp['p'] * ( (mp['l_d'] - mp['l_q']) * currents[self.I_SD_IDX]) * \ currents[self.I_SQ_IDX] def electrical_jacobian(self, state, u_in, omega, *_): mp = self._motor_parameter return ( np.array([ [-mp['r_s'] / mp['l_d'], mp['l_q'] / mp['l_d'] * mp['p'] * omega, 0], [-mp['l_d'] / mp['l_q'] * mp['p'] * omega, -mp['r_s'] / mp['l_q'], 0], [0, 0, 0] ]), np.array([ mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], - mp['p'] * mp['l_d'] / mp['l_q'] * state[self.I_SD_IDX], mp['p'] ]), np.array([ 1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], 1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SD_IDX], 0 ]) ) class PermanentMagnetSynchronousMotor(SynchronousMotor): """ ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 0.78 Stator resistance l_d H 1.2 Direct axis inductance l_q H 6.3e-3 Quadrature axis inductance p 1 2 Pole pair number j_rotor kg/m^2 0.017 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_a A Current through branch a i_b A Current through branch b i_c A Current through branch c i_alpha A Current in alpha axis i_beta A Current in beta axis =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd V Direct axis voltage u_sq V Quadrature axis voltage u_a V Voltage through branch a u_b V Voltage through branch b u_c V Voltage through branch c u_alpha V Voltage in alpha axis u_beta V Voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_a Current in phase a i_b Current in phase b i_c Current in phase c i_alpha Current in alpha axis i_beta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity torque Motor generated torque epsilon Electrical rotational angle u_a Voltage in phase a u_b Voltage in phase b u_c Voltage in phase c u_alpha Voltage in alpha axis u_beta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ #### Parameters taken from DOI: 10.1109/TPEL.2020.3006779 (<NAME>, <NAME>, <NAME>, <NAME>) #### and DOI: 10.1109/IEMDC.2019.8785122 (<NAME>, <NAME>, <NAME>) _default_motor_parameter = { 'p': 3, 'l_d': 0.37e-3, 'l_q': 1.2e-3, 'j_rotor': 0.3883, 'r_s': 18e-3, 'psi_p': 66e-3, } HAS_JACOBIAN = True _default_limits = dict(omega=12e3 * np.pi / 30, torque=0.0, i=260, epsilon=math.pi, u=300) _default_nominal_values = dict(omega=3e3 * np.pi / 30, torque=0.0, i=240, epsilon=math.pi, u=300) _default_initializer = {'states': {'i_sq': 0.0, 'i_sd': 0.0, 'epsilon': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} IO_VOLTAGES = ['u_a', 'u_b', 'u_c', 'u_sd', 'u_sq'] IO_CURRENTS = ['i_a', 'i_b', 'i_c', 'i_sd', 'i_sq'] def _update_model(self): # Docstring of superclass mp = self._motor_parameter self._model_constants = np.array([ # omega, i_d, i_q, u_d, u_q, omega * i_d, omega * i_q [ 0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [-mp['psi_p'] * mp['p'], 0, -mp['r_s'], 0, 1, -mp['l_d'] * mp['p'], 0], [ mp['p'], 0, 0, 0, 0, 0, 0], ]) self._model_constants[self.I_SD_IDX] = self._model_constants[self.I_SD_IDX] / mp['l_d'] self._model_constants[self.I_SQ_IDX] = self._model_constants[self.I_SQ_IDX] / mp['l_q'] def _torque_limit(self): # Docstring of superclass mp = self._motor_parameter if mp['l_d'] == mp['l_q']: return self.torque([0, self._limits['i_sq'], 0]) else: i_n = self.nominal_values['i'] _p = mp['psi_p'] / (2 * (mp['l_d'] - mp['l_q'])) _q = - i_n ** 2 / 2 i_d_opt = - _p / 2 - np.sqrt( (_p / 2) ** 2 - _q) i_q_opt = np.sqrt(i_n ** 2 - i_d_opt ** 2) return self.torque([i_d_opt, i_q_opt, 0]) def torque(self, currents): # Docstring of superclass mp = self._motor_parameter return 1.5 * mp['p'] * (mp['psi_p'] + (mp['l_d'] - mp['l_q']) * currents[self.I_SD_IDX]) * currents[self.I_SQ_IDX] def electrical_jacobian(self, state, u_in, omega, *args): mp = self._motor_parameter return ( np.array([ # dx'/dx [-mp['r_s'] / mp['l_d'], mp['l_q']/mp['l_d'] * omega * mp['p'], 0], [-mp['l_d'] / mp['l_q'] * omega * mp['p'], - mp['r_s'] / mp['l_q'], 0], [0, 0, 0] ]), np.array([ # dx'/dw mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], - mp['p'] * mp['l_d'] / mp['l_q'] * state[self.I_SD_IDX] - mp['p'] * mp['psi_p'] / mp['l_q'], mp['p'] ]), np.array([ # dT/dx 1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], 1.5 * mp['p'] * (mp['psi_p'] + (mp['l_d'] - mp['l_q']) * state[self.I_SD_IDX]), 0 ]) ) class InductionMotor(ThreePhaseMotor): """ The InductionMotor and its subclasses implement the technical system of a three phase induction motor. This includes the system equations, the motor parameters of the equivalent circuit diagram, as well as limits and bandwidth. ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 2.9338 Stator resistance r_r Ohm 1.355 Rotor resistance l_m H 143.75e-3 Main inductance l_sigs H 5.87e-3 Stator-side stray inductance l_sigr H 5.87e-3 Rotor-side stray inductance p 1 2 Pole pair number j_rotor kg/m^2 0.0011 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_sa A Current through branch a i_sb A Current through branch b i_sc A Current through branch c i_salpha A Current in alpha axis i_sbeta A Current in beta axis =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd V Direct axis voltage u_sq V Quadrature axis voltage u_sa V Voltage through branch a u_sb V Voltage through branch b u_sc V Voltage through branch c u_salpha V Voltage in alpha axis u_sbeta V Voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_sa Current in phase a i_sb Current in phase b i_sc Current in phase c i_salpha Current in alpha axis i_sbeta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity torque Motor generated torque u_sa Voltage in phase a u_sb Voltage in phase b u_sc Voltage in phase c u_salpha Voltage in alpha axis u_sbeta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ I_SALPHA_IDX = 0 I_SBETA_IDX = 1 PSI_RALPHA_IDX = 2 PSI_RBETA_IDX = 3 EPSILON_IDX = 4 CURRENTS_IDX = [0, 1] FLUX_IDX = [2, 3] CURRENTS = ['i_salpha', 'i_sbeta'] FLUXES = ['psi_ralpha', 'psi_rbeta'] STATOR_VOLTAGES = ['u_salpha', 'u_sbeta'] IO_VOLTAGES = ['u_sa', 'u_sb', 'u_sc', 'u_salpha', 'u_sbeta', 'u_sd', 'u_sq'] IO_CURRENTS = ['i_sa', 'i_sb', 'i_sc', 'i_salpha', 'i_sbeta', 'i_sd', 'i_sq'] HAS_JACOBIAN = True #### Parameters taken from DOI: 10.1109/EPEPEMC.2018.8522008 (<NAME>, <NAME>, <NAME>) _default_motor_parameter = { 'p': 2, 'l_m': 143.75e-3, 'l_sigs': 5.87e-3, 'l_sigr': 5.87e-3, 'j_rotor': 1.1e-3, 'r_s': 2.9338, 'r_r': 1.355, } _default_limits = dict(omega=4e3 * np.pi / 30, torque=0.0, i=5.5, epsilon=math.pi, u=560) _default_nominal_values = dict(omega=3e3 * np.pi / 30, torque=0.0, i=3.9, epsilon=math.pi, u=560) _model_constants = None _default_initializer = {'states': {'i_salpha': 0.0, 'i_sbeta': 0.0, 'psi_ralpha': 0.0, 'psi_rbeta': 0.0, 'epsilon': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} _initializer = None @property def motor_parameter(self): # Docstring of superclass return self._motor_parameter @property def initializer(self): # Docstring of superclass return self._initializer def __init__(self, motor_parameter=None, nominal_values=None, limit_values=None, motor_initializer=None, initial_limits=None, **__): # Docstring of superclass # convert placeholder i and u to actual IO quantities _nominal_values = self._default_nominal_values.copy() _nominal_values.update({u: _nominal_values['u'] for u in self.IO_VOLTAGES}) _nominal_values.update({i: _nominal_values['i'] for i in self.IO_CURRENTS}) del _nominal_values['u'], _nominal_values['i'] _nominal_values.update(nominal_values or {}) # same for limits _limit_values = self._default_limits.copy() _limit_values.update({u: _limit_values['u'] for u in self.IO_VOLTAGES}) _limit_values.update({i: _limit_values['i'] for i in self.IO_CURRENTS}) del _limit_values['u'], _limit_values['i'] _limit_values.update(limit_values or {}) super().__init__(motor_parameter, nominal_values, limit_values, motor_initializer, initial_limits) self._update_model() self._update_limits(_limit_values, _nominal_values) def reset(self, state_space, state_positions, omega=None): # Docstring of superclass if self._initializer and self._initializer['states']: self._update_initial_limits(omega=omega) self.initialize(state_space, state_positions) return np.asarray(list(self._initial_states.values())) else: return np.zeros(len(self.CURRENTS) + len(self.FLUXES) + 1) def electrical_ode(self, state, u_sr_alphabeta, omega, *args): """ The differential equation of the Induction Motor. Args: state: The momentary state of the motor. [i_salpha, i_sbeta, psi_ralpha, psi_rbeta, epsilon] omega: The mechanical load u_sr_alphabeta: The input voltages [u_salpha, u_sbeta, u_ralpha, u_rbeta] Returns: The derivatives of the state vector d/dt( [i_salpha, i_sbeta, psi_ralpha, psi_rbeta, epsilon]) """ return np.matmul(self._model_constants, np.array([ # omega, i_alpha, i_beta, psi_ralpha, psi_rbeta, omega * psi_ralpha, omega * psi_rbeta, u_salpha, u_sbeta, u_ralpha, u_rbeta, omega, state[self.I_SALPHA_IDX], state[self.I_SBETA_IDX], state[self.PSI_RALPHA_IDX], state[self.PSI_RBETA_IDX], omega * state[self.PSI_RALPHA_IDX], omega * state[self.PSI_RBETA_IDX], u_sr_alphabeta[0, 0], u_sr_alphabeta[0, 1], u_sr_alphabeta[1, 0], u_sr_alphabeta[1, 1], ])) def i_in(self, state): # Docstring of superclass return state[self.CURRENTS_IDX] def _torque_limit(self): # Docstring of superclass mp = self._motor_parameter return 1.5 * mp['p'] * mp['l_m'] ** 2/(mp['l_m']+mp['l_sigr']) * self._limits['i_sd'] * self._limits['i_sq'] / 2 def torque(self, states): # Docstring of superclass mp = self._motor_parameter return 1.5 * mp['p'] * mp['l_m']/(mp['l_m'] + mp['l_sigr']) * (states[self.PSI_RALPHA_IDX] * states[self.I_SBETA_IDX] - states[self.PSI_RBETA_IDX] * states[self.I_SALPHA_IDX]) def _flux_limit(self, omega=0, eps_mag=0, u_q_max=0.0, u_rq_max=0.0): """ Calculate Flux limits for given current and magnetic-field angle Args: omega(float): speed given by mechanical load eps_mag(float): magnetic field angle u_q_max(float): maximal strator voltage in q-system u_rq_max(float): maximal rotor voltage in q-system returns: maximal flux values(list) in alpha-beta-system """ mp = self.motor_parameter l_s = mp['l_m'] + mp['l_sigs'] l_r = mp['l_m'] + mp['l_sigr'] l_mr = mp['l_m'] / l_r sigma = (l_s * l_r - mp['l_m'] ** 2) / (l_s * l_r) # limiting flux for a low omega if omega == 0: psi_d_max = mp['l_m'] * self._nominal_values['i_sd'] else: i_d, i_q = self.q_inv([self._initial_states['i_salpha'], self._initial_states['i_sbeta']], eps_mag) psi_d_max = mp['p'] * omega * sigma * l_s * i_d + \ (mp['r_s'] + mp['r_r'] * l_mr**2) * i_q + \ u_q_max + \ l_mr * u_rq_max psi_d_max /= - mp['p'] * omega * l_mr # clipping flux and setting nominal limit psi_d_max = 0.9 * np.clip(psi_d_max, a_min=0, a_max=np.abs(mp['l_m'] * i_d)) # returning flux in alpha, beta system return self.q([psi_d_max, 0], eps_mag) def _update_model(self): # Docstring of superclass mp = self._motor_parameter l_s = mp['l_m']+mp['l_sigs'] l_r = mp['l_m']+mp['l_sigr'] sigma = (l_s*l_r-mp['l_m']**2) /(l_s*l_r) tau_r = l_r / mp['r_r'] tau_sig = sigma * l_s / ( mp['r_s'] + mp['r_r'] * (mp['l_m'] ** 2) / (l_r ** 2)) self._model_constants = np.array([ # omega, i_alpha, i_beta, psi_ralpha, psi_rbeta, omega * psi_ralpha, omega * psi_rbeta, u_salpha, u_sbeta, u_ralpha, u_rbeta, [0, -1 / tau_sig, 0,mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), 0, 0, +mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 1 / (sigma * l_s), 0, -mp['l_m'] / (sigma * l_r * l_s), 0, ], # i_ralpha_dot [0, 0, -1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), -mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 0, 0, 1 / (sigma * l_s), 0, -mp['l_m'] / (sigma * l_r * l_s), ], # i_rbeta_dot [0, mp['l_m'] / tau_r, 0, -1 / tau_r, 0, 0, -mp['p'], 0, 0, 1, 0, ], # psi_ralpha_dot [0, 0, mp['l_m'] / tau_r, 0, -1 / tau_r, mp['p'], 0, 0, 0, 0, 1, ], # psi_rbeta_dot [mp['p'], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ], # epsilon_dot ]) def electrical_jacobian(self, state, u_in, omega, *args): mp = self._motor_parameter l_s = mp['l_m'] + mp['l_sigs'] l_r = mp['l_m'] + mp['l_sigr'] sigma = (l_s * l_r - mp['l_m'] ** 2) / (l_s * l_r) tau_r = l_r / mp['r_r'] tau_sig = sigma * l_s / ( mp['r_s'] + mp['r_r'] * (mp['l_m'] ** 2) / (l_r ** 2)) return ( np.array([ # dx'/dx # i_alpha i_beta psi_alpha psi_beta epsilon [-1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), omega * mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 0], [0, - 1 / tau_sig, - omega * mp['l_m'] * mp['p'] / (sigma * l_r * l_s), mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), 0], [mp['l_m'] / tau_r, 0, - 1 / tau_r, - omega * mp['p'], 0], [0, mp['l_m'] / tau_r, omega * mp['p'], - 1 / tau_r, 0], [0, 0, 0, 0, 0] ]), np.array([ # dx'/dw mp['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[ self.PSI_RBETA_IDX], - mp['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[ self.PSI_RALPHA_IDX], - mp['p'] * state[self.PSI_RBETA_IDX], mp['p'] * state[self.PSI_RALPHA_IDX], mp['p'] ]), np.array([ # dT/dx - state[self.PSI_RBETA_IDX] * 3 / 2 * mp['p'] * mp[ 'l_m'] / l_r, state[self.PSI_RALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, state[self.I_SBETA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, - state[self.I_SALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, 0 ]) ) class SquirrelCageInductionMotor(InductionMotor): """ ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 2.9338 Stator resistance r_r Ohm 1.355 Rotor resistance l_m H 143.75e-3 Main inductance l_sigs H 5.87e-3 Stator-side stray inductance l_sigr H 5.87e-3 Rotor-side stray inductance p 1 2 Pole pair number j_rotor kg/m^2 0.0011 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_sa A Stator current through branch a i_sb A Stator current through branch b i_sc A Stator current through branch c i_salpha A Stator current in alpha direction i_sbeta A Stator current in beta direction =============== ====== ============================================= =============== ====== ============================================= Rotor flux Unit Description =============== ====== ============================================= psi_rd Vs Direct axis of the rotor oriented flux psi_rq Vs Quadrature axis of the rotor oriented flux psi_ra Vs Rotor oriented flux in branch a psi_rb Vs Rotor oriented flux in branch b psi_rc Vs Rotor oriented flux in branch c psi_ralpha Vs Rotor oriented flux in alpha direction psi_rbeta Vs Rotor oriented flux in beta direction =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd V Direct axis voltage u_sq V Quadrature axis voltage u_sa V Stator voltage through branch a u_sb V Stator voltage through branch b u_sc V Stator voltage through branch c u_salpha V Stator voltage in alpha axis u_sbeta V Stator voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_sa Current in phase a i_sb Current in phase b i_sc Current in phase c i_salpha Current in alpha axis i_sbeta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity torque Motor generated torque u_sa Voltage in phase a u_sb Voltage in phase b u_sc Voltage in phase c u_salpha Voltage in alpha axis u_sbeta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ #### Parameters taken from DOI: 10.1109/EPEPEMC.2018.8522008 (<NAME>, <NAME>, <NAME>) _default_motor_parameter = { 'p': 2, 'l_m': 143.75e-3, 'l_sigs': 5.87e-3, 'l_sigr': 5.87e-3, 'j_rotor': 1.1e-3, 'r_s': 2.9338, 'r_r': 1.355, } _default_limits = dict(omega=4e3 * np.pi / 30, torque=0.0, i=5.5, epsilon=math.pi, u=560) _default_nominal_values = dict(omega=3e3 * np.pi / 30, torque=0.0, i=3.9, epsilon=math.pi, u=560) _default_initializer = {'states': {'i_salpha': 0.0, 'i_sbeta': 0.0, 'psi_ralpha': 0.0, 'psi_rbeta': 0.0, 'epsilon': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} def electrical_ode(self, state, u_salphabeta, omega, *args): """ The differential equation of the SCIM. Sets u_ralpha = u_rbeta = 0 before calling the respective super function. """ u_ralphabeta = np.zeros_like(u_salphabeta) u_sr_aphabeta = np.array([u_salphabeta, u_ralphabeta]) return super().electrical_ode(state, u_sr_aphabeta, omega, *args) def _update_limits(self, limit_values={}, nominal_values={}): # Docstring of superclass voltage_limit = 0.5 * self._limits['u'] voltage_nominal = 0.5 * self._nominal_values['u'] limits_agenda = {} nominal_agenda = {} for u, i in zip(self.IO_VOLTAGES, self.IO_CURRENTS): limits_agenda[u] = voltage_limit nominal_agenda[u] = voltage_nominal limits_agenda[i] = self._limits.get('i', None) or \ self._limits[u] / self._motor_parameter['r_s'] nominal_agenda[i] = self._nominal_values.get('i', None) or \ self._nominal_values[u] / self._motor_parameter['r_s'] super()._update_limits(limits_agenda, nominal_agenda) def _update_initial_limits(self, nominal_new={}, omega=None): # Docstring of superclass # draw a sample magnetic field angle from [-pi,pi] eps_mag = 2 * np.pi * np.random.random_sample() - np.pi flux_alphabeta_limits = self._flux_limit(omega=omega, eps_mag=eps_mag, u_q_max=self._nominal_values['u_sq']) # using absolute value, because limits should describe upper limit # after abs-operator, norm of alphabeta flux still equal to # d-component of flux flux_alphabeta_limits = np.abs(flux_alphabeta_limits) flux_nominal_limits = {state: value for state, value in zip(self.FLUXES, flux_alphabeta_limits)} flux_nominal_limits.update(nominal_new) super()._update_initial_limits(flux_nominal_limits) class DoublyFedInductionMotor(InductionMotor): """ ===================== ========== ============= =========================================== Motor Parameter Unit Default Value Description ===================== ========== ============= =========================================== r_s Ohm 12e-3 Stator resistance r_r Ohm 21e-3 Rotor resistance l_m H 13.5e-3 Main inductance l_sigs H 0.2e-3 Stator-side stray inductance l_sigr H 0.1e-3 Rotor-side stray inductance p 1 2 Pole pair number j_rotor kg/m^2 1e3 Moment of inertia of the rotor ===================== ========== ============= =========================================== =============== ====== ============================================= Motor Currents Unit Description =============== ====== ============================================= i_sd A Direct axis current i_sq A Quadrature axis current i_sa A Current through branch a i_sb A Current through branch b i_sc A Current through branch c i_salpha A Current in alpha axis i_sbeta A Current in beta axis =============== ====== ============================================= =============== ====== ============================================= Rotor flux Unit Description =============== ====== ============================================= psi_rd Vs Direct axis of the rotor oriented flux psi_rq Vs Quadrature axis of the rotor oriented flux psi_ra Vs Rotor oriented flux in branch a psi_rb Vs Rotor oriented flux in branch b psi_rc Vs Rotor oriented flux in branch c psi_ralpha Vs Rotor oriented flux in alpha direction psi_rbeta Vs Rotor oriented flux in beta direction =============== ====== ============================================= =============== ====== ============================================= Motor Voltages Unit Description =============== ====== ============================================= u_sd V Direct axis voltage u_sq V Quadrature axis voltage u_sa V Stator voltage through branch a u_sb V Stator voltage through branch b u_sc V Stator voltage through branch c u_salpha V Stator voltage in alpha axis u_sbeta V Stator voltage in beta axis u_ralpha V Rotor voltage in alpha axis u_rbeta V Rotor voltage in beta axis =============== ====== ============================================= ======== =========================================================== Limits / Nominal Value Dictionary Entries: -------- ----------------------------------------------------------- Entry Description ======== =========================================================== i General current limit / nominal value i_sa Current in phase a i_sb Current in phase b i_sc Current in phase c i_salpha Current in alpha axis i_sbeta Current in beta axis i_sd Current in direct axis i_sq Current in quadrature axis omega Mechanical angular Velocity torque Motor generated torque u_sa Voltage in phase a u_sb Voltage in phase b u_sc Voltage in phase c u_salpha Voltage in alpha axis u_sbeta Voltage in beta axis u_sd Voltage in direct axis u_sq Voltage in quadrature axis u_ralpha Rotor voltage in alpha axis u_rbeta Rotor voltage in beta axis ======== =========================================================== Note: The voltage limits should be the amplitude of the phase voltage (:math:`\hat{u}_S`). Typically the rms value for the line voltage (:math:`U_L`) is given. :math:`\hat{u}_S=\sqrt{2/3}~U_L` The current limits should be the amplitude of the phase current (:math:`\hat{i}_S`). Typically the rms value for the phase current (:math:`I_S`) is given. :math:`\hat{i}_S = \sqrt{2}~I_S` If not specified, nominal values are equal to their corresponding limit values. Furthermore, if specific limits/nominal values (e.g. i_a) are not specified they are inferred from the general limits/nominal values (e.g. i) """ ROTOR_VOLTAGES = ['u_ralpha', 'u_rbeta'] ROTOR_CURRENTS = ['i_ralpha', 'i_rbeta'] IO_ROTOR_VOLTAGES = ['u_ra', 'u_rb', 'u_rc', 'u_rd', 'u_rq'] IO_ROTOR_CURRENTS = ['i_ra', 'i_rb', 'i_rc', 'i_rd', 'i_rq'] #### Parameters taken from DOI: 10.1016/j.jestch.2016.01.015 (<NAME>, <NAME>, <NAME>) _default_motor_parameter = { 'p': 2, 'l_m': 297.5e-3, 'l_sigs': 25.71e-3, 'l_sigr': 25.71e-3, 'j_rotor': 13.695e-3, 'r_s': 4.42, 'r_r': 3.51, } _default_limits = dict(omega=1800 * np.pi / 30, torque=0.0, i=9, epsilon=math.pi, u=720) _default_nominal_values = dict(omega=1650 * np.pi / 30, torque=0.0, i=7.5, epsilon=math.pi, u=720) _default_initializer = {'states': {'i_salpha': 0.0, 'i_sbeta': 0.0, 'psi_ralpha': 0.0, 'psi_rbeta': 0.0, 'epsilon': 0.0}, 'interval': None, 'random_init': None, 'random_params': (None, None)} def __init__(self, **kwargs): self.IO_VOLTAGES += self.IO_ROTOR_VOLTAGES self.IO_CURRENTS += self.IO_ROTOR_CURRENTS super().__init__(**kwargs) def _update_limits(self, limit_values={}, nominal_values={}): # Docstring of superclass voltage_limit = 0.5 * self._limits['u'] voltage_nominal = 0.5 * self._nominal_values['u'] limits_agenda = {} nominal_agenda = {} for u, i in zip(self.IO_VOLTAGES+self.ROTOR_VOLTAGES, self.IO_CURRENTS+self.ROTOR_CURRENTS): limits_agenda[u] = voltage_limit nominal_agenda[u] = voltage_nominal limits_agenda[i] = self._limits.get('i', None) or \ self._limits[u] / self._motor_parameter['r_r'] nominal_agenda[i] = self._nominal_values.get('i', None) or \ self._nominal_values[u] / \ self._motor_parameter['r_r'] super()._update_limits(limits_agenda, nominal_agenda) def _update_initial_limits(self, nominal_new={}, omega=None): # Docstring of superclass # draw a sample magnetic field angle from [-pi,pi] eps_mag = 2 * np.pi * np.random.random_sample() - np.pi flux_alphabeta_limits = self._flux_limit(omega=omega, eps_mag=eps_mag, u_q_max=self._nominal_values['u_sq'], u_rq_max=self._nominal_values['u_rq']) flux_nominal_limits = {state: value for state, value in zip(self.FLUXES, flux_alphabeta_limits)} super()._update_initial_limits(flux_nominal_limits)
[ "numpy.abs", "numpy.sqrt", "numpy.random.random_sample", "numpy.asarray", "math.cos", "numpy.array", "numpy.matmul", "math.sin", "numpy.zeros_like", "numpy.atleast_1d" ]
[((18618, 18695), 'numpy.array', 'np.array', (["[[-mp['r_a'], 0, -mp['l_e_prime'], 1, 0], [0, -mp['r_e'], 0, 0, 1]]"], {}), "([[-mp['r_a'], 0, -mp['l_e_prime'], 1, 0], [0, -mp['r_e'], 0, 0, 1]])\n", (18626, 18695), True, 'import numpy as np\n'), ((29603, 29660), 'numpy.array', 'np.array', (["[[-mp['r_a'] - mp['r_e'], -mp['l_e_prime'], 1]]"], {}), "([[-mp['r_a'] - mp['r_e'], -mp['l_e_prime'], 1]])\n", (29611, 29660), True, 'import numpy as np\n'), ((34832, 34875), 'numpy.array', 'np.array', (["[[-mp['psi_e'], -mp['r_a'], 1.0]]"], {}), "([[-mp['psi_e'], -mp['r_a'], 1.0]])\n", (34840, 34875), True, 'import numpy as np\n'), ((35322, 35377), 'numpy.matmul', 'np.matmul', (['self._model_constants', 'self._ode_placeholder'], {}), '(self._model_constants, self._ode_placeholder)\n', (35331, 35377), True, 'import numpy as np\n'), ((38868, 38911), 'numpy.matmul', 'np.matmul', (['ThreePhaseMotor._t23', 'quantities'], {}), '(ThreePhaseMotor._t23, quantities)\n', (38877, 38911), True, 'import numpy as np\n'), ((39305, 39348), 'numpy.matmul', 'np.matmul', (['ThreePhaseMotor._t32', 'quantities'], {}), '(ThreePhaseMotor._t32, quantities)\n', (39314, 39348), True, 'import numpy as np\n'), ((39830, 39847), 'math.cos', 'math.cos', (['epsilon'], {}), '(epsilon)\n', (39838, 39847), False, 'import math\n'), ((39863, 39880), 'math.sin', 'math.sin', (['epsilon'], {}), '(epsilon)\n', (39871, 39880), False, 'import math\n'), ((55462, 55607), 'numpy.array', 'np.array', (["[[0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [0, 0, -mp['r_s'], 0, 1,\n -mp['l_d'] * mp['p'], 0], [mp['p'], 0, 0, 0, 0, 0, 0]]"], {}), "([[0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [0, 0, -mp[\n 'r_s'], 0, 1, -mp['l_d'] * mp['p'], 0], [mp['p'], 0, 0, 0, 0, 0, 0]])\n", (55470, 55607), True, 'import numpy as np\n'), ((62464, 62633), 'numpy.array', 'np.array', (["[[0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [-mp['psi_p'] * mp['p'],\n 0, -mp['r_s'], 0, 1, -mp['l_d'] * mp['p'], 0], [mp['p'], 0, 0, 0, 0, 0, 0]]"], {}), "([[0, -mp['r_s'], 0, 1, 0, 0, mp['l_q'] * mp['p']], [-mp['psi_p'] *\n mp['p'], 0, -mp['r_s'], 0, 1, -mp['l_d'] * mp['p'], 0], [mp['p'], 0, 0,\n 0, 0, 0, 0]])\n", (62472, 62633), True, 'import numpy as np\n'), ((76319, 76895), 'numpy.array', 'np.array', (["[[0, -1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), 0, \n 0, +mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 1 / (sigma * l_s), 0, -\n mp['l_m'] / (sigma * l_r * l_s), 0], [0, 0, -1 / tau_sig, 0, mp['l_m'] *\n mp['r_r'] / (sigma * l_s * l_r ** 2), -mp['l_m'] * mp['p'] / (sigma *\n l_r * l_s), 0, 0, 1 / (sigma * l_s), 0, -mp['l_m'] / (sigma * l_r * l_s\n )], [0, mp['l_m'] / tau_r, 0, -1 / tau_r, 0, 0, -mp['p'], 0, 0, 1, 0],\n [0, 0, mp['l_m'] / tau_r, 0, -1 / tau_r, mp['p'], 0, 0, 0, 0, 1], [mp[\n 'p'], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]"], {}), "([[0, -1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r **\n 2), 0, 0, +mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 1 / (sigma * l_s),\n 0, -mp['l_m'] / (sigma * l_r * l_s), 0], [0, 0, -1 / tau_sig, 0, mp[\n 'l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), -mp['l_m'] * mp['p'] / (\n sigma * l_r * l_s), 0, 0, 1 / (sigma * l_s), 0, -mp['l_m'] / (sigma *\n l_r * l_s)], [0, mp['l_m'] / tau_r, 0, -1 / tau_r, 0, 0, -mp['p'], 0, 0,\n 1, 0], [0, 0, mp['l_m'] / tau_r, 0, -1 / tau_r, mp['p'], 0, 0, 0, 0, 1],\n [mp['p'], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])\n", (76327, 76895), True, 'import numpy as np\n'), ((85548, 85575), 'numpy.zeros_like', 'np.zeros_like', (['u_salphabeta'], {}), '(u_salphabeta)\n', (85561, 85575), True, 'import numpy as np\n'), ((85601, 85639), 'numpy.array', 'np.array', (['[u_salphabeta, u_ralphabeta]'], {}), '([u_salphabeta, u_ralphabeta])\n', (85609, 85639), True, 'import numpy as np\n'), ((87168, 87197), 'numpy.abs', 'np.abs', (['flux_alphabeta_limits'], {}), '(flux_alphabeta_limits)\n', (87174, 87197), True, 'import numpy as np\n'), ((8728, 8758), 'numpy.array', 'np.array', (['[-1, -1, -1, -1, -1]'], {}), '([-1, -1, -1, -1, -1])\n', (8736, 8758), True, 'import numpy as np\n'), ((9333, 9373), 'numpy.asarray', 'np.asarray', (['nominal_values_'], {'dtype': 'float'}), '(nominal_values_, dtype=float)\n', (9343, 9373), True, 'import numpy as np\n'), ((19456, 19560), 'numpy.array', 'np.array', (['[state[self.I_A_IDX], state[self.I_E_IDX], omega * state[self.I_E_IDX],\n u_in[0], u_in[1]]'], {}), '([state[self.I_A_IDX], state[self.I_E_IDX], omega * state[self.\n I_E_IDX], u_in[0], u_in[1]])\n', (19464, 19560), True, 'import numpy as np\n'), ((24653, 24761), 'numpy.array', 'np.array', (["[[-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [0, -mp[\n 'r_e'] / mp['l_e']]]"], {}), "([[-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [\n 0, -mp['r_e'] / mp['l_e']]])\n", (24661, 24761), True, 'import numpy as np\n'), ((24820, 24885), 'numpy.array', 'np.array', (["[-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0]"], {}), "([-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0])\n", (24828, 24885), True, 'import numpy as np\n'), ((24900, 24993), 'numpy.array', 'np.array', (["[mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[self.I_A_IDX]]"], {}), "([mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[\n self.I_A_IDX]])\n", (24908, 24993), True, 'import numpy as np\n'), ((30209, 30274), 'numpy.array', 'np.array', (['[state[self.I_IDX], omega * state[self.I_IDX], u_in[0]]'], {}), '([state[self.I_IDX], omega * state[self.I_IDX], u_in[0]])\n', (30217, 30274), True, 'import numpy as np\n'), ((31472, 31566), 'numpy.array', 'np.array', (["[[-(mp['r_a'] + mp['r_e'] + mp['l_e_prime'] * omega) / (mp['l_a'] + mp['l_e'])]\n ]"], {}), "([[-(mp['r_a'] + mp['r_e'] + mp['l_e_prime'] * omega) / (mp['l_a'] +\n mp['l_e'])]])\n", (31480, 31566), True, 'import numpy as np\n'), ((31599, 31673), 'numpy.array', 'np.array', (["[-mp['l_e_prime'] * state[self.I_IDX] / (mp['l_a'] + mp['l_e'])]"], {}), "([-mp['l_e_prime'] * state[self.I_IDX] / (mp['l_a'] + mp['l_e'])])\n", (31607, 31673), True, 'import numpy as np\n'), ((31710, 31761), 'numpy.array', 'np.array', (["[2 * mp['l_e_prime'] * state[self.I_IDX]]"], {}), "([2 * mp['l_e_prime'] * state[self.I_IDX]])\n", (31718, 31761), True, 'import numpy as np\n'), ((35507, 35543), 'numpy.array', 'np.array', (["[[-mp['r_a'] / mp['l_a']]]"], {}), "([[-mp['r_a'] / mp['l_a']]])\n", (35515, 35543), True, 'import numpy as np\n'), ((35558, 35594), 'numpy.array', 'np.array', (["[-mp['psi_e'] / mp['l_a']]"], {}), "([-mp['psi_e'] / mp['l_a']])\n", (35566, 35594), True, 'import numpy as np\n'), ((35609, 35632), 'numpy.array', 'np.array', (["[mp['psi_e']]"], {}), "([mp['psi_e']])\n", (35617, 35632), True, 'import numpy as np\n'), ((36804, 36912), 'numpy.array', 'np.array', (["[[-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [0, -mp[\n 'r_e'] / mp['l_e']]]"], {}), "([[-mp['r_a'] / mp['l_a'], -mp['l_e_prime'] / mp['l_a'] * omega], [\n 0, -mp['r_e'] / mp['l_e']]])\n", (36812, 36912), True, 'import numpy as np\n'), ((36971, 37036), 'numpy.array', 'np.array', (["[-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0]"], {}), "([-mp['l_e_prime'] * state[self.I_E_IDX] / mp['l_a'], 0])\n", (36979, 37036), True, 'import numpy as np\n'), ((37051, 37144), 'numpy.array', 'np.array', (["[mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[self.I_A_IDX]]"], {}), "([mp['l_e_prime'] * state[self.I_E_IDX], mp['l_e_prime'] * state[\n self.I_A_IDX]])\n", (37059, 37144), True, 'import numpy as np\n'), ((48965, 49109), 'numpy.array', 'np.array', (['[omega, state[self.I_SD_IDX], state[self.I_SQ_IDX], u_dq[0], u_dq[1], omega *\n state[self.I_SD_IDX], omega * state[self.I_SQ_IDX]]'], {}), '([omega, state[self.I_SD_IDX], state[self.I_SQ_IDX], u_dq[0], u_dq[\n 1], omega * state[self.I_SD_IDX], omega * state[self.I_SQ_IDX]])\n', (48973, 49109), True, 'import numpy as np\n'), ((56653, 56824), 'numpy.array', 'np.array', (["[[-mp['r_s'] / mp['l_d'], mp['l_q'] / mp['l_d'] * mp['p'] * omega, 0], [-mp\n ['l_d'] / mp['l_q'] * mp['p'] * omega, -mp['r_s'] / mp['l_q'], 0], [0, \n 0, 0]]"], {}), "([[-mp['r_s'] / mp['l_d'], mp['l_q'] / mp['l_d'] * mp['p'] * omega,\n 0], [-mp['l_d'] / mp['l_q'] * mp['p'] * omega, -mp['r_s'] / mp['l_q'], \n 0], [0, 0, 0]])\n", (56661, 56824), True, 'import numpy as np\n'), ((56896, 57032), 'numpy.array', 'np.array', (["[mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], -mp['p'] * mp[\n 'l_d'] / mp['l_q'] * state[self.I_SD_IDX], mp['p']]"], {}), "([mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], -mp['p'] *\n mp['l_d'] / mp['l_q'] * state[self.I_SD_IDX], mp['p']])\n", (56904, 57032), True, 'import numpy as np\n'), ((57110, 57256), 'numpy.array', 'np.array', (["[1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], 1.5 * mp[\n 'p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SD_IDX], 0]"], {}), "([1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], \n 1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SD_IDX], 0])\n", (57118, 57256), True, 'import numpy as np\n'), ((63587, 63619), 'numpy.sqrt', 'np.sqrt', (['(i_n ** 2 - i_d_opt ** 2)'], {}), '(i_n ** 2 - i_d_opt ** 2)\n', (63594, 63619), True, 'import numpy as np\n'), ((64039, 64210), 'numpy.array', 'np.array', (["[[-mp['r_s'] / mp['l_d'], mp['l_q'] / mp['l_d'] * omega * mp['p'], 0], [-mp\n ['l_d'] / mp['l_q'] * omega * mp['p'], -mp['r_s'] / mp['l_q'], 0], [0, \n 0, 0]]"], {}), "([[-mp['r_s'] / mp['l_d'], mp['l_q'] / mp['l_d'] * omega * mp['p'],\n 0], [-mp['l_d'] / mp['l_q'] * omega * mp['p'], -mp['r_s'] / mp['l_q'], \n 0], [0, 0, 0]])\n", (64047, 64210), True, 'import numpy as np\n'), ((64290, 64466), 'numpy.array', 'np.array', (["[mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], -mp['p'] * mp[\n 'l_d'] / mp['l_q'] * state[self.I_SD_IDX] - mp['p'] * mp['psi_p'] / mp[\n 'l_q'], mp['p']]"], {}), "([mp['p'] * mp['l_q'] / mp['l_d'] * state[self.I_SQ_IDX], -mp['p'] *\n mp['l_d'] / mp['l_q'] * state[self.I_SD_IDX] - mp['p'] * mp['psi_p'] /\n mp['l_q'], mp['p']])\n", (64298, 64466), True, 'import numpy as np\n'), ((64549, 64716), 'numpy.array', 'np.array', (["[1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], 1.5 * mp[\n 'p'] * (mp['psi_p'] + (mp['l_d'] - mp['l_q']) * state[self.I_SD_IDX]), 0]"], {}), "([1.5 * mp['p'] * (mp['l_d'] - mp['l_q']) * state[self.I_SQ_IDX], \n 1.5 * mp['p'] * (mp['psi_p'] + (mp['l_d'] - mp['l_q']) * state[self.\n I_SD_IDX]), 0])\n", (64557, 64716), True, 'import numpy as np\n'), ((73165, 73462), 'numpy.array', 'np.array', (['[omega, state[self.I_SALPHA_IDX], state[self.I_SBETA_IDX], state[self.\n PSI_RALPHA_IDX], state[self.PSI_RBETA_IDX], omega * state[self.\n PSI_RALPHA_IDX], omega * state[self.PSI_RBETA_IDX], u_sr_alphabeta[0, 0\n ], u_sr_alphabeta[0, 1], u_sr_alphabeta[1, 0], u_sr_alphabeta[1, 1]]'], {}), '([omega, state[self.I_SALPHA_IDX], state[self.I_SBETA_IDX], state[\n self.PSI_RALPHA_IDX], state[self.PSI_RBETA_IDX], omega * state[self.\n PSI_RALPHA_IDX], omega * state[self.PSI_RBETA_IDX], u_sr_alphabeta[0, 0\n ], u_sr_alphabeta[0, 1], u_sr_alphabeta[1, 0], u_sr_alphabeta[1, 1]])\n', (73173, 73462), True, 'import numpy as np\n'), ((77841, 78249), 'numpy.array', 'np.array', (["[[-1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2), omega *\n mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 0], [0, -1 / tau_sig, -omega *\n mp['l_m'] * mp['p'] / (sigma * l_r * l_s), mp['l_m'] * mp['r_r'] / (\n sigma * l_s * l_r ** 2), 0], [mp['l_m'] / tau_r, 0, -1 / tau_r, -omega *\n mp['p'], 0], [0, mp['l_m'] / tau_r, omega * mp['p'], -1 / tau_r, 0], [0,\n 0, 0, 0, 0]]"], {}), "([[-1 / tau_sig, 0, mp['l_m'] * mp['r_r'] / (sigma * l_s * l_r ** 2\n ), omega * mp['l_m'] * mp['p'] / (sigma * l_r * l_s), 0], [0, -1 /\n tau_sig, -omega * mp['l_m'] * mp['p'] / (sigma * l_r * l_s), mp['l_m'] *\n mp['r_r'] / (sigma * l_s * l_r ** 2), 0], [mp['l_m'] / tau_r, 0, -1 /\n tau_r, -omega * mp['p'], 0], [0, mp['l_m'] / tau_r, omega * mp['p'], -1 /\n tau_r, 0], [0, 0, 0, 0, 0]])\n", (77849, 78249), True, 'import numpy as np\n'), ((78583, 78837), 'numpy.array', 'np.array', (["[mp['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[self.PSI_RBETA_IDX], -mp\n ['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[self.PSI_RALPHA_IDX], -\n mp['p'] * state[self.PSI_RBETA_IDX], mp['p'] * state[self.\n PSI_RALPHA_IDX], mp['p']]"], {}), "([mp['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[self.\n PSI_RBETA_IDX], -mp['l_m'] * mp['p'] / (sigma * l_r * l_s) * state[self\n .PSI_RALPHA_IDX], -mp['p'] * state[self.PSI_RBETA_IDX], mp['p'] * state\n [self.PSI_RALPHA_IDX], mp['p']])\n", (78591, 78837), True, 'import numpy as np\n'), ((78993, 79273), 'numpy.array', 'np.array', (["[-state[self.PSI_RBETA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, state[self\n .PSI_RALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, state[self.\n I_SBETA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, -state[self.\n I_SALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, 0]"], {}), "([-state[self.PSI_RBETA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, \n state[self.PSI_RALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, state[\n self.I_SBETA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, -state[self.\n I_SALPHA_IDX] * 3 / 2 * mp['p'] * mp['l_m'] / l_r, 0])\n", (79001, 79273), True, 'import numpy as np\n'), ((8437, 8460), 'numpy.abs', 'np.abs', (['nominal_values_'], {}), '(nominal_values_)\n', (8443, 8460), True, 'import numpy as np\n'), ((9064, 9091), 'numpy.asarray', 'np.asarray', (['nominal_values_'], {}), '(nominal_values_)\n', (9074, 9091), True, 'import numpy as np\n'), ((9146, 9178), 'numpy.asarray', 'np.asarray', (['self._nominal_values'], {}), '(self._nominal_values)\n', (9156, 9178), True, 'import numpy as np\n'), ((63535, 63562), 'numpy.sqrt', 'np.sqrt', (['((_p / 2) ** 2 - _q)'], {}), '((_p / 2) ** 2 - _q)\n', (63542, 63562), True, 'import numpy as np\n'), ((86707, 86732), 'numpy.random.random_sample', 'np.random.random_sample', ([], {}), '()\n', (86730, 86732), True, 'import numpy as np\n'), ((95012, 95037), 'numpy.random.random_sample', 'np.random.random_sample', ([], {}), '()\n', (95035, 95037), True, 'import numpy as np\n'), ((9444, 9484), 'numpy.asarray', 'np.asarray', (['state_space.low'], {'dtype': 'float'}), '(state_space.low, dtype=float)\n', (9454, 9484), True, 'import numpy as np\n'), ((38419, 38429), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (38426, 38429), True, 'import numpy as np\n'), ((38455, 38465), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (38462, 38465), True, 'import numpy as np\n'), ((56221, 56231), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (56228, 56231), True, 'import numpy as np\n'), ((56256, 56266), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (56263, 56266), True, 'import numpy as np\n'), ((35200, 35232), 'numpy.atleast_1d', 'np.atleast_1d', (['state[self.I_IDX]'], {}), '(state[self.I_IDX])\n', (35213, 35232), True, 'import numpy as np\n'), ((38249, 38259), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (38256, 38259), True, 'import numpy as np\n'), ((38268, 38278), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (38275, 38278), True, 'import numpy as np\n'), ((75793, 75816), 'numpy.abs', 'np.abs', (["(mp['l_m'] * i_d)"], {}), "(mp['l_m'] * i_d)\n", (75799, 75816), True, 'import numpy as np\n'), ((9712, 9745), 'numpy.asarray', 'np.asarray', (['interval'], {'dtype': 'float'}), '(interval, dtype=float)\n', (9722, 9745), True, 'import numpy as np\n'), ((9971, 10004), 'numpy.asarray', 'np.asarray', (['interval'], {'dtype': 'float'}), '(interval, dtype=float)\n', (9981, 10004), True, 'import numpy as np\n')]
import os import sys sys.path.append('.') import argparse import numpy as np import os.path as osp from multiprocessing import Process, Pool from glob import glob from tqdm import tqdm import tensorflow as tf from PIL import Image from lib.core.config import INSTA_DIR, INSTA_IMG_DIR def process_single_record(fname, outdir, split): sess = tf.Session() #print(fname) record_name = fname.split('/')[-1] for vid_idx, serialized_ex in enumerate(tf.python_io.tf_record_iterator(fname)): #print(vid_idx) os.makedirs(osp.join(outdir, split, record_name, str(vid_idx)), exist_ok=True) example = tf.train.Example() example.ParseFromString(serialized_ex) N = int(example.features.feature['meta/N'].int64_list.value[0]) images_data = example.features.feature[ 'image/encoded'].bytes_list.value for i in range(N): image = np.expand_dims(sess.run(tf.image.decode_jpeg(images_data[i], channels=3)), axis=0) #video.append(image) image = Image.fromarray(np.squeeze(image, axis=0)) image.save(osp.join(outdir, split, record_name, str(vid_idx), str(i)+".jpg")) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--inp_dir', type=str, help='tfrecords file path', default=INSTA_DIR) parser.add_argument('--n', type=int, help='total num of workers') parser.add_argument('--i', type=int, help='current index of worker (from 0 to n-1)') parser.add_argument('--split', type=str, help='train or test') parser.add_argument('--out_dir', type=str, help='output images path', default=INSTA_IMG_DIR) args = parser.parse_args() fpaths = glob(f'{args.inp_dir}/{args.split}/*.tfrecord') fpaths = sorted(fpaths) total = len(fpaths) fpaths = fpaths[args.i*total//args.n : (args.i+1)*total//args.n] #print(fpaths) #print(len(fpaths)) os.makedirs(args.out_dir, exist_ok=True) for idx, fp in enumerate(fpaths): process_single_record(fp, args.out_dir, args.split)
[ "tensorflow.train.Example", "os.makedirs", "argparse.ArgumentParser", "tensorflow.python_io.tf_record_iterator", "tensorflow.Session", "numpy.squeeze", "sys.path.append", "glob.glob", "tensorflow.image.decode_jpeg" ]
[((21, 41), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (36, 41), False, 'import sys\n'), ((348, 360), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (358, 360), True, 'import tensorflow as tf\n'), ((1226, 1251), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1249, 1251), False, 'import argparse\n'), ((1714, 1761), 'glob.glob', 'glob', (['f"""{args.inp_dir}/{args.split}/*.tfrecord"""'], {}), "(f'{args.inp_dir}/{args.split}/*.tfrecord')\n", (1718, 1761), False, 'from glob import glob\n'), ((1937, 1977), 'os.makedirs', 'os.makedirs', (['args.out_dir'], {'exist_ok': '(True)'}), '(args.out_dir, exist_ok=True)\n', (1948, 1977), False, 'import os\n'), ((462, 500), 'tensorflow.python_io.tf_record_iterator', 'tf.python_io.tf_record_iterator', (['fname'], {}), '(fname)\n', (493, 500), True, 'import tensorflow as tf\n'), ((632, 650), 'tensorflow.train.Example', 'tf.train.Example', ([], {}), '()\n', (648, 650), True, 'import tensorflow as tf\n'), ((1067, 1092), 'numpy.squeeze', 'np.squeeze', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (1077, 1092), True, 'import numpy as np\n'), ((939, 987), 'tensorflow.image.decode_jpeg', 'tf.image.decode_jpeg', (['images_data[i]'], {'channels': '(3)'}), '(images_data[i], channels=3)\n', (959, 987), True, 'import tensorflow as tf\n')]
from pathlib import Path import sys path = str(Path(Path(__file__).parent.absolute()).parent.absolute()) sys.path.insert(0, path) from mnist_utils.util import _x, _y_int from sklearn.cluster import MiniBatchKMeans from sklearn.metrics import accuracy_score, adjusted_rand_score import numpy as np from fast_pytorch_kmeans import KMeans import torch from tabulate import tabulate #global vars kmeans_main = None cluster_ids_x = None def classify_clusters(l1, l2): ref_labels = {} for i in range(len(np.unique(l1))): index = np.where(l1 == i,1,0) ref_labels[i] = np.bincount(l2[index==1]).argmax() decimal_labels = np.zeros(len(l1)) for i in range(len(l1)): decimal_labels[i] = ref_labels[l1[i]] return decimal_labels def init_clustring_scikit(cluster_count=10): global kmeans_main kmeans_main = MiniBatchKMeans(n_clusters=cluster_count, verbose=False) kmeans_main.fit(_x) def test_accuracy_scikit(): global kmeans_main decimal_labels = classify_clusters(kmeans_main.labels_, _y_int) print("predicted labels:\t", decimal_labels[:16].astype('int')) print("true labels:\t\t",_y_int[:16]) print(60 * '_') AP = accuracy_score(decimal_labels,_y_int) RI = adjusted_rand_score(decimal_labels,_y_int) print("Accuracy (PURITY):" , AP) print("Accuracy (RAND INDEX):" , RI) return AP, RI def init_clustring_torch(cluster_count=10): global clusters_from_label, cluster_ids_x _kmeans = KMeans(n_clusters=cluster_count, mode='euclidean', verbose=1) x = torch.from_numpy(_x) cluster_ids_x = _kmeans.fit_predict(x) def test_accuracy_torch(): global cluster_ids_x decimal_labels = classify_clusters(cluster_ids_x.cpu().detach().numpy(), _y_int) print("predicted labels:\t", decimal_labels[:16].astype('int')) print("true labels:\t\t",_y_int[:16]) print(60 * '_') AP = accuracy_score(decimal_labels,_y_int) RI = adjusted_rand_score(decimal_labels,_y_int) print("Accuracy (PURITY):" , AP) print("Accuracy (RAND INDEX):" , RI) return AP, RI def pipeline(lib="torch", cluster_count_max=300, coefficient=2): cluster_count = len(np.unique(_y_int)) result = [] if lib == "torch": while cluster_count <= cluster_count_max: print(10 * "*" + "TRYING WITH " + str(cluster_count) + 10 * "*") init_clustring_torch(cluster_count) AP, RI = test_accuracy_torch() result.append([cluster_count, AP, RI]) cluster_count *= coefficient cluster_count = int(cluster_count) elif lib == "scikit": while cluster_count <= cluster_count_max: print(10 * "*" + "TRYING WITH " + str(cluster_count) + 10 * "*") init_clustring_scikit(cluster_count) AP, RI = test_accuracy_scikit() result.append([cluster_count, AP, RI]) cluster_count *= coefficient cluster_count = int(cluster_count) else: print("LIB NOT SUPPORTED") print(tabulate(result, headers=['K', 'AP', 'RI'])) pipeline(cluster_count_max=200, coefficient=3, lib="scikit")
[ "fast_pytorch_kmeans.KMeans", "tabulate.tabulate", "sys.path.insert", "numpy.unique", "pathlib.Path", "numpy.where", "sklearn.cluster.MiniBatchKMeans", "sklearn.metrics.adjusted_rand_score", "torch.from_numpy", "numpy.bincount", "sklearn.metrics.accuracy_score" ]
[((105, 129), 'sys.path.insert', 'sys.path.insert', (['(0)', 'path'], {}), '(0, path)\n', (120, 129), False, 'import sys\n'), ((849, 905), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {'n_clusters': 'cluster_count', 'verbose': '(False)'}), '(n_clusters=cluster_count, verbose=False)\n', (864, 905), False, 'from sklearn.cluster import MiniBatchKMeans\n'), ((1189, 1227), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['decimal_labels', '_y_int'], {}), '(decimal_labels, _y_int)\n', (1203, 1227), False, 'from sklearn.metrics import accuracy_score, adjusted_rand_score\n'), ((1236, 1279), 'sklearn.metrics.adjusted_rand_score', 'adjusted_rand_score', (['decimal_labels', '_y_int'], {}), '(decimal_labels, _y_int)\n', (1255, 1279), False, 'from sklearn.metrics import accuracy_score, adjusted_rand_score\n'), ((1481, 1542), 'fast_pytorch_kmeans.KMeans', 'KMeans', ([], {'n_clusters': 'cluster_count', 'mode': '"""euclidean"""', 'verbose': '(1)'}), "(n_clusters=cluster_count, mode='euclidean', verbose=1)\n", (1487, 1542), False, 'from fast_pytorch_kmeans import KMeans\n'), ((1551, 1571), 'torch.from_numpy', 'torch.from_numpy', (['_x'], {}), '(_x)\n', (1567, 1571), False, 'import torch\n'), ((1893, 1931), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['decimal_labels', '_y_int'], {}), '(decimal_labels, _y_int)\n', (1907, 1931), False, 'from sklearn.metrics import accuracy_score, adjusted_rand_score\n'), ((1940, 1983), 'sklearn.metrics.adjusted_rand_score', 'adjusted_rand_score', (['decimal_labels', '_y_int'], {}), '(decimal_labels, _y_int)\n', (1959, 1983), False, 'from sklearn.metrics import accuracy_score, adjusted_rand_score\n'), ((541, 564), 'numpy.where', 'np.where', (['(l1 == i)', '(1)', '(0)'], {}), '(l1 == i, 1, 0)\n', (549, 564), True, 'import numpy as np\n'), ((2169, 2186), 'numpy.unique', 'np.unique', (['_y_int'], {}), '(_y_int)\n', (2178, 2186), True, 'import numpy as np\n'), ((3027, 3070), 'tabulate.tabulate', 'tabulate', (['result'], {'headers': "['K', 'AP', 'RI']"}), "(result, headers=['K', 'AP', 'RI'])\n", (3035, 3070), False, 'from tabulate import tabulate\n'), ((508, 521), 'numpy.unique', 'np.unique', (['l1'], {}), '(l1)\n', (517, 521), True, 'import numpy as np\n'), ((587, 614), 'numpy.bincount', 'np.bincount', (['l2[index == 1]'], {}), '(l2[index == 1])\n', (598, 614), True, 'import numpy as np\n'), ((52, 66), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (56, 66), False, 'from pathlib import Path\n')]
import numpy as np from JacobiPolynomials import * import math # 1D - LINE #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi1D(C,x): p = np.zeros(C+2) for i in range(0,C+2): p[i] = JacobiPolynomials(i,x,0,0)[-1]*np.sqrt((2.*i+1.)/2.) return p # 2D - TRI #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi2D(C,x): """ Computes the orthogonal base of 2D polynomials of degree less or equal to C+1 at the point x=(r,s) in [-1,1]^2 (i.e. on the reference quad) """ N = int( (C+2.)*(C+3.)/2. ) p = np.zeros(N) r = x[0]; s = x[1] # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # counter for the polynomials order # Loop on degree for nDeg in range(0,C+2): # Loop by increasing i for i in range(0,nDeg+1): if i==0: p_i = 1.; q_i = 1. else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; q_i = q_i*(1.-s)/2. # Value for j j = nDeg-i if j==0: p_j = 1. else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1] # factor = np.sqrt( (2.*i+1.)*(i+j+1.)/2. ) factor = math.sqrt( (2.*i+1.)*(i+j+1.)/2. ) p[ncount] = ( p_i*q_i*p_j )*factor ncount += 1 return p def NormalisedJacobiTri(C,x): """ Computes the orthogonal base of 2D polynomials of degree less or equal to n at the point x=(xi,eta) in the reference triangle """ xi = x[0]; eta = x[1] if eta==1: r = -1.; s=1.; else: r = 2.*(1+xi)/(1.-eta)-1. s = eta return NormalisedJacobi2D(C,np.array([r,s])) def GradNormalisedJacobiTri(C,x,EvalOpt=0): """ Computes the orthogonal base of 2D polynomials of degree less or equal to n at the point x=(xi,eta) in the reference triangle """ N = int((C+2.)*(C+3.)/2.) p = np.zeros(N); dp_dxi = np.zeros(N) dp_deta = np.zeros(N) r = x[0]; s = x[1] # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if EvalOpt==1: if s==1: s=0.99999999999999 xi = (1.+r)*(1.-s)/2.-1 eta = s dr_dxi = 2./(1.-eta) dr_deta = 2.*(1.+xi)/(1.-eta)**2 # Derivative of s is not needed because s=eta # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1; q_i = 1; dp_i = 0; dq_i = 0 else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; dp_i = JacobiPolynomials(i-1,r,1.,1.)[-1]*(i+1.)/2. q_i = q_i*(1.-s)/2.; dq_i = 1.*q_i*(-i)/(1-s) # Value for j j = nDeg-i if j==0: p_j = 1; dp_j = 0 else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; dp_j = JacobiPolynomials(j-1,s,2.*i+2.,1.)[-1]*(j+2.*i+2.)/2. factor = math.sqrt( (2.*i+1.)*(i+j+1.)/2. ) # Normalized polynomial p[ncount] = ( p_i*q_i*p_j )*factor # Derivatives with respect to (r,s) dp_dr = ( (dp_i)*q_i*p_j )*factor dp_ds = ( p_i*(dq_i*p_j+q_i*dp_j) )*factor # Derivatives with respect to (xi,eta) dp_dxi[ncount] = dp_dr*dr_dxi dp_deta[ncount] = dp_dr*dr_deta + dp_ds ncount += 1 return p,dp_dxi,dp_deta # 3D - TET #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# #------------------------------------------------------------------------------------------------------------------# def NormalisedJacobi3D(C,x): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ N = int((C+2)*(C+3)*(C+4)/6.) p = np.zeros(N) r = x[0]; s = x[1]; t = x[2] # Ordering: 1st incresing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1; q_i = 1 else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; q_i = q_i*(1.-s)/2. # Loop increasing j for j in range(0,nDeg-i+1): if j==0: p_j = 1; q_j = ((1.-t)/2.)**i else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; q_j = q_j*(1.-t)/2. # Value for k k = nDeg-(i+j) if k==0: p_k = 1. else: p_k = JacobiPolynomials(k,t,2.*(i+j)+2.,0.)[-1] factor = math.sqrt( (2.*i+1.)*(i+j+1.)*(2.*(i+j+k)+3.)/4. ) p[ncount] = ( p_i*q_i*p_j*q_j*p_k )*factor ncount += 1 return p def NormalisedJacobiTet(C,x): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ xi = x[0]; eta = x[1]; zeta = x[2] if (eta+zeta)==0: r = -1; s=1 elif zeta==1: r = -1; s=1 # or s=-1 (check that nothing changes) else: r = -2.*(1+xi)/(eta+zeta)-1.; s = 2.*(1+eta)/(1-zeta)-1.; t = zeta return NormalisedJacobi3D(C,[r,s,t]) # return NormalisedJacobi3D_Native(C,[r,s,t]) def GradNormalisedJacobiTet(C,x,EvalOpt=0): """Computes the orthogonal base of 3D polynomials of degree less or equal to n at the point x=(r,s,t) in [-1,1]^3 """ N = int((C+2)*(C+3)*(C+4)/6.) p = np.zeros(N) dp_dxi = np.zeros(N) dp_deta = np.zeros(N) dp_dzeta = np.zeros(N) r = x[0]; s = x[1]; t = x[2] # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if EvalOpt==1: if t==1.: t=0.999999999999 if np.isclose(s,1.): s=0.999999999999 if np.isclose(s,1.): s=0.99999999999999 eta = (1./2.)*(s-s*t-1.-t) xi = -(1./2.)*(r+1)*(eta+t)-1. zeta = 1.0*t # THIS MAY RUIN THE CONVERGENCE, BUT FOR POST PROCESSING ITS FINE if eta == 0. and zeta == 0.: eta = 1.0e-14 zeta = 1e-14 eta_zeta = eta+zeta if np.isclose(eta_zeta,0.): eta_zeta = 0.000000001 dr_dxi = -2./eta_zeta dr_deta = 2.*(1.+xi)/eta_zeta**2 dr_dzeta = dr_deta ds_deta = 2./(1.-zeta) ds_dzeta = 2.*(1.+eta)/(1.-zeta)**2 # Derivative of t is not needed because t=zeta #-------------------------------------------------------- # if np.allclose(eta+zeta,0): # dr_dxi = -2./(0.001)**2 # dr_deta = 2.*(1.+xi)/(0.001)**2 # else: # dr_dxi = -2./(eta+zeta) # dr_deta = 2.*(1.+xi)/(eta+zeta)**2 # dr_dzeta = dr_deta # if np.allclose(eta+zeta,0): # ds_deta = 2./(0.001) # ds_dzeta = 2.*(1.+eta)/(0.001)**2 # else: # ds_deta = 2./(1.-zeta) # ds_dzeta = 2.*(1.+eta)/(1.-zeta)**2 #-------------------------------------------------------- # Ordering: 1st increasing the degree and 2nd lexicogafic order ncount = 0 # Loop on degree for nDeg in range(0,C+2): # Loop increasing i for i in range(0,nDeg+1): if i==0: p_i = 1.; q_i = 1.; dp_i = 0.; dq_i = 0. else: p_i = JacobiPolynomials(i,r,0.,0.)[-1]; dp_i = JacobiPolynomials(i-1,r,1.,1.)[-1]*(i+1.)/2. q_i = q_i*(1.-s)/2.; dq_i = q_i*(-i)/(1.-s) # Loop increasing j for j in range(0,nDeg-i+1): if j==0: p_j = 1; q_j = ((1.-t)/2.)**i; dp_j = 0; dq_j = q_j*(-(i+j))/(1.-t); else: p_j = JacobiPolynomials(j,s,2.*i+1.,0.)[-1]; dp_j = JacobiPolynomials(j-1,s,2.*i+2.,1.)[-1]*(j+2.*i+2.)/2. q_j = q_j*(1.-t)/2.; dq_j = q_j*(-(i+j))/(1.-t) # Value for k k = nDeg-(i+j); if k==0: p_k = 1.; dp_k = 0.; else: p_k = JacobiPolynomials(k,t,2.*(i+j)+2.,0.)[-1]; dp_k = JacobiPolynomials(k-1,t,2.*(i+j)+3.,1.)[-1]*(k+2.*i+2.*j+3.)/2. factor = math.sqrt( (2.*i+1.)*(i+j+1.)*(2.*(i+j+k)+3.)/4. ) # Normalized polynomial p[ncount] = ( p_i*q_i*p_j*q_j*p_k )*factor # Derivatives with respect to (r,s,t) dp_dr = ( (dp_i)*q_i*p_j*q_j*p_k )*factor dp_ds = ( p_i*(dq_i*p_j+q_i*dp_j)*q_j*p_k )*factor dp_dt = ( p_i*q_i*p_j*(dq_j*p_k+q_j*dp_k) )*factor # Derivatives with respect to (xi,eta,zeta) dp_dxi[ncount] = dp_dr*dr_dxi dp_deta[ncount] = dp_dr*dr_deta + dp_ds*ds_deta dp_dzeta[ncount] = dp_dr*dr_dzeta + dp_ds*ds_dzeta + dp_dt ncount += 1 return p,dp_dxi,dp_deta,dp_dzeta
[ "numpy.sqrt", "numpy.isclose", "math.sqrt", "numpy.array", "numpy.zeros" ]
[((464, 479), 'numpy.zeros', 'np.zeros', (['(C + 2)'], {}), '(C + 2)\n', (472, 479), True, 'import numpy as np\n'), ((1188, 1199), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (1196, 1199), True, 'import numpy as np\n'), ((2575, 2586), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2583, 2586), True, 'import numpy as np\n'), ((2602, 2613), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2610, 2613), True, 'import numpy as np\n'), ((2628, 2639), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (2636, 2639), True, 'import numpy as np\n'), ((4724, 4735), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (4732, 4735), True, 'import numpy as np\n'), ((6497, 6508), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (6505, 6508), True, 'import numpy as np\n'), ((6525, 6536), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (6533, 6536), True, 'import numpy as np\n'), ((6552, 6563), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (6560, 6563), True, 'import numpy as np\n'), ((6579, 6590), 'numpy.zeros', 'np.zeros', (['N'], {}), '(N)\n', (6587, 6590), True, 'import numpy as np\n'), ((6828, 6846), 'numpy.isclose', 'np.isclose', (['s', '(1.0)'], {}), '(s, 1.0)\n', (6838, 6846), True, 'import numpy as np\n'), ((7140, 7165), 'numpy.isclose', 'np.isclose', (['eta_zeta', '(0.0)'], {}), '(eta_zeta, 0.0)\n', (7150, 7165), True, 'import numpy as np\n'), ((2322, 2338), 'numpy.array', 'np.array', (['[r, s]'], {}), '([r, s])\n', (2330, 2338), True, 'import numpy as np\n'), ((6773, 6791), 'numpy.isclose', 'np.isclose', (['s', '(1.0)'], {}), '(s, 1.0)\n', (6783, 6791), True, 'import numpy as np\n'), ((552, 582), 'numpy.sqrt', 'np.sqrt', (['((2.0 * i + 1.0) / 2.0)'], {}), '((2.0 * i + 1.0) / 2.0)\n', (559, 582), True, 'import numpy as np\n'), ((1862, 1910), 'math.sqrt', 'math.sqrt', (['((2.0 * i + 1.0) * (i + j + 1.0) / 2.0)'], {}), '((2.0 * i + 1.0) * (i + j + 1.0) / 2.0)\n', (1871, 1910), False, 'import math\n'), ((3685, 3733), 'math.sqrt', 'math.sqrt', (['((2.0 * i + 1.0) * (i + j + 1.0) / 2.0)'], {}), '((2.0 * i + 1.0) * (i + j + 1.0) / 2.0)\n', (3694, 3733), False, 'import math\n'), ((5606, 5682), 'math.sqrt', 'math.sqrt', (['((2.0 * i + 1.0) * (i + j + 1.0) * (2.0 * (i + j + k) + 3.0) / 4.0)'], {}), '((2.0 * i + 1.0) * (i + j + 1.0) * (2.0 * (i + j + k) + 3.0) / 4.0)\n', (5615, 5682), False, 'import math\n'), ((9156, 9232), 'math.sqrt', 'math.sqrt', (['((2.0 * i + 1.0) * (i + j + 1.0) * (2.0 * (i + j + k) + 3.0) / 4.0)'], {}), '((2.0 * i + 1.0) * (i + j + 1.0) * (2.0 * (i + j + k) + 3.0) / 4.0)\n', (9165, 9232), False, 'import math\n')]
#!/usr/bin/python3 from tools import * from sys import argv from os.path import join import h5py import matplotlib.pylab as plt from matplotlib.patches import Wedge import numpy as np if len(argv) > 1: pathToSimFolder = argv[1] else: pathToSimFolder = "../data/" parameters, electrodes = readParameters(pathToSimFolder) electrodeNumber = len(electrodes) acceptorPos = np.zeros((int(parameters["acceptorNumber"]), 2)) try: donorPos = np.zeros((int(parameters["donorNumber"]), 2)) except KeyError: donorPos = np.zeros( (int(parameters["acceptorNumber"] * parameters["compensationFactor"]), 2) ) with open(join(pathToSimFolder, "device.txt")) as deviceFile: line = next(deviceFile) line = next(deviceFile) for i in range(acceptorPos.shape[0]): acceptorPos[i] = next(deviceFile).split(" ") line = next(deviceFile) line = next(deviceFile) for i in range(donorPos.shape[0]): donorPos[i] = next(deviceFile).split(" ") # print(acceptorPos) # print(donorPos) electrodePositions = np.empty((len(electrodes), 2)) for i in range(len(electrodes)): if parameters["geometry"] == "rect": if electrodes[i][1] == 0: electrodePositions[i] = [0, electrodes[i][0] * parameters["lenY"]] if electrodes[i][1] == 1: electrodePositions[i] = [ parameters["lenX"], electrodes[i][0] * parameters["lenY"], ] if electrodes[i][1] == 2: electrodePositions[i] = [electrodes[i][0] * parameters["lenX"], 0] if electrodes[i][1] == 3: electrodePositions[i] = [ electrodes[i][0] * parameters["lenX"], parameters["lenY"], ] elif parameters["geometry"] == "circle": electrodePositions[i] = [ parameters["radius"] * np.cos(electrodes[i][0] / 360 * 2 * np.pi), parameters["radius"] * np.sin(electrodes[i][0] / 360 * 2 * np.pi), ] # print(electrodePositions) def colorMaker(x): from matplotlib import colors from scipy.interpolate import interp1d cols = ["darkred", "darkgreen"] rgbaData = np.array([colors.to_rgba(c) for c in cols]) rInterpolater = interp1d(np.linspace(0, 1, len(cols)), rgbaData[:, 0]) gInterpolater = interp1d(np.linspace(0, 1, len(cols)), rgbaData[:, 1]) bInterpolater = interp1d(np.linspace(0, 1, len(cols)), rgbaData[:, 2]) return np.array([rInterpolater(x), gInterpolater(x), bInterpolater(x), 1]) inp = ["0_0", "0_1", "1_0", "1_1"] for fileNumber in [1, 2, 3, 4]: print(inp[fileNumber - 1]) # for fileNumber in [1]: data = np.genfromtxt( join(pathToSimFolder, f"swapTrackFile{fileNumber}.txt"), delimiter=";", dtype=int, ) trajectoriesSortedByStartEnd = [ [[] for j in range(len(electrodes))] for i in range(len(electrodes)) ] trajectories = [] hops = 20000 IDs = {} hitID = 0 for i in range(hops): hoppingSite1 = data[i, 0] hoppingSite2 = data[i, 1] # print("hoppingSite1",hoppingSite1,"hoppingSite2",hoppingSite2) if hoppingSite1 in IDs: ID = IDs[hoppingSite1] del IDs[hoppingSite1] # print("found ID",ID) else: ID = hitID hitID += 1 trajectories.append([]) # print("new ID", ID) if hoppingSite2 < parameters["acceptorNumber"]: IDs[hoppingSite2] = ID trajectories[ID].append([hoppingSite1, hoppingSite2]) # sort trajectories for i in range(len(trajectories)): if trajectories[i][0][0] >= parameters["acceptorNumber"]: if trajectories[i][-1][1] >= parameters["acceptorNumber"]: trajectoriesSortedByStartEnd[ trajectories[i][0][0] - int(parameters["acceptorNumber"]) ][trajectories[i][-1][1] - int(parameters["acceptorNumber"])].append( trajectories[i] ) # print(trajectories[i][0][0], trajectories[i][-1][1]) for k in range(len(electrodes)): fig, ax = plt.subplots(1, 1, figsize=(4.980614173228346, 3.2)) electodePlotWidth = 8 for i in range(len(electrodes)): if i == parameters["outputElectrode"]: col = "blue" elif i == parameters["inputElectrode1"]: if fileNumber in [3, 4]: col = "red" else: col = "rosybrown" elif i == parameters["inputElectrode2"]: if fileNumber in [2, 4]: col = "red" else: col = "rosybrown" else: col = "green" if parameters["geometry"] == "rect": if electrodes[i][1] == 0: angle = 0 xy = ( 0 - electodePlotWidth / 2, electrodes[i][0] * parameters["lenY"] - parameters["electrodeWidth"] / 2, ) elif electrodes[i][1] == 1: angle = 0 xy = ( parameters["lenX"] - electodePlotWidth / 2, electrodes[i][0] * parameters["lenY"] - parameters["electrodeWidth"] / 2, ) elif electrodes[i][1] == 2: angle = 90 xy = ( electrodes[i][0] * parameters["lenX"] + parameters["electrodeWidth"] / 2, 0 - electodePlotWidth / 2, ) elif electrodes[i][1] == 3: angle = 90 xy = ( electrodes[i][0] * parameters["lenX"] + parameters["electrodeWidth"] / 2, parameters["lenY"] - electodePlotWidth / 2, ) ax.add_artist( plt.Rectangle( xy, electodePlotWidth, parameters["electrodeWidth"], angle=angle, fc=col, ec=col, zorder=-1, ) ) elif parameters["geometry"] == "circle": electrodeWidth = ( parameters["electrodeWidth"] / (parameters["radius"] * 2 * np.pi) * 360 ) # in degrees ax.add_artist( Wedge( (0, 0), parameters["radius"] + electodePlotWidth / 2, electrodes[i][0] - electrodeWidth / 2, electrodes[i][0] + electrodeWidth / 2, width=electodePlotWidth, fc=col, ec=col, zorder=-1, ) ) ax.scatter(acceptorPos[:, 0], acceptorPos[:, 1], c="k", marker=".", s=20) ax.scatter(donorPos[:, 0], donorPos[:, 1], c="k", marker="x", s=20) for l in range(len(electrodes)): trajectories = trajectoriesSortedByStartEnd[k][l] for i in range(len(trajectories)): for j in range(len(trajectories[i])): hoppingSite1 = trajectories[i][j][0] hoppingSite2 = trajectories[i][j][1] if hoppingSite1 >= parameters["acceptorNumber"]: x1, y1 = ( electrodePositions[ hoppingSite1 - int(parameters["acceptorNumber"]) ][0], electrodePositions[ hoppingSite1 - int(parameters["acceptorNumber"]) ][1], ) else: x1, y1 = ( acceptorPos[hoppingSite1, 0], acceptorPos[hoppingSite1, 1], ) if hoppingSite2 >= parameters["acceptorNumber"]: x2, y2 = ( electrodePositions[ hoppingSite2 - int(parameters["acceptorNumber"]) ][0], electrodePositions[ hoppingSite2 - int(parameters["acceptorNumber"]) ][1], ) else: x2, y2 = ( acceptorPos[hoppingSite2, 0], acceptorPos[hoppingSite2, 1], ) # ax.plot([x1,x2],[y1,y2],"-",alpha=0.05,color="k",linewidth=2) ax.plot( [x1, x2], [y1, y2], "-", alpha=0.05, color=color(l, len(electrodes)), linewidth=2, ) # if currentRatio>0.5: # ax.arrow((x2+x1)/2,(y2+y1)/2,(x2-x1)*0.001,(y2-y1)*0.001,color=colorMaker(abs(currentRatio-0.5)*2),ec=None,alpha=absBins[i,j],linewidth=0,head_width=(currentRatio-0.5)*20) ax.axis("off") if parameters["geometry"] == "circle": ax.add_artist( plt.Circle((0, 0), parameters["radius"], fc="none", ec="k", zorder=-2) ) elif parameters["geometry"] == "rect": ax.add_artist( plt.Rectangle( (0, 0), parameters["lenX"], parameters["lenY"], fc="none", ec="k", zorder=-2, ) ) if parameters["geometry"] == "rect": ax.set_xlim( -electodePlotWidth / 2, parameters["lenX"] + electodePlotWidth / 2 ) ax.set_ylim( -electodePlotWidth / 2, parameters["lenY"] + electodePlotWidth / 2 ) elif parameters["geometry"] == "circle": ax.set_xlim( -parameters["radius"] - electodePlotWidth, parameters["radius"] + electodePlotWidth, ) ax.set_ylim( -parameters["radius"] - electodePlotWidth, parameters["radius"] + electodePlotWidth, ) ax.set_aspect("equal") plt.savefig( join(pathToSimFolder, f"trajectory_fromEl_{k}_{inp[fileNumber-1]}.png"), bbox_inches="tight", dpi=300, ) # plt.show() plt.close(fig) for k in range(len(electrodes)): fig, ax = plt.subplots(1, 1, figsize=(4.980614173228346, 3.2)) electodePlotWidth = 8 for i in range(len(electrodes)): if i == parameters["outputElectrode"]: col = "blue" elif i == parameters["inputElectrode1"]: if fileNumber in [3, 4]: col = "red" else: col = "rosybrown" elif i == parameters["inputElectrode2"]: if fileNumber in [2, 4]: col = "red" else: col = "rosybrown" else: col = "green" if parameters["geometry"] == "rect": if electrodes[i][1] == 0: angle = 0 xy = ( 0 - electodePlotWidth / 2, electrodes[i][0] * parameters["lenY"] - parameters["electrodeWidth"] / 2, ) elif electrodes[i][1] == 1: angle = 0 xy = ( parameters["lenX"] - electodePlotWidth / 2, electrodes[i][0] * parameters["lenY"] - parameters["electrodeWidth"] / 2, ) elif electrodes[i][1] == 2: angle = 90 xy = ( electrodes[i][0] * parameters["lenX"] + parameters["electrodeWidth"] / 2, 0 - electodePlotWidth / 2, ) elif electrodes[i][1] == 3: angle = 90 xy = ( electrodes[i][0] * parameters["lenX"] + parameters["electrodeWidth"] / 2, parameters["lenY"] - electodePlotWidth / 2, ) ax.add_artist( plt.Rectangle( xy, electodePlotWidth, parameters["electrodeWidth"], angle=angle, fc=col, ec=col, zorder=-1, ) ) elif parameters["geometry"] == "circle": electrodeWidth = ( parameters["electrodeWidth"] / (parameters["radius"] * 2 * np.pi) * 360 ) # in degrees ax.add_artist( Wedge( (0, 0), parameters["radius"] + electodePlotWidth / 2, electrodes[i][0] - electrodeWidth / 2, electrodes[i][0] + electrodeWidth / 2, width=electodePlotWidth, fc=col, ec=col, zorder=-1, ) ) ax.scatter(acceptorPos[:, 0], acceptorPos[:, 1], c="k", marker=".", s=20) ax.scatter(donorPos[:, 0], donorPos[:, 1], c="k", marker="x", s=20) for l in range(len(electrodes)): trajectories = trajectoriesSortedByStartEnd[l][k] for i in range(len(trajectories)): for j in range(len(trajectories[i])): hoppingSite1 = trajectories[i][j][0] hoppingSite2 = trajectories[i][j][1] if hoppingSite1 >= parameters["acceptorNumber"]: x1, y1 = ( electrodePositions[ hoppingSite1 - int(parameters["acceptorNumber"]) ][0], electrodePositions[ hoppingSite1 - int(parameters["acceptorNumber"]) ][1], ) else: x1, y1 = ( acceptorPos[hoppingSite1, 0], acceptorPos[hoppingSite1, 1], ) if hoppingSite2 >= parameters["acceptorNumber"]: x2, y2 = ( electrodePositions[ hoppingSite2 - int(parameters["acceptorNumber"]) ][0], electrodePositions[ hoppingSite2 - int(parameters["acceptorNumber"]) ][1], ) else: x2, y2 = ( acceptorPos[hoppingSite2, 0], acceptorPos[hoppingSite2, 1], ) # ax.plot([x1,x2],[y1,y2],"-",alpha=0.05,color="k",linewidth=2) ax.plot( [x1, x2], [y1, y2], "-", alpha=0.05, color=color(l, len(electrodes)), linewidth=2, ) # if currentRatio>0.5: # ax.arrow((x2+x1)/2,(y2+y1)/2,(x2-x1)*0.001,(y2-y1)*0.001,color=colorMaker(abs(currentRatio-0.5)*2),ec=None,alpha=absBins[i,j],linewidth=0,head_width=(currentRatio-0.5)*20) ax.axis("off") if parameters["geometry"] == "circle": ax.add_artist( plt.Circle((0, 0), parameters["radius"], fc="none", ec="k", zorder=-2) ) elif parameters["geometry"] == "rect": ax.add_artist( plt.Rectangle( (0, 0), parameters["lenX"], parameters["lenY"], fc="none", ec="k", zorder=-2, ) ) if parameters["geometry"] == "rect": ax.set_xlim( -electodePlotWidth / 2, parameters["lenX"] + electodePlotWidth / 2 ) ax.set_ylim( -electodePlotWidth / 2, parameters["lenY"] + electodePlotWidth / 2 ) elif parameters["geometry"] == "circle": ax.set_xlim( -parameters["radius"] - electodePlotWidth, parameters["radius"] + electodePlotWidth, ) ax.set_ylim( -parameters["radius"] - electodePlotWidth, parameters["radius"] + electodePlotWidth, ) ax.set_aspect("equal") plt.savefig( join(pathToSimFolder, f"trajectory_toEl_{k}_{inp[fileNumber-1]}.png"), bbox_inches="tight", dpi=300, ) # plt.show() plt.close(fig)
[ "matplotlib.pylab.subplots", "matplotlib.pylab.Circle", "matplotlib.patches.Wedge", "matplotlib.colors.to_rgba", "os.path.join", "matplotlib.pylab.Rectangle", "numpy.cos", "numpy.sin", "matplotlib.pylab.close" ]
[((637, 672), 'os.path.join', 'join', (['pathToSimFolder', '"""device.txt"""'], {}), "(pathToSimFolder, 'device.txt')\n", (641, 672), False, 'from os.path import join\n'), ((2671, 2726), 'os.path.join', 'join', (['pathToSimFolder', 'f"""swapTrackFile{fileNumber}.txt"""'], {}), "(pathToSimFolder, f'swapTrackFile{fileNumber}.txt')\n", (2675, 2726), False, 'from os.path import join\n'), ((4144, 4196), 'matplotlib.pylab.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(4.980614173228346, 3.2)'}), '(1, 1, figsize=(4.980614173228346, 3.2))\n', (4156, 4196), True, 'import matplotlib.pylab as plt\n'), ((10953, 10967), 'matplotlib.pylab.close', 'plt.close', (['fig'], {}), '(fig)\n', (10962, 10967), True, 'import matplotlib.pylab as plt\n'), ((11025, 11077), 'matplotlib.pylab.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(4.980614173228346, 3.2)'}), '(1, 1, figsize=(4.980614173228346, 3.2))\n', (11037, 11077), True, 'import matplotlib.pylab as plt\n'), ((17832, 17846), 'matplotlib.pylab.close', 'plt.close', (['fig'], {}), '(fig)\n', (17841, 17846), True, 'import matplotlib.pylab as plt\n'), ((2169, 2186), 'matplotlib.colors.to_rgba', 'colors.to_rgba', (['c'], {}), '(c)\n', (2183, 2186), False, 'from matplotlib import colors\n'), ((10786, 10859), 'os.path.join', 'join', (['pathToSimFolder', 'f"""trajectory_fromEl_{k}_{inp[fileNumber - 1]}.png"""'], {}), "(pathToSimFolder, f'trajectory_fromEl_{k}_{inp[fileNumber - 1]}.png')\n", (10790, 10859), False, 'from os.path import join\n'), ((17667, 17738), 'os.path.join', 'join', (['pathToSimFolder', 'f"""trajectory_toEl_{k}_{inp[fileNumber - 1]}.png"""'], {}), "(pathToSimFolder, f'trajectory_toEl_{k}_{inp[fileNumber - 1]}.png')\n", (17671, 17738), False, 'from os.path import join\n'), ((9649, 9719), 'matplotlib.pylab.Circle', 'plt.Circle', (['(0, 0)', "parameters['radius']"], {'fc': '"""none"""', 'ec': '"""k"""', 'zorder': '(-2)'}), "((0, 0), parameters['radius'], fc='none', ec='k', zorder=-2)\n", (9659, 9719), True, 'import matplotlib.pylab as plt\n'), ((16530, 16600), 'matplotlib.pylab.Circle', 'plt.Circle', (['(0, 0)', "parameters['radius']"], {'fc': '"""none"""', 'ec': '"""k"""', 'zorder': '(-2)'}), "((0, 0), parameters['radius'], fc='none', ec='k', zorder=-2)\n", (16540, 16600), True, 'import matplotlib.pylab as plt\n'), ((1846, 1888), 'numpy.cos', 'np.cos', (['(electrodes[i][0] / 360 * 2 * np.pi)'], {}), '(electrodes[i][0] / 360 * 2 * np.pi)\n', (1852, 1888), True, 'import numpy as np\n'), ((1925, 1967), 'numpy.sin', 'np.sin', (['(electrodes[i][0] / 360 * 2 * np.pi)'], {}), '(electrodes[i][0] / 360 * 2 * np.pi)\n', (1931, 1967), True, 'import numpy as np\n'), ((6088, 6199), 'matplotlib.pylab.Rectangle', 'plt.Rectangle', (['xy', 'electodePlotWidth', "parameters['electrodeWidth']"], {'angle': 'angle', 'fc': 'col', 'ec': 'col', 'zorder': '(-1)'}), "(xy, electodePlotWidth, parameters['electrodeWidth'], angle=\n angle, fc=col, ec=col, zorder=-1)\n", (6101, 6199), True, 'import matplotlib.pylab as plt\n'), ((9824, 9920), 'matplotlib.pylab.Rectangle', 'plt.Rectangle', (['(0, 0)', "parameters['lenX']", "parameters['lenY']"], {'fc': '"""none"""', 'ec': '"""k"""', 'zorder': '(-2)'}), "((0, 0), parameters['lenX'], parameters['lenY'], fc='none', ec\n ='k', zorder=-2)\n", (9837, 9920), True, 'import matplotlib.pylab as plt\n'), ((12969, 13080), 'matplotlib.pylab.Rectangle', 'plt.Rectangle', (['xy', 'electodePlotWidth', "parameters['electrodeWidth']"], {'angle': 'angle', 'fc': 'col', 'ec': 'col', 'zorder': '(-1)'}), "(xy, electodePlotWidth, parameters['electrodeWidth'], angle=\n angle, fc=col, ec=col, zorder=-1)\n", (12982, 13080), True, 'import matplotlib.pylab as plt\n'), ((16705, 16801), 'matplotlib.pylab.Rectangle', 'plt.Rectangle', (['(0, 0)', "parameters['lenX']", "parameters['lenY']"], {'fc': '"""none"""', 'ec': '"""k"""', 'zorder': '(-2)'}), "((0, 0), parameters['lenX'], parameters['lenY'], fc='none', ec\n ='k', zorder=-2)\n", (16718, 16801), True, 'import matplotlib.pylab as plt\n'), ((6707, 6906), 'matplotlib.patches.Wedge', 'Wedge', (['(0, 0)', "(parameters['radius'] + electodePlotWidth / 2)", '(electrodes[i][0] - electrodeWidth / 2)', '(electrodes[i][0] + electrodeWidth / 2)'], {'width': 'electodePlotWidth', 'fc': 'col', 'ec': 'col', 'zorder': '(-1)'}), "((0, 0), parameters['radius'] + electodePlotWidth / 2, electrodes[i][0\n ] - electrodeWidth / 2, electrodes[i][0] + electrodeWidth / 2, width=\n electodePlotWidth, fc=col, ec=col, zorder=-1)\n", (6712, 6906), False, 'from matplotlib.patches import Wedge\n'), ((13588, 13787), 'matplotlib.patches.Wedge', 'Wedge', (['(0, 0)', "(parameters['radius'] + electodePlotWidth / 2)", '(electrodes[i][0] - electrodeWidth / 2)', '(electrodes[i][0] + electrodeWidth / 2)'], {'width': 'electodePlotWidth', 'fc': 'col', 'ec': 'col', 'zorder': '(-1)'}), "((0, 0), parameters['radius'] + electodePlotWidth / 2, electrodes[i][0\n ] - electrodeWidth / 2, electrodes[i][0] + electrodeWidth / 2, width=\n electodePlotWidth, fc=col, ec=col, zorder=-1)\n", (13593, 13787), False, 'from matplotlib.patches import Wedge\n')]
# coding: utf-8 """ 2018-03-19. Maximum screenshots in 1 second by computing BGRA raw values to RGB. GNU/Linux pil_frombytes 139 mss_rgb 119 pil_frombytes_rgb 51 numpy_flip 31 numpy_slice 29 macOS pil_frombytes 209 mss_rgb 174 pil_frombytes_rgb 113 numpy_flip 39 numpy_slice 36 Windows pil_frombytes 81 mss_rgb 66 pil_frombytes_rgb 42 numpy_flip 25 numpy_slice 22 """ from __future__ import print_function import time import numpy from PIL import Image import mss def mss_rgb(im): return im.rgb def numpy_flip(im): frame = numpy.array(im, dtype=numpy.uint8) return numpy.flip(frame[:, :, :3], 2).tobytes() def numpy_slice(im): return numpy.array(im, dtype=numpy.uint8)[..., [2, 1, 0]].tobytes() def pil_frombytes_rgb(im): return Image.frombytes('RGB', im.size, im.rgb).tobytes() def pil_frombytes(im): return Image.frombytes('RGB', im.size, im.bgra, 'raw', 'BGRX').tobytes() def benchmark(): with mss.mss() as sct: im = sct.grab(sct.monitors[0]) for func in (pil_frombytes, mss_rgb, pil_frombytes_rgb, numpy_flip, numpy_slice): count = 0 start = time.time() while (time.time() - start) <= 1: func(im) im._ScreenShot__rgb = None count += 1 print(func.__name__.ljust(17), count) benchmark()
[ "numpy.flip", "mss.mss", "numpy.array", "PIL.Image.frombytes", "time.time" ]
[((655, 689), 'numpy.array', 'numpy.array', (['im'], {'dtype': 'numpy.uint8'}), '(im, dtype=numpy.uint8)\n', (666, 689), False, 'import numpy\n'), ((1057, 1066), 'mss.mss', 'mss.mss', ([], {}), '()\n', (1064, 1066), False, 'import mss\n'), ((701, 731), 'numpy.flip', 'numpy.flip', (['frame[:, :, :3]', '(2)'], {}), '(frame[:, :, :3], 2)\n', (711, 731), False, 'import numpy\n'), ((877, 916), 'PIL.Image.frombytes', 'Image.frombytes', (['"""RGB"""', 'im.size', 'im.rgb'], {}), "('RGB', im.size, im.rgb)\n", (892, 916), False, 'from PIL import Image\n'), ((963, 1018), 'PIL.Image.frombytes', 'Image.frombytes', (['"""RGB"""', 'im.size', 'im.bgra', '"""raw"""', '"""BGRX"""'], {}), "('RGB', im.size, im.bgra, 'raw', 'BGRX')\n", (978, 1018), False, 'from PIL import Image\n'), ((1330, 1341), 'time.time', 'time.time', ([], {}), '()\n', (1339, 1341), False, 'import time\n'), ((776, 810), 'numpy.array', 'numpy.array', (['im'], {'dtype': 'numpy.uint8'}), '(im, dtype=numpy.uint8)\n', (787, 810), False, 'import numpy\n'), ((1361, 1372), 'time.time', 'time.time', ([], {}), '()\n', (1370, 1372), False, 'import time\n')]
import os import random import argparse import multiprocessing import numpy as np import torch from torchvision import models, transforms from torch.utils.data import DataLoader, Dataset from pathlib import Path from PIL import Image from utils import Bar, config, mkdir_p, AverageMeter from datetime import datetime from tensorboardX import SummaryWriter from byol_pytorch import BYOL # arguments parser = argparse.ArgumentParser(description='byol-lightning-test') # Architecture & hyper-parameter parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet', help='model architecture: | [resnet, ...] (default: resnet18)') parser.add_argument('--depth', type=int, default=18, help='Model depth.') parser.add_argument('-c', '--checkpoint', default='../checkpoints', type=str, metavar='PATH', help='path to save checkpoint (default: checkpoint)') parser.add_argument('--epoch', type=int, default=100, help='Epoch') parser.add_argument('--batch-size', type=int, default=32, help='Epoch') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') # Device options parser.add_argument('--manualSeed', type=int, help='manual seed') parser.add_argument('--gpu-id', default='0', type=str, help='id(s) for CUDA_VISIBLE_DEVICES') # Paths parser.add_argument('-d', '--dataset', default='neu', type=str) parser.add_argument('--image_folder', type=str, required=True, help='path to your folder of images for self-supervised learning') parser.add_argument('--board-path', '--bp', default='../board', type=str, help='tensorboardx path') parser.add_argument('--board-tag', '--tg', default='byol', type=str, help='tensorboardx writer tag') args = parser.parse_args() # Use CUDA os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id use_cuda = torch.cuda.is_available() # Torch Seed # Random seed if args.manualSeed is None: args.manualSeed = random.randint(1, 10000) # Random Lib Seed random.seed(args.manualSeed) # Numpy Seed np.random.seed(args.manualSeed) if use_cuda: torch.cuda.manual_seed_all(args.manualSeed) # constants args.image_size = 256 NUM_GPUS = 1 IMAGE_EXTS = ['.jpg', '.png', '.jpeg', '.bmp'] NUM_WORKERS = multiprocessing.cpu_count() # task_time = datetime.now().isoformat() # args.checkpoint = os.path.join(args.checkpoint, args.dataset, "{}-{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, # args.depth, # args.batch_size, # args.lr, # args.board_tag), # task_time) # if not os.path.isdir(args.checkpoint): # mkdir_p(args.checkpoint) # config.save_config(args, os.path.join(args.checkpoint, "config.txt")) # # writer_train = SummaryWriter( # log_dir=os.path.join(args.board_path, args.dataset, "{}-{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, # args.depth, # args.batch_size, # args.lr, # args.board_tag), # task_time, "train")) args.task_time = datetime.now().isoformat() output_name = "{}{:d}-bs{:d}-lr{:.5f}-{}".format(args.arch, args.depth, args.batch_size, args.lr, args.board_tag) args.checkpoint = os.path.join(args.checkpoint, args.dataset, output_name, args.task_time) if not os.path.isdir(args.checkpoint): mkdir_p(args.checkpoint) config.save_config(args, os.path.join(args.checkpoint, "config.txt")) writer_train = SummaryWriter( log_dir=os.path.join(args.board_path, args.dataset, output_name, args.task_time)) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def expand_greyscale(t): return t.expand(3, -1, -1) class ImagesDataset(Dataset): def __init__(self, folder, image_size): super().__init__() self.folder = folder self.paths = [] for path in Path(f'{folder}').glob('**/*'): _, ext = os.path.splitext(path) if ext.lower() in IMAGE_EXTS: self.paths.append(path) print(f'{len(self.paths)} images found') self.transform = transforms.Compose([ transforms.Resize(args.image_size), transforms.RandomSizedCrop((args.image_size, args.image_size)), transforms.ColorJitter(0.4, 0.4, 0.4), transforms.ToTensor(), # normalize ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) img = img.convert('RGB') return self.transform(img) if args.arch is "resnet": if args.depth == 18: model = models.resnet18(pretrained=False).cuda() elif args.depth == 34: model = models.resnet34(pretrained=False).cuda() elif args.depth == 50: model = models.resnet50(pretrained=False).cuda() elif args.depth == 101: model = models.resnet101(pretrained=False).cuda() else: assert ("Not supported Depth") learner = BYOL( model, image_size=args.image_size, hidden_layer='avgpool', projection_size=256, projection_hidden_size=4096, moving_average_decay=0.99, use_momentum=False # turn off momentum in the target encoder ) opt = torch.optim.Adam(learner.parameters(), lr=args.lr) ds = ImagesDataset(args.image_folder, args.image_size) trainloader = DataLoader(ds, batch_size=args.batch_size, num_workers=NUM_WORKERS, shuffle=True) losses = AverageMeter() for epoch in range(args.epoch): bar = Bar('Processing', max=len(trainloader)) for batch_idx, inputs in enumerate(trainloader): loss = learner(inputs.cuda()) losses.update(loss.data.item(), inputs.size(0)) opt.zero_grad() loss.backward() opt.step() # plot progress bar.suffix = 'Epoch {epoch} - ({batch}/{size}) | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} '.format( epoch=epoch, batch=batch_idx + 1, size=len(trainloader), total=bar.elapsed_td, eta=bar.eta_td, loss=loss.item(), ) n_iter = epoch * len(trainloader) + batch_idx + 1 writer_train.add_scalar('Train/loss', loss.data.item(), n_iter) bar.next() writer_train.add_scalar('Avg.loss', losses.avg, epoch) bar.finish() # save your improved network torch.save(model.state_dict(), os.path.join(args.checkpoint, 'byol.pt'))
[ "utils.mkdir_p", "torchvision.models.resnet18", "multiprocessing.cpu_count", "torchvision.transforms.ColorJitter", "torch.cuda.is_available", "argparse.ArgumentParser", "pathlib.Path", "os.path.isdir", "numpy.random.seed", "torchvision.transforms.ToTensor", "random.randint", "torchvision.models.resnet50", "torchvision.transforms.RandomSizedCrop", "os.path.splitext", "torchvision.models.resnet101", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "torch.cuda.manual_seed_all", "PIL.Image.open", "os.path.join", "random.seed", "datetime.datetime.now", "torchvision.models.resnet34", "torch.utils.data.DataLoader", "utils.AverageMeter", "byol_pytorch.BYOL" ]
[((409, 467), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""byol-lightning-test"""'}), "(description='byol-lightning-test')\n", (432, 467), False, 'import argparse\n'), ((1935, 1960), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1958, 1960), False, 'import torch\n'), ((2082, 2110), 'random.seed', 'random.seed', (['args.manualSeed'], {}), '(args.manualSeed)\n', (2093, 2110), False, 'import random\n'), ((2125, 2156), 'numpy.random.seed', 'np.random.seed', (['args.manualSeed'], {}), '(args.manualSeed)\n', (2139, 2156), True, 'import numpy as np\n'), ((2327, 2354), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (2352, 2354), False, 'import multiprocessing\n'), ((4161, 4233), 'os.path.join', 'os.path.join', (['args.checkpoint', 'args.dataset', 'output_name', 'args.task_time'], {}), '(args.checkpoint, args.dataset, output_name, args.task_time)\n', (4173, 4233), False, 'import os\n'), ((4502, 4577), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (4522, 4577), False, 'from torchvision import models, transforms\n'), ((5992, 6161), 'byol_pytorch.BYOL', 'BYOL', (['model'], {'image_size': 'args.image_size', 'hidden_layer': '"""avgpool"""', 'projection_size': '(256)', 'projection_hidden_size': '(4096)', 'moving_average_decay': '(0.99)', 'use_momentum': '(False)'}), "(model, image_size=args.image_size, hidden_layer='avgpool',\n projection_size=256, projection_hidden_size=4096, moving_average_decay=\n 0.99, use_momentum=False)\n", (5996, 6161), False, 'from byol_pytorch import BYOL\n'), ((6353, 6439), 'torch.utils.data.DataLoader', 'DataLoader', (['ds'], {'batch_size': 'args.batch_size', 'num_workers': 'NUM_WORKERS', 'shuffle': '(True)'}), '(ds, batch_size=args.batch_size, num_workers=NUM_WORKERS, shuffle\n =True)\n', (6363, 6439), False, 'from torch.utils.data import DataLoader, Dataset\n'), ((6445, 6459), 'utils.AverageMeter', 'AverageMeter', ([], {}), '()\n', (6457, 6459), False, 'from utils import Bar, config, mkdir_p, AverageMeter\n'), ((2038, 2062), 'random.randint', 'random.randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (2052, 2062), False, 'import random\n'), ((2174, 2217), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['args.manualSeed'], {}), '(args.manualSeed)\n', (2200, 2217), False, 'import torch\n'), ((4241, 4271), 'os.path.isdir', 'os.path.isdir', (['args.checkpoint'], {}), '(args.checkpoint)\n', (4254, 4271), False, 'import os\n'), ((4277, 4301), 'utils.mkdir_p', 'mkdir_p', (['args.checkpoint'], {}), '(args.checkpoint)\n', (4284, 4301), False, 'from utils import Bar, config, mkdir_p, AverageMeter\n'), ((4327, 4370), 'os.path.join', 'os.path.join', (['args.checkpoint', '"""config.txt"""'], {}), "(args.checkpoint, 'config.txt')\n", (4339, 4370), False, 'import os\n'), ((7379, 7419), 'os.path.join', 'os.path.join', (['args.checkpoint', '"""byol.pt"""'], {}), "(args.checkpoint, 'byol.pt')\n", (7391, 7419), False, 'import os\n'), ((3806, 3820), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3818, 3820), False, 'from datetime import datetime\n'), ((4415, 4487), 'os.path.join', 'os.path.join', (['args.board_path', 'args.dataset', 'output_name', 'args.task_time'], {}), '(args.board_path, args.dataset, output_name, args.task_time)\n', (4427, 4487), False, 'import os\n'), ((5483, 5499), 'PIL.Image.open', 'Image.open', (['path'], {}), '(path)\n', (5493, 5499), False, 'from PIL import Image\n'), ((4899, 4921), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (4915, 4921), False, 'import os\n'), ((4846, 4863), 'pathlib.Path', 'Path', (['f"""{folder}"""'], {}), "(f'{folder}')\n", (4850, 4863), False, 'from pathlib import Path\n'), ((5113, 5147), 'torchvision.transforms.Resize', 'transforms.Resize', (['args.image_size'], {}), '(args.image_size)\n', (5130, 5147), False, 'from torchvision import models, transforms\n'), ((5161, 5223), 'torchvision.transforms.RandomSizedCrop', 'transforms.RandomSizedCrop', (['(args.image_size, args.image_size)'], {}), '((args.image_size, args.image_size))\n', (5187, 5223), False, 'from torchvision import models, transforms\n'), ((5237, 5274), 'torchvision.transforms.ColorJitter', 'transforms.ColorJitter', (['(0.4)', '(0.4)', '(0.4)'], {}), '(0.4, 0.4, 0.4)\n', (5259, 5274), False, 'from torchvision import models, transforms\n'), ((5288, 5309), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (5307, 5309), False, 'from torchvision import models, transforms\n'), ((5637, 5670), 'torchvision.models.resnet18', 'models.resnet18', ([], {'pretrained': '(False)'}), '(pretrained=False)\n', (5652, 5670), False, 'from torchvision import models, transforms\n'), ((5721, 5754), 'torchvision.models.resnet34', 'models.resnet34', ([], {'pretrained': '(False)'}), '(pretrained=False)\n', (5736, 5754), False, 'from torchvision import models, transforms\n'), ((5805, 5838), 'torchvision.models.resnet50', 'models.resnet50', ([], {'pretrained': '(False)'}), '(pretrained=False)\n', (5820, 5838), False, 'from torchvision import models, transforms\n'), ((5890, 5924), 'torchvision.models.resnet101', 'models.resnet101', ([], {'pretrained': '(False)'}), '(pretrained=False)\n', (5906, 5924), False, 'from torchvision import models, transforms\n')]
import cv2 import pickle import numpy as np from flag import Flag flag = Flag() with open('assets/colors.h5', 'rb') as f: colors = pickle.loads(f.read()) with open('label.txt', 'r') as f: classes = f.readlines() def detector(image, label): image = np.asarray(image * 255., np.uint8) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) indices = np.squeeze(np.max(np.max(label, axis=0, keepdims=True), axis=1, keepdims=True)) indices = np.where(indices > 0.5)[0] for i in indices: output = np.asarray(label[:, :, i], dtype=np.float) output[output > flag.threshold] = 255. output[output <= flag.threshold] = 0. output = np.asarray(output, dtype=np.uint8) kernel = np.ones((2, 2), np.float32) / 4 output = cv2.filter2D(output, -1, kernel) # cv2.imshow('out', cv2.resize(output, (256, 256))) # cv2.waitKey(0) _, contours, _ = cv2.findContours(output, cv2.RETR_LIST, cv2.CHAIN_APPROX_TC89_L1) for contour in contours: # print(contour) col_wise = contour[:, :, 0] row_wise = contour[:, :, 1] x1 = min(col_wise)[0] / flag.y_size * flag.x_size y1 = min(row_wise)[0] / flag.y_size * flag.x_size x2 = max(col_wise)[0] / flag.y_size * flag.x_size y2 = max(row_wise)[0] / flag.y_size * flag.x_size # print(x1, y1, x2, y2) c = colors[i] image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (int(c[0]), int(c[1]), int(c[2])), 2) # print('class =', classes[i-1]) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(image, classes[i - 1][:-1], (int(x1), int(y1)), font, .8, (int(c[0]), int(c[1]), int(c[2])), 2, cv2.LINE_AA) return image if __name__ == '__main__': flag = Flag() images = np.load('dataset/valid_x.npy') labels = np.load('dataset/valid_y.npy') # print(images.shape) image = images[100] label = labels[100] image = detector(image, label) cv2.imshow('image', image) cv2.waitKey(0)
[ "numpy.ones", "numpy.where", "numpy.asarray", "cv2.filter2D", "cv2.imshow", "numpy.max", "cv2.cvtColor", "cv2.findContours", "numpy.load", "cv2.waitKey", "flag.Flag" ]
[((74, 80), 'flag.Flag', 'Flag', ([], {}), '()\n', (78, 80), False, 'from flag import Flag\n'), ((264, 299), 'numpy.asarray', 'np.asarray', (['(image * 255.0)', 'np.uint8'], {}), '(image * 255.0, np.uint8)\n', (274, 299), True, 'import numpy as np\n'), ((311, 349), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (323, 349), False, 'import cv2\n'), ((1865, 1871), 'flag.Flag', 'Flag', ([], {}), '()\n', (1869, 1871), False, 'from flag import Flag\n'), ((1885, 1915), 'numpy.load', 'np.load', (['"""dataset/valid_x.npy"""'], {}), "('dataset/valid_x.npy')\n", (1892, 1915), True, 'import numpy as np\n'), ((1929, 1959), 'numpy.load', 'np.load', (['"""dataset/valid_y.npy"""'], {}), "('dataset/valid_y.npy')\n", (1936, 1959), True, 'import numpy as np\n'), ((2073, 2099), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'image'], {}), "('image', image)\n", (2083, 2099), False, 'import cv2\n'), ((2104, 2118), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (2115, 2118), False, 'import cv2\n'), ((458, 481), 'numpy.where', 'np.where', (['(indices > 0.5)'], {}), '(indices > 0.5)\n', (466, 481), True, 'import numpy as np\n'), ((525, 567), 'numpy.asarray', 'np.asarray', (['label[:, :, i]'], {'dtype': 'np.float'}), '(label[:, :, i], dtype=np.float)\n', (535, 567), True, 'import numpy as np\n'), ((678, 712), 'numpy.asarray', 'np.asarray', (['output'], {'dtype': 'np.uint8'}), '(output, dtype=np.uint8)\n', (688, 712), True, 'import numpy as np\n'), ((779, 811), 'cv2.filter2D', 'cv2.filter2D', (['output', '(-1)', 'kernel'], {}), '(output, -1, kernel)\n', (791, 811), False, 'import cv2\n'), ((922, 987), 'cv2.findContours', 'cv2.findContours', (['output', 'cv2.RETR_LIST', 'cv2.CHAIN_APPROX_TC89_L1'], {}), '(output, cv2.RETR_LIST, cv2.CHAIN_APPROX_TC89_L1)\n', (938, 987), False, 'import cv2\n'), ((382, 418), 'numpy.max', 'np.max', (['label'], {'axis': '(0)', 'keepdims': '(True)'}), '(label, axis=0, keepdims=True)\n', (388, 418), True, 'import numpy as np\n'), ((730, 757), 'numpy.ones', 'np.ones', (['(2, 2)', 'np.float32'], {}), '((2, 2), np.float32)\n', (737, 757), True, 'import numpy as np\n')]
import requests import io import dask from bs4 import BeautifulSoup as BS import nltk import pandas import numpy as np def News(ticker): B = BS(requests.get(f"https://www.wsj.com/market-data/quotes/{ticker}", headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'}).content, features="html.parser") News = B.find('ul', {'id': "newsSummary_c"}) News = [a.getText() for a in News.find_all('a')] News = [nltk.word_tokenize(h) for h in News] return dask.dataframe.from_array(np.asarray(News)) api_key = '<KEY>' def daily(ticker, outputsize = 'compact'): csv = pandas.read_csv(io.StringIO(requests.get(f'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&&symbol={ticker}&apikey={api_key}&outputsize={outputsize}&datatype=csv').content.decode('utf-8'))) return csv def intraday_data(ticker, time='1min', outputsize = 'compact'): return pandas.read_csv(io.StringIO(requests.get(f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={ticker}&interval={time}&apikey={api_key}&outputsize={outputsize}&datatype=csv').content.decode('utf-8'))) def tickers(): return pandas.read_csv("NYSE_TICKERS.csv").iloc[:,0]
[ "requests.get", "numpy.asarray", "nltk.word_tokenize", "pandas.read_csv" ]
[((504, 525), 'nltk.word_tokenize', 'nltk.word_tokenize', (['h'], {}), '(h)\n', (522, 525), False, 'import nltk\n'), ((578, 594), 'numpy.asarray', 'np.asarray', (['News'], {}), '(News)\n', (588, 594), True, 'import numpy as np\n'), ((150, 370), 'requests.get', 'requests.get', (['f"""https://www.wsj.com/market-data/quotes/{ticker}"""'], {'headers': "{'User-Agent':\n 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n }"}), "(f'https://www.wsj.com/market-data/quotes/{ticker}', headers={\n 'User-Agent':\n 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36'\n })\n", (162, 370), False, 'import requests\n'), ((1247, 1282), 'pandas.read_csv', 'pandas.read_csv', (['"""NYSE_TICKERS.csv"""'], {}), "('NYSE_TICKERS.csv')\n", (1262, 1282), False, 'import pandas\n'), ((717, 884), 'requests.get', 'requests.get', (['f"""https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&&symbol={ticker}&apikey={api_key}&outputsize={outputsize}&datatype=csv"""'], {}), "(\n f'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&&symbol={ticker}&apikey={api_key}&outputsize={outputsize}&datatype=csv'\n )\n", (729, 884), False, 'import requests\n'), ((1026, 1202), 'requests.get', 'requests.get', (['f"""https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={ticker}&interval={time}&apikey={api_key}&outputsize={outputsize}&datatype=csv"""'], {}), "(\n f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={ticker}&interval={time}&apikey={api_key}&outputsize={outputsize}&datatype=csv'\n )\n", (1038, 1202), False, 'import requests\n')]
from abc import ABCMeta, abstractmethod from functools import partial from typing import Tuple, Union import numexpr import numpy as np from scipy import sparse, special from tabmat import MatrixBase, StandardizedMatrix from ._functions import ( binomial_logit_eta_mu_deviance, binomial_logit_rowwise_gradient_hessian, gamma_deviance, gamma_log_eta_mu_deviance, gamma_log_likelihood, gamma_log_rowwise_gradient_hessian, normal_deviance, normal_identity_eta_mu_deviance, normal_identity_rowwise_gradient_hessian, normal_log_likelihood, poisson_deviance, poisson_log_eta_mu_deviance, poisson_log_likelihood, poisson_log_rowwise_gradient_hessian, tweedie_deviance, tweedie_log_eta_mu_deviance, tweedie_log_likelihood, tweedie_log_rowwise_gradient_hessian, ) from ._link import IdentityLink, Link, LogitLink, LogLink from ._util import _safe_lin_pred, _safe_sandwich_dot class ExponentialDispersionModel(metaclass=ABCMeta): r"""Base class for reproductive Exponential Dispersion Models (EDM). The PDF of :math:`Y \sim \mathrm{EDM}(\mu, \phi)` is given by .. math:: p(y \mid \theta, \phi) &= c(y, \phi) \exp((\theta y - A(\theta)_ / \phi) \\ &= \tilde{c}(y, \phi) \exp(-d(y, \mu) / (2\phi)) with mean :math:`\mathrm{E}(Y) = A'(\theta) = \mu`, variance :math:`\mathrm{var}(Y) = \phi \cdot v(\mu)`, unit variance :math:`v(\mu)` and unit deviance :math:`d(y, \mu)`. Properties ---------- lower_bound upper_bound include_lower_bound include_upper_bound Methods ------- in_y_range unit_variance unit_variance_derivative variance variance_derivative unit_deviance unit_deviance_derivative deviance deviance_derivative starting_mu _mu_deviance_derivative eta_mu_deviance gradient_hessian References ---------- https://en.wikipedia.org/wiki/Exponential_dispersion_model. """ @property @abstractmethod def lower_bound(self) -> float: """Get the lower bound of values for the EDM.""" pass @property @abstractmethod def upper_bound(self) -> float: """Get the upper bound of values for the EDM.""" pass @property def include_lower_bound(self) -> bool: """Return whether ``lower_bound`` is allowed as a value of ``y``.""" pass @property def include_upper_bound(self) -> bool: """Return whether ``upper_bound`` is allowed as a value of ``y``.""" pass def in_y_range(self, x) -> np.ndarray: """Return ``True`` if ``x`` is in the valid range of the EDM. Parameters ---------- x : array-like, shape (n_samples,) Target values. Returns ------- np.ndarray """ if self.include_lower_bound: if self.include_upper_bound: return np.logical_and( np.greater_equal(x, self.lower_bound), np.less_equal(x, self.upper_bound), ) else: return np.logical_and( np.greater_equal(x, self.lower_bound), np.less(x, self.upper_bound) ) else: if self.include_upper_bound: return np.logical_and( np.greater(x, self.lower_bound), np.less_equal(x, self.upper_bound) ) else: return np.logical_and( np.greater(x, self.lower_bound), np.less(x, self.upper_bound) ) @abstractmethod def unit_variance(self, mu): r"""Compute the unit variance function. The unit variance :math:`v(\mu)` determines the variance as a function of the mean :math:`\mu` by :math:`\mathrm{var}(y_i) = (\phi / s_i) \times v(\mu_i)`. It can also be derived from the unit deviance :math:`d(y, \mu)` as .. math:: v(\mu) = \frac{2}{\frac{\partial^2 d(y, \mu)}{\partial\mu^2}}\big|_{y=\mu}. See also :func:`variance`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. """ pass @abstractmethod def unit_variance_derivative(self, mu): r"""Compute the derivative of the unit variance with respect to ``mu``. Return :math:`v'(\mu)`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. """ pass def variance(self, mu: np.ndarray, dispersion=1, sample_weight=1) -> np.ndarray: r"""Compute the variance function. The variance of :math:`Y_i \sim \mathrm{EDM}(\mu_i, \phi / s_i)` is :math:`\mathrm{var}(Y_i) = (\phi / s_i) * v(\mu_i)`, with unit variance :math:`v(\mu)` and weights :math:`s_i`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. dispersion : float, optional (default=1) Dispersion parameter :math:`\phi`. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return self.unit_variance(mu) * dispersion / sample_weight def variance_derivative(self, mu, dispersion=1, sample_weight=1): r"""Compute the derivative of the variance with respect to ``mu``. The derivative of the variance is equal to :math:`(\phi / s_i) * v'(\mu_i)`, where :math:`v(\mu)` is the unit variance and :math:`s_i` are weights. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. dispersion : float, optional (default=1) Dispersion parameter :math:`\phi`. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return self.unit_variance_derivative(mu) * dispersion / sample_weight @abstractmethod def unit_deviance(self, y, mu): r"""Compute the unit deviance. In terms of the log likelihood :math:`L`, the unit deviance is :math:`-2\phi\times [L(y, \mu, \phi) - L(y, y, \phi)].` Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. """ pass def unit_deviance_derivative(self, y, mu): r"""Compute the derivative of the unit deviance with respect to ``mu``. The derivative of the unit deviance is given by :math:`-2 \times (y - \mu) / v(\mu)`, where :math:`v(\mu)` is the unit variance. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. Returns ------- array-like, shape (n_samples,) """ return -2 * (y - mu) / self.unit_variance(mu) def deviance(self, y, mu, sample_weight=1): r"""Compute the deviance. The deviance is a weighted sum of the unit deviances, :math:`\sum_i s_i \times d(y_i, \mu_i)`, where :math:`d(y, \mu)` is the unit deviance and :math:`s` are weights. In terms of the log likelihood, it is :math:`-2\phi \times [L(y, \mu, \phi / s) - L(y, y, \phi / s)]`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inversely proportional. Returns ------- float """ if sample_weight is None: return np.sum(self.unit_deviance(y, mu)) else: return np.sum(self.unit_deviance(y, mu) * sample_weight) def deviance_derivative(self, y, mu, sample_weight=1): r"""Compute the derivative of the deviance with respect to ``mu``. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,) (default=1) Weights or exposure to which variance is inverse proportional. Returns ------- array-like, shape (n_samples,) """ return sample_weight * self.unit_deviance_derivative(y, mu) def _mu_deviance_derivative( self, coef: np.ndarray, X, y: np.ndarray, sample_weight: np.ndarray, link: Link, offset: np.ndarray = None, ) -> Tuple[np.ndarray, np.ndarray]: """Compute ``mu`` and the derivative of the deviance \ with respect to coefficients.""" lin_pred = _safe_lin_pred(X, coef, offset) mu = link.inverse(lin_pred) d1 = link.inverse_derivative(lin_pred) temp = d1 * self.deviance_derivative(y, mu, sample_weight) if coef.size == X.shape[1] + 1: devp = np.concatenate(([temp.sum()], temp @ X)) else: devp = temp @ X # same as X.T @ temp return mu, devp def eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, ): """ Compute ``eta``, ``mu`` and the deviance. Compute: * the linear predictor, ``eta``, as ``cur_eta + factor * X_dot_d``; * the link-function-transformed prediction, ``mu``; * the deviance. Returns ------- numpy.ndarray, shape (X.shape[0],) The linear predictor, ``eta``. numpy.ndarray, shape (X.shape[0],) The link-function-transformed prediction, ``mu``. float The deviance. """ # eta_out and mu_out are filled inside self._eta_mu_deviance, # avoiding allocating new arrays for every line search loop eta_out = np.empty_like(cur_eta) mu_out = np.empty_like(cur_eta) deviance = self._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) return eta_out, mu_out, deviance def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): """ Update ``eta`` and ``mu`` and compute the deviance. This is a default implementation that should work for all valid distributions and link functions. To implement a custom optimized version for a specific distribution and link function, please override this function in the subclass. Returns ------- float """ eta_out[:] = cur_eta + factor * X_dot_d mu_out[:] = link.inverse(eta_out) return self.deviance(y, mu_out, sample_weight=sample_weight) def rowwise_gradient_hessian( self, link: Link, coef: np.ndarray, dispersion, X: Union[MatrixBase, StandardizedMatrix], y: np.ndarray, sample_weight: np.ndarray, eta: np.ndarray, mu: np.ndarray, offset: np.ndarray = None, ): """ Compute the gradient and negative Hessian of the log likelihood row-wise. Returns ------- numpy.ndarray, shape (X.shape[0],) The gradient of the log likelihood, row-wise. numpy.ndarray, shape (X.shape[0],) The negative Hessian of the log likelihood, row-wise. """ gradient_rows = np.empty_like(mu) hessian_rows = np.empty_like(mu) self._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) # To form the full Hessian matrix from the IRLS sample_weight: # hessian_matrix = _safe_sandwich_dot(X, hessian_rows, intercept=intercept) return gradient_rows, hessian_rows def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): """ Update ``gradient_rows`` and ``hessian_rows`` in place. This is a default implementation that should work for all valid distributions and link functions. To implement a custom optimized version for a specific distribution and link function, please override this function in the subclass. """ # FOR TWEEDIE: sigma_inv = weights / (mu ** p) during optimization bc phi = 1 sigma_inv = get_one_over_variance(self, link, mu, eta, 1.0, sample_weight) d1 = link.inverse_derivative(eta) # = h'(eta) # Alternatively: # h'(eta) = h'(g(mu)) = 1/g'(mu), note that h is inverse of g # d1 = 1./link.derivative(mu) d1_sigma_inv = d1 * sigma_inv gradient_rows[:] = d1_sigma_inv * (y - mu) hessian_rows[:] = d1 * d1_sigma_inv def _fisher_information( self, link, X, y, mu, sample_weight, dispersion, fit_intercept ): """Compute the expected information matrix. Parameters ---------- link : Link A link function (i.e. an instance of :class:`~glum._link.Link`). X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ W = (link.inverse_derivative(link.link(mu)) ** 2) * get_one_over_variance( self, link, mu, link.inverse(mu), dispersion, sample_weight ) return _safe_sandwich_dot(X, W, intercept=fit_intercept) def _observed_information( self, link, X, y, mu, sample_weight, dispersion, fit_intercept ): """Compute the observed information matrix. Parameters ---------- X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ linpred = link.link(mu) W = ( -link.inverse_derivative2(linpred) * (y - mu) + (link.inverse_derivative(linpred) ** 2) * ( 1 + (y - mu) * self.unit_variance_derivative(mu) / self.unit_variance(mu) ) ) * get_one_over_variance(self, link, mu, linpred, dispersion, sample_weight) return _safe_sandwich_dot(X, W, intercept=fit_intercept) def _score_matrix(self, link, X, y, mu, sample_weight, dispersion, fit_intercept): """Compute the score. Parameters ---------- X : array-like Training data. y : array-like Target values. mu : array-like Predicted mean. sample_weight : array-like Weights or exposure to which variance is inversely proportional. dispersion : float The dispersion parameter. fit_intercept : bool Whether the model has an intercept. """ linpred = link.link(mu) W = ( get_one_over_variance(self, link, mu, linpred, dispersion, sample_weight) * link.inverse_derivative(linpred) * (y - mu) ).reshape(-1, 1) if fit_intercept: if sparse.issparse(X): return sparse.hstack((W, X.multiply(W))) else: return np.hstack((W, np.multiply(X, W))) else: if sparse.issparse(X): return X.multiply(W) else: return np.multiply(X, W) def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": pearson_residuals = ((y - mu) ** 2) / self.unit_variance(mu) if sample_weight is None: numerator = pearson_residuals.sum() else: numerator = np.dot(pearson_residuals, sample_weight) elif method == "deviance": numerator = self.deviance(y, mu, sample_weight) else: raise NotImplementedError(f"Method {method} hasn't been implemented.") if sample_weight is None: return numerator / (len(y) - ddof) else: return numerator / (sample_weight.sum() - ddof) class TweedieDistribution(ExponentialDispersionModel): r"""A class for the Tweedie distribution. A Tweedie distribution with mean :math:`\mu = \mathrm{E}(Y)` is uniquely defined by its mean-variance relationship :math:`\mathrm{var}(Y) \propto \mu^{\mathrm{power}}`. Special cases are: ====== ================ Power Distribution ====== ================ 0 Normal 1 Poisson (1, 2) Compound Poisson 2 Gamma 3 Inverse Gaussian ====== ================ Parameters ---------- power : float, optional (default=0) The variance power of the `unit_variance` :math:`v(\mu) = \mu^{\mathrm{power}}`. For :math:`0 < \mathrm{power} < 1`, no distribution exists. """ upper_bound = np.Inf include_upper_bound = False def __init__(self, power=0): # validate power and set _upper_bound, _include_upper_bound attrs self.power = power @property def lower_bound(self) -> Union[float, int]: """Return the lowest value of ``y`` allowed.""" if self.power <= 0: return -np.Inf if self.power >= 1: return 0 raise ValueError @property def include_lower_bound(self) -> bool: """Return whether ``lower_bound`` is allowed as a value of ``y``.""" if self.power <= 0: return False if (self.power >= 1) and (self.power < 2): return True if self.power >= 2: return False raise ValueError @property def power(self) -> float: """Return the Tweedie power parameter.""" return self._power @power.setter def power(self, power): if not isinstance(power, (int, float)): raise TypeError(f"power must be an int or float, input was {power}") if (power > 0) and (power < 1): raise ValueError("For 0<power<1, no distribution exists.") # Prevents upcasting when working with 32-bit data self._power = power if isinstance(power, int) else np.float32(power) def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Compute the unit variance of a Tweedie distribution ``v(mu) = mu^power``. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. Returns ------- numpy.ndarray, shape (n_samples,) """ p = self.power # noqa: F841 return numexpr.evaluate("mu ** p") def unit_variance_derivative(self, mu: np.ndarray) -> np.ndarray: r"""Compute the derivative of the unit variance of a Tweedie distribution. Equation: :math:`v(\mu) = p \times \mu^{(p-1)}`. Parameters ---------- mu : array-like, shape (n_samples,) Predicted mean. Returns ------- numpy.ndarray, shape (n_samples,) """ p = self.power # noqa: F841 return numexpr.evaluate("p * mu ** (p - 1)") def deviance(self, y, mu, sample_weight=None) -> float: """Compute the deviance. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. """ p = self.power y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) sample_weight = np.ones_like(y) if sample_weight is None else sample_weight # NOTE: the dispersion parameter is only necessary to convey # type information on account of a bug in Cython if p == 0: return normal_deviance(y, sample_weight, mu, dispersion=1.0) if p == 1: return poisson_deviance(y, sample_weight, mu, dispersion=1.0) elif p == 2: return gamma_deviance(y, sample_weight, mu, dispersion=1.0) else: return tweedie_deviance(y, sample_weight, mu, p=float(p)) def unit_deviance(self, y, mu): """Get the deviance of each observation.""" p = self.power if p == 0: # Normal distribution return (y - mu) ** 2 if p == 1: # Poisson distribution return 2 * (special.xlogy(y, y / mu) - y + mu) elif p == 2: # Gamma distribution return 2 * (np.log(mu / y) + y / mu - 1) else: mu1mp = mu ** (1 - p) return 2 * ( (np.maximum(y, 0) ** (2 - p)) / ((1 - p) * (2 - p)) - y * mu1mp / (1 - p) + mu * mu1mp / (2 - p) ) def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): f = None if self.power == 0 and isinstance(link, IdentityLink): f = normal_identity_rowwise_gradient_hessian elif self.power == 1 and isinstance(link, LogLink): f = poisson_log_rowwise_gradient_hessian elif self.power == 2 and isinstance(link, LogLink): f = gamma_log_rowwise_gradient_hessian elif 1 < self.power < 2 and isinstance(link, LogLink): f = partial(tweedie_log_rowwise_gradient_hessian, p=self.power) if f is not None: return f(y, sample_weight, eta, mu, gradient_rows, hessian_rows) return super()._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): f = None if self.power == 0 and isinstance(link, IdentityLink): f = normal_identity_eta_mu_deviance elif self.power == 1 and isinstance(link, LogLink): f = poisson_log_eta_mu_deviance elif self.power == 2 and isinstance(link, LogLink): f = gamma_log_eta_mu_deviance elif 1 < self.power < 2 and isinstance(link, LogLink): f = partial(tweedie_log_eta_mu_deviance, p=self.power) if f is not None: return f(cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out, factor) return super()._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) def log_likelihood(self, y, mu, sample_weight=None, dispersion=None) -> float: r"""Compute the log likelihood. For ``1 < power < 2``, we use the series approximation by Dunn and Smyth (2005) to compute the normalization term. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. dispersion : float, optional (default=None) Dispersion parameter :math:`\phi`. Estimated if ``None``. """ p = self.power y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) sample_weight = np.ones_like(y) if sample_weight is None else sample_weight if (p != 1) and (dispersion is None): dispersion = self.dispersion(y, mu, sample_weight) if p == 0: return normal_log_likelihood(y, sample_weight, mu, float(dispersion)) if p == 1: # NOTE: the dispersion parameter is only necessary to convey # type information on account of a bug in Cython return poisson_log_likelihood(y, sample_weight, mu, 1.0) elif p == 2: return gamma_log_likelihood(y, sample_weight, mu, float(dispersion)) elif p < 2: return tweedie_log_likelihood( y, sample_weight, mu, float(p), float(dispersion) ) else: raise NotImplementedError def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ p = self.power # noqa: F841 y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": formula = "((y - mu) ** 2) / (mu ** p)" if sample_weight is None: return numexpr.evaluate(formula).sum() / (len(y) - ddof) else: formula = f"sample_weight * {formula}" return numexpr.evaluate(formula).sum() / (sample_weight.sum() - ddof) return super().dispersion( y, mu, sample_weight=sample_weight, ddof=ddof, method=method ) class NormalDistribution(TweedieDistribution): """Class for the Normal (a.k.a. Gaussian) distribution.""" def __init__(self): super().__init__(power=0) class PoissonDistribution(TweedieDistribution): """Class for the scaled Poisson distribution.""" def __init__(self): super().__init__(power=1) class GammaDistribution(TweedieDistribution): """Class for the Gamma distribution.""" def __init__(self): super().__init__(power=2) class InverseGaussianDistribution(TweedieDistribution): """Class for the scaled Inverse Gaussian distribution.""" def __init__(self): super().__init__(power=3) class GeneralizedHyperbolicSecant(ExponentialDispersionModel): """A class for the Generalized Hyperbolic Secant (GHS) distribution. The GHS distribution is for targets ``y`` in ``(-∞, +∞)``. """ lower_bound = -np.Inf upper_bound = np.Inf include_lower_bound = False include_upper_bound = False def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Get the unit-level expected variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 1 + mu**2 def unit_variance_derivative(self, mu: np.ndarray) -> np.ndarray: """Get the derivative of the unit variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 2 * mu def unit_deviance(self, y: np.ndarray, mu: np.ndarray) -> np.ndarray: """Get the unit-level deviance. See superclass documentation. Parameters ---------- y : array-like mu : array-like Returns ------- array-like """ return 2 * y * (np.arctan(y) - np.arctan(mu)) + np.log( (1 + mu**2) / (1 + y**2) ) class BinomialDistribution(ExponentialDispersionModel): """A class for the Binomial distribution. The Binomial distribution is for targets ``y`` in ``[0, 1]``. """ lower_bound = 0 upper_bound = 1 include_lower_bound = True include_upper_bound = True def __init__(self): return def unit_variance(self, mu: np.ndarray) -> np.ndarray: """Get the unit-level expected variance. See superclass documentation. Parameters ---------- mu : array-like Returns ------- array-like """ return mu * (1 - mu) def unit_variance_derivative(self, mu): """Get the derivative of the unit variance. See superclass documentation. Parameters ---------- mu : array-like or float Returns ------- array-like """ return 1 - 2 * mu def unit_deviance(self, y: np.ndarray, mu: np.ndarray) -> np.ndarray: """Get the unit-level deviance. See superclass documentation. Parameters ---------- y : array-like mu : array-like Returns ------- array-like """ # see Wooldridge and Papke (1996) for the fractional case return -2 * (special.xlogy(y, mu) + special.xlogy(1 - y, 1 - mu)) def _rowwise_gradient_hessian( self, link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ): if isinstance(link, LogitLink): return binomial_logit_rowwise_gradient_hessian( y, sample_weight, eta, mu, gradient_rows, hessian_rows ) return super()._rowwise_gradient_hessian( link, y, sample_weight, eta, mu, gradient_rows, hessian_rows ) def _eta_mu_deviance( self, link: Link, factor: float, cur_eta: np.ndarray, X_dot_d: np.ndarray, y: np.ndarray, sample_weight: np.ndarray, eta_out: np.ndarray, mu_out: np.ndarray, ): if isinstance(link, LogitLink): return binomial_logit_eta_mu_deviance( cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out, factor ) return super()._eta_mu_deviance( link, factor, cur_eta, X_dot_d, y, sample_weight, eta_out, mu_out ) def log_likelihood(self, y, mu, sample_weight=None, dispersion=1) -> float: """Compute the log likelihood. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=1) Sample weights. dispersion : float, optional (default=1) Ignored. """ ll = special.xlogy(y, mu) + special.xlogy(1 - y, 1 - mu) return np.sum(ll) if sample_weight is None else np.dot(ll, sample_weight) def dispersion(self, y, mu, sample_weight=None, ddof=1, method="pearson") -> float: r"""Estimate the dispersion parameter :math:`\phi`. Parameters ---------- y : array-like, shape (n_samples,) Target values. mu : array-like, shape (n_samples,) Predicted mean. sample_weight : array-like, shape (n_samples,), optional (default=None) Weights or exposure to which variance is inversely proportional. ddof : int, optional (default=1) Degrees of freedom consumed by the model for ``mu``. method = {'pearson', 'deviance'}, optional (default='pearson') Whether to base the estimate on the Pearson residuals or the deviance. Returns ------- float """ y, mu, sample_weight = _as_float_arrays(y, mu, sample_weight) if method == "pearson": formula = "((y - mu) ** 2) / (mu * (1 - mu))" if sample_weight is None: return numexpr.evaluate(formula).sum() / (len(y) - ddof) else: formula = f"sample_weight * {formula}" return numexpr.evaluate(formula).sum() / (sample_weight.sum() - ddof) return super().dispersion( y, mu, sample_weight=sample_weight, ddof=ddof, method=method ) def guess_intercept( y: np.ndarray, sample_weight: np.ndarray, link: Link, distribution: ExponentialDispersionModel, eta: Union[np.ndarray, float] = None, ): """ Say we want to find the scalar `b` that minimizes ``LL(eta + b)``, with \ ``eta`` fixed. An exact solution exists for Tweedie distributions with a log link and for the normal distribution with identity link. An exact solution also exists for the case of logit with no offset. If the distribution and corresponding link are something else, we use the Tweedie or normal solution, depending on the link function. """ avg_y = np.average(y, weights=sample_weight) if isinstance(link, IdentityLink): # This is only correct for normal. For other distributions, answer is unknown, # but assume that we want sum(y) = sum(mu) if eta is None: return avg_y avg_eta = eta if np.isscalar(eta) else np.average(eta, weights=sample_weight) return avg_y - avg_eta elif isinstance(link, LogLink): # This is only correct for Tweedie log_avg_y = np.log(avg_y) assert np.isfinite(log_avg_y).all() if eta is None: return log_avg_y mu = np.exp(eta) if isinstance(distribution, TweedieDistribution): p = distribution.power else: p = 1 # Like Poisson if np.isscalar(mu): first = np.log(y.dot(sample_weight) * mu ** (1 - p)) second = np.log(sample_weight.sum() * mu ** (2 - p)) else: first = np.log((y * mu ** (1 - p)).dot(sample_weight)) second = np.log((mu ** (2 - p)).dot(sample_weight)) return first - second elif isinstance(link, LogitLink): log_odds = np.log(avg_y) - np.log(np.average(1 - y, weights=sample_weight)) if eta is None: return log_odds avg_eta = eta if np.isscalar(eta) else np.average(eta, weights=sample_weight) return log_odds - avg_eta else: return link.link(y.dot(sample_weight)) def get_one_over_variance( distribution: ExponentialDispersionModel, link: Link, mu: np.ndarray, eta: np.ndarray, dispersion, sample_weight: np.ndarray, ): """ Get one over the variance. For Tweedie: ``sigma_inv = sample_weight / (mu ** p)`` during optimization, because ``phi = 1``. For Binomial with Logit link: Simplifies to ``variance = phi / ( sample_weight * (exp(eta) + 2 + exp(-eta)))``. More numerically accurate. """ if isinstance(distribution, BinomialDistribution) and isinstance(link, LogitLink): max_float_for_exp = np.log(np.finfo(eta.dtype).max / 10) if np.any(np.abs(eta) > max_float_for_exp): eta = np.clip(eta, -max_float_for_exp, max_float_for_exp) # type: ignore return sample_weight * (np.exp(eta) + 2 + np.exp(-eta)) / dispersion return 1.0 / distribution.variance( mu, dispersion=dispersion, sample_weight=sample_weight ) def _as_float_arrays(*args): """Convert to a float array, passing ``None`` through, and broadcast.""" never_broadcast = {} # type: ignore maybe_broadcast = {} always_broadcast = {} for ix, arg in enumerate(args): if isinstance(arg, (int, float)): maybe_broadcast[ix] = np.array([arg], dtype="float") elif arg is None: never_broadcast[ix] = None else: always_broadcast[ix] = np.asanyarray(arg, dtype="float") if always_broadcast and maybe_broadcast: to_broadcast = {**always_broadcast, **maybe_broadcast} _broadcast = np.broadcast_arrays(*to_broadcast.values()) broadcast = dict(zip(to_broadcast.keys(), _broadcast)) elif always_broadcast: _broadcast = np.broadcast_arrays(*always_broadcast.values()) broadcast = dict(zip(always_broadcast.keys(), _broadcast)) else: broadcast = maybe_broadcast # possibly `{}` out = {**never_broadcast, **broadcast} return [out[ix] for ix in range(len(args))]
[ "numpy.clip", "scipy.special.xlogy", "numpy.less_equal", "numpy.log", "numpy.asanyarray", "numpy.array", "numpy.isfinite", "numpy.greater_equal", "numpy.multiply", "numpy.less", "numpy.greater", "numpy.isscalar", "numpy.exp", "numpy.dot", "numpy.maximum", "numpy.arctan", "numpy.abs", "numpy.average", "scipy.sparse.issparse", "numpy.finfo", "numpy.ones_like", "numpy.sum", "numpy.empty_like", "functools.partial", "numexpr.evaluate", "numpy.float32" ]
[((34790, 34826), 'numpy.average', 'np.average', (['y'], {'weights': 'sample_weight'}), '(y, weights=sample_weight)\n', (34800, 34826), True, 'import numpy as np\n'), ((10487, 10509), 'numpy.empty_like', 'np.empty_like', (['cur_eta'], {}), '(cur_eta)\n', (10500, 10509), True, 'import numpy as np\n'), ((10527, 10549), 'numpy.empty_like', 'np.empty_like', (['cur_eta'], {}), '(cur_eta)\n', (10540, 10549), True, 'import numpy as np\n'), ((12227, 12244), 'numpy.empty_like', 'np.empty_like', (['mu'], {}), '(mu)\n', (12240, 12244), True, 'import numpy as np\n'), ((12268, 12285), 'numpy.empty_like', 'np.empty_like', (['mu'], {}), '(mu)\n', (12281, 12285), True, 'import numpy as np\n'), ((20726, 20753), 'numexpr.evaluate', 'numexpr.evaluate', (['"""mu ** p"""'], {}), "('mu ** p')\n", (20742, 20753), False, 'import numexpr\n'), ((21216, 21253), 'numexpr.evaluate', 'numexpr.evaluate', (['"""p * mu ** (p - 1)"""'], {}), "('p * mu ** (p - 1)')\n", (21232, 21253), False, 'import numexpr\n'), ((16425, 16443), 'scipy.sparse.issparse', 'sparse.issparse', (['X'], {}), '(X)\n', (16440, 16443), False, 'from scipy import sparse, special\n'), ((16606, 16624), 'scipy.sparse.issparse', 'sparse.issparse', (['X'], {}), '(X)\n', (16621, 16624), False, 'from scipy import sparse, special\n'), ((20313, 20330), 'numpy.float32', 'np.float32', (['power'], {}), '(power)\n', (20323, 20330), True, 'import numpy as np\n'), ((21765, 21780), 'numpy.ones_like', 'np.ones_like', (['y'], {}), '(y)\n', (21777, 21780), True, 'import numpy as np\n'), ((25551, 25566), 'numpy.ones_like', 'np.ones_like', (['y'], {}), '(y)\n', (25563, 25566), True, 'import numpy as np\n'), ((29711, 29747), 'numpy.log', 'np.log', (['((1 + mu ** 2) / (1 + y ** 2))'], {}), '((1 + mu ** 2) / (1 + y ** 2))\n', (29717, 29747), True, 'import numpy as np\n'), ((32648, 32668), 'scipy.special.xlogy', 'special.xlogy', (['y', 'mu'], {}), '(y, mu)\n', (32661, 32668), False, 'from scipy import sparse, special\n'), ((32671, 32699), 'scipy.special.xlogy', 'special.xlogy', (['(1 - y)', '(1 - mu)'], {}), '(1 - y, 1 - mu)\n', (32684, 32699), False, 'from scipy import sparse, special\n'), ((32715, 32725), 'numpy.sum', 'np.sum', (['ll'], {}), '(ll)\n', (32721, 32725), True, 'import numpy as np\n'), ((32756, 32781), 'numpy.dot', 'np.dot', (['ll', 'sample_weight'], {}), '(ll, sample_weight)\n', (32762, 32781), True, 'import numpy as np\n'), ((35079, 35095), 'numpy.isscalar', 'np.isscalar', (['eta'], {}), '(eta)\n', (35090, 35095), True, 'import numpy as np\n'), ((35101, 35139), 'numpy.average', 'np.average', (['eta'], {'weights': 'sample_weight'}), '(eta, weights=sample_weight)\n', (35111, 35139), True, 'import numpy as np\n'), ((35270, 35283), 'numpy.log', 'np.log', (['avg_y'], {}), '(avg_y)\n', (35276, 35283), True, 'import numpy as np\n'), ((35395, 35406), 'numpy.exp', 'np.exp', (['eta'], {}), '(eta)\n', (35401, 35406), True, 'import numpy as np\n'), ((35559, 35574), 'numpy.isscalar', 'np.isscalar', (['mu'], {}), '(mu)\n', (35570, 35574), True, 'import numpy as np\n'), ((36941, 36992), 'numpy.clip', 'np.clip', (['eta', '(-max_float_for_exp)', 'max_float_for_exp'], {}), '(eta, -max_float_for_exp, max_float_for_exp)\n', (36948, 36992), True, 'import numpy as np\n'), ((37508, 37538), 'numpy.array', 'np.array', (['[arg]'], {'dtype': '"""float"""'}), "([arg], dtype='float')\n", (37516, 37538), True, 'import numpy as np\n'), ((16704, 16721), 'numpy.multiply', 'np.multiply', (['X', 'W'], {}), '(X, W)\n', (16715, 16721), True, 'import numpy as np\n'), ((17841, 17881), 'numpy.dot', 'np.dot', (['pearson_residuals', 'sample_weight'], {}), '(pearson_residuals, sample_weight)\n', (17847, 17881), True, 'import numpy as np\n'), ((31081, 31101), 'scipy.special.xlogy', 'special.xlogy', (['y', 'mu'], {}), '(y, mu)\n', (31094, 31101), False, 'from scipy import sparse, special\n'), ((31104, 31132), 'scipy.special.xlogy', 'special.xlogy', (['(1 - y)', '(1 - mu)'], {}), '(1 - y, 1 - mu)\n', (31117, 31132), False, 'from scipy import sparse, special\n'), ((36889, 36900), 'numpy.abs', 'np.abs', (['eta'], {}), '(eta)\n', (36895, 36900), True, 'import numpy as np\n'), ((37653, 37686), 'numpy.asanyarray', 'np.asanyarray', (['arg'], {'dtype': '"""float"""'}), "(arg, dtype='float')\n", (37666, 37686), True, 'import numpy as np\n'), ((2996, 3033), 'numpy.greater_equal', 'np.greater_equal', (['x', 'self.lower_bound'], {}), '(x, self.lower_bound)\n', (3012, 3033), True, 'import numpy as np\n'), ((3055, 3089), 'numpy.less_equal', 'np.less_equal', (['x', 'self.upper_bound'], {}), '(x, self.upper_bound)\n', (3068, 3089), True, 'import numpy as np\n'), ((3186, 3223), 'numpy.greater_equal', 'np.greater_equal', (['x', 'self.lower_bound'], {}), '(x, self.lower_bound)\n', (3202, 3223), True, 'import numpy as np\n'), ((3225, 3253), 'numpy.less', 'np.less', (['x', 'self.upper_bound'], {}), '(x, self.upper_bound)\n', (3232, 3253), True, 'import numpy as np\n'), ((3386, 3417), 'numpy.greater', 'np.greater', (['x', 'self.lower_bound'], {}), '(x, self.lower_bound)\n', (3396, 3417), True, 'import numpy as np\n'), ((3419, 3453), 'numpy.less_equal', 'np.less_equal', (['x', 'self.upper_bound'], {}), '(x, self.upper_bound)\n', (3432, 3453), True, 'import numpy as np\n'), ((3549, 3580), 'numpy.greater', 'np.greater', (['x', 'self.lower_bound'], {}), '(x, self.lower_bound)\n', (3559, 3580), True, 'import numpy as np\n'), ((3582, 3610), 'numpy.less', 'np.less', (['x', 'self.upper_bound'], {}), '(x, self.upper_bound)\n', (3589, 3610), True, 'import numpy as np\n'), ((29679, 29691), 'numpy.arctan', 'np.arctan', (['y'], {}), '(y)\n', (29688, 29691), True, 'import numpy as np\n'), ((29694, 29707), 'numpy.arctan', 'np.arctan', (['mu'], {}), '(mu)\n', (29703, 29707), True, 'import numpy as np\n'), ((35299, 35321), 'numpy.isfinite', 'np.isfinite', (['log_avg_y'], {}), '(log_avg_y)\n', (35310, 35321), True, 'import numpy as np\n'), ((35938, 35951), 'numpy.log', 'np.log', (['avg_y'], {}), '(avg_y)\n', (35944, 35951), True, 'import numpy as np\n'), ((36080, 36096), 'numpy.isscalar', 'np.isscalar', (['eta'], {}), '(eta)\n', (36091, 36096), True, 'import numpy as np\n'), ((36102, 36140), 'numpy.average', 'np.average', (['eta'], {'weights': 'sample_weight'}), '(eta, weights=sample_weight)\n', (36112, 36140), True, 'import numpy as np\n'), ((36841, 36860), 'numpy.finfo', 'np.finfo', (['eta.dtype'], {}), '(eta.dtype)\n', (36849, 36860), True, 'import numpy as np\n'), ((37059, 37071), 'numpy.exp', 'np.exp', (['(-eta)'], {}), '(-eta)\n', (37065, 37071), True, 'import numpy as np\n'), ((16557, 16574), 'numpy.multiply', 'np.multiply', (['X', 'W'], {}), '(X, W)\n', (16568, 16574), True, 'import numpy as np\n'), ((22569, 22593), 'scipy.special.xlogy', 'special.xlogy', (['y', '(y / mu)'], {}), '(y, y / mu)\n', (22582, 22593), False, 'from scipy import sparse, special\n'), ((23490, 23549), 'functools.partial', 'partial', (['tweedie_log_rowwise_gradient_hessian'], {'p': 'self.power'}), '(tweedie_log_rowwise_gradient_hessian, p=self.power)\n', (23497, 23549), False, 'from functools import partial\n'), ((24465, 24515), 'functools.partial', 'partial', (['tweedie_log_eta_mu_deviance'], {'p': 'self.power'}), '(tweedie_log_eta_mu_deviance, p=self.power)\n', (24472, 24515), False, 'from functools import partial\n'), ((35961, 36001), 'numpy.average', 'np.average', (['(1 - y)'], {'weights': 'sample_weight'}), '(1 - y, weights=sample_weight)\n', (35971, 36001), True, 'import numpy as np\n'), ((37041, 37052), 'numpy.exp', 'np.exp', (['eta'], {}), '(eta)\n', (37047, 37052), True, 'import numpy as np\n'), ((22671, 22685), 'numpy.log', 'np.log', (['(mu / y)'], {}), '(mu / y)\n', (22677, 22685), True, 'import numpy as np\n'), ((27405, 27430), 'numexpr.evaluate', 'numexpr.evaluate', (['formula'], {}), '(formula)\n', (27421, 27430), False, 'import numexpr\n'), ((27551, 27576), 'numexpr.evaluate', 'numexpr.evaluate', (['formula'], {}), '(formula)\n', (27567, 27576), False, 'import numexpr\n'), ((33814, 33839), 'numexpr.evaluate', 'numexpr.evaluate', (['formula'], {}), '(formula)\n', (33830, 33839), False, 'import numexpr\n'), ((33960, 33985), 'numexpr.evaluate', 'numexpr.evaluate', (['formula'], {}), '(formula)\n', (33976, 33985), False, 'import numexpr\n'), ((22790, 22806), 'numpy.maximum', 'np.maximum', (['y', '(0)'], {}), '(y, 0)\n', (22800, 22806), True, 'import numpy as np\n')]
#!/usr/bin/env python import collections # import itertools import numpy as np # from sklearn import linear_model as linear # for VAR # from .utils import sliding_window as window # from .utils.distance import kmeans, dists_sq # from .utils import distance as dist # from python import compress # ================================================================ shifts lut SHIFT_PAIRS_16 = [ (7, 1), # ~0 - .5 = ~-.5 (3, 1), # .125 - .5 = -.375 (2, 1), # .25 - .5 = -.25 # (4, 2), # .0625 - .25 = -.1875 (3, 2), # .125 - .5 = -.125 (4, 3), # .0625 - .125 = -.0625 (0, 0), # 1 - 1 = 0 (3, 4), # .125 - .0625 = .0625 (2, 3), # .25 - .125 - .125 (2, 4), # .25 - .0625 = .1875 (1, 2), # .5 - .25 = .25 (1, 3), # .5 - .125 = .375 (0, 1), # 1 - .5 = .5 (0, 2), # 1 - .25 = .75 (0, 3), # 1 - .125 = .875 (0, 4), # 1 - .0625 = .9375 (0, 7), # 1 - ~0 = ~1 ] # should be equivalent to `all_shifts(max_shift=5, omit_duplicates=True)` # EDIT: wait, no, not true because we have shifts of 7 at the ends SHIFT_PAIRS_26 = [ (7, 1), # ~0 - .5 = ~-.5 (5, 1), # .0625 - .5 = -.46875 # added (4, 1), # .0625 - .5 = -.4375 # added, max 4 (3, 1), # .125 - .5 = -.375 (2, 1), # .25 - .5 = -.25 (5, 2), # .03125- .25 = -.21875 (4, 2), # .0625 - .25 = -.1875 # added, max 4 (3, 2), # .125 - .25 = -.125 (5, 3), # .03125- .125 = -.09375 # added (4, 3), # .0625 - .125 = -.0625 (5, 4), # .03125- .0625 = -.03125 # added (0, 0), # 1 - 1 = 0 (4, 5), # .0625 - .03125= .03125 (3, 4), # .125 - .0625 = .0625 (3, 5), # .125 - .03125= .09375 # added (2, 3), # .25 - .125 - .125 (2, 4), # .25 - .0625 = .1875 (2, 5), # .25 - .03125= .21875 # added (1, 2), # .5 - .25 = .25 (1, 3), # .5 - .125 = .375 (1, 4), # .5 - .0625 = .4375 # added, max 4 (1, 5), # .5 - .03125= .46875 # added (0, 1), # 1 - .5 = .5 (0, 2), # 1 - .25 = .75 (0, 3), # 1 - .125 = .875 (0, 4), # 1 - .0625 = .9375 (0, 5), # 1 - .03125= .96875 # added (0, 7), # 1 - ~0 = ~1 ] def all_shifts(max_shift=-1, omit_duplicates=True): vals = {} nbits = 8 x = 1 << nbits # reference val; 256 for nbits if max_shift < 0: max_shift = nbits - 1 if omit_duplicates: vals[(0, 0)] = 0 for a in range(max_shift + 1): for b in range(max_shift + 1): if omit_duplicates and a == b: continue vals[(a, b)] = (x >> a) - (x >> b) keys, coeffs = list(zip(*list(vals.items()))) keys = np.array(keys) coeffs = np.array(coeffs) order = np.argsort(coeffs) # print "shift results:" # print keys[order] # print coeffs[order] return keys[order], coeffs[order] # okay, looks like (according to test immediately below) these values are # identical to what's in our existing LUT; this makes sense given that impls # are basically identical def _i16_for_shifts(pos_shift, neg_shift, nbits=8): start_val = 1 << nbits # 256 for nbits = 8 return (start_val >> pos_shift) - (start_val >> neg_shift) # TODO actual unit test def _test_shift_coeffs(nbits=8): shifts, shift_coeffs = all_shifts() for (pos_shift, neg_shift), coeff in zip(shifts, shift_coeffs): assert _i16_for_shifts(pos_shift, neg_shift) == coeff for val in range(-128, 128): two_shifts_val = (val >> pos_shift) - (val >> neg_shift) # ya, this fails; multiply and rshift != using shifts directly # assert (val * coeff) >> nbits == two_shifts_val # this way works; requires two multiplies though... pos_coef = 1 << (nbits - pos_shift) neg_coef = 1 << (nbits - neg_shift) pos = (val * pos_coef) >> nbits neg = (val * neg_coef) >> nbits assert pos - neg == two_shifts_val # this way also fails # pos = val * pos_coef # neg = val * neg_coef # assert (pos - neg) >> nbits == two_shifts_val # def coeff_lut(): # """create lookup table `T` such that `T[coeff]` yields the two indices # whose associated coefficients are immediately above and below `coeff`""" # shifts, shift_coeffs = all_shifts() SHIFTS, SHIFT_COEFFS = all_shifts() # ================================================================ funcs def binary_search(array, val): M = len(array) first = 0 middle = int(M / 2) last = M - 1 while (first <= last): middle_val = array[middle] if middle_val < val: first = middle + 1 elif middle_val == val: return middle else: # middle_val > val last = middle - 1 middle = int((first + last) / 2) return middle class OnlineRegressor(object): def __init__(self, block_sz=8, verbose=0, method='linreg', shifts=SHIFTS, shift_coeffs=SHIFT_COEFFS, numbits=8, ntaps=1): # self.prev0 = 0 # self.prev1 = 0 # self.mod = 1 << nbits # self.shift0 = 0 # self.shift1 = 1 self.block_sz = block_sz self.verbose = verbose self.method = method self.shifts = shifts self.shift_coeffs = shift_coeffs self.numbits = numbits self.ntaps = ntaps self.last_val = 0 self.last_delta = 0 self.coef = 0 self.coef = 256 self.counter = 0 # self.counter = 256 << (1 + self.numbits - 8) # TODO indirect to learning rate, not just 1 # noqa # self.counter = 8 << 1 # equivalent to adding 8 to round to nearest? # self.counter = self.coef self.t = 0 self.grad_counter = 0 self.offset = 0 self.offset_counter = 0 shift_by = (1 + self.numbits - 8) self.coeffs = np.zeros(self.ntaps, dtype=np.int32) + 256 self.counters = np.zeros(self.ntaps, dtype=np.int32) + (256 << shift_by) # self.approx_256_over_x = 1 self.Sxy = 0 self.Sxx = 0 self.errs = [] # print "using shifts, coeffs:" # print shifts # print shift_coeffs # for logging # self.best_idx_offset_counts = np.zeros(3, dtype=np.int64) self.best_idx_counts = np.zeros(len(self.shifts), dtype=np.int64) # counts_len = len(self.shifts) if method == 'linreg' else 512 # self.best_idx_counts = np.zeros(counts_len, dtype=np.int64) self.best_coef_counts = collections.Counter() self.best_offset_counts = collections.Counter() def feed_group(self, group): pass # TODO determine optimal filter here # errhat = a*x0 - b*x0 - a*x1 + b*x1 # = a(x0 - x1) + b(x1 - x0) # = c(x0 - x1), where c = (a - b) # # we should compute c, and find shifts (which correspond to a, b) that # approximate it well; also note that errhat is prediction of the delta # # this is just linear regression between (x0 - x1) and new val, with # some extra logic at the end to get shifts based on regression coeff # deltas; these are our target variable deltas = np.zeros(group.size, dtype=group.dtype) deltas[1:] = group[1:] - group[:-1] deltas[0] = group[0] - self.last_val self.last_val = group[-1] # deltas from previous time step; these are our indep variable diffs = np.zeros(group.size, dtype=group.dtype) diffs[1:] = deltas[:-1] diffs[0] = self.last_delta self.last_delta = deltas[-1] x = diffs y = deltas # linear regression if self.method == 'linreg': Sxy = np.sum(x * y) Sxx = np.sum(x * x) # print "x, y dtypes: ", x.dtype, y.dtype # print "Sxx, Sxy dtypes: ", Sxx.dtype, Sxy.dtype coeff = (Sxy << 8) / Sxx # shift to mirror what we'll need to do in C idx = binary_search(self.shift_coeffs, coeff) def compute_errs(x, y, shifts): predictions = (x >> shifts[0]) - (x >> shifts[1]) return y - predictions # These are commented out because, empirically, they're # *never* chosen # # best_idx_offset = 0 # # def compute_total_cost(errs, block_sz=self.block_sz): # raw_costs = compress.nbits_cost(errs) # block_costs_rows = raw_costs.reshape(-1, block_sz) # block_costs = np.max(block_costs_rows, axis=1) # return np.sum(block_costs) # # cost = compute_total_cost(errs) # if idx > 0: # errs2 = compute_errs(x, y, SHIFTS[idx - 1]) # cost2 = compute_total_cost(errs) # if cost2 < cost: # ret = errs2 # best_idx_offset = -1 # if idx < (len(SHIFTS) - 1): # errs3 = compute_errs(x, y, SHIFTS[idx + 1]) # cost3 = compute_total_cost(errs) # if cost3 < cost: # ret = errs3 # best_idx_offset = 1 # self.best_idx_offset_counts[best_idx_offset] += 1 errs = compute_errs(x, y, self.shifts[idx]) self.best_idx_counts[idx] += 1 # for logging elif self.method == 'gradient': # update coeffs using last entry in each block # learning_rate_shift = 7 # learning rate of 2^(-learning_rate_shift) # learning_rate_shift = 8 # learning rate of 2^(-learning_rate_shift) # learning_rate_shift = 12 # learning rate of 2^(-learning_rate_shift) # learning_rate_shift = 4 # learning rate of 2^(-learning_rate_shift) # learning_rate_shift = 2 # learning rate of 2^(-learning_rate_shift) predictions = (x * self.coef) >> int(min(self.numbits, 8)) for tap_idx in range(1, self.ntaps): predictions[tap_idx:] += (x[:-tap_idx] * self.coeffs[tap_idx]) predictions += self.offset errs = y - predictions for b in range(8): # for each block # only update based on a few values for efficiency which_idxs = 8 * b + np.array([3, 7]) # downsample by 4 # which_idxs = 8 * b + np.array([1, 3, 5, 7]) # downsample by 2 grads = 0 # grads = np.zeros(self.ntaps) # offsets = 0 for idx in which_idxs: xval = x[idx] # xval = x[idx] >> (self.numbits - 8) # grad = int(-errs[idx] * x[idx]) >> 8 # grad = int(-errs[idx] * x[idx]) // 256 # y0 = np.abs(self.approx_256_over_x) * np.sign(xval) # y0 = 1 + (256 - xval) >> 8 # y0 = 3 - ((3 * xval) >> 8) # grad = int(-(errs[idx] << 8) / xval) if xval != 0 else 0 # works great # self.counter -= grad # equivalent to above two lines # if self.t % 100 == 0: # print "grad:", grad # continue # # xabs = self.t # TODO rm # xabs = np.abs(xval) # if xabs == 0: # lzcnt = self.numbits # else: # lzcnt = self.numbits - 1 - int(np.log2(xabs)) # lzcnt = max(0, lzcnt - 1) # round up to nearest power of 2 # # lzcnt = min(15, lzcnt + 1) # round up to nearest power of 2 # # numerator = 1 << self.numbits # # recip = 1 << (lzcnt - 8) if lzcnt >= 8 else # # recip = np.sign(xval) << (8 + lzcnt) # shift_amt = max(0, lzcnt - (self.numbits - 8)) # usually 0, maybe 1 sometimes # recip = (1 << shift_amt) * np.sign(xval) # grad = int(-errs[idx] * recip) # # grad = int(grad / len(which_idxs)) # normal grad descent # grad = int(-errs[idx] * np.sign(xval)) # div by sqrt(hessian) # grad = int(-errs[idx] * xval) >> self.numbits # true gradient # approx newton step for log(nbits) err = errs[idx] # if False: # TODO rm # if self.numbits > 8: # grad = int(-(1 + err)) if err > 0 else int(-(err - 1)) # else: # grad = int(-err) # don't add 1 # self.grad_counter += (grad - (self.grad_counter >> 8)) # wtf this works so well for 16b, despite ignoring sign of x... # (when also only shifting counter by learning rate, not # an additional 8) # grad = -err # grad = -(err + np.sign(err)) * np.sign(xval) # grad = -err * np.sign(xval) # these both seem to work pretty well; prolly need to directly # compare them # grad = -err * np.sign(xval) # grad = -np.sign(err) * xval # significantly better than prev line grad = np.sign(err) * xval # significantly better than prev line # ^ duh; above is minimizer for L1 loss # grad = -np.sign(err) * np.sign(xval) << (self.numbits - 8) # sub_from = ((1 << self.numbits) - 1) * np.sign(xval) # approx_recip_x = sub_from - xval # grad = -np.sign(err) * approx_recip_x grads += int(grad) # grads += grad >> 1 # does this help with overflow? # simulate int8 overflow, adjusted for fact that we do 8 blocks # per group (so 1024, 2048 instead of 128, 256) mod = int(1 << self.numbits) offset = mod // 2 grads = ((grads + offset) % mod) - offset # grads = ((grads + 1024) % 2048) - 1024 # wrecks accuracy # grads = ((grads + 8192) % 16384) - 8192 # no effect self.errs.append(err) # offsets += np.sign(err) # optimize bias for l1 loss # this is the other one we should actually consider doing # # grad = int(-errs[idx] * np.sign(xval)) # # approximation of what we'd end up doing with a LUT # shift_to_just_4b = self.numbits - 4 # # y0 = ((xval >> shift_to_just_4b) + 1) << shift_to_just_4b # shifted_xval = xval >> shift_to_just_4b # if shifted_xval != 0: # y0 = int(256. / shifted_xval) << shift_to_just_4b # else: # y0 = 16*np.sign(xval) << shift_to_just_4b # # y0 = y0 * int(2 - (xval * y0 / 256)) # diverges # y0 = int(256. / xval) if xval else 0 # y0 = (1 << int(8 - np.floor(np.log2(xval)))) * np.sign(xval) # y0 = 4 * np.sign(xval) # self.approx_256_over_x = int( y0*(2 - (int(xval*y0) >> 8)) ) # noqa # doesn't work # grad = int(-errs[idx] * self.approx_256_over_x) # grad = int(-errs[idx] * y0) # grad = int(-errs[idx] * xval) # works # grad = int(-errs[idx] * 2*np.sign(xval)) # this_best_coef = self.coef - grad # self.counter += this_best_coef - self.coef # self.counter -= grad # equivalent to above two lines # self.counter -= grad >> learning_rate_shift # if self.t < 8: # if self.t % 50 == 0: # if (self.t < 5 == 0) and (b == 0): # if (self.t % 50 == 0) and (b == 0): # # print "errs: ", errs[-7], errs[-5], errs[-3], errs[-1] # print "t, b = ", self.t, b # print "errs: ", errs[-10:] # print "xs: ", x[-10:] # # print "sum(|xs|)", np.sum(np.abs(x)) # print "grads: ", grads # print "counter:", self.counter # # print "grad counter:", self.grad_counter # # # print "recip, grad: ", recip, grad # self.coef = self.counter >> min(self.t, learning_rate_shift) # self.coef = self.counter >> learning_rate_shift learning_rate_shift = 1 # learning_rate_shift = 4 # grad_learning_shift = 1 # grad_learning_shift = 4 # offset_learning_shift = 4 # compute average gradient for batch # grad = int(4 * grads / len(which_idxs)) # div by 16 grad = int(grads / len(which_idxs)) # div by 64 # grad = grads # self.grad_counter += grad - (self.grad_counter >> grad_learning_shift) # self.grad_counter += grad # # this is the pair of lines that we know works well for UCR # # self.counter -= grad self.counter += grad self.coef = self.counter >> (learning_rate_shift + (self.numbits - 8)) # self.coef = self.counter >> learning_rate_shift # self.coef -= (self.grad_counter >> grad_learning_shift) >> learning_rate_shift # learn_shift = int(min(learning_rate_shift, np.log2(self.t + 1))) # self.coef = self.counter >> (learn_shift + (self.numbits - 8)) # self.coef = self.counter >> learn_shift # for use with l1 loss # self.coef -= (self.grad_counter >> grad_learning_shift) >> learn_shift # self.coef -= (self.grad_counter >> grad_learning_shift) >> learning_rate_shift # self.coef = 192 # global soln for olive oil # quantize coeff by rounding to nearest 16; this seems to help # quite a bit, at least for stuff that really should be double # delta coded (starlight curves, presumably timestamps) # self.coef = ((self.coef + 8) >> 4) << 4 self.coef = (self.coef >> 4) << 4 # just round towards 0 # self.coef = (self.coef >> 5) << 5 # just round towards 0 # like above, but use sign since shift and unshift round towards 0 # EDIT: no apparent difference, though perhaps cuz almost nothing # actually wants a negative coef # self.coef = ((self.coef + 8 * np.sign(self.coef)) >> 4) << 4 # offset = int(offsets / len(which_idxs)) # div by 64 # self.offset_counter += offset # # self.offset = self.offset_counter >> offset_learning_shift # self.offset = 0 # offset doesn't seem to help at all # self.coef = 0 # why are estimates biased? TODO rm # self.coef = 256 # self.coef = self.counter # self.coef = np.clip(self.coef, -256, 256) # apparently important # self.coef = np.clip(self.coef, -128, 256) # apparently important # if self.t < 8: # if self.t % 100 == 0: # print "----- t = {}".format(self.t) # print "offset, offset counter: ", self.offset, self.offset_counter # # print "grad, grads sum: ", grad, grads # # print "learn shift: ", learn_shift # # print "errs[:10]: ", errs[:16] # # print "-grads[:10]: ", errs[:16] * x[:16] # # print "signed errs[:10]: ", errs[:16] * np.sign(x[:16]) # print "new coeff, grad_counter, counter = ", self.coef, self.grad_counter, self.counter # # print "new coeff, grad counter = ", self.coef, self.grad_counter # self.best_idx_counts[self.coef] += 1 # for logging self.best_coef_counts[self.coef] += 1 self.best_offset_counts[self.offset] += 1 # errs -= self.offset # do this at the end to not mess up training elif self.method == 'exact': # print "using exact method" if self.numbits <= 8: predictions = (x * self.coef) >> self.numbits else: predictions = ((x >> 8) * self.coef) errs = y - predictions learn_shift = 6 # shift = learn_shift + 2*self.numbits - 8 shift = learn_shift # only update based on a few values for efficiency start_idx = 0 if self.t > 0 else 8 for idx in np.arange(start_idx, len(x), 8): # xval = x[idx] # >> (self.numbits - 8) # yval = y[idx] # >> (self.numbits - 8) xval = x[idx] >> (self.numbits - 8) yval = y[idx] >> (self.numbits - 8) # # this way works just like global one, or maybe better # self.Sxx += xval * xval # self.Sxy += xval * yval # moving average way; seemingly works just as well # Exx = self.Sxx >> learn_shift # Exy = self.Sxy >> learn_shift Exy = self.Sxy >> shift Exx = self.Sxx >> shift # adjust_shift = 2 * diff_xx = (xval * xval) - Exx diff_xy = (xval * yval) - Exy self.Sxx += diff_xx self.Sxy += diff_xy # if min(self.Sxy, self.Sxx) >= 1024: # self.Sxx /= 2 # self.Sxy /= 2 Exy = self.Sxy >> shift Exx = self.Sxx >> shift self.coef = int((Exy << 8) / Exx) # works really well # none of this really works # # print "Exy, Exx = ", Exy, Exx # print "xval, yval: ", xval, yval # print "diff_xx, diff_xy, Exy, Exx = ", diff_xx, diff_xy, Exy, Exx # # numerator = 1 << (2 * self.numbits) # numerator = 256 # nbits = int(min(4, np.log2(Exx))) if Exx > 1 else 1 # assert numerator >= np.abs(Exx) # # print "nbits: ", nbits # recip = int((numerator >> nbits) / (Exx >> nbits)) << nbits # # recip = recip >> (2 * self.numbits - 8) # print "numerator, recip: ", numerator, recip # self.coef = int(Exy * recip) self.best_coef_counts[self.coef] += 1 self.t += 1 return errs # while (first <= last) { # if (array[middle] < search) # first = middle + 1; # else if (array[middle] == search) { # printf("%d found at location %d.\n", search, middle+1); # break; # } # else # last = middle - 1; # middle = (first + last)/2; # } def sub_online_regress(blocks, verbose=0, group_sz_blocks=8, max_shift=4, only_16_shifts=True, method='linreg', numbits=8, drop_first_half=False, **sink): # drop_first_half=True, **sink): blocks = blocks.astype(np.int32) if only_16_shifts: shifts = SHIFT_PAIRS_16 shift_coeffs = [_i16_for_shifts(*pair) for pair in shifts] else: shifts, shift_coeffs = all_shifts(max_shift=max_shift) encoder = OnlineRegressor(block_sz=blocks.shape[1], verbose=verbose, shifts=shifts, shift_coeffs=shift_coeffs, method=method, numbits=numbits) # print "using group_sz_blocks: ", group_sz_blocks # print "using method: ", method # print "using nbits: ", numbits out = np.empty(blocks.shape, dtype=np.int32) if group_sz_blocks < 1: group_sz_blocks = len(blocks) # global model ngroups = int(len(blocks) / group_sz_blocks) for g in range(ngroups): # if verbose and (g > 0) and (g % 100 == 0): # print "running on block ", g start_idx = g * group_sz_blocks end_idx = start_idx + group_sz_blocks group = blocks[start_idx:end_idx] errs = encoder.feed_group(group.ravel()) out[start_idx:end_idx] = errs.reshape(group.shape) out[end_idx:] = blocks[end_idx:] if verbose > 1: if method == 'linreg': if group_sz_blocks != len(blocks): import hipsterplot as hp # pip install hipsterplot # hp.plot(x_vals=encoder.shift_coeffs, y_vals=encoder.best_idx_counts, hp.plot(encoder.best_idx_counts, num_x_chars=len(encoder.shift_coeffs), num_y_chars=12) else: coef_idx = np.argmax(encoder.best_idx_counts) coef = encoder.shift_coeffs[coef_idx] print("global linreg coeff: ", coef) else: coeffs_counts = np.array(encoder.best_coef_counts.most_common()) print("min, max coeff: {}, {}".format( coeffs_counts[:, 0].min(), coeffs_counts[:, 0].max())) # print("most common (coeff, counts):\n", coeffs_counts[:16]) # bias_counts = np.array(encoder.best_offset_counts.most_common()) # print "most common (bias, counts):\n", bias_counts[:16] errs = np.array(encoder.errs) print("raw err mean, median, std, >0 frac: {}, {}, {}, {}".format( errs.mean(), np.median(errs), errs.std(), np.mean(errs > 0))) if drop_first_half and method == 'gradient': keep_idx = len(out) // 2 out[:keep_idx] = out[keep_idx:(2*keep_idx)] print("NOTE: duplicating second half of data into first half!!" \ " (blocks {}:)".format(keep_idx)) return out def _test_moving_avg(x0=0): # vals = np.zeros(5, dtype=np.int32) + 100 vals = np.zeros(5, dtype=np.int32) - 100 shft = 3 counter = x0 << shft xhats = [] for v in vals: xhat = counter >> shft xhats.append(xhat) counter += (v - xhat) print("vals: ", vals) print("xhats: ", xhats) # ================================================================ main def main(): np.set_printoptions(formatter={'float': lambda x: '{:.3f}'.format(x)}) # print "all shifts:\n", all_shifts() # _test_shift_coeffs() _test_moving_avg() # print "shifts_16, coeffs" # print SHIFT_PAIRS_16 # print [_i16_for_shifts(*pair) for pair in SHIFT_PAIRS_16] # x = np.array([5], dtype=np.int32) # print "shifting x left: ", x << 5 # blocks = np.arange(8 * 64, dtype=np.int32).reshape(-1, 8) # sub_online_regress(blocks) if __name__ == '__main__': main()
[ "numpy.mean", "numpy.median", "numpy.argmax", "numpy.argsort", "numpy.array", "numpy.zeros", "collections.Counter", "numpy.empty", "numpy.sum", "numpy.sign" ]
[((3011, 3025), 'numpy.array', 'np.array', (['keys'], {}), '(keys)\n', (3019, 3025), True, 'import numpy as np\n'), ((3039, 3055), 'numpy.array', 'np.array', (['coeffs'], {}), '(coeffs)\n', (3047, 3055), True, 'import numpy as np\n'), ((3068, 3086), 'numpy.argsort', 'np.argsort', (['coeffs'], {}), '(coeffs)\n', (3078, 3086), True, 'import numpy as np\n'), ((24700, 24738), 'numpy.empty', 'np.empty', (['blocks.shape'], {'dtype': 'np.int32'}), '(blocks.shape, dtype=np.int32)\n', (24708, 24738), True, 'import numpy as np\n'), ((6931, 6952), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (6950, 6952), False, 'import collections\n'), ((6987, 7008), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (7006, 7008), False, 'import collections\n'), ((7622, 7661), 'numpy.zeros', 'np.zeros', (['group.size'], {'dtype': 'group.dtype'}), '(group.size, dtype=group.dtype)\n', (7630, 7661), True, 'import numpy as np\n'), ((7873, 7912), 'numpy.zeros', 'np.zeros', (['group.size'], {'dtype': 'group.dtype'}), '(group.size, dtype=group.dtype)\n', (7881, 7912), True, 'import numpy as np\n'), ((26835, 26862), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'np.int32'}), '(5, dtype=np.int32)\n', (26843, 26862), True, 'import numpy as np\n'), ((6271, 6307), 'numpy.zeros', 'np.zeros', (['self.ntaps'], {'dtype': 'np.int32'}), '(self.ntaps, dtype=np.int32)\n', (6279, 6307), True, 'import numpy as np\n'), ((6338, 6374), 'numpy.zeros', 'np.zeros', (['self.ntaps'], {'dtype': 'np.int32'}), '(self.ntaps, dtype=np.int32)\n', (6346, 6374), True, 'import numpy as np\n'), ((8139, 8152), 'numpy.sum', 'np.sum', (['(x * y)'], {}), '(x * y)\n', (8145, 8152), True, 'import numpy as np\n'), ((8171, 8184), 'numpy.sum', 'np.sum', (['(x * x)'], {}), '(x * x)\n', (8177, 8184), True, 'import numpy as np\n'), ((26294, 26316), 'numpy.array', 'np.array', (['encoder.errs'], {}), '(encoder.errs)\n', (26302, 26316), True, 'import numpy as np\n'), ((25696, 25730), 'numpy.argmax', 'np.argmax', (['encoder.best_idx_counts'], {}), '(encoder.best_idx_counts)\n', (25705, 25730), True, 'import numpy as np\n'), ((26425, 26440), 'numpy.median', 'np.median', (['errs'], {}), '(errs)\n', (26434, 26440), True, 'import numpy as np\n'), ((26454, 26471), 'numpy.mean', 'np.mean', (['(errs > 0)'], {}), '(errs > 0)\n', (26461, 26471), True, 'import numpy as np\n'), ((10758, 10774), 'numpy.array', 'np.array', (['[3, 7]'], {}), '([3, 7])\n', (10766, 10774), True, 'import numpy as np\n'), ((13866, 13878), 'numpy.sign', 'np.sign', (['err'], {}), '(err)\n', (13873, 13878), True, 'import numpy as np\n')]
import numpy as np def mean_or_nan(xs): """Return its mean a non-empty sequence, numpy.nan for a empty one.""" return np.mean(xs) if xs else np.nan
[ "numpy.mean" ]
[((128, 139), 'numpy.mean', 'np.mean', (['xs'], {}), '(xs)\n', (135, 139), True, 'import numpy as np\n')]
### based on https://github.com/kylemcdonald/Parametric-t-SNE/blob/master/Parametric%20t-SNE%20(Keras).ipynb import numpy as np from tensorflow.keras import backend as K from tensorflow.keras.losses import categorical_crossentropy from tqdm.autonotebook import tqdm import tensorflow as tf def Hbeta(D, beta): """Computes the Gaussian kernel values given a vector of squared Euclidean distances, and the precision of the Gaussian kernel. The function also computes the perplexity (P) of the distribution.""" P = np.exp(-D * beta) sumP = np.sum(P) H = np.log(sumP) + beta * np.sum(np.multiply(D, P)) / sumP P = P / sumP return H, P def x2p(X, u=15, tol=1e-4, print_iter=500, max_tries=50, verbose=0): """ % X2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % [P, beta] = x2p(xx, kk, tol) % % Identifies the required precision (= 1 / variance^2) to obtain a Gaussian % kernel with a certain uncertainty for every datapoint. The desired % uncertainty can be specified through the perplexity u (default = 15). The % desired perplexity is obtained up to some tolerance that can be specified % by tol (default = 1e-4). % The function returns the final Gaussian kernel in P, as well as the % employed precisions per instance in beta. % """ # Initialize some variables n = X.shape[0] # number of instances P = np.zeros((n, n)) # empty probability matrix beta = np.ones(n) # empty precision vector logU = np.log(u) # log of perplexity (= entropy) # Compute pairwise distances if verbose > 0: print("Computing pairwise distances...") sum_X = np.sum(np.square(X), axis=1) # note: translating sum_X' from matlab to numpy means using reshape to add a dimension D = sum_X + sum_X[:, None] + -2 * X.dot(X.T) # Run over all datapoints if verbose > 0: print("Computing P-values...") for i in range(n): if verbose > 1 and print_iter and i % print_iter == 0: print("Computed P-values {} of {} datapoints...".format(i, n)) # Set minimum and maximum values for precision betamin = float("-inf") betamax = float("+inf") # Compute the Gaussian kernel and entropy for the current precision indices = np.concatenate((np.arange(0, i), np.arange(i + 1, n))) Di = D[i, indices] H, thisP = Hbeta(Di, beta[i]) # Evaluate whether the perplexity is within tolerance Hdiff = H - logU tries = 0 while abs(Hdiff) > tol and tries < max_tries: # If not, increase or decrease precision if Hdiff > 0: betamin = beta[i] if np.isinf(betamax): beta[i] *= 2 else: beta[i] = (beta[i] + betamax) / 2 else: betamax = beta[i] if np.isinf(betamin): beta[i] /= 2 else: beta[i] = (beta[i] + betamin) / 2 # Recompute the values H, thisP = Hbeta(Di, beta[i]) Hdiff = H - logU tries += 1 # Set the final row of P P[i, indices] = thisP if verbose > 0: print("Mean value of sigma: {}".format(np.mean(np.sqrt(1 / beta)))) print("Minimum value of sigma: {}".format(np.min(np.sqrt(1 / beta)))) print("Maximum value of sigma: {}".format(np.max(np.sqrt(1 / beta)))) return P, beta def compute_joint_probabilities( samples, batch_size=5000, d=2, perplexity=30, tol=1e-5, verbose=0 ): """ This function computes the probababilities in X, split up into batches % Gaussians employed in the high-dimensional space have the specified % perplexity (default = 30). The number of degrees of freedom of the % Student-t distribution may be specified through v (default = d - 1). """ v = d - 1 # Initialize some variables n = samples.shape[0] batch_size = min(batch_size, n) # Precompute joint probabilities for all batches if verbose > 0: print("Precomputing P-values...") batch_count = int(n / batch_size) P = np.zeros((batch_count, batch_size, batch_size)) # for each batch of data for i, start in enumerate(tqdm(range(0, n - batch_size + 1, batch_size))): # select batch curX = samples[start : start + batch_size] # compute affinities using fixed perplexity P[i], _ = x2p(curX, perplexity, tol, verbose=verbose) # make sure we don't have NaN's P[i][np.isnan(P[i])] = 0 # make symmetric P[i] = P[i] + P[i].T # / 2 # obtain estimation of joint probabilities P[i] = P[i] / P[i].sum() P[i] = np.maximum(P[i], np.finfo(P[i].dtype).eps) return P def z2p(z, d, n, eps=10e-15): """ Computes the low dimensional probability """ v = d - 1 sum_act = tf.math.reduce_sum(tf.math.square(z), axis=1) Q = K.reshape(sum_act, [-1, 1]) + -2 * tf.keras.backend.dot(z, tf.transpose(z)) Q = (sum_act + Q) / v Q = tf.math.pow(1 + Q, -(v + 1) / 2) Q *= 1 - np.eye(n) Q /= tf.math.reduce_sum(Q) Q = tf.math.maximum(Q, eps) return Q def tsne_loss(d, batch_size, eps=10e-15): # v = d - 1.0 def loss(P, Z): """ KL divergence P is the joint probabilities for this batch (Keras loss functions call this y_true) Z is the low-dimensional output (Keras loss functions call this y_pred) """ Q = z2p(Z, d, n=batch_size, eps=eps) return tf.math.reduce_sum(P * tf.math.log((P + eps) / (Q + eps))) return loss
[ "tensorflow.math.pow", "numpy.sqrt", "tensorflow.transpose", "tensorflow.math.log", "numpy.log", "numpy.arange", "numpy.multiply", "numpy.exp", "numpy.isinf", "numpy.eye", "numpy.ones", "tensorflow.keras.backend.reshape", "numpy.square", "tensorflow.math.maximum", "numpy.isnan", "numpy.finfo", "tensorflow.math.square", "numpy.sum", "numpy.zeros", "tensorflow.math.reduce_sum" ]
[((532, 549), 'numpy.exp', 'np.exp', (['(-D * beta)'], {}), '(-D * beta)\n', (538, 549), True, 'import numpy as np\n'), ((561, 570), 'numpy.sum', 'np.sum', (['P'], {}), '(P)\n', (567, 570), True, 'import numpy as np\n'), ((1437, 1453), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (1445, 1453), True, 'import numpy as np\n'), ((1493, 1503), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (1500, 1503), True, 'import numpy as np\n'), ((1541, 1550), 'numpy.log', 'np.log', (['u'], {}), '(u)\n', (1547, 1550), True, 'import numpy as np\n'), ((4228, 4275), 'numpy.zeros', 'np.zeros', (['(batch_count, batch_size, batch_size)'], {}), '((batch_count, batch_size, batch_size))\n', (4236, 4275), True, 'import numpy as np\n'), ((5143, 5175), 'tensorflow.math.pow', 'tf.math.pow', (['(1 + Q)', '(-(v + 1) / 2)'], {}), '(1 + Q, -(v + 1) / 2)\n', (5154, 5175), True, 'import tensorflow as tf\n'), ((5208, 5229), 'tensorflow.math.reduce_sum', 'tf.math.reduce_sum', (['Q'], {}), '(Q)\n', (5226, 5229), True, 'import tensorflow as tf\n'), ((5238, 5261), 'tensorflow.math.maximum', 'tf.math.maximum', (['Q', 'eps'], {}), '(Q, eps)\n', (5253, 5261), True, 'import tensorflow as tf\n'), ((579, 591), 'numpy.log', 'np.log', (['sumP'], {}), '(sumP)\n', (585, 591), True, 'import numpy as np\n'), ((1706, 1718), 'numpy.square', 'np.square', (['X'], {}), '(X)\n', (1715, 1718), True, 'import numpy as np\n'), ((4998, 5015), 'tensorflow.math.square', 'tf.math.square', (['z'], {}), '(z)\n', (5012, 5015), True, 'import tensorflow as tf\n'), ((5033, 5060), 'tensorflow.keras.backend.reshape', 'K.reshape', (['sum_act', '[-1, 1]'], {}), '(sum_act, [-1, 1])\n', (5042, 5060), True, 'from tensorflow.keras import backend as K\n'), ((5189, 5198), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (5195, 5198), True, 'import numpy as np\n'), ((4625, 4639), 'numpy.isnan', 'np.isnan', (['P[i]'], {}), '(P[i])\n', (4633, 4639), True, 'import numpy as np\n'), ((2350, 2365), 'numpy.arange', 'np.arange', (['(0)', 'i'], {}), '(0, i)\n', (2359, 2365), True, 'import numpy as np\n'), ((2367, 2386), 'numpy.arange', 'np.arange', (['(i + 1)', 'n'], {}), '(i + 1, n)\n', (2376, 2386), True, 'import numpy as np\n'), ((2747, 2764), 'numpy.isinf', 'np.isinf', (['betamax'], {}), '(betamax)\n', (2755, 2764), True, 'import numpy as np\n'), ((2946, 2963), 'numpy.isinf', 'np.isinf', (['betamin'], {}), '(betamin)\n', (2954, 2963), True, 'import numpy as np\n'), ((4822, 4842), 'numpy.finfo', 'np.finfo', (['P[i].dtype'], {}), '(P[i].dtype)\n', (4830, 4842), True, 'import numpy as np\n'), ((5092, 5107), 'tensorflow.transpose', 'tf.transpose', (['z'], {}), '(z)\n', (5104, 5107), True, 'import tensorflow as tf\n'), ((5650, 5684), 'tensorflow.math.log', 'tf.math.log', (['((P + eps) / (Q + eps))'], {}), '((P + eps) / (Q + eps))\n', (5661, 5684), True, 'import tensorflow as tf\n'), ((608, 625), 'numpy.multiply', 'np.multiply', (['D', 'P'], {}), '(D, P)\n', (619, 625), True, 'import numpy as np\n'), ((3344, 3361), 'numpy.sqrt', 'np.sqrt', (['(1 / beta)'], {}), '(1 / beta)\n', (3351, 3361), True, 'import numpy as np\n'), ((3422, 3439), 'numpy.sqrt', 'np.sqrt', (['(1 / beta)'], {}), '(1 / beta)\n', (3429, 3439), True, 'import numpy as np\n'), ((3500, 3517), 'numpy.sqrt', 'np.sqrt', (['(1 / beta)'], {}), '(1 / beta)\n', (3507, 3517), True, 'import numpy as np\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- """Compare to numpy data""" import sys import numpy as np import multipletau from test_correlate import get_sample_arrays_cplx def test_corresponds_ac(): myframe = sys._getframe() myname = myframe.f_code.co_name print("running ", myname) a = np.concatenate(get_sample_arrays_cplx()).real m = 16 restau = multipletau.autocorrelate(a=1*a, m=m, copy=True, normalize=True, dtype=np.float_) reslin = multipletau.correlate_numpy(a=1*a, v=1*a, copy=True, normalize=True, dtype=np.float_) idx = np.array(restau[:, 0].real, dtype=int)[:m] assert np.allclose(reslin[idx, 1], restau[:m, 1]) def test_corresponds_ac_first_loop(): """ numpy correlation: G_m = sum_i(a_i*a_{i+m}) multipletau correlation 2nd order: b_j = (a_{2i} + a_{2i+1} / 2) G_m = sum_j(b_j*b_{j+1}) = 1/4*sum_i(a_{2i} * a_{2i+m} + a_{2i} * a_{2i+m+1} + a_{2i+1} * a_{2i+m} + a_{2i+1} * a_{2i+m+1} ) The values after the first m+1 lag times in the multipletau correlation differ from the normal correlation, because the traces are averaged over two consecutive items, effectively halving the size of the trace. The multiple-tau correlation can be compared to the regular correlation by using an even sized sequence (here 222) in which the elements 2i and 2i+1 are equal, as is done in this test. """ myframe = sys._getframe() myname = myframe.f_code.co_name print("running ", myname) a = [arr / np.average(arr) for arr in get_sample_arrays_cplx()] a = np.concatenate(a)[:222] # two consecutive elements are the same, so the multiple-tau method # corresponds to the numpy correlation for the first loop. a[::2] = a[1::2] for m in [2, 4, 6, 8, 10, 12, 14, 16]: restau = multipletau.correlate(a=a, v=a.imag+1j*a.real, m=m, copy=True, normalize=False, dtype=np.complex_) reslin = multipletau.correlate_numpy(a=a, v=a.imag+1j*a.real, copy=True, normalize=False, dtype=np.complex_) idtau = np.where(restau[:, 0] == m+2)[0][0] tau3 = restau[idtau, 1] # m+1 initial bins idref = np.where(reslin[:, 0] == m+2)[0][0] tau3ref = reslin[idref, 1] assert np.allclose(tau3, tau3ref) def test_corresponds_ac_nonormalize(): myframe = sys._getframe() myname = myframe.f_code.co_name print("running ", myname) a = np.concatenate(get_sample_arrays_cplx()).real m = 16 restau = multipletau.autocorrelate(a=1*a, m=m, copy=True, normalize=False, dtype=np.float_) reslin = multipletau.correlate_numpy(a=1*a, v=1*a, copy=True, normalize=False, dtype=np.float_) idx = np.array(restau[:, 0].real, dtype=int)[:m+1] assert np.allclose(reslin[idx, 1], restau[:m+1, 1]) def test_corresponds_cc(): myframe = sys._getframe() myname = myframe.f_code.co_name print("running ", myname) a = np.concatenate(get_sample_arrays_cplx()) m = 16 restau = multipletau.correlate(a=a, v=a.imag+1j*a.real, m=m, copy=True, normalize=True, dtype=np.complex_) reslin = multipletau.correlate_numpy(a=a, v=a.imag+1j*a.real, copy=True, normalize=True, dtype=np.complex_) idx = np.array(restau[:, 0].real, dtype=int)[:m+1] assert np.allclose(reslin[idx, 1], restau[:m+1, 1]) def test_corresponds_cc_nonormalize(): myframe = sys._getframe() myname = myframe.f_code.co_name print("running ", myname) a = np.concatenate(get_sample_arrays_cplx()) m = 16 restau = multipletau.correlate(a=a, v=a.imag+1j*a.real, m=m, copy=True, normalize=False, dtype=np.complex_) reslin = multipletau.correlate_numpy(a=a, v=a.imag+1j*a.real, copy=True, normalize=False, dtype=np.complex_) idx = np.array(restau[:, 0].real, dtype=int)[:m+1] assert np.allclose(reslin[idx, 1], restau[:m+1, 1]) if __name__ == "__main__": # Run all tests loc = locals() for key in list(loc.keys()): if key.startswith("test_") and hasattr(loc[key], "__call__"): loc[key]()
[ "multipletau.correlate_numpy", "numpy.allclose", "numpy.average", "numpy.where", "sys._getframe", "numpy.array", "multipletau.correlate", "numpy.concatenate", "test_correlate.get_sample_arrays_cplx", "multipletau.autocorrelate" ]
[((215, 230), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (228, 230), False, 'import sys\n'), ((377, 465), 'multipletau.autocorrelate', 'multipletau.autocorrelate', ([], {'a': '(1 * a)', 'm': 'm', 'copy': '(True)', 'normalize': '(True)', 'dtype': 'np.float_'}), '(a=1 * a, m=m, copy=True, normalize=True, dtype=np\n .float_)\n', (402, 465), False, 'import multipletau\n'), ((629, 722), 'multipletau.correlate_numpy', 'multipletau.correlate_numpy', ([], {'a': '(1 * a)', 'v': '(1 * a)', 'copy': '(True)', 'normalize': '(True)', 'dtype': 'np.float_'}), '(a=1 * a, v=1 * a, copy=True, normalize=True,\n dtype=np.float_)\n', (656, 722), False, 'import multipletau\n'), ((945, 987), 'numpy.allclose', 'np.allclose', (['reslin[idx, 1]', 'restau[:m, 1]'], {}), '(reslin[idx, 1], restau[:m, 1])\n', (956, 987), True, 'import numpy as np\n'), ((1834, 1849), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (1847, 1849), False, 'import sys\n'), ((3117, 3132), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (3130, 3132), False, 'import sys\n'), ((3279, 3368), 'multipletau.autocorrelate', 'multipletau.autocorrelate', ([], {'a': '(1 * a)', 'm': 'm', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.float_'}), '(a=1 * a, m=m, copy=True, normalize=False, dtype=\n np.float_)\n', (3304, 3368), False, 'import multipletau\n'), ((3532, 3626), 'multipletau.correlate_numpy', 'multipletau.correlate_numpy', ([], {'a': '(1 * a)', 'v': '(1 * a)', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.float_'}), '(a=1 * a, v=1 * a, copy=True, normalize=False,\n dtype=np.float_)\n', (3559, 3626), False, 'import multipletau\n'), ((3851, 3897), 'numpy.allclose', 'np.allclose', (['reslin[idx, 1]', 'restau[:m + 1, 1]'], {}), '(reslin[idx, 1], restau[:m + 1, 1])\n', (3862, 3897), True, 'import numpy as np\n'), ((3939, 3954), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (3952, 3954), False, 'import sys\n'), ((4096, 4203), 'multipletau.correlate', 'multipletau.correlate', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'm': 'm', 'copy': '(True)', 'normalize': '(True)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, m=m, copy=True,\n normalize=True, dtype=np.complex_)\n', (4117, 4203), False, 'import multipletau\n'), ((4383, 4491), 'multipletau.correlate_numpy', 'multipletau.correlate_numpy', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'copy': '(True)', 'normalize': '(True)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, copy=True,\n normalize=True, dtype=np.complex_)\n', (4410, 4491), False, 'import multipletau\n'), ((4714, 4760), 'numpy.allclose', 'np.allclose', (['reslin[idx, 1]', 'restau[:m + 1, 1]'], {}), '(reslin[idx, 1], restau[:m + 1, 1])\n', (4725, 4760), True, 'import numpy as np\n'), ((4814, 4829), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (4827, 4829), False, 'import sys\n'), ((4971, 5079), 'multipletau.correlate', 'multipletau.correlate', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'm': 'm', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, m=m, copy=True,\n normalize=False, dtype=np.complex_)\n', (4992, 5079), False, 'import multipletau\n'), ((5259, 5368), 'multipletau.correlate_numpy', 'multipletau.correlate_numpy', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, copy=True,\n normalize=False, dtype=np.complex_)\n', (5286, 5368), False, 'import multipletau\n'), ((5591, 5637), 'numpy.allclose', 'np.allclose', (['reslin[idx, 1]', 'restau[:m + 1, 1]'], {}), '(reslin[idx, 1], restau[:m + 1, 1])\n', (5602, 5637), True, 'import numpy as np\n'), ((890, 928), 'numpy.array', 'np.array', (['restau[:, 0].real'], {'dtype': 'int'}), '(restau[:, 0].real, dtype=int)\n', (898, 928), True, 'import numpy as np\n'), ((1993, 2010), 'numpy.concatenate', 'np.concatenate', (['a'], {}), '(a)\n', (2007, 2010), True, 'import numpy as np\n'), ((2234, 2342), 'multipletau.correlate', 'multipletau.correlate', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'm': 'm', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, m=m, copy=True,\n normalize=False, dtype=np.complex_)\n', (2255, 2342), False, 'import multipletau\n'), ((2546, 2655), 'multipletau.correlate_numpy', 'multipletau.correlate_numpy', ([], {'a': 'a', 'v': '(a.imag + 1.0j * a.real)', 'copy': '(True)', 'normalize': '(False)', 'dtype': 'np.complex_'}), '(a=a, v=a.imag + 1.0j * a.real, copy=True,\n normalize=False, dtype=np.complex_)\n', (2573, 2655), False, 'import multipletau\n'), ((3035, 3061), 'numpy.allclose', 'np.allclose', (['tau3', 'tau3ref'], {}), '(tau3, tau3ref)\n', (3046, 3061), True, 'import numpy as np\n'), ((3794, 3832), 'numpy.array', 'np.array', (['restau[:, 0].real'], {'dtype': 'int'}), '(restau[:, 0].real, dtype=int)\n', (3802, 3832), True, 'import numpy as np\n'), ((4045, 4069), 'test_correlate.get_sample_arrays_cplx', 'get_sample_arrays_cplx', ([], {}), '()\n', (4067, 4069), False, 'from test_correlate import get_sample_arrays_cplx\n'), ((4657, 4695), 'numpy.array', 'np.array', (['restau[:, 0].real'], {'dtype': 'int'}), '(restau[:, 0].real, dtype=int)\n', (4665, 4695), True, 'import numpy as np\n'), ((4920, 4944), 'test_correlate.get_sample_arrays_cplx', 'get_sample_arrays_cplx', ([], {}), '()\n', (4942, 4944), False, 'from test_correlate import get_sample_arrays_cplx\n'), ((5534, 5572), 'numpy.array', 'np.array', (['restau[:, 0].real'], {'dtype': 'int'}), '(restau[:, 0].real, dtype=int)\n', (5542, 5572), True, 'import numpy as np\n'), ((321, 345), 'test_correlate.get_sample_arrays_cplx', 'get_sample_arrays_cplx', ([], {}), '()\n', (343, 345), False, 'from test_correlate import get_sample_arrays_cplx\n'), ((1932, 1947), 'numpy.average', 'np.average', (['arr'], {}), '(arr)\n', (1942, 1947), True, 'import numpy as np\n'), ((1959, 1983), 'test_correlate.get_sample_arrays_cplx', 'get_sample_arrays_cplx', ([], {}), '()\n', (1981, 1983), False, 'from test_correlate import get_sample_arrays_cplx\n'), ((3223, 3247), 'test_correlate.get_sample_arrays_cplx', 'get_sample_arrays_cplx', ([], {}), '()\n', (3245, 3247), False, 'from test_correlate import get_sample_arrays_cplx\n'), ((2843, 2874), 'numpy.where', 'np.where', (['(restau[:, 0] == m + 2)'], {}), '(restau[:, 0] == m + 2)\n', (2851, 2874), True, 'import numpy as np\n'), ((2948, 2979), 'numpy.where', 'np.where', (['(reslin[:, 0] == m + 2)'], {}), '(reslin[:, 0] == m + 2)\n', (2956, 2979), True, 'import numpy as np\n')]
from pathlib import Path from typing import Optional import numpy as np import pandas as pd from nilearn.datasets.utils import _fetch_files from scipy import sparse class StudyID(str): pass class TfIDf(float): pass NS_DATA_URL = "https://github.com/neurosynth/neurosynth-data/raw/master/" def fetch_study_metadata( data_dir: Path, version: int = 7, verbose: int = 1 ) -> pd.DataFrame: """ Download if needed the `metadata.tsv.gz` file from Neurosynth and load it into a pandas DataFrame. The metadata table contains the metadata for each study. Each study (ID) is stored on its own line. These IDs are in the same order as the id column of the associated `coordinates.tsv.gz` file, but the rows will differ because the coordinates file will contain multiple rows per study. They are also in the same order as the rows in the `features.npz` files for the same version. The metadata will therefore have N rows, N being the number of studies in the Neurosynth dataset. The columns (for version 7) are: - id - doi - space - title - authors - year - journal Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 Returns ------- pd.DataFrame the study metadata dataframe """ metadata_filename = f"data-neurosynth_version-{version}_metadata.tsv.gz" metadata_file = _fetch_files( data_dir, [ ( metadata_filename, NS_DATA_URL + metadata_filename, {}, ), ], verbose=verbose, )[0] metadata = pd.read_table(metadata_file) return metadata def fetch_feature_data( data_dir: Path, version: int = 7, verbose: int = 1, convert_study_ids: bool = False, ) -> pd.DataFrame: """ Download if needed the `tfidf_features.npz` file from Neurosynth and load it into a pandas Dataframe. The `tfidf_features` contains feature values for different types of "vocabularies". The features dataframe is stored as a compressed, sparse matrix. Once loaded and reconstructed into a dense matrix, it contains one row per study and one column per label. The associated labels are loaded, as well as the study ids, to reconstruct a dataframe of size N x P, where N is the number of studies in the Neurosynth dataset, and P is the number of words in the vocabulary. Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 convert_study_ids : bool, optional if True, cast study ids as `StudyID`, by default False Returns ------- pd.DataFrame the features dataframe """ file_names = [ f"data-neurosynth_version-{version}_vocab-terms_source-abstract_type-tfidf_features.npz", f"data-neurosynth_version-{version}_vocab-terms_vocabulary.txt", ] files = _fetch_files( data_dir, [ ( fn, NS_DATA_URL + fn, {}, ) for fn in file_names ], verbose=verbose, ) feature_data_sparse = sparse.load_npz(files[0]) feature_data = feature_data_sparse.todense() metadata_df = fetch_study_metadata(data_dir, version, verbose) ids = metadata_df["id"] if convert_study_ids: ids = ids.apply(StudyID) feature_names = np.genfromtxt( files[1], dtype=str, delimiter="\t", ).tolist() feature_df = pd.DataFrame( index=ids.tolist(), columns=feature_names, data=feature_data ) return feature_df def fetch_neurosynth_peak_data( data_dir: Path, version: int = 7, verbose: int = 1, convert_study_ids: bool = False, ) -> pd.DataFrame: """ Download if needed the `coordinates.tsv.gz` file from Neurosynth and load it into a pandas DataFrame. The `coordinates.tsv.gz` contains the coordinates for the peaks reported by studies in the Neurosynth dataset. It contains one row per coordinate reported. The metadata for each study is also loaded to include the space in which the coordinates are reported. The peak_data dataframe therefore has PR rows, PR being the number of reported peaks in the Neurosynth dataset. The columns (for version 7) are: - id - table_id - table_num - peak_id - space - x - y - z Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 convert_study_ids : bool, optional if True, cast study ids as `StudyID`, by default False Returns ------- pd.DataFrame the peak dataframe """ coordinates_filename = ( f"data-neurosynth_version-{version}_coordinates.tsv.gz" ) coordinates_file = _fetch_files( data_dir, [ ( coordinates_filename, NS_DATA_URL + coordinates_filename, {}, ), ], verbose=verbose, )[0] activations = pd.read_table(coordinates_file) metadata = fetch_study_metadata(data_dir, version, verbose) activations = activations.join( metadata[["id", "space"]].set_index("id"), on="id" ) if convert_study_ids: activations["id"] = activations["id"].apply(StudyID) return activations def get_ns_term_study_associations( data_dir: Path, version: int = 7, verbose: int = 1, convert_study_ids: bool = False, tfidf_threshold: Optional[float] = None, ) -> pd.DataFrame: """ Load a dataframe containing associations between term and studies. The dataframe contains one row for each term and study pair from the features table in the Neurosynth dataset. With each (term, study) pair comes the tfidf value for the term in the study. If a tfidf threshold value is passed, only (term, study) associations with a tfidf value > tfidf_threshold will be kept. Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 convert_study_ids : bool, optional if True, cast study ids as `StudyID`, by default False tfidf_threshold : Optional[float], optional the minimum tfidf value for the (term, study) associations, by default None Returns ------- pd.DataFrame the term association dataframe """ features = fetch_feature_data( data_dir, version, verbose, convert_study_ids ) features.index.name = "id" term_data = pd.melt( features.reset_index(), var_name="term", id_vars="id", value_name="tfidf", ) if tfidf_threshold is not None: term_data = term_data.query(f"tfidf > {tfidf_threshold}") else: term_data = term_data.query("tfidf > 0") return term_data def get_ns_mni_peaks_reported( data_dir: Path, version: int = 7, verbose: int = 1, convert_study_ids: bool = False, ) -> pd.DataFrame: """ Load a dataframe containing the coordinates for the peaks reported by studies in the Neurosynth dataset. Coordinates for the peaks are in MNI space, with coordinates that are reported in Talaraich space converted. The resulting dataframe contains one row for each peak reported. Each row has 4 columns: - id - x - y - z Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 convert_study_ids : bool, optional if True, cast study ids as `StudyID`, by default False Returns ------- pd.DataFrame the peak dataframe """ activations = fetch_neurosynth_peak_data( data_dir, version, verbose, convert_study_ids ) mni_peaks = activations.loc[activations.space == "MNI"][ ["x", "y", "z", "id"] ] non_mni_peaks = activations.loc[activations.space == "TAL"][ ["x", "y", "z", "id"] ] proj_mat = np.linalg.pinv( np.array( [ [0.9254, 0.0024, -0.0118, -1.0207], [-0.0048, 0.9316, -0.0871, -1.7667], [0.0152, 0.0883, 0.8924, 4.0926], [0.0, 0.0, 0.0, 1.0], ] ).T ) projected = np.round( np.dot( np.hstack( ( non_mni_peaks[["x", "y", "z"]].values, np.ones((len(non_mni_peaks), 1)), ) ), proj_mat, )[:, 0:3] ) projected_df = pd.DataFrame( np.hstack([projected, non_mni_peaks[["id"]].values]), columns=["x", "y", "z", "id"], ) peak_data = pd.concat([projected_df, mni_peaks]).astype( {"x": int, "y": int, "z": int} ) return peak_data
[ "numpy.hstack", "scipy.sparse.load_npz", "numpy.array", "pandas.concat", "nilearn.datasets.utils._fetch_files", "pandas.read_table", "numpy.genfromtxt" ]
[((1891, 1919), 'pandas.read_table', 'pd.read_table', (['metadata_file'], {}), '(metadata_file)\n', (1904, 1919), True, 'import pandas as pd\n'), ((3386, 3480), 'nilearn.datasets.utils._fetch_files', '_fetch_files', (['data_dir', '[(fn, NS_DATA_URL + fn, {}) for fn in file_names]'], {'verbose': 'verbose'}), '(data_dir, [(fn, NS_DATA_URL + fn, {}) for fn in file_names],\n verbose=verbose)\n', (3398, 3480), False, 'from nilearn.datasets.utils import _fetch_files\n'), ((3631, 3656), 'scipy.sparse.load_npz', 'sparse.load_npz', (['files[0]'], {}), '(files[0])\n', (3646, 3656), False, 'from scipy import sparse\n'), ((5773, 5804), 'pandas.read_table', 'pd.read_table', (['coordinates_file'], {}), '(coordinates_file)\n', (5786, 5804), True, 'import pandas as pd\n'), ((1656, 1759), 'nilearn.datasets.utils._fetch_files', '_fetch_files', (['data_dir', '[(metadata_filename, NS_DATA_URL + metadata_filename, {})]'], {'verbose': 'verbose'}), '(data_dir, [(metadata_filename, NS_DATA_URL + metadata_filename,\n {})], verbose=verbose)\n', (1668, 1759), False, 'from nilearn.datasets.utils import _fetch_files\n'), ((5529, 5638), 'nilearn.datasets.utils._fetch_files', '_fetch_files', (['data_dir', '[(coordinates_filename, NS_DATA_URL + coordinates_filename, {})]'], {'verbose': 'verbose'}), '(data_dir, [(coordinates_filename, NS_DATA_URL +\n coordinates_filename, {})], verbose=verbose)\n', (5541, 5638), False, 'from nilearn.datasets.utils import _fetch_files\n'), ((9686, 9738), 'numpy.hstack', 'np.hstack', (["[projected, non_mni_peaks[['id']].values]"], {}), "([projected, non_mni_peaks[['id']].values])\n", (9695, 9738), True, 'import numpy as np\n'), ((3880, 3930), 'numpy.genfromtxt', 'np.genfromtxt', (['files[1]'], {'dtype': 'str', 'delimiter': '"""\t"""'}), "(files[1], dtype=str, delimiter='\\t')\n", (3893, 3930), True, 'import numpy as np\n'), ((9121, 9265), 'numpy.array', 'np.array', (['[[0.9254, 0.0024, -0.0118, -1.0207], [-0.0048, 0.9316, -0.0871, -1.7667], [\n 0.0152, 0.0883, 0.8924, 4.0926], [0.0, 0.0, 0.0, 1.0]]'], {}), '([[0.9254, 0.0024, -0.0118, -1.0207], [-0.0048, 0.9316, -0.0871, -\n 1.7667], [0.0152, 0.0883, 0.8924, 4.0926], [0.0, 0.0, 0.0, 1.0]])\n', (9129, 9265), True, 'import numpy as np\n'), ((9801, 9837), 'pandas.concat', 'pd.concat', (['[projected_df, mni_peaks]'], {}), '([projected_df, mni_peaks])\n', (9810, 9837), True, 'import pandas as pd\n')]
# Created by <NAME>. import sys import numpy as np sys.path.append('../') from envs import GridWorld from itertools import product from utils import print_episode, eps_greedy_policy, test_policy ''' n-step Tree Backup used to estimate the optimal policy for the gridworld environment defined on page 48 of "Reinforcement Learning: An Introduction." Algorithm available on page 125. Book reference: <NAME>. and <NAME>., 2014. Reinforcement Learning: An Introduction. 1st ed. London: The MIT Press. ''' def policy_proba(policy, s, a, epsilon): '''Return the probability of the given epsilon-greedy policy taking the specified action in the specified state.''' if policy[s] == a: return (epsilon/4) + (1-epsilon) else: return epsilon/4 def n_step_tree_backup(env, n, alpha, gamma, epsilon, n_episodes): # Initialize policy and state-action value function. sa_pairs = product(range(env.observation_space_size),\ range(env.action_space_size)) Q = dict.fromkeys(sa_pairs, 0.0) policy = dict.fromkeys(range(env.observation_space_size), 0) states = np.zeros(n) actions = np.zeros(n) Qs = np.zeros(n) deltas = np.zeros(n) pis = np.zeros(n) decay = lambda x: x-2/n_episodes if x-2/n_episodes > 0.1 else 0.1 for episode in range(n_episodes): done = False obs = env.reset() action = eps_greedy_policy(Q, obs, epsilon, env.action_space_size) states[0] = obs actions[0] = action Qs[0] = Q[obs, action] t = -1 tau = -1 T = np.inf while not done or t != T-1: t += 1 if t < T: obs_prime, reward, done = env.step(action) states[(t+1)%n] = obs_prime if done: T = t+1 deltas[t%n] = reward - Qs[t%n] else: deltas[t%n] = reward + gamma * \ np.sum([policy_proba(policy, obs_prime, i, epsilon) * \ Q[obs_prime, i] for i in range(4)]) - Qs[t%n] action = eps_greedy_policy(Q, obs_prime, epsilon, \ env.action_space_size) Qs[(t+1)%n] = Q[obs_prime, action] pis[(t+1)%n] = policy_proba(policy, obs_prime, action, epsilon) tau = t-n+1 if tau > -1: Z = 1 G = Qs[tau%n] for k in range(tau,min(tau+n-1, T-1)): G += Z*deltas[k%n] Z *= gamma * Z * pis[(k+1)%n] s = states[tau%n] a = actions[tau%n] # Update state-action value function. Q[s,a] += alpha * (G - Q[s,a]) # Make policy greedy w.r.t. Q. action_values = [Q[s,i] for i in range(4)] policy[s] = np.argmax(action_values) epsilon = decay(epsilon) if episode % 100 == 0: print_episode(episode,n_episodes) print_episode(n_episodes, n_episodes) return policy if __name__ == '__main__': n = 4 alpha = 0.01 gamma = 1 epsilon = 1 n_episodes = 1000 env = GridWorld() policy = n_step_tree_backup(env, n , alpha, gamma, epsilon, n_episodes) test_policy(env, policy, 10)
[ "utils.test_policy", "utils.print_episode", "numpy.argmax", "envs.GridWorld", "numpy.zeros", "sys.path.append", "utils.eps_greedy_policy" ]
[((51, 73), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (66, 73), False, 'import sys\n'), ((1122, 1133), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1130, 1133), True, 'import numpy as np\n'), ((1148, 1159), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1156, 1159), True, 'import numpy as np\n'), ((1169, 1180), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1177, 1180), True, 'import numpy as np\n'), ((1194, 1205), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1202, 1205), True, 'import numpy as np\n'), ((1216, 1227), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (1224, 1227), True, 'import numpy as np\n'), ((3065, 3102), 'utils.print_episode', 'print_episode', (['n_episodes', 'n_episodes'], {}), '(n_episodes, n_episodes)\n', (3078, 3102), False, 'from utils import print_episode, eps_greedy_policy, test_policy\n'), ((3239, 3250), 'envs.GridWorld', 'GridWorld', ([], {}), '()\n', (3248, 3250), False, 'from envs import GridWorld\n'), ((3331, 3359), 'utils.test_policy', 'test_policy', (['env', 'policy', '(10)'], {}), '(env, policy, 10)\n', (3342, 3359), False, 'from utils import print_episode, eps_greedy_policy, test_policy\n'), ((1402, 1459), 'utils.eps_greedy_policy', 'eps_greedy_policy', (['Q', 'obs', 'epsilon', 'env.action_space_size'], {}), '(Q, obs, epsilon, env.action_space_size)\n', (1419, 1459), False, 'from utils import print_episode, eps_greedy_policy, test_policy\n'), ((3027, 3061), 'utils.print_episode', 'print_episode', (['episode', 'n_episodes'], {}), '(episode, n_episodes)\n', (3040, 3061), False, 'from utils import print_episode, eps_greedy_policy, test_policy\n'), ((2926, 2950), 'numpy.argmax', 'np.argmax', (['action_values'], {}), '(action_values)\n', (2935, 2950), True, 'import numpy as np\n'), ((2125, 2188), 'utils.eps_greedy_policy', 'eps_greedy_policy', (['Q', 'obs_prime', 'epsilon', 'env.action_space_size'], {}), '(Q, obs_prime, epsilon, env.action_space_size)\n', (2142, 2188), False, 'from utils import print_episode, eps_greedy_policy, test_policy\n')]
import sys import os import timeit # use local python package rather than the system install sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../python")) from bitboost import BitBoostRegressor import numpy as np import sklearn.metrics nfeatures = 5 nexamples = 10000 data = np.random.choice(np.array([0.0, 1.0, 2.0], dtype=BitBoostRegressor.numt), size=(nexamples * 2, nfeatures)) target = (1.22 * (data[:, 0] > 1.0) + 0.65 * (data[:, 1] > 1.0) + 0.94 * (data[:, 2] != 2.0) + 0.13 * (data[:, 3] == 1.0)).astype(BitBoostRegressor.numt) dtrain, ytrain = data[0:nexamples, :], target[0:nexamples] dtest, ytest = data[nexamples:, :], target[nexamples:] bit = BitBoostRegressor() bit.objective = "l2" bit.discr_nbits = 4 bit.max_tree_depth = 5 bit.learning_rate = 0.5 bit.niterations = 50 bit.categorical_features = list(range(nfeatures)) bit.fit(dtrain, ytrain) train_pred = bit.predict(dtrain) test_pred = bit.predict(dtest) train_acc = sklearn.metrics.mean_absolute_error(ytrain, train_pred) test_acc = sklearn.metrics.mean_absolute_error(ytest, test_pred) print(f"bit train accuracy: {train_acc}") print(f"bit test accuracy: {test_acc}")
[ "os.path.dirname", "numpy.array", "bitboost.BitBoostRegressor" ]
[((719, 738), 'bitboost.BitBoostRegressor', 'BitBoostRegressor', ([], {}), '()\n', (736, 738), False, 'from bitboost import BitBoostRegressor\n'), ((306, 361), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0]'], {'dtype': 'BitBoostRegressor.numt'}), '([0.0, 1.0, 2.0], dtype=BitBoostRegressor.numt)\n', (314, 361), True, 'import numpy as np\n'), ((126, 151), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (141, 151), False, 'import os\n')]
import os import numpy as np from six.moves import cPickle from tensorflow import keras from tensorflow import keras import helper from tfomics import utils, metrics, explain #------------------------------------------------------------------------ model_names = ['residualbind'] activations = ['exponential', 'relu']# results_path = utils.make_directory('../results', 'task6') params_path = utils.make_directory(results_path, 'model_params') #------------------------------------------------------------------------ file_path = '../data/IRF1_400_h3k27ac.h5' data = helper.load_data(file_path, reverse_compliment=True) x_train, y_train, x_valid, y_valid, x_test, y_test = data #------------------------------------------------------------------------ file_path = os.path.join(results_path, 'task6_classification_performance.tsv') with open(file_path, 'w') as f: f.write('%s\t%s\t%s\n'%('model', 'ave roc', 'ave pr')) results = {} for model_name in model_names: for activation in activations: keras.backend.clear_session() # load model model = helper.load_model(model_name, activation=activation) name = model_name+'_'+activation+'_irf1' print('model: ' + name) # compile model helper.compile_model(model) # setup callbacks callbacks = helper.get_callbacks(monitor='val_auroc', patience=20, decay_patience=5, decay_factor=0.2) # train model history = model.fit(x_train, y_train, epochs=100, batch_size=100, shuffle=True, validation_data=(x_valid, y_valid), callbacks=callbacks) # save model weights_path = os.path.join(params_path, name+'.hdf5') model.save_weights(weights_path) # predict test sequences and calculate performance metrics predictions = model.predict(x_test) mean_vals, std_vals = metrics.calculate_metrics(y_test, predictions, 'binary') # print results to file f.write("%s\t%.3f\t%.3f\n"%(name, mean_vals[1], mean_vals[2])) # calculate saliency on a subset of data true_index = np.where(y_test[:,0] == 1)[0] X = x_test[true_index][:500] results[name] = explain.saliency(model, X, class_index=0, layer=-1) # save results file_path = os.path.join(results_path, 'task6_saliency_results.pickle') with open(file_path, 'wb') as f: cPickle.dump(results, f, protocol=cPickle.HIGHEST_PROTOCOL)
[ "helper.get_callbacks", "helper.load_data", "numpy.where", "six.moves.cPickle.dump", "os.path.join", "helper.load_model", "tfomics.explain.saliency", "helper.compile_model", "tensorflow.keras.backend.clear_session", "tfomics.utils.make_directory", "tfomics.metrics.calculate_metrics" ]
[((338, 381), 'tfomics.utils.make_directory', 'utils.make_directory', (['"""../results"""', '"""task6"""'], {}), "('../results', 'task6')\n", (358, 381), False, 'from tfomics import utils, metrics, explain\n'), ((396, 446), 'tfomics.utils.make_directory', 'utils.make_directory', (['results_path', '"""model_params"""'], {}), "(results_path, 'model_params')\n", (416, 446), False, 'from tfomics import utils, metrics, explain\n'), ((573, 625), 'helper.load_data', 'helper.load_data', (['file_path'], {'reverse_compliment': '(True)'}), '(file_path, reverse_compliment=True)\n', (589, 625), False, 'import helper\n'), ((772, 838), 'os.path.join', 'os.path.join', (['results_path', '"""task6_classification_performance.tsv"""'], {}), "(results_path, 'task6_classification_performance.tsv')\n", (784, 838), False, 'import os\n'), ((2593, 2652), 'os.path.join', 'os.path.join', (['results_path', '"""task6_saliency_results.pickle"""'], {}), "(results_path, 'task6_saliency_results.pickle')\n", (2605, 2652), False, 'import os\n'), ((2690, 2749), 'six.moves.cPickle.dump', 'cPickle.dump', (['results', 'f'], {'protocol': 'cPickle.HIGHEST_PROTOCOL'}), '(results, f, protocol=cPickle.HIGHEST_PROTOCOL)\n', (2702, 2749), False, 'from six.moves import cPickle\n'), ((1034, 1063), 'tensorflow.keras.backend.clear_session', 'keras.backend.clear_session', ([], {}), '()\n', (1061, 1063), False, 'from tensorflow import keras\n'), ((1122, 1174), 'helper.load_model', 'helper.load_model', (['model_name'], {'activation': 'activation'}), '(model_name, activation=activation)\n', (1139, 1174), False, 'import helper\n'), ((1305, 1332), 'helper.compile_model', 'helper.compile_model', (['model'], {}), '(model)\n', (1325, 1332), False, 'import helper\n'), ((1388, 1482), 'helper.get_callbacks', 'helper.get_callbacks', ([], {'monitor': '"""val_auroc"""', 'patience': '(20)', 'decay_patience': '(5)', 'decay_factor': '(0.2)'}), "(monitor='val_auroc', patience=20, decay_patience=5,\n decay_factor=0.2)\n", (1408, 1482), False, 'import helper\n'), ((1910, 1951), 'os.path.join', 'os.path.join', (['params_path', "(name + '.hdf5')"], {}), "(params_path, name + '.hdf5')\n", (1922, 1951), False, 'import os\n'), ((2165, 2221), 'tfomics.metrics.calculate_metrics', 'metrics.calculate_metrics', (['y_test', 'predictions', '"""binary"""'], {}), "(y_test, predictions, 'binary')\n", (2190, 2221), False, 'from tfomics import utils, metrics, explain\n'), ((2513, 2564), 'tfomics.explain.saliency', 'explain.saliency', (['model', 'X'], {'class_index': '(0)', 'layer': '(-1)'}), '(model, X, class_index=0, layer=-1)\n', (2529, 2564), False, 'from tfomics import utils, metrics, explain\n'), ((2414, 2441), 'numpy.where', 'np.where', (['(y_test[:, 0] == 1)'], {}), '(y_test[:, 0] == 1)\n', (2422, 2441), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 21 14:15:38 2019 @author: Satish """ # doing the ortho-correction on the processed data from matchedFilter import os import numpy as np import spectral as spy import spectral.io.envi as envi import spectral.algorithms as algo from spectral.algorithms.detectors import MatchedFilter, matched_filter import logging import coloredlogs import json import shutil import statistics # set the logger logging.basicConfig(level=logging.INFO) logger = logging.getLogger("aviris_data_loader") coloredlogs.install(level='DEBUG', logger=logger) #DIRECTORY = "/media/data/satish/avng.jpl.nasa.gov/pub/test_unrect" DIRECTORY = "../../data/raw_data" #manual offset file load try: #Read the manually computed offset file f = open('./manual_offset.json') offset_data = json.load(f) OFFSET_DICT = offset_data['OFFSET_DICT'] except: print("No manual offset file found") pass FILES = [] for x in os.listdir(DIRECTORY): if(os.path.isdir(os.path.join(DIRECTORY, x))): FILES.append(x) print(FILES) #%% return image object def image_obj(hdr, img): "create a object of the image corresponding to certain header" head = envi.read_envi_header(hdr) param = envi.gen_params(head) param.filename = img # spectral data file corresponding to .hdr file interleave = head['interleave'] if (interleave == 'bip' or interleave == 'BIP'): print("it is a bip") from spectral.io.bipfile import BipFile img_obj = BipFile(param, head) if (interleave == 'bil' or interleave == 'BIL'): print("It is a bil file") from spectral.io.bilfile import BilFile img_obj = BilFile(param, head) return img_obj # Use this fucntion in case you have data other than the custom dataset def ideal_ortho_correction(glt: np.ndarray, img: np.ndarray, b_val=0.0, output=None) -> np.ndarray: """does the ortho-correction of the file glt: 2L, world-relative coordinates L1: y (rows), L2: x (columns) img: 1L, unrectified, output from matched filter output: 1L, rectified version of img, with shape: glt.shape """ if output is None: output = np.zeros((glt.shape[0], glt.shape[1])) if not np.array_equal(output.shape, [glt.shape[0], glt.shape[1]]): print("image dimension of output arrary do not match the GLT file") # getting the absolute even if GLT has negative values # magnitude glt_mag = np.absolute(glt) # GLT value of zero means no data, extract this because python has zero-indexing. glt_mask = np.all(glt_mag==0, axis=2) output[glt_mask] = b_val glt_mag[glt_mag>(img.shape[0]-1)] = 0 # now check the lookup and fill in the location, -1 to map to zero-indexing # output[~glt_mask] = img[glt_mag[~glt_mask, 1] - 1, glt_mag[~glt_mask, 0] - 1] output[~glt_mask] = img[glt_mag[~glt_mask, 1]-1, glt_mag[~glt_mask, 0]-1] return output def custom_ortho_correct_for_data(file_name, glt: np.ndarray, img: np.ndarray, OFFSET_DICT, b_val=0.0, output=None) -> np.ndarray: """does the ortho-correction of the file glt: 2L, world-relative coordinates L1: y (rows), L2: x (columns) img: 1L, unrectified, output from matched filter output: 1L, rectified version of img, with shape: glt.shape """ if output is None: output = np.zeros((glt.shape[0], glt.shape[1])) if not np.array_equal(output.shape, [glt.shape[0], glt.shape[1]]): print("image dimension of output arrary do not match the GLT file") print(file_name) if file_name in OFFSET_DICT.keys(): offset_mul = OFFSET_DICT[file_name] else: return 0 print(offset_mul) off_v = int(offset_mul*1005) img_readB = img[off_v:img.shape[0],:] img_readA = img[0:off_v,:] img_read = np.vstack((img_readB,img_readA)) if ((glt.shape[0]-img.shape[0])>0): print("size mismatch. Fixing it...") completion_shape = np.zeros((glt.shape[0]-img.shape[0], img.shape[1])) img_read = np.vstack((img_read,completion_shape)) print(img_read.shape) # getting the absolute even if GLT has negative values # magnitude glt_mag = np.absolute(glt) # GLT value of zero means no data, extract this because python has zero-indexing. glt_mask = np.all(glt_mag==0, axis=2) output[glt_mask] = b_val glt_mag[glt_mag>(img.shape[0]-1)] = 0 # now check the lookup and fill in the location, -1 to map to zero-indexing output[~glt_mask] = img_read[glt_mag[~glt_mask,1]-1, glt_mag[~glt_mask,0]-1] return output #%% load file and rectify it in each band for fname in FILES: fname_glt = fname.split("_")[0] sname_glt = f'{fname_glt}_rdn_glt' #geo-ref file for ortho-correction hname_glt = f'{sname_glt}.hdr' #header file glt_img = f'{DIRECTORY}/{fname}/{sname_glt}' glt_hdr = f'{DIRECTORY}/{fname}/{hname_glt}' print(glt_img, glt_hdr) mf_folder = f'{DIRECTORY}/{fname}/{fname_glt}_rdn_v1f_clip_mfout' try: if (fname_glt not in OFFSET_DICT.keys()): continue if (os.path.exists(glt_hdr)): glt_data_obj = image_obj(glt_hdr, glt_img) glt = glt_data_obj.read_bands([0,1]) else: continue except: pass #mf_rect_path = f'/media/data/satish/detector_bank_input/corrected_output' mf_rect_folder = f'{DIRECTORY}/{fname}/{fname_glt}_rect' if not(os.path.isdir(mf_rect_folder)): os.mkdir(mf_rect_folder) print("\nDirectory", mf_rect_folder ," created.") elif os.path.isdir(mf_rect_folder): print("\nDirectory", mf_rect_folder ," already exists..deleting it") shutil.rmtree(mf_rect_folder) os.mkdir(mf_rect_folder) print("\nNew Directory", mf_rect_folder ," created.") for mfname in os.listdir(mf_folder): print("Ortho-correcting file", mfname) mf_filename = f'{mf_folder}/{mfname}' img_unrect = np.load(mf_filename) print(img_unrect.shape) ''' use this function in case you have any other dataset, the custom_ortho_correct_for_data function uses the OFFSET_DICT to correct the row positions in each band. rect_img = ideal_ortho_correction(fname_glt, glt, img_unrect) ''' rect_img = custom_ortho_correct_for_data(fname_glt, glt, img_unrect, OFFSET_DICT) rect_filename = f'{mf_rect_folder}/{mfname}' np.save(rect_filename, rect_img)
[ "logging.getLogger", "spectral.io.envi.read_envi_header", "spectral.io.envi.gen_params", "numpy.save", "os.path.exists", "os.listdir", "os.path.isdir", "numpy.vstack", "os.mkdir", "spectral.io.bipfile.BipFile", "logging.basicConfig", "coloredlogs.install", "numpy.absolute", "os.path.join", "spectral.io.bilfile.BilFile", "numpy.zeros", "numpy.array_equal", "shutil.rmtree", "json.load", "numpy.all", "numpy.load" ]
[((467, 506), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (486, 506), False, 'import logging\n'), ((516, 555), 'logging.getLogger', 'logging.getLogger', (['"""aviris_data_loader"""'], {}), "('aviris_data_loader')\n", (533, 555), False, 'import logging\n'), ((556, 605), 'coloredlogs.install', 'coloredlogs.install', ([], {'level': '"""DEBUG"""', 'logger': 'logger'}), "(level='DEBUG', logger=logger)\n", (575, 605), False, 'import coloredlogs\n'), ((976, 997), 'os.listdir', 'os.listdir', (['DIRECTORY'], {}), '(DIRECTORY)\n', (986, 997), False, 'import os\n'), ((839, 851), 'json.load', 'json.load', (['f'], {}), '(f)\n', (848, 851), False, 'import json\n'), ((1228, 1254), 'spectral.io.envi.read_envi_header', 'envi.read_envi_header', (['hdr'], {}), '(hdr)\n', (1249, 1254), True, 'import spectral.io.envi as envi\n'), ((1267, 1288), 'spectral.io.envi.gen_params', 'envi.gen_params', (['head'], {}), '(head)\n', (1282, 1288), True, 'import spectral.io.envi as envi\n'), ((2513, 2529), 'numpy.absolute', 'np.absolute', (['glt'], {}), '(glt)\n', (2524, 2529), True, 'import numpy as np\n'), ((2632, 2660), 'numpy.all', 'np.all', (['(glt_mag == 0)'], {'axis': '(2)'}), '(glt_mag == 0, axis=2)\n', (2638, 2660), True, 'import numpy as np\n'), ((3873, 3906), 'numpy.vstack', 'np.vstack', (['(img_readB, img_readA)'], {}), '((img_readB, img_readA))\n', (3882, 3906), True, 'import numpy as np\n'), ((4243, 4259), 'numpy.absolute', 'np.absolute', (['glt'], {}), '(glt)\n', (4254, 4259), True, 'import numpy as np\n'), ((4361, 4389), 'numpy.all', 'np.all', (['(glt_mag == 0)'], {'axis': '(2)'}), '(glt_mag == 0, axis=2)\n', (4367, 4389), True, 'import numpy as np\n'), ((5906, 5927), 'os.listdir', 'os.listdir', (['mf_folder'], {}), '(mf_folder)\n', (5916, 5927), False, 'import os\n'), ((1028, 1054), 'os.path.join', 'os.path.join', (['DIRECTORY', 'x'], {}), '(DIRECTORY, x)\n', (1040, 1054), False, 'import os\n'), ((1553, 1573), 'spectral.io.bipfile.BipFile', 'BipFile', (['param', 'head'], {}), '(param, head)\n', (1560, 1573), False, 'from spectral.io.bipfile import BipFile\n'), ((1736, 1756), 'spectral.io.bilfile.BilFile', 'BilFile', (['param', 'head'], {}), '(param, head)\n', (1743, 1756), False, 'from spectral.io.bilfile import BilFile\n'), ((2238, 2276), 'numpy.zeros', 'np.zeros', (['(glt.shape[0], glt.shape[1])'], {}), '((glt.shape[0], glt.shape[1]))\n', (2246, 2276), True, 'import numpy as np\n'), ((2288, 2346), 'numpy.array_equal', 'np.array_equal', (['output.shape', '[glt.shape[0], glt.shape[1]]'], {}), '(output.shape, [glt.shape[0], glt.shape[1]])\n', (2302, 2346), True, 'import numpy as np\n'), ((3407, 3445), 'numpy.zeros', 'np.zeros', (['(glt.shape[0], glt.shape[1])'], {}), '((glt.shape[0], glt.shape[1]))\n', (3415, 3445), True, 'import numpy as np\n'), ((3457, 3515), 'numpy.array_equal', 'np.array_equal', (['output.shape', '[glt.shape[0], glt.shape[1]]'], {}), '(output.shape, [glt.shape[0], glt.shape[1]])\n', (3471, 3515), True, 'import numpy as np\n'), ((4018, 4071), 'numpy.zeros', 'np.zeros', (['(glt.shape[0] - img.shape[0], img.shape[1])'], {}), '((glt.shape[0] - img.shape[0], img.shape[1]))\n', (4026, 4071), True, 'import numpy as np\n'), ((4089, 4128), 'numpy.vstack', 'np.vstack', (['(img_read, completion_shape)'], {}), '((img_read, completion_shape))\n', (4098, 4128), True, 'import numpy as np\n'), ((5168, 5191), 'os.path.exists', 'os.path.exists', (['glt_hdr'], {}), '(glt_hdr)\n', (5182, 5191), False, 'import os\n'), ((5510, 5539), 'os.path.isdir', 'os.path.isdir', (['mf_rect_folder'], {}), '(mf_rect_folder)\n', (5523, 5539), False, 'import os\n'), ((5550, 5574), 'os.mkdir', 'os.mkdir', (['mf_rect_folder'], {}), '(mf_rect_folder)\n', (5558, 5574), False, 'import os\n'), ((5642, 5671), 'os.path.isdir', 'os.path.isdir', (['mf_rect_folder'], {}), '(mf_rect_folder)\n', (5655, 5671), False, 'import os\n'), ((6043, 6063), 'numpy.load', 'np.load', (['mf_filename'], {}), '(mf_filename)\n', (6050, 6063), True, 'import numpy as np\n'), ((6518, 6550), 'numpy.save', 'np.save', (['rect_filename', 'rect_img'], {}), '(rect_filename, rect_img)\n', (6525, 6550), True, 'import numpy as np\n'), ((5758, 5787), 'shutil.rmtree', 'shutil.rmtree', (['mf_rect_folder'], {}), '(mf_rect_folder)\n', (5771, 5787), False, 'import shutil\n'), ((5796, 5820), 'os.mkdir', 'os.mkdir', (['mf_rect_folder'], {}), '(mf_rect_folder)\n', (5804, 5820), False, 'import os\n')]
# -*- coding: utf-8 -*- import numpy as np import csv import tensorflow as tf from config import Config from DataFeeder import DataFeeder,TestData from model import DKT from sklearn.metrics import f1_score,precision_score,recall_score indices = [precision_score,recall_score,f1_score] def make_prediction(folderName,index,max_iters = 200,target_key = 'FirstCorrect'): tf.reset_default_graph() cfg = Config(dataFile = '%s/Training.csv'%folderName) cfg.load() DF_train = DataFeeder(cfg) # problem vectors cfg.probVecs features = [['ProblemID','inp',[cfg.numP,8],False], ['FirstCorrect','inp',[2,8],True], ['EverCorrect','inp',[2,8],True], ['UsedHint','inp',[2,8],True]] targets = [['FirstCorrect',2 , 1. , [1., 1.2]]] model4train = DKT(features = features, targets = targets, keep_prob = 0.1, num_items = cfg.numP, rnn_units = [32,32], training = True, lr_decay = [1e-3,0.9,50]) model4test = DKT(features = features, targets = targets, keep_prob = 1., num_items = cfg.numP, rnn_units = [32,32], training = False, lr_decay = [5*1e-2,0.9,100]) session = tf.Session() session.run(tf.global_variables_initializer()) print('training on %s'%folderName) for i in range(1,max_iters+1): inputs,targets,bu_masks = DF_train.next_batch(batch_size = DF_train.size, cum = True) feed_data = model4train.zip_data(inputs,model4train.input_holders) feed_data_t = model4train.zip_data(targets,model4train.target_holders) feed_data.update(feed_data_t) _,predicts,costs = session.run([model4train.trainop, model4train.predicts, model4train.costs] , feed_dict=feed_data) if i%max_iters == 0: for name,values in predicts.items(): # y_pred = values[bu_masks] # y_true = targets[name][bu_masks] # indices = [func(y_true,y_pred) for func in evalue_indices] print('final cost',round(costs[target_key],3)) cfg_test = Config(dataFile = '%s/Test.csv'%folderName) cfg_test.load() TD = TestData(cfg_test) result = [] predictions = [] groundtruth = [] for data,(inputs,targets,seqIndices) in TD.export(): feed_data = model4test.zip_data(inputs,model4test.input_holders) predicts,probablities = session.run([model4test.predicts, model4test.probablities],feed_dict = feed_data) probs_on_correct = probablities[target_key][0,np.arange(inputs['lengths'][0]),seqIndices,1] y_pred = predicts[target_key][0,np.arange(inputs['lengths'][0]),seqIndices] y_true = targets[target_key][0,:] predictions.append(y_pred) groundtruth.append(y_true) for i in range(data.shape[0]): raw_data = list(data.iloc[i,:].values) raw_data +=[float(probs_on_correct[i]) , int(y_pred[i]) , index] result.append(raw_data) y_true = np.concatenate(groundtruth,axis=0) y_pred = np.concatenate(predictions,axis=0) index = [round(func(y_true,y_pred),3) for func in indices] print(' '*4,'testing',index) return result,list(data.columns) def main(datafolder): total_predicts = [] for i in range(10): predicts,labels = make_prediction(folderName = datafolder+'/fold%d'%i, index = i, max_iters = 400) total_predicts.extend(predicts) fobj = open('cv_predict.csv','w',newline='') writer = csv.writer(fobj) writer.writerow(labels+['pCorrectProblem','prediction','fold']) for line in total_predicts: writer.writerow(line) fobj.close() return True if __name__=='__main__': dataFolder = r'C:\Users\G7\Desktop\itemRL\DataChellenge\CV' main(dataFolder)
[ "tensorflow.reset_default_graph", "model.DKT", "tensorflow.Session", "config.Config", "csv.writer", "DataFeeder.TestData", "DataFeeder.DataFeeder", "tensorflow.global_variables_initializer", "numpy.concatenate", "numpy.arange" ]
[((388, 412), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (410, 412), True, 'import tensorflow as tf\n'), ((424, 471), 'config.Config', 'Config', ([], {'dataFile': "('%s/Training.csv' % folderName)"}), "(dataFile='%s/Training.csv' % folderName)\n", (430, 471), False, 'from config import Config\n'), ((504, 519), 'DataFeeder.DataFeeder', 'DataFeeder', (['cfg'], {}), '(cfg)\n', (514, 519), False, 'from DataFeeder import DataFeeder, TestData\n'), ((844, 984), 'model.DKT', 'DKT', ([], {'features': 'features', 'targets': 'targets', 'keep_prob': '(0.1)', 'num_items': 'cfg.numP', 'rnn_units': '[32, 32]', 'training': '(True)', 'lr_decay': '[0.001, 0.9, 50]'}), '(features=features, targets=targets, keep_prob=0.1, num_items=cfg.numP,\n rnn_units=[32, 32], training=True, lr_decay=[0.001, 0.9, 50])\n', (847, 984), False, 'from model import DKT\n'), ((1158, 1303), 'model.DKT', 'DKT', ([], {'features': 'features', 'targets': 'targets', 'keep_prob': '(1.0)', 'num_items': 'cfg.numP', 'rnn_units': '[32, 32]', 'training': '(False)', 'lr_decay': '[5 * 0.01, 0.9, 100]'}), '(features=features, targets=targets, keep_prob=1.0, num_items=cfg.numP,\n rnn_units=[32, 32], training=False, lr_decay=[5 * 0.01, 0.9, 100])\n', (1161, 1303), False, 'from model import DKT\n'), ((1467, 1479), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1477, 1479), True, 'import tensorflow as tf\n'), ((2543, 2586), 'config.Config', 'Config', ([], {'dataFile': "('%s/Test.csv' % folderName)"}), "(dataFile='%s/Test.csv' % folderName)\n", (2549, 2586), False, 'from config import Config\n'), ((2624, 2642), 'DataFeeder.TestData', 'TestData', (['cfg_test'], {}), '(cfg_test)\n', (2632, 2642), False, 'from DataFeeder import DataFeeder, TestData\n'), ((3542, 3577), 'numpy.concatenate', 'np.concatenate', (['groundtruth'], {'axis': '(0)'}), '(groundtruth, axis=0)\n', (3556, 3577), True, 'import numpy as np\n'), ((3591, 3626), 'numpy.concatenate', 'np.concatenate', (['predictions'], {'axis': '(0)'}), '(predictions, axis=0)\n', (3605, 3626), True, 'import numpy as np\n'), ((4140, 4156), 'csv.writer', 'csv.writer', (['fobj'], {}), '(fobj)\n', (4150, 4156), False, 'import csv\n'), ((1497, 1530), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1528, 1530), True, 'import tensorflow as tf\n'), ((3055, 3086), 'numpy.arange', 'np.arange', (["inputs['lengths'][0]"], {}), "(inputs['lengths'][0])\n", (3064, 3086), True, 'import numpy as np\n'), ((3152, 3183), 'numpy.arange', 'np.arange', (["inputs['lengths'][0]"], {}), "(inputs['lengths'][0])\n", (3161, 3183), True, 'import numpy as np\n')]
import numpy as np def ratios(pops1, pops2): totals1 = np.array(pops1[0]) + np.array(pops1[1]) totals2 = np.array(pops2[0]) + np.array(pops2[1]) change_ratio = np.delete(totals2, 0) / np.delete(totals1, -1) change_ratio = np.delete(change_ratio, -1) baby_ratio = totals2[0] / np.sum(np.array(pops1[1])[3:10]) tail_ratio = totals2[-1] / np.sum(totals1[-2:]) return change_ratio.tolist(), baby_ratio, tail_ratio def simulate(pops, change_ratio, baby_ratio, tail_ratio): estimates = [[], []] mothers = np.sum(np.array(pops[1])[3:10]) estimates[0].append(mothers * baby_ratio * (105 / (105 + 100))) estimates[1].append(mothers * baby_ratio * (100 / (105 + 100))) males = (np.array(pops[0])[:-2] * np.array(change_ratio)).tolist() females = (np.array(pops[1])[:-2] * np.array(change_ratio)).tolist() estimates[0] += males estimates[1] += females estimates[0].append(np.sum(pops[0][-2:]) * tail_ratio) estimates[1].append(np.sum(pops[1][-2:]) * tail_ratio) return estimates
[ "numpy.delete", "numpy.array", "numpy.sum" ]
[((241, 268), 'numpy.delete', 'np.delete', (['change_ratio', '(-1)'], {}), '(change_ratio, -1)\n', (250, 268), True, 'import numpy as np\n'), ((61, 79), 'numpy.array', 'np.array', (['pops1[0]'], {}), '(pops1[0])\n', (69, 79), True, 'import numpy as np\n'), ((82, 100), 'numpy.array', 'np.array', (['pops1[1]'], {}), '(pops1[1])\n', (90, 100), True, 'import numpy as np\n'), ((115, 133), 'numpy.array', 'np.array', (['pops2[0]'], {}), '(pops2[0])\n', (123, 133), True, 'import numpy as np\n'), ((136, 154), 'numpy.array', 'np.array', (['pops2[1]'], {}), '(pops2[1])\n', (144, 154), True, 'import numpy as np\n'), ((175, 196), 'numpy.delete', 'np.delete', (['totals2', '(0)'], {}), '(totals2, 0)\n', (184, 196), True, 'import numpy as np\n'), ((199, 221), 'numpy.delete', 'np.delete', (['totals1', '(-1)'], {}), '(totals1, -1)\n', (208, 221), True, 'import numpy as np\n'), ((363, 383), 'numpy.sum', 'np.sum', (['totals1[-2:]'], {}), '(totals1[-2:])\n', (369, 383), True, 'import numpy as np\n'), ((549, 566), 'numpy.array', 'np.array', (['pops[1]'], {}), '(pops[1])\n', (557, 566), True, 'import numpy as np\n'), ((934, 954), 'numpy.sum', 'np.sum', (['pops[0][-2:]'], {}), '(pops[0][-2:])\n', (940, 954), True, 'import numpy as np\n'), ((993, 1013), 'numpy.sum', 'np.sum', (['pops[1][-2:]'], {}), '(pops[1][-2:])\n', (999, 1013), True, 'import numpy as np\n'), ((306, 324), 'numpy.array', 'np.array', (['pops1[1]'], {}), '(pops1[1])\n', (314, 324), True, 'import numpy as np\n'), ((749, 771), 'numpy.array', 'np.array', (['change_ratio'], {}), '(change_ratio)\n', (757, 771), True, 'import numpy as np\n'), ((822, 844), 'numpy.array', 'np.array', (['change_ratio'], {}), '(change_ratio)\n', (830, 844), True, 'import numpy as np\n'), ((724, 741), 'numpy.array', 'np.array', (['pops[0]'], {}), '(pops[0])\n', (732, 741), True, 'import numpy as np\n'), ((797, 814), 'numpy.array', 'np.array', (['pops[1]'], {}), '(pops[1])\n', (805, 814), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib # Set fontsize larger for latex plots matplotlib.rcParams.update({'font.size': 20}) # Generate data from file x, y = np.genfromtxt("bin/python_Aufgabe2.txt", unpack=True) m, n = x[-1], y[-1] # Plotting plt.figure(figsize=(12,7)) plt.grid() plt.xlabel("x") plt.ylabel("y") x_new = np.linspace(min(x)-x[:-1].std()/2, max(x)+x[:-1].std()/2) plt.plot(x[:-1], y[:-1], "x", mew=2., alpha=2, label="Datenpunkte") plt.plot(x_new, m*x_new+n, "-", linewidth=3, label="Ausgleichsgerade") plt.legend() plt.tight_layout() plt.savefig("bin/figure.pdf", dpi=1200)
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "matplotlib.rcParams.update", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "numpy.genfromtxt", "matplotlib.pyplot.legend" ]
[((108, 153), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 20}"], {}), "({'font.size': 20})\n", (134, 153), False, 'import matplotlib\n'), ((188, 241), 'numpy.genfromtxt', 'np.genfromtxt', (['"""bin/python_Aufgabe2.txt"""'], {'unpack': '(True)'}), "('bin/python_Aufgabe2.txt', unpack=True)\n", (201, 241), True, 'import numpy as np\n'), ((275, 302), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (285, 302), True, 'import matplotlib.pyplot as plt\n'), ((302, 312), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (310, 312), True, 'import matplotlib.pyplot as plt\n'), ((313, 328), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (323, 328), True, 'import matplotlib.pyplot as plt\n'), ((329, 344), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (339, 344), True, 'import matplotlib.pyplot as plt\n'), ((411, 479), 'matplotlib.pyplot.plot', 'plt.plot', (['x[:-1]', 'y[:-1]', '"""x"""'], {'mew': '(2.0)', 'alpha': '(2)', 'label': '"""Datenpunkte"""'}), "(x[:-1], y[:-1], 'x', mew=2.0, alpha=2, label='Datenpunkte')\n", (419, 479), True, 'import matplotlib.pyplot as plt\n'), ((479, 553), 'matplotlib.pyplot.plot', 'plt.plot', (['x_new', '(m * x_new + n)', '"""-"""'], {'linewidth': '(3)', 'label': '"""Ausgleichsgerade"""'}), "(x_new, m * x_new + n, '-', linewidth=3, label='Ausgleichsgerade')\n", (487, 553), True, 'import matplotlib.pyplot as plt\n'), ((550, 562), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (560, 562), True, 'import matplotlib.pyplot as plt\n'), ((563, 581), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (579, 581), True, 'import matplotlib.pyplot as plt\n'), ((582, 621), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""bin/figure.pdf"""'], {'dpi': '(1200)'}), "('bin/figure.pdf', dpi=1200)\n", (593, 621), True, 'import matplotlib.pyplot as plt\n')]
''' Created on April 15, 2018 @author: <NAME> ''' import numpy as np import warnings from scipy.stats import gamma, lognorm from sklearn.linear_model import ElasticNet from spn.structure.leaves.conditional.Conditional import Conditional_Gaussian, Conditional_Poisson, \ Conditional_Bernoulli import statsmodels.api as sm from os.path import dirname path = dirname(__file__) + "/" def update_glm_parameters_mle(node, data, scope): # assume data is tuple (output np array, conditional np array) assert len(scope) == 1, 'more than one output variable in scope?' data = data[~np.isnan(data)].reshape(data.shape) dataOut = data[:, :len(scope)] dataIn = data[:, len(scope):] assert dataOut.shape[1] == 1, 'more than one output variable in scope?' if dataOut.shape[0] == 0: return dataIn = np.c_[dataIn, np.ones((dataIn.shape[0]))] if isinstance(node, Conditional_Gaussian): reg = ElasticNet(random_state=0, alpha=0.01, max_iter=2000, fit_intercept=False) reg.fit(dataIn, dataOut) if reg.n_iter_ < reg.max_iter: node.weights = reg.coef_.tolist() return family = sm.families.Gaussian() elif isinstance(node, Conditional_Poisson): family = sm.families.Poisson() elif isinstance(node, Conditional_Bernoulli): family = sm.families.Binomial() else: raise Exception("Unknown conditional " + str(type(node))) glmfit = sm.GLM(dataOut, dataIn, family=family).fit_regularized(alpha=0.0001, maxiter=5) node.weights = glmfit.params.tolist() return try: import tensorflow as tf import tensorflow_probability as tfp; tfd = tfp.distributions dataOut = dataOut.reshape(-1) w, linear_response, is_converged, num_iter = tfp.glm.fit( model_matrix=tf.constant(dataIn), response=tf.constant(dataOut), model=tfp.glm.Poisson(), l2_regularizer=0.0001) log_likelihood = tfp.glm.Poisson().log_prob(tf.constant(dataOut), linear_response) with tf.Session() as sess: [w_, linear_response_, is_converged_, num_iter_, Y_, log_likelihood_] = sess.run( [w, linear_response, is_converged, num_iter, tf.constant(dataOut), log_likelihood]) node.weights = w_ print("node.weights", node.weights) # glmfit = sm.GLM(dataOut, dataIn, family=family).fit_regularized(alpha=0.001) # node.weights = glmfit.params # # if glmfit.converged is False: # # warnings.warn("Maximum number of iterations reached") except Exception: glmfit = sm.GLM(dataOut, dataIn, family=family).fit_regularized(alpha=0.0001) node.weights = glmfit.params print("node.weights with glmfit", node.weights) np.savez(path + "tmp_glm_mle_data", dataIn=dataIn, dataOut=dataOut)
[ "statsmodels.api.families.Poisson", "numpy.savez", "sklearn.linear_model.ElasticNet", "numpy.ones", "statsmodels.api.families.Gaussian", "tensorflow_probability.glm.Poisson", "tensorflow.Session", "statsmodels.api.families.Binomial", "os.path.dirname", "tensorflow.constant", "numpy.isnan", "statsmodels.api.GLM" ]
[((364, 381), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (371, 381), False, 'from os.path import dirname\n'), ((939, 1013), 'sklearn.linear_model.ElasticNet', 'ElasticNet', ([], {'random_state': '(0)', 'alpha': '(0.01)', 'max_iter': '(2000)', 'fit_intercept': '(False)'}), '(random_state=0, alpha=0.01, max_iter=2000, fit_intercept=False)\n', (949, 1013), False, 'from sklearn.linear_model import ElasticNet\n'), ((1171, 1193), 'statsmodels.api.families.Gaussian', 'sm.families.Gaussian', ([], {}), '()\n', (1191, 1193), True, 'import statsmodels.api as sm\n'), ((849, 873), 'numpy.ones', 'np.ones', (['dataIn.shape[0]'], {}), '(dataIn.shape[0])\n', (856, 873), True, 'import numpy as np\n'), ((1259, 1280), 'statsmodels.api.families.Poisson', 'sm.families.Poisson', ([], {}), '()\n', (1278, 1280), True, 'import statsmodels.api as sm\n'), ((1461, 1499), 'statsmodels.api.GLM', 'sm.GLM', (['dataOut', 'dataIn'], {'family': 'family'}), '(dataOut, dataIn, family=family)\n', (1467, 1499), True, 'import statsmodels.api as sm\n'), ((2031, 2051), 'tensorflow.constant', 'tf.constant', (['dataOut'], {}), '(dataOut)\n', (2042, 2051), True, 'import tensorflow as tf\n'), ((2084, 2096), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (2094, 2096), True, 'import tensorflow as tf\n'), ((2818, 2885), 'numpy.savez', 'np.savez', (["(path + 'tmp_glm_mle_data')"], {'dataIn': 'dataIn', 'dataOut': 'dataOut'}), "(path + 'tmp_glm_mle_data', dataIn=dataIn, dataOut=dataOut)\n", (2826, 2885), True, 'import numpy as np\n'), ((1348, 1370), 'statsmodels.api.families.Binomial', 'sm.families.Binomial', ([], {}), '()\n', (1368, 1370), True, 'import statsmodels.api as sm\n'), ((1843, 1862), 'tensorflow.constant', 'tf.constant', (['dataIn'], {}), '(dataIn)\n', (1854, 1862), True, 'import tensorflow as tf\n'), ((1885, 1905), 'tensorflow.constant', 'tf.constant', (['dataOut'], {}), '(dataOut)\n', (1896, 1905), True, 'import tensorflow as tf\n'), ((1925, 1942), 'tensorflow_probability.glm.Poisson', 'tfp.glm.Poisson', ([], {}), '()\n', (1940, 1942), True, 'import tensorflow_probability as tfp\n'), ((2004, 2021), 'tensorflow_probability.glm.Poisson', 'tfp.glm.Poisson', ([], {}), '()\n', (2019, 2021), True, 'import tensorflow_probability as tfp\n'), ((592, 606), 'numpy.isnan', 'np.isnan', (['data'], {}), '(data)\n', (600, 606), True, 'import numpy as np\n'), ((2261, 2281), 'tensorflow.constant', 'tf.constant', (['dataOut'], {}), '(dataOut)\n', (2272, 2281), True, 'import tensorflow as tf\n'), ((2648, 2686), 'statsmodels.api.GLM', 'sm.GLM', (['dataOut', 'dataIn'], {'family': 'family'}), '(dataOut, dataIn, family=family)\n', (2654, 2686), True, 'import statsmodels.api as sm\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from NumPyNet.activations import Activations from NumPyNet.utils import _check_activation from NumPyNet.utils import check_is_fitted import numpy as np from NumPyNet.layers.base import BaseLayer __author__ = ['<NAME>', '<NAME>'] __email__ = ['<EMAIL>', '<EMAIL>'] class Activation_layer(BaseLayer): ''' Activation layer Parameters ---------- input_shape : tuple (default=None) Input dimensions as tuple of 4 integers activation : str or Activation object Activation function to apply into the layer. Example ------- >>> import os >>> import pylab as plt >>> from PIL import Image >>> from NumPyNet import activations >>> >>> activation_func = activations.Relu() >>> >>> img_2_float = lambda im : ((im - im.min()) * (1./(im.max() - im.min()) * 1.)).astype(float) >>> float_2_img = lambda im : ((im - im.min()) * (1./(im.max() - im.min()) * 255.)).astype(np.uint8) >>> >>> filename = os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'dog.jpg') >>> inpt = np.asarray(Image.open(filename), dtype=float) >>> inpt.setflags(write=1) >>> inpt = img_2_float(inpt) >>> # Relu activation constrain >>> inpt = inpt * 2 - 1 >>> >>> # add batch = 1 >>> inpt = np.expand_dims(inpt, axis=0) >>> >>> layer = Activation_layer(input_shape=inpt.shape, activation=activation_func) >>> >>> # FORWARD >>> >>> layer.forward(inpt) >>> forward_out = layer.output >>> print(layer) >>> >>> # BACKWARD >>> >>> layer.delta = np.ones(shape=inpt.shape, dtype=float) >>> delta = np.zeros(shape=inpt.shape, dtype=float) >>> layer.backward(delta, copy=True) >>> >>> # Visualizations >>> >>> fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(10, 5)) >>> fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.15) >>> >>> fig.suptitle('Activation Layer : {}'.format(activation_func.name)) >>> >>> ax1.imshow(float_2_img(inpt[0])) >>> ax1.set_title('Original image') >>> ax1.axis('off') >>> >>> ax2.imshow(float_2_img(forward_out[0])) >>> ax2.set_title("Forward") >>> ax2.axis("off") >>> >>> ax3.imshow(float_2_img(delta[0])) >>> ax3.set_title('Backward') >>> ax3.axis('off') >>> >>> fig.tight_layout() >>> plt.show() .. image:: ../../../NumPyNet/images/activation_relu.png References ---------- - TODO ''' def __init__(self, input_shape=None, activation=Activations, **kwargs): activation = _check_activation(self, activation) self.activation = activation.activate self.gradient = activation.gradient super(Activation_layer, self).__init__(input_shape=input_shape) def __str__(self): ''' Printer ''' batch, out_width, out_height, out_channels = self.out_shape return 'activ {0:>4d} x{1:>4d} x{2:>4d} x{3:>4d} -> {0:>4d} x{1:>4d} x{2:>4d} x{3:>4d}'.format( batch, out_width, out_height, out_channels) def forward(self, inpt, copy=True): ''' Forward of the activation layer, apply the selected activation function to the input. Parameters ---------- inpt: array-like Input array to activate. copy: bool (default=True) If True make a copy of the input before applying the activation. Returns ------- self ''' self._check_dims(shape=self.out_shape, arr=inpt, func='Forward') self.output = self.activation(inpt, copy=copy) self.delta = np.zeros(shape=self.out_shape, dtype=float) return self def backward(self, delta, copy=False): ''' Compute the backward of the activation layer Parameters ---------- delta : array-like Global error to be backpropagated. Returns ------- self ''' check_is_fitted(self, 'delta') self._check_dims(shape=self.out_shape, arr=delta, func='Backward') self.delta *= self.gradient(self.output, copy=copy) delta[:] = self.delta return self if __name__ == '__main__': import os import pylab as plt from PIL import Image from NumPyNet import activations activation_func = activations.Hardtan() img_2_float = lambda im : ((im - im.min()) * (1./(im.max() - im.min()) * 1.)).astype(float) float_2_img = lambda im : ((im - im.min()) * (1./(im.max() - im.min()) * 255.)).astype(np.uint8) filename = os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'dog.jpg') inpt = np.asarray(Image.open(filename), dtype=float) inpt.setflags(write=1) inpt = img_2_float(inpt) # Relu activation constrain inpt = inpt * 2 - 1 # add batch = 1 inpt = np.expand_dims(inpt, axis=0) layer = Activation_layer(input_shape=inpt.shape, activation=activation_func) # FORWARD layer.forward(inpt) forward_out = layer.output print(layer) # BACKWARD layer.delta = np.ones(shape=inpt.shape, dtype=float) delta = np.zeros(shape=inpt.shape, dtype=float) layer.backward(delta, copy=True) # Visualizations fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(10, 5)) fig.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.15) fig.suptitle('Activation Layer\nfunction : {}'.format(activation_func.name)) ax1.imshow(float_2_img(inpt[0])) ax1.set_title('Original image') ax1.axis('off') ax2.imshow(float_2_img(forward_out[0])) ax2.set_title("Forward") ax2.axis("off") ax3.imshow(float_2_img(delta[0])) ax3.set_title('Backward') ax3.axis('off') fig.tight_layout() plt.show()
[ "PIL.Image.open", "numpy.ones", "NumPyNet.utils._check_activation", "NumPyNet.utils.check_is_fitted", "os.path.dirname", "numpy.zeros", "NumPyNet.activations.Hardtan", "numpy.expand_dims", "pylab.subplots", "pylab.show" ]
[((4263, 4284), 'NumPyNet.activations.Hardtan', 'activations.Hardtan', ([], {}), '()\n', (4282, 4284), False, 'from NumPyNet import activations\n'), ((4751, 4779), 'numpy.expand_dims', 'np.expand_dims', (['inpt'], {'axis': '(0)'}), '(inpt, axis=0)\n', (4765, 4779), True, 'import numpy as np\n'), ((4971, 5009), 'numpy.ones', 'np.ones', ([], {'shape': 'inpt.shape', 'dtype': 'float'}), '(shape=inpt.shape, dtype=float)\n', (4978, 5009), True, 'import numpy as np\n'), ((5020, 5059), 'numpy.zeros', 'np.zeros', ([], {'shape': 'inpt.shape', 'dtype': 'float'}), '(shape=inpt.shape, dtype=float)\n', (5028, 5059), True, 'import numpy as np\n'), ((5141, 5188), 'pylab.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(3)', 'figsize': '(10, 5)'}), '(nrows=1, ncols=3, figsize=(10, 5))\n', (5153, 5188), True, 'import pylab as plt\n'), ((5619, 5629), 'pylab.show', 'plt.show', ([], {}), '()\n', (5627, 5629), True, 'import pylab as plt\n'), ((2613, 2648), 'NumPyNet.utils._check_activation', '_check_activation', (['self', 'activation'], {}), '(self, activation)\n', (2630, 2648), False, 'from NumPyNet.utils import _check_activation\n'), ((3607, 3650), 'numpy.zeros', 'np.zeros', ([], {'shape': 'self.out_shape', 'dtype': 'float'}), '(shape=self.out_shape, dtype=float)\n', (3615, 3650), True, 'import numpy as np\n'), ((3915, 3945), 'NumPyNet.utils.check_is_fitted', 'check_is_fitted', (['self', '"""delta"""'], {}), "(self, 'delta')\n", (3930, 3945), False, 'from NumPyNet.utils import check_is_fitted\n'), ((4506, 4531), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4521, 4531), False, 'import os\n'), ((4584, 4604), 'PIL.Image.open', 'Image.open', (['filename'], {}), '(filename)\n', (4594, 4604), False, 'from PIL import Image\n')]
""" This script shows the usage of scikit-learns linear regression functionality. """ # %% [markdown] # # Linear Regression using Scikit-Learn # # %% [markdown] # ## Ice Cream Dataset ## # | Temperature C° | Ice Cream Sales | # |:--------------:|:---------------:| # | 15 | 34 | # | 24 | 587 | # | 34 | 1200 | # | 31 | 1080 | # | 29 | 989 | # | 26 | 734 | # | 17 | 80 | # | 11 | 1 | # | 23 | 523 | # | 25 | 651 | # %% [markdown] # ### Dependencies ### # Install Numpy for number crunching and Matplotlib for plotting graphs: # ```bash # pip install sklearn # ``` # %% [markdown] # ### Imports ### import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error # %% [markdown] # ### Ice Cream Dataset as Numpy Array ### data = np.array([[15, 34], [24, 587], [34, 1200], [31, 1080], [29, 989], [26, 734], [17, 80], [11, 1], [23, 523], [25, 651], [0, 0], [2, 0], [12, 5]]) # %% [markdown] # ### Plotting the Dataset ### x_values, y_values = data.T plt.style.use('ggplot') plt.scatter(x_values, y_values) plt.show() # %% [markdown] # ### Prepare Train and Test Data ### x_train, x_test, y_train, y_test = train_test_split( x_values, y_values, test_size=1/3) x_train = x_train.reshape(-1, 1) x_test = x_test.reshape(-1, 1) y_train = y_train.reshape(-1, 1) y_test = y_test.reshape(-1, 1) # %% [markdown] # ### Train model ### regression = linear_model.LinearRegression() regression.fit(x_train, y_train) # %% [markdown] # ### Predict ### y_prediction = regression.predict(x_test) # %% [markdown] # ### Plot Predicted Results ### plt.scatter(x_test, y_test) plt.plot(x_test, y_prediction, color='blue') plt.show() # %% [markdown] # ### Print Metrics ### print('Coefficient: \n', regression.coef_) print('Intercept: \n', regression.intercept_) print('Mean Squared Error: %.2f' % mean_squared_error(y_test, y_prediction))
[ "sklearn.model_selection.train_test_split", "matplotlib.pyplot.plot", "matplotlib.pyplot.style.use", "sklearn.metrics.mean_squared_error", "numpy.array", "matplotlib.pyplot.scatter", "sklearn.linear_model.LinearRegression", "matplotlib.pyplot.show" ]
[((1100, 1247), 'numpy.array', 'np.array', (['[[15, 34], [24, 587], [34, 1200], [31, 1080], [29, 989], [26, 734], [17, 80\n ], [11, 1], [23, 523], [25, 651], [0, 0], [2, 0], [12, 5]]'], {}), '([[15, 34], [24, 587], [34, 1200], [31, 1080], [29, 989], [26, 734],\n [17, 80], [11, 1], [23, 523], [25, 651], [0, 0], [2, 0], [12, 5]])\n', (1108, 1247), True, 'import numpy as np\n'), ((1526, 1549), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (1539, 1549), True, 'import matplotlib.pyplot as plt\n'), ((1550, 1581), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_values', 'y_values'], {}), '(x_values, y_values)\n', (1561, 1581), True, 'import matplotlib.pyplot as plt\n'), ((1582, 1592), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1590, 1592), True, 'import matplotlib.pyplot as plt\n'), ((1685, 1738), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_values', 'y_values'], {'test_size': '(1 / 3)'}), '(x_values, y_values, test_size=1 / 3)\n', (1701, 1738), False, 'from sklearn.model_selection import train_test_split\n'), ((1925, 1956), 'sklearn.linear_model.LinearRegression', 'linear_model.LinearRegression', ([], {}), '()\n', (1954, 1956), False, 'from sklearn import linear_model\n'), ((2121, 2148), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_test', 'y_test'], {}), '(x_test, y_test)\n', (2132, 2148), True, 'import matplotlib.pyplot as plt\n'), ((2149, 2193), 'matplotlib.pyplot.plot', 'plt.plot', (['x_test', 'y_prediction'], {'color': '"""blue"""'}), "(x_test, y_prediction, color='blue')\n", (2157, 2193), True, 'import matplotlib.pyplot as plt\n'), ((2194, 2204), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2202, 2204), True, 'import matplotlib.pyplot as plt\n'), ((2372, 2412), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['y_test', 'y_prediction'], {}), '(y_test, y_prediction)\n', (2390, 2412), False, 'from sklearn.metrics import mean_squared_error\n')]
#!/usr/local/bin/python # -*- coding: utf-8 -*- '''test_Rainbow_pen ''' import sys, os import numpy as np from matplotlib import pyplot as plt from PIL import Image FN_OUT = 'rainbow_pen_320x240.png' def mk_col(w, h, x, y): a = 255 i = int(7 * y / h) if i == 0: c, u, v = (192, 0, 0), (32, 0, 0), (0, 32, 0) # R elif i == 1: c, u, v = (192, 96, 0), (0, -32, 0), (0, 32, 0) # O- elif i == 2: c, u, v = (192, 192, 0), (0, -32, 0), (-32, 0, 0) # Y elif i == 3: c, u, v = (0, 192, 0), (64, 0, 0), (0, 0, 64) # G elif i == 4: c, u, v = (0, 192, 192), (0, 0, -64), (0, -64, 0) # C elif i == 5: c, u, v = (0, 0, 192), (0, 64, 0), (32, 0, 0) # B elif i == 6: c, u, v = (96, 0, 192), (-32, 0, 0), (32, 0, 0) # M- return (i, a, c, u, v) def mk_dum(w, h, x, y): # return (64, 64, 64, 192) i, a, (r, g, b), u, v = mk_col(w, h, x, y) return (r, g, b, a) def mk_rainbow(w, h, x, y): # return (x % 256, y % 256, 128, 255) i, a, (r, g, b), u, v = mk_col(w, h, x, y) d = h / 7.0 z = int(y - i * d) e = d / 3.0 f = 1 if z < e else (-1 if z > 2*e else 0) rgb = np.array((r, g, b)) if f > 0: rgb += np.array(u) if f < 0: rgb += np.array(v) r, g, b = rgb if x < w / 4: j, k = 2.0 * d * x / w, d / 2.0 t = z + j < k or z - j > k if x < w / 36 or t: return (255, 255, 255, 0) # transparent if x < w / 12: return (r, g, b, a) else: return (224, 128, 0, 255) # light brown return (r, g, b, a) def rainbow_pen(w, h): fig = plt.figure(figsize=(6, 4), dpi=96) dm = np.ndarray((h, w, 4), dtype=np.uint8) for y in range(h): for x in range(w): dm[y][x] = mk_dum(w, h, x, y) dum = Image.fromarray(dm[::-1,:,:], 'RGBA') im = np.ndarray((h, w, 4), dtype=np.uint8) for y in range(h): for x in range(w): im[y][x] = mk_rainbow(w, h, x, y) img = Image.fromarray(im[::-1,:,:], 'RGBA') Image.fromarray(im, 'RGBA').save(FN_OUT, 'PNG') ax = fig.add_subplot(231) ax.imshow(img) ax = fig.add_subplot(232) ax.imshow(img.convert('L'), cmap='gray', vmin=0, vmax=255) ax = fig.add_subplot(233) ax.imshow(img.convert('L')) # auto heatmap ax = fig.add_subplot(234) ax.imshow(img.convert('YCbCr')) # ok ? ax = fig.add_subplot(235) ax.imshow(dum) # img.convert('LAB')) # not supported on PIL <= py 2.5 ? ax = fig.add_subplot(236) ax.imshow(dum) # img.convert('HSV')) # not supported on PIL <= py 2.5 ? plt.show() if __name__ == '__main__': rainbow_pen(320, 240)
[ "PIL.Image.fromarray", "numpy.array", "matplotlib.pyplot.figure", "numpy.ndarray", "matplotlib.pyplot.show" ]
[((1087, 1106), 'numpy.array', 'np.array', (['(r, g, b)'], {}), '((r, g, b))\n', (1095, 1106), True, 'import numpy as np\n'), ((1475, 1509), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 4)', 'dpi': '(96)'}), '(figsize=(6, 4), dpi=96)\n', (1485, 1509), True, 'from matplotlib import pyplot as plt\n'), ((1518, 1555), 'numpy.ndarray', 'np.ndarray', (['(h, w, 4)'], {'dtype': 'np.uint8'}), '((h, w, 4), dtype=np.uint8)\n', (1528, 1555), True, 'import numpy as np\n'), ((1644, 1683), 'PIL.Image.fromarray', 'Image.fromarray', (['dm[::-1, :, :]', '"""RGBA"""'], {}), "(dm[::-1, :, :], 'RGBA')\n", (1659, 1683), False, 'from PIL import Image\n'), ((1690, 1727), 'numpy.ndarray', 'np.ndarray', (['(h, w, 4)'], {'dtype': 'np.uint8'}), '((h, w, 4), dtype=np.uint8)\n', (1700, 1727), True, 'import numpy as np\n'), ((1820, 1859), 'PIL.Image.fromarray', 'Image.fromarray', (['im[::-1, :, :]', '"""RGBA"""'], {}), "(im[::-1, :, :], 'RGBA')\n", (1835, 1859), False, 'from PIL import Image\n'), ((2393, 2403), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2401, 2403), True, 'from matplotlib import pyplot as plt\n'), ((1126, 1137), 'numpy.array', 'np.array', (['u'], {}), '(u)\n', (1134, 1137), True, 'import numpy as np\n'), ((1157, 1168), 'numpy.array', 'np.array', (['v'], {}), '(v)\n', (1165, 1168), True, 'import numpy as np\n'), ((1860, 1887), 'PIL.Image.fromarray', 'Image.fromarray', (['im', '"""RGBA"""'], {}), "(im, 'RGBA')\n", (1875, 1887), False, 'from PIL import Image\n')]
from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, \ amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan import yaml from seir_model import SEIR_matrix from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks from sys import exit def epidemiology_model(): with open(r'common_params.yaml') as file: common_params = yaml.full_load(file) with open(r'regions.yaml') as file: regions = yaml.full_load(file) with open(r'seir_params.yaml') as file: seir_params_multivar = yaml.full_load(file) nvars=len(seir_params_multivar) # (var=1 is baseline model, var=2 is delta variant) nregions = len(regions) epi = [] intl_visitors = [] between_region_mobility_rate = [] between_locality_mobility_rate = [] beds_per_1000 = [] baseline_hosp = [] for rgn in regions: beds_per_1000.append(rgn['initial']['beds per 1000']) baseline_hosp.append(rgn['initial']['population'] * rgn['initial']['beds per 1000']/1000) epivar=[] for var in seir_params_multivar: epivar.append(SEIR_matrix(rgn, var, common_params)) if 'international travel' in rgn: intl_visitors.append(rgn['international travel']['daily arrivals'] * rgn['international travel']['duration of stay']) else: intl_visitors.append(0.0) between_locality_mobility_rate.append(rgn['between locality mobility rate']) between_region_mobility_rate.append(rgn['between region mobility rate']) epi.append(epivar) # contains objects with following order: [[rgn1/var1, rgn2/var1], [rgn1/var2, rgn2/var2]] proportion_total = [e.proportion_global_infected for e in epi[0]] test1=np_sum(proportion_total,axis=0) if any(test1<0.999) or any(test1>1.001): print('Error test1: aborted') print('proportions of global infections across variants do not sum to 1') exit() start_datetime = get_datetime(common_params['time']['COVID start']) start_time = timesteps_between_dates(common_params['time']['start date'], common_params['time']['COVID start']) end_time = timesteps_between_dates(common_params['time']['start date'], common_params['time']['end date']) epi_datetime_array = get_datetime_array(common_params['time']['COVID start'], common_params['time']['end date']) ntimesteps = end_time - start_time # All the epidemiological regional models will give the same values for these parameters epi_invisible_fraction = epi[0][0].invisible_fraction_1stinfection total_population=0 for i in range(0,len(epi[:][0])): total_population += epi[i][0].N normal_bed_occupancy_fraction = common_params['bed occupancy']['normal'] max_reduction_in_normal_bed_occupancy = common_params['bed occupancy']['max reduction'] if 'vaccinate at risk first' in common_params['vaccination']: vaccinate_at_risk = common_params['vaccination']['vaccinate at risk first'] else: vaccinate_at_risk = False avoid_elective_operations= common_params['avoid elective operations'] # Global infection rate per person global_infection_points = common_params['global infection rate'] global_infection_npoints = len(global_infection_points) global_infection_traj_start = global_infection_points[0][0] if get_datetime(global_infection_traj_start) > start_datetime: global_infection_traj_start = common_params['time']['COVID start'] global_infection_traj_timesteps_array = np_array(range(0,timesteps_between_dates(global_infection_traj_start, common_params['time']['end date']) + 1)) global_infection_ts = np_empty(global_infection_npoints) global_infection_val = np_empty(global_infection_npoints) for i in range(0,global_infection_npoints): global_infection_ts[i] = timesteps_between_dates(global_infection_traj_start, global_infection_points[i][0]) global_infection_val[i] = global_infection_points[i][1]/1000 # Values are entered per 1000 global_infection_rate = np_interp(global_infection_traj_timesteps_array, global_infection_ts, global_infection_val) # Trunctate at start as necessary ntrunc = timesteps_between_dates(global_infection_traj_start, common_params['time']['COVID start']) global_infection_rate = global_infection_rate[ntrunc:] # Maximum vaccination rate vaccination_points = common_params['vaccination']['maximum doses per day'] vaccination_delay = timesteps_over_timedelta_weeks(common_params['vaccination']['time to efficacy']) vaccination_npoints = len(vaccination_points) vaccination_timesteps_array = np_array(range(0,timesteps_between_dates(common_params['time']['COVID start'], common_params['time']['end date']) + 1)) vaccination_ts = np_empty(vaccination_npoints) vaccination_val = np_empty(vaccination_npoints) for i in range(0,vaccination_npoints): vaccination_ts[i] = timesteps_between_dates(common_params['time']['COVID start'], vaccination_points[i][0]) + vaccination_delay vaccination_val[i] = vaccination_points[i][1] vaccination_max_doses = np_interp(vaccination_timesteps_array, vaccination_ts, vaccination_val) isolate_symptomatic_cases_windows = [] if 'isolate symptomatic cases' in common_params: for window in common_params['isolate symptomatic cases']: if window['apply']: isolate_symptomatic_cases_windows.append(Window((get_datetime(window['start date']) - start_datetime).days, (get_datetime(window['end date']) - start_datetime).days, window['ramp up for'], window['ramp down for'], (1 - epi_invisible_fraction) * window['fraction of cases isolated'])) isolate_at_risk_windows = [] if 'isolate at risk' in common_params: for window in common_params['isolate at risk']: if window['apply']: isolate_at_risk_windows.append(Window((get_datetime(window['start date']) - start_datetime).days, (get_datetime(window['end date']) - start_datetime).days, window['ramp up for'], window['ramp down for'], window['fraction of population isolated'])) test_and_trace_windows = [] if 'test and trace' in common_params: for window in common_params['test and trace']: if window['apply']: test_and_trace_windows.append(Window((get_datetime(window['start date']) - start_datetime).days, (get_datetime(window['end date']) - start_datetime).days, window['ramp up for'], window['ramp down for'], window['fraction of infectious cases isolated'])) soc_dist_windows = [] if 'social distance' in common_params: for window in common_params['social distance']: if window['apply']: soc_dist_windows.append(Window((get_datetime(window['start date']) - start_datetime).days, (get_datetime(window['end date']) - start_datetime).days, window['ramp up for'], window['ramp down for'], window['effectiveness'])) travel_restrictions_windows = [] if 'international travel restrictions' in common_params: for window in common_params['international travel restrictions']: if window['apply']: travel_restrictions_windows.append(Window((get_datetime(window['start date']) - start_datetime).days, (get_datetime(window['end date']) - start_datetime).days, window['ramp up for'], window['ramp down for'], window['effectiveness'])) # Initialize values for indicator graphs Itot_allvars=np_zeros(nregions) comm_spread_frac_allvars = np_zeros((nregions, nvars)) deaths = np_zeros((nregions, nvars)) deaths_reinf = np_zeros((nregions, nvars)) cumulative_cases = np_zeros((nregions, nvars)) deaths_over_time = np_zeros((nregions, ntimesteps, nvars)) new_deaths_over_time = np_zeros((nregions, ntimesteps, nvars)) deaths_reinf_over_time = np_zeros((nregions, ntimesteps, nvars)) recovered_over_time = np_zeros((nregions, ntimesteps, nvars)) vaccinated_over_time = np_zeros((nregions, ntimesteps, nvars)) rerecovered_over_time = np_zeros((nregions, ntimesteps, nvars)) mortality_rate_over_time = np_zeros((nregions, ntimesteps, nvars)) hospitalization_index_region = np_ones(nregions) hospitalization_index = np_ones(ntimesteps) mortality_rate = np_ones(ntimesteps) infective_over_time = np_zeros((nregions, ntimesteps, nvars)) reinfective_over_time = np_zeros((nregions, ntimesteps, nvars)) susceptible_over_time = np_zeros((nregions, ntimesteps, nvars)) for j in range(0,nregions): susceptible_over_time[j,0,:] = [e.S for e in epi[j]] # susceptible_over_time = np_zeros((nregions, ntimesteps, nvars)) # for j in range(0,nregions): # e=epi[j] # for v in range(0, len(e)): # susceptible_over_time[j,0,v] = e[v].S exposed_over_time = np_zeros((nregions, ntimesteps, nvars)) for j in range(0,nregions): exposed_over_time[j,0,:] = [np_sum(e.E_nr) + np_sum(e.E_r) for e in epi[j]] reexposed_over_time = np_zeros((nregions, ntimesteps, nvars)) for j in range(0,nregions): reexposed_over_time[j,0,:] = [np_sum(e.RE_nr) + np_sum(e.RE_r) for e in epi[j]] comm_spread_frac_over_time = np_zeros((nregions, ntimesteps, nvars)) for j in range(0,nregions): comm_spread_frac_over_time[j,0,:] = [e.comm_spread_frac for e in epi[j]] for i in range(0, ntimesteps): # Public health measures PHA_social_distancing = 0 for w in soc_dist_windows: PHA_social_distancing += w.window(i) PHA_travel_restrictions = 0 for w in travel_restrictions_windows: PHA_travel_restrictions += w.window(i) PHA_isolate_visible_cases = 0 for w in isolate_symptomatic_cases_windows: PHA_isolate_visible_cases += w.window(i) PHA_isolate_at_risk = 0 for w in isolate_at_risk_windows: PHA_isolate_at_risk += w.window(i) PHA_isolate_infectious_cases = 0 for w in test_and_trace_windows: PHA_isolate_infectious_cases += w.window(i) PHA_isolate_cases = max(PHA_isolate_visible_cases, PHA_isolate_infectious_cases) public_health_adjustment = (1 - PHA_social_distancing) * (1 - PHA_isolate_cases) # Beds and Mortality if avoid_elective_operations: bed_occupancy_factor = (1 - PHA_social_distancing * max_reduction_in_normal_bed_occupancy) else: bed_occupancy_factor = 1 bed_occupancy_fraction = bed_occupancy_factor * normal_bed_occupancy_fraction #Community spread for j in range(0, nregions): comm_spread_frac_allvars[j,:] = [e.comm_spread_frac for e in epi[j]] # Loop of variants for v in range(0,nvars): # Loop over regions for j in range(0, nregions): intl_infected_visitors = intl_visitors[j] * (epi[j][v].proportion_global_infected[i]*global_infection_rate[i]) * min(0, 1 - PHA_travel_restrictions) dom_infected_visitors = 0 # Confirm current variant has been introduced already if epi_datetime_array[i] >= epi[j][v].start_time: if nregions > 1: for k in range(0, nregions): if k != j: dom_infected_visitors += epi[k][v].Itot_prev * between_region_mobility_rate[k]/(nregions - 1) # Run the model for one time step epi[j][v].update(total_population, dom_infected_visitors + intl_infected_visitors, between_locality_mobility_rate[j], public_health_adjustment, PHA_isolate_at_risk, bed_occupancy_fraction, beds_per_1000[j], vaccination_max_doses[i], vaccinate_at_risk, Itot_allvars[j], comm_spread_frac_allvars[j], nvars) # Update values for indicator graphs new_deaths_over_time[j,i,v] = epi[j][v].new_deaths + epi[j][v].new_deaths_reinf deaths[j,v] += epi[j][v].new_deaths deaths_reinf[j,v] += epi[j][v].new_deaths_reinf #susceptible_over_time[j,i,v] = epi[j][v].S exposed_over_time[j,i,v] = np_sum(epi[j][v].E_nr) + np_sum(epi[j][v].E_r) reexposed_over_time[j,i,v] = np_sum(epi[j][v].RE_nr) + np_sum(epi[j][v].RE_r) infective_over_time[j,i,v] = epi[j][v].Itot reinfective_over_time[j,i,v] = epi[j][v].RItot deaths_over_time[j,i,v] = deaths[j,v] deaths_reinf_over_time[j,i,v] = deaths_reinf[j,v] vaccinated_over_time[j,i,v] = epi[j][v].vaccinated rerecovered_over_time[j,i,v] = epi[j][v].RR cumulative_cases[j,v] += (1 - epi[j][v].invisible_fraction_1stinfection) * (epi[j][v].I_nr[1] + epi[j][v].I_r[1]) + \ (1 - epi[j][v].invisible_fraction_reinfection) * (epi[j][v].RI_nr[1] + epi[j][v].RI_r[1]) comm_spread_frac_over_time[j,i,v] = epi[j][v].comm_spread_frac mortality_rate_over_time[j,i,v] = epi[j][v].curr_mortality_rate # Calculate hospitalisation index across variants and track infected fraction across variants Itot_allvars=np_zeros(nregions) ## Breaks if one variant infects everyone hospitalized=np_zeros(nregions) for j in range(0, nregions): # Infected by regions for e in epi[j]: Itot_allvars[j]+= e.Itot_incl_reinf # add total infected for each variant in that region hosp_per_infective_1stinfections = (1 - e.invisible_fraction_1stinfection) * e.ave_fraction_of_visible_1stinfections_requiring_hospitalization hosp_per_infective_reinfections = (1 - e.invisible_fraction_reinfection) * e.ave_fraction_of_visible_reinfections_requiring_hospitalization hospitalized[j] += ( hosp_per_infective_1stinfections * np_sum(e.I_r + e.I_nr) + hosp_per_infective_reinfections * np_sum(e.RI_r + e.RI_nr) ) hospitalization_index_region[j] = bed_occupancy_fraction + hospitalized[j] /baseline_hosp[j] hospitalization_index[i] = np_amax(hospitalization_index_region) mortality_rate[i] = np_sum(new_deaths_over_time[:,i,:] )/total_population* 100000 # per 100,000 #True up susceptible pools, total population and recovered pools between variants for j in range(0, nregions): for v in range(0,nvars): if nvars>1: if i==0: epi[j][v].S-= (np_sum(epi[j][~v].E_nr[1]) + np_sum(epi[j][~v].E_r[1]) + np_sum(epi[j][~v].Itot)) if i > 0: epi[j][v].S= max(0, epi[j][v].S - (np_sum(epi[j][~v].E_nr[1]) + np_sum(epi[j][~v].E_r[1]))) epi[j][v].N -= ( epi[j][~v].new_deaths +epi[j][~v].new_deaths_reinf) if epi_datetime_array[i] < epi[j][v].start_time: epi[j][v].S= max(0, epi[j][v].S - (epi[j][~v].vaccinated_nr + epi[j][~v].vaccinated_r)) epi[j][v].R_nr = epi[j][~v].R_nr epi[j][v].R_r = epi[j][~v].R_r else: epi[j][v].R_nr -= epi[j][~v].new_reexposed_nr epi[j][v].R_r -= epi[j][~v].new_reexposed_r susceptible_over_time[j,i,v] = epi[j][v].S recovered_over_time[j,i,v] = np_sum(epi[j][v].R_nr) + np_sum(epi[j][v].R_r) return nvars, seir_params_multivar, nregions, regions, start_time, end_time, epi_datetime_array, susceptible_over_time, \ exposed_over_time, infective_over_time, recovered_over_time, vaccinated_over_time, deaths_over_time, deaths_reinf_over_time, reexposed_over_time, reinfective_over_time, \ rerecovered_over_time, hospitalization_index
[ "yaml.full_load", "common.timesteps_over_timedelta_weeks", "common.get_datetime", "numpy.ones", "common.get_datetime_array", "common.timesteps_between_dates", "numpy.sum", "numpy.zeros", "numpy.empty", "numpy.interp", "sys.exit", "seir_model.SEIR_matrix", "numpy.amax" ]
[((1888, 1920), 'numpy.sum', 'np_sum', (['proportion_total'], {'axis': '(0)'}), '(proportion_total, axis=0)\n', (1894, 1920), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((2128, 2178), 'common.get_datetime', 'get_datetime', (["common_params['time']['COVID start']"], {}), "(common_params['time']['COVID start'])\n", (2140, 2178), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((2197, 2300), 'common.timesteps_between_dates', 'timesteps_between_dates', (["common_params['time']['start date']", "common_params['time']['COVID start']"], {}), "(common_params['time']['start date'], common_params[\n 'time']['COVID start'])\n", (2220, 2300), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((2312, 2412), 'common.timesteps_between_dates', 'timesteps_between_dates', (["common_params['time']['start date']", "common_params['time']['end date']"], {}), "(common_params['time']['start date'], common_params[\n 'time']['end date'])\n", (2335, 2412), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((2434, 2530), 'common.get_datetime_array', 'get_datetime_array', (["common_params['time']['COVID start']", "common_params['time']['end date']"], {}), "(common_params['time']['COVID start'], common_params[\n 'time']['end date'])\n", (2452, 2530), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((3852, 3886), 'numpy.empty', 'np_empty', (['global_infection_npoints'], {}), '(global_infection_npoints)\n', (3860, 3886), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((3915, 3949), 'numpy.empty', 'np_empty', (['global_infection_npoints'], {}), '(global_infection_npoints)\n', (3923, 3949), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((4246, 4341), 'numpy.interp', 'np_interp', (['global_infection_traj_timesteps_array', 'global_infection_ts', 'global_infection_val'], {}), '(global_infection_traj_timesteps_array, global_infection_ts,\n global_infection_val)\n', (4255, 4341), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((4391, 4486), 'common.timesteps_between_dates', 'timesteps_between_dates', (['global_infection_traj_start', "common_params['time']['COVID start']"], {}), "(global_infection_traj_start, common_params['time'][\n 'COVID start'])\n", (4414, 4486), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((4681, 4766), 'common.timesteps_over_timedelta_weeks', 'timesteps_over_timedelta_weeks', (["common_params['vaccination']['time to efficacy']"], {}), "(common_params['vaccination']['time to efficacy']\n )\n", (4711, 4766), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((4990, 5019), 'numpy.empty', 'np_empty', (['vaccination_npoints'], {}), '(vaccination_npoints)\n', (4998, 5019), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((5043, 5072), 'numpy.empty', 'np_empty', (['vaccination_npoints'], {}), '(vaccination_npoints)\n', (5051, 5072), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((5338, 5409), 'numpy.interp', 'np_interp', (['vaccination_timesteps_array', 'vaccination_ts', 'vaccination_val'], {}), '(vaccination_timesteps_array, vaccination_ts, vaccination_val)\n', (5347, 5409), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((8793, 8811), 'numpy.zeros', 'np_zeros', (['nregions'], {}), '(nregions)\n', (8801, 8811), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((8844, 8871), 'numpy.zeros', 'np_zeros', (['(nregions, nvars)'], {}), '((nregions, nvars))\n', (8852, 8871), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((8886, 8913), 'numpy.zeros', 'np_zeros', (['(nregions, nvars)'], {}), '((nregions, nvars))\n', (8894, 8913), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((8934, 8961), 'numpy.zeros', 'np_zeros', (['(nregions, nvars)'], {}), '((nregions, nvars))\n', (8942, 8961), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((8986, 9013), 'numpy.zeros', 'np_zeros', (['(nregions, nvars)'], {}), '((nregions, nvars))\n', (8994, 9013), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9040, 9079), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9048, 9079), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9108, 9147), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9116, 9147), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9178, 9217), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9186, 9217), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9245, 9284), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9253, 9284), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9313, 9352), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9321, 9352), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9382, 9421), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9390, 9421), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9454, 9493), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9462, 9493), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9532, 9549), 'numpy.ones', 'np_ones', (['nregions'], {}), '(nregions)\n', (9539, 9549), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9579, 9598), 'numpy.ones', 'np_ones', (['ntimesteps'], {}), '(ntimesteps)\n', (9586, 9598), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9621, 9640), 'numpy.ones', 'np_ones', (['ntimesteps'], {}), '(ntimesteps)\n', (9628, 9640), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9670, 9709), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9678, 9709), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9739, 9778), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9747, 9778), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((9810, 9849), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (9818, 9849), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10189, 10228), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (10197, 10228), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10376, 10415), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (10384, 10415), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10578, 10617), 'numpy.zeros', 'np_zeros', (['(nregions, ntimesteps, nvars)'], {}), '((nregions, ntimesteps, nvars))\n', (10586, 10617), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((479, 499), 'yaml.full_load', 'yaml.full_load', (['file'], {}), '(file)\n', (493, 499), False, 'import yaml\n'), ((562, 582), 'yaml.full_load', 'yaml.full_load', (['file'], {}), '(file)\n', (576, 582), False, 'import yaml\n'), ((662, 682), 'yaml.full_load', 'yaml.full_load', (['file'], {}), '(file)\n', (676, 682), False, 'import yaml\n'), ((2097, 2103), 'sys.exit', 'exit', ([], {}), '()\n', (2101, 2103), False, 'from sys import exit\n'), ((3533, 3574), 'common.get_datetime', 'get_datetime', (['global_infection_traj_start'], {}), '(global_infection_traj_start)\n', (3545, 3574), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((4033, 4120), 'common.timesteps_between_dates', 'timesteps_between_dates', (['global_infection_traj_start', 'global_infection_points[i][0]'], {}), '(global_infection_traj_start,\n global_infection_points[i][0])\n', (4056, 4120), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((15144, 15162), 'numpy.zeros', 'np_zeros', (['nregions'], {}), '(nregions)\n', (15152, 15162), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((15227, 15245), 'numpy.zeros', 'np_zeros', (['nregions'], {}), '(nregions)\n', (15235, 15245), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16077, 16114), 'numpy.amax', 'np_amax', (['hospitalization_index_region'], {}), '(hospitalization_index_region)\n', (16084, 16114), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((5146, 5237), 'common.timesteps_between_dates', 'timesteps_between_dates', (["common_params['time']['COVID start']", 'vaccination_points[i][0]'], {}), "(common_params['time']['COVID start'],\n vaccination_points[i][0])\n", (5169, 5237), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((1250, 1286), 'seir_model.SEIR_matrix', 'SEIR_matrix', (['rgn', 'var', 'common_params'], {}), '(rgn, var, common_params)\n', (1261, 1286), False, 'from seir_model import SEIR_matrix\n'), ((3731, 3823), 'common.timesteps_between_dates', 'timesteps_between_dates', (['global_infection_traj_start', "common_params['time']['end date']"], {}), "(global_infection_traj_start, common_params['time'][\n 'end date'])\n", (3754, 3823), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((4865, 4966), 'common.timesteps_between_dates', 'timesteps_between_dates', (["common_params['time']['COVID start']", "common_params['time']['end date']"], {}), "(common_params['time']['COVID start'], common_params\n ['time']['end date'])\n", (4888, 4966), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((10299, 10313), 'numpy.sum', 'np_sum', (['e.E_nr'], {}), '(e.E_nr)\n', (10305, 10313), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10316, 10329), 'numpy.sum', 'np_sum', (['e.E_r'], {}), '(e.E_r)\n', (10322, 10329), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10488, 10503), 'numpy.sum', 'np_sum', (['e.RE_nr'], {}), '(e.RE_nr)\n', (10494, 10503), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((10506, 10520), 'numpy.sum', 'np_sum', (['e.RE_r'], {}), '(e.RE_r)\n', (10512, 10520), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16144, 16181), 'numpy.sum', 'np_sum', (['new_deaths_over_time[:, i, :]'], {}), '(new_deaths_over_time[:, i, :])\n', (16150, 16181), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((17400, 17422), 'numpy.sum', 'np_sum', (['epi[j][v].R_nr'], {}), '(epi[j][v].R_nr)\n', (17406, 17422), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((17425, 17446), 'numpy.sum', 'np_sum', (['epi[j][v].R_r'], {}), '(epi[j][v].R_r)\n', (17431, 17446), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((14048, 14070), 'numpy.sum', 'np_sum', (['epi[j][v].E_nr'], {}), '(epi[j][v].E_nr)\n', (14054, 14070), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((14073, 14094), 'numpy.sum', 'np_sum', (['epi[j][v].E_r'], {}), '(epi[j][v].E_r)\n', (14079, 14094), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((14145, 14168), 'numpy.sum', 'np_sum', (['epi[j][v].RE_nr'], {}), '(epi[j][v].RE_nr)\n', (14151, 14168), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((14171, 14193), 'numpy.sum', 'np_sum', (['epi[j][v].RE_r'], {}), '(epi[j][v].RE_r)\n', (14177, 14193), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((15846, 15868), 'numpy.sum', 'np_sum', (['(e.I_r + e.I_nr)'], {}), '(e.I_r + e.I_nr)\n', (15852, 15868), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((15905, 15929), 'numpy.sum', 'np_sum', (['(e.RI_r + e.RI_nr)'], {}), '(e.RI_r + e.RI_nr)\n', (15911, 15929), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16541, 16564), 'numpy.sum', 'np_sum', (['epi[j][~v].Itot'], {}), '(epi[j][~v].Itot)\n', (16547, 16564), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((5676, 5710), 'common.get_datetime', 'get_datetime', (["window['start date']"], {}), "(window['start date'])\n", (5688, 5710), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((5801, 5833), 'common.get_datetime', 'get_datetime', (["window['end date']"], {}), "(window['end date'])\n", (5813, 5833), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((6397, 6431), 'common.get_datetime', 'get_datetime', (["window['start date']"], {}), "(window['start date'])\n", (6409, 6431), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((6512, 6544), 'common.get_datetime', 'get_datetime', (["window['end date']"], {}), "(window['end date'])\n", (6524, 6544), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((7048, 7082), 'common.get_datetime', 'get_datetime', (["window['start date']"], {}), "(window['start date'])\n", (7060, 7082), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((7162, 7194), 'common.get_datetime', 'get_datetime', (["window['end date']"], {}), "(window['end date'])\n", (7174, 7194), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((7691, 7725), 'common.get_datetime', 'get_datetime', (["window['start date']"], {}), "(window['start date'])\n", (7703, 7725), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((7799, 7831), 'common.get_datetime', 'get_datetime', (["window['end date']"], {}), "(window['end date'])\n", (7811, 7831), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((8344, 8378), 'common.get_datetime', 'get_datetime', (["window['start date']"], {}), "(window['start date'])\n", (8356, 8378), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((8452, 8484), 'common.get_datetime', 'get_datetime', (["window['end date']"], {}), "(window['end date'])\n", (8464, 8484), False, 'from common import Window, get_datetime, timesteps_between_dates, get_datetime_array, timesteps_over_timedelta_weeks\n'), ((16484, 16510), 'numpy.sum', 'np_sum', (['epi[j][~v].E_nr[1]'], {}), '(epi[j][~v].E_nr[1])\n', (16490, 16510), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16513, 16538), 'numpy.sum', 'np_sum', (['epi[j][~v].E_r[1]'], {}), '(epi[j][~v].E_r[1])\n', (16519, 16538), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16655, 16681), 'numpy.sum', 'np_sum', (['epi[j][~v].E_nr[1]'], {}), '(epi[j][~v].E_nr[1])\n', (16661, 16681), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n'), ((16684, 16709), 'numpy.sum', 'np_sum', (['epi[j][~v].E_r[1]'], {}), '(epi[j][~v].E_r[1])\n', (16690, 16709), True, 'from numpy import array as np_array, zeros as np_zeros, sum as np_sum, empty as np_empty, amax as np_amax, interp as np_interp, ones as np_ones, tile as np_tile, isnan as np_isnan\n')]
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.gridspec as gs import sys data = np.loadtxt('NbSe2.freq.gp') symmetryfile = 'plotband.out' lbd = np.loadtxt("lambda.dat") lbd_val = np.where(lbd<1 , lbd, 1) def Symmetries(fstring): f = open(fstring, 'r') x = np.zeros(0) for i in f: if "high-symmetry" in i: x = np.append(x, float(i.split()[-1])) f.close() return x x=np.tile(data.T[0],9) val = lbd_val.T[1:].reshape(-1) y=data.T[1:].reshape(-1,) fig=plt.figure(figsize=(8,6)) labels=["G","M","K","G"] plt.scatter(x,y*0.12398,c=val,cmap="copper",s=10) sym_tick = Symmetries(symmetryfile) for i in range(len(sym_tick)-1): plt.axvline(sym_tick[i],linestyle='dashed', color='black', alpha=0.75) plt.xticks(sym_tick,labels) plt.xlim(min(sym_tick),max(sym_tick)) plt.ylim(0) plt.ylabel("Energy (meV)") plt.colorbar() plt.savefig("epc.pdf") plt.show()
[ "numpy.tile", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "numpy.where", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.figure", "numpy.zeros", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ylim", "numpy.loadtxt", "matplotlib.pyplot.axvline", "matplotlib.pyplot.show" ]
[((133, 160), 'numpy.loadtxt', 'np.loadtxt', (['"""NbSe2.freq.gp"""'], {}), "('NbSe2.freq.gp')\n", (143, 160), True, 'import numpy as np\n'), ((197, 221), 'numpy.loadtxt', 'np.loadtxt', (['"""lambda.dat"""'], {}), "('lambda.dat')\n", (207, 221), True, 'import numpy as np\n'), ((232, 257), 'numpy.where', 'np.where', (['(lbd < 1)', 'lbd', '(1)'], {}), '(lbd < 1, lbd, 1)\n', (240, 257), True, 'import numpy as np\n'), ((458, 479), 'numpy.tile', 'np.tile', (['data.T[0]', '(9)'], {}), '(data.T[0], 9)\n', (465, 479), True, 'import numpy as np\n'), ((541, 567), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (551, 567), True, 'import matplotlib.pyplot as plt\n'), ((592, 647), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', '(y * 0.12398)'], {'c': 'val', 'cmap': '"""copper"""', 's': '(10)'}), "(x, y * 0.12398, c=val, cmap='copper', s=10)\n", (603, 647), True, 'import matplotlib.pyplot as plt\n'), ((786, 814), 'matplotlib.pyplot.xticks', 'plt.xticks', (['sym_tick', 'labels'], {}), '(sym_tick, labels)\n', (796, 814), True, 'import matplotlib.pyplot as plt\n'), ((852, 863), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)'], {}), '(0)\n', (860, 863), True, 'import matplotlib.pyplot as plt\n'), ((864, 890), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Energy (meV)"""'], {}), "('Energy (meV)')\n", (874, 890), True, 'import matplotlib.pyplot as plt\n'), ((891, 905), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (903, 905), True, 'import matplotlib.pyplot as plt\n'), ((906, 928), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""epc.pdf"""'], {}), "('epc.pdf')\n", (917, 928), True, 'import matplotlib.pyplot as plt\n'), ((929, 939), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (937, 939), True, 'import matplotlib.pyplot as plt\n'), ((317, 328), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (325, 328), True, 'import numpy as np\n'), ((715, 786), 'matplotlib.pyplot.axvline', 'plt.axvline', (['sym_tick[i]'], {'linestyle': '"""dashed"""', 'color': '"""black"""', 'alpha': '(0.75)'}), "(sym_tick[i], linestyle='dashed', color='black', alpha=0.75)\n", (726, 786), True, 'import matplotlib.pyplot as plt\n')]
""" Regression tests for the REINFORCE agent on OpenAI gym environments """ import pytest import numpy as np import shutil from yarlp.utils.env_utils import NormalizedGymEnv from yarlp.agent.ddqn_agent import DDQNAgent env = NormalizedGymEnv( 'PongNoFrameskip-v4', is_atari=True ) def test_ddqn(): agent = DDQNAgent(env, max_timesteps=10, learning_start_timestep=1, train_freq=5, batch_size=1) agent.train() def test_seed(): agent = DDQNAgent(env, seed=143, max_timesteps=2) agent.train() ob, *_ = agent.replay_buffer.sample(1) agent = DDQNAgent(env, seed=143, max_timesteps=2) agent.train() ob2, *_ = agent.replay_buffer.sample(1) assert np.all( np.array(ob) == np.array(ob2)) def test_save_models(): agent = DDQNAgent(env, max_timesteps=2) agent.train() agent.save('testy_ddqn') agent = DDQNAgent.load('testy_ddqn') agent.t = 0 agent.train() shutil.rmtree('testy_ddqn')
[ "yarlp.agent.ddqn_agent.DDQNAgent.load", "yarlp.utils.env_utils.NormalizedGymEnv", "numpy.array", "shutil.rmtree", "yarlp.agent.ddqn_agent.DDQNAgent" ]
[((232, 285), 'yarlp.utils.env_utils.NormalizedGymEnv', 'NormalizedGymEnv', (['"""PongNoFrameskip-v4"""'], {'is_atari': '(True)'}), "('PongNoFrameskip-v4', is_atari=True)\n", (248, 285), False, 'from yarlp.utils.env_utils import NormalizedGymEnv\n'), ((327, 418), 'yarlp.agent.ddqn_agent.DDQNAgent', 'DDQNAgent', (['env'], {'max_timesteps': '(10)', 'learning_start_timestep': '(1)', 'train_freq': '(5)', 'batch_size': '(1)'}), '(env, max_timesteps=10, learning_start_timestep=1, train_freq=5,\n batch_size=1)\n', (336, 418), False, 'from yarlp.agent.ddqn_agent import DDQNAgent\n'), ((530, 571), 'yarlp.agent.ddqn_agent.DDQNAgent', 'DDQNAgent', (['env'], {'seed': '(143)', 'max_timesteps': '(2)'}), '(env, seed=143, max_timesteps=2)\n', (539, 571), False, 'from yarlp.agent.ddqn_agent import DDQNAgent\n'), ((646, 687), 'yarlp.agent.ddqn_agent.DDQNAgent', 'DDQNAgent', (['env'], {'seed': '(143)', 'max_timesteps': '(2)'}), '(env, seed=143, max_timesteps=2)\n', (655, 687), False, 'from yarlp.agent.ddqn_agent import DDQNAgent\n'), ((847, 878), 'yarlp.agent.ddqn_agent.DDQNAgent', 'DDQNAgent', (['env'], {'max_timesteps': '(2)'}), '(env, max_timesteps=2)\n', (856, 878), False, 'from yarlp.agent.ddqn_agent import DDQNAgent\n'), ((938, 966), 'yarlp.agent.ddqn_agent.DDQNAgent.load', 'DDQNAgent.load', (['"""testy_ddqn"""'], {}), "('testy_ddqn')\n", (952, 966), False, 'from yarlp.agent.ddqn_agent import DDQNAgent\n'), ((1005, 1032), 'shutil.rmtree', 'shutil.rmtree', (['"""testy_ddqn"""'], {}), "('testy_ddqn')\n", (1018, 1032), False, 'import shutil\n'), ((778, 790), 'numpy.array', 'np.array', (['ob'], {}), '(ob)\n', (786, 790), True, 'import numpy as np\n'), ((794, 807), 'numpy.array', 'np.array', (['ob2'], {}), '(ob2)\n', (802, 807), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import seaborn as sns import numpy as np import tensorflow as tf tf.enable_eager_execution() import tensorflow_probability as tfp from tensorflow_probability import edward2 as ed tfd = tfp.distributions # =========================================================================== # Constant # =========================================================================== a = 8 b = 0.5 mu = 0 n_samples = 100000 # =========================================================================== # Following the generative procedure # =========================================================================== # Step 1: generate the precision Beta beta_dist = tfd.Gamma(concentration=a, rate=b) beta = beta_dist.sample(n_samples) # the prior probability p_beta_given_a_and_b = beta_dist.prob(beta) # Step 2: generate the data point # scale is standard deviation x_dist = tfd.Normal(loc=mu, scale=tf.sqrt(1 / beta)) x = x_dist.sample() # the likelihood p_x_given_mu_and_beta = x_dist.prob(x) # ====== plotting the prior ====== # plt.figure() sns.distplot(beta.numpy(), bins=120, kde=True) plt.title(r"Prior distribution: $p(\beta|a=%g, b=%g)$" % (a, b)) # ====== plotting the likelihood ====== # plt.figure() sns.distplot(x.numpy(), bins=120, kde=True) plt.title(r"Likelihood distribution: $p(X|\mu=%g, \sigma=\sqrt{\beta^{-1}})$" % mu) # ====== plotting the posterior ====== # # the posterior probability, this is only # proportionally, not exactly because we omit # the evidence p(X) # If we want to calculate p(X), we need to marginalize out # beta using sum rule: # p(X) = p(X, beta_1) + p(X, beta_2) + ... + p(X, beta_∞) # This is not easy p_beta_given_x = p_x_given_mu_and_beta * p_beta_given_a_and_b p_beta_given_x = p_beta_given_x / tf.reduce_sum(p_beta_given_x) posterior_dist = tfd.Categorical(probs=p_beta_given_x) beta = beta.numpy() posterior = [] for i in range(n_samples // 2000): idx = posterior_dist.sample(2000).numpy() posterior.append(beta[idx]) posterior = np.concatenate(posterior) plt.figure() sns.distplot(posterior, bins=120, kde=True) plt.title(r"Sampled posterior distribution: $p(\beta|X)$") # ====== plotting the close form solution ====== # a0 = a + n_samples / 2 b0 = b + n_samples / 2 * np.var(x.numpy()) posterior_dist = tfd.Gamma(concentration=a0, rate=b0) posterior = posterior_dist.sample(n_samples) plt.figure() sns.distplot(posterior, bins=120, kde=True) plt.title( r"Closed form solution: $p(\beta|X) \sim Gamma(a=%g, b=%g)$" % (a0, b0)) from odin import visual as V V.plot_save('/tmp/tmp.pdf', dpi=200)
[ "seaborn.distplot", "matplotlib.use", "odin.visual.plot_save", "tensorflow.reduce_sum", "tensorflow.enable_eager_execution", "matplotlib.pyplot.figure", "tensorflow.sqrt", "numpy.concatenate", "matplotlib.pyplot.title" ]
[((107, 128), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (121, 128), False, 'import matplotlib\n'), ((233, 260), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (258, 260), True, 'import tensorflow as tf\n'), ((1194, 1206), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1204, 1206), True, 'from matplotlib import pyplot as plt\n'), ((1254, 1318), 'matplotlib.pyplot.title', 'plt.title', (["('Prior distribution: $p(\\\\beta|a=%g, b=%g)$' % (a, b))"], {}), "('Prior distribution: $p(\\\\beta|a=%g, b=%g)$' % (a, b))\n", (1263, 1318), True, 'from matplotlib import pyplot as plt\n'), ((1362, 1374), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1372, 1374), True, 'from matplotlib import pyplot as plt\n'), ((1419, 1515), 'matplotlib.pyplot.title', 'plt.title', (["('Likelihood distribution: $p(X|\\\\mu=%g, \\\\sigma=\\\\sqrt{\\\\beta^{-1}})$' % mu)"], {}), "(\n 'Likelihood distribution: $p(X|\\\\mu=%g, \\\\sigma=\\\\sqrt{\\\\beta^{-1}})$' % mu\n )\n", (1428, 1515), True, 'from matplotlib import pyplot as plt\n'), ((2152, 2177), 'numpy.concatenate', 'np.concatenate', (['posterior'], {}), '(posterior)\n', (2166, 2177), True, 'import numpy as np\n'), ((2179, 2191), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2189, 2191), True, 'from matplotlib import pyplot as plt\n'), ((2192, 2235), 'seaborn.distplot', 'sns.distplot', (['posterior'], {'bins': '(120)', 'kde': '(True)'}), '(posterior, bins=120, kde=True)\n', (2204, 2235), True, 'import seaborn as sns\n'), ((2236, 2294), 'matplotlib.pyplot.title', 'plt.title', (['"""Sampled posterior distribution: $p(\\\\beta|X)$"""'], {}), "('Sampled posterior distribution: $p(\\\\beta|X)$')\n", (2245, 2294), True, 'from matplotlib import pyplot as plt\n'), ((2513, 2525), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2523, 2525), True, 'from matplotlib import pyplot as plt\n'), ((2526, 2569), 'seaborn.distplot', 'sns.distplot', (['posterior'], {'bins': '(120)', 'kde': '(True)'}), '(posterior, bins=120, kde=True)\n', (2538, 2569), True, 'import seaborn as sns\n'), ((2570, 2658), 'matplotlib.pyplot.title', 'plt.title', (["('Closed form solution: $p(\\\\beta|X) \\\\sim Gamma(a=%g, b=%g)$' % (a0, b0))"], {}), "('Closed form solution: $p(\\\\beta|X) \\\\sim Gamma(a=%g, b=%g)$' % (\n a0, b0))\n", (2579, 2658), True, 'from matplotlib import pyplot as plt\n'), ((2693, 2729), 'odin.visual.plot_save', 'V.plot_save', (['"""/tmp/tmp.pdf"""'], {'dpi': '(200)'}), "('/tmp/tmp.pdf', dpi=200)\n", (2704, 2729), True, 'from odin import visual as V\n'), ((1910, 1939), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['p_beta_given_x'], {}), '(p_beta_given_x)\n', (1923, 1939), True, 'import tensorflow as tf\n'), ((1061, 1078), 'tensorflow.sqrt', 'tf.sqrt', (['(1 / beta)'], {}), '(1 / beta)\n', (1068, 1078), True, 'import tensorflow as tf\n')]
try: import tensorflow except ModuleNotFoundError: pkg_name = 'tensorflow' import os import sys import subprocess from cellacdc import myutils cancel = myutils.install_package_msg(pkg_name) if cancel: raise ModuleNotFoundError( f'User aborted {pkg_name} installation' ) subprocess.check_call( [sys.executable, '-m', 'pip', 'install', 'tensorflow'] ) # numba requires numpy<1.22 but tensorflow might install higher # so install numpy less than 1.22 if needed import numpy np_version = numpy.__version__.split('.') np_major, np_minor = [int(v) for v in np_version][:2] if np_major >= 1 and np_minor >= 22: subprocess.check_call( [sys.executable, '-m', 'pip', 'install', '--upgrade', 'numpy<1.22'] )
[ "numpy.__version__.split", "subprocess.check_call", "cellacdc.myutils.install_package_msg" ]
[((180, 217), 'cellacdc.myutils.install_package_msg', 'myutils.install_package_msg', (['pkg_name'], {}), '(pkg_name)\n', (207, 217), False, 'from cellacdc import myutils\n'), ((334, 411), 'subprocess.check_call', 'subprocess.check_call', (["[sys.executable, '-m', 'pip', 'install', 'tensorflow']"], {}), "([sys.executable, '-m', 'pip', 'install', 'tensorflow'])\n", (355, 411), False, 'import subprocess\n'), ((577, 605), 'numpy.__version__.split', 'numpy.__version__.split', (['"""."""'], {}), "('.')\n", (600, 605), False, 'import numpy\n'), ((713, 807), 'subprocess.check_call', 'subprocess.check_call', (["[sys.executable, '-m', 'pip', 'install', '--upgrade', 'numpy<1.22']"], {}), "([sys.executable, '-m', 'pip', 'install', '--upgrade',\n 'numpy<1.22'])\n", (734, 807), False, 'import subprocess\n')]
import os, sys, re, json, random, importlib import numpy as np import pandas as pd from collections import OrderedDict from tqdm import tqdm import matplotlib import matplotlib.pyplot as plt import seaborn as sns import logomaker as lm from venn import venn from venn import generate_petal_labels, draw_venn from scipy.stats import pearsonr from scipy.cluster import hierarchy from util import * import warnings warnings.filterwarnings('ignore') class CAMInterp(): def __init__(self, mhc_seq_filename, allele_mask_dirname, epitope_mask_dirname, df_filename, output_dir, pred_basename='score', pred_threshold=0.9, mhc_len=182, min_sample_num=100, submotif_len=4): self.aa_str = 'ACDEFGHIKLMNPQRSTVWY' self.mhc_len = mhc_len self.epitope_len = 10 self.res34_pos = [6, 8, 23, 44, 58, 61, 62, 65, 66, 68, 69, 72, 73, 75, 76, 79, 80, 83, 94, 96, 98, 113, 115, 117, 142, 146, 149, 151, 155, 157, 158, 162, 166, 170] self.color_dict = {'A': '#DACC47', 'B': '#B1DEC9', 'C': '#FFBB99', 'polymorphism': '#875A85'} self.dpi = 600 self.fontsize = 10 self.pred_basename = pred_basename self.pred_threshold = pred_threshold self.min_sample_num = min_sample_num self.submotif_len = submotif_len self.output_dir = output_dir # mhc_seq_dict self.mhc_seq_dict = json.load(open(mhc_seq_filename, 'r')) # allele_mask_df if type(allele_mask_dirname) == list: alleles = [self._convert_allele(i) for i in os.listdir(allele_mask_dirname[0])] self.allele_mask_df = pd.DataFrame(columns=alleles, index=range(self.mhc_len), data=0) self.allele_mask_df.loc['count'] = 0 for i in range(len(allele_mask_dirname)): temp_df = pd.DataFrame(self._parse_mask(allele_mask_dirname[i], mask_type='mhc')) self.allele_mask_df.loc[temp_df.index, temp_df.columns] += temp_df self.allele_mask_df.loc['count', temp_df.columns] += 1 self.allele_mask_df = self.allele_mask_df.loc[:, self.allele_mask_df.loc['count'] != 0] self.allele_mask_df.loc[range(self.mhc_len)] /= self.allele_mask_df.loc['count'] self.allele_mask_df = self.allele_mask_df.drop('count') else: self.allele_mask_df = pd.DataFrame(self._parse_mask(allele_mask_dirname, mask_type='mhc')) self.allele_mask_df.to_csv('%s/AlleleMask.csv'%self.output_dir) # epitope_mask_df if type(epitope_mask_dirname) == list: alleles = [self._convert_allele(i) for i in os.listdir(epitope_mask_dirname[0])] self.epitope_mask_df = pd.DataFrame(columns=alleles, index=range(self.epitope_len), data=0) self.epitope_mask_df.loc['count'] = 0 for i in range(len(epitope_mask_dirname)): temp_df = pd.DataFrame(self._parse_mask(epitope_mask_dirname[i], mask_type='epitope')) self.epitope_mask_df.loc[temp_df.index, temp_df.columns] += temp_df self.epitope_mask_df.loc['count', temp_df.columns] += 1 self.epitope_mask_df = self.epitope_mask_df.loc[:, self.epitope_mask_df.loc['count'] != 0] self.epitope_mask_df.loc[range(self.epitope_len)] /= self.epitope_mask_df.loc['count'] self.epitope_mask_df = self.epitope_mask_df.drop('count') else: self.epitope_mask_df = pd.DataFrame(self._parse_mask(epitope_mask_dirname, mask_type='epitope')) self.epitope_mask_df['position'] = [1,2,3,4,5,-5,-4,-3,-2,-1] self.epitope_mask_df = self.epitope_mask_df.set_index('position', drop=True) self.epitope_mask_df.to_csv('%s/EpitopeMask.csv'%self.output_dir) # df self.df = pd.read_csv(df_filename, index_col=0) self.alleles = list(self.df['mhc'].unique()) self.allele_num = len(self.alleles) # motif_dict self.motif_dict = self._parse_motif(pred_basename, pred_threshold, self.min_sample_num) self.alleles = list(self.df['mhc'].unique()) self.allele_num = len(self.alleles) # mhc_seqlogo_df self.mhc_seqlogo_df = self._mhc_seqlogo_df(self.alleles, list(range(self.mhc_len))) def ResidueAnalysis(self, cam_threshold, importance_threshold, barplot_figsize=(10,2), square_figsize=(3.5,3.5)): # mean plot self._residue_barplot(self.allele_mask_df.mean(axis=1), self.res34_pos, figsize=barplot_figsize, figfile='%s/CAMmean.png'%self.output_dir) # importance plot importance_count = self._residue_importance_count(self.alleles, cam_threshold) self._residue_barplot(importance_count, self.res34_pos, figsize=barplot_figsize, figfile='%s/CAMimportance.png'%self.output_dir) # important residues - stacked plot df = self._importance_stacked_barplot(cam_threshold, self.res34_pos, xticklabels=False, yticklabels=True, figsize=barplot_figsize, figfile='%s/CAMimportanceStacked.png'%self.output_dir) df.to_csv('%s/ImportanceStack.csv'%self.output_dir) # important residues residue_dict = self._select_residue(cam_threshold, importance_threshold) json.dump(residue_dict, open('%s/ResidueSelection.json'%self.output_dir, 'w')) # venn diagram of residue selection self._importance_venn_plot(residue_dict, figsize=square_figsize, figfile='%s/ResidueSelectionVenn.png'%self.output_dir) # correlation between residue importance and sequence entropy # entropy = sigma(probability**2) # allele part df = self._mhc_importance_polymorphism_plot(cam_threshold, residue_dict, figsize=square_figsize, figfile='%s/AlleleImportanceEntropyCorrelation.png'%self.output_dir) df.to_csv('%s/AlleleImportancePolymorphism.csv'%self.output_dir) # epitope part df = self._epitope_importance_polymorphism_plot(figsize=square_figsize, figfile='%s/EpitopeImportanceEntropyCorrelation.png'%self.output_dir) df.to_csv('%s/EpitopeImportancePolymorphism.csv'%self.output_dir) def ClusterAnalysis(self, method, metric, allele_figsize=(10,2), epitope_figsize=(3.5,3.5)): alleles = self.alleles # allele masks allele_order, position_order = self._mask_clustering_plot(alleles, mask_type='mhc', method=method, metric=metric, xticklabels=False, yticklabels=False, row_colors=True, figsize=allele_figsize, title=None, xlabel='MHC-I position', ylabel='MHC-I allele', figfile='%s/AlleleCAMcluster_all.png'%self.output_dir) # epitope masks allele_order, position_order = self._mask_clustering_plot(alleles, mask_type='epitope', method=method, metric=metric, xticklabels=True, yticklabels=False, row_colors=True, figsize=epitope_figsize, title=None, xlabel='peptide position', ylabel='MHC-I allele', figfile='%s/EpitopeCAMcluster_all.png'%self.output_dir) """""""""""""""""""""""""""""""""""""" # Plots """""""""""""""""""""""""""""""""""""" # mask_type: mhc or epitope def _mask_clustering_plot(self, alleles, mask_type='mhc', method='average', metric='euclidean', allele_linkage=True, position_linkage=False, row_colors=False, xticklabels=True, yticklabels=True, title=None, xlabel=None, ylabel=None, figsize=(8, 4), figfile=None): # residue positions if mask_type == 'mhc': positions = list(range(self.mhc_len)) df = self.allele_mask_df.iloc[positions][alleles].T else: positions = [1,2,3,4,-4,-3,-2,-1] df = self.epitope_mask_df.loc[positions][alleles].T # linkage zx, zy = None, None if allele_linkage: zy = hierarchy.linkage(df, method=method, metric=metric, optimal_ordering=True) if position_linkage: zx = hierarchy.linkage(df.T, method=method, metric=metric, optimal_ordering=True) # row colors if row_colors: color_list = list() for allele in alleles: hla = allele.split('*')[0] color_list.append(self.color_dict[hla]) else: color_list = None # clustermap g = sns.clustermap(df, col_cluster=position_linkage, row_cluster=allele_linkage, row_linkage=zy, col_linkage=zx, row_colors = color_list, cmap='Blues', cbar_kws={'orientation': 'horizontal', 'label': 'mask score'}, cbar_pos=(.3, -.05, .4, .02), dendrogram_ratio=0.1, colors_ratio=0.02, xticklabels=xticklabels, yticklabels=yticklabels, figsize=figsize) g.ax_heatmap.set_title(title) g.ax_heatmap.set_xlabel(xlabel) g.ax_heatmap.set_ylabel(ylabel) # cluster order if allele_linkage: allele_order = g.dendrogram_row.reordered_ind allele_order = [alleles[i] for i in allele_order] else: allele_order = None if position_linkage: position_order = g.dendrogram_col.reordered_ind position_order = [positions[i] for i in position_order] else: position_order = None # save figure if figfile: plt.savefig(figfile, bbox_inches='tight', dpi=self.dpi) return allele_order, position_order def _motif_plot(self, alleles, motif_dict, figfile=None): allele_num = len(alleles) fig, ax = plt.subplots(allele_num, figsize=(0.8, allele_num*0.2), dpi=self.dpi) for i in range(allele_num): allele = alleles[i] seqlogo_df = pd.DataFrame(motif_dict[allele], columns=list(self.aa_str)) logo = lm.Logo(seqlogo_df, ax=ax[i], color_scheme="skylign_protein") _ = ax[i].set_xticks([]) _ = ax[i].set_yticks([]) for side in ['top','bottom','left','right']: ax[i].spines[side].set_linewidth(0.1) fig.tight_layout() if figfile: fig.savefig(figfile) def _residue_barplot(self, arr, tag_pos, figsize=(8,3), figfile=None): # main figure fig, ax = plt.subplots(1, figsize=figsize, dpi=self.dpi) sns.barplot(x=list(range(self.mhc_len)), y=arr, ax=ax) ax.tick_params(axis='x', rotation=90) # fontsize for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_yticklabels()): item.set_fontsize(self.fontsize) for item in ax.get_xticklabels(): item.set_fontsize(self.fontsize/4) # set xtick colors colors = list() for i in range(self.mhc_len): if i in tag_pos: colors.append('red') else: colors.append('black') for tick, color in zip(ax.get_xticklabels(), colors): tick.set_color(color) fig.tight_layout() # save figure if figfile: fig.savefig(figfile, bbox_inches='tight') def _importance_stacked_barplot(self, cam_threshold, tag_pos, figsize=(8,3), xticklabels=True, yticklabels=True, figfile=None): # build importance dataframe, columns=['A','B','C'] d = dict() for hla in ['A', 'B', 'C']: alleles = [i for i in self.alleles if hla in i] d[hla] = self._residue_importance_count(alleles, cam_threshold) df = pd.DataFrame(d) # figure fig = plt.figure(figsize=figsize, dpi=self.dpi) ax = fig.add_subplot(111) ax.margins(x=0) # stacked bar plot ax.bar(df.index, df['A'], color=self.color_dict['A']) ax.bar(df.index, df['B'], bottom=df['A'], color=self.color_dict['B']) ax.bar(df.index, df['C'], bottom=df['A'] + df['B'], color=self.color_dict['C']) # ticks & ticklabels if xticklabels: _ = ax.set_xticks(df.index) _ = ax.set_xticklabels(df.index+1, rotation=90) # xtick colors colors = list() for i in df.index: if i in tag_pos: colors.append('red') else: colors.append('black') for tick, color in zip(ax.get_xticklabels(), colors): tick.set_color(color) else: _ = ax.set_xticks([]) _ = ax.set_xticklabels([]) if yticklabels: _ = ax.set_ylabel('importance') else: _ = ax.set_yticks([]) _ = ax.set_yticklabels([]) # fontsize for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(self.fontsize) # legend Abar = matplotlib.patches.Rectangle((0,0),1,1,fc=self.color_dict['A'], edgecolor='none') Bbar = matplotlib.patches.Rectangle((0,0),1,1,fc=self.color_dict['B'], edgecolor='none') Cbar = matplotlib.patches.Rectangle((0,0),1,1,fc=self.color_dict['C'], edgecolor='none') l = ax.legend([Abar, Bbar, Cbar], ['HLA-A', 'HLA-B', 'HLA-C'], loc=0, ncol=3, fontsize=self.fontsize) l.draw_frame(False) fig.tight_layout() # save figure if figfile: fig.savefig(figfile, bbox_inches='tight') return df def _mhc_importance_polymorphism_plot(self, cam_threshold, position_dict, figsize=(3.5,3.5), s=2, figfile=None): # figure df = pd.DataFrame() fig, ax = plt.subplots(1, figsize=figsize, dpi=self.dpi) # calculate entropy df['polymorphism'] = -(self.mhc_seqlogo_df*np.log(self.mhc_seqlogo_df)).sum(axis=1) # calculate importance by HLA importance_counts = list() for hla in ['A', 'B', 'C']: alleles = [i for i in self.alleles if hla in i] importance_counts.append(self._residue_importance_count(alleles, cam_threshold)) importance_counts = np.array(importance_counts) importance_count = importance_counts.max(axis=0) df['importance'] = importance_count # label df['label'] = 'others' df.loc[position_dict['res34'], 'label'] = '34-residue' df.loc[position_dict['selected'], 'label'] = 'selected' intersect = list(set(position_dict['res34']) & set(position_dict['selected'])) df.loc[intersect, 'label'] = 'intersection' # plot_param param_dict = OrderedDict({'selected':{'color': '#ff4949', 'marker': 'o', 's': 12}, 'intersection': {'color': '#ff4949', 'marker': 'x', 's': 12}, '34-residue': {'color': '#adb5bd', 'marker': 'x', 's': 12}, 'others': {'color': '#adb5bd', 'marker': 'o', 's': 12}}) # regplot df = df[df['polymorphism']!=0] p = sns.regplot(x='importance', y='polymorphism', data=df, ax=ax, fit_reg=True, scatter_kws={'s':0}) for label, params in param_dict.items(): p = sns.regplot(x='importance', y='polymorphism', data=df[df['label']==label], ax=ax, fit_reg=False, marker=params['marker'], scatter_kws={'color':params['color'], 's':params['s'], 'linewidths': 0.1}) ''' # annotation for idx, row in df.iterrows(): if idx in [64, 70]: p.text(df.loc[idx, 'importance']-0.025, df.loc[idx, 'polymorphism']-0.09, idx+1, fontsize=self.fontsize-2) ''' # fontsize for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(self.fontsize) # legend legend_list = [matplotlib.patches.Rectangle((0,0),1,1,fc='#ff4949', edgecolor='none'), matplotlib.patches.Rectangle((0,0),1,1,fc='#adb5bd', edgecolor='none'), plt.scatter([], [], color='black', marker='x', s=12), plt.scatter([], [], color='black', marker='o', s=12)] label_list = ['selected', 'non-selected', '34-residue', 'non-34-residue'] l = ax.legend(handles=legend_list, labels=label_list, loc='lower left', bbox_to_anchor=(-0.2,1), ncol=2, fontsize=self.fontsize) l.draw_frame(True) # layout ax.set_xticks([0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.02]) ax.set_xticklabels([0.0, 0.2, 0.4, 0.6, 0.8, 1.0, '']) fig.tight_layout() # pearson correlation pearson, pvalue = pearsonr(df['importance'], df['polymorphism']) ax.text(0.05, 1.6, 'r=%.2f, p=%.2e'%(pearson, pvalue)) # save figure if figfile: fig.savefig(figfile, bbox_inches='tight') return df def _epitope_importance_polymorphism_plot(self, figsize=(3.5,3.5), figfile=None): # get epitope polymorphism peptides = self.df[self.df[self.pred_basename] > self.pred_threshold]['sequence'].to_list() peptides = [i[:self.submotif_len] + i[-self.submotif_len:] for i in peptides] seqlogo_df = lm.alignment_to_matrix(sequences=peptides, to_type="probability", characters_to_ignore=".", pseudocount=0) polymorphism = -(seqlogo_df*np.log(seqlogo_df)).sum(axis=1).to_numpy() # df for plot df = pd.DataFrame(index=list(range(1, 1+self.submotif_len)) + list(range(-self.submotif_len, 0))) df['polymorphism'] = polymorphism df['mask_score'] = self.epitope_mask_df.mean(axis=1)[df.index] df['residue_tag'] = 'other' df.loc[[2,-1], 'residue_tag'] = 'anchor' # plot fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=self.dpi) sns.scatterplot(data=df, x='mask_score', y='polymorphism', hue='residue_tag', ax=ax) for pos in [2, -1]: ax.text(x=df.loc[pos, 'mask_score']-0.25, y=df.loc[pos, 'polymorphism'], s='Position: {}'.format(pos)) fig.tight_layout() if figfile: fig.savefig(figfile, bbox_inches='tight') return df def _importance_venn_plot(self, position_dict, figsize=(3.5,3.5), figfile=None): keys = ['A','B','C','polymorphism'] position_dict = {k: set(v) for k, v in position_dict.items() if k in keys} petal_labels = generate_petal_labels(position_dict.values()) colors = [list(np.array(self._convert_color_code(self.color_dict[k]))/256) + [0.4] for k in keys] fig, ax = plt.subplots(1, figsize=figsize, dpi=self.dpi) draw_venn(petal_labels=petal_labels, dataset_labels=position_dict.keys(),hint_hidden=False, colors=colors, figsize=figsize, fontsize=self.fontsize, legend_loc="best", ax=ax) ax.get_legend().remove() legends = [matplotlib.patches.Rectangle((0,0),1,1,fc=color, edgecolor='none') for color in colors] l = fig.legend(legends, keys, fontsize=self.fontsize, ncol=4, loc="lower center", bbox_to_anchor=(0, 0.75, 1, 0.2), columnspacing=1, handlelength=0.5, handletextpad=0.2, borderpad=0.2) fig.tight_layout() if figfile: fig.savefig(figfile, bbox_inches='tight') """""""""""""""""""""""""""""""""""""" # Minor Functions """""""""""""""""""""""""""""""""""""" def _parse_mask(self, dirname, mask_type): masks = OrderedDict() for allele in os.listdir(dirname): if re.match(r'[ABC][0-9]+', allele): if not os.path.isfile('%s/%s/record.npy'%(dirname, allele)): continue if mask_type == 'mhc': masks[self._convert_allele(allele)] \ = np.load('%s/%s/record.npy'%(dirname, allele), allow_pickle=True)[()]['mhc_masks'].mean(axis=0) else: masks[self._convert_allele(allele)] \ = np.load('%s/%s/record.npy'%(dirname, allele), allow_pickle=True)[()]['epitope_masks'].mean(axis=0) return masks def _parse_motif(self, basename, threshold, sample_num): motifs = OrderedDict() for i in range(self.allele_num): allele = self.alleles[i] seqs = self.df.loc[(self.df['mhc']==allele) & (self.df[basename] >= threshold), 'sequence'] if len(seqs) >= sample_num: seqs = seqs.apply(lambda x: x[:self.submotif_len] + x[-self.submotif_len:]) temp_df = pd.DataFrame(columns=list(self.aa_str)) seqlogo_df = lm.alignment_to_matrix(sequences=seqs, to_type="information", characters_to_ignore="XU") temp_df = pd.concat([temp_df, seqlogo_df], axis=0) temp_df = temp_df.fillna(0.0) motifs[allele] = temp_df.to_numpy() return motifs def _residue_importance_count(self, alleles, cam_threshold): importance_count = np.array([0]*self.mhc_len) for allele in alleles: importance_count[self.allele_mask_df[allele] > cam_threshold] += 1 return importance_count / len(alleles) def _mhc_seqlogo_df(self, alleles, positions): seqs = list() for allele in alleles: seqs.append(''.join(self.mhc_seq_dict[allele][j] for j in positions)) temp_df = pd.DataFrame(columns=list(self.aa_str)) seqlogo_df = lm.alignment_to_matrix(sequences=seqs, to_type="probability", characters_to_ignore=".", pseudocount=0) temp_df = pd.concat([temp_df, seqlogo_df], axis=0) temp_df = temp_df.fillna(0.0) return temp_df def _select_residue(self, cam_threshold, importance_threshold): importance_positions = dict() importance_position_set = set() importance_positions['res34'] = self.res34_pos # by HLA for hla in ['A', 'B', 'C']: alleles = [i for i in self.alleles if hla in i] importance_count = self._residue_importance_count(alleles, cam_threshold) pos = list(map(int, np.where(importance_count > importance_threshold)[0])) importance_positions[hla] = pos importance_position_set = importance_position_set | set(pos) # polymorphism polymorphism_position = list(map(int,self.mhc_seqlogo_df[~(self.mhc_seqlogo_df.max(axis=1)==1)].index)) importance_positions['polymorphism'] = sorted(polymorphism_position) importance_position_set = importance_position_set & set(polymorphism_position) # final importance_position = sorted(list(importance_position_set)) importance_positions['selected'] = importance_position return importance_positions def _convert_allele(self, allele): if re.match(r'[ABC][0-9]+', allele): return allele[0] + '*' + allele[1:-2] + ':' + allele[-2:] elif re.match(r'[ABC]\*[0-9]+\:[0-9]+', allele): return allele def _convert_color_code(self, code): return tuple(int(code[i:i+2], 16) for i in (1, 3, 5))
[ "pandas.read_csv", "numpy.log", "numpy.array", "seaborn.scatterplot", "scipy.stats.pearsonr", "seaborn.regplot", "os.listdir", "numpy.where", "scipy.cluster.hierarchy.linkage", "matplotlib.pyplot.scatter", "logomaker.alignment_to_matrix", "pandas.DataFrame", "collections.OrderedDict", "matplotlib.pyplot.savefig", "seaborn.clustermap", "re.match", "os.path.isfile", "warnings.filterwarnings", "matplotlib.patches.Rectangle", "matplotlib.pyplot.figure", "numpy.load", "pandas.concat", "matplotlib.pyplot.subplots", "logomaker.Logo" ]
[((412, 445), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (435, 445), False, 'import warnings\n'), ((3833, 3870), 'pandas.read_csv', 'pd.read_csv', (['df_filename'], {'index_col': '(0)'}), '(df_filename, index_col=0)\n', (3844, 3870), True, 'import pandas as pd\n'), ((9393, 9760), 'seaborn.clustermap', 'sns.clustermap', (['df'], {'col_cluster': 'position_linkage', 'row_cluster': 'allele_linkage', 'row_linkage': 'zy', 'col_linkage': 'zx', 'row_colors': 'color_list', 'cmap': '"""Blues"""', 'cbar_kws': "{'orientation': 'horizontal', 'label': 'mask score'}", 'cbar_pos': '(0.3, -0.05, 0.4, 0.02)', 'dendrogram_ratio': '(0.1)', 'colors_ratio': '(0.02)', 'xticklabels': 'xticklabels', 'yticklabels': 'yticklabels', 'figsize': 'figsize'}), "(df, col_cluster=position_linkage, row_cluster=allele_linkage,\n row_linkage=zy, col_linkage=zx, row_colors=color_list, cmap='Blues',\n cbar_kws={'orientation': 'horizontal', 'label': 'mask score'}, cbar_pos\n =(0.3, -0.05, 0.4, 0.02), dendrogram_ratio=0.1, colors_ratio=0.02,\n xticklabels=xticklabels, yticklabels=yticklabels, figsize=figsize)\n", (9407, 9760), True, 'import seaborn as sns\n'), ((10935, 11006), 'matplotlib.pyplot.subplots', 'plt.subplots', (['allele_num'], {'figsize': '(0.8, allele_num * 0.2)', 'dpi': 'self.dpi'}), '(allele_num, figsize=(0.8, allele_num * 0.2), dpi=self.dpi)\n', (10947, 11006), True, 'import matplotlib.pyplot as plt\n'), ((11622, 11668), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'figsize', 'dpi': 'self.dpi'}), '(1, figsize=figsize, dpi=self.dpi)\n', (11634, 11668), True, 'import matplotlib.pyplot as plt\n'), ((12946, 12961), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (12958, 12961), True, 'import pandas as pd\n'), ((13002, 13043), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize', 'dpi': 'self.dpi'}), '(figsize=figsize, dpi=self.dpi)\n', (13012, 13043), True, 'import matplotlib.pyplot as plt\n'), ((14342, 14431), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': "self.color_dict['A']", 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc=self.color_dict['A'],\n edgecolor='none')\n", (14370, 14431), False, 'import matplotlib\n'), ((14439, 14528), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': "self.color_dict['B']", 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc=self.color_dict['B'],\n edgecolor='none')\n", (14467, 14528), False, 'import matplotlib\n'), ((14536, 14625), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': "self.color_dict['C']", 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc=self.color_dict['C'],\n edgecolor='none')\n", (14564, 14625), False, 'import matplotlib\n'), ((15089, 15103), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (15101, 15103), True, 'import pandas as pd\n'), ((15122, 15168), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'figsize', 'dpi': 'self.dpi'}), '(1, figsize=figsize, dpi=self.dpi)\n', (15134, 15168), True, 'import matplotlib.pyplot as plt\n'), ((15581, 15608), 'numpy.array', 'np.array', (['importance_counts'], {}), '(importance_counts)\n', (15589, 15608), True, 'import numpy as np\n'), ((16067, 16329), 'collections.OrderedDict', 'OrderedDict', (["{'selected': {'color': '#ff4949', 'marker': 'o', 's': 12}, 'intersection':\n {'color': '#ff4949', 'marker': 'x', 's': 12}, '34-residue': {'color':\n '#adb5bd', 'marker': 'x', 's': 12}, 'others': {'color': '#adb5bd',\n 'marker': 'o', 's': 12}}"], {}), "({'selected': {'color': '#ff4949', 'marker': 'o', 's': 12},\n 'intersection': {'color': '#ff4949', 'marker': 'x', 's': 12},\n '34-residue': {'color': '#adb5bd', 'marker': 'x', 's': 12}, 'others': {\n 'color': '#adb5bd', 'marker': 'o', 's': 12}})\n", (16078, 16329), False, 'from collections import OrderedDict\n'), ((16488, 16589), 'seaborn.regplot', 'sns.regplot', ([], {'x': '"""importance"""', 'y': '"""polymorphism"""', 'data': 'df', 'ax': 'ax', 'fit_reg': '(True)', 'scatter_kws': "{'s': 0}"}), "(x='importance', y='polymorphism', data=df, ax=ax, fit_reg=True,\n scatter_kws={'s': 0})\n", (16499, 16589), True, 'import seaborn as sns\n'), ((18173, 18219), 'scipy.stats.pearsonr', 'pearsonr', (["df['importance']", "df['polymorphism']"], {}), "(df['importance'], df['polymorphism'])\n", (18181, 18219), False, 'from scipy.stats import pearsonr\n'), ((18733, 18843), 'logomaker.alignment_to_matrix', 'lm.alignment_to_matrix', ([], {'sequences': 'peptides', 'to_type': '"""probability"""', 'characters_to_ignore': '"""."""', 'pseudocount': '(0)'}), "(sequences=peptides, to_type='probability',\n characters_to_ignore='.', pseudocount=0)\n", (18755, 18843), True, 'import logomaker as lm\n'), ((19332, 19381), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': 'figsize', 'dpi': 'self.dpi'}), '(1, 1, figsize=figsize, dpi=self.dpi)\n', (19344, 19381), True, 'import matplotlib.pyplot as plt\n'), ((19390, 19479), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'data': 'df', 'x': '"""mask_score"""', 'y': '"""polymorphism"""', 'hue': '"""residue_tag"""', 'ax': 'ax'}), "(data=df, x='mask_score', y='polymorphism', hue=\n 'residue_tag', ax=ax)\n", (19405, 19479), True, 'import seaborn as sns\n'), ((20184, 20230), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'figsize', 'dpi': 'self.dpi'}), '(1, figsize=figsize, dpi=self.dpi)\n', (20196, 20230), True, 'import matplotlib.pyplot as plt\n'), ((21120, 21133), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (21131, 21133), False, 'from collections import OrderedDict\n'), ((21156, 21175), 'os.listdir', 'os.listdir', (['dirname'], {}), '(dirname)\n', (21166, 21175), False, 'import os, sys, re, json, random, importlib\n'), ((21848, 21861), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (21859, 21861), False, 'from collections import OrderedDict\n'), ((22641, 22669), 'numpy.array', 'np.array', (['([0] * self.mhc_len)'], {}), '([0] * self.mhc_len)\n', (22649, 22669), True, 'import numpy as np\n'), ((23092, 23198), 'logomaker.alignment_to_matrix', 'lm.alignment_to_matrix', ([], {'sequences': 'seqs', 'to_type': '"""probability"""', 'characters_to_ignore': '"""."""', 'pseudocount': '(0)'}), "(sequences=seqs, to_type='probability',\n characters_to_ignore='.', pseudocount=0)\n", (23114, 23198), True, 'import logomaker as lm\n'), ((23257, 23297), 'pandas.concat', 'pd.concat', (['[temp_df, seqlogo_df]'], {'axis': '(0)'}), '([temp_df, seqlogo_df], axis=0)\n', (23266, 23297), True, 'import pandas as pd\n'), ((24527, 24558), 're.match', 're.match', (['"""[ABC][0-9]+"""', 'allele'], {}), "('[ABC][0-9]+', allele)\n", (24535, 24558), False, 'import os, sys, re, json, random, importlib\n'), ((8886, 8960), 'scipy.cluster.hierarchy.linkage', 'hierarchy.linkage', (['df'], {'method': 'method', 'metric': 'metric', 'optimal_ordering': '(True)'}), '(df, method=method, metric=metric, optimal_ordering=True)\n', (8903, 8960), False, 'from scipy.cluster import hierarchy\n'), ((9007, 9083), 'scipy.cluster.hierarchy.linkage', 'hierarchy.linkage', (['df.T'], {'method': 'method', 'metric': 'metric', 'optimal_ordering': '(True)'}), '(df.T, method=method, metric=metric, optimal_ordering=True)\n', (9024, 9083), False, 'from scipy.cluster import hierarchy\n'), ((10706, 10761), 'matplotlib.pyplot.savefig', 'plt.savefig', (['figfile'], {'bbox_inches': '"""tight"""', 'dpi': 'self.dpi'}), "(figfile, bbox_inches='tight', dpi=self.dpi)\n", (10717, 10761), True, 'import matplotlib.pyplot as plt\n'), ((11177, 11238), 'logomaker.Logo', 'lm.Logo', (['seqlogo_df'], {'ax': 'ax[i]', 'color_scheme': '"""skylign_protein"""'}), "(seqlogo_df, ax=ax[i], color_scheme='skylign_protein')\n", (11184, 11238), True, 'import logomaker as lm\n'), ((16650, 16858), 'seaborn.regplot', 'sns.regplot', ([], {'x': '"""importance"""', 'y': '"""polymorphism"""', 'data': "df[df['label'] == label]", 'ax': 'ax', 'fit_reg': '(False)', 'marker': "params['marker']", 'scatter_kws': "{'color': params['color'], 's': params['s'], 'linewidths': 0.1}"}), "(x='importance', y='polymorphism', data=df[df['label'] == label],\n ax=ax, fit_reg=False, marker=params['marker'], scatter_kws={'color':\n params['color'], 's': params['s'], 'linewidths': 0.1})\n", (16661, 16858), True, 'import seaborn as sns\n'), ((17359, 17433), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': '"""#ff4949"""', 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc='#ff4949', edgecolor='none')\n", (17387, 17433), False, 'import matplotlib\n'), ((17454, 17528), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': '"""#adb5bd"""', 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc='#adb5bd', edgecolor='none')\n", (17482, 17528), False, 'import matplotlib\n'), ((17549, 17601), 'matplotlib.pyplot.scatter', 'plt.scatter', (['[]', '[]'], {'color': '"""black"""', 'marker': '"""x"""', 's': '(12)'}), "([], [], color='black', marker='x', s=12)\n", (17560, 17601), True, 'import matplotlib.pyplot as plt\n'), ((17626, 17678), 'matplotlib.pyplot.scatter', 'plt.scatter', (['[]', '[]'], {'color': '"""black"""', 'marker': '"""o"""', 's': '(12)'}), "([], [], color='black', marker='o', s=12)\n", (17637, 17678), True, 'import matplotlib.pyplot as plt\n'), ((20501, 20571), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': 'color', 'edgecolor': '"""none"""'}), "((0, 0), 1, 1, fc=color, edgecolor='none')\n", (20529, 20571), False, 'import matplotlib\n'), ((21192, 21223), 're.match', 're.match', (['"""[ABC][0-9]+"""', 'allele'], {}), "('[ABC][0-9]+', allele)\n", (21200, 21223), False, 'import os, sys, re, json, random, importlib\n'), ((24644, 24687), 're.match', 're.match', (['"""[ABC]\\\\*[0-9]+\\\\:[0-9]+"""', 'allele'], {}), "('[ABC]\\\\*[0-9]+\\\\:[0-9]+', allele)\n", (24652, 24687), False, 'import os, sys, re, json, random, importlib\n'), ((22271, 22363), 'logomaker.alignment_to_matrix', 'lm.alignment_to_matrix', ([], {'sequences': 'seqs', 'to_type': '"""information"""', 'characters_to_ignore': '"""XU"""'}), "(sequences=seqs, to_type='information',\n characters_to_ignore='XU')\n", (22293, 22363), True, 'import logomaker as lm\n'), ((22386, 22426), 'pandas.concat', 'pd.concat', (['[temp_df, seqlogo_df]'], {'axis': '(0)'}), '([temp_df, seqlogo_df], axis=0)\n', (22395, 22426), True, 'import pandas as pd\n'), ((1602, 1636), 'os.listdir', 'os.listdir', (['allele_mask_dirname[0]'], {}), '(allele_mask_dirname[0])\n', (1612, 1636), False, 'import os, sys, re, json, random, importlib\n'), ((2672, 2707), 'os.listdir', 'os.listdir', (['epitope_mask_dirname[0]'], {}), '(epitope_mask_dirname[0])\n', (2682, 2707), False, 'import os, sys, re, json, random, importlib\n'), ((21249, 21303), 'os.path.isfile', 'os.path.isfile', (["('%s/%s/record.npy' % (dirname, allele))"], {}), "('%s/%s/record.npy' % (dirname, allele))\n", (21263, 21303), False, 'import os, sys, re, json, random, importlib\n'), ((15249, 15276), 'numpy.log', 'np.log', (['self.mhc_seqlogo_df'], {}), '(self.mhc_seqlogo_df)\n', (15255, 15276), True, 'import numpy as np\n'), ((23794, 23843), 'numpy.where', 'np.where', (['(importance_count > importance_threshold)'], {}), '(importance_count > importance_threshold)\n', (23802, 23843), True, 'import numpy as np\n'), ((18920, 18938), 'numpy.log', 'np.log', (['seqlogo_df'], {}), '(seqlogo_df)\n', (18926, 18938), True, 'import numpy as np\n'), ((21451, 21517), 'numpy.load', 'np.load', (["('%s/%s/record.npy' % (dirname, allele))"], {'allow_pickle': '(True)'}), "('%s/%s/record.npy' % (dirname, allele), allow_pickle=True)\n", (21458, 21517), True, 'import numpy as np\n'), ((21648, 21714), 'numpy.load', 'np.load', (["('%s/%s/record.npy' % (dirname, allele))"], {'allow_pickle': '(True)'}), "('%s/%s/record.npy' % (dirname, allele), allow_pickle=True)\n", (21655, 21714), True, 'import numpy as np\n')]
from utils import * import torch import sys import numpy as np import time import torchvision from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as datasets def validate_pgd(val_loader, model, criterion, K, step, configs, logger, save_image=False, HE=False): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() eps = configs.ADV.clip_eps model.eval() end = time.time() logger.info(pad_str(' PGD eps: {}, K: {}, step: {} '.format(eps, K, step))) if HE == True: is_HE = '_HE' else: is_HE = '' if configs.pretrained: is_HE = '_pretrained' for i, (input, target) in enumerate(val_loader): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) #save original images if save_image == True and i < 2: original_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(original_images_save[o, :, :, :], 'saved_images/original_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) randn = torch.FloatTensor(input.size()).uniform_(-eps, eps).cuda() input += randn input.clamp_(0, 1.0) orig_input = input.clone() for _ in range(K): invar = Variable(input, requires_grad=True) in1 = invar - mean in1.div_(std) output = model(in1) ascend_loss = criterion(output, target) ascend_grad = torch.autograd.grad(ascend_loss, invar)[0] pert = fgsm(ascend_grad, step) # Apply purturbation input += pert.data input = torch.max(orig_input-eps, input) input = torch.min(orig_input+eps, input) input.clamp_(0, 1.0) #save adv images if save_image == True and i < 2: adv_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(adv_images_save[o, :, :, :], 'saved_images/adv_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) #save scaled perturbation perturbation = input - orig_input perturbation.clamp_(-eps,eps) scaled_perturbation = (perturbation.clone() + eps) / (2 * eps) scaled_perturbation.clamp_(0, 1.0) if save_image == True and i < 2: for o in range(input.size(0)): torchvision.utils.save_image(scaled_perturbation[o, :, :, :], 'saved_images/scaled_perturbation'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) input.sub_(mean).div_(std) with torch.no_grad(): # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('PGD Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' PGD Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate(val_loader, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate_ImagetNet_C(val_loader_name, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # switch to evaluate mode model.eval() fil_index = ['/1','/2','/3','/4','/5'] avg_return = 0 for f in fil_index: valdir = os.path.join(configs.data, val_loader_name+f) print(' File: ', valdir) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(configs.DATA.img_size), transforms.CenterCrop(configs.DATA.crop_size), transforms.ToTensor(), ])), batch_size=configs.DATA.batch_size, shuffle=False, num_workers=configs.DATA.workers, pin_memory=True) # Initiate the meters top1 = AverageMeter() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) # measure accuracy and record loss prec1,_ = accuracy(output, target, topk=(1,2)) top1.update(prec1[0], input.size(0)) # if i % configs.TRAIN.print_freq == 0: # print('PGD Test: [{0}/{1}]\t' # 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( # i, len(val_loader),top1=top1)) # print('Time: ', time.time() - end) # sys.stdout.flush() print('Prec: ',top1.avg.cpu().item()) avg_return += top1.avg.cpu().item() print('Avergae Classification Accuracy is: ', avg_return / 5.) return
[ "torchvision.transforms.CenterCrop", "torchvision.transforms.ToTensor", "torch.max", "torch.min", "numpy.array", "torch.autograd.grad", "torchvision.transforms.Resize", "torch.no_grad", "sys.stdout.flush", "torch.autograd.Variable", "time.time" ]
[((873, 884), 'time.time', 'time.time', ([], {}), '()\n', (882, 884), False, 'import time\n'), ((4940, 4951), 'time.time', 'time.time', ([], {}), '()\n', (4949, 4951), False, 'import time\n'), ((7509, 7520), 'time.time', 'time.time', ([], {}), '()\n', (7518, 7520), False, 'import time\n'), ((377, 405), 'numpy.array', 'np.array', (['configs.TRAIN.mean'], {}), '(configs.TRAIN.mean)\n', (385, 405), True, 'import numpy as np\n'), ((537, 564), 'numpy.array', 'np.array', (['configs.TRAIN.std'], {}), '(configs.TRAIN.std)\n', (545, 564), True, 'import numpy as np\n'), ((1808, 1843), 'torch.autograd.Variable', 'Variable', (['input'], {'requires_grad': '(True)'}), '(input, requires_grad=True)\n', (1816, 1843), False, 'from torch.autograd import Variable\n'), ((2181, 2215), 'torch.max', 'torch.max', (['(orig_input - eps)', 'input'], {}), '(orig_input - eps, input)\n', (2190, 2215), False, 'import torch\n'), ((2234, 2268), 'torch.min', 'torch.min', (['(orig_input + eps)', 'input'], {}), '(orig_input + eps, input)\n', (2243, 2268), False, 'import torch\n'), ((3159, 3174), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3172, 3174), False, 'import torch\n'), ((3652, 3663), 'time.time', 'time.time', ([], {}), '()\n', (3661, 3663), False, 'import time\n'), ((4445, 4473), 'numpy.array', 'np.array', (['configs.TRAIN.mean'], {}), '(configs.TRAIN.mean)\n', (4453, 4473), True, 'import numpy as np\n'), ((4605, 4632), 'numpy.array', 'np.array', (['configs.TRAIN.std'], {}), '(configs.TRAIN.std)\n', (4613, 4632), True, 'import numpy as np\n'), ((5018, 5033), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5031, 5033), False, 'import torch\n'), ((5675, 5686), 'time.time', 'time.time', ([], {}), '()\n', (5684, 5686), False, 'import time\n'), ((6481, 6509), 'numpy.array', 'np.array', (['configs.TRAIN.mean'], {}), '(configs.TRAIN.mean)\n', (6489, 6509), True, 'import numpy as np\n'), ((6641, 6668), 'numpy.array', 'np.array', (['configs.TRAIN.std'], {}), '(configs.TRAIN.std)\n', (6649, 6668), True, 'import numpy as np\n'), ((2011, 2050), 'torch.autograd.grad', 'torch.autograd.grad', (['ascend_loss', 'invar'], {}), '(ascend_loss, invar)\n', (2030, 2050), False, 'import torch\n'), ((4176, 4194), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4192, 4194), False, 'import sys\n'), ((6195, 6213), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (6211, 6213), False, 'import sys\n'), ((7595, 7610), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7608, 7610), False, 'import torch\n'), ((3615, 3626), 'time.time', 'time.time', ([], {}), '()\n', (3624, 3626), False, 'import time\n'), ((5638, 5649), 'time.time', 'time.time', ([], {}), '()\n', (5647, 5649), False, 'import time\n'), ((7146, 7186), 'torchvision.transforms.Resize', 'transforms.Resize', (['configs.DATA.img_size'], {}), '(configs.DATA.img_size)\n', (7163, 7186), True, 'import torchvision.transforms as transforms\n'), ((7204, 7249), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['configs.DATA.crop_size'], {}), '(configs.DATA.crop_size)\n', (7225, 7249), True, 'import torchvision.transforms as transforms\n'), ((7267, 7288), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (7286, 7288), True, 'import torchvision.transforms as transforms\n')]
import numpy as np from numexpr_kernel import numexpr_kernel from numba_kernel import numba_kernel N = 10000 x = np.random.rand(N) y = np.random.rand(N) z = np.random.rand(N) tau = np.random.rand(N) r1 = numexpr_kernel(x, y, z, tau) r1 = numexpr_kernel(x, y, z, tau) r2 = np.zeros(N, dtype=float) numba_kernel(x, y, z, tau, r2, N) numba_kernel(x, y, z, tau, r2, N)
[ "numexpr_kernel.numexpr_kernel", "numpy.zeros", "numba_kernel.numba_kernel", "numpy.random.rand" ]
[((114, 131), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (128, 131), True, 'import numpy as np\n'), ((136, 153), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (150, 153), True, 'import numpy as np\n'), ((158, 175), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (172, 175), True, 'import numpy as np\n'), ((182, 199), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (196, 199), True, 'import numpy as np\n'), ((206, 234), 'numexpr_kernel.numexpr_kernel', 'numexpr_kernel', (['x', 'y', 'z', 'tau'], {}), '(x, y, z, tau)\n', (220, 234), False, 'from numexpr_kernel import numexpr_kernel\n'), ((240, 268), 'numexpr_kernel.numexpr_kernel', 'numexpr_kernel', (['x', 'y', 'z', 'tau'], {}), '(x, y, z, tau)\n', (254, 268), False, 'from numexpr_kernel import numexpr_kernel\n'), ((274, 298), 'numpy.zeros', 'np.zeros', (['N'], {'dtype': 'float'}), '(N, dtype=float)\n', (282, 298), True, 'import numpy as np\n'), ((299, 332), 'numba_kernel.numba_kernel', 'numba_kernel', (['x', 'y', 'z', 'tau', 'r2', 'N'], {}), '(x, y, z, tau, r2, N)\n', (311, 332), False, 'from numba_kernel import numba_kernel\n'), ((333, 366), 'numba_kernel.numba_kernel', 'numba_kernel', (['x', 'y', 'z', 'tau', 'r2', 'N'], {}), '(x, y, z, tau, r2, N)\n', (345, 366), False, 'from numba_kernel import numba_kernel\n')]
""" This module give the classification results for test data using SVM with RBF kernel. Email: <EMAIL> Dtd: 2 - August - 2020 Parameters ---------- classification_type : string DESCRIPTION - classification_type == "binary_class" loads binary classification artificial data. classification_type == "multi_class" loads multiclass artificial data folder_name : string DESCRIPTION - the name of the folder to store results. For eg., if folder_name = "hnb", then this function will create two folder "hnb-svm" and "hnb-svm_rbf" to save the classification report. target_names : array, 1D, string DESCRIPTION - if there are two classes, then target_names = ['class-0', class-1] Note- At the present version of the code, the results for binary classification and five class classification will be saved. Returns : None ------- Computes the accuracy_svm_rbf, fscore_svm_rbf """ import os import numpy as np from sklearn.metrics import f1_score, accuracy_score from sklearn import svm from sklearn.metrics import confusion_matrix as cm from sklearn.metrics import classification_report from load_data_synthetic import get_data #from Codes import classification_report_csv_ classification_type = "concentric_circle_noise" folder_name = "full-testdata" target_names = ['class-0', 'class-1'] path = os.getcwd() result_path_svm_rbf = path + '/NEUROCHAOS-RESULTS/' + classification_type + '/' + folder_name +'-svm_rbf/' # Creating Folder to save the results try: os.makedirs(result_path_svm_rbf) except OSError: print("Creation of the result directory %s failed" % result_path_svm_rbf) else: print("Successfully created the result directory %s" % result_path_svm_rbf) full_artificial_data, full_artificial_label, full_artificial_test_data, full_artificial_test_label = get_data(classification_type) num_classes = len(np.unique(full_artificial_label)) # Number of classes print("**** Genome data details ******") for class_label in range(np.max(full_artificial_label)+1): print("Total Data instance in Class -", class_label, " = ", full_artificial_label.tolist().count([class_label])) print(" train data = ", (full_artificial_data.shape[0])) print("val data = ", (full_artificial_test_data.shape[0])) # Start of svm_rbf classifier svm_rbf_classifier = svm.SVC(kernel='rbf', gamma='scale') svm_rbf_classifier.fit(full_artificial_data, full_artificial_label[:, 0]) predicted_svm_rbf_val_label = svm_rbf_classifier.predict(full_artificial_test_data) acc_svm_rbf = accuracy_score(full_artificial_test_label, predicted_svm_rbf_val_label)*100 f1score_svm_rbf = f1_score(full_artificial_test_label, predicted_svm_rbf_val_label, average="macro") report_svm_rbf = classification_report(full_artificial_test_label, predicted_svm_rbf_val_label, target_names=target_names) # Saving the classification report to csv file for svm_rbf classifier. print(report_svm_rbf) #classification_report_csv_(report_svm_rbf, num_classes).to_csv(result_path_svm_rbf+'svm_rbf_report_'+ str(iterations) +'.csv', index=False) confusion_matrix_svm_rbf = cm(full_artificial_test_label, predicted_svm_rbf_val_label) print("Confusion matrixfor svm_rbf\n", confusion_matrix_svm_rbf) # End of svm_rbf classifier. # saving the f1-score np.save(result_path_svm_rbf + 'f1score.npy', f1score_svm_rbf)
[ "sklearn.metrics.f1_score", "sklearn.metrics.confusion_matrix", "os.makedirs", "numpy.unique", "sklearn.metrics.classification_report", "os.getcwd", "load_data_synthetic.get_data", "numpy.max", "sklearn.metrics.accuracy_score", "numpy.save", "sklearn.svm.SVC" ]
[((1369, 1380), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1378, 1380), False, 'import os\n'), ((1867, 1896), 'load_data_synthetic.get_data', 'get_data', (['classification_type'], {}), '(classification_type)\n', (1875, 1896), False, 'from load_data_synthetic import get_data\n'), ((2376, 2412), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""rbf"""', 'gamma': '"""scale"""'}), "(kernel='rbf', gamma='scale')\n", (2383, 2412), False, 'from sklearn import svm\n'), ((2685, 2772), 'sklearn.metrics.f1_score', 'f1_score', (['full_artificial_test_label', 'predicted_svm_rbf_val_label'], {'average': '"""macro"""'}), "(full_artificial_test_label, predicted_svm_rbf_val_label, average=\n 'macro')\n", (2693, 2772), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((2786, 2895), 'sklearn.metrics.classification_report', 'classification_report', (['full_artificial_test_label', 'predicted_svm_rbf_val_label'], {'target_names': 'target_names'}), '(full_artificial_test_label,\n predicted_svm_rbf_val_label, target_names=target_names)\n', (2807, 2895), False, 'from sklearn.metrics import classification_report\n'), ((3161, 3220), 'sklearn.metrics.confusion_matrix', 'cm', (['full_artificial_test_label', 'predicted_svm_rbf_val_label'], {}), '(full_artificial_test_label, predicted_svm_rbf_val_label)\n', (3163, 3220), True, 'from sklearn.metrics import confusion_matrix as cm\n'), ((3343, 3404), 'numpy.save', 'np.save', (["(result_path_svm_rbf + 'f1score.npy')", 'f1score_svm_rbf'], {}), "(result_path_svm_rbf + 'f1score.npy', f1score_svm_rbf)\n", (3350, 3404), True, 'import numpy as np\n'), ((1544, 1576), 'os.makedirs', 'os.makedirs', (['result_path_svm_rbf'], {}), '(result_path_svm_rbf)\n', (1555, 1576), False, 'import os\n'), ((1918, 1950), 'numpy.unique', 'np.unique', (['full_artificial_label'], {}), '(full_artificial_label)\n', (1927, 1950), True, 'import numpy as np\n'), ((2590, 2661), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['full_artificial_test_label', 'predicted_svm_rbf_val_label'], {}), '(full_artificial_test_label, predicted_svm_rbf_val_label)\n', (2604, 2661), False, 'from sklearn.metrics import f1_score, accuracy_score\n'), ((2042, 2071), 'numpy.max', 'np.max', (['full_artificial_label'], {}), '(full_artificial_label)\n', (2048, 2071), True, 'import numpy as np\n')]
import torch import numpy as np import time import datetime import random from Kfold import KFold from split_data import DataManager from transformers import BertTokenizer from transformers import BertTokenizer from torch.utils.data import TensorDataset, random_split from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from transformers import BertForSequenceClassification, AdamW, BertConfig from transformers import get_linear_schedule_with_warmup class KfoldBERTData(DataManager): def __init__(self, data, labels, num_folds): super().__init__(data, labels, num_folds) self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) def pre_process(self, sentences, labels): max_len = 0 for sent in sentences: input_ids = self.tokenizer.encode(sent, add_special_tokens=True) max_len = max(max_len, len(input_ids)) input_ids = [] attention_masks = [] for sent in sentences: encoded_dict = self.tokenizer.encode_plus( sent, add_special_tokens = True, max_length = 350, pad_to_max_length = True, return_attention_mask = True, return_tensors = 'pt', truncation=True ) input_ids.append(encoded_dict['input_ids']) attention_masks.append(encoded_dict['attention_mask']) # Convert the lists into tensors. input_ids = torch.cat(input_ids, dim=0) attention_masks = torch.cat(attention_masks, dim=0) labels = torch.tensor(labels) dataset = TensorDataset(input_ids, attention_masks, labels) d, _ = random_split(dataset, [len(dataset), 0]) return d class KfoldBERT(KFold): def __init__(self, data, labels, num_folds): super().__init__(data, labels, num_folds) self.batch_size = 8 self.epochs = 10 self.data = KfoldBERTData(data, labels, num_folds) if torch.cuda.is_available(): self.device = torch.device("cuda") def flat_accuracy(self, preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) def format_time(self, time): ''' Takes a time in seconds and returns a string hh:mm:ss ''' elapsed_rounded = int(round((time))) return str(datetime.timedelta(seconds=elapsed_rounded)) def train(self, train_dataset, val_dataset): train_dataloader = DataLoader( train_dataset, # The training samples. sampler = RandomSampler(train_dataset), # Select batches randomly batch_size = self.batch_size # Trains with this batch size. ) validation_dataloader = DataLoader( val_dataset, # The validation samples. sampler = SequentialSampler(val_dataset), # Pull out batches sequentially. batch_size = self.batch_size # Evaluate with this batch size. ) model = BertForSequenceClassification.from_pretrained( "bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab. num_labels = 4, # The number of output labels--2 for binary classification. # You can increase this for multi-class tasks. output_attentions = False, # Whether the model returns attentions weights. output_hidden_states = False, # Whether the model returns all hidden-states. ) model.cuda() optimizer = AdamW(model.parameters(), lr = 2e-5, # args.learning_rate - default is 5e-5, our notebook had 2e-5 eps = 1e-8 # args.adam_epsilon - default is 1e-8. ) total_steps = len(train_dataloader) * self.epochs scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 0, # Default value in run_glue.py num_training_steps = total_steps) seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) training_stats = [] # Measure the total training time for the whole run. total_t0 = time.time() # For each epoch... for epoch_i in range(0, self.epochs): print("") print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, self.epochs)) print('Training...') t0 = time.time() total_train_loss = 0 model.train() # For each batch of training data... for step, batch in enumerate(train_dataloader): # Progress update every 40 batches. if step % 40 == 0 and not step == 0: # Calculate elapsed time in minutes. elapsed = self.format_time(time.time() - t0) # Report progress. print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed)) b_input_ids = batch[0].to(self.device) b_input_mask = batch[1].to(self.device) b_labels = batch[2].to(self.device) model.zero_grad() loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) total_train_loss += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() # Calculate the average loss over all of the batches. avg_train_loss = total_train_loss / len(train_dataloader) # Measure how long this epoch took. training_time = self.format_time(time.time() - t0) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epcoh took: {:}".format(training_time)) # ======================================== # Validation # ======================================== # After the completion of each training epoch, measure our performance on # our validation set. print("") print("Running Validation...") t0 = time.time() model.eval() # Tracking variables total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 for batch in validation_dataloader: b_input_ids = batch[0].to(self.device) b_input_mask = batch[1].to(self.device) b_labels = batch[2].to(self.device) with torch.no_grad(): loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) # Accumulate the validation loss. total_eval_loss += loss.item() # Move logits and labels to CPU logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu').numpy() # Calculate the accuracy for this batch of test sentences, and # accumulate it over all batches. total_eval_accuracy += self.flat_accuracy(logits, label_ids) # Report the final accuracy for this validation run. avg_val_accuracy = total_eval_accuracy / len(validation_dataloader) print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) # Calculate the average loss over all of the batches. avg_val_loss = total_eval_loss / len(validation_dataloader) # Measure how long the validation run took. validation_time = self.format_time(time.time() - t0) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Validation took: {:}".format(validation_time)) # Record all statistics from this epoch. training_stats.append( { 'epoch': epoch_i + 1, 'Training Loss': avg_train_loss, 'Valid. Loss': avg_val_loss, 'Valid. Accur.': avg_val_accuracy, 'Training Time': training_time, 'Validation Time': validation_time } ) torch.save(model.state_dict(), "removed_model_epoch_" + str(epoch_i + 1) +".pth") print("") print("Training complete!") print("Total training took {:} (h:mm:ss)".format(self.format_time(time.time()-total_t0))) return avg_val_accuracy, avg_val_loss
[ "torch.cuda.is_available", "datetime.timedelta", "numpy.random.seed", "torch.utils.data.SequentialSampler", "numpy.argmax", "torch.utils.data.TensorDataset", "transformers.BertForSequenceClassification.from_pretrained", "time.time", "torch.cat", "torch.device", "torch.cuda.manual_seed_all", "torch.manual_seed", "transformers.get_linear_schedule_with_warmup", "transformers.BertTokenizer.from_pretrained", "random.seed", "torch.utils.data.RandomSampler", "torch.tensor", "numpy.sum", "torch.no_grad" ]
[((638, 708), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['"""bert-base-uncased"""'], {'do_lower_case': '(True)'}), "('bert-base-uncased', do_lower_case=True)\n", (667, 708), False, 'from transformers import BertTokenizer\n'), ((1706, 1733), 'torch.cat', 'torch.cat', (['input_ids'], {'dim': '(0)'}), '(input_ids, dim=0)\n', (1715, 1733), False, 'import torch\n'), ((1760, 1793), 'torch.cat', 'torch.cat', (['attention_masks'], {'dim': '(0)'}), '(attention_masks, dim=0)\n', (1769, 1793), False, 'import torch\n'), ((1811, 1831), 'torch.tensor', 'torch.tensor', (['labels'], {}), '(labels)\n', (1823, 1831), False, 'import torch\n'), ((1851, 1900), 'torch.utils.data.TensorDataset', 'TensorDataset', (['input_ids', 'attention_masks', 'labels'], {}), '(input_ids, attention_masks, labels)\n', (1864, 1900), False, 'from torch.utils.data import TensorDataset, random_split\n'), ((2222, 2247), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2245, 2247), False, 'import torch\n'), ((3360, 3497), 'transformers.BertForSequenceClassification.from_pretrained', 'BertForSequenceClassification.from_pretrained', (['"""bert-base-uncased"""'], {'num_labels': '(4)', 'output_attentions': '(False)', 'output_hidden_states': '(False)'}), "('bert-base-uncased',\n num_labels=4, output_attentions=False, output_hidden_states=False)\n", (3405, 3497), False, 'from transformers import BertForSequenceClassification, AdamW, BertConfig\n'), ((4199, 4297), 'transformers.get_linear_schedule_with_warmup', 'get_linear_schedule_with_warmup', (['optimizer'], {'num_warmup_steps': '(0)', 'num_training_steps': 'total_steps'}), '(optimizer, num_warmup_steps=0,\n num_training_steps=total_steps)\n', (4230, 4297), False, 'from transformers import get_linear_schedule_with_warmup\n'), ((4450, 4471), 'random.seed', 'random.seed', (['seed_val'], {}), '(seed_val)\n', (4461, 4471), False, 'import random\n'), ((4480, 4504), 'numpy.random.seed', 'np.random.seed', (['seed_val'], {}), '(seed_val)\n', (4494, 4504), True, 'import numpy as np\n'), ((4513, 4540), 'torch.manual_seed', 'torch.manual_seed', (['seed_val'], {}), '(seed_val)\n', (4530, 4540), False, 'import torch\n'), ((4549, 4585), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed_val'], {}), '(seed_val)\n', (4575, 4585), False, 'import torch\n'), ((4696, 4707), 'time.time', 'time.time', ([], {}), '()\n', (4705, 4707), False, 'import time\n'), ((2279, 2299), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (2291, 2299), False, 'import torch\n'), ((2455, 2487), 'numpy.sum', 'np.sum', (['(pred_flat == labels_flat)'], {}), '(pred_flat == labels_flat)\n', (2461, 2487), True, 'import numpy as np\n'), ((2691, 2734), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'elapsed_rounded'}), '(seconds=elapsed_rounded)\n', (2709, 2734), False, 'import datetime\n'), ((4961, 4972), 'time.time', 'time.time', ([], {}), '()\n', (4970, 4972), False, 'import time\n'), ((7023, 7034), 'time.time', 'time.time', ([], {}), '()\n', (7032, 7034), False, 'import time\n'), ((2366, 2390), 'numpy.argmax', 'np.argmax', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (2375, 2390), True, 'import numpy as np\n'), ((2923, 2951), 'torch.utils.data.RandomSampler', 'RandomSampler', (['train_dataset'], {}), '(train_dataset)\n', (2936, 2951), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((3194, 3224), 'torch.utils.data.SequentialSampler', 'SequentialSampler', (['val_dataset'], {}), '(val_dataset)\n', (3211, 3224), False, 'from torch.utils.data import DataLoader, RandomSampler, SequentialSampler\n'), ((6465, 6476), 'time.time', 'time.time', ([], {}), '()\n', (6474, 6476), False, 'import time\n'), ((7442, 7457), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7455, 7457), False, 'import torch\n'), ((8657, 8668), 'time.time', 'time.time', ([], {}), '()\n', (8666, 8668), False, 'import time\n'), ((9493, 9504), 'time.time', 'time.time', ([], {}), '()\n', (9502, 9504), False, 'import time\n'), ((5352, 5363), 'time.time', 'time.time', ([], {}), '()\n', (5361, 5363), False, 'import time\n')]
import numpy as np import operator # TODO: Make Mutation Operator. class TerminationCriteria: @staticmethod def _convergence_check(convergence_ratio, population_fitness): if abs((np.max(population_fitness) - np.mean(population_fitness)) / np.mean( population_fitness)) <= convergence_ratio / 2: return True else: return False @staticmethod def _fitness_level_check(fitness_level, population_fitness, _operator): ops = {'>': operator.gt, '<': operator.lt, '>=': operator.ge, '<=': operator.le, '=': operator.eq} inp = abs(np.max(population_fitness)) relate = _operator cut = fitness_level return ops[relate](inp, cut) @staticmethod def _generations_check(generations, generation_limit): if generations >= generation_limit: return True else: return False def __init__(self): self._checks = [] self._convergence_limit = None self._fitness_limit = None self._generation_limit = None self._operator = None def _checker_of_convergence(self): def _checker(population_fitness, generation_number): return self._convergence_check(self._convergence_limit, population_fitness) return _checker def _checker_of_fitness(self): def _checker(population_fitness, generation_number): return self._fitness_level_check(self._convergence_limit, population_fitness, self._operator) return _checker def _checker_of_generations(self): def _checker(population_fitness, generation_number): return self._generations_check(generation_number, self._generation_limit) return _checker def add_convergence_limit(self, convergence_ratio): self._checks.append(self._checker_of_convergence()) self._convergence_limit = convergence_ratio def add_fitness_limit(self, operator, fitness_level): self._checks.append(self._checker_of_fitness()) self._generation_limit = fitness_level self._operator = operator def add_generation_limit(self, generation_limit): self._checks.append(self._checker_of_generations()) self._generation_limit = generation_limit def check(self, population_fitness, generation_number): if np.any([check(population_fitness, generation_number) for check in self._checks]) == True: return True else: return False # def convergence_or_100(population_fitness, convergence_ratio): # if abs((np.max(population_fitness) - np.mean(population_fitness)) / np.mean( # population_fitness)) <= convergence_ratio / 2: # return True # elif abs(np.max(population_fitness)) == 100: # return True # else: # return False class SelectionOperator: @staticmethod def supremacy(m, contestants, fitness): return np.argpartition(np.array(fitness), -m)[-m:], np.array(contestants)[ np.argpartition(np.array(fitness), -m)[-m:]] @staticmethod def random(m, contestants, fitness): # TODO: Update for idx return. (BROKEN) # used = None # assert fitness is not used return list(np.random.choice(contestants, m)) class CrossoverOperator: @staticmethod def random_polygamous(parents, n_children): gene_lst = [] child_ls = [] for gene_idx in range(len(parents[0].split(' '))): gene_col = np.random.choice(np.array([parent.split(' ') for parent in parents])[:, gene_idx], n_children) gene_lst.append(gene_col) gene_arr = np.array(gene_lst).T for child_idx in range(len(gene_arr[:, 0])): child_new = ' '.join(list(gene_arr[child_idx, :])) child_ls.append(child_new) return child_ls @staticmethod def supremecy_polygamous(parents, n_children, fitness): raise NotImplemented("Supremacy not implemented yet") def fitness_function_himmelblau(x, y): # execute himmelblau function f = (x ** 2. + y - 11.) ** 2. + (x + y ** 2. - 7.) ** 2. return 100 - f
[ "numpy.random.choice", "numpy.array", "numpy.mean", "numpy.max" ]
[((674, 700), 'numpy.max', 'np.max', (['population_fitness'], {}), '(population_fitness)\n', (680, 700), True, 'import numpy as np\n'), ((3339, 3371), 'numpy.random.choice', 'np.random.choice', (['contestants', 'm'], {}), '(contestants, m)\n', (3355, 3371), True, 'import numpy as np\n'), ((3744, 3762), 'numpy.array', 'np.array', (['gene_lst'], {}), '(gene_lst)\n', (3752, 3762), True, 'import numpy as np\n'), ((3072, 3093), 'numpy.array', 'np.array', (['contestants'], {}), '(contestants)\n', (3080, 3093), True, 'import numpy as np\n'), ((259, 286), 'numpy.mean', 'np.mean', (['population_fitness'], {}), '(population_fitness)\n', (266, 286), True, 'import numpy as np\n'), ((3043, 3060), 'numpy.array', 'np.array', (['fitness'], {}), '(fitness)\n', (3051, 3060), True, 'import numpy as np\n'), ((199, 225), 'numpy.max', 'np.max', (['population_fitness'], {}), '(population_fitness)\n', (205, 225), True, 'import numpy as np\n'), ((228, 255), 'numpy.mean', 'np.mean', (['population_fitness'], {}), '(population_fitness)\n', (235, 255), True, 'import numpy as np\n'), ((3123, 3140), 'numpy.array', 'np.array', (['fitness'], {}), '(fitness)\n', (3131, 3140), True, 'import numpy as np\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # <NAME> (<EMAIL>) import py_trees as pt import py_trees_ros as ptr import time import numpy as np import rospy import tf import actionlib # from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from smarc_msgs.msg import GotoWaypointAction, GotoWaypointGoal import actionlib_msgs.msg as actionlib_msgs from geometry_msgs.msg import PointStamped, PoseArray, PoseStamped from nav_msgs.msg import Path from std_msgs.msg import Float64, Header, Bool, Empty from visualization_msgs.msg import MarkerArray from sensor_msgs.msg import NavSatFix from std_srvs.srv import SetBool from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver import bb_enums import imc_enums import common_globals from mission_plan import MissionPlan from mission_log import MissionLog class A_PublishFinalize(pt.behaviour.Behaviour): def __init__(self, topic): super(A_PublishFinalize, self).__init__(name="A_PublishFinalize") self.bb = pt.blackboard.Blackboard() self.topic = topic self.last_published_time = None self.message_object = Empty() def setup(self, timeout): self.pub = rospy.Publisher(self.topic, Empty, queue_size=1) return True def update(self): if self.last_published_time is not None: time_since = time.time() - self.last_published_time self.feedback_message = "Last pub'd:{:.2f}s ago".format(time_since) else: self.feedback_message = "Never published!" finalized = self.bb.get(bb_enums.MISSION_FINALIZED) if not finalized: try: self.pub.publish(self.message_object) self.last_published_time = time.time() self.feedback_message = "Just published" self.bb.set(bb_enums.MISSION_FINALIZED, True) return pt.Status.SUCCESS except: msg = "Couldn't publish" rospy.logwarn_throttle(1, msg) self.feedback_message = msg return pt.Status.FAILURE return pt.Status.SUCCESS class A_ManualMissionLog(pt.behaviour.Behaviour): def __init__(self): super(A_ManualMissionLog, self).__init__(name="A_ManualMissionLog") self.bb = pt.blackboard.Blackboard() self.started_logs = 0 self.num_saved_logs = 0 def start_new_log(self): save_location = self.bb.get(bb_enums.MISSION_LOG_FOLDER) log = MissionLog(mission_plan = None, save_location = save_location) self.bb.set(bb_enums.MANUAL_MISSION_LOG_OBJ, log) rospy.loginfo("Started new manual mission log") self.started_logs += 1 return log def update(self): enabled = self.bb.get(bb_enums.ENABLE_MANUAL_MISSION_LOG) log = self.bb.get(bb_enums.MANUAL_MISSION_LOG_OBJ) if not enabled: # if we have a log, we save it now # and set it to None, so next time we are # disabled we dont do anything if log is not None: log.save() self.bb.set(bb_enums.MANUAL_MISSION_LOG_OBJ, None) self.num_saved_logs += 1 self.feedback_message = "Disabled, {} logs saved".format(self.num_saved_logs) return pt.Status.SUCCESS if log is None: log = self.start_new_log() # first add the auv pose world_trans = self.bb.get(bb_enums.WORLD_TRANS) x,y = world_trans[0], world_trans[1] z = -self.bb.get(bb_enums.DEPTH) log.navigation_trace.append((x,y,z)) # then add the raw gps gps = self.bb.get(bb_enums.RAW_GPS) if gps is None or gps.status.status == -1: # no fix gps_utm_point = None else: # translate the latlon to utm point using the same service as the mission plan gps_utm_x, gps_utm_y = mplan.latlon_to_utm(gps.latitude, gps.lonitude) if gps_utm_x is None: gps_utm_point = None log.raw_gps_trace.append(gps_utm_point) # then add the tree tip and its status tree_tip = self.bb.get(bb_enums.TREE_TIP_NAME) tip_status = self.bb.get(bb_enums.TREE_TIP_STATUS) log.tree_tip_trace.append((tree_tip, tip_status)) self.feedback_message = "Log len:{} of log#{}".format(len(log.navigation_trace), self.started_logs) return pt.Status.SUCCESS class A_SaveMissionLog(pt.behaviour.Behaviour): def __init__(self): super(A_SaveMissionLog, self).__init__(name="A_SaveMissionLog") self.bb = pt.blackboard.Blackboard() self.num_saved_logs = 0 def update(self): log = self.bb.get(bb_enums.MISSION_LOG_OBJ) if log is not None: log.save() self.num_saved_logs += 1 self.bb.set(bb_enums.MISSION_LOG_OBJ, None) self.feedback_message = "Saved log #{}!".format(self.num_saved_logs) else: self.feedback_message = "#saved logs:{}".format(self.num_saved_logs) return pt.Status.SUCCESS class A_UpdateMissionLog(pt.behaviour.Behaviour): def __init__(self): super(A_UpdateMissionLog, self).__init__(name="A_UpdateMissionLog") self.bb = pt.blackboard.Blackboard() self.started_logs = 0 def start_new_log(self, mplan): save_location = self.bb.get(bb_enums.MISSION_LOG_FOLDER) log = MissionLog(mission_plan = mplan, save_location = save_location) self.bb.set(bb_enums.MISSION_LOG_OBJ, log) rospy.loginfo("Started new mission log") self.started_logs += 1 return log def update(self): # only update if there is an unfinalized mission that has been started mplan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if mplan is None: rospy.loginfo("Mission plan is None, can't make a log of this?") self.feedback_message = "No mission plan!" return pt.Status.FAILURE log = self.bb.get(bb_enums.MISSION_LOG_OBJ) if log is None: log = self.start_new_log(mplan) # check if the mission has changed in the meantime # this can happen when the user starts a mission, stops it, # and then starts a different one # we dont wanna log the incomplete one # did it change since we last got called? if log.creation_time != mplan.creation_time: # it changed! # re-start a log log = self.start_new_log(mplan) # now we got a valid mission plan # first add the auv pose world_trans = self.bb.get(bb_enums.WORLD_TRANS) x,y = world_trans[0], world_trans[1] z = -self.bb.get(bb_enums.DEPTH) log.navigation_trace.append((x,y,z)) # then add the raw gps gps = self.bb.get(bb_enums.RAW_GPS) if gps is None or gps.status.status == -1: # no fix gps_utm_point = None else: # translate the latlon to utm point using the same service as the mission plan gps_utm_x, gps_utm_y = mplan.latlon_to_utm(gps.latitude, gps.lonitude) if gps_utm_x is None: gps_utm_point = None log.raw_gps_trace.append(gps_utm_point) # then add the tree tip and its status tree_tip = self.bb.get(bb_enums.TREE_TIP_NAME) tip_status = self.bb.get(bb_enums.TREE_TIP_STATUS) log.tree_tip_trace.append((tree_tip, tip_status)) self.feedback_message = "Log len:{} of log#{}".format(len(log.navigation_trace), self.started_logs) return pt.Status.SUCCESS class A_SetDVLRunning(pt.behaviour.Behaviour): def __init__(self, dvl_on_off_service_name, running, cooldown): super(A_SetDVLRunning, self).__init__(name="A_SetDVLRunning") self.switcher_service = rospy.ServiceProxy(dvl_on_off_service_name, SetBool) self.bb = pt.blackboard.Blackboard() self.sb = SetBool() self.sb.data = running self.running = running self.last_toggle = 0 self.cooldown = cooldown self.service_name = dvl_on_off_service_name def update(self): # try not to call the service every tick... dvl_is_running = self.bb.get(bb_enums.DVL_IS_RUNNING) if dvl_is_running is not None: if dvl_is_running == self.sb.data: rospy.loginfo_throttle_identical(20, "DVL is already running:"+str(self.sb.data)) return pt.Status.SUCCESS # check if enough time has passed since last call t = time.time() if t - self.last_toggle < self.cooldown: # nope, return running while we wait rospy.loginfo_throttle_identical(5, "Waiting on DVL toggle cooldown") return pt.Status.RUNNING try: ret = self.switcher_service(self.running) except rospy.service.ServiceException: rospy.logwarn_throttle_identical(60, "DVL Start/stop service not found! Succeeding by default namespace:{}".format(self.service_name)) return pt.Status.SUCCESS if ret.success: rospy.loginfo_throttle_identical(5, "DVL TOGGLED:"+str(self.sb.data)) self.last_toggle = time.time() self.bb.set(bb_enums.DVL_IS_RUNNING, self.sb.data) return pt.Status.SUCCESS rospy.logwarn_throttle_identical(5, "DVL COULD NOT BE TOGGLED:{}, ret:{}".format(self.sb.data, ret)) return pt.Status.FAILURE class A_EmergencySurface(ptr.actions.ActionClient): def __init__(self, emergency_action_namespace): """ What to do when an emergency happens. This should be a very simple action that is super unlikely to fail, ever. It should also 'just work' without a goal. Like surfacing. """ self.bb = pt.blackboard.Blackboard() self.action_goal_handle = None ptr.actions.ActionClient.__init__( self, name="A_EmergencySurface", action_spec=GotoWaypointAction, action_goal=None, action_namespace= emergency_action_namespace, override_feedback_message_on_running="EMERGENCY SURFACING" ) self.action_server_ok = False def setup(self, timeout): """ Overwriting the normal ptr action setup to stop it from failiing the setup step and instead handling this failure in the tree. """ self.logger.debug("%s.setup()" % self.__class__.__name__) self.action_client = actionlib.SimpleActionClient( self.action_namespace, self.action_spec ) if not self.action_client.wait_for_server(rospy.Duration(timeout)): self.logger.error("{0}.setup() could not connect to the action server at '{1}'".format(self.__class__.__name__, self.action_namespace)) self.action_client = None self.action_server_ok = False else: self.action_server_ok = True return True def initialise(self): if not self.action_server_ok: rospy.logwarn_throttle_identical(5, "No Action Server found for emergency action, will just block the tree!") return self.feedback_message = "EMERGENCY SURFACING" # construct the message self.action_goal = GotoWaypointGoal() self.sent_goal = False def update(self): if not self.action_server_ok: self.feedback_message = "Action Server for emergency action can not be used!" rospy.logerr_throttle_identical(5,self.feedback_message) return pt.Status.FAILURE # if your action client is not valid if not self.action_client: self.feedback_message = "ActionClient for emergency action is invalid!" rospy.logwarn_throttle_identical(5,self.feedback_message) return pt.Status.FAILURE # if the action_goal is invalid if not self.action_goal: self.feedback_message = "No action_goal!" rospy.logwarn(self.feedback_message) return pt.Status.FAILURE # if goal hasn't been sent yet if not self.sent_goal: self.action_goal_handle = self.action_client.send_goal(self.action_goal, feedback_cb=self.feedback_cb) self.sent_goal = True rospy.loginfo("Sent goal to action server:"+str(self.action_goal)) self.feedback_message = "Emergency goal sent" return pt.Status.RUNNING # if the goal was aborted or preempted if self.action_client.get_state() in [actionlib_msgs.GoalStatus.ABORTED, actionlib_msgs.GoalStatus.PREEMPTED]: self.feedback_message = "Aborted emergency" rospy.loginfo(self.feedback_message) return pt.Status.FAILURE result = self.action_client.get_result() # if the goal was accomplished if result: self.feedback_message = "Completed emergency" rospy.loginfo(self.feedback_message) return pt.Status.SUCCESS # if we're still trying to accomplish the goal return pt.Status.RUNNING def feedback_cb(self, msg): pass class A_SetNextPlanAction(pt.behaviour.Behaviour): def __init__(self, do_not_visit=False): """ Sets the current plan action to the next one SUCCESS if it can set it to something that is not None FAILURE otherwise if do_not_visit=True, then this action will only get the current wp and set it and wont actually advance the plan forward. This is useful for when you want to set the current wp right after you created a plan. """ self.bb = pt.blackboard.Blackboard() super(A_SetNextPlanAction, self).__init__('A_SetNextPlanAction') self.do_not_visit = do_not_visit def update(self): mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if mission_plan is None: rospy.logwarn_throttle(5, "Mission plan was None!") return pt.Status.FAILURE if not self.do_not_visit: mission_plan.visit_wp() next_action = mission_plan.get_current_wp() if next_action is None: self.feedback_message = "Next action was None" rospy.logwarn_throttle(5, "Mission is complete:{}".format(mission_plan.is_complete())) return pt.Status.FAILURE rospy.loginfo_throttle_identical(5, "Set CURRENT_PLAN_ACTION {} to: {}".format(self.do_not_visit, str(next_action))) self.bb.set(bb_enums.CURRENT_PLAN_ACTION, next_action) return pt.Status.SUCCESS class A_GotoWaypoint(ptr.actions.ActionClient): def __init__(self, action_namespace, goal_tf_frame = 'utm', node_name = "A_GotoWaypoint"): """ Runs an action server that will move the robot to the given waypoint """ self.bb = pt.blackboard.Blackboard() self.node_name = node_name list_of_maneuvers = self.bb.get(bb_enums.MANEUVER_ACTIONS) if list_of_maneuvers is None: list_of_maneuvers = [self.node_name] else: list_of_maneuvers.append(self.node_name) self.bb.set(bb_enums.MANEUVER_ACTIONS, list_of_maneuvers) self.action_goal_handle = None # become action client ptr.actions.ActionClient.__init__( self, name = self.node_name, action_spec = GotoWaypointAction, action_goal = None, action_namespace = action_namespace, override_feedback_message_on_running = "Moving to waypoint" ) self.action_server_ok = False self.goal_tf_frame = goal_tf_frame def setup(self, timeout): """ Overwriting the normal ptr action setup to stop it from failiing the setup step and instead handling this failure in the tree. """ self.logger.debug("%s.setup()" % self.__class__.__name__) self.action_client = actionlib.SimpleActionClient( self.action_namespace, self.action_spec ) if not self.action_client.wait_for_server(rospy.Duration(timeout)): self.logger.error("{0}.setup() could not connect to the action server at '{1}'".format(self.__class__.__name__, self.action_namespace)) self.action_client = None else: self.action_server_ok = True return True def initialise(self): if not self.action_server_ok: rospy.logwarn_throttle(5, "No action server found for A_GotoWaypoint!") return mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if mission_plan is None: rospy.logwarn("No mission plan found!") return wp = mission_plan.get_current_wp() if wp is None: rospy.loginfo("No wp found to execute! Does the plan have any waypoints that we understand?") return if wp.tf_frame != self.goal_tf_frame: rospy.logerr_throttle(5, 'The frame of the waypoint({0}) does not match the expected frame({1}) of the action client!'.format(frame, self.goal_tf_frame)) return if wp.maneuver_id != imc_enums.MANEUVER_GOTO: rospy.loginfo("THIS IS A GOTO MANEUVER, WE ARE USING IT FOR SOMETHING ELSE") # get the goal tolerance as a dynamic variable from the bb goal_tolerance = self.bb.get(bb_enums.WAYPOINT_TOLERANCE) # construct the message goal = GotoWaypointGoal() goal.waypoint_pose.pose.position.x = wp.x goal.waypoint_pose.pose.position.y = wp.y goal.goal_tolerance = goal_tolerance # 0=None, 1=Depth, 2=Altitude in the action # thankfully these are the same in IMC and in the Action # but Action doesnt have 'height' if wp.z_unit == imc_enums.Z_HEIGHT: wp.z_unit = imc_enums.Z_NONE goal.z_control_mode = wp.z_unit goal.travel_depth = wp.z # 0=None, 1=RPM, 2=speed in the action # 0=speed, 1=rpm, 2=percentage in IMC if wp.speed_unit == imc_enums.SPEED_UNIT_RPM: goal.speed_control_mode = GotoWaypointGoal.SPEED_CONTROL_RPM goal.travel_rpm = wp.speed elif wp.speed_unit == imc_enums.SPEED_UNIT_MPS: goal.speed_control_mode = GotoWaypointGoal.SPEED_CONTROL_SPEED goal.travel_speed = wp.speed else: goal.speed_control_mode = GotoWaypointGoal.SPEED_CONTROL_NONE rospy.logwarn_throttle(1, "Speed control of the waypoint action is NONE!") self.action_goal = goal rospy.loginfo(">>> Goto waypoint action goal initialized:"+str(goal)) # ensure that we still need to send the goal self.sent_goal = False def update(self): """ Check only to see whether the underlying action server has succeeded, is running, or has cancelled/aborted for some reason and map these to the usual behaviour return states. """ if not self.action_server_ok: self.feedback_message = "Action Server for gotowp action can not be used!" rospy.logerr_throttle_identical(5,self.feedback_message) return pt.Status.FAILURE # if your action client is not valid if not self.action_client: self.feedback_message = "ActionClient is invalid! Client:"+str(self.action_client) rospy.logerr(self.feedback_message) return pt.Status.FAILURE # if the action_goal is invalid if not self.action_goal: self.feedback_message = "No action_goal!" rospy.logwarn(self.feedback_message) return pt.Status.FAILURE # if goal hasn't been sent yet if not self.sent_goal: self.action_goal_handle = self.action_client.send_goal(self.action_goal, feedback_cb=self.feedback_cb) self.sent_goal = True rospy.loginfo("Sent goal to action server:"+str(self.action_goal)) self.feedback_message = "Goal sent" return pt.Status.RUNNING # if the goal was aborted or preempted if self.action_client.get_state() in [actionlib_msgs.GoalStatus.ABORTED, actionlib_msgs.GoalStatus.PREEMPTED]: self.feedback_message = "Aborted goal" rospy.loginfo(self.feedback_message) return pt.Status.FAILURE result = self.action_client.get_result() # if the goal was accomplished if result is not None and result.reached_waypoint: self.feedback_message = "Completed goal" rospy.loginfo(self.feedback_message) return pt.Status.SUCCESS return pt.Status.RUNNING def feedback_cb(self, msg): fb = str(msg.ETA) self.feedback_message = "ETA:"+fb rospy.loginfo_throttle(5, fb) class A_UpdateTF(pt.behaviour.Behaviour): def __init__(self, utm_link, base_link): """ reads the current translation and orientation from the TF tree and puts that into the BB utm_link and base_link are tf link names where utm_link is essentially the world coordinates. check the neptus-related actions too for more info on utm_link """ super(A_UpdateTF, self).__init__("A_UpdateTF") self.bb = pt.blackboard.Blackboard() self.utm_link = utm_link self.base_link = base_link self.listener = tf.TransformListener() self.tf_ok = False self.last_read_time = None def setup(self, timeout): try: rospy.loginfo_throttle(3, "Waiting for transform from {} to {}...".format(self.utm_link, self.base_link)) self.listener.waitForTransform(self.utm_link, self.base_link, rospy.Time(), rospy.Duration(timeout)) rospy.loginfo_throttle(3, "...Got it") self.tf_ok = True except: rospy.logerr_throttle(5, "Could not find from "+self.utm_link+" to "+self.base_link + "... Nothing except safety will be run") return True def update(self): if self.last_read_time is not None: time_since = time.time() - self.last_read_time self.feedback_message = "Last read:{:.2f}s ago".format(time_since) else: self.feedback_message = "No msg received ever" try: (world_trans, world_rot) = self.listener.lookupTransform(self.utm_link, self.base_link, rospy.Time(0)) self.last_read_time = time.time() except (tf.LookupException, tf.ConnectivityException): rospy.logerr_throttle_identical(5, "Could not get transform between {} and {}".format(self.utm_link, self.base_link)) return pt.Status.FAILURE except: rospy.logerr_throttle_identical(5, "Could not do tf lookup for some other reason") return pt.Status.FAILURE self.bb.set(bb_enums.WORLD_TRANS, world_trans) self.bb.set(bb_enums.WORLD_ROT, world_rot) # also create this pointstamped object so that we can transform this # easily to w/e other frame is needed later ps = PointStamped() ps.header.frame_id = self.utm_link ps.header.stamp = rospy.Time(0) ps.point.x = world_trans[0] ps.point.y = world_trans[1] ps.point.z = world_trans[2] self.bb.set(bb_enums.LOCATION_POINT_STAMPED, ps) # the Z component is UP, so invert to get "depth" self.bb.set(bb_enums.DEPTH, -world_trans[2]) return pt.Status.SUCCESS class A_UpdateNeptusPlanControl(pt.behaviour.Behaviour): def __init__(self, plan_control_topic): super(A_UpdateNeptusPlanControl, self).__init__("A_UpdateNeptusPlanControl") self.bb = pt.blackboard.Blackboard() self.plan_control_msg = None self.plan_control_topic = plan_control_topic self.sub = None def setup(self, timeout): self.sub = rospy.Subscriber(self.plan_control_topic, PlanControl, self.plancontrol_cb) return True def plancontrol_cb(self, plan_control_msg): # rospy.loginfo("plancontrol_cb {}".format(plan_control_msg)) self.plan_control_msg = plan_control_msg def update(self): plan_control_msg = self.plan_control_msg if plan_control_msg is None: # not receiving anything is ok. return pt.Status.SUCCESS # check if this message is a 'go' or 'no go' message # imc/plan_control(569): # int type:[0,1,2,3] req,suc,fail,in prog # int op:[0,1,2,3] start, stop, load, get # int request_id # string plan_id # int flags # string info # the start button in neptus sends: # type:0 op:0 plan_id:"string" flags:1 # stop button sends: # type:0 op:1 plan_id:'' flags:1 # teleop button sends: # type:0 op:0 plan_id:"teleoperation-mode" flags:0 typee = plan_control_msg.type op = plan_control_msg.op plan_id = plan_control_msg.plan_id flags = plan_control_msg.flags # somehow this happens... if plan_id is None: plan_id='' # separate well-defined ifs for possible future shenanigans. if typee==0 and op==0 and plan_id!='' and flags==1: # start button # check if the start was given for our current plan current_mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) self.bb.set(bb_enums.PLAN_IS_GO, True) self.bb.set(bb_enums.ENABLE_AUTONOMY, False) if current_mission_plan is not None and plan_id == current_mission_plan.plan_id: rospy.loginfo("Started plan:{}".format(plan_id)) else: if current_mission_plan is None: rospy.logwarn("Start given for plan:{} but we don't have a plan!".format(plan_id)) else: rospy.logwarn("Start given for plan:{} our plan:{}".format(plan_id, current_mission_plan.plan_id)) if typee==0 and op==1 and plan_id=='' and flags==1: # stop button self.bb.set(bb_enums.PLAN_IS_GO, False) self.bb.set(bb_enums.ENABLE_AUTONOMY, False) # this string is hardcoded in Neptus, so we hardcode it here too! if typee==0 and op==0 and plan_id=='teleoperation-mode' and flags==0: # teleop button self.bb.set(bb_enums.ENABLE_AUTONOMY, True) rospy.logwarn_throttle_identical(10, "AUTONOMOUS MODE") # reset it until next message self.plan_control_msg = None return pt.Status.SUCCESS class A_UpdateNeptusEstimatedState(pt.behaviour.Behaviour): def __init__(self, estimated_state_topic, gps_fix_topic, gps_nav_data_topic): super(A_UpdateNeptusEstimatedState, self).__init__("A_UpdateNeptusEstimatedState") self.bb = pt.blackboard.Blackboard() self.estimated_state_pub = None self.estimated_state_topic = estimated_state_topic self.e_state = EstimatedState() self.gps_fix_pub = None self.gps_fix_topic = gps_fix_topic self.gps_nav_data_pub = None self.gps_nav_data_topic = gps_nav_data_topic self.gps_fix = NavSatFix() def setup(self, timeout): self.estimated_state_pub = rospy.Publisher(self.estimated_state_topic, EstimatedState, queue_size=1) self.gps_fix_pub = rospy.Publisher(self.gps_fix_topic, NavSatFix, queue_size=1) self.gps_nav_data_pub = rospy.Publisher(self.gps_nav_data_topic, NavSatFix, queue_size=1) return True def update(self): lat = self.bb.get(bb_enums.CURRENT_LATITUDE) lon = self.bb.get(bb_enums.CURRENT_LONGITUDE) depth = self.bb.get(bb_enums.DEPTH) world_rot = self.bb.get(bb_enums.WORLD_ROT) if depth is None: reason = "depth was None, using 0" self.feedback_message = reason depth = 0 if lat is None or lon is None or world_rot is None: rospy.logwarn_throttle_identical(10, "Could not update neptus estimated state because lat/lon/world_rot was None!") return pt.Status.SUCCESS # construct message for neptus self.e_state.lat = np.radians(lat) self.e_state.lon= np.radians(lon) self.e_state.depth = depth roll, pitch, yaw = tf.transformations.euler_from_quaternion(world_rot) self.e_state.psi = np.pi/2. - yaw # send the message to neptus self.estimated_state_pub.publish(self.e_state) # same thing with gps fix # the bridge only looks at lat lon height=altitude self.gps_fix.latitude = lat self.gps_fix.longitude = lon self.gps_fix.altitude = -depth self.gps_fix.header.seq = int(time.time()) self.gps_fix_pub.publish(self.gps_fix) self.gps_nav_data_pub.publish(self.gps_fix) return pt.Status.SUCCESS class A_UpdateNeptusPlanControlState(pt.behaviour.Behaviour): def __init__(self, plan_control_state_topic): super(A_UpdateNeptusPlanControlState, self).__init__("A_UpdateNeptusPlanControlState") self.bb = pt.blackboard.Blackboard() self.plan_control_state_pub = None self.plan_control_state_topic = plan_control_state_topic def setup(self, timeout): self.plan_control_state_pub = rospy.Publisher(self.plan_control_state_topic, PlanControlState, queue_size=1) return True def update(self): # construct current progress message for neptus msg = PlanControlState() tip_name = self.bb.get(bb_enums.TREE_TIP_NAME) tip_status = self.bb.get(bb_enums.TREE_TIP_STATUS) # this tip_status looks like: "Status.FAILURE" # I just wanna get the first letter after dot. msg.man_id = tip_name+'('+tip_status[7]+')' mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if mission_plan is None: msg.plan_id = 'No plan' msg.plan_progress = 100.0 elif mission_plan.is_complete(): msg.plan_id = 'Mission complete' msg.plan_progress = 100.0 else: current_wp_index = mission_plan.current_wp_index current_man_id = mission_plan.waypoint_man_ids[current_wp_index] total = len(mission_plan.waypoints) msg.plan_id = str(mission_plan.plan_id) if self.bb.get(bb_enums.PLAN_IS_GO): msg.man_id = current_man_id plan_progress = (current_wp_index * 100.0) / total # percent float msg.plan_progress = plan_progress if tip_name in imc_enums.EXECUTING_ACTION_NAMES: msg.state = imc_enums.STATE_EXECUTING elif tip_name in imc_enums.BLOCKED_ACTION_NAMES: msg.state = imc_enums.STATE_BLOCKED msg.plan_id = 'SAFETY FALLBACK' msg.man_id = 'EMERGENCY' msg.plan_progress = 0.0 else: msg.state = imc_enums.STATE_READY if self.bb.get(bb_enums.ENABLE_AUTONOMY): msg.plan_id += '(AUTONOMOUS)' # send message to neptus self.plan_control_state_pub.publish(msg) return pt.Status.SUCCESS class A_UpdateNeptusVehicleState(pt.behaviour.Behaviour): def __init__(self, vehicle_state_topic): super(A_UpdateNeptusVehicleState, self).__init__("A_UpdateNeptusVehicleState") self.bb = pt.blackboard.Blackboard() self.vehicle_state_pub = None self.vehicle_state_topic = vehicle_state_topic def setup(self, timeout): self.vehicle_state_pub = rospy.Publisher(self.vehicle_state_topic, VehicleState, queue_size=1) return True def update(self): """ this is the message that makes SAM:DISCONNECTED better. """ vs = VehicleState() tip_name = self.bb.get(bb_enums.TREE_TIP_NAME) if tip_name in imc_enums.EXECUTING_ACTION_NAMES: vs.op_mode = imc_enums.OP_MODE_MANEUVER elif tip_name == 'A_EmergencySurface': vs.op_mode = imc_enums.OP_MODE_ERROR else: vs.op_mode = imc_enums.OP_MODE_SERVICE self.vehicle_state_pub.publish(vs) return pt.Status.SUCCESS class A_UpdateNeptusPlanDB(pt.behaviour.Behaviour): def __init__(self, plandb_topic, utm_link, local_link, latlontoutm_service_name, latlontoutm_service_name_alternative): super(A_UpdateNeptusPlanDB, self).__init__("A_UpdateNeptusPlanDB") self.bb = pt.blackboard.Blackboard() # neptus sends lat/lon, which we convert to utm, which we then convert to local self.utm_link = utm_link self.local_link = local_link self.latlontoutm_service_name = latlontoutm_service_name self.latlontoutm_service_name_alternative = latlontoutm_service_name_alternative # the message body is largely the same, so we can re-use most of it self.plandb_msg = PlanDB() self.plandb_msg.type = imc_enums.PLANDB_TYPE_SUCCESS self.plandb_msg.op = imc_enums.PLANDB_OP_SET self.plandb_pub = None self.plandb_sub = None self.latest_plandb_msg = None self.plandb_topic = plandb_topic def setup(self, timeout): self.plandb_pub = rospy.Publisher(self.plandb_topic, PlanDB, queue_size=1) self.plandb_sub = rospy.Subscriber(self.plandb_topic, PlanDB, callback=self.plandb_cb, queue_size=1) return True def plandb_cb(self, plandb_msg): """ as an answer to OUR answer of 'type=succes, op=set', neptus sends a 'type=request, op=get_info'. """ # rospy.loginfo("plandb_db {}".format(plandb_msg)) self.latest_plandb_msg = plandb_msg def make_plandb_info(self): current_mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) plan_info = PlanDBInformation() plan_info.plan_id = current_mission_plan.plan_id plan_info.md5 = current_mission_plan.plandb_msg.plan_spec_md5 plan_info.change_time = current_mission_plan.creation_time/1000.0 return plan_info def handle_request_get_info(self, plandb_msg): # we need to respond to this with some info... but what? rospy.loginfo_throttle_identical(30, "Got REQUEST GET_INFO planDB msg from Neptus") current_mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if current_mission_plan is None: return response = PlanDB() response.plan_id = current_mission_plan.plan_id response.type = imc_enums.PLANDB_TYPE_SUCCESS response.op = imc_enums.PLANDB_OP_GET_INFO response.plandb_information = self.make_plandb_info() self.plandb_pub.publish(response) rospy.loginfo_throttle_identical(30, "Answered GET_INFO for plan:"+str(response.plan_id)) def handle_request_get_state(self, plandb_msg): rospy.loginfo_throttle_identical(30, "Got REQUEST GET_STATE planDB msg from Neptus") current_mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if current_mission_plan is None: return # https://github.com/LSTS/imcjava/blob/d95fddeab4c439e603cf5e30a32979ad7ace5fbc/src/java/pt/lsts/imc/adapter/PlanDbManager.java#L160 # See above for an example # TODO it seems like we need to keep a planDB ourselves on this side, collect all the plans we # received and answer this get_state with data from them all. # lets try telling neptus that we just got one plan, maybe that'll be okay? # seems alright, but after this message is sent, the plan goes red :/ response = PlanDB() response.plan_id = current_mission_plan.plan_id response.type = imc_enums.PLANDB_TYPE_SUCCESS response.op = imc_enums.PLANDB_OP_GET_STATE response.plandb_state = PlanDBState() response.plandb_state.plan_count = 1 response.plandb_state.plans_info.append(self.make_plandb_info()) self.plandb_pub.publish(response) rospy.loginfo_throttle_identical(30, "Answered GET_STATE for plan:\n"+str(response.plan_id)) def handle_set_plan(self, plandb_msg): # there is a plan we can at least look at mission_plan = MissionPlan(plan_frame = self.utm_link, plandb_msg = plandb_msg, latlontoutm_service_name = self.latlontoutm_service_name, latlontoutm_service_name_alternative = self.latlontoutm_service_name_alternative, coverage_swath = self.bb.get(bb_enums.SWATH), vehicle_localization_error_growth = self.bb.get(bb_enums.LOCALIZATION_ERROR_GROWTH)) if mission_plan.no_service: self.feedback_message = "MISSION PLAN HAS NO SERVICE" rospy.logerr(self.feedback_message) return self.bb.set(bb_enums.MISSION_PLAN_OBJ, mission_plan) self.bb.set(bb_enums.ENABLE_AUTONOMY, False) self.bb.set(bb_enums.MISSION_FINALIZED, False) self.bb.set(bb_enums.PLAN_IS_GO, False) rospy.loginfo_throttle_identical(5, "Set the mission plan to:{} and un-finalized the mission.".format(mission_plan)) def handle_plandb_msg(self): plandb_msg = self.latest_plandb_msg if plandb_msg is None: return typee = plandb_msg.type op = plandb_msg.op # request get_info if typee == imc_enums.PLANDB_TYPE_REQUEST and op == imc_enums.PLANDB_OP_GET_INFO: self.handle_request_get_info(plandb_msg) elif typee == imc_enums.PLANDB_TYPE_REQUEST and op == imc_enums.PLANDB_OP_GET_STATE: self.handle_request_get_state(plandb_msg) elif typee == imc_enums.PLANDB_TYPE_SUCCESS and op == imc_enums.PLANDB_OP_SET: self.feedback_message = "Got SUCCESS for plandb set" elif typee == imc_enums.PLANDB_TYPE_SUCCESS and op == imc_enums.PLANDB_OP_GET_INFO: self.feedback_message = "Got SUCCESS for plandb get info" elif typee == imc_enums.PLANDB_TYPE_SUCCESS and op == imc_enums.PLANDB_OP_GET_STATE: self.feedback_message = "Got SUCCESS for plandb get state" elif op == imc_enums.PLANDB_OP_SET: self.handle_set_plan(plandb_msg) else: self.feedback_message = "Got some unhandled planDB message:\n"+str(plandb_msg) def respond_set_success(self): current_mission_plan = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if current_mission_plan is None: self.feedback_message = "No mission plan obj!" return plan_id = current_mission_plan.plan_id self.plandb_msg.plan_id = plan_id self.plandb_pub.publish(self.plandb_msg) self.feedback_message = "Answered set success for plan_id:"+str(plan_id) def update(self): # we just want to tell neptus we got the plan all the time # this keeps the thingy green self.respond_set_success() self.handle_plandb_msg() # reset self.latest_plandb_msg = None return pt.Status.SUCCESS class A_UpdateMissonForPOI(pt.behaviour.Behaviour): """ creates a new diamond-shaped mission over a detected POI and sets that as the current mission plan. always returns SUCCESS """ def __init__(self, utm_link, poi_link, latlontoutm_service_name): super(A_UpdateMissonForPOI, self).__init__(name="A_UpdateMissonForPOI") self.bb = pt.blackboard.Blackboard() self.utm_link = utm_link self.poi_link = poi_link self.tf_listener = tf.TransformListener() self.latlontoutm_service_name = latlontoutm_service_name self.poi_link_available = False def setup(self, timeout): try: rospy.loginfo_throttle(3, "Waiting for transform from {} to {}...".format(self.poi_link, self.utm_link)) self.tf_listener.waitForTransform(self.poi_link, self.utm_link, rospy.Time(), rospy.Duration(timeout)) rospy.loginfo_throttle(3, "...Got it") self.poi_link_available = True except: rospy.logerr_throttle(5, "Could not find tf from:"+self.poi_link+" to:"+self.utm_link+" disabling updates") return True def update(self): #XXX UNTESTED STUFF HERE, RETURN FAILURE TO KEEP PPL #XXX FROM USING THIS ACTION return pt.Status.FAILURE if not self.poi_link_available: return pt.Status.FAILURE poi = self.bb.get(bb_enums.POI_POINT_STAMPED) if poi is None: return pt.Status.SUCCESS poi_local = self.tf_listener.transformPoint(self.utm_link, poi) x = poi_local.point.x y = poi_local.point.y depth = poi.point.z # construct the waypoints that we want to go to inspection_depth = max(1, depth - 5) radius = 10 # go east,west,north,south,center # so we do bunch of fly-overs waypoints = [ (x+radius, y, inspection_depth), (x-radius, y, inspection_depth), (x, y+radius, inspection_depth), (x, y-radius, inspection_depth), (x, y, 0) ] waypoint_man_ids = ['east', 'west', 'north', 'south', 'surface_center'] # construct a planDB message to be given to the mission_plan # we will not fill the plan_spec of this plandb message, # and instead call a different constructor of MissionPlan # to bypass the lat/lon stuff pdb = PlanDB() pdb.request_id = 42 pdb.plan_id = "POI" # set it in the tree mission_plan = MissionPlan(plan_frame = self.utm_link, plandb_msg = pdb, waypoints = waypoints, waypoint_man_ids=waypoint_man_ids, latlontoutm_service_name = self.latlontoutm_service_name) self.bb.set(bb_enums.MISSION_PLAN_OBJ, mission_plan) rospy.loginfo_throttle_identical(5, "Due to POI, set the mission plan to:"+str(mission_plan)) return pt.Status.SUCCESS class A_VizPublishPlan(pt.behaviour.Behaviour): """ Publishes the current plans waypoints as a PoseArray """ def __init__(self, plan_viz_topic): super(A_VizPublishPlan, self).__init__(name="A_VizPublishPlan") self.bb = pt.blackboard.Blackboard() self.pa_pub = None self.plan_viz_topic = plan_viz_topic def setup(self, timeout): self.pa_pub = rospy.Publisher(self.plan_viz_topic, PoseArray, queue_size=1) return True def update(self): mission = self.bb.get(bb_enums.MISSION_PLAN_OBJ) if mission is not None: pa = mission.get_pose_array(flip_z=True) else: pa = PoseArray() self.pa_pub.publish(pa) return pt.Status.SUCCESS class A_FollowLeader(ptr.actions.ActionClient): def __init__(self, action_namespace, leader_link): """ Runs an action server that will move the robot towards another tf link """ self.bb = pt.blackboard.Blackboard() list_of_maneuvers = self.bb.get(bb_enums.MANEUVER_ACTIONS) if list_of_maneuvers is None: list_of_maneuvers = ["A_FollowLeader"] else: list_of_maneuvers.append("A_FollowLeader") self.bb.set(bb_enums.MANEUVER_ACTIONS, list_of_maneuvers) self.action_goal_handle = None self.leader_link = leader_link # become action client ptr.actions.ActionClient.__init__( self, name="A_FollowLeader", action_spec=GotoWaypointAction, action_goal=None, action_namespace = action_namespace, override_feedback_message_on_running="Moving towards"+str(leader_link) ) self.action_server_ok = False def setup(self, timeout): """ Overwriting the normal ptr action setup to stop it from failiing the setup step and instead handling this failure in the tree. """ self.logger.debug("%s.setup()" % self.__class__.__name__) self.action_client = actionlib.SimpleActionClient( self.action_namespace, self.action_spec ) if not self.action_client.wait_for_server(rospy.Duration(timeout)): self.logger.error("{0}.setup() could not connect to the action server at '{1}'".format(self.__class__.__name__, self.action_namespace)) self.action_client = None else: self.action_server_ok = True return True def initialise(self): # construct the message self.action_goal = GotoWaypointGoal() # leave 0,0,0 because we want to go to the frame's center self.action_goal.target_pose.header.frame_id = self.leader_link rospy.loginfo("Follow action goal initialized") # ensure that we still need to send the goal self.sent_goal = False def update(self): """ Check only to see whether the underlying action server has succeeded, is running, or has cancelled/aborted for some reason and map these to the usual behaviour return states. """ if not self.action_server_ok: self.feedback_message = "Action Server for follow leader action can not be used!" rospy.logerr_throttle_identical(5,self.feedback_message) return pt.Status.FAILURE # if your action client is not valid if not self.action_client: self.feedback_message = "ActionClient is invalid! Client:"+str(self.action_client) rospy.logerr(self.feedback_message) return pt.Status.FAILURE # if the action_goal is invalid if not self.action_goal: self.feedback_message = "No action_goal!" rospy.logwarn(self.feedback_message) return pt.Status.FAILURE # if goal hasn't been sent yet if not self.sent_goal: self.action_goal_handle = self.action_client.send_goal(self.action_goal, feedback_cb=self.feedback_cb) self.sent_goal = True rospy.loginfo("Sent goal to action server:"+str(self.action_goal)) self.feedback_message = "Goal sent" return pt.Status.RUNNING # if the goal was aborted or preempted if self.action_client.get_state() in [actionlib_msgs.GoalStatus.ABORTED, actionlib_msgs.GoalStatus.PREEMPTED]: self.feedback_message = "Aborted goal" rospy.loginfo(self.feedback_message) return pt.Status.FAILURE result = self.action_client.get_result() # if the goal was accomplished if result: self.feedback_message = "Completed goal" rospy.loginfo(self.feedback_message) return pt.Status.SUCCESS return pt.Status.RUNNING def feedback_cb(self, msg): pass class A_ReadBuoys(pt.behaviour.Behaviour): ''' This action reads the uncertain positions (mean and covariance) of buoys from the rostopic. ''' def __init__( self, topic_name, buoy_link, utm_link, latlon_utm_serv, ): # rostopic name and type (e.g. marker array) self.topic_name = topic_name # frame IDs for TF self.buoy_link = buoy_link self.utm_link = utm_link # lat/lon to utm service self.latlon_utm_serv = latlon_utm_serv # blackboard for info self.bb = pt.blackboard.Blackboard() # become a behaviour pt.behaviour.Behaviour.__init__( self, name="A_ReadBuoys" ) # for coordinate frame transformations self.tf_listener = tf.TransformListener() def setup(self, timeout): # wait for TF transformation try: rospy.loginfo('Waiting for transform from {} to {}.'.format( self.buoy_link, self.utm_link )) self.tf_listener.waitForTransform( self.buoy_link, self.utm_link, rospy.Time(), rospy.Duration(timeout) ) except: rospy.loginfo('Transform from {} to {} not found.'.format( self.buoy_link, self.utm_link )) # subscribe to buoy positions self.sub = rospy.Subscriber( self.topic_name, MarkerArray, callback=self.cb, queue_size=10 ) # self.bb.set(bb_enums.BUOYS, None) self.buoys = None return True def cb(self, msg): ''' This will read the uncertain buoy positions from the SLAM backend and sensors. But, for now, it just read the simulator buoys. The buoys here are assumed to be in the map frame. ''' # space for bouy positions # rospy.loginfo('hello') self.buoys = list() # loop through visualization markers for marker in msg.markers: # convert their pose to pose stamped pose = PoseStamped( header=marker.header, pose=marker.pose ) # # transform it from local to UTM frame # pose = self.tf_listener.transformPose( # self.utm_link, # pose # ) # add it to the list self.buoys.append([ pose.pose.position.x, pose.pose.position.y, pose.pose.position.z ]) # make it into a numpy array because why not self.buoys = np.array(self.buoys) self.buoys = self.buoys[np.argsort(self.buoys[:,0])] self.buoys = self.buoys.reshape((-1, 3, 3)) self.buoys = np.sort(self.buoys, axis=1) self.buoys = dict( front=self.buoys[:,0,:], left=self.buoys[0,:,:], back=self.buoys[:,-1,:], right=self.buoys[-1,:,:], all=self.buoys ) def update(self): # put the buoy positions in the blackboard self.bb.set(bb_enums.BUOYS, self.buoys) return pt.Status.SUCCESS
[ "std_srvs.srv.SetBool", "numpy.radians", "rospy.logerr", "rospy.logwarn", "imc_ros_bridge.msg.EstimatedState", "numpy.argsort", "py_trees.behaviour.Behaviour.__init__", "numpy.array", "rospy.logwarn_throttle", "tf.TransformListener", "imc_ros_bridge.msg.PlanDBState", "imc_ros_bridge.msg.PlanDB", "sensor_msgs.msg.NavSatFix", "numpy.sort", "rospy.ServiceProxy", "rospy.loginfo_throttle_identical", "rospy.Subscriber", "geometry_msgs.msg.PoseArray", "actionlib.SimpleActionClient", "rospy.loginfo_throttle", "imc_ros_bridge.msg.PlanDBInformation", "rospy.logerr_throttle", "mission_plan.MissionPlan", "rospy.Time", "rospy.logerr_throttle_identical", "mission_log.MissionLog", "rospy.Duration", "rospy.logwarn_throttle_identical", "rospy.Publisher", "time.time", "rospy.loginfo", "py_trees.blackboard.Blackboard", "tf.transformations.euler_from_quaternion", "imc_ros_bridge.msg.PlanControlState", "smarc_msgs.msg.GotoWaypointGoal", "py_trees_ros.actions.ActionClient.__init__", "geometry_msgs.msg.PointStamped", "geometry_msgs.msg.PoseStamped", "imc_ros_bridge.msg.VehicleState", "std_msgs.msg.Empty" ]
[((1112, 1138), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (1136, 1138), True, 'import py_trees as pt\n'), ((1238, 1245), 'std_msgs.msg.Empty', 'Empty', ([], {}), '()\n', (1243, 1245), False, 'from std_msgs.msg import Float64, Header, Bool, Empty\n'), ((1297, 1345), 'rospy.Publisher', 'rospy.Publisher', (['self.topic', 'Empty'], {'queue_size': '(1)'}), '(self.topic, Empty, queue_size=1)\n', (1312, 1345), False, 'import rospy\n'), ((2425, 2451), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (2449, 2451), True, 'import py_trees as pt\n'), ((2623, 2681), 'mission_log.MissionLog', 'MissionLog', ([], {'mission_plan': 'None', 'save_location': 'save_location'}), '(mission_plan=None, save_location=save_location)\n', (2633, 2681), False, 'from mission_log import MissionLog\n'), ((2777, 2824), 'rospy.loginfo', 'rospy.loginfo', (['"""Started new manual mission log"""'], {}), "('Started new manual mission log')\n", (2790, 2824), False, 'import rospy\n'), ((4780, 4806), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (4804, 4806), True, 'import py_trees as pt\n'), ((5439, 5465), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (5463, 5465), True, 'import py_trees as pt\n'), ((5613, 5672), 'mission_log.MissionLog', 'MissionLog', ([], {'mission_plan': 'mplan', 'save_location': 'save_location'}), '(mission_plan=mplan, save_location=save_location)\n', (5623, 5672), False, 'from mission_log import MissionLog\n'), ((5761, 5801), 'rospy.loginfo', 'rospy.loginfo', (['"""Started new mission log"""'], {}), "('Started new mission log')\n", (5774, 5801), False, 'import rospy\n'), ((8074, 8126), 'rospy.ServiceProxy', 'rospy.ServiceProxy', (['dvl_on_off_service_name', 'SetBool'], {}), '(dvl_on_off_service_name, SetBool)\n', (8092, 8126), False, 'import rospy\n'), ((8196, 8222), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (8220, 8222), True, 'import py_trees as pt\n'), ((8242, 8251), 'std_srvs.srv.SetBool', 'SetBool', ([], {}), '()\n', (8249, 8251), False, 'from std_srvs.srv import SetBool\n'), ((8863, 8874), 'time.time', 'time.time', ([], {}), '()\n', (8872, 8874), False, 'import time\n'), ((10136, 10162), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (10160, 10162), True, 'import py_trees as pt\n'), ((10211, 10446), 'py_trees_ros.actions.ActionClient.__init__', 'ptr.actions.ActionClient.__init__', (['self'], {'name': '"""A_EmergencySurface"""', 'action_spec': 'GotoWaypointAction', 'action_goal': 'None', 'action_namespace': 'emergency_action_namespace', 'override_feedback_message_on_running': '"""EMERGENCY SURFACING"""'}), "(self, name='A_EmergencySurface',\n action_spec=GotoWaypointAction, action_goal=None, action_namespace=\n emergency_action_namespace, override_feedback_message_on_running=\n 'EMERGENCY SURFACING')\n", (10244, 10446), True, 'import py_trees_ros as ptr\n'), ((10848, 10917), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['self.action_namespace', 'self.action_spec'], {}), '(self.action_namespace, self.action_spec)\n', (10876, 10917), False, 'import actionlib\n'), ((11651, 11669), 'smarc_msgs.msg.GotoWaypointGoal', 'GotoWaypointGoal', ([], {}), '()\n', (11667, 11669), False, 'from smarc_msgs.msg import GotoWaypointAction, GotoWaypointGoal\n'), ((14109, 14135), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (14133, 14135), True, 'import py_trees as pt\n'), ((15359, 15385), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (15383, 15385), True, 'import py_trees as pt\n'), ((15789, 16002), 'py_trees_ros.actions.ActionClient.__init__', 'ptr.actions.ActionClient.__init__', (['self'], {'name': 'self.node_name', 'action_spec': 'GotoWaypointAction', 'action_goal': 'None', 'action_namespace': 'action_namespace', 'override_feedback_message_on_running': '"""Moving to waypoint"""'}), "(self, name=self.node_name, action_spec=\n GotoWaypointAction, action_goal=None, action_namespace=action_namespace,\n override_feedback_message_on_running='Moving to waypoint')\n", (15822, 16002), True, 'import py_trees_ros as ptr\n'), ((16463, 16532), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['self.action_namespace', 'self.action_spec'], {}), '(self.action_namespace, self.action_spec)\n', (16491, 16532), False, 'import actionlib\n'), ((17993, 18011), 'smarc_msgs.msg.GotoWaypointGoal', 'GotoWaypointGoal', ([], {}), '()\n', (18009, 18011), False, 'from smarc_msgs.msg import GotoWaypointAction, GotoWaypointGoal\n'), ((21400, 21429), 'rospy.loginfo_throttle', 'rospy.loginfo_throttle', (['(5)', 'fb'], {}), '(5, fb)\n', (21422, 21429), False, 'import rospy\n'), ((21896, 21922), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (21920, 21922), True, 'import py_trees as pt\n'), ((22015, 22037), 'tf.TransformListener', 'tf.TransformListener', ([], {}), '()\n', (22035, 22037), False, 'import tf\n'), ((23852, 23866), 'geometry_msgs.msg.PointStamped', 'PointStamped', ([], {}), '()\n', (23864, 23866), False, 'from geometry_msgs.msg import PointStamped, PoseArray, PoseStamped\n'), ((23936, 23949), 'rospy.Time', 'rospy.Time', (['(0)'], {}), '(0)\n', (23946, 23949), False, 'import rospy\n'), ((24470, 24496), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (24494, 24496), True, 'import py_trees as pt\n'), ((24662, 24737), 'rospy.Subscriber', 'rospy.Subscriber', (['self.plan_control_topic', 'PlanControl', 'self.plancontrol_cb'], {}), '(self.plan_control_topic, PlanControl, self.plancontrol_cb)\n', (24678, 24737), False, 'import rospy\n'), ((27684, 27710), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (27708, 27710), True, 'import py_trees as pt\n'), ((27833, 27849), 'imc_ros_bridge.msg.EstimatedState', 'EstimatedState', ([], {}), '()\n', (27847, 27849), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((28039, 28050), 'sensor_msgs.msg.NavSatFix', 'NavSatFix', ([], {}), '()\n', (28048, 28050), False, 'from sensor_msgs.msg import NavSatFix\n'), ((28117, 28190), 'rospy.Publisher', 'rospy.Publisher', (['self.estimated_state_topic', 'EstimatedState'], {'queue_size': '(1)'}), '(self.estimated_state_topic, EstimatedState, queue_size=1)\n', (28132, 28190), False, 'import rospy\n'), ((28218, 28278), 'rospy.Publisher', 'rospy.Publisher', (['self.gps_fix_topic', 'NavSatFix'], {'queue_size': '(1)'}), '(self.gps_fix_topic, NavSatFix, queue_size=1)\n', (28233, 28278), False, 'import rospy\n'), ((28311, 28376), 'rospy.Publisher', 'rospy.Publisher', (['self.gps_nav_data_topic', 'NavSatFix'], {'queue_size': '(1)'}), '(self.gps_nav_data_topic, NavSatFix, queue_size=1)\n', (28326, 28376), False, 'import rospy\n'), ((29056, 29071), 'numpy.radians', 'np.radians', (['lat'], {}), '(lat)\n', (29066, 29071), True, 'import numpy as np\n'), ((29098, 29113), 'numpy.radians', 'np.radians', (['lon'], {}), '(lon)\n', (29108, 29113), True, 'import numpy as np\n'), ((29176, 29227), 'tf.transformations.euler_from_quaternion', 'tf.transformations.euler_from_quaternion', (['world_rot'], {}), '(world_rot)\n', (29216, 29227), False, 'import tf\n'), ((29979, 30005), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (30003, 30005), True, 'import py_trees as pt\n'), ((30184, 30262), 'rospy.Publisher', 'rospy.Publisher', (['self.plan_control_state_topic', 'PlanControlState'], {'queue_size': '(1)'}), '(self.plan_control_state_topic, PlanControlState, queue_size=1)\n', (30199, 30262), False, 'import rospy\n'), ((30377, 30395), 'imc_ros_bridge.msg.PlanControlState', 'PlanControlState', ([], {}), '()\n', (30393, 30395), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((32248, 32274), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (32272, 32274), True, 'import py_trees as pt\n'), ((32432, 32501), 'rospy.Publisher', 'rospy.Publisher', (['self.vehicle_state_topic', 'VehicleState'], {'queue_size': '(1)'}), '(self.vehicle_state_topic, VehicleState, queue_size=1)\n', (32447, 32501), False, 'import rospy\n'), ((32647, 32661), 'imc_ros_bridge.msg.VehicleState', 'VehicleState', ([], {}), '()\n', (32659, 32661), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((33422, 33448), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (33446, 33448), True, 'import py_trees as pt\n'), ((33864, 33872), 'imc_ros_bridge.msg.PlanDB', 'PlanDB', ([], {}), '()\n', (33870, 33872), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((34188, 34244), 'rospy.Publisher', 'rospy.Publisher', (['self.plandb_topic', 'PlanDB'], {'queue_size': '(1)'}), '(self.plandb_topic, PlanDB, queue_size=1)\n', (34203, 34244), False, 'import rospy\n'), ((34271, 34357), 'rospy.Subscriber', 'rospy.Subscriber', (['self.plandb_topic', 'PlanDB'], {'callback': 'self.plandb_cb', 'queue_size': '(1)'}), '(self.plandb_topic, PlanDB, callback=self.plandb_cb,\n queue_size=1)\n', (34287, 34357), False, 'import rospy\n'), ((34771, 34790), 'imc_ros_bridge.msg.PlanDBInformation', 'PlanDBInformation', ([], {}), '()\n', (34788, 34790), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((35143, 35230), 'rospy.loginfo_throttle_identical', 'rospy.loginfo_throttle_identical', (['(30)', '"""Got REQUEST GET_INFO planDB msg from Neptus"""'], {}), "(30,\n 'Got REQUEST GET_INFO planDB msg from Neptus')\n", (35175, 35230), False, 'import rospy\n'), ((35378, 35386), 'imc_ros_bridge.msg.PlanDB', 'PlanDB', ([], {}), '()\n', (35384, 35386), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((35811, 35899), 'rospy.loginfo_throttle_identical', 'rospy.loginfo_throttle_identical', (['(30)', '"""Got REQUEST GET_STATE planDB msg from Neptus"""'], {}), "(30,\n 'Got REQUEST GET_STATE planDB msg from Neptus')\n", (35843, 35899), False, 'import rospy\n'), ((36557, 36565), 'imc_ros_bridge.msg.PlanDB', 'PlanDB', ([], {}), '()\n', (36563, 36565), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((36761, 36774), 'imc_ros_bridge.msg.PlanDBState', 'PlanDBState', ([], {}), '()\n', (36772, 36774), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((40471, 40497), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (40495, 40497), True, 'import py_trees as pt\n'), ((40591, 40613), 'tf.TransformListener', 'tf.TransformListener', ([], {}), '()\n', (40611, 40613), False, 'import tf\n'), ((42524, 42532), 'imc_ros_bridge.msg.PlanDB', 'PlanDB', ([], {}), '()\n', (42530, 42532), False, 'from imc_ros_bridge.msg import EstimatedState, VehicleState, PlanDB, PlanDBInformation, PlanDBState, PlanControlState, PlanControl, PlanSpecification, Maneuver\n'), ((42642, 42816), 'mission_plan.MissionPlan', 'MissionPlan', ([], {'plan_frame': 'self.utm_link', 'plandb_msg': 'pdb', 'waypoints': 'waypoints', 'waypoint_man_ids': 'waypoint_man_ids', 'latlontoutm_service_name': 'self.latlontoutm_service_name'}), '(plan_frame=self.utm_link, plandb_msg=pdb, waypoints=waypoints,\n waypoint_man_ids=waypoint_man_ids, latlontoutm_service_name=self.\n latlontoutm_service_name)\n', (42653, 42816), False, 'from mission_plan import MissionPlan\n'), ((43406, 43432), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (43430, 43432), True, 'import py_trees as pt\n'), ((43558, 43619), 'rospy.Publisher', 'rospy.Publisher', (['self.plan_viz_topic', 'PoseArray'], {'queue_size': '(1)'}), '(self.plan_viz_topic, PoseArray, queue_size=1)\n', (43573, 43619), False, 'import rospy\n'), ((44178, 44204), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (44202, 44204), True, 'import py_trees as pt\n'), ((45251, 45320), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['self.action_namespace', 'self.action_spec'], {}), '(self.action_namespace, self.action_spec)\n', (45279, 45320), False, 'import actionlib\n'), ((45780, 45798), 'smarc_msgs.msg.GotoWaypointGoal', 'GotoWaypointGoal', ([], {}), '()\n', (45796, 45798), False, 'from smarc_msgs.msg import GotoWaypointAction, GotoWaypointGoal\n'), ((45945, 45992), 'rospy.loginfo', 'rospy.loginfo', (['"""Follow action goal initialized"""'], {}), "('Follow action goal initialized')\n", (45958, 45992), False, 'import rospy\n'), ((48702, 48728), 'py_trees.blackboard.Blackboard', 'pt.blackboard.Blackboard', ([], {}), '()\n', (48726, 48728), True, 'import py_trees as pt\n'), ((48767, 48824), 'py_trees.behaviour.Behaviour.__init__', 'pt.behaviour.Behaviour.__init__', (['self'], {'name': '"""A_ReadBuoys"""'}), "(self, name='A_ReadBuoys')\n", (48798, 48824), True, 'import py_trees as pt\n'), ((48934, 48956), 'tf.TransformListener', 'tf.TransformListener', ([], {}), '()\n', (48954, 48956), False, 'import tf\n'), ((49605, 49684), 'rospy.Subscriber', 'rospy.Subscriber', (['self.topic_name', 'MarkerArray'], {'callback': 'self.cb', 'queue_size': '(10)'}), '(self.topic_name, MarkerArray, callback=self.cb, queue_size=10)\n', (49621, 49684), False, 'import rospy\n'), ((50885, 50905), 'numpy.array', 'np.array', (['self.buoys'], {}), '(self.buoys)\n', (50893, 50905), True, 'import numpy as np\n'), ((51040, 51067), 'numpy.sort', 'np.sort', (['self.buoys'], {'axis': '(1)'}), '(self.buoys, axis=1)\n', (51047, 51067), True, 'import numpy as np\n'), ((6048, 6112), 'rospy.loginfo', 'rospy.loginfo', (['"""Mission plan is None, can\'t make a log of this?"""'], {}), '("Mission plan is None, can\'t make a log of this?")\n', (6061, 6112), False, 'import rospy\n'), ((8985, 9054), 'rospy.loginfo_throttle_identical', 'rospy.loginfo_throttle_identical', (['(5)', '"""Waiting on DVL toggle cooldown"""'], {}), "(5, 'Waiting on DVL toggle cooldown')\n", (9017, 9054), False, 'import rospy\n'), ((9529, 9540), 'time.time', 'time.time', ([], {}), '()\n', (9538, 9540), False, 'import time\n'), ((11409, 11522), 'rospy.logwarn_throttle_identical', 'rospy.logwarn_throttle_identical', (['(5)', '"""No Action Server found for emergency action, will just block the tree!"""'], {}), "(5,\n 'No Action Server found for emergency action, will just block the tree!')\n", (11441, 11522), False, 'import rospy\n'), ((11864, 11921), 'rospy.logerr_throttle_identical', 'rospy.logerr_throttle_identical', (['(5)', 'self.feedback_message'], {}), '(5, self.feedback_message)\n', (11895, 11921), False, 'import rospy\n'), ((12135, 12193), 'rospy.logwarn_throttle_identical', 'rospy.logwarn_throttle_identical', (['(5)', 'self.feedback_message'], {}), '(5, self.feedback_message)\n', (12167, 12193), False, 'import rospy\n'), ((12370, 12406), 'rospy.logwarn', 'rospy.logwarn', (['self.feedback_message'], {}), '(self.feedback_message)\n', (12383, 12406), False, 'import rospy\n'), ((13120, 13156), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (13133, 13156), False, 'import rospy\n'), ((13373, 13409), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (13386, 13409), False, 'import rospy\n'), ((14380, 14431), 'rospy.logwarn_throttle', 'rospy.logwarn_throttle', (['(5)', '"""Mission plan was None!"""'], {}), "(5, 'Mission plan was None!')\n", (14402, 14431), False, 'import rospy\n'), ((16984, 17055), 'rospy.logwarn_throttle', 'rospy.logwarn_throttle', (['(5)', '"""No action server found for A_GotoWaypoint!"""'], {}), "(5, 'No action server found for A_GotoWaypoint!')\n", (17006, 17055), False, 'import rospy\n'), ((17183, 17222), 'rospy.logwarn', 'rospy.logwarn', (['"""No mission plan found!"""'], {}), "('No mission plan found!')\n", (17196, 17222), False, 'import rospy\n'), ((17322, 17425), 'rospy.loginfo', 'rospy.loginfo', (['"""No wp found to execute! Does the plan have any waypoints that we understand?"""'], {}), "(\n 'No wp found to execute! Does the plan have any waypoints that we understand?'\n )\n", (17335, 17425), False, 'import rospy\n'), ((17734, 17810), 'rospy.loginfo', 'rospy.loginfo', (['"""THIS IS A GOTO MANEUVER, WE ARE USING IT FOR SOMETHING ELSE"""'], {}), "('THIS IS A GOTO MANEUVER, WE ARE USING IT FOR SOMETHING ELSE')\n", (17747, 17810), False, 'import rospy\n'), ((19664, 19721), 'rospy.logerr_throttle_identical', 'rospy.logerr_throttle_identical', (['(5)', 'self.feedback_message'], {}), '(5, self.feedback_message)\n', (19695, 19721), False, 'import rospy\n'), ((19946, 19981), 'rospy.logerr', 'rospy.logerr', (['self.feedback_message'], {}), '(self.feedback_message)\n', (19958, 19981), False, 'import rospy\n'), ((20159, 20195), 'rospy.logwarn', 'rospy.logwarn', (['self.feedback_message'], {}), '(self.feedback_message)\n', (20172, 20195), False, 'import rospy\n'), ((20894, 20930), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (20907, 20930), False, 'import rospy\n'), ((21182, 21218), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (21195, 21218), False, 'import rospy\n'), ((22389, 22427), 'rospy.loginfo_throttle', 'rospy.loginfo_throttle', (['(3)', '"""...Got it"""'], {}), "(3, '...Got it')\n", (22411, 22427), False, 'import rospy\n'), ((23213, 23224), 'time.time', 'time.time', ([], {}), '()\n', (23222, 23224), False, 'import time\n'), ((27214, 27269), 'rospy.logwarn_throttle_identical', 'rospy.logwarn_throttle_identical', (['(10)', '"""AUTONOMOUS MODE"""'], {}), "(10, 'AUTONOMOUS MODE')\n", (27246, 27269), False, 'import rospy\n'), ((28836, 28960), 'rospy.logwarn_throttle_identical', 'rospy.logwarn_throttle_identical', (['(10)', '"""Could not update neptus estimated state because lat/lon/world_rot was None!"""'], {}), "(10,\n 'Could not update neptus estimated state because lat/lon/world_rot was None!'\n )\n", (28868, 28960), False, 'import rospy\n'), ((29606, 29617), 'time.time', 'time.time', ([], {}), '()\n', (29615, 29617), False, 'import time\n'), ((37780, 37815), 'rospy.logerr', 'rospy.logerr', (['self.feedback_message'], {}), '(self.feedback_message)\n', (37792, 37815), False, 'import rospy\n'), ((41009, 41047), 'rospy.loginfo_throttle', 'rospy.loginfo_throttle', (['(3)', '"""...Got it"""'], {}), "(3, '...Got it')\n", (41031, 41047), False, 'import rospy\n'), ((43837, 43848), 'geometry_msgs.msg.PoseArray', 'PoseArray', ([], {}), '()\n', (43846, 43848), False, 'from geometry_msgs.msg import PointStamped, PoseArray, PoseStamped\n'), ((46468, 46525), 'rospy.logerr_throttle_identical', 'rospy.logerr_throttle_identical', (['(5)', 'self.feedback_message'], {}), '(5, self.feedback_message)\n', (46499, 46525), False, 'import rospy\n'), ((46750, 46785), 'rospy.logerr', 'rospy.logerr', (['self.feedback_message'], {}), '(self.feedback_message)\n', (46762, 46785), False, 'import rospy\n'), ((46963, 46999), 'rospy.logwarn', 'rospy.logwarn', (['self.feedback_message'], {}), '(self.feedback_message)\n', (46976, 46999), False, 'import rospy\n'), ((47698, 47734), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (47711, 47734), False, 'import rospy\n'), ((47946, 47982), 'rospy.loginfo', 'rospy.loginfo', (['self.feedback_message'], {}), '(self.feedback_message)\n', (47959, 47982), False, 'import rospy\n'), ((50339, 50390), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {'header': 'marker.header', 'pose': 'marker.pose'}), '(header=marker.header, pose=marker.pose)\n', (50350, 50390), False, 'from geometry_msgs.msg import PointStamped, PoseArray, PoseStamped\n'), ((50938, 50966), 'numpy.argsort', 'np.argsort', (['self.buoys[:, 0]'], {}), '(self.buoys[:, 0])\n', (50948, 50966), True, 'import numpy as np\n'), ((1464, 1475), 'time.time', 'time.time', ([], {}), '()\n', (1473, 1475), False, 'import time\n'), ((1853, 1864), 'time.time', 'time.time', ([], {}), '()\n', (1862, 1864), False, 'import time\n'), ((11002, 11025), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (11016, 11025), False, 'import rospy\n'), ((16617, 16640), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (16631, 16640), False, 'import rospy\n'), ((19007, 19081), 'rospy.logwarn_throttle', 'rospy.logwarn_throttle', (['(1)', '"""Speed control of the waypoint action is NONE!"""'], {}), "(1, 'Speed control of the waypoint action is NONE!')\n", (19029, 19081), False, 'import rospy\n'), ((22338, 22350), 'rospy.Time', 'rospy.Time', ([], {}), '()\n', (22348, 22350), False, 'import rospy\n'), ((22352, 22375), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (22366, 22375), False, 'import rospy\n'), ((22486, 22622), 'rospy.logerr_throttle', 'rospy.logerr_throttle', (['(5)', "('Could not find from ' + self.utm_link + ' to ' + self.base_link +\n '... Nothing except safety will be run')"], {}), "(5, 'Could not find from ' + self.utm_link + ' to ' +\n self.base_link + '... Nothing except safety will be run')\n", (22507, 22622), False, 'import rospy\n'), ((22726, 22737), 'time.time', 'time.time', ([], {}), '()\n', (22735, 22737), False, 'import time\n'), ((23164, 23177), 'rospy.Time', 'rospy.Time', (['(0)'], {}), '(0)\n', (23174, 23177), False, 'import rospy\n'), ((23483, 23569), 'rospy.logerr_throttle_identical', 'rospy.logerr_throttle_identical', (['(5)', '"""Could not do tf lookup for some other reason"""'], {}), "(5,\n 'Could not do tf lookup for some other reason')\n", (23514, 23569), False, 'import rospy\n'), ((40958, 40970), 'rospy.Time', 'rospy.Time', ([], {}), '()\n', (40968, 40970), False, 'import rospy\n'), ((40972, 40995), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (40986, 40995), False, 'import rospy\n'), ((41119, 41238), 'rospy.logerr_throttle', 'rospy.logerr_throttle', (['(5)', "('Could not find tf from:' + self.poi_link + ' to:' + self.utm_link +\n ' disabling updates')"], {}), "(5, 'Could not find tf from:' + self.poi_link + ' to:' +\n self.utm_link + ' disabling updates')\n", (41140, 41238), False, 'import rospy\n'), ((45405, 45428), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (45419, 45428), False, 'import rospy\n'), ((49315, 49327), 'rospy.Time', 'rospy.Time', ([], {}), '()\n', (49325, 49327), False, 'import rospy\n'), ((49345, 49368), 'rospy.Duration', 'rospy.Duration', (['timeout'], {}), '(timeout)\n', (49359, 49368), False, 'import rospy\n'), ((2102, 2132), 'rospy.logwarn_throttle', 'rospy.logwarn_throttle', (['(1)', 'msg'], {}), '(1, msg)\n', (2124, 2132), False, 'import rospy\n')]
""" This Script contain the different function used in the framework part1. Data processing part2. Prediction and analisys part3. Plotting """ import numpy as np import librosa import matplotlib.pyplot as plt from sklearn import metrics import os import pickle import time import struct """ Data processing """ def get_mel_spectrogram(file_path, mfcc_max_padding=0, n_fft=2048, hop_length=512, n_mels=128): """Generates/extracts Log-MEL Spectrogram coefficients with LibRosa """ try: # Load audio file y, sr = librosa.load(file_path) # Normalize audio data between -1 and 1 normalized_y = librosa.util.normalize(y) # Generate mel scaled filterbanks mel = librosa.feature.melspectrogram(normalized_y, sr=sr, n_mels=n_mels) # Convert sound intensity to log amplitude: mel_db = librosa.amplitude_to_db(abs(mel)) # Normalize between -1 and 1 normalized_mel = librosa.util.normalize(mel_db) # Should we require padding shape = normalized_mel.shape[1] if (mfcc_max_padding > 0 & shape < mfcc_max_padding): xDiff = mfcc_max_padding - shape xLeft = xDiff//2 xRight = xDiff-xLeft normalized_mel = np.pad(normalized_mel, pad_width=((0,0), (xLeft, xRight)), mode='constant') except Exception as e: print("Error parsing wavefile: ", e) return None return normalized_mel def get_mfcc(file_path, mfcc_max_padding=0, n_mfcc=40, robots_noise = None, noise_amp = 1): """Generates/extracts MFCC coefficients with LibRosa""" try: # Load audio file y, sr = librosa.load(file_path,sr=None) if robots_noise != None : y_n, _ = librosa.load(robots_noise) y = (y + noise_amp * y_n)/(noise_amp + 1) # Normalize audio data between -1 and 1 normalized_y = librosa.util.normalize(y) # Compute MFCC coefficients mfcc = librosa.feature.mfcc(y=normalized_y, sr=sr, n_mfcc=n_mfcc) # Normalize MFCC between -1 and 1 normalized_mfcc = librosa.util.normalize(mfcc) # Should we require padding shape = normalized_mfcc.shape[1] if (shape < mfcc_max_padding): pad_width = mfcc_max_padding - shape normalized_mfcc = np.pad(normalized_mfcc, pad_width=((0, 0), (0, pad_width)), mode ='constant', constant_values=(0,)) except Exception as e: print("Error parsing wavefile: ", e) return None return normalized_mfcc def add_padding(features, mfcc_max_padding=174): """Given an numpy array of features, zero-pads each ocurrence to max_padding""" padded = [] # Add padding for i in range(len(features)): px = features[i] size = len(px[0]) # Add padding if required if (size < mfcc_max_padding): xDiff = mfcc_max_padding - size xLeft = xDiff//2 xRight = xDiff-xLeft px = np.pad(px, pad_width=((0,0), (xLeft, xRight)), mode='constant') padded.append(px) return padded def scale(X, x_min, x_max, axis=0): """Scales data between x_min and x_max""" nom = (X-X.min(axis=axis))*(x_max-x_min) denom = X.max(axis=axis) - X.min(axis=axis) denom[denom==0] = 1 return x_min + nom/denom def save_split_distributions(test_split_idx, train_split_idx, file_path=None): if (path == None): print("You must enter a file path to save the splits") return false # Create split dictionary split = {} split['test_split_idx'] = test_split_idx split['train_split_idx'] = train_split_idx with open(file_path, 'wb') as file_pi: pickle.dump(split, file_pi) return file def load_split_distributions(file_path): file = open(file_path, 'rb') data = pickle.load(file) return [data['test_split_idx'], data['train_split_idx']] def find_dupes(array): seen = {} dupes = [] for x in array: if x not in seen: seen[x] = 1 else: if seen[x] == 1: dupes.append(x) seen[x] += 1 return len(dupes) def read_header(filename): """Reads a file's header data and returns a list of wavefile properties""" wave = open(filename,"rb") riff = wave.read(12) fmat = wave.read(36) num_channels_string = fmat[10:12] num_channels = struct.unpack('<H', num_channels_string)[0] sample_rate_string = fmat[12:16] sample_rate = struct.unpack("<I",sample_rate_string)[0] bit_depth_string = fmat[22:24] bit_depth = struct.unpack("<H",bit_depth_string)[0] return (num_channels, sample_rate, bit_depth) def play_dataset_sample(dataset_row, audio_path): """Given a dataset row it returns an audio player and prints the audio properties""" fold_num = dataset_row.iloc[0]['fold'] file_name = dataset_row.iloc[0]['file'] file_path = os.path.join(audio_path, fold_num, file_name) file_path = os.path.join(audio_path, dataset_row.iloc[0]['fold'], dataset_row.iloc[0]['file']) print("Class:", dataset_row.iloc[0]['class']) print("File:", file_path) print("Sample rate:", dataset_row.iloc[0]['sample_rate']) print("Bit depth:", dataset_row.iloc[0]['bit_depth']) print("Duration {} seconds".format(dataset_row.iloc[0]['duration'])) # Sound preview return IP.display.Audio(file_path) """ Prediction and analisys """ def evaluate_model(model, X_train, y_train, X_test, y_test): train_score = model.evaluate(X_train, y_train, verbose=0) test_score = model.evaluate(X_test, y_test, verbose=0) return train_score, test_score def model_evaluation_report(model, X_train, y_train, X_test, y_test, calc_normal=True): dash = '-' * 38 # Compute scores train_score, test_score = evaluate_model(model, X_train, y_train, X_test, y_test) # Pint Train vs Test report print('{:<10s}{:>14s}{:>14s}'.format("", "LOSS", "ACCURACY")) print(dash) print('{:<10s}{:>14.4f}{:>14.4f}'.format( "Training:", train_score[0], 100 * train_score[1])) print('{:<10s}{:>14.4f}{:>14.4f}'.format( "Test:", test_score[0], 100 * test_score[1])) # Calculate and report normalized error difference? if (calc_normal): max_err = max(train_score[0], test_score[0]) error_diff = max_err - min(train_score[0], test_score[0]) normal_diff = error_diff * 100 / max_err print('{:<10s}{:>13.2f}{:>1s}'.format("Normal diff ", normal_diff, "")) def acc_per_class(np_probs_array): """ Expects a NumPy array with probabilities and a confusion matrix data, retuns accuracy per class """ accs = [] for idx in range(0, np_probs_array.shape[0]): correct = np_probs_array[idx][idx].astype(int) total = np_probs_array[idx].sum().astype(int) acc = (correct / total) * 100 accs.append(acc) return accs """ Plotting """ def plot_train_history(history, x_ticks_vertical=False): history = history.history # min loss / max accs min_loss = min(history['loss']) min_val_loss = min(history['val_loss']) max_accuracy = max(history['accuracy']) max_val_accuracy = max(history['val_accuracy']) # x pos for loss / acc min/max min_loss_x = history['loss'].index(min_loss) min_val_loss_x = history['val_loss'].index(min_val_loss) max_accuracy_x = history['accuracy'].index(max_accuracy) max_val_accuracy_x = history['val_accuracy'].index(max_val_accuracy) # summarize history for loss, display min plt.figure(figsize=(16,8)) plt.plot(history['loss'], color="#1f77b4", alpha=0.7) plt.plot(history['val_loss'], color="#ff7f0e", linestyle="--") plt.plot(min_loss_x, min_loss, marker='o', markersize=3, color="#1f77b4", alpha=0.7, label='Inline label') plt.plot(min_val_loss_x, min_val_loss, marker='o', markersize=3, color="#ff7f0e", alpha=7, label='Inline label') plt.title('Model loss', fontsize=20) plt.ylabel('Loss', fontsize=16) plt.xlabel('Epoch', fontsize=16) plt.legend(['Train', 'Test', ('%.3f' % min_loss), ('%.3f' % min_val_loss)], loc='upper right', fancybox=True, framealpha=0.9, shadow=True, borderpad=1) if (x_ticks_vertical): plt.xticks(np.arange(0, len(history['loss']), 5.0), rotation='vertical') else: plt.xticks(np.arange(0, len(history['loss']), 5.0)) plt.show() # summarize history for accuracy, display max plt.figure(figsize=(16,6)) plt.plot(history['accuracy'], alpha=0.7) plt.plot(history['val_accuracy'], linestyle="--") plt.plot(max_accuracy_x, max_accuracy, marker='o', markersize=3, color="#1f77b4", alpha=7) plt.plot(max_val_accuracy_x, max_val_accuracy, marker='o', markersize=3, color="orange", alpha=7) plt.title('Model accuracy', fontsize=20) plt.ylabel('Accuracy', fontsize=16) plt.xlabel('Epoch', fontsize=16) plt.legend(['Train', 'Test', ('%.2f' % max_accuracy), ('%.2f' % max_val_accuracy)], loc='upper left', fancybox=True, framealpha=0.9, shadow=True, borderpad=1) plt.figure(num=1, figsize=(10, 6)) if (x_ticks_vertical): plt.xticks(np.arange(0, len(history['accuracy']), 5.0), rotation='vertical') else: plt.xticks(np.arange(0, len(history['accuracy']), 5.0)) plt.show() def compute_confusion_matrix(y_true, y_pred, classes, normalize=False): # Compute confusion matrix cm = metrics.confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] return cm def plot_confusion_matrix(cm, classes, normalized=False, title=None, cmap=plt.cm.Blues, size=(10,10)): """Plots a confussion matrix""" fig, ax = plt.subplots(figsize=size) im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # ... and label them with the respective list entries xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalized else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() plt.show()
[ "matplotlib.pyplot.ylabel", "librosa.feature.mfcc", "numpy.arange", "librosa.load", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "sklearn.metrics.confusion_matrix", "pickle.load", "struct.unpack", "matplotlib.pyplot.title", "librosa.util.normalize", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "librosa.feature.melspectrogram", "pickle.dump", "os.path.join", "matplotlib.pyplot.figure", "numpy.pad", "matplotlib.pyplot.subplots" ]
[((3975, 3992), 'pickle.load', 'pickle.load', (['file'], {}), '(file)\n', (3986, 3992), False, 'import pickle\n'), ((5073, 5118), 'os.path.join', 'os.path.join', (['audio_path', 'fold_num', 'file_name'], {}), '(audio_path, fold_num, file_name)\n', (5085, 5118), False, 'import os\n'), ((5135, 5222), 'os.path.join', 'os.path.join', (['audio_path', "dataset_row.iloc[0]['fold']", "dataset_row.iloc[0]['file']"], {}), "(audio_path, dataset_row.iloc[0]['fold'], dataset_row.iloc[0][\n 'file'])\n", (5147, 5222), False, 'import os\n'), ((7715, 7742), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 8)'}), '(figsize=(16, 8))\n', (7725, 7742), True, 'import matplotlib.pyplot as plt\n'), ((7746, 7799), 'matplotlib.pyplot.plot', 'plt.plot', (["history['loss']"], {'color': '"""#1f77b4"""', 'alpha': '(0.7)'}), "(history['loss'], color='#1f77b4', alpha=0.7)\n", (7754, 7799), True, 'import matplotlib.pyplot as plt\n'), ((7804, 7866), 'matplotlib.pyplot.plot', 'plt.plot', (["history['val_loss']"], {'color': '"""#ff7f0e"""', 'linestyle': '"""--"""'}), "(history['val_loss'], color='#ff7f0e', linestyle='--')\n", (7812, 7866), True, 'import matplotlib.pyplot as plt\n'), ((7871, 7981), 'matplotlib.pyplot.plot', 'plt.plot', (['min_loss_x', 'min_loss'], {'marker': '"""o"""', 'markersize': '(3)', 'color': '"""#1f77b4"""', 'alpha': '(0.7)', 'label': '"""Inline label"""'}), "(min_loss_x, min_loss, marker='o', markersize=3, color='#1f77b4',\n alpha=0.7, label='Inline label')\n", (7879, 7981), True, 'import matplotlib.pyplot as plt\n'), ((7982, 8099), 'matplotlib.pyplot.plot', 'plt.plot', (['min_val_loss_x', 'min_val_loss'], {'marker': '"""o"""', 'markersize': '(3)', 'color': '"""#ff7f0e"""', 'alpha': '(7)', 'label': '"""Inline label"""'}), "(min_val_loss_x, min_val_loss, marker='o', markersize=3, color=\n '#ff7f0e', alpha=7, label='Inline label')\n", (7990, 8099), True, 'import matplotlib.pyplot as plt\n'), ((8099, 8135), 'matplotlib.pyplot.title', 'plt.title', (['"""Model loss"""'], {'fontsize': '(20)'}), "('Model loss', fontsize=20)\n", (8108, 8135), True, 'import matplotlib.pyplot as plt\n'), ((8140, 8171), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {'fontsize': '(16)'}), "('Loss', fontsize=16)\n", (8150, 8171), True, 'import matplotlib.pyplot as plt\n'), ((8176, 8208), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {'fontsize': '(16)'}), "('Epoch', fontsize=16)\n", (8186, 8208), True, 'import matplotlib.pyplot as plt\n'), ((8213, 8365), 'matplotlib.pyplot.legend', 'plt.legend', (["['Train', 'Test', '%.3f' % min_loss, '%.3f' % min_val_loss]"], {'loc': '"""upper right"""', 'fancybox': '(True)', 'framealpha': '(0.9)', 'shadow': '(True)', 'borderpad': '(1)'}), "(['Train', 'Test', '%.3f' % min_loss, '%.3f' % min_val_loss], loc\n ='upper right', fancybox=True, framealpha=0.9, shadow=True, borderpad=1)\n", (8223, 8365), True, 'import matplotlib.pyplot as plt\n'), ((8685, 8695), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8693, 8695), True, 'import matplotlib.pyplot as plt\n'), ((8751, 8778), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 6)'}), '(figsize=(16, 6))\n', (8761, 8778), True, 'import matplotlib.pyplot as plt\n'), ((8782, 8822), 'matplotlib.pyplot.plot', 'plt.plot', (["history['accuracy']"], {'alpha': '(0.7)'}), "(history['accuracy'], alpha=0.7)\n", (8790, 8822), True, 'import matplotlib.pyplot as plt\n'), ((8827, 8876), 'matplotlib.pyplot.plot', 'plt.plot', (["history['val_accuracy']"], {'linestyle': '"""--"""'}), "(history['val_accuracy'], linestyle='--')\n", (8835, 8876), True, 'import matplotlib.pyplot as plt\n'), ((8881, 8976), 'matplotlib.pyplot.plot', 'plt.plot', (['max_accuracy_x', 'max_accuracy'], {'marker': '"""o"""', 'markersize': '(3)', 'color': '"""#1f77b4"""', 'alpha': '(7)'}), "(max_accuracy_x, max_accuracy, marker='o', markersize=3, color=\n '#1f77b4', alpha=7)\n", (8889, 8976), True, 'import matplotlib.pyplot as plt\n'), ((8976, 9077), 'matplotlib.pyplot.plot', 'plt.plot', (['max_val_accuracy_x', 'max_val_accuracy'], {'marker': '"""o"""', 'markersize': '(3)', 'color': '"""orange"""', 'alpha': '(7)'}), "(max_val_accuracy_x, max_val_accuracy, marker='o', markersize=3,\n color='orange', alpha=7)\n", (8984, 9077), True, 'import matplotlib.pyplot as plt\n'), ((9078, 9118), 'matplotlib.pyplot.title', 'plt.title', (['"""Model accuracy"""'], {'fontsize': '(20)'}), "('Model accuracy', fontsize=20)\n", (9087, 9118), True, 'import matplotlib.pyplot as plt\n'), ((9123, 9158), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {'fontsize': '(16)'}), "('Accuracy', fontsize=16)\n", (9133, 9158), True, 'import matplotlib.pyplot as plt\n'), ((9163, 9195), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {'fontsize': '(16)'}), "('Epoch', fontsize=16)\n", (9173, 9195), True, 'import matplotlib.pyplot as plt\n'), ((9200, 9362), 'matplotlib.pyplot.legend', 'plt.legend', (["['Train', 'Test', '%.2f' % max_accuracy, '%.2f' % max_val_accuracy]"], {'loc': '"""upper left"""', 'fancybox': '(True)', 'framealpha': '(0.9)', 'shadow': '(True)', 'borderpad': '(1)'}), "(['Train', 'Test', '%.2f' % max_accuracy, '%.2f' %\n max_val_accuracy], loc='upper left', fancybox=True, framealpha=0.9,\n shadow=True, borderpad=1)\n", (9210, 9362), True, 'import matplotlib.pyplot as plt\n'), ((9499, 9533), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': '(1)', 'figsize': '(10, 6)'}), '(num=1, figsize=(10, 6))\n', (9509, 9533), True, 'import matplotlib.pyplot as plt\n'), ((9726, 9736), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9734, 9736), True, 'import matplotlib.pyplot as plt\n'), ((9900, 9940), 'sklearn.metrics.confusion_matrix', 'metrics.confusion_matrix', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (9924, 9940), False, 'from sklearn import metrics\n'), ((10324, 10350), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': 'size'}), '(figsize=size)\n', (10336, 10350), True, 'import matplotlib.pyplot as plt\n'), ((11317, 11327), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11325, 11327), True, 'import matplotlib.pyplot as plt\n'), ((538, 561), 'librosa.load', 'librosa.load', (['file_path'], {}), '(file_path)\n', (550, 561), False, 'import librosa\n'), ((634, 659), 'librosa.util.normalize', 'librosa.util.normalize', (['y'], {}), '(y)\n', (656, 659), False, 'import librosa\n'), ((717, 783), 'librosa.feature.melspectrogram', 'librosa.feature.melspectrogram', (['normalized_y'], {'sr': 'sr', 'n_mels': 'n_mels'}), '(normalized_y, sr=sr, n_mels=n_mels)\n', (747, 783), False, 'import librosa\n'), ((951, 981), 'librosa.util.normalize', 'librosa.util.normalize', (['mel_db'], {}), '(mel_db)\n', (973, 981), False, 'import librosa\n'), ((1660, 1692), 'librosa.load', 'librosa.load', (['file_path'], {'sr': 'None'}), '(file_path, sr=None)\n', (1672, 1692), False, 'import librosa\n'), ((1922, 1947), 'librosa.util.normalize', 'librosa.util.normalize', (['y'], {}), '(y)\n', (1944, 1947), False, 'import librosa\n'), ((2000, 2058), 'librosa.feature.mfcc', 'librosa.feature.mfcc', ([], {'y': 'normalized_y', 'sr': 'sr', 'n_mfcc': 'n_mfcc'}), '(y=normalized_y, sr=sr, n_mfcc=n_mfcc)\n', (2020, 2058), False, 'import librosa\n'), ((2128, 2156), 'librosa.util.normalize', 'librosa.util.normalize', (['mfcc'], {}), '(mfcc)\n', (2150, 2156), False, 'import librosa\n'), ((3843, 3870), 'pickle.dump', 'pickle.dump', (['split', 'file_pi'], {}), '(split, file_pi)\n', (3854, 3870), False, 'import pickle\n'), ((4548, 4588), 'struct.unpack', 'struct.unpack', (['"""<H"""', 'num_channels_string'], {}), "('<H', num_channels_string)\n", (4561, 4588), False, 'import struct\n'), ((4647, 4686), 'struct.unpack', 'struct.unpack', (['"""<I"""', 'sample_rate_string'], {}), "('<I', sample_rate_string)\n", (4660, 4686), False, 'import struct\n'), ((4740, 4777), 'struct.unpack', 'struct.unpack', (['"""<H"""', 'bit_depth_string'], {}), "('<H', bit_depth_string)\n", (4753, 4777), False, 'import struct\n'), ((1257, 1333), 'numpy.pad', 'np.pad', (['normalized_mel'], {'pad_width': '((0, 0), (xLeft, xRight))', 'mode': '"""constant"""'}), "(normalized_mel, pad_width=((0, 0), (xLeft, xRight)), mode='constant')\n", (1263, 1333), True, 'import numpy as np\n'), ((1757, 1783), 'librosa.load', 'librosa.load', (['robots_noise'], {}), '(robots_noise)\n', (1769, 1783), False, 'import librosa\n'), ((2354, 2456), 'numpy.pad', 'np.pad', (['normalized_mfcc'], {'pad_width': '((0, 0), (0, pad_width))', 'mode': '"""constant"""', 'constant_values': '(0,)'}), "(normalized_mfcc, pad_width=((0, 0), (0, pad_width)), mode='constant',\n constant_values=(0,))\n", (2360, 2456), True, 'import numpy as np\n'), ((3104, 3168), 'numpy.pad', 'np.pad', (['px'], {'pad_width': '((0, 0), (xLeft, xRight))', 'mode': '"""constant"""'}), "(px, pad_width=((0, 0), (xLeft, xRight)), mode='constant')\n", (3110, 3168), True, 'import numpy as np\n'), ((10498, 10520), 'numpy.arange', 'np.arange', (['cm.shape[1]'], {}), '(cm.shape[1])\n', (10507, 10520), True, 'import numpy as np\n'), ((10540, 10562), 'numpy.arange', 'np.arange', (['cm.shape[0]'], {}), '(cm.shape[0])\n', (10549, 10562), True, 'import numpy as np\n')]
import os import tarfile import time import pickle import numpy as np from Bio.Seq import Seq from scipy.special import expit from scipy.special import logit import torch import torch.nn.functional as F """ Get directories for model and seengenes """ module_dir = os.path.dirname(os.path.realpath(__file__)) model_dir = os.path.join(module_dir, "balrog_models") """ Print what the program is doing.""" verbose = True """ Use kmer prefilter to increase gene sensitivity. May not play nice with very high GC genomes.""" protein_kmer_filter = False """ Nucleotide to amino acid translation table. 11 for most bacteria/archaea. 4 for Mycoplasma/Spiroplasma.""" translation_table = 11 # translation_table = 4 """ Batch size for the temporal convolutional network used to score genes. Small batches and big batches slow down the model. Very big batches may crash the GPU. """ gene_batch_size = 200 TIS_batch_size = 1000 """ All following are internal parameters. Change at your own risk.""" weight_gene_prob = 0.9746869839852076 weight_TIS_prob = 0.25380288790532707 score_threshold = 0.47256101519707244 weight_ATG = 0.84249804151264 weight_GTG = 0.7083689705744909 weight_TTG = 0.7512400826652517 unidirectional_penalty_per_base = 3.895921717182765 # 3' 5' overlap convergent_penalty_per_base = 4.603432608883688 # 3' 3' overlap divergent_penalty_per_base = 3.3830814940689975 # 5' 5' overlap k_seengene = 10 multimer_threshold = 2 nuc_encode = {"A": 0, "T": 1, "G": 2, "C": 3, "N": 0, "M": 0, "R": 0, "Y": 0, "W": 0, "K": 0} start_enc = {"ATG": 0, "GTG": 1, "TTG": 2} aa_table = {"L": 1, "V": 2, "I": 3, "M": 4, "C": 5, "A": 6, "G": 7, "S": 8, "T": 9, "P": 10, "F": 11, "Y": 12, "W": 13, "E": 14, "D": 15, "N": 16, "Q": 17, "K": 18, "R": 19, "H": 20, "*": 0, "X": 0} # generate ORF sequences from coordinates # @profile def generate_sequence(graph_vector, nodelist, node_coords, overlap): sequence = "" for i in range(0, len(nodelist)): id = nodelist[i] coords = node_coords[i] # calculate strand based on value of node (if negative, strand is false) strand = True if id >= 0 else False if strand: unitig_seq = graph_vector[abs(id) - 1].seq else: unitig_seq = str(Seq(graph_vector[abs(id) - 1].seq).reverse_complement()) if len(sequence) == 0: substring = unitig_seq[coords[0]:(coords[1] + 1)] else: if coords[1] >= overlap: substring = unitig_seq[overlap:(coords[1] + 1)] sequence += substring return sequence #@profile def tokenize_aa_seq(aa_seq): """ Convert amino acid letters to integers.""" tokenized = torch.tensor([aa_table[aa] for aa in aa_seq]) return tokenized #@profile def get_ORF_info(ORF_vector, graph, overlap): ORF_seq_list = [] TIS_seqs = [] # iterate over list of ORFs for ORFNodeVector in ORF_vector: # need to determine ORF sequences from paths ORF_nodelist = ORFNodeVector[0] ORF_node_coords = ORFNodeVector[1] TIS_nodelist = ORFNodeVector[3] TIS_node_coords = ORFNodeVector[4] # generate ORF_seq, as well as upstream and downstream TIS seq ORF_seq = graph.generate_sequence(ORF_nodelist, ORF_node_coords, overlap) upstream_TIS_seq = graph.generate_sequence(TIS_nodelist, TIS_node_coords, overlap) downstream_TIS_seq = ORF_seq[0:19] # generate Seq class for translation seq = Seq(ORF_seq) # translate once per frame, then slice. Note, do not include start or stop codons aa = str(seq[3:-3].translate(table=translation_table, to_stop=False)) ORF_seq_list.append(aa) TIS_seqs.append((upstream_TIS_seq, downstream_TIS_seq)) # convert amino acids into integers ORF_seq_enc = [tokenize_aa_seq(x) for x in ORF_seq_list] return ORF_seq_enc, TIS_seqs #@profile def predict(model, X): model.eval() with torch.no_grad(): if torch.cuda.device_count() > 0: X_enc = F.one_hot(X, 21).permute(0, 2, 1).float().cuda() probs = expit(model(X_enc).cpu()) del X_enc torch.cuda.empty_cache() else: X_enc = F.one_hot(X, 21).permute(0, 2, 1).float() probs = expit(model(X_enc).cpu()) return probs #@profile def predict_tis(model_tis, X): model_tis.eval() with torch.no_grad(): if torch.cuda.device_count() > 0: X_enc = F.one_hot(X, 4).permute(0, 2, 1).float().cuda() else: X_enc = F.one_hot(X, 4).permute(0, 2, 1).float() probs = expit(model_tis(X_enc).cpu()) return probs #@profile def kmerize(seq, k): kmerset = set() for i in range(len(seq) - k + 1): kmer = tuple(seq[i: i + k].tolist()) kmerset.add(kmer) return kmerset def load_kmer_model(): # check if directory exists. If not, unzip file if not os.path.exists(model_dir): tar = tarfile.open(model_dir + ".tar.gz", mode="r:gz") tar.extractall(module_dir) tar.close() """Load k-mer filters""" genexa_kmer_path = os.path.join(model_dir, "10mer_thresh2_minusARF_all.pkl") with open(genexa_kmer_path, "rb") as f: aa_kmer_set = pickle.load(f) return aa_kmer_set def load_gene_models(): # check if directory exists. If not, unzip file if not os.path.exists(model_dir): tar = tarfile.open(model_dir + ".tar.gz", mode="r:gz") tar.extractall(module_dir) tar.close() torch.hub.set_dir(model_dir) # print("Loading convolutional model...") if torch.cuda.device_count() > 0: # print("GPU detected...") model = torch.hub.load(model_dir, "geneTCN", source='local').cuda() model_tis = torch.hub.load(model_dir, "tisTCN", source='local').cuda() time.sleep(0.5) else: # print("No GPU detected, using CPU...") model = torch.hub.load(model_dir, "geneTCN", source='local') model_tis = torch.hub.load(model_dir, "tisTCN", source='local') time.sleep(0.5) return (model, model_tis) #@profile def score_genes(ORF_vector, graph_vector, minimum_ORF_score, overlap, model, model_tis, aa_kmer_set): # get sequences and coordinates of ORFs # print("Finding and translating open reading frames...") ORF_seq_enc, TIS_seqs = get_ORF_info(ORF_vector, graph_vector, overlap) # seengene check if protein_kmer_filter: seengene = [] for s in ORF_seq_enc: kmerset = kmerize(s, k_seengene) # s = [x in aa_kmer_set for x in kmerset] s = np.isin(list(kmerset), aa_kmer_set) seen = np.count_nonzero(s) >= multimer_threshold seengene.append(seen) # score # print("Scoring ORFs with temporal convolutional network...") # sort by length to minimize impact of batch padding ORF_lengths = np.asarray([len(x) for x in ORF_seq_enc]) length_idx = np.argsort(ORF_lengths) ORF_seq_sorted = [ORF_seq_enc[i] for i in length_idx] # pad to allow creation of batch matrix prob_list = [] for i in range(0, len(ORF_seq_sorted), gene_batch_size): batch = ORF_seq_sorted[i:i + gene_batch_size] seq_lengths = torch.LongTensor(list(map(len, batch))) seq_tensor = torch.zeros((len(batch), seq_lengths.max())).long() for idx, (seq, seqlen) in enumerate(zip(batch, seq_lengths)): seq_tensor[idx, :seqlen] = torch.LongTensor(seq) pred_all = predict(model, seq_tensor) pred = [] for j, length in enumerate(seq_lengths): subseq = pred_all[j, 0, 0:int(length)] predprob = float(expit(torch.mean(logit(subseq)))) pred.append(predprob) prob_list.extend(pred) prob_arr = np.asarray(prob_list, dtype=float) # unsort unsort_idx = np.argsort(length_idx) ORF_prob = prob_arr[unsort_idx] # recombine ORFs idx = 0 ORF_gene_score = [None] * len(ORF_seq_enc) for k, coord in enumerate(ORF_gene_score): ORF_gene_score[k] = float(ORF_prob[idx]) idx += 1 # print("Scoring translation initiation sites...") # extract nucleotide sequence surrounding potential start codons ORF_TIS_seq_flat = [] ORF_TIS_seq_idx = [] ORF_TIS_prob = [None] * len(TIS_seqs) ORF_start_codon = [None] * len(ORF_seq_enc) for i, TIS in enumerate(TIS_seqs): # unpack tuple. Note, downsteam includes start codon, which needs to be removed upstream, downstream = TIS if len(upstream) == 16: TIS_seq = torch.tensor([nuc_encode[c] for c in (upstream + downstream[3:])[::-1]], dtype=int) # model scores 3' to 5' direction ORF_TIS_seq_flat.append(TIS_seq) ORF_TIS_seq_idx.append(i) else: ORF_TIS_prob[i] = 0.5 # encode start codon start_codon = start_enc[downstream[0:3]] ORF_start_codon[i] = start_codon # batch score TIS TIS_prob_list = [] for i in range(0, len(ORF_TIS_seq_flat), TIS_batch_size): batch = ORF_TIS_seq_flat[i:i + TIS_batch_size] TIS_stacked = torch.stack(batch) pred = predict_tis(model_tis, TIS_stacked) TIS_prob_list.extend(pred) y_pred_TIS = np.asarray(TIS_prob_list, dtype=float) # reindex batched scores for i, prob in enumerate(y_pred_TIS): idx = ORF_TIS_seq_idx[i] ORF_TIS_prob[idx] = float(prob) # combine all info into single score for each ORF if protein_kmer_filter: ORF_score_flat = [] for i, geneprob in enumerate(ORF_gene_score): if not geneprob: ORF_score_flat.append(None) continue seengene_idx = 0 # calculate length by multiplying number of amino acids by 3, then adding 6 for start and stop length = (len(ORF_seq_enc[i]) * 3) + 6 TIS_prob = ORF_TIS_prob[i] start_codon = ORF_start_codon[i] ATG = start_codon == 0 GTG = start_codon == 1 TTG = start_codon == 2 combprob = geneprob * weight_gene_prob \ + TIS_prob * weight_TIS_prob \ + ATG * weight_ATG \ + GTG * weight_GTG \ + TTG * weight_TTG maxprob = weight_gene_prob + weight_TIS_prob + max(weight_ATG, weight_TTG, weight_GTG) probthresh = score_threshold * maxprob score = (combprob - probthresh) * length + 1e6 * seengene[seengene_idx] seengene_idx += 1 ORF_score_flat.append(score) else: ORF_score_flat = [] for i, geneprob in enumerate(ORF_gene_score): if not geneprob: ORF_score_flat.append(None) continue # calculate length by multiplying number of amino acids by 3, then adding 6 for start and stop length = len(ORF_seq_enc[i]) * 3 TIS_prob = ORF_TIS_prob[i] start_codon = ORF_start_codon[i] ATG = start_codon == 0 GTG = start_codon == 1 TTG = start_codon == 2 combprob = geneprob * weight_gene_prob \ + TIS_prob * weight_TIS_prob \ + ATG * weight_ATG \ + GTG * weight_GTG \ + TTG * weight_TTG maxprob = weight_gene_prob + weight_TIS_prob + max(weight_ATG, weight_TTG, weight_GTG) probthresh = score_threshold * maxprob score = (combprob - probthresh) * length ORF_score_flat.append(score) # update initial dictionary, removing low scoring ORFs and create score mapping score within a tuple ORF_score_dict = {} for i, score in enumerate(ORF_score_flat): # if score greater than minimum, add to the ORF_score_dict if score >= minimum_ORF_score: ORF_score_dict[i] = score return ORF_score_dict
[ "tarfile.open", "torch.LongTensor", "Bio.Seq.Seq", "torch.cuda.device_count", "time.sleep", "numpy.argsort", "numpy.count_nonzero", "os.path.exists", "numpy.asarray", "torch.hub.load", "pickle.load", "torch.hub.set_dir", "torch.nn.functional.one_hot", "torch.cuda.empty_cache", "torch.stack", "os.path.join", "os.path.realpath", "torch.tensor", "scipy.special.logit", "torch.no_grad" ]
[((322, 363), 'os.path.join', 'os.path.join', (['module_dir', '"""balrog_models"""'], {}), "(module_dir, 'balrog_models')\n", (334, 363), False, 'import os\n'), ((282, 308), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (298, 308), False, 'import os\n'), ((3091, 3136), 'torch.tensor', 'torch.tensor', (['[aa_table[aa] for aa in aa_seq]'], {}), '([aa_table[aa] for aa in aa_seq])\n', (3103, 3136), False, 'import torch\n'), ((5546, 5603), 'os.path.join', 'os.path.join', (['model_dir', '"""10mer_thresh2_minusARF_all.pkl"""'], {}), "(model_dir, '10mer_thresh2_minusARF_all.pkl')\n", (5558, 5603), False, 'import os\n'), ((5949, 5977), 'torch.hub.set_dir', 'torch.hub.set_dir', (['model_dir'], {}), '(model_dir)\n', (5966, 5977), False, 'import torch\n'), ((7391, 7414), 'numpy.argsort', 'np.argsort', (['ORF_lengths'], {}), '(ORF_lengths)\n', (7401, 7414), True, 'import numpy as np\n'), ((8229, 8263), 'numpy.asarray', 'np.asarray', (['prob_list'], {'dtype': 'float'}), '(prob_list, dtype=float)\n', (8239, 8263), True, 'import numpy as np\n'), ((8295, 8317), 'numpy.argsort', 'np.argsort', (['length_idx'], {}), '(length_idx)\n', (8305, 8317), True, 'import numpy as np\n'), ((9745, 9783), 'numpy.asarray', 'np.asarray', (['TIS_prob_list'], {'dtype': 'float'}), '(TIS_prob_list, dtype=float)\n', (9755, 9783), True, 'import numpy as np\n'), ((3892, 3904), 'Bio.Seq.Seq', 'Seq', (['ORF_seq'], {}), '(ORF_seq)\n', (3895, 3904), False, 'from Bio.Seq import Seq\n'), ((4368, 4383), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4381, 4383), False, 'import torch\n'), ((4814, 4829), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4827, 4829), False, 'import torch\n'), ((5348, 5373), 'os.path.exists', 'os.path.exists', (['model_dir'], {}), '(model_dir)\n', (5362, 5373), False, 'import os\n'), ((5389, 5437), 'tarfile.open', 'tarfile.open', (["(model_dir + '.tar.gz')"], {'mode': '"""r:gz"""'}), "(model_dir + '.tar.gz', mode='r:gz')\n", (5401, 5437), False, 'import tarfile\n'), ((5671, 5685), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (5682, 5685), False, 'import pickle\n'), ((5799, 5824), 'os.path.exists', 'os.path.exists', (['model_dir'], {}), '(model_dir)\n', (5813, 5824), False, 'import os\n'), ((5840, 5888), 'tarfile.open', 'tarfile.open', (["(model_dir + '.tar.gz')"], {'mode': '"""r:gz"""'}), "(model_dir + '.tar.gz', mode='r:gz')\n", (5852, 5888), False, 'import tarfile\n'), ((6031, 6056), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (6054, 6056), False, 'import torch\n'), ((6260, 6275), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (6270, 6275), False, 'import time\n'), ((6351, 6403), 'torch.hub.load', 'torch.hub.load', (['model_dir', '"""geneTCN"""'], {'source': '"""local"""'}), "(model_dir, 'geneTCN', source='local')\n", (6365, 6403), False, 'import torch\n'), ((6424, 6475), 'torch.hub.load', 'torch.hub.load', (['model_dir', '"""tisTCN"""'], {'source': '"""local"""'}), "(model_dir, 'tisTCN', source='local')\n", (6438, 6475), False, 'import torch\n'), ((6484, 6499), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (6494, 6499), False, 'import time\n'), ((9622, 9640), 'torch.stack', 'torch.stack', (['batch'], {}), '(batch)\n', (9633, 9640), False, 'import torch\n'), ((4396, 4421), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (4419, 4421), False, 'import torch\n'), ((4576, 4600), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (4598, 4600), False, 'import torch\n'), ((4842, 4867), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (4865, 4867), False, 'import torch\n'), ((7897, 7918), 'torch.LongTensor', 'torch.LongTensor', (['seq'], {}), '(seq)\n', (7913, 7918), False, 'import torch\n'), ((9032, 9119), 'torch.tensor', 'torch.tensor', (['[nuc_encode[c] for c in (upstream + downstream[3:])[::-1]]'], {'dtype': 'int'}), '([nuc_encode[c] for c in (upstream + downstream[3:])[::-1]],\n dtype=int)\n', (9044, 9119), False, 'import torch\n'), ((6113, 6165), 'torch.hub.load', 'torch.hub.load', (['model_dir', '"""geneTCN"""'], {'source': '"""local"""'}), "(model_dir, 'geneTCN', source='local')\n", (6127, 6165), False, 'import torch\n'), ((6193, 6244), 'torch.hub.load', 'torch.hub.load', (['model_dir', '"""tisTCN"""'], {'source': '"""local"""'}), "(model_dir, 'tisTCN', source='local')\n", (6207, 6244), False, 'import torch\n'), ((7100, 7119), 'numpy.count_nonzero', 'np.count_nonzero', (['s'], {}), '(s)\n', (7116, 7119), True, 'import numpy as np\n'), ((8131, 8144), 'scipy.special.logit', 'logit', (['subseq'], {}), '(subseq)\n', (8136, 8144), False, 'from scipy.special import logit\n'), ((4635, 4651), 'torch.nn.functional.one_hot', 'F.one_hot', (['X', '(21)'], {}), '(X, 21)\n', (4644, 4651), True, 'import torch.nn.functional as F\n'), ((4975, 4990), 'torch.nn.functional.one_hot', 'F.one_hot', (['X', '(4)'], {}), '(X, 4)\n', (4984, 4990), True, 'import torch.nn.functional as F\n'), ((4447, 4463), 'torch.nn.functional.one_hot', 'F.one_hot', (['X', '(21)'], {}), '(X, 21)\n', (4456, 4463), True, 'import torch.nn.functional as F\n'), ((4893, 4908), 'torch.nn.functional.one_hot', 'F.one_hot', (['X', '(4)'], {}), '(X, 4)\n', (4902, 4908), True, 'import torch.nn.functional as F\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 16 18:18:29 2020 @author: xuhuiying """ import numpy as np import matplotlib.pyplot as plt def plotHistory(history,times,xLabelText,yLabelText,legendText):#画出每个history plot each history history = np.array(history) #history是二维数组 history is a 2D array history = history.T iteration = range(0,times) # plt.figure() for j in range(0,history.shape[0]): plt.plot(iteration,history[j],label = "%s %d"%(legendText,j + 1)) # plt.legend(loc='upper left',prop = {'size': 10},handlelength = 1) plt.xlabel(xLabelText,fontsize = 8) plt.ylabel(yLabelText,fontsize = 8) plt.tick_params(labelsize=8) # plt.savefig('%sWith%dSellersAnd%dBuyer.jpg'%(fileNamePre,N,M), dpi=300,bbox_inches = 'tight') # plt.show()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.tick_params", "matplotlib.pyplot.plot", "numpy.array" ]
[((273, 290), 'numpy.array', 'np.array', (['history'], {}), '(history)\n', (281, 290), True, 'import numpy as np\n'), ((589, 623), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xLabelText'], {'fontsize': '(8)'}), '(xLabelText, fontsize=8)\n', (599, 623), True, 'import matplotlib.pyplot as plt\n'), ((629, 663), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['yLabelText'], {'fontsize': '(8)'}), '(yLabelText, fontsize=8)\n', (639, 663), True, 'import matplotlib.pyplot as plt\n'), ((669, 697), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'labelsize': '(8)'}), '(labelsize=8)\n', (684, 697), True, 'import matplotlib.pyplot as plt\n'), ((448, 516), 'matplotlib.pyplot.plot', 'plt.plot', (['iteration', 'history[j]'], {'label': "('%s %d' % (legendText, j + 1))"}), "(iteration, history[j], label='%s %d' % (legendText, j + 1))\n", (456, 516), True, 'import matplotlib.pyplot as plt\n')]
import os from bc import Imitator import numpy as np from dataset import Example, Dataset import utils #from ale_wrapper import ALEInterfaceWrapper from evaluator import Evaluator from pdb import set_trace import matplotlib.pyplot as plt #try bmh plt.style.use('bmh') def smooth(losses, run=10): new_losses = [] for i in range(len(losses)): new_losses.append(np.mean(losses[max(0, i - 10):i+1])) return new_losses def plot(losses, checkpoint_dir, env_name): print("Plotting losses to ", os.path.join(checkpoint_dir, env_name + "_loss.png")) p=plt.plot(smooth(losses, 25)) plt.xlabel("Update") plt.ylabel("Loss") plt.legend(loc='lower center') plt.savefig(os.path.join(checkpoint_dir, env_name + "loss.png")) def train(env_name, minimal_action_set, learning_rate, alpha, l2_penalty, minibatch_size, hist_len, discount, checkpoint_dir, updates, dataset, validation_dataset, num_eval_episodes, epsilon_greedy, extra_info): import tracemalloc # create DQN agent agent = Imitator(list(minimal_action_set), learning_rate, alpha, checkpoint_dir, hist_len, l2_penalty) print("Beginning training...") log_frequency = 500 log_num = log_frequency update = 1 running_loss = 0. best_v_loss = np.float('inf') count = 0 while update < updates: # snapshot = tracemalloc.take_snapshot() # top_stats = snapshot.statistics('lineno') # import gc # for obj in gc.get_objects(): # try: # if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)): # print(type(obj), obj.size()) # except: # pass # # print("[ Top 10 ]") # for stat in top_stats[:10]: # print(stat) if update > log_num: print(str(update) + " updates completed. Loss {}".format(running_loss / log_frequency)) log_num += log_frequency running_loss = 0 #run validation loss test v_loss = agent.validate(validation_dataset, 10) print("Validation accuracy = {}".format(v_loss / validation_dataset.size)) if v_loss > best_v_loss: count += 1 if count > 5: print("validation not improing for {} steps. Stopping to prevent overfitting".format(count)) break else: best_v_loss = v_loss print("updating best vloss", best_v_loss) count = 0 l = agent.train(dataset, minibatch_size) running_loss += l update += 1 print("Training completed.") agent.checkpoint_network(env_name, extra_info) #Plot losses #Evaluation print("beginning evaluation") evaluator = Evaluator(env_name, num_eval_episodes, checkpoint_dir, epsilon_greedy) evaluator.evaluate(agent) return agent def train_transitions(env_name, minimal_action_set, learning_rate, alpha, l2_penalty, minibatch_size, hist_len, discount, checkpoint_dir, updates, dataset, num_eval_episodes): # create DQN agent agent = Imitator(list(minimal_action_set), learning_rate, alpha, checkpoint_dir, hist_len, l2_penalty) print("Beginning training...") log_frequency = 1000 log_num = log_frequency update = 1 running_loss = 0. while update < updates: if update > log_num: print(str(update) + " updates completed. Loss {}".format(running_loss / log_frequency)) log_num += log_frequency running_loss = 0 l = agent.train(dataset, minibatch_size) running_loss += l update += 1 print("Training completed.") agent.checkpoint_network(env_name + "_transitions") #calculate accuacy #Evaluation #evaluator = Evaluator(env_name, num_eval_episodes) #evaluator.evaluate(agent) return agent if __name__ == '__main__': train()
[ "numpy.float", "matplotlib.pyplot.ylabel", "evaluator.Evaluator", "matplotlib.pyplot.xlabel", "os.path.join", "matplotlib.pyplot.style.use", "matplotlib.pyplot.legend" ]
[((247, 267), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""bmh"""'], {}), "('bmh')\n", (260, 267), True, 'import matplotlib.pyplot as plt\n'), ((619, 639), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Update"""'], {}), "('Update')\n", (629, 639), True, 'import matplotlib.pyplot as plt\n'), ((648, 666), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (658, 666), True, 'import matplotlib.pyplot as plt\n'), ((675, 705), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower center"""'}), "(loc='lower center')\n", (685, 705), True, 'import matplotlib.pyplot as plt\n'), ((1482, 1497), 'numpy.float', 'np.float', (['"""inf"""'], {}), "('inf')\n", (1490, 1497), True, 'import numpy as np\n'), ((3025, 3095), 'evaluator.Evaluator', 'Evaluator', (['env_name', 'num_eval_episodes', 'checkpoint_dir', 'epsilon_greedy'], {}), '(env_name, num_eval_episodes, checkpoint_dir, epsilon_greedy)\n', (3034, 3095), False, 'from evaluator import Evaluator\n'), ((518, 570), 'os.path.join', 'os.path.join', (['checkpoint_dir', "(env_name + '_loss.png')"], {}), "(checkpoint_dir, env_name + '_loss.png')\n", (530, 570), False, 'import os\n'), ((726, 777), 'os.path.join', 'os.path.join', (['checkpoint_dir', "(env_name + 'loss.png')"], {}), "(checkpoint_dir, env_name + 'loss.png')\n", (738, 777), False, 'import os\n')]
# # See top-level LICENSE.rst file for Copyright information # # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from collections import OrderedDict from ..defs import (task_name_sep, task_state_to_int, task_int_to_state) from ...util import option_list from ...io import findfile from .base import (BaseTask, task_classes) from desiutil.log import get_logger import sys,re,os,glob import numpy as np # NOTE: only one class in this file should have a name that starts with "Task". class TaskPSFNight(BaseTask): """Class containing the properties of one PSF combined night task. """ def __init__(self): super(TaskPSFNight, self).__init__() # then put int the specifics of this class # _cols must have a state self._type = "psfnight" self._cols = [ "night", "band", "spec", "state" ] self._coltypes = [ "integer", "text", "integer", "integer" ] # _name_fields must also be in _cols self._name_fields = ["night","band","spec"] self._name_formats = ["08d","s","d"] def _paths(self, name): """See BaseTask.paths. """ props = self.name_split(name) camera = "{}{}".format(props["band"], props["spec"]) return [ findfile("psfnight", night=props["night"], camera=camera, groupname=None, nside=None, band=props["band"], spectrograph=props["spec"]) ] def _deps(self, name, db, inputs): """See BaseTask.deps. """ return dict() def _run_max_procs(self): # This is a serial task. return 1 def _run_time(self, name, procs, db): # Run time on one proc on machine with scale factor == 1.0 return 2.0 def _run_defaults(self): """See BaseTask.run_defaults. """ return {} def _option_dict(self, name, opts): """Build the full list of options. This includes appending the filenames and incorporating runtime options. """ from .base import task_classes, task_type options = OrderedDict() options["output"] = self.paths(name)[0] # look for psf for this night on disk options["input"] = [] props = self.name_split(name) camera = "{}{}".format(props["band"], props["spec"]) dummy_expid = 99999999 template_input = findfile("psf", night=props["night"], expid=dummy_expid, camera=camera, band=props["band"], spectrograph=props["spec"]) template_input = template_input.replace("{:08d}".format(dummy_expid),"????????") options["input"] = glob.glob(template_input) return options def _option_list(self, name, opts): """Build the full list of options. This includes appending the filenames and incorporating runtime options. """ return option_list(self._option_dict(name,opts)) def _run_cli(self, name, opts, procs, db): """See BaseTask.run_cli. """ optlist = self._option_list(name, opts) com = "# command line for psfnight not implemented" return com def _run(self, name, opts, comm, db): """See BaseTask.run. """ from ...scripts import specex optdict = self._option_dict(name, opts) specex.mean_psf(optdict["input"], optdict["output"]) return def getready(self, db, name, cur): """Checks whether dependencies are ready""" log = get_logger() # look for the state of psf with same night,band,spectro props = self.name_split(name) cmd = "select state from psf where night={} and band='{}' and spec={}".format(props["night"],props["band"],props["spec"]) cur.execute(cmd) states = np.array([ x for (x,) in cur.fetchall() ]) log.debug("states={}".format(states)) # psfnight ready if all psf from the night have been processed, and at least one is done (failures are allowed) n_done = np.sum(states==task_state_to_int["done"]) n_failed = np.sum(states==task_state_to_int["failed"]) ready = (n_done > 0) & ( (n_done + n_failed) == states.size ) if ready : self.state_set(db=db,name=name,state="ready",cur=cur) def postprocessing(self, db, name, cur): """For successful runs, postprocessing on DB""" # run getready for all extraction with same night,band,spec props = self.name_split(name) log = get_logger() tt = "traceshift" cmd = "select name from {} where night={} and band='{}' and spec={} and state=0".format(tt,props["night"],props["band"],props["spec"]) cur.execute(cmd) tasks = [ x for (x,) in cur.fetchall() ] log.debug("checking {}".format(tasks)) for task in tasks : task_classes[tt].getready( db=db,name=task,cur=cur)
[ "desiutil.log.get_logger", "collections.OrderedDict", "numpy.sum", "glob.glob" ]
[((2223, 2236), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (2234, 2236), False, 'from collections import OrderedDict\n'), ((2860, 2885), 'glob.glob', 'glob.glob', (['template_input'], {}), '(template_input)\n', (2869, 2885), False, 'import sys, re, os, glob\n'), ((3726, 3738), 'desiutil.log.get_logger', 'get_logger', ([], {}), '()\n', (3736, 3738), False, 'from desiutil.log import get_logger\n'), ((4245, 4288), 'numpy.sum', 'np.sum', (["(states == task_state_to_int['done'])"], {}), "(states == task_state_to_int['done'])\n", (4251, 4288), True, 'import numpy as np\n'), ((4306, 4351), 'numpy.sum', 'np.sum', (["(states == task_state_to_int['failed'])"], {}), "(states == task_state_to_int['failed'])\n", (4312, 4351), True, 'import numpy as np\n'), ((4732, 4744), 'desiutil.log.get_logger', 'get_logger', ([], {}), '()\n', (4742, 4744), False, 'from desiutil.log import get_logger\n')]
# Load in our dependencies # Forking from http://matplotlib.org/xkcd/examples/showcase/xkcd.html from matplotlib import pyplot import numpy """ Comments on PRs about style 20 | --------\ | | | | | | | | 1 | \--\ 0 | ------- ----------------------- | Introduction of `jscs` Time """ def main(): """Generate and save an image as per the docstring above""" # Define our style as XKCD pyplot.xkcd() # Start a new graph dpi = 72 fig = pyplot.figure(1, figsize=(600 / dpi, 400 / dpi)) # Add labels and a title pyplot.xlabel('Time') pyplot.title('Comments on PRs about style') # Define our axes and limits # http://matplotlib.org/xkcd/api/pyplot_api.html#matplotlib.pyplot.subplot ax = fig.add_subplot(1, 1, 1) # cols, rows, plot number ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') pyplot.xticks([]) pyplot.yticks([0, 20]) ax.set_ylim([-1, 25]) # Hide right side of ticks # http://stackoverflow.com/questions/9051494/customizing-just-one-side-of-tick-marks-in-matplotlib-using-spines # http://matplotlib.org/api/axis_api.html ax.yaxis.set_ticks_position('none') # Generate 100 nodes for our graph and draw them # http://wiki.scipy.org/Numpy_Example_List#fill data = numpy.zeros(100) data.fill(20) inflection_point = 50 data[inflection_point:inflection_point+10] = numpy.arange(20, 0, -2) data[inflection_point+10:] = numpy.zeros(100 - (inflection_point + 10)) pyplot.plot(data) # Add our annotation pyplot.annotate( 'Introduction of `jscs`', xy=(inflection_point, 20), arrowprops=dict(arrowstyle='->'), xytext=(10, 15)) # Save the image pyplot.savefig('graph.png', dpi=dpi) if __name__ == '__main__': main()
[ "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.xkcd", "matplotlib.pyplot.figure", "matplotlib.pyplot.yticks", "numpy.zeros", "matplotlib.pyplot.title", "numpy.arange" ]
[((499, 512), 'matplotlib.pyplot.xkcd', 'pyplot.xkcd', ([], {}), '()\n', (510, 512), False, 'from matplotlib import pyplot\n'), ((561, 609), 'matplotlib.pyplot.figure', 'pyplot.figure', (['(1)'], {'figsize': '(600 / dpi, 400 / dpi)'}), '(1, figsize=(600 / dpi, 400 / dpi))\n', (574, 609), False, 'from matplotlib import pyplot\n'), ((644, 665), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Time"""'], {}), "('Time')\n", (657, 665), False, 'from matplotlib import pyplot\n'), ((670, 713), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Comments on PRs about style"""'], {}), "('Comments on PRs about style')\n", (682, 713), False, 'from matplotlib import pyplot\n'), ((972, 989), 'matplotlib.pyplot.xticks', 'pyplot.xticks', (['[]'], {}), '([])\n', (985, 989), False, 'from matplotlib import pyplot\n'), ((994, 1016), 'matplotlib.pyplot.yticks', 'pyplot.yticks', (['[0, 20]'], {}), '([0, 20])\n', (1007, 1016), False, 'from matplotlib import pyplot\n'), ((1394, 1410), 'numpy.zeros', 'numpy.zeros', (['(100)'], {}), '(100)\n', (1405, 1410), False, 'import numpy\n'), ((1504, 1527), 'numpy.arange', 'numpy.arange', (['(20)', '(0)', '(-2)'], {}), '(20, 0, -2)\n', (1516, 1527), False, 'import numpy\n'), ((1561, 1603), 'numpy.zeros', 'numpy.zeros', (['(100 - (inflection_point + 10))'], {}), '(100 - (inflection_point + 10))\n', (1572, 1603), False, 'import numpy\n'), ((1608, 1625), 'matplotlib.pyplot.plot', 'pyplot.plot', (['data'], {}), '(data)\n', (1619, 1625), False, 'from matplotlib import pyplot\n'), ((1819, 1855), 'matplotlib.pyplot.savefig', 'pyplot.savefig', (['"""graph.png"""'], {'dpi': 'dpi'}), "('graph.png', dpi=dpi)\n", (1833, 1855), False, 'from matplotlib import pyplot\n')]
import logging from typing import Dict, List, Tuple, Union import numpy as np import torch import torch.nn.functional as F from networkx import DiGraph from torch import Tensor, nn as nn from torch.autograd.variable import Variable from binlin.data.ud import index_data from binlin.model.nn_utils import get_embed_matrix, pad_seq from binlin.model.syn.sympairs import SymModel from binlin.model.syn.utils.bintree import BinTreeBase from binlin.utils.combinatorics import flatten_nested_lists from binlin.utils.constants import VocabSymbols logger = logging.getLogger('main') class SymGraphEncModel(SymModel): @property def _data_fields(self): return ['LEMMA', 'UPOS', 'XPOS', 'DEPREL'] @property def _num_embedding_feats(self): # todo: need to avoid hard-coding # 6 = 2 * 3 # 2 because we consider two nodes at a time, # 3 because for a node we consider itself + its context # consisting of its parent and a random child return 2 * 3 * self._data_fields_num def _init_weights(self): self._dim_emb = self.config["embedding_dim"] self._mat_emb = get_embed_matrix(len(self._id2tok), self._dim_emb, padding_idx=self.PAD_ID) self._dim_emb_proj_in = self._num_embedding_feats * self._dim_emb self._dim_emb_proj_out = self._num_embedding_feats * self.config['embedding_proj_dim'] self._mat_emb_proj = nn.Linear(self._dim_emb_proj_in, self._dim_emb_proj_out) self._dim_dense_out = self.config["dense_dim"] self._mat_dense = nn.Linear(self._dim_emb_proj_out, self._dim_dense_out) self._mat_attn = nn.Linear(self._dim_emb, 1) self._dim_concat_in = self._dim_dense_out + self._dim_emb self._dim_concat_out = self._dim_dense_out self._mat_concat = nn.Linear(self._dim_concat_in, self._dim_concat_out) self._dim_out = 1 self._mat_out = nn.Linear(self._dim_dense_out, self._dim_out) def forward(self, batch_data: Tuple[Tensor, Tensor, Union[Tensor, None]]) -> Dict: other_nodes_var, head_child_var, _ = batch_data # head-child pair is encoded using an MLP x_head_child = self._mat_emb(head_child_var).view(-1, self._dim_emb_proj_in) # size(num_node_pairs, self.emb_proj_in) x_head_child = F.leaky_relu(self._mat_emb_proj(x_head_child)) # size (num_node_pairs, self.emb_proj_out) x_head_child = F.leaky_relu(self._mat_dense(x_head_child)) # size (num_node_pairs, self.dense1_dim) # x_head_child = F.leaky_relu(x_head_child) # size (num_node_pairs, self.dense1_dim) # graph nodes are encoded using embedding lookup --> summing node_number = other_nodes_var.shape[-1] x_graph = self._mat_emb(other_nodes_var) # size (max_num_nodes, batch_size, self.emb_dim) # variant1: sum over all vecs # x_graph = torch.sum(x_graph, dim=[0], keepdim=True).view(-1, self._dim_emb) # size (batch_size, emb_dim) # variant2: use attn scores attn_unnorm_scores = self._mat_attn(x_graph.view(-1, self._dim_emb)) # num_edges x 1 attn_weights = F.leaky_relu(attn_unnorm_scores).view(-1, 1, node_number) # TODO: find a simpler way to do it w/o squeezing and unsqueezing? # apply attention weights to the graph vectors to get weighted average # size (1, dense) x_graph = torch.bmm(attn_weights, x_graph).squeeze(1) # size: (bsize, emb_size) # Concat head, child and graph representations x_combined = torch.cat((x_head_child, x_graph), 1) # size (bs, emb_dim + self.dense1_dim) # size (batch_size, self.dense1_dim) x_combined = self._mat_concat(x_combined) x_combined = F.leaky_relu(x_combined) x_combined = self._mat_out(x_combined) logits = torch.sigmoid(x_combined) return {'logits': logits} def extract_features(self, bt, new_node_nxid, dg, feats_d): # pair-level features head_nxid = bt.nxid head_deptree_feats = feats_d[head_nxid] child_deptree_feats = feats_d[new_node_nxid] x_pair_ids_l = head_deptree_feats + child_deptree_feats # extracting graph-level features graph_ids_l = self.extract_graph_level_feats(dg, new_node_nxid, bt, feats_d) return (graph_ids_l, x_pair_ids_l) def extract_graph_level_feats(self, dg, new_node_nxid, bt, feats_d): head_sbl = dg.node[bt.nxid]['sbl'] if head_sbl is None: head_sbl_feats_l = self._dummy_node_feats_vec else: head_sbl_feats_l = flatten_nested_lists([feats_d[ch] for ch in head_sbl]) child_sbl = dg.node[new_node_nxid]['sbl'] if child_sbl is None: ch_sbl_feats_l = self._dummy_node_feats_vec else: ch_sbl_feats_l = flatten_nested_lists([feats_d[ch] for ch in child_sbl]) child_children = dg[new_node_nxid] if len(child_children) == 0: ch_ch_feats_l = self._dummy_node_feats_vec else: ch_ch_feats_l = flatten_nested_lists([feats_d[ch] for ch in child_children]) graph_ids_l = head_sbl_feats_l + ch_sbl_feats_l + ch_ch_feats_l return graph_ids_l def init_data_containers(self): return {'X': [], 'Y': [], 'Xg': []} def add_xy_pairs(self, data_containers: Dict, y: int, model_inputs: Tuple[List[int], List[int]]): x_graph, x_head_child = model_inputs data_containers['X'].append(x_head_child) data_containers['Xg'].append(x_graph) data_containers['Y'].append(y) def _batchify(self, data_containers: Dict, batch_size: int): # sort according to the lemma length sorted_data = sorted(zip(*(data_containers['Xg'], data_containers['X'], data_containers['Y'])), key=lambda p: len(p[0]), reverse=True) data_size = len(sorted_data) num_batches = data_size // batch_size data_indices = index_data(data_size, mode='no_shuffling') batch_pairs = [] for bi in range(num_batches + 1): # including the last (smaller) batch batch_x_pair_feats = [] batch_x_graph_feats = [] batch_x_lens = [] batch_y = [] curr_batch_indices = data_indices[bi * batch_size: (bi + 1) * batch_size] if len(curr_batch_indices) == 0: break for idx in curr_batch_indices: graph_f_ids, node_pairs_f_ids, y_ids = sorted_data[idx] batch_x_graph_feats.append(graph_f_ids) batch_x_lens.append(len(graph_f_ids)) batch_x_pair_feats.append(node_pairs_f_ids) batch_y.append(y_ids) max_graph_f_len = max(batch_x_lens) batch_x_graph_feats_padded = [pad_seq(x, max_graph_f_len, pad_id=self.PAD_ID) for x in batch_x_graph_feats] # size: (num_nodes, batch_size) batch_x_graph_feats_var = Variable(torch.LongTensor(batch_x_graph_feats_padded)).to(self.device) # size: (batch_size, 2 * num_node_feats) batch_x_pair_feats_var = Variable(torch.LongTensor(batch_x_pair_feats)).to(self.device) # size: (batch_size, 1) batch_y_var = Variable(torch.FloatTensor(batch_y)).unsqueeze(1).to(self.device) batch_pairs.append((batch_x_graph_feats_var, batch_x_pair_feats_var, batch_y_var)) return batch_pairs def make_decision(self, bt: BinTreeBase, new_node_nxid: str, dg: DiGraph, feats_d: Dict, *other_inputs) -> int: x_graph_ids_l, x_ids_l = self.extract_features(bt, new_node_nxid, dg, feats_d) x_ids_np = np.asarray(x_ids_l) x_graph_ids_l = np.asarray([x_graph_ids_l]) outputs = self.__call__( ( torch.from_numpy(x_graph_ids_l).to(self.device), torch.from_numpy(x_ids_np).to(self.device), None) ) logit_val = outputs['logits'].cpu().data[0].numpy() if logit_val >= 0.5: decision = VocabSymbols.RIGHT else: decision = VocabSymbols.LEFT return decision component = SymGraphEncModel
[ "logging.getLogger", "torch.nn.functional.leaky_relu", "binlin.utils.combinatorics.flatten_nested_lists", "torch.bmm", "torch.LongTensor", "torch.sigmoid", "numpy.asarray", "torch.from_numpy", "binlin.model.nn_utils.pad_seq", "torch.nn.Linear", "binlin.data.ud.index_data", "torch.FloatTensor", "torch.cat" ]
[((552, 577), 'logging.getLogger', 'logging.getLogger', (['"""main"""'], {}), "('main')\n", (569, 577), False, 'import logging\n'), ((1419, 1475), 'torch.nn.Linear', 'nn.Linear', (['self._dim_emb_proj_in', 'self._dim_emb_proj_out'], {}), '(self._dim_emb_proj_in, self._dim_emb_proj_out)\n', (1428, 1475), True, 'from torch import Tensor, nn as nn\n'), ((1558, 1612), 'torch.nn.Linear', 'nn.Linear', (['self._dim_emb_proj_out', 'self._dim_dense_out'], {}), '(self._dim_emb_proj_out, self._dim_dense_out)\n', (1567, 1612), True, 'from torch import Tensor, nn as nn\n'), ((1639, 1666), 'torch.nn.Linear', 'nn.Linear', (['self._dim_emb', '(1)'], {}), '(self._dim_emb, 1)\n', (1648, 1666), True, 'from torch import Tensor, nn as nn\n'), ((1812, 1864), 'torch.nn.Linear', 'nn.Linear', (['self._dim_concat_in', 'self._dim_concat_out'], {}), '(self._dim_concat_in, self._dim_concat_out)\n', (1821, 1864), True, 'from torch import Tensor, nn as nn\n'), ((1916, 1961), 'torch.nn.Linear', 'nn.Linear', (['self._dim_dense_out', 'self._dim_out'], {}), '(self._dim_dense_out, self._dim_out)\n', (1925, 1961), True, 'from torch import Tensor, nn as nn\n'), ((3588, 3625), 'torch.cat', 'torch.cat', (['(x_head_child, x_graph)', '(1)'], {}), '((x_head_child, x_graph), 1)\n', (3597, 3625), False, 'import torch\n'), ((3783, 3807), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['x_combined'], {}), '(x_combined)\n', (3795, 3807), True, 'import torch.nn.functional as F\n'), ((3872, 3897), 'torch.sigmoid', 'torch.sigmoid', (['x_combined'], {}), '(x_combined)\n', (3885, 3897), False, 'import torch\n'), ((6100, 6142), 'binlin.data.ud.index_data', 'index_data', (['data_size'], {'mode': '"""no_shuffling"""'}), "(data_size, mode='no_shuffling')\n", (6110, 6142), False, 'from binlin.data.ud import index_data\n'), ((7896, 7915), 'numpy.asarray', 'np.asarray', (['x_ids_l'], {}), '(x_ids_l)\n', (7906, 7915), True, 'import numpy as np\n'), ((7940, 7967), 'numpy.asarray', 'np.asarray', (['[x_graph_ids_l]'], {}), '([x_graph_ids_l])\n', (7950, 7967), True, 'import numpy as np\n'), ((4643, 4697), 'binlin.utils.combinatorics.flatten_nested_lists', 'flatten_nested_lists', (['[feats_d[ch] for ch in head_sbl]'], {}), '([feats_d[ch] for ch in head_sbl])\n', (4663, 4697), False, 'from binlin.utils.combinatorics import flatten_nested_lists\n'), ((4878, 4933), 'binlin.utils.combinatorics.flatten_nested_lists', 'flatten_nested_lists', (['[feats_d[ch] for ch in child_sbl]'], {}), '([feats_d[ch] for ch in child_sbl])\n', (4898, 4933), False, 'from binlin.utils.combinatorics import flatten_nested_lists\n'), ((5112, 5172), 'binlin.utils.combinatorics.flatten_nested_lists', 'flatten_nested_lists', (['[feats_d[ch] for ch in child_children]'], {}), '([feats_d[ch] for ch in child_children])\n', (5132, 5172), False, 'from binlin.utils.combinatorics import flatten_nested_lists\n'), ((3183, 3215), 'torch.nn.functional.leaky_relu', 'F.leaky_relu', (['attn_unnorm_scores'], {}), '(attn_unnorm_scores)\n', (3195, 3215), True, 'import torch.nn.functional as F\n'), ((3440, 3472), 'torch.bmm', 'torch.bmm', (['attn_weights', 'x_graph'], {}), '(attn_weights, x_graph)\n', (3449, 3472), False, 'import torch\n'), ((6948, 6995), 'binlin.model.nn_utils.pad_seq', 'pad_seq', (['x', 'max_graph_f_len'], {'pad_id': 'self.PAD_ID'}), '(x, max_graph_f_len, pad_id=self.PAD_ID)\n', (6955, 6995), False, 'from binlin.model.nn_utils import get_embed_matrix, pad_seq\n'), ((7118, 7162), 'torch.LongTensor', 'torch.LongTensor', (['batch_x_graph_feats_padded'], {}), '(batch_x_graph_feats_padded)\n', (7134, 7162), False, 'import torch\n'), ((7279, 7315), 'torch.LongTensor', 'torch.LongTensor', (['batch_x_pair_feats'], {}), '(batch_x_pair_feats)\n', (7295, 7315), False, 'import torch\n'), ((8031, 8062), 'torch.from_numpy', 'torch.from_numpy', (['x_graph_ids_l'], {}), '(x_graph_ids_l)\n', (8047, 8062), False, 'import torch\n'), ((8096, 8122), 'torch.from_numpy', 'torch.from_numpy', (['x_ids_np'], {}), '(x_ids_np)\n', (8112, 8122), False, 'import torch\n'), ((7404, 7430), 'torch.FloatTensor', 'torch.FloatTensor', (['batch_y'], {}), '(batch_y)\n', (7421, 7430), False, 'import torch\n')]
## This script will define the functions used in the locate lane lines pipeline ## The end of this script will process a video file to locate and plot the lane lines import pickle import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg from moviepy.editor import VideoFileClip import sys ## Unpickle Required Data cam_mtx = pickle.load(open("camera_matrix.p","rb")) dist_coef = pickle.load(open("camera_distortion_coefficients.p","rb")) M = pickle.load(open("M.p","rb")) Minv = pickle.load(open("Minv.p","rb")) ## Undistort Function def undistort(img_RGB_in): # Input RGB distorted, Output RGB undistorted img_out = cv2.undistort(img_RGB_in, cam_mtx, dist_coef, None, cam_mtx) return(img_out) # Sample undistort image if (False): img = mpimg.imread('camera_cal/calibration1.jpg') dst_img = undistort(img) plt.figure(0) plt.imshow(img) plt.title('Original Image') plt.savefig('output_images/distorted_image.png') plt.figure(1) plt.imshow(dst_img) plt.title('Undistorted Image') plt.savefig('output_images/undistorted_image.png') plt.show() # Color Threshold Function def color_thresh(img_RGB_in,RGB_out): # Input RGB undistorted, Output Binary (or RGB for video) # Convert image to HSV color space img_HSV = cv2.cvtColor(img_RGB_in, cv2.COLOR_RGB2HSV) # Extract S layer H_layer = img_HSV[:,:,0]*2 S_layer = img_HSV[:,:,1]/255*100 V_layer = img_HSV[:,:,2]/255*100 # Apply threshold to S layer to identify white and yellow lane lines H_Yellow = (40,70) S_Yellow = (30,100) V_Yellow = (30,100) H_White = (0,50) S_White = (0,10) V_White = (75,100) img_out = np.zeros_like(H_layer) img_out[(((H_layer >= H_Yellow[0]) & (H_layer <= H_Yellow[1])) \ & ((S_layer >= S_Yellow[0]) & (S_layer <= S_Yellow[1])) \ & ((V_layer >= V_Yellow[0]) & (V_layer <= V_Yellow[1]))) \ | (((H_layer >= H_White[0]) & (H_layer <= H_White[1])) \ & ((S_layer >= S_White[0]) & (S_layer <= S_White[1])) \ & ((V_layer >= V_White[0]) & (V_layer <= V_White[1])))] = 1 if (RGB_out): black_out_idxs = np.where(img_out == 0) img_out = np.copy(img_RGB_in) img_out[black_out_idxs[0],black_out_idxs[1],:] = 0 return(img_out) # Sample color threshold image if (False): img = mpimg.imread('test_images/test5.jpg') thrsh_img = color_thresh(img,RGB_out=True) plt.figure(2) plt.imshow(img) plt.title('Original Image') plt.savefig('output_images/pre_color_thresh.png') plt.figure(3) plt.imshow(thrsh_img, cmap='gray') plt.title('Color Threshold') plt.savefig('output_images/post_color_thresh.png') plt.show() ## Perspective Transform to Top-Down View Function def top_down_xfrm(img_RGB_in,frwd): # Input RGB undistorted, Output RGB top-down # frwd is bool that specifies if normal transform is requested (true) or inverse (false) img_size = (img_RGB_in.shape[1], img_RGB_in.shape[0]) if (frwd): Xfrm = M else: Xfrm = Minv img_RGB_out = cv2.warpPerspective(img_RGB_in, Xfrm, img_size, flags=cv2.INTER_LINEAR) return(img_RGB_out) # Sample top-down perspective transform on image if (False): img = mpimg.imread('test_images/test6.jpg') warped = top_down_xfrm(img,frwd=True) plt.figure(4) plt.imshow(img) plt.title('Original Image') plt.savefig('output_images/pre_top_down.png') plt.figure(5) plt.imshow(warped) plt.title('Top Down View Warp') plt.savefig('output_images/post_top_down.png') plt.show() ## Gradient Threshold Function def grad_thresh(img_RGB_in,RGB_out): # Input RGB top-down, Output Binary (or RGB for video) # RGB_out boolean can be used for video testing #Apply gradient threshold in x direction img_GRAY = cv2.cvtColor(img_RGB_in, cv2.COLOR_RGB2GRAY) grad_thresh = (10,100) abs_sobel = np.absolute(cv2.Sobel(img_GRAY, cv2.CV_64F, 1, 0)) scaled_sobel = np.uint8(255*abs_sobel/np.max(abs_sobel)) img_out = np.zeros_like(img_GRAY, dtype=np.uint8) img_out[(scaled_sobel >= grad_thresh[0]) & (scaled_sobel <= grad_thresh[1])] = 1 if (RGB_out): black_out_idxs = np.where(img_out == 0) img_out = np.copy(img_RGB_in) img_out[black_out_idxs[0],black_out_idxs[1],:] = 0 # print(out.shape) return(img_out) # Sample gradient threshold image if (False): img = mpimg.imread('test_images/test6.jpg') img = top_down_xfrm(img,frwd=True) thrsh_img = grad_thresh(img,RGB_out=False) plt.figure(6) plt.imshow(img) plt.title('Original Top Down Transformed Image') plt.savefig('output_images/pre_grad_thresh.png') plt.figure(7) plt.imshow(thrsh_img, cmap='gray') plt.title('Gradient Threshold') plt.savefig('output_images/post_grad_thresh.png') plt.show() # Class to store and calculate both lane line parameters class LaneLines(): def __init__(self,img_RGB_in,img_BIN_in): frame_height = img_RGB_in.shape[0] frame_width = img_RGB_in.shape[1] # CONSTANTS # Frame height self.frame_height = frame_height # Frame width self.frame_width = frame_width self.midpoint_width = np.int(frame_width//2) # y values self.ploty = np.linspace(0, frame_height-1, frame_height) # Polynomial fit dimension self.poly_fit_dim = 2 # FRAME self.Frame = img_RGB_in # Binary image for current frame self.img_BIN_in = img_BIN_in # Histogram for current frame self.histogram = None # RGB image for output of current frame self.img_RGB_out = img_RGB_in # Current number of consecutive failed frames self.num_failed_frame_curr = 0 # Number of frames processed self.frame_num = 0 # TEXT self.font = cv2.FONT_HERSHEY_SIMPLEX self.Ofst_Text_pos = (20,500) self.Rad_L_Text_pos = (20,550) self.Rad_R_Text_pos = (20,600) self.fontScale = 1 self.fontColor = (255,255,255) self.lineType = 2 # HYPERPARAMETERS # Choose the number of sliding windows self.nwindows = 9 # Set the width of the windows +/- margin self.margin_hist = 100 # Set the width of the windows +/- margin self.margin_poly = 100 # Set minimum number of pixels found to re-center window self.minpix = 50 # Number of windows that must contain minpix number of pixels for lane line to be considered valid self.nwindow_fnd = 5 # Number of pixels that must be found for poly search method to be considered valid self.minpix_poly = 300 # Set height of windows - based on nwindows above and image shape self.window_height = np.int(frame_height//self.nwindows) # Define conversions in x and y from pixels space to meters self.x_width_pix = 700 #pixel width of lane self.y_height_pix = 720 #pixel height of lane (frame height) self.xm_per_pix = 3.7/self.x_width_pix # meters per pixel in x dimension self.ym_per_pix = 30/self.y_height_pix # meters per pixel in y dimension # Number of frames that failed to find lane lines before reset self.num_failed_frame_alwd = 25 # Number of frames for rolling average filter self.filt_size = 25 # LINE PARAMETERS # was the left line detected in the current frame self.detected_L = False self.detected_R = False # x values of the last n fits of the left line self.x_fit_all_L = np.empty((0,self.ploty.size), dtype='float') self.x_fit_all_R = np.empty((0,self.ploty.size), dtype='float') #average x values of the fitted left line over the last n iterations self.x_fit_best_L = np.zeros((self.ploty.size), dtype='float') self.x_fit_best_R = np.zeros((self.ploty.size), dtype='float') #polynomial coefficients for the most recent fit self.coef_fit_current_L = np.zeros((self.poly_fit_dim+1), dtype='float') self.coef_fit_current_R = np.zeros((self.poly_fit_dim+1), dtype='float') #polynomial coefficients for the previous n iterations self.coef_fit_all_L = np.empty((0,self.poly_fit_dim+1), dtype='float') self.coef_fit_all_R = np.empty((0,self.poly_fit_dim+1), dtype='float') #polynomial coefficients averaged over the last n iterations self.coef_fit_best_L = np.zeros((self.poly_fit_dim+1), dtype='float') self.coef_fit_best_R = np.zeros((self.poly_fit_dim+1), dtype='float') #radius of curvature of the line in [m] self.radius_of_curvature_L = 0 self.radius_of_curvature_R = 0 #distance in meters of vehicle center from the line self.center_line_offst = 0 #difference in fit coefficients between last and new fits # self.diffs = np.array([0,0,0], dtype='float') return def update_frame(self,img_RGB_in): ''' Stores the new frame in memory ''' self.Frame = img_RGB_in self.histogram = None self.img_RGB_out = img_RGB_in return def hist(self): ''' Calculate histogram of points ''' #Grab only the bottom half of the image #Lane lines are likely to be mostly vertical nearest to the car #Sum across image pixels vertically - make sure to set an `axis` #i.e. the highest areas of vertical lines should be larger values self.histogram = np.sum(self.img_BIN_in[self.img_BIN_in.shape[0]//2:,:], axis=0) return def find_lane_pixels_hist(self): ''' Find lane pixels with histogram method ''' # Reset previous rolling average queues self.x_fit_all_L = np.empty((0,self.ploty.size), dtype='float') self.x_fit_all_R = np.empty((0,self.ploty.size), dtype='float') self.coef_fit_all_L = np.empty((0,self.poly_fit_dim+1), dtype='float') self.coef_fit_all_R = np.empty((0,self.poly_fit_dim+1), dtype='float') # Take a histogram of the bottom half of the image self.hist() # Create an output image to draw on and visualize the result self.img_RGB_out = np.dstack((self.img_BIN_in, self.img_BIN_in, self.img_BIN_in)) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint_height = np.int(self.histogram.shape[0]//2) leftx_base = np.argmax(self.histogram[:midpoint_height]) rightx_base = np.argmax(self.histogram[midpoint_height:]) + midpoint_height # Identify the x and y positions of all nonzero pixels in the image nonzero = self.img_BIN_in.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Counter of valid windows found cnt_wdw_fnd_L = 0 cnt_wdw_fnd_R = 0 #Step through the windows one by one for window in range(self.nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = self.img_BIN_in.shape[0] - (window+1)*self.window_height win_y_high = self.img_BIN_in.shape[0] - window*self.window_height win_xleft_low = leftx_current - self.margin_hist win_xleft_high = leftx_current + self.margin_hist win_xright_low = rightx_current - self.margin_hist win_xright_high = rightx_current + self.margin_hist # Draw the windows on the visualization image cv2.rectangle(self.img_RGB_out,(win_xleft_low,win_y_low), (win_xleft_high,win_y_high),(0,255,0), 2) cv2.rectangle(self.img_RGB_out,(win_xright_low,win_y_low), (win_xright_high,win_y_high),(0,255,0), 2) # Identify the nonzero pixels in x and y within the window good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > minpix pixels, re-center next window on their mean position (otherwise keep previous window x position) if len(good_left_inds) > self.minpix: cnt_wdw_fnd_L = cnt_wdw_fnd_L + 1 leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > self.minpix: cnt_wdw_fnd_R = cnt_wdw_fnd_R + 1 self.detected_R = True rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Create numpy arrays of indices left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # Determine if valid number of windows was found with pixels self.detected_L = (self.frame_num == 0) or (cnt_wdw_fnd_L >= self.nwindow_fnd) self.detected_R = (self.frame_num == 0) or (cnt_wdw_fnd_R >= self.nwindow_fnd) # Color in left and right line pixels self.img_RGB_out[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] self.img_RGB_out[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] return leftx, lefty, rightx, righty def fit_polynomial(self,x,y): # Fit a second order polynomial to data using `np.polyfit` # coef_fit = [A, B, C] of y = A*x^2 + B*x + C coef_fit = np.polyfit(y, x, self.poly_fit_dim) # Generate x and y values for plotting x_fit = coef_fit[0]*self.ploty**2 + coef_fit[1]*self.ploty + coef_fit[2] # Limit x_fit by size of frame x_fit = np.minimum(np.maximum(x_fit,0),self.frame_width-1) # Visualization # Colors in the activated pixels self.img_RGB_out[y, x] = [255, 0, 0] # Colors in the poly line self.img_RGB_out[self.ploty.astype(int), x_fit.astype(int)] = [255, 255, 0] return coef_fit, x_fit def find_lane_pixels_poly(self): ''' Search around polynomial for new lane pixels ''' # Grab activated pixels nonzero = self.img_BIN_in.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Set the area of search based on activated x-values # within the +/- margin of our polynomial function (from previous frame) left_lane_inds = ((nonzerox > (self.coef_fit_current_L[0]*(nonzeroy**2) + self.coef_fit_current_L[1]*nonzeroy + self.coef_fit_current_L[2] - self.margin_poly)) & (nonzerox < (self.coef_fit_current_L[0]*(nonzeroy**2) + self.coef_fit_current_L[1]*nonzeroy + self.coef_fit_current_L[2] + self.margin_poly))) right_lane_inds = ((nonzerox > (self.coef_fit_current_R[0]*(nonzeroy**2) + self.coef_fit_current_R[1]*nonzeroy + self.coef_fit_current_R[2] - self.margin_poly)) & (nonzerox < (self.coef_fit_current_R[0]*(nonzeroy**2) + self.coef_fit_current_R[1]*nonzeroy + self.coef_fit_current_R[2] + self.margin_poly))) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Determine pixel find validity self.detected_L = len(leftx) > self.minpix_poly self.detected_R = len(rightx) > self.minpix_poly if (self.detected_L and self.detected_R): # Prepare output RGB image self.img_RGB_out = np.dstack((self.img_BIN_in, self.img_BIN_in, self.img_BIN_in)) # Visualization # Create an image to draw on and an image to show the selection window # out_img = np.dstack((img_bin, img_bin, img_bin))*255 window_img = np.zeros_like(self.img_RGB_out) # Color in left and right line pixels self.img_RGB_out[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] self.img_RGB_out[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() coef_tmp_L, x_fit_L = self.fit_polynomial(leftx,lefty) coef_tmp_R, x_fit_R = self.fit_polynomial(rightx,righty) left_line_window1 = np.array([np.transpose(np.vstack([x_fit_L-self.margin_poly, self.ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([x_fit_L+self.margin_poly, self.ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([x_fit_R-self.margin_poly, self.ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([x_fit_R+self.margin_poly, self.ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0)) self.img_RGB_out = cv2.addWeighted(self.img_RGB_out, 1, window_img, 0.3, 0) # Plot the polynomial lines onto the image # plt.plot(left_fitx, ploty, color='yellow') # plt.plot(right_fitx, ploty, color='yellow') # End visualization steps return leftx, lefty, rightx, righty def calc_best(self): ''' Perform rolling average on polynomials to determine best fit. ''' # Reset best self.coef_fit_best_L = np.zeros((self.poly_fit_dim+1), dtype='float') self.coef_fit_best_R = np.zeros((self.poly_fit_dim+1), dtype='float') self.x_fit_best_L = np.zeros((self.ploty.size), dtype='float') self.x_fit_best_R = np.zeros((self.ploty.size), dtype='float') # Check if size of queue is larger than filter size if (self.x_fit_all_L.shape[0] > self.filt_size): self.x_fit_all_L = np.delete(self.x_fit_all_L,(0),axis=0) self.x_fit_all_R = np.delete(self.x_fit_all_R,(0),axis=0) self.coef_fit_all_L = np.delete(self.coef_fit_all_L,(0),axis=0) self.coef_fit_all_R = np.delete(self.coef_fit_all_R,(0),axis=0) # Loop through and compute average n = self.x_fit_all_L.shape[0] for row in range(n): for col_x_fit in range(self.x_fit_all_L.shape[1]): self.x_fit_best_L[col_x_fit] = self.x_fit_best_L[col_x_fit] + self.x_fit_all_L[row,col_x_fit] self.x_fit_best_R[col_x_fit] = self.x_fit_best_R[col_x_fit] + self.x_fit_all_R[row,col_x_fit] for col_coef_fit in range(self.coef_fit_all_L.shape[1]): self.coef_fit_best_L[col_coef_fit] = self.coef_fit_best_L[col_coef_fit] + self.coef_fit_all_L[row,col_coef_fit] self.coef_fit_best_R[col_coef_fit] = self.coef_fit_best_R[col_coef_fit] + self.coef_fit_all_R[row,col_coef_fit] self.x_fit_best_L = self.x_fit_best_L/n self.x_fit_best_R = self.x_fit_best_R/n self.coef_fit_best_L = self.coef_fit_best_L/n self.coef_fit_best_R = self.coef_fit_best_R/n return def calc_rad_real(self): ''' Calculates the radius of polynomial functions in meters. ''' # Convert parabola coefficients into pixels A_L = self.xm_per_pix / (self.ym_per_pix**2) * self.coef_fit_best_L[0] B_L = self.xm_per_pix / (self.ym_per_pix) * self.coef_fit_best_L[1] A_R = self.xm_per_pix / (self.ym_per_pix**2) * self.coef_fit_best_R[0] B_R = self.xm_per_pix / (self.ym_per_pix) * self.coef_fit_best_R[1] # Define y-value where we want radius of curvature # We'll choose the maximum y-value, corresponding to the bottom of the image y_eval = (self.frame_height - 1)*self.ym_per_pix # Calculation of R_curve (radius of curvature) self.radius_of_curvature_L = ((1 + (2*A_L*y_eval + B_L)**2)**1.5) / np.absolute(2*A_L) self.radius_of_curvature_R = ((1 + (2*A_R*y_eval + B_R)**2)**1.5) / np.absolute(2*A_R) return def calc_offset(self): ''' Calculates the offset between vehicle and center of lane ''' self.center_line_offst = abs(self.midpoint_width - (self.x_fit_best_L[-1] + self.x_fit_best_R[-1])/2) * self.xm_per_pix return def find_lane_lines(self): ''' Find lane lines with an appropriate method ''' ## Find lane pixels # If left or right detection from previous loop is false: Use histogram method if (not(self.detected_L)) or (not(self.detected_R)): print("Histogram search method used.") # Call histogram method to find pixel locations of lanes and determine current frame detection validity leftx, lefty, rightx, righty = self.find_lane_pixels_hist() else: print("Polynomial search method used") # Call poly search method to find pixel locations of lanes and determine current frame detection validity leftx, lefty, rightx, righty = self.find_lane_pixels_poly() if (not(self.detected_L)) or (not(self.detected_R)): print("Polynomial search method failed. Histogram search method used.") # Neither lane was found, must use histogram method leftx, lefty, rightx, righty = self.find_lane_pixels_hist() ## Check if both lane lines were found if (self.detected_L and self.detected_R): # Reset failed counter self.num_failed_frame_curr = 0 # Fit new polynomials for both lanes self.coef_fit_current_L, x_fit_L = self.fit_polynomial(leftx,lefty) self.coef_fit_current_R, x_fit_R = self.fit_polynomial(rightx,righty) # Append x_fit to list self.x_fit_all_L = np.vstack((self.x_fit_all_L, x_fit_L)) self.x_fit_all_R = np.vstack((self.x_fit_all_R, x_fit_R)) # Append coefficients to list self.coef_fit_all_L = np.vstack((self.coef_fit_all_L, self.coef_fit_current_L)) self.coef_fit_all_R = np.vstack((self.coef_fit_all_R, self.coef_fit_current_R)) # Calculate rolling average self.calc_best() else: # Increment failed counter self.num_failed_frame_curr = self.num_failed_frame_curr + 1 print("Number of failed frames: " + str(self.num_failed_frame_curr)) # Do not compute new polynomial, use previous best # Check if number of consecutive failed frames has exceed max if (self.num_failed_frame_curr > self.num_failed_frame_alwd): print("Number of consecutive failed frames exceeded.") sys.exit() # Calculate radius of curvature self.calc_rad_real() # Calculate center line offset self.calc_offset() return def draw_frame(self,img_RGB_in): ''' Draws the frame with desired polynomials in original image perspective ''' print("\n") #print("Processing Frame # " + str(self.frame_num)) # Store new frame self.update_frame(img_RGB_in) # Calculate binary image of color and gradient thresholds self.img_BIN_in = grad_thresh(top_down_xfrm(color_thresh(undistort(img_RGB_in),RGB_out=True),frwd=True),RGB_out=False) # Create an image to draw the lines on warp_zero = np.zeros_like(self.img_BIN_in).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Find lane lines self.find_lane_lines() # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([self.x_fit_best_L, self.ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([self.x_fit_best_R, self.ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0)) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (img_RGB_in.shape[1], img_RGB_in.shape[0])) # Combine the result with the original image self.Frame = cv2.addWeighted(img_RGB_in, 1, newwarp, 0.3, 0) # Draw text on image cv2.putText(self.Frame,"Lane Center Offset [m]: " + str(round(self.center_line_offst,2)),self.Ofst_Text_pos,self.font,self.fontScale,self.fontColor,self.lineType) cv2.putText(self.Frame,"Radius Left [m]: " + str(round(self.radius_of_curvature_L,0)),self.Rad_L_Text_pos,self.font,self.fontScale,self.fontColor,self.lineType) cv2.putText(self.Frame,"Radius Right [m]: " + str(round(self.radius_of_curvature_R,0)),self.Rad_R_Text_pos,self.font,self.fontScale,self.fontColor,self.lineType) self.frame_num = self.frame_num + 1 #print("Left Radius: " + str(self.radius_of_curvature_L)) #print("Right Radius: " + str(self.radius_of_curvature_R)) #print("Lane Center Offset: " + str(lane_lines.center_line_offst)) #return(self.img_RGB_out) return(self.Frame) # Sample histogram if (False): img = mpimg.imread('test_images/test6.jpg') img_BIN_in = grad_thresh(top_down_xfrm(color_thresh(undistort(img),RGB_out=True),frwd=True),RGB_out=False); lane_lines = LaneLines(img,img_BIN_in) lane_lines.hist() histogram = lane_lines.histogram plt.figure(7) plt.imshow(img) plt.title('Original Image') plt.savefig('output_images/original_histogram.png') plt.figure(8) plt.imshow(img_BIN_in, cmap='gray') plt.title('Original Binary Image') plt.savefig('output_images/original_bin_histogram.png') plt.figure(9) plt.plot(histogram) plt.title('Histogram') plt.savefig('output_images/histogram.png') plt.show() # Sample polyfit with histogram search if (False): img = mpimg.imread('test_images/test6.jpg') plt.figure(10) plt.imshow(img) plt.title('Original Image') img_BIN_in = grad_thresh(top_down_xfrm(color_thresh(undistort(img),RGB_out=True),frwd=True),RGB_out=False) lane_lines = LaneLines(img,img_BIN_in) # Search for lane lines using histogram method leftx, lefty, rightx, righty = lane_lines.find_lane_pixels_hist() # Fit new polynomials for both lanes lane_lines.coef_fit_current_L, x_fit_L = lane_lines.fit_polynomial(leftx,lefty) lane_lines.coef_fit_current_R, x_fit_R = lane_lines.fit_polynomial(rightx,righty) print("Current Left Coefficients: " + str(lane_lines.coef_fit_current_L)) print("Current Right Coefficients: " + str(lane_lines.coef_fit_current_R)) plt.figure(11) plt.imshow(lane_lines.img_RGB_out) plt.title('2nd Order Polynomial Fit - Histogram Search Method') plt.savefig('output_images/poly_hist.png') # Sample search around poly if (False): # Append x_fit to list lane_lines.x_fit_all_L = np.vstack((lane_lines.x_fit_all_L, x_fit_L)) lane_lines.x_fit_all_R = np.vstack((lane_lines.x_fit_all_R, x_fit_R)) # Append coefficients to list lane_lines.coef_fit_all_L = np.vstack((lane_lines.coef_fit_all_L, lane_lines.coef_fit_current_L)) lane_lines.coef_fit_all_R = np.vstack((lane_lines.coef_fit_all_R, lane_lines.coef_fit_current_R)) print("All Left Coefficients: " + str(lane_lines.coef_fit_all_L)) print("All Right Coefficients: " + str(lane_lines.coef_fit_all_R)) # Calculate rolling average lane_lines.calc_best() print("Best Left Coefficients: " + str(lane_lines.coef_fit_best_L)) print("Best Right Coefficients: " + str(lane_lines.coef_fit_best_R)) # Calculate real radius of curvature lane_lines.calc_rad_real() print("Left Radius: " + str(lane_lines.radius_of_curvature_L)) print("Right Radius: " + str(lane_lines.radius_of_curvature_R)) lane_lines.calc_offset() print("Center Lane Offset: " + str(lane_lines.center_line_offst)) # Search for lane lines around previous best polynomial leftx, lefty, rightx, righty = lane_lines.find_lane_pixels_poly() # Fit new polynomials for both lanes lane_lines.coef_fit_current_L, x_fit_L = lane_lines.fit_polynomial(leftx,lefty) lane_lines.coef_fit_current_R, x_fit_R = lane_lines.fit_polynomial(rightx,righty) plt.figure(12) plt.imshow(lane_lines.img_RGB_out) plt.title('2nd Order Polynomial Fit - Polynomial Search Method') plt.savefig('output_images/poly_poly.png') plt.show() # Test full pipeline if (True): img = mpimg.imread('test_images/test6.jpg') lane_lines = LaneLines(img,img) plt.figure(13) plt.imshow(img) plt.title('Original Image') plt.figure(14) plt.imshow(lane_lines.draw_frame(img)) plt.title('Found Lines') plt.savefig('output_images/full_pipeline.png') plt.show() ## Process video if (False): img = mpimg.imread('test_images/test6.jpg') lane_lines = LaneLines(img,img) video_output = 'output_videos/challenge_video_processed.mp4' #video_output = 'output_videos/project_video_processed.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip = VideoFileClip("test_videos/challenge_video.mp4") video_clip = clip.fl_image(lane_lines.draw_frame) #NOTE: this function expects color images!! video_clip.write_videofile(video_output, audio=False)
[ "cv2.rectangle", "numpy.polyfit", "numpy.hstack", "matplotlib.image.imread", "numpy.array", "cv2.warpPerspective", "sys.exit", "matplotlib.pyplot.imshow", "numpy.mean", "numpy.where", "numpy.delete", "matplotlib.pyplot.plot", "cv2.undistort", "numpy.max", "cv2.addWeighted", "numpy.linspace", "numpy.empty", "numpy.vstack", "numpy.concatenate", "numpy.maximum", "moviepy.editor.VideoFileClip", "matplotlib.pyplot.savefig", "numpy.argmax", "cv2.cvtColor", "matplotlib.pyplot.title", "numpy.int_", "numpy.int", "matplotlib.pyplot.show", "numpy.copy", "numpy.dstack", "numpy.absolute", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "numpy.zeros_like", "cv2.Sobel" ]
[((666, 726), 'cv2.undistort', 'cv2.undistort', (['img_RGB_in', 'cam_mtx', 'dist_coef', 'None', 'cam_mtx'], {}), '(img_RGB_in, cam_mtx, dist_coef, None, cam_mtx)\n', (679, 726), False, 'import cv2\n'), ((795, 838), 'matplotlib.image.imread', 'mpimg.imread', (['"""camera_cal/calibration1.jpg"""'], {}), "('camera_cal/calibration1.jpg')\n", (807, 838), True, 'import matplotlib.image as mpimg\n'), ((872, 885), 'matplotlib.pyplot.figure', 'plt.figure', (['(0)'], {}), '(0)\n', (882, 885), True, 'import matplotlib.pyplot as plt\n'), ((890, 905), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (900, 905), True, 'import matplotlib.pyplot as plt\n'), ((910, 937), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (919, 937), True, 'import matplotlib.pyplot as plt\n'), ((942, 990), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/distorted_image.png"""'], {}), "('output_images/distorted_image.png')\n", (953, 990), True, 'import matplotlib.pyplot as plt\n'), ((995, 1008), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (1005, 1008), True, 'import matplotlib.pyplot as plt\n'), ((1013, 1032), 'matplotlib.pyplot.imshow', 'plt.imshow', (['dst_img'], {}), '(dst_img)\n', (1023, 1032), True, 'import matplotlib.pyplot as plt\n'), ((1037, 1067), 'matplotlib.pyplot.title', 'plt.title', (['"""Undistorted Image"""'], {}), "('Undistorted Image')\n", (1046, 1067), True, 'import matplotlib.pyplot as plt\n'), ((1072, 1122), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/undistorted_image.png"""'], {}), "('output_images/undistorted_image.png')\n", (1083, 1122), True, 'import matplotlib.pyplot as plt\n'), ((1127, 1137), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1135, 1137), True, 'import matplotlib.pyplot as plt\n'), ((1323, 1366), 'cv2.cvtColor', 'cv2.cvtColor', (['img_RGB_in', 'cv2.COLOR_RGB2HSV'], {}), '(img_RGB_in, cv2.COLOR_RGB2HSV)\n', (1335, 1366), False, 'import cv2\n'), ((1717, 1739), 'numpy.zeros_like', 'np.zeros_like', (['H_layer'], {}), '(H_layer)\n', (1730, 1739), True, 'import numpy as np\n'), ((2417, 2454), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test5.jpg"""'], {}), "('test_images/test5.jpg')\n", (2429, 2454), True, 'import matplotlib.image as mpimg\n'), ((2506, 2519), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (2516, 2519), True, 'import matplotlib.pyplot as plt\n'), ((2524, 2539), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (2534, 2539), True, 'import matplotlib.pyplot as plt\n'), ((2544, 2571), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (2553, 2571), True, 'import matplotlib.pyplot as plt\n'), ((2576, 2625), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/pre_color_thresh.png"""'], {}), "('output_images/pre_color_thresh.png')\n", (2587, 2625), True, 'import matplotlib.pyplot as plt\n'), ((2630, 2643), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (2640, 2643), True, 'import matplotlib.pyplot as plt\n'), ((2648, 2682), 'matplotlib.pyplot.imshow', 'plt.imshow', (['thrsh_img'], {'cmap': '"""gray"""'}), "(thrsh_img, cmap='gray')\n", (2658, 2682), True, 'import matplotlib.pyplot as plt\n'), ((2687, 2715), 'matplotlib.pyplot.title', 'plt.title', (['"""Color Threshold"""'], {}), "('Color Threshold')\n", (2696, 2715), True, 'import matplotlib.pyplot as plt\n'), ((2720, 2770), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/post_color_thresh.png"""'], {}), "('output_images/post_color_thresh.png')\n", (2731, 2770), True, 'import matplotlib.pyplot as plt\n'), ((2775, 2785), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2783, 2785), True, 'import matplotlib.pyplot as plt\n'), ((3154, 3225), 'cv2.warpPerspective', 'cv2.warpPerspective', (['img_RGB_in', 'Xfrm', 'img_size'], {'flags': 'cv2.INTER_LINEAR'}), '(img_RGB_in, Xfrm, img_size, flags=cv2.INTER_LINEAR)\n', (3173, 3225), False, 'import cv2\n'), ((3322, 3359), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (3334, 3359), True, 'import matplotlib.image as mpimg\n'), ((3406, 3419), 'matplotlib.pyplot.figure', 'plt.figure', (['(4)'], {}), '(4)\n', (3416, 3419), True, 'import matplotlib.pyplot as plt\n'), ((3424, 3439), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (3434, 3439), True, 'import matplotlib.pyplot as plt\n'), ((3444, 3471), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (3453, 3471), True, 'import matplotlib.pyplot as plt\n'), ((3476, 3521), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/pre_top_down.png"""'], {}), "('output_images/pre_top_down.png')\n", (3487, 3521), True, 'import matplotlib.pyplot as plt\n'), ((3526, 3539), 'matplotlib.pyplot.figure', 'plt.figure', (['(5)'], {}), '(5)\n', (3536, 3539), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3562), 'matplotlib.pyplot.imshow', 'plt.imshow', (['warped'], {}), '(warped)\n', (3554, 3562), True, 'import matplotlib.pyplot as plt\n'), ((3567, 3598), 'matplotlib.pyplot.title', 'plt.title', (['"""Top Down View Warp"""'], {}), "('Top Down View Warp')\n", (3576, 3598), True, 'import matplotlib.pyplot as plt\n'), ((3603, 3649), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/post_top_down.png"""'], {}), "('output_images/post_top_down.png')\n", (3614, 3649), True, 'import matplotlib.pyplot as plt\n'), ((3654, 3664), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3662, 3664), True, 'import matplotlib.pyplot as plt\n'), ((3905, 3949), 'cv2.cvtColor', 'cv2.cvtColor', (['img_RGB_in', 'cv2.COLOR_RGB2GRAY'], {}), '(img_RGB_in, cv2.COLOR_RGB2GRAY)\n', (3917, 3949), False, 'import cv2\n'), ((4119, 4158), 'numpy.zeros_like', 'np.zeros_like', (['img_GRAY'], {'dtype': 'np.uint8'}), '(img_GRAY, dtype=np.uint8)\n', (4132, 4158), True, 'import numpy as np\n'), ((4529, 4566), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (4541, 4566), True, 'import matplotlib.image as mpimg\n'), ((4657, 4670), 'matplotlib.pyplot.figure', 'plt.figure', (['(6)'], {}), '(6)\n', (4667, 4670), True, 'import matplotlib.pyplot as plt\n'), ((4675, 4690), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4685, 4690), True, 'import matplotlib.pyplot as plt\n'), ((4695, 4743), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Top Down Transformed Image"""'], {}), "('Original Top Down Transformed Image')\n", (4704, 4743), True, 'import matplotlib.pyplot as plt\n'), ((4748, 4796), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/pre_grad_thresh.png"""'], {}), "('output_images/pre_grad_thresh.png')\n", (4759, 4796), True, 'import matplotlib.pyplot as plt\n'), ((4801, 4814), 'matplotlib.pyplot.figure', 'plt.figure', (['(7)'], {}), '(7)\n', (4811, 4814), True, 'import matplotlib.pyplot as plt\n'), ((4819, 4853), 'matplotlib.pyplot.imshow', 'plt.imshow', (['thrsh_img'], {'cmap': '"""gray"""'}), "(thrsh_img, cmap='gray')\n", (4829, 4853), True, 'import matplotlib.pyplot as plt\n'), ((4858, 4889), 'matplotlib.pyplot.title', 'plt.title', (['"""Gradient Threshold"""'], {}), "('Gradient Threshold')\n", (4867, 4889), True, 'import matplotlib.pyplot as plt\n'), ((4894, 4943), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/post_grad_thresh.png"""'], {}), "('output_images/post_grad_thresh.png')\n", (4905, 4943), True, 'import matplotlib.pyplot as plt\n'), ((4948, 4958), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4956, 4958), True, 'import matplotlib.pyplot as plt\n'), ((27203, 27240), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (27215, 27240), True, 'import matplotlib.image as mpimg\n'), ((27459, 27472), 'matplotlib.pyplot.figure', 'plt.figure', (['(7)'], {}), '(7)\n', (27469, 27472), True, 'import matplotlib.pyplot as plt\n'), ((27477, 27492), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (27487, 27492), True, 'import matplotlib.pyplot as plt\n'), ((27497, 27524), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (27506, 27524), True, 'import matplotlib.pyplot as plt\n'), ((27529, 27580), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/original_histogram.png"""'], {}), "('output_images/original_histogram.png')\n", (27540, 27580), True, 'import matplotlib.pyplot as plt\n'), ((27585, 27598), 'matplotlib.pyplot.figure', 'plt.figure', (['(8)'], {}), '(8)\n', (27595, 27598), True, 'import matplotlib.pyplot as plt\n'), ((27603, 27638), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img_BIN_in'], {'cmap': '"""gray"""'}), "(img_BIN_in, cmap='gray')\n", (27613, 27638), True, 'import matplotlib.pyplot as plt\n'), ((27643, 27677), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Binary Image"""'], {}), "('Original Binary Image')\n", (27652, 27677), True, 'import matplotlib.pyplot as plt\n'), ((27682, 27737), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/original_bin_histogram.png"""'], {}), "('output_images/original_bin_histogram.png')\n", (27693, 27737), True, 'import matplotlib.pyplot as plt\n'), ((27742, 27755), 'matplotlib.pyplot.figure', 'plt.figure', (['(9)'], {}), '(9)\n', (27752, 27755), True, 'import matplotlib.pyplot as plt\n'), ((27760, 27779), 'matplotlib.pyplot.plot', 'plt.plot', (['histogram'], {}), '(histogram)\n', (27768, 27779), True, 'import matplotlib.pyplot as plt\n'), ((27784, 27806), 'matplotlib.pyplot.title', 'plt.title', (['"""Histogram"""'], {}), "('Histogram')\n", (27793, 27806), True, 'import matplotlib.pyplot as plt\n'), ((27811, 27853), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/histogram.png"""'], {}), "('output_images/histogram.png')\n", (27822, 27853), True, 'import matplotlib.pyplot as plt\n'), ((27858, 27868), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (27866, 27868), True, 'import matplotlib.pyplot as plt\n'), ((27935, 27972), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (27947, 27972), True, 'import matplotlib.image as mpimg\n'), ((27977, 27991), 'matplotlib.pyplot.figure', 'plt.figure', (['(10)'], {}), '(10)\n', (27987, 27991), True, 'import matplotlib.pyplot as plt\n'), ((27996, 28011), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (28006, 28011), True, 'import matplotlib.pyplot as plt\n'), ((28016, 28043), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (28025, 28043), True, 'import matplotlib.pyplot as plt\n'), ((28692, 28706), 'matplotlib.pyplot.figure', 'plt.figure', (['(11)'], {}), '(11)\n', (28702, 28706), True, 'import matplotlib.pyplot as plt\n'), ((28711, 28745), 'matplotlib.pyplot.imshow', 'plt.imshow', (['lane_lines.img_RGB_out'], {}), '(lane_lines.img_RGB_out)\n', (28721, 28745), True, 'import matplotlib.pyplot as plt\n'), ((28750, 28813), 'matplotlib.pyplot.title', 'plt.title', (['"""2nd Order Polynomial Fit - Histogram Search Method"""'], {}), "('2nd Order Polynomial Fit - Histogram Search Method')\n", (28759, 28813), True, 'import matplotlib.pyplot as plt\n'), ((28818, 28860), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/poly_hist.png"""'], {}), "('output_images/poly_hist.png')\n", (28829, 28860), True, 'import matplotlib.pyplot as plt\n'), ((30607, 30617), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (30615, 30617), True, 'import matplotlib.pyplot as plt\n'), ((30665, 30702), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (30677, 30702), True, 'import matplotlib.image as mpimg\n'), ((30743, 30757), 'matplotlib.pyplot.figure', 'plt.figure', (['(13)'], {}), '(13)\n', (30753, 30757), True, 'import matplotlib.pyplot as plt\n'), ((30762, 30777), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (30772, 30777), True, 'import matplotlib.pyplot as plt\n'), ((30782, 30809), 'matplotlib.pyplot.title', 'plt.title', (['"""Original Image"""'], {}), "('Original Image')\n", (30791, 30809), True, 'import matplotlib.pyplot as plt\n'), ((30814, 30828), 'matplotlib.pyplot.figure', 'plt.figure', (['(14)'], {}), '(14)\n', (30824, 30828), True, 'import matplotlib.pyplot as plt\n'), ((30876, 30900), 'matplotlib.pyplot.title', 'plt.title', (['"""Found Lines"""'], {}), "('Found Lines')\n", (30885, 30900), True, 'import matplotlib.pyplot as plt\n'), ((30905, 30951), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/full_pipeline.png"""'], {}), "('output_images/full_pipeline.png')\n", (30916, 30951), True, 'import matplotlib.pyplot as plt\n'), ((30956, 30966), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (30964, 30966), True, 'import matplotlib.pyplot as plt\n'), ((31011, 31048), 'matplotlib.image.imread', 'mpimg.imread', (['"""test_images/test6.jpg"""'], {}), "('test_images/test6.jpg')\n", (31023, 31048), True, 'import matplotlib.image as mpimg\n'), ((31685, 31733), 'moviepy.editor.VideoFileClip', 'VideoFileClip', (['"""test_videos/challenge_video.mp4"""'], {}), "('test_videos/challenge_video.mp4')\n", (31698, 31733), False, 'from moviepy.editor import VideoFileClip\n'), ((2218, 2240), 'numpy.where', 'np.where', (['(img_out == 0)'], {}), '(img_out == 0)\n', (2226, 2240), True, 'import numpy as np\n'), ((2259, 2278), 'numpy.copy', 'np.copy', (['img_RGB_in'], {}), '(img_RGB_in)\n', (2266, 2278), True, 'import numpy as np\n'), ((4005, 4042), 'cv2.Sobel', 'cv2.Sobel', (['img_GRAY', 'cv2.CV_64F', '(1)', '(0)'], {}), '(img_GRAY, cv2.CV_64F, 1, 0)\n', (4014, 4042), False, 'import cv2\n'), ((4296, 4318), 'numpy.where', 'np.where', (['(img_out == 0)'], {}), '(img_out == 0)\n', (4304, 4318), True, 'import numpy as np\n'), ((4337, 4356), 'numpy.copy', 'np.copy', (['img_RGB_in'], {}), '(img_RGB_in)\n', (4344, 4356), True, 'import numpy as np\n'), ((5368, 5392), 'numpy.int', 'np.int', (['(frame_width // 2)'], {}), '(frame_width // 2)\n', (5374, 5392), True, 'import numpy as np\n'), ((5431, 5477), 'numpy.linspace', 'np.linspace', (['(0)', '(frame_height - 1)', 'frame_height'], {}), '(0, frame_height - 1, frame_height)\n', (5442, 5477), True, 'import numpy as np\n'), ((6986, 7023), 'numpy.int', 'np.int', (['(frame_height // self.nwindows)'], {}), '(frame_height // self.nwindows)\n', (6992, 7023), True, 'import numpy as np\n'), ((7808, 7853), 'numpy.empty', 'np.empty', (['(0, self.ploty.size)'], {'dtype': '"""float"""'}), "((0, self.ploty.size), dtype='float')\n", (7816, 7853), True, 'import numpy as np\n'), ((7881, 7926), 'numpy.empty', 'np.empty', (['(0, self.ploty.size)'], {'dtype': '"""float"""'}), "((0, self.ploty.size), dtype='float')\n", (7889, 7926), True, 'import numpy as np\n'), ((8033, 8073), 'numpy.zeros', 'np.zeros', (['self.ploty.size'], {'dtype': '"""float"""'}), "(self.ploty.size, dtype='float')\n", (8041, 8073), True, 'import numpy as np\n'), ((8108, 8148), 'numpy.zeros', 'np.zeros', (['self.ploty.size'], {'dtype': '"""float"""'}), "(self.ploty.size, dtype='float')\n", (8116, 8148), True, 'import numpy as np\n'), ((8245, 8291), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (8253, 8291), True, 'import numpy as np\n'), ((8326, 8372), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (8334, 8372), True, 'import numpy as np\n'), ((8468, 8519), 'numpy.empty', 'np.empty', (['(0, self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "((0, self.poly_fit_dim + 1), dtype='float')\n", (8476, 8519), True, 'import numpy as np\n'), ((8549, 8600), 'numpy.empty', 'np.empty', (['(0, self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "((0, self.poly_fit_dim + 1), dtype='float')\n", (8557, 8600), True, 'import numpy as np\n'), ((8700, 8746), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (8708, 8746), True, 'import numpy as np\n'), ((8780, 8826), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (8788, 8826), True, 'import numpy as np\n'), ((9813, 9879), 'numpy.sum', 'np.sum', (['self.img_BIN_in[self.img_BIN_in.shape[0] // 2:, :]'], {'axis': '(0)'}), '(self.img_BIN_in[self.img_BIN_in.shape[0] // 2:, :], axis=0)\n', (9819, 9879), True, 'import numpy as np\n'), ((10093, 10138), 'numpy.empty', 'np.empty', (['(0, self.ploty.size)'], {'dtype': '"""float"""'}), "((0, self.ploty.size), dtype='float')\n", (10101, 10138), True, 'import numpy as np\n'), ((10166, 10211), 'numpy.empty', 'np.empty', (['(0, self.ploty.size)'], {'dtype': '"""float"""'}), "((0, self.ploty.size), dtype='float')\n", (10174, 10211), True, 'import numpy as np\n'), ((10241, 10292), 'numpy.empty', 'np.empty', (['(0, self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "((0, self.poly_fit_dim + 1), dtype='float')\n", (10249, 10292), True, 'import numpy as np\n'), ((10322, 10373), 'numpy.empty', 'np.empty', (['(0, self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "((0, self.poly_fit_dim + 1), dtype='float')\n", (10330, 10373), True, 'import numpy as np\n'), ((10547, 10609), 'numpy.dstack', 'np.dstack', (['(self.img_BIN_in, self.img_BIN_in, self.img_BIN_in)'], {}), '((self.img_BIN_in, self.img_BIN_in, self.img_BIN_in))\n', (10556, 10609), True, 'import numpy as np\n'), ((10778, 10814), 'numpy.int', 'np.int', (['(self.histogram.shape[0] // 2)'], {}), '(self.histogram.shape[0] // 2)\n', (10784, 10814), True, 'import numpy as np\n'), ((10834, 10877), 'numpy.argmax', 'np.argmax', (['self.histogram[:midpoint_height]'], {}), '(self.histogram[:midpoint_height])\n', (10843, 10877), True, 'import numpy as np\n'), ((11110, 11130), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (11118, 11130), True, 'import numpy as np\n'), ((11150, 11170), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (11158, 11170), True, 'import numpy as np\n'), ((13661, 13691), 'numpy.concatenate', 'np.concatenate', (['left_lane_inds'], {}), '(left_lane_inds)\n', (13675, 13691), True, 'import numpy as np\n'), ((13718, 13749), 'numpy.concatenate', 'np.concatenate', (['right_lane_inds'], {}), '(right_lane_inds)\n', (13732, 13749), True, 'import numpy as np\n'), ((14714, 14749), 'numpy.polyfit', 'np.polyfit', (['y', 'x', 'self.poly_fit_dim'], {}), '(y, x, self.poly_fit_dim)\n', (14724, 14749), True, 'import numpy as np\n'), ((15502, 15522), 'numpy.array', 'np.array', (['nonzero[0]'], {}), '(nonzero[0])\n', (15510, 15522), True, 'import numpy as np\n'), ((15542, 15562), 'numpy.array', 'np.array', (['nonzero[1]'], {}), '(nonzero[1])\n', (15550, 15562), True, 'import numpy as np\n'), ((19095, 19141), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (19103, 19141), True, 'import numpy as np\n'), ((19175, 19221), 'numpy.zeros', 'np.zeros', (['(self.poly_fit_dim + 1)'], {'dtype': '"""float"""'}), "(self.poly_fit_dim + 1, dtype='float')\n", (19183, 19221), True, 'import numpy as np\n'), ((19251, 19291), 'numpy.zeros', 'np.zeros', (['self.ploty.size'], {'dtype': '"""float"""'}), "(self.ploty.size, dtype='float')\n", (19259, 19291), True, 'import numpy as np\n'), ((19326, 19366), 'numpy.zeros', 'np.zeros', (['self.ploty.size'], {'dtype': '"""float"""'}), "(self.ploty.size, dtype='float')\n", (19334, 19366), True, 'import numpy as np\n'), ((25391, 25435), 'numpy.dstack', 'np.dstack', (['(warp_zero, warp_zero, warp_zero)'], {}), '((warp_zero, warp_zero, warp_zero))\n', (25400, 25435), True, 'import numpy as np\n'), ((25787, 25819), 'numpy.hstack', 'np.hstack', (['(pts_left, pts_right)'], {}), '((pts_left, pts_right))\n', (25796, 25819), True, 'import numpy as np\n'), ((26063, 26149), 'cv2.warpPerspective', 'cv2.warpPerspective', (['color_warp', 'Minv', '(img_RGB_in.shape[1], img_RGB_in.shape[0])'], {}), '(color_warp, Minv, (img_RGB_in.shape[1], img_RGB_in.\n shape[0]))\n', (26082, 26149), False, 'import cv2\n'), ((26220, 26267), 'cv2.addWeighted', 'cv2.addWeighted', (['img_RGB_in', '(1)', 'newwarp', '(0.3)', '(0)'], {}), '(img_RGB_in, 1, newwarp, 0.3, 0)\n', (26235, 26267), False, 'import cv2\n'), ((28973, 29017), 'numpy.vstack', 'np.vstack', (['(lane_lines.x_fit_all_L, x_fit_L)'], {}), '((lane_lines.x_fit_all_L, x_fit_L))\n', (28982, 29017), True, 'import numpy as np\n'), ((29051, 29095), 'numpy.vstack', 'np.vstack', (['(lane_lines.x_fit_all_R, x_fit_R)'], {}), '((lane_lines.x_fit_all_R, x_fit_R))\n', (29060, 29095), True, 'import numpy as np\n'), ((29170, 29239), 'numpy.vstack', 'np.vstack', (['(lane_lines.coef_fit_all_L, lane_lines.coef_fit_current_L)'], {}), '((lane_lines.coef_fit_all_L, lane_lines.coef_fit_current_L))\n', (29179, 29239), True, 'import numpy as np\n'), ((29276, 29345), 'numpy.vstack', 'np.vstack', (['(lane_lines.coef_fit_all_R, lane_lines.coef_fit_current_R)'], {}), '((lane_lines.coef_fit_all_R, lane_lines.coef_fit_current_R))\n', (29285, 29345), True, 'import numpy as np\n'), ((30421, 30435), 'matplotlib.pyplot.figure', 'plt.figure', (['(12)'], {}), '(12)\n', (30431, 30435), True, 'import matplotlib.pyplot as plt\n'), ((30444, 30478), 'matplotlib.pyplot.imshow', 'plt.imshow', (['lane_lines.img_RGB_out'], {}), '(lane_lines.img_RGB_out)\n', (30454, 30478), True, 'import matplotlib.pyplot as plt\n'), ((30487, 30551), 'matplotlib.pyplot.title', 'plt.title', (['"""2nd Order Polynomial Fit - Polynomial Search Method"""'], {}), "('2nd Order Polynomial Fit - Polynomial Search Method')\n", (30496, 30551), True, 'import matplotlib.pyplot as plt\n'), ((30560, 30602), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output_images/poly_poly.png"""'], {}), "('output_images/poly_poly.png')\n", (30571, 30602), True, 'import matplotlib.pyplot as plt\n'), ((4086, 4103), 'numpy.max', 'np.max', (['abs_sobel'], {}), '(abs_sobel)\n', (4092, 4103), True, 'import numpy as np\n'), ((10900, 10943), 'numpy.argmax', 'np.argmax', (['self.histogram[midpoint_height:]'], {}), '(self.histogram[midpoint_height:])\n', (10909, 10943), True, 'import numpy as np\n'), ((12219, 12328), 'cv2.rectangle', 'cv2.rectangle', (['self.img_RGB_out', '(win_xleft_low, win_y_low)', '(win_xleft_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(self.img_RGB_out, (win_xleft_low, win_y_low), (win_xleft_high,\n win_y_high), (0, 255, 0), 2)\n', (12232, 12328), False, 'import cv2\n'), ((12344, 12456), 'cv2.rectangle', 'cv2.rectangle', (['self.img_RGB_out', '(win_xright_low, win_y_low)', '(win_xright_high, win_y_high)', '(0, 255, 0)', '(2)'], {}), '(self.img_RGB_out, (win_xright_low, win_y_low), (\n win_xright_high, win_y_high), (0, 255, 0), 2)\n', (12357, 12456), False, 'import cv2\n'), ((14962, 14982), 'numpy.maximum', 'np.maximum', (['x_fit', '(0)'], {}), '(x_fit, 0)\n', (14972, 14982), True, 'import numpy as np\n'), ((16866, 16928), 'numpy.dstack', 'np.dstack', (['(self.img_BIN_in, self.img_BIN_in, self.img_BIN_in)'], {}), '((self.img_BIN_in, self.img_BIN_in, self.img_BIN_in))\n', (16875, 16928), True, 'import numpy as np\n'), ((17146, 17177), 'numpy.zeros_like', 'np.zeros_like', (['self.img_RGB_out'], {}), '(self.img_RGB_out)\n', (17159, 17177), True, 'import numpy as np\n'), ((17976, 18025), 'numpy.hstack', 'np.hstack', (['(left_line_window1, left_line_window2)'], {}), '((left_line_window1, left_line_window2))\n', (17985, 18025), True, 'import numpy as np\n'), ((18284, 18335), 'numpy.hstack', 'np.hstack', (['(right_line_window1, right_line_window2)'], {}), '((right_line_window1, right_line_window2))\n', (18293, 18335), True, 'import numpy as np\n'), ((18587, 18643), 'cv2.addWeighted', 'cv2.addWeighted', (['self.img_RGB_out', '(1)', 'window_img', '(0.3)', '(0)'], {}), '(self.img_RGB_out, 1, window_img, 0.3, 0)\n', (18602, 18643), False, 'import cv2\n'), ((19528, 19566), 'numpy.delete', 'np.delete', (['self.x_fit_all_L', '(0)'], {'axis': '(0)'}), '(self.x_fit_all_L, 0, axis=0)\n', (19537, 19566), True, 'import numpy as np\n'), ((19598, 19636), 'numpy.delete', 'np.delete', (['self.x_fit_all_R', '(0)'], {'axis': '(0)'}), '(self.x_fit_all_R, 0, axis=0)\n', (19607, 19636), True, 'import numpy as np\n'), ((19671, 19712), 'numpy.delete', 'np.delete', (['self.coef_fit_all_L', '(0)'], {'axis': '(0)'}), '(self.coef_fit_all_L, 0, axis=0)\n', (19680, 19712), True, 'import numpy as np\n'), ((19747, 19788), 'numpy.delete', 'np.delete', (['self.coef_fit_all_R', '(0)'], {'axis': '(0)'}), '(self.coef_fit_all_R, 0, axis=0)\n', (19756, 19788), True, 'import numpy as np\n'), ((21603, 21623), 'numpy.absolute', 'np.absolute', (['(2 * A_L)'], {}), '(2 * A_L)\n', (21614, 21623), True, 'import numpy as np\n'), ((21698, 21718), 'numpy.absolute', 'np.absolute', (['(2 * A_R)'], {}), '(2 * A_R)\n', (21709, 21718), True, 'import numpy as np\n'), ((23613, 23651), 'numpy.vstack', 'np.vstack', (['(self.x_fit_all_L, x_fit_L)'], {}), '((self.x_fit_all_L, x_fit_L))\n', (23622, 23651), True, 'import numpy as np\n'), ((23683, 23721), 'numpy.vstack', 'np.vstack', (['(self.x_fit_all_R, x_fit_R)'], {}), '((self.x_fit_all_R, x_fit_R))\n', (23692, 23721), True, 'import numpy as np\n'), ((23811, 23868), 'numpy.vstack', 'np.vstack', (['(self.coef_fit_all_L, self.coef_fit_current_L)'], {}), '((self.coef_fit_all_L, self.coef_fit_current_L))\n', (23820, 23868), True, 'import numpy as np\n'), ((23903, 23960), 'numpy.vstack', 'np.vstack', (['(self.coef_fit_all_R, self.coef_fit_current_R)'], {}), '((self.coef_fit_all_R, self.coef_fit_current_R))\n', (23912, 23960), True, 'import numpy as np\n'), ((25914, 25928), 'numpy.int_', 'np.int_', (['[pts]'], {}), '([pts])\n', (25921, 25928), True, 'import numpy as np\n'), ((18442, 18466), 'numpy.int_', 'np.int_', (['[left_line_pts]'], {}), '([left_line_pts])\n', (18449, 18466), True, 'import numpy as np\n'), ((18517, 18542), 'numpy.int_', 'np.int_', (['[right_line_pts]'], {}), '([right_line_pts])\n', (18524, 18542), True, 'import numpy as np\n'), ((24559, 24569), 'sys.exit', 'sys.exit', ([], {}), '()\n', (24567, 24569), False, 'import sys\n'), ((25322, 25352), 'numpy.zeros_like', 'np.zeros_like', (['self.img_BIN_in'], {}), '(self.img_BIN_in)\n', (25335, 25352), True, 'import numpy as np\n'), ((13327, 13360), 'numpy.mean', 'np.mean', (['nonzerox[good_left_inds]'], {}), '(nonzerox[good_left_inds])\n', (13334, 13360), True, 'import numpy as np\n'), ((13550, 13584), 'numpy.mean', 'np.mean', (['nonzerox[good_right_inds]'], {}), '(nonzerox[good_right_inds])\n', (13557, 13584), True, 'import numpy as np\n'), ((25627, 25669), 'numpy.vstack', 'np.vstack', (['[self.x_fit_best_L, self.ploty]'], {}), '([self.x_fit_best_L, self.ploty])\n', (25636, 25669), True, 'import numpy as np\n'), ((17776, 17827), 'numpy.vstack', 'np.vstack', (['[x_fit_L - self.margin_poly, self.ploty]'], {}), '([x_fit_L - self.margin_poly, self.ploty])\n', (17785, 17827), True, 'import numpy as np\n'), ((18082, 18133), 'numpy.vstack', 'np.vstack', (['[x_fit_R - self.margin_poly, self.ploty]'], {}), '([x_fit_R - self.margin_poly, self.ploty])\n', (18091, 18133), True, 'import numpy as np\n'), ((25726, 25768), 'numpy.vstack', 'np.vstack', (['[self.x_fit_best_R, self.ploty]'], {}), '([self.x_fit_best_R, self.ploty])\n', (25735, 25768), True, 'import numpy as np\n'), ((17894, 17945), 'numpy.vstack', 'np.vstack', (['[x_fit_L + self.margin_poly, self.ploty]'], {}), '([x_fit_L + self.margin_poly, self.ploty])\n', (17903, 17945), True, 'import numpy as np\n'), ((18201, 18252), 'numpy.vstack', 'np.vstack', (['[x_fit_R + self.margin_poly, self.ploty]'], {}), '([x_fit_R + self.margin_poly, self.ploty])\n', (18210, 18252), True, 'import numpy as np\n')]
import math import random from typing import Tuple import cv2 import numpy as np def np_free_form_mask( max_vertex: int, max_length: int, max_brush_width: int, max_angle: int, height: int, width: int ) -> np.ndarray: mask = np.zeros((height, width), np.float32) num_vertex = random.randint(0, max_vertex) start_y = random.randint(0, height - 1) start_x = random.randint(0, width - 1) brush_width = 0 for i in range(num_vertex): angle = random.random() * max_angle angle = math.radians(angle) if i % 2 == 0: angle = 2 * math.pi - angle length = random.randint(0, max_length) brush_width = random.randint(10, max_brush_width) // 2 * 2 next_y = start_y + length * np.cos(angle) next_x = start_x + length * np.sin(angle) next_y = np.maximum(np.minimum(next_y, height - 1), 0).astype(np.int) next_x = np.maximum(np.minimum(next_x, width - 1), 0).astype(np.int) cv2.line(mask, (start_y, start_x), (next_y, next_x), 1, brush_width) cv2.circle(mask, (start_y, start_x), brush_width // 2, 2) start_y, start_x = next_y, next_x cv2.circle(mask, (start_y, start_x), brush_width // 2, 2) return mask def generate_stroke_mask( image_size: Tuple[int, int], parts: int = 7, max_vertex: int = 25, max_length: int = 80, max_brush_width: int = 80, max_angle: int = 360, ) -> np.ndarray: mask = np.zeros(image_size, dtype=np.float32) for _ in range(parts): mask = mask + np_free_form_mask( max_vertex, max_length, max_brush_width, max_angle, image_size[0], image_size[1] ) return np.minimum(mask, 1.0)
[ "numpy.minimum", "cv2.line", "math.radians", "cv2.circle", "numpy.zeros", "numpy.cos", "numpy.sin", "random.random", "random.randint" ]
[((235, 272), 'numpy.zeros', 'np.zeros', (['(height, width)', 'np.float32'], {}), '((height, width), np.float32)\n', (243, 272), True, 'import numpy as np\n'), ((291, 320), 'random.randint', 'random.randint', (['(0)', 'max_vertex'], {}), '(0, max_vertex)\n', (305, 320), False, 'import random\n'), ((335, 364), 'random.randint', 'random.randint', (['(0)', '(height - 1)'], {}), '(0, height - 1)\n', (349, 364), False, 'import random\n'), ((379, 407), 'random.randint', 'random.randint', (['(0)', '(width - 1)'], {}), '(0, width - 1)\n', (393, 407), False, 'import random\n'), ((1168, 1225), 'cv2.circle', 'cv2.circle', (['mask', '(start_y, start_x)', '(brush_width // 2)', '(2)'], {}), '(mask, (start_y, start_x), brush_width // 2, 2)\n', (1178, 1225), False, 'import cv2\n'), ((1461, 1499), 'numpy.zeros', 'np.zeros', (['image_size'], {'dtype': 'np.float32'}), '(image_size, dtype=np.float32)\n', (1469, 1499), True, 'import numpy as np\n'), ((1683, 1704), 'numpy.minimum', 'np.minimum', (['mask', '(1.0)'], {}), '(mask, 1.0)\n', (1693, 1704), True, 'import numpy as np\n'), ((521, 540), 'math.radians', 'math.radians', (['angle'], {}), '(angle)\n', (533, 540), False, 'import math\n'), ((623, 652), 'random.randint', 'random.randint', (['(0)', 'max_length'], {}), '(0, max_length)\n', (637, 652), False, 'import random\n'), ((986, 1054), 'cv2.line', 'cv2.line', (['mask', '(start_y, start_x)', '(next_y, next_x)', '(1)', 'brush_width'], {}), '(mask, (start_y, start_x), (next_y, next_x), 1, brush_width)\n', (994, 1054), False, 'import cv2\n'), ((1063, 1120), 'cv2.circle', 'cv2.circle', (['mask', '(start_y, start_x)', '(brush_width // 2)', '(2)'], {}), '(mask, (start_y, start_x), brush_width // 2, 2)\n', (1073, 1120), False, 'import cv2\n'), ((477, 492), 'random.random', 'random.random', ([], {}), '()\n', (490, 492), False, 'import random\n'), ((675, 710), 'random.randint', 'random.randint', (['(10)', 'max_brush_width'], {}), '(10, max_brush_width)\n', (689, 710), False, 'import random\n'), ((757, 770), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (763, 770), True, 'import numpy as np\n'), ((807, 820), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (813, 820), True, 'import numpy as np\n'), ((850, 880), 'numpy.minimum', 'np.minimum', (['next_y', '(height - 1)'], {}), '(next_y, height - 1)\n', (860, 880), True, 'import numpy as np\n'), ((928, 957), 'numpy.minimum', 'np.minimum', (['next_x', '(width - 1)'], {}), '(next_x, width - 1)\n', (938, 957), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # Copyright (c) 2015-2019 Analog Devices, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Modified versions of the software must be conspicuously marked as such. # - This software is licensed solely and exclusively for use with # processors/products manufactured by or for Analog Devices, Inc. # - This software may not be combined or merged with other code in any manner # that would cause the software to become subject to terms and conditions # which differ from those listed here. # - Neither the name of Analog Devices, Inc. nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # - The use of this software may or may not infringe the patent rights of one # or more patent holders. This license does not release you from the # requirement that you obtain separate licenses from these patent holders # to use this software. # # THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES, INC. AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # NON-INFRINGEMENT, TITLE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANALOG DEVICES, INC. OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, PUNITIVE OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # DAMAGES ARISING OUT OF CLAIMS OF INTELLECTUAL PROPERTY RIGHTS INFRINGEMENT; # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # 2019-01-10-7CBSD SLA # ----------------------------------------------------------------------- ''' Simulation of some of the AD7124's filters. This program QUALITATIVELY derives a filter of a type similar to that used in the AD7124 family of ADCs, that is, it is not bit-accurate, refer to the datasheet for guaranteed specifications. Tested with Python 3.7, Anaconda distribution ''' from numpy import min, max, convolve, random, average, ones, zeros, amax, log import numpy as np from scipy import linspace, fft from scipy import signal from scipy.signal import lti, step from matplotlib import pyplot as plt plot_sinc4 = True # Base sample rate in high-power mode, From AD7124 datasheet f0 = 19200 # Calculate SINC1 oversample ratios for 50, 60Hz osr50 = int(f0/50) osr60 = int(f0/60) # Create "boxcar" SINC1 filters sinc1_50 = np.ones(osr50) sinc1_60 = np.ones(osr60) # Calculate higher order filters sinc2_50 = np.convolve(sinc1_50, sinc1_50) sinc3_50 = np.convolve(sinc2_50, sinc1_50) sinc4_50 = np.convolve(sinc2_50, sinc2_50) # Here's the filter from datasheet Figure 91, # SINC4-ish filter with one three zeros at 50Hz, one at 60Hz. filt_50_60_rej = np.convolve(sinc3_50, sinc1_60) # Normalize to unity gain by dividing by sum of all taps sinc1_50 /= np.sum(sinc1_50) sinc1_60 /= np.sum(sinc1_60) sinc2_50 /= np.sum(sinc2_50) sinc3_50 /= np.sum(sinc3_50) sinc4_50 /= np.sum(sinc4_50) filt_50_60_rej /= np.sum(filt_50_60_rej) # freqz: Compute the frequency response of a digital filter. # Older versions of SicPy return w as radians / sample, newer take an optional # sample rate argument (fs). Computing frequencies (freqs) # manually for backwards compatibility. w, h = signal.freqz(filt_50_60_rej, 1, worN=16385, whole=False) #, fs=f0) freqs = w * f0/(2.0*np.pi) hmax = abs(max(h)) #Normalize to unity response_dB = 20.0 * np.log10(abs(h)/hmax) plt.figure(1) plt.title('50Hz SINC1,2,4, and 50/60Hz SINC4 impulse responses') plt.ylabel('tap val.') plt.plot(sinc1_50) plt.plot(sinc2_50) plt.plot(sinc4_50) plt.plot(filt_50_60_rej) plt.xlabel('tap number') plt.xlim(left=-100, right= 1.1* len(filt_50_60_rej)) plt.grid() plt.figure(2) plt.plot(freqs, response_dB, zorder=1) plt.title('50/60Hz reject filter response') plt.xlabel('Frequency') plt.ylabel('Rejection') plt.axis([0, 150, -120, 1]) plt.show()
[ "numpy.convolve", "matplotlib.pyplot.grid", "numpy.ones", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.axis", "numpy.max", "numpy.sum", "matplotlib.pyplot.figure", "matplotlib.pyplot.title", "scipy.signal.freqz", "matplotlib.pyplot.show" ]
[((3234, 3248), 'numpy.ones', 'np.ones', (['osr50'], {}), '(osr50)\n', (3241, 3248), True, 'import numpy as np\n'), ((3260, 3274), 'numpy.ones', 'np.ones', (['osr60'], {}), '(osr60)\n', (3267, 3274), True, 'import numpy as np\n'), ((3320, 3351), 'numpy.convolve', 'np.convolve', (['sinc1_50', 'sinc1_50'], {}), '(sinc1_50, sinc1_50)\n', (3331, 3351), True, 'import numpy as np\n'), ((3363, 3394), 'numpy.convolve', 'np.convolve', (['sinc2_50', 'sinc1_50'], {}), '(sinc2_50, sinc1_50)\n', (3374, 3394), True, 'import numpy as np\n'), ((3406, 3437), 'numpy.convolve', 'np.convolve', (['sinc2_50', 'sinc2_50'], {}), '(sinc2_50, sinc2_50)\n', (3417, 3437), True, 'import numpy as np\n'), ((3564, 3595), 'numpy.convolve', 'np.convolve', (['sinc3_50', 'sinc1_60'], {}), '(sinc3_50, sinc1_60)\n', (3575, 3595), True, 'import numpy as np\n'), ((3666, 3682), 'numpy.sum', 'np.sum', (['sinc1_50'], {}), '(sinc1_50)\n', (3672, 3682), True, 'import numpy as np\n'), ((3695, 3711), 'numpy.sum', 'np.sum', (['sinc1_60'], {}), '(sinc1_60)\n', (3701, 3711), True, 'import numpy as np\n'), ((3724, 3740), 'numpy.sum', 'np.sum', (['sinc2_50'], {}), '(sinc2_50)\n', (3730, 3740), True, 'import numpy as np\n'), ((3753, 3769), 'numpy.sum', 'np.sum', (['sinc3_50'], {}), '(sinc3_50)\n', (3759, 3769), True, 'import numpy as np\n'), ((3782, 3798), 'numpy.sum', 'np.sum', (['sinc4_50'], {}), '(sinc4_50)\n', (3788, 3798), True, 'import numpy as np\n'), ((3817, 3839), 'numpy.sum', 'np.sum', (['filt_50_60_rej'], {}), '(filt_50_60_rej)\n', (3823, 3839), True, 'import numpy as np\n'), ((4089, 4145), 'scipy.signal.freqz', 'signal.freqz', (['filt_50_60_rej', '(1)'], {'worN': '(16385)', 'whole': '(False)'}), '(filt_50_60_rej, 1, worN=16385, whole=False)\n', (4101, 4145), False, 'from scipy import signal\n'), ((4267, 4280), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (4277, 4280), True, 'from matplotlib import pyplot as plt\n'), ((4281, 4345), 'matplotlib.pyplot.title', 'plt.title', (['"""50Hz SINC1,2,4, and 50/60Hz SINC4 impulse responses"""'], {}), "('50Hz SINC1,2,4, and 50/60Hz SINC4 impulse responses')\n", (4290, 4345), True, 'from matplotlib import pyplot as plt\n'), ((4346, 4368), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""tap val."""'], {}), "('tap val.')\n", (4356, 4368), True, 'from matplotlib import pyplot as plt\n'), ((4369, 4387), 'matplotlib.pyplot.plot', 'plt.plot', (['sinc1_50'], {}), '(sinc1_50)\n', (4377, 4387), True, 'from matplotlib import pyplot as plt\n'), ((4388, 4406), 'matplotlib.pyplot.plot', 'plt.plot', (['sinc2_50'], {}), '(sinc2_50)\n', (4396, 4406), True, 'from matplotlib import pyplot as plt\n'), ((4407, 4425), 'matplotlib.pyplot.plot', 'plt.plot', (['sinc4_50'], {}), '(sinc4_50)\n', (4415, 4425), True, 'from matplotlib import pyplot as plt\n'), ((4426, 4450), 'matplotlib.pyplot.plot', 'plt.plot', (['filt_50_60_rej'], {}), '(filt_50_60_rej)\n', (4434, 4450), True, 'from matplotlib import pyplot as plt\n'), ((4451, 4475), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""tap number"""'], {}), "('tap number')\n", (4461, 4475), True, 'from matplotlib import pyplot as plt\n'), ((4529, 4539), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (4537, 4539), True, 'from matplotlib import pyplot as plt\n'), ((4541, 4554), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (4551, 4554), True, 'from matplotlib import pyplot as plt\n'), ((4555, 4593), 'matplotlib.pyplot.plot', 'plt.plot', (['freqs', 'response_dB'], {'zorder': '(1)'}), '(freqs, response_dB, zorder=1)\n', (4563, 4593), True, 'from matplotlib import pyplot as plt\n'), ((4594, 4637), 'matplotlib.pyplot.title', 'plt.title', (['"""50/60Hz reject filter response"""'], {}), "('50/60Hz reject filter response')\n", (4603, 4637), True, 'from matplotlib import pyplot as plt\n'), ((4638, 4661), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frequency"""'], {}), "('Frequency')\n", (4648, 4661), True, 'from matplotlib import pyplot as plt\n'), ((4662, 4685), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Rejection"""'], {}), "('Rejection')\n", (4672, 4685), True, 'from matplotlib import pyplot as plt\n'), ((4686, 4713), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 150, -120, 1]'], {}), '([0, 150, -120, 1])\n', (4694, 4713), True, 'from matplotlib import pyplot as plt\n'), ((4714, 4724), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4722, 4724), True, 'from matplotlib import pyplot as plt\n'), ((4194, 4200), 'numpy.max', 'max', (['h'], {}), '(h)\n', (4197, 4200), False, 'from numpy import min, max, convolve, random, average, ones, zeros, amax, log\n')]